
STUDY OF SHEAR-DRIVEN UNSTEADY FLOWS OF A FLUID WITH A

PRESSURE DEPENDENT VISCOSITY

A Thesis

by

SHRIRAM SRINIVASAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2008

Major Subject: Mechanical Engineering



STUDY OF SHEAR-DRIVEN UNSTEADY FLOWS OF A FLUID WITH A

PRESSURE DEPENDENT VISCOSITY

A Thesis

by

SHRIRAM SRINIVASAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, K. R. Rajagopal
Committee Members, Anastasia Muliana

Jay R. Walton
Head of Department, Dennis O’Neal

December 2008

Major Subject: Mechanical Engineering



iii

ABSTRACT

Study of Shear-Driven Unsteady Flows of a Fluid with a Pressure Dependent

Viscosity. (December 2008)

Shriram Srinivasan, B.Tech, National Institute of Technology Tiruchirappalli

Chair of Advisory Committee: Dr. K. R. Rajagopal

In this thesis, the seminal work of Stokes concerning the flow of a Navier-Stokes

fluid due to a suddenly accelerated or oscillating plate and the flow due to torsional

oscillations of an infinitely long rod in a Navier-Stokes fluid is extended to a fluid with

pressure dependent viscosity. The viscosity of many fluids varies significantly with

pressure, a fact recognized by Stokes; and Barus, in fact, conducted experiments that

showed that the variation of the viscosity with pressure was exponential. Given such

a tremendous variation, we study how this change in viscosity affects the nature of the

solution to these problems. We find that the velocity field, and hence the structure

of the vorticity and the shear stress at the walls for fluids with pressure dependent

viscosity, are markedly different from those for the classical Navier-Stokes fluid.
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8 Velocity ū(ȳ) for oscillating plate at time t̄ =
π

2
. . . . . . . . . . . . 15
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CHAPTER I

INTRODUCTION

In deriving the momentum equations for an incompressible fluid, Stokes [1] had as-

sumed the viscosity to be a constant and obtained the celebrated Navier-Stokes equa-

tions which bear his name. However, he was well aware of the fact that the viscosity

could depend on the pressure (mean normal stress) and he delineated the conditions

under which his assumption of constant viscosity was tenable. The functional form

of the dependence of viscosity on the pressure was put forward by Barus [2] in 1893

as the Barus formula:

µ = µ0e
αp.

Later, a more general expression was proposed by Andrade [3] which also accounted

for the effects of temperature and density and was given by:

µ(p, ρ, θ) = Aρ
1
2 exp

(
(p+ ρ2r)

s

θ

)
,

where θ denotes the temperature, A, r and s are constants and ρ denotes the density.

A comprehensive literature review of the variation of viscosity with pressure, before

1931, can be found in the book by Bridgman [4]. Some recent experiments concerning

fluids with pressure dependent viscosity are those carried out by Cutler et al. [5],

Griest et al. [6], Johnson and Cameron [7] , Johnson and Greenwood [8], Johnson

and Tevaarwerk [9], Bendler et al. [10], Paluch et al. [11], Bair and Kottke [12],

Casalini and Bair [13], Harris and Bair [14] and Bair and Quareshi [15].

We shall merely mention in passing the rigorous studies concerning fluids with

pressure dependent viscosity. Early studies by Renardy [16], Gazzola [17] and Gaz-

The journal model is IEEE Transactions on Automatic Control.
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zola and Sechi [18] concerned existence of solutions to problems involving small data

for short time. Existence of solutions for large data and long time have been estab-

lished for various situations when the viscosity depends on both the pressure and

the symmetric part of the velocity gradient, by Málek et al. [19], Hron et al. [20],

Franta et al. [21] and Buĺıček et al. [22]. However, all the above existence results

were established under the condition
µ(p)

p
→ 0 as p → ∞, or

µ(p)

p
→ constant as

p → ∞. Unfortunately, experiments suggest
µ(p)

p
→ ∞ as p → ∞ (which is indeed

the case for Barus’ formula). Thus, rigorous results such as existence of solutions for

fluid with pressure dependent viscosity are open with regard to the type of variation

of the viscosity with pressure observed in experiment.

For many liquids, the density changes by only a few percent and hence the fluid

can be considered incompressible. However, the flow of such fluids in certain cases

may engender large variations of pressure in the flow domain which may lead to the

viscosity varying by a factor as large as 108. Applications such as elastohydrodynamics

immediately come to mind, where the high pressures in question make necessary the

need to take the viscosity variations into account. Thus the constitutive equation for

these fluids may be written as

T = −pI + 2µ(p)D, (1.1)

with

D =
1

2

[
(gradv) + (gradv)T

]
, (1.2)

where v is the velocity and −pI is the response due to the constraint of incompress-

ibility. Rewriting (1.1) by using the definition of pressure as the mean normal stress

yields

T =

(
−trT

3

)
I + 2µ

(
trT

3

)
D,
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and allows us to note as an aside that this fluid model is markedly different from

the classical Navier-Stokes model in the sense that it is a member of a more general

set of models based on implicit constitutive theories which cannot be derived in

the usual way by specifying that constraint forces do no work, since that procedure

forbids material functions from depending on the constraint response (in this case

the pressure). The reader may consult Rajagopal [23] for a detailed discussion of the

relevant issues.

