
  

 

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TURBULENT FLOW 

AND HEAT (MASS) TRANSFER IN A TWO-PASS TRAPEZOIDAL CHANNEL 

WITH TURBULENCE PROMOTERS 

 

 

A Dissertation 

by 

SUNG HYUK OH  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

December 2008 

 

 

Major Subject: Mechanical Engineering 



  

 

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TURBULENT FLOW 

AND HEAT (MASS) TRANSFER IN A TWO-PASS TRAPEZOIDAL CHANNEL 

WITH TURBULENCE PROMOTERS 

 

A Dissertation 

by 

SUNG HYUK OH  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  S.C. Lau 
Committee Members, N.K. Anand 
 W.M. Heffington 
 Y.A. Hassan 
Head of Department, Dennis O’Neal 

 

December 2008 

 

Major Subject: Mechanical Engineering 



 iii

ABSTRACT 

 

Experimental and Numerical Investigation of Turbulent Flow and Heat (Mass) Transfer 

in a Two-pass Trapezoidal Channel with Turbulence Promoters. (December 2008) 

Sung Hyuk Oh, B.En., Inje University, Korea;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. S.C. Lau 

 

 Experiments and numerical predictions were conducted to study heat (mass) 

transfer characteristics in a two-pass trapezoidal channel simulating the cooling passage 

of a gas turbine blade. Three different rib configurations were tested for the air entering 

the smaller cross section of the trapezoidal channel as well as the larger cross section of 

the trapezoidal channel at four different Reynolds numbers of 9,400, 16,800, 31,800, and 

57,200.  (+) 60º ribs, (–) 60º ribs and 60º V-shaped ribs were attached on both the top 

and bottom walls in parallel sequence. A naphthalene sublimation technique was used, 

and the heat and mass transfer analogy was applied to convert the mass transfer 

coefficients to heat transfer coefficients. Numerical predictions of three-dimensional 

flow and heat transfer also were performed for the trapezoidal channel with and without 

90º ribs tested by Lee et al. (2007). Reynolds stress turbulence model (RSM) in the 

FLUENT CFD code was used to calculate the heat transfer coefficients and flow fields 

at Re = 31,800. 



 iv

The results showed that the combined effects of the rib angle, rib orientation, and 

the sharp 180° turn significantly affected the heat (mass) transfer distributions. The 

secondary flows induced by the sharp 180° turn and the angled or V-shaped ribs played a 

very prominent role in heat (mass) transfer enhancements. The heat (mass) transfer 

enhancements and the pressure drops across the turn for 60° V-shaped ribs had the 

highest values, then came the case of (+) 60° ribs, and the heat (mass) transfer 

enhancements and the friction factor ratios for (–) 60º ribs was the lowest. However, 

comparing (–) 60º ribs with the 90º ribs, (–) 60º ribs produced higher heat (mass) transfer 

enhancements than the 90º ribs, as results of the secondary flow induced by the (–) 60º 

ribs. The overall average heat (mass) transfer for the larger inlet cases was always higher 

than that for the smaller inlet cases in the ribbed trapezoidal channel. Considering the 

thermal performance comparisons of the (+) 60° ribs, the (–) 60º ribs, and 60° V-shaped 

ribs for the smaller inlet cases, the highest thermal performance was produced by the (–) 

60º ribs, and the 60° V-shaped ribs and the (+) 60° ribs had almost the same levels of the 

thermal performance since the 60° V-shaped ribs produced the highest heat (mass) 

transfer enhancement but also produced highest pressure drops. For the larger inlet cases, 

the (+) 60° ribs produced the highest values, then came the case of the 60° V-shaped ribs, 

and the thermal performance for the (–) 60º ribs was the lowest. The Reynolds stress 

model (RSM) showed well flow fields and heat transfer distributions but underpredicted 

average Nusselt number ratios. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background  

 

Gas turbines have been dominant in the fields of power generation, aircraft 

propulsion, and mechanical drives for several decades. There have been considerable 

efforts directed toward increasing the turbine inlet temperature to achieve maximum 

efficiency and output power of gas turbines. The turbine inlet temperature in modern gas 

turbines is much higher than the melting point of the turbine blade material and causes 

excessive thermal stresses on turbine blades. In order to maintain safe and long operation 

of the gas turbines, higher thermal resistance materials and cooling techniques have been 

developed. Because higher thermal resistance materials still can not withstand excessive 

thermal stress, more effective and sophisticated cooling techniques should be employed. 

One of the most widely used techniques for turbine blade cooling is to circulate 

coolant air through internal cooling passages within turbine blades and film cooling is 

used for surfaces of external turbine blades. Maximizing the cooling efficiency and 

attempting to accurately quantify the performance of these passages for parameters 

relevant to engine operating conditions have been the primary focus of researchers for 

several decades. Gas turbine blades are cooled internally and externally. 

______________                                                                                                                    

The model journal is the ASME Journal of Heat Transfer. 



 2

Film cooling is external cooling. Film cooling protects the airfoil surface directly, 

compared to internal cooling techniques that remove heat from the inside surface. Film 

cooling also removes heat from the blade surface through the film hole by internal 

convection. Internal coolant air is ejected out through discrete holes to provide a coolant 

film to protect the outside surface of the blade from hot combustion gases. 

The methods to enhance heat transfer in internal cooling passages are increasing 

the overall surface area of heat exchange, reducing the thickness of boundary layer, 

increasing the mixing within the cooling fluid, and raising turbulence levels which in 

turn reduce the thickness of the viscous sub-layer. In recent years, efforts directed at 

improving internal cooling have led to concepts that include the use of the rib turbulators, 

pin fins, dimpled surfaces, swirl chambers, and surface roughness. All of concepts 

provide increasing secondary flows and turbulence levels to enhance mixing, increasing 

secondary advection of heat away from surfaces, increasing three-dimensional 

turbulence production, and giving larger magnitudes of turbulence transport over larger 

portions of the flow fields. The overall objective of each internal cooling strategy is 

significant enhancement of turbulence transport and convective heat transfer coefficients, 

with minimal increases in streamwise pressure drop penalties and skin friction 

coefficients. Such heat transfer enhancements are needed for efficient heat load 

management, so that internal cooling air can remove the heat loads from turbine airfoil 

components. The best schemes give high cooling effectiveness with minimal coolant 

mass flow rates. Fig. 1.1 shows the common cooling technique with three major internal 

cooling zones in a turbine blade. The leading edge and trailing edge require the highest  
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Fig. 1.1 Cooling concepts of a modern multi-pass turbine blade  
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heat transfer coefficients for a given flow rate. The leading edge geometry is 

characterized by a small coolant metal area to hot gas metal area ratio, while a thin 

trailing edge creates geometric constraints on passage sizes and accessibility for cooling 

air. For this reason, the leading edge of airfoil is cooled by jet impingement and swirl 

chamber, the trailing edge is cooled by pin-fins or dimples, and the middle portions of 

the airfoil are cooled by rib turbulators or turbulence promoters. Among these techniques, 

rib turbulated cooling in middle portion of the blades will be focused. The internal 

coolant passages in middle parts of the airfoil usually have either a rectangular or 

trapezoidal cross section and are roughened with ribs on two opposite walls. Normally, 

the pressure and suction sides are ribbed. In serpentine regions (rib roughened internal 

coolant passage), there are 180o sharp turns. A great number of experimental and 

numerical studies have been carried out to investigate the effects of ribs on heat transfer 

in internal channels. The factors considered in the studies include the rib geometry (the 

cross-sections of the ribs), the rib configuration in the channel (the angle of attack of the 

ribs and the relative distance between the ribs), the shape and the aspect ratio of the 

cross-section of the channel, the rotation of the channel, the turn or bend effects of the 

channel (multi-pass serpentine channels), and orientations of rotating channels with 

respect to the axis of rotation.  

 

1.2 Literature Review  

 

A large number of studies have been made both experimentally and numerically 

on the heat transfer enhancement in the internal channel. Most of these works deal with 
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square and rectangular cross sections, stationary and rotating channel, single and multi-

pass channels, and with smooth and rib-roughened walls. These studies have examined 

heat transfer enhancement due to the effects of ribs of various configurations, channel 

aspect ratio, rib pitch-to-height, rib height-to-hydraulic diameter ratio, rotation, rib angle 

of attack, and 180o sharp turn. The results of these studies are useful in the design of 

serpentine cooling passages with turbulators in gas turbine. Many of the heat transfer 

enhancement and cooling issues related to turbine airfoils were introduced in Han et al. 

[1]. Heat transfer enhancement using turbulent promoters including ribs, pin-fins and 

impinging jets with or without rotation of channel has been studied by a number of 

researchers. Studies for heat transfer enhancement of internal channel flow installed with 

ribs with various configurations and parameters including channel aspect ratio, rib 

height-to-hydraulic diameter ratio, rib pitch-to-height ratio, rib height to width ratio, and 

rib angle of attack. The early investigations were focused primarily on straight, 

stationary, ribbed channels with a square or rectangular cross section. Han et al. [2] 

investigated the heat transfer and friction characteristics of rib roughened surfaces for 

various angle of attacks, rib profiles and P/e ratios in a square channel. It was found that 

ribs with an angle of attack of 45° at P/e = 10 had superior heat transfer performance for 

a given friction power when compared to that of ribs at an angle of attack of 90°. Han et 

al. [3] performed the experimental study of fully developed turbulent air flow in a square 

duct with two opposite rib-roughened walls. The effects of rib angle of attack and rib 

spacing on the heat transfer coefficients and friction factor also were investigated. Liou 

et al. [4] found that the rib pitch-to-height ratio of 10 resulted in the best heat transfer, 
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the heat transfer showed a periodic behavior between consecutive ribs, and both heat 

transfer and friction factor increased with decreasing rib spacing. Acharya et al. [5] 

experimentally investigated the flow and heat transfer in a rectangular channel with ribs 

attached along one wall. Their results also showed the periodic heat transfer profile 

induced by the ribs. The measured flow field revealed separation regions downstream 

the ribs followed by reattachment and redevelopment regions. Han et al. [6] and Park et 

al. [7] investigated the developing heat transfer in rectangular channels with rib 

turbulators for rib angles of attack, 90°, 60°, 45° and 30°. The combined effects of rib 

angle and channel aspect ratio on local heat transfer coefficient were studied. The results 

suggested that the low aspect ratio channels can give better heat transfer performance 

than the high aspect ratio channels, and the ribs with 60° angle of attack provide the 

highest heat transfer and pressure drop enhancement. The effect of rib configuration and 

Reynolds number on the local heat transfer distribution and pressure drop in a square 

channel with two opposite in-lined ribbed walls was studied by Han et al. [8]. The 

studies indicated that for V-shaped ribs the heat transfer augmentation was higher in 

comparison with other configurations and the reversed V-shaped ribs produced the 

maximum pressure drop. The heat transfer performance was found to decrease with 

increase in Reynolds number. Lau et al. [9] studied the effects of V-shaped ribs on two 

opposite walls on heat transfer enhancement in a square channel, compared to the effects 

of transverse or full angled ribs on two opposite walls. They concluded that V-shaped 

ribs, of 45º or 60º angle, on two opposite walls show better heat transfer enhancement 

than transverse or full angled ribs, of 45º or 60º angle, on two opposite walls which have 
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higher pressure drops. Ekkad and Han [10] performed a detailed study on heat transfer 

distributions in a non-rotating square ribbed channel using a liquid crystal technique. 

The results show that the 60º V-shaped ribbed channel produced more heat transfer 

enhancement than 60º and 90° angled ribbed channels. Taslim et al. [11] tested several 

different cases for straight, V-shaped, and discrete ribs with three different blockage 

ratios (ratios of rib height to channel height), and showed that low-blockage-ratio V-

shaped ribs produce the highest heat transfer enhancement but with the highest pressure 

drop as well. Han et al. [12] studied local heat transfer distribution around a 180º turn in 

a two-pass square channel with smooth walls, and two opposing rib-roughened walls, by 

the naphthalene sublimation technique. They concluded that a considerable 180º turn 

effect with increased heat transfer after the turn. Chandra et al. [13] and Han and Zhang 

[14 and 15] studied the effect of rib angle orientation on local heat transfer distribution 

in a three-pass rib-roughened channel. They found that the rib angle and orientation and 

the sharp 180º turn significantly affected the local heat transfer and pressure drop 

distributions. The combined effects of these parameters increased or decreased the heat 

transfer coefficients after the sharp 180º turns. Cho et al. [16] presented mass transfer 

measurements in a one-pass non-rotating duct (AR=2.04:1) with different rib 

arrangements. Their results show that discrete 90º angled ribs have better heat transfer 

enhancement than non-discrete 90º angled ribs. However, the discrete and non-discrete 

45º angled ribs have similar heat transfer enhancement. The local heat/mass transfer 

characteristics and friction loss were investigated for the 60º continuous V-shaped rib 

and the 45º discrete V-shaped rib configurations with various aspect ratios and Reynolds 
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number by Rhee et al. [17]. The average heat/mass transfer coefficients decrease as the 

aspect ratio increases for all the Reynolds numbers due to the decrease of local values at 

the centerline region with weakened secondary flow. All of the above studies are for 

non-rotating channels. It has been shown for non-rotating channels that the angled ribs 

have better heat transfer than normal ribs (90º), and the V-shaped ribs have better heat 

transfer than the angled ribs. 

Experiments with rotation have been conducted to more closely model engine 

cooling environments. The interaction of the secondary flow induced by rotation and the 

rib turbulators results in different heat transfer trends, as in the stationary channels. In a 

rotating channel, heat transfer discrepancy between the leading and trailing surfaces is 

observed due to the Coriolis force and centrifugal buoyancy force. Taslim et al. [18] 

studied the effects of rotation, Reynolds number, and rib blockage ratio on heat transfer 

in these rib-roughened passages. Park et al. [19] measured local heat/mass transfer in a 

duct with rotation using a naphthalene sublimation method. They concluded that the 

Coriolis force does not affect heat transfer in a ribbed duct as much as in a smooth duct. 

Han et al. [20] and Parsons et al. [21] presented Nusselt number ratio distributions in 

rotating smooth and 90º ribbed two-pass square ducts. In their research, the changes of 

local heat transfer were observed when experimental conditions such as rib turbulators, 

rotational speed and thermal boundary condition were varied. Wright et al. [22] studied 

the heat transfer distributions in a one-pass rotating rectangular duct (AR=4:1) with 

angled, V-shaped, and W-shaped rib turbulators. They concluded that the discrete V-

shaped and discrete W-shaped ribs have the best thermal performance in both rotating 
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and non-rotating cases. Lee et al. [23] investigated six different rib configurations in 

single-pass rectangular (AR=4:1) channels. They found that the V-shaped ribs produce 

the greatest heat transfer enhancement in both rotating and non-rotating channels. 

To better understand the complex 3-D flow physics in the complicated blade 

internal coolant passage geometry, recent efforts also focus on the computational flow 

and heat transfer using the RANS (Reynolds-averaged Navier-Stokes) method with 

various turbulence models. Results indicate that the second-moment turbulence closure 

model (RSM) provides better flow and heat transfer predictions than the standard ε−k  

model. The existing and modified CFD codes would become useful tools for rotor 

coolant passage heat transfer prediction and coolant flow optimization and management. 

Jang et al. [24] computed flow and heat transfer in two-pass, non-rotating square 

channels with 60º ribs with a near-wall second-order Reynolds stress (second-moment) 

closure model and a two-layer ε−k  model. The results show that the second-moment 

Reynolds stress model provides better heat transfer prediction than the two-layer ε−k  

model. Jang et al. [25] also predicted flow and heat transfer in a rotating square channel 

with 45º angled ribs by Reynolds stress model. Their heat transfer coefficient prediction 

compares well with the experimental data. Benhoff et al. [26] numerically studied the 

flow characteristics in square channels with 45º angled ribs. 

They compared the RSM model and ε−k   model. The comparison presented 

that the RSM results were more consistent with the experimental results than the ε−k   

results with and without wall functions. Iacovides and Raisee [27] applied a number of 

turbulence models, EVM and second-moment type to predict the flow and heat transfer 
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through staggered ribbed-roughened passages with U-turn. They concluded that second-

moment closures are necessary in order to correctly reproduce the regions of flow 

separation. Sleiti and Kapat [28] compared two-equation turbulence models 

( ω−k and ε−k ) and RSM in predicting stationary and rotating flow and heat transfer 

in rib-roughened internal cooling channels. The results showed RSM is better than the 

two-equation models. Using the second-moment model, Al-Qahtani et al. [29] calculated 

flow and heat transfer in a rotating two-pass rectangular channel with 45º angled ribs and 

channel aspect ratio of 2:1. The focus was to investigate the effect of channel aspect 

ratio and channel orientation on the flow and heat transfer. The results compared 

reasonably with the experimental data for both stationary and rotating ribbed channels. 

Rigby [30] predicted fluid flow and heat transfer in a 90º ribbed rotating coolant passage 

with a 180º turn using a ω−k  turbulence model. The results showed that the regional 

averaged heat transfer coefficient was overpredicted for the stationary case and 

underpredicted for the rotating case. Su et al. [31] computed flow and heat transfer in 

rotating rectangular channels with V-shaped ribs by using near wall second-moment 

closure model. The results predicted by second-moment model were in very good 

agreement with the experimental data for both the non-rotating and rotating cases. Many 

numerical investigations demonstrated that the advanced second-order RSMs (second-

moment) are capable of providing detailed three dimensional velocity, pressure, 

temperature, Reynolds stresses, and turbulent heat fluxes that were not previously 

available in most of the experimental studies. 
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Most of the mentioned studies has been focused on heat transfer enhancement in 

smooth and rib-roughened walls, square and rectangular cross-sections, single and multi-

pass channels with and without rotation. Experimental and numerical studies have 

modeled the serpentine region of the gas turbine airfoil mostly with square or rectangular 

cross-sectioned channels, with and without multi-pass with 180° sharp turns.  However, 

the actual passages in the airfoil are all not exactly square or rectangular cross section 

and these shaped cooling passages often have irregular cross sections. Internal cooling 

passages of the serpentine region of turbine airfoils are rather trapezoidal-shaped 

channels. A few studies, such as Taslim et al. [32 and 33], Moon et al. [34], and Li et al. 

[35], have been conducted to investigate the effects of irregular geometries on heat 

transfer performance with and without turbulators in single and multi-pass internal 

cooling passages. Taslim et al. [32] conducted liquid crystal experiments to examine the 

effect of tapered ribs on heat transfer coefficients in trailing edge passages with and 

without bleed holes along the trailing edge. Nine different geometries and two passage 

aspect ratios were tested. The channel pressure losses were also measured. Heat transfer 

and friction factor results for various geometries were compared. They found that there 

was a large spanwise variation of heat transfer coefficients due to the non-uniform 

spanwise geometrical shape of the ribs and channels. Taslim et al. [33] measured heat 

transfer coefficient and friction factors in partially ribbed passages in two channels with 

square and trapezoidal cross sections by using a liquid crystal technique. They found that 

the half-length ribs significantly enhanced the heat transfer on the two walls with full 

ribs. Moon et al. [34] investigated local heat transfer distribution in a smooth two-pass 
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channel of trapezoidal cross section with the transient liquid crystal technique. The 

results showed that the heat transfer was much higher on the walls in the turn region and 

downstream of the turn than on the walls upstream of the turn. The turn caused high heat 

transfer in several distinct regions on the end wall, the outlet outer wall, and on the two 

opposite primary walls in the turn and downstream of the turn. The flow separated at the 

tip of the divider wall and reattached on the outlet inner wall in a location only a short 

distance from the turn. The heat transfer was the lowest on the inlet outer wall. Heat 

transfer enhancement due to the turn was the highest in the lowest Reynolds number 

case. The trends of the local heat transfer distributions on the various walls at the turn 

were relatively insensitive to varying the flow rate. Lee et al. [35] studied heat/mass 

transfer distribution in a two-pass trapezoidal channel with naphthalene sublimation 

method. Results were obtained for turbulent air flow through the channel with smooth 

walls, and with ribs on one wall and on two opposite walls, over a range of Reynolds 

numbers between about 10,000 and 60,000. The effect of ribs on the average heat 

transfer is higher when air enters larger straight section of the trapezoidal channel than 

when air enters smaller straight section of the channel. There was a very large variation 

of the local heat transfer distribution in the turn and downstream of the turn. In all cases 

studied, the average heat transfer was higher on the downstream half of the turn than on 

the upstream half of the turn. Immediately downstream of the turn, the regional average 

heat transfer in the larger exit section decreased abruptly, while the regional average heat 

transfer in the smaller exit section continued to increase and reached a maximum value 

before it decreased as the flow redeveloped. Immediately downstream of the turn, the 
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regional average heat transfer was lower in the larger exit section of the channel with 

ribs than in the exit section of the channel with smooth walls for air flow in either 

direction. Although Taslim et al. [32 and 33], Moon et al. [34] and Lee et al. [35] 

investigated the effects of irregular geometries, i.e. trapezoidal cross sectional channels, 

on heat transfer performance with and without turbulators, the effects of irregular 

geometries on heat transfer performance with 60º angled ribs and 60º V-shaped rib 

turbulators have not been studied. Most researches show that the 60º V-shaped ribbed 

channel produces more heat transfer enhancement than 60º and 90° angled ribbed 

channels that are idealized as square or rectangular cross-section. However, the flow 

conditions in the trapezoidal channel are different from square and rectangular channel 

and the effects of (+) 60º ribs, (–) 60º ribs and 60º V-shaped rib turbulators on the heat 

transfer enhancement may be different. 

In this study, internal cooling channels in gas turbine airfoils were modeled as a 

channel with two straight trapezoidal sections with a sharp 180o turn. This study 

experimentally and numerically investigated the effect of rib configurations on the heat 

transfer enhancement, pressure penalty, and thus the overall thermal performance in 

cooling channels without rotation at four different Reynolds numbers of 9,400, 16,800, 

31,800, and 57,200. (+) 60º ribs, (–) 60º ribs and 60º V-shaped ribs were attached on 

both the top and bottom walls in channels. Naphthalene sublimation experiments were 

conducted to obtain the mass transfer distributions and the heat and mass transfer 

analogy was used to convert the mass transfer distributions to heat transfer distributions. 

