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ABSTRACT

Design Methodologies for Variation-Aware Integrated Circuits. (December 2008)

Rupak Samanta, B.E., Sambalpur University, Burla;

M.Tech., Indian Institute of Technology, Mumbai

Chair of Advisory Committee: Dr. Jiang Hu

The scaling of VLSI technology has spurred a rapid growth in the semiconductor

industry. With the CMOS device dimension scaling to and beyond 90nm technology,

it is possible to achieve higher performance and to pack more complex functionalities

on a single chip. However, the scaling trend has introduced drastic variation of

process and design parameters, leading to severe variability of chip performance in

nanometer regime. Also, the manufacturing community projects CMOS will scale for

three to four more generations. Since the uncertainties due to variations are expected

to increase in each generation, it will significantly impact the performance of design

and consequently the yield.

Another challenging issue in the nanometer IC design is the high power consump-

tion due to the greater packing density, higher frequency of operation and excessive

leakage power. Moreover, the circuits are usually over-designed to compensate for

uncertainties due to variations. The over-designed circuits not only make timing clo-

sure difficult but also cause excessive power consumption. For portable electronics,

excessive power consumption may reduce battery life; for non-portable systems it

may impose great difficulties in cooling and packaging.

The objective of my research has been to develop design methodologies to address

variations and power dissipation for reliable circuit operation. The proposed work

has been divided into three parts: the first part addresses the issues related with

power/ground noise induced by clock distribution network and proposes techniques
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to reduce power/ground noise considering the effects of process variations. The second

part proposes an elastic pipeline scheme for random circuits with feedback loops. The

proposed scheme provides a low-power solution that has the same variation tolerance

as the conventional approaches. The third section deals with discrete buffer and wire

sizing for link-based non-tree clock network, which is an energy efficient structure for

skew tolerance to variations.

For the power/ground noise problem, our approach could reduce the peak current

and the delay variations by 50% and 51% respectively. Compared to conventional

approach, the elastic timing scheme reduces power dissipation by 20% − 27%. The

sizing method achieves clock skew reduction of 45% with a small increase in power

dissipation.
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CHAPTER I

INTRODUCTION

A. Background and Motivation

The rapid growth of VLSI technology has been made possible by continuous scaling

of CMOS devices to the ever smaller dimensions. The result of this rapid growth is

high performance and low cost Integrated Circuits (ICs). In 1965, Gordon Moore pre-

dicted that the number of transistors on a chip would double every eighteen months.

During the last three decades, semiconductor industries have closely followed the

technology scaling trend of Moore’s law. Intel is one of the leading players in the

microprocessor/IC design and manufacture, which has kept pace with Moore’s pre-

diction. However, with the advent of nanometer regime, it has been difficult to meet

Moore’s prediction. One of the major challenges in designing fast and complex ICs

is the shrinking device dimensions, that give rise to drastic variations in the device

and design parameters leading to severe variability of the chip performance in the

nanometer regime. The sources of variabilities can be categorized as follows [1]:

1. Manufacturing/Fabrication sources of variations

2. Environmental sources of variations

1. Manufacturing/Fabrication Sources of Variations

Manufacturing sources of variabilities are caused by processing and mask imperfec-

tions and reliability related degradations [1]. Until now it was sufficient to model

the sources of variations as die-to-die variations. These variation models assume no

This dissertation follows the style of IEEE Transactions on VLSI Systems.
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variability of parameters within a die. Such cases can be analyzed using classic Monte

Carlo or the worst-case analysis. However, in deep sub-micron technology, there are

significant within-die variations of device and interconnect parameters [1]. Within-die

variations are dependent upon both the fabrication process and on the implementa-

tion of the ICs. These parameters can be spatially correlated or independent of each

other.

2. Environmental Sources of Variations

The environmental sources include variations due to power supply voltage, noise cou-

pling among nets and temperature fluctuation. These variations can be characterized

as probability distribution and analyzed using Monte Carlo or the worst-case analysis.

The variations are of low time constant and can vary within fraction of seconds.

• Supply voltage can vary from a nominal value during the operation of the chip.

Moreover, the voltage variation is non-uniform across the entire chip. Since,

supply voltage affects the drain current, the gate delay would vary across the

chip with the variation in supply voltage.

• Signal nets can be affected by rising and falling signals of the neighboring nets

due to its capacitive coupling with the neighbors. The signal net that gets

affected by switching of the neighboring nets is called the victim net and the

neighboring nets are called the aggressor nets. Coupling noise significantly

impact the propagation delay of a signal net depending upon the direction of

switching of its aggressor nets. The coupling noise is calculated using Miller

coupling factor (MCF). With shrinking feature size and higher clock frequency,

the coupling noise poses a serious threat to the delay variability.

• Temperature can vary throughout the chip depending upon the workload. Tem-
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perature affects the mobility of the electrons and holes; higher the temperature

lower is the mobility. This in turn affects the propagation delay of the gates.

Thus, the propagation delay of a chip would vary depending upon its tempera-

ture variations.

Another challenging issue in nanometer IC design is the increase of power con-

sumption. Over the past few years, low power IC design has been an important focus

of research and development. The increase in power consumption is mainly due to

the rapid technology scaling, enormous integration capacity and the mounting active

and leakage power consumption. Moreover, the parasitic capacitances increase with

the increase in number of devices on every technology scaling. The charging and dis-

charging of these additional parasitic capacitances leads to soaring amount of power

dissipation. With the clock frequency in modern ICs at 4 Ghz, the power dissipation

is expected to be even worse. Thus, careful power planning and low power design

techniques need to be adopted to reduce the ever increasing power demand of the

chip.

3. Power Components in CMOS Logic

The power consumption in CMOS logic is usually estimated by

Ptotal = αCV 2f + V Ileakage + Pshort circuit (1.1)

Equation 1.1 consists of three components, namely dynamic power due to switching of

the CMOS devices, static power due to leakage current and short-circuit power from

power supply. Dynamic power depends upon activity factor (α), load capacitance

(C), supply voltage (V ) and the frequency of operation (f). It is also called the

active power of the chip. The leakage power consists of (1) subthreshold leakage (2)
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gate leakage (3) substrate and junction leakage. The short-circuit power of CMOS

logic is due to switching of input and output of the logic gate from one state to the

other. During the input/output transition both the PMOS and NMOS of the CMOS

logic are on for a certain period of time, thereby connecting the supply and ground

through a resistive path. The short-circuit power is higher when the difference in slope

between the input and output transition of the CMOS logic is greater. Traditionally,

dynamic power is the dominant component of the total power consumption. However,

due to aggressive scaling, the leakage components are growing at a faster rate and

can not be neglected in nanometer VLSI design. The short circuit components are

higher for bad designs where there is larger disparity between input and output slope

of the logic gates.

B. Contribution

The dissertation deals with two key aspects of the modern IC design - variation and

power dissipation. We develop design methodologies to address the two key issues for

reliable circuit operation. The proposed work has been divided into three parts: (1)

Clock buffer polarity assignment for power noise reduction (2) Elastic timing scheme

for energy-efficient and robust performance (3) Discrete buffer and wire sizing for

link-based non-tree clock network.

1. Clock Buffer Polarity Assignment for Power Noise Reduction

As supply voltage reduces with VLSI technology scaling, the circuit performance

becomes increasingly vulnerable to power and ground noise. This work aims to reduce

the clock induced power/ground noise by a fine grained polarity assignment on an

existing buffered clock tree. We use three existing algorithms for polarity assignment:
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(1) partitioning (2) 2-coloring on minimum spanning tree (3) recursive min-matching.

The fine granularity of assignment implies that even a very small region usually

contains opposite polarity as long as there are more than one clock buffers. By doing

so, the clock-induced power noise can be reduced remarkably.

2. Elastic Timing Scheme for Energy-Efficient and Robust Performance

The critical concern in nanometer IC design is the need to deliver high performance

given ever-diminishing power budget and significant variation effects. The conven-

tional approach of using safety margin to guard against low probability timing errors

consumes power continuously. One of the alternatives to conventional safety margin

based approach is the Razor technology [2], that eliminates such power inefficiency by

using error detection and correction scheme. However, the error correction requires

stalling/flushing of the pipeline, thus, is not preferred in real-time systems or finite

state machines (FSM) with feedback loops. In this work, we propose an elastic timing

scheme that can correct timing errors without stalling or flushing the pipeline. The

main idea of this scheme is dynamic speed boosting. During normal operation, the

circuit works with relatively low power consumption. When a timing error is detected,

a few parts of the circuits are temporarily switched to a faster speed so that the timing

deficit due to error is compensated. In order to minimize the overhead of the speed

boosting, we incorporate dynamic clock skew shifting into the elastic timing scheme.

Speed boosting and skew shifting should be applied in such a way that the overall

power/cost overhead is minimized. We formulate and solve this problem by mixed

integer programming. The management complexity of the elastic timing scheme is

moderate and therefore not difficult to handle in practice. This timing scheme can

also tolerate multiple simultaneous timing errors.



6

3. Discrete Buffer and Wire Sizing for Link-based Non-tree Clock Networks

The growing complexity of IC design can be attributed to two key issues: variability

and power. Clock network is a subcircuit that deeply involves both the challenges.

Link-based clock network has drawn people’s attention for its appealing tradeoff be-

tween variation tolerance and power overhead. In this work, we investigate optimizing

link-based non-tree clock network via buffer and wire sizing. Most of the previous

work on buffer and wire sizing are either based on the Elmore delay, which is inaccu-

rate for evaluation of skew in modern technology or handle continuous sizing. We will

focus on discrete buffer and wire sizing with accurate delay models. Unlike continu-

ous sizing, the discrete sizing rarely depends upon sensitivity analysis, which is valid

over very small changes. Moreover, it is difficult to get fine-grained control for highly

discrete problems. Using accurate model is also too expensive in a large solution

space and may take large amount of time to converge to a solution. Thus, discrete

sizing using accurate delay model is a very difficult problem. This difficulty is due to

both the discreteness and model complexity. We made the following contributions to

solve this difficult yet important problem:

• Support vector machine (SVM) is explored to handle the complex delay model

issue and provide guidance for discrete optimization in large design space.

• We propose a two-stage hybrid optimization approach, which can significantly

reduce clock skew.

• In the core part of the optimization, we introduce a technique to convert an

integer nonlinear programming problem to an integer linear programming for-

mulation.
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• To the best of our knowledge, this is the first work on discrete clock network

sizing using accurate delay model.

• To the best of our knowledge, this is also the first work on sizing link-based

non-tree clock network.

C. Organization

The remainder of this dissertation is organized as follows. Chapter II discusses

power/ground noise reduction for buffered clock tree by performing polarity assign-

ment of the clock buffers. We detail three different algorithms used for polarity

assignment. Chapter III includes an elastic timing scheme for energy-efficient and ro-

bust IC design. We describe the new timing error correction scheme and the boosting

techniques used for on-line error correction. Chapter IV explains the discrete buffer

and wire sizing scheme for link-based non-tree clock network. We present a two stage

hybrid optimization scheme for buffer and wire sizing. It also includes the description

of support vector machine (SVM) used for guidance to our sizing algorithm. Chapter

V summarizes our conclusions.
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CHAPTER II

CLOCK BUFFER POLARITY ASSIGNMENT FOR POWER NOISE

REDUCTION

Power/ground noise is a major source of VLSI circuit timing variations. This work

aims to reduce clock network induced power noise by assigning different signal polar-

ities (opposite switchings) to clock buffers in an existing buffered clock tree. Three

assignment algorithms are proposed: (1) partitioning, (2) 2-coloring on minimum

spanning tree and (3) recursive min-matching. A post-processing of clock buffer siz-

ing is performed to achieve desired clock skew. SPICE based experimental results

indicate that our techniques could reduce the average peak current and average delay

variations by 50% and 51% respectively.

A. Introduction

When the supply voltage decreases with VLSI technology scaling, circuit performance

becomes increasingly vulnerable to power/ground noise [3, 4, 5]. This problem is exac-

erbated by the increase in frequency and large gate count in the scaled technologies.

Based on an estimation in [6], a 0.1V power noise may cause 80% inverter delay

variation at 45nm technology. A main culprit of power noise is clock network which

keeps drawing huge current frequently from the power supply network [7, 8, 9, 10, 11].

Power/ground noise is acute at the beginning of clock cycle when flip-flops and the

gates are switching simultaneously. In order to reduce the clock-induced power noise,

a few works [7, 8, 9, 11] attempt to avoid simultaneous flip-flop switchings through

clock skew scheduling. The common approach is to spread the computation across

the entire clock period so that the peak of the power/ground noise occurring at the

beginning of the clock cycle is distributed across the entire clock period. In [7, 8], the
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flip-flops are grouped into buckets that are switched at different times. However, such

an approach suffers from the limitation that the flip-flops within the same bucket still

switch at the same instant of time. Moreover, the approaches [7, 8], do not consider

the effect of clock skew scheduling on current profiles of combinational logic. The

work [9], uses a graph based clock scheduling approach to minimize the peak cur-

rent, hence the power supply noise. In [11], a circuit optimization technique called

skew spreading is used to schedule the clock arrival time at each flip-flops such that

peak current is reduced. In addition to performing the clock skew scheduling, the

approaches [9, 11] also consider the effect of clock scheduling on the current profiles

of combinational logic. The skew scheduling approaches [7, 8, 9, 11] are restricted

by timing constraints of the combinational logic. Since the effectiveness of these ap-

proaches is dependent upon the available slack in the application, the power/ground

noise result is expected to vary across different applications.

The use of on-chip decoupling capacitor to suppress the power/ground noise has

been discussed in [12, 13]. The main idea is to use the charge stored in the decoupling

capacitor to supply the switching transients. In another similar approach [14], the

authors use a stub to suppress the power/ground noise. They attach a quarter length

stub to the power supply line of the LSI chip. It acts as a band eliminate filter and

suppresses power supply noise for a designed frequency.

Besides the flip-flops, the switchings of clock buffers also contribute greatly to

the clock-induced noise. In a clock network of an industrial ASIC design, there

could be dozens of thousands of clock buffers [15]. A recent work [10] proposes

to use different signal polarities on clock buffers so that the roughly simultaneous

same-direction switchings are replaced by a mixture of opposite-direction switchings.

Signal polarity refers to whether or not a signal switches in the same direction as

the clock source. The main idea of [10] is illustrated in Figure 1. In Figure 1(a),
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all buffers have the same signal polarity and therefore they have either simultaneous

rising switches, which draw large current from power (Vdd) network, or simultaneous

falling switches which draw large current from ground (Vss) network. In contrast, the

application of opposite polarities as in Figure 1(b) decreases current withdraw since

only a half of the buffers draw current from Vdd while the others draw from Vss at the

same time. Please note that polarity assignment to a buffer is different from selecting

between inverting or non-inverting type for the buffer, although these two are related.

By using different types of flip-flops, positive-edge or negative-edge triggered, both

signal polarities can be accommodated at flip-flops with hardly any impact to the

original circuit design. For the example in Figure 2, when the polarity of clock signal

t2 is reversed from Figure 2(a) to Figure 2(b), the circuit timing is not affected if

flip-flop FF2 is changed from positive-edge triggered to negative-edge triggered.

(a) (b)

Fig. 1. All buffers in (a) have positive signal polarity and switch in the same direction.

The dark buffers in (b) are assigned with negative polarity and switch in the

direction opposite to the buffers with positive polarity.