It is such an incompressible fluid with a pressure dependent viscosity that is

considered in this study in two particular flow domains, namely, flows between two

finitely spaced infinite parallel plates and flows in the annulus of two infinitely long

coaxial cylinders.

Some special problems have been studied using the semi-inverse technique for the

flows of fluid with pressure dependent viscosities. Hron et al. [24] obtained explicit

exact solutions for Couette and Poiseuille flow between parallel plates. In marked

contrast to the case of Navier-Stokes fluid, they were able to find multiple solutions

for certain values of the parameters that appear in the problem. They also studied

numerically the flow in the annular region between two cylinders that rotate about

distinct axes, a problem that has technological relevance to the flow in a journal

bearing. They also studied the flow of a fluid with pressure dependent viscosity

across a slot. Vasudevaiah and Rajagopal [25] obtained explicit exact solutions for

fully developed flow of fluids whose viscosity depends on both the pressure and the

shear rate, Sharat and Rajagopal[26] considered the flow due to a boundary that

is being stretched and more recently Rajagopal [27] studied the flow of fluids with

pressure dependent viscosity down an inclined plane. The cases taken up in this study

are also semi-inverse solutions, but unlike these earlier studies, we consider unsteady

flows in all but one case.
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CHAPTER II

FLOW BETWEEN INFINITE PARALLEL PLATES:

A VARIANT OF STOKES’ FIRST AND SECOND PROBLEMS

The flow between two finitely spaced infinite parallel plates is the first of the cases

that we will study. The flow induced by a suddenly accelerating plate on the fluid

above it, usually referred to as Stokes’ first problem (see Stokes [28]) and the flow

due to an oscillating flat plate, usually referred to as Stokes’ second problem (see

Stokes [28], Rayleigh [29]) are amongst a handful of unsteady flows of a Navier-

Stokes fluid for which one can obtain an exact solution. Such exact solutions serve

a dual purpose, that of providing an explicit solution to a problem that has physical

relevance and as a means for testing the efficiency of complex numerical schemes for

flows in complicated flow domains. These two problems have been extended to the

case of a host of non-Newtonian fluids.

We shall consider the problem of a fluid with pressure dependent viscosity flowing

between two parallel plates, one of which is fixed and the other either oscillating or

suddenly accelerating ( see Figure 1 ). We take into account the effect of gravity which

we suppose acts perpendicular to the parallel plates. Unlike the problems considered

by Stokes we cannot consider the problem due to suddenly accelerating plate or an

oscillating plate wherein the fluid occupies the half-space above the plate. As we

allow for the effects of gravity, the pressure and consequently the viscosity become

unbounded when we allow the fluid to extend to infinity. We have to recognize that

all these problems are approximations to real flow situations. Firstly, the assumption

that the plates are of infinite extent allows us to introduce similarity transformations

as we do not need to take into account edge effects. Secondly, Stokes ignored the

effect of gravity which alllowed him to ignore the fact that the pressure at the plate
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u(H, t) = 0 y = H

y = 0

g

x

y

u(0, t) = u0 sin(ωt) or u0 ∀t > 0

Fig. 1. Flow between a fixed plate and an oscillating/impulsively started plate

is infinite. To ignore the effect of gravity when the fluid above the plate is infinite

could be viewed as an unacceptable approximation. However, the true test of such

approximations is how well the results agree with the actual situation and in the case

of the problems studied by Stokes they seem to provide reasonable approximations

in a region of the flow domain. The test for our approximations will once again be

some comparable application. One possibility that comes to mind is the flow in the

annular region between two cylinders whose radii are sufficiently large so that the

flow in a part of the annulus could be approximated as the flow between two parallel

plates.
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A. Governing Equations

We shall consider the flow of fluids whose Cauchy stress T is given by (1.1). Since

the fluid is incompressible, it can only undergo isochoric motion and thus

div v = 0. (2.1)

On substituting (1.1) into the balance of linear momentum

ρ
dv

dt
= div T + ρb,

where b is the specific body force, we obtain

ρ
dv

dt
= −∂p

∂x
+ ρb + 2D

dµ

dx
+ µ(p)4 v. (2.2)

As we shall be interested in unsteady unidirectional flows, we shall seek similarity

solutions of the form

v = u(y, t)i, p = p(y, t). (2.3)

The above velocity field automatically meets (2.1). It immediately follows from

(2.3) and the balance of linear momentum (2.2) that

ρ
du

dt
= µ′(p)

∂u

∂y

∂p

∂y
+ µ(p)

∂2u

∂y2
, (2.4)

∂p

∂y
+ ρg = 0.