Numerical predictions of three-dimensional flow and heat transfer also were performed 
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for the trapezoidal channel with and without 90º ribs tested by Lee et al. [35]. Reynolds 

stress turbulence model (RSM) in the FLUENT CFD code was used to calculate the heat 

transfer coefficients and flow fields at Re = 34,500 for the square channel and at Re = 

31,800 for the trapezoidal channel. The experimental and numerical results of this study 

will enable better understanding of the effect of ribs on the heat transfer distribution in a 

trapezoidal channel, validate computer codes, and help improve the design of cooling 

passages in gas turbine blades.  
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CHAPTER II 

EXPERIMENTAL ANALYSIS 

 
2.1 Experimental Apparatus  

 

A schematic diagram of the experimental apparatus is presented in Fig. 2.1. It 

was operated in the suction mode to exclude the temperature rise caused by blowers. 

Two centrifugal blowers were connected in series in order to provide sufficient pressure 

below atmosphere to obtain Reynolds numbers based on  the hydraulic diameter (Dh,turn 

= 4.57 cm) of the cross section at the turn clearance in the test channel from 9,400 to 

57,200.  
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Fig. 2.1 Schematic of test apparatus  
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The main components of the test apparatus were the test section, a settling plenum, a 

calibrated orifice flow meter, a gate valve, and two blowers. The exiting air passing a 

gate valve and an orifice was vented through PVC pipe to the outside of the laboratory to 

prevent naphthalene molecule sublimated from mixing with inlet air. The test section 

was a two-pass channel with two straight sections of different trapezoidal cross sections 

(Dh,small = 4.09 cm and Dh,large = 4.83 cm), connected with a sharp 180° turn. The channel 

was constructed of 1.91 cm thick pine wood. As shown in Fig. 2.2, the length of each 

straight section with and without naphthalene surfaces was 30.5 cm, while the width of 

each section was 3.81 cm and the thickness of the divider wall between the two sections 

was 1.91 cm. The width of the clearance at the turn was also 3.81 cm. 

 

 

13.3 cm

 

 

Fig. 2.2 Schematics of walls of trapezoidal test channel 
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(b) Side view of bottom wall of test channel 
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(c) Top vies of test channel with top wall removed 
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(c) Top view of test channel with top wall removed 
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(d) Cutaway view of cross section of test channel 

 

 

Fig. 2.2 (continued) 
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The included angle of trapezoidal cross section between the top wall and the bottom wall 

was 21.8°. The heights of the outer and inner vertical wall in small trapezoidal channel 

were 3.81 cm and 5.33 cm, and the height of the inner and outer vertical walls in large 

trapezoidal channel were 6.10 cm and 7.62 cm. All of these dimensions were for the 

inside surfaces of the channel walls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Schematics of aluminum cassettes 
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As shown in Fig. 2.3, sixteen aluminum cassettes with 0.97 cm thick and 0.38 cm deep 

cavity were installed on the bottom wall to determine the streamwise variation of the 

regional mass transfer coefficient along the channel. The naphthalene surfaces on 

fourteen of the cassettes on the each straight section were 3.81 cm x 3.81 cm, and the 

naphthalene surfaces on two other cassettes at the turn were 3.81 cm x 4.76 cm. Once 

these sixteen cassettes were installed, the inner surface of the bottom wall was mass 

transfer active, except for the top of 0.76 mm wide rims of each cassette.  

For six sets of experiments, (+) 60º ribs, (–) 60º ribs and 60º V-shaped ribs were 

attached with silicon adhesive on both the top and bottom walls, over the entire length of 

the test channel, with a spacing of 3.81 cm. These ribs were 3.2 mm by 3.2 mm square 

stripes of balsa wood. Thus, the rib height-to-hydraulic diameter ratio (e/ Dh,turn) was 

0.07, and the rib pitch-to-rib height ratio (P/e) was 12. Regional average mass transfer 

coefficients were obtained for air flows through the test channel with (+) 60º ribs, (–) 60º 

ribs and 60º V-shaped ribs on two opposite walls. The inlet was small cross section or 

large cross section. Therefore, six experimental cases were conducted with four 

Reynolds numbers (9,400, 16,800, 31,800 and 57,200). Fig. 2.4 shows six experimental 

cases and rib configuration.  

To obtain the pressure drop across the turn, two pressure taps were installed on 

the top wall and the outer side wall, respectively, in each of the two straight sections of 

the test channels [see Fig. 2.5]. These pressure taps were located on the center point 

between two ribs located 4th and 5th from the end wall. The difference in the static 

pressures at these two pairs of taps was measured with a micromanometer or an inclined  
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Case 1. 60 deg rib Smaller Inlet  
 

 

 

 

 

 

Case 2. 60 deg rib Larger Inlet  
 
 

 

 

 

 

Case 3. 60 deg rib Smaller Inlet  
 
 

 

 

 

 

 

Case 4. 60 deg rib Larger Inlet  
 
 

 

 

 

 

Case 5. 60 deg V-shaped Smaller Inlet  

 

 

 

 

Case 6. 60 deg V-shaped Larger Inlet 

 

 

 

Fig. 2.4 Six experimental cases and rib configurations 
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Fig. 2.5 Two pressure taps installed on both top and side wall of each passage 

 

 

manometer, depending on the range, and was checked with a calibrated pressure 

transducer with a digital readout. 

 

2.2 Naphthalene Molding 

 

Naphthalene casting equipment included an electric heater, a beaker, aluminum 

plates or molds and base, alcohol, and some accessories. A sufficient amount of 

naphthalene pieces in a glass beaker were heated on an electric heater until they boil. 
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The melting point of naphthalene is 80.3°C, but superheating of the molten naphthalene 

is often needed to allow complete filing of the mold cavity prior to the occurrence of 

solidification. The naphthalene cassette was placed on a highly polished and flatted 

stainless steel plate with the rim of the cavity pressed against the surface of the stainless 

steel plate. A funnel for pouring naphthalene and two metal tubes for venting air were 

placed on holes of the backside of aluminum plate. The aluminum plate and the test 

specimen may need to be preheated to prevent naphthalene from forming wavy trace on 

surface. After the naphthalene was boiling, molten naphthalene was poured into the 

mold cavity and allowed to solidify at room temperature. The funnel and metal tubes 

were removed after solidification. The cassette was separated from the plate by tapping 

on one side with a hammer. The exposed surface of naphthalene on the cassette must be 

smooth and shiny corresponding to smoothness of the highly polished metal specimen. 

To ensure that the naphthalene in all of cassettes was in thermal equilibrium with the air 

in the air-conditioned laboratory, the cassettes were stored in a sealed plastic bag in the 

laboratory for approximately 12 hours before an experiment. 

 

2.3 Experimental Procedure 

 

The test section had two different sizes of trapezoidal straight sections with a 

divider wall in-between the two sections. The inlet was small cross section or large cross 

section. The experiments first used the smaller trapezoidal section as the inlet with the 

larger section as the outlet. Afterwards, the larger trapezoidal duct was used as the inlet 
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and the smaller duct served as the outlet. For each test configuration mentioned, four 

Reynolds numbers were considered. Regional average mass transfer coefficients were 

obtained for air flows through the test channel with (+) 60º ribs, (–) 60º ribs and 60º V-

shaped ribs on two opposite walls.  The analogy of heat and mass transfer was applied to 

convert the mass transfer coefficients to heat transfer coefficients.  

The two-pass trapezoidal test channel was connected to a settling plenum and 

then to an open air flow loop. During an experiment, fresh air was drawn, by two 

centrifugal blowers connected in series, through the flow loop from the air-conditioned 

laboratory and the exhaust air that contained naphthalene vapor was ducted to the 

outside of the laboratory through a fume hood.  The air mass flow rate was controlled 

with a valve and was calculated from measured pressure drop through an ASME sharp 

edge 3.81-cm hole-diameter orifice plate and absolute pressure upstream of the orifice 

plate. The pressure drop was measured with an inclined manometer and the upstream 

pressure was measured with a calibrated Cole Parmer pressure transducer with a digital 

TRMS multi-meter. The temperature of the air at the entrance of the test section was 

measured with two 30 gage T-type thermocouples, which were carefully calibrated with 

a NIST calibrated thermometer and a constant temperature bath, and was monitored 

continuously with a data acquisition system over the duration of the experiment. The 

data acquisition system consisted of a National Instrument’s PCI-6024E board, a SCXI-

1102 conditioner, a TC-2095 terminal block, and a computer on which Labview 7.0 was 

installed. To ensure that the naphthalene in all of the cassettes was in thermal 

equilibrium with the air in the air-conditioned laboratory, the cassettes were stored in 
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sealed plastic bags in the laboratory for approximately 12 hours before an experiment. 

After each experiment, the remaining naphthalene in all of the cassettes were melted and 

thrown away. All of the cassettes were cast with new melted naphthalene to ensure best 

results of regional average mass transfer experiments.  

To obtain the pressure drop across the turn, two pressure taps were installed on 

the top wall and the outer side wall, respectively, in each of the two straight sections of 

the trapezoidal test channel. The difference in the static pressures at these two pairs of 

taps was measured with a Dwyer 1430 microtector electronic point gage that could 

measure up to a 5.08-cm water column with a resolution of ± 6.35 × 10-3 mm or a 

calibrated Cole Parmer pressure transducer with a digital TRMS multi-meter that could 

measure up to a 25.40-cm water column with a resolution of ± 2.54 × 10-2 cm, depending 

on the range of the measured pressure drops through the turn of the trapezoidal channel. 

Before each regional average mass transfer experiment was conducted, pre-

determined air flow rate, which gave turn-clearance based Reynolds number of 9,400 ~ 

57,200, was carefully adjusted with a valve to minimize preparation time of each 

experiment and thus un-wanted mass transfer loss. To determine the variation of the 

sixteen regional average mass transfer coefficients along the two-pass test channel, the 

sixteen naphthalene cassettes were weighed and recorded five times for a statistical 

purpose, one at a time, with a Sartorious electronic balance that had a range up to 160.0 

g with a resolution of 0.1 mg before and after the experiment. Each experiment was run 

for 60, 35, 25, and 15 minutes with corresponding turn clearance based Reynolds 

number of 9,400, 16,800, 31,800 and 57,200, respectively. Duration of each experiment 
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was carefully chosen such that amounts of the sublimated naphthalene for each cassette 

were comparable to each other for four different Reynolds numbers to minimize 

uncertainties of the experiments. Installation and un-installation of the sixteen cassettes 

in the test section were executed carefully and promptly to minimize un-wanted mass 

transfer loss to ambient. Every step in each experiment including weighing of the sixteen 

cassettes before and after the experiment, installation and un-installation of the sixteen 

cassettes in the test section, assembly and disassembly of the test channel, and turning on 

and off blowers was timed to account for an amount of the un-wanted mass transfer 

during the experiment. The difference between the weights of each of sixteen cassettes 

gave an amount of the mass transfer from the naphthalene surface of a cassette to airflow 

during the experiment, which was reduced to regional average mass transfer distribution 

along the test channel. Auxiliary experiments were conducted, after each experiment was 

performed, to account for mass transfer loss that was sublimed during the start and end 

of the suction pump(s) operation and the preparation of the experiment.  

 

2.4 Data Reduction 

 

With measured weight difference data of each specimen by high resolution 

balance, reduce the data to obtain the mass transfer coefficient or Sherwood number by 

following equations. Mass flow rates of air were calculated from pressure drop, op∆ , 

through the orifice; 
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where  was the diameter of the orifice and is equal to 3.81cm, C was the discharge 

coefficient, Y was the expansion coefficient,  was the pressure at the tap upstream of 

the orifice,  was the pressure drop across the orifice, R was the universal gas 

constant for air (
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KkgJ ⋅287 ),  was the temperature at the orifice, and oT η  was the 
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where the pipe Reynolds number based on the pipe diameter, ReDp , was given by 

4ReDp
p
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where  was the diameter of the pipe at the orifice and was equal to 6.35cm, and pd µ  

was based on the orifice temperature, . Mass flow rates were calculated iteratively, 

because the equations were in tangles each other. Reynolds numbers based on the 

channel hydraulic diameter, ,  was calculated from the mass flow rates; 

oT

hD DhRe
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where µ  was based on the inlet temperature, , and the perimeter of the test channel, P, 

was the rectangular flow cross section between the tip of the divider wall and the end 

wall. For the same air mass flow rate, the two Reynolds numbers based on the hydraulic 

diameters of the trapezoidal cross section of the two straight sections of the test channel 

were 10.5% smaller and 13.5% larger than this Reynolds number based on the hydraulic 

diameter of the cross section at the turn clearance. 

iT

The regional average mass transfer coefficients was defined as 
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where was the total mass transfer from a naphthalene surface to the air. As for 

natural convection, while naphthalene sublimation occurred before and after experiment 

and these additional weight losses were not negligible, it compensated the error. The 

correction values were obtained from natural convection with 1 hour weight loss data 

under room temperature. The consideration was calculated by  

nM∆

aveconvfin MMMM ,−−=∆                                                                                (7) 

where ∆Mn was the total sublimation weight difference due to experiment, Mi was the 

initial weight of aluminum molds, Mf was the final weight of aluminum molds, and 

Mconv,ave was the average convection sublimation weight during measurement and 

experiment process.  was the duration of the experiment. t∆ ,v wρ  was the local vapor 

density of naphthalene at the wall, and was evaluated using the ideal gas law. 
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The vapor pressure, , was determined using the vapor pressure-temperature 

correlation for naphthalene by Ambrose et al. [36]. 
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where a0=301.6247, a1=791.4937, a2= −8.2536, a3=0.4043, and x = (2Tw−574)/114. Tw 

was in [K] and pv,w was in [N/m2].  

The average bulk vapor density of naphthalene in Eq. (6), ,v bρ was the average of 

the vapor densities at the upstream and downstream edges of the naphthalene surface 

being considered, and was calculated as 
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where was the rate of total mass transfer from the upstream naphthalene surfaces, 

and V was the volumetric flow rate of air. The bulk vapor density was zero upstream of 

the first blockage since there was no naphthalene vapor in the air at the test channel inlet.  

nM&

&

The average Sherwood numbers was defined, as 

             m h
Dh

h DSh
σ

=                                                                                                      (11) 
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where σ was the mass diffusion coefficient for naphthalene vapor in the air. A 

correlation given by Goldstein and Cho [37] was used to determine the mass diffusion 

coefficient. 
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where σ was in [m2/s], T was in [K], and p was in [N/m2]. According to the analogy 

between heat transfer and mass transfer described in Eckert [38], 

             
00 Sh
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where the reference Nusselt number and Sherwood number were based on the Dittus–

Boelter correlations for a fully developed turbulent flow at the same Reynolds number 

through a smooth channel with the same hydraulic diameter as the test channel. 
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In Eqs. (14) and (15), Pr was the Prandtl number, defined as 0.69 for air, and Sc was the  

Schmidt number, defined as  
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The friction factor was determined as 
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where ∆p was the pressure drop across the sharp turn, L was the streamwise distance 

between the locations of the pressure taps along the centerline of the test channel, and Ac 

was the channel flow cross-sectional area at the turn clearance. The experimental friction 

factor was normalized by the friction factor for fully developed turbulent flow in a 

smooth channel, f0, which was given as  

                     [ ] 2
0 0.79ln(Re ) 1.64Dhf −= −                                                                       (18) 

The relative thermal performance to compare the heat transfer per unit pumping power 

for the test channel with that for a smooth channel was given by 
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2.5 Uncertainty Analysis 

 

The calculations of uncertainty values were based on a confidence level of 95% 

and the relative uncertainty analysis method of Coleman and Steele [39]. In all 

uncertainty calculations, uncertainty values of ±1.0% for all properties of air and ±0.25 

mm for all physical dimensions were used. The maximum uncertainty of the air mass 

flow rate was calculated from the maximum uncertainties of the measured pressures at 

the orifice flow meter, and was found to be ±3.1%.  The corresponding maximum 

uncertainty of the Reynolds number was ±3.3%.  
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Based on the uncertainty values of ±4.9% for nM∆ , ±5.5% for wv,ρ , and ±5.8%  

for bv,ρ , the maximum uncertainty of the average mass transfer coefficient was 

estimated to be ±7.7%.  According to Goldstein and Cho [37], the diffusion coefficient 

of naphthalene vapor in air had an uncertainty of about ±2.0%.  With this value, the 

estimated value of the maximum uncertainty for the average Sherwood numbers was 

±8.0%.  

Using the maximum uncertainty values of ±5.8% for the measured pressure 

drops and ±3.1% for the air mass flow rate, the maximum value of the uncertainty of the 

friction factor was estimated to be ±8.8%. 
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CHAPTER III 

NUMERICAL MODEL AND PROCEDURE 

 

Numerical predictions provide the details that are difficult to obtain by 

experimental means. Moreover, the increase in computation power in desktop computers 

has made it economical to optimize the design parameters based on numerical analyses. 

Based on the number of equations to be solved, turbulence modeling approaches can be 

broadly classified as one-equation, two-equation, and second-moment closure models. 

The accurate prediction of heat transfer in high-pressure turbine stages has long been 

recognized as a key to improve gas turbine performance and engine life. Development of 

faster computers with more memory makes it feasible to compute more details of heat 

transfer analysis. The main difficulties in predictions are proper turbulence models. 

Numerical analysis was conducted to better understanding the three dimensional 

flow and heat transfer distribution in a two-pass trapezoidal channel with  (+) 60º ribs, (–

) 60º ribs and 60º V-shaped ribs at Re = 31,800.  The square channel with smooth walls 

and the trapezoidal channel with and without 90º ribs tested by Lee et al. [35] were also 

simulated at Re = 34,500 for the square channel and at Re =31,800 for the trapezoidal 

channel. The Reynolds stress model (RSM) with enhanced wall treatment in FLUENT 

code was used to perform the calculations. Three dimensional numerical simulations 

were compared with experimental results.  
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3.1 Governing Equations 

 

 In Reynolds averaging, the solution variables in the instantaneous Navier-Stokes 

equations are decomposed into the mean and fluctuating components. For the velocity 

components: iii uuu ′+=  where iu and iu′ are the mean and fluctuating velocity 

components. Likewise, for pressure and other scalar quantities: φφφ ′+=  where 

φ denotes a scalar such as pressure, energy, or species concentration. Taking a time 

average to the instantaneous Navier-Stokes equations and dropping the over bar yield the 

ensemble-averaged equations. The continuity and momentum equations can be written in 

Cartesian tensor form as: 
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Turbulent heat transfer is modeled using the concept of Reynolds’ analogy to turbulent 

momentum transfer. Thus, the modeled energy equation is given as follow: 
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where E is the total energy, k  is the thermal conductivity and ( )
effijτ is the deviatoric 

stress tensor, given by 
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The viscous heating is represented by the term ( ) .
effijτ  Prt is the turbulent Prandtl number 

with a value of 0.85. Equations (1) and (2) are called Reynolds-averaged Navier-Stokes 

(RANS) equations. Additional terms now appear that represent the effects of turbulence. 

These Reynolds stresses, jiuu ′′− ρ  must be modeled in order to close Eq. (2). 

 

3.2 Reynolds Stress Model (RSM) 

 

             The Reynolds stress model (RSM) is also known as a second-moment closure 

model. Reynolds stresses are solved directly with transport equations avoiding isotropic 

viscosity assumption of other models. The RSM avoids the isotropic eddy viscosity 

assumption. In other words, the individual Reynolds stresses, jiuu ′′ , are calculated by 

using differential transport equations. Thus RSM takes into account the directional 

effects of the Reynolds stress field, which is not the case for two-equation models. The 

RSM is suitable for complex 3D flows with strong streamline curvature and severe 

pressure gradients, highly swirling flows and rotation like curved duct, rotating flow 

passages, swirl combustors with very large inlet swirl, and rotation. The RSM is a 

physically most complete model because it is tightly coupled momentum and turbulence 

equations. The history, transport, and anisotropy of turbulent stresses are all accounted 

for. However, it is tougher to converge due to close coupling of equations and the RSM 

requires more memory, computational effort and time.  The exact transport equations for 

the transport of the Reynolds stresses, jiuu ′′ρ  , are written as follows: 
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( )jkmmiikmmjkij uuuuF εερ ′′+′′Ω−= 2  : Production by system rotation    (14) 

Of the above terms the convection ( ), molecular diffusion ( ), stress production 

( ) and production by system rotation ( ) terms do not need any modeling, thus are 

solved exactly. However, the turbulent diffusion ( ), buoyancy production ( ), 

pressure strain (

ijC ijLD ,

ijP ijF

ijTD , ijG

ijφ ) and dissipation ( ijε ) terms all need to be modeled to close the 

equations. 
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The simplified turbulent diffusion ( ) can be modeled as follows: ijTD ,
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The buoyancy production ( ) is modeled as ijG
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where Prt  is the turbulent Prandtl number for energy, with a default value of 0.85. 

The dissipation ( ijε ) is modeled as 

( Mijij Y+= ρεδε
3
2 )                                                                                (17) 

where   is an additional dilatation dissipation term. 22 tM MY ρε=

The pressure strain ( ijφ ) can be written as follows: 
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where  , , 8.11 =C 6.02 =C 5.01 =′C , 3.02 =′C , is the component of the unit normal 

to wall, d  is the normal distance to the wall, and , where  and 

kn kx

κµ /4/3CCl = 09.0=µC κ  

is the von  constant (=0.4187). The equation for the scalar dissipation rate (narmaK ′′ ε ) 

is as follow: 
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where 0.1=εσ , , 44.11 =εC 92.12 =εC ,  is evaluated as a function of the local flow 

direction relative to the gravitational vector. Turbulent kinetic energy can be written as 

3εC

jiuuk ′′=
2
1                                                                      (23) 

The turbulent viscosity, tµ , is computed from: 

ε
ρµ µ

2kCt =                                                                   (24) 

with , where k  is the turbulent kinetic energy and 09.0=µC ε  is its turbulent 

dissipation rate. 

 

3.3 Near Wall Modeling 

 

             The turbulence models are primarily valid for turbulent core flows. The accurate 

representation of the flow in the near wall region determines successful predictions of 

wall bounded turbulent flows because the presence of wall affects significantly turbulent 

flows. In the turbulent boundary layer, there are three different regions. Viscous sublayer 
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is the innermost layer and the flow is almost laminar. The transport is dominated by 

diffusion and the velocity profile is nearly linear. There is an adjoining buffer layer in 

which diffusion and turbulent mixing are comparable, and in the outer layer, there is the 

fully turbulent layer which transport is dominated by turbulent mixing. 

              There are two ways for modeling the near wall region. In the first model, the 

viscous sublayer and buffer layer are not resolved. Instead, semi-empirical formulas 

(wall function) are used to link the viscosity affected region between the wall and the 

fully-turbulent region. The second model is enhanced wall treatment that combines a 

two-layer model with enhanced wall functions. The near wall mesh must be fine enough 

to be able to resolve the laminar sublayer. In the two-layer model, viscosity affected near 

wall region is completely resolved all the way to the viscous sublayer. These two 

approaches are described schematically in Fig. 3.1. 

