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ABSTRACT 

 

Computational Identification and Evolutionary Analysis of Metazoan MicroRNAs. 

(December 2008) 

Juan Manuel Anzola Lagos, B.Sc. Universidad Nacional de Colombia 

Co-Chairs of Advisory Committee: Dr. Rodolfo Aramayo 
Dr. Christine G. Elsik 

 

MicroRNAs are a large family of 21-26 nucleotide non-coding RNAs with a 

role in the post-transcriptional regulation of gene expression. In recent years, 

microRNAs have been proposed to play a significant role in the expansion of 

organism complexity. MicroRNAs are expressed in a cell or tissue-specific manner 

during embryonic development, suggesting a role in cellular differentiation. For 

example, Let-7 is a metazoan microRNA that acts as developmental timer between 

larval stages in C. elegans.  We conducted a comparative study that determined the 

distribution of microRNA families among metazoans, including the identification of 

new family members for several species. MicroRNA families appear to have evolved 

in bursts of evolution that correlate with the advent of major metazoan groups such 

as vertebrates, eutherians, primates and hominids. Most microRNA families identified 

in these organisms appeared with or after the advent of vertebrates. Only a few of 

them appear to be shared between vertebrates and invertebrates. The distribution of 

these microRNA families supports the idea that at least one whole genome 

duplication event (WGS) predates the advent of vertebrates. Gene ontology analyses 
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of the genes these microRNA families regulate show enrichments for functions 

related to cell differentiation and morphogenesis. 

MicroRNA genes appear to be under great selective constraints. Identification 

of conserved regions by comparative genomics allows for the computational 

identification of microRNAs. We have identified and characterized ultraconserved 

regions between the genomes of the honey bee (Apis mellifera) and the parasitic wasp 

(Nasonia vitripennis), and developed a strategy for the identification of microRNAs 

based on regions of ultraconservation. Ultraconserved regions preferentially localize 

within introns and intergenic regions, and are enriched in functions related to neural 

development. Introns harboring ultraconserved elements appear to be under negative 

selection and under a level of constraint that is higher than in their exonic 

counterparts. This level of constraint suggests functional roles yet to be discovered 

and suggests that introns are major players in the regulation of biological processes.  

Our computational strategy was able to identify new microRNA genes shared 

between honey bee and wasp. We recovered 41 of 45 previously validated 

microRNAs for these organisms, and we identified several new ones. A significant 

fraction of these microRNA candidates are located in introns and intergenic regions 

and are organized in genomic clusters. Expression of 13 of these new candidates was 

verified by 454 sequencing.  
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CHAPTER I 

INTRODUCTION 

 

 The central dogma of molecular biology was formally postulated by Francis 

Crick (1970). Information in biological systems is stored in the form of DNA, RNA 

works as intermediate step between DNA and proteins, and proteins perform most 

of the biological functions. This vision still remains valid, although there are an 

increasing number of molecules being discovered that do not fit into the view of the 

central dogma. Most of these molecules belong to the world of non-coding RNA. 

These are transcripts that function directly as RNA, and are not translated into 

protein (Eddy 1999).  

MicroRNAs constitute a fraction of the non-coding RNA world. In their 

mature form, microRNAs usually range between 22 and 25 nucleotides in length 

(Ambros 2001), and are highly evolutionarily conserved. Some of them, such as let-7, 

have almost perfect conservation throughout metazoan evolution (Pasquinelli et al 

2003).   

 

 

________________ 
This dissertation follows the style and format of Genome Research. 
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The discovery of microRNAs goes back to 1993 when Vicror Ambros and 

colleagues discovered that the gene lin-4, known to control certain steps in the 

developmental timing of C. elegans   (Lee et al  1993),  does not code for a protein but 

instead produces a small RNA molecule with the ability to form a fold-back 

structure, and whose further processing produces a shorter molecule 22nt long. 

 Researchers noted that lin-4 had numerous antisense complementary sites in 

the 3’UTR region of the gene lin-14 (Lee et al 1993). This complementarity was 

localized in a region of the UTR that was previously proposed to be the responsible 

for the downregulation of lin-14 by lin-4. This finding led to the proposal of a new 

kind of small RNA molecules known as “small temporal RNAs”, indicating the role 

of these molecules as timing developmental regulators. 

The identification of lin-4 was the first in a chain of events that led to the 

discovery of thousands of these small molecules in plants, animals, and viruses that 

had in common a fold-back precursor, a small RNA as functional unit, and antisense 

complementary to 3’UTR regions of target genes. The role of these RNA molecules 

was no longer restricted to developmental timing, as hundreds of them were found 

to be involved in tissue differentiation (Aboobaker et al 2002), cell proliferation, 

morphogenesis (Giraldez et al 2005), apoptosis (Xu et al 2004), aging and life span 

(Giraldez et al 2005), and chromatin remodeling. To accomode the broader range 

functions the “small temporal RNAs” became known as microRNAs (Lagos-

Quintana et al 2001). 
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As of June 2007, about 5000 microRNAs had been identified in a variety of 

plants, animals, and viruses. Data related to microRNAs is systematically stored in 

databases such as miRBase (Griffiths-Jones et al 2006) with experimentally validated 

microRNAs; Tarbase with experimentally validated targets for microRNAs 

(Sethupathy et al 2006), and miRGen with integrated genomics information for 

microRNAs (Megraw et al 2007). 

 

What is a microRNA? 

MicroRNAs are small single stranded RNA molecules of about 22nt long. 

They are derived from longer precursors (or pre-microRNAs) ranging from about 

70nt to 110nt in length that adopt a fold-back structure, also known as hairpin 

structure. Precursors of microRNAs have been found residing in introns (Lin et al 

2006), exons (Ying and Lin 2004) and intergenic regions (Gu et al 2006). Intronic 

and exonic microRNAs are likely to share regulatory elements and are encoded in 

the same transcript as their host gene (Bartel 2004) and are processed by RNA 

polymerase II. Intergenic transcripts are presumably transcribed from their own 

promoters and are derived from longer transcripts known as pri-microRNAs. It has 

been shown that at least some intergenic microRNA transcripts are poly-adenylated 

just like messenger RNAs (Saini et al 2007) and are also processed by RNA 

polymerase II (Kim 2005).  
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Isolation of microRNAs 

The nature of mature microRNAs makes them very difficult to isolate by 

traditional cloning techniques. In order to avoid this problem, Ambros and 

collaborators have developed a system for microRNA annotation that is aimed at the 

differentiation of microRNAs from other endogenous RNA molecules such as small 

interfering RNAs. According to Ambros (Ambros et al 2003), microRNAs can be 

identified using the following criteria: 

Expression criteria:  

A. Detection of a distinct ~22nt transcript by Northern Blot, RT-PCR or RNase 

protection methods, or  

B. Identification of a ~22nt sequence in a library of cDNAs made from size 

fractionated RNA.   

Biogenesis criteria: 

C. Prediction of a ~70 potential fold-back precursor structure that contains the 

~22nt mature microRNA within on arm of the hairpin. 

D. Phylogenetic conservation of the ~22nt mature sequence and conservation of 

the precursor secondary structure. 

E. Detection of increased precursor accumulation upon deletion of a major 

microRNA processing enzyme. 
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In an ideal scenario, small RNA molecules would be classified as microRNAs if they 

comply with criteria A, D, and E. But in the absence of such data, fulfillment of 

criterion D is sufficient. 

 

MicroRNA biogenesis in metazoans 

MicroRNAs are transcribed by RNA polymerase II. Primary transcripts are 

usually several kilobases long and contain one or several hairpin-like structures. 

These pri-microRNAs are then cleaved by the ds-specific RNA endonuclease 

Drosha, which releases the precursor of the microRNA, called the pre-microRNA. 

The cut performed by Drosha is done at the base of the pre-microRNA. It leaves a 

5’ phosphate end and a 3’ OH end with a ~2nt overhang. This cut defines one end 

of the mature microRNA, the other cut is performed by another RNase III 

endonuclease known as Dicer and occurs in the cytoplasm. Following the Drosha 

cut, the pre-microRNA is then exported to the cytoplasm through nuclear pore 

complexes by a process mediated by the nuclear transport receptor Exportin-5 and 

Ran-GTP. Once in the cytoplasm, pre-microRNAs are subsequently processed into 

~22nt RNA duplexes by Dicer. The mechanism by which Dicer recognizes and 

chops the pre-microRNA is still not well understood, but experimental evidence 

suggests the 3’ overhang at the base of the stem-loop provides the recognition site. 

Afterwards, Dicer cuts both strands of the duplex about two helical turns away from 
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the base, generating a double stranded RNA molecule that contains 3’ overhangs at 

each complementary end. 

One of the strands from this duplex is processed as mature microRNA. The 

other one, known as microRNA*, is thought to be degraded. Evidence from massive 

cloning efforts (Miska et al 2004) indicates a 100 fold difference in cloning frequency 

between microRNAs and microRNAs*. This major difference is a strong indication 

that the RNA duplex is short-lived compared to the single mature microRNA strand 

(Kim 2005; Liu et al 2008).   

Experimental evidence suggests that the differential stability of both ends of 

the RNA duplex determines which strand is to be selected. The strand with relatively 

unstable pairing at the 5’end usually is the one used as mature microRNA. 

The mature strand is eventually incorporated into the RNA Induced Silencing 

Complex (RISC) (Gregory et al 2005). The microRNA-RISC complex, also known 

as miRNP or miRISC, identifies target mRNAs based on near perfect 

complementation between the microRNA and the mRNA. It is thought that this 

near-complementarity drives translational repression as opposed to mRNA 

degradation, as it does in plants. The mechanism of translational repression is still 

not clear. One possibility is that RISC sequesters the target mRNA away from the 

translational machinery (Bartel 2004; Liu et al 2005). Another possibility is that the 

miRNP complex may hamper ribosome movement along the mRNA repressing 

protein translation (Carrington and Ambros 2003). 
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Molecular characteristics of Drosha and Dicer 

Drosha 

Drosha is a monomeric ~160kDa RNase that belongs to the Class II of RNA 

endonucleases. The class is defined by the presence of two RNAse III domains 

(RIIIDs) and a dsRNA binding domain (dsRBD) that is critical for catalysis. Drosha 

forms a complex of about ~650kDa in humans, and ~500kDa in Drosophila. This 

complex is also known as the Microprocessor Complex. Drosha interacts with a 

cofactor known as DGCR8 (Pasha in Drosophila) that is a ~120kDa protein with two 

dsRDB domains. It is believed that DCGR8/Pasha provides the specificity for 

Drosha cleavage (Han et al 2006; Zeng and Cullen 2003). 

 

Dicer 

Dicer is a ~220 kDa protein that also belongs to the Class II of RNA 

endonucleases with their characteristic RNase III domains (dsRDB). Besides these, 

Dicer contains an N-terminus DExH/DEAH-box RNA helicase / ATPase domain, 

a DUF domain (Domain of Unknown Function) and a PAZ domain (Macrae et al 

2006; Song, Liu et al 2003).  

Biochemical evidence suggests a tight interaction between Dicer and RISC. 

This dual role of Dicer, as enzyme required for pre-microRNA processing and its 

interaction with RISC suggests that the two events may be coupled (Lee and Collins 

2007). 
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Identification of microRNA targets 

Despite the fact that we know only a fraction of experimentally validated 

microRNA targets, evidence indicates that microRNAs play a big role in gene 

regulation. Computational evidence suggests the average microRNA may regulate 

more than a hundred genes (Bentwich 2005; Enright et al 2003; Grun et al 2005; 

Rajewsky 2006; Robins et al 2005; Stark et al 2003). These approaches are modeled 

based on the binding properties of the most studied microRNAs up to this date: lin-

4, let-7 and their experimentally validated targets. These models take into account the 

following properties: 1) location of microRNA complementary sites in 3’UTR 

regions of mRNA targets; 2) measurement of base paring in the 5’ region of the 

microRNA, also known as the seed region; 3) Phylogenetic conservation of 

complementary sites in 3’ UTRs of orthologous genes (Ambros 2004).  

Although the computational procedures used to detect targets are still 

plagued by high false positive rate, there are new approaches that seem to partially 

overcome this and make progress towards a reliable identification of single site 

targets by combining experimental and computational methodologies (Kiriakidou et 

al 2004). Pure computational approaches require more information about the 

mechanism of interaction between microRNA and their targets, and more research is 

necessary to elucidate the details of this interaction.  
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Functions of microRNAs in metazoans 

The most studied animal microRNAs lin-4 and let-7 regulate developmental 

timing in C. elegans. Lin-4 controls the earlier transition between larval stage 1 to 

larval stage 2. Let-7 controls the transition between larval stage 2 to larval stage 3 

(Lee et al 1993). Knock outs of both of these genes result in delayed development 

(Zhang et al 2007). 

Experiments in Zebrafish Dicer mutants indicate the microRNA pathway is 

absolutely necessary for proper embryo development. In the first days post-

fertilization, mutants start accumulating abnormal levels of microRNAs. This 

accumulation ceases with a complete developmental arrest around day 10. These 

results indicate that Dicer is essential for vertebrate development. (Wienholds et al  

2003)   

The microRNA miR-1 is abundant in cardiac muscle. Experiments suggest 

miR-1 is necessary for the proper shaping of ventricles in the heart. In fly, miR-1 

deletion hampers severely the cascade of events that leads to chamber 

morphogenesis. This microRNA regulates the Notch signaling pathway by targeting 

the mRNA of the Notch ligand, Delta, indicating its role as regulator of cardiac cell 

differentiation. (Artavanis-Tsakonas et al 1999; Zhao and Srivastava 2007). 

In C. elegans, the microRNAs lsy-6 and miR-273 are expressed in 

chemosensory neurons that are part of the worm’s sensory discriminatory system. 

Two gustatory neurons, ASE left (ASEL) and ASE right (ASER), exhibit asymmetric 
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molecular features that allow the worm to distinguish various chemical stimuli.  Data 

indicates these microRNAs are heavily involved in the asymmetric features between 

these two neurons. Lsy-6 represses the ASER fate, whereas miR-273 represses the 

ASEL fate by binding to mRNAs of specific transcription factors for each cell type. 

These microRNAs reinforce the genetic programs that lead to left-right asymmetry 

(Johnston and Hobert 2003).  

MicroRNAs also play a role in cancer pathogenesis. In humans, miR-15a and 

miR-16a are located at the chromosomal location 13q14, which is a region frequently 

absent in patients with B cell chronic lymphocytic leukemia. A study conducted by 

Calin and collaborators (Calin et al 2004) finds that 98 of 186 (52.5%) of human miR 

genes are in cancer-associated genomic regions or in fragile sites. There is also 

differential expression of microRNAs between cancer cells and their normal 

counterparts (Lu et al 2005).  

In lung cancer cells, expression of let-7 is significantly reduced. Let-7 seems 

to downregulate the oncogene RAS by binding to multiple sites on its 3’ UTR 

(Takamizawa et al 2004). Further studies confirm the overexpression of let-7 as 

inhibiting growth in cancerous lung cells (Johnson et al 2005), suggesting a role for 

let-7 as tumor suppressor gene in humans. MicroRNAs also play a role in apoptosis. 

The microRNA Bantam inhibits cell death and promotes cell proliferation 

(Brennecke et al 2003; Xu et al 2004).  
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In human cells the microRNA microRNA-32 restricts the accumulation of 

the retrovirus primate foamy virus type 1 (PFV-1). In vivo, this virus is specific to 

non-human primates, but the fact that the microRNA is able to restrict the 

accumulation of the retrovirus suggests a role as antiviral agent (Lecellier et al 2005).  

 

Evolution of microRNAs 

Very little is known about the forces that give origin to microRNA genes. A 

major force of genome innovation is gene duplication, but it is unclear as to what 

extent the emergence of microRNA genes follows local duplication events (tandem 

duplication), duplication by transposition or whole genome duplications. In plants it 

has been demonstrated that at least some microRNAs evolve by inverted duplication 

of target genes (Allen et al 2004). This has not been demonstrated yet in animals, but 

is likely the same mechanism is present in metazoans.  Recent studies suggest a 

subset of metazoan microRNAs have originated and evolved from transposable 

elements. They appear to be conserved in related species and are the origin for 

lineage specific microRNA innovations (Piriyapongsa and Jordan 2007; Piriyapongsa 

et al 2007). 

MicroRNAs have also been used to give insights into the phylogenetic 

position of problematic groups like the Platyhelminthes. Gene sequences suggest the 

acoel flatworms are not members of the phylum Platyhelminthes, but instead are the 

most basal branch of triploblastic bilaterians. Using microRNAs as genetic markers, 
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Sempere and collaborators obtained a picture in which the acoel flatworms are 

indeed basal triploblastic bilaterians, suggesting our understanding of the group 

Platyhelmintha is incomplete, because according to this picture Platyhelmintha is 

paraphyletic (Sempere et al 2006). 

Evolutionary analyses of microRNA distributions suggest microRNA 

innovation as an ongoing process in metazoans. Major microRNA expansions seem 

to correlate very well with the advent of bilaterians, vertebrates and placental 

mammals (Hertel et al 2006), however it is unclear what is the contribution of 

microRNAs to the specific morphological characteristics and phenotypes of these 

major groups.  

A detailed analysis of basal metazoan genomes indicates the presence of a 

core of 18 microRNAs found only in protostomes and deuterostomes (Coelomata) 

but not in sponges or cnidarians. Given the fact the microRNAs are known to be 

expressed in specific tissues and/or organs, the authors propose this core set of 

microRNAs could have played a role in the development of organ structures such as 

the brain and heart because these structures are not present in sponges or cnidarians 

(Sempere et al 2006). 

 

Objectives of this study 

MicroRNAs have been recognized as one of the major forces shaping the 

developmental processes of plants and animals. We are starting to understand the 
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precise mechanism of action of microRNAs and the evolutionary processes by 

which they arise. This work is aimed at broadening our understanding of microRNA 

evolution, their distribution in the tree of life, their functionality throughout the 

evolution of metazoans, and the computational methods used for their identification.  

This work explores different aspects of microRNA biology. We start with a 

phylogenetic perspective of microRNA distribution throughout the evolution of 

metazoans. We developed a computational strategy for the identification of 

microRNA families that allowed us to determine different points of microRNA 

innovations and allowed us to get an idea of the functionality of these microRNA 

families.  

This work is also aimed at the de novo identification of microRNA genes by 

means of comparative genomics. This goal takes advantage of the fact that 

functional conserved elements in genomes are also conserved at the sequence level. 

We used ultraconservation as a way to identify these functional elements, we explore 

the functionality of these ultraconserved sequences based on gene ontologies, and 

use them to develop an algorithm for the identification of new microRNA genes 

between two recently sequenced insect genomes, the honey bee, Apis mellifera, and 

the parasitic wasp, Nasonia vitripennis. 
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CHAPTER II 

COMPUTATIONAL IDENTIFICATION, CHARACTERIZATION AND 

FUNCTIONAL EVOLUTIONARY ANALYSIS OF METAZOAN 

MicroRNAs 

 

Introduction 

The first free-living organism for which we determined its genomic sequence 

was Haemophilus influenzae (Fleischmann et al 1995), followed by Drosophila melanogaster 

(Adams et al 2000), and the milestone of the Human genome in 2001 (Lander et al 

2001). As of March of 2008 there were more than 4000 genomes sequenced or in the 

process of being sequenced. The knowledge and information generated by genome 

projects grows at a relentless pace, and the analyses of those genomes have changed 

preconceived ideas that were thought to be true. Before the Human genome project 

it was estimated that the number of genes on the human genome was closer to 

100000 (Claverie 2001; Pennisi 2000). Today that estimate is closer to 30000 

(Claverie 2001). This finding was a little bit of a shock for the scientific community 

and the public in general, given the fact that the fruit fly (Drosophila melanogaster) has 

roughly 14000 genes (Adams et al 2000). Drosophila is a very complex organism 

indeed, but as we learn from the information generated by genome projects, 

complexity does not correlate well with gene number or genome size (Gregory 
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2001). Evidence points to the fact that complexity arises by the way the set of genes 

in an organism interact with each other coupled with their activation/inactivation in 

different cellular conditions (Claverie 2001). This is particularly true for species with 

sexual dimorphism in which one genome is able to generate two remarkably 

different phenotypes or for species like honey bee in which one single genome can 

generate three completely different phenotypes (queen, drone, worker), each one 

with a particular role in the well being of the hive and the survival of the species. 

This picture points to gene regulation as an important driving force in the evolution 

of species and their genomes, probably the most important factor that leads to 

increasingly complex organisms.  

Gene regulation is a concept we intrinsically associate with transcription 

factors (Chen and Rajewsky 2007; Hobert 2008). These are proteins that bind to 

promoter regions and allow the RNA polymerase complex to initiate transcription of 

a target gene. Our current understanding of transcription factors still depicts them as 

the most important players in the regulation of genes, but in recent years new 

mechanisms of gene regulation that operate mostly at the posttranscriptional level 

have been discovered.  These include the siRNA pathway and the microRNA 

pathway, both of which are thought originated as a way to counteract viral infections 

by the innate immune system of early metazoans (Lu et al 2005). Today the role of 

these pathways is no longer restricted to immune response, as they are heavily 
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involved in the regulation of development, morphogenesis and the maintenance of 

cell types such as stem cells (Carrington and Ambros 2003).  

Our understanding of the roles microRNAs play in the cell gets better as 

more genomes are sequenced and as more experiments are conducted; but we 

understand very little of microRNA biology in the context of a phylogeny. In other 

words, what are the primordial functions of microRNAs at different stages along the 

pathway that led to the human species? Here we propose an evaluation of 

microRNA functions on the basis of gene ontologies. For this objective, we have 

developed a computational strategy aimed at the identification of potential 

orthologues in 24 different metazoan species of microRNAs deposited in the 

microRNA Registry (miRBase). MicroRNAs identified this way were then mapped 

into the metazoan phylogeny and their functions evaluated on the basis of gene 

ontologies. 

 

Results 

Computational identification of microRNA homologs 

Our searches started with a set of 5071 microRNAs precursors from 

miRBase v. 10.0. This set of sequences contains microRNA genes from animals 

(3682), plants (1268) and viral genomes (107). In order to identify potential 

homologs of these microRNAs in the 24 metazoan species evaluated, we conducted 

a sensitive (but at the same time unspecific, evalue =10) BLAST search against the 



 17 

24 genome assemblies (Table 1). BLAST parameters were modified in order to 

minimize false positives. We used a word size of 16 for seeding. The seed dictionary 

was built only from the mature region of the microRNA. These regions were 

extracted from microRNA precursors with the help of a perl script. This step 

guarantees sequence identity for the mature microRNA between the query and any 

resulting hit. Sequences collected this way were mapped to their respective genome 

assemblies to reduce the number of sequences mapping to the same position. In 

order to minimize the possibility of any hit corresponding to a false positive, we 

evaluated sequence pairs (microRNA – putative homolog) using PRSS – for details 

please see methods section - with 1000 shuffles (Pearson 1990). Sequences with p-

values lower than 1e-05 were considered homologous. This parameter was selected 

on the basis of PRSS scores for experimentally validated microRNAs. This resulted 

in 4856 different microRNA homologs that in some cases included genes not 

reported previously for the species under study and new paralog genes (Table 1).  

 

Construction of microRNA gene families 

In order to compute clusters, it was necessary to conduct an all vs. all 

comparison of all resulting microRNAs from the evaluated species. These 

comparisons were carried out using PRSS (Pearson 1990) with 1000 shuffles. This 

allowed us to determine homology among all the sequences.  
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Since we estimate homology on the basis of the statistical significance of a 

sequence alignment, it was necessary to determine the best clustering threshold. 

There is no magic parameter for sequence clustering. That really depends on the type 

of sequences being used (proteins, DNA sequences, RNA sequences), database size 

and the model of evolution. For clustering we used a simple but sensitive clustering 

method that is based on Smith-Waterman local alignment algorithm and a theoretical 

database of 1000 sequences (1000 shuffles). Clustering parameters were based on the 

ones used for the let-7 family. This gene family is ubiquitous among metazoan 

genomes and it comprises members of let-7 and miR-98. We use different p-value 

thresholds in order to determine what was the one at which all the members of these 

family were clustered together into a single family (Table 2), and we used that 

threshold in order to cluster all the microRNAs found on our search. 

The p-value 1e-06 was used as a clustering threshold for all the sequences 

found. There are other more inclusive thresholds at which clustering could be done, 

but that results in overclustering of some families, and lower p-values may result in 

oversplitting. 1e-06 turned out to be sensitive enough but also specific enough to 

keep cluster size on acceptable ranges. Clusters built this way were compared against 

microRNA families deposited in miRBase, resulting in similar number of clusters, 

sizes and memberships. 
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Table 1. Number of microRNAs identified in this study 

Species Assembly miRBase 10.0 Identified in this study New 

     
Mammals     
Bos Taurus btau3.1 95 272 177 

Canis familiaris CanFam2.0 6 297 291 

Equus caballus EquCab1 0 236 236 

Homo sapiens HSA46 475 523 48 

Macaca mulatta Mmul_051212 60 409 349 

Monodelphis domestica MonDom5 106 169 63 

Mus musculus C57BL/6J 426 435 9 

Ornithorhynchus anatinus IOANA5.46 0 44 44 

Pan troglodytes CCY5Cv1 79 485 406 

Pediculus humanus PhumU1 0 20 20 

Rattus norvegicus RG5C3.4 330 549 219 

     
Other vertebrates     
Danio rerio ZFISH7.46 290 349 59 

Gallus Gallus May2006 140 153 13 

Takifugu rubripes FUGU4.46 133 223 90 

Xenopus tropicalis Ver4.1 177 225 48 

     
Insects     
Aedes aegiptii AaegL1 0 43 43 

Anopheles gambiae april 2004 41 44 3 

Apis mellifera Amel4.0 50 50 0 

Bombyx mori ge2k 21 31 10 

Drosophila melanogaster dmel4.2.1 76 78 2 

Drosophila pseudobscura dpse_r2.0 72 76 5 

Nasonia vitripennis nvit1.0 0 43 43 

Tribolium castaneum JGI4.1.46 0 30 30 
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Table 2. Results of different clustering parameters of the microRNAs evaluated 
 

E-value Clusters Clusters for let-7 family 
1 1 1 

0.1 2 1 

1E-02 50 1 

1E-03 186 1 

1E-04 296 1 

1E-05 322 1 

1E-06 338 1 
1E-07 357 1 

1E-08 378 1 

1E-09 393 2 

1E-10 417 2 

1E-11 436 2 

1E-12 456 3 

 

Clustering at 1e-06 resulted in 408 different gene families, 270 having 3 or 

more members, 99 having 2 members, and 39 being singletons.  Most of the 

singletons were unique to C. elegans, as this is the most divergent species used in our 

analyses and was the one we used as outgroup. It is also the only representative we 

used of the nematode lineage. Had C. briggsae being used in this study, most of these 

singletons would have appeared as shared genes between the two species.  