Suppose the pressure at y = H is pH , then it immediately follows that

p− pH = ρgH
(

1− y

H

)
. (2.5)

Also equation (2.4) simplifies to

∂u

∂t
=

1

ρ

∂

∂y

(
µ(p)

∂u

∂y

)
. (2.6)
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We shall consider the following two forms for the viscosity :

µ(p) = αeβp, α > 0, β > 0, (2.7)

and

µ(p) = α(1 + βp), α > 0, β > 0. (2.8)

We notice that in both cases considered, the viscosity tends to infinity as p tends

to infinity.In the case of (2.7),
µ(p)

p
→∞ as p→∞ while in the case of (2.8),

µ(p)

p
→

constant as p→∞. The form (2.7) is used in problems in elastohydrodynamics (see

Szeri [30] ). Bair et al. [31], using Barus’ formula for the viscosity (2.7), found that

β−1 was approximately equal to 50 MPa for certain mineral oils.

1. Solution to the modified Stokes’ first problem

Before we discuss the solution to Stokes’ First problem, we shall appropriately non di-

mensionalize the governing equations. We introduce the appropriate non-dimensional

variables indicated with an overbar through

ȳ =
y

H
, t̄ =

tu0

H
, ū =

u

u0

,

p̄ =
p

p0

, µ̄ =
µ

µ0

,

(2.9)

where p0 is a representative pressure and µ0 = µ(p0). We shall choose p0 = pH . The

above non-dimensionalization leads to the two non-dimensional parameters

Re =
ρu0H

µ0

, C =
ρgH(

1

β

) .
The first of the above parameters is the Reynolds number and the second is

the ratio of the pressure due to gravity to the pressure due to viscosity(as β is the

pressure coefficient for the viscosity and

(
1

β

)
has units of pressure). Notice that



8

C = 0 corresponds to the case of the classical Navier-Stokes fluid.

The appropriate boundary conditions are

u(0, t) = u0 ∀ t > 0, (2.10)

and

u(H, t) = 0 ∀ t > 0, (2.11)

while the appropriate initial conditions are

u(y, 0) = 0 ∀ 0 ≤ y ≤ H, (2.12)

Thus,

ū (0, t̄) = 1 ∀ t̄ > 0,

ū (1, t̄) = 0 ∀ t̄ > 0,

ū (ȳ, 0) = 0 ∀ 0 ≤ ȳ ≤ 1,

(2.13)

The non-dimensional version of the governing equation is

∂ū

∂t̄
=

1

Re

∂

∂ȳ

(
µ̄(p̄)

∂ū

∂ȳ

)
, (2.14)

where in virtue of (2.5),

p̄ = 1 +
ρgH

pH
(1− ȳ) .

If we use the viscosity given by (2.7), we find that

µ̄(p̄) = eC(1−ȳ), (2.15)

while if the viscosity is given by (2.8),

µ̄(p̄) = 1 +
C (1− ȳ)

1 + βpH
. (2.16)
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We set β−1 = 50 MPa and pH = 100kPa, so that βpH � 1. However, even for

the extreme case of βpH = 1, we found negligible change in the solution. We need

to solve (2.14), subject to the boundary and initial conditions (2.13) and µ̄ given by

(2.15) or (2.16).

We are not able to find an explicit exact solution and so we solve the system

numerically, using a parabolic partial differential equation solver pdepe available in

MATLAB.

Our aim is to show that the solution in the case of a fluid with pressure dependent

viscosity is markedly different from that for the Navier-Stokes fluid. To illustrate this

point we just provide the solution for the velocity, vorticity and the shear stress at

the plate at ȳ = 0, at a representative time t̄ =
3π

2
in Figures 2 to 4 respectively

for the case of µ̄(p̄) given by (2.15). We notice that the velocity for the Navier-

Stokes fluid at a fixed value of ȳ, 0 ≤ ȳ ≤ 1, is lesser than that corresponding to the

fluid with pressure dependent viscosity and more the value of C less than value of

the velocity. This is perfectly in keeping with physical expectation as the viscosity

in the case of the pressure dependent fluid, at a fixed ȳ, is greater than that for a

fluid with constant viscosity equal to µ(pH) and because of this the fluid with greater

viscosity gets dragged further than that with less viscosity. This immediately leads to

results for the vorticity and the shear stress at the wall as indicated. It is clear from

Figures 3 and 4 that the variation of the vorticity and shear stress with ȳ departs

significantly from that for the Navier-Stokes case. We see that the magnitude of

the vorticity at the bottom plate that is moving is over 300% larger in the classical

Navier-Stokes case and even the qualitative structure of the vorticity is different;

while in the case of the Navier-Stokes fluid the magnitude of the vorticity decreases

monotonically from the bottom to the top plate, the variation is non-monotonic in

the case of fluids with pressure dependent viscosity that have been considered. On
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the other hand, we find that the magnitude of the shear stress at the plate at y = 0

is nearly 400% greater than that for the Navier-Stokes fluid.

A comparison of the solutions for the velocity, vorticity and shear stress for dif-

ferent forms for the viscosity, namely, the constant viscosity Navier-Stokes model, the

model depending linearly on the pressure and finally the model depending exponen-

tially on the pressure are provided in Figures 5 - 7. Once again, we find that the

results are in keeping with physical expectation, with the velocity being lesser for

fluids with lesser viscosity, at a fixed value of ȳ, leading to corresponding profiles for

the vorticity and shear stress profiles, which are both qualitatively and quantitatively

different than that for the Navier-Stokes fluid.