 

 

buffer & 
sublayer 

turbulent core

Wall Function Approach Near-Wall Model Approach

? 

 

 

Fig. 3.1 Near-Wall Treatments in FLUENT 
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The two-layer model subdivides the near wall region into a viscosity-affected region and 

a fully-turbulent region. In the viscosity-affected region, one equation by Wolfstein is 

solved, while in the fully turbulent flow the Reynolds stress equations are computed. The 

turbulent viscosity ( tµ ) and turbulent dissipation (ε ) are computed from: 

klClayert µµρµ =2,                                                        (25) 
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where the length scales can be expressed as 
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where  is the normal distance from the wall, y ll cAACc 2,70,4
3

===
−

εµµκ  and 

turbulent Reynolds number, , is defined as yRe

µ
ρ yk

y =Re                                                        (29) 

 

3.4 Boundary Conditions 

 

The test channel in the computation had the same dimensions as the test section 

in the experiments described in previous section. The Reynolds numbers were fixed at 
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34,500 for the square channel and at 31,800 for the trapezoidal channel. The mass flow 

rates at the channel inlet were specified with  kg/s for Re = 34,500 and with 

 kg/s for Re = 31,800. The turbulence intensity of 4% and the coolant 

temperature of 300K were imposed on the inlet of the channel. At the outlet of the 

channel, boundary condition was defined as outflow. Because the boundary condition of 

naphthalene coated surfaces corresponds to a uniform wall temperature condition and 

that of inactive surfaces to an adiabatic wall condition in heat transfer experiment, only 

bottom wall was heated to a constant temperature except the entrance of duct and the 

ribs. No-slip boundary conditions were enforced at all walls and rib sides. Properties of 

air were calculated by piecewise linear functions. 

21042.2 −×

21079.2 −×

 

3.5 Numerical Method of Solution  

 

            In this numerical study, the control-volume-based finite difference method was 

used to convert the governing equations to algebraic equations that could be solved 

numerically. The FLUENT 6.2 program was applied to integrate the governing equations 

for each control volume and to yield discrete equations conserving each quantity. The 

segregated and explicit solver was chosen to solve flow, energy, turbulence and 

Reynolds stresses equations in three dimensions. For the pressure-velocity coupling 

discretization, the SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) 

algorithm was used to solve the continuity equation. For the pressure interpolation, the 

PRESTO! (PREssure Staggering Option) scheme was chosen, which showed better 
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results for the cases where the pressure profile had a high gradient at the cell face. The 

equations for the momentum, turbulent dissipation, turbulent kinetic energy, Reynolds 

stresses and energy were discretized spatially with a second-order upwind scheme. The 

convergence criteria are 10-8 for energy and 10-4 for others. The commercial software 

package GAMBIT grid generator was used to generate the 3-D structured grid. The grid 

distributions were effectively controlled by clustering the mesh towards the walls in such 

a way that the employed near wall treatment was properly applied. For enhanced wall 

treatment,  the first cell next to a wall was maintained below 1. The gravitational 

effect on the geometry was neglected in this study.  

+y
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CHAPTER IV 

FLOW AND HEAT TRANSFER IN A TWO-PASS SQUARE CHANNEL 

WITH SMOOTH WALLS 

 

           In chapter IV, computations were performed for a two-pass square channel with 

smooth walls as tested by Lee et al. [35] using the Reynolds stress model (RSM) with 

enhanced wall treatment in FLUENT. 

 

4.1 Description of Problem 

 

           The simulated geometry was the same as the experimental geometry by Lee et al. 

[35]. Figure 4.1 & 4.2 show the geometry and the numerical grids for the two-pass 

square channel with the 180º sharp turn. The length of the duct was 61 cm. The length of 

each straight section with and without heating surfaces was 30.5 cm, while the width of 

each section was 3.81 cm and the divider wall thickness was 1.91 cm. The length from 

the divider wall tip to the end wall in the turn was 3.81 cm. Only bottom wall was heated 

to a constant temperature since the mass transfer experiment can simulate uniform wall 

temperature boundary condition. The Reynolds number based on channel hydraulic 

diameter was fixed at 34,500.  
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Fig. 4.1 Geometry for square channel with smooth walls
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Fig. 4.2 Numerical grid for square channel with smooth walls 



 45

4.2 Grid Independence Study 

 

Fig. 4.2 gives the numerical grid generated using Gambit for this simulation. Fig 

4.3 shows a comparison of the calculated Nusselt number ratios for a grid refinement 

study. The grid independent study was performed for three different cross sectional grids 

of , and 5203434 ×× 5204444 ×× 5205454 ×× , and one streamwise grid 

with mesh refined in the near wall regions. A comparison between  and 

grid points showed 7.8% maximum changes in the Nusselt number ratio. 

The maximum difference in Nusselt number ratio was less than 2.8% between 

 and  grid points. Further increase of the number of grid 

points in streamwise direction of the channel produced only minor changes of the 

Nusselt number ratios. Therefore, it was determined that grid independence was 

achieved with grid points and all results were based on the 

grid points, which resulted in 1,006,720 grid points. The y

6204444 ××

5203434 ××

5204444 ××

5204444 ×× 5205454 ××

5204444 ××

5204444 ×× + values were 

less than unity in all test runs of grid independent study for the very fine mesh. 

 

4.3 Velocity Fields 

 

The streamwise velocity vector distributions at the middle plane between the top 

and bottom surfaces in the heated section are shown in Fig. 4.4(a). In the first passage 

before the turn, the flow was fully developed and the velocity distributions were constant. 

As the flow approached the turn region, the turn caused a streamwise flow acceleration 
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near the divider wall and flow deceleration near the outer wall. Due to the streamwise 

curvature of the flow in the turn, a radial pressure gradient developed across the turn 

 

Fig. 4.3 Grid independent study for square channel with smooth walls 

 

region with lower pressure near the divider wall and higher pressure near the outer wall. 

In other words, the favorable pressure gradient existed near the divider wall and the 

adverse pressure gradient existed near the outer wall. The sharp tip of the divider wall 

drove an abrupt change of the flow direction with pressure reduction that made a 

separation bubble at the tip. The 180º sharp turning pushed the flow outward creating 

adverse pressure gradient near the divider wall and created a large flow recirculation 

along the divider wall in the second pass. It was not seen any reattachment to the divider   
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Fig. 4.4 Streamwise velocity vector for square channel with smooth walls at Re = 34,500 
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wall in the recirculation bubble zone on the middle plane. The small recirculation bubble 

existed at the upstream corner and at the downstream corner. Two flow impingement 

zones were observed. The high momentum flow entering the turn impinged onto the end 

wall. This impingement flow divided up and down, and contributed to the secondary 

flow formation. The other impingement location was on the outer wall at the turn exit 

due to strong flow acceleration induced by secondary flows and the pressure filed 

changes. Figure 4.4(b) shows the averaged main flow velocity, which were calculated 

near the bottom wall. It can be seen that stronger flow recirculation developed near the 

tip of divider wall reattached to the divider wall after the turn in second pass. It seems 

that the stronger flow recirculation reattached to the divider wall surface location off the 

middle plane and two reattached flows from top and bottom walls merged into the 

middle plane to create the bifurcating flow. 

 

4.4 Secondary Flow Development 

 

           Fig. 4.5 shows the mean secondary flow development of the counter-rotating 

vortices. In the first passage, small secondary corner vortices were generated as a result 

of the Reynolds stress anisotropy. The magnitude of these vortices, which was very 

small, cannot be seen clearly. In the turn region, the centrifugal forces and the associated 

pressure gradients produced two counter-rotating vortices which transported cooler fluid 

from the core toward the outer surface, resulting in a steeper temperature gradient and 

thus a higher heat transfer on the outer wall. The relatively faster inner flow carries a  
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Fig. 4.5 Secondary flow developments for square channel with smooth walls  

at Re = 34,500 
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 larger centrifugal force than the outer flow and this leads to the emergence of the 

secondary flow directing outwards in the center and inwards near the surface. This 

secondary flow started to decrease in the second passage and diminished almost 

completely at the end of the second passage. The strong vortex pair appeared at the 90º 

turning plane from the incident flow direction (Fig. 4.5(a)) due to the centrifugal force 

action. Through the turn, the vortex strength further increase with more flow turning at 

the 180º turning plane. The counter-rotating vortex pair was pushed toward the outer 

wall as shown in Fig. 4.5(b) &(c) and occupied only half of the cross section due to the 

large separating bubble that occurred immediately downstream the turn near the inner 

wall. Downstream of the separation bubble (Fig. 4.5(d)), the counter-rotating vortex pair 

was pushed toward the divider wall since the pressure gradient was recovered on the 

inner surface (divider wall) and then gradually diminished in second passage channel 

cross sections (Fig. 4.5(e) and (f)). 

 

4.5 Heat Transfer Distribution 

 

            Fig. 4.6 & 4.7 show the Nusselt number ratio contour plots and regional average 

Nusselt number ratios on the bottom wall at Re = 34,500. Comparisons were made 

between calculations and experiment data of Lee et al (2007). The entrance and exit 

regions were cut off to focus on the bend effect. In the first passage, as the flow 

approached the 180º turn, the flow was fully developed and the Nusselt number ratios 

were low and almost constant. In the turn region, the turn effect was attributed to 
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Fig. 4.6 Detailed Nusselt number ratio distributions for square channel  

with smooth walls at Re = 34,500



 52

 

 

Fig. 4.7 Calculated and measured regional average Nusselt number ratios  

for square channel with smooth walls at Re = 34,500  

 

secondary flows induced by the centrifugal force. Thus, high heat transfer was observed 

near the end wall due to the flow impingement. As the flow entered the second passage, 

another flow impingement was observed near the outer surface caused by the centrifugal 

force created by the 180º sharp turn. When the flow impinges the surface, the boundary 

layer thickness diminishes near the stagnation point, thus heat transfer enhancement was 

expected due to the high temperature gradient. Another relatively higher heat transfer 

region was near divider wall in second passage due to reattachment of flow after the turn. 
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Farther downstream in the second passage, the Nusselt number ratio decreased as the 

effect of the turn reduced. There were relatively low heat transfer regions in the first 

outer corner due to corner flow entrapment.  

In the regional average Nusselt number ratios (Fig. 4.7), the Nusselt number ratio 

decreased gradually in first passage. This continuous decrease was due to the developing 

thermal boundary layer. As the flow approached the turn, the Nusselt number ratio 

increased due to the secondary flows induced by the turn. The Nusselt number ratio 

reached the peak value at the entrance of the second passage due to the flow 

impingement onto the bottom wall and then decreased as the flow moved to the exit of 

the second passage. This was due to the diminishing of secondary flow induced by the 

turn.  

The predicted Nusselt number ratios by the Reynolds stress model (RSM) were 

closed to the experimental data of Lee et al (2007). It can show well flow field and heat 

transfer distribution. However, the Reynolds stress model (RSM) slightly underpredicted 

the steep increase of the heat transfer in the turn region and the Nusselt number ratios in 

after the turn in second passage. The maximum relative error was 13.3% and the average 

relative error was 6.1%. The relative error is defined by normalizing the difference 

between the experimental and numerical values with respect to the experimental values.  

 

 



 54

CHAPTER V 

FLOW AND HEAT TRANSFER IN A TWO-PASS TRAPEZOIDAL 

CHANNEL WITH SMOOTH WALLS 

 

            In chapter V, computations were performed for a two-pass trapezoidal channel 

with smooth walls as tested by Lee et al. [35] using the Reynolds stress model (RSM) 

with enhanced wall treatment in FLUENT. 

 

5.1 Description of Problem 

 

           The simulated geometry was the same as the experimental geometry by Lee et al. 

[35]. Fig. 5.1 & 5.2 show the geometry and the numerical grids for the two-pass 

trapezoidal channel with the 180º sharp turn. The length of the duct was 61 cm. The 

length of each straight section with and without heating surfaces was 30.5 cm, while the 

width of each section was 3.81 cm and the divider wall thickness was 1.91 cm. The 

length from the divider wall tip to the end wall in the turn was 3.81 cm. Only bottom 

wall was heated to a constant temperature since the mass transfer experiment can 

simulate uniform wall temperature boundary condition. The included angle of 

trapezoidal cross section between the top wall and the bottom wall was 21.8°. The 

heights of the outer and inner vertical wall in small trapezoidal channel were 3.81 cm 

and 5.33 cm, and the height of the inner and outer vertical walls in large trapezoidal 

channel were 6.10 cm and 7.62 cm, respectively. Therefore, when the average values of  



 55

 

 

 

Fig. 5.1 Geometry for trapezoidal channel with smooth walls 
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Fig. 5.2 Numerical grid for trapezoidal channel with smooth walls  
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channel width and height were considered, the channel aspect ratios (W/H) were 1:1.16 

for smaller cross section and 1:1.73 for larger cross section. The hydraulic diameters of 

the small trapezoidal cross section (Dh,small) was 4.09 cm and the hydraulic diameter of 

the large trapezoidal crosses section (Dh,large) was 4.83 cm.  For the same air mass flow 

rate, the Reynolds number was based on the hydraulic diameter of the cross section at 

the turn clearance (Dh,turn = 4.57 cm) because the channel height  in the trapezoidal 

channel was varied in the turn region. The Reynolds numbers were fixed at 31,800. 

            Experiments were performed for the air entering the trapezoidal channel through 

the straight section with the smaller cross section as well as entering through the straight 

section with the larger cross section. Therefore, there were two inlet velocity conditions. 

The velocities in channel inlet in smaller cross section and in larger cross section were 

13.61 m/s and 9.08 m/s, respectively.   

 

5.2 Grid Independence Study 

 

            Fig. 5.2 gives the numerical grid generated using Gambit for this simulation. The 

grid independent study was made by performing the simulations for three different cross 

sectional grids of ,5205434 ×× 5206444 ×× and 5207454 ×× , and one streamwise 

grid with mesh refined in the near wall regions (Fig. 5.3). For the smaller 

inlet case (Fig. 5.3(a)), a comparison between 

6206444 ××

5205434 ××  and 5206444 ×× grid points 

showed 7.4% maximum changes in the Nusselt number ratio. The maximum difference  
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Fig. 5.3 Grid independent study for trapezoidal channel with smooth walls 
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in Nusselt number ratio was less than 1.9% between 5206444 ××  and 5207454 ××  

grid points. For the larger inlet case (Fig. 5.3(b)), a comparison between 5205434 ××  

and grid points showed 6.3% maximum changes in the Nusselt number 

ratio. The maximum difference in Nusselt number ratio was less than 1.8% between 

 and  grid points. Further increase of the number of grid 

points in streamwise direction of the channel produced only minor changes of the 

Nusselt number ratios for the both cases. Therefore, it was determined that grid 

independence was achieved with

5206444 ××

5206444 ×× 5207454 ××

5206444 ×× grid points and all results were based on 

the grid points, which resulted in 1,464,320 grid points for both the smaller 

inlet and larger inlet cases. The y

5206444 ××

+ values were less than unity in all test runs of grid 

independent study. 

 

5.3 Velocity Fields 

 

For the inlet at smaller cross section, the streamwise velocity vector distributions 

at the middle plane between the top and bottom walls and near bottom wall are shown in 

Fig. 5.4.  In the first passage before the turn, the flow was fully developed and the 

velocity distributions were constant. As the flow approached the turn region, the turn 

caused a streamwise flow acceleration near the divider wall and flow deceleration near 

the outer wall. Due to the streamwise curvature of the flow in the turn, a radial pressure 

gradient developed across the turn region with lower pressure near the divider wall and 

higher pressure near the outer wall. 
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Fig. 5.4 Streamwise velocity vector of trapezoidal channel with smooth walls 

for inlet at smaller cross section at Re = 31,800 
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Fig. 5.5 Streamwise velocity vector of trapezoidal channel with smooth walls 

for inlet at larger cross section at Re = 31,800 
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The sharp tip of the divider wall drove an abrupt change of the flow direction 

with pressure reduction that made a separation bubble at the tip. Unlike the square 

channel, the large flow recirculation along the divider wall in the second passage was not 

observed midway between the top and bottom walls. Instead of the recirculation there 

was a large bifurcating zone along the divider wall. Due to increasing flow cross section 

in the turn, the flow was decelerated and centrifugal force was weakened. The main flow 

was pushed by centrifugal force at the turn toward outer wall and was then deflected 

onto the top wall. However there were seen the recirculation bubble zone and the 

reattachment to the divider wall near the bottom wall (Fig. 5.4(b)). The small 

recirculation bubble existed at the upstream corner and at the downstream corner. Two 

flow impingement zones were observed. The high momentum flow entering the turn 

impinged onto the end wall. The other impingement location was on the outer wall at the 

turn exit due to still large momentum of the flow from the smaller inlet section. Fig. 5.5 

shows streamwise velocity vector for inlet at larger cross section.  The flow approached 

the turn from the larger inlet section with relatively lower velocity and accelerates 

through the turn as the flow cross section was decreased in the turn region. Unlike the 

smaller inlet case, the separation bubble at the tip of the divider wall was smaller due to 

the accelerated flow through the turn. The large bifurcating zone along the divider wall 

was not observed. However there were seen the small bifurcating zone along the divider 

wall near the bottom wall due to the secondary flow induced by the turn (Fig. 5.5(b)). 
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Fig. 5.6 Secondary flow location for trapezoidal channel with smooth walls 
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Fig. 5.7 Secondary flow developments of trapezoidal channel with smooth walls 

for inlet at smaller cross section
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Fig. 5.8 Secondary flow developments of trapezoidal channel with smooth walls 

for inlet at larger cross section 
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5.4 Secondary Flow Development 

 

To facilitate a more detailed understanding of the three-dimensional flow field, 

secondary flow fields were presented. Fig. 5.7 and 5.8 show the calculated secondary 

flow vectors at several streamwise locations denoted in Fig. 5.6 for the smaller inlet and 

larger inlet cases. It was seen from Fig. 5.6 that the anisotropy of the turbulent Reynolds 

stresses produced small secondary corner vortices in the first passage. The magnitude of 

those vortices was so small and it cannot be clearly seen in this figure. For the smaller 

inlet case (Fig. 5.7), two counter-rotating vortices were produced in the turn as shown in 

Fig. 5.7. (1), which transported flow from core toward the end (outer) wall since the 

relatively faster inner flow carries a larger centrifugal force than the outer flow and this 

leads to the emergence of a secondary flow directing outward in the center and inward 

near the top and bottom walls. The secondary flow near the bottom wall was large and 

well formed a vortex flow but the secondary flow near the top wall was smaller and 

slightly distorted. At the 180° turning plane (Fig. 5.7. (2)), the vortex near the bottom 

wall was pushed toward the outer wall and two counter-rotating vortices were formed 

near the top wall due to the vertically extended cross sectional area. At the location (3), 

four counter-rotating vortices were observed. One large counterclockwise rotating vortex 

occupied in the center of the channel. Two small vortices existed near the top wall and 

one small vortex existed near the outer and bottom wall (Fig. 5.7. (3)). After the effects 

of the turn were decreased, the vortices near the top wall disappeared and the vortex near 

the bottom wall was weakened (Fig. 5.7. (4)). Further downstream of the turn, only one 
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large counterclockwise rotating vortex was left and other vortices were diminished 

(location (5) and (6)). For the larger inlet case (Fig. 5.8), two counter-rotating vortices 

were produced in the turn as shown in Fig. 5.8. (1), which transported flow from core 

toward the end (outer) wall. The upper vortex was slightly bigger than a lower vortex. 

The vertical downward velocity was very strong due to the flow acceleration. At the 

180° turning plane (Fig. 5.8. (2)), the two vortices were pushed toward the outer wall 

due to the strong centrifugal force. Downstream of the turn, two large strong vortices 

occupied almost entire cross sectional area and a small vortex near the inner and bottom 

wall was observed (location (3)). Further downstream (location (4)), the small vortex 

was diminished and the two large vortices predominated entire cross sectional area. 

Finally the weaker vortices were merged into one large counterclockwise vortex and 

relatively weaker vortex occupied the whole cross section (location (5) and (6)).  

 

5.5 Heat Transfer Distribution 

 

The Nusselt numbers presented here were normalized with a smooth tube 

correlation by Dittus-Boelter for fully developed turbulent non-rotating tube flow: 

0.8 0.4
0 0.023Re PrDhNu =  

Fig. 5.9 shows the detailed Nusselt number ratio distributions on the bottom wall in a 

two-pass trapezoidal channel with smooth walls at Re = 31,800. Comparisons were 

made between calculations and experiment data of Lee et al (2007). The entrance and 

exit regions were cut off to focus on the turn effect. For the smaller inlet case (Fig. 5.9), 
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in the first passage, as the flow approached the 180º turn, the flow was fully developed 

and the Nusselt number ratio was low and almost constant. In the turn region, the turn 

effect was attributed to secondary flows induced by the centrifugal force. Thus, high heat 

transfer was observed near the end wall due to the flow impingement. As the flow 

entered the second passage, another flow impingement was observed near the outer 

surface caused by the centrifugal force created by the 180º sharp turn. When the flow 

impinges the surface, the boundary layer thickness diminishes near the stagnation point, 

thus heat transfer enhancement is expected due to the high temperature gradient. Further 

downstream in the second passage, the Nusselt number ratio decreased as the effect of 

the turn reduced. The Nusselt number ratios gradually decreased along the outer wall 

due to the secondary flow and the lowest heat transfer enhancement was observed along 

the downstream side of the divider wall. There was relatively low heat transfer region in 

the tip of the divider wall due to the flow separation. For the larger inlet case (Fig. 5.10), 

the heat transfer enhancement was higher near the downstream outer wall in the turn 

than near the end wall. The flow entered the turn from the larger inlet section with 

relatively low velocity and accelerated through the turn as the flow cross section was 

reduced in the turn. After the turn the high Nusselt number ratios were along the two 

side walls and relatively low ratios were in the middle of the bottom wall since the 

accelerated flow through the turn strengthened a pair of counter-rotating vortices over 

the bottom wall. 

The regional average Nusselt number ratios on the bottom wall for the two-pass 

trapezoidal channel with smooth walls at Re = 31,800 are shown in Fig. 5.11. 
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Fig. 5.9 Detailed Nusselt number ratio distributions of trapezoidal channel with 

smooth walls for smaller inlet case at Re = 31,800 
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Fig. 5.10 Detailed Nusselt number ratio distributions of trapezoidal channel with 

smooth walls for larger inlet case at Re = 31,800 
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In the first passage, as the flow approached the turn, the Nusselt number ratios gradually 

decreased. This continuous decrease is due to the developing thermal boundary layer. 

