EXPLORATION OF POTENTIAL RESERVOIR HOSTS AND VECTORS OF

LEISHMANIA IN NICARAGUA

A Dissertation

by

RUSSELL WAYNE RAYMOND

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2008

Major Subject: Wildlife and Fisheries Sciences

EXPLORATION OF POTENTIAL RESERVOIR HOSTS AND VECTORS OF

LEISHMANIA IN NICARAGUA

A Dissertation

by

RUSSELL WAYNE RAYMOND

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Committee Members,

Head of Department,

Norman O. Dronen, Jr. Thomas M. Craig Jimmy K. Olson Markus J. Peterson Thomas E. Lacher, Jr.

August 2008

Major Subject: Wildlife and Fisheries Sciences

ABSTRACT

Exploration of Potential Reservoir Hosts and Vectors of *Leishmania* in Nicaragua. (August 2008)
Russell Wayne Raymond, B.S., University of the Incarnate Word; M.S., University of the Incarnate Word
Chair of Advisory Committee: Dr. Norman O. Dronen, Jr.

Leishmaniasis is caused by infection with protozoan parasites within the genus *Leishmania* and, in the New World, is transmitted by the bites of female sand flies within the genus *Lutzomyia*. The occurrence of leishmaniasis in rodent species, the geographic distribution of sand fly species in Nicaragua, and environmental factors associated with the distribution of human cases of typical cutaneous leishmaniasis were investigated. Three hundred ninety five rodents representing 17 species were collected from 13 localities from August 2001–March 2006 and screened for *Leishmania* infections. One *Heteromys desmarestianus* and one *Peromyscus mexicanus* were found to be positive for leishmanial infections by PCR. This is the first report of *Leishmania* infections in rodents in Nicaragua. Five hundred fifty six sand flies representing 12 species were collected from 8 localities, including *Lutzomyia hartmanni*, a new record for this species in Nicaragua. The predominant sand fly species captured in western Nicaragua were *Lutzomyia longipalpis* and *Lutzomyia evansi*. The predominant species captured in central and eastern Nicaragua was *Lutzomyia cruciata*. The geographic

distribution of sand flies in this study provides additional support to previouslypublished reports of suspected vectors of *Leishmania* species that cause typical and atypical forms of cutaneous leishmaniasis in Nicaragua.

Distribution data of human cases of typical cutaneous leishmaniasis obtained from the Nicaraguan Ministry of Health, along with GIS and remotely sensed data of elevation, precipitation, temperature, soil types and land use/cover classes, were used to develop predictive logistic regression models for the presence or absence of human cases within 151 municipalities. Mean annual precipitation and land use/cover were determined to be the best environmental variable predictors for the occurrence of typical cutaneous leishmaniasis.

ACKNOWLEDGEMENTS

A great number of individuals are responsible for the success of this research and manuscript. I would like to express gratitude to my graduate studies committee: Dr. Norman O. Dronen, Jr., Chairman, and members Dr. Thomas M. Craig, Dr. Jimmy K. Olson, and Dr. Markus J. Peterson. Dr. Dronen provided guidance in navigating around the pitfalls associated with a doctoral program. He provided invaluable assistance in the development of a degree plan, the writing of a research proposal and the development of this dissertation. Thank you for taking me under your wing and providing support, encouragement and guidance along the way. Dr. Craig provided an interesting and intensive course in Veterinary Parasitology. I learned skills in his lecture and laboratory that I am certain will serve me well for years to come. Thank you for your input on my research proposal and this dissertation. Dr. Olson's course in Medical and Veterinary Entomology was an incredible introduction to this field. Although I hope that I never have to identify mosquito larvae again; I am reasonably confident that I could. Thank you for your input and guidance along the way. I am perhaps most thankful for Dr. Olson's ability to make me feel like one of the crew. I only spent a short time living in College Station and even though I did not receive my B.S. or M.S. from Texas A&M, he was the one that made me feel like I was an Aggie. Dr. Peterson's class in Research Methods was an invaluable experience. It was one of the most challenging courses that I have ever taken, but I enjoyed it very much. He taught me how the entire research

process comes together, from proposals and funding to data collection, analysis and presentation.

I am indebted to my mentor Dr. Sara F. Kerr, University of the Incarnate Word. Thank you for your years of encouragement and support, without which I am certain that I would have ended my academic studies upon the completion of my B.S. I had no idea that those initial hot afternoons and early mornings spend crawling through the brush at Rothe Ranch and La Copita would lead to hot afternoons and early mornings of crawling through the jungle in Nicaragua. I take pride in explaining to people that I am a professional rat trapper.

To Dr. Chad McHugh, I am well aware of the amount time and effort that you put into identification of sand flies from Nicaragua. Without your expertise in this area, the identification of insect specimens may well have taking forever. I also am appreciative of your advice on improving my writing and organizational skills.

