
  

 

MIDDLE GRADES IN-SERVICE TEACHERS PEDAGOGICAL 

CONTENT KNOWLEDGE OF STUDENT INTERNAL REPRESENTATION OF  

EQUIVALENT FRACTIONS AND ALGEBRAIC EXPRESSIONS 

 

 

A Dissertation 

by 

LESLIE WOODARD  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

 

December 2008 

 

 

Major Subject: Curriculum and Instruction 



  

 

MIDDLE GRADES IN-SERVICE TEACHERS PEDAGOGICAL 

CONTENT KNOWLEDGE OF STUDENT INTERNAL REPRESENTATION OF  

EQUIVALENT FRACTIONS AND ALGEBRAIC EXPRESSIONS 

 

A Dissertation 

by 

LESLIE WOODARD  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  Gerald Kulm 
Committee Members, Dianne Goldsby 
 Jon Denton 
 Christine Stanley 
Head of Department, Dennie Smith 

 

December 2008 

 

Major Subject: Curriculum and Instruction 



 iii 

ABSTRACT 

 

Middle Grades In-Service Teacher Pedagogical Content Knowledge of Student 

Representation of Equivalent Fractions and Algebraic Expressions. (December 2008) 

Leslie Woodard, B.S., Prairie View A&M University; 

M.Ed., Prairie View A&M University 

Chair of Advisory Committee: Dr. Gerald Kulm 

 

 This study examined teacher pedagogical content knowledge changes through a 

Middle School Mathematics Program professional development workshop, development 

of noticing use of student representations, and teacher changes in hypothetical learning 

trajectories due to noticed aspects of student representation corresponding to the 

hypothetical learning trajectory model.  

 Using constant comparatives and repertory grid analysis, data was collected in 

two phases. Phase one, the teacher pre-test, occurred at the beginning of the summer of 

the 2003 professional development workshop. Phase two, the teacher post-test, occurred 

at the end of the workshop. Twenty-four teachers supplied data on pre- and post-tests 

during phases one and two. Eleven teachers were from Texas and 13 from Delaware. Six 

Texas and eight Delaware teachers worked with the algebraic expression concepts. Five 

Texas and five Delaware teachers worked with the equivalent fraction concepts. Four 

mathematics education researchers from Texas, three from Delaware, and two from the 
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American Association for the Advancement of Science participated in facilitating the 

professional development. 

 The results show that teacher pedagogical content knowledge changes with the 

help of a professional development partnership. The differences in knowledge can be 

measured with a hierarchal cluster analysis of the repertory grid by analyzing 

relationships between constructs and elements. Teacher hypothetical learning trajectories 

change depending on student representations of what they do and do not know about 

concepts. 

 The study encourages teachers to use knowledge of students’ representation 

about a concept to determine what to teach next and how the concept should be taught. 

Teachers should use different types of representations including formal, imagistic, and 

action representations in teaching mathematical ideas. This will promote student 

development in all process standards including reasoning and proof, communication, 

problem solving, and connection.  

 The findings suggest that teacher pedagogical content knowledge can be 

redefined during professional development partnerships. Furthermore, teachers’ 

knowledge of representation is varied and emphasis on the imagistic representation 

should be explored further. Finally, professional development models that facilitate how 

to extract what a student does and does not know based on representation, can be the 

basis for defining hypothetical learning trajectories.  
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CHAPTER I 

INTRODUCTION 

 

Background 

 The National Council of Teachers of Mathematics (NCTM) offers several 

content and process standards in its publication Principles and Standards for School 

Mathematics including number and operations, algebra, measurement, geometry, and 

probability and statistics as content standards and reasoning and proof, communication, 

problem solving, connection, and representation as process standards (NCTM, 2000). 

Reasonably, students’ use of representation and teacher perception and cultivation of 

these uses can improve comprehension of all content standards and advance the 

understanding of the utilization of the remaining process standards (Goldin, 2003; NRC, 

2001).  

Teachers must have thorough understanding of pedagogy and content when 

analyzing student characteristics of representation for student success in reform 

mathematics curricula. Teachers make decisions every day in the classroom regarding 

the education of students, and the success of these decisions depends on professional 

reflection, adaptation to change, conceptualization, and application of principles relevant 

to student learners, pedagogy, content, and access to substantive, meaningful, and 

lifelong professional development to cultivate these principles (Tanner and Tanner, 

2007). Undoubtedly, the latter has become a major tool used to achieve reform efforts  

____________ 
This dissertation follows the style of Journal of Research in Mathematics Education. 



 2

that have emerged in mathematics education (NCTM, 1989, 2000). Professional 

development programs have become a means by which the mathematics education 

research community can bring current reform strategies and concepts to the classroom 

teacher so that the teacher can bring these models to life through classroom practice, 

hence improving student achievement.  

 Joyce and Showers (2002) stated that four conditions must be present in 

professional development to affect student achievement significantly. These conditions 

include (a) a collaborative community of professionals that practice, share results, and 

make revisions, (b) staff development content that evolves from curricular and 

instructional strategies that have a high probability of increasing students’ ability to 

learn, (c) a magnitude of change in student learning that is evident and significant, and 

(d) professional development processes that emphasize skills to implement what the 

teacher is learning. Furthermore, the National Science Education Standards set by the 

National Research Council in 1997 state that professional developments must be 

coherent and integrated with collaboration among teachers and developers including 

university faculty and stakeholders. In essence, it is important teachers collaborate 

among themselves and with researchers to develop and enhance curriculum with the 

goals of student success in mind. By examining the dynamics of professional 

development partnerships, changes in teacher pedagogical content knowledge, and 

evaluating hypothetical learning trajectories, the applications of the outcomes should 

enhance progression of student success in mathematical problem areas. 
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Significance of the Study 

The study is significant for three reasons. First, it examines the effectiveness of 

professional development partnerships between mathematics education researchers and 

teachers. Second, it examines changes in teacher pedagogical content knowledge of 

representation in two important areas in mathematics education in middle school s: 

number and algebra. Third, it offers a means to quantify qualitative data in education 

through the Repertory Grid Analysis method. The goals of this study align with the goals 

of the Middle School Mathematics Program (MSMP, 2002, p.4) focusing on the “study 

[of] classroom conditions that enable students to achieve the ambitious learning goals set 

forth in the new generation of reform curricula.” 

Professional Development Partnerships 

Six strategy clusters for professional development for teachers of mathematics 

were introduced by Loucks-Horsley, Love, Stiles, Mundry, and Hewson (2003). These 

include (a) aligning and implementing curriculum, (b) adopting collaborative structures, 

(c) examining teaching and learning, (d) practicing immersion experiences, (e) 

practicing teaching, and (f) developing vehicles and mechanisms.  

Collaborative structures have several underlying assumptions including (a) 

relating applicable content to teacher practices, (b) respecting teachers as adult learners, 

(c) collaborating for beneficial mathematics education, and (d) interacting with 

individuals with similar goals to promote a quality learning atmosphere. Three strategies 

that fall under the collaborative structure cluster are partnerships, professional networks, 

and study groups. Key elements for partnerships are (a) partners are equal; (b) roles for 
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mathematics education researchers are clearly defined; (c) consistent values, goals, and 

objectives are shared by all partners; (d) specific benefits are given to the teachers; and 

(e) specific benefits are given to the mathematics education researchers.  

Partnerships are a beneficial way for teachers to learn new content imperative to 

their practice, yet several challenges arise including inconsistencies with goals, 

objectives, and benefits for all partners. Goals, values, and objectives should respond to 

educational needs and not undermine curriculum. Benefits for the teacher as a partner 

include exposure to real world applications, different perspectives, and building a 

broader knowledge base by acquiring research from mathematics education researchers. 

The mathematics education researcher benefits by becoming familiar with the needs of 

the school system and by becoming more interactive in public education by stepping out 

of traditional university roles.  

Loucks-Horsley et al. (2003) state conflict arises when the mathematics 

education researcher enters into the partnership trying to “fix” the problem with the 

belief that the teachers need more content. The researcher exerts this belief by taking 

control of the partnership. Teachers, on the other hand can feel intimidated by the 

mathematics education researchers who they view as the experts. Dewey’s “normal 

school problem” provides historic evidence of concerns between “university research 

mission and its role in the preparation of teachers” (Shulman, 1995, p. 511). More 

recently AAAS (2002), Joyce and Showers (2002), NCTM (2000), and NRC (2002) 

have pleaded for coherent, integrated, and collaborative participation among teachers 

and researchers to promote student success and achievement in the classroom.  
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This study seeks to investigate the effectiveness of professional development 

partnerships between university mathematics education researchers and middle school 

teachers by observing and analyzing teacher pedagogical content knowledge of student 

representation through a combination of action research, and by examining student work 

and thinking. The two aforementioned concepts fall under the examining teaching and 

learning strategy cluster for professional learning identified by Loucks-Horsley et al. 

(2003). 

Middle School Problem Areas 

Student achievement in fraction and algebra concepts can be increased by a 

teacher “having knowledge of student common conceptions and misconceptions about 

the subject matter” (Tirosh, 2000, p.5). Hence, the teacher’s development of pedagogical 

content knowledge of representation regarding equivalent fractions and algebraic 

expressions is an important issue because both topics have proved to be monumental 

obstacles for mathematics students. Constructivist-based professional development 

concerning these obstacles offers an opportunity for obtaining empirical evidence about 

why teaching fractions has proved to be so difficult and why algebra teachers experience 

difficulty (Davis, Hunting, & Pearn, 1993; Kieran, 1992; Schmidt, 1994, 1996; Van 

Dooren, Verschaffel, & Onghena, 2002). 

Student Representation 

Representation is defined as a configuration of symbols, objects, and signs that 

represent mathematical ideas (Golding & Kaput, 1996). When looking to change or 

enhance teaching methodology in mathematics to promote student achievement, 
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investigation of the concept of representation includes student representation of 

mathematical learning and teacher representation of pedagogical content knowledge.  

Teacher pedagogical content knowledge consists of (a) synthesis of knowledge 

of mathematics; (b) knowledge of specific content within mathematics; and (c) 

knowledge of teaching, instruction, and classroom and organizational management 

(Shulman, 1986; NCTM, 2000). Teacher pedagogical content knowledge of student 

representations helps to broaden and deepen student mathematical understanding. By 

understanding student constructs, teachers are better able to structure hypothetical 

learning trajectories for individual students.  

Personal Construct Psychology and Repertory Grids 

In identifying teacher and student representation, one way to quantify data is 

through repertory grids. Repertory grids apply the personal construct psychology 

methodologies of Kelly (1955a). The grid offers a numerical way of comprehending an 

individual’s psychological process through a matrix of elements and bipolar constructs. 

Students’ use of representation and the ability of the teacher through pedagogical content 

knowledge to guide hypothetical learning trajectories can lead to generations of 

successful problem solvers. 

 

Theoretical Model for the Study 

Much research has been done on the teaching and learning of mathematics, 

pedagogical content knowledge, representation, and teacher professional development. 

Yet little has been done on the synthesis of these four components and their effects in 
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changing hypothetical learning trajectories. Hypothetical learning trajectories were 

introduced by Simon and Tzur (1997) in Explicating the Teachers Perspective from the 

Researchers’ Perspective: Generating Accounts of Mathematics Teachers Practice. The 

concept is defined as the path hypothesized by the teacher as instruction proceeds during 

development of pedagogical content knowledge. Simon and Tzur offered a 

methodological approach to understanding how a teacher develops by moving from 

traditional to reform teaching. The teachers in the present study were videotaped and 

interviewed and these videotapes of classroom teaching and personal interviews were 

used to develop rationales and plans for following lessons. These rationales and plans 

were founded on current educational research and the teachers were able to work 

simultaneously with education researchers to develop the next piece of the curriculum. 

The study found that teacher content and pedagogy should be reviewed initially in 

professional developments, and then processes to develop the teacher’s practices should 

be implemented. Researchers can be integral parts of the teacher’s classroom 

relationship by portraying the complex interrelationships among aspects of teacher 

knowledge of representation and its relationship to current and future instruction, 

curriculum development, and hypothetical learning trajectories. 