When assigning polarities, the work of [10] partitions the clock sinks (flip-flops)

into two subsets, one for positive polarity and the other for negative polarity. Then,

two subtrees are constructed separately for the two subsets, i.e., one subtree has only

positive polarity and the other subtree has only negative polarity. However, this
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ClockClock

(a)

t2

t1

t2t1

(b)

t2

t1

t2t1

Logic signal Logic signal

+FF1 Combinational 
logic

+FF1 Combinational 
logic

+FF2 -FF2

Fig. 2. (a) Positive-edge triggered FFs with original polarity (b) FF2 is changed to

negative-triggered for the reversed polarity. The circuit timing is not affected

if the skew t1 - t2 is maintained.

approach faces a dilemma considering the following two typical scenarios:

• If the two subsets are spatially separated from each other like in Figure 3(a), the

two subtrees (one in solid lines and the other in dashed lines in Figure 3) are in

two separated regions. Except the boundary region between the two subtrees,

the power noise in a local area such as the shaded regions in Figure 3(a), is not

reduced by the application of opposite polarities. This is because power noise

is mostly a local effect.

• If the sink locations of the two subsets are intermingled, the approach of [10]

results in two intermingled subtrees like Figure 3(b). In this scenario, the power

noise in each local region can be reduced, but the wirelength of the clock network

is increased greatly.

Therefore, constructing two subtrees independently [10] either is ineffective for reduc-

ing local power noise or suffers from huge wirelength overhead. Moreover, the work

of [10] evaluates only the peak current while neither power supply voltage noise nor

the impact on delay variation is discussed.
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(a) (b)

Clock buffer

Source

(c)

Fig. 3. Constructing two subtrees separately for opposite polarities either cannot re-

duce local power noise if the two subtrees are spatially apart like in (a), or

results in huge wirelength overhead as in (b). We propose to perform fine–

grained polarity assignment on an existing clock tree as in (c).
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In this work, we propose to perform fine-grained clock buffer polarity assignment

on an existing clock tree. We carry out a buffer type matching on the resulting clock

tree to minimize the path unbalance that may arise due to buffer polarity assign-

ment. Then, a clock buffer tuning is carried out to restore the clock skew altered

by the polarity assignment. Three existing algorithms are used for polarity assign-

ment: (1) partitioning, (2) 2-coloring on minimum spanning tree and (3) recursive

min-matching. The fine granularity of the assignment implies that even a very small

region usually contains opposite polarities as long as there are more than one clock

buffers. By doing so, the clock-induced power noise can be reduced almost every-

where. Please note, our approach does not provide an alternative to the power noise

reduction using clock skew scheduling [7, 8, 9, 11]. Our technique can be combined

with these approaches to further improve the power noise results. Also, our technique

complements the power noise reduction using the decoupling capacitors [12, 13, 14]

and can reduce the stress on the decoupling capacitor network.

SPICE based experimental results indicate that our techniques could reduce the

average peak current and average delay variations by 50% and 51% respectively.

B. Impact to Delay Variation

Power/ground noise directly affects gate/buffer delay variation [5]. We present a

first order analysis on the impact of clock buffer polarity assignment to gate/buffer

delay variations. Without polarity assignment, i.e., with identical polarity for all

clock buffers, all clock buffers have either simultaneous rising switchings, which cause

decreased Vdd and almost no disturbance to Vss (Figure 4(a)), or simultaneous falling

switchings, which raise Vss but have negligible influence on Vdd (Figure 4(b)). With

polarity assignment, both Vdd and Vss degrade but with less degree (Figure 4(c)).
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Vss

Vdd

(a) (b) (c)

Fig. 4. Power noise in a local region when (a) all buffers have rising switches, (b) all

buffers have falling switchings, and (c) half of the buffers rising while the others

falling.

We define power noise ∆Vdd and ground noise ∆Vss as

∆Vdd = Ṽdd − Vdd ∆Vss = Ṽss − Vss

where Vdd and Vss are ideal voltage values, and Ṽdd and Ṽss are the actual voltages

considering noise. As in [5], the power/ground noise can be equivalently evaluated

by differential mode noise

∆Vdif = ∆Vdd −∆Vss

and common mode noise

∆Vcom = ∆Vdd + ∆Vss

Table I. An example of power/ground noise for the three cases in Figure 4.

Case in Figure 4 ∆Vdd ∆Vss ∆Vdif ∆Vcom

All rising (a) -0.2 0 -0.2 -0.2

All falling (b) 0 0.2 -0.2 0.2

Half rising, half falling (c) -0.1 0.1 -0.2 0

In Table I, we list a rough numerical example of power/ground noise for the

three cases in Figure 4. One can see that the polarity assignment does not change

the differential mode noise but can reduce the common mode noise to nearly zero.
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According to [5], the variation of rising delay and falling delay can be expressed as

∆trise = −A ·∆Vcom −B ·∆Vdif (2.1)

and

∆tfall = C ·∆Vcom −D ·∆Vdif (2.2)

respectively, where A,B,C and D are all positive constants dependent upon device

and technology parameters, the input transition time and the gate output load. The

differential mode noise (∆Vdif ) affects the delay to charge/discharge the capacitive

load at the output of the gate. The larger the value of the differential mode noise faster

is the charging and discharging of the capacitive load i.e. smaller is the gate delay.

The common mode noise (∆Vcom) contributes to modifying the effective switching

threshold of the gate. For a positive common mode noise, the switching threshold of

the n/p transistors are higher than the threshold without noise i.e., the fall delay of

the gate is larger with positive common mode noise. Similarly, for negative common

mode noise the threshold of n/p transistors are lower, thus, the rise delay of the gate

is larger than without common mode noise. According to [5], delay variation of a

gate is linearly dependent on differential mode and common mode noise. Thus, rise

and fall delay variations are expressed as a linear combination of differential mode

noise (∆Vdif ) and common mode noise (∆Vcom).

The three cases in Figure 4 result in approximately the same negative value of

∆Vdif which contributes to roughly the same amount of delay increase. The case

of Figure 4(a) has more rising delay increase and less falling delay increase due to

its negative common mode noise. Symmetrically, the case of Figure 4(b) has less

rising delay increase and more falling delay increase. In contrast, the common mode

noise from the case of Figure 4(c) is almost zero and therefore does not contribute
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to the delay variation. We consider the example of Table I to find the worst case

delay variation of a gate. For simplicity, A, B, C and D are assumed to be equal

to 1. Substituting the values of ∆Vdif and ∆Vcom for Figure 4(a) and Figure 4(b) in

equation (2.1) or equation (2.2), the delay variation without polarity assignment:

∆tw/o,pol = 0.2 + 0.2 = 0.4

The worst case delay variation of the gate due to polarity assignment can be found

similarly by substituting values of ∆Vdif and ∆Vcom for Figure 4(c) in equation (2.1)

or equation (2.2):

∆tw/o,pol = 0.0 + 0.2 = 0.2

Hence, clock buffer polarity assignment, which corresponds to Figure 4(c), can reduce

the worst case delay variation compared to using identical polarity (Figure 4(b) and

Figure 4(b)).

C. Problem Formulation

Given a buffered clock tree with n buffers, assign either positive or negative signal

polarity to every buffer such that peak current reduction is maximized in any region

of arbitrary size.

For a region including all of the clock buffers, this objective requires that roughly

a half of the buffers have positive polarity and the others have negative polarity. For a

small region containing only two clock buffers, this formulation requests one of them

is positive and the other is negative.
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D. Polarity Assignment Algorithms

We have extended the application of three existing algorithms to solve the problem

formulated in the previous section.

1. Partitioning

First, a graph G = (V,E) is constructed with each node uniquely corresponding to

a clock buffer and the node set V covers all of the clock buffers. There is an edge

between every pair of nodes, i.e., this is a complete graph. Then, a bi-partitioning [16]

is performed on G to partition V into two disjoint subsets V+ and V− such that

V = V+ ∪ V− and ||V+| − |V−|| ≤ 1. The subsets V+ and V− correspond to positive

and negative polarities, respectively.

If two clock buffers are very close to each other, we prefer to separate them into

different subsets (polarities). In a typical graph bi-partitioning [16], two nodes with a

small edge weight in-between are more likely to be separated into two subsets. Thus,

we let the weight of edge (i, j) to be dij which is the distance between node i and j.

Since a typical bi-partitioning algorithm minimizes the total weight of edges in the

cut, an edge with small weight (or distance) has a large chance to be in the cut and its

two end nodes are separated in different subsets. The complexity of bi-partitioning

algorithm is O(|V ||E|) [16]. Since G is a complete graph, the number of edges is

proportional to |V |2. Thus, complexity of bi-partitioning is O(|V |3).

2. 2-coloring on Minimum Spanning Tree

This is a very simple yet effective technique. First, a minimum spanning tree is

generated for the nodes representing clock buffers. Again, each edge weight is defined

as the distance between its two incident nodes. Then, a 2-coloring procedure is
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applied on the minimum spanning tree. In 2-coloring, two end nodes of an edge are

always assigned with different colors (or polarities). For a tree, there is always a

feasible solution for 2-coloring and it can be found easily. Each color corresponds to a

polarity. Since the minimum spanning tree algorithm chooses short edges, two nodes

close to each other have opposite polarities. The minimum spanning tree is generated

using greedy method. We iterate for |V |−1 times to construct the minimum spanning

tree, where |V | is the number of nodes in the graph G. During each iteration, we

chose the shortest edge from the edges connected to the nodes of the spanning tree

obtained in the previous iteration. Since graph G is a complete graph, the total

number of edges is proportional to |V 2|. Thus, the time complexity of choosing the

shortest edge during each iteration is O(|V |2). Since we have |V | − 1 iterations, the

complexity of constructing the minimum spanning tree for the graph G is O(|V |3).

The 2-coloring on minimum spanning tree is O(|E|+ |V |) [17]. Thus, the complexity

of polarity assignment due to 2-coloring on minimum spanning tree is O(|V |3).

3. Recursive Min-matching

A graph G = (V,E) same as that in Section 1 is constructed. Performing min-

matching (minimum weighted matching [18]) on this graph results in about |V |/2

matched node pairs. In a min-matching, the total weight of the edges between

matched nodes is minimized among all possible matchings. Then, we force the two

nodes (clock buffers) in the same pair to have opposite polarities. Since the min-

matching algorithm normally selects pairs corresponding to small edge weight, the

min-matching based polarity assignment tends to let two nearby buffers have opposite

polarities.

However, requiring opposite polarities is not a complete assignment for a pair of

buffers. For example, for a pair of clock buffers (a, a′), we can either let a be positive
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and a′ be negative (denoted as (a+, a′

−
)), or let a be negative and a′ be positive

(a−, a′

+). Both of the polarity permutations satisfy the constraint of being opposite.

We denote the former as positive permutation (a+, a′

−
)+ and the latter as negative

permutation (a−, a′

+)−.

+

−

(b)

a
a’

a’

b’

b

b

b’

+

+

−

−

−

+

+

−
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Fig. 5. Recursive min-matching.

The selection of polarity permutation is decided by performing another itera-

tion of min-matching on the node pairs obtained in the first min-matching. In this

iteration, the nodes of the graph is composed by the centroids of the node pairs

matched in the previous iteration. Each edge weight is defined as the distance be-

tween corresponding centroids. If two node pairs ((a, a′), (b, b′)) is selected to be

matched in this iteration of min-matching, we have four different polarity permuta-

tions: (1) ((a+, a′

−
)+, (b+, b′

−
)+), (2) ((a+, a′

−
)+, (b−, b′+)−), (3) ((a−, a′

+)−, (b+, b′
−
)+)

and (4) ((a−, a′

+)−, (b−, b′+)−). The notations for these permutations can be abbre-

viated as ++, +−,−+ and −−. These four cases are illustrated in Figure 5(b). It

can be seen that ++ and −− have no difference to the four clock buffers themselves.

Similarly, +− and −+ are equivalent to each other for the four buffers. But, ++ and
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−− are different from +− and −+. For the example of Figure 5(b), it is obvious

that permutation ++ (at top) and −− (at bottom) are better than permutation +−

and −+ (in middle). Therefore, we choose ++ and −− which are fully denoted by

((a+, a′

−
)+, (b+, b′

−
)+)+ and ((a−, a′

+)−, (b−, b′+)−)−, respectively. The former is called

positive permutation and the later is negative permutation. Now we have multiple

node groups, each of which contains four nodes. The min-matching and polarity per-

mutation selection can be repeated recursively on them till there is a single group

containing all nodes.

We discuss how to decide polarity permutations for two matched node groups

in general cases. Suppose two node groups A and B are matched. Each group has

positive permutation A+ and B+ and negative permutation A− and B−. We need to

choose + + /−− or +− /−+ for these two groups. Each polarity permutation can

be evaluated by a score which is defined as follows. For a polarity permutation such

as ++, for each node v in a group, we consider all nodes of the other group which are

nearby, i.e., nodes within certain distance D from v. If a nearby node of the other

group has the same polarity as v, then the score of this polarity permutation is added

by 1. Such score is counted for all nodes in one group. Finally, the polarity permu-

tation with the smallest score is selected. For the example in Figure 5(b), the top

(++) and bottom (−−) permutations have score of 0 while the middle permutations

(+− and −+) have score of 1. The algorithm of the min-matching based polarity

assignment is summarized in Figure 6.

The complexity of the minimum weighted matching algorithm is O(|V |3) [18],

where |V | is the number of nodes in the graph G. The recursive min-matching

algorithm is called |V |/2 times to perform polarity assignment to each clock buffer.

Thus, the complexity of the recursive min-matching algorithm is O(|V |4). During each

iteration of the min-matching algorithm the number of nodes reduces to half than its
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previous iteration. Thus, the actual number of nodes for most of the iterations is

much smaller than |V |. Thus, the run time for the recursive min-matching algorithm

is usually much faster than O(|V |4). We found the CPU run time for s35932 to be

0.603 sec, which is reasonable considering the size of the circuit. We implemented

the data-structure in such way that, during each iteration the informations about the

pair of matched nodes are stored in new memory location. The motivation behind

this implementation is to reduce the execution time of the recursive algorithm. For

this purpose, we need 2|V | extra memory nodes for the complete execution of the

algorithm. The spatial complexity is acceptable considering the negligible run time

of the recursive min-matching algorithm.

E. Buffer Type Selection and Post Processing

After buffer signal polarity assignment, we need to choose either inverting or non-

inverting type for each clock buffer. This procedure is straightforward. If a buffer has

the same polarity as its parent buffer, it should use non-inverting type. Otherwise,

an inverting type is applied.

In traditional clock tree designs, people prefer to use the same number of buffers

on each source-sink path and use the same buffer type at each level [19]. This is

illustrated in Figure 7(a). Such design can make clock skew robust to inter-die process

variations. However, our buffer polarity assignment may result in different buffer

types at a specific level (see Figure 7(b)). Therefore, we try to match the buffer types

without affecting signal polarity in a post processing. After the buffer type matching,

buffer sizing is performed to restore the original clock skew. Both the buffer type

matching and buffer sizing are focused on flip-flops which are sequentially adjacent1,

1A pair of flip-flops are sequentially adjacent if there is a pure combinational logic
path in-between.
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Subroutine: Polarity Assignment(G)

Input: Graph G = (V,E)

Output: Polarity assignment for each node v ∈ V

1. If |V | ≤ 1, return

2. A set of node pairs P ←Min Matching(G)

3. For each pair (u, v) ∈ P

4. p← centroid of (u, v)

5. Select between (u+, v+)/(u−, v−),

(u+, v−)/(u−, v+)

6. If (u+, v+)/(u−, v−) is selected

p+ ← (u+, v+)

p− ← (u−, v−)

7. Else

p+ ← (u+, v−)

p− ← (u−, v+)

8. V ← V − {u, v}+ {p}

9. E ← all pairs in V

10.Polarity Assignment(G)

Fig. 6. Algorithm of recursive min-matching based polarity assignment.
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because the fundamental timing constraints - setup time and hold constraints, are

mainly for sequentially adjacent flip-flops.