Dr. Robert Bradley and his crew at Texas Tech University provided enormous assistance with identification of rodent species from Nicaragua. Doctora Rafaela Montoya, Nicaraguan Ministry of Health, was my primary point of contact within the country. She took time from her very busy schedule at the hospital in Nueva Guinea to serve as liaison between our crew and numerous individuals and government agencies in Nicaragua. Doctora Montoya's staff in Nueva Guinea as well as the Ministry of Health staffs in Siuna, Matagalpa, Jinotega, Bluefields, Chinendega, and Leon provided hours of help with the identification of trapping localities as well as assistance with field work. Doctora Arlette Vargas traveled with us, on many occasions, to various communities in order to help explain our project to local leaders and to help gather information about "hot spots" of leishmaniasis. Doctor Byron Perez provided much assistance with gaining access to trapping sites in the Matagalpa area and with navigating the paperwork required to export rodents from Nicaragua. Data on the distribution of human cutaneous leishmaniasis was provided by Dr. Juan Jose Amador, Chief Epidemiologist of the Ministry of Health, Managua, Nicaragua. The GIS maps of Nicaragua were provided by the staff at the Nicaraguan Ministerio del Ambiente y los Recursos Naturales.

Diana Kruger was of enormous assistance in a number of areas associated with this project. She provided help with travel plans, reservations, arranged for drivers, graciously allowed us to store mounds of equipment at her home in Managua and provided the best lemonade that I've ever tasted. Most importantly, it was Diana's phone calls to various individuals within the Nicaraguan government that help secure meetings and gain access to Ministry of Health data on the prevalence and distribution of human cases of typical cutaneous leishmaniasis. I also need to thank Reggie Romo with ESRI for showing me a more efficient way to get at the data analysis in GIS and Dr. Paul Messina for much needed assistance with statistical analysis.

Many individuals assisted with the "heavy lifting" associated with specimen collection in sometimes very rugged terrain. Robert Miranda, Christina Salinas, and Sebastian Villarreal (students from the University of the Incarnate Word) made numerous treks carrying equipment into and out of research sites. Ernesto Hernandez and Ariel Hernandez from Chinandega and Waldemar Rios from Siuna provided countless hours of assistance in everything from specimen collection and specimen processing to driving duties and Spanish/English translation.

I am very grateful to my parents, Ray and Marlene Raymond; thank you for many years of love and support. Finally and most of all, I would like to recognize my wife Carol Armata Raymond; thank you for years of love, encouragement and support. You are an inspiration to me. Without you, I would not have made it this far.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	ix
LIST OF FIGURES	xiii
LIST OF TABLES	xv
INTRODUCTION	1
OverviewClinical manifestations of leishmaniasisOccurrence of clinical forms of leishmaniasis in NicaraguaGeographic distribution of clinical forms of leishmaniasis in NicaraguaTaxonomy of Leishmania parasitesLeishmania complexes and disease distributionLeishmania species associated with clinical forms of leishmaniasisin NicaraguaGeneral life cycleLife cycle stages within the sand fly vectorThe role of sand fly saliva in transmission and infectivityLife cycle stages within the vertebrate hostLutzomyia species in Nicaragua	1 2 4 7 9 12 14 15 17 18 19 21
Dispersion patterns of <i>Lutzomyia</i> Reservoir hosts Study area Diagnostic screening techniques for <i>Leishmania</i> in tissue In vitro culture Polymerase chain reaction (PCR) Geographic Information System (GIS) and remote sensing	26 27 30 38 39 39 41
MATERIALS AND METHODS	44
Overview	44

TABLE OF CONTENTS (continued)

Study areas	
Study areas within the Pacific plains region	
Study areas within the central highlands region	
Study areas within the Atlantic lowland plains region	n
Rodent trapping	
Tissue collection	
Tissue biopsy preparation and screening using cultur	re medium
Tissue biopsy screening using polymerase chain read	cton (PCR)
Sand fly trapping	
Geographic Information System (GIS) and remote se	ensing
Statistical analysis	
ESULTS	
Rodent collections	
Sand fly collections	
General distribution of sand fly species collected in	Nicaragua
In vitro culture	
PCR	
Distribution of human cases of typical CL in Nicara	gua
GIS analysis of environmental and ecosystem cover	age of municipalities
Statistical analysis, logistic regression models	<i>C</i> 1
Logistic regression analysis of elevation and human	typical CL presence
or absence	·····
Logistic regression analysis of precipitation and hun	nan typical CL
presence or absence	
Logistic regression analysis of temperature and hum	an typical CL
presence or absence	• •
Logistic regression analysis of soil types and human	typical CL presence
or absence	
Logistic regression analysis of land cover/use types	and human typical CL
presence or absence	~ 1
Logistic regression analysis of combinations of pred	ictive environmental
variables	
Logistic regression analysis of environmental predic	tor variables and
occurrence of < 10 or ≥ 10 cases of human typical C	L
Forest degradation from 1983 to 2000 and the distrib	oution of human
cases of typical CL	