Representations are dynamic vehicles used to solve problems and communicate 

the results of problem solving (Boaler, 2008). It is important to encourage students to 

represent their mathematical ideas in ways that make sense to them, even if those 

representations are not conventional. At the same time, students should learn 
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conventional forms of representation in ways that facilitate their learning of mathematics 

and their communication with others about mathematical ideas (NCTM, 2000). 

There are two types of representations: internal and external. Internal 

representation “gives us the knowledge for describing individual knowledge structures 

and problem-solving processes” while external representations “permit us to talk about 

mathematical relations and meaning apart from inferences concerning the individual 

learner or problem solver” (Goldin & Kaput, 1996, p. 406). Within these two types of 

representation, there are three dimensions: (a) display versus action, (b) 

imagistic/analogistic versus conventional character based/verbal, and (c) formal versus 

informal. Action representation is representation on paper that can be manipulated and 

represented in a different way. For example, action representation can be a linear 

equation that can be represented on a graph, a table, or a word problem. Display is a 

representation on paper that can only be represented one way and can not be changed. 

Formal representation is the representation of mathematics foundation and procedure. 

For example, formal representation can represent an arithmetic algorithm. Informal 

representation can become formal representation the more a student understands the 

content. Imagistic representation is non-verbal, non-formal representation with 

manipulative use such as use of the graphing calculator to find the solution to a system 

of equations while conventionally, students would be required to complete this by hand. 

Because the goals of the professional development were to focus on student knowledge 

structures by way of maturity of pedagogical content knowledge, the focus of this study 

was geared toward internal representation. The internal representation constructs were 
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presented with the teacher-learned elements to determine what and/or how to teach the 

student to create representations that are more powerful. Teacher answers on the pre- 

and post- tests were coded as the representation constructs while the questions were 

coded as the elements. This research study approached the concepts of teacher changes 

in pedagogical content knowledge and hypothetical learning trajectories in a 

constructivist based professional development experience on representation of algebraic 

expressions and equivalent fractions at the middle school level.  

To investigate teacher change in pedagogical content knowledge of 

representation, personal construct psychology (Kelly, 1955a) was used. By using 

personal construct psychology, the teacher elements are formed from classroom 

experiences and beliefs about student learning prior to professional development. After 

professional development, the teacher elements were re-evaluated for change. The 

repertory grid represents “personal constructs as a set of distinctions made about 

elements relevant to a problem domain” (Gaines & Shaw, 1986, p.317). This 

methodology can capture a coherent picture of researcher goals and teacher elements 

together before and after professional development experience on pedagogical content 

knowledge, eminently leading to a lens into student conceptions and misconceptions in 

both fractions and algebra. As teachers have more answers to questions after the 

professional development experience, knowledge students conceptions and 

misconceptions grow and show on the grid. 

Figure 1 shows teacher pedagogical content knowledge as a synthesis of teacher 

beliefs, teacher content knowledge, and teacher pedagogical knowledge. Student 



 10

representation is interpreted through teacher pedagogical content knowledge and the 

hypothetical learning trajectory for the student is defined. 

 

 
Figure 1. Model of teacher pedagogical content knowledge of student representation. 
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Teachers begin by interpreting student internal representations through all 

different aspects of pedagogical content knowledge in Figure 1. After the teachers 

interpret the representation they move to guiding the hypothetical learning trajectory 

determining what to teach next and how to teach it.  

In Figure 2, a professional development partnership is imposed between the 

teacher pedagogical content knowledge of student representation and the hypothetical 

learning trajectory. This should allow teachers to redefine aspects of students’ internal 

representation and modify hypothetical learning trajectories to promote improved 

student learning.  

Teachers begin by interpreting student internal representations through all 

different aspects of pedagogical content knowledge in Figure 2. After the teachers 

interpret the representation they move to professional development partnerships with 

mathematics education researchers and constantly redefining the hypothetical learning 

trajectory determining what to teach next and how to teach it. This represents a cyclical 

process. 
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Figure 2. Model of teacher pedagogical content knowledge of student representation 

with professional development partnership. 
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Purpose of the Study 

 The purpose of this research is to investigate middle school teachers’ 

development of pedagogical content knowledge and hypothetical learning trajectories of 

student representation of equivalent fractions and algebraic expressions during 

mathematics education reform. Specifically, the research addresses four questions.  

1. What is teacher pedagogical content knowledge of student representation of 

equivalent fractions prior to and after a constructivist professional development 

experience based on pedagogical content knowledge?  

2. What is teacher pedagogical content knowledge of student representation of 

algebraic expressions prior to and after a constructivist professional development 

experience based on pedagogical content knowledge?  

3. Do the hypothetical learning trajectories of the teachers for equivalent fractions 

change after the professional development experience? 

4. Do the hypothetical learning trajectories of the teachers for algebraic expressions 

change after the professional development experience? 

The research questions align with the goals of MSMP(2001). The "findings 

will strengthen national policy decisions about the role of curriculum materials development, 

professional development, and ongoing support in promoting student achievement in 

mathematics. The project takes advantage of the variety of development and implementation

efforts that currently exist in mathematics education and addresses key questions asked by

educators and the public: Can the reform curricula really improve student learning? Under

what conditions does such learning occur?" (MSMP Grant Proposal, 2002, p.4)
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     Delimitations 

     There are two delimitations to this study: 

           1.  Participants were asked to participate voluntarily in the middle school 

          mathematics program; therefore, data in the study only represents those who 

          participated.  

           2. The video clip viewed by teachers was not in its entire context; therefore, there 

          may be bias on the part of those analyzing the video. 

 

     Definitions 

      Terms used in this study are defined as follows: 

           1. Content knowledge is the knowledge of specific content in mathematics. 

           2. Pedagogical knowledge is the knowledge of teaching, instruction, and classroom 

           and organizational management (NCTM, 2000). 

           3.   Pedagogical content knowledge is the synthesis of the three knowledge basis, 

          context, pedagogy, and subject matter (Shulman, 1986). 

          4.   Subject matter knowledge is the knowledge of mathematics. 

          5. Hypothetical learning trajectory is the path hypothesized by the teacher and the 

         researcher when proceeding in development of pedagogical content knowledge. 
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6. Mathematical representation is the configuration of symbols, objects, and signs 

that represent mathematical ideas (Goldin & Kaput, 1996). 

7. Teacher representation is the knowledge of student representation to teach 

successfully (NCTM, 2000). 

8. Action Representation is written representation that can be manipulated to be 

represented in several different ways (Goldin & Kaput, 1996). 

9. Display Representation is written representation that can only be represented one 

way (Goldin & Kaput, 1996). 

10. Formal Representation is representation of mathematical computation and 

procedure (Goldin & Kaput, 1996). 

11. Informal Representation is representation of mathematical computation and 

procedure as a student interprets it in relation to personal congruence through 

non-mathematical terms (Goldin & Kaput, 1996). 

12. Imagistic Representation is representation of manipulatives (Goldin & Kaput, 

1996). 

13. Conventional Representation is traditional representation (Goldin & Kaput, 

1996). 
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CHAPTER II 

REVIEW OF THE LITERATURE 

 

Background 

 This study evaluates teacher pedagogical content knowledge changes based on 

student representation following a constructivist-based professional development that 

covered content strands on number and algebra within a reform mathematics curriculum. 

First, it is necessary to describe the reform curriculum and the reasons it exists. Second, 

pedagogical content knowledge and its importance in mathematics education will be 

addressed. This will be followed by a discussion of representation and algebra followed 

by fractions content and how they relate to the pedagogical content knowledge of 

teachers. The fourth area discussed will be professional development for the 

mathematics teacher and the constructivist basis for those professional developments. 

The final discussion covers the repertory grid method used to investigate teacher 

pedagogical content knowledge. 

 Current reforms in mathematics have called for a major change in the way 

mathematics is taught (NCTM, 2000). These changes have resulted in a focus on 

ongoing teacher development for teacher and student success in the classroom. One way 

this ongoing development has taken place in the mathematics education community is by 

“educating experienced teachers to transform their current practice to be more consistent 

with current reform principles” through “designing and implementing successful 

learning opportunities for teachers” (Simon & Tzur, 1999, p. 253).  
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Review of NCTM Principles and Standards and Reform 

 Mathematics education has brought about major reform in the past fifteen years. 

These major reform issues are outlined in Principles and Standards for School 

Mathematics, published in 2000 by the NCTM. Momentous changes in our world have 

occurred in both technology and diversity. Consequently, these changes have brought 

about redirection in mathematics education. It became necessary for mathematics 

students of all ages to be in a classroom where they are constructing and applying 

mathematical knowledge based on real-life experiences, cultural heritage, and the 

development of science and technology. 

 The NCTM previously published Curriculum and Evaluation Standards for 

School Mathematics in 1989. There were several changes from the 1989 document in the 

2000 document, including the addition of principles, major technology reform, providing 

real life situations in an equitable environment, and constructivist learning. To address 

some of the aforementioned issues in the 2000 document, it is first necessary to 

introduce a timeline that explains variables that affect mathematics education before, 

during, and after the implementation of the 1989 Standards and how this led to the 2000 

Principles and Standards (Reys, 2001; Schoen, Fey, Hirsch, & Coxford, 1999; 

Schoenfeld, 2004). Next, the six principles for school mathematics that describe integral 

parts of mathematics education and how the changes from 1989 to the 2000 document 

fall under the umbrella of those principles will then be addressed.  

 Changing research and epistemological bases regarding mathematical thinking 

and learning began in the 1970s, leading to the creation of the Curriculum and 
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Evaluation Standards for School Mathematics by the National Council of Teachers of 

Mathematics in 1989. Rosen (2000) stated there are three types of education: education 

for democratic equality, education for social efficiency, and education for social 

mobility. A major issue in mathematics teaching and learning is equity and 

inclusiveness. The questions of “Who gets to learn math?” and “What type of math gets 

to be learned?” had to be answered and be inclusive of socio-economically challenged 

and defy cultural barriers.  

The National Research Council in its articles Everybody Counts (1989) and A 

Challenge of Numbers (Madison & Hart, 1990) showed great concern with the troubling 

attrition rates associated with the African American and Latino communities. In the 

1890s, only the elite were educated and only 7% of 14 year olds attended high school, 

with only 3.5% achieving graduation. Elementary school at this time was considered 

education for all and only minimal mathematics skills were taught. The high school 

curriculum was considered very rigorous in mathematics. By 1949, 75% of children ages 

14-17 attended high school, with 49% graduating. However, the rigorous mathematics 

curriculum did not change, and fewer students took algebra and geometry. This was 

considered a major pitfall as many who tried to enlist in the army lacked the basic 

mathematics skills necessary for an officer. Because of the U.S.S.R.’s launching of 

Sputnik in 1957, the National Science Foundation supported a “new math” that included 

set theory, modular arithmetic, and symbolic logic. One producer of the new math 

curriculum was the School Mathematics Study Group.  
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Teachers and parents felt uncomfortable with the new math and were ill prepared 

to teach it; within about 13 years, the “new math” was no more and the focus returned to 

basic skills and procedures. During this time, around the 1970s, enrollment in high 

school increased. However, the standard mathematics track remained traditional and it 

was intended primarily for college-bound students. For those students not intending to 

go to college, courses such as Math of Money, Business Math, and Shop Math were 

added to the curriculum. By 1980, international studies such as the Second International 

Mathematics Study showed that American students had little problem solving ability and 

that improvement in basic skills had been minimal. In 1983, the national crisis of the 

deficit caused the United States to re-evaluate the curriculum once again. The National 

Science Foundation funded the project Man: A Course of Study (MACOS). The project 

was failed due to political backlash. Hence, the National Council for Teachers of 

Mathematics had to take on a leadership role in mathematics education but had to be 

very careful because the MACOS situation proved how politics affect curriculum.  

In addition to examining the history behind the United States re-developing 

mathematics curricula during and directly after national crises, it is also necessary to 

take an in-depth look at how textbooks evolved during this time to understand the 

development of the NCTM’s Principles and Standards. Reys (2001) introduced several 

factors that contributed to improvements in mathematics education during this difficult 

period. These include:  

1. There is no national curriculum. 
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2. Every state has its own framework that influence what mathematical content is 

taught and when.  