2. Solution to the modified Stokes’ second problem

Here we shall consider the case wherein the plate at y = 0 is oscillating with speed

u0 sinωt while that at y = H is held fixed. We shall find it convenient to non-

dimensionalize the equation differently, namely by introducing

ȳ =
y

H
, t̄ = ωt, ū =

u

u0

,

p̄ =
p

p0

, µ̄ =
µ

µ0

,

(2.17)

which lead to the non-dimensional parameters

Re =
ρωH2

µ0

, C =
ρgH(

1

β

) . (2.18)

In this case we have to enforce the boundary conditions

u(0, t) = u0 sinωt (2.19)
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Fig. 6. Vorticity ω̄(ȳ) for different viscosity models at t̄ =
3π

2
for accelerated plate

−4 −3 −2 −1
0

0.2

0.4

0.6

0.8

1
shear stress for Re=100 C= 2

 y

−15 −10 −5 0
0

0.2

0.4

0.6

0.8

1
shear stress for Re=1000 C= 2

 y

 

 
NS

linear

exp
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and

u(H, t) = 0, (2.20)

which leads to

ū (0, t̄) = sin t̄

ū (1, t̄) = 0.

(2.21)

The governing equation is once again given by (2.14)) with Re defined through

(2.18). As before, we solve the system (2.14), (2.21), (2.15), (2.16), numerically using

MATLAB. A representative solution for the velocity, vorticity and the shear stress at

the bottom plate are given in Figures 8 - 10 respectively. Once again, the results for

the velocity field are consistent with physical expectation in virtue of the forms for

the viscosity, with the magnitude of the velocity being greater in the case of the fluid

with pressure dependent viscosity being dragged along more due to its larger viscosity.

The profiles for the vorticity and shear stress are a consequence of the solution for the

velocity and as before the vorticity for the Navier-Stokes case, at the oscillating plate,

at the instant of time being considered is much larger than the pressure dependent

case and it is also qualitatively different as the Navier-Stokes case shows a monotonic

variation while the pressure dependent case is non monotonic. Finally, the solution

for different forms of viscosity are portrayed in Figures 11 - 13. The important point

to observe is that the solutions corresponding to the viscosity depending on pressure

are significantly different from that for the Navier-Stokes fluid.
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CHAPTER III

FLOW IN THE ANNULUS OF INFINITELY LONG COAXIAL CYLINDERS

The next case that we study is flow in the annulus of two infinitely long coaxial

cylinders. It should not surprise the reader to know that Stokes [32] was perhaps

the first to interest himself in such a problem, though it is not eponymous unlike

the ones solved earlier. Stokes however, confined his attention to the problem of

rotational oscillations of an infinite rod immersed in a classical Navier-Stokes fluid.

More recently, Casarella and Laura [33] dealt with the problem of a rod undergoing

both torsional and longitudinal oscillations. The problem has been extended for a

host of non-Newtonian fluids as evinced by the studies of Rajagopal [34], Rajagopal

et al [35], Rajagopal and Bhatnagar [36], Maneschy and Massoudi [37] and Massoudi

and Phuoc [38], to name a few. We shall address the problem in the context of

an incompressible fluid fluid with a pressure dependent viscosity. The problem has

special relevance in ocean engineering applications such as off shore drilling and towing

operations where the viscous drag of the fluid is a quantity of interest.

The previous studies consider an infinite rod in an infinite extent of fluid, i.e,

the outer cylinder is taken to be of infinite radius. But the pressure term appears

explicitly in our equations and not just as a gradient and we cannot allow the outer

radius to extend to infinity because then the pressure and consequently the viscosity

become unbounded. We shall thus investigate flows of a fluid with pressure dependent

viscosity in the annulus of two coaxial cylinders (see Figure 14 ). The radius of the

inner and outer cylinders are denoted by Rin and Rout respectively. The cylinders

are assumed to be infintely long so that end effects are neglected and the effect of

gravity too is not considered here, so that the velocity fields may be assumed to be

axisymmteric. The outer cylinder is assumed stationary while the inner cylinder is
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free to rotate or oscillate.

Rout Rin

v(Rin, t) = ΩRin sin(ωt) or 0

w(Rin, t) = w0 sin(ωt) or 0
v(Rout, t) = 0.

w(Rout, t) = 0.

Fig. 14. Flow in the annulus of two infinitely long coaxial cylinders

A. Governing Equations

We shall consider the flow of fluids whose Cauchy stress T is given by (1.1) and

assume the two forms for the viscosity given by (2.7) and (2.8).

Since the fluid is incompressible, it can only undergo isochoric motion and thus

div v = 0. (3.1)

The balance of linear momentum is :

ρ
dv

dt
= div T + ρb, (3.2)
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where the specific body force is denoted by b.

We shall exploit the cylindrical symmetry in the problem by taking recourse to

cylindrical coordinates (r, θ, z), with z directed along the axis of the cylinder.

We consider the most general velocity field

v = vrer + vθeθ + vzez. (3.3)

The equations (3.1) and (3.2), on neglecting body forces, are written out as

1

r

∂ (rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

= 0,

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z
− v2

θ

r

)
=
∂Trr
∂r

+
1

r

∂Trθ
∂θ

+
∂Trz
∂z

+
Trr − Tθθ

r
,

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

)
=
∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+
∂Tθz
∂z

+
2Trθ
r
,

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
=
∂Trz
∂r

+
1

r

∂Tθz
∂θ

+
∂Tzz
∂z

+
Trz
r
.