The largest gene family found in our analysis is the miR-343/miR-369/miR-

510 family containing 256 members. This family is divergent, their members are not 

very conserved and some of them are related to transposable elements. It also 

appears to be specific to eutherian mammals. The second largest is the miR-

302/miR-320/miR-524 family, which contains 204 members and appears to be 

specific to vertebrates. The third largest is the let-7/mir-98 family, which is common 

to all metazoans and contains 172 members. 
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The phylogenetic position of each individual family was determined by 

looking at the distribution of their members along the metazoan phylogeny with the 

help of a binary matrix in which it was plotted whether or not the family was present 

(1) or not present (0) in each species. This matrix along with the phylogeny was 

imported into Macclade (Maddison and Maddison 1989) and the characters 

(presence/absence of family) were plotted along the phylogeny using the parsimony 

method. 

Reconstructing evolutionary events using phylogenetic methods is not a 

simple task. If something have we learned from evolutionary analyses is that 

genomes evolve at different rates; there are gene gains, gene losses, gene duplications 

and gene expansions that may complicate our interpretation of the results. 

MicroRNAs are no different than other genes when it comes to this.  Figure 1 shows 

a scenario where the phylogenetic position of the gene family is ambiguous at best. 

Under parsimony, explaining how this family has evolved requires multiple gains or 

multiple losses. For example, we can assume the family was present in the common 

ancestor of coelomates and then it has been lost independently in Pediculus humanus, 

Aedes aegyptii, Anopheles gambiae, Tribolium castaneum, Danio rerio and Monodelphis 

domestica. A different scenario would be to assume the family wasn’t present in the 

common ancestor of coelomates and it appeared as a result of convergent evolution 

in amniotes, hymenopterans and dipterans. 
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Figure 1. Example of a microRNA gene family with ambiguous distribution. 
Explaining the evolution of this gene familiy requires multiple gains and multiple 
losses. It is unclear what was the point at which the family made its appearance in 
the metazoan phylogeny. 
 

 

These complicated scenarios can be the result of: 

1. The method used to determine homology wasn’t sensitive enough to detect a 

homolog on the genome under scrutiny.  

2.  Compositional bias of the genome compared to sister species (i.e. Apis 

mellifera is AT rich whereas Nasonia vitripennis is not AT rich.) 
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3. microRNA not being present in the version of the genome used for the 

analysis. Some of the genomes used are on early stages of assembly 

(Platypus), some others have been refined over time (Drosophila). 

4. microRNA being present in euchromatic region in one genome and in 

heterochromatic region on a different genome, in which case it is not possible 

to detect it, as most of the genomes sequenced so far correspond to 

euchromatic regions (with the exception of Drosophila). 

5. Real gene losses and/or real gene gains.    

6. Clustering algorithm used left out members of this family that should have 

been grouped together. 

Analysis of all the gene families under the parsimony method shows that the 

great majority of families are consistent with simple scenarios of gene gains and gene 

losses and complicated scenarios like the one just described are the minority. Figures 

2 and 3 show simple scenarios with gene family distributions that take only one step 

(one gain for the vertebrate lineage, Figure 2) or two steps at the most (one gain for 

the eutherian lineage and one loss for the horse, Figure 3). For further gene 

functional analyses we narrow our set of microRNA families only to the ones that 

were perfectly consistent (CI index =1) and the ones with simple scenarios of gains 

and losses. Complicated scenarios were avoided. Figure 4 shows the distribution of 

microRNA families along the metazoan phylogeny. 
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Figure 2. Example of a perfectly consistent microRNA family. Members of this 
family are shared by all the vertebrate species used in this study. This family was 
present in the most recent common ancestor between Humans and Fish.   
 

The branch that goes from coelomates to humans is the one that shows most 

of the microRNA innovations (Figure 4). It appears that there have been bursts of 

microRNA innovations in the branch that leads to vertebrates (67 microRNA 

families), therian-eutherian mammals (77 families), primates (41 families) and 

hominids (58 families). Interestingly the branch that leads to the mammals does not 

show major innovations. There appears to be only five different families at this 

position and most of them with consistency indexes of less than 1. 
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Figure 3. Example of a microRNA family with simple homoplasy. The explanation 
of how this gene family has evolved only requires one gain for the eutherian lineage 
and one loss for the horse genome. Most of the microRNA families of this study are 
consistent with simple scenarios like this one. 
 

The fact that the mammalian clade does not appear to show major 

innovations is puzzling, since mammalian species certainly show major 

morphological innovations compared to other groups. It is possible that some 

vertebrate/mammalian microRNA innovations have indeed been lost during the 

evolution of monotremes, but it is unlikely that this phenomenon accounts for the 

number of families that appear to be lost according to our result (a number that 

might be close to 30 families). We consider that the most likely explanation for this 

result is that that mammalian microRNA innovations in Platypus are so divergent 
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that are unrecognizable with current methods of identification. Similar results have 

been found in other studies (Hertel et al 2006; Warren et al 2008). 

 

 

Figure 4. Distribution of microRNA gene families in metazoans. Different colors 
represent the amount of change throughout the evolution of metazoans. 

 

MicroRNA family size 

Our analysis of the distribution of family sizes in the human genome shows 

that most families contain 3 or fewer members, and only 11 families contain 4 or 

more members (Figure 5).  Two of these 11 families are expanded in the human 

genome, mir-320c and mir-369 with at least 52 and 33 members respectively. These 

two families are vertebrate innovations and are also expanded in other vertebrate 
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genomes. Mir-302 from Mus musculus contains at least 10 members, and mir-369 at 

least 27.  In humans, at least five of these 11 families have invertebrate counterparts: 

let-7, mir-34, mir-10, mir-8 and mir92b. Taking all the genomes into consideration, 

the number of families shared between vertebrates and invertebrates increases to at 

least 21: let-7, mir-1, mir-7, mir-8, mir-10, mir-31a, mir-33, mir-34, mir-79, mir-92b, 

mir-124, mir-125, mir-133, mir-137, mir-184, mir-190, mir-210, mir-219, mir-263, 

mir-375 and mir-739.   

 

 

Figure 5. Average microRNA family size in the human genome. Most families 
contain 3 or fewer members. Similar family sizes are found in other vertebrate and 
mammalian genomes.  
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We computed the relationship in number of members for these families 

between invertebrate and vertebrate genomes (Figure 6). On average, microRNA 

family sizes have been expanded more for vertebrates than for their invertebrate 

counterparts. Vertebrate gene families are at least two or four times larger than 

invertebrate ones. 

 

 

Figure 6. MicroRNA family size between vertebrates and invertebrates. Shared 
families between invertebrate and vertebrate genomes. The dotted line represents 
one to one relationship between family sizes. On average, vertebrate family sizes 
appear to be twice or four times the size of their invertebrate counterparts.  
 

 

The relationship found between shared invertebrate and vertebrate families 

does not exist for families unique to the vertebrate lineage. Comparisons in the 
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number of members for families shared between vertebrate-non-mammalian 

genomes (Zebrafish, Chicken, Xenopus, Fugu) and their eutherian counterparts 

(Horse, Mouse, Dog, Cow, Human) shows that there is almost a 1:1 relationship in 

family size. Eutherian microRNA families don’t seem to be particularly expanded 

when compared to their vertebrate-non-mammalian counterparts, exceptions to this 

behavior come from the microRNA family miR-466, which appears to be derived 

from transposable elements and is relatively expanded in vertebrate non-mammalian 

genomes. (Figure 7). 

 

 

Figure 7. MicroRNA family size between vertebrate-non-mammalian and eutherian 
genomes. The dotted line represents one to one relationship between family sizes. 
On average, family sizes don’t appear to deviate significantly from a one to one 
scenario.  
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Functions of microRNAs 

In order to explore the functionality of microRNAs at different points during 

the evolution of metazoans, we identified target genes of microRNAs that should 

have been present in the common ancestor of the group under scrutiny. So for 

example, in order to evaluate the functions of microRNAs of eutherians, we 

identified orthologous genes between Bos taurus and Homo sapiens, as Bos and Human 

shared a common ancestor 148 million years ago and are the most divergent 

genomes representative of eutherians in our phylogeny. We identified target genes in 

this ortholog set for microRNAs that made their appearance at the time of the Bos – 

Human split and evaluated their functionality in the context of gene gntologies. 

Functionality was determined by evaluating if there were any GO enrichment within 

the gene set. For details please see the methods section. 

We were interested in assessing the contribution of microRNAs with respect 

to the evolution of the major morphological innovations seen throughout 

metazoans. In the scientific community there is the consensus that these innovations 

are the result of new protein coding genes performing new functions. We want to 

demonstrate, although at a very coarse level, that gene regulation performed by 

microRNA genes may play a significant role in the appearance of major innovations.  

For this particular purpose we have assessed whether or not there were any Gene 

Ontology enrichments for microRNA targets at specific points during the evolution 
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of metazoans. We have found several enrichments that are worth noting. These are 

summarized in Table 3. 

Our results indicate that there is a common theme along the branch that 

starts with coelomates and leads to humans, as we found the term “Nervous System 

Development” being enriched three different times, at the basal level (coelomate 

level), in therian mammals (marsupials and placentals) and in euarchontoglire 

mammals. The terms  “Positive regulation of transcription from RNA polymerase II 

promoter” and “Multicellular Organismal Development” enriched in vertebrates, 

eutherians, euarchontoglires, primates and hominids. The term “Regulation of Cell 

Proliferation” enriched in vertebrates, eutherians, euarchontoglires and hominids. 

The term “Homoiothermy” in vertebrates, eutherians and hominids; and finally the 

terms “Transcription”, “Cell differentiation” and “Wnt Signaling Pathway” in 

euarchontoglires. 
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Table 3. Significant gene ontology enrichments for different metazoan taxa 
  

GO Category e-score corrected 
for multiple 

testing 

GO identifier Description 

    
Basal    
Biological Process 0.012 GO:0007399 Nervous system development 
    
Coelomata    
Molecular Function 2.16E-10 GO:0005515 Protein binding 
    
Vertebrata    
Biological Process 2.78E-06 GO:0045944 Positive regulation of transcription from 

RNA polymerase II promoter 
Biological Process 0.00012 GO:0007275 Multicellular organismal development 
Biological Process 0.010 GO:0008284 Positive regulation of cell proliferation 
Biological Process 0.037 GO:0042309 Homoiothermy 
Cellular Component 0.0035 GO:0005769 Early endosome 
    
Amniota    
Cellular Component 0.012 GO:0048471 Perinuclear region 
Cellular Component 0.020 GO:0030014 CCR4-NOT complex 
Cellular Component 0.020 GO:0042175 Nuclear envelope-endoplasmic reticulum 

network 
Cellular Component 0.032 GO:0000139 Golgi membrane 
    
Theria    
Biological Process 0.00020 GO:0007399 Nervous system development 
Biological Process 0.020 GO:0006355 Regulation of transcription, DNA-dependent 
Molecular Function 0.006 GO:0003700 Transcription factor activity 
Molecular Function 0.10 GO:0005515 Protein binding 
Molecular Function 0.018 GO:0003677 DNA binding 
Cellular Component 0.0064 GO:0005634 Nucleus 
    
Eutheria    
Biological Process 3.06E-13 GO:0007275 Multicellular organismal development 
Biological Process 0.0007 GO:0045944 Positive regulation of transcription from 

RNA polymerase II promoter 
Biological Process 0.002 GO:0008284 Positive regulation of cell proliferation 
 
Cellular Component 

0.0023 GO:0005769 Early endosome 

Cellular Component 0.019 GO:0005622 Intracellular 
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Table 3. Continued 
  

Category e-score corrected 
for multiple 

testing 

GO identifier Description 

    
Euarchontoglires    
Biological Process 0.043 GO:0008284 Positive regulation of cell proliferation 
Biological Process 4.62E-10 GO:0006355 Regulation of transcription, DNA-dependent 
Biological Process 1.47E-06 GO:0007275 Multicellular organismal development 
Biological Process 4.37E-05 GO:0006350 Transcription 
Biological Process 9.70E-05 GO:0045944 Positive regulation of transcription from 

RNA polymerase II promoter 
Biological Process 0.00038 GO:0030154 Cell differentiation 
Biological Process 0.0017 GO:0016055 Wnt receptor signaling pathway 
Biological Process 0.0088 GO:0007399 Nervous system development 
Molecular Function 5.18E-14 GO:0005515 Protein binding 
Molecular Function 4.94E-8 GO:0003700 Transcription factor activity 
Molecular Function 2.95E-05 GO:0043565 Sequence specific DNA binding 
Molecular Function 0.00020 GO:0046872 Metal ion binding 
Molecular Function 0.00047 GO:0003677 DNA binding 
Molecular Function 0.0022 GO:0008270 Zinc ion binding 
Molecular Function 0.027 GO:0016563 Transcription activator activity 
Molecular Function 0.035 GO:0003676 Nucleic acid binding 
Molecular Function 0.039 GO:0046875 Ephrin receptor binding 
Cellular Component 2.06E-10 GO:0005634 Nucleus 
    
Primates    
Biological Process 3.89E-08 GO:0045944 Positive regulation of transcription from 

RNA polymerase II promoter 
Biological Process 9.16E-08 GO:0007275 Multicellular organismal development 
Cellular Component 0.0011 GO:0005769 Early endosome 
    
Hominidae    
Biological Process 1.39E-13 GO:0007275 Multicellular organismal development 
Biological Process 5.45E-08 GO:0045944 Positive regulation of transcription from 

RNA polymerase II promoter 
Biological Process 0.000494 GO:0008284 Positive regulation of cell proliferation 
Biological Process 0.007276 GO:0030154 Cell differentiation 
Biological Process 0.012 GO:0042309 Homoiothermy 

 

Functional bias of microRNAs 

In order to get a better understanding of the functions being performed by 

microRNAs in the context of a phylogeny, we conducted a GO Slim analysis of 

microRNA targets of the microRNAs identified in this study. Target analysis was 
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carried out in the human genome, as this is the one with the most microRNA target 

annotation. The data was partitioned according to the phylogenetic position of 

microRNA families and divided according to the clades that show the most 

microRNA innovation. This analysis only includes microRNAs shared between 

humans and other species at particular points during the evolution of metazoans. 

MicroRNA families that appear to be specific to other clades (i.e. rodents) were 

excluded from this analysis. For a detailed explanation please see the methods 

section. 

We found a significant bias in microRNA functionality for all the different 

clades evaluated (Figure 8). In general microRNAs appear to be enriched in Go Slim 

terms related to “multicellular organism development”, “regulation of biological 

process”, “cell differentiation”, “anatomical structure morphogenesis”,  “cellular 

component organization”, “protein modification process”, “embryonic 

development”, “cell proliferation”, “transcription” and “cell - cell signaling”. All 

these biological processes are related to one another in the sense that all of them are 

involved in the progression that under-specialized cells undergo in order to create 

specialized tissues and organs that will constitute multicellular organisms with 

organized anatomical structures. 
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Figure 8. Functional bias for targets of microRNA families. Go Slim Biological 
Process categories. The magnitude of over or under representation (above or below 
0) is represented in the Y axis. MicroRNA families appear to be enriched in 
functions related to morphogenesis, cell differentiation and multicellular organism 
development, and appear to be depleted in functions related to energy metabolism. 
 

Interestingly, we also found microRNA targets to be under-represented in the 

following GO Slim categories: “carbohydrate metabolism”, “DNA metabolism”, 

“amino acid metabolism”, “biotic stimulus”, “energy”, “catabolic process”, 
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“translation”, “lipid metabolism”, “primary metabolic process” and “metabolic 

process”. All these biological processes are related to chemical reactions and 

pathways whose role is in the breakdown of carbon compounds coupled to 

processes that result in the liberation of energy to be used by the cell or organism. 

Most of these processes are related to electron transport and metabolic processes, 

and they are largely localized in the mitochondrion. 

 

Discussion 

Our results regarding the distribution of family sizes across metazoan 

genomes show a clear distinction among microRNA families common to vertebrate 

and invertebrates and those that are unique to vertebrate genomes. Despite the fact 

that the number of vertebrate-invertebrate microRNA families is small (~21) it 

appears that these families have been expanded in vertebrate genomes and supports 

the idea that there has been one or two rounds of whole genome duplication early in 

the evolution of vertebrates (Blomme et al 2006; Meyer and Schartl 1999; 

Panopoulou et al 2003). This phenomenon is not seen in microRNA families that are 

specific to vertebrate genomes, as most vertebrate-non-mammalian microRNA 

families are in a 1:1 relationship with their mammalian counterparts. This result, as 

opposed to protein coding genes, rules-out whole genome duplication as the 

principal mechanism for microRNA innovation and suggests the mechanism for the 

creation of new microRNA molecules is related to local duplications, perhaps 
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duplications of inverted repeats as it has been suggested before for plant microRNAs 

(Allen et al 2004). The fact that only 21 microRNA families can be mapped around 

the time of whole genome duplication (WGD) events implies that the great majority 

of the microRNA families found in vertebrate genomes are innovations that 

occurred after WGD events. 

Our results regarding the distribution of microRNA families throughout the 

evolution of metazoans strongly indicates a correlation (and perhaps causation) of 

microRNA innovations and organism complexity. In molecular biology, there are 

two puzzling paradoxes of organism complexity: the first one, the C-value paradox 

(Mattick 2007), refers to the fact that genome size does not correlate with genome 

complexity. The second one, the G-value paradox (Taft et al 2007), refers to the fact 

that the number of protein coding genes found in several organisms also does not 

correlate with organism complexity. A few studies on this issue have found that the 

fraction of non-protein DNA increases almost in a linear fashion from lower 

prokaryotes to higher eukaryotes. The linearity of this model suggest that non-coding 

DNA elements in genomes scale consistently with developmental complexity, and 

these elements contain large amounts of regulatory information (Taft et al 2007).  

We found most microRNA innovations at key points during the evolution of 

metazoan species that led to humans. Most of these innovations appear to be 

specific to vertebrates, eutherians, primates and hominids. Interestingly, we didn’t 

find such innovation for mammalian genomes, but we believe this is due to a 
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sampling problem with the Platypus genome, either because genetic divergence didn’t 

allow us to detect the microRNAs that should have been detected or because the 

genome assembly used for this study wasn’t optimal for microRNA finding. We 

believe that a significant fraction of microRNA families that appear to be therian and 

eutherian innovations are indeed mammalian innovations. Similar problems have 

been found in the past by other groups sampling for microRNAs (Heimberg et al 

2008). Their results indicate that northern blots and expression techniques are 

necessary in order to get a complete picture of microRNA distribution. 

The bias found in GO Slim categories for microRNA targets goes in 

accordance to previous findings in microRNA functionality (Zhang et al 2007). 

MicroRNAs are heavily involved in processes that lead to cell differentiation and 

morphogenesis and seem to be depleted in functions related to energy metabolism. 

It is not clear why microRNAs seem to be depleted in the regulation of “energy 

metabolism” and in other processes like “cell homeostasis”, “cell recognition” and 

“response to endogenous stimulus”. A recent study in gene duplicability indicates 

that protein coding genes related to energy metabolism are less likely to be 

duplicated than genes in other Go Slim categories like “multicellular organismal 

development”, “transcription” and “protein modification”.  Gene families related to 

energy metabolism have remained largely unchanged when it comes to family size 

since the divergence of vertebrates and invertebrates (Prachumwat and Li 2008). 

This is an indication that the machinery for energy metabolism was in place and 
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working very well before the divergence of vertebrates and invertebrates, and post – 

transcriptional regulation of these pathways by microRNAs is not really necessary.  

Metazoan microRNAs seem to be particularly underrepresented in functions 

related to cell adhesion, sensory reception of smell, immune response, defense 

response and response to stimulus. This result sets them apart from plant 

microRNAs whose functions tend to relate not only to cell differentiation and 

morphogenesis, but also are related to stress and defense responses (Chen 2005).   

In general, all microRNA families for all clades considered are enriched in 

terms related to cell differentiation and morphogenesis. We didn’t find major 

differences in GO Slim enrichment when different clades were considered. This 

finding suggest that derived microRNA innovations don’t regulate more targets than 

more basal or primitive innovations, but suggest that new innovations pick up new 

genes not being regulated by more basal innovations. This mechanism avoids gene 

regulation overlaps and allows the generation of a fine tuned system able to generate 

enormous morphological diversity.    

 

Materials and methods 

Search strategy 

Mature microRNA sequences are short (22nt on average) and their 

information content is quite low compared with their protein counterparts. DNA is 

composed by a 4-letter alphaber whereas proteins are composed by a 20-letter 
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alphabet. The information per position in a DNA alphabet is in the order of 2 bits 

(log2(4)=2). In proteins information per position is in the order of ~5 bits (log2(20)= 

4.3). A 22 nucleotide word has only 44 bits of information, whereas a 22 amino acid 

word has about ~110 bits of information. This makes the identification of 

microRNAs by BLAST searches alone a difficult task, particularly considering the 

problem of false positives.  One might think that using precursors could solve this 

problem, but precursors preferentially have structural constraints, whereas mature 

microRNAs have functional constraints. Using BLAST to search with precursors 

would only get closely related microRNAs, missing the more divergent ones. 

Filtering the results on the basis of the evolutionary constraints exerted on 

microRNAs can solve this problem.   

Since the functional evolutionary constraint is exerted on the mature 

sequence, one can take advantage of that and search for homologous microRNAs 

using mature sequences as queries with very sensitive but unspecific parameters (i.e. 

high evalue). This would basically guarantee a hit for every microRNA homolog 

present in the subject sequence, at the price of having lots of false positives 

(Dezulian et al 2006). Then the results can be filtered for structural constraints given 

a set of rules common to microRNA stem-loop precursors. For this work, we have 

developed a pipeline that uses this strategy, avoiding the problem of precursor 

sequences. The pipeline has been called microRNAscan and its process goes as 

follows (Figure 9): 
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Figure 9. Flowchart of the method used to detect microRNA homologs. 
 

1. Mature microRNAs and stem-loop precursors were downloaded from miRbase 

v10. Mature microRNAs and their respective precursors were combined into a single 

sequence with the mature region in lower case format. 

2. Each microRNA sequence was aligned against the genome of interest using 

WUBLAST (Gish, 1996-2004) with an evalue of 10 and automated with the help of a 

perl script. BLAST jobs were performed by only seeding the mature region of the 
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microRNA. This step minimizes false positives resulting from unrelated sequences 

being similar to the stem-loop precursor. Seed extensions were allowed outside the 

mature region.  

3. BLAST output was parsed and a sequence corresponding to each hit was extracted 

out of the genome being evaluated. This sequence was extended up to approximately 

the length of the original query if necessary.  

4. A PRSS (Pearson 1990) analysis between the two sequences is performed in order 

to assess the statistical significance of the alignment and determine whether or not 

the two sequences are homologous. PRSS works by constructing a local alignment 

between the two sequences and calculating their alignment score. Then the second 

sequence is shuffled, a new alignment is constructed and its score computed. This 

process is repeated between 100 - 1000 times. At the end a distribution of scores is 

computed and the significance of the original alignment is assessed using the 

distribution of scores. For this particular step, 1000 shuffles were computed. 

5. A RANDfold (Bonnet et al 2004) analysis of the subject sequence was performed 

in order to determine how likely the sequence resembles a microRNA. Most of the 

microRNAs found to this day are in a structural conformation corresponding to a 

free energy of folding that is considerable lower than that for shuffled sequences 

with the same nucleotide composition, indicating a tendency in the sequence towards 

a stable secondary structure. This conformation tendency is not seen frequently in 

other non-coding RNA molecules (Figure 10), but is common for microRNAs 
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(Figure 11). An analysis of the statistical significance of secondary structure 

conformation for microRNAs deposited in miRBase shows that the great majority of 

them follow this property, as most of them have a RANDfold scores significant at 

an alpha level of 0.05 (Figure 12). This very same behavior is expected for 

microRNA homologs. RANDfold was run with 1000 iterations per sequence, and 

the results were tabulated. This is the first time this strategy is used for identification 

of microRNAs. 

6. In the filtering step, putative microRNA homologs were kept if the following 

conditions were met: Similarity score of at least 65% throughout the entire global 

alignment, free energy of folding of -20 Kcal/mol or lower, PRSS score equal or 

lower than 1e-05, RANDfold score equal or lower than 0.015. This filtering step was 

overrun if the percent identity was of 95% or higher. 

7. Redundancy was addressed, because in many cases there were more than one 

microRNA per genomic position. This was particularly true for microRNAs that are 

known to have several paralogs, or from orthologous genes that are redundant in the 

database used (miRBase v.10). In order to minimize redundancy, the genomic 

positions of the putative microRNAs were compared in an all versus all fashion. All 

overlapping microRNAs were clustered and sequences within the cluster were scored 

based on similarity against the overlapping queries. Only the best pair was kept and 

used for further analyses.       
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8. Putative microRNAs were analyzed through Repeatmasker in order to minimize 

repetitive and transposable elements. 