1. Buffer Type Matching

The buffer type matching is performed for a pair of sequentially adjacent flip-flops at

a time. For such a pair i and j, we check the paths from the source to i and j. If

there is any buffer type mismatch between the two paths at any level (like level 3 for

i and j in Figure 7(b)), we swap the type of one mismatched buffers with the type of

a nearby buffer while we try to maintain the signal polarity distribution unchanged.

This procedure is repeated for every pair of sequentially adjacent flip-flops.

Clock sink (flip-flop)

Inverting buffer

Non-inverting buffer

Level 3

Level 2

Level 1

kji

Clock sourceClock source

(b)(a)

Fig. 7. (a) Original clock tree. (b) Buffer type mismatch occurs at level 2 and level 3

after polarity assignment.

The overall buffer type mismatch is evaluated by a mismatch-score defined as

MismatchScore =
n∑

i=1

criticality(i, j) · diff(i, j)

where n is the total number of sequentially adjacent pairs, criticality(i, j) is the

criticality between the sink pair (i,j) and diff(i, j) is the number of buffer types

mismatches between the paths from sinks i and j to the root of the tree. For exam-
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ple, the diff(i, j) and diff(j, k) values for the clock tree of Figure 7(b) is 1 and 2

respectively.

The clock skew between flip-flop i and j has to be within a permissible range

[Lij, Uij] to satisfy setup time and hold time constraint. The size of the permissible

range is represented by Pij = Uij − Lij. The distance between i and j is denoted as

Dij. Then, the criticality for the pair i and j is estimated by [20]:

Criticality(i, j) = α(
Pmin

Pij

) + (1− α)(
Dij

Dmax

)

where α ∈ (0, 1) is the weight for permissible range, Pmin is the minimum permissible

range among all flip-flop pairs and Dmax is the maximum distance among all pairs.

This formula is based on the fact that the skew between a pair of flip-flops is critical

if they have a small permissible range and/or they are far apart.

The algorithm for buffer type matching proceeds as follows. Initially, we calculate

the most critical sink pair i and j that has the maximum product of criticality(i, j)

and diff(i, j). The path from the two sinks to the root of the tree is is traversed

in a bottom-up manner and the buffers at each level are compared subsequently. If

a mismatch of the buffer type is found, the nearest neighbor of each buffer type is

located. The mismatch-scores of the two buffers i.e. MS(i) and MS(j), are calculated

assuming that the buffer has been swapped with its neighbor. The mismatch-scores

of buffers are compared with the target mismatch-score (MS). The target mismatch-

score is calculated once before the algorithm starts and it gets updated each time a

buffer pair is swapped. If one or both of the mismatch-scores (MS(i), MS(j)) are

smaller than the target scores then, the buffer pairs that minimizes the target score by

greater amount is selected. If the selected buffer pairs on swapping maintain the initial

polarity distribution intact, we qualify the buffers for swapping. A pair of buffers can

retain the initial polarity distribution only if they have opposite polarities before
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swapping, then swapping of buffers would also cause a swapping of the polarities.

Thus the initial polarity distribution is retained. However, if the swapped buffered

nodes have same polarity, then the swap would cause both the polarities to invert

and thus alters the initial polarity distribution. The swapping of buffer also affects

polarity distribution of the subtree with the swapped buffers as its root. Thus we

traverse from each swapped buffer in a top-down fashion and invert the buffer type

of each buffer node in the subtree to maintain the original polarity.

If a buffer pair is qualified for swapping, we update the target mismatch-score

with the updated scores i.e. either MS(i) or MS(j), and start over again by finding

the critical most sink. On the other hand, if none of the buffer pair is qualified for

swapping, then we continue the bottom-up traversal till next mismatch in the buffer

type is found or the root node is encountered. If we reach the root then the next

critical sink pair is selected and the same process is repeated for the selected sink pairs.

If all the sink pairs are exhausted, then no further improvement in mismatch-score is

possible and the algorithm stops.

2. Clock Skew Tuning

Since the original clock skew is changed due to the buffer type change in the polarity

assignment, we run a clock skew tuning procedure after the buffer type matching to

restore the original clock skew. This tuning procedure is same as [21] where the sizes

of dummy capacitors are tuned toward desired clock skew. Therefore, the wirelength

is not affected in this tuning. Although the area of dummy capacitance is increased,

the buffer capacitance is often reduced when non-inverting buffers are replaced by

inverting buffers in the polarity assignment. Hence, the overall capacitance is rarely

increased as indicated in the experimental results.
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F. Experimental Results

The proposed procedure for power noise reduction was implemented in C on a Linux

machine with 2 dual-core Intel Xeon processors of 3.2GHz and 8GB RAM. We per-

formed experiments on two sets of benchmark circuits (a) ISCAS89 sequential circuits

and (b) r1-r5 downloaded from GSRC Bookshelf [22]. The reason we employ ISCAS89

benchmark is that it has logic information and the reason for r1-r5 benchmark is that

it is larger in size. The characteristics of the test cases are shown in Table II. The

table indicates the number of clock sinks and the buffers for each test case.

For ISCAS89 benchmark circuits, the combinational logic gates were synthesized

in Design Analyzer from Synopsys and placed using Silicon Ensemble from Cadence.

The placement of the logic gates were done for 180nm library downloaded from the

website [23]. The clock tree is then constructed using DME [24] and the clock buffers

are placed similar as [19]. The logic gates were replaced by time-varying current

sources connected between power and ground at grid points determined from the

placement result of Silicon Ensemble. We replace the logic gates by current sources

to make the power grid simulation feasible. The clock buffers are connected to the

power and ground grids at locations determined from the clock tree construction. For

SPICE simulation, we used 180nm model card obtained from [25] and Vdd was set

to 2.5V. We chose 180nm model card for SPICE simulation to maintain consistency

between placement result and the SPICE simulation.

r1-r5 benchmark circuits were obtained from [22]. The buffered clock tree was

generated using the algorithm in [21]. Since r1-r5 does not have logic gate information,

we conducted experiments on a standalone clock tree. For SPICE simulation, we used

65nm BSIM4 model card obtained from [25] and set Vdd to 1.0V.
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Table II. Characteristics of testcases

Case # Sinks # Buffers

S9234 135 20
S5378 164 25
S13207 503 77
S38584 1426 235
S35932 1728 286

r1 267 37
r2 598 171
r3 861 59
r4 1903 303
r5 3101 441

To measure the effectiveness of our technique, we perform simulations to deter-

mine the peak current, power supply noise, delay variation, power consumption, total

capacitance and global skew. We measure the above mentioned parameters for base

case (initial clock tree with no polarity assignment), previous work [10] and the three

algorithms proposed. For each parameters, we insert several sampling points in the

circuit to measure the value during SPICE transient simulation. We record the worst

case at each sampling point. For power noise, peak current and power consumption

parameters, the sampling points are on the power grid. The sampling points for

skew measurement is set at the sink locations. For delay variation, we introduce few

logic gates into our simulation structure. The logic gates are connected to power and

ground grids at points selected randomly.

The results for ISCAS89 and r1-r5 benchmark circuits are summarized in the

Tables on pages 28 through 32. Each table consists of set of 5 columns. The first

set of columns presents the results of the base case. The second set presents the

previous work [10] . This is followed by a set of three columns that present the

the three proposed algorithms i.e. Partition, MST and Matching. In each table, we

report either normalized average or average for both the benchmarks separately. The
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final row in each table shows the normalized average or average for r1-r5 benchmark

circuits, the other row with normalized average is for ISCAS89 benchmark. The

normalized average is used to compare our procedure with the base case as well as

the technique described in [10].

Table III. Results for peak current (mA)

Case Base Case Previous Work Partition MST Matching

Avg Max Avg Max Avg Max Avg Max Avg Max

s5378 50.2 108.1 42.2 87.0 21.9 47.3 24.1 51.7 23.1 52.9
s9234 41.30 69.4 34.6 60.1 22.0 40.1 19.1 33.4 18.0 32.0
s13207 127.2 222.3 115.6 210.0 79.4 140.1 62.3 109.8 69.0 130.0
s35932 95.1 154.1 90.3 180.5 53.0 92.4 52.4 85.5 51.4 94.4
s38584 87.5 144.9 73.9 122.9 51.1 89.3 44.6 72.0 50.2 88.6

Nor Ave. 1.00 1.00 0.87 0.88 0.55 0.56 0.50 0.50 0.51 0.53

r1 15.9 24.5 12.4 20.2 7.9 11.9 8.7 14.3 8.5 13.4
r2 43.8 82.1 35.1 71.1 26.1 46.3 25.8 45.7 26.1 48.1
r3 21.6 37.0 20.4 37.5 11.2 20.0 12.0 20.4 11.2 28.5
r4 80.7 156.4 70.5 138.4 46.2 85.9 40.7 74.8 40.7 77.4
r5 111.9 156.7 94.6 132.7 64.2 90.1 63.6 90.8 60.8 85.0

Nor Ave. 1.00 1.00 0.85 0.88 0.55 0.54 0.54 0.54 0.54 0.53

Table IV. Results for power noise (mV)

Case Base Case Previous Work Partition MST Matching

Avg Max Avg Max Avg Max Avg Max Avg Max

s5378 42.2 92.8 39.8 83.8 21.5 48.8 23.1 46.6 22.7 45.8
s9234 34.3 69.1 27.5 62.5 20.1 50.7 16.4 50.1 15.5 50.1
s13207 170.0 247.8 149.2 239.0 97.5 143.1 80.9 125.6 91.2 91.2
s35932 169.6 298.0 155.4 295.2 92.1 182.4 88.8 167.7 85.2 167.5
s38584 140.0 255.0 114.0 219.4 76.4 183.1 67.2 143.1 73.9 159.2

Nor Ave. 1.00 1.00 0.87 0.92 0.55 0.63 0.50 0.57 0.51 0.60

r1 6.2 10.1 5.4 9.2 3.0 4.4 3.4 4.9 3.2 4.3
r2 15.6 25.7 12.8 23.2 10.0 16.5 10.0 16.1 10.2 17.7
r3 9.6 13.4 8.8 13.0 5.0 8.1 5.6 8.9 5.2 7.6
r4 36.5 51.7 30.2 43.3 22.5 32.8 18.8 27.2 18.5 26.0
r5 61.4 79.1 53.4 75.4 32.4 43.8 43.8 30.5 41.2 42.7

Nor Ave. 1.00 1.00 0.86 0.91 0.56 0.57 0.55 0.56 0.54 0.54
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Table V. Results for ground noise (mV)

Case Base Case Previous Work Partition MST Matching

Avg Max Avg Max Avg Max Avg Max Avg Max

s5378 44.8 83.6 39.7 78.2 20.3 53.0 22.5 42.4 21.1 42.5
s9234 31.3 63.2 27.4 60.1 19.5 39.6 14.5 39.3 13.4 39.4
s13207 156.3 227.8 147.2 227.3 104.1 156.1 79.0 122.1 85.1 129.0
s35932 154.0 295.0 152.0 290.0 87.7 174.5 88.1 176.7 87.8 184.9
s38584 128.1 245.4 110.1 193.9 77.4 168.9 69.1 140.2 79.2 168.3

Nor Ave. 1.00 1.00 0.91 0.93 0.58 0.64 0.51 0.56 0.52 0.60

r1 7.1 10.8 6.1 10.3 3.2 4.5 3.6 5.1 3.9 4.7
r2 18.5 30.3 14.6 27.0 10.4 17.8 10.1 16.9 10.3 17.8
r3 10.6 15.3 10.2 15.0 5.6 9.0 5.8 9.2 5.4 8.3
r4 39.8 56.4 33.8 51.3 21.4 30.8 19.6 28.4 19.9 28.6
r5 58.5 78.2 53.7 72.4 31.9 42.9 30.0 40.5 30.5 41.5

Nor Ave. 1.00 1.00 0.87 0.93 0.52 0.54 0.52 0.53 0.53 0.52

Table VI. Results for delay variation (ps)

Case Base Case Previous Work Partition MST Matching

Avg Max Avg Max Avg Max Avg Max Avg Max

s5378 0.72 0.96 0.52 0.73 0.33 0.36 0.28 0.30 0.25 0.29
s9234 0.50 0.70 0.39 0.57 0.35 0.45 0.31 0.42 0.33 0.43
s13207 1.60 2.10 1.40 2.00 1.05 1.20 0.80 0.91 0.81 0.93
s35932 3.30 3.60 3.10 3.30 1.62 1.81 1.51 1.70 1.43 1.60
s38584 2.80 2.90 2.56 2.71 1.55 1.70 1.41 1.59 1.50 1.70

Nor Ave. 1.00 1.00 0.84 0.87 0.57 0.53 0.49 0.46 0.50 0.48

r1 0.41 0.48 0.38 0.40 0.21 0.24 0.19 0.23 0.22 0.25
r2 1.29 1.33 1.23 1.32 0.75 0.77 0.80 0.83 0.76 0.78
r3 0.53 0.6 0.42 0.47 0.28 0.33 0.27 0.32 0.25 0.30
r4 2.00 2.16 1.95 2.10 1.05 1.15 1.02 1.06 1.10 1.21
r5 2.98 3.24 2.71 2.95 1.54 1.62 1.65 1.80 1.70 1.82

Nor Ave. 1.00 1.00 0.91 0.90 0.53 0.53 0.53 0.53 0.54 0.54

In the data Tables III, IV, V, VI and VIII , we report the average and the max-

imum results among these worst case values from different sampling points. In the

data Table IX, we report the resource consumption for both benchmark circuits. For

each of the 5 cases in Table IX, we report average value of the total power consump-

tion, total capacitance. The total capacitance is the sum of tuning capacitance and
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Table VII. Results for nominal skew (ps)

Case Base Case Previous Work Partition MST Matching

s5378 4.9 15.7 16.0 17.7 20.0
s9234 4.0 14.1 22.0 18.6 19.0
s13207 10.2 12.4 15.5 18.3 19.8
s35932 30.0 33.0 35.0 25.0 35
s38584 28.0 35.0 29.0 35.0 32.0

Ave. 15.4 22.0 23.5 22.9 25.2

r1 5.4 7.2 9.6 9.0 10.2
r2 31.5 31.4 35.2 31.5 35.0
r3 20.0 18.5 19.0 14.1 18.6
r4 12.5 27.2 19.4 22.8 19.3
r5 12.8 12.4 11.7 19.6 17.8

Ave. 16.5 19.3 19.0 19.4 20.2

Table VIII. Results for skew due to variation for ISCAS89 (ps)

Case Base Case Previous Work Partition MST Matching

Avg Max Avg Max Avg Max Avg Max Avg Max

s5378 48.1 93.6 50.0 94.6 46.4 84.8 50.1 92.0 49.8 90.5
s9234 5.5 6.8 17.9 19.0 19.2 20.1 18.7 19.2 19.0 19.4
s13207 76.2 116.8 72.7 105.1 76.0 115.5 75.4 109.2 72.9 106.1
s35932 184.6 265.0 173.4 278.9 181.1 265.0 166.5 248.7 183.5 267.0
s38584 129.5 182.4 173.4 193.1 133.2 199 123.5 177.8 136.4 189.3

Ave. 88.8 139.9 90.4 138.1 91.2 136.9 86.9 129.4 92.3 134.5

buffer capacitance. The CPU run time is reported in Table X. For CPU run time,

we include the CPU run time to generate SPICE files for each of the algorithm and

does not include the SPICE run time.

We post process the clock tree obtained (after assigning different polarities) to

tune the skew by techniques suggested in [21]. By doing that, we bring the skew to

be less than the required skew bound for all the test cases. The skew bound was set

to 35psec for all the test cases. The skew results are reported in Table VII.