(3.4)

The most general matrix representation for gradv is

gradv =



∂vr
∂r

1

r

(
∂vr
∂θ
− vθ

)
∂vr
∂z

∂vθ
∂r

1

r

(
∂vθ
∂θ

+ vr

)
∂vθ
∂z

∂vz
∂r

1

r

(
∂vz
∂θ

)
∂vz
∂z

 , (3.5)

using which, the matrix representation of D can be found from (1.2).

The assumption of axisymmetry implies that all quantities are independent of

θ. Since the cylinders are infinitely long, we expect the solutions to be similar all

along the length, i.e., to be independent of z as well. These observations considerably

simplify the governing equations and allow us to solve them for some simple cases.
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We will merely mention that the vorticity was computed as

W = −∂vz
∂r

eθ +
1

r

∂ (rvθ)

∂r
ez,

while the shear stress

Trθ = µ(p)

[
r
∂

∂r

(vθ
r

)]
and Trz = µ(p)

∂vz
∂r

.

The drag per unit length on the inner cylinder, which is often the quantity of

interest is then simply

|FD| = 2πRin

√
T 2
rθ + T 2

rz

∣∣∣
r=Rin

1. Steady rotation of inner cylinder

The first case we consider is one where the inner cylinder rotates with a constant

angular velocity Ω while the outer cylinder is stationary.

As we shall be interested in steady flows, we shall seek similarity solutions of the

form (see Figure 14)

v = v(r)eθ, p = p(r). (3.6)

The solution sought automatically meets (3.1) and it immediately follows from

(1.1), (1.2), (3.5) and the balance of linear momentum (3.4) that

dp

dr
− ρv2

r
= 0,

d

dr

[
µ(p)

(
dv

dr
− v

r

)]
+

2µ(p)

r

(
dv

dr
− v

r

)
= 0.

(3.7)

We will suppose the pressure at the inner cylinder surface r = Rin is pi, so that

p(Rin) = pi. The pressure at the outer cylinder surface p(Rout) is determined from

this boundary condition.

We shall consider forms of the viscosity given earlier by (2.7) and (2.8).
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Before we discuss the solution to the problem, we shall appropriately non dimen-

sionalize the governing equations. We introduce the appropriate non-dimensional

variables indicated with an overbar through

r̄ =
r

r0

, v̄ =
v

v0

,

p̄ =
p

p0

, µ̄ =
µ

µ0

,

(3.8)

where p0, µ0, r0 and v0 are representative quantities. We shall choose r0 = Rin,

v0 = ΩRin, p0 = ρv2
0 and µ0 = µ(p0).

The above non-dimensionalization leads to the following three non-dimensional

parameters which are pertinent to this problem:

η =
Rout

Rin

, k =
pi
p0

, C =
ρv2

0(
1

β

) .
The last of the above parameters, C, is the ratio of the dynamic pressure to the

pressure due to viscosity(as β is the pressure coefficient for the viscosity and

(
1

β

)
has units of pressure). Notice that C = 0 corresponds to the case of the classical

Navier-Stokes fluid. The appropriate boundary conditions are

v(Rin) = v0, (3.9)

and

v(Rout) = 0. (3.10)

Thus,

v̄(1) = 1,

v̄(η) = 0,

p̄(1) = k.

(3.11)
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The non-dimensional version of the governing equation is

dp̄

dr̄
− v̄2

r̄
= 0,

d

dr̄

[
µ̄(p̄)

(
dv̄

dr̄
− v̄

r̄

)]
+

2µ̄(p̄)

r̄

(
dv̄

dr̄
− v̄

r̄

)
= 0.

(3.12)

If we use the viscosity given by (2.7), we find that

µ̄(p̄) = eC(p̄−1), (3.13)

while if the viscosity is given by (2.8)

µ̄(p̄) =
1 + Cp̄

1 + C
(3.14)

We need to solve (3.12), subject to the boundary condition (3.11) and µ̄ given

by (3.13) or (3.14).

For our problem, we select η =
Rout

Rin

= 2. We are not able to find an explicit

exact solution and so we solve the system numerically, using a solver for boundary

value problems in ordinary differential equations bvp4c available in MATLAB.

Our objective is to show that solutions to problems involving pressure depen-

dent viscosity are markedly different from those for Navier-Stokes fluids. To illus-

trate, we provide the profiles for pressure, velocity, vorticity and shear stress in Fig-

ures 15 and 16 for the case when µ̄(p̄) is given by (3.13). The non-dimensional drag

force on the inner cylinder is also tabulated for reference in Tables I and II. The most

striking feature we observe is that at a given value of r̄, the velocity of the Navier-

Stokes fluid is maximum and the velocity decreases as the value of C increases. This

might appear counterintuitive at a first glance for we expect that as the value of C and

consequently µ̄(p̄) increases, the fluid in contact with the surface should get dragged

along more than a Navier-Stokes fluid and hence have greater velocity. However, it

does not happen because the pressure and hence the viscosity increases radially ( see
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(3.12) ) Thus, if we consider a layer of fluid, it gets dragged in opposite directions

at its top and bottom surface, but the viscosity at its top is higher. As a result, the

more the value of C, the lesser the velocity at a particular r̄. This immediately leads

to a similar trend in pressures as seen in Figure 15. The maximum vorticity and shear

stress increase with C and their variation with r̄ departs significantly from that of a

Navier-Stokes fluid. The drag force on the cylinder, tabulated in Tables I through III

shows remarkable variation and justifies the need to take pressure dependence of

viscosity into account.