3. About half the states are “adoption states” in which state committees review and 

approve textbooks.  

4. The rest are “open states” in which each district, or sometimes the school, 

chooses its own textbooks. 

5. Most districts adopt new mathematics books within a five to seven year cycle but 

there is no single period where all schools are adopting textbooks. 

6. The availability of technology, including calculators and computers, varies 

greatly, so assuming the existence of a basic core of technology across all 

schools is risky. 

7. A serious shortage of certified mathematics teachers and a lack of deep 

mathematical knowledge among many who do teach limit the types of 

mathematics curricula that can be developed. (Reys, 2001, p. 256) 

Reys further adds that these factors cause textbook publishers to develop materials that 

are marketable with many different frameworks and that can be used by teachers that 

have a wide range of different knowledge bases. Schoenfeld (2004) further adds that the 

textbooks are bundled in packages for elementary and middle school levels for 

coherence.  

With this history in mind, the National Council of Teachers of Mathematics 

developed Curriculum and Evaluation Standards for School Mathematics (NCTM, 

1989). The goals of the Standards were to create a vision of what it means to be 
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mathematically literate and competent and to create a set of standards to guide the 

redevelopment and revision of the mathematics curriculum. According to Schoenfeld 

(2004), mathematical competence depended on a number of factors including: (a) 

metacognition; (b) beliefs about self and mathematics; (c) knowledge base; and (d) 

access to problem solving strategies. The social goals of the curriculum were to create 

mathematically literate workers, lifelong learning, an opportunity for all, and an 

informed electorate. Furthermore, the curriculum was also supposed to produce 

confident problem solvers who valued mathematics and could reason and communicate 

the concepts effectively. Not only did NCTM want to produce different learners, but for 

this mission to take place teachers would also have to be different. Teachers would have 

to learn to be active facilitators and guide students through group discussions, 

mathematics models, and projects.  

The NCTM standards presented a framework of guidelines for curriculum 

development and assessment, but it was not a scope, sequence, or curriculum. They 

encompassed four sections in three different grade bands. The grade bands were K-4, 5-

8, and 9-12, and began with math as problem solving, math as communication, math as 

reasoning, and math as connections. Three of the sections were content and process 

standards while the other one was to define standards for student and program 

evaluation. The standards could be applied to all mathematics teachers, but they were 

considered vague. Furthermore, they were seen as a threat to social order by making the 

traditional curriculum easier by calling for mathematics for all.  
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 The NCTM Standards were used in many research proposals, and in 1990-1991, 

the NSF called for proposals of curricula that were consistent with the Standards. In 

1995, the NRC followed by developing the National Science Education Standards. In 

1992, the California Department of Education designed a framework for K-12 in 

mathematics. This was followed by the publishing of various reform texts in 1993-1994.  

These reform texts once again looked different to parents and teachers. 

Therefore, new challenges were faced including teachers not having adequate 

pedagogical content knowledge to facilitate this type of instruction. The California 

Learning Assessment System and websites against reform were started by parents and 

caused a review of the framework developed by the California Department of Education. 

Assembly Bill 170 (after hearings in 1995 and 1996) called for a general education 

curriculum based on fundamental skills, but not limited to basic computation skills in 

mathematics. Furthermore, in 1997, mathematics research professors devised an anti-

reform mathematics curriculum. Carnine (1997) reviewed the research on reform 

standards based curricula, but was an advocate of direct instruction. In 1998, Richard 

Riley, who was then the United States Secretary of Education, called for a cease-fire 

between the traditionalists with classical mathematical values and the reformers that 

were process oriented.  

In 2000, NCTM published the Principles and Standards for School Mathematics. 

These principles include equity, curriculum, teaching, learning, assessment, and 

technology. Equity involves support for every type of student. The curricula are focused, 

coherent, and aligned across grades and sometimes content. Teaching not only requires 
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knowing what students know and need to know, it also means knowing with 

understanding and building new knowledge from prior knowledge, using assessment that 

supports learning and benefits student and teacher, and using technology that influences 

and enhances mathematics learning. 

Increased use of technology, constructs of algorithms, revision of student goals, 

and addition of discrete mathematics across the entire curriculum all fall under 

categories in the principles. The principles were an addition to the standards developed 

by the NCTM. They describe the features of an efficient and effective mathematics 

classroom, whereas the standards describe the content constructed within the classroom. 

The principles are described below. 

1. Technology Principle. Technology is not a replacement for foundational 

understanding but helps foster it. Changes in technology and our society have 

brought about a need for all students to have calculators available to them, to 

have computers in every classroom, to have computer access for all students, and 

the use of calculators and computers to solve problems. 

2. Teaching and Leaning Principle. Discrete mathematics was a major change; 

spread discrete mathematics across the entire curricula at all grade levels instead 

of just for grades 9-12. 

3. Curriculum and Equity Principle. Reform goals were re-examined and 

mathematical literacy became a major goal to create mathematically literate 

workers, lifelong learning, opportunities for all, and an informed electorate. 
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4. All Principles. Student goals were redefined to include valuing mathematics, 

having confidence in mathematics, becoming problem solvers, and 

communicating and reasoning mathematics. 

5. Teaching, Learning, and Assessment Principle. Students were to be allowed to 

construct algorithms on their own.  

With the historical background of the reform of mathematics curriculum in mind, 

professional workshops were to be geared toward the development of teacher 

pedagogical content knowledge and student problem solving through representation was 

to be multiplied. 

Pedagogical Content Knowledge 

Long and Coldren (2006) state that effective instruction to promote student 

learning involves a confluence of at least three fundamental processes on the part of the 

instructor: (a) adequate knowledge of the material and content, (b) knowledge of how to 

present material known as pedagogical knowledge, and (c) the ability to create an 

interpersonal context in which the material is to be learned. The first two processes that 

Long and Coldren (2006) present were developed in Shulman’s Pedagogical Content 

Knowledge (1987) and state that effective teachers have particular knowledge of 

teaching instruction, the curriculum, and also comprehension of the background and 

culture of the students and the contexts that they learn. Pedagogical content knowledge 

is described as the knowledge formed by the synthesis of three knowledge bases: subject 

matter, pedagogy, and context. It is considered the set of attributes that help the teacher 

transfer the knowledge of content to students and guide the students to understand the 
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content in a manner that is personally meaningful. Shulman’s Knowledge Growth in 

Teaching (1995) project was a model for understanding these aspects of teaching and 

learning. Pedagogical content knowledge epitomizes the belief that the knowledge base 

of teaching lies at the intersection of “content and pedagogy” and in the teacher’s 

capacity to “transform the content knowledge” into “pedagogically powerful” and 

adaptive forms that apply to each student. Therefore, the teacher must know the content, 

know how to present it, and make it relevant to the ever-changing student.  

Much of the research on pedagogical content knowledge is based on elementary 

education, although the concept can be highly evolved to address middle and secondary 

education, teacher researcher relationships, and curriculum development. The studies 

look intensely at teacher knowledge of mathematics, general pedagogical practice, and 

pre-service teachers. However, they do not closely examine aspects such as knowledge 

of the development of students’ mathematical understanding and how this knowledge 

can be used to develop and revise curricula. Bright and Vacc (1994) studied the changes 

in pre-service elementary school teachers’ beliefs about teaching and learning 

mathematics by investigating their ability to provide mathematics instruction based on 

student thinking. The Cognitively Guided Instruction Belief Scale was used to assess 

teacher beliefs about instruction. Teachers worked through problems and then watched 

students work through problems on video. The teachers’ work and the students’ work 

was compared and contrasted. The teachers and researchers failed to hypothesize what 

should be done next based on the comparison and contrast of data.  
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Tirosh (2000) investigated the development of pre-service elementary school 

teachers’ pedagogical content knowledge of division of fractions. The teachers were 

asked to work through two fraction problems and pedagogical content knowledge and 

subject matter content knowledge were assessed. Teachers were asked to list mistakes 

they believed students would make on these problems. It was found that the teachers 

could divide fractions but could not thoroughly explain the procedure and were further 

unaware of the sources of students’ incorrect responses.  

Kinach (2002) found that teachers teach adding and subtracting integers that 

were not mathematically meaningful to students, and that they continually teach and 

attempt to build on this process, even though developing this aspect of the curriculum 

was not successful for students. Van Dooren, Verschaffel, and Onghena (2003) found 

pre-service teachers use their content knowledge to evaluate students and build 

curriculum in this manner, but fail to use pedagogy. Therefore, it is important to realize 

teachers with no experience in the classroom have been studied based on their beliefs 

about mathematics content. Unfortunately, the union of pedagogy and content 

knowledge is not expanded on sufficiently. Furthermore, the relationship between the 

teacher and researcher during professional development has failed to be addressed.  

Cognitive theories including those of Piaget (1983) and Vygotsky (1962) also 

approach the three previously mentioned processes in different ways. Piaget places an 

emphasis on the student and how knowledge is constructed and reconstructed to 

accommodate new information. Vygotsky (1962, 1978), through the concept of the Zone 

of Proximal Development, focuses on the third factor, context, by interaction of the dyad 
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of teacher and student leading to the teacher scaffolding and the student reaching higher 

comprehension levels. Scaffolding is the support offered by the joint participation of a 

more expert person and a student in a task that has a level of complexity just beyond the 

level that the student could perform independently. 

Pedagogical content knowledge is knowledge of teaching, knowledge of content, 

and knowledge of curriculum. An, Kulm, and Wu (2004) further define this knowledge 

base as having specific mathematics knowledge for the grade level being taught, 

knowledge of selection of appropriate materials as well as the goals and key ideas of the 

curricula, knowledge of student thinking, and mastery of instruction delivery. Many 

studies have been done on pedagogical content knowledge, the three knowledge bases 

that form the concept, and the professional development experiences that help develop 

the concept in teachers (DeBoer et al., 2004; Koency & Swanson, 2000; Phillips, 1992). 

Further studies have been done on the changes in pre-service teachers’ and elementary 

school teachers’ development of pedagogical content knowledge in professional 

development but little has been done in regards to middle school in-service teachers’ 

growth of pedagogical content knowledge in pedagogically constructivist based 

professional development. Consequently, research using the personal constructs 

psychology methodology (Kelly, 1955b) or any methodology to analyze the pedagogical 

content knowledge of teachers during professional development, is minimal.  

Content Knowledge 

Studies based primarily on the content knowledge of teachers offer strong 

support for teachers having a deep and broad knowledge of mathematical content, 
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holistically and on the classroom level that they teach (Ball, 1990; Ball, 2004; Even & 

Tirosh, 1995; Franke & Lehrer, 1992; Lloyd & Wilson, 1998; Ma, 1999; Van Doreen, 

Vershaffel, & Onghena, 2002). Yet this content, as seen in Network of Pedagogical 

Content Knowledge (An, Kulm, & Wu, 2004), shows that if teachers connect this 

knowledge with the knowledge of curriculum and teaching, student learning and 

achievement can be enhanced.  

Teacher Beliefs 

 Loucks-Horsley et al. (2003) maintain that the knowledge base encompasses two 

different aspects, knowledge, and beliefs. Knowledge is considered information that 

depends on research and is solid, whereas beliefs are what we think we know or what we 

may come to know based on new experiences and information (Ball, 1996). The 

Network of Pedagogical Content Knowledge (An, Kulm, & Wu, 2004) includes a 

component of teacher beliefs. Research concerning the importance of teachers’ beliefs in 

the knowledge of effective teachings has been compiled with aspects to pedagogical 

content knowledge (Cooney, Shealy, & Arvold, 1998; Fennema & Franke, 1992; Pligge, 

Kent, & Spence, 2000; Simon et al., 2000). It was found that teachers’ belief systems 

play a major role in pedagogical content knowledge and the effectiveness of teaching 

(An, Kulm, & Wu, 2004; Showder, Phillip, Amstrong, & Schappelle, 1998). 

Constructivism 

 According to Loucks-Horsley et al. (2003), learners evolve from a current state 

of knowledge when new ideas fit naturally and are added, when learners create a new 

idea out of what exists, when new ideas challenge current knowledge and lead to minor 
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modifications, and when new ideas challenge current knowledge so powerfully that 

current knowledge is rejected. This is known as cognitive dissonance.  