The skew due to variation was determined for ISCAS89 benchmark circuits. The

result for skew was obtained by running 1000 Monte Carlo simulations for each case.

The following parameters are varied (a) channel Length (b) threshold voltage and (c)
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Table IX. Results for total resource consumption (power in mW and cap in pf)

Case Base Case Previous Work Partition MST Matching

Pow Cap Pow Cap Pow Cap Pow Cap Pow Cap

s5378 38.2 7.72 36.4 7.59 23.7 4.62 26.6 5.11 27.4 5.31
s9234 31.8 6.10 30.2 5.71 25.0 4.86 22.3 3.81 21.0 3.46
s13207 117.8 56.0 105.6 54.7 94.6 50.5 88.5 47.6 88.2 46.1
s35932 526.0 129.2 548.0 157.3 480.0 97.9 443.6 130.0 471.0 127.2
s38584 394.9 90.00 409.2 107.8 330.3 67.40 294.0 82.40 313.6 73.70

Nor Ave. 1.00 1.00 0.97 1.06 0.79 0.76 0.75 0.81 0.76 0.77

r1 1.4 0.41 1.4 0.52 1.1 0.42 1.1 0.42 1.0 0.46
r2 6.1 1.90 6.4 3.34 4.4 1.84 4.5 2.13 4.3 1.81
r3 2.7 0.75 2.8 1.01 2.0 0.84 2.2 0.95 2.1 0.84
r4 10.6 3.35 10.7 4.85 7.8 3.74 8.2 5.21 7.5 5.13
r5 14.0 4.90 14.9 6.10 10.5 5.34 10.9 5.77 10.0 5.13

Nor Ave. 1.00 1.00 1.04 1.41 0.75 1.06 0.78 1.22 0.73 1.14

temperature. The above parameters were varied with mean as nominal value and a

standard deviation of 3%. In Table VIII, we report the average and maximum values

of the skew due to variation.

The following observations could be drawn from the results:

• Our techniques clearly dominate the method suggested in [10] in terms of peak

current, power supply noise, delay variation and power consumption.

• The reduction in peak current is significant, 46%-50% and 45%-47% respectively

for ISCAS89 and r1-r5 benchmark circuits. In fact, in few cases it could lead

up to more than 50% peak current reduction. Such high reductions in peak

current have a direct positive impact on circuit reliability.

• The power supply noise and ground noise come down by 45-50% (45-46%) and

42-49% (47-48%) respectively for ISCAS89 (r1-r5) benchmark. For s38584, a

power supply noise reduction of 52% is achieved. This result indicates that our

algorithm is efficient in reducing power supply noise for even bigger circuits.
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Table X. Results for CPU time (sec)

Case Base Case Previous Work Partition MST Matching

s5378 0.200 0.210 0.253 0.275 0.245
s9234 0.190 0.195 0.240 0.256 0.245
s13207 0.249 0.301 0.320 0.331 0.315
s35932 0.545 0.712 0.745 0.81 0.803
s38584 0.539 0.695 0.701 0.750 0.719

Nor Ave. 1.00 1.17 1.29 1.38 1.32

r1 0.340 0.350 0.480 0.460 0.440
r2 0.615 0.750 0.723 0.810 0.796
r3 0.450 0.510 0.535 0.565 0.490
r4 0.645 0.754 0.812 0.843 0.821
r5 1.400 1.560 1.610 1.730 1.712

Nor Ave. 1.00 1.13 1.23 1.29 1.23

• The delay variation reduces by 43-51% and 46-47% respectively for ISCAS89 and

r1-r5 benchmarks. The impact of our algorithm for delay variation reduction is

higher for the bigger clock networks. This trend is encouraging as it indicates

that our algorithm scales favorably for bigger nets.

• The total power consumption reduces by 21-25% (22-27%) for the three different

algorithms. The power reduction can be attributed to the use of different buffer

types in the polarity assigned clock tree.

• The total capacitance reduction is in the range 19% - 24% for ISCAS89 bench-

mark. However, for r1-r5 the capacitance increases in the range 6%-22%. The

increase in capacitance for our case in r1-r5 is due to smaller buffer sizes used

for 65nm technology. Thus the tuning capacitance is more than the total buffer

capacitance.

• The nominal skew values for three different algorithms are reduced to that of the

base case. The skew bound is set to 20ps for small and medium sized testcases,
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the skew bound is 35ps for the large test cases. The only exception is for r2

testcase. Since the skew of initial tree is poor for r2, we chose the skew to be

35ps instead of 20ps bound.

• The skew due to variation is calculated for ISCAS89 benchmark circuits. The

average and maximum value of skew in our case is almost same as that for the

base case. Thus the proposed technique has similar variation tolerance as the

base case. For few testcases our algorithm is found to reduce the skew due to

variation compared to base case. As an examples for s35932, the average skew

due to variation for MST algorithm is reduced by 10% compared to the base

case. Thus, in addition to reducing peak current and power supply noise, in few

cases, our algorithm can also provide more robustness to skew due to variation.

• Since the run-time is negligible, our technique offers the flexibility of trying all

three approaches and picking the one that offers the best results.
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CHAPTER III

ELASTIC TIMING SCHEME FOR ENERGY-EFFICIENT AND ROBUST

PERFORMANCE

In this work, we propose an elastic timing scheme which can correct timing errors

without stalling/flushing of the pipeline. This is achieved by dynamically boosting

circuit speed and dynamic clock skew shifting when a timing error occurs. We formu-

late an optimization algorithm to minimize the cost overhead of boosting and skew

shifting. Compared to conventional safety margin based approach, the elastic timing

scheme can reduce power dissipation by 20% − 27% for ISCAS89 sequential circuits

while retaining similar variation tolerance.

A. Introduction

When the VLSI technology scales to 65nm and beyond, the endeavor for performance

growth is seriously hampered by the fundamental limit on power density. Even worse,

variation effects such as process, voltage and temperature variations, are increasingly

significant and consequently entail extra timing and power budgets.

Conventionally, the variations are handled by guarding nominal circuit delay

with timing safety margins. Because of the uncertainty in variations, designers have

to use pessimistically large safety margins such that circuits are guaranteed to work

properly under the worst case variations. Such over-design not only makes timing

closure difficult but also causes excessive power dissipation. On one hand, the like-

lihood of the worst case or near-worst-case variations is very small. On the other

hand, the power for maintaining the safety margins is consumed almost continuously.

Evidently, the efficiency of such power usage is poor. Recently, statistical meth-

ods [26, 27, 28, 29] have been developed to reduce the pessimism of safety margins.
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However, large portions of the safety margins are still retained to guard against at

least the near-worst-case variations. Adaptive design techniques [30, 31] can compen-

sate manufacturing process variations, but are not good at handling runtime dynamic

variations such as supply voltage fluctuations.

The Razor technology [2] is a breakthrough work that largely eliminates the

power inefficiency of safety margin based approaches. Instead of relying on safety

margins, Razor achieves variation tolerance through in-situ timing error detection

and correction. As a result, power is spent for the worst case or near-worst-case

only when it occurs. The power overhead of the error detection and correction is

considerably less than the power savings from the safety margin reduction. When

correcting a timing error, the Razor pipeline has to be stalled and often flushed [2]

via architectural approach. In real-time systems, however, pipeline stalls should be

avoided as much as possible. For general sequential circuits with feedback loops, such

as finite state machine, it is not obvious how to perform the pipeline flushing.

In this work, we propose an elastic timing scheme that can correct timing er-

rors without stalling or flushing the pipeline. The key technique of this scheme is

dynamic speed boosting. In normal operations, the circuit works with relatively low

power consumption. When a timing error is detected, a few parts of the circuit are

temporarily switched to a faster speed such that the timing deficit due to the error is

compensated. In order to minimize the overhead of the speed boosting, we incorpo-

rate dynamic clock skew shifting into the elastic timing scheme. Speed boosting and

skew shifting should be applied in such a way that the overall power/cost overhead

is minimized. We formulate and solve this problem by mixed integer programming.

The management complexity of the elastic timing scheme is moderate and therefore

not difficult to handle in practice. This timing scheme can also tolerate multiple si-

multaneous timing errors. Compared to conventional safety margin based approach,
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the elastic timing scheme can reduce power dissipation by 20% − 27% on ISCAS89

sequential circuits. At the same time, our approach retains similar variation toler-

ance as the conventional approach. Since the boosting technique is applied to only a

small portion of each entire circuit, the overall area overhead is usually less than 5%.

The short path constraint and metastability problem are handled in the same way as

Razor [2].

B. Background on Razor

Our idea of elastic timing scheme is inspired by Razor [2], which is a power-efficient

technique for variation tolerance. The main idea of Razor is to restrain the power

consumption to typical scenarios and handle the low probability timing errors with

dynamic corrections instead of relying on safety margins. Since variation-induced

timing errors occur with low probability, the power spent on the error correction

is much less than that of maintaining safety margins. An important component in

implementing this idea is the Razor flip-flop, which is depicted in Figure 8(a). Here, a

traditional flip-flop is protected by a shadow latch, which can catch signals missed by

the flip-flop. The clock signal arrival time at the shadow latch can be either equal to

or later than that to the main flip-flop [2]. The signal miss - or timing error - can be

detected by comparing the flip-flop output and the latch output. The shadow latch

entails tight short path constraint and requires delay buffers to slow down the short

paths. However, the overhead of the delay buffers is limited. It is reported in [2] that

the total chip power overhead due to Razor flip-flops and delay buffers is only 2.9%.

The metastability issue is also discussed in [2].

There are two error correction schemes suggested in Razor [2]: (i) centralized

pipeline recovery, where the error signal stalls the clock network and the pipeline while
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the corrected logic signal is resent from the shadow latch; (ii) distributed pipeline

recovery which flushes and restarts the entire pipeline. The inventors of Razor [2]

pointed out that the centralized pipeline recovery is difficult to implement in practice

since it is sometimes infeasible to deliver the error (stall) signal from a Razor flip-flop

to the clock control gate within one clock cycle. The distributed pipeline recovery is a

more practical approach, however, it may cause pipeline stall for several clock cycles

and is therefore not ideal for use in real-time systems. Moreover, pipeline flushing is

not obviously feasible in circuits with feedback loops, such as finite state machines.

OutIn
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Razor FF

Comp

Clock

Shadow latch Comp

Error

In
Out

Modified Razor FF

Mux

FF FF
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Error

ClockClock
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Fig. 8. (a) Razor flip-flop. (b) Modified Razor flip-flop.

C. New Timing Error Correction Scheme

Our goal is to overcome the limitation of Razor so that its advantages can be utilized in

general pipelined or sequential circuits. The focus of our approach is on a new timing

error correction scheme - elastic timing scheme. The timing error detection part is

inherited from Razor [2] which has already addressed the issues of delay padding for

short paths and metastability. The key idea of the elastic timing is to let the correct

signal directly chase after the incorrect signal so that the pipeline does not need to

be stalled or flushed. In order to do so, we make a modification to the Razor flip-flop
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structure as shown in Figure 8(b). After detecting a timing error, we re-send the

correct logic signal to the output of the flip-flop instead of its input as was done in

Razor. Then, the correct logic signal will be propagated through the combinational

logic network in the same clock cycle as the incorrect logic signal which caused the

timing error. Our intention is to let the corrected signal eventually overwrite the

incorrect signal so that pipeline stall is no longer necessary.

D. Dynamic Speed Boosting

In the proposed timing error correction scheme, the launch time of the corrected

logic signal is later than usual because (1) the signal arrives at the shadow latch

later than the active clock edge of the main flip-flop and (2) the signal is sent to the

multiplexer output after the comparator delay. Therefore, its arrival time to the next

flip-flop might be too late to be captured, i.e., the next flip-flop may still capture the

incorrect logic signal. We propose to momentarily boost the speed of combinational

logic circuit such that the late launch time is compensated. Since we do not use large

safety margins, the saved timing budget allows the circuit to run at reduced speed

and low power in normal operations. Hence, the circuit speed should have room for

acceleration when timing errors occur. There are two options for speed boosting,

which are introduced below and illustrated in Figure 9.

1. Dynamic Dual-VDD

The circuit is supplied by a low VDD in normal operations and switched to a high

VDD when timing errors occur. Conventional dual-VDD designs apply different VDD

levels to different circuit blocks in a static manner. As long as the low VDD level

is significantly higher than the threshold voltage of high VDD blocks, the circuit
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Fig. 9. Speed boosting by (a) dynamic dual-VDD and (b) dynamic fast lane.

functionality is not affected when a low VDD block directly drives a high VDD block.

However, a low threshold voltage in high VDD blocks may cause high leakage current.

Therefore, people use a relatively high threshold voltage for high VDD blocks and

insert a level converting circuit between low VDD and high VDD domains to reduce

the leakage power [32]. In our case, the level converting circuit is skipped because (1)

it causes a delay penalty that degrades the effect of speed boosting, and (2) the power

overhead at high VDD is very limited due to low probability of error occurrence. The

switches between the power supply network and logic circuits can be implemented

by sleep transistors as in power gating [33]. We performed SPICE simulation on

ISCAS85 benchmark circuit C432 with the dynamic VDD. The waveforms of supply

voltage at V ′

DD of Figure 9 and the control (Error) signal are shown in Figure 10.

One can see that the switching between two different VDD can be carried out very

quickly and smoothly. This issue is discussed in more details in Section F.

2. Dynamic Fast Lane

The timing critical part of the circuit is replicated and the replica can run at signifi-

cantly faster speed compared to the original circuit. When a timing error is detected,

the logic computation is switched from the original circuit to the fast replica. After
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Fig. 10. The upper waveform is the dynamic supply voltage. The lower waveform is

the control (error) signal that switches the VDD level.

the error is corrected, the computation is switched back to the original circuit. There

are various techniques to obtain high speed for the replica: higher VDD, lower Vth,

forward body bias, larger and properly sized gates, or a combination of those. In

normal operations, the replica idles and does not consume dynamic power. Its leak-

age power can be reduced by using power gating. However, the wake-up of power

gated replica takes some time, often 2 or 3 clock cycles [33]. Therefore, only shallow

sleep mode [33] can be applied for the power gating here so that the wake-up time is

not too long. In addition, power gated replica should be structurally some distance

away from where the error is detected, so that it has sufficient time to wake up before

the corrected signal arrives. Although it seems that the area penalty of the replica

approach is large, its overall impact to the entire chip area can be very limited if it

is judiciously applied at only a few very critical places.
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3. Power Reduction and Overhead

Among the above options for dynamic speed boosting, dynamic dual-VDD is relatively

easy to use in practice and has small overhead. Although it requires two sets of power

grid, the power routing overhead is not much different from that of distributed power

gating [34] where a virtual power grid is built in addition to the original power grid.

Since the boosting is applied to a small portion of an entire chip, the overall power

routing overhead is quite limited. For the global level power delivery, the overhead due

to dynamic dual-VDD is almost the same as that of existing dual-VDD designs [32]. The

dynamic fast lane approach is more powerful on speed boosting as the replica circuit

can be implemented with multiple acceleration techniques simultaneously. Evidently,

the replica has relatively large area penalty. However, we apply the fast lane to only

a very small portion of very critical circuit so that the overall cost overhead is still

limited.

E. Shared Boosting via Dynamic Skew Shifting

We strive for minimizing the area and power delivery overhead of the dynamic speed

boosting. A key observation is that we do not need to make every logic stage boostable

even if every logic stage has small timing slack. A boosting can be shared by multiple

stages because an error does not have to be corrected immediately after it is detected.

As long as the error can be corrected before it is propagated to the primary output

of the entire chip or block, the functionality and timing budget of the chip or block

are not affected.