TABLE OF CONTENTS (continued)

Page

Temporal distribution of reported cases of human typical CL for the period 2003–2005	97
DISCUSSION	100
Overview	100
Rodent collections within the central highlands region, Selva Negra Rodent collections within the central highlands region, El Cua and	101
Rodent collections within the Atlantic lowland plains (north).	104
El Balsamo and Rosa Grande	105
Rodent collections within the Atlantic lowland plains, El Paraisito,	
La Esperanzito 2, and La Fonseca	106
Rodent collections in areas where atypical cutaneous leishmaniasis	
is predominant	106
Rodent collections within the Pacific plains region; Bella Vista	107
Rodent collections within the Pacific plains region; San Cristobal	108
Rodent collections within the Pacific plains region; Las Marias,	
Los Mangos, and San Jacinto	109
Sand fly collections	109
Distribution of sand fly species in relationship to clinical forms of	
leishmaniasis	111
Spatial distribution of human typical CL	113
Logistic regression models of environmental factors associated with the	114
presence or absence of reported cases of human typical CL.	114
remperal distribution of reported cases of numan typical CL for the	110
period 2003–2005	118
SUMMARY AND CONCLUSIONS	119
LITERATURE CITED	122
APPENDIX A	141
APPENDIX B	151
APPENDIX C	153

TABLE OF CONTENTS (continued)

APPENDIX D	158
APPENDIX E	164
APPENDIX F	170
APPENDIX G	175
VITA	181

LIST OF FIGURES

Page

Figure 1	Typical cutaneous lesions due to <i>Leishmania</i> infection on the arm of a young girl from El Cua, Nicaragua, 2006	3
Figure 2	Map of the Central American isthmus showing Nicaragua and surrounding countries.	6
Figure 3	Map of Nicaragua showing political departments, land areas, and freshwater lakes and bays	8
Figure 4	Transmission cycle and morphological forms of Leishmania	16
Figure 5	Map of the general geographic regions of Nicaragua as described by Taylor, 1963.	31
Figure 6	Map of the mean annual temperature zones of Nicaragua	32
Figure 7	Map of the mean annual precipitation zones of Nicaragua	33
Figure 8	Map of the elevation zones of Nicaragua	35
Figure 9	Map of the soil type zones of Nicaragua	36
Figure 10	Map of the land use/coverage zones of Nicaragua	37
Figure 11	Map of rodent and sand fly collecting localities in Nicaragua during August 2001–March 2006	46
Figure 12	Sherman live mammal traps placed at Selva Negra research site in the municipality of Matagalpa, Nicaragua	53
Figure 13	Insect trap near El Cua in the municipality of El Cua-Bocay, Nicaragua	58
Figure 14	Map of the geographic distribution of all reported cases of human typical CL in Nicaragua, 2003–2005.	73

LIST OF FIGURES (continued)

Figure 15	Map of the geographic distribution of 28 municipalities in Nicaragua with at least 10 reported cases of human typical CL representing 97.5% of all reported cases from 2003–2005	74
Figure 16	Map of the geographic distribution of 19 municipalities in Nicaragua with at least 20 reported cases of human typical CL representing 96.2% of all reported cases, 2003–2005	75
Figure 17	Map of the geographic distribution of 11 municipalities in Nicaragua that contained 90.9% of all reported cases of human typical CL, 2003–2005	76
Figure 18	Map of the geographic distribution of human typical CL in Nicaragua based on the ratio of reported cases per municipality population, 2003–2005	78
Figure 19	Map of the geographic distribution of human typical CLin Nicaragua based on the ratio of reported cases per municipality area (km ²), 2003–2005	79
Figure 20	Twenty-eight municipalities representing 97.5% of reported cases of typical CL for the years 2003–2005, overlaid onto forest coverage maps of Nicaragua from the years 1983 and 2000	98
Figure 21	Chart of the average number of reported cases of human typical CL in Nicaragua by week for the 3 year period from 2003–2005	99

xiv

LIST OF TABLES

Page

Table 1	General classification of leishmanial parasites	10
Table 2	Known Lutzomyia species of Nicaragua	22
Table 3	Summary of <i>Lutzomyia</i> species captured in Nicaragua by Valle and Rivera, 1995	24
Table 4	Rodent collection sites in Nicaragua during August 2001– March 2006	47
Table 5	Nicaragua land use/cover classes used for statistical analysis	60
Table 6	Occurrence of <i>Leishmania</i> in rodents collected in Nicaragua 2001–2006	64
Table 7	Sand fly species collected in Nicaragua, 2001–2006	68
Table 8	General distribution of sand fly species collected in Nicaragua, 2001–2006	71
Table 9	Elevation variables for Nicaragua not in the equation for the empty model	81
Table 10	Precipitation variables for Nicaragua not in the equation for the empty model	81
Table 11	Temperature variables for Nicaragua not in the equation for the empty model	82
Table 12	Soil type variables for Nicaragua not in the equation for the empty model	82
Table 13	Land use/coverage variables for Nicaragua not in the equation for the empty model	83
Table 14	Percentage of correct model predictions of presence and absence of human typical CL in Nicaragua by the empty model including only the constant	83