A comparison of the solutions for different forms of the viscosity, namely, (3.13),

(3.14) and the constant viscosity Navier-Stokes case µ̄(p̄) = 1, is also given in Fig-

ure 17. The results are entirely in keeping with physical expectation.
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Fig. 15. Steady rotation (k = 2)
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Fig. 16. Steady rotation (C = 1)

Table I. Drag force/length for steady state rotation (Re = 100, k = 2)

Drag on cylinder C = 0 C = 2 C = 4 C = 6

F̄D −2.66 −25.19 −2.25× 102 −1.95× 103

Table II. Drag force/length for steady state rotation (Re = 100, C = 1)

Drag on cylinder k = 1 k = 2

F̄D −3.04 −8.26
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Fig. 17. Steady rotation (C = 1, k = 2)

Table III. Drag force/length for steady state rotation (Re = 100, C = 1, k = 2)

Drag on cylinder µ(p) = α µ(p) = α(1 + βp) µ(p) = αeβp

F̄D −2.66 −4.18 −8.26
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2. Torsional and longitudinal oscillations of inner cylinder

We now turn our attention to the problem of torsional and longitudinal oscillations

of the inner cylinder while the outer cylinder remains stationary. Here we assume the

torsional oscillations to be given by Ω sinω1t while the longitudinal oscillations may

be taken as w0 sinω2t.

We seek a velocity of the form

v = v(r, t)eθ + w(r, t)ez, p = p(r, t). (3.15)

By following the now familiar process of simplifying the momentum equation

(3.4), it immediately follows that:

∂p

∂r
− ρv2

r
= 0,

ρ
∂v

∂t
=

∂

∂r

[
µ(p)

(
∂v

∂r
− v

r

)]
+

2µ(p)

r

(
∂v

∂r
− v

r

)
ρ
∂w

∂t
=

∂

∂r

[
µ(p)

(
∂w

∂r

)]
+
µ(p)

r

(
∂w

∂r

) (3.16)

The non-dimensionalisation here is done as follows:

r̄ =
r

r0

, v̄ =
v

v0

, t̄ = ω1t

p̄ =
p

p0

, µ̄ =
µ

µ0

,

(3.17)

where p0, µ0, r0 and v0 are representative quantities. We shall choose r0 = Rin,

v0 = ΩRin, p0 = ρv2
0 and µ0 = µ(p0).

The above non-dimensionalization leads to the following non-dimensional param-
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eters which are pertinent to this problem:

η =
Rout

Rin

, k =
pi
p0

, γ =
w0

v0

α0 =
ω2

ω1

C =
ρv2

0(
1

β

) , Re =
ρω1r

2
0

µ0

The boundary conditions are

v(Rin, t) = v0 sinω1t, v(Rout, t) = 0,

w(Rin, t) = w0 sinω2t, w(Rout, t) = 0.

(3.18)

Thus,

v̄(1, t̄) = sin t̄, w̄(1, t̄) = γ sinα0t̄,

v̄(η, t̄) = 0, w̄(η, t̄) = 0,

p̄(1, t̄) = k.

(3.19)

The non-dimensional version of the governing equation is

∂p̄

∂r̄
− v̄2

r̄
= 0,

Re
∂v̄

∂t̄
=

∂

∂r̄

[
µ̄(p̄)

(
∂v̄

∂r̄
− v̄

r̄

)]
+

2µ̄(p̄)

r̄

(
∂v̄

∂r̄
− v̄

r̄

)
Re

∂w̄

∂t̄
=

∂

∂r̄

[
µ̄(p̄)

(
∂w̄

∂r̄

)]
+
µ̄(p̄)

r̄

(
∂w̄

∂r̄

) (3.20)

For simplicity, we also assume that w0 = v0 and ω2 = ω1. This immediately gives

γ = α0 = 1.

The equations (3.20) and (3.19) are solved numerically, using an implicit finite

difference scheme for the velocity that employs forward differences for time derivatives

and central differences for space derivatives while an explicit forward differencing is

used to solve for the pressure field ( see Appendix A for details ).

As before the solutions are illustrated by displaying profiles for shear stress,
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pressure and the components of vorticity and velocity in Figures 18 - 20. It appears

from Figure 18 that at a given r̄, the velocity first increases with C and then decreases.

This is perfectly in keeping with our explanation given earlier for the steady state

case. However the trend is not monotonic because the boundary condition at r̄ = 1

in this problem is sinusoidal, which makes the boundary layer thinner. Hence the

velocity profile we see is a result of this effect and at higher C, the velocity of a fluid

layer becomes lesser due to the fluid being retarded by the layers on top with greater

viscosity.