In order to achieve the boosting sharing, we propose dynamic clock skew shifting

such that the timing deficit resulted from a timing error can be transferred among

different stages. Consider the example in Figure 11. If a timing error is detected at
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Fig. 11. Elastic timing via simultaneous skew shifting and speed boosting.

flip-flop FF2, we temporarily shift the clock signal arrival time at FF3 and FF4 to a

later time. Then, the late launch times at the outputs of flip-flop FF3 and FF4 are

compensated by boosting at logic stage 2. The skew shifting can be realized using

programmable delay elements [35] where certain capacitive load can be dynamically

connected or disconnected from the clock signal paths through pass transistors. The

pass transistors are controlled by the error signals so that they can be turned on/off

at runtime. Although the proposed boosting sharing can reduce boosting cost, it

causes skew shifting cost which includes programmable delay elements [35] and the

control interconnect. Therefore, we need to find the best tradeoff between the skew

shifting cost and the boosting cost.

F. Timing Control

In the elastic timing scheme, we need to manage the timing interaction among logic

signals, the error signal and boosting switchings. This timing management should

not be more complex than managing the interaction between logic signals and the

clock signal in conventional designs.
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Fig. 12. Dynamic dual-VDD with power gating.

We first discuss the case of dynamic dual-VDD which is implemented by two sleep

transistors (p1 and p2 in Figure 12). This involves the switchings of p1, p2 and the

logic circuit and depends on the direction of mode change: from normal to boosting

mode or from boosting to normal mode. The error signal arrival times at p1 and p2

are denoted as d1 and d2, respectively. The effects of different scenarios are listed in

Table XI. Consider the case that the logic circuit is switching from normal mode to

boosting mode. If d1 < d2, i.e., p1 is turned on before p2 is turned off, there is a short

moment when both p1 and p2 are on. Then, there is a short circuit between VDD,H

and VDD,L. If d1 > d2, there is a moment that both p1 and p2 are off. If the logic

circuit does not switch during this moment, the logic signals retain their levels like

in a dynamic circuit. Otherwise, the logic switchings are paused and therefore their

delays are increased. The cases when the circuit changes from boosting to normal

mode are symmetric.

Table XI. Sleep transistor timing in dynamic dual-VDD boosting

Logic switches No logic switching
Mode change d1 < d2 d1 > d2 d1 < d2 d1 > d2

Norm ; boost VDD fight Extra delay VDD fight No effect

Boost ; norm Extra delay VDD fight No effect VDD fight
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In order to minimize the short circuit between the two VDDs, the time interval

when both p1 and p2 are on should be minimized. This can be achieved by carefully

placing p1/p2 and routing the error signal to p1/p2. The two sleep transistors should

not be far from each other. The routing of the error signal to them needs to be

performed like clock routing such that the skew |d1 − d2| is minimized. If |d1 − d2| is

less than a few picoseconds and VDD,H − VDD,L is not large, the VDD fight becomes

indiscernible. If p1 and p2 are not far from each other, it is not difficult to make the

skew within a few picoseconds. If the skew |d1 − d2| is small, the time interval when

both p1 and p2 are off is also small. Therefore, the resulting extra delay on the logic

switchings is small and can be neglected. As a result, the logic signal and the error

signal can switch at the same time, and the skew |d1 − d2| should be minimized.

We tested the cases in Table XI through SPICE simulation on a combinational

logic block which includes 10 gates in 90nm technology BPTM model [25]. Under

VDD,L = 0.9V , its path delay is about 175ps and its average power dissipation is

0.275mW . We let this block switch from VDD,L to VDD,H = 1.1V and back. The

input switches at the same time as either d1 or d2 and |d1 − d2| varies within a range

of 10ps. Since p1 and p2 are not far from each other in placement, a skew constraint

of 10ps is easy to satisfy in practice. For example, a 200µm long metal wire in 90nm

technology BPTM model [25] has delay less than 1.2ps according to the Elmore delay,

which is an upper bound for delay. Therefore, a 10ps skew constraint is easy to satisfy

for clock sinks close to each other. The SPICE simulation results show that the path

delay at most increases to 177ps during the VDD switching. In other words, the delay

increase is no greater than 1.1%. The power dissipation can increase to 0.285mW

which corresponds to 3.6% increase.

Now we discuss the requirement to the error signal timing. Consider the example

of Figure 11 whose timing diagram is depicted in Figure 13. The clock arrival time



45

t2

Skew

t3’

t5

Setup

t3

Wrong b

Signal a

Correct b

Correct bSignal a

Setup

Correct b

Period 1 Period 3Period 2

B

A

Fig. 13. Timing diagram for the pipeline in Figure 11. t3 is the clock arrival time at

FF3 in normal mode. t′3 is the clock arrival time at FF3 after skew shifting.

The error signal should arrive FF3 in shaded interval A and arrive logic stage

2 in shaded interval B.

to a flip-flop i in normal mode is denoted as ti. The corresponding time after skew

shifting is t′i. Assume a timing error is detected when FF2 is trying to catch logic

signal b. In other words, a wrong signal for b is caught by FF2 at its active clock

edge, which is indicated by the thickened rising edge for t2 in Figure 13. At the same

time, logic signal a is correctly captured by FF3. The correct signal b is sent from

FF2 at a later time. Then, the error signal should shift the clock signal arrival time

t3 to t′3. The error signal can arrive FF3 within a time interval indicated by shaded

region A in Figure 13. The error signal also switches logic stage 2 to boosting mode.

This should happen after logic signal a is captured by the next stage, for example,

FF5 in Figure 11. The switching should be triggered before the corrected signal b

arrives logic stage 2. Hence, the allowed time interval for the error signal to arrive

stage 2 is the shaded region B in Figure 13. In clock period 2 indicated in Figure 13,

the error signal disappears at the output of FF2. As a result, t′3 is switched back
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to t3 and logic stage 2 is restored to normal mode. If there is another timing error

following signal b, the skew shift and the boosting mode are retained. It can be seen

that there are certain constraints to the error signal time, but these constraints are

not strict in general.

G. Optimization for Minimizing the Overhead

When designing an elastic timing scheme, we first need to choose where to use mod-

ified Razor flip-flops (MRFF). If a combinational path has large timing slack even

under low power implementation (low VDD, high Vth and small gate sizes), then MRFF

is not needed there. Therefore, we use MRFF at the destination end of a combina-

tional path only when its timing slack is relatively small. Next, we need to decide

which logic stages should be boostable and where to use skew shifting. In this re-

gard, we consider circuit timing constraints in addition to boosting and skew shifting

cost. We wish to minimize the boosting and skew shifting cost subject to timing

constraints. This problem can be formulated and solved as a mixed integer linear

programming (MILP) which will be elaborated as follows.

We define some notations before describing the MILP formulation. The clock

signal arrival time to flip-flop i is denoted as ti
1. Each ti might be shifted by xi, the

value of which is decided by the optimization engine. Due to spatial and fabrication

restrictions for programmable delay elements, xi is bounded in a range [li, ui]. Ac-

cording to design rules, xi can take only discrete values. However, the number of

the discrete values is plenty such that we can approximately treat xi as a continuous

variable. We use a linear function αixi to model the cost of skew shifting, although

1For a Razor based flip-flop, the clock signal arrival time at its shadow latch may
be different from that at the main flip-flop [2]. Here we assume that the two times
are equal to each other for the convenience of presentation without loss of generality.
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other forms of cost functions can be accommodated in our optimization framework as

well. Let Dij,0 denote the maximum delay in the logic path between flip-flops i and

j in normal mode. Assume there are bij options for boosting the speed of this path.

We use Dij,l(1 ≤ l ≤ bij) to represent the maximum boosted delay when boosting

option l is implemented. The corresponding boosting cost is denoted as βij,l. These

options are sorted in non-decreasing order of their cost. We also define decision vari-

ables {yij,0, yij,1, ..., yij,bij
} to choose among the options for boosting. If yij,0 = 1, no

boosting is implemented. Let T denote the clock period. The delay overhead of error

detection at flip-flop i is ∆i, which includes the lateness of the signal arrival to the

flip-flop input and the delay of comparator and multiplexer. The optimization for

elastic timing scheme is aimed to minimizing boosting and skew shifting cost subject

to timing constraints when timing errors occur. This is formulated as the following

MILP problem.

Minimize
∑

i

αixi +
∑

ij

∑

l

βij,lyij,l (3.1)

Subject to li ≤ xi ≤ ui,∀i (3.2)

ti + ∆i +
∑

yij,lDij,l ≤ tj + T + xj,∀ path i ; j (3.3)

ti + xi +
∑

yij,lDij,l ≤ tj + T + xj,∀ path i ; j (3.4)

∑
yij,l = 1,∀ path i ; j (3.5)

yij,l ∈ {0, 1},∀ path i ; j,∀l (3.6)

The objective function (3.1) is to minimize the overall cost from skew shifting and

boosting. The constraints of the above formulation is for the scenario where a timing

error has occurred and the error correction procedure is triggered. Constraint (3.2)

enforces the allowed skew shifting range. Inequality (3.3) is the long path constraint

when a timing error occurs at MRFF i. Inequality (3.4) is the long path constraint
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when clock skew is shifted at flip-flop i, which can be either a conventional flip-flop

or an MRFF. The short path constraints are omitted for the sake of brevity and can

be easily added. Constraint (3.5) ensures that no more than one option of boosting

is selected for each logic stage. If power gating is applied with fast lane boosting, the

boosting stage cannot be at immediate fanout of an MRFF. This constraint can be

realized by prefixing the value of corresponding decision variable yij,l to be 0. This

mixed integer linear programming problem can be solved using existing solvers.

H. Experimental Results

In the experiments, we compare the proposed elastic timing scheme with conventional

safety margin based approach2. The comparison is focused on power dissipation while

the clock periods in both approaches are chosen to be the same for each circuit. We

make sure that all timing errors can be recovered by the elastic timing scheme under

these clock periods. In the conventional approach, a relatively high VDD is employed

to maintain the timing safety margin. In the elastic timing scheme, a relatively low

VDD is used in its normal operations.

The experiments are carried out on ISCAS89 sequential circuits which include

circuits with feedback loops. The numbers of logic gates and flip-flops for these

circuits are listed in the second and the third column of Table XII. The VDD for

the conventional timing scheme is 1.05V . The power and delay of each gate are

treated as random variables following Gaussian distribution. The nominal power

2It is difficult to compare our method with Razor for two reasons: (1) our work is
targeted to general circuits, especially sequential circuits with loops, where the Razor
technology is not directly applicable; (2) our error correction technique is at circuit
level and the corresponding benchmarks do not have architectural level infrastructure
for pipeline flushing like in Razor. We anticipate that the power savings from our
technique is less than that of Razor since Razor is applied together with dynamic
voltage scaling. Perhaps this is a price paid for our capability of non-stalling error
correction.
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and delay of each gate are computed based on 90nm technology BPTM model [25]

and SPICE characterization. The standard deviation (σ) of each random variable

is set to be 5% of its nominal value. Each gate delay is characterized by SPICE

simulation. The longest path delay of each logic stage is obtained by static timing

analysis. The clock period T for each circuit is in column 4 of Table XII. It is decided

by adding safety margin (SM) to the maximum variational path delay. If the longest

path delay from flip-flop i to flip-flop j is Dij and its standard deviation is σij, then

T = max
∀paths(Dij +3σij)+SM . The fifth column of Table XII shows the minimum

timing safety margin for each circuit in term of T . The average power dissipation is

displayed in the rightmost column.

Table XII. Results from conventional safety margin based timing scheme

Case #gates #FF T (ps) SM Power

S444 126 21 165 0.16T 1.0

S526 163 21 171 0.15T 1.5

S526n 159 21 190 0.15T 1.3

S820 272 5 192 0.14T 1.9

S832 279 5 186 0.03T 1.9

S1423 535 74 567 0.11T 1.3

S9234 811 135 360 0.16T 3.4

S13207 1793 453 525 0.12T 4.8

S38584 8182 1285 518 0.14T 21.7

In Table XIII, we report the results of the MILP solution for the elastic timing

scheme. The second column lists the number of Modified Razor Flip-flips (MRFF)

for each circuit. The mixed integer linear programming (MILP) problem (3.1-3.6)

was solved using a public domain solver GLPK (GNU Linear Programming Kit)

downloaded from http : //www.gnu.org/software/glpk/glpk.html. This solver was

run on a Linux machine with 2 dual-core Intel Xeon processors of 3.2GHz and 8G

memory, and the corresponding CPU runtimes in seconds are reported in the third

column of Table XIII. The MILP solution chooses to shift the clock skew for certain
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flip-flops depending upon the objective function and constraints in (3.1-3.6). Column

4 and column 5 of Table XIII show the number of flip-flops with skew shift and the

maximum amount of shift.

Table XIII. Results of MILP for elastic timing scheme (CPU time in sec)

MILP Skew shift Dual-VDD Fast lane
Case #MRFF CPU #shifts Max #gates #gates

S444 1 0.03 3 (2%) 10ps 41 0

S526 6 0.01 10 (5%) 14ps 52 0

S526n 3 0.04 8 (4%) 15ps 91 9 (5%)

S820 5 0.01 0 (0%) 0ps 86 0

S832 4 0.01 1 (0%) 13ps 121 0

S1423 9 16.00 24 (4%) 42ps 316 21 (3%)

S9234 12 1.00 13 (1%) 25ps 180 0

S13207 10 2.00 8 (0%) 18ps 107 0

S38584 2 41.00 6 (0%) 25ps 296 0

Table XIV. Results of the elastic timing scheme (power in mW )

Err protect margin
Case #Errors Normal Boosting Power Reduction

S444 25 0.12T 0.12T 0.8 20%

S526 0 0.11T 0.10T 1.2 24%

S526n 28 0.11T 0.13T 1.0 22%

S820 9 0.48T 0.62T 1.4 27%

S832 7 0.11T 0.11T 1.4 25%

S1423 8 0.10T 0.08T 1.0 24%

S9234 4 0.11T 0.15T 2.5 25%

S13207 3 0.19T 0.04T 3.6 26%

S38584 0 0.19T 0.19T 15.8 27%

For each logic stage, there are two boosting options: dynamic dual-VDD or dy-

namic fast lane. In normal mode, the circuits in the elastic timing scheme operate

under VDD of 0.9V . If a logic stage is implemented with dynamic dual-VDD, its VDD

switches to 1.1V in boosting mode. For dynamic fast lane, the fast replica is imple-

mented with VDD = 1.1V , low Vth and forward body bias. Since no gate resizing is
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performed for the fast replica, its area is approximately the same as its original circuit.

Based on the results of MILP, each logic stage is implemented either without boost-

ing, with dynamic dual-VDD boosting or dynamic fast lane boosting. In Table XIII,

column 6 indicates the number of logic gates with dynamic dual-VDD boosting. Since

the size of each logic stage is small, we use two sleep transistors as dual-VDD switches

in a logic stage. Column 7 provides the numbers of replicated gates in dynamic fast

lane.