LIST OF TABLES (continued)

Table 15	Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with only the constant and elevation variables included in the model	84
Table 16	Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on all elevation predictor variables	85
Table 17	Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with the constant and precipitation variables included in the model	86
Table 18	Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on precipitation variables	87
Table 19	Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with the constant and temperature variables included in the model	88
Table 20	Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on mean annual temperature variables in degrees Celsius	88
Table 21	Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with the constant and soil type variables included in the model	89
Table 22	Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on soil type variables used in the model	90
Table 23	Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with the constant and land use/coverage variables included in the model	91

LIST OF TABLES (continued)

xvii

Table 24	Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on land use/coverage predictor variables	92
Table 25	Sensitivity and specificity of all models for presence or absence of human typical CL in Nicaragua	92
Table 26	Percentages of correct predictions of <10 or ≥ 10 cases of human typical CL in Nicaragua by the empty model including only the constant	95
Table 27	Percentages of correct model predictions of <10 or ≥10 cases of typical CL within municipalities in Nicaragua; with the constant and land use/coverage variables included in the model	96
Table 28	Coefficients and goodness of fit of logistic model predicting <10 or \geq 10 cases of human typical CL in Nicaragua based on land use/coverage predictor variables	96

INTRODUCTION

Overview

The leishmaniases are a complex of vector-borne diseases caused by protozoan parasites within the genus *Leishmania* Ross, 1903 (KINETOPLASTIDA:

TRYPANOSOMATIDAE). Infection is initiated when the parasites are inoculated into the skin of the host by the bite of an infected sand fly within the genera *Phlebotomus* Rondani and Berte, 1840 and *Lutzomyia* Franca, 1927 (DIPTERA: PSYCHODIDAE). Leishmaniasis is widespread ecologically and geographically and primarily occurs in tropical and subtropical regions on all continents except Antarctica. It is present in at least 88 countries worldwide and is a significant and increasing public health problem, with an estimated 12 million people infected worldwide and 350 million people at risk (WHO, 1990).

Leishmaniasis is endemic in at least 23 nations in the New World and has been reported from all mainland countries with the exceptions of Chile and Uruguay (Grimaldi et al., 1989; Duprey et al. 2006). In the New World, autochthonous human cases have been reported from Texas in the southern United States to Argentina, in South America (Stewart and Pilchard, 1945; Grimaldi et al., 1989; Grogl et al. 1991).

Protozoan parasites of the genus *Leishmania* are responsible for a number of disease syndromes within human and other mammalian hosts. The outcome of infection in humans ranges from mild, self-healing cutaneous lesions to severe and often fatal

This dissertation follows the style and format of Journal of Parasitology.

visceral involvement (Lainson and Shaw, 1978; WHO, 1984).

Clinical manifestations of leishmaniasis

The course of disease associated with *Leishmania* infections primarily is dependent on the species of infecting leishmanial parasite, but also may be determined in part by the inoculation size, and the immune status of the host (WHO, 1984; Titus and Ribeiro, 1988; Ashford, 2000; Gangneux et al., 2000). Three primary clinical syndromes characterize the disease manifestations of leishmaniasis: cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). All 3 primary forms of leishmaniasis occur in Nicaragua (Missoni et al., 1986; Darce et al., 1991; Belli et al., 1994; Belli et al., 1999).

Cutaneous leishmaniasis often involves mild and self-healing ulcerative skin lesions (Fig. 1), but also can be cosmetically disfiguring (Schonian et al., 1996). Worldwide, there are an estimated 1 to 1.5 million human cases of cutaneous leishmaniasis annually (Desjeux, 2001). Additionally, these ulcerative lesions may predispose infected individuals to bacterial super infections (Fontes et al., 2005).

Mucocutaneous leishmaniasis begins when leishmanial parasites metastasize from skin lesions that occur at the site of inoculation to mucosal tissue, potentially resulting in deformation and massive tissue destruction of the nose, mouth, and throat (David et al., 1993; Almeida et al., 1996). This metastasis of leishmanial parasites from the initial site of inoculation in the skin to mucosal tissue typically occurs years after the cutaneous lesions develop (Almeida et al., 1996).