 

 

Figure 10. Distribution of RANDfold scores of a tRNA molecule. On average, tRNAs 
are not in a structural conformation corresponding to a free energy of folding that is 
considerable lower than that for shuffled sequences with the same nucleotide 
composition. The free energy of folding for this tRNA is NOT located at the very end 
of the distribution.  
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Figure 11. Distribution of RANDfold scores of a microRNA molecule. On average, 
microRNAs are in a structural conformation corresponding to a free energy of folding 
that is considerable lower than that for shuffled sequences with the same nucleotide 
composition. The true free energy of folding for this microRNA is at the very end of the 
distribution and is highly statistically significant. 
 

Genomes used in this study 

Aedes aegyptii (AaegL1), Anopheles gambiae (april 2004), Apis mellifera (Amel4.0), 

Bombix mori (ge2k), Bos Taurus (btau3.1), Caenorhabditis elegans (WB170.46), Canis 

familiaris (CanFam2.0), Danio rerio (ZFISH7.46), Drosophila melanogaster (dmel4.2.1), 

Drosophila pseudobscura (dpse_r2.0), Equus caballus (EquCab1), Homo sapiens (HSA46), 

Macaca mulata (Mmul_051212), Monodelphis domestica (MonDom5), Mus musculus 

(C57BL/6J), Nasonia vitripennis (nvit1.0), Ornithorhynchus anatinus (IOANA5.46), Pan 
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troglodytes  (CCY5Cv1), Pediculus humanus (PhumU1), Rattus norvegicus (RG5C3.4), 

Takifugu rubripes (FUGU4.46), Tribolium castaneum (JGI4.1.46). 

 

 

Figure 12. RANDfold values of validated microRNAs from miRBase. Most of the 
validated microRNAs stored in databases are in a structural conformation 
corresponding to a free energy of folding that is considerable lower than that for 
shuffled sequences with the same nucleotide composition, indicating a tendency in 
the sequence towards a stable secondary structure. More than 90% of the 
microRNAs from MirBase have a Randfold score equal or less than 0.015, which 
was the cutoff for the homology search pipeline.  
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Clustering of microRNA into families 

Putative microRNAs from all species were combined into a single FASTA 

list. Then an all versus all comparison was performed using PRSS with 1000 shuffles. 

The p-values obtained from each pair wise comparison were used as a basis to 

cluster the microRNAs. This algorithm is similar to other single-linkage clustering 

methods used for sequences (i.e. blastclust). In this case the PRSS p-value was used 

as linkage criterion. In order to determine the best threshold, clustering performance 

was evaluated on the basis of the let-7 family. This family is known for having 

several paralogs that should be clustered into the same gene family. The p-value 

scores that clustered all the members into a single gene family was the criterion used 

to cluster all the other microRNA families. P-values equal or higher than 1e-06 were 

appropriate to cluster all the members of let-7 into a single family.  

 

Mapping gene families into metazoan phylogeny 

A presence/absence matrix that includes all the resulting microRNA gene 

families and all the species used was constructed. A “1” was placed in position if the 

gene family was present in the species under scrutiny, a “0” was placed in the same 

position if the family was absent from the species under scrutiny. This matrix was 

imported into MACCLADE (Maddison and Maddison 1989), and all characters 

(presence/absence of family) were mapped into the phylogeny. 
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Gene ontologies and functional evaluation of microRNAs throughout the metazoan phylogeny 

The functions of microRNAs were assessed on the basis of the genes they 

regulate (their targets). For this objective microRNA target information was 

downloaded from miRBase (Griffiths-Jones et al 2008) and the TargetScanS website 

(Grimson et al 2007). Other target prediction programs were considered, but 

TargetScanS seems to be the best in terms of both sensitivity and specificity (Martin 

et al 2007). Both MirBase and TargetScanS contain information from 

computationally predicted and experimentally validated targets. The information was 

collected for the following organisms: Homo sapiens, Pan troglodytes, Canis familiaris, Mus 

musculus, Rattus norvegicus and Drosophila melanogaster.  

In order to determine microRNA functions at different points in the 

phylogeny a representative species was selected and only the microRNAs that were 

present in the most recent ancestor of that branch were evaluated for the species 

under scrutiny. For example, in order to evaluate the microRNA functions common 

to all eutherian mammals, we first determined the microRNAs that are common to 

all of them and then evaluated the targets of this set for orthologous genes between 

Human and Cow as these represents the gene set present in the common ancestor 

between these two organisms. 

 All analyses were centered on Human. Similar procedures were followed for 

other points in throughout the phylogeny as follows: 
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Orthology sets: 

Coelomata:   Homo sapiens – Drosophila melanogaster. 

Amniota:   Homo sapiens – Gallus gallus. 

Vertebrata:  Homo sapiens – Danio rerio. 

Theria:   Homo sapiens – Monodelphis domestica. 

Eutheria:   Homo sapiens – Bos taurus. 

Supraprimates: Homo sapiens – Mus musculus. 

Primates:  Homo sapiens – Macaca mulatta. 

Hominidae:   Homo sapiens – Pan troglodytes. 

Gene ontologies were determined for each orthologous set and enrichments were 

determined using GeneMerge (Castillo-Davis and Hartl 2003). 

 

Gene ontologies and functional evaluation of microRNAs in the human genome 

Functions of microRNAs were assessed on the basis of the genes that they 

regulate. Targets for human microRNA genes were collected from TargetScanS and 

the data was partitioned according to the phylogenetic position of each microRNA. 

Functional bias was is represented as a function of the proportion of genes that are 

associated with a function with respect to all human genes having gene ontology 

terms. The statistical significance of the functional bias was assessed by the X2 test 

with a false discovery rate (FDR) of 0.05. The FDR value was obtained with the 

QVALUE software library (Storey and Tibshirani 2003). 
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CHAPTER III 

COMPUTATIONAL IDENTIFICATION OF NEW MicroRNAs BY 

COMPARATIVE GENOMICS 

 

Introduction 

Identification of new microRNAs in new species relies heavily on a 

combination of computational and experimental approaches. The first attempts to 

develop experimental strategies for the identification of microRNAs relied on size 

fractionation of total extracts of RNA, cloning and then sequencing. To be 

considered microRNA, sequenced RNA fragments have to be cloned multiple times 

and the clone length must be between 20 and 24 nt long. This methodology is 

cumbersome and time consuming and only allows the identification of abundant 

microRNAs in abundant tissues. Low copy microRNAs in non-abundant tissues 

usually escape detection. In other words, cloning screenings are far from being 

saturated as they are biased towards abundant microRNAs. 

To overcome these problems, computational biologists have developed 

different strategies aimed at the identification of putative microRNA encoding 

sequences that can be validated using traditional experimental approaches. Most of 

these strategies rely on the fact that microRNAs are conserved throughout metazoan 
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evolution, and by comparing genomic sequences between different species 

conserved microRNAs can be detected.  

Computational detection of microRNAs 

Computational approaches usually rely on the fact that evolutionary 

constraints are an indication of functional or structural constraints. MicroRNAs are 

derived from precursor transcripts with an extended stem-loop structure, are usually 

conserved between genomes of related species and display a pattern characteristic of 

evolutionary divergence (Thomassen et al 2006). This makes them suitable for 

computational identification.   

MirScan (Limet al 2003) was one of the first tools developed to identify 

microRNA genes. It was successfully applied to the genomes of C. elegans and C. 

briggsae. MirScan scans genome “A” for sequences that can form stem-loop 

precursors, and then checks whether or not these sequences are conserved in 

genome “B”. The resulting sequences are then compared against a “training set” of 

experimentally validated microRNAs, and then, based on these comparisons, 

microRNA candidates are given a score. Best scoring candidates are then labeled as 

putative microRNAs. Using this methodology, Lim et al found about 35 microRNAs 

in C. elegans, 19 of which have been experimentally validated. 

Similar approach is used by miRseeker (Lai et al 2003). A whole genome 

alignment between D. melanogaster and D. pseudobscura is used as a basis to detect 

phylogenetically conserved hairpin precursors. A sliding window of about 100 nt is 



 52 

used to systematically score every piece of the whole genome alignment. Features 

like conservation percentage, gap percentage and free energy of folding are used to 

detect potential microRNAs. miRseeker requires good candidates to have a free 

energy of folding of at least -23 kcal/mol and a minimum arm length of 23nt. 

miRseeker was  able to identify 208 microRNA candidates, 38 of those were subject 

to experimental verification and 24 turned out to be real. 

Using phylogenetic shadowing, Berezikov et al. identified and sequenced 122 

new microRNAs in 10 different primate species. Phylogenetic shadowing starts with 

a multiple whole sequence alignment of a set of related organisms. Then a nucleotide 

conservation graphic is generated from the alignment. Highly conserved regions are 

seen as peaks, whereas low conserved regions are seen as valleys. Primate 

microRNAs have a high conservation peak corresponding to the stem-loop 

precursor, accompanied by a sudden drop in conservation for the surrounding 

sequence. This characteristic conservation pattern was used to identify novel 

microRNAs (Berezikov et al 2005). 

Computational methods that do not rely on conservation for microRNA 

identification also have been developed, although less successfully. In general, it is 

thought that secondary structure by itself is not a good measure to identify non-

coding RNAs (Rivas and Eddy 2000); but when combined with features of known 

microRNAs like size of loops, helices, CG composition, length, and deltaG of 

folding, a good identification tool can be constructed. A study aimed at the 
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identification of microRNAs in viral genomes used the concept of Support Vector 

Machines (SVMs) to identify microRNAs. Support vector machines (SVMs) are a set 

of related supervised learning methods used for classification and regression. In an 

SVM, features of the object to be classified are mapped into a vector of n-

dimensional space.  This transforms the space of the original object from linear 

mapping to non-linear mapping. The linear model constructed in the new space can 

represent a nonlinear decision boundary (Witten and Frank 2000). In other words, 

classification can be fine-tuned given the fact that the data is now in a 

multidimensional space with as many parameters given by the user. In the viral 

microRNA study, a SVM was used to classify all genomic regions able to form stem-

loop precursors, identifying previously known microRNAs and new ones with a low 

rate of false positives (Pfeffer et al 2005).  

A study conducted in humans identified 45 new microRNAs by homology 

searching using mature and stem-loop precursors from mouse. The study highlights 

the importance of signals coming from secondary structures and compensatory 

mutations to identify microRNAs (Weber 2005). 

The computational pipeline used for this work started as an observation made 

in the past by scientists who identified a particular property of microRNAs in the 

context of comparative genomics (Glazov et al 2005; Tran et al 2006). This 

observation suggested that microRNAs are enriched in ultraconserved elements 

(UCE). That is, at close to moderate phylogenetic distance, microRNAs have runs of 
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absolute conservation with no substitutions, insertions or deletions. In this study we 

developed a novel method to systematically evaluate and score homologous regions 

between the genomes of honey bee (Apis mellifera) and parasitic wasp (Nasonia 

vitrippenis) with the purpose of identifying new microRNA genes on the basis of 

ultraconservation. This is the first time ultraconservation is used in a systematic way 

to identify new microRNA genes by comparative genomics. Our strategy uses 

ultraconservation as first step, but the identification of putative microRNA genes 

relies on the careful scoring of candidate pairs in order to maximize microRNA 

finding. 

 

Results 

Analysis of previously validated microRNAs shared between Apis and Nasonia (Experimental 

Set) 

Using a computational approach devoted to the identification of microRNA 

homologs from databases, we were able to identify a set of 45 microRNAs common 

between honey bee and wasp (Appendix A). We refer to this group of microRNAs 

as our “Experimental Set” and it was used as a basis to develop the computational 

method aimed at the identification of new microRNAs shared between these two 

genomes.  

Our analyses started with a conservation analysis of homologous genes from 

the Experimental Set (Figure 13, Appendix A). MicroRNAs shared between honey 
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bee and wasp show different degrees of conservation. The microRNA MiR-133 has 

two long ultraconserved elements (UCEs) that span the entire length of each arm 

and part of the terminal loop, with only one substitution in the terminal loop. MiR-2-

2 has a short (20nt) UCE that overlaps the mature region. This absolute 

conservation of mature regions in microRNAs of species that have diverged about 

~120 mya is an indication that the biological roles performed by these RNA 

molecules are also conserved. 

 

 

ame-mir-133 & nvi-mir-133 

TAATGTTAAGCTTAGCTGGTTGAACACGGGTCAAATATATCGCACGATTGACGCATttggtccccttcaaccagctgtAGTTGACATTA

TAATGTTAAGCTTAGCTGGTTGAACACGGGTCAAATATAACGCACGATTGACGCATttggtccccttcaaccagctgtAGTTGACATTA 

*************************************** ************************************************* 

 

ame-mir-2-2 & nvi-mir-2-2 

TCGACTGTTCCTCCCATCAGAGTGGTTGTGATGTGGTA-ACTTGGACTCGtatcacagccagctttgatgagcGGAACGGTGCGA 

TCGGCTGTTTCGCCCGTCAGAGTGGTTGTGATATGGTGCTATTGAACGCAtatcacagccagctttgatgtgcGTAACAGTTCGA 

*** ***** * *** **************** ****    *** ** * ******************** *** *** ** *** 
Figure 13. Ultraconserved elements located within microRNAs. The UCEs span the 
region that corresponds to the mature region. Runs of ultraconservation are 
represented in yellow and mature microRNAs in lowercase. 
 

 

Percent identities of genes within the Experimental Set range between 100% 

for microRNAs such as mirR-iab-4 and 66% for microRNAs such as miR-279. The 

absolute conservation of miR-iab-4 is the exception to the rule, as most of the 

microRNAs have percent identities between 75 – 95%, indicating some extent of 

divergence within the Hymenoptera. Most of the substitutions found are located 

along the terminal loop and in the stem regions that do not correspond to the 

mature microRNA. The mature microRNA is the region with the highest degree of 
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conservation (Figure 14). This is certainly an indication of functional evolutionary 

constraint exerted upon the mature region. We used this property as part of our 

methodology for the identification of new microRNAs shared between honey bee 

and wasp.  

 

 

Figure 14. Entropy conservation plot for 25 different microRNA families. The 
horizontal line represents the nucleotide position along the microRNA precursor. 
Vertical lines represent the amount of conservation in bits, up to a maximum of 2, 
which represents complete conservation. Regions of maximal conservation 
correspond to the mature region of the microRNA precursor and the mature* 
region. Variable regions are seen as valleys. Variability is higher in the regions 
corresponding to the terminal loop and in regions of the stem that do not 
correspond to the mature region. This suggests nucleotide conservation for variable 
regions is not as important as conservation of secondary structure for microRNA 
function. 
 

 

Patterns of nucleotide substitution of microRNAs from the Experimental Set 

The mutation patterns of microRNAs were classified according to the rules 

proposed by (Lai et al 2003). Mutation patterns imply a canonical progression in 

microRNA evolution (Figure 15). In general microRNAs start accumulating 
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mutations preferentially in the terminal loop, and then mutations accumulate along 

the stem. According to this model it is unlikely for a microRNA to accumulate 

mutations along the stem having no mutations in the terminal loop. The pattern of 

nucleotide substitution for each microRNA class is as follows: 

 

 

Figure 15. Proposed evolutionary model for conserved microRNAs from Lai et al. 
(2003). Class 1, 2 and 3 represent the typical progression in the molecular evolution 
of microRNAs from a state of complete conservation.  Class 1, 2, 3, and 6 are 
considered good microRNA candidates. 
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Class 1: No substitutions. Complete conservation. 

Class 2: One or more substitutions or gaps contained exclusively in the terminal 

loop. 

Class 3: Equal or greater number of mutations within the loop compared to the non-

microRNA-encoding arm. 

Class 4:  Substitutions along both arms and no substitutions in the terminal loop.    

Class 5: Substitutions along one arm only and conservation in the terminal loop. 

Class 6: Substitutions along one arm greater than substitutions in the terminal loop. 

 

Of the 45 microRNA pairs evaluated, we found one belonging to Class 1, five 

belonging to Class 2, twenty eight belonging to Class 3, one belonging to Class 4, 

two belonging to Class 5 and six belonging to class 6 (Figure 16). MicroRNAs from 

classes 4 and 5 are rare and their frequency of appearance supports the idea that 

there is a negative selective pressure along both arms of the stem loop, and only mild 

selective pressure along the terminal loop.  For our computational method, we 

considered sequences from classes 1, 2, 3 and 6 as good microRNA candidates. 

Classes 4 and 5 were considered poor candidates.  
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Figure 16. Distribution of mutational pattern classes among validated microRNAs 
at the honey bee – wasp intersection. Most of the microRNAs belong to classes 3 
and 6, which represent the most common mutational pattern of microRNAs. 

 

Computational identification of microRNAs 

Our computational strategy started with the identification of ultraconserved 

DNA elements between the honey bee and wasp genomes. For this purpose we used 

the WUBLAST (Gish, W. 1996-2004) package with modified parameters suited for 

the identification of ultraconserved elements. 

The first scanning of both genomes identified 294,196 non redundant UCEs. 

The great majority of these UCEs are short sequences of 20 nt on average and they 

may come from homologous regions between the two genomes or from non-

homologous regions as well. In order to discard the UCEs coming from non 

homologous regions, the UCEs were extended in honey bee in both directions by 65 

nucleotides. These extended sequences were then blasted against the wasp genome 
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using with an evalue of 1, resulting in 9,711 sequences and a 30-fold reduction of the 

number sequences with of potential of being microRNAs.  

Potential candidate sequences were mapped to the honey bee genome in 

order to minimize redundancy. Redundant sequences mapping to the same 

chromosomal position were grouped into one single candidate. This step reduced the 

candidate set to 6,324 sequences. 

 

Filtering for microRNAs 

Comparisons of these results against RNA molecules from databases shows 

that our computational strategy indeed identified microRNAs, but also showed other 

RNA molecules different to microRNAs. Among these results we found snoRNA 

genes, particularly U2, U6 and U1. We also found a significant fraction of the results 

as being related to repeat elements, particularly Non-LTR elements belonging to 

TAHRE family (Telomere-Associated and HeT-A-Related Element), which was 

recently described for Drosophila (Abad et al 2004; Shpiz et al 2007) and interspersed 

repeats. All these molecules have in common the capability of adopting secondary 

structures resembling microRNA stem-loop precursors (Figure 17). These sequences 

were not considered for further analysis and were discarded.  

Candidate sequence pairs were aligned and evaluated for microRNA 

canonical structures. Any sequence pair not resembling a microRNA was discarded 
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at this step. This filter removed a significant fraction of sequence pairs, resulting in 

999 sequence pairs for scoring.  

 

 

Figure 17. Secondary structure of a U2 spliceosomal RNA. Parts of this RNA are 
structurally similar to microRNAs (i.e. light blue arm). From RFAM (2008). 

 

Scoring sequence-pairs 

The set of 999 candidate sequence-pairs was processed using the using the 

Smith – Waterman algorithm as implemented in the program Water from the 

EMBOSS package (Olson 2002). Alignments were scored and normalized based on 

length. They also were parsed and given as input to RNAalifold (Hofacker 2003), in 

order to evaluate their secondary structure and free energy of folding. Evaluation of 

candidate structures took into consideration the physical resemblance to canonical 
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stem – loop precursors and free energy of folding. Statistical significance of folding 

was assessed by with RANDfold and 1000 randomizations. Candidate pairs were 

scored on the basis of redundancy, similarity, free energy of folding, and statistical 

significance of the fold (see methods for details). 

 

Recovering experimentally validated microRNAs 

Our computational strategy was able to recover 41 of the 45 microRNAs 

from the Experimental Set. The distribution of scores of candidate sequence-pairs 

shows that the great majority of the microRNAs from the Experimental Set score 

very high in our computational model, as 40 of the 41 recovered are within the top 

200 (Figures 18 and 19). This is a very good indication that putative microRNAs 

scoring high in our computational model may correspond to genuine microRNAs. 

Only four microRNAs from the experimental set weren’t recovered by our 

computational strategy. These correspond to miR-124, miR-190, miR-279 and miR-

307.  

Only one of the recovered microRNAs from the Experimental Set wasn’t 

within the top 200 set. Let-7 scored relatively low on our computational strategy with 

a score 7.41 and a rank of 324. The low score may be related to the fact that this 

microRNA is AT rich, making the deltaG of folding not as significant as other 

microRNAs that are not AT rich. The next low scoring microRNA was miR-375 
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with a score of 8.41 and a rank of 195, scoring high enough to be included within the 

top 200 set. 

 

 

Figure 18. Distribution of scores of microRNA candidates. The great majority of the 
microRNAs from the Experimental Set score very high on our computational pipeline 
with scores higher than 10. 
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Figure 19. Recovering of experimentally validated microRNAs. Putative and real 
microRNAs at different scoring cutoffs. At a score of 10, we are able to recover 90% of 
the known microRNAs shared between wasp and honey bee, and 57 new predictions. 
 

 

MicroRNAs from Experimental Set that were not recovered 

Four of the microRNAs from the Experimental Set weren’t identified in our 

computation. These are mir-124, mir-190, mir-279 and mir-307. Mir-124 is common 

to invertebrates and vertebrates and it seems to be the only microRNA common 

between honey bee and wasp that does not adopt a canonical stem-loop structure on 

its lowest energy form.  This result is very interesting, given the fact that there are 

only two substitutions between the honey bee / wasp version of mir-124, both 

substitutions located at the base of the terminal loop (Figure 20).  
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TGCTCCTTGCGTTCACTGCGGGCTTCCATGTGCCAACTTTTCAAAATTCAtaaggcacgcggtgaatgccaagAGCG 

TGCTCCTTGCGTTCACTGCGGGCTTCCATGTGCCAAGTTTTAAAAATTCAtaaggcacgcggtgaatgccaagAGCG 

************************************ **** *********************************** 

.((((...(((((((((((((....))..(((((...................))))))))))))))))...)))). 

 

Figure 20. Consensus structure of honey bee - wasp mir-124. This microRNA does 
not adopt the canonical stem-loop precursor structure seen in other microRNAs. 

 

 

 

Mir-124 adopts the canonical structure of a stem-loop precursor at a 

suboptimal free energy of folding, suggesting the microRNA exists in different 

conformations in the cellular environment. Since our current computational 

approach requires a canonical secondary structure, any microRNA not adopting a 

canonical stem-loop precursor would not be identified. Mir-190, mir-279 and mir-

307 were identified as part of the ultraconserved set but our current parameters for 

extension and structural filtering discarded them at an earlier step. Future 

improvements on our current computational pipeline will address these issues.  
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Evaluation of microRNA candidates 

The mutation pattern of the candidates was evaluated and inspected visually 

for stem-loop precursor characteristics. We focused on candidates of classes 1,2,3 

and 6 as these classes represent the substitution pattern seen in the great majority of 

known microRNAs. Candidates were also partitioned according to their position 

with respect to protein coding genes in the genome. This step allowed us to 

determine whether the microRNA candidate was located in intergenic regions, splice 

sites, exons or introns. 

Our results indicate that there is a tendency of microRNA candidates to 

localize within introns or intergenic regions, as their score gets incremented (Figure 

21). In other words, the higher the score, the more concentrated the candidates seem 

to be in intronic and intergenic regions, at the expense of exons and splice sites. All 

of the microRNAs from the Experimental Set overlap either intergenic regions of 

introns. None of them overlap splice sites or exons.  High scoring microRNA 

candidates also follow this tendency.  This result is similar to what has been found in 

other insect genomes, particularly Drosophila melanogaster (Stark et al 2007).  

Since known microRNAs in the honey bee genome are strictly localized in 

introns of protein coding genes, or as independent units, we believe our method 

successfully identified genuine microRNAs.   
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Figure 21. High scoring MicroRNA candidates tend to localize in introns and 
intergenic regions. High scoring predictions exclude exons and partially exclude splice 
sites. 
 

MicroRNA predictions are supported by 454 data 

Candidate sequence pairs were compared against 454 data coming from pools 

of RNA extracted independently from both honey bee and wasp. The 454 data was 

generated from the small RNA fraction of both organisms. Pools were constructed 

from different developmental conditions (i.e. larva, adult) and from different castes 

(i.e. queen, worker, drone). These comparisons give support to several of our 

predictions. These data allowed us to get an idea of the location of the mature region 

for several of our computational predictions. We found 28 of the 45 microRNAs 

from the Experimental Set as expressed sequences in the 454 data, and found 

support for 13 new microRNAs. Interestingly, most of the microRNA candidates 

supported by 454 data correspond to high scoring microRNAs according to our 
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computational strategy, as 11 of them are within the top 200 set. The lowest scoring 

candidates supported by 454 data have ranks of 232 and 257 respectively. All the 

microRNA candidates supported by 454 data are located within introns or intergenic 

regions, and all the 454 matching regions are located within the stem of the 

candidate (Appendix B). This result strongly indicates these are real microRNAs  

We only found three microRNA candidates that match 454 data in regions 

NOT corresponding to where mature microRNAs should be located. Matches for 

these tree candidates occur within the region corresponding to the terminal loop or 

regions with large bulges. One of the candidates is located at medium rank in our 

strategy (position 289) and the other two are very low rank candidates (positions 574 

and 713 respectively, Appendix D). We didn’t consider these candidates as real,  

given the position of the matches and the fact that they scored low in our strategy.   

 

Functionality of microRNA candidates 

At least 17 microRNAs from the Experimental Set are located within introns 

of protein coding genes. The gene that contains the most intronic microRNAs is 

GB-15727. This gene corresponds to a serine/threonine phosphatase that appears to 

have been lost from Drosophila, but it is present in both vertebrate and more ancient 

metazoan species. This gene contains 5 microRNAs from the experimental set (mir-

2-1, mir-2-2, mir-2-3, mir-71, mir-13a) and a new candidate from the top 20 set 

(candidate No. 22). GB16497 is another gene that appears to contain at least three 
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intronic microRNAs, two from the experimental set (mir-12, mir-283) and one from 

the top 20 set (candidate No. 48). This gene is a homolog of Drosophila CG33206-PA 

(dGMAP). In Drosophila, the overexpression of this protein blocks anterograde and 

retrograde transport between the endoplasmic reticulum and the Golgi apparatus. 