The variation tolerance of the elastic timing scheme is tested through Monte

Carlo simulation of 1000 times. In Table XIV, column 2 shows the number of timing

errors occurred in the Monte Carlo simulations. All these timing errors are success-

fully corrected in the elastic timing scheme. The clock periods T in the elastic timing

scheme are the same as those in Table XII. We define error protection margin as

the timing safety margin that prevents the error correction mechanism from failures

in the worst case variations. This is different from the conventional safety margin

which is to avoid any timing errors. However, both of them are utilized to ensure

that a circuit can function properly under the worst case variations. The error pro-

tection margin of the normal mode is the minimum between two cases: (1) a logic

path with Modified Razor Flip-flop (MRFF) at its destination, and (2) a logic path

with conventional flip-flop at its destination. In case (1), the error protection mar-

gin is obtained by min
∀paths(1.5T −Dij − 3σij) where the 0.5T is from the shadow

latch protection in MRFF. The error protection margin in case (2) is the same as the

conventional approaches. The error protection margin of the boosting mode is the

minimum difference between the two sides of inequality (3.3) and (3.4). The error

protection margins in normal mode and boosting mode are shown in column 3 and

column 4, respectively. The rightmost two columns of Table XIV display the average

power dissipation, which includes the extra power of speed boosting and skew shift-
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ing triggered by timing errors, and the power reduction compared to the conventional

safety margin based approach. The following observations could be drawn from the

results:

• Our approach has a clear advantage on power dissipation which is 20% − 27%

less than the conventional approach.

• The MILP solver tends to choose more dual-VDD boostings than fast lane boost-

ings. Sine fast lane boosting is more effective but more expensive, it is employed

only in cases where dual-VDD boosting is not sufficient to correct timing errors.

• The area increase of our approach is limited. This can be observed from column

4 and 7 of Table XIII. Roughly speaking, a skew shift induces an extra gate

of small size. Thus, the area increase compared to the conventional approach

is rarely greater than 5%. Of course, we also need to consider the extra cost

on sleep transistors, power grid for dual-VDD and forward body bias. However,

these cost overhead have been acceptable in many industrial designs with power

gating, multi-VDD and adaptive body bias. Our work is focused on the error

correction scheme. The overheads on the error detection, such as Razor flip-

flops and delay padding for short path constraints, are roughly the same as the

original Razor and have been discussed in [2].

• The options of VDD levels in the elastic timing scheme is significantly less than

that in Razor, which is applied with dynamic voltage scaling. Consequently,

our control to the error rate is not as refined as in Razor. In some circuits,

we did not meet any timing errors in the 1000-run of Monte Carlo simulation.

However, the error rate showing in column 2 of Table XIV is never greater than

3%. This error rate is sufficiently low such that the extra power dissipation in

boosting is not significant.
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• The error protection margins in Table XIV are close to the safety margins in

Table XII. This implies that the elastic timing scheme has similar variation

tolerance as the conventional safety margin based timing scheme.
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CHAPTER IV

DISCRETE BUFFER AND WIRE SIZING FOR LINK-BASED NON-TREE

CLOCK NETWORKS

In this work, we investigate optimizing link-based non-tree clock networks through

buffer and wire sizing. A two-stage hybrid optimization approach is proposed. It

considers the realistic constraint of discrete buffer/wire sizes and is based on accurate

delay models. We use SVM (Support vector machine) based learning for guidance to

our optimization. SVM is efficient in estimating the cost of optimization and acts as a

surrogate for expensive circuit-level simulation. Experimental results on benchmark

circuits show that our sizing method can reduce clock skew by 45% on average with

very small increase in power dissipation.

A. Introduction

VLSI designs in nanometer regime are facing two simultaneous challenges: variability

and power. Clock network is a sub-circuit that deeply involves both of the challenges.

On one hand, clock skew, which is the difference between clock signal delays, is very

sensitive to variations. On the other hand, clock network is a large power consumer

due to its large fanout size and high switching frequency. A well-known approach

for skew tolerance to variations is clock mesh [36]. However, clock mesh has large

wire/power overhead and consequently exacerbates the power crisis. Recently, Ra-

jaram, et al., proposed a new approach [37] that constructs non-tree clock network

by inserting cross links in a clock tree. Such network is much more robust than clock

trees yet causes much less wire/power overhead compared to clock mesh. There-

fore, the link-based non-tree clock network provides an appealing tradeoff between

robustness and power overhead.
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Later, an improved link insertion algorithm was introduced in [38]. Incremental

link insertion techniques were reported in [39, 40]. Link insertion for buffered clock

networks were discussed in [21, 41]. Most of these works are focused on only link

insertions while there is almost no work on optimizing clock networks with cross

links. Is it necessary to further optimize a clock network after link insertion? The

answer is “yes”, especially for buffered clock networks. According to [37], if a cross

link is inserted between two nodes with large skew, it may increase clock skew for

some other nodes, i.e., it is better to insert links between nodes with zero skew.

However, obtaining the zero skew in buffered clock trees is a very difficult problem by

itself. The work of [21] suggests to minimize the skew by using special buffers that

have additional capacitors inside. Since the capacitors are within cascaded buffers,

changing their sizes can tune the buffer delay with very little influence to slew rate

and capacitive load of other parts of the clock tree. As a result, skew minimization

becomes a local tuning problem which is much easier to solve. The main drawback

of this technique is that such special buffers are not common in practice and may

require significant changes to design methodologies. Without using such buffers,

link insertion in buffered clock trees often increases nominal clock skew as shown

in the experimental results of [41]. Although skew variability becomes increasingly

prominent, nominal skew is still essentially important to circuit design. According to

[37], decreasing nominal skew may also enhance the effect of link insertion on skew

variability reduction. Therefore, merely inserting links in buffered clock trees is not

adequate and further skew optimization is still necessary.

This work investigates optimizing link-based non-tree clock networks via buffer

and wire sizing, which is a common and effective technique for skew minimization, For

clock trees, buffer sizing techniques were reported in [42, 43] and wire sizing methods

were introduced in [19, 44, 45, 46]. Wire sizing algorithms were also developed for
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clock mesh in [47, 48]. In [49, 15, 50], approaches for simultaneous clock tree buffer

and wire sizing were proposed. These previous works are either based on the Elmore

delay model [42, 46, 49], which is inaccurate for evaluating skew in modern technology,

or handle only continuous sizings [45, 48, 15, 50]. The work of [44] does discrete sizing

with accurate models, but it is limited to wire sizing only. In realistic designs, the

requirement to clock skew accuracy is very rigorous. Clock network design is often

closed by circuit simulations of SPICE level accuracy as opposed to static timer level

accuracy for logic timing closure. On the other hand, the number of clock nets on a

chip is far less than that of signal nets. Thus, the relatively long runtime caused by

using accurate model is well justified for clock network design. Since link-based non-

tree is targeted to ASIC designs, the sizes of buffers and wires are discrete. Moreover,

the number of buffer and wire size options for clock network is often small. In other

words, the buffer and wire sizing problem for ASIC clock networks is highly discrete.

For highly discrete problems, rounding continuous solutions may result in significant

errors [18, 51] and therefore direct combinatorial techniques are needed.

We will focus on discrete buffer and wire sizing with accurate delay models. This

is a very difficult problem which has not been well studied. The difficulty is due

to both the discreteness and model complexity. Unlike continuous sizing, which is

usually guided by sensitivity information [45, 48, 15, 50], discrete sizing can rarely

rely on sensitivity, which is valid mostly for very small changes. Moreover, it is

very difficult to have fine-grained control to highly discrete problems. For example,

changing buffer/wire size by one discrete step may result in a large change on skew and

consequently a discrete optimization tends to have slow convergence. Unlike the cases

using simple models, where many candidate solutions can be quickly evaluated and

explored [49, 46], using accurate model is too expensive for systematic solution search.

Even worse, non-tree networks are more complicated to analyze than clock trees.
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We solve this difficult yet important problem using a two-stage hybrid optimization

approach, which can significantly reduce the clock skew. Support vector machine

(SVM) is integrated into the optimization scheme to handle the complex delay model

issue and provide guidance for discrete optimization in large design space. To the

best of our knowledge, this is the first work on discrete clock network sizing using

accurate delay model. Experimental results on benchmark circuits show that our

sizing method can reduce clock skew by 45% on average with very small increase on

power dissipation. Considering that the granularity of buffer/wire sizes is coarse, 45%

skew reduction is very significant.

B. Skew Modeling via Statistical Learning

One of the significant hurdles in the optimization of large non-tree clock networks

is the cost of circuit-level non-tree analysis. In order to assess the impact of design

change on the network performance (e.g. the maximum clock skew) during opti-

mization, a large non-tree clock network must be analyzed many times. In discrete

sizing based optimization, the cost of clock network analysis is further exacerbated

since relatively efficient incremental sensitivity analysis is unable to provide accurate

prediction of clock skews over wide discrete gate and wire size ranges. Hence, an

accurate yet efficient surrogate for costly circuit-level simulation is strongly desirable

to facilitate efficient optimization.

To this end, we adopt powerful statistical learning techniques to empirically

model the performance of a clock network (e.g. maximum clock skew) as a function

of multiple gate and wire sizes. The type of learning algorithms that has a particular

appeal for our problem is Support Vector Machine, or SVM [52, 53]. SVM is an

appropriate choice for our clock skew empirical modeling as it is well suited for fitting
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highly nonlinear and high-dimensional data. In contrast, widely used polynomial

based fitting is only applicable to smooth local data.

For a set of M training data set (x1, y1), · · · , (xM , yM), where, xi is an input

pattern and yi is the output, the so-called ε-SVM regression attempts to construct a

regression model y = f(x) that has at most ε deviation from the actual y value for

all the training data. The SVM regression model is in the form:

f(x) =
K∑

i=1

αiK(si, x), (4.1)

where s′is are a set of K (small) number of support vectors in the input space, αi is a

non zero co-efficient and K(·, ·) is a kernel function. The admissible kernel functions

correspond to a dot product in certain input feature space. One particularly effective

Kernel function is the radial-basis kernel function

K(a, b) = e
−||a−b||2

2σ2 . (4.2)

SVM machinery attempts to produce a flattest regression model according to the

introduced margin ε and thereby avoids over-fitting. The use of a small set of support

vectors and suitable Kernel functions leads to the sparsity of the model and also

makes it suitable for fitting highly nonlinear data in a high-dimensional input space,

as required in our clock skew modeling task.

SVM model is integrated into our sizing algorithm to provide guidance for the

optimization. Thus, we build an SVM model before performing the optimization for

buffer and wire sizing. The SVM model is built by performing n number of SPICE

simulations. For each simulation, we determine the skew cost Q =
∑

q2
ij, where qij

is the clock skew between node i and node j. The results of the n simulations are

used to build the SVM model by statistical learning. The sizes of buffers and wires

for each SPICE simulation are determined randomly. Once the model is built, it can



59

be integrated into our optimization scheme and is efficient in estimating the skew

cost during optimization. Building an SVM model can take significant amount of

time. Thus, we consider running 120 SPICE simulations for statistical learning of

SVM model to minimize the learning time of SVM. The accuracy of the SVM model

compared to an accurate delay model like SPICE and the CPU time for building

SVM model is discussed in experimental section.

C. Sizing Algorithms

1. Overview

The goal of buffer and wire sizing is to minimize the global skew, which is the max-

imum clock delay difference among all pairs of clock sinks. In the big picture, our

approach is to iteratively optimize a portion of the given clock network. Compared to

simultaneously optimizing the entire network, the computation cost of our approach

is more practical. Compared to iteratively optimizing a single element, such as a sin-

gle buffer size, our approach is more efficient on finding good solutions from a global

perspective.

The overall flow of our sizing method is shown in Figure 14. In this flow, an

OptimizationCore is applied repeatedly. The procedure of OptimizationCore tells

how to extract a portion from the clock network and how to optimize this portion.

The OptimizationCore may be instantiated differently at different stages/steps of

the flow. The pseudo code of generic OptimizationCore is given in Figure 15. The

optimization in our algorithm is carried out from the clock source to the sinks in a

level-by-level manner. Figure 16 illustrates the levels in a part of a clock network. In

each iteration, only one level is optimized such that the skew among leaf nodes of that

level is minimized. This strategy is in the same spirit of delay balancing [19], which

can assist the overall skew minimization and avoid the risk of short circuit between dif-
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Procedure: Sizing(G)

Input: clock network G

Stage 1:

Remove link resistors

For each level

Step 1: OptimizationCore(P1, e1, k1, E1)

Step 2: OptimizationCore(P1, e1,2, k2, E1)

Stage 2:

Add link resistors back

For each level

Step 1: OptimizationCore(P2, e1, k1, E2)

Step 2: OptimizationCore(P2, e2,2, k2, E2)

Fig. 14. Overall optimization flow.

ferent buffers [21]. The optimization at each level is started with a SPICE simulation.

In order to improve the computation efficiency, the optimization is performed on a set

of components instead of the entire level. Component P in the OptimizationCore is

defined as subtree or subtree with links, which is a buffered subtree with the buffer

at root of the subtree. For instance, there are four subtrees at level i+1 in Figure 16.

The parameter e indicates what elements in the selected components should be sized:

buffer, wire and/or link. We select k subtrees associated with the maximum delay

and another k subtrees associated with the minimum delay among the leaf nodes of

this level. For the example in Figure 16, if k = 1, we choose the left-most subtree and

the right-most subtree for optimization. Since the main goal of clock network sizing

is to minimize clock skew, we extract k components associated with the maximum

(minimum) delay and try to reduce (increase) their delay.
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In our optimization, the objective is formulated as minimizing a skew cost func-

tion Q =
∑

q2
ij, where qij is the clock skew between node i and node j. It is shown in

[50] that the quadratic objective function not only addresses the overall skew but also

leads to solutions with improved robustness. In order to quickly evaluate the impact

on the objective function Q from sizing, an SVM model is built to model Q for the

extracted components. Although it takes significant time to build the SVM model,

this model is very quick on estimating Q and is called frequently in the optimization.

Therefore, using SVM can help to reduce the overall runtime. We restrain the size

of the extracted portion so that the quality of the SVM model is justified. After the

SVM model is obtained, optimization E is performed on the extracted portion.

Procedure: OptimizationCore(P , e, k, E)

Input:

P : definition of component

e: types of elements to be sized

k: the number of components for optimization

E : optimization engine

1. Run SPICE simulation

2. S ← k components P associated with max delay

S ← S ∪ k components P associated with min delay

3. Build SVM model over S

4. Size element types e in S using E

Fig. 15. Optimization core.

The overall flow (Figure 14) includes two stages. The main difference between

them is that the network is relaxed to a tree for the optimization in stage 1 while
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Subtree

Buffer
Level i+1

Level iu

v
Segment

19 20 19 18 15 17 16 16
Link 17 16 17 15 14 13 14 15

Fig. 16. Illustration of definitions. The number besides each buffer is the clock signal

arrival time to the buffer input.

stage 2 optimizes the complete network. The motivation for the relaxation in stage 1

is for the convenience of divide-and-conquer. The reason that we are able to do the

relaxation by simply removing the link resistors is based on an important conclusion in

[37]. According to [37], if a link resistor is inserted between two nodes with zero skew,

then this resistor does not affect skew between any two nodes in the network. Since

the links are usually inserted between leaf nodes [21, 41], after skew minimization

in stage 1, the effect of adding link resistors back is not large. In other words,

the improvement obtained in stage 1 can be mostly retained even after adding link

resistors back. The details of stage 1 and stage 2 will be elaborated in subsequent

sections.

2. Optimization Stage 1

a. Overall Optimization Flow

At the beginning of stage 1, the link resistors are removed from the clock network

while the link capacitances are retained. After the removal, the topology of the clock

network becomes tree, which is usually a balanced tree due to the requirement from
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link insertion [21, 41]. There are two steps in the optimization of stage 1: step 1 is

more on a coarse and global level while step 2 is more on a fine-grained and local level.