Visceral leishmaniasis occurs when the parasites travel from the initial site of

Figure 1. Typical cutaneous lesions due to *Leishmania* infection on the arm of a young girl from El Cua, Nicaragua, 2006.

inoculation to lymph nodes, bone marrow and internal organs (Satoskar et al., 1995).Visceral leishmaniasis is a potentially lethal form of the disease involving tissue destruction primarily in the liver and spleen (Ashford, 2000; Heinzel et al., 1989).Additionally, visceral leishmanial parasites within the small intestine may contribute to malabsorption (Muigai et al., 1983).

Occurrence of clinical forms of leishmaniasis in Nicaragua

Mucocutaneous and visceral leishmaniasis are relatively uncommon in Nicaragua, while cutaneous leishmaniasis occurs with considerable frequency (Belli et al., 1999). Additionally, the human cases of cutaneous leishmaniasis are divided into 2 separate clinical categories, typical and atypical cutaneous leishmaniasis. Typical cutaneous leishmaniasis is characterized by open lesions, while atypical cutaneous leishmaniasis is characterized by the occurrence of non-ulcerative cutaneous nodules (Zeledon et al., 1989). In Nicaragua, approximately 2,000–2,500 human cases of leishmaniasis are reported annually, with approximately 86% of these cases diagnosed as human typical cutaneous leishmaniasis (Ministerio de Salud Nicaragua, 2003).

In addition to the different disease syndromes associated with typical and atypical cutaneous leishmaniasis, the diseases are a result of infections with different species of *Leishmania* parasites. There is a definite spatial segregation to the occurrence of the typical and atypical forms of cutaneous leishmaniasis in Nicaragua, with typical cutaneous leishmaniasis occurring primarily in the central and eastern regions of the country and atypical cutaneous leishmaniasis occurring primarily in western Nicaragua (Missoni et al., 1986; Darce et al., 1991; Belli et al., 1994; Belli et al., 1999). It is likely that the parasites that cause these forms of cutaneous leishmaniasis have different reservoir hosts and different sand fly vectors. In Nicaragua, the natural systems in which the causative agents of human typical cutaneous leishmaniasis are maintained and transmitted are largely unknown.

Reservoir hosts serve in the longterm maintenance of the leishmanial parasite populations, while vectors are responsible for transmission of the parasite among susceptible hosts. A wide variety of mammals other than humans typically serve as reservoir hosts of *Leishmania* species. Humans generally are incidental hosts and become infected while living or traveling within areas where the normal vector-reservoir system is established (Ashford, 1997). Sand flies within the genus Lutzomyia serve as the vector for all species of Leishmania in the New World. The study described herein was conducted in the Central American country of Nicaragua (Fig. 2) and its objectives were: 1. Identify geographic areas in Nicaragua that have concentrations of human cases of typical cutaneous leishmaniasis; 2. capture and identify rodents near human case residences; 3. screen rodents for Leishmania infections using polymerase chain reaction (PCR) and culture techniques; 4. identify complexes and species of *Leishmania*; 5. identify sand fly species in areas of Nicaragua having high prevalence of human cutaneous leishmaniasis; 6. use geographic information systems (GIS) technology, remotely-sensed data, and human incidence data to develop predictive models that identify biotic and abiotic environmental factors that influence the spatial distribution of human typical cutaneous leishmaniasis.

Figure 2. Map of the Central American isthmus showing Nicaragua and surrounding countries. This study took place entirely within the country of Nicaragua.

Geographic distribution of clinical forms of leishmaniasis in Nicaragua

The CL form of leishmaniasis is the most common in Nicaragua, as well as the rest of Central America, resulting in increasing public health problems and economic loss in terms of disability of infected individuals and the cost of treatment (Carreira et al., 1995). Cutaneous leishmaniasis was first documented in Nicaragua by Doctor Francisco Baltodano near the town of San Juan de Limay in the department of Estelí in 1917 (Ministerio de Salud Nicaragua, 2003) (Fig. 3). It typically is associated with sylvan habitats, with human cases primarily occurring in the northern, central, and eastern regions of the country in the districts of Jinotega, Matagalpa, the North Atlantic Autonomous Region (RAAN), and the South Atlantic Autonomous Regions (RAAS) (Darce et al., 1991).

In addition to typical CL leishmaniasis, which results in ulcerative skin lesions, an atypical form of CL also exists in Nicaragua and several other countries in Central America (Belli et al., 1999; Convit et al., 2005). Atypical CL is characterized by the presence of non-ulcerative cutaneous nodules. The first cases of atypical CL in Nicaragua were identified in 1997, and the highest prevalence occurs in the Pacific plains region in the districts of Chinandega and Leon. There also is a focus of atypical CL in central Nicaragua in the district of Chontales (Belli et al., 1999).