Constructivism is defined as having a new experience and internalizing it through 

previous experiences and constructs. Piaget (1983) believed that people adapt their 

thinking to include new experiences; therefore, student interest, previous experiences, 

and cognition are considered important when designing curriculum and even more 

important when developing and training teachers in pedagogical content knowledge 

(Berger, 1978; Crowther, 1997). Vygotsky (1967) believed cognitive activities form in a 

matrix of socio-historical development. Hence, cognitive skills are not factors that are 

innate but are products of activities of the society and culture in which we grow up. 

Cognitive constructivism focus is the view that all knowledge is constructed and 

instruments of construction are either innate (Chomsky, 1971), or are products of 

developmental construction (Piaget, 1971).  

Piaget draws on the philosophy of Kant, who “described the structures that by 

which any competent subject acquires or generates knowledge” (Noddings, 1997, p.8). 

Kant, along with Chomsky, believed that instruments of construction are innate. Piaget 

further draws on the concepts of reflective abstraction with respect to cognitive 

constructivism and the development of mathematical structures (Chomsky, 1971).  

Noddings (1997) writes that in mathematics education, cognitive constructivism 

is considered pedagogical constructivism, which means, “acceptance of constructivist 

premise about knowledge and knowers implies a way of teaching that acknowledges the 

learners as active knowers” (p. 10). When using pedagogical constructivism, tools that 
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uncover ways of thinking, errors, and misconceptions are necessary. Constructivism 

should be used in the mathematics classroom when teaching students but should further 

be applied to teacher training. This guides teachers to construct knowledge as students 

do so that they can teach more effectively. Research shows that experiencing 

constructivist learning does not take place through a lecture, but through learning 

continuously in ways that are constructivist (Little, 1993; Loucks-Horsley et al., 1990). 

Schifter (1996) further supports these claims by stating that constructivist principles and 

practices do not allow teachers a stopping point in growth but lead to continuous 

development and change.  

Professional development in mathematics education has followed the claims of 

research on constructivism to create constructivist-based methodologies for further 

teacher development (Herbel-Eisenmann & Phillips, 2005; Simon, 1995; Simon & 

Schifter, 1991; Simon & Tzur, 1999). Several researches also studied teacher retention 

and growth after the constructivist based professional development experience (Cobb & 

Steffe, 1983; Farmer, Gerretson, & Lassak, 2003; Schifter & Lester, 2002, Simon & 

Tzur, 1999). The Middle School Mathematics Project (MSMP, 2001) provides an 

example of constructivist based professional development supported by not only 

providing learning experiences with researchers based on curriculum, pedagogical 

content knowledge, and student achievement, but also by providing ongoing support that 

allows teachers to reflect effectively and optimize learning during professional 

development opportunities (DeBoer et al., 2004; Stein, Smith, & Silver, 1999; Wu, 

2004).  
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In conclusion, there are four specific points that can be agreed upon regarding 

constructivism. Noddings (1997) notes: 

All knowledge is constructed and mathematical knowledge is constructed 

through reflective abstraction, Cognitive structures are activated during the 

process of construction and explain the result of cognitive activity, Cognitive 

structures continually develop, Acknowledgement of constructivism as a 

cognitive position leads to methodological constructivism (identify various 

cognitive structures at all phases of construction. (p. 10)  

Student learning in mathematics is a constructivist process. Students use many different 

types of representations to display this process. Hence, the lesson based on 

representation incorporates a synthesis of the formal, imagistic, and action type of 

representations that help students look at a problem and answer from a variety of 

constructed viewpoints. Annenberg Media (2008) states: 

The act of representing a concept or relationship may result in the use of 

manipulative materials, the construction of graphs or diagrams, the writing of 

number sentences, or the presentation of a written or oral explanation. When 

using representations to solve a problem or make sense of a new concept, 

students are likely to go back and forth, using the representation to help clarify 

the problem and using the problem to extend their understanding of the 

representation. 

The NCTM representation standard states mathematics instructional programs should 

build the capacity of all students. They should be taught to (a) create and use 
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representations to organize, record, and communicate mathematical ideas; select, apply, 

and translate among mathematical representations to solve problems, and (c) use 

representations to model and interpret physical, social, and mathematical phenomena. 

Hence, “representations are useful in all areas of mathematics because they help us 

develop, share, and preserve our mathematical thoughts… to portray, clarify, or extend a 

mathematical idea by focusing on its essential features" (NCTM, 2000, p. 206). 

Mathematical representation is considered a way to capture abstract 

mathematical relationships. They can be internal or external and can be represented by 

way of imagistic representation, action representation, and formal representation. 

Whether internal, external, imagistic, action, or formal, representations can not only 

improve students’ communication of mathematical ideas but also improve the other 

content standards of problem solving and reasoning.  

 

Summary 

 The goal of effective professional development is to develop teachers to promote 

change in the classroom and ultimately promote student success. By focusing on the 

development of teacher pedagogical content knowledge, teacher hypothetical learning 

trajectories can be redefined by noticing different aspects of student representations. 

Student representations can help meet the representation standard set forth by NCTM 

(2000) but can also assist in the remaining process standards including comprehension, 

problem solving, and communication. 
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CHAPTER III 

METHODOLOGY 

 

Background of the Study 

 This study was a part of a five-year longitudinal study investigating teaching and 

learning of mathematics at the middle school level through the Middle School 

Mathematics Project (MSMP, 2001) professional development opportunities. The study 

examines (a) the effectiveness of professional development partnerships between 

mathematics education researchers and teachers, (b) changes of teacher pedagogical 

content knowledge of representation in two important areas in mathematics education in 

middle schools, number and algebra, and (c) offers a means to quantify qualitative data 

in education through the Repertory Grid Analysis method. 

The MSMP, the context for this study, focuses on providing professional 

development support that is needed to improve student achievement in mathematics by 

investigating and promoting the growth and development of curriculums, teacher 

pedagogical content knowledge, and student achievement. During the second summer of 

the program, the focus during the professional development session was on three 

instructional criteria that used representations effectively: probing student understanding, 

guiding student interpretation, and reasoning (Wu, 2004).  

 In this study, data was collected from 24 middle school teachers over a 

professional development period of 2 weeks during the second summer of the program. 
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Videotapes, video observation instruments, and questionnaires served as the main source 

for the study. 

 

Participants and Setting 

 Eleven middle school mathematics teachers and three mathematics education 

researchers in Texas, 13 middle school mathematics teachers and one mathematics 

education researcher in Delaware, along with two AAAS researchers, participated in this 

study. Criteria used for the teacher subjects in the study were: 

1. Volunteered to participate in MSMP. 

2. Attendance of the constructivist- based professional development workshop 

during the summer of 2003 with completion of pre and post video observation 

analysis assessment instrument. 

For a detailed analysis of the teacher pedagogical content knowledge of student 

representation, pre- and post- tests were completed to determine teacher constructs of 

pedagogical content knowledge. The repertory grid not only analyzes the teacher 

constructs as elements, but also teacher development and growth in the workshop, 

agreement of the type of student representations teacher noticed, and the direction 

teachers plan to go next in the classroom. 
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Procedure 

MSMP Workshop Background 

 The overall goal of the MSMP project, a five year longitudinal study, is to 

provide professional development for middle school teachers that helps to improve 

student achievement by way of investigating curricula, textbook usage, and teacher 

knowledge supported by reform efforts through the National Council of Teachers of 

Mathematics (NCTM, 2000) and the American Association for the Advancement of 

Science (AAAS, 1993). The workshop conducted during the summer of 2003 comprised 

a review and discussion of learning goals including NCTM standards (2000) and Project 

2061’s benchmarks (AAAS, 1993). This approach helped teachers to comprehend the 

learning goals so that they could better investigate the alignment of these goals alongside 

their classroom practice. The professional development experience was grounded in 

development of pedagogical content knowledge using constructivist theory.  

Conceptual Framework for the Research 

 The professional development workshop that was the foundation for the study 

took place in the summer of 2003 and the three criteria that guided this particular 

workshop were using representations, probing student understanding, and guiding 

student interpretation and reasoning. It was found through previous videotape analysis 

that teachers building student conceptual understanding should be a major focus.  
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The research goals were clearly defined in the Middle School Mathematics 

Program Grant Proposal: 

By examining the connections among the structure of instructional materials, 

teacher knowledge, classroom activities, professional development, ongoing 

support, and student learning, our research will shed light and provide valid 

statistical evidence on how these elements work together to improve student 

learning in mathematics. We have designed, and plan to execute, a rigorous 

longitudinal study. We will create and adapt research-based instruments to 

collect valid teacher and student learning data that can provide information on 

the conditions under which students learn mathematics well.  

Professional Development Background 

 The teachers watched a video clip presentation of a lesson on equivalent fractions 

and a lesson on algebraic expressions. After viewing the presentation, they were given a 

pre-test designed by the professional development team based on the theorhetical 

framework of Shulman (1986) that addressed the teacher pedagogical content knowledge 

of student learning before the professional development workshop. The video clip on the 

algebraic expression lesson lasted approximately 4 minutes and began 22 minutes into 

the daily lesson. Students begin to working on paper on an algebraic expression to 

represent cost as a function of number of bikes rented and camp & can costs. One 

student comes to the overhead projector to display his expression of cost as the number 

of bikes rented. The video clip on the equivalent fractions lesson lasted approximately 4 

minutes and began approximately 20 minutes into the daily lesson. Students are 
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attempting to find a fraction that is equivalent to the fraction 6/9. Two students come to 

the board and show there work.  

The pre-test questions were as followed: 

Algebraic Expressions 

1. Describe what the student knows about algebraic expressions. 

2. Describe how you know what the student knows. 

3. Describe what the student seems NOT to know about algebraic expressions. 

4. What evidence from the video helps you infer what the student does not know? 

5. What would you do next with the student? 

Equivalent Fractions 

1. Describe what the student knows about equivalent fractions. 

2. Describe how you know what the student knows. 

3. Describe what the student seems NOT to know about equivalent fractions. 

4. What evidence from the video helps you infer what the student does not know? 

5. What would you do next with the student? 

 During the previous school year, the teachers were videotaped on three to five 

classroom lessons based on equivalent fractions and algebraic expressions according to 

grade level. The summer of 2003 workshop allowed the teachers to use these videos as 

data to improve pedagogical content knowledge when analyzing student 

conceptualization and misconceptions. In the workshop, they watched a video of 

themselves and answered pedagogical content knowledge questions as they worked 
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through the workshop with the researchers. The workshop questions from the individual 

teacher video file are listed below: 

1. Describe what the student knows. 

2. Describe how you know what the student knows. 

3. Describe how you know what the student does not know. 

4. What do you not know? 

5. How can you figure out what you do not know? 

Consequently, the teachers engaged in a data driven professional development 

experience that was enhanced because they were involved in analyzing their curriculum, 

teaching, and student performance data. They received guidance from the researcher, 

who did not simply offer a lecture on content and pedagogy, but also provided empirical 

evidence that can be readily applied to the current teacher practice and classroom as 

viewed on the video.  

 In this professional development workshop, after teacher practice was 

documented and analyzed, the researcher offered models based on the teacher practice 

that allowed the teachers to transfer these models to their classrooms and apply them 

directly. A post-test was given to the teachers at the end of the second summer 

professional development workshop, and they viewed the same videos from the pre-test 

and were asked the same questions. 
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Instrumentation 

 To examine the relationship between the pedagogical content knowledge of 

student representation during the workshop, constant comparisons, and an adaptation of 

repertory grids analysis of teacher answers on the pre and post test were used. This study 

used data that existed from the summer of 2003 workshop. 

Videotapes 

 There were three types of videotapes used during the MSMP professional 

development workshop. Teachers’ voluntary participation in the MSMP program 

required that they allow themselves to be videotaped three to five times during 

classroom teaching. The second type of video teachers viewed was a student-centered 

video on the teaching of an algebraic expressions lesson. The third video was a student-

centered video on the teaching of an equivalent fractions lesson. 