We evaluated the functions of the best 20 intronic microRNA candidates 

belonging to classes 1, 2, 3, and 6. This set of 20 resides within 18 different genes in 

the honey bee genome. One of these genes, GB16072 is a homolog of the Iron 

regulatory protein 1B CG6342-PA. The protein it contains an aconitase-like domain 

with aconitase-hydratase activity. In the TCA cycle, Aconitase catalyzes the 

conversion of citrate to isocitrate via cis-aconitate. The gene contains two 

microRNAs from the top 20 set (candidate No. 67 and No. 106). 

GB10180 corresponds to the Drosophila homolog of Scratch. This is a zinc 

finger protein involved in dendrite development (Roark et al 1995).  GB10650 is 

similar to the Hormone receptor-like in 46 (Hr46 or DHR3). This protein is involved 

in metamorphosis and mushroom body development. Hr46 is known as a regulator 

that acts on a negative fashion on the Ecdysone receptor. In Drosophila, expression of 

Hr46 occurs after the expression of ecdysone, but before the expression of late 

hormones involved in metamorphosis. Expression of Hr46 is required for the 

transition between prepupal and pupal stages (Ren et al 2005). GB12790 is the 

homolog of rgk1 in Drosophila, a GTP mediated signal transduction protein. 

GB14007 corresponds to FucTA, which is a phospholipase A2 glycoprotein well 
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known as a bee-venom allergen. Expression of FucTA was recently evaluated in 

honey bees (Rendic et al 2007). The gene is predominantly expressed in brain tissue 

and venom glands, with weaker expression in other tissues. GB13919 corresponds to 

muscleblind, a gene that appears to be involved in alternative splicing and that, in 

humans, is implicated in myotonic dystrophy, a form of muscular dystrophy that is 

characterized by muscle weakness and myotonia (slow relaxation of muscle after 

contraction) (Ho et al 2004). Muscleblind harbors the longest ultraconserved element 

found between honey bee and wasp (see Chapter IV). GB15055 correspond to 

VHDL (Very High Density Protein). This is a larval-specific lipoprotein of high 

density that belongs to the family of Vitellogenins and works as storage protein. 

GB16274 is homolog to Mmp2 (Matrix metalloproteinase 2). In Drosophila, this 

protein is involved in motor axon fasciculation (Miller et al 2008). GB19979 is a 

glutamic decarboxylase homolog to Drosophila’s Gad1 gene. Proper expression of this 

gene is necessary for the correct development of synapse junctions between neurons 

or synaptogenesis (Featherstone et al 2002).  
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Table 4. Filtering of candidate microRNA sequences 
 

Step Number of resulting 
sequences 

454 Matches 

UCE scanning 294,196 521 
Extend, then blast 9,710 45 
Genomic Clustering 6,324 45 
Remove snoRNA and repeat 
elements 

6154 45 

Evaluation of secondary 
structure  

999 13 

Substitution classification  
(Classes 1, 2, 3, 6) 

686 13 
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Table 5. Genes harboring novel and previously known intronic microRNAs 
 
Gene Description Intronic microRNA candidate # 
GB10191 Similar to Rpb8, RNA polymerase II core 

complex 
Mir-277, mir-317, mir-34 

GB18684 ABC-type phosphate/phosphonate transport 
system, periplasmic component. Inorganic 
ion transport and metabolism. 

Mir-278 

GB12486 LOC724926 similar to DNA polymerase 
73kD CG5923-PA, isoform A 

Mir-279 

GB16086 LOC413964 similar to grapes CG17161-PA, 
mitotic control. 

Mir-79 

GB10038 Similar to Histone-lysine N-
methyltransferase, (Nuclear 
receptor binding SET domain containing 
protein) 

Mir-8 

GB11212 LOC410951 similar to CG32062-PD, 
isoform D, DNA binding. 

Mir-925 

GB15597 Similar to eag ether a go-go. Voltage-gated 
potassium channel activity; 

Mir-928 

GB17673 Similar to rhea, cytoskeletal protein 
concentrated at regions of cell–substratum 
contact. 

Mir-190 

GB14516 Similar to Distal-less. First genetic signal for 
limb formation to occur in the developing 
zygote. 

Mir-930 

GB10066 Similar to neuroligin. Post-synaptic adhesion 
molecule. 

Mir-932 

GB15727 Similar to Serine/threonine-protein 
phosphatase 4 regulatory subunit 1-like 

Mir-13a, mir-2-1, mir-2-2, mir-2-3, mir-71, 
candidate 22 

GB16497 Similar to lethal CG33206-PA. Unknown 
function. 

Mir-12, mir-283, candidate 48 

GB15055 Vhdl larval-specific very high density 
lipoprotein. Storage protein. 

Candidate 62 

GB16072 Similar to Iron regulatory protein 1B 
CG6342-PA. Aconitase. 

Candidate 67, 106 

GB16572 Similar to ANF-receptor Candidate 77 
GB12790 Similar to Rgk1 CG9811-PA. GTPase 

mediated signal transduction. 
Candidate 83 

GB14007 FucTA core alpha1,3-fucosyltransferase A. 
Venom-allergen protein. 

Candidate 85 

GB13919 Similar to muscleblind CG33197-PD, 
isoform D. RNA binding factor involved in 
muscular dystrophy. 

Candidate 86 

GB19979 Similar to Glutamic acid decarboxylase 1. 
Larval locomotory behavior, neuromuscular 
junction development,  neurotransmitter 
receptor.  

Candidate 94 

GB10650 Similar to Hormone receptor-like in 46 
(Hr46). Regulation of development, 
metamorphosis, mushroom body 
development. 

Candidate 103 
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Discussion 

 
Identification of microRNAs in hymenopterans, and in honey bee in 

particular is of great importance given the potential of honey bee as a model 

organism for brain development, aging, morphological differentiation and social 

behavior.  It is well known the role that microRNA genes play as regulators of these 

functions (Krichevsky et al 2003). A complete identification of the genetic 

components of the honey bee genome coupled with the tools of molecular biology 

and genetic knockouts would enable us to get a systematic understanding of the 

biology of the honey bee and would provide insights into the areas where the honey 

bee excels as a model organism. This work is aimed at the identification of some of 

these core genetic components of the honey bee biology. 

  In recent years the role of microRNAs in the development and maintenance 

of neurons has been identified. Neurons that cannot produce microRNAs slowly die 

in a manner similar to what is seen in human neurodegenerative disorders as 

Alzheimer and Parkinson’s diseases (Hebert et al 2008). MiR-124, a microRNA 

present in most metazoans is responsible, in humans, for the downregulation of the 

expression of nonneuronal genes in an in vitro cell system, suggesting an important 

role for microRNAs as regulators of neuronal differentiation (Makeyev et al 2007). 

We have predicted two different conformations for honey bee miR-124. We 

speculate that these two different conformations may lead to at least two different 
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processed microRNA products with different target genes leading to different 

phenotypes. On the other hand, we did not predict multiple conformations for miR-

124 in wasp. Perhaps the additional conformation possibility in honey bee renders 

higher information-processing capabilities, assuming miR-124 as a brain specific 

microRNA, like in humans.  

Several of the intronic microRNA candidates reported in this study are 

located in the introns of genes that in some way or another are implicated in cell 

differentiation and/or neuronal development, maintenance or functionality. 

Examples of those genes include GB10180 (Scratch), involved in dendrite 

development; GB16274 (Mmp2), involved in motor axon fasciculation; GB15597 

(ether a gogo), involved in glial growth and regulation of heart contraction; GB14007 

(FucTA), a phospholipase heavily expressed in the mushroom body; GB19979 

(Glutamic Acid Decarboxylase 1), involved in the correct development of synapses; 

GB10650 (Hormone Receptor-like in 46), involved in mushroom body development 

and pupation, and the previously reported GB10066 (neurogilin), implicated in 

neuron signaling (Craig and Kang 2007; Weaver et al 2007). The functional 

properties of these genes in addition to several other properties seen in real 

microRNAs and exhibited by our top scoring candidates like genomic clustering and 

intronic placement (properties that were not used as part of our scoring system), 

heavily suggest our top predictions correspond to real microRNA genes.  
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Materials and methods 

Entropy conservation plot 

Twenty-five microRNA families from Chapter I were used to generate the 

entropy conservation plot. This plot uses the same principle as the sequences logos 

(Crooks et al 2004; Vacic et al 2006), but instead of plotting the frequencies of each 

base, the sum of the contribution of the four bases is taken into account. In this 

sense, the more conserved the position in the alignment, the higher the peak in the 

plot. Divergent positions are seen as valleys. For each position in the alignment a 

scoring function based on the Shannon entropy index (Shannon 1997) was used. 

H(l) = f (b,l) log2 f (b,l)
b= a

l

 

Where:  
H(l) = Uncertanty at position l (in bits). 
b= one of the bases (A,C,T,G).  
f(b,l)= frequency of base b at position l. 
 

Use of ultraconservation to predict new microRNAs 

Ultraconserved regions in honey bee and wasp were extended by 65nt at each 

end and extracted for processing. Both sets were then reversed complemented and a 

new file containing the original sequence and its reverse complement was generated. 

Pairwise alignments of the honey bee – wasp pairs were constructed using the Smith 

– Waterman algorithm as implemented in the program Water of the EMBOSS 

package (Olson 2002). Pairwise alignments were then evaluated using RNAalifold, in 
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order to determine the secondary structure and the free energy of folding of each 

pair of sequences. Only sequence pairs having the canonical stem – loop precursor 

found in microRNAs were further considered.  

Sequence pairs were then evaluated using RANDfold with 1000 iterations per 

sequence. Sequence pairs were scored on the basis of their alignment score, deltaG 

of folding and RNAfold score. Alignment scores and deltaG of folding were 

normalized to sequence length. Each sequence pair was scored using the following 

formula: 

Pair Score = (Alignment length / alignment score) + (1/((RANDfold score in 
honeybees + RANDfold score in wasp)/2))/200) + (ABS (deltaG of folding for the 
pair)/alignment length)*10) 
 

The scoring function was developed this way in order to give equal weight to 

the different parameters evaluated on the candidate sequences. 

Results were sorted according to their score and partitioned according to their 

position with respect to genomic features in the honey bee genome. Data was 

partitioned in the following way: 

Exons: microRNA candidates that overlap exons of protein coding genes. 

Introns: microRNA candidates that overlap introns of protein coding genes. 

Splice site: microRNA candidates that overlap splice sites of protein coding genes. 

Intergenic: microRNA candidates that do not overlap any of the above. 



 77 

 

CHAPTER IV 

ULTRACONSERVED ELEMENTS IN HYMENOPTERANS 

 

Introduction 

The tools of comparative cenomics allow for the identification of numerous 

conserved coding regions and conserved non-coding regions as well. Efforts aimed 

at cataloguing all regulatory elements in the human genome have come to the 

realization that the fraction of non-coding regions conserved between vertebrate 

species is much higher than what would be expected by chance (Prabhakar et al 

2006), and this amount of conservation is indicative of function. Detection of 

functional elements is based in the fact that conservation over significant 

evolutionary distances indicates negative (purifying) selection, which in turns 

indicates function (Simons et al 2006).   

Several publications in the past few years have explored the idea of 

conservation as a way to detect functional elements. These publications differ in 

their methodologies, definitions, and in the way they identify conserved regions. For 

example, Gill Bejerano and collaborators have identified more than ~450 segments 

longer than 200bp that are absolutely conserved (with no substitutions, insertions or 

deletions) between orthologous regions of Human, Mouse and Rat (Bejerano et al 

2004). Most of these regions can be aligned to the dog genome with 99.2% identity, 
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indicating strong purifying selection at least for the past 92 million years. Analysis of 

these regions against SNP databases and against the chimp genome suggest these 

elements are changing at a rate that is 20 times slower that the average for the 

genome. Bejerano and collaborators refer to these regions as “ultraconserved 

elements” or UCEs. In a similar approach Tran and collaborators identified regions 

of short “ultraconservation” between honey bee, fruit fly and mosquito (Tran et al 

2006). These are DNA segments between 20 – 50 nt long with no substitutions, 

insertions or deletions, and were identified by an all versus all approach in which 

regions of similarity were not restricted to the traditional whole genome alignment 

approach. These “microconserved” elements have a clear overlap with microRNAs; 

of the 154 microconserved elements longer than 23nt identified in this study, 24 of 

them overlap with experimentally validated fly microRNAs, which constitutes about 

30% of the known Drosophila microRNAs. The authors emphasize the point that this 

methodology is suitable to detect previously unrecognized microRNAs. 

Comparisons between human and pufferfish have also detected functional non-

coding UCEs, although in a much less number than the ones detected between 

human and mouse/rat. This is of course a reflection of the evolutionary distance 

between human and pufferfish (~450 MYA), but it also suggests that any conserved 

non-coding element detected is likely to be functional (Aparicio et al 2002).  

Hierarchical clustering of UCEs in the human genome indicates that longer 

elements (about 5% of the total elements) are unique in the genome, with no 
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obvious paralogs, or genomic cluster organizations. About 4% of the total is 

organized in clusters that range between two and 1000 copies, in a manner similar to 

rDNA and transposable elements. This cluster organization increases the chances of 

function (Bejerano et al 2004).  

UCEs also seem to be organized in a very particular way in the human 

genome. Using a clever yet simple statistical analysis, Derti and collaborators 

explored the possibility of positional correlations between the location of UCEs and 

the location of segmental duplications and copy number variants. In this analysis the 

number of UCEs within duplicated regions was calculated, and the size of 

segmented duplicated regions was determined. Using these numbers as a basis, the 

authors generated a set of 1000 random samples from the human genome, each one 

of the same size as the size of the segmental duplications. For each random sample, 

the number of UCEs was calculated. This methodology allowed them to generate a 

distribution of UCEs in the human genome. This distribution was then used to 

determine how likely (or unlikely) the observed number of UCEs within segmental 

duplications is. The authors concluded that the number of UCEs observed within 

segmental duplications is lower that what should be expected by chance (P=1e-06). 

The fact that UCEs try to “avoid” segmental duplications suggest a mechanism by 

which UCEs are eliminated. The authors propose different mechanisms for this 

behavior: lethality, segregation distortion and lowered fitness (Derti et al 2006).  
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Distribution of ultraconserved elements 

In humans UCEs are distributed throughout the entire genome. It has been 

determined that they overlap basically all human genome features, including: exons, 

introns, 5’ UTRs, 3’ UTRs, gene-proximal 5’ regions, gene-proximal 3’regions, 

intergenic regions, and gene deserts, although with different frequencies (Shabalina 

et al 2001). UCEs seem to be particularly enriched in introns and intergenic regions. 

The reason for this enrichment is not clear right now, but it emphasizes the idea that 

strong purifying selection can be also exerted in introns, which sometimes can be 

higher than their exon counterparts, suggesting essential functional roles (Thomas et 

al 2003).    

For this work we have identified a series of UCEs between the genomes of 

Apis mellifera (honey bee) and Nasonia vitripennis (parasitic wasp). We explore the 

possible functional roles of these elements in the context of gene ontologies and the 

evolutionary forces that appear to maintain these ultraconserved elements.   

 

Results 

Sequence conservation at the protein or DNA level is usually the result of 

functional or structural evolutionary constraints. We understand how functional 

constraints at the protein level lead to sequence conservation at the DNA level, but 

we understand very little about conservation of non-protein coding DNA sequences. 
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This type of conservation is often associated with non-coding RNAs or transcription 

factor binding sites, elements that we associate mostly with gene regulation.  

For this study we were able to identify UCEs between the genomes of Apis 

mellifera, Nasonia vitripennis and Drosophila melanogaster. The first two species belong to 

the order Hymenoptera and have a divergence time of about ~100 mya (Belayeva et 

al 2002), which is comparable to the divergence time between human and mouse 

estimated in 90 mya (Ureta-Vidal et al 2003). Drosophila belongs to the order Diptera, 

which diverged from the Hymenoptera around 330 million years ago (Belayeva et al 

2002), a time comparable to the divergence between human and birds.  

The distribution of results of our UCE analysis is summarized in Table 6. It 

shows the frequency of elements at each intersection and their distribution with 

respect the structural properties of protein coding genes in the honey bee genome. 

We found 869 different UCEs of 50bp or longer between honey bee and wasp. 

These elements appear to be preferentially located in intergenic regions (57% of 

them), followed by intronic elements (30%), and exon/splice sites (14%). 

This distribution is similar to what has been seen in other insects (Glazov et 

al 2005) and vertebrates, where the great majority of elements are located in 

intergenic and intronic regions (Bejerano et al 2004). 
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Table 6. Ultraconserved elements found among insects 

Intersection Length Total # Elements Intergenic Intronic Exonic Splice site 

>=50 869 495 253 51 70 

>=100 17 10 4 0 3 Amel – Nvit 

>=150 1 0 1 0 0 

>=50 113 80 29 2 2 

>=100 0 0 0 0 0 Amel - Dmel 

>=150 0 0 0 0 0 

>=50 93 67 24 0 2 

>=100 0 0 0 0 0 
Amel – Nvit –
Dmel 

>=150 0 0 0 0 0 

 

UCEs are distributed throughout the entire honey bee genome. They are 

particularly abundant in chromosomes 1 (being the longest), 13 and 16. The latter 

two are particularly concentrated with intergenic elements despite the fact that these 

two chromosomes are among the shortest chromosomes in honey bee and 

chromosome 16 contains the least number of genes (260 total). This result might be 

an indication of regulatory elements being abundant in these chromosomes or an 

indication that these elements form parts of genes. We raise this possibility given the 

fact that the official gene set appears to be an underestimate of the total number of 

genes in honey bee. The total number of genes in the official gene set is around 

~10.000 (The HoneyBee Genome Sequencing Consortium 2006), this number 

seems rather low compared to Drosophila with an estimated gene count of ~14.000 

(Clark et al 2007). 

The longest element found at the intersection between honey bee – wasp 

corresponds to an intronic element found in a gene that corresponds to the 

Drosophila homolog of muscleblind. This gene belongs to the MBNL protein family, 
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whose members have been shown, in humans, to be involved in myotonic 

dystrophy, a form of muscular dystrophy that is characterized by muscle weakness 

and myotinoia (slow relaxation of muscle after contraction). Recent reports indicate 

that Muscleblind in humans may work as a regulator of alternative splicing of two 

pre-mRNA genes that are misregulated in myotonic dystrophy: cardiac troponin T 

(cTNT) and insulin receptor (IR). Both of these proteins have homologs in honey 

bee, as cTNT is homologous to TpnT and IR has a homolog with the same name in 

honey bee (Herranz et al 2005). This element bears no significant similarity to other 

sequences in databases and interestingly its lowest free energy conformation 

corresponds to a stable stem-loop structure suggesting a role as a functional RNA 

molecule. We don’t discard the possibility of this element encoding a microRNA 

since in a separate analysis (Chapter III) this element showed up as one of the 

highest scoring microRNA candidates (candidate No. 86). For a complete list see 

Table 7. 

We also found other interesting genes harboring longer intronic UCE 

elements. The gene LMO4 (GB17398) harbors the second longest UCE (117bp). 

This gene encodes a cysteine-rich protein that contains two LIM domains but lacks a 

DNA-binding homeodomain. The encoded protein may play a role as a 

transcriptional regulator or as an oncogene.  Several genes harboring intronic 

ultraconserved elements include homeotic developmental regulators such as cut 

(GB17945), the protein GB15643, which contains both a homeodomain and the 
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brain-specific homeobox POU, and the protein mub (mushroom-body expressed, 

GB10111), which acts as a regulator of alternative nuclear mRNA splicing via 

spliceosome and is preferentially expressed in brain tissue (Grams and Korge 1998; 

Mutsuddi et al 2004).  We also found the protein toutatis harboring a long intronic 

UCE. This protein contains a zinc-finger domain and mutational analyses indicate 

the protein is essential for neural development (Vanolst et al 2005). 

Genes harboring long exonic UCEs appear to be involved in ion transport 

(GB15328, GB15412) and transcription factor activities (GB17328, GB15089). 

Genes harboring long splice site elements are also related to ion transport 

(GB12929) and neural circuitry (GB17617).  

In order to get a better understanding of the possible functions associated 

with UCEs, we carried out a gene ontology analysis of genes harboring exonic, 

intronic, and splice site UCEs. This analysis allowed us to identify any potential 

overrepresented GO term in out dataset. Our results indicate significant enrichments 

for each one of these categories (Table 8). At the Molecular Function level, intronic 

UCE sequences appear to be enriched in “transcription factor activity” (P=6e-08) 

and “DNA binding” (P=3e-05). At the Biological Process level, they appear to be 

enriched in “regulation of transcription, DNA - dependent” (P=2e-09), “leg 

formation” (P=5e-04), and “multicellular organismal development” (P=6e-04). 
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Table 7. Functions of genes associated with longest UCEs in honey bee and wasp. 
Numbers in parenthesis correspond to the fraction of the UCE that overlap introns 

Gene Function UCE size (bp) 
 
Intronic Elements 
GB13919 Similar to muscleblind CG33197-PD, isoform D 170 

GB17398 Similar to LIM domain only 4 117 

GB17945 Similar to Homeobox protein cut 111,101,91 

GB10111 
Similar to meb (mushroom-body expressed) CG7437-PC, 
isoform C 

97 

GB13576 
Similar to CG9850-PA, isoform A, Zinc-dependent 
metalloprotease, salivary_gland 

96 

GB15643 Similar to CG11641-PA, Homeodomain 95 

GB13918 
Similar to One cut domain family member 2 (Transcription 
factor ONECUT-2) (OC-2) 

94 

GB20131 Similar to CG11323-PA. Tubulin-tyrosine ligase family. 92 

GB14851 Similar to Muscle protein 20 CG4696-PA, isoform A 90 

GB16601 Similar to toutatis CG10897-PA, isoform A 89 

 
Exonic Elements 
GB19480 Similar to lethal (1) G0196 CG14616-PD, isoform D 86 

GB19429 Similar to CG17838-PE, isoform E 84 

GB15089 
Similar to Sp1 CG1343-PA, isoform A, RNA polymerase II 
transcription factor activity 

80,67,62 

GB15328 
Similar to Potassium voltage-gated channel protein Shaw 
(Shaw2) 

74 

GB15412 
Similar to Ca2+-channel protein 1 subunit D CG4894-PA, 
isoform A 

68 

GB11661 Similar to jim CG11352-PC, isoform C 65 

GB17328 Putative transcription factor mblk-1 64, 60 

GB30541 No description found 63 

GB13371 Similar to lethal (1) G0269 CG1696-PA 62 

GB30126 No description found 60 

 
Splice Sites 

GB12929 Similar to paralytic CG9907-PA 
136 (125), 99(22), 
84(76) 

GB18272 Similar to transportin 1 118(76) 

GB16271 No description found 110(92) 

GB10313 No description found 98(59) 

GB19490 Similar to RluA-1 CG31719-PA, isoform A 94(75) 

GB18263 Similar to crooked legs CG14938-PA, isoform A 94(76) 

GB10502 No description found 88(40) 

GB10395 Similar to drumstick CG10016-PA, isoform A 88(68) 

GB17617 Similar to fruitless CG14307-PB, isoform B 86(34) 

GB13445 Similar to CG12467-PA 86(15) 
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Table 8. GO enrichment of genes with UCEs longer than 50bp shared between 
honey bee and wasp 

GO Term Description e-score GO Category 
 
Introns 
GO:0003700 transcription factor activity 6.53E-08 Molecular Function 

GO:0043565 sequence-specific DNA binding 1.65E-06 Molecular Function 

GO:0003677 DNA binding 3.39E-05 Molecular Function 

GO:0006355 regulation of transcription, DNA-dependent 2.89E-09 Biological Process 

GO:0006350 Transcription 0.000100932 Biological Process 

GO:0007479 leg disc proximal/distal pattern formation 0.000580918 Biological Process 

GO:0007275 multicellular organismal development 0.000663494 Biological Process 

GO:0010092 specification of organ identity 0.004037661 Biological Process 

GO:0007432 Salivary gland boundary specification 0.004037661 Biological Process 

GO:0045449 regulation of transcription 0.005139759 Biological Process 

 
Exons 

GO:0003705 
RNA polymerase II transcription factor activity, 
enhancer binding 

0.00580904 Molecular Function 

GO:0042045 epithelial fluid transport 0.02727066 Biological Process 

 
Splice sites 
GO:0003676 Nucleic acid binding 0.000104693 Molecular Function 

GO:0005244 voltage-gated ion channel activity 0.001842488 Molecular Function 

GO:0030955 potassium ion binding 0.04769905 Molecular Function 

GO:0045433 
male courtship behavior, veined wing generated 
song production 

0.008769452 Biological Process 

 

Exonic sequences show enrichment for “RNA pol II transcription factor 

activity” (P=5e-03) at the Molecular Function level. There is also a slightly significant 

enrichment for “epithelial transport” (P=0.02) at the Biological Process level.  

Splice site sequences show enrichment for “Nucleic Acid Binding” (P=1e-

04), “Voltage-gated channel activity” (P=2e-03) and “potassium ion binding” 

(P=0.04). 
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A significant fraction of UCEs are located in introns 

Our results clearly indicate that the great majority of UCEs are localized in 

introns and intergenic regions. Conservation in these regions suggests functional 

roles being performed by these regions in the genome. We know really very little 

about these molecules and the mechanisms implicated in their conservation. In order 

to get a better understanding of this phenomenon, we carried out an analysis aimed 

at determining the strength of selection at which these regions are maintained. For 

tractability purposes we concentrated our analysis in introns, as they have different 

statistical signals that allow us to determine their homology and make possible to do 

comparisons with their exon counterparts.  