Mucocutaneous leishmaniasis occurs in Nicaragua to a much lesser extent than does cutaneous leishmaniasis, with only a few dozen cases reported each year. In 2002 there were 59 cases reported, and in the first 3 months of 2003, there were 21 reported

Figure 3. Map of Nicaragua showing political departments, land areas and freshwater lakes and bays.

cases of MCL (Ministerio de Salud Nicaragua, 2003). Human cases of MCL appear to be concentrated in the districts of Rio San Juan and Chontales in the south central part of the country.

Although visceral leishmaniasis is the most severe form of disease associated with *Leishmania* infection, it occurs infrequently in Nicaragua (Belli et al., 1999). The first confirmed case of VL in Nicaragua occurred in a patient from the Island of Zapatera on Lake Nicaragua in 1988 (Ministerio de Salud Nicaragua, 2003). The geographic distribution of VL in Nicaragua mirrors the distribution of cases of atypical CL (Belli et al., 1999). The distribution of these cases is pertinent because spatial distribution is one of the factors considered when placing leishmanial parasites into taxonomic groups.

Taxonomy of *Leishmania* parasites

Parasites within the genus *Leishmania* (KINETOPLASTIDA:

TRYPANOSOMATIDAE) typically have been placed into taxonomic groups based on geographic distribution, preference of vertebrate host, manifestation of disease symptoms and site of promastigote development within the gut of the arthropod vector (Table 1). The genus *Leishmania* is divided into 2 subgenera, *Leishmania (Viannia)* Lainson and Shaw, 1987 and *Leishmania (Leishmania)* Ross, 1903 based primarily upon the parasite's site of attachment and development within the sand fly vector. Within the subgenus *Leishmania (Viannia)*, the flagellated promastigote forms of the parasites undergo development within the sand fly hind gut with subsequent migration to the midgut and foregut before transmission by bite. Parasites within the subgenus *Leishmania (Viannia)* are found only in Neotropical regions of the New World.

Table 1. General classification of leishmanial parasites.

The subgenus *Leishmania* (*Leishmania*) includes those parasites that undergo attachment and development solely within the foregut and midgut of the sand fly vector. This group also is transmitted by bite of an infected sand fly and includes species found in both the Old and New Worlds (Lainson and Shaw, 1987). A third group of closely related parasites undergo development limited to the hindgut of the sand fly. Transmission of this group is potentially via the ingestion of the sand fly or sand fly feces by the vertebrate host. These are thought to be more primitive parasites of Old World lizards and are placed in the separate genus, *Sauroleishmania* Saf'janova, 1982 (Lainson and Shaw, 1979).

There is disagreement as to the mode of transmission and the phylogenetic placement of species within the genus *Sauroleishmania*. Noyes and Chance (1998) maintained the mode of transmission between the sand fly vector and the lizard host still is unproven. They hypothesize that, since *Sauroleishmania* are lizard blood parasites that potentially evolved from mammalian blood parasites, transmission by the bite of the sand fly is the most likely method of transmission. Recent comparisons of small subunit ribosomal DNA (rDNA) sequences among species within the genus *Sauroleishmania* and mammalian species within the genus *Leishmania* indicate a close phylogenetic relationship (Briones et al., 1992). The small subunit rDNA gene sequences studied by Briones et al. (1992) showed a greater than 99% similarity between *Sauroleishmania tarentolae* Wenyon, 1921 and *Leishmania donovani* Laveran and Mesnil, 1903. Additionally, analysis of the mitochondrial minicircle DNA has shown sequences that are conserved among *Sauroleishmania gymnodactyli* Khodukin and Sofiev, 1940, *S*.

guliki Saf'janova, 1982, *S. taraentolae* and the Old World mammalian parasite *Leishmania infantum* Nicolle, 1908 (Fu and Kolesnikov, 1994). Croan and Ellis (1996) and Croan et al. (1997) provided analysis of the gene sequences that encode DNA polymerase catalytic polypeptide and the RNA polymerase II largest subunit gene of 19 species of *Leishmania* and *Sauroleishmania*, showing increased evidence for inclusion of the lizard species within the genus *Leishmania*.

More recently, extensive biochemical and molecular tests have led to suggestions for revision of the classification of leishmanial parasites. Cupolillo et al. (2000) proposed that the genus *Leishmania* be subdivided into two distinct lineages, the Sections Euleishmania and Paraleishmania. Section Euleishmania would include all the parasites currently placed within the subgenera *Leishmania (Leishmania)* and *Leishmania (Viannia)*, while Section Paraleishmania would include those parasites thought to be more closely related to the genus *Endotrypanum* Mesnil and Brimont, 1908 than to other species of *Leishmania*. The Section Paraleishmania would include those species of *Leishmania* that are not pathogenic to man and are primarily parasites of sloths and porcupines. Under the classic classification system, these leishmanial parasites had been placed under the subgenus *Leishmania* but had been difficult to place within a defined complex (Cupolillo et al., 2000).