 Sixth grade teachers viewed the equivalent fractions video while seventh grade 

teachers viewed the algebraic expressions. They first viewed the videos and answered 

the pre-test questions. During the workshop, the teachers viewed their own videos and 

answered the workshop questionnaire. Lastly, the teachers reviewed the initial videos 

and answered the post-test questions. 

Video Observation Analysis Instrument 

 The video observation analysis instrument allowed the teacher to observe a 

segment of a teacher’s lesson. The video clip focused on the interaction of the teacher 

with two students concerning equivalent fractions. They were asked to review the 

segment as many times as they wished before completing the instrument so that they 
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would have a complete understanding of the students’ thinking from the video. The 

teachers were also given a transcript of the segment so that they could better answer the 

pre- and post-test questions for equivalent fractions. The algebraic expressions video 

focused on a teacher’s interaction with a student concerning algebraic expressions. The 

teachers were asked to follow the same process as the equivalent fractions video 

observation analysis. 

 

Data Collection 

 Data collection took place in two phases. Phase one was the teacher data phase 

pre-test and phase two was the teacher data phase post-test. Phase one occurred at the 

beginning of the summer of the 2003 professional development workshop and phase two 

occurred at the end of the workshop. A total of 24 teachers during phases one and two 

supplied data on pre- and post-tests. Eleven teachers were from Texas and 13 from 

Delaware. Six Texas teachers and eight Delaware teachers worked with the algebraic 

expression concepts. Five Texas teachers and five Delaware teachers worked with the 

equivalent fraction concepts. Four mathematics education researchers from Texas, three 

from Delaware, and two from AAAS participated in facilitating the professional 

development. 
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Data Analysis 

Constant Comparative Method 

 The constant comparative qualitative method (Lincoln & Guba, 1985) was used 

to analyze teachers’ answers to the pre- and post-test questions. The constant comparison 

method provides an approach to recording and classifying phenomena that can be 

categorized descriptively and explanatorily. After looking at the data, a list is made of 

categories and the data is then put in those categories and further refined. The data that 

emerged from this method were used as the bipolar constructs including action vs. 

display, formal vs. informal, and imagistic vs. conventional representing teacher 

pedagogical content knowledge of the types of student internal representations while the 

questions on the pre- and post-tests represent the elements. 

Repertory Grids 

 The repertory grid method was used because it supports the idea that beliefs 

about teaching and learning affect the classroom practice and change thereof (Kelly, 

1955a; Lester & Onore, 1990). The repertory grid is designed by organizing researchers’ 

knowledge of student learning as the constructs for the professional development and 

using pre- and post-test questions as the elements. The teachers’ answers on the pre- and 

post-tests are then categorized by the type of student representation recognized by the 

teachers, and also by how the teachers proceeded with hypothetical learning trajectories 

based on these representations. The five questions on the algebra and fraction pre- and 

post-tests were used as horizontal elements on repertory grids and teachers’ knowledge 

of student representation and type of representation were listed as the bipolar constructs. 



 42

By rating the constructs on the bipolar matrix or repertory grid, teacher pedagogical 

content knowledge of student representation before and after the workshop was 

investigated. It can be determined if there is a change not only by evaluating answers to 

each but by closely paying attention to the hypothetical learning trajectory from the pre- 

and post-tests displayed in question five. One repertory grid was completed for each test: 

one for the pre-test for algebraic expressions, one for the post-test for algebraic 

expressions, one for the pre-test for equivalent fractions, and one for the post-test for 

equivalent fractions.  

 To analyze the grid, correlation was used to analyze the relationship between 

constructs and elements. The correlation between the elements can be seen by watching 

the elements reorder on the grid. Elements that move to the left have a low rating while 

elements further to the right have a high rating. Constructs that move down have a 

higher rating while constructs that move up have a lower rating. Hierarchical cluster 

analysis was used to investigate the nature of the cluster correlations of the elements and 

constructs. In hierarchal cluster analysis the relationship of percentage similarity of the 

elements and constructs and examined. In conclusion by viewing how much information 

the teacher interprets about student representations in the elements and the type of 

representations the teachers interprets in the constructs we can view relationships on the 

pre and post test using the grid.  
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CHAPTER IV 

ANALYSIS 

 

 Several different methods were used to evaluate the extent to which teacher 

pedagogical content knowledge of student representations changed after professional 

development. During the summer of 2003, teachers watched a video presentation on 

fraction or algebra concepts and completed a pre-test using a video observation 

instrument. The teachers then took part in professional development exercises and 

analyzed videos of them teaching. Afterwards, teachers viewed the initial video 

presentation on fraction or algebra concepts and completed the same video observation 

instrument. Constant comparison and repertory grid analysis techniques were used to 

review the teacher constructs of pedagogical content knowledge of student 

representation.  

 As previously stated the data was first sorted using constant comparisons. 

Teacher answers during the pre- and post-tests were documented and then sorted 

according to similarity. Next, all answers were sorted according to type of internal 

representation and placed on the repertory grid on the vertical axis. The bipolar 

constructs for the vertical axis were the internal representation types, which included 

action vs. display, imagistic/analogistic vs. conventional, and formal vs. informal. The 

definition of action representation is a written representation that can be manipulated 

while display representation is a written representation that can not be manipulated. An 

imagistic/analogistic representation is a non-verbal representation using pictures and/or 
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manipulatives while conventional representations use traditional methods to represent 

the mathematical idea. Lastly, formal representations are mathematical systems that are 

consciously constructed for specific goals such as mathematical computations while 

informal representations can become formal as the mathematics learning occurs. The 

elements were identified as the questions and placed on the horizontal axis. 

 The theoretical model (see Figures 1 and 2 in Chapter I) was the foundation used 

for this study. Fit of the model based on Explicating the Teachers Perspective from the 

Researchers’ Perspective: Generating Accounts of Mathematics Teachers Practice 

(Simon & Tzur, 1995) in conjunction with the Middle School Mathematics Project 

(MSMP, 2001) professional development model was explored. The variables of bipolar 

constructs of student internal representation, teacher pedagogical content knowledge, 

professional development partnerships, and hypothetical learning trajectories were 

extracted using the video observation analysis instrument.  

 The first step was to identify teacher pedagogical content knowledge of student 

representation on the video observation analysis instrument pre-test; this is shown in 

Tables 1 and 2 for content strands algebra and number as guided by MSMP mathematics 

education researchers. The second step was to tally the teacher pedagogical content 

knowledge of student internal representations three times according to the bipolar 

constructs of imagistic vs. convention, formal vs. informal, and action vs. display as 

noted in column four of Tables 1 and 2. Column two represents the answers to the 

questions on the video observation analysis instrument. Column three represents how 

many teachers gave the same answer in column two 
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Table 1 

Categories and Frequencies of Answers Based on Teacher Interpretation of Student 

Internal Representation for Algebra Pretest 

Question 1 – Describe what the student knows about algebraic expressions. 

 Category N Type of 
Representation 

A The student knows how to construct equations with 
variables 5 Formal 

B The student knows how to connect variables to unknowns in 
the problem 12 Action 

C The student knows that multiplication must take place 4 Formal 

D The student knows that when setting up equation there is an 
= sign 2 Formal 

E The student knows algebraic expressions represent a process 1 Action 

F The student knows how to substitute different values for 
variables / represent unknown quantities 3 Action 

G The student knows numbers together mean multiplication 4 Formal 

H The student knows 30, B, and N are a part of the algebraic 
expression 1 Formal 

I The student knows different letters represent different 
variables 2 Formal 

Question 2 – Describe how you know what the student knows. 

 Category N Type of 
Representation 

A The student is writing 7 Action 

B The student is verbalizing 7 Formal 

C The student connects variable B to real life situation and 
problem 2 Imagistic 

D The student multiplies people times cost 2 Action 

E The student sets up the equation 6 Action 

F The student understands what variables and constants 
stand for 4 Formal 

G The student recognizes and corrects mistake 4 Action 

H The student receives prompts by teacher 1 Formal 
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Table 1, continued. 

Question 3 – Describe what the student seems not to know about algebraic 
expressions. 

 Category N Type of 
Representation 

A The student does not know the correct order for writing the 
specific expressions 5 Action 

B The student does not know which variable to multiply the 
cost by 3 Action 

C The student does not know what each variable represents 6 Imagistic 

D The student does not know what they are solving for 4 Action 

E The student is unsure about what each constant represents 2 Imagistic 

F The student cannot translate logical thoughts into expression 3 Action 

G The student does not know total cost should be the variable 
C not B  1 Imagistic 

H The student does not know 30 x 100 = 100 x 30 1 Formal 

Question 4 – What evidence from the video helps you infer what the student does 
not know? 

 Category N Type of 
Representation 

A The student is confused when making verbal explanation 4 Action 

B The student writes the equation incorrectly 4 Action 

C The teacher helps by making connection to real life 1 Imagistic 

D The student does not know which constant to use 3 Action 

E The variables are being used interchangeably 3 Formal 

F The teacher prompts and ask questions 4 Formal 

G The variables are not defined 2 Formal 

H An incorrect expression is written N = 30B 3 Action 

I The student does not know what he is solving for 1 Action 
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Table 1, continued. 

Question 5 – What would you do next with this student? 

 Category N Type of 
Representation 

A I would discuss how to identify and define variables 4 Formal 

B I would show how to check 2 Formal 

C I would verbalize the next problem 2 Formal 

D I would walk through problem again / verbalize 3 Formal 

E I would show how to substitute different quantity for 
variables – customers 2 Action 

F I would focus on what 30 means 1 Imagistic 

G I would give a similar problem 1 Formal 

H I would do the next problem w/o prompts 4 Formal 

I I would walk through problem again / written 1 Formal 

J I would do an exercise on translating words to math 
symbols 1 Action 
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Table 2 

Categories and Frequencies of Answers Based on Teacher Interpretation of Student 

Internal Representation for Algebra Pretest 

Question 1 – Describe what these students know about equivalent fractions. 

 Category N Type of 
Representation 

A The student knows equivalent fractions represent a pattern 7 Imagistic 

B The student knows to find an equivalent fraction you must 
multiply numerator and denominator by the same number 2 Action 

C The student knows how to find equivalent fractions (method 
unidentified) 4 Action 

D The student knows that equivalent fractions are equivalent 1 Formal 

E The student knows there is a relationship 2 Imagistic 

F The student knows changes have to be the same in 
equivalent fractions 1 Formal 

G The student knows the terms numerator and denominator 1 Formal 

H The student knows equivalent fractions in this problem 
represent a pattern of adding 2s and 3s 1 Imagistic 

I Others 1 NA 

Question 2 – Describe how you know what the student knows. 

 Category N Type of 
Representation 

A The student Looks for patterns 4 Imagistic 

B The student multiply the numerator and denominator 
by the same number 

2 Action 

C The student explains the pattern 4 Action 

D The student know how to find more than one 
equivalent fraction 

1 Action 

E The student uses mathematical symbols  1 Formal 

G The student is willing to go to the board 1 Action 

H Response to the teacher questions 1 Formal 

I Demonstrates knowledge 1 Action 
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Table 2, continued. 

Question 3 – Describe what the students seem not to know about equivalent fractions. 

 Category N Type of 
Representation 

A The student does not know why the method works 4 Formal 

B The student does not know why and how they should 
multiply 3 Formal 

C The student does not know multiplying by a/a is the same as 
multiplying by 1 2 Formal 

D The student does not know the relationship between the 
numerator and denominator 1 Formal 

E The student does not know the relationship of base fractions 
to equivalent fractions 2 Formal 

F The student does not know how to generate fractions with a 
list or pattern of fractions 1 Action 

G The student does not know the meaning of equivalence or 
showing equivalence 1 Formal 

Question 4 – What evidence from the video helps you infer what the students do not 
know? 

 Category N Type of 
Representation 

A The teacher prompts the students for answers 1 Formal 

B The students could not explain the reason for their processes 2 Formal 

C The student made the statement “Counting by 2s and 3s” and 
“Go by 2s” 4 Action 

D The student representations on board show a disconnect 
between numerator and denominator 3 Formal 

E The student does not understand they are multiplying by 1 
when multiplying by a/a 1 Formal 

F The student never sees a math connection 1 Imagistic 

G There is no discussion on why the student’s method works 1 Action 

K There is no relationship to strips 1 Imagistic 
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Table 2, continued. 