Different forms of the viscosity are used as before and results displayed in Fig-

ure 20. It clearly shows that there is sufficient departure from the Navier-Stokes case

and a huge variation in the drag force (often by a factor of 10) that we witness in

Tables IV through VI and it makes germane the study of flows in the context of

pressure dependent viscosity.

Table IV. Drag force per unit length for oscillating cylinder (Re = 100, k = 2)

Drag on cylinder C = 0 C = 2 C = 4 C = 6

F̄D 63.72 2.41× 102 1.59× 103 1.37× 104

Table V. Drag force per unit length for oscillating cylinder (Re = 100, C = 1)

Drag on cylinder k = 1 k = 2

F̄D 64.68 1.18× 102
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Table VI. Drag force per unit length for oscillating cylinder (Re = 100, C = 1, k = 2)

Drag on cylinder µ(p) = α µ(p) = α(1 + βp) µ(p) = αeβp

F̄D 63.72 81.22 1.18× 102

3. Torsional oscillations of inner cylinder

When the inner cylinder performs pure torsional oscillation, the governing equations

can be obtained just by setting w = 0 in (3.16) and (3.18) and solving as before.

Since the pressure p and velocity v are independent of the longitudinal velocity

w, the solutions for them will be identical to the ones obtained in Figures 18 - 19.

The remarks made earlier regarding the nature of the profiles for velocity, vorticity

and shear are applicable here as well.

4. Longitudinal oscillations of inner cylinder

The governing equations for the case when the inner cylinder executes pure longitu-

dinal oscillations are found in turn by setting v = 0 in (3.16) and (3.18).

Thus we obtain
∂p

∂r
= 0, i.e., p is a constant. The viscosity hence remains constant

everywhere and we only need to solve for w subject to the boundary conditions

w(Rin, t) = w0 sinωt and w(Rout, t) = 0.

Therefore the solutions depend only on the Reynolds number Re and are inde-

pendent of C and k and will be identical to ones obtained for a Navier-Stokes fluid

under the same conditions.
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CHAPTER IV

CONCLUSION

In this thesis, we investigated two flow domains where we considered the flow of an

incompressible fluid with pressure dependent viscosity.

The first involved flow between infinite parallel plates separated by a finite dis-

tance where the lower plate was impulsively started or harmonically oscillated. Grav-

ity was taken into account and that was the cause of the high pressures involved in

the problem.

In the second case, we considered the flow in the annulus of infinitely long coaxial

cylinders where the inner cylinder was free to rotate or oscillate. The centripetal forces

developed due to the rotation gave rise to high pressures.

In both cases the high pressure caused appreciable departure from the conven-

tional Navier-Stokes solutions and justified the need to take pressure dependence of

viscosity into account. Thus, in flows of incompressible fluids involving high pres-

sures, it is prudent to consider the variation of viscosity with pressure to obtain more

realistic solutions.



35

REFERENCES

[1] G. G. Stokes, “On the theories of the internal friction of fluids in motion, and

of the equilibrium and motion of elastic solids,” Trans. Cambridge Philos. Soc.,

vol. 8, no. 2, pp. 287–305, 1845.

[2] C. Barus, “Isothermals, isopiestics and isometrics relative to viscosity,” Am. J.

Sci., vol. 45, no. 266, pp. 87–96, 1893.

[3] E. N. C. Andrade, “The viscosity of liquids,” Nature, vol. 125, no. 3148, pp.

309–310, 1930.

[4] P. W. Bridgman, The Physics of High Pressure. London: Bell and Sons Ltd.,

1949.

[5] W. G. Cutler, R. H. McMickle, W. Webb, and R. W. Schiessler, “Study of the

compressions of several high molecular weight hydrocarbons,” The Journal of

Chemical Physics., vol. 29, no. 4, pp. 727–740, 1958.

[6] E. M. Griest, W. Webb, and R. W. Schiessler, “Effect of pressure on viscosity

of higher hydrocarbons and their mixtures,” The Journal of Chemical Physics,

vol. 29, no. 4, pp. 711–720, 1958.

[7] K. L. Johnson and R. Cameron, “Shear behavior of elastohydrodynamic oil films

at high rolling contact pressures,” Proc. Inst. Mech. Eng., vol. 182, no. 1, pp.

223–229, 1967.

[8] K. L. Johnson and J. A. Greenwood, “Thermal-analysis of an Eyring fluid in

elastohydrodynamic traction,” Wear, vol. 61, no. 2, pp. 353–374, 1980.



36

[9] K. L. Johnson and J. L. Tevaarwerk, “Shear behavior of elastohydrodynamic

oil films,” Proceedings of the Royal Society of London Series A-Mathematical

Physical and Engineering Sciences, vol. 356, no. 1685, pp. 215–236, 1977.

[10] J. T. Bendler, J. J. Fontanella, and M. F. Shlesinger, “A new Vogel-like law:

ionic conductivity, dialectric relaxation and viscosity near the glass transition,”

Physical Review Letters, vol. 87, no. 19, pp. 1–4, 2001.