The Nusselt number ratio reached the peak value at the entrance of the second passage 

due to the flow impingement onto the bottom wall and then decreased as the flow moved 

to the exit of the second passage. This is due to the diminishing of secondary flow 

induced by the turn.  

 

 

Fig. 5.11 Regional average measured and calculated Nusselt number ratio for trapezoidal 

channel with smooth walls at Re = 31,800 

 

The Nusselt number ratios before the turn were higher for smaller inlet case than for 

larger inlet case because of the higher velocity of the flow in the inlet section with the 
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smaller flow cross sectional area. However, after the turn, the heat transfer 

enhancements were higher in the larger inlet case than in the smaller inlet case.  

The predicted Nusselt number ratios by the Reynolds stress model (RSM) were 

closed to the experimental data of Lee et al. [35]. It can show well flow field and heat 

transfer distribution. However, the Reynolds stress model (RSM) slightly underpredicted 

the steep increase of the heat transfer in the turn region and the Nusselt number ratios in 

after the turn in second passage. The maximum relative error was 14.7% and the average 

relative error was 8.2% for the smaller inlet case. The relative error is defined by 

normalizing the difference between the experimental and numerical values with respect 

to the experimental value. The maximum relative error was 13.9% and the average 

relative error was 6.2% for the larger inlet case. 
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CHAPTER VI 

FLOW AND HEAT TRANSFER IN A TWO-PASS TRAPEZOIDAL 

CHANNEL WITH 90° RIBS ON TWO OPPOSITE WALLS 

 

In chapter VI, computations were performed for a two-pass trapezoidal channel 

with  90º ribs on the two opposite walls as tested by Lee et al. [35] using the Reynolds 

stress model (RSM) with enhanced wall treatment in FLUENT. 

 

6.1 Description of Problem 

 

            The simulated geometry was the same as the experimental geometry by Lee et al. 

[35]. Fig. 6.1 & 6.2 show the geometry and the numerical grids for the two-pass 

trapezoidal channel with 90° ribs on two opposite walls. The top and bottom walls were 

roughened by thirty two equally-spaced 90° angled ribs. Therefore, the total of sixty four 

90° angled ribs was attached on both the top and bottom walls in parallel sequence so 

that they were directly opposite each other. These ribs were 3.2 mm by 3.2 mm and rib-

to-rib spacing (P) was 3.81 cm. Thus, the rib height-to-hydraulic diameter ratio (e/ 

Dh,turn) was 0.07, and the rib pitch-to-rib height ratio (P/e) was 12. The actual rib height-

to-hydraulic diameter ratio (e/ Dh,small ) in the smaller cross section was 0.078 and the  
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Fig. 6.1 Geometry for trapezoidal channel with 90º ribs 



 75

 

 

Fig. 6.2 Numerical grid for trapezoidal channel with 90º ribs 
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actual rib height-to-hydraulic diameter ratio (e/ Dh,large) in the larger cross section was 

0.066. The Reynolds numbers were fixed at 31,800. 

           

6.2 Grid Independence Study 

 

            Fig. 6.2 gives the numerical grid generated using Gambit for this simulation. The 

grid independent study was made by performing the simulations for three different cross 

sectional grids of ,6506434 ×× 6507444 ×× and 6508454 ×× , and one streamwise 

grid with mesh refined in the near wall regions (Fig. 6.2). For the smaller 

inlet case (Fig. 6.3(a)), a comparison between 

7507444 ××

6506434 ××  and grid 

points showed 7.8% maximum changes in the Nusselt number ratio. The maximum 

difference in Nusselt number ratio was less than 1.9% between and 

 grid points. For the larger inlet case (Fig. 6.3(b)), a comparison between 

 and grid points showed 5.9% maximum changes in the 

Nusselt number ratio. The maximum difference in Nusselt number ratio was less than 

1.8% between and 

6507444 ××

6507444 ××

6508454 ××

6506434 ×× 6507444 ××

6507444 ×× 6508454 ××  grid points. Further increase of the 

number of grid points in streamwise direction of the channel produced only minor 

changes of the Nusselt number ratios for the both cases. Therefore, it was determined 

that grid independence was achieved with 6507444 ×× grid points and all results were 

based on the grid points, which resulted in 2,116,400 grid points for both 

the smaller inlet and larger inlet cases. The y

6507444 ××

+ values were less than unity in all test runs 

of grid independent study. 
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Fig. 6.3 Grid independent study for trapezoidal channel with 90º ribs  



 78

6.3 Velocity Fields 

 

Fig. 6.4 shows the velocity vector distributions at the mid-plane between the top 

and bottom walls with 90° ribs at Re = 31,800 for inlet at smaller cross section and for 

inlet at larger cross section. For inlet at smaller cross section (Fig. 6.4(a)), the velocity 

profiles were flat before the turn. As the flow approached the turn region, flow 

accelerations occurred near the divider wall and a flow deceleration occurred near the 

outer wall due to the favorable and adverse pressure gradients along the divider and 

outer wall, respectively. Flow deceleration took place at the outer wall and was followed 

by flow separation, which results in a zone of recirculating flow in the upstream corner 

in the first passage. Unlike the smooth channel case, flow separation did not occur in the 

turn at the tip of divider wall due to the presence of ribs on both the top and bottom walls. 

Downstream of the turn exit the large separation also did not exist due to the fact that the 

centrifugal effect was reduced resulted from the deceleration flow through the turn and 

the presence of the ribs in the second passage. For the inlet at larger cross section (Fig. 

6.4(b)), flow patterns were similar. The flow was accelerated through though the turn. 

Unlike the inlet at smaller case two separation zones were observed in the both of the 

outer corners in the turn. Fig. 6.5 & 6.6 show streamwise velocity and turbulence 

intensity in the planes midway between the inner (divider) and outer walls with 90° ribs 

at Re = 31,800 for inlet at smaller cross section and for inlet at larger cross section in the 

first passage. The reversal flow occurred immediately downstream and upstream of the 

ribs. 
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Fig. 6.4 Streamwise velocity vector midway between the top and bottom walls  

with 90° ribs at Re = 31,800 
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As the flow near the top and bottom wall passes over the ribs, the flow separates from 

the walls. This separation results in relatively low heat transfer, due to a relatively hot 

cell being trapped in the recirculation. However, when the flow reattaches to the wall 

between the ribs, this is an area of relatively high heat transfer. This pattern of separation 

and recirculation continues through the channel with a pattern of repeating ribs. In fact, 

the existence of the rib reduces the cross sectional area of the channel, which leads to 

higher pressure region before the rib and the main flow is accelerated when it passes rib 

midsection. The ribs also increase turbulent mixing. The relatively hot flow near the wall 

is continuously mixing with the relatively cooler core flow near the center of the channel. 

This mixing also serves to increase the heat transfer from the channel. As the overall 

characteristics of the Reynolds stress in the ribbed channel, the ribs strongly intensify the 

turbulence level on both the top and bottom walls. The turbulence intensities were as 

high as 25% immediately downstream of the ribs on the top and the bottom wall, and 

diminished gradually toward the center of the channel (Fig. 6.5(b)). High level of 

turbulence intensity (32%) was observed near the end wall due to flow impingements. 

Fig 6.6(b) shows the streamwise velocity and turbulence intensity at the first passage in 

the planes midway between the inner and outer wall for inlet at larger cross section. 

Since the velocity magnitude and rib height-to-hydraulic diameter ratio (e/ Dh,large) were 

smaller than those of the smaller inlet case, the effects of the ribs were less. The 

turbulence intensities were as high as 21% immediately downstream of the ribs on the 

top and the bottom wall, and near the end wall, turbulence intensity was 25%. The flow 

is seen to impinge on the end wall and one large strong secondary flow is created near 
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the bottom wall. However, near the top wall a secondary flow can not be formed since 

the flow merges on the corner of the top wall and there is not enough room to form the 

vortex. In general, when the flow impinges on the end wall double vortex is formed due 

to symmetry of the wall in square or rectangular channel.  

            Fig. 6.7 & 6.8 show streamwise velocity and turbulence intensity in the planes 

midway between the inner (divider) and outer walls with 90° ribs at Re = 31,800 for 

inlet at smaller cross section and for inlet at larger cross section in the second passage. 

For the inlet at smaller cross section, after the turn, there were no flow reattachments 

between ribs 10 and 11 due to a large flow separation on the rib 9 (Fig. 6.7(a)). The main 

flow was shifted toward the top wall and then a strong flow impingement occurred on 

the top wall. The flow reattachments were observed after rib 12 when the turn effects 

were decreased. Near the bottom wall, turbulence intensity also was low about 8% - 10%. 

However, near the top wall high levels of turbulence intensity (24% - 32%) were 

observed due to strong flow impingements (Fig. 6.7(b)). For the inlet at larger cross 

section, after the turn, the strong flow impingement occurred on the bottom walls unlike 

the smaller inlet case. As the flow goes through the turn, the flow is accelerated by 

decreasing the cross section area. Therefore, a larger momentum of the flow from the 

larger inlet makes the strong flow impingements on the walls and increases turbulence 

intensities in the second passage of the channel. In the second passage, the levels of 

turbulence intensity were about 43% - 54% near the bottom walls and 36% - 43% near 

the bottom walls.  
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Fig. 6.5 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 90° ribs in the first passage for inlet at smaller cross section  
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Fig. 6.6 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 90° ribs in the first passage for inlet at larger cross section  
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Fig. 6.7 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 90° ribs in the second passage for inlet at smaller cross section  
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Fig. 6.8 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 90° ribs in the second passage for inlet at larger cross section  
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 6.4 Secondary Flow Development 

 

           Fig. 6.9 & 10 show the secondary flow developments at selected streamwise 

locations. In the first passage, small secondary corner vortices were generated as a result 

of the Reynolds stress anisotropy. The magnitude of these vortices, which was very 

small, cannot be seen clearly. As shown in Fig. 6.9(a), 90° parallel ribbed channel 

produced periodically up and down flow movement in the first passage and 

simultaneously generated the small vortices near the corners on the top and bottom walls. 

These small vortices were generated by the anisotropic of the turbulent Reynolds stress. 

At the rib location (a), the vertical velocity component leaving from the rib was clearly 

seen. Near the inner and outer walls, the existence of the rib induced the flow going from 

the rib-roughened wall to the center of the channel. In the plane between the ribs (b), the 

flows directing to the top and bottom walls were seen. These flows composed the 

reattachment of the separated flow occurring around the midpoint between ribs. The 

flow then changed its direction to the inner and outer walls, although the flow directing 

to opposite direction was also seen in the region very close to rib-roughened wall. 

Higher heat transfer enhancements are expected near the inner and outer wall due to 

more flow impingements. The flow pattern in the location (c) was completely different 

with location (a) and (b) due to the turn effect. The flows were faster and directed 

slightly to the inner wall, and the upward vertical velocity component was strong near 

the inner wall. In the 90° turn (d), a strong vortex was generated near the top of the rib 

on the bottom wall, and smaller and slightly distorted one occurred the near the top of rib 
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Fig. 6.9(a) Secondary flow developments with 90° ribs in the first passage for inlet at 

smaller cross section
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Fig. 6.9(b) Secondary flow developments with 90° ribs in the second passage for inlet at 

smaller cross section 
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Fig. 6.10(a) Secondary flow developments with 90° ribs in the first passage for inlet at 

larger cross section 
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Fig. 6.10(b) Secondary flow developments with 90° ribs in the second passage for inlet 

at larger cross section 
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on the top wall due to the combined effect of centrifugal induced vortex in the turn and 

rib induced vortex in the upstream. However, these vortices maintained their counter 

rotating directions. The strong flow impingements were observed near the end wall, and 

high heat transfer enhancements were expected at this location. The secondary flow 

pattern in the second passage was more complicated due to the combined effect of the 

turn and ribs (Fig. 6.9(b)). In locations (a), (b) and (c), one large counterclockwise 

rotating vortex occupied almost entire cross area and smaller clockwise rotating vortex 

was seen near outer and bottom wall. The velocity magnitudes were not high compared 

to those in the first passage because the flow was decelerated through the turn. In the 

second passage, the bulk mean velocity was decreased from 13.61 m/s to 9.08 m/s. The 

rib height-to-hydraulic diameter ratio (e/ Dh,large) was also decreased since the same ribs 

were installed but channel height was increased. Therefore, the effect of the ribs on the 

flow of channel was mush less and the secondary flow induced by the turn was dominant 

in the second passage. The flow impingements mostly occurred near the inner and outer 

wall. In the location (d), the small vortex was diminished and one large 

counterclockwise rotating vortex occupied entire cross area. The most flow 

impingements were located near the inner wall.  

Fig. 6.10 shows the secondary flow developments at selected streamwise 

locations for the inlet at larger cross section. In the first passage, the flow patterns were 

similar with smaller inlet case (Fig. 6.10(a)) and location (a), (b) and (c)). In the 90° turn 

(d), the strong vortex pair appeared due to the centrifugal force action. These vortices 

were not distorted unlike smaller inlet case. The upper vortex was a little bit bigger than 
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down vortex since as cross section area was decreased with upper area, upper flow 

velocity was slightly faster than down flow. The secondary flow in the second passage 

was much strong due to the acceleration of the flow. In the second passage at location (a), 

two large counter-rotating vortices were generated and four small corner vortices were 

observed (Fig. 6.10(b)). The velocity magnitudes were very high.  Due to the ribs, the 

counter-rotating vortices were severely distorted in their sizes, strengths and locations 

(location (b) and (c)). In the location (d), two large counter-rotating vortices were almost 

diminished and only weak vortex occupied half cross section near the inner wall. Unlike 

smaller inlet case, the turning effect was short and the effects of the ribs were dominant 

after secondary flow disappeared.  

 

6.5 Heat Transfer Distribution 

 

Fig. 6.11 and 6.12 show the detailed Nusselt number ratio distributions on the 

bottom wall with 90° ribs at Re = 31,800. Comparisons were made between the 

calculations and the experimental data of Lee et al (2007). The entrance and exit regions 

were cut off to focus on the turn effect. The 90° ribs gave substantially higher heat 

transfer compared with smooth wall case. Significant effects of the 90° ribs were evident 

in the first passage. Heat transfer distributions between ribs appeared periodic because 

the ribs periodically interrupted the boundary layers on the bottom wall. Therefore, the 

Nusselt number ratios were larger than 1.0 everywhere along the straight sections of the 

channel. The streamwise Nusselt number ratio variations between consecutive ribs in the 
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first passage were larger than the spanwise variations. In the 90° rib, the spanwise 

variations of the Nusselt number ratios are generally small since the 90° ribs can not 

produce secondary flows like the angled ribs do. The heat transfer enhancement was 

high in the middle region between two ribs due to the flow reattachments and thinner 

boundary layer and very low immediately before and after the ribs due to the flow 

recirculation.  In the turn region, heat transfer enhancements were very high due to the 

combination of the sharp 180° turn and the 90° rib. Near the end wall heat transfer was 

high due to flow impingements and immediately downstream of the 90° rib the highest 

heat transfer was observed due to the combination of strong flow reattachments and flow 

impingements on the end wall. Unlike smooth wall case, near outer wall in the turn 

region heat transfer enhancement was mush less because the presence of the 90° rib and 

the flow deceleration reduced the effect of centrifugal forces on the secondary flow, and 

caused lesser impingement on the outer wall. In the second passage the periodic heat 

transfer patterns were not seen due to the turning effect. Downstream of the turn, heat 

transfer enhancements were higher near the inner and outer walls, and were lower in the 

middle of the bottom due to secondary flow induced by the turn. Every Nusselt number 

ratio was lower than one in the first passage because bulk mean velocity was relatively 

lower. 

For the larger inlet case, the highest heat transfer enhancement was observed near 

outer wall after the turn unlike at the turn for smaller inlet case. Through the cross 

section that was decreased, the flow was accelerated and the main flow velocity radially  
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Fig. 6.11 Detailed Nusselt number ratio distributions of trapezoidal channel with 

90° ribs for smaller inlet case at Re = 31,800 
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Fig. 6.12 Detailed Nusselt number ratio distributions of trapezoidal channel with 

90° ribs for larger inlet case at Re = 31,800 
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Fig. 6.13 Regional average measured and calculated Nusselt number ratio for trapezoidal 

channel with 90° ribs at Re = 31,800 

 

increased. Therefore, most strong flow impingements occurred near the outer wall just 

after the turn region rather at the turn. Heat transfer enhancements were higher near the 

inner and outer walls, and were lower in the middle of the bottom due to secondary flow 

induced by the turn like smaller inlet case. 

The regionally averaged Nusselt number ratios on the bottom wall with 90° ribs 

at Re = 31,800 are shown in Fig. 6.13. For the smaller inlet case, the Nusselt number 

ratio gradually decreased before the turn in the first passage. In the turn, Nusselt number 

ratio was highest. Downstream of the turn in the second passage Nusselt number ratio 
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abruptly decreased and then gradually increased. The values of Nusselt number ratio 

were even lower than those in the first passage due to relatively lower mean velocity. 

For the larger inlet case, as flow approached the turn with relatively lower values of 

Nusselt number ratio, Nusselt number ratio gradually decreased. Nusselt number ratio 

was highest just after the turn, and then gradually decreased in the second passage.  

The predicted Nusselt number ratio distributions by the Reynolds stress model 

(RSM) were closed to the experimental data of Lee et al (2007). It can show well flow 

field and heat transfer distribution. However, when the comparison between the 

numerical prediction and measured regional average were considered, the prediction can 

not agree well with the experimental data. The maximum relative error was 24.5% and 

the average relative error was 17.7% for the smaller inlet case. The relative error is 

defined by normalizing the difference between the experimental and numerical values 

with respect to the experimental value. The maximum relative error was 33.3% and the 

average relative error was 17.8% for the larger inlet case. 
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CHAPTER VII 

FLOW AND HEAT TRANSFER IN A TWO-PASS TRAPEZOIDAL CHANNEL 

WITH (+) 60° RIBS ON TWO OPPOSITE WALLS 

 

           In chapter VII, an experimental study was performed to measure the regionally 

averaged heat (mass) transfer in a two-pass trapezoidal channel with (+) 60° ribs on two 

opposite walls by Naphthalene sublimation technique and an numerical study also  was 

performed using the Reynolds stress model (RSM) with enhanced wall treatment in 

FLUENT. 

 

7.1 Description of Problem 

 

            Fig. 7.1 & 7.2 show the experimental test section and the numerical grids for the 

two-pass trapezoidal channel with (+) 60° ribs on two opposite walls. The simulated 

geometry was the same as the experimental geometry. The length of the duct was 61 cm. 

Only the bottom wall was coated with naphthalene, which is analogous to the one-side 

heating condition of heat transfer experiment. The length of each straight section with 

and without mass transfer active surfaces was 30.5 cm, while the width of each section 

was 3.81 cm and the divider wall thickness was 1.91 cm. The length from the divider 

wall tip to the end wall in the turn was 3.81 cm. For the numerical study, only bottom 

wall except the ribs was heated to a constant temperature since the mass transfer 

experiment can simulate uniform wall temperature boundary condition. The included 
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angle of trapezoidal cross section between the top wall and the bottom wall was 21.8°. 

The heights of the outer and inner vertical wall in small trapezoidal channel were 3.81 

cm and 5.33 cm, and the height of the inner and outer vertical walls in large trapezoidal 

channel were 6.10 cm and 7.62 cm, respectively. The hydraulic diameters of the small 

trapezoidal cross section (Dh,small) is 4.09 cm and the hydraulic diameter of the large 

trapezoidal crosses section (Dh,large) is 4.83 cm.  For the same air mass flow rate, the 

Reynolds number was based on the hydraulic diameter of the cross section at the turn 

clearance (Dh,turn = 4.57 cm) because the channel height  in the trapezoidal channel is 

varied in the turn region. The top and bottom walls were roughened by thirty equally-

spaced (+) 60° angled ribs and one 90° rib in the turn region. Therefore, the total of sixty  

(+) 60° angled ribs and two 90° ribs was attached on the top and bottom walls in parallel 

sequence so that they were directly opposite each other. The ribs in the first passage are 

angled away from the divider wall and the ribs in the second passage are angled towards 

the divider wall. These ribs were 3.2 mm by 3.2 mm square stripes of balsa wood and 

rib-to-rib spacing (P) was 3.81 cm. Thus, the rib height-to-hydraulic diameter ratio (e/ 

Dh,turn) was 0.07, and the rib pitch-to-rib height ratio (P/e) was 12. The actual rib height-

to-hydraulic diameter ratio (e/ Dh,small ) in the smaller cross section was 0.078 and the 

actual rib height-to-hydraulic diameter ratio (e/ Dh,large) in the larger cross section was 

0.066. The regional average mass transfer experiment was conducted with Re = 9,400, 

16,800, 31,800 and 57,200 but the Reynolds number was fixed at 31,800 for the 

numerical study.  
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Fig. 7.1 Geometry for trapezoidal channel with (+) 60° ribs 
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Fig. 7.2 Numerical grid for trapezoidal channel with (+) 60° ribs  
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Experiments were performed for the air entering the trapezoidal channel through 

the straight section with the smaller cross section as well as entering through the straight 

section with the larger cross section. Therefore, there were two inlet velocity conditions. 

The velocities in channel inlet in smaller cross section and in larger cross section were 

13.61 m/s and 9.08 m/s, respectively. 

 

7.2 Grid Independence Study 

 

            Fig. 7.2 gives the numerical grid generated using Gambit for this simulation. The 

grid independent study was made by performing the simulations for three different cross 

sectional grids of ,6406232 ×× 6407242 ×× and 6408252 ×× , and one streamwise 

grid with mesh refined in the near wall regions (Fig. 7.2). For the smaller 

inlet case (Fig. 7.3(a)), a comparison between 

7407242 ××

6406232 ××  and grid 

points showed 7.8% maximum changes in the Nusselt number ratio. The maximum 

difference in Nusselt number ratio was less than 1.9% between and 

 grid points. For the larger inlet case (Fig. 7.3(b)), a comparison between 

 and grid points showed 5.8% maximum changes in the 

Nusselt number ratio. The maximum difference in Nusselt number ratio was less than 

1.7% between and 

6407242 ××

6407242 ××

6408252 ××

6406232 ×× 6407242 ××

6407242 ×× 6408252 ××  grid points. Further increase of the 

number of grid points in streamwise direction of the channel produced only minor 

changes of the Nusselt number ratios for the both cases. Therefore, it was determined 

that grid independence was achieved with 6407242 ×× grid points and all results were  
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Fig. 7.3 Grid independent study for trapezoidal channel with (+) 60° ribs 
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 based on the 6407242 ×× grid points, which resulted in 1,935,360 grid points for both 

the smaller inlet and larger inlet cases. The y+ values were less than unity in all test runs 

of grid independent study. 