Question 5 – What would you do next with these students? 

 Category N Type of 
Representation 

A I would show multiplication by 1 whole 4 Formal 

B I would check another fraction with student patterns 2 Action 

C I would draw a picture 3 Imagistic 

D I would have them show why the pattern works 2 Action 

E I would use manipulatives to show patterns represent the 
same quantity 1 Imagistic 

F Re-teach using manipulatives  1 Imagistic 

G Use concrete representations and models 1 Imagistic 

 

 

 The tallied bipolar constructs in columns three and four of Tables 1 and 2 were 

placed into rating bands ranging from 1-5, as shown in Table 3 and Table 4 for algebra 

and number, respectively. The bands are formed by dividing the total number of answers 

to the question by five. The type of representations are separated and put into the bands 

they fall in: 1st fifth, second fifth, 3rd fifth, 4th fifth, or 5th fifth. This process is done so 

that the ratings can be placed on the repertory grid for analysis. The rating and the 

number of answers for the type of representation are listed in the last three columns.  
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Table 3 

Repertory Grid Coding of Teacher Pedagogical Content Knowledge of Student 

Representation for Algebra Pre-test 

Question 
Number 

Total number 
of Answers 

Answer  
Bands 

Formal 
Answer Band,  
Number of 
Responses 

Action 
Answer Band,  
Number of 
Responses 

Imagistic 
Answer Band,  
Number of 
Responses 

1 37 

1 0-7.4 
2 >7.4-14.8 
3 >14.8-22.2 
4 >22.2-29.6 
5 >29.6-37 

3, 21 3, 16 1, 0 

2 33 

1 0-6.6 
2 >6.6-13.2 
3 >13.2-19.8 
4 >19.8-26.4 
5 >26.4-33 

2, 12 3, 19 1, 2 

3 25 

1 0-5 
2 >5-10 
3 >10-15 
4 >15-20 
5 >20-5 

1, 1 3, 15 2, 9 

4 25 

1 0-5 
2 >5-10 
3 >10-15 
4 >15-20 
5 >20-25 

2, 9 3, 15 1, 1 

5 21 

1 0-4.2 
2 >4.2-8.4 
3 >8.4-12.6 
4 >12.6-16.8 
5 >16.8-21 

5, 17 1, 3 1, 1 

 

 

 The bands are formed by dividing the total number of answers to the question by 

5 as shown in column 3. For example Question 3 had 25 answers, therefore the 5 bands 
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are Band 1 0-5, Band 2 >5-10, Band 3 >10-15, Band 4 >15-20, Band 5 >20-25. Because 

15 of the answers were interpreted as action representation, then the band coding is 3. 

 

Table 4 

Repertory Grid Coding of Teacher Pedagogical Content Knowledge of Student 

Representation for Number Pre-test 

Question 
Number 

Total number of 
Answers 

Answer 
Bands 

Formal 
Answer Band,  
Number of 
Responses 

Action 
Answer Band,  
Number of 
Responses 

Imagistic 
Answer Band,  
Number of 
Responses 

1 19 

1 0-3.8 
2 >3.8-7.6 
3 >7.6-11.4 
4 >11.4-15.2 
5 >15.2-19 

1, 3 2, 6 3, 10 

2 15 

1 0-3 
2 >3-6 
3 >6-9 
4 >9-12 
5 >12-15 

1, 2 3, 9 2, 4 

3 14 

1 0-2.8 
2 >2.8-5.6 
3 >5.6-8.4 
4 >8.4-11.2 
5 >11.2-14 

5, 13 1, 1 1, 0 

4 14 

1 0-2.8 
2 >2.8-5.6 
3 >5.6-8.4 
4 >8.4-11.2 
5 >11.2-14 

3, 7 2, 5 1, 2 

5 14 

1 0-2.8 
2 >2.8-5.6 
3 >5.6-8.4 
4 >8.4-11.2 
5 >11.2-14 

2, 4 2, 4 3, 6 
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The rating bands in Table 3 and Table 4 were entered into the repertory grids 

using the Rep IV 1.1 repertory grid program and displayed in Figures 3 and 4. Gaines 

and Shaw (2005) notes: 

Rep IV is a suite of tools supporting research into, and applications of, a range of 

conversational constructivist methodologies based on George Kelly’s (1955b) 

Personal Construct Psychology. In its various versions, it aims to provide 

personal, professional, and research support for promoting understanding of 

individual and communal psychological and social processes. It provides 

conversational tools for constructing and analyzing grids (RepGrid), and nets 

(RepNet). Grids are a generalization of Kelly’s repertory grids for eliciting 

construct networks through examples of their application, and nets are a 

generalization of visual syntactic structures used for representing construct 

networks directly in visual languages. (p. 3) 

The hierarchal cluster analysis or focus was found for algebra and fractions, respectively 

(see Figures 3, 4, 5, and 6, and Tables 5 and 6). Hierarchal cluster analysis was described 

by Jankowicz (2004).  
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Figure 3. Repertory grid pre-test for algebra. 

 

 

Figure 4. Repertory grid pre-test for number. 

 

 

Figure 5. Hierarchal cluster analysis pre-test for algebra. 
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Figure 6. Hierarchal cluster analysis pre-test for number. 

 

Table 5 

Similarity Percentages for Hierarchal Cluster Analysis for Algebra Pre-test 

Constructs (Internal Representations) Similarity Percentages 

Imagistic vs. Conventional 
Action vs. Display 65% 

Imagistic vs. Conventional 
Informal vs. Formal 65% 

Action vs. Display 
Informal vs. Formal 85% 

Element (Questions) Similarity Percentages 

Question 5 vs. Question 3 75% 

Question 1 vs. Question 3 85% 

Question 1 vs. Question 2 90% 

Question 1 vs. Question 4 90% 

Question 2 vs. Question 4 100% 
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Table 6 

Similarity Percentages for Hierarchal Cluster Analysis for Number Pre-test 

Constructs (Internal Representations) Similarity Percentages 

Imagistic vs. Conventional 
Action vs. Display 80% 

Action vs. Display  
Formal vs. Informal 60% 

Imagistic vs. Conventional 
Formal vs. Informal 60% 

Element (Questions) Similarity Percentages 

Question 2 vs. Question 3 75% 

Question 2 vs. Question 4 75% 

Question 4 vs. Question 3 75% 

Question 2 vs. Question 1 80% 

Question 1 vs. Question 5 90% 

Question 2 vs. Question 5 90% 

 

 

Elements 

1. Examine the elements and note which elements have been reordered and are now 

next to each other. 

2. Examine the shape of the element dendrogram. How many major branches does 

it have; in other words, how many distinct clusters of elements exist? 
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3. Identify construct similarities and differences. For each cluster, follow the lines 

to the left and up to the relevant set of adjacent columns in the main grid. On 

which constructs do these elements receive similar ratings, and on which do they 

differ?  

4. What does this mean in terms of the way in which your [teacher] is thinking? 

5. Find the highest percentage similarity score. Look at the element dendrogram 

again. You will see that there is a percentage scale above it, which allows you to 

read off the percentage similarity scores between any two adjacent elements. 

Each element has a line to its right, which meets with its neighbor in a sideways 

V-shape. If you draw a perpendicular line from the apex of that V-shape to the 

percentage scale, you can read off the percentage similarity score between those 

two adjacent elements. Next, find the two adjacent elements, which have the 

highest percentage similarity, score and note its value. Then note the next pair, 

their percentage similarity scores, and if the pair forms a separate cluster from 

the other pairs you identified, or whether they belong to that cluster. 

6. Examine the remaining scores. Continue this procedure.  

Constructs 

1. Examine the constructs and note how they have been reordered. 

2. Look at the shape of the construct dendrogram, and decide what this might 

suggest about the similarities and differences in your [teacher’s] construing. 
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3. Identify element similarities and differences. For each cluster, follow left to the 

relevant rows of ratings. Which elements have received similar ratings on these 

constructs, and which received different ones? 

4. What does this mean? Discuss the implications with your interviewee. 

5. Find the highest percentage similarity score. Working with the separate construct 

percentage similarity scale, note the two adjacent constructs that have the highest 

percentage similarity score and follow the lines to the right until they meet at an 

apex of the V-shape, and draw a perpendicular line to the percentage similarity 

scale to read off the value. Find the next pair, note their score, and see whether 

they are a distinct cluster or form part of the same cluster as the previous pair. 

6. Examine the remaining scores. Continue this procedure (pp. 122-124). 

 Questions 1-5 are ordered from left to right on the above grids. Constructs are 

ordered randomly order on the grid above grid vertically. The answer bands are the 

numbers located on the grid.  

 The elements have been reordered from left to right with the lowest ratings on 

the left and the higher ratings on the right. The element dendrogram is on the top of the 

grid. The dendrogram for the elements show at least 4 distinct clusters of relationships 

among the elements. The dendrogram for the constructs are shown on the right side of 

the grid. The dendrogram for the constructs show at least 2 distinct clusters of 

relationships among the constructs. These relationships are show in similarity 

percentages in Table 5. 
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 The dendrogram for the elements show at least 3 distinct clusters of relationships 

among the elements. The dendrogram for the constructs are shown on the right side of 

the grid. The dendrogram for the constructs show at least 2 distinct clusters of 

relationships among the constructs. These relationships are show in similarity 

percentages in Table 6. 

After the teachers completed the professional development workshop, they 

watched the video presentation again and took the same assessment given in the 

beginning. The steps taken with the post-test were similar to the pre-test. Teacher 

pedagogical content knowledge of student representation on the video observation 

analysis instrument post-test is displayed in Tables 7 and 8 in content strands for algebra 

and number, respectively. Next, the teacher pedagogical content knowledge of student 

internal representations was tallied according to the bipolar constructs of imagistic vs. 

convention, formal vs. informal, and action vs. display as noted in column four of Tables 

9 and 10. Column two represents the answers to the questions on the video observation 

analysis instrument. Finally, column three represents how many teachers gave the same 

answer in column two. 
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Table 7 

Categories and Frequencies of Answers Based on Teacher Interpretation of Student 

Internal Representation for Algebra Post-test 

Question 1 – Describe what the student knows about algebraic expressions. 

 Category N Type of 
Representation 

A The student knows how construct equations with 
variables 2 Formal 

B The student knows how to connect variables to unknowns 
in the problem 7 Action 

C The student knows multiplication must take place 5 Formal 

D The student knows when setting up equation there is an = 3 Formal 

E The student knows how to substitute different values for 
variables / represent unknown quantities 2 Action 

F The student knows numbers together mean multiplication 1 Formal 

G The student knows 30, B, and N are a part of the 
algebraic expression 3 Formal 

H The student knows different letters represent different 
variables 1 Formal 

I The student knows algebraic expressions represents a 
pattern 2 Imagistic 

J The student knows 30N = N30 2 Formal 

K The student knows how to find the cost 2 Action 

L The student knows how to find the number of customers 1 Action 

M The student knows y = mx + b 1 Formal 

N The student knows what an equation is and how to write 
one 1 Formal 
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Table 7, continued. 

Question 2 – Describe how you know what the student knows. 

 Category N Type of 
Representation 

A The student is writing  8 Action 

B The student is verbalizing 9 Formal 

C The student connects variable B to real life situation and 
problem 2 Imagistic 

D The student multiplies people times cost 4 Action 

E The student sets up the equation 3 Action 

F The student understands what variables and constants 
stand for 1 Formal 

G The student recognizes and corrects mistake 1 Action 

H The student writes = 1 Formal 

I The student connects variable N to problem 3 Imagistic 

Question 3 – Describe what the student seems not to know about algebraic 
expressions. 

 Category Post  

A The student does not know the correct order for writing 
expression 6 Action 

B The student cannot define what variable represents 8 Imagistic 

C The students do not know what they are solving for 1 Action 

D The student is unsure about what the constants represent 8 Imagistic 

E The student cannot translate logical thoughts into 
expression 4 Action 

F The student does not know 30x100=100x30 1 Formal 

G The student needs guidance from teacher 1 Formal 

H The student does not know what 30 represents 1 Imagistic 
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Table 7, continued. 

Question 4 – What evidence from the video helps you infer what the student does 
not know? 