The component P1 for stage 1 is defined as a subtree, which is a buffered subtree with

the buffer at the root of the subtree. In step 1, the elements e1 to be sized include the

buffers and the wires of the selected subtrees. Since step 1 is on a relatively coarse

level, the wires of each subtree is sized uniformly. In other words, all wire segments

of a subtree are sized with the same width. In Figure 16, a wire segment is illustrated

between node u and v and the shaded subtree contains 6 wire segments. In the wire

sizing of step 1, only one variable is needed for each subtree. Since there are 2k1

subtrees selected for step 1, there are 2k1|B| + 2k1|W | integer variables: where |B|

and |W | are the number of buffer and wire width choices available. The main reason

for the uniform wire sizing is to reduce the number of variables of each subtree so

that more subtrees can be selected for the optimization. In step 2, 2k2 subtrees are

selected and the sizing is performed at a relatively fine granularity level. The elements

e1,2 to be sized in step 2 are the individual wire segments of the selected subtrees.

For each subtree, the number of elements (wire segments) in step 2 is significantly

larger than that of step 1. Therefore, the value of k2 is usually smaller than k1 so

that the total number of elements (variables) in step 2 is limited. One can see that

the focuses of step 1 and step 2 are complement with each other. Step 1 is mostly for

a coarse level sizing while step 2 is more for fine tuning.

The optimization engine E1 of entire stage 1 is an ILP (Integer Linear Pro-

gramming) based local search. The objective is to minimize the overall skew cost

Q =
∑

q2
ij, where qij is the clock skew between leaf node vi and vj. In the optimiza-

tion of E1, the value of Q is estimated according to the SVM model, which is built

before E1 is called.

The pseudo code for the optimization engine E1 of stage 1 is outlined in Figure 17.
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Procedure: Optimization engine E1(S)

Input: A set S of components to be sized

1. While ( improve ) {

2. Partition S into a set G of m groups

3. Obtain average leaf node delay tave of each group

4. Sort groups in G in non-decreasing order of tave

5. For i = 1 to m
2
{

6. While ( improve )

7. Increase tave of gi ∈ G by δ

8. While ( improve )

9. Decrease tave of gm−i+1 ∈ G by δ

10. }

11.}

Fig. 17. Optimization engine E1 for stage 1.

The improve in line 1, 6 and 8 is true when the value of the objective function Q

is reduced according to the SVM model. Each group resulted from the partition

of line 2 consists of one or several subtrees. Usually, we group those subtrees close

to each other and with similar leaf delays together. The loop from line 5 to line

10 is to minimize the inter-group skew, which is the difference of the average leaf

node delay between two groups. The basic idea is to gradually increase the average

delay if a group originally has small average delay (line 7). By the same token, if a

group originally has large average delay, the average delay is gradually decreased (line

9). We focus on the inter-group skew because we observed that intra-group skew is

usually very small as long as the initial clock tree is not poorly designed.
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b. ILP Formulation

The increase or decrease of the average delay (line 7 and line 9 of Figure 17) is achieved

by sizing the elements of the group through Integer Programming. We describe the

Integer Programming formulation for the case of increasing the average delay. The

method for decreasing the average delay is the same. The main constraint is to make

the average delay increase by δ with a maximum error of ±τ . The Elmore delay

model is employed here since it has analytical expressions which can be easily incor-

porated in the formulation. Although the Elmore delay is sometimes inaccurate, the

corresponding solution is accepted only if it indeed reduces the overall skew function

Q according to the SVM model. Harnessed by SVM validation, the Elmore based

solution should generally move in a reliable direction.

A straightforward formulation leads to an Integer Nonlinear Program problem,

which is very difficult to solve. We propose a technique to convert this nonlinear

problem into an ILP (Integer Linear Programming) formulation, which is significantly

easier than the nonlinear version. Let b and w denote buffer and wire size, respectively.

There are two kinds of decision variables. Variable xi,b = 1 if size b is assigned to

buffer i. Similarly, variable yj,w = 1 indicates that size w is assigned to wire j. Please

note that j is a subtree in step 1 but is a segment in step 2. We attempt to increase

the delay of each leaf node l by δ with at most ±τ error. The straightforward integer

programming formulation is given as follows.

Minimize τ (4.3)

Subject to :

δ − τ ≤ ∆tl ≤ δ + τ, ∀ leaf node l (4.4)

∑

∀b

xi,b = 1, ∀ buffer i (4.5)
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∑

∀w

yj,w = 1, ∀ wire j (4.6)

xi,b ∈ {0, 1} ∀ i, b, yj,w ∈ {0, 1} ∀ j, w (4.7)

where ∆tl is the delay increase of the leaf node l depending on the sizing and τ is the

error in the delay increase. Constraint (4.4) ensures that the delay of each leaf node

is increased by δ with at most ±τ error. Constraint (4.5) and (4.6) make sure that

only one size is assigned to each buffer and wire. Please note the objective function

in this formulation is to minimize the error in the delay increase i.e., minimize τ .

If we express the delay increase in constraint (4.4) in term of the Elmore delay,

it is not difficult to find that it is a nonlinear function with respect to the decision

variables. Therefore, this formulation results in an Integer Nonlinear Programming

problem, which is very difficult to solve directly. Next, we will introduce a technique

to convert this nonlinear problem into an ILP formulation, which is significantly easier

to solve.

We use a very simple example to illustrate how to convert the nonlinear delay

expression into linear function of newly introduced decision variables. In this example,

there is one buffer driving one wire segment. There are two options b1 and b2 for the

buffer size and two options w1 and w2 for the width of this wire segment. The Elmore

delay of the buffer can be expressed as:

tB = x1Rb,1y1Cw,1 + x1Rb,1y2Cw,2

+x2Rb,2y1Cw,1 + x2Rb,2y2Cw,2 (4.8)

x1 + x2 = 1 (4.9)

y1 + y2 = 1 (4.10)

where x variables are for selecting buffer sizes and y variables are for selecting wire

widths. Rb,1 and Rb,2 are the buffer output resistances for the sizes b1, b2. Cw,1 and
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Cw,2 are the wire capacitances for widths w1, w2. Since each of the terms in the delay

expression tB is product of x and y variables, the delay is a non-linear function. We

introduce a new set of decision variables to replace x and y.

zb1,w1 = xb,1yw,1

zb1,w2 = xb,1yw,2

zb2,w1 = xb,2yw,1 (4.11)

zb2,w2 = xb,2yw,2

Then, the delay expression becomes

tB = zb1,w1Rb,1Cw,1 + zb1,w2Rb,1Cw,2

+zb2,w1Rb,2Cw,1 + zb2,w2Rb,2Cw,2 (4.12)

zb1,w1 + zb1,w2 + zb2,w1 + zb2,w2 = 1 (4.13)

zbi,wj ∈ {0, 1} i = 1, 2 j = 1, 2 (4.14)

Now the delay is a linear function with respect to the new variables z. After per-

forming such conversion to (4.4)-(4.7), the original Integer Nonlinear Programming

problem becomes ILP formulation and can be solved by existing ILP solver.

Since the solution of ILP solver is in term of z, we need to do a post processing to

find buffer size and wire width from the values of z. For example, if the ILP solution

is zb1,w1, and the other variables being zero, then the buffer size is selected to be b1

and the wire width is w1. There is a price that we have to pay for the nonlinear-

linear conversion. That is the increase in number of decision variables. On the first

order, the increase is about (|B|+ |W |) · |W | per constraint in (4.4) where |B| is the

number of buffer sizes and |W | is the number of wire width options. Since our work

is targeted to realistic cases that have very few buffer and wire options, the variable
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increase caused by the nonlinear-linear conversion is limited. Moreover, we carefully

restrict the size of each group being optimized. Therefore, the runtime of solving the

ILP is still reasonable.

3. Optimization Stage 2

At the beginning of stage 2, the link resistors are added back and therefore the clock

network topology becomes a non-tree. The definitions of component and element in

stage 2 are similar as those in stage 1 except that the cross links are included. The

component P2 for stage 2 is defined as a subtree and associated links. In Figure 16,

one example of P2 is the shaded subtree plus the thickened link. The optimization

of stage 2 also consists of two steps, which are similar to the two steps in stage 1.

Same as in stage 1, the elements e1 to be sized in step 1 of stage 2 are buffers and

wires of the selected subtrees. Again, all wire segments in the same subtree are sized

uniformly. Please note that links are not included in the elements of step 1. The

elements e2,2 to be sized in step 2 are the individual wire segments and the cross links

incident to the selected subtrees.

Since the network topology in stage 2 is non-tree, which is not friendly to ILP

formulation, we design the optimization engine E2 as a group migration based heuristic

like Kernighan-Lin partitioning algorithm [54]. Same as in stage 1, the objective of

E2 is to minimize the overall skew cost Q =
∑

q2
ij, where qij is the clock skew between

leaf node vi and vj. We define a move as either sizing-up or sizing-down an element,

which can be either a buffer, a wire segment or a link. The size change in a move is

restricted to be a single discrete step. For instance, for a wire with initial width of

2×, a move can be a change to 1× or 3×, but not 4×. If the objective function equals

Qi−1 before move i and becomes Qi after move i, then the gain of this move is defined

as gi = Qi−1 −Qi. For moves from 1 to l, the cumulated gain is Gl =
∑l

i=1
gi.
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Procedure: Optimization engine E2(S)

Input: A set S of components to be sized

1. While ( true ) {

2. S ′ ← S

3. While S ′ 6= ∅ {

4. Find move i with max gain gi

5. ei = the element sized in move i

6. S ′ ← S ′ − {ei} }

7. Find l such that cumulated gain Gl is maximized

8. If Gl > 0, make the l moves on S

9. Else break }

Fig. 18. Optimization engine E2 for stage 2.

The pseudo code of the optimization engine E2 is given in Figure 18. It has two

nested loops: inner loop line 3-6 and outer loop line 1-9. In the inner loop, the move

that maximizes the gain is found in each iteration. Although these moves are greedy,

they are only temporary moves. In the outer loop, the cumulated effect of multiple

moves are checked. A group of temporary moves are indeed implemented only if

they can maximize the cumulated gain and the cumulated gain is positive. In this

procedure, almost all of the computations on gains are based on SVM model except

step 8, which is based on SPICE. Since step 8 is the last step to decide whether or

not to take the l moves, this decision must be validated by the most reliable model.

Step 8 is outside the inner loop, therefore, the number of calls to SPICE is limited.
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D. Experimental Results

We performed experiments on two sets of benchmark circuits (a) ISCAS89 sequential

circuits and (b) r1-r5 downloaded from GSRC Bookshelf [22]. These circuits are first

synthesized using SIS [55] and then placed by an academic placer mPL [56]. After

placement, the locations of the clock sinks are available. The clock tree construction

and link insertion are performed according to [21]. The numbers of sinks, buffers and

links in the clock networks are listed in Table XV.

Table XV. Testcases

Case # Sinks # Buffers # Links

S9234 135 20 21
S5378 164 25 30
S13207 503 77 69
S15850 566 81 86
S38584 1426 235 50
S35932 1728 286 143

r1 267 37 44
r2 598 171 31
r3 861 59 45
r4 1903 303 156
r5 3101 441 114

The device model and wire parasitics are obtained from 90nm BPTM model [57].

The VDD voltage level is 1.0 volt. In our library, we have four buffer types with 16X,

24X, 32X and 48X of the minimum buffer size, respectively. In realistic clock network

synthesis, it is very common that people use only a few options of very large buffers.

The wire size options include 1X, 2X and 3X of the minimum wire width. In the

initial network, all buffers take the size of 24X and all wires have 2X width. The

values of k1 and k2 (see Figure 14) are 10-15 and 4-5, respectively.

Our algorithm of buffer and wire sizing is implemented in C language. The in-

teger linear program (ILP) is solved using a public domain solver GLPK (GNU Lin-
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ear Programming Kit) downloaded from http://www.gnu.org/software/glpk/glpk.html.

The binaries for the Support Vector Machine (SVM) is obtained from

http://svmlight.joachims.org. All of the experiments are carried out on a Linux ma-

chine with 2 dual-core Intel Xeon processors of 3.2GHz and 8G of memory.
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Fig. 19. Comparison of SPICE, SVM model and Elmore delay.

We first run experiment to validate the SVM model. The values of objective

function Q =
∑

q2
ij from the Elmore delay, SVM model and SPICE simulations are

compared in Figure 19. In the Elmore delay computation, each buffer is modeled

by input capacitance, output resistance and intrinsic delay, i.e., RC model. These

results are from 40 data points (sizing solutions) on a portion of circuit s13207. These

data are sorted according the Q value from SPICE. It can be seen that the Q value

from SVM approximately follows the trend of SPICE results, although it gives some

small errors occasionally. In contrast, the Q values estimated from the Elmore delay

have much greater deviations from the SPICE result. Moreover, these deviations are

not monotone so that the Elmore delay can hardly capture the general trend of the

SPICE delay. The main reason is that the simple RC buffer model in the Elmore

delay computation cannot reflect the significant nonlinear behaviors of the devices.
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According to this comparison, it is evident that the SVM model is superior to the

Elmore delay when applied to guide the skew optimization.

Since, there is no previous work on simultaneous buffer and wire sizing for non-

tree clock networks, we compare the following approaches:

• Tree+Link: The initial link based non-tree obtained according to [21].

• Tree+Link+Elmore sizing : This result is obtained from sizing the initial non-

tree using our proposed algorithm except that the sizing is guided by the Elmore

delay. We show this result to see the effect of using SVM compared to the Elmore

delay.

• Tree+Link+SPICE sizing: The result is obtained by using the proposed algo-

rithm and a SPICE simulation based guidance for sizing the initial link-based

non-tree clock network. We show the result to see how good is the SVM based

sizing compared to an accurate delay model like SPICE.

• Tree+Link+SVM sizing: This is the result from our proposed algorithm.