 

7.3 Velocity Fields 

 

Unlike 90° ribs, angled ribs induce the secondary flow. As the flow approaches 

the ribs, the angled ribs guide the near wall flow to move parallel to the rib from inner 

(divider) wall to the outer wall. The secondary flow follows the ribs until it hits on the 

outer wall. After hitting on the outer wall, the secondary flow induced by the rib returns 

back to the inner wall and a vortex is created. This behavior is similar on the top and 

bottom wall, therefore, two counter-rotating vortices form in the trapezoidal channel (Fig. 

7.4). Fig. 7.5 shows the velocity vector distributions at the mid-plane between the top 

and bottom walls with (+) 60° ribs at Re = 31,800 for inlet at smaller cross section and 

for inlet at larger cross section. For the inlet at the smaller cross section (Fig. 7.5(a)), the 

velocity profiles were flat before the turn. As the flow approached the turn region, flow 

accelerations occurred near the divider wall and a flow deceleration occurred near the 

outer wall due to the favorable and adverse pressure gradients along the divider and 

outer wall, respectively. Flow deceleration took place at the outer wall and was followed 

by flow separation, which results in a zone of recirculating flow in the upstream corner 

in the first passage. There were no separation bubbles near the divider wall tip in the turn 

region. However, a large bifurcating zone existed near the divider wall in the second  
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Fig. 7.4 Secondary flow vortices induced by (+) 60° rib 
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Fig. 7.5 Streamwise velocity vector midway between the top and bottom walls  

with (+) 60° ribs 
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passage. For the inlet at the larger cross section (Fig. 7.5(b)), the flow had a similar 

pattern but bifurcating zone was smaller. Because the flow was accelerated by 

decreasing cross area through the turn, the streamwise velocity was much faster than the 

vertical velocity. In both case, there were weak flow impingements onto the end wall 

due to the secondary flow induced by angled ribs because the secondary flow pushed the 

flow in the core toward the divider wall. However, still high momentum flow after the 

turn impinged onto the outer wall in the second passage.  

Figures 7.6, 7.7, 7.8 and 7.9 show streamwise velocity and turbulence intensity in 

the planes midway between the inner (divider) and outer walls with (+) 60° ribs at Re = 

31,800 for inlet at smaller cross section and for inlet at larger cross section. As the flow 

near the top and bottom wall passes over the ribs, the flow separates from the walls. This 

separation results in relatively low heat transfer, due to a relatively hot cell being trapped 

in the recirculation. However, when the flow reattaches to the wall between the ribs, this 

is an area of relatively high heat transfer. This pattern of separation and recirculation 

continues through the channel with a pattern of repeating (+) 60° ribs. The reversal flow 

occurred immediately downstream of the ribs on both the top and bottom walls. 

However, immediately upstream of the ribs there were no separations, such as that 

generally found in a 90° ribbed channel case. In the (+) 60° ribs case, the flows near the 

inner and outer walls were different from each other due to the secondary flow induced 

by the angled ribs. For the smaller inlet case (Fig. 7.6(a)) near the inner wall the flows 

beyond ribs and directing to rib-roughened wall to reattach were intense and near the 

outer wall these flows become weaker in the first passage. In the turn, one large vortex 
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occurred near the bottom, and a small vortex was observed near the top wall. It was also 

observed that the flow over the ribs near the top wall was faster than the one near the 

bottom wall. The reason was that the rib induced secondary flow near the top wall was 

much stronger than the one near the bottom wall. Since the top and bottom walls are at 

an angle of 21.8° with respect to each other, the flows along the ribs moved fast down 

the slop due to the acceleration. Fig. 7.6(b) shows the turbulence intensity distributions 

in the first passage for the smaller inlet case. The turbulence intensities were as high as 

34% immediately downstream of the ribs on the top wall and 29% immediately 

downstream of the ribs on the bottom wall, and diminished gradually toward the center 

of the channel around 12%. The highest turbulence intensity was 42% immediately 

downstream of the rib on the top wall just before the turn. Near the end wall the 

turbulence intensity was relatively low about 32% due to less flow impingement. Due to 

the same reason mentioned above, the higher turbulence intensity occurred near the top 

wall. Fig 7.7 shows the streamwise velocity and turbulence intensity in the second 

passage in the planes midway between the inner and outer wall for inlet at smaller cross 

section. Through the turn, the flow was decelerated due to increase of the cross section 

area. Since the velocity magnitude and rib height-to-hydraulic diameter ratio (e/ Dh,large) 

were smaller than those in the first passage, the effects of the angled ribs were much less. 

After the turn, there no flow reattachments between ribs due to a large flow separation 

on the rib just after the turn (Fig. 7.7(a)). The main flow was shifted toward the top wall 

and then a strong flow impingement occurred on the top wall. The highest turbulence 

intensity was 39% on the top wall in and just after the turn. 



 109

 

 

Fig. 7.6 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (+) 60° ribs in the first passage for inlet at smaller cross section  
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Fig. 7.7 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (+) 60° ribs in the second passage for inlet at smaller cross section 
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However, the turbulence intensity had low values in the second passage. The turbulence 

intensities were as high as 30% immediately downstream of the ribs on the top wall and 

19% immediately downstream of the ribs on the bottom wall.  

Figure 7.8 and 7.9 show streamwise velocity and turbulence intensity for the 

larger inlet case. Since the velocity magnitude and rib height-to-hydraulic diameter ratio 

(e/ Dh,large) were smaller than those of the smaller inlet case, the effects of the ribs were 

much less. In the turn, two small vortices occurred near the bottom and the top wall due 

to weak impingements (Fig. 7.8 (a)). Unlike the smaller inlet case, the flow over the ribs 

near the bottom wall was a little faster than the one near the top wall. The reason was 

that the rib induced secondary flow near the bottom wall was slightly stronger than the 

one near the top wall. The turbulence intensities were as high as 20% immediately 

downstream of the ribs on the bottom wall and 18% immediately downstream of the ribs 

on the top wall, and diminished gradually toward the center of the channel around 6% 

(Fig. 7.8(b)). In the second passage (Fig. 7.9), after the turn, the strong flow 

impingement occurred on the bottom walls unlike the smaller inlet case (Fig. 7.9 (a)). As 

the flow goes through the turn, the flow is accelerated by decreasing the cross section 

area. Therefore, a larger momentum of the flow from the larger inlet makes the strong 

flow impingements on the walls and increases turbulence intensities in the second 

passage of the channel. The level of turbulence intensity was about 40% near the bottom 

wall. Near the top wall 40% turbulence intensity only on the two ribs just after the turn 

was observed and farther downstream turbulence intensity level decreased to 20% (Fig. 

7.9 (b)). 
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Fig. 7.8 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (+) 60° ribs in the first passage for inlet at larger cross section  
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Fig. 7.9 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (+) 60° ribs in the second passage for inlet at larger cross section  
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7.4 Secondary Flow Development 

 

            To better understand the complex three-dimensional flow fields in the trapezoidal 

channel with (+) 60° ribs, the secondary flow was presented here. Fig. 7.11, 7.12, 7.13 

and 7.14 show the secondary flow vectors at selected planes as denoted in Fig. 7.10. The 

secondary flow vectors of Fig. 7.11 and 7.13 were viewed from the inlet, while the 

secondary flow vectors of Fig. 7.12 and 7.14 were viewed from the outlet. As mentioned 

earlier, angled ribs induced the fast secondary flow that moved parallel to the ribs from 

the inner wall to outer wall. Because the ribs are oriented at a (+) 60° angle, the flow 

adjacent to the inner wall will reach the ribs first and move along the ribbed wall toward 

the outer wall. It then returns back to the inner wall along the centerline of the channel. 

The secondary flow near the inner wall was much stronger than the one near the outer 

wall. For the smaller inlet case (Fig. 7.11 & 12), one can clearly see that the ribs induced 

two counter-rotating vortices that impinge on the inner wall in the first passage (Fig. 

7.11). One can also notice that along the streamwise direction, the size of two vortices 

oscillated from the largest in the middle of each inter-rib distance to the smallest on the 

ribs. From the Fig. 7.4, near the inlet two vortices were initially almost same in the size 

and strength. However, the upper secondary flow near the top wall became stronger than 

the lower secondary flow near the bottom and had a bigger size along the streamwise 

direction. The reason was that the magnitude of the vertical component velocity of the 

upper secondary flow was bigger than the one of the lower secondary flow due to the 

geometry of the cross section. 
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Fig. 7.10 Secondary flow locations for trapezoidal channel with (+) 60° ribs 
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Fig. 7.11 Secondary flow developments of trapezoidal channel with (+) 60° ribs 

in the first passage for inlet at smaller cross section 
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Fig. 7.12 Secondary flow developments of trapezoidal channel with (+) 60° ribs 

in the second passage for inlet at smaller cross section 
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Fig. 7.13 Secondary flow developments of trapezoidal channel with (+) 60° ribs 

in the first passage for inlet at larger cross section 
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Fig. 7.14 Secondary flow developments of trapezoidal channel with (+) 60° ribs 

in the second passage for inlet at larger cross section 
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On the rib 7 (Fig. 7.11(6)), the secondary flow became strong flow motion from the 

outer to the inner wall due to the turn effects. Upon entering the turn, the curvature 

induced secondary flow which pushed flow from the inner to outer wall overcame the 

secondary flow induced by the ribs, and the direction of the secondary flow was reversed 

and became from the inner to outer wall (Fig. 7.11(7)). Only one vortex was observed on 

the bottom rib and was distorted by the combined effects of centrifugal induced vortex 

and rib-induced vortex upstream. In the second passage (Fig. 7.12), the rib induced fast 

flow was reversed in direction due to the opposite rib angle compared to the first passage. 

One large counterclockwise rotating vortex occupied almost entire cross area and 

smaller clockwise rotating vortex was seen near outer and bottom wall (Fig. 7.12(9)). 

The velocity magnitudes were not high compared to those in the first passage because 

the flow was decelerated through the turn. In the second passage, the bulk mean velocity 

was decreased from 13.61 m/s to 9.08 m/s. The rib height-to-hydraulic diameter ratio (e/ 

Dh,large) was also decreased since the same ribs were installed but channel height was 

increased. Therefore, the effect of the ribs on the flow of channel was mush less and the 

secondary flow induced by the turn was dominant in the second passage. Since the 

direction of the vortex circulation near the top wall coincided with that of the secondary 

flow formed by the turn, while that created near the bottom wall gave the opposite 

circulation to the secondary flow induced by the turn, the magnitude of flow velocity 

near the top wall was bigger than that near the bottom wall.  Therefore, strong 

impingements were observed on the top wall.  
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            Fig. 7.13 and 7.14 show secondary flow developments for the larger inlet case. 

Unlike the smaller inlet case, in the first passage (Fig. 7.13) the two vortices induced by 

the ribs were almost symmetric due to the enough space to maintain rotating shapes, 

while the two vortices were squashed in the vertical direction due to the tight spacing 

between the top and bottom walls in the smaller inlet case. It seemed that two vortices 

were less interacted with each other. In the turn (Fig. 7.14(7)), a small vortex was 

observed on the bottom rib and was less strong due to a relatively low velocity from the 

large cross section. Downward flow from the top wall was strong along the inner (tip of 

the divider) wall. In the second passage (Fig. 7.14), the secondary flow induced by the 

turn was dominant in the second passage due to the flow acceleration through the 

decrease of cross sectional area. Therefore, the downward flow along the outer wall was 

much strong and a large counterclockwise rotating vortex was created. In location (9) 

between rib 9 and rib 10, one large vortex occupied over half of the channel and a small 

one observed near the top wall (Fig. 7.14 (9)). However, the small vortex disappeared at 

location 11. Since the direction of the vortex circulation near the bottom wall coincided 

with that of the secondary flow formed by the turn, while that created near the top wall 

gave the opposite circulation to the secondary flow induced by the turn, the magnitude of 

flow velocity near the top wall was lower than that near the bottom wall.  Therefore, the 

small vortex near the top wall could not overcome the strong secondary flow by the turn 

and disappeared. Strong impingements were observed on the bottom and near outer wall.  
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7.5 Heat (Mass) Transfer Distribution 

 

The experiments were conducted to measure the regional average heat (mass) 

transfer in a two-pass trapezoidal channel with (+) 60° ribs on two opposite walls by 

naphthalene sublimation technique, and the analogy of heat and mass transfer was 

applied to convert the mass transfer coefficients to heat transfer coefficients. The 

regional average Sherwood number ratios were determined for four Reynolds numbers 

of 9,400, 16,800, 31,800 and 57,200. Also the numerical study was performed to 

compare the experimental results and the numerical predictions at Re = 31,800.  

Fig. 7.15 shows calculated Nusselt number ratio distributions by the RSM. 

Significant effects of the 60° ribs were evident in the first passage. The 60° ribs gave 

substantially higher heat transfer compared with 90° ribs since the vigorous mixing 

between the main flow and secondary flows enhances the heat transfer on the ribbed 

wall more than 90° ribs. The 60° angled ribs generated secondary flows parallel to the 

rib axes over the top and bottom walls between two adjacent ribs from the inner wall 

toward the outer wall. It hit the outer wall, then, circulated across the inner wall. The two 

vortices were induced. These circulated flows across the inner wall pushed down the 

separated flow from a rib near the inner wall, shortening the reattachment length with 

consequent high heat transfer due to the large angle of reattachment. The secondary flow 

on the wall between ribs was strong enough to sweep the separated flow toward the outer 

wall, preventing flow reattachment near the outer wall.  The secondary flow moved 

away from the divider wall towards the outer wall in the first passage. Nusselt number 
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ratios decreased from the inner wall to outer wall in the spanwise direction for both cases. 

Heat transfer distributions between ribs appeared periodic because the ribs periodically 

interrupted the boundary layers on the bottom wall. For the smaller inlet case (Fig. 7.15 

(a)), in the turn region, Nusselt number ratios were very high due to the combination of 

the 180° sharp turn and the 90° rib. The 90° rib in the turn region produced high heat 

transfer enhancement immediately downstream of the rib. The large vortex impinged on 

the end wall resulting in the high heat transfer. Due to the presence of the rib and 

deceleration of the flow, the centrifugal effect was reduced. The contracted but 

strengthened vortex in the turn region pressed down the separated flow by the rib, 

causing strong reattachment immediate downstream of the rib in the turn. Unlike smooth 

wall case, near outer wall in the turn region heat transfer enhancement was mush less 

because the presence of the 90° rib and the flow deceleration reduced the effect of 

centrifugal forces, and caused lesser impingement on the outer wall. Unlike in the first 

passage, the enhancement of heat transfer by the 60° angled ribs was not evident after 

the turn but by the secondary flow induced by the turn in the second passage. Just after 

the turn, heat transfer enhancements were higher near the inner and outer walls, and 

were lower in the middle of the bottom due to secondary flow induced by the turn. As 

the small vortex near the outer wall disappeared, heat transfer enhancements were 

intense near the inner wall. Further downstream heat transfer enhancements were 

slightly increasing near the outer wall and were decreasing near the inner wall since the 

turning effects were reduced and the secondary flow induced by the bottom ribs seemed 

to overcome the secondary flow by the turn. 
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Fig. 7.15 Detailed Nusselt number ratio distributions of trapezoidal channel with 

(+) 60° ribs at Re = 31,800 by RSM 
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Every Nusselt number ratio was lower than that in the first passage because bulk mean 

velocity was relatively lower. For the larger inlet case (Fig. 7.15 (b)), heat transfer 

distribution between the ribs in the first passage was periodic, and the Nusselt number 

ratios were higher near the inner wall and decreased toward the outer wall in the 

spanwise direction. In the turn region, the heat transfer enhancements near the tip of 

divider wall were higher than those near the end wall downstream of the 90° rib due to 

strong downward flow impingements along the tip of the divider wall. In the second 

passage, just after the turn the highest heat transfer was occurred due to very strong flow 

impingement with high magnitude of the flow velocity that was accelerated through the 

turn. The Nusselt number ratio distributions were reverse in the spanwise direction. The 

Nusselt number ratios near the outer wall were higher than those near the inner wall. As 

the effect of the turn on the flow field vanished gradually, heat transfer enhancement 

decreased gradually. 

Fig. 7.16 shows the streamwise distributions of the regional average Sherwood 

number ratios ( 0/Sh Sh ) along the trapezoidal channel for air flow entering the smaller 

straight section and those for air flow entering the larger straight section. It is clear that 

the greatest mass transfer enhancement occurred at the lowest Reynolds number of 9,400. 

As the Reynolds number increased, the mass transfer coefficients increased, but the 

Sherwood number ratios decreased, as the Dittus-Boelter correlation absorbed the effect 

of the Reynolds number. The general trends of Sherwood number ratios were similar for 

all four Reynolds numbers. For the smaller inlet case, Sherwood number ratios gradually 

decreased before the turn in the first passage. 
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Fig. 7.16 Segmental average mass transfer distributions along the trapezoidal channel 

with (+) 60° ribs 

 

 

The 0/Sh Sh  value was still low on wall segment no. 8. Usually in the turn region, mass 

transfer enhancement is high since the flow impinges on the end wall and is deflected 

onto the bottom wall near end wall. However, the secondary flow induced by the ribs 

interrupted the main flow and the less impingement occurred on the end wall. Moreover, 

the secondary flow was distorted by the turn effects and it did not impinge on the bottom 
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wall in the turn. On wall segment no.9 in the turn in the second passage, the 0/Sh Sh  

value was highest due to the secondary flow impingements induced by the turn. In the 

second passage, after the turn, mass transfer enhancement abruptly decreased due to the 

lower magnitude of the flow velocity. After that, the 0/Sh Sh  value gradually decreased. 

For the larger inlet case, unlike the smaller inlet case, Sherwood number ratios gradually 

increased before the turn in the first passage. The reason was that the secondary flow 

induced by the ribs was growing near the bottom along the streamwise direction of the 

channel and the flow was already fully developed. It is clear that the mass transfer was 

the highest downstream of the turn, as the flow that left the turn with very high 

turbulence entered the smaller exit section. The highest mass transfer enhancement 

occurred on wall segment no. 10. After that, Sherwood number ratios gradually 

decreased since the turning effects were diminished. 

The Reynolds stress model (RSM) showed well flow field and heat transfer 

distribution. However, when the comparison between the numerical prediction and 

measured regional average were considered, the prediction can not agree well with the 

experimental data (Fig.7.3). The RSM underpredicted heat (mass) transfer enhancements 

for the both cases. The maximum relative error was 24.9% and the average relative error 

was 18.9% for the smaller inlet case. The relative error is defined by normalizing the 

difference between the experimental and numerical values with respect to the 

experimental value. The maximum relative error was 26.9% and the average relative 

error was 20.4% for the larger inlet case. 
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CHAPTER VIII 

FLOW AND HEAT TRANSFER IN A TWO-PASS TRAPEZOIDAL CHANNEL 

WITH (–) 60º RIBS ON TWO OPPOSITE WALLS 

 

           In chapter VIII, an experimental study was performed to measure the regionally 

averaged heat (mass) transfer in a two-pass trapezoidal channel with (–) 60º ribs on two 

opposite walls by Naphthalene sublimation technique and an numerical study also  was 

performed using the Reynolds stress model (RSM) with enhanced wall treatment in 

FLUENT. 

 

8.1 Description of Problem 

 

            Fig. 8.1 & 8.2 show the experimental test section and the numerical grids for the 

two-pass trapezoidal channel with (–) 60º ribs on two opposite walls. The simulated 

geometry was the same as the experimental geometry. Fig 8.1 shows the rib orientation 

is reversed to that of (+) 60° rib case in the chapter VII. For the numerical study, only 

bottom wall except the ribs was heated to a constant temperature since the mass transfer 

experiment can simulate uniform wall temperature boundary condition. The top and 

bottom walls were roughened by thirty equally-spaced (–) 60º angled ribs and one 90° 

rib in the turn region. Therefore, the total of sixty (–) 60º angled ribs and two 90° rib was  



 129

 

 

Fig. 8.1 Geometry for trapezoidal channel with (–) 60º ribs 
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Fig. 8.2 Numerical grid for trapezoidal channel with (–) 60º ribs  
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attached on the top and bottom walls in parallel sequence so that they were directly 

opposite each other. The ribs in the first passage were angled towards the divider wall 

and the ribs in the second passage were angled away from the divider wall. These ribs 

were 3.2 mm by 3.2 mm square stripes of balsa wood and rib-to-rib spacing (P) was 3.81 

cm. Thus, the rib height-to-hydraulic diameter ratio (e/ Dh,turn) was 0.07, and the rib 

pitch-to-rib height ratio (P/e) was 12. The regional average mass transfer experiment was 

conducted with Re = 9,400, 16,800, 31,800 and 57,200 but the Reynolds number was 

fixed at 31,800 for the numerical study.  

 

8.2 Grid Independence Study 

 

Fig. 8.2 gives the numerical grid generated using Gambit for this simulation. The 

grid independent study was made by performing the simulations for three different cross 

sectional grids of ,6206232 ×× 6207242 ×× and 6208252 ×× , and one streamwise 

grid with mesh refined in the near wall regions (Fig. 8.2). For the smaller 

inlet case (Fig. 8.3(a)), a comparison between 

7207242 ××

6206232 ××  and grid 

points showed 6.5% maximum changes in the Nusselt number ratio. The maximum 

difference in Nusselt number ratio was less than 2.5% between  and 

grid points. For the larger inlet case (Fig. 8.3(b)), a comparison between 

 and grid points showed 4.6% maximum changes in the 

Nusselt number ratio. The maximum difference in Nusselt number ratio was less than 

1.5% between and 

6207242 ××

6207242 ××

6208252 ××

6206232 ×× 6207242 ××

6207242 ×× 6208252 ××  grid points.  



 132

 

 

Fig. 8.3 Grid independent study for trapezoidal channel with (–) 60º ribs 
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 Further increase of the number of grid points in streamwise direction of the channel 

produced only minor changes of the Nusselt number ratios for the both cases. Therefore, 

it was determined that grid independence was achieved with 6207242 ×× grid points and 

all results were based on the 6207242 ××  grid points, which resulted in 1,874,880 grid 

points for both the smaller inlet and larger inlet cases. The y+ values were less than unity 

in all test runs of grid independent study. 