 Category N Type of 
Representation 

A The student is confused when making verbal explanation 4 Action 

B The equation is written incorrectly 3 Action 

C The student does not know which constant to use 3 Action 

D The teacher prompts and ask questions 6 Imagistic 

E The variables are not defined 1 Formal 

F The incorrect expression is written N=30B 4 Action 

G The student realizes and corrects mistake 2 Action 

H The student does not know where to plug in values for 
variables, i.e. “Do you want me to use 20 or 30?” 7 Action 

Question 5 – What would you do next with this student? 

 Category Post  

A I would discuss how to identify and define variables 4 Formal 

B I would show how to check  2 Action 

C I would walk through problem again / verbalize 3 Formal 

D I would show how to substitute different quantity for 
variables – customers 4 Action 

E I would give a similar problem 2 Action 

F I would do the next problem w/o prompts 5 Action 

G I would walk through problem again  1 Action 

H I would work 1 on 1 1 Formal 

I I would discuss constants 2 Formal 

J I would see if students can for equations using table 2 Action 
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Table 8 

Categories and Frequencies of Answers Based on Teacher Interpretation of Student 

Internal Representation for Number Post-test 

Question 1 – Describe what these students know about equivalent fractions. 

 Category N Type of 
Representation 

A The student knows equivalent fractions represent Patterns 3 Imagistic 

B The student knows to Multiply numerator and 
denominator by the same number 6 Action 

C The student knows to Find equivalent fractions (method 
unidentified) 3 Action 

D The student knows Fractions are equivalent 2 Formal 

E The student knows this equivalent fractions represent 
Patterns of adding 2s and 3s 5 Imagistic 

F The student knows this equivalent fractions represent 
patterns of Counting – 2s and 3s 1 Imagistic 

Question 2 – Describe how you know what the student knows. 

 Category N Type of 
Representation 

A The student knows this equivalent fractions represent there 
is a pattern 1 Imagistic 

B The student knows to Multiply the numerator and 
denominator by the same number 2 Action 

C The student knows how Explain the pattern 4 Formal 

D The student Adds – 2s and 3s 4 Action 

E The student Willing to go to the board 4 Action 

F The student knows this equivalent fractions represent Uses 
a variety of strategies 1 Action 
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Table 8, continued. 

Question 3 – Describe what the students seem not to know about equivalent 
fractions. 

 Category N Type of 
Representation 

A The student does not know why the student’s method 
works 3 Formal 

B The student does not know why and how they should 
multiply 2 Formal 

C The student does not know the relationship between 
numerator and denominator 1 Formal 

D The student does not know how to generate fractions with 
a list or pattern of fractions 1 Action 

E The student does not know the meaning of equivalence, 
showing equivalence 9 Formal 

F The student does not know why they are adding 1 Imagistic 

Question 4 – What evidence from the video helps you infer what the students do not 
know? 

 Category N Type of 
Representation 

A The student made the statement “Counting by 2s and 3s” 
and “Go by 2s” 2 Action 

B The student representations on board show a disconnect 
between numerator and denominator 1 Imagistic 

C The student does not understand they are multiplying by 1 
when multiplying by a/a 1 Formal 

D There is no discussion on why the student’s method works 1 Action 

E The student does not know the meaning/definition of 
equivalence 2 Formal 

F The student does not know the relationship of base 
fraction to equivalent fractions 3 Formal 

G The student does not use pictures or diagrams 1 Imagistic 

H The student uses rote memorization 1 Action 

I Student procedure 1 Formal 
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Table 8, continued. 

Question 5 – What would you do next with these students? 

 Category Post  

A I would show multiplication by 1 whole 2 Formal 

B I would check another fraction with student patterns 1 Action 

C I would draw a picture 4 Imagistic 

D I would have them show why the pattern works 1 Imagistic 

E I would use manipulatives to show patterns represent the 
same quantity 1 Imagistic 

G I would use concrete representations and models 5 Imagistic 

H I would show uniqueness of multiplying numerator and 
denominator by the same number 1 Formal 

 

 

The rating bands in Tables 7 and 8 were entered into the repertory grids using the 

Rep IV 1.1 repertory grid program and displayed in Figures 7 and 8. The hierarchal 

cluster analysis or focus was found for algebra and fractions respectively, and is shown 

in Figures 9 and 10. 
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Table 9 

Repertory Grid Coding of Teacher Pedagogical Content Knowledge of Student 

Representation on Algebra Post-test 

Question 
Number 

Total 
number of 
Answers 

Answer 
Bands 

Formal 
Answer Band,  
Number of 
Responses 

Action 
Answer Band,  
Number of 
Responses 

Imagistic 
Answer Band,  
Number of 
Responses 

1 47 

1 0-9.4 
2 >9.4-18.8 
3 >18.8-28.2 
4 >28.2-37.6 
5 >37.6-47 

4, 33 2, 12 1, 2 

2 32 

1 0-6.4 
2 >6.4-12.8 
3 >12.8-19.2 
4 >19.2-25.6 
5 >25.6-32 

2, 11 3, 16 1, 5 

3 30 

1 0-6 
2 >6-12 
3 >12-18 
4 >18-24 
5 >24-30 

1, 2 2, 11 3, 17 

4 30 

1 0-6 
2 >6-12 
3 >12-18 
4 >18-24 
5 >24-30 

1, 1 4, 23 1, 6 

5 26 

1 0-5.2 
2 >5.2-10.4 
3 >10.4-15.6 
4 >15.6-20.8 
5 >20.8-26 

2, 10 4, 16 1, 0 

 

 

 The bands are formed by dividing the total number of answers to the question by 

5 as shown in column 3. For example Question 3 had 30 answers, therefore the 5 bands 
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are Band 1 0-6, Band 2 >6-12, Band 3 >12-18, Band 4 >18-24 and Band 5 >24-30. Since 

17 of the answers were interpreted as imagistic representation then the band coding is 3. 

 

Table 10 

Repertory Grid Coding of Teacher Pedagogical Content Knowledge of Student 

Representation on Number Post-test 

Question 
Number 

Total 
number of 
Answers 

Answer 
Bands 

Formal 
Answer Band,  
Number of 
Responses 

Action 
Answer Band,  
Number of 
Responses 

Imagistic 
Answer Band,  
Number of 
Responses 

1 20 

1 0-4 
2 >4-8 
3 >8-12 
4 >12-16 
5 >16-20 

1, 2 3, 9 3, 9 

2 16 

1 0-3.2 
2 >3.2-6.4 
3 >6.4-9.6 
4 >9.6-12.8 
5 >12.8-16 

2, 4 4, 11 1, 1 

3 17 

1 0-3.4 
2 >3.4-6.8 
3 >6.8-10.2 
4 >10.2-13.6 
5 >13.6-17 

5, 15 1, 1 1, 1 

4 13 

1 0-2.6 
2 >2.6-5.2 
3 >5.2-7.8 
4 >7.8-10.4 
5 >10.4-13 

3, 7 2, 4 1, 2 

5 15 

1 0-3 
2 >3-6 
3 >6-9 
4 >9-12 
5 >12-15 

1, 3 1, 1 4, 11 
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The rating bands in Tables 9 and 10 were entered into the repertory grids using 

the Rep IV 1.1 repertory grid program and displayed in Figures 7 and 8. The hierarchal 

cluster analysis or focus was found for algebra and fractions, respectively, and is shown 

in Figures 9 and 10. 

 

 

Figure 7. Repertory grid for algebra post-test. 

 

 

Figure 8. Repertory grid for number post-test. 

 

 Questions 1-5 are ordered from left to right on the above grids. Constructs are 

ordered randomly order on the grid above grid vertically. The answer bands are the 

numbers located on the grid. 
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Figure 9. Hierarchal cluster analysis for algebra post-test. 

 

 The elements again have been reordered from left to right with the lowest ratings 

on the left and the higher ratings on the right. The element dendrogram is on the top of 

the grid. The dendrogram for the elements show at least 4 distinct clusters of 

relationships among the elements. The dendrogram for the constructs are shown on the 

right side of the grid. The dendrogram for the constructs show at least 2 distinct clusters 

of relationships among the constructs. These relationships are show in similarity 

percentages in Table 11. 
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Table 11 

Similarity Percentages for Hierarchal Cluster Analysis for Algebra Post-test 

Constructs (Internal Representations) Similarity Percentages 

Imagistic vs. Conventional 
Formal vs. Informal 65% 

Formal vs. Informal 
Display vs. Action  75% 

Imagistic vs. Conventional 
Display vs. Action 65% 

Element (Questions) Similarity Percentages 

Question 3 vs. Question 1 65% 

Question 4 vs. Question 1 75% 

Question 4 vs. Question 5 90% 

Question 4 vs. Question 2 90% 

Question 5 vs. Question 2 90% 

 

 

Element Analysis for Algebra 

When determining the relationship between the elements, the question order 

shifted from 5, 1, 2, 4, and 3 on the pre-test to 3, 4, 5, 2, and 1 on the post-test. On the 

pre-test, questions 5 and 3 have the least in common while questions 1, 2, and 4 have the 

most in common. This result indicates that the teachers’ hypothetical learning trajectory 

based on the student representation was the most unrelated to what the student knew. Yet 

in the post-test, what the student did or did not know based on the representation was 

more closely related to the hypothetical learning trajectory. 
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Construct Analysis for Algebra 

When determining the relationship between the constructs, the original construct 

order was formal vs. informal, imagistic vs. conventional, and action vs. display. In the 

pre-test for algebra, the order changed to conventional vs. imagistic, display vs. action, 

and formal vs. informal. The ratings on constructs increased in order from left to right 

and top to bottom. Hence, the least pronounced construct of student representation that 

teachers noticed in the pre-test was conventional, while the most pronounced construct 

was informal for student representation. In the post-test, the order was changed to 

imagistic vs. conventional, formal vs. informal, and display vs. action. Hence, the least 

pronounced construct of student representation that teachers noticed in the post-test was 

imagistic, while the most pronounced construct noticed for student representation was 

action. 

 

 

Figure 10. Hierarchal cluster analysis for number post-test. 

 



 72

 The elements again have been reordered from left to right with the lowest ratings 

on the left and the higher ratings on the right. The element dendrogram is on the top of 

the grid. The dendrogram for the elements show at least 4 distinct clusters of 

relationships among the elements. The dendrogram for the constructs are shown on the 

right side of the grid. The dendrogram for the constructs show at least 2 distinct clusters 

of relationships among the constructs. These relationships are show in similarity 

percentages in Table 12. 

 

Table 12 

Similarity Percentages for Hierarchal Cluster Analysis for Number Post-test 

Constructs (Internal Representations) Similarity Percentages 

Imagistic vs. Conventional 
Action vs. Display 65% 

Imagistic vs. Conventional 
Informal vs. Formal 65% 

Action vs. Display 
Informal vs. Formal 65% 

Element (Questions) Similarity Percentages 

Question 3 vs. Question 5 65% 

Question 3 vs. Question 1 65% 

Question 3 vs. Question 4 75% 

Question 3 vs. Question 2 75% 

Question 1 vs. Question 5 75% 
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Element Analysis for Number 

When determining the relationship between the elements, the question order 

shifted from 2, 1, 5, 4, and 3 on the pre-test to 3, 4, 2, 1, and 5 on the post-test. On the 

pre-test, questions 2 and 3 had the least in common while questions 1, 5, and 4 had the 

most in common. This indicated that the teachers’ hypothetical learning trajectory based 

on the student representation was most related to what the student knew and evidence in 

the video of what the student did not know. Yet in the post-test, the hypothetical learning 

trajectory was least related to what the representations of what student did not know. 

 

Construct Analysis for Number 

When determining the relationship between the constructs, the original construct 

order was formal vs. informal, imagistic vs. conventional, and action vs. display. In the 

pre-test for algebra, the order changed to imagistic vs. conventional, action vs. display, 

and informal vs. formal. The ratings on constructs increased in order from left to right 

and top to bottom. Hence, the least pronounced construct of student representation that 

teachers noticed in the pre-test was imagistic, while the most pronounced construct 

noticed for student representation was formal. In the post-test, the order was changed to 

imagistic vs. conventional, action vs. display, and formal vs. informal. Hence, the least 

pronounced construct of student representation teachers noticed in the post-test was 

imagistic while the most pronounced construct was informal for student representation. 