[11] M. Paluch, Z. Dendzik, and S. J. Rzoska, “Scaling of high-pressure viscosity data

in low-molecular-weight glass-forming liquids,” Physical Review B, vol. 60, no. 5,

pp. 2979–2982, 1999.

[12] S. Bair and P. Kottke, “Pressure-viscosity relationships for elastohydrodynam-

ics,” Tribology Transactions, vol. 46, no. 3, pp. 289–295, 2003.

[13] R. Casalini and S. Bair, “The inflection point in the pressure dependence of

viscosity under high pressure: a comprehensive study of the temperature and

pressure dependence of the viscosity of propylene carbonate,” The Journal of

Chemical Physics, vol. 128, no. 8, pp. 1–7, 2008.

[14] K. R. Harris and S. Bair, “Temperature and pressure dependence of the viscosity

of diisodecyl phthalate at temperatures between 0 and 100 degrees C and at

pressures to 1 GPa,” Journal of Chemical and Engineering Data, vol. 52, no. 1,

pp. 272–278, 2007.

[15] S. Bair and F. Qureshi, “Ordinary shear-thinning and its effect upon EHL film

thickness,” in Tribological Research and Design for Engineering Systems, D. Dow-

son et al., Eds. Amsterdam: Elsevier, 2003, pp. 693–699.



37

[16] M. Renardy, “Some remarks on the Navier-Stokes equations with a pressure-

dependent viscosity,” Communications in Partial Differential Equations, vol. 11,

no. 7, pp. 779–793, 1986.

[17] F. Gazzola, “A note on the evolution Navier-Stokes equations with a pressure-

dependent viscosity,” Zeitschrift fur Angewandte Mathematik und Physik, vol. 48,

no. 5, pp. 760–773, 1997.

[18] F. Gazzola and P. Secchi, “Some results about stationary Navier-Stokes equations

with a pressure-dependent viscosity,” in Navier-Stokes Equations: Theory and

Numerical Methods, R. Salvi, Ed. New York: Longman, 1998, pp. 31–37.
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APPENDIX A

FINITE DIFFERENCE SCHEME USED

The following system of coupled equations are to be solved using a suitable finite

difference scheme.(see (3.20) and (3.19) )

∂v̄

∂t̄
=
µ̄(p̄)

Re

[
1

r̄

∂

∂r̄

(
∂v̄

∂r̄

)
+

1

r̄

∂v̄

∂r̄
− v̄

r̄2

]
+
µ̄′(p̄)

Re

[
∂p̄

∂r̄

(
∂v̄

∂r̄
− v̄

r̄

)]
,

∂p̄

∂r̄
− v̄2

r̄
= 0,

∂w̄

∂t̄
=
µ̄(p̄)

Re

[
1

r̄

∂

∂r̄

(
∂w̄

∂r̄

)
+

1

r̄

∂w̄

∂r̄

]
+
µ̄′(p̄)

Re

[
∂p̄

∂r̄

(
∂w̄

∂r̄

)]
satisfying the following boundary conditions

v̄(1, t̄) = sin t̄, v̄(η, t̄) = 0,

w̄(1, t̄) = γ sinα0t̄, w̄(η, t̄) = 0,

p̄(1, t̄) = k.

We choose to use an implicit backward Euler scheme, i.e, to approximate the time

derivative as a backward difference and the space derivatives as a central difference.

Sufficient number of time levels and grid points are selected for accuracy. In the

discussion that follows, it will be understood that for any quantity θ̄, θ̄ni denotes the

value of θ̄(r̄i) at time level n.

Thus,

v̄ni − v̄n−1
i

∆t̄
=
µ̄(p̄ni )

Re

[
1

r̄i

v̄ni+1 − 2v̄ni + v̄ni−1

∆r̄2 +
1

r̄i

v̄ni+1 − v̄ni−1

2∆r̄
− v̄ni
r̄2
i

]
+
µ̄′(p̄ni )

Re

[
p̄ni+1 − p̄ni−1

2∆r̄

] [
v̄ni+1 − v̄ni−1

2∆r̄
− v̄ni
r̄i

]
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This step is unconditionally stable and second order accurate in space. In our

computations we use a time step ∆t̄ = 10−4 while ∆r̄ = 10−2.

Using the values of v̄ni , p̄ni is found by using a forward difference approximation,

p̄ni = p̄ni−1 + ∆r̄

[(
v̄ni−1

)2

r̄i−1

]

This is an explicit scheme which is first order accurate in space, making the numerical

scheme first order accurate over all.

At each time step, values of v̄ni and p̄ni are iteratively computed till convergence

is reached. Following that, w̄ni is computed for that time step in a manner similar to

v̄ni as

w̄ni − w̄n−1
i

∆t̄
=
µ̄(p̄ni )

Re

[
1

r̄i

w̄ni+1 − 2w̄ni + w̄ni−1

∆r̄2 +
1

r̄i

w̄ni+1 − w̄ni−1

2∆r̄

]
+
µ̄′(p̄ni )

Re

[
p̄ni+1 − p̄ni−1

2∆r̄

] [
w̄ni+1 − w̄ni−1

2∆r̄

]
Thus by time marching, the evolution of pressure and velocity is traced.
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