 

8.3 Velocity Fields 

 

For this case, the ribs are just in the contrary orientation compared with the case 

of (+) 60° ribs.  As the flow approaches the ribs, the angled ribs guide the near wall flow 

to move along the ribs. The secondary flow follows the ribs until it hits on the divider 

(inner) wall. After hitting on the inner wall, the secondary flow induced by the rib 

returns to the outer wall and a vortex is created. This behavior is similar on the top and 

bottom wall, therefore, two counter-rotating vortices form in the trapezoidal channel (Fig. 

8.4). Fig. 8.5 shows the streamwise velocity vector distributions at the mid-plane 

between the top and bottom walls with (–) 60º ribs at Re = 31,800 for inlet at smaller 

cross section and for inlet at larger cross section. For the inlet at the smaller cross section 

(Fig. 8.5(a)), the velocity profiles were flat before the turn. The magnitude of the flow 

velocity along the outer wall seemed to be higher than that along the inner wall due to 

the rib orientation which the ribs were angled towards the inner wall. As the flow 

approached the turn region, flow accelerations occurred near the divider wall and flow  
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Fig. 8.4 Secondary flow vortices induced by (–) 60º rib 
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Fig. 8.5 Streamwise velocity vector midway between the top and bottom walls  

with (–) 60º ribs 
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decelerations occurred near the outer wall due to the favorable and adverse pressure 

gradients along the divider and outer wall, respectively. Flow deceleration took place at 

the outer wall and was followed by flow separation, which results in a zone of 

recirculating flow in the upstream corner in the first passage. This recirculation zone was 

slightly smaller than that of (+) 60° rib case since the secondary flow induced by the ribs 

pushed the main flow in the core toward the outer wall and thus, the separation bubble 

was squashed. There were no separation bubbles near the divider wall tip in the turn 

region. However, a large bifurcating zone existed near the divider wall in the second 

passage. For the inlet at the larger cross section (Fig. 8.5(b)), the flow had a similar 

pattern but bifurcating zone did not existed. Because the flow was accelerated by 

decreasing cross area through the turn, the streamwise velocity was much faster than the 

vertical velocity. In both case, there were weak flow impingements onto the end wall in 

the turn due to the secondary flow induced by angled ribs because the secondary flow 

pushed the flow in the core toward the outer wall. Just after the turn the high momentum 

flow impinged onto the outer wall in the second passage.  

Fig. 8.6, 8.7, 8.8 and 8.9 show streamwise velocity and turbulence intensity in 

the planes midway between the inner and outer walls with (–) 60º ribs at Re = 31,800 for 

inlet at smaller cross section and for inlet at larger cross section. The reversal flow 

occurred immediately downstream of the ribs on both the top and bottom walls. 

However, immediately upstream of the ribs there were no separations, such as that 

generally found in a 90° ribbed channel case. In the 60° ribs case, the flows near the 

inner and outer walls were different from each other due to the secondary flow induced 
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by the angled ribs. For the smaller inlet case (Fig. 8.6(a)) near the outer wall the flows 

beyond ribs and directing to rib-roughened wall to reattach were intense and near the 

inner wall these flows become weaker in the first passage. In the turn, one large vortex 

occurred near the bottom, and a small vortex was observed near the top wall. It was also 

observed that the flow over the ribs near the bottom wall was faster than the one near the 

top wall. The reason was that the rib induced secondary flow near the bottom wall was 

much stronger than the one near the top wall. As the overall characteristics of the 

Reynolds stress in the ribbed channel, the ribs strongly intensify the turbulence level on 

both the top and bottom walls. The ribs also increase turbulent mixing. The relatively hot 

flow near the wall is continuously mixing with the relatively cooler core flow near the 

center of the channel. This mixing also serves to increase the heat transfer from the 

channel. Fig. 8.6(b) shows the turbulence intensity distributions in the first passage for 

the smaller inlet case. The turbulence intensities were as high as 33% immediately 

downstream of the ribs on the bottom wall and 25% immediately downstream of the ribs 

on the top wall, and diminished gradually toward the center of the channel around 10%. 

Near the end wall the turbulence intensity was relatively low about 26% due to less flow 

impingement. Due to the stronger secondary flow, the higher turbulence intensity 

occurred near the bottom wall. Fig 8.7 shows the streamwise velocity and turbulence 

intensity in the second passage in the planes midway between the inner and outer wall 

for inlet at smaller cross section. Through the turn, the flow was decelerated due to 

increase of the cross section area. Since the velocity magnitude and rib height-to-

hydraulic diameter ratio (e/ Dh,large) were smaller than those in the first passage, the 
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effects of the angled ribs were much less. After the turn, there no flow reattachments 

between ribs due to a large flow separation on the rib just after the turn (Fig. 8.7(a)). The 

main flow was shifted toward the top wall and then a strong flow impingement occurred 

on the top wall. The highest turbulence intensity was 36% on the first rib on the top wall 

just after the turn. However, the turbulence intensity had low values in the second 

passage. The turbulence intensities were as high as 26% immediately downstream of the 

ribs on the top wall and 11% immediately downstream of the ribs on the bottom wall.  

Fig. 8.8 and 8.9 show streamwise velocity and turbulence intensity for the larger 

inlet case. Since the velocity magnitude and rib height-to-hydraulic diameter ratio (e/ 

Dh,large) were smaller than those of the smaller inlet case, the effects of the ribs were 

much less. In the turn, only one small vortex occurred near the bottom due to weak 

impingements with relatively low velocity (Fig. 8.8 (a)).  

Unlike the smaller inlet case, the flow over the ribs near the top wall was a little 

faster than the one near the bottom wall. The reason was that the rib induced secondary 

flow near the top wall was slightly stronger than the one near the top wall. The 

turbulence intensities were as high as 30% immediately downstream of the ribs on the 

top wall and 28% immediately downstream of the ribs on the top wall, and diminished 

gradually toward the center of the channel around 10% (Fig. 8.8(b)). In the second 

passage (Fig. 8.9), after the turn, the strong flow impingement occurred on the bottom 

walls unlike the smaller inlet case (Fig. 8.9 (a)). As the flow goes through the turn, the 

flow is accelerated by decreasing the cross section area. Therefore, a larger momentum 

of the flow from the larger inlet makes the strong flow impingements on the walls and 
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Fig. 8.6 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (–) 60º ribs in the first passage for inlet at smaller cross section  
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Fig. 8.7 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (–) 60º ribs in the second passage for inlet at smaller cross section 
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Fig. 8.8 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (–) 60º ribs in the first passage for inlet at larger cross section  
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Fig. 8.9 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with (–) 60º ribs in the second passage for inlet at larger cross section  
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increases turbulence intensities in the second passage of the channel. The level of 

turbulence intensity was about 59% near the bottom wall. Near the top wall 54% 

turbulence intensity only on the two ribs just after the turn was observed and further 

downstream turbulence intensity level decreased to 25% (Fig. 8.9 (b)). 

 

8.4 Secondary Flow Development 

 

            To better understand the complex three-dimensional flow fields in the trapezoidal 

channel with (–) 60º ribs, the secondary flow was presented here. Fig. 8.11, 8.12, 8.13 

and 8.14 show the secondary flow vectors at selected planes as denoted in Fig. 8.10. The 

secondary flow vectors of Fig. 8.11 and 8.13 were viewed from the inlet, while the 

secondary flow vectors of Fig. 8.12 and 8.14 were viewed from the outlet. As mentioned 

earlier, angled ribs induced the fast secondary flow that moves parallel to the ribs from 

the outer wall to inner wall. Because the ribs were oriented at a (–) 60º angle, the flow 

adjacent to the outer wall will reach the ribs first and move along the ribbed wall toward 

the inner wall. It then returns back to the outer wall along the centerline of the channel. 

The secondary flow near the outer wall was much stronger than the one near the inner 

wall. For the smaller inlet case (Fig. 8.11 & 12), one can clearly see that the ribs induced 

two counter-rotating vortices that impinge on the outer wall in the first passage (Fig. 

8.11). One can also notice that along the streamwise direction, the size of two vortices 

oscillated from the largest in the middle of each inter-rib distance to the smallest on the 

ribs. 
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Fig. 8.10 Secondary flow locations for trapezoidal channel with (–) 60º ribs 
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Fig. 8.11 Secondary flow developments of trapezoidal channel with (–) 60º ribs 

in the first passage for inlet at smaller cross section 



 146

 

 

 

Fig. 8.12 Secondary flow developments of trapezoidal channel with (–) 60º ribs 

in the second passage for inlet at smaller cross section 
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Fig. 8.13 Secondary flow developments of trapezoidal channel with (–) 60º ribs 

in the first passage for inlet at larger cross section
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Fig. 8.14 Secondary flow developments of trapezoidal channel with (–) 60º ribs 

in the second passage for inlet at larger cross section 
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From the Fig. 8.4, near the inlet two vortices were almost same in the size and strength. 

However, the lower secondary flow near the top wall became stronger than the upper 

secondary flow near the bottom and had a bigger size along the streamwise direction. 

The reason was that the magnitude of the vertical component velocity of the lower 

secondary flow was bigger than the one of the upper secondary flow due to the geometry 

of the cross section. On the rib 7 (Fig. 8.11(6)), the secondary flow became s strong flow 

motion from the outer to the inner wall due to the turn effects. Upon entering the turn, 

the curvature induced secondary flow which pushed flow from the inner to outer wall 

had the same direction of the vortex circulation induced by the ribs. Only one vortex was 

observed on the bottom rib and was distorted by the combined effects of centrifugal 

induced vortex and rib-induced vortex upstream (Fig. 8.11(7)). In the second passage 

(Fig. 8.12), the rib induced fast flow was reversed in direction due to the opposite rib 

angle compared to the first passage. Two counter-rotating vortices occupied near top and 

bottom wall, and the downward flow seemed to be very strong (Fig. 8.12(9)). The 

velocity magnitudes were not high compared to those in the first passage because the 

flow was decelerated through the turn. In the second passage, the bulk mean velocity 

was decreased from 13.61 m/s to 9.08 m/s. The rib height-to-hydraulic diameter ratio (e/ 

Dh,large) was also decreased since the same ribs were installed but channel height was 

increased. Therefore, the effect of the ribs on the flow of channel was mush less and the 

secondary flow induced by the turn was dominant in the second passage. Since the 

direction of the vortex circulation near the bottom wall coincided with that of the 

secondary flow formed by the turn, while that created near the top wall gave the opposite 
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circulation to the secondary flow induced by the turn, the magnitude of flow velocity 

near the bottom wall was bigger than that near the top wall.  Therefore, strong 

impingements were observed on the bottom wall. The lower vortex became stronger and 

the upper vortex became weaker along the streamwise direction. 

            Fig. 8.13 and 8.14 show secondary flow developments for the larger inlet case. 

Unlike the smaller inlet case, in the first passage (Fig. 8.13) the two vortices induced by 

the ribs were almost symmetric due to the enough space to maintain rotating shapes, 

while the two vortices were squashed in the vertical direction due to the tight spacing 

between the top and bottom walls in the smaller inlet case. It seemed that two vortices 

were less interacted with each other. In the turn (Fig. 8.14(7)), a small vortex was 

observed on the bottom rib and was less strong due to a relatively low velocity from the 

large cross section. Downward flow from the top wall was strong along the inner (tip of 

the divider wall) wall. In the second passage (Fig. 8.14), the secondary flow induced by 

the turn was dominant in the second passage due to the flow acceleration through the 

decrease of cross sectional area. Therefore, the downward flow along the outer wall was 

much strong and a large counterclockwise rotating vortex was created. In location (9) 

between rib 9 and rib 10, one large vortex occupied over half of the channel and a small 

one observed near the top wall (Fig. 8.14 (9)). However, the size of small vortex 

decreased at location 11. The direction of the vortex circulation near the top wall 

coincided with that of the secondary flow formed by the turn, while that created near the 

bottom wall gave the opposite circulation to the secondary flow induced by the turn. 

However, the magnitude of flow velocity near the top wall was lower than that near the 
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bottom wall.  Therefore, the small vortex near the bottom wall with high magnitude of 

the flow velocity overcame the secondary flow by the turn. Near the end of the heating 

section, two counter-rotating vortices were observed since the effects of the turn were 

diminished and the secondary flow induced the ribs started to develop (Fig. 8.14 (13)).  

 

8.5 Heat (Mass) Transfer Distribution 

 

The experiments were conducted to measure the regional average heat (mass) 

transfer in a two-pass trapezoidal channel with (–) 60º ribs on two opposite walls by 

naphthalene sublimation technique, and the analogy of heat and mass transfer was 

applied to convert the mass transfer coefficients to heat transfer coefficients. The 

regional average Sherwood number ratios were determined for four Reynolds numbers 

of 9,400, 16,800, 31,800 and 57,200. Also the numerical study was performed to 

compare the experimental results and the numerical predictions at Re = 31,800.  

Fig. 8.15 shows calculated Nusselt number ratio distributions by the RSM. 

Significant effects of the (–) 60º angled ribs were evident in the first passage. The (–) 60º 

angled ribs gave substantially higher heat transfer compared with 90° ribs. The (–) 60º 

angled ribs generated secondary flows parallel to the rib axes over the top and bottom 

walls between two adjacent ribs from the outer wall toward the inner wall. It hit the inner 

wall, then, circulated across the outer wall. The two vortices were induced. These 

circulated flows across the outer wall pushed down the separated flow from a rib near 

the outer wall, shortening the reattachment length with consequent high heat transfer due 
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to the large angle of reattachment. The secondary flow on the wall between ribs was 

strong enough to sweep the separated flow toward the inner wall, preventing flow 

reattachment near the inner wall.  The secondary flow moved away from the outer wall 

towards the inner wall in the first passage. Nusselt number ratios decreased from the 

outer wall to inner wall in the spanwise direction for both cases. Heat transfer 

distributions between ribs appeared periodic because the ribs periodically interrupted the 

boundary layers on the bottom wall. For the smaller inlet case (Fig. 8.15 (a)), just before 

the turn, the high heat transfer enhancement was observed immediately downstream of 

the last rib in the first passage. Since the direction of the vortex circulation created by the 

rib coincided with that of the secondary flow formed in the turn, the secondary flow 

induced by the last rib became stronger. In the turn region, Nusselt number ratios were 

very high due to the combination of the 180° sharp turn and the 90° rib. The 90° rib in 

the turn region produced high heat transfer enhancement immediately downstream of the 

rib. The large vortex impinged on the end wall resulting in the high heat transfer. Due to 

the presence of the rib and deceleration of the flow, the centrifugal effect was reduced. 

The contracted but strengthened vortex in the turn region pressed down the separated 

flow by the rib, causing strong reattachment immediate downstream of the rib in the turn. 

Unlike smooth wall case, near outer wall in the turn region heat transfer enhancement 

was mush less because the presence of the 90° rib and the flow deceleration reduced the 

effect of centrifugal forces, and caused lesser impingement on the outer wall. Unlike in 

the first passage, the enhancement of heat transfer by the (–) 60º angled ribs was not 

evident after the turn but by the secondary flow induced by the turn in the second  
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Fig. 8.15 Detailed Nusselt number ratio distributions of trapezoidal channel with 

(–) 60º ribs at Re = 31,800 by RSM 
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passage. In the second passage the periodic heat transfer patterns were not seen at the 

first half of downstream of the turn due to the turning effect. As the effects of the turn 

were diminished, the periodic heat transfer patterns were observed. Just after the turn, 

heat transfer enhancements were higher near the inner and outer walls, and were lower in 

the middle of the bottom due to secondary flow induced by the turn. As the small vortex 

near the outer wall disappeared, heat transfer enhancements were intense near the inner 

wall. Further downstream heat transfer enhancements were slightly increasing near the 

inner wall since the turning effects were reduced and the secondary flow induced by the 

bottom ribs seemed to overcome the secondary flow by the turn. Every Nusselt number 

ratio was lower than that in the first passage because bulk mean velocity was relatively 

lower. For the larger inlet case (Fig. 8.15 (b)), heat transfer distribution between the ribs 

in the first passage was periodic, and the Nusselt number ratios were higher near the 

outer wall and decreased toward the outer wall in the spanwise direction. In the turn 

region, the heat transfer enhancements near the tip of divider wall were higher than those 

near the end wall downstream of the 90° rib due to strong downward flow impingements 

along the tip of the divider wall. In the second passage, just after the turn the high heat 

transfer was occurred due to very strong flow impingement with high magnitude of the 

flow velocity that was accelerated through the turn. The Nusselt number ratio 

distributions were reverse in the spanwise direction. The Nusselt number ratios near the 

inner wall were higher than those near the outer wall. As the effect of the turn on the 

flow field vanished gradually, heat transfer enhancement decreased gradually. Near the 

exit of the heating section heat transfer enhancements were slightly increasing since the 
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turning effects were reduced and the secondary flow induced by the bottom ribs seemed 

to start to develop. 

 

 

 

Fig. 8.16 Segmental average mass transfer distributions along the trapezoidal channel 

with (–) 60º ribs 

 

 

Fig. 8.16 shows the streamwise distributions of the regional average Sherwood 

number ratios ( 0/Sh Sh ) along the trapezoidal channel for air flow entering the smaller 
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straight section and those for air flow entering the larger straight section. It is clear that 

the greatest mass transfer enhancement occurred at the lowest Reynolds number of 9,400. 

As the Reynolds number increased, the Sherwood number ratios decreased. The general 

trends of Sherwood number ratios were similar for all four Reynolds numbers. For the 

smaller inlet case, Sherwood number ratios were almost constant before the turn in the 

first passage since the angled rib-induced secondary flow near the bottom wall was 

developed and became strong along the channel. The 0/Sh Sh  value was abruptly 

dropped on wall segment no.8 since much less impingements onto the end wall. Usually 

in the turn region, mass transfer enhancement is high since the flow impinges on the end 

wall and is deflected onto the bottom wall near end wall. However, the secondary flow 

induced by the ribs interrupted the main flow and the less impingement occurred on the 

end wall. Moreover, the secondary flow was distorted by the turn effects and it did not 

impinge on the bottom wall in the turn. On wall segment no.9 in the turn in the second 

passage, the 0/Sh Sh  value was highest due to the secondary flow impingements induced 

by the turn. In the second passage, after the turn, mass transfer enhancement abruptly 

decreased due to the lower magnitude of the flow velocity. After that, the 0/Sh Sh  value 

gradually decreased. However, from the wall segment no.13, the 0/Sh Sh value was 

slightly increasing by developing the secondary flow induced by the angled ribs. For the 

larger inlet case, unlike the smaller inlet case, Sherwood number ratios gradually 

increased before the turn in the first passage. The reason was that the secondary flow 

induced by the ribs was growing near the bottom along the streamwise direction of the 
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channel and the flow was already fully developed. It is clear that the mass transfer was 

the highest downstream of the turn, as the flow that left the turn with very high 

turbulence entered the smaller exit section. The highest mass transfer enhancement 

occurred on wall segment no.11. After that, Sherwood number ratios gradually 

decreased since the turning effects were diminished. However, from the wall segment 

no.14, the 0/Sh Sh value was slightly increasing by developing the secondary flow 

induced by the angled ribs. 

The Reynolds stress model (RSM) showed well flow field and heat transfer 

distribution. However, when the comparison between the numerical prediction and 

measured regional average were considered, the prediction can not agree well with the 

experimental data (Fig.8.3). The RSM underpredicted heat (mass) transfer enhancements 

for the both cases. The maximum relative error was 27.3% and the average relative error 

was 16.6% for the smaller inlet case. The relative error is defined by normalizing the 

difference between the experimental and numerical values with respect to the 

experimental value. The maximum relative error was 26.6% and the average relative 

error was 20.8% for the larger inlet case. 



 158

CHAPTER IX 

FLOW AND HEAT TRANSFER IN A TWO-PASS TRAPEZOIDAL CHANNEL 

WITH 60° V-SHAPED RIBS ON TWO OPPOSITE WALLS 

 

           In chapter IX, an experimental study was performed to measure the regionally 

averaged heat (mass) transfer in a two-pass trapezoidal channel with 60° V-shaped ribs 

on two opposite walls by Naphthalene sublimation technique and an numerical study 

also was performed using the Reynolds stress model (RSM) with enhanced wall 

treatment in FLUENT. 

 

9.1 Description of Problem 

 

            Figure 9.1 & 9.2 show the experimental test section and the numerical grids for 

the two-pass trapezoidal channel with 60° V-shaped ribs on two opposite walls. The 

simulated geometry was the same as the experimental geometry. For the numerical study, 

only bottom wall except the ribs was heated to a constant temperature since the mass 

transfer experiment can simulate uniform wall temperature boundary condition. The top 

and bottom walls were roughened by thirty equally-spaced 60° V-shaped ribs and one 

90° rib in the turn region. Therefore, the total of sixty 60° V-shaped ribs and two 90° 

ribs was attached on the top and bottom walls in parallel sequence so that they were 

directly opposite each other. The 60° V-shaped ribs point upstream of the main flow 

direction both in the first and second passage. These ribs were 3.2 mm by 3.2 mm square 
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stripes of balsa wood and rib-to-rib spacing was 3.81 cm. Thus, the rib height-to-

hydraulic diameter ratio (e/ Dh,turn) was 0.07, and the rib pitch-to-rib height ratio (P/e) 

was 12. The regional average mass transfer experiment was conducted with Re = 9,400, 

16,800, 31,800 and 57,200 but the Reynolds number was fixed at 31,800 for the 

numerical study. 

            

9.2 Grid Independence Study 

 

            Fig. 9.2 gives the numerical grid generated using Gambit for this simulation. The 

grid independent study was made by performing the simulations for three different cross 

sectional grids of ,6406234 ×× 6407244 ×× and 6408254 ×× , and one streamwise 

grid with mesh refined in the near wall regions (Fig. 9.2). For the smaller 

inlet case (Fig. 9.3(a)), a comparison between 

7407244 ××

6406234 ××  and grid 

points showed 7.2% maximum changes in the Nusselt number ratio. The maximum 

difference in Nusselt number ratio was less than 1.2% between and 

 grid points. For the larger inlet case (Fig. 9.3(b)), a comparison between 

 and grid points showed 6.4% maximum changes in the 

Nusselt number ratio. The maximum difference in Nusselt number ratio was less than 

2.0% between and 

6407244 ××

6407244 ××

6408254 ××

6406234 ×× 6407244 ××

6407244 ×× 6408254 ××  grid points. Further increase of the 

number of grid points in streamwise direction of the channel produced only minor 

changes of the Nusselt number ratios for the both cases. 
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Fig. 9.1 Geometry for trapezoidal channel with 60° V-shaped ribs 
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Fig. 9.1 (continued) 
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Fig. 9.2 Numerical grid for trapezoidal channel with 60° V-shaped ribs 
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Fig. 9.3 Grid independent study for trapezoidal channel with 60° V-shaped ribs 
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Therefore, it was determined that grid independence was achieved with grid 

points and all results were based on the 

6407244 ××

6407244 ×× grid points, which resulted in 

2,027,520 grid points for both the smaller inlet and larger inlet cases. The y+ values were 

less than unity in all test runs of grid independent study. 