Orthology between genes is usually computed by using the protein product 

encoded by the gene of interest.  The advantage of using proteins instead of DNA 

has to do with the fact that proteins have more information content per position 

than DNA. Determining orthology between introns is a much more difficult task 

because they don’t encode for proteins. Any product encoded by an intron remains 

(as far as we know) in the form of RNA. To overcome the problem of working with 

DNA sequences, we developed a procedure that allowed us to determine orthology 

between introns. We started by first determining orthology between honey bee and 

wasp proteins and then we determined orthology between introns by using the 

corresponding DNA sequences (the complete gene structure) of the genes for which 

we determined orthology. 
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Using this approach we were able to determine orthology for 2705 intron 

pairs corresponding to 768 different genes. We refer to this set as the “Gene-Intron 

Orthology set”. We calculated genetic distances based on the Kimura 2-parameter 

model (K2) for these introns as a whole and in a “by window” approach. Briefly, the 

Kimura 2-parameter (Kimura 1980) is a model of evolution that takes into account 

the fact that transitions are more probable than transversions in nucleotide 

sequences (Kimura 1980). The model is widely used and it has been demonstrated 

that it is one of the most accurate models of evolution for DNA sequences. 

 

Conservation in introns is variable across their length 

Analysis of intron conservation using a window approach, shows that 

conservation appears to be higher for regions located towards the 5’ and 3’ ends and 

lower for regions located towards the center (Figure 22). All centered-located 

windows show an amount of divergence higher than 0.38 substitutions per site, 

whereas windows located at the 3’ and 5’ have less than 0.36 substitutions per site. 

The higher degree of conservation towards the ends of introns is probably an 

indication of the presence of control elements necessary for the splicing machinery, 

as previously suggested (Gazave et al 2007).  
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Figure 22. Genetic distance (Kimura 2 parameter) between homologous introns in 
honey bee - wasp. Conservation tends to be higher for regions close to splice sites 
(intron / exon) boundaries. 
 

 

Exon divergence is higher than intron divergence 

The same genetic distance analysis carried out for introns was applied to their 

exon counterparts. Given the gene structure of every gene, we were able to 

reconstruct their coding parts, assemble them and compute genetic distances among 

them. Interestingly, genetic distances in coding regions (K2 distances) show a degree 

of divergence higher than their intron counterparts (Figure 23). Coding regions for 

these genes appear to be more divergent than introns by at least 60%.  
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Figure 23. K2 distances of exons and introns within the same gene. On average 
intron distances appear to be smaller than their intron counterparts by at least 60%. 
   

 

Genes within the Gene Intron Orthology Set are under purifying selection 

We computed nonsynonymous (Ka) Vs synonymous (Ks) substitutions for 

coding regions of these genes. Substitutions that result in amino acid replacements 

are said to be nonsynonymous while substitutions that do not cause an amino acid 

replacement are said to be synonymous. For example, a change from GGG to GGA 

in a codon results in a synonymous substitution, given the fact that the identity of 

the amino acid is not changed, both code for Glycine. Genes for which the ratio 

Ka/Ks is higher than 1 are said to be under negative selection, whereas genes for 
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which the ratio Ka/Ks is lower than 1 are said to be under negative selection (Nei 

and Gojobori 1986; Nekrutenko et al 2002). 

We compared K2 distances of introns vs. Ka/Ks ratios for exons and our 

result indicates that there is no obvious correlation between intron distance and 

Ka/Ks ratios. Interestingly, the great majority of the genes analyzed appear to be 

under negative selection (Figure 24). This result is despite the fact that K2 distances 

in exons appear to be more divergent than their intron counterparts. This indicates 

that most of the divergence in exons is the result of synonymous substitutions, and 

this substitution rate is higher that the substitution rate found in introns. This implies 

that the great majority of substitutions seen in Figure 23 are the result of 

synonymous substitutions.  

 

Conservation for introns harboring ultraconserved elements 

Genetic distances for introns harboring ultraconserved elements longer than 

50bp is significantly lower that for introns not harboring UCEs. It is expected that 

introns with UCEs to be more conserved than on average (given the 

ultraconservation), but it appears that high levels of conservation are not only 

restricted to the UCE harboring region, but it is a general phenomenon of these 

introns. 



 92 

 

Figure 24. The great majority of orthologous genes with intronic homology are 
under purifying selection. Ka/Ks values < 0. 
 

Figure 25 shows a comparison of introns harboring UCEs and introns not 

harboring them. Introns with UCEs show a level of conservation that is significantly 

higher than on average, and this conservation spans the entire length of these 

introns. Most likely this is the result of functional conservation. 
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Figure 25. K2 distances for introns harboring ultraconserved elements vs introns 
not harboring them. Introns with UCEs are remarkably more conserved than not-
UCE introns. 
 

Discussion 

The results from this work show that there are several non-coding regions 

between the genomes of honey bee and wasp that are selectively constrained. We 

were able to identify almost 900 different UCEs longer than 50bp between these two 

genomes, which seem to be preferentially located in introns and intergenic regions.  

This finding is very similar to what has been seen in humans, in which among the 

327.000 conserved nongenic sequences that were recently found in the human 

genome, more than 35% were located in introns (Dermitzakis et al 2005). Also, 

approximately 100 of the 481 UCEs found in the human genome map within introns 
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(Bejerano et al 2004). This is a recurring theme that shows that introns may have 

roles that we haven’t even thought about before, and despite the fact that we still 

don’t understand the possible roles of these sequences, there is strong evidence 

pointing out that they play a regulatory role (Rizzolio et al 2008). 

We found different kinds of enrichments depending on the genomic features 

the UCEs overlapped with (introns, exons, splice sites). GO terms for UCEs located 

in introns are highly enriched with terms related with transcription factor activity. 

This is not only a feature of the intersection bee / wasp, but is present in other 

insect genomes, and mammals as well, reinforcing the idea that these elements 

functions as regulator of the genetic programming of higher metazoans. 

We have provided evidence indicating that the strength of selection for 

intronic regions among a group of genes in honey bee and wasp is greater than their 

exonic counterparts.  Introns and exons of these genes are under negative selection, 

but interestingly, the strength of selection in introns is significantly higher than in 

exons. It is unclear why these high levels of conservation are necessary in introns. 

One possibility is that these introns play a significant role in maintaining essential 

splicing alternatives for these genes. That would explain why conservation is higher 

towards splice sites, and higher towards the middle of the introns. Expression 

experiments using oligonucleotide microarrays designed to capture splicing 

information across the honey bee genome, would be able to provide information 

about the prevalence of alternative splicing among these genes, and would be able to 
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provide information as to what sequence motifs are the ones that lead to the 

expression of particular splicing alternatives. Clustering genes according to their 

expression profiles can accomplish this goal, as it has been previously done (Sugnet 

et al 2006). 

Gene ontology experiments using the entire set of genes from the Gene-

Intron Orthology Set didn’t show any statistically significant enrichment. According 

to this result, functions of these genes are divergent and probably don’t constitute a 

natural population connected by function. Their commonality is to have highly 

unusually conserved introns.     

The identification of ultraconserved regions in the honey bee / wasp 

genomes, the fact that a significant fraction of them localize within introns or 

intergenic regions, and the demonstration that introns for a fraction of the genes 

shared between honey bee and wasp appear to be under negative selection raises 

important questions related to our understanding of introns and non-coding regions 

of the genome in general. In the past, introns and intergenic regions were regarded as 

non-functional and therefore evolved under neutrality (Waterston et al 2002). This 

view of the non-coding regions of the genome is rapidly changing for a vision in 

which these regions perform regulatory functions. Most of these functions related to 

cell differentiation and morphogenesis. These two processes were usually considered 

to be directed by proteins including transcription factors, homeodomain proteins, 

and chromatin-modifying proteins. This view is likely to change with the elucidation 
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of the functional roles of non-coding RNA molecules and the discovery of all the 

players. There are new proposals that point out RNA regulation as the leading 

mechanism for differentiation and development of higher eukaryotes in a manner 

that allows a precise interaction between modulator and effector (i.e. microRNA – 

target gene by base pairing). This level of precise “digital” interaction that can be 

achieved with RNA molecules is not as precise in the protein world. This new view 

proposes RNA molecules and not proteins as the most important players in the 

developmental biology of higher eukaryotes (Mattick 2007). 

 

Materials and methods 

Assembled genomes were obtained from online repositories. Analyses were 

carried out in the following repeat masked genomes: Apis mellifera (Amel4.0 

scaffolds), Nasonia vitripennis (nvit1.0 contigs), and Drosophila melanogaster (dmel4.2.1 

chromosomes).  

 

Genome intersections 

Genome intersections were done in a binary fashion, starting with Apis 

mellifera and Nasonia vitripennis.  Each intersection was calculated using a combination 

of perl scripts and the WUBLAST package (Gish, 2004). Given the size of the 

genomes and the limitations of memory it was necessary to divide the query 

sequence into different fragments and search them independently. This strategy is 
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known as query chopping and it is mostly used to minimize disk swapping and 

improve sequence processing (Korf et al 2003).  

Parameters used for this search were the following: 

- B = 100000 (number of database hits to report). 

- V = 100000 (number of online summaries). 

- spoutmax=0 (no limit to the number of segment pairs to report). 

- nogaps (ungapped alignments). 

- Hspsepmax = 100 (max separation between hsps = 100nt). 

- filter = seg. 

- mformat=2 (Table in tabulated format). 

- hspmax=0 (no limit on the number of hsp reported). 

- W=20 (word size). 

- N=9000 (mismatch penalty). 

 

Individual BLAST reports were parsed using a perl script. Sequences were 

extracted using xdget (Gish 2004). The extracted sequence and its reverse 

complement were stored in a different file.  

In order to minimize redundancy in the extracted sequences, every individual 

sequence that was a perfect substring of another sequence of equal of longer length 

was removed. This step guarantees that the set of UCEs is a set of maximal N-mers 

(Tran et al 2006). This step was carried out using patdb (Gish 2004). 
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In order to intersect a third genome (i.e. Apis – Nasonia - Drosophila), the previous 

binary intersection was used as query for the next database search.  

 

Mapping ultraconserved elements to genome 

The non-redundant set of UCEs resulting from the previous step was 

mapped into the genome of interest in order to determine their relationship with 

respect to other genomic features, particularly gene features like exons, introns and 

splice sites. A General Feature Format file (GFF) was generated with these 

mappings.  

Overlaps between UCEs and previously published genomic features for the 

honey bee genome (The HoneyBee Genome Sequencing Consortium 2006) were 

determined using a perl script. The resulting data was then partitioned according to 

the type of feature the UCE overlapped with in the following way: 

- Exons: UCEs that were completely contained within exon coordinates. 

- Introns: UCEs that were completely contained within intron coordinates. 

- Splice sites: UCEs that overlapped splice site junctions. 

- Intergenic: UCEs that did not overlapped any genomic feature. 

 

Gene ontologies 

Ontologies for honey bee genes were determined by transferring annotation 

from orthologous genes in fruit fly, mouse, and human. Orthology between proteins 
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in these organisms and honey bee proteins was determined using Reciprocal Smallest 

Distance (RSD) (Wall and Deluca 2007). The file with orthology relationships 

between honey bee, human, mouse, and fruit fly was gently provided by Dr. 

Christine Elsik (personal communication). 

 

Computation of orthologies 

The RSD algorithm refines the concept behind the Reciprocal Best Hit 

(RBH) algorithm (Tatusov et al 1997) by incorporating a model of evolution. The 

result of this extra step minimizes the problems inherent to the RBH algorithm, 

which often assigns orthology relationships to genes that are not really orthologs.  

Briefly, RSD employs BLASTP as a first step, starting with a subject 

proteome, J, and a protein query sequence, i, belonging to genome I. A set of hits H, 

exceeding a predefined significance threshold (e.g., E < 10-20, though this is 

adjustable) is obtained. Then, using clustalW, each protein sequence in H is aligned 

separately with the original query sequence i. If the alignable region of the two 

sequences exceeds a threshold fraction of the alignment’s total length, the program 

PAML (Yang 2007) (specifically, the package codeml) is used to obtain a maximum 

likelihood estimate of the number of amino acid substitutions separating the two 

protein sequences, given an empirical amino acid substitution rate matrix (Jones et al 

1992). The model under which a maximum likelihood estimate is obtained in RSD 

may include variation in evolutionary rate among protein sites, by assuming a gamma 
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distribution of rate across sites and by setting the shape parameter of this 

distribution, α, to a level appropriate for the phylogenetic distance of the species 

being compared (Nei et al 2001). (This parameter, α, may be altered to 

accommodate different degrees of phylogenetic distance.) Of all sequences in H for 

which an evolutionary distance is estimated, only j, the sequence yielding the shortest 

distance, is retained. This sequence j is then used for a reciprocal BLAST against 

genome I, retrieving a set of high scoring hits, L. If any hit from L is the original 

query sequence, i, the distance between i and j is retrieved from the set of smallest 

distances calculated previously. The remaining hits from L are then separately aligned 

with j and maximum likelihood distance estimates are calculated for these pairs as 

described above. If the protein sequence from L producing the shortest distance to j 

is the original query sequence, i, it is assumed that a true orthologous pair has been 

found and their evolutionary distance is retained. 

 

Gene ontology overrepresentation 
 

Overrepresentation of gene ontology terms for the different ultraconserved 

partitions was determined using the hypergeometric distribution as implemented by 

GeneMerge (Castillo-Davis and Hartl 2003). Briefly, the hypergeometric distribution 

gives a quantification of the level of over-representation for a particular item in a 

given sample of size k drawn from a larger population, size n. In GeneMerge, k is 

always the study set of genes and n is the population set, the set from which k is 
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drawn. The number of genes with a particular identifier is r. p is the fraction of genes 

in the population n associated with the particular identifier under investigation. The 

hypergeometric gives the exact probability of drawing r genes with a particular 

identifier from a sample of size k from a population of size n given that the identifier 

exists in fraction p in the population set of genes (Castillo-Davis and Hartl 2003). 

For this dissertation in particular, the number of UCEs having a particular identifier 

(i.e. intronic, exonic) is represented by r. The fraction of genes in the population with 

a particular GO term is represented by p. The population of genes having a GO term 

is represented by n. 

 

 
 
Identification of orthologous introns and calculation of genetic distances 

Gene IDs from genes shown as orthologs by our orthology search were used 

to grab the information about the genomic structure of the genes from GFF files 

previously computed for the honey bee project (The Honey Bee Genome 

Sequencing Consortium 2006) and the wasp project (unpublished). Gene Structures 

were mapped to their corresponding genomes and different features (intron, exons) 

were isolated individually.  
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In order to consider an intron as being orthologous, the gene and the introns 

had to fulfill the following criteria: 

a. Genes evaluated had to come as orthologs by our RSD analysis. 

b. Number of introns for both genes had to be equal. 

c. Introns with the same relative locations in honey bee / wasp were aligned 

using the Smith – Waterman algorithm and the statistical significance of their 

score was evaluated by PRSS. Only intron pairs with a p-value lower than 1e-

05 were considered homologous.  

 

Introns fulfilling these criteria were then aligned using t-coffee (Notredame et 

al 2000), and their patterns of substitutions evaluated using the Kimura 2-parameter 

method as implemented in DNADIST from the phylip package (Felsestein 1989). 

Exons were assembled into one single “in silico” cDNA molecule and aligned 

with its protein product in order to verify the DNA sequence as being correct. K2 

distances were computed with the program DNADIST. Ka/Ks ratios were 

computed using the module DNASTATISTICS as implemented in BIOPERL 

(Stajich 2007).    
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Our understanding of the evolution and functionality of species, genomes 

and genes depends greatly on our ability to identify and catalogue all the functional 

components that are present in a genome. A “list of parts” that allow us to 

understand what is happening “under the hood” of our species of interest. Without a 

complete list of parts, our knowledge of the biology and our ability to make 

predictions would be severely hampered. Despite the fact that we are getting better 

at identifying new genes in species with a sequenced genome, our knowledge is still 

incomplete. The field of comparative genomics offers immense possibilities to learn 

how to “fine tune” our tools and techniques for this purpose.  

This work is aimed at the identification and functional characterization of 

small genetic components that have been conserved in different species as divergent 

as 450 mya of evolution. We have developed a new strategy useful for the 

identification of homologs of microRNAs in different species, with a process that 

takes advantage of the different statistical signals present in microRNAs in order to 

maximize the finding of homologs. We have also shown how the microRNA 

component of metazoan genomes has gone through several rounds of innovation in 

the branch that leads to humans. Bursts of innovation appeared in vertebrates, 
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eutherians, primates and hominids. These innovations appear to be correlated all the 

time with processes related to cell specialization, morphogenesis, cell differentiation, 

and in general all the processes by which expressed genes are able to create 

multicellular organisms with well organized anatomical structures.  According to this 

result, even the most divergent microRNA families regulate processes related to cell 

differentiation, suggesting that different morphologies are mostly the result of 

microRNA regulation and not the result of the expression of species-specific protein 

families.   

We have also shown how the tools of comparative genomics can be used to 

identify microRNA genes in a systematic way. Our computational strategy clearly 

identified known microRNAs and novel ones based on a set of “seeds” of 

ultraconserved elements between two genomes. Several of these candidates have 

been experimentally validated using 454 sequence data derived from small RNA 

fractions isolated from honey bee and wasp. These candidates exhibit features such 

as genomic clustering, which have been seen in real microRNAs, but wasn’t part of 

our algorithm. This result increases the chances of our predictions correspond to 

genuine microRNAs. Our computational strategy identified a large number of novel 

microRNA candidates common to both of them, and identified 42 of the 45 

previously validated microRNAs for both organisms. This represents more than 90% 

of the microRNAs from the experimental set.  
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It is worth noting that this strategy does not require whole genome 

alignments as other microRNA search strategies do (Sandmann and Cohen 2007). 

This represents an advantage for the analysis of sequences from species that lack a 

genome assembly but contain sequence information in the form of partial reads, 

BACs or plasmids. It is also useful for genomes on their first stages of assembly, or 

for genomes for which there is no plan for deep coverage.  

Our search strategy relies on the scoring of putative homologous sequences 

on the basis of sequence conservation and structural conservation. We demonstrated 

that this strategy works well even for species with moderate divergence such as 

honey bee and wasp, with a time of divergence of about 120 million years.  

Comparative genomics is indeed a powerful tool that allows us to identify 

functional elements within genomes. Our analyses identified several conserved non-

coding regions, a significant fraction of them located within introns that appear to be 

under negative (purifying) selection. Not very long ago we use to regard introns as 

non-functional, and assumed they were discarded after splicing and further degraded. 

Introns were considered as a mechanism to facilitate exon shuffling and nothing 

more.  

We have identified several functional genetic components (microRNAs and 

ultraconserved elements) within honey bee introns and have demonstrated selective 

constraints on several of them. Most likely we have only identified just a few of the 

players of the non-coding RNA component present between honey bee and wasp. 
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Knockouts of these regions would provide insights of their functionality and ideas 

for new experiments.  

The generation of a sequence genome at half the evolutionary distance 

existing between honey bee and wasp would be of great help to increase the chances 

of finding non-coding genetic components in these organisms. Stingless bees of the 

genus Mellipona would be great candidates for such a comparison that would also 

provide a great deal of information about genes involved in the generation of the 

venom proteins and apparatus of honey bees.    
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APPENDIX A 
 

Position of ultraconserved elements and subsitution pattern of known microRNAs from honey bee – wasp 
 

MicroRNA Class Percent 
identity 

Bantam 2 84 
ame-bantam    AAACGAAACTGGTTTTCACAATGATTTGACAGATAGATTCGATTCtgagatcattgtgaaagctgattTTGTTGAAAAG 
nvi-bantam    AGACGAAACTGGTTTTCACAATGATTTGACAGATGTATTTGATTCtgagatcattgtgaaagctgattTTGTTCCGAAT 
Conservation  * ********************************  *** *********************************   ** 

Let-7 3 88 
ame-let-7     ACGATGCCTGGGtgaggtagtaggttgtatagtAGGGAATGGAAATTCGCGATATACGAAGTCCACTGTACAACTTGCTAACTTTCCCGGTCGTCGACGC 
nvi-let-7     GCGACGCCTGGGtgaggtagtaggttgtatagtGGGGAATGAAAATTCGTCAT-TATGGAATCCACTGTACAACTTGCTAACTTTCCCGGTTGTCGGCGC 
Conservation  ***  **************************** ******* *******  ** ** * * ****************************** **** *** 

Mir-1 2 87 
ame-mir-1     CCGGGCGATGCTGTTCCGTGCTTCCTTACTTCCCATAGTGGATGCGACGTAtggaatgtaaagaagtatggagCTGCGCCCGG 
nvi-mir-1     CCGAGCGT--CTGTTCCGTGCTTCCTTACTTCCCATAGTGCACGTGACGTAtggaatgtaaagaagtatggagCCGCGCTCTG 
Conservation  *** ***   ****************************** * * ***************************** **** * * 

Mir-10 3 80 
ame-mir-10    AATGCTCTACATCTaccctgtagatccgaatttgtTTGATAAGAGGCGACAAATTCGGTTCTAGAGAGGTTTGTGTGGTGCATA 
nvi-mir-10    AATGCTCTACATCTaccctgtagatccgaatttgtTTGAAGTCAGGCGACAAATTCGGTTCTAGAGAGGTTTGTGTGGTGCATA 
Conservation  ***************************************    ***************************************** 

Mir-100 3 92 
ame-mir-100   --GCTATACTTGATGATACTaacccgtagatccgaacttgtgGGCTTTTTTATATGTATACCGCAAGCTCCTATCTACCGGTACATGTAGTCAGGCCAGCAT 
nvi-mir-100   CAGC--TACTTGATGACACTaacccgtagatccgaacttgtgGGCTTTTTTATATGCATACCGCAAGCTCCTATCTACCGGTACATGTAGTCAGGCCGGCGT 
Conservation    **  ********** *************************************** **************************************** ** * 

Mir-12 3 82 
ame-mir-12    AAGACATGGGTGtgagtattacatcaggtactggtGTG—-ATATTCAGACAACCAGTACTTGTGTTATACTTACGCTCATGTCTT 
nvi-mir-12    AAGAGGAGGGTGtgagtattacatcaggtactggtGTCTTTTTTTCAG-CGACCAGTACTTGTGTTATACTTGCGTTCGCTTCTT 
Conservation  ****   ******************************    * ***** * ********************* ** **   **** 

Mir-124 3 97 
ame-mir-124   TGCTCCTTGCGTTCACTGCGGGCTTCCATGTGCCAACTTTTCAAAATTCAtaaggcacgcggtgaatgccaagAGCG 
nvi-mir-124   TGCTCCTTGCGTTCACTGCGGGCTTCCATGTGCCAAGTTTTAAAAATTCAtaaggcacgcggtgaatgccaagAGCG 
Conservation  ************************************ **** *********************************** 

Mir-125 3 92 
ame-mir-125   GTAAAGCCT---GCCGCGTCGCCGGTcccctgagaccctaacttgtgaCGTCGCGACCGATATCTCACAGGCTAGATTCTCTGGTATTGGCGATGAGTGCTGCCTTTTGC 
nvi-mir-125   ATAAAGCCTGCCGCCGCGTCGCCGGTtccctgagaccctaacttgtgaCGTCGCGTACGATATCTCACAGGCTAGATTCTCTGGTATTGGCGATGAGTGCTGCCTTTTGA 
Conservation   ********   ************** ****************************  **************************************************** 

Mir-133 5 98 
ame-mir-133   TAATGTTAAGCTTAGCTGGTTGAACACGGGTCAAATATATCGCACGATTGACGCATttggtccccttcaaccagctgtAGTTGACATTA 
nvi-mir-133   TAATGTTAAGCTTAGCTGGTTGAACACGGGTCAAATATAACGCACGATTGACGCATttggtccccttcaaccagctgtAGTTGACATTA 
Conservation  *************************************** ************************************************* 
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Mir-137 3 91 
ame-mir-137   GACTTCATAGGCCAGGTTGGCGACGCGTATTCTTGGGGAATTAACACACATTTGCGCTGttattgcttgagaatacacgtaGTTTGCCTGGTCGTTCACT 
nvi-mir-137   TACATCGGAGACCAGGTTGGCGACGCGTATTCTTGGGGAATTAACACACATACGCGCTGttattgcttgagaatacacgtaGTTTGCCTGGTCGATCTCT 
Conservation   ** **  ** ****************************************  ***************************************** ** ** 

Mir-13a 3 80 
ame-mir-13a   ----ACCGAAATGAAAATACCTTTTGCGGTCCGATACATCAAATTGGTTGTGGAATGTTTCGAGT---CAtatcacagccattttgatgagCTTGGCCCGCAGAATC 
nvi-mir-13a   GAGCAGAGACATGGAA----CTTTTGCGGTCCGATACATCAAATTGGTTGTGGAATGTCTCGTCTTTCCAtatcacagccattttgatgagCTTGGCCCGTAGAACT 
Conservation      *  ** *** **    ************************************** ***  *   ******************************** **** 

Mir-14 3 76 
ame-mir-14    CTTTTTCTCGGTCGCTAGGTCAGTGGGGGTGAGAAACTGGCTTGGCTCTCTGTGCTAC--------GATAGtcagtctttttctctctcctaTCGGCTTTGCGACATA 
nvi-mir-14    CTTTTTAT---TCGCTCGGTCAGTGGGGGTGAGAAACTGGCTTGGCT--ATGTACTCCCCATTGTGGACAGtcagtctttttctctctcctaTTGGCCCGGCGAGAAT 
Conservation  ****** *   ***** ******************************   *** ** *        ** ************************ ***   **** * 