Table XVI. Results of global skew for non-tree clock network (global skew in ps)

Tree+Link Tree+Link+Elmore Tree+Link+SPICE Tree+Link+SVM
Case Skew Skew Skew Ratio Skew Skew Ratio Skew Skew Ratio

s9234 33.9 28.2 0.83 22.1 0.65 20.5 0.60
s5378 23.0 24.3 1.06 14.7 0.64 3.0 0.13
s13207 162.0 166.7 1.03 110.7 0.68 111.0 0.68
s15850 103.5 103.2 0.99 63.4 0.61 63.2 0.61
s38584 212.0 211.0 0.99 116.9 0.55 115.1 0.54
s35932 172.0 169.0 0.98 N/A N/A 129.0 0.75

Avg 117.7 117.1 0.98 N/A N/A 73.6 0.55

r1 16.1 16.2 1.00 10.1 0.62 8.2 0.50
r2 143.3 145.0 1.01 89.8 0.62 96.0 0.66
r3 164.8 164.4 0.99 118.5 0.72 110.0 0.66
r4 334.3 331.2 0.99 172.7 0.52 198.0 0.59
r5 256.0 253.2 0.98 N/A N/A 202.0 0.79

Avg 182.9 182.0 0.99 N/A N/A 122.8 0.64
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Table XVII. Results of resource consumption for non-tree clock network (power in

mW and total cap in pF)

Tree+Link Tree+Link+Elmore Tree+Link+SPICE Tree+Link+SVM
Case Pow Cap Pow Cap Pow Cap Pow Cap

s9234 1.83 1.46 1.71 1.54 1.84 1.56 1.83 1.47
s5378 2.00 1.54 1.96 1.67 2.15 1.64 2.30 1.76
s13207 12.50 7.80 12.20 7.91 12.80 7.83 13.00 8.08
s15850 10.80 10.26 10.20 10.43 11.80 10.85 11.30 8.63
s38584 37.40 34.20 34.40 36.84 37.10 35.35 38.50 34.55
s35932 76.70 54.55 75.80 53.29 N/A N/A 84.00 55.01

Nor Avg 1.0 1.0 0.98 1.01 1.04 1.02 1.04 1.02

r1 2.70 1.73 2.60 1.91 2.73 1.88 2.80 17.13
r2 8.30 5.19 8.70 5.22 8.45 5.31 8.50 5.69
r3 14.30 10.72 13.70 10.78 15.10 10.56 15.50 11.25
r4 31.80 27.11 30.12 27.72 33.30 26.98 32.60 27.83
r5 73.30 64.43 72.90 60.24 N/A N/A 75.30 60.611

Nor Avg 1.0 1.0 0.97 1.04 1.03 1.03 1.05 1.01

Table XVIII. Results of CPU time for non-tree clock network (min)

Case Tree+Link+Elmore Tree+Link+SPICE Tree+Link+SVM

s9234 4.2 18.2 9.8
s5378 3.1 13.3 10.9
s13207 10.8 262.0 41.0
s15850 11.2 923.1 39.7
s38584 35.2 1986.4 193.6
s35932 33.6 N/A 227.7

Nor Ave. 0.26 8.6 1.0

r1 4.1 59.2 21.2
r2 5.8 100.5 44.5
r3 6.2 413.5 79.8
r4 20.5 2190.0 267.2
r5 36.7 N/A 280.5

Nor Ave. 0.13 4.6 1.0

To measure effectiveness of our approach, we perform simulations to determine

global skew, skew due to variation and resource consumption i.e., power consumption

and total capacitance. All of the results on skew and power are obtained using SPICE

simulation. The results for ISCAS89 and r1-r5 benchmark circuits are summarized in
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Table XIX. Results of skew due to variation for non-tree clock network (average and

maximum skew in ps)

Tree+Link Tree+Link+Elmore Tree+Link+SVM
Case Max Avg SD Max Avg SD Max Avg SD

s9234 84.0 40.9 13.3 80.9 35.8 13.4 58.6 25.4 11.3
s5378 78.2 29.1 14.5 77.4 27.8 14.2 56.8 15.1 9.6
s13207 293.6 191.8 30.7 80.9 35.8 30.9 237.6 142.1 25.5
s15850 217.9 142.1 24.22 292.1 192.1 25.1 178.1 111.2 19.2
s38584 393.3 251.0 36.5 220.9 141.2 33.4 237.9 142.1 28.5
s35932 316.0 241.6 29.1 363.0 234.9 27.2 249.8 188.6 21.9

Nor Avg 1.0 1.0 1.0 0.98 0.95 0.98 0.74 0.66 0.78

r1 51.5 28.6 8.27 50.7 21.4 8.7 34.2 18.5 6.2
r2 254.8 156.7 24.3 258.6 154.5 24.2 189.2 111.3 19.3
r3 311.0 218.2 30.6 306.1 211.1 30.7 243.0 134.3 24.2
r4 475.5 368.1 36.3 484.9 372.7 36.5 348.5 248.44 30.2
r5 440.2 320.4 34.2 428.2 311.5 32.2 329.0 243.0 26.9

Nor Avg 1.0 1.0 1.0 0.99 0.94 0.99 0.73 0.68 0.79

the Tables: XVI, XVII, XVIII, XIX, XX and XXI. Tables XVI and XVII consists

of 4 columns. The first set of columns presents the results of the initial tree. The

second and third sets of columns shows the results for Tree+Link+Elmore sizing and

Tree+Link+SPICE sizing respectively. The final set of columns present the results

of the proposed algorithm. In Table XVIII, we show results for Tree+Link+Elmore

sizing, Tree+Link+SPICE sizing and Tree+Link+SVM sizing. Table XIX consists

of three sets of columns, one each for Tree+Link, Tree+Link+Elmore sizing and

Tree+Link+SVM sizing. Table XX, shows the result of skew after both stages of

optimization in our sizing algorithm. Table XXI, reports the time for SVM modeling.

In tables XVII and XIX, we report normalized averages for both the benchmarks

separately. The final row in each table shows the the normalized average for the r1-r5

benchmark circuits, the other row with normalized average is for ISCAS89 benchmark.

The normalized average is calculated with respect to the results of the initial tree.

In tables XVI, XX and XXI, we show the average values. The average or normalized



75

Table XX. Results of per stage skew improvement for Tree+Link+SVM sizing (skew

in ps)

Tree+Link Tree+Link+SVM+1st stage Tree+Link+SVM
Case Skew Skew Skew Ratio Skew Skew Ratio

s9234 33.9 31.2 0.92 20.5 0.60
s5378 23.0 9.0 0.39 3.0 0.13
s13207 162.0 130.0 0.81 111.0 0.68
s15850 103.5 110.3 1.06 63.2 0.61
s38584 212.0 163.8 0.77 115.1 0.54
s35932 172.0 168.0 0.97 129.0 0.75

Avg 117.7 102.4 0.82 73.1 0.55

r1 16.1 15.9 0.98 8.2 0.51
r2 143.3 115.0 0.80 96.0 0.66
r3 164.8 146.7 0.89 110.0 0.66
r4 334.3 270.8 0.81 198.0 0.59
r5 256.0 249.5 0.97 202.0 0.78

Avg 182.9 160.1 0.89 122.8 0.64

average is used to compare our sizing algorithm with the initial tree and the trees

obtained using Elmore delay and SPICE based sizing. The SPICE based sizing could

not finish optimizing for s35932 and r5 benchmarks. This is indicated by N/A in each

table. Thus, we do not calculate the average values for this case.

The results of skew, which is the maximum clock delay difference among all pairs

of sinks, are listed in data table XVI. In order to see the impact of our algorithm

more clearly, the skew ratio, which is the ratio of skew before the sizing over the skew

after the sizing, is also included. The results on resource consumption are included

in Table XVII. The power consumption is the total average power consumed by each

circuit and is listed in columns 1, 3, 6 and 9 respectively. The total capacitance for

each test case, includes both buffer and wire capacitance, is reported in columns 2, 4,

7 and 10 respectively. The CPU time is the time for optimization and is reported in

Table XVIII. The initial tree is obtained from [21], thus, it does not have a column

for CPU time. The normalized average is thus calculated with respect to our sizing.
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Table XXI. Results of CPU time for SVM modeling for Tree+Link+SVM sizing (CPU

time in min)

Case CPU Time for Optimization CPU Time for SVM Ratio(SVM/Total)

s9234 9.8 8.4 0.86
s5378 10.9 6.6 0.66
s13207 41.0 22.5 0.55
s15850 39.7 32.3 0.81
s38584 193.6 75.6 0.39
s35932 227.7 92.3 0.40

Avg 87.1 39.8 0.60

r1 21.2 20 0.94
r2 44.5 43.7 0.98
r3 79.8 55.2 0.69
r4 267.2 71.5 0.26
r5 280.5 205.4 0.73

Avg 138.6 79.2 0.72

The skew due to variation was determined for Tree+Link, Tree+Link+Elmore

sizing and Tree+Link+SVM sizing. The result for skew is obtained by running 1000

Monte Carlo simulations for each case. The following parameters are varied (a)

Channel Length (b) Threshold voltage and (c) Transistor and Wire widths. The

above parameters are varied with mean as nominal value and a standard deviation

of 5% is used for parameters (a), (c) and 3% for parameter (b). In Table XIX, we

report the maximum and average values of the skew due to variation. We also report

the standard deviation (SD) in each case to show the spread from the mean value.

We have two stages of optimization in our approach. Table XX, presents the skew

improvement obtained after each stage of optimization separately. The second and

third columns report the skew and the skew ratio after both stages of optimization.

The skew ratio is calculated with respect to the skew of initial tree. We report these

data to show that most of the skew improvements occur during optimization stage

2 of our sizing algorithm. The CPU time taken for SVM modeling is shown in data

table XXI. In Table XXI, the second column shows the CPU time for SVM modeling,
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the third column shows the ratio, which is the ratio of time taken for SVM modeling

over total optimization time. The following observations could be drawn:

• On average, the skew reduction due to our algorithm compared to the initial

tree is 45% for ISCAS89 benchmark and 36% for r1-r5. Considering that the

granularity of buffer/wire sizes is coarse, 45% (36%) skew reduction is very

significant.

• On average, the skew from our sizing using SVM is 44% (35%) smaller than

sizing using Elmore delay for ISCAS89 (r1-r5) benchmark. This shows the

impact of our algorithm compared to using inaccurate delay model like Elmore

delay.

• Our sizing increases the power consumption by a little amount. The total

capacitance, is almost not changed by the sizing.

• The average skew due to variation in our algorithm is 34% and 32% smaller than

the initial tree for ISCAS89 and r1-r5. The maximum skew reduces by 26% and

27% respectively. The reduction in average and maximum skew compared to

Elmore delay sizing are 29% (26%) and 24% (26%) for ISCAS89 (r1-r5) bench-

mark. This clearly indicates that our approach has more variation tolerance

compared to initial tree and the tree obtained after Elmore delay sizing.

• On average, the standard deviation of skew due to variation in our case is smaller

than the initial tree by 22%. Compared to Elmore delay sizing it is smaller by

21%. This would lead to better yield of design and less design effort.

• Our sizing algorithm achieves similar skew improvements compared to SPICE

based sizing. On average, the CPU runtime for SPICE based optimization is 8.6
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and 4.6 times larger than runtime for our sizing algorithm. For larger circuits,

the runtime for SPICE based sizing is either unmanageable or does not complete

optimizing after a long period of simulation. For s38584, the CPU runtime for

optimization is more than 33 hours, r4 takes more than 36 hours to finish

optimizing. The test cases s35932 and r5 could not finish optimizing even after

simulating for a week. Thus, our algorithm provides an equal or better solution

compared to accurate delay model like SPICE with smaller optimization time.

• From data table XX, it can be observed that most of the skew improvements

occur during the second stage of optimization. The first stage of optimization

is for producing a better initial tree so that the second stage can easily converge

to a better solution.

• From the data table XXI, the CPU time taken for SVM modeling is 60% and

72% of the total CPU time of optimization for both the benchmark circuits.

Thus, our approach takes smaller time once the SVM model is built.

Although our sizing algorithm is designed mostly for link-based non-tree net-

works, it can be applied to clock trees as well. The results on trees are given in

Tables XXII, XXIII and XXIV. To the best of our knowledge, there is no previous

work on discrete buffer/wire sizing with accurate delay models, even for clock trees.

Therefore, we perform comparisons for global skew and resource consumption simi-

lar to those for non-tree. One can observe trends similar to the cases of link-based

non-tree. Compared to the initial tree, our sizing algorithm can reduce the global

clock skew by 39% and 33% on average for ISCAS89 and r1-r5 benchmarks. The

skew reduction compared to the Elmore delay sizing on an average is 42% and 29%

for ISCAS89 and r1-r5 respectively. The impact of our sizing on power consumption

is small. Our sizing almost does not change the total capacitance. The CPU time
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for optimizing trees is usually less than that for non-trees. One may observe that the

clock skews of trees are not much different from that of non-trees. This is because the

main advantage of link insertion is on robustness to variations instead of the nominal

skew.

Table XXII. Results of global skew for clock tree network (global skew in ps)

Tree Tree+Elmore Tree+SPICE Tree+SVM
Case Skew Skew Skew Ratio Skew Skew Ratio Skew Skew Ratio

s9234 32.1 37.6 1.17 24.3 0.75 20.2 0.63
s5378 38.6 39.1 1.01 20.2 0.52 21.7 0.56
s13207 175.0 178.0 1.01 130.9 0.75 117.3 0.67
s15850 102.1 101.0 0.99 68.3 0.67 61.5 0.60
s38584 221.5 219.2 0.99 139.2 0.63 118.2 0.53
s35932 172.0 170.0 0.98 N/A N/A 120.1 0.69

Avg 123.6 124.2 1.03 N/A N/A 76.5 0.61

r1 55.2 44.6 0.80 41.0 0.74 36.1 0.65
r2 129.8 131.7 1.01 78.2 0.60 87.5 0.67
r3 168.3 167.5 0.99 112.4 0.66 110.4 0.65
r4 342.5 337.4 0.98 202.4 0.60 211.0 0.61
r5 281.0 279.1 0.99 N/A N/A 215.1 0.76

Avg 195.4 192.1 0.96 N/A N/A 132.1 0.67

Table XXIII. Results of resource consumption for clock tree network (power in mW

and total cap in pF)

Tree Tree+Elmore Tree+SPICE Tree+SVM
Case Pow Tot Cap Pow Tot Cap Pow Tot Cap Pow Tot Cap

s9234 1.98 1.30 1.96 1.30 2.06 1.39 2.25 1.35
s5378 1.83 1.11 1.68 1.10 1.66 1.12 1.83 1.12
s13207 11.23 5.93 11.15 5.93 11.83 6.05 12.70 6.15
s15850 9.98 6.33 10.10 6.43 10.98 6.29 10.56 6.38
s38584 33.80 18.65 32.90 18.94 33.91 18.40 35.30 19.04
s35932 76.71 29.55 69.00 29.02 N/A N/A 84.00 30.02

Nor Avg 1.0 1.0 0.96 1.01 1.03 1.01 1.07 1.01

r1 2.55 1.47 2.70 1.47 2.60 1.48 2.90 1.45
r2 7.95 5.19 8.42 5.21 8.23 4.10 8.60 5.69
r3 14.10 10.72 14.40 10.76 13.90 10.63 15.10 11.25
r4 33.80 16.17 29.67 15.85 30.20 15.92 31.20 16.17
r5 67.60 33.32 69.20 33.37 N/A N/A 70.06 33.75

Nor Avg 1.0 1.0 1.007 0.99 0.98 0.95 1.04 1.02
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Table XXIV. Results of CPU time for clock tree network (min)

Case Tree+Elmore Tree+SPICE Tree+SVM

s9234 3.5 12.1 8.5
s5378 3.9 22.7 9.2
s13207 11.6 252.5 35.0
s15850 11.7 910.0 32.5
s38584 34.4 1742.4 179.0
s35932 32.5 N/A 216.2

Nor Ave. 0.32 9.78 1.0

r1 5.6 82.1 19.5
r2 4.9 174.1 38.6
r3 6.35 433.3 76.3
r4 30.1 1528.4 262.9
r5 44.2i N/A 272.3

Nor Ave. 0.16 5.05 1.0
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CHAPTER V

CONCLUSION

We presented several techniques to address two keys issues in nanometer IC design:

(1) variability and (2) ever diminishing power budget. These techniques have been

tested thoroughly using extensive experimentation.

Clock buffer polarity assignment has been shown to be effective in reducing

power/ground noise for clock tree network. We propose techniques to reduce the

clock network induced power supply noise by assigning different polarities to the

clock buffers in an existing clock tree. We detail three different algorithms for the

same problem. Experimental results indicate significant reduction in peak current,

power supply noise and delay variations. Such reductions in peak current and delay

variations lead to more reliable operation of the chip.

We propose an elastic timing scheme which can correct timing errors induced

by variations. The correction is performed at runtime and does not cause pipeline

stall. Using this scheme can reduce timing safety margins and corresponding power

dissipation without sacrificing robustness. Compared to conventional safety margin

based approach, the elastic timing scheme can reduce power dissipation by 20%−27%

on ISCAS89 sequential circuits while retaining similar variation tolerance. Through

judicious usage, the area overhead of our approach can usually be controlled within

5%.

Link-based non-tree clock network is an energy-efficient structure for skew tol-

erance to variations. This work investigates buffer and wire sizing for link based

non-tree clock network. In order to handle the difficulty of accurately and efficiently

estimating skew in non-tree, a Support Vector Machine based model is employed as a

surrogate. The realistic constraint on discrete buffer and wire sizes is considered. A
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two-stage hybrid approach is developed to solve the discrete sizing problem, which is

normally more difficult than its continuous counterpart. Experiments on benchmark

circuits indicate that our method can reduce clock skew significantly according to

SPICE simulations.
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