 

9.3 Velocity Fields 

 

In the near ribbed surfaces (Fig. 9.4), the flow in the center of the channel 

approached the V-shaped ribs first and the flow separated into two streams since the ribs 

were oriented at a 60° angle pointing upstream of the main flow direction. Each flow 

moved almost parallel to the ribs from the centerline to the outer and inner (divider) 

walls which were side walls.  In addition, the 60° V-shaped ribs created four counter-

rotating vortices parallel to the ribs. Due to the existence of the outer and inner wall, 

each separated flow along the ribs hit the wall and returned to the centerline making a 

counter-rotating vortex. Since the 60° V-shaped rib was half of the 60° angled rib, the 

boundary layer thickness for the flow that moves parallel to one side of the 60° V-shaped 

rib was thinner than that produced by the 60° angled rib. Therefore, higher heat transfer 

enhancements were expected compared to the 60° angled rib since the 60° V- shaped rib 

produced four counter-rotating vortices that promoting more mixing in the core main 

stream and simultaneously produced thinner boundary layer near the heated wall. 

Because the ribs periodically interrupt the boundary layers of the flow, the repeated flow 

separations behind the ribs and reattachment between the ribs in the streamwise direction 
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Fig. 9.4 Secondary flow vortices induced by 60° V-shaped ribs  
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Fig. 9.5 Streamwise velocity vector midway between the top and bottom walls with  

60° V-shaped ribs 
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were observed. In the center of the channel, the flows beyond the ribs and directing to 

ribbed surfaces to reattach were intense and these flows became weaker near outer and 

inner wall. In the square and rectangular channel, the walls are symmetric and two pairs 

of symmetric counter-rotating vortices are created. However, in the trapezoidal channel, 

the walls are not symmetric and all four vortices have different sizes and the strength. 

Fig. 9.5 shows the streamwise velocity vector distributions at the mid-plane 

between the top and bottom walls with 60° V-shaped ribs at Re = 31,800 for inlet at 

smaller cross section and for inlet at larger cross section. For the inlet at the smaller 

cross section (Fig. 9.5(a)), the velocity profiles were flat before the turn. As the flow 

approached the turn region, flow accelerations occurred near the divider wall and a flow 

deceleration occurred near the outer wall due to the favorable and adverse pressure 

gradients along the divider and outer wall, respectively. Flow deceleration took place at 

the outer wall and was followed by flow separation, which results in a zone of 

recirculating flow in the upstream corner in the first passage. There were no separation 

bubbles near the divider wall tip in the turn region. However, large bifurcating zone 

existed near the divider wall in the second passage. For the inlet at the larger cross 

section (Fig. 9.5(b)), the flow had a similar pattern but bifurcating zone was smaller. 

Because the flow was accelerated by decreasing cross area through the turn, the 

streamwise velocity was much faster than the vertical velocity. In both case, there were 

weak flow impingements onto the end and outer wall due to the combined effects of the 

secondary flow induced by V-shaped ribs and the presence of the 90° ribs in the turn.   

Fig. 9.6, 9.7, 9.8 and 9.9 show streamwise velocity and turbulence intensity in the planes 
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midway between the inner (divider) and outer walls with  60°  V-shaped ribs at Re = 

31,800 for inlet at smaller cross section and for inlet at larger cross section. As the flow 

near the top and bottom wall passes over the ribs, the flow separates from the walls. This 

separation results in relatively low heat transfer, due to a relatively hot cell being trapped 

in the recirculation. However, when the flow reattaches to the wall between the ribs, this 

is an area of relatively high heat transfer. This pattern of separation and recirculation 

continues through the channel with a pattern of repeating 60° V-shaped ribs. Like the 

60° ribs, the reversal flow occurred immediately behind the ribs on the both the top and 

bottom wall. However, there were no separations in immediately upstream of the ribs. 

For the smaller inlet case (Fig.9.6), in the center of the channel, the flows beyond the 

ribs and directing to ribbed surfaces to reattach were intense and these flows became 

weaker near outer and inner wall. In the turn, one large vortex occurred near the bottom, 

and a small vortex was observed near the top wall like the 60° ribs. It was also observed 

that the magnitude of the flow velocity over the ribs near the top wall was larger than 

that near the bottom wall. The reason was that the secondary flows induced by the ribs 

near the top wall were stronger than that near the bottom wall. Fig. 9.6(b) shows the 

turbulence intensity distributions in the first passage for the smaller inlet case. The 

turbulence intensities were as high as 28% immediately downstream of the ribs on the 

top wall and 25% immediately downstream of the ribs on the bottom wall, and 

diminished gradually toward the center of the channel around 10%. The highest 

turbulence intensity was 35% immediately downstream of the rib on the top wall just 

before the turn. Near the end wall the turbulence intensity was relatively low about 33%  
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Fig. 9.6 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 60° V-shape ribs in the first passage for inlet at smaller cross section 
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Fig. 9.7 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 60° V-shape ribs in the second passage for inlet at smaller cross section 
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Fig. 9.8 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 60° V-shape ribs in the first passage for inlet at larger cross section 



 172

 

 

 

Fig. 9.9 Streamwise velocity and turbulence intensity midway between the inner and 

outer walls with 60° V-shape ribs in the second passage for inlet at larger cross section  
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due to less flow impingement. Due to the same reason mentioned above, the higher 

turbulence intensity occurred near the top wall. Fig 9.7 shows the streamwise velocity 

and turbulence intensity in the second passage in the planes midway between the inner 

and outer wall for inlet at smaller cross section. Through the turn, the flow was 

decelerated due to increase of the cross section area. Since the velocity magnitude and 

rib height-to-hydraulic diameter ratio (e/ Dh,large) were smaller than those in the first 

passage, the effects of the angled ribs were much less. After the turn, there no flow 

reattachments between ribs due to a large flow separation on the rib just after the turn 

(Fig. 9.7(a)). The main flow was deflected toward the top wall and then a strong flow 

impingement occurred on the top wall.  However, the turbulence intensity had low 

values in the second passage. The turbulence intensities were as high as 24% 

immediately downstream of the ribs on the top wall and 14% immediately downstream 

of the ribs on the bottom wall.  

Figure 9.8 and 9.9 show streamwise velocity and turbulence intensity for the 

larger inlet case. Since the velocity magnitude and rib height-to-hydraulic diameter ratio 

(e/ Dh,large) were smaller than those of the smaller inlet case, the effects of the ribs were 

much less. In the turn, two small vortices occurred near the bottom and the top wall due 

to weak impingements. Unlike the smaller inlet case, the flow over the ribs near the 

bottom and top wall was had almost same magnitude of the velocity due to weak 

secondary flow induced by the ribs. The turbulence intensities were as high as 27% 

immediately downstream of the ribs on the bottom wall and 28% immediately 

downstream of the ribs on the top wall, and diminished gradually toward the center of 
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the channel around 10% (Fig. 9.8(b)). In the second passage, after the turn, the strong 

flow impingement occurred on the bottom walls unlike the smaller inlet case. As the 

flow goes through the turn, the flow is accelerated by decreasing the cross section area. 

Therefore, a larger momentum of the flow from the larger inlet makes the strong flow 

impingements on the walls and increases turbulence intensities in the second passage of 

the channel. The level of turbulence intensity was about 50% near the bottom wall. Near 

the top wall 46% turbulence intensity only on the rib just after the turn was observed and 

further downstream turbulence intensity level decreased to 26%. The highest turbulence 

intensity was 59% on upstream of the second rib on the bottom wall just after the turn 

due to the strong flow impingement. 

 

9.4 Secondary Flow Development 

 

To better understand the complex three-dimensional flow fields in the trapezoidal 

channel with 60° V-shaped ribs, the secondary flow was presented here. Fig 9.11 shows 

the secondary flow vectors before the heating section in the first passage for the smaller 

inlet case. Fig. 9.12, 9.13, 9.14 and 9.15 show the secondary flow vectors at selected 

planes as denoted in Fig. 9.10. The secondary flow vectors of Fig. 9.11, 9.12 and 9.14 

were viewed from the inlet, while the secondary flow vectors of Fig. 9.13 and 9.15 were 

viewed from the outlet. As mentioned earlier, 60° V ribs induced the fast secondary flow 

that moves parallel to the ribs from the center of the channel to two side walls. Due to 

the existence of the outer and inner wall, each separated flow along the ribs hit the wall 
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and returned to the centerline making a counter-rotating vortex. Therefore, four counter-

rotating vortices are induced by the 60° V rib. In the center of the channel, the secondary 

flows are strong and these flows become weaker near the two side walls. From the Fig. 

9.11, near the inlet, four vortices were almost same in the size and strength. One can 

notice that along the streamwise direction, the upper and left side vortex, and lower and 

right side vortex became stronger and bigger, while other two vortices became weaker 

and smaller since the magnitude of the vertical component velocity of those secondary 

flow was bigger than that of other two vortices due to the characteristics of the 

trapezoidal cross section. Near the heating section, the stronger and bigger two vortices 

became one large vortex extended diagonally, and the direction of the rotation was 

counterclockwise.  For the smaller inlet case (Fig. 9.12 & 13), one can clearly see that 

the ribs induced three counter-rotating vortices that impinge on the top and bottom wall 

in the first passage (Fig. 9.12). One can also notice that along the streamwise direction, 

the size of two vortices oscillated from the largest in the middle of each inter-rib distance 

to the smallest on the ribs like the angled ribs. In the turn region (Fig. 9.12(4)), two 

counter-rotating vortices were observed, and the vortex on the bottom rib was larger and 

stronger than that on the top wall, which was distorted by the combined effects of 

centrifugal induced vortex and rib-induced vortex upstream. Along the tip of the divider 

wall, the magnitudes of vertical velocity were very high. In the second passage (Fig. 

9.13), one large counterclockwise rotating vortex occupied almost entire cross area and 

smaller clockwise rotating vortex was seen near upper and right side (Fig. 9.13(6)). The 

velocity magnitudes were not high compared to those in the first passage because the  
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Fig. 9.10 Secondary flow locations for trapezoidal channel with 60° V-shaped ribs  
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Fig. 9.11 Secondary flow developments on the entrance region of trapezoidal channel 

with 60° V-shaped ribs in the first passage for inlet at smaller cross section 
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Fig. 9.12 Secondary flow developments of trapezoidal channel with 60° V-shaped ribs 

in the first passage for inlet at smaller cross section 
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Fig. 9.13 Secondary flow developments of trapezoidal channel with 60° V-shaped ribs 

in the second passage for inlet at smaller cross section 
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flow was decelerated through the turn. In the second passage, the bulk mean velocity 

was decreased from 13.61 m/s to 9.08 m/s. The rib height-to-hydraulic diameter ratio (e/ 

Dh,large) was also decreased since the same ribs were installed but channel height was 

increased. Therefore, the effect of the ribs on the flow of channel was mush less and the 

secondary flow induced by the turn was dominant in the second passage. Along the inner 

wall, flow impingements were intense. Therefore, it was expected that neat the inner 

wall more heat transfer enhancements occur. Near the end of the heating section (Fig. 

9.13(8)), as the effect of the turn reduced, the secondary flow induced by the ribs seemed 

to start to develop, and three counter-rotating vortices were observed like the first 

passage.  

Fig. 9.14 and 9.15 show secondary flow developments for the larger inlet case. 

Unlike the smaller inlet case, in the first passage (Fig. 9.14) the four vortices induced by 

the ribs were almost symmetric due to the enough space to maintain rotating shapes. It 

seemed that four vortices were less interacted with each other due to the enough space. 

In the turn (Fig. 9.14(4)), a small vortex was observed on the bottom rib and was less 

strong due to a relatively low velocity from the large cross section. Downward flow from 

the top wall was strong along the tip of the divider wall. In the second passage (Fig. 

9.15), the secondary flow induced by the turn was dominant just after the turn due to the 

flow acceleration through the decrease of cross sectional area. Therefore, the downward 

flow along the outer wall was much strong and a large counterclockwise rotating vortex 

was created (Fig. 9.15(5)). Two small vortices also observed. From the location (6), the 

vortices induced by the ribs with the relatively high rib height-to-hydraulic diameter  
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Fig. 9.14 Secondary flow developments of trapezoidal channel with 60° V-shaped ribs 

in the first passage for inlet at larger cross section 
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Fig. 9.15 Secondary flow developments of trapezoidal channel with 60° V-shaped ribs 

in the second passage for inlet at larger cross section 
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ratio (e/ Dh,small ) seemed to start overcome the secondary flow by the turn. Therefore, 

like in the first passage for smaller inlet case, three vortices were observed near exit of 

the heating section (Fig. 9.15(8)). 

 

9.5 Heat (Mass) Transfer Distribution 

 

The experiments were conducted to measure the regional average heat (mass) 

transfer in a two-pass trapezoidal channel with 60° V-shaped ribs on two opposite walls 

by naphthalene sublimation technique, and the analogy of heat and mass transfer was 

applied to convert the mass transfer coefficients to heat transfer coefficients. The 

regional average Sherwood number ratios were determined for four Reynolds numbers 

of 9,400, 16,800, 31,800 and 57,200. Also the numerical study was performed to 

compare the experimental results and the numerical predictions at Re = 31,800.  

Fig. 9.16 shows calculated Nusselt number ratio distributions by the RSM. V-

shaped ribs originated from the concept that angled ribs can act as longitudinal vortex 

generator and provide heat transfer enhancement. It is assumed that V-shaped ribs can 

principally double the high heat transfer region and provide even higher heat transfer 

augmentation. The Nusselt number ratios on the rib roughened wall had a significant 

spanwise variation, with low levels near the outer and inner walls of the channel, and 

high levels at the central area where the V-shaped ribs meet. The temperature boundary 

layer was thin and the heat transfer was high in the downwash regions and low in the 

upwash region. The longitudinal vortex of the flow guaranties that the heat taken up a 
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flow particle at the wall is transported away from the wall and downstream. By the time 

it returns close to the wall, it has been cooled by the bulk temperature and then can again 

take up heat from the wall. The streamwise distribution of heat transfer can be explained 

by the flow reattachment and redevelopment. Depending on the downstream distance to 

the next ribs, the recirculating flow cells developing downstream reattach at the wall, 

and the flow then commences to develop again. Due to redevelopment of a boundary 

layer and enhancement of turbulence near this reattachment point, the heat transfer is 

enhanced. For the smaller inlet case (Fig. 9.16 (a)) in the first passage, heat transfer 

distributions between ribs appeared periodic because the ribs periodically interrupted the 

boundary layers on the bottom wall. The secondary flows induced by each angled side of 

the V-shaped rib moved away from the center of the channel. A high heat transfer 

enhancement region was obtained along the centerline of the channel. Nusselt number 

ratios were lower immediately downstream of each rib due to flow separation from the 

rib. The 90° rib in the turn region produced high heat transfer enhancement immediately 

downstream of the rib. In the turn region, Nusselt number ratios were very high due to 

the combination of the 180° sharp turn and the 90° rib. The large vortex impinged on the 

end wall resulting in the high heat transfer. Due to the presence of the rib and 

deceleration of the flow, the centrifugal effect was reduced. The contracted but 

strengthened vortex in the turn region pressed down the separated flow by the rib, 

causing strong reattachment immediate downstream of the rib in the turn. Unlike smooth 

wall case, near outer wall in the turn region heat transfer enhancement was mush less 

because the presence of the 90° rib and the flow deceleration reduced the effect of  
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Fig. 9.16 Detailed Nusselt number ratio distributions of trapezoidal channel with 

60° V-shaped ribs at Re = 31,800 by RSM 
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centrifugal force, and caused lesser impingement on the outer wall. In the second 

passage, the secondary flow near the inner wall had higher momentum due to the 

secondary flow induced by the turn rotating counterclockwise direction, whereas the 

secondary flow near the outer wall had lower momentum. A relatively high heat transfer 

region was produced closer to the inner wall. Further downstream, the effect of the turn 

reduced and the secondary flow induced by the ribs increased. Therefore, the Nusselt 

number ratios monotonically increased. The sharp 180° turn negatively affected on the 

heat transfer enhancement on the bottom because when the flow was pushed by the 

centrifugal forces at the turn toward the outer wall and the flow was then deflected onto 

the top wall. Further downstream heat transfer enhancements were slightly increasing 

since the turning effects were reduced and the secondary flow induced by the bottom 

ribs seemed to overcome the secondary flow by the turn. Every Nusselt number ratio 

was lower than that in the first passage because bulk mean velocity was relatively lower. 

For the larger inlet case (Fig. 9.16 (b)), heat transfer distribution between the ribs in the 

first passage was periodic, and the Nusselt number ratios were higher in the central area 

and decreased toward two side walls in the spanwise direction. In the turn region, the 

heat transfer enhancements near the tip of divider wall were higher than those near the 

end wall downstream of the 90° rib due to strong downward flow impingements along 

the tip of the divider wall. In the second passage, just after the turn the relatively high 

heat transfer was occurred due to very strong flow impingement with high magnitude of 

the flow velocity that was accelerated through the turn. Unlike the smaller inlet case, the 

heat transfer distributions were almost periodic. 
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Fig. 9.17 Segmental average mass transfer distributions along the trapezoidal channel 

with 60° V-shaped ribs 

 

 

Fig. 9.17 shows the streamwise distributions of the regional average Sherwood 

number ratios ( 0/Sh Sh ) along the trapezoidal channel for air flow entering the smaller 

straight section and those for air flow entering the larger straight section. It is clear that 

the greatest mass transfer enhancement occurred at the lowest Reynolds number of 9,400. 

As the Reynolds number increased, the Sherwood number ratios decreased. The general 

trends of Sherwood number ratios were similar for all four Reynolds numbers. For the 
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smaller inlet case, Sherwood number ratios gradually decreased before the turn in the 

first passage. On wall segment no.9 in the turn in the second passage, the 0/Sh Sh  value 

was highest due to the secondary flow impingements induced by the turn. In the second 

passage, after the turn, mass transfer enhancement abruptly decreased due to the lower 

magnitude of the flow velocity. After that, the 0/Sh Sh  value gradually decreased. 

However, from the wall segment no.12, the 0/Sh Sh value was slightly increasing by 

developing the secondary flow induced by the V-shaped ribs. For the larger inlet case, 

unlike the smaller inlet case, Sherwood number ratios gradually increased before the turn 

in the first passage. The reason was that the secondary flow induced by the ribs was 

slightly growing near the bottom along the streamwise direction of the channel and the 

flow was already fully developed. It is clear that the mass transfer was the highest 

downstream of the turn, as the flow that left the turn with very high turbulence entered 

the smaller exit section. The highest mass transfer enhancement occurred on wall 

segment no.10. After that, Sherwood number ratios gradually decreased since the turning 

effects were diminished.  

The Reynolds stress model (RSM) showed well flow field and heat transfer 

distribution. However, when the comparison between the numerical prediction and 

measured regional average were considered, the prediction can not agree well with the 

experimental data (Fig.9.3). The RSM underpredicted heat (mass) transfer enhancements 

for the both cases. The maximum relative error was 28.9% and the average relative error 

was 22.1% for the smaller inlet case. The maximum relative error was 31.9% and the 

average relative error was 23.5% for the larger inlet case.  
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CHAPTER X 

OVERALL THERMAL PERFORMANCE  

 

The combined effects of the rib angle, rib orientation, and the sharp 180° turn 

significantly affect the heat (mass) transfer distributions. The average Sherwood number 

ratios and the friction factor ratios for 60° V-shaped ribs had the highest values, then 

came the case of (+) 60° ribs, and the Sherwood number ratios and the friction factor 

ratios for (–) 60º ribs were the lowest.  The case of (–) 60º ribs with the smaller inlet 

produced highest thermal performance. 

 

10.1 Channel Average Mass Transfer Ratios 

 

           The first comparisons were conducted for the channel (overall) average mass 

transfer ratios. Fig. 10.1 shows the channel average Sherwood number ratios for (+) 60° 

rib, (–) 60º rib and 60° V-shaped rib in the trapezoidal channel, and the channel average 

Sherwood number ratios ( 0/Sh Sh ) for the smooth wall and 90° rib in the trapezoidal 

channel conducted by Lee et al (2007) also were included to compare with the results of 

the smooth wall case at four Reynolds numbers. The channel average Sherwood number 

ratios were obtained by averaging the sixteen segmental mass transfer active surfaces on 

the bottom wall. The 0/Sh Sh  gradually decreased with increasing the Reynolds number. 

The channel average Sherwood number ratios for 60° V-shaped rib with the larger inlet  
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Fig. 10.1 Channel average mass transfer ratios in the trapezoidal channel 

 

had highest  0/Sh Sh  values ranging from 3.09 to 3.57, which were 86.2 to 104.0% higher 

than the corresponding values for the smooth wall with the larger inlet case, and 8.1 to 

9.0% higher than the corresponding values in the case with the flow direction reversed. 

The (–) 60º rib case with the smaller inlet had lowest 0/Sh Sh values ranging from 2.72 to 

3.08.  However, 0/Sh Sh  values of the (–) 60º rib case with the smaller inlet were slightly 
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higher than those of the 90° rib case with the larger inlet by 0.7 ~ 3.9% due to the 

secondary flow induced by the angled ribs. In general, the results show that the values of 

0/Sh Sh for the larger inlet cases were always higher than those for the smaller inlet cases 

in the ribbed trapezoidal channel. When the flow goes through the turn from the larger 

cross section, the flow was accelerated due to the reduction of cross section of the 

channel. This accelerated flow can cause more flow mixing and higher turbulence 

intensity.  