Mir-184 3 85 
ame-mir-184   TTCGTGCCCAAAGCCCCTTATCATTCTCCTGTCCGGTGTAGAATTGTTAGACGACtggacggagaactgataagggcCCGAGGGTCACAGAA 
nvi-mir-184   AACGTGCCTAAAGCCCCTTATCATTCTCCTGTCGAGTGTTAAAATTCTCTACGACtggacggagaactgataagggcCCGAGGGTTACAGAT 
Conservation    ****** ************************  ****  ** *  *  *********************************** ***** 

Mir-190 6 72 
ame-mir-190   CAAACAAGTCGTCTGGTTTCCGTAagatatgtttgatattcttggttgttTTTTAAAGAATCGACCAGGAATCAAACATATTATTATGGTGGTCAGAAAA 
nvi-mir-190   GAATCCATTCC-CAGTATACTGCTagatatgtttgatattcttggttgtaTAATAATAA--CGACCAGGAATCAAACATATTATTACAGTG-TCTGGTTT 
Conservation   ** * * **  * *  * * *  ************************* *  ***  *  *************************  *** ** * 

Mir-2-1 3 70 
ame-mir-2-1   GGCGCGTGTGCACCGCTCACAAAGTGGTTGTGATATG-CTGAT-ACGAGCGTTCAtatcacagccagctttgatgagc-GTG-GCGTCGCGTC 
nvi-mir-2-1   GTGGAGATCGCGTCGCTCACAAAGTGGCTGTTGTATGTCGGATTTCTTTGGCTCAtatcacagccagctttgttgagcGGTGAGCGTCTTCCT 
Conservation  *  * *   **  ************** ***  **** * ***  *    * ******************** ***** *** ***** 

Mir-2-2 6 81 
ame-mir-2-2   TCGACTGTTCCTCCCATCAGAGTGGTTGTGATGTGGTA-ACTTGGACTCGtatcacagccagctttgatgagcGGAACGGTGCGA 
nvi-mir-2-2   TCGGCTGTTTCGCCCGTCAGAGTGGTTGTGATATGGTGCTATTGAACGCAtatcacagccagctttgatgtgcGTAACAGTTCGA 
Conservation  *** ***** * *** **************** ****    *** ** * ******************** *** *** ** *** 

Mir-2-3 3 80 
ame-mir-2-3   AAATATCCCCGGACAAG-GACATGCTTTTACCATCAAAGTTGGTTTGTCATAGAGA-TCGACtatcacagccagctttgatgagcAAAATTGTGTCCGTCTA 
nvi-mir-2-3   GGAGACAAGAGAGCGAGTGGCATGCTTTTACCATCAAAGCTGGTTTGTCATAGGGCTTCGACtatcacagccagctttgatgagcAAAATTGTGTCCGGCAT 
Conservation    * *     *  * ** * ******************* ************* *  ***************************************** * 

Mir-219 3 69 
ame-mir-219   AATTGAATGTCTCAGGCAAtgattgtccaaacgcaattcttgTCTAAACGGTACGAAATCAAGAATTGTGTGGGGACATCAGCGCTCGAGGTGCGATTCAAC 
nvi-mir-219   ---------TCTCGGGCTAtgattgtccaaacgcaattcttgTCTGTGCCTTGAGATACCAAGAATTGTGTGGGGACATCAGCGCTCG------GAG----- 
Conservation           **** *** ***************************   *  *  ** * *****************************      ** 

Mir-263 3 90 
ame-mir-263   AGCTTGGACTCTgtaaatggcactggaagaattcacGGGGGATTTAAGAAACGGGCCCGTGGAGCTCCCGTGTCATACACAGCGTCCGGCT 
nvi-mir-263   AGCTTGGGTTCTgtcaatggcactggaagaattcacGGGGGAATTTAGCAACAGTCCCGTGGAACTCCCGTGTCATACACAGCGTCCGGCT 
Conservation  *******  ***** *************************** ** ** *** * ******** *************************** 

Mir-275 3 73 
ame-mir-275   AAACGTTACTTGTCGTGCGCAACGCGCGTTACTCGGGTACTTTAGGCTGTGCCAATTTCGAATCAGtcaggtacctgaagtagcgcgcgCTGCGGCGAAA 
nvi-mir-275   TTACGT-ACAGCCAGTTTGCAACTCGCGCTACTCCGGTACTTACGACTGTGC---ATTCGAT--AGtcaggtacctgaagtagcgcgcgCTGCGACTGGA 
Conservation    **** **     **  ***** **** ***** *******  * ******    *****   ****************************** *   * 
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Mir-276 2 98 
ame-mir-276   TGGTAGAGATCCAGCAGCGAGGTATAGAGTTCCTACGTAGTGTTCAGAAAGtaggaacttcataccgtgctctTGGACTTGCCG 
nvi-mir-276   TGGTAGAGATCCAGCAGCGAGGTATAGAGTTCCTACGTAGATTTCAGAAAGtaggaacttcataccgtgctctTGGACTTGCCG 
Conservation  ****************************************  ****************************************** 

Mir-277 3 93 
ame-mir-277   GGCAG-TTGGGGCTCGTGCCAGATGCGCGTTTACAC—-GGGCCCTGAATACTGtaaatgcactatctggtacgacaTCTCTCCTGTC 
nvi-mir-277   GGCAGGCTGGGGCTCGTGCCAGATGCGCGTTTACACGAGAGCCCTGAATACTGtaaatgcactatctggtacgacaTCTCTCCTGCC 
Conservation  *****  *****************************  * ********************************************* * 

Mir-279 6 66 
ame-mir-279   -----AGAAAATGAAAAAATTTCCTGAATTTGCCAAATGAGTGAAGGTCTAGTGCACAGAAAATGAAATTGtgactagatccacactcattaaGTACGTTCAGGT 
nvi-mir-279   CCATCGGACAACGACCAG-----CCGATTGTACTGAGTGAGTGATGGTCTGGTGCACGGTTTATCGATCTGtgactagatccacactcattaaGTACGTTCGGCT 
Conservation        ** ** **  *      * ** * * *  * ******* ***** ****** *   **  *  ******************************** * * 

Mir-282 2 84 
ame-mir-282   GGACAGAGTAACTTgatttagcctctcctaggctttgtctgtATATAAAGAACGGAGACATAGCCTAGAATAGGTTAGGTCAGGGCTCGTTC 
nvi-mir-282   ATATCGAGCGACGTgatttagcctctcctaggctttgtctgtCAGTGAAAAAACGAGACATAGCCTAGAATAGGTTAGGTCGGGGCTCGTTC 
Conservation    *  ***  ** *****************************   * ** **  *************************** ********** 

Mir-283 3 80 
ame-mir-283   AATAATCTGGTGATGTAGTCaaatatcagctggtaattctGGGATTTTGACAAT--AACCCAGGATTCTTGCTGGTATCCGGCTACGAACTGGACGATCGCC 
nvi-mir-283   TGCTGTCCAGTCACGTAGTCaaatatcagctggtaattctGGGATACTTATTATGCAGCCCAGGATTCTTGCTGGTATCCGGTTACGAACTGGCTCGTCGCC 
Conservation       **  ** * *******************************  * *  **  * ************************ **********    ***** 

Mir-29b 3 80 
ame-mir-29b   ATTTAAAGACAATAAGAAGATAGAGGTACTGACTTCTATGCGTGCTGGGGTTTGTGCTAAATCTCCtagcaccatttgaaatcagtACTACTCTTCTTAG 
nvi-mir-29b   ACACGAAGA-ATTAAGATAGCAGAGGTACTGACTTCGGTGCGTGCTGGGGTTACCGATCAAGCGCCtagcaccatttgaaatcagtACTACTCGTCTTAG 
Conservation  *    **** * *****    ***************  **************   * * ** * ***************************** ****** 

Mir-305 6 92 
ame-mir-305   GGAGGCTGCATGTTAattgtacttcatcaggtgctctgGTGAACTCGATACCCGGCACCTGTTGGAGCGCAATTCATATGACTGTGCCCT 
nvi-mir-305   GGAGGCTGCATGTTAattgtacttcatcaggtgctctgGTGATTTTGATACCCGGTGCCTGTTGGAGCGCAATTCATATGATTGTGCCTT 
Conservation  ******************************************  * *********  ************************ ****** * 

Mir-315 6 89 
ame-mir-315   GCTCTTTATGCttttgattgttgctcagaaagcCTTGATTATGATATTGGCTTTCGGGCAATAATCATAATCACGAAAGGGT 
nvi-mir-315   GCTCTCTATGCttttgattgttgctcagaaagcCTCGATATCGATACTGGCTTTCGGGCAATAATCATAATCACGGGAGAGT 
Conservation  ***** ***************************** ***   **** ****************************  ** ** 

Mir-317 2 95 
ame-mir-317   GCTCTCGGAGAACAGGGAGCCACTCTGCGTTCACTCGGTGGGTAATGAAGCGGGtgaacacagctggtggtatctcagtTTTCTGAGGGC 
nvi-mir-317   GTGCTCGGAGAACAGGGAGCCACTCTGCGTTCACTCGGTAGGTAAAGAAGCGGGtgaacacagctggtggtatctcagtTTTCTGAGGGC 
Conservation  *  ************************************ ***** ******************************************** 

Mir-31a 3 78 
ame-mir-31a   ATCACGATTCTAACTGGGCGCCTCGAAggcaagatgtcggcatagctgaTGCGATTTTAAAATTCGGCTGTGTCACATCCAGCCAACCGAACGCTCAGAC 
nvi-mir-31a   TGCAGCGTAAAATATGAGCGTGTAGAAggcaagatgtcggcatagctgaTGC-TTTTGAAATTTCGGCTGTGTCACATCCAGCCAGCCAAACGCTCAAAA 
Conservation    **   *   *  ** ***  * ****************************  *** *** *********************** ** ******** * 

Mir-33 3 70 
ame-mir-33    TATTTATTTGATTGCTTACCTGTTACAACTgtgcattgtagttgcattgCATGAA-ATATAACTATGCAATACTTCTACAGTGCAACTCTTGTGGCAGATT 
nvi-mir-33    TATGCAACGAAAATATTGTCTGCTACGAGAgtgcattgtagttgcattgCATGAATATTTGAAAGTGCAGTACTTCTGCAGTGCAACCCTTGTGGTTGGCG 
Conservation  ***  *    *    **  *** *** *  ************************* ** * *   **** ******* ********* *******  * 
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Mir-375 3 67 
ame-mir-375   ---ATCGATTGAATTATCAGTTTGGTGCATCGATCCTAACGATCAACAAACTTTTCACTTGA--AAGtttgttcgttcggctcgagttaTCAAACTGAATGG-ATG 
nvi-mir-375   CTCAGCAATAGGCTT--CAC-CTGGTCCATCGATCCCAACGATCAATAAACTGTGTTATTAAACAAGtttgttcgttcggctcgagttaT-TAGGTGAGCCTTGTC 
Conservation     * * ** *  **  **   **** ********* ********* ***** *    ** *  **************************  *  ***      * 

Mir-7 3 92 
ame-mir-7     CGAGCGCCGTTGCAtggaagactagtgattttgttgtTCTACTTTCGATATAACAAGGAATCACTAATCATCCTACAAAGGCGCTCG 
nvi-mir-7     TGAGCGTCGTTGTAtggaagactagtgattttgttgtTCTACTTAAGATGTAACAAGGAATCACTAATCATCCTACAAAGACGCTCG 
Conservation   ***** ***** *******************************  *** ****************************** ****** 

Mir-71 3 74 
ame-mir-71    G-TCCTCCTTCGGGCGGATTCCGTCtgaaagacatgggtagtgaGATG-TTCTCACGCTATCGCGTCTCACTATCTTGTCTTTCATCCGGCGTTCGTTCTGC-- 
nvi-mir-71    GAAAATCAATTGGCGAGATTCCGCTtgaaagacatgggtagtgaGATGCTTACCTCGGATTCGCGTCTCACTACCTTGTCTTTCATGCGGCGCTCG--CAGCAA 
Conservation  *    **  * **   *******  *********************** **  * **   ************* ************ ***** ***  * ** 

Mir-8 3 92 
ame-mir-8     GGAGTATCTGTTCACATCTTACCGGGCAGCATTAGATTGAAGTTGA-CCTTCtaatactgtcaggtaaagatgtcGTCAGGATTCC 
nvi-mir-8     GGAGTATCTGTTTACATCTTACCGGGCAGCATTAGATTACATTTGAATTTTCtaatactgtcaggtaaagatgtcGTCAGGATTCC 
Conservation  ************ *************************  * ****   ************************************* 

Mir-927 3 78 
ame-mir-927   AGATAAAAGCGTGGTATTTGttttagaattcctacgctttacc-GATGTTCGAAGTGGCAAAGCGTTTGAAATCTGAAACGAATGCGCATAA-ACCTTCATC 
nvi-mir-927   AGACAATAAGGTGATATTTGttttagaattcctacgctttaccGGTTTTTAAAAATGGCAAAGCGTTTGAAGTCTAAAACAAAAGCACATAACAACTCGCTG 
Conservation  *** ** *  *** ***************************** * * **  ** **************** *** **** ** ** ***** * **   * 

Mir-929 5 95 
ame-mir-929   ACTTAACTGGGGTCAAattgactctagtagggagtccCTGCATTCAATATGGCGACTTCCTAATAGAGTCAGGCTGACTCCTTTTAAGACGTTCAACGGA 
nvi-mir-929   ACTTAACTGGGGTCAAattgactctagtagggagtccCTGCATTCAATATGGCGACTTCCTAACAGAGTCAGGCTGACTCCTTTTAAGACGCTCACCGAC 
Conservation  *************************************************************** *************************** *** ** 

Mir-92a 6 83 
ame-mir-92a   TTATTTTGCATAGAAGATAGGCCGAGATTTGTGACAATGTTTCGTGATGATGTAATCTTCAATattgcacttgtcccggcctatCGGAATGCATTATATT 
nvi-mir-92a   GTTTGTTGCATAAAAGATAGGTCGAGATCGGTGGCAATGTTTCGTAATGGTTTT-CCCTCAATattgcacttgtcccggcctatCGGAATGCACTA-ATT 
Conservation   * * ******* ******** ******  *** *********** *** * *   * *********************************** ** *** 

Mir-9a 3 92 
ame-mir-9a    TGGCGCGGACATTTtctttggttatctagctgtatgaGTATTATTCGACATCATAAAGCTAGGTTACCGGAGTTAAGCTCCTCGCCA 
nvi-mir-9a    TGGCGCGGACATTTtctttggttatctagctgtatgaGTTTGGTTGTACATCATAAAGCTAGGTTACCGGAGTTGAGATCCTCGCCA 
Conservation  *************************************** *  **  *************************** ** ********* 

Mir-iab-4 1 100 
ame-mir-iab-4  GTGAAACCCCCTGTacgtatactgaatgtatcctgaGTGTATTTCTGTCCGGTATACCTTCAGTATACGTAACAGGAGGCTACAC 
nvi-mir-iab-4  GTGAAACCCCCTGTacgtatactgaatgtatcctgaGTGTATTTCTGTCCGGTATACCTTCAGTATACGTAACAGGAGGCTACAC 
Conservation   ************************************************************************************* 

Mir-210 4 95 
ame-mir-210   TGGACCCTAATGCAGCTGCTGGCCACTGCACAAGATTAGACATAAGACTCttgtgcgtgtgacagcggctaTGATGGGGTTTCCA 
nvi-mir-210   TGGACCCCAGTGCAGCTGCTGGCCACTGCACAAGATTAGACATAAGACTCttgtgcgtgtgacagcggctaTGATGGGGCTTCCG 
Conservation  ******* * ********************************************************************* **** 

Mir-281 3 91 
ame-mir-281   GCGCGCGCTATAAAGAGAGCTATCCATCGACAGTATGGTTATAATAGACACtgtcatggagttgctctctttgtAGACACTGCT 
nvi-mir-281   GCGGACGCTATAAAGAGAGCTATCCATCGACAGTATGGTGATAGATGACACtgtcatggagttgctctctttgtGGACGTCGCT 
Conservation  ***  ********************************** ***   **************************** ***   *** 
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Mir-307 6 78 
ame-mir-307   AAATGGCGGTCACGTGGACTCACTCAACCTGGGTGTGATGCTTGCCTGTGTA-----TCA-GGCCCTAGCGGTCAtcacaacctttttgagtgagCGAACG----CGACTG 
nvi-mir-307   AGATGGCGACCGCGTGAACTCACTCAACCTGGGTGTGATGCTTGCCCGTGAAATTGAACAGGGCCCTTGCGGTCAtcacaacctttttgagtgagCGAACGCGCTCGTCAG 
Conservation  * ******  * **** ***************************** *** *      ********* *********************************    ** * * 

Mir-932 3 83 
ame-mir-932   CGCGTTGCCTCTtcaattccgtagtgcattgcaGATGATTGTTCGAATTGACGAGAAAGAACCTGCAAGCACCGCGGGAGTGAGGTGGCCTCGCG 
nvi-mir-932   CGCGTTGCCTCTtcaattccgtagtgcattgcaGTAGA---------TTTAAAAGAAAGATTCTGCAAGCACCGCGGGAGTGAGGCGGCTTCGTG 
Conservation  **********************************  **         ** *  ****************************** *** *** * * 

Mir-9b/79   
ame-mir-9b    TGGCGCGGACATTTTCTTTGGTTATCTAGCTGTATGAGTTTGGTTGTACATCATAAAGCTAGGTTACCGGAGTTGAGATCCTCGCC 
nvi-mir-9b    TGGCGCGGACATTTTCTTTGGTTATCTAGCTGTATGAGTATTATTCGACATCATAAAGCTAGGTTACCGGAGTTAAGCTCCTCGCC 
Conservation  *************************************** *  **  *************************** ** ******** 
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APPENDIX B 
 

MicroRNA candidates supported by 454 data 
 

RANK/ID Score Contig Pos1 Pos2 Overlap Strand Worm Anopheles Drosophila Human Class 

18 13.61611111 Group4.13 369199 369276 Intergenic + 0 0 1 0 Class 3 
CTGGCGGGTCTTGGCACTGGAAGAATTCACAGATGTGCAG---TGTATAATCGTGGATCTTGCAATGCCATCACTTGCTGG 
CTGGCGGGTCTTGGCACTGGAAGAATTCACAGATGTGCGGTTGTGTGTAATCGTGGATCTTGCAATGCCATTACCCGCTGG 
************************************** *   *** ************************ **  ***** 
(..((((((..(((((.((.((((.(((((.((((((((....))))).)))))))))))).)).)))))..))))))..) 

22 13.53487013 Group1.1 136120 136195 
Intronic: 
GB15727 - 0 1 1 0 Class 3 

GATCCAATCGTCAAATTGGTTGTGGCGTGTTGCTTTTCTAGAT-TTCATATCACAGCCATTTTTGACGATTTGGATC 
GATCCGATCGTCAAATTGGTTGTGGCGTGTTG----TCTAGATTTTCATATCACAGCCATTTTTGACGAGTTGGATC 
***** **************************    ******* ************************* ******* 
(((((((((((((((.((((((((..(((.................)))..))))))))..)))))))).))))))) 

34 13.10424242 Group16.11 38051 38181 Intergenic + 0 1 1 0 Class 6 
GTGGTTGCATAAGATAGGCACATTCGTGATCTACCCTGTAGATCCGGGCTTTTGTAGAATTGTAAATATCAGAAGCTCGTCTCTACAGGTATCTTACGGATGACATGCCACGCGACTCTAGATTGCA-AT 
GTGTTTGCGAAAGATAGGCACATTCGTGATCTACCCTGTAGATCCGGGCTTTTGTAGAATTGTAGATATCAGAAGCTCGTCTCTACAGGTATCTTACGGATGACATGCCACGCGACTCTTTATCGCAGAT 
*** ****  ****************************************************** ****************************************************** ** *** ** 
((((((((((((((..(((((((((((((..((((.((((((..((((((((((...............))))))))))..))))))))))..)))))))))...)))).......)))))..))))))) 

42 12.84833333 Group2.34 226591 226677 Intergenic + 0 0 0 0 Class 3 

TGGATGCAAACGTCTGGGTTTCGTGACAGGCGAGCCGTT--CTTTACGACTTGGTTCGTTGTCAACGAAACCTGCACGATCTGCAACCA 
TGGACGCAGACGTACGGGTTTCGTGACAGGCGAGCCGTTTGAATTA--ACGTGGTTCGTTGTCGACGAAACTTGCACGATTTGCAACCA 
**** *** ****  ************************    ***  ** ************ ******* ******** ******** 
.((.(((((((((.(((((((((((((((.(((((((..............))))))))))))).))))))))).))).)))))).)). 

48 12.57744898 Group2.17 22929 23021 
Intronic: 
GB16497 - 0 0 0 0 Class 3 

TGGTAGCGTTGGAGTGGGTAATCTCATGCGGTAACTGTGAGTGTGTGAATTGTAAAAGCTCATATTACCTCGTGGGGTTTCCCACCCGTTACC 
TGGTAGTGTCTGTGTAGGTAATCTCATGCGGTAACTGTGAGCGTGTGAAAAACTATGGCTCATATTACCTCGTGGGATTTCCCACCCACTACC 
****** **  * ** ************************* *******     *  ******************* **********  **** 
.(((((((...(.(((((.(((((((((.(((((.(((((((...............)))))))))))).))))))))).))))))))))))) 

51 12.44766667 Group9.15 253723 253795 Intergenic + 0 0 0 0 Class 3 
CCTGATGGAGCTCTGGCTGTGACTTGTGTGTTAACTGAATTAAAATCACATCACAGGCAGAGTTCTAGTTAGG 
CCTGGTGGGACTCTGTCTGTGACTTGTGTAGTC-TTGAAT---GGTCACATCACAGGCAGAGTTCTAGTTAGG 
**** ***  ***** *************  *   *****     **************************** 
((((((((((((((((((((((..((((..................))))))))))))))))))))).))))) 
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62 11.73688406 Group13.6 502702 502765 
Intronic: 
GB15055 - 0 0 0 0 Class 3 

GGTAGGTAACGACTGATGGGAACACTCTGAGATT—-TTCTTTAATGTTCTCTTTGGTTGTTACCAC 
GGTAGGTAACGACTGATGGGAACACATAGATAATCAAACTAACATGTTCTCTTTGGTTGTTACCAC 
*************************   ** * *    **   *********************** 
....(((((((((..(.(((((((..(((((.....)))))...))))))).)..))))))))).. 

69 11.49905941 Group10.18 8982 9080 
Intronic: 
GB13125-RA - 0 0 0 0 Class 6 

GAGGATGCACCGGGGCCGGTTCACTTTAAGTTCGAATACCAAGCCTGTCTATA-AACAGTTTGGTGTTCTACCTTACAGTGAGTCGACCGTGGTATCGTC 
GAGGAGAAACCGTAGGCGGGTCACTCTAAGTTCGAATACCAAGCCCTGCTGGAGAATAGCTTGGTGTTCTACCTTACAGTGATTTGATTGCGGTCACGGC 
*****   ****  * *** ***** *******************   **  * ** ** ********************** * **  * ***  ** * 
........(((((((.(((((((((.((((...(((((((((((..............)))))))))))...)))).))))))))).)))))))...... 

78 11.03595238 Group15.13 54829 54909 
Intronic: 
GB16072-RA - 0 0 0 0 Class 6 

AGACTGCTGTCGGATGAAATCTCGTCCGGTGTGGTT-GGAAA--AAAAAAACCTCACCGGGTAGGATTCATCCAATGTCCGCCT 
AGGCTGCTGTCGGGTGGAATC----CCGCT-TGGTTAGGAAATTATAAATACCTCACCGGGTAGGATTCATCCAATATCAGCCT 
** ********** ** ****    *** * ***** *****  * *** ************************** ** **** 
((((((.(((.(((((((.(((..(((((((.(((...............))).)))))))..)))))))))).))).)))))) 

85 10.55820513 Group4.16 137099 137176 
Intronic: 
GB14007 + 0 1 0 0 Class 3 

GCGATAAGGTTAGGGGTTTCTATCGGCCTCCAGCAGCAACGATGGTTGTAGGCCGGCGGAAACTACTTGCTCTTGTCG 
GCAACAAGGTTAGGGGTTTCTATCGGCCTCCAGCAGCTAAGACAGCTGTAGGCCGGCGGAAACTACTTGCTCTTGTTG 
** * ******************************** * **  * ****************************** * 
.(((((((((.((..((((((..((((((...(((((.......)))))))))))..))))))..)).)).))))))) 

98 9.636020619 GroupUn.2585 1 97 Intergenic + 0 0 1 0 Class 6 
CCTGTCTTGTTCATAAGTACTAGTGCCGCAGGAGTGACTAGGTTGGGTTAGAAATTACCATATCTCCTGCTGCTCAAGTGCTTATCAATGGGTCCGG 
CCCGTCCTGTTCCTAAGTACTAGTGCCGCAGGAGTGACTAGATTGGGCTAGAAATTACCGCGTCTCCTGCTGCTCAAGTGCTTATCAATGGTTCGGG 
** *** ***** **************************** ***** *********** ***************************** ** ** 

((((.((..((.(((((((((.(.((.(((((((((....((((........))))....)).))))))).)).).))))))))).))..)).)))) 

232 7.902565603 Group15.28 185995 186088 
Intronic: 
GB14851-RA - 1 1 1 1 Class 5 

CGTAGCCGATGGTATTTCACATCGTCATGGCGGGGTATTGGTAAAAGTTTTCAACTAGCAATAATCGCACCTCGGTAGAACCTCATTGGTTACG 
CGTAGCCGATGGTATTTCACATCGTCTTGGCGGGGTATTGGTAAAAGTTTTCAACTAGCAATAATCGCACCTCGGTAGAACCTCATTGGTTACG 
************************** ******************************************************************* 
((((((((((((...(((..((((.....((((..(((((.((............)).))))).))))....)))).)))..)))))))))))) 