Leishmania complexes and disease distribution

Typical CL primarily is associated with parasites within the complexes *Leishmania* (*Leishmania*) *tropica* Wright, 1903, *L*. (*L*.) *major*, Yakimoff and Schokhor, 1914 and *L*. (*L*.) *aethiopica*, Ashford & Bray, 1973 in the Old World and within the complexes *L*. (*L*.) *mexicana* Biagi, 1953, *L*. (*Viannia*) *braziliensis* Vianna, 1911, and *L*. (*V.*) *guyanensis* Floch, 1954 in the New World (WHO, 1984). The atypical CL form of the disease occurs only in the New World and has been associated with the species *L*. (*L.*) *chagasi* Cunha and Chagas, 1937, within the complex *L. donovani* (Belli et al,. 1999). *L*. (*L.*) *chagasi* is the same species that primarily is responsible for VL (Lainson and Shaw, 1987).

Mucocutaneous leishmaniasis in the New World most often is associated with the species *L*. (*V*.) *braziliensis* within the complex *L*. (*V*.) *braziliensis*. Visceral leishmaniasis principally is associated with the complex *Leishmania donovani* in both the Old and New World. The primary species associated with VL in the Old World are *L*. (*L*.) *donovani* and *L*. (*L*.) *infantum*. In the New World, VL most often is associated with the species *L*. (*L*.) *chagasi* (Lainson and Shaw, 1987).

Parasites within the complexes *L*. (*L*.) *mexicana* and *L*. (*V*.) *braziliensis* are the most common etiological agents of typical CL in the New World (Grimaldi et al., 1989). In Nicaragua, 2 species of *Leishmania* parasites have been isolated from typical CL lesions in human patients; *L*. (*V*.) *braziliensis* and *L*. (*V*.) *panamensis* Lainson and Shaw, 1972 (Missoni et al., 1986; Belli et al., 1994). Additionally, a putative *L*. (V.) *braziliensis - L*. (V.) *panamensis* hybrid may be the causative agent of some CL in Nicaragua (Belli et al., 1994). This putative *L*. (*V*.) *braziliensis - L*. (*V*.) *panamensis* hybrid from Nicaragua has been questioned and may have been due to contamination of the original sample (Uliana et al., 2000).

The known geographic distribution of the *L*. (*L*.) *mexicana* complex extends from Arizona and Texas in the western United States to southern Brazil, South America (Kerr et al., 1995; Kerr et al., 1999; Uliana et al., 2000). The known geographic distribution of *L*. (*V*.) *braziliensis* complex extends from Mexico (Canto-Lara et al., 1999), El Salvador, and Belize in Central America, to southern Brazil (Lainson and Shaw, 1987).

The ranges of complexes *L*. (*L*.) *mexicana* and *L*. (V.) *braziliensis* overlap in Central America indicating that CL in Nicaragua potentially may be a result of infection with parasites from either complex. The species *Leishmania* (*L*.) *mexicana* has a geographic range from the western United States to northern Columbia and Venezuela (Uliana et al., 2000). *Leishmania* (*L*.) *mexicana* has not been isolated from either humans or wild mammalian hosts in Nicaragua; however, it has been isolated from at least 9 human cases of cutaneous leishmaniasis in Honduras near the border with Nicaragua (Noyes et al., 1997). Other species within the complex *Leishmania* (*L*.) *mexicana*, that are known to infect man, have not been shown to be distributed farther north than Panama (Uliana et al., 2000). The research described herein concentrated on identifying actual or potential reservoir hosts of *Leishmania* species that are known to cause human typical CL and the associated sand flies in Nicaragua.

Leishmania species associated with clinical forms of leishmaniasis in Nicaragua

Leishmania (*L.*) *chagasi* has been demonstrated to be the causative agent of human visceral and atypical cutaneous leishmaniasis in Nicaragua (Belli et al., 1999). *Leishmania* (*V.*) *braziliensis* is the primary species that has been isolated from human mucocutaneous lesions and *L.* (*L.*) *panamensis* has been demonstrated to be the primary

species isolated from human typical cutaneous lesions. Although, *L*. (*V*.) *braziliensis* has been isolated from typical cutaneous lesions and *L*. (*L*.) *panamensis* has been isolated from mucocutaneous lesions (Belli et al., 1994).