 In summary, the Middle School Mathematics Project professional development 

workshop on pedagogy and content in student representations was analyzed through pre- 
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and post-test video observation analysis instruments. The hypothetical learning 

trajectories in question 5 were also analyzed for changes from pre to post. These findings 

will be discussed in the following chapter. 
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CHAPTER V 

CONCLUSION 

 

In this study, it is imperative to understand that the intent was not to compare 

teachers to each other. Instead, the goal was to investigate how the answers to the pre-

test and post-test compared and contrasted to determine if the professional development 

collaboration with the researcher helped to create a more clearly defined hypothetical 

learning trajectory. Such a trajectory can be used to guide curriculum development 

through knowledge of student representation.  

For curriculum to be developed properly, teachers must have input about the 

effective use of textbooks and other curriculum material and about their own teaching. 

However, input from other teachers or professional development leaders is not 

sufficient; there must be a relationship between educational researchers and teachers. 

This relationship allows the teacher to learn practical skills from colleagues and 

researchers. Teachers can also learn how to implement these skills successfully in the 

classroom and adapt them to the learning style for each student. By examining the 

teachers’ hypothetical learning trajectories before and after development with the 

researchers, one can clearly see that the teachers can hypothesize more effectively about 

how to guide the students through the curriculum based on the students’ current level of 

knowledge because in the hierarchal cluster analysis grids the similarity relationships 

either have higher percentages between the trajectories and the student misconceptions 

and conceptions. 
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The theoretical model in Figure 1 was used for analyzing the pre-tests while the 

theoretical model in Figure 2 was used for analyzing the post-tests. Overall, Figure 1 

showed that teacher pedagogical content knowledge is a synthesis of teacher beliefs, 

teacher content knowledge, and teacher pedagogical knowledge. Student representation 

was interpreted through teacher pedagogical content knowledge and the hypothetical 

learning trajectory for the student was defined. In Figure 2, a professional development 

partnership was imposed between the teacher pedagogical content knowledge of student 

representation and the hypothetical learning trajectory. This should have allowed 

teachers to redefine aspects of students’ internal representation and modify hypothetical 

learning trajectories to promote improved student learning.  

The idea the second model represented was that there should be a change in the 

hypothetical learning trajectories of the teacher after a professional development 

partnership. Evidence of change in number and algebra took place. In the following 

sections, a discussion is provided on the results for each of the research questions in the 

study. 

 

Teacher Pedagogical Content Knowledge of Student Representation of Number 

Research Question 1. What is teacher pedagogical content knowledge of student 

representation of equivalent fractions prior to and after a constructivist professional 

development experience based on pedagogical content knowledge? 

On the pre-test, informal representation was the representation teachers noticed 

most about what the student did or did not know. There was little distinction between the 
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action vs. display and the imagistic vs. conventional constructs as they had a high 

similarity rating. Constructs that move to the right and down because of higher ratings 

are considered favorable while constructs that move to the left and up are considered 

unfavorable and have lower teacher ratings. Imagistic and actions are considered the 

most favorable constructs among what teachers notice about student representation 

misconceptions, which means they have a higher rating and are on the positive end of 

bipolar constructs, while display and conventional representations are the most 

unfavorable, which means they have a lower rating and are on the negative end of 

bipolar constructs. Imagistic representation is the most unfavorable construct on what 

the teacher would do next yet NCTM (2000) states multiple representations should be 

used in the mathematics classroom to promote student achievement in all process 

standards.  

On the post-test, action representation was the representation that teachers 

noticed most about what the student does and does not know. This is favorable because 

the formation of algebraic expressions from word problems is an action representation. 

There is little distinction between the formal vs. informal and the display vs. action 

constructs because they have a high similarity rating. Informal and actions are 

considered the most favorable among what teachers notice, while display and formal 

representations are the most unfavorable. Imagistic representation is again the most 

unfavorable construct on what the teacher would do next with the student. This may 

have taken place because the goal of this professional development experience was 

geared toward teachers interpreting student representations and not teaching teachers 
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different representations (MSMP, 2001). Furthermore, research shows that teachers that 

teach currently were taught traditionally and will use more formal and conventional 

representation as opposed to imagistic representation (Stocks & Schoenfeld, 1997).  

 The ranking of constructs changed with number from informal, formal, display, 

action, conventional, and imagistic, to formal, informal, display, action, conventional, 

and imagistic. Although the ranking did not change much, the switch with informal to 

formal as the highest rating is extremely important. This draws on the research of Goldin 

(2003), in that number and the representation of computing the algorithms thereof is a 

formal representation. Informal representations can change to formal representations 

through student cognitive development in the classroom. Formal representation is 

considered the representation taught most by traditional teachers, hence lending itself to 

the research trends noticed here. Per Wu (2000), and Stocks and Schoenfeld (1997), 

teachers in this era were taught traditionally, and hence follow the traditional education 

and put it into their practice.  

 

Teacher Pedagogical Content Knowledge of Student Representation of Algebra 

Research Question 2. What is teacher pedagogical content knowledge of student 

representation of algebraic expressions prior to and after a constructivist professional 

development based on pedagogical content knowledge? 

 On the pre-test, formal representation was the representation that teachers noticed 

most about what the student does or does not know. There was little distinction between 

the action vs. display and the informal vs. formal constructs and had high similarity 
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percentage ratings. Informal and actions are considered the most unfavorable constructs 

among what teachers notice about student representation conceptions and 

misconceptions , while display and formal representations are the most favorable and 

have the highest rating by the teachers.  

On the post-test, action representation was the representation that teachers 

noticed most about what the student does and does not know. This is favorable because 

the formation of algebraic expressions from word problems is an action representation. 

There is little distinction between the informal vs. formal and the action vs. display 

constructs as they have high similarity ratings. Informal and action are considered the 

most favorable among what teachers notice as student conceptions and misconceptions, 

while display and formal representations are the most unfavorable. Imagistic 

representation is the most unfavorable construct based on what the teacher would do 

next. Multiple of representations should be used in the mathematics classroom by the 

teacher and student to promote student achievement in all process standards.  

Ranking of constructs for number changed from formal, informal, display, 

action, conventional, and imagistic to action, display, informal, formal, conventional, 

and imagistic. The action constructs switched with the formal constructs to become the 

highest teacher ratings. The bipolar ends of action and informal switched with display 

and formal for a higher rating. NCTM (2000) called for changes in teaching 

mathematics. Furthermore, this change of instruction was to be streamlined with reform 

curriculum including the use of manipulatives and connection to real world applications. 

The teachers were better able to recognize student informal representations after the 
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professional development. The teachers also realized the strength of student action 

representation in the post-test. Per Goldin (2003), informal representations should be 

noticed and developed to become formal in the classroom. Furthermore, algebraic 

expressions and the several representations thereof are action representations. Although 

teachers noticed that most of what students did not know was imagistic, they still failed 

to rate imagistic higher in what and how to teach the concept next. This corresponds to 

Wu’s research (2000) in noting that teacher knowledge of the use of representations 

factors into use of that representation in the classroom. 

 

Hypothetical Learning Trajectory for Number 

Research Question 3. Do the hypothetical learning trajectories of the teachers for 

equivalent fractions change after the professional development? 

 On the pre-test, the hypothetical learning trajectory addressed all 

representations. Question 5 on the video observation analysis instrument moved to 

column 3 and was closest to what the student did or did not know as represented in the 

video clip. This is favorable because there should be a closer relationship between what 

the student does not know and what the teacher should teach next and how he or she 

goes about it. 

On the post-test, question 5 on the video observation analysis instrument moved 

from column 3 to and stayed in column 3. This move stayed close to what the student 

did or did not know as represented in the video clip. This is favorable because there 

should be a close relationship between what the student does not know and what the 



 81

teacher should teach next, as well as how the teacher teaches. In addition, the teacher 

rated imagistic representation high on what the student did not know, but it was rated 

low on what the teacher would teach next. 

Teachers notice student representation as action, imagistic, formal, or the bipolar 

opposites and use this pedagogical content knowledge to determine hypothetical learning 

trajectories based on what the students know and do not know. Evidence from the data 

suggests that teachers were not better able to hypothesize the learning trajectory in 

number, but they did move from using what the students know and did not know as a 

tool for the trajectory. The teachers initially showed a relationship with just the 

hypothetical learning trajectory and what the students knew with 90% similarity. 

Although this similarity percentage dropped in the post-test to 75%, teachers replied 

with a 65% similarity percentage with a relationship to the hypothetical learning 

trajectory and what the students did not know. The model fits in number, this data lends 

itself to the study of Tirosh (2000), where it was found that teachers could not explain a 

fraction procedure but also could not explain the student error yet the changes in the 

pedagogical content knowledge of the teachers are attributed not only to knowledge of 

content and teaching but also to teachers’ previous beliefs (Fennema & Franke, 1992; 

Lehrer, R. & Franke, M. L., 1992). In this study, after the professional development, 

teachers were able to identify student error and use this information as a foundation for 

what and how to teach the next concept. 
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Hypothetical Learning Trajectory for Algebra 

Research Question 4. Do the hypothetical learning trajectories of the teachers for 

algebraic expressions change after the professional development? 

On the pre-test, not only did the hypothetical learning trajectory fail to address 

imagistic representation, but also question 5 on the video observation analysis 

instrument moved to column 1 and was furthest from what the student did not know. 

This is unfavorable because there should be a closer relationship between what the 

student does not know and what the teacher should teach next. 

On the post-test, Question 5 on the video observation analysis instrument moved 

from column 1 to column 3. This move was closer to what the student did not know as 

represented in the video clip and what the student knew. This is favorable because there 

should be a closer relationship between what the student does not know and between 

what the teacher does next and how he or she teaches the next concept. In addition, the 

teacher rated imagistic representation high on what the student did not know, but it was 

rated low on what the teacher would teach next. 

The data shows that teachers were better able to hypothesize the learning 

trajectory in the post-test for number. The trajectory moved from having 75% similarity 

with what the student did not know and no relationship to what the student did know to a 

95% similarity relationship with what the student does and does not know. Clearly, 

hypothetical learning trajectories are redefined after the professional development 

partnership, and they relate to the guidelines for effective collaborative partnerships 

recommended by Joyce and Showers (2002) and Loucks-Horsley et al. (2003). 
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Conclusions 

 The MSMP professional development was designed to train teachers to notice 

aspects of student representation and redefine scope and sequence of curriculum based 

on this knowledge. Although it appears in the data that this took place, it is also obvious 

that teacher training in uses of specific representations in number and algebra is 

necessary. This supports Wu’s research (2000), which indicated that teachers “gained 

content knowledge of representation for fractions and algebraic patterns of change” (p. 

132) but that their pedagogical knowledge toward implementing the use of 

representations into teaching did not advance. 

Imagistic representation is representation that uses manipulatives or other 

materials that are meaningful to students. This representation was severely under-

represented in all tests. Teachers should use different types of representations including 

formal, imagistic, and action representations in teaching students mathematical ideas. 

This will promote student learning in all process standards including reasoning and 

proof, communication, problem solving, and connection.  

 Defining hypothetical learning trajectories based on what the student does or 

does not know is extremely important in student success. Hence, professional 

development that continues to develop and redefine these trajectories can promote 

teacher pedagogical content knowledge.  

Professional development that concentrates on strengthening teacher pedagogical 

content knowledge of student representation offers a reasonable starting point for 
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observing student problem areas and promoting achievement in those areas through 

development of hypothetical learning trajectories. Focusing on reform goals in 

professional development can become a monumental task. Therefore, the professional 

development partnership must be goal oriented to promote change. The partnership 

between the mathematics education researcher and the teacher contributes to teacher 

growth by giving perspectives based on empirical knowledge in the content and 

pedagogical areas. 

It is expected that correlations between constructs and elements will be redefined 

after professional development to represent a relationship between the professional 

development partnership and teacher growth. The changes in the correlations and 

hierarchal cluster analysis imply teacher knowledge growth and retention, and also 

increase the likelihood of the practice and transfer to the classroom. 
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