 

10.2 Pressure Drops Across the Turn  

 

The pressure drop across the turn was defined as the difference between the static 

pressures at two streamwise stations near the turn in the two straight sections of the 

trapezoidal channel. To obtain the pressure drop across the turn, two pressure taps were 

installed on the top wall and the outer side wall, respectively, in each of the two straight 

sections of the test channels [see Fig. 2.6]. These pressure taps were located on the 

center point between two ribs located 4th and 5th from the end wall. The pressure drop 

results are presented in terms of a friction factor ratio, f/f0 which gives the average 

pressure gradient around the turn relative to that for fully developed turbulent flow at the 

same Reynolds number in a smooth straight channel with a hydraulic diameter equal to 

that of the cross section at the turn clearance. In Fig. 10.2, the pressure drops across the 

turn are presented for flows at four different Reynolds number through the trapezoidal 

channel. The results show that the friction factor ratio increased with increasing 



 192

Reynolds number in all of the cases studied. According to Lee et al (2007), the f/f0 

values of the smooth wall for the smaller inlet case range from 6.54 to 10.16 and the f/f0 

values for the larger inlet case range from 9.42 to 15.40 as Reynolds number was 

increased from about 9,400 to 57,200.  Thus, the acceleration of the flow around the turn 

as the flow cross section decreases appears to cause about 50% higher pressure drop than 

when the flow direction is reversed. 

 

 

 

Fig. 10.2 Pressure drops across the turn in the trapezoidal channel 
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In the present study, the pressure drop across turn for 60° V-shaped ribs with the larger 

inlet had highest f/f0 values ranging from 15.8 to 26.24, which were 141 to 158% higher 

than the corresponding values for the smooth wall with the smaller inlet case, and 19 to 

24% higher than the corresponding values in the case with the flow direction reversed. 

The (–) 60º rib case with the smaller inlet had lowest f/f0 values ranging from 9.80 to 

16.23. When the (+) 60° rib case and the (–) 60º rib case were compared, the f/f0 values 

of the (+) 60° rib case were higher than those of the (–) 60º rib case. The direction of the 

secondary flow created in the first passage by the (–) 60º ribs coincides with that of the 

secondary flow formed in the turn, while that created by the (+) 60° ribs gives the 

opposite circulation to the secondary flow in the turn. Changing the direction of the 

circulation causes energy loss through the flow mixing resulting in an extra pressure 

drop. This is the reason why the pressure drop was higher for the (+) 60° rib case. 

 

10.3 Thermal Performance 

 

            The thermal performance obtained by considering both the heat (mass) transfer 

augmentation and the friction loss increment is presented based on the constant pumping 

power condition. As shown in Fig. 10.3, the thermal performance was decreased with an 

increase in the flow Reynolds number. Considering the performance comparisons of the 

(+) 60° ribs, the (–) 60º ribs, and 60° V-shaped ribs for the smaller inlet cases, the 

highest thermal performance was produced by the (–) 60º ribs, and the 60° V-shaped ribs 

and the (+) 60° ribs had almost same levels of the thermal performance since the 60° V-
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shaped ribs produced highest heat (mass) transfer enhancement but also produced 

highest pressure drops. 

 

 

Fig.10.3 Thermal performance in the trapezoidal channel 

 

For the larger inlet cases, the (+) 60° ribs produced the highest values, then came the 

case of the 60° V-shaped ribs, and the thermal performance for the (–) 60º ribs was the 

lowest. 



 195

CHAPTER XI 

SUMMARY AND CONCLUSION  

 

Experimental and numerical study was conducted to investigate heat (mass) 

transfer characteristics in a two-pass trapezoidal channel simulating the cooling passage 

of a gas turbine blade. Three different rib configurations were tested at four different 

Reynolds numbers of 9,400, 16,800, 31,800, and 57,200. (+) 60º ribs, (–) 60º ribs and 

60º V-shaped ribs were attached on both the top and bottom walls in parallel sequence. 

Naphthalene sublimation technique was used, and the heat and mass transfer analogy 

was applied to convert the mass transfer coefficients to heat transfer coefficients. 

Numerical predictions of three-dimensional flow and heat transfer also were performed 

for the trapezoidal channel with and without 90º ribs tested by Lee et al. [35]. Reynolds 

stress turbulence model (RSM) in the FLUENT CFD code was used to calculate the heat 

transfer coefficients and flow fields. The Reynolds number was fixed at 31,800 for the 

numerical study. Therefore, all results of the flow filed and detailed heat transfer 

distributions calculated by RSM were at Re = 31,800. Based on experiments and 

numerical predictions, the results may be summarized as follows: 

 

For the square channel and trapezoidal channel with smooth wall 

1. The Nusselt number ratios predicted by the present RSM were in very good 

agreement with the experimental data. 
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2. The sharp 180° turn produced two counter-rotating vortices which 

transported cooler flow from the core toward the outer surface and higher 

heat transfer are observed near outer wall in the square channel.  

3. In the trapezoidal channel with smooth walls, for the smaller inlet case, it 

was observed that the secondary flow near the bottom wall was large and 

well formed a vortex flow but the secondary flow near the top wall was 

smaller and slightly distorted in the turn. Just after turn, four counter rotating 

vortices were observed. One large counterclockwise rotating vortex occupied 

in the center of the channel, and two small vortices were near the top wall 

and one small vortex was near the outer and bottom wall. Further 

downstream of the turn, only one large counterclockwise rotating vortex was 

left and other vortices were diminished. 

4. In the trapezoidal channel with smooth walls, for the larger inlet case, two 

counter-rotating vortices were produced, and the upper vortex was slightly 

bigger than a lower vortex in the turn. Downstream of the turn, two large 

strong vortices occupied almost entire cross sectional area and a small vortex 

near the inner and bottom wall was observed. Further downstream, the small 

vortex was diminished and the two large vortices predominated entire cross 

sectional area. Finally the weaker vortices were merged into one large 

counterclockwise vortex and relatively weaker vortex occupied the whole 

cross section. 
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5. The heat transfer was higher near the end wall and the downstream outer 

wall in the turn, and was relatively low in two regions near the upstream 

outer wall and downstream edge of the divider wall in the turn. 

For the trapezoidal channel with 90° ribs 

1. The reversal flow occurred immediately downstream and upstream of the 

ribs. The separation resulted in relatively low heat transfer, due to a 

relatively hot cell being trapped in the recirculation. However, when the flow 

reattached to the wall between the ribs, this was an area of relatively high 

heat transfer. 

2. The ribs also increased turbulent mixing. The relatively hot flow near the 

wall was continuously mixing with the relatively cooler core flow near the 

center of the channel. This mixing also served to increase the heat transfer 

from the channel. 

3. For the smaller inlet case, in the 90° turn, a strong vortex was generated near 

the top of the rib on the bottom wall, and smaller and slightly distorted one 

occurred the near the near the top of rib on the top wall due to the combined 

effect of centrifugal induced vortex in the turn and rib induced vortex in the 

upstream. Just after the turn, one large counterclockwise rotating vortex 

occupied almost entire cross area and smaller clockwise rotating vortex was 

seen near outer and bottom wall. 

4. For the larger inlet case, in the 90° turn, the strong vortex pair appeared due 

to the centrifugal force action. These vortices were not distorted unlike 
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smaller inlet case. Just after turn, two large counter rotating vortices were 

generated and four small corner vortices were observed. 

5. Heat transfer distributions between ribs appeared periodic because the ribs 

periodically interrupted the boundary layers on the bottom wall. In the 

second passage the periodic heat transfer patterns were not seen due to the 

turning effect. 

For the trapezoidal channel with (+) 60° ribs and (–) 60º ribs 

1. Angled ribs produced significantly higher heat transfer enhancement than 

90° ribs due to two counter-rotating vortices induced by the angled ribs. 

2. The reversal flow occurred immediately downstream of the ribs but there 

were no separations immediately upstream of the ribs. 

3. The vortex induced by the ribs near the top wall was much stronger than the 

one near the bottom wall for (+) 60° ribs and the vortex induced by the ribs 

near the bottom wall was much stronger than the one near the top wall for (–) 

60º ribs. 

4. The Nusselt number ratios decreased from the inner wall to outer wall in the 

spanwise direction and the (–) 60º rib case had the reverse results. 

5. As the Reynolds number increased, the heat (mass) transfer enhancements 

were decreased, and the general trends of Sherwood number ratios were 

similar for all four Reynolds numbers. 

6. The (+) 60° ribs produced higher Sherwood number ratios than the (–) 60º 

ribs. 
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7. The (+) 60° ribs produced higher pressure drop across the turn than the (–) 

60º ribs since the direction of the secondary flow created in the first passage 

by the (–) 60º ribs coincided with that of the secondary flow formed in the 

turn, while that created by the (+) 60° ribs gave the opposite circulation to 

the secondary flow in the turn. 

For the trapezoidal channel with 60° V-shaped ribs  

1. The 60° V-shaped ribs produced four counter-rotating vortices parallel to the 

ribs. In the center of the channel, the flows beyond the ribs and directing to 

ribbed surfaces to reattach were intense and these flows became weaker near 

the outer and inner walls. 

2. Near the inlet, four vortices were almost same in the size and strength. Along 

the streamwise direction, the upper and left side vortex, and lower and right 

side vortex became stronger and bigger, while other two vortices became 

weaker and smaller. Near the heating section, the stronger and bigger two 

vortices became one large vortex extended diagonally. 

3. The Nusselt number ratios had a significant spanwise variation, with low 

levels near the outer and inner walls of the channel, and high levels at the 

central area where the V-shaped ribs meet. 

4. Since the 60° V-shaped rib was half of the 60° angled rib, the boundary layer 

thickness for the flow that moved parallel to one side of the 60° V-shaped rib 

was thinner than that produced by the 60° angled rib. 
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5. Unlike smooth wall case, near outer wall in the turn region heat transfer 

enhancement was mush less. 

For the overall thermal performance 

1. The average Sherwood number ratios and the pressure drops across the turn 

for 60° V-shaped rib had the highest values, then came the case of (+) 60° rib, 

and the Sherwood number ratios and the friction factor ratios for (–) 60º rib 

were the lowest.  

2. For the smaller inlet cases, the highest thermal performance was produced by 

the (–) 60º ribs, and the 60° V-shaped ribs and the (+) 60° ribs had almost 

same levels of the thermal performance. 

3. For the larger inlet cases, the (+) 60° ribs produced the highest values, then 

came the case of the 60° V-shaped ribs, and the thermal performance for the 

(–) 60º ribs was the lowest. 

4. In general, the results show that the values of 0/Sh Sh for the larger inlet cases 

were always higher than those for the smaller inlet cases. 

5. The Reynolds stress model (RSM) showed well flow fields and heat transfer 

distributions but underpredicted average Nusselt number ratios. 

 

The results of this study show that the combined effects of the rib angle, rib 

orientation, and the sharp 180° turn significantly affect the heat (mass) transfer 

distributions in a two-pass trapezoidal channel. The secondary flows induced by the 

sharp 180° turn and the angled or V-shaped ribs play a very prominent role in heat 
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(mass) transfer enhancements. More detailed experimental and numerical 

investigations for the very complex flow field in the trapezoidal channel are needed. 

The detailed local heat (mass) transfer distributions on the all walls also should be 

measured to understand the heat transfer characteristics. 
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APPENDIX A 

EXPERIMENTAL DATA BY MASS TRANSFER 
 
 

Table 1 Segmental average Sherwood number ratios for square channel with smooth 

wall at Re =34,500, trapezoidal channel with smooth walls and 90º ribs at Re = 31,800 

conducted by Lee et al. [35]. 

 

)/(/ oo NuNuShSh  

Trapezoidal channel
with smooth walls 

Trapezoidal channel
with 90º ribs 

Segment 
Square channel 

with smooth walls Smaller
inlet 

Larger 
inlet 

Smaller 
inlet 

Larger 
inlet 

1 1.45 1.76 1.37 3.04 1.99 
2 1.19 1.48 1.11 2.93 1.90 
3 1.14 1.42 1.07 2.89 1.89 
4 1.12 1.37 1.03 2.76 1.85 
5 1.11 1.34 1.02 2.77 1.83 
6 1.13 1.35 1.01 2.75 1.83 
7 1.21 1.45 1.07 2.73 1.92 
8 2.17 2.64 2.14 3.18 2.56 
9 2.42 2.71 2.43 3.76 2.97 

10 2.40 2.69 2.58 2.48 4.07 
11 2.29 2.58 2.29 2.05 3.93 
12 2.09 2.24 2.11 1.88 3.57 
13 1.84 1.79 2.03 1.86 3.47 
14 1.63 1.46 1.94 1.96 3.29 
15 1.44 1.27 1.85 2.06 3.19 
16 1.32 1.19 1.71 2.07 3.10 

Avg. 1.62 1.80 1.67 2.57 2.71 

 

Smaller inlet Larger inlet 
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Table 2 Segmental average Sherwood number ratios for (+) 60º ribs, (–) 60º ribs and 60º 

V-shaped ribs in smaller inlet cases 

 

 )/(/ oo NuNuShSh  

Re=9,400 Re=16,800 Re=31,800 Re=57,200 
Segment 

(+) 60o (–) 60o 60o V (+) 60o (–) 60o 60o V (+) 60o (–) 60o 60o V (+) 60o (–) 60o 60o V
1 3.77 3.94 3.93 3.64 3.81 3.78 3.37 3.52 3.50 3.28 3.39 3.37
2 3.64 3.91 3.78 3.51 3.80 3.62 3.33 3.51 3.42 3.23 3.40 3.32
3 3.61 3.92 3.72 3.50 3.81 3.55 3.31 3.51 3.36 3.23 3.36 3.27
4 3.58 3.91 3.63 3.47 3.81 3.48 3.27 3.52 3.30 3.20 3.36 3.22
5 3.56 3.93 3.57 3.42 3.81 3.45 3.21 3.52 3.24 3.13 3.37 3.16
6 3.55 3.89 3.56 3.38 3.76 3.43 3.16 3.49 3.21 3.12 3.32 3.14
7 3.50 3.93 3.70 3.30 3.79 3.48 3.11 3.49 3.24 3.08 3.33 3.17
8 3.43 3.19 4.26 3.32 3.04 4.01 3.10 2.64 3.59 3.02 2.44 3.38
9 4.14 4.18 4.72 3.93 3.99 4.28 3.55 3.51 3.76 3.39 3.33 3.57
10 3.44 2.80 3.52 3.18 2.72 3.08 2.97 2.57 2.73 2.82 2.64 2.63
11 2.96 2.36 2.70 2.78 2.31 2.43 2.60 2.19 2.24 2.46 2.14 2.23
12 2.45 2.00 2.33 2.32 1.96 2.26 2.19 1.93 2.17 2.06 1.94 2.09
13 2.28 1.77 2.19 2.23 1.76 2.26 2.14 1.75 2.21 2.02 1.79 2.18
14 2.20 1.73 2.22 2.15 1.77 2.37 2.08 1.79 2.29 1.97 1.83 2.28
15 2.19 1.81 2.34 2.15 1.87 2.47 2.05 1.89 2.37 1.95 1.91 2.35
16 2.17 1.95 2.44 2.13 1.98 2.53 2.02 2.00 2.41 1.92 2.02 2.36

Avg. 3.15 3.08 3.29 3.03 3.00 3.16 2.84 2.80 2.94 2.74 2.72 2.86
 

 
t
Smaller inle
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Table 3 Segmental average Sherwood number ratios for (+) 60º ribs, (–) 60º ribs and 60º 

V-shaped ribs in larger inlet cases 

 

 )/(/ oo NuNuShSh  

Re=9,400 Re=16,800 Re=31,800 Re=57,200 
Segment 

(+) 60o (–) 60o 60o V (+) 60o (–) 60o 60o V (+) 60o (–) 60o 60o V (+) 60o (–) 60o 60o V
1 2.64  2.60  2.69  2.55 2.54 2.62 2.41 2.39 2.42  2.33  2.33 2.36 
2 2.65  2.57  2.72  2.57 2.52 2.65 2.43 2.37 2.47  2.37  2.32 2.41 
3 2.66  2.61  2.75  2.58 2.56 2.69 2.46 2.42 2.54  2.38  2.36 2.48 
4 2.69  2.64  2.76  2.61 2.59 2.72 2.51 2.47 2.55  2.43  2.40 2.48 
5 2.73  2.70  2.79  2.64 2.63 2.74 2.55 2.52 2.60  2.45  2.42 2.53 
6 2.78  2.75  2.93  2.70 2.66 2.86 2.57 2.52 2.68  2.48  2.45 2.62 
7 3.05  3.01  3.19  2.84 2.81 3.03 2.70 2.60 2.84  2.58  2.48 2.76 
8 2.75  2.67  2.74  2.63 2.46 2.53 2.47 2.24 2.33  2.34  2.09 2.24 
9 3.88  3.81  3.80  3.60 3.42 3.45 3.32 3.14 3.14  3.11  2.89 2.98 
10 4.49  4.12  4.86  4.24 3.84 4.65 4.07 3.75 4.39  3.87  3.53 4.29 
11 4.40  4.37  4.67  4.15 4.10 4.46 3.99 3.98 4.23  3.82  3.76 4.12 
12 4.19  3.93  4.36  3.99 3.79 4.21 3.88 3.59 4.01  3.68  3.49 3.85 
13 4.16  3.76  4.27  3.95 3.63 4.10 3.78 3.45 3.90  3.58  3.36 3.75 
14 4.10  3.64  4.19  3.88 3.52 3.99 3.72 3.32 3.79  3.54  3.21 3.61 
15 4.08  3.68  4.18  3.85 3.54 3.94 3.68 3.36 3.72  3.52  3.22 3.55 
16 4.04  3.77  4.16  3.82 3.61 3.92 3.66 3.44 3.65  3.49  3.28 3.48 

Avg. 3.46  3.29  3.57  3.29 3.14 3.41 3.14 2.97 3.20  3.00  2.85 3.09 
 
 

 

Larger inlet
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Table 4 Friction factor ratios in trapezoidal channel 
 
 

Smaller inlet cases 
f/f0,TurnRe 

Smooth 90o (+) 60o (–) 60o 60o V 

9,400 6.54 11.38 11.59 9.80 13.22 
16,800 7.63 13.77 13.98 11.71 15.52 
31,800 9.00 15.88 16.16 13.72 18.33 
57,200 10.16 18.95 19.23 16.23 22.12 

Larger inlet cases 
f/f0,TurnRe 

Smooth 90o (+) 60o (–) 60o 60o V 

9,400 9.42 17.14 11.59 9.80 13.22 
16,800 11.46 21.36 13.98 11.71 15.52 
31,800 13.28 25.45 16.16 13.72 18.33 
57,200 15.40 29.68 19.23 16.23 22.12 

 
* Smooth walls and 90o rib cases were conducted by Lee et al [35]. 
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Table 5 Thermal performance in trapezoidal channel 
 

Smaller inlet cases 
TP 

Re 
Smooth 90o (+) 60o (–) 60o 60o V 

9,400 1.04 1.18 1.39 1.44 1.39 
16,800 0.98 1.09 1.26 1.32 1.26 
31,800 0.86 1.02 1.12 1.17 1.11 
57,200 0.80 0.93 1.02 1.08 1.02 

Larger inlet cases 
TP 

Re 
Smooth 90o (+) 60o (–) 60o 60o V 

9,400 0.87 1.19 1.43 1.40 1.42 
16,800 0.74 1.05 1.28 1.26 1.27 
31,800 0.71 0.92 1.17 1.14 1.14 
57,200 0.67 0.85 1.05 1.03 1.04 

 
* Smooth walls and 90o rib cases were conducted by Lee et al [35]. 
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APPENDIX B 

 NUMERICAL DATA BY RSM AT Re = 31,800 
 
 
Table 6 Average Nusselt number ratios by RSM for square channel with smooth wall, 

trapezoidal channel with smooth walls and 90º ribs 

 
 

oNuNu /  

Trapezoidal channel
with smooth walls 

Trapezoidal channel
with 90º ribs Segment Square channel 

with smooth walls 
At Re =34,500 Smaller

inlet 
Larger 

inlet 
Smaller 

inlet 
Larger 

inlet 
1 1.57 1.90 1.53 2.29 1.74 
2 1.30 1.55 1.12 2.24 1.67 
3 1.21 1.43 1.03 2.21 1.64 
4 1.15 1.36 0.98 2.21 1.62 
5 1.12 1.32 0.94 2.22 1.62 
6 1.09 1.27 0.92 2.19 1.63 
7 1.07 1.25 0.93 2.16 1.71 
8 2.00 2.27 1.85 2.87 2.76 
9 2.32 2.71 2.23 3.85 3.44 

10 2.45 2.60 2.46 1.88 3.98 
11 2.37 2.34 2.42 1.61 2.69 
12 1.88 1.94 2.30 1.58 2.63 
13 1.60 1.56 2.09 1.64 2.31 
14 1.46 1.25 1.93 1.70 2.36 
15 1.38 1.08 1.81 1.73 2.26 
16 1.32 1.02 1.71 1.76 2.27 

Avg. 1.58 1.68 1.64 2.13 2.27 

 
 

 

Smaller inlet Larger inlet  
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Table 7 Average Nusselt number ratios by RSM for (+) 60º ribs, (–) 60º ribs and 60º V-

shaped ribs 

 

oNuNu /  

Trapezoidal channel
with (+) 60º ribs 

Trapezoidal channel
with (–) 60º ribs 

Trapezoidal channel
with 60º V-ribs Segment 

Smaller 
inlet 

Larger 
inlet 

Smaller
inlet 

Larger 
inlet 

Smaller 
inlet 

Larger 
inlet 

1 2.56 1.87 2.71 1.88 2.67 1.90 
2 2.55 1.87 2.71 1.88 2.58 1.90 
3 2.52 1.88 2.68 1.89 2.58 1.90 
4 2.51 1.85 2.65 1.90 2.49 1.93 
5 2.48 1.93 2.65 1.90 2.45 1.89 
6 2.38 1.93 2.67 1.97 2.37 1.90 
7 2.38 1.98 2.87 2.12 2.44 2.16 
8 2.70 2.03 2.52 2.02 3.13 2.15 
9 3.62 3.18 3.08 2.87 3.68 3.20 

10 2.26 3.94 1.87 3.16 1.94 2.99 
11 2.07 3.15 1.62 3.17 1.66 2.90 
12 1.80 3.03 1.56 2.69 1.69 2.90 
13 1.85 3.03 1.54 2.59 1.74 2.83 
14 1.80 2.97 1.77 2.53 1.79 2.81 
15 1.74 2.87 1.91 2.47 1.79 2.81 
16 1.69 2.78 2.04 2.53 1.83 2.80 

Avg. 2.31 2.52 2.30 2.35 2.30 2.44 

 
 

Smaller inlet Larger inlet 
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