257 7.763298193 GroupUn.8772 1963 2041 Intergenic + 0 0 0 0 Class 3 
CTTGCAGTTGGAAGTGAGGATCTAGGCAGTGAGCAGCA-GCGCTCTGA-TAACTTGCCAGATCTAACTCTTCCAGCTCAAG 
CTTG-AGTTGGAAGTGCGGATCTAGACAGTGAGCGCCTAAGACTCTGAGGAATTTGCCAGATCTAACTCTTCCAGCTCGAG 
**** *********** ******** ********  *     ******  ** ************************* ** 
((((.(((((((((...((((((.(((((.((((.......))))........)))))))))))....))))))))))))) 
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APPENDIX C 
 

454 matches. Low scoring candidates overlap with non putative mature regions 
 

289 7.566941176 Group12.18 206149 206228 Intergenic + 1 1 1 1 Class 1 

AAAATGTGGAACGCTTCACGATTTTGCGTGTCATCCTTGCGCAGGGGCCATGCTAATCTTCTCTGTATCGTTCCAATTTT 
AAAATGTGGAACGCTTCACGATTTTGCGTGTCATCCTTGCGCAGGGGCCATGCTAATCTTCTCTGTATCGTTCCAATTTT 
******************************************************************************** 
......(((((((...((.((((..(((((...(((((....))))).))))).)))).....))...)))))))..... 

574 6.572575481 Group16.19 234267 234350 Intergenic + 1 1 1 1 Class 6 

GCAATGGGAGAGCCTCACCCTGGAGGAACCGCCTTGATGATCACGGTAACCTCTACGCCAGGTAAGTATGCTTTTATCCGGTGC 
GCAATGGAAGAGCCTCGCCCTGGAGGAACCGCCTTGTTGATCACGGTAGCCTCTGCGCCAGGTAAGTATGCTTTCAGCCGTTCC 
******* ******** ******************* *********** ***** ******************* * *** * * 
(((((((.(((((..(..(((((.(((...(((.((.....)).)))....)))...)))))...)...)))))...))))))) 

713 6.030044893 Group3.1 131 211 Intergenic + 1 1 1 1 Class 6 
CCAAGTACTAACCGTGCCCGACGTAGCTTGACTTTGGTGATCGAACGAGAACCAGTAGTTCCTACGTGGTATGGTCGTTGG 
CCAAGTACTAACCGCGCCTAACGCTGCTTAACTTCGGTGATCGGACGAGAACCGGTGCATTCAGCGTAGTATGGCTGTTGG 
************** ***  ***  **** **** ******** ********* **   **  *** ******  ***** 
((((....((((((((((..((((((.......(((((..((....))..)))))......)))))))))))))))))))) 
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APPENDIX D 
 

Top 200 scoring sequences – honey bee – Amel4.0. 
  

RANK Class TotalScore 
Alifold 
deltaG 

RANDfold 
Apis 

RANDfold 
Nasonia 

Aln 
length Identity Gaps 

Aln 
_score microRNA Group Coord 1 Coord 2 Strand Overlap 

1 Class 6 16.51552632 -67.25 0.000999001 0.000999001 95 93.70% 0.00% 421 Putative Group8.5 10732 10826 - Overlap splice: GB30239-RB 

2 Class 3 15.16253425 -47.25 0.000999001 0.000999001 73 86.30% 1.40% 269 Putative Group7.6 284963 285034 + Intergenic 

3 Class 5 15.02473684 -39.05 0.000999001 0.000999001 76 98.70% 0.00% 371 Putative Group2.40 27078 27153 - Overlap splice: GB14719-RA 

4 Class 5 14.86132184 -43.15 0.000999001 0.000999001 87 98.90% 0.00% 426 ame-mir-929 Group15.29 779992 780078 - Intronic: GB12095-RB 

5 Class 2 14.7847619 -41.95 0.000999001 0.000999001 84 97.60% 0.00% 402 ame-mir-317 Group5.13 300667 300750 + Intronic: GB10191-RA 

6 Class 4 14.36452381 -39.32 0.000999001 0.000999001 84 96.40% 0.00% 393 ame-mir-210 Group2.38 687279 687362 + Intergenic 

7 Class 2 14.355 -38.34 0.000999001 0.000999001 84 97.60% 0.00% 402 ame-mir-276 Group7.35 693906 693989 + Intergenic 

8 Class 3 14.31452381 -38.9 0.000999001 0.000999001 84 96.40% 0.00% 393 ame-mir-137 Group14.17 281279 281362 + Intergenic 

9 Class 2 14.24084906 -23.95 0.000999001 0.000999001 53 98.10% 1.90% 250 Putative Group10.36 100810 100861 + Intergenic 

10 Class 3 14.10626582 -35.1 0.000999001 0.000999001 79 96.20% 0.00% 368 ame-mir-125 Group8.27 75742 75820 + Intergenic 

11 Class 3 14.09323529 -40.15 0.000999001 0.000999001 85 92.90% 0.00% 371 ame-mir-7 Group9.22 487151 487235 + Intergenic 

12 Class 4 14.08174419 -36.86 0.000999001 0.000999001 86 97.70% 0.00% 412 Putative Group13.3 22647 22732 + Overlap splice: GB11776-RA 

13 Class 4 14.05045455 -26.1 0.000999001 0.000999001 55 92.70% 3.60% 236.5 Putative Group2.35 149863 149915 - Intronic: GB11268-RA 

14 Class 1 13.88412088 -35.3 0.000999001 0.000999001 91 100.00% 0.00% 455 ame-mir-iab-4 Group16.9 878072 878162 + Intergenic 

15 Class 5 13.82522472 -34.9 0.000999001 0.000999001 89 98.90% 0.00% 436 ame-mir-133 Group16.18 199372 199460 + Intergenic 

16 Class 2 13.67642857 -28.4 0.000999001 0.000999001 70 95.70% 0.00% 323 ame-bantam Group14.24 1302342 1302411 + Intergenic 

17 Class 4 13.66170103 -43.22 0.000999001 0.000999001 97 89.70% 9.30% 407.5 Putative Group12.1 545771 545858 + Intronic: GB17926-RA 

18 Class 3 13.61611111 -36.35 0.000999001 0.000999001 81 90.10% 3.70% 334 Putative Group4.13 369199 369276 + Intergenic 

19 Class 3 13.57791667 -40.6 0.000999001 0.000999001 96 92.70% 0.00% 417 ame-mir-9a Group1.64 474355 474450 + Intergenic 

20 Class 4 13.55584746 -29.05 0.000999001 0.000999001 59 84.70% 0.00% 214 Putative Group3.33 39123 39181 + Intergenic 

21 Class 3 13.53625 -26.8 0.000999001 0.000999001 64 93.80% 1.60% 278 ame-mir-2-3 Group1.1 136757 136819 - Intronic: GB15727-RA 

22 Class 3 13.53487013 -33.63 0.000999001 0.000999001 77 90.90% 6.50% 320.5 Putative Group1.1 136120 136195 - Intronic: GB15727-RA 

23 Class 6 13.53330189 -23.2 0.000999001 0.000999001 53 90.60% 0.00% 220 Putative GroupUn.189 32050 32102 + Overlap exon: GB16323-RA 

24 Class 3 13.505 -34.9 0.000999001 0.000999001 82 91.50% 3.70% 348 ame-mir-13a Group1.1 136463 136541 - Intronic: GB15727-RA 

25 Class 6 13.46477011 -45.55 0.000999001 0.000999001 87 80.50% 5.70% 280.5 ame-mir-2-2 Group1.1 134955 135038 - Intronic: GB15727-RA 

26 Class 3 13.42264706 -39.25 0.000999001 0.000999001 85 88.20% 2.40% 323 ame-mir-281 Group1.65 143838 143921 + Intergenic 
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27 Class 6 13.39825843 -36.5 0.000999001 0.000999001 89 92.10% 0.00% 382 ame-mir-305 Group4.22 624610 624698 + Intergenic 

28 Class 3 13.32 -37.92 0.000999001 0.000999001 80 85.00% 1.20% 286 ame-mir-71 Group1.1 137134 137212 - Intronic: GB15727-RA 

29 Class 6 13.23993976 -35.25 0.000999001 0.000999001 83 90.40% 2.40% 331 ame-mir-315 Group2.33 181912 181993 + Intergenic 

30 Class 3 13.21558824 -41.64 0.000999001 0.000999001 85 82.40% 3.50% 281.5 ame-mir-12 Group2.17 22430 22512 - Intronic: GB16497-RA 

31 Class 6 13.195 -37.47 0.000999001 0.000999001 80 83.80% 2.50% 280.5 Putative Group9.16 38513 38590 + Intergenic 

32 Class 6 13.14893939 -27.05 0.000999001 0.000999001 66 89.40% 0.00% 267 Putative Group1.40 45413 45478 - Overlap exon: GB12475-RA 

33 Class 6 13.10794118 -31.6 0.000999001 0.000999001 68 83.80% 1.50% 235 Putative Group7.37 249435 249501 + Overlap exon: GB18988-RA 

34 Class 6 13.10424242 -48.71 0.000999001 0.000999001 132 93.90% 0.80% 582 Putative Group16.11 38051 38181 + Intergenic 

35 Class 3 13.08454545 -34 0.000999001 0.000999001 88 92.00% 1.10% 371 ame-mir-8 Group11.33 642192 642278 - Intronic: GB10038-RA 

36 Class 3 13.05142857 -35.44 0.000999001 0.000999001 84 88.10% 3.60% 321.5 ame-mir-31a Group8.21 34659 34741 + Intergenic 

37 Class 3 13.02366667 -34.49 0.000999001 0.000999001 75 82.70% 6.70% 256.5 ame-mir-275 Group4.22 624394 624468 + Intergenic 

38 Class 2 13.01369565 -27.36 0.000999001 0.000999001 69 91.30% 2.90% 279 ame-mir-282 Group14.23 30961 31028 + Intergenic 

39 Class 4 12.99280488 -32.55 0.000999001 0.000999001 82 90.20% 3.70% 329.5 Putative Group11.31 1263918 1263998 + Intergenic 

40 Class 3 12.96517699 -41.75 0.000999001 0.000999001 113 92.90% 4.40% 482 ame-mir-10 Group16.10 82747 82857 + Intergenic 

41 Class 3 12.88308219 -29.36 0.000999001 0.000999001 73 87.70% 2.70% 281.5 ame-mir-283 Group2.17 23710 23780 - Intronic: GB16497-RA 

42 Class 3 12.84833333 -38.89 0.000999001 0.000999001 90 83.30% 6.70% 317 Putative Group2.34 226591 226677 + Intergenic 

43 Class 6 12.68357143 -27.85 0.000999001 0.000999001 84 94.00% 3.60% 366.5 Putative Group10.24 4082 4162 + Intergenic 

44 Class 3 12.68289474 -40.34 0.000999001 0.000999001 95 80.00% 9.50% 326 ame-mir-932 Group1.75 243971 244065 - Intronic: GB10066-RA 

45 Class 3 12.65442529 -33.5 0.000999001 0.000999001 87 88.50% 4.60% 330.5 ame-mir-184 Group13.5 467380 467464 + Intergenic 

46 Class 3 12.63357143 -32.34 0.000999001 0.000999001 77 83.10% 9.10% 264 Putative GroupUn.139 31096 31169 + Intergenic 

47 Class 6 12.58335821 -51.65 0.000999001 0.000999001 134 85.80% 0.00% 499 Putative Group7.31 108471 108604 - Overlap exon: GB14642-RA 

48 Class 3 12.57744898 -40.71 0.000999001 0.000999001 98 80.60% 10.20% 335 Putative Group2.17 22929 23021 - Intronic: GB16497-RA 

49 Class 6 12.57230769 -23.25 0.000999001 0.000999001 52 78.80% 0.00% 161 Putative Group13.17 186815 186866 + Intergenic 

50 Class 3 12.47067164 -25.22 0.000999001 0.000999001 67 86.60% 1.50% 248 ame-mir-927 Group8.29 233074 233139 + Intronic: GB16304-RA 

51 Class 3 12.44766667 -31.92 0.000999001 0.000999001 75 81.30% 10.70% 239 Putative Group9.15 253723 253795 + Intergenic 

52 Class 6 12.28570175 -24.7 0.000999001 0.000999001 57 77.20% 0.00% 168 ame-mir-9b Group15.33 20342 20398 + Intronic: GB16086-RA 

53 Class 6 12.28570175 -24.7 0.000999001 0.000999001 57 77.20% 0.00% 168 ame-mir-79 Group15.33 20342 20398 + Intronic: GB16086-RA 

54 Class 6 12.15743902 -31.45 0.000999001 0.000999001 82 82.90% 2.40% 272 Putative Group15.13 55468 55548 - Intronic: GB16072-RA 

55 Class 4 12.07155914 -36.2 0.003996004 0.001998002 62 95.20% 0.00% 283 Putative Group3.31 172863 172924 + Intergenic 

56 Class 5 12.0544086 -26.9 0.001998002 0.000999001 62 93.50% 3.20% 271.5 Putative Group11.33 352527 352588 - Overlap splice: GB30128-RA 

57 Class 3 12.05361111 -26.15 0.000999001 0.000999001 72 83.30% 1.40% 246 ame-mir-33 GroupUn.1070 1108 1178 - Intronic: GB30339-RA 

58 Class 3 11.99918605 -28.75 0.000999001 0.000999001 86 84.90% 3.50% 314 ame-mir-29b Group8.25 59469 59551 + Intergenic 
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59 Class 3 11.97201031 -35.48 0.000999001 0.000999001 97 79.40% 10.30% 321 ame-mir-219 Group11.1 42866 42957 + Intergenic 

60 Class 3 11.85275862 -36.84 0.000999001 0.001998002 87 93.10% 3.40% 372.5 ame-mir-277 Group5.13 322869 322952 + Intronic: GB10191-RA 

61 Class 6 11.76792135 -21.99 0.000999001 0.000999001 89 92.10% 0.00% 382 Putative Group2.38 681487 681575 + Intergenic 

62 Class 3 11.73688406 -23.7 0.000999001 0.000999001 69 81.20% 11.60% 227.5 Putative Group13.6 502702 502765 - Intronic: GB15055-RA 

63 Class 6 11.71809524 -30.54 0.000999001 0.000999001 84 79.80% 3.60% 258.5 Putative GroupUn.1659 1290 1372 + Intergenic 

64 Class 6 11.70352941 -22.95 0.000999001 0.000999001 68 82.40% 1.50% 226 Putative Group8.24 608177 608243 + Intergenic 

65 Class 4 11.67491379 -27.15 0.001998002 0.001998002 58 94.80% 3.40% 260.5 Putative Group14.23 541010 541065 + Intergenic 

66 Class 4 11.65909657 -43.65 0.001998002 0.000999001 107 91.60% 0.00% 454 Putative Group16.20 328261 328367 - Overlap exon: GB30062-RA 

67 Class 3 11.63202703 -26.44 0.000999001 0.000999001 74 77.00% 10.80% 226 Putative Group15.13 54961 55029 - Intronic: GB16072-RA 

68 Class 4 11.5352968 -30.55 0.000999001 0.001998002 73 89.00% 0.00% 293 Putative Group1.72 355261 355333 + Overlap exon: GB12139-RA 

69 Class 6 11.49905941 -37.59 0.000999001 0.000999001 101 77.20% 3.00% 280 Putative Group10.18 8982 9080 - Intronic: GB13125-RA 

70 Class 5 11.44351351 -38 0.001998002 0.004995005 74 98.60% 0.00% 361 Putative Group12.11 38382 38455 + Overlap exon: GB10111-RA 

71 Class 5 11.4025 -26.25 0.000999001 0.002997003 65 98.50% 0.00% 316 Putative Group2.35 113160 113224 + Intergenic 

72 Class 5 11.34002817 -31.7 0.000999001 0.003996004 71 98.60% 0.00% 346 Putative Group9.16 90241 90311 + Overlap exon: GB12929-RA 

73 Class 3 11.24302817 -24.94 0.000999001 0.000999001 71 70.40% 22.50% 193.5 ame-mir-2-1 Group1.1 135912 135973 - Intronic: GB15727-RA 

74 Class 6 11.2087037 -51.9 0.000999001 0.000999001 162 77.80% 0.00% 486 Putative Group8.24 315499 315651 - Intronic: GB14709-RA 

75 Class 2 11.19604839 -25.6 0.001998002 0.001998002 62 95.20% 0.00% 283 ame-mir-1 Group16.18 5866 5927 + Intergenic 

76 Class 6 11.14916667 -27.45 0.001998002 0.000999001 72 88.90% 0.00% 288 Putative Group2.16 121189 121260 - Overlap exon: GB15177-RA 

77 Class 3 11.04582022 -42.89 0.000999001 0.003996004 89 92.10% 1.10% 376 Putative Group4.7 1559823 1559911 - Intronic: GB16572-RA 

78 Class 6 11.03595238 -24.06 0.000999001 0.000999001 84 81.00% 9.50% 266 Putative Group15.13 54829 54909 - Intronic: GB16072-RA 

79 Class 5 10.72940972 -30.45 0.007992008 0.000999001 64 98.40% 0.00% 311 Putative Group9.10 515685 515748 - Overlap splice: GB17617-RA 

80 Class 6 10.70598485 -32.5 0.000999001 0.001998002 88 86.40% 3.40% 323.5 ame-mir-92a Group15.34 28349 28435 + Intergenic 

81 Class 4 10.67653005 -28.95 0.002997003 0.002997003 61 91.80% 0.00% 260 Putative Group1.25 234267 234327 - Overlap exon: GB15780-RA 

82 Class 5 10.63037838 -27.75 0.001998002 0.002997003 74 98.60% 0.00% 361 Putative Group16.9 1406492 1406565 + Intergenic 

83 Class 3 10.62219298 -28.47 0.001998002 0.000999001 76 81.60% 9.20% 269 Putative GroupUn.69 22994 23069 - Intronic: GB12790-RA 

84 Class 3 10.56929825 -37.16 0.000999001 0.001998002 95 78.90% 14.70% 315.5 ame-mir-14 Group11.14 243981 244065 + Intergenic 

85 Class 3 10.55820513 -39.4 0.005994006 0.000999001 78 89.70% 0.00% 318 Putative Group4.16 137099 137176 + Intronic: GB14007-RA 

86 Class 1 10.37374384 -35.2 0.013986014 0.014985015 70 100.00% 0.00% 350 Putative Group1.7 129414 129483 + Intronic: GB13919-RA 

87 Class 4 10.33261905 -30.15 0.004995005 0.000999001 70 92.90% 0.00% 305 Putative Group7.33 466907 466976 + Overlap exon: GB30231-RA 

88 Class 6 10.28953704 -21.35 0.001998002 0.001998002 54 87.00% 0.00% 207 Putative Group1.54 681258 681311 - Overlap exon: GB11223-RA 

89 Class 5 10.2425 -27.35 0.002997003 0.008991009 60 98.30% 0.00% 291 Putative Group14.23 657560 657619 + Intergenic 

90 Class 4 10.20083333 -39.1 0.014985015 0.028971029 75 97.30% 0.00% 357 Putative Group6.29 204528 204602 + Intergenic 
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91 Class 6 10.17189394 -27.85 0.000999001 0.001998002 88 85.20% 0.00% 323 Putative GroupUn.549 28613 28700 + Overlap exon: GB19591-RA 

92 Class 1 10.12384615 -28.3 0.005994006 0.006993007 65 100.00% 0.00% 325 Putative Group13.18 75309 75373 - Overlap exon: GB15328-RA 

93 Class 2 10.1072807 -35.62 0.002997003 0.002997003 95 96.80% 2.10% 445.5 Putative Group4.23 268120 268212 + Intergenic 

94 Class 3 10.052 -28.9 0.001998002 0.002997003 80 93.80% 0.00% 355 Putative Group13.10 877163 877242 - Intronic: GB19979-RA 

95 Class 4 10.00179012 -41.11 0.011988012 0.005994006 81 93.80% 1.20% 354 Putative Group8.5 22573 22652 - Intronic: GB30239-RB 

96 Class 5 9.670705128 -21.75 0.010989011 0.000999001 52 96.20% 0.00% 242 Putative Group13.4 190326 190377 + Intergenic 

97 Class 5 9.669206407 -31.95 0.028971029 0.257742258 67 98.50% 0.00% 326 Putative Group6.15 248126 248192 + Intergenic 

98 Class 6 9.636020619 -34.55 0.003996004 0.000999001 97 89.70% 0.00% 395 Putative GroupUn.2585 1 97 + Intergenic 

99 Class 6 9.598627451 -35.95 0.000999001 0.040959041 68 89.70% 0.00% 277 Putative Group2.43 449675 449742 + Overlap exon: GB10264-RA 

100 Class 3 9.591538462 -22.35 0.005994006 0.000999001 65 96.90% 0.00% 307 Putative Group5.22 397929 397993 + Intergenic 

101 Class 5 9.500181818 -36.98 0.001998002 0.002997003 110 90.90% 3.60% 455 Putative Group11.32 309771 309876 + Intergenic 

102 Class 6 9.430571429 -37.4 0.003996004 0.000999001 91 81.30% 0.00% 302 Putative Group3.33 199637 199727 - Overlap splice: GB15382-RA 

103 Class 3 9.406124031 -34 0.024975025 0.017982018 75 96.00% 0.00% 348 Putative Group1.55 98080 98154 + Intronic: GB10650-RC 

104 Class 5 9.32389372 -31 0.02997003 0.014985015 69 95.70% 0.00% 318 Putative Group3.7 171972 172040 + Intronic: GB18730-RA 

105 Class 6 9.315183291 -34.25 0.114885115 0.022977023 68 91.20% 0.00% 286 Putative Group2.2 89797 89864 - Intronic: GB10324-RA 

106 Class 3 9.306666667 -26.51 0.001998002 0.000999001 80 71.20% 13.80% 212.5 Putative Group15.13 55307 55381 - Intronic: GB16072-RA 

107 Class 4 9.301350575 -25 0.001998002 0.001998002 87 87.40% 8.00% 341.5 Putative GroupUn.19 63647 63726 + Intergenic 

108 Class 3 9.286947497 -36.99 0.001998002 0.006993007 91 90.10% 0.00% 374 ame-mir-263 Group10.29 368549 368639 + Intergenic 

109 Class 6 9.170642857 -23.15 0.007992008 0.001998002 56 89.30% 0.00% 226 Putative Group12.30 1279544 1279599 + Overlap exon: GB10560-RA 

110 Class 6 9.168365079 -31.1 0.033966034 0.055944056 70 95.70% 0.00% 323 Putative Group8.28 239333 239402 - Intronic: GB11761-RA 

111 Class 4 9.146553846 -27.95 0.022977023 0.001998002 65 93.80% 0.00% 289 Putative Group15.20 175075 175139 - Overlap exon: GB11254-RA 

112 Class 3 9.098270677 -29.7 0.00999001 0.008991009 63 87.30% 0.00% 243 Putative Group4.27 305392 305454 - Overlap exon: GB11807-RA 

113 Class 6 9.086125356 -30.45 0.004995005 0.021978022 65 89.20% 0.00% 262 Putative Group9.12 168115 168179 + Intergenic 

114 Class 6 9.079954233 -37 0.00999001 0.012987013 76 88.20% 2.60% 287 Putative Group9.25 425313 425387 - Overlap exon: GB14416-RA 

115 Class 2 9.07803767 -54.8 0.201798202 0.191808192 133 99.20% 0.00% 656 Putative Group13.9 541542 541674 + Intergenic 

116 Class 6 9.074307692 -30.7 0.032967033 0.021978022 65 90.80% 0.00% 271 Putative Group7.33 520753 520817 + Overlap exon: GB13516-RA 

117 Class 4 9.051048387 -40.65 0.007992008 0.01998002 93 92.50% 0.00% 402 Putative Group5.13 247556 247648 + Overlap exon: GB20055-RE 

118 Class 6 9.042294776 -26.7 0.002997003 0.004995005 67 86.60% 4.50% 255 Putative Group10.32 161890 161953 - Overlap exon: GB13430-RA 

119 Class 4 9.006265893 -27.4 0.004995005 0.048951049 67 97.00% 0.00% 317 Putative Group16.9 1021525 1021591 + Intergenic 

120 Class 3 8.957304176 -31.35 0.052947053 0.003996004 71 93.00% 0.00% 310 Putative Group14.24 544736 544806 + Intergenic 

121 Class 2 8.946865942 -26.9 0.02997003 0.025974026 69 98.60% 0.00% 336 Putative Group4.7 68470 68538 - Overlap exon: GB30205-RB 

122 Class 6 8.920452586 -48.12 0.001998002 0.013986014 116 90.50% 0.00% 481 Putative Group6.29 143431 143546 - Overlap exon: GB15419-RA 
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123 Class 6 8.90911211 -39.3 0.243756244 0.001998002 76 85.50% 0.00% 281 Putative Group2.38 427015 427090 + Overlap exon: GB15698-RA 

124 Class 5 8.89865942 -27.05 0.056943057 0.034965035 69 98.60% 0.00% 336 Putative Group1.82 250087 250155 + Intergenic 

125 Class 6 8.897898551 -28.55 0.24975025 0.002997003 60 90.00% 0.00% 246 Putative Group13.5 172260 172319 - Overlap exon: GB30150-RC 

126 Class 6 8.889507246 -26.2 0.688311688 0.000999001 56 91.10% 0.00% 235 Putative Group8.36 134675 134730 + Overlap exon: GB30298-RA 

127 Class 6 8.878391304 -39.35 0.01998002 0.014985015 92 92.40% 0.00% 397 Putative Group6.40 148631 148722 + Intergenic 

128 Class 3 8.842647849 -34.7 0.005994006 0.001998002 93 87.10% 6.50% 359 Putative Group1.18 41267 41353 - Intronic: GB16274-RA 

129 Class 6 8.81641327 -26.7 0.175824176 0.162837163 61 93.40% 0.00% 269 Putative Group10.30 162642 162702 - Overlap exon: GB10640-RA 

130 Class 4 8.800432099 -24.47 0.002997003 0.002997003 81 90.10% 0.00% 333 Putative Group1.55 212100 212180 - Overlap exon: GB12769-RA 

131 Class 4 8.799565217 -28.6 0.002997003 0.003996004 92 92.40% 4.30% 392 Putative Group11.29 46559 46646 + Intergenic 

132 Class 4 8.79694747 -35.35 0.106893107 0.017982018 83 94.00% 0.00% 370 Putative Group13.5 160657 160739 - Overlap exon: GB30150-RB 

133 Class 2 8.766766667 -26.2 0.020979021 0.078921079 69 98.60% 0.00% 336 Putative Group1.82 688445 688513 - Intronic: GB14440-RA 

134 Class 1 8.764097938 -29.7 0.102897103 0.090909091 80 100.00% 0.00% 400 Putative Group11.32 246408 246487 + Overlap splice: GB15792-RA 

135 Class 4 8.745438437 -26.1 0.011988012 0.018981019 71 97.20% 0.00% 337 Putative Group11.11 166869 166939 - Overlap splice: GB10578-RA 

136 Class 6 8.743333333 -25.9 0.000999001 0.00999001 66 87.90% 0.00% 258 Putative Group8.18 144921 144986 - Overlap exon: GB18762-RA 

137 Class 4 8.740862069 -28.35 0.012987013 0.000999001 58 79.30% 0.00% 182 Putative GroupUn.3059 5342 5392 + Intergenic 

138 Class 3 8.732340426 -29.23 0.007992008 0.002997003 94 96.80% 0.00% 443 ame-mir-100 Group8.27 74565 74658 + Intergenic 

139 Class 6 8.725623729 -26.2 0.046953047 0.002997003 59 89.80% 0.00% 241 Putative Group12.30 913153 913211 + Overlap exon: GB19579-RA 

140 Class 5 8.71619403 -22.75 0.013986014 0.007992008 67 98.50% 0.00% 326 Putative Group16.9 1281056 1281122 + Intergenic 

141 Class 4 8.704808207 -26.5 0.016983017 0.001998002 59 88.10% 6.80% 217.5 Putative Group2.36 260320 260375 + Intergenic 

142 Class 6 8.654905149 -31.65 0.002997003 0.005994006 82 85.40% 0.00% 302 Putative Group8.3 9235 9316 - Overlap splice: GB18118-RA 

143 Class 3 8.624754642 -32.1 0.074925075 0.040959041 78 93.60% 0.00% 345 Putative Group10.30 165629 165706 - Overlap exon: GB10640-RA 

144 Class 4 8.618225806 -40.2 0.004995005 0.008991009 124 96.80% 0.80% 578 Putative GroupUn.2532 4613 4735 + Intronic: GB15283-RA 

145 Class 6 8.606092153 -32.05 0.24975025 0.086913087 72 90.30% 0.00% 297 Putative Group11.9 113656 113727 + Overlap exon: GB18111-RA 

146 Class 6 8.605126103 -55.7 0.015984016 0.105894106 130 91.50% 0.00% 551 Putative Group1.40 330985 331114 + Intronic: GB10180-RA 

147 Class 6 8.57803114 -30.15 0.176823177 0.003996004 66 89.40% 1.50% 261 Putative Group2.24 337294 337358 + Intronic: GB16625-RA 

148 Class 4 8.564714729 -23.8 0.021978022 0.048951049 59 93.20% 0.00% 259 Putative Group6.55 61363 61421 - Overlap splice: GB17945-RA 

149 Class 4 8.55953271 -32.55 0.000999001 0.00999001 107 96.30% 0.90% 493 Putative GroupUn.7907 820 925 + Intergenic 

150 Class 4 8.551116139 -32.8 0.316683317 0.03996004 65 83.10% 0.00% 226 Putative Group5.12 1560842 1560906 + Overlap exon: GB11380-RA 

151 Class 6 8.550350877 -24.05 0.001998002 0.008991009 57 82.50% 0.00% 195 Putative Group14.24 965293 965349 - Overlap exon: GB14793-RA 

152 Class 1 8.540598592 -22.6 0.013986014 0.013986014 71 100.00% 0.00% 355 Putative Group5.7 154830 154900 + Intergenic 

153 Class 6 8.526528266 -30.25 0.002997003 0.097902098 62 83.90% 0.00% 220 Putative Group4.15 28558 28619 - Overlap exon: GB15295-RA 

154 Class 6 8.505316108 -30.4 0.001998002 0.104895105 68 88.20% 0.00% 268 Putative Group4.23 24615 24682 + Overlap exon: GB30210-RA 



 

 

132 

155 Class 6 8.5025 -25.2 0.000999001 0.002997003 63 63.50% 25.40% 126 Putative GroupUn.1226 4261 4315 + Overlap exon: GB17195-RA 

156 Class 4 8.475010935 -25.85 0.05994006 0.001998002 59 88.10% 0.00% 232 Putative Group4.27 305518 305576 - Overlap splice: GB11807-RA 

157 Class 4 8.471461353 -32.5 0.057942058 0.010989011 72 86.10% 5.60% 274.5 Putative Group12.23 46078 46149 + Overlap exon: GB11571-RA 

158 Class 6 8.434423077 -23.6 0.015984016 0.011988012 65 93.80% 0.00% 289 Putative Group9.17 3477 3541 + Overlap exon: GB11915-RA 

159 Class 5 8.419589314 -24.4 0.072927073 0.002997003 66 95.50% 0.00% 303 Putative Group3.39 48046 48111 - Overlap splice: GB15719-RA 

160 Class 6 8.410589744 -23.6 0.022977023 0.006993007 65 93.80% 0.00% 289 Putative GroupUn.452 59336 59400 + Overlap exon: GB12507-RA 

161 Class 6 8.406430678 -24.85 0.675324675 0.001998002 60 91.70% 0.00% 255 Putative Group4.21 53347 53406 - Overlap exon: GB13109-RA 

162 Class 4 8.398277844 -23.7 0.03996004 0.056943057 61 93.40% 0.00% 269 Putative Group8.14 141601 141661 - Overlap splice: GB11896-RA 

163 Class 5 8.393768187 -35.1 0.573426573 0.737262737 101 99.00% 0.00% 496 Putative Group1.7 129484 129584 + Intronic: GB13919-RA 

164 Class 4 8.373466855 -42.6 0.285714286 0.684315684 95 88.40% 6.30% 368.5 Putative Group3.19 164468 164561 - Overlap splice: GB12179-RA 

165 Class 5 8.362769282 -32.3 0.245754246 0.201798202 94 98.90% 0.00% 461 Putative GroupUn.1348 3702 3795 + Intergenic 

166 Class 6 8.301280488 -30 0.002997003 0.000999001 82 68.30% 9.80% 175.5 Putative Group8.46 214707 214784 + Intergenic 

167 Class 6 8.293932109 -40.65 0.717282717 0.011988012 91 86.80% 0.00% 347 Putative Group5.22 594213 594303 - Overlap exon: GB18706-RA 

168 Class 6 8.293442116 -28.85 0.00999001 0.030969031 71 88.70% 0.00% 283 Putative Group10.36 1092328 1092398 - Overlap exon: GB16085-RA 

169 Class 4 8.290107513 -25.3 0.671328671 0.861138861 67 95.50% 1.50% 302 Putative Group11.21 368378 368444 + Intergenic 

170 Class 3 8.282442529 -31.2 0.001998002 0.00999001 87 87.40% 0.00% 336 Putative Group4.18 272373 272459 + Overlap exon: GB10337-RA 

171 Class 4 8.281099081 -25.25 0.260739261 0.509490509 69 95.70% 0.00% 318 Putative GroupUn.646 17761 17829 + Overlap splice: GB30491-RA 

172 Class 6 8.28080303 -24 0.016983017 0.002997003 66 90.90% 3.00% 273.5 Putative Group2.38 785134 785197 - Intronic: GB18541-RA 

173 Class 4 8.279294069 -21.7 0.015984016 0.021978022 63 95.20% 0.00% 288 Putative Group13.4 192878 192940 + Intergenic 

174 Class 4 8.277558287 -26.75 0.006993007 0.581418581 71 94.40% 0.00% 319 Putative Group2.38 537558 537628 + Intergenic 

175 Class 4 8.276908602 -25.95 0.177822178 0.193806194 66 92.40% 0.00% 285 Putative Group14.21 224590 224655 + Overlap exon: GB15446-RA 

176 Class 4 8.264205247 -22.8 0.048951049 0.031968032 64 95.30% 0.00% 293 Putative Group4.15 369252 369315 + Overlap exon: GB11420-RA 

177 Class 6 8.250491551 -29.2 0.017982018 0.074925075 70 88.60% 0.00% 278 Putative Group5.31 100836 100905 - Overlap exon: GB12614-RA 

178 Class 4 8.245647356 -28.31 0.184815185 0.344655345 71 91.50% 0.00% 301 Putative Group13.11 97800 97870 + Intergenic 

179 Class 6 8.242761645 -22.9 0.001998002 0.055944056 57 89.50% 0.00% 231 Putative Group2.23 107483 107539 + Intergenic 

180 Class 5 8.24243956 -30.55 0.01998002 0.034965035 91 96.70% 0.00% 428 Putative Group16.9 1439592 1439682 + Intergenic 

181 Class 6 8.240717239 -24.7 0.080919081 0.000999001 59 88.10% 0.00% 232 Putative Group5.11 474899 474957 - Overlap exon: GB14300-RA 

182 Class 6 8.224299517 -31.45 0.066933067 0.031968032 69 84.10% 0.00% 246 Putative Group1.62 404712 404780 - Overlap exon: GB17390-RA 

183 Class 4 8.213488045 -21.1 0.005994006 0.002997003 79 93.70% 0.00% 350 Putative Group16.19 740682 740760 + Intergenic 

184 Class 4 8.211678744 -26.8 0.100899101 0.312687313 72 94.40% 2.80% 321.5 Putative Group10.33 125284 125353 - Intronic: GB18613-RA 

185 Class 4 8.209635712 -33.15 0.006993007 0.18981019 85 91.80% 0.00% 362 Putative Group7.11 49452 49536 - Overlap exon: GB17867-RA 

186 Class 6 8.208366228 -23.5 0.301698302 0.001998002 57 89.50% 0.00% 231 Putative Group1.1 659855 659911 - Overlap exon: GB19470-RA 
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187 Class 6 8.170507991 -30.3 0.022977023 0.000999001 73 86.30% 2.70% 263 Putative Group1.17 120362 120433 + Intergenic 

188 Class 6 8.169074447 -26.45 0.012987013 0.035964036 71 91.50% 0.00% 301 Putative GroupUn.281 28777 28847 + Intronic: GB17956-RA 

189 Class 4 8.154231037 -40.1 0.145854146 0.332667333 105 92.40% 0.00% 453 Putative Group6.28 183735 183839 - Overlap exon: GB13823-RA 

190 Class 4 8.148972146 -31.99 0.12987013 0.021978022 77 88.30% 6.50% 302.5 Putative Group14.24 362350 362421 + Intergenic 

191 Class 4 8.126242938 -21.15 0.015984016 0.04995005 59 93.20% 0.00% 259 Putative Group8.29 278765 278823 + Overlap splice: GB16304-RA 

192 Class 6 8.117377173 -38.32 0.033966034 0.262737263 98 90.80% 0.00% 409 Putative Group8.11 78656 78753 + Overlap splice: GB15150-RA 

193 Class 6 8.116469528 -37 0.007992008 0.050949051 94 90.40% 2.10% 377 Putative Group5.33 445585 445677 - Overlap exon: GB18386-RA 

194 Class 4 8.114517635 -37.8 0.064935065 0.416583417 96 90.60% 0.00% 399 Putative Group14.21 224492 224587 + Overlap exon: GB15446-RA 

195 Class 3 8.110333333 -17.65 0.000999001 0.003996004 60 76.70% 16.70% 190 ame-mir-375 Group3.18 653811 653864 + Intergenic 

196 Class 6 8.107739446 -30.25 0.281718282 0.000999001 76 90.80% 1.30% 311 Putative Group4.15 144372 144446 + Intergenic 

197 Class 4 8.105166898 -30.56 0.093906094 0.197802198 79 91.10% 0.00% 332 Putative GroupUn.9 90106 90184 - Overlap exon: GB15740-RA 

198 Class 4 8.101449222 -30 0.036963037 0.000999001 71 85.90% 4.20% 256.5 Putative Group13.11 139026 139093 + Intergenic 

199 Class 4 8.099351266 -21.8 0.004995005 0.002997003 79 89.90% 0.00% 323 Putative Group16.20 2935 3013 + Intronic: GB30066-RA 

200 Class 6 8.094166667 -23.4 0.041958042 0.041958042 60 90.00% 8.30% 244.5 Putative Group14.24 1273957 1274014 + Intronic: GB12714-RA 
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APPENDIX E 
 

Major computational steps of the methods used for this work. 
 
Chapter II - MicroRNA homologs, Evolution 
 

These are the major steps of the methodology followed in order to 

identify microRNA homologs in different genome assemblies. The main 

part of the method is contained in the second script: 

miRNA_homolog_finder_V7.1.pl 

 

COMPUTING HOMOLOGS: 
 

1. Generating microRNA precursors in a format suited for the pipeline.  
The pipeline requires microRNA precursor sequences in FASTA format and 

with the mature sequence indicated in lower case. MicroRNA databases 

usually don't provide sequences with this peculiarity, so it is 

neccesary to generate one with the help of a perl script. 

 

Download stem loop precursors and mature sequences from miRBase. 

Combine the two files into a single file by running the following perl 

script: 

 

Perl miRNAs_in_proper_format.pl input1 input2 > output 

Where:  

Input1: mature_microRNAs_10.0.fa 

Input2: stem-loop_precursor_microRNAs_10.0.fa 

Output: hairpin_miRNAs.10.0.PRC.TAB 

 

2. Blasting precursors against genome of interest. 
The script miRNA_homolog_finder_V7.1.pl is a wrapper around different 

programs used to compute homologous microRNAs in different genomes. 

This script uses WUBLAST, ViennaRNA package and t-coffee. Make sure you 

have installed these programs before you run the script and indicate 

the paths to the programs in the section of the script where is 

indicated. 

 

perl miRNA_homolog_finder_V7.1.pl --miRNA_file input1 –-genome input2 -

-species input3 –-outfile output.file 

where: 

Input1: hairpin_miRNAs.10.0.PRC.TAB 

Input2: genome.fasta  

Input3: ‘hsa’ if human, ‘ptr’ if chimp, ‘ame’ if honey bee, etc.  

You can check abbreviations for different species in the stem-loop 

file.es  

 

This script will generate two files: 

file 1: output.file 

file 2: output.file.representative 

 

The second file is the result of comparing genomic positions between 

the different results of the blast search. Removing the ones that 
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overlap in the same genomic position and selecting the one that 

represents the best homolog of the sequence query. It also removes 

redundancy of sequences that are repeated in the database i.e.: same 

miRNA from two different species. This scripts also runs RANDfold on 

the subject sequence. 

 

COMPUTING CLUSTERS 
 

In order to determine microRNA family affiliation the resulting miRNA 

candidates from the species evaluated need to be processed in the 

following way: 

 

Resulting files from the species evaluated need to be concatenated and 

redirected to a new file. Then the following programs can be run in 

order to determine microRNA clusters. 

 

1. PRSS 
This step establish the statistical significance of an alignment score 

between two sequences. This script runs an all vs all PRSS evaluation 

among the sequences present in the file. 

 

perl prss_miRNA_families.pl -miRNA_TAB_file input1 –unique_ID input2 –

step_loop_precursor input3 –outfile out.file 

Where: 

Input1: concatenated files in TAB format. i.e.: file_with_miRNAs.TAB 

Input2: Column representing the UNIQUE identifier of the microRNA. 

Input3: Column containing the stem-loop precursor. 

 

This step produces a file called out.file in TAB format with PRSS 

scores between sequences. When the sequences are too divergent, no 

score is calculated and a dummy p-value of 100 is reported. 

 

2. Create adjacency list 
perl prss2adjLists.pl out.file 1 >adjacency.list 

 

3. Create clusters 
perl adja2cluster.pl adjacency.list >clusters.file 

 

4. Create clusters of FASTA files 
perl creating_fasta_from_clusters_and_fasta.pl -clusters_file input1 

clusters.file -fasta_file file_with_miRNAs.TAB -outfile 

sequence_clusters.fas 

Where: 

Input1: clusters.file 

Input2: file_with_miRNAs.TAB 

 

This script produces and output with the actual clusters in FASTA 

format. 

 

 

Chapter III - Computing genome intersections and microRNAs 
 

These are the major steps of the methodology followed in order to 

identify ultraconserved elements and microRNAs by comparative genomics. 
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Ultraconservation is calculated with the first script: 

Binary_intersection_WU-BLAST_V2.pl. Subsequent scripts perform 

different analysis on the data generated by the first script. 

 

A) Compute genome intersection to identify ultraconserved elements 
 

This script is a wrapper around WUBLAST with modified parameters to 

compute ultraconserved elements. You will notice that is neccesary to 

redirect standard error to an empty file given that WUBLAST complains 

quite a bit when asked to compute short ultraconserved sequences. 

BLASTN parameters are harcoded within the script and are optimized for 

ultraconserved sequences. In order to change parameters it is necessary 

to change one line the script, the line where blastn is called. 

 

perl Binary_intersection_WU-BLAST_V2.pl -query input1 -database 

genome2.fasta -min_word_size input3 -filter seg &>/dev/null & 

 

Input1: genome1.fasta 

Input2: genome2.fasta 

Input3: word size (minimum length of UCE) (i.e.: 20) 

Input4: seg, dust, none. 

 

Input1 and input2 must be in FASTA format. 

min_word_size refers to the minimun length of the ultraconserved 

elements to be found between two genomes 

 

Three different files will be generated out of this step: 

File1: genome1.fasta_Vs_genome2.fasta.W20 

-> If you used a different word size your W will be different. This 

file is TAB delimited and contains matches between the two genomes. 

 

File2: genome1.fasta_Vs_genome2.fasta.W20.fas 

-> This file contains the same information as the previous one but is 

in FASTA format. Sequences reported in this file are from genome1 

 

File3: genome1.fasta_Vs_genome2.fasta.W20.extended_regions 

-> Every hit between the two genomes gets extended upstream and 

downstream by 75 nt. Sequences are reported in TAB format. 

 

Actual files: 

File1: Amel_4.0_scaffolds.masked_Vs_Nvit_1.0.linear.fa.masked.W20 

File2: Amel_4.0_scaffolds.masked_Vs_Nvit_1.0.linear.fa.masked.W20.fas 

File3: 

Amel_4.0_scaffolds.masked_Vs_Nvit_1.0.linear.fa.masked.W20.extended_reg

ions 

 
B) Removing substrings - optional step 
 

The file generated in (1) is redundant, and having so much redundancy 

is problematic in further steps. This step is recommended in order to 

remove redundancy. Any sequence that is a perfect substring of another 

sequence of the same length or longer is removed. This is a wrapper 

around PATDB, a program in the WUBLAST suite that does the trick. 
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perl redundancy reductor.pl input 

Where: 

Input: File in FASTA format to be slim down by removing perfect 

substrings. (i.e.: genome1.fasta_Vs_genome2.fasta.W20.fas). 

 

This step will generate a file called 

genome1.fasta_Vs_genome2.fasta.W20.fas.nr 

 

Actual file: 

Amel_4.0_scaffolds.masked_Vs_Nvit_1.0.linear.fa.masked.W20.nr 

 

C) Blasting non redundant regions (nr file) from genome1 against 
genome2. 
 

blastn genome2.fasta genome1.fasta_Vs_genome2.fasta.fas.nr -e1e-10 -

mformat=2 >output.file 

 

This step minimizes the chances of comparing non-homologous regions 

between two genomes. The evalue was determined empirically to be good 

for a bee-wasp comparison. Other genomes may require different evalue. 

 

This step generates a file called output.file 

 

Actual file: 

1.apis_extended_regions.fas.nr_Vs_Nasonia.BLAST_1e-10.TAB 

 

(This file was further modified so that the TAB format produced by 

BLAST includes the actual sequence) 

 

D) Removing repeats 
 

Repeats were removed by running CENSOR and by removing sequences for 

which it was not possible to calculate KARLIN-ALTSCHUL STATISTICS. 

CENSOR can  

 

censor input_file_name -bprm '-filter=none' -s -nofilter -mode {sens} 

-lib hum -lib mam -lib vrt -lib rod -lib ang -lib ath -lib cbr -lib 

cel -lib chl -lib cin -lib dia -lib dro -lib fng -lib fug -lib inv 

-lib ory -lib pln -lib pri -lib smp -lib spu & 

 

perl KA_parameters_masking_TAB.pl input_file 

 

Actual files: 

2.1.apis_extended_regions.fas.nr_Vs_Nasonia.BLAST.NR.CENSOR_DATA 

2.2.apis_extended_regions.fas.nr_Vs_Nasonia.BLAST.NR.KA_masking_DATA 

2.apis_extended_regions.fas.nr_Vs_Nasonia.BLAST_1e-10.NR.TAB 

3.Candidates_after_CENSOR_KA_masking.TAB 

 

E) Since microRNAs could be generated from either strand, generate a 
file with both strands 
 

File:  

4.Candidates_BOTH_STRANDS.TAB 
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F) Generate t_coffee alignments of sequence pairs and evaluate with 
ALIFOLD.  
ALIFOLD is a program that comes with ViennaRNA. It computes the deltaG 

of folding of a pairwise or multiple sequence alignment. 
 

perl pipeline.pl 4.Candidates_BOTH_STRANDS.TAB 

 

Actual files: 

4.Candidates_BOTH_STRANDS.T_COFFEE.ALIFOLD.RAW 

4.Candidates_BOTH_STRANDS.T_COFFEE.ALIFOLD.RAW.sub_final_candidates 

 

G) Local alignments of sub_final_candidates 
 
Sequence pairs are evaluated aligned with the program WATER of the 

EMBOSS package. This step computes alignment score based in the score 

of a local alignment, this is not possible with t-coffee. 

 

perl water_alignments.pl input 

Where: 

Input: 

4.Candidates_BOTH_STRANDS.T_COFFEE.ALIFOLD.RAW.sub_final_candidates 

 

Output: 

4.Candidates_BOTH_STRANDS.T_COFFEE.ALIFOLD.RAW.sub_final_candidates.WAT

ER 

 

Actual file generated: 

5.Candidates_BOTH_STRANDS.WATER_SCORING.RAW 

 

H) Parsing file generated from step (G). 
 

Perl water_accumulative_parser.pl 

5.Candidates_BOTH_STRANDS.WATER_SCORING.RAW 

 

Actual file: 

5.Candidates_BOTH_STRANDS.WATER_SCORING.TAB.WATER 

 

I) Evaluating candidates with RANDfold 
 

perl RANDfold_TAB_both.pl 

5.Candidates_BOTH_STRANDS.WATER_SCORING.TAB.WATER 

 

Actual file: 

5.Candidates_BOTH_STRANDS.WATER_SCORING.TAB.RANDfold 

 

Other files related to this step: 

 

File from this step in FASTA format: 

5.Candidates_BOTH_STRANDS.WATER_SCORING.TAB.RANDfold.FAS 

 

Blast of fasta file against RFAM and Stem Loop Precursors of MiRBase - 

TAB format: 

5.Candidates_BOTH_STRANDS.WATER_SCORING.TAB.RANDfold.STLP_RFAM.TAB 
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Blast of fasta file against RFAM and Stem Loop Precursors of MirBase - 

FASTA format 

5.Candidates_BOTH_STRANDS.WATER_SCORING.WITH_MIRBASE 

 

J) Generate ALIFOLD of previous file: 
 

perl TAB_alifold.pl 

5.Candidates_BOTH_STRANDS.WATER_SCORING.WITH_MIRBASE 

 

Actual file: 

5.Candidates_BOTH_STRANDS.WATER_SCORING.WITH_MIRBASE_ALIFOLD 

 

K) Import file into excel  
 

Remove candidates with deltaG higher than -20Kcal/mol 

 

Score candidates based on the following formula 

 

Pair Score = (Alignment length / alignment score) + (1/((RANDfold score 

in Apis + RANDfold score in Nasonia)/2))/200) + (ABS (deltaG of folding 

for the pair)/alignment length)*10) 

 

 

Chapter IV – Ultraconserved Elements 
 

Follow steps (A) and (B) from chapter III.  
 

C) Mapping UCEs to genome. 
perl mapping_to_genome.pl -query UCE_file.nr -database Amel4.0 -

min_word_size 20 -filter seq -var UCE_vs_Amel_4.0  

where:  

query: non redundant file result of the previous step  

database: genome of interest 

var: description for GFF track file. 

This step generates a GFF file called UCE_file.nr_Amel4.0.mapping.GFF 

 

D) Intersecting UCEs with genomic features in genome 
perl UCE_genes_intersector_honeybee.pl -GFF_query input1 –GFF_ref 

input2 

Where: 

Input1: UCE_file.nr_Amel4.0.mapping.GFF 

Input2: Amel_release2_combined_ncbi_apollo.gff 

This step will generate 4 files: 

Out_intronic: with UCEs that locate within introns 

Out_exonic: with UCEs that locate within exons 

Out_splice: with UCEs that overlap splice sites by at least 1 nt 

Out_intergenic: UCEs that diddn't overlap with any of the previous 

 

VERSIONS OF PROGRAMS USED FOR THIS WORK 
CENSOR: censor-4.2.12.tar.gz 

WUBLAST: blast2.macosx-x86.tar.Z 

Vienna RNA package: ViennaRNA-1.6.1.tar.gz 

t-coffee: T-COFFEE_distribution_Version_5.05.tar.gz 

clustalw: Version 1.83 
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RANDfold: Ony one version – perl based 

PRSS: prss34 – version 3 of FASTA package 

WATER (EMBOSS SUITE): EMBOSS-6.0.1.tar.gz 
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