General life cycle

Leishmania species are obligate heteroxenous parasites that are transmitted to a vertebrate host through the bite of an infected sand fly vector (Fig. 4). Two morphologically-distinct forms of the parasite exist, immobile rounded amastigotes and mobile promastigotes. The round to ovoid amastigote stage found within the vertebrate host is strictly intracellular and replicates primarily within macrophage phagolysosomes. Amastigotes are small, typically 3–6.5 μ m in diameter and are among the smallest known eukaryotic cells (Lainson and Shaw, 1978; Roberts and Janovy, Jr., 2005). The elongate promastigote stage possesses a single anterior flagellum and is the extracellular form of the parasite that replicates within the alimentary canal of the sand fly. The promastigote forms are slender and typically are 5–25 μ m in length (Roberts and Janovy, Jr., 2005)

The genus *Leishmania* is divided into subgenera based primarily on the site of development within the sand fly vector. Suprapylarian leishmanal parasites, subgenus *Leishmania* (*Leishmania*), attach and replicate within the sand fly midgut, while Peripylarian leishmanial parasites, subgenus *Leishmania* (*Viannia*), initially attach and replicate within the sand fly hindgut, with subsequent migration to the midgut and foregut. Hypopylarian leishmanial species, genus *Sauroleishmania*, undergo strictly posterior station hind gut development and are restricted to reptilian hosts.

Figure 4. Transmission cycle and morphological forms of *Leishmania*. (A) general transmission cycle, (B) promastigotes, and (C) amastigotes within hamster liver macrophages; larger darkly-stained bodies within the cells are the host cell nuclei. *Leishmania* amastigotes are seen as smaller darkly-stained bodies within the cytoplasm (Sullivan, 2004).

Life cycle stages within the sand fly vector

Sand flies within the family Psychodidae serve as biological vectors for all species of *Leishmania*. Sand flies of the genus *Lutzomyia* serve as the vectors in the New World, while Old World *Leishmania* species are transmitted by sand flies of the genus *Phlebotomus* Rondani and Berte, 1840 (Killick-Kendrick, 1990). Sand flies have scissor-like cutting mouthparts and are blood pool feeders. Upon ingestion of amastigotes by a female sand fly feeding on an infected reservoir host, the amastigotes transform and complete part of their life cycle as elongated procyclic promastigotes that replicate by binary fission within the gut of the insect vector. The procyclic promastigotes attach to the wall of the midgut or hindgut to avoid elimination with the digested blood meal from the sand fly digestive tract (Killick-Kendrick, 1990).

Pimenta et al. (1994) demonstrated that promastigote survival within the sand fly was predicated on the ability of the procyclic forms of the parasite to attach to the gut wall of the vector. This attachment is mediated by modified surface polysaccharides of the glycocalyx that bind with receptors on epithelial cells of the sand fly midgut or hindgut (Turco and Sacks, 2003). The primary parasite surface polysaccharide is lipophosphoglycan (LPG), and variations within the side chains of LPG among different species of *Leishmania* are believed to be an important factor in determining the ability of the parasite to attach and establish infection within a particular species of sand fly. It is this variation within parasite surface LPG molecules and variation within receptors on the epithelium of the sand gut that leads to specificity in vector competence (Pimenta et al., 1994; McConville et al., 1995).

The extrinsic incubation period is approximately two weeks; the procyclic promastigotes then transform into metacyclic promastigotes that detach from the gut wall and migrate to the sand fly proboscis and are the forms that are infective to the vertebrate host (Molyneux and Killick-Kendrick, 1987; Turco and Sacks, 2003). The detachment of the metacyclic promastigotes from the epithelial cells of the sand fly gut wall is mediated by structural changes to the LPG molecules of the glycocalyx resulting in the loss of binding domains (Sacks et al., 1995). Transmission to susceptible vertebrate hosts then occurs upon subsequent blood-meal feeding by the female sand fly.

The role of sand fly saliva in transmission and infectivity

Transmission to a susceptible vertebrate host occurs when parasites are inoculated into the bite wound by the female sand fly. Sand flies typically inoculate relatively small numbers of leishmanial parasites into the host, usually ranging between 10–1,000 parasites (Warburg and Schlein, 1986). Sand fly saliva that is inoculated into the bite wound contains anticoagulants and vasodilators that, along with aiding the arthropod vector in acquiring a blood meal, also appear to enhance the ability of leishmanial parasites to establish infection by suppression of the host immune response (Titus and Ribeiro, 1988; Theodos et al., 1991). Titus and Ribeiro (1988) infected laboratory mice with either *Leishmania major* parasites alone or *Leishmania major* parasites along with salivary gland homogenate from the sand fly *Lutzomyia longipalpis* Lutz and Neiva, 1912. They reported that mice injected with parasites and salivary gland homogenate developed cutaneous lesions that were consistently much larger and contained up to 5,000 times more parasites than mice that were injected with parasites alone. The infectivity-enhancing properties of the sand fly saliva were more pronounced when small numbers of parasites were inoculated.

Hall and Titus (1995) investigated the infection-enhancing capabilities of sand fly saliva from *Phlebotomus papatasi* on *Leishmania major* infections in mice microphages. Sand fly saliva that is injected into the bite wound leads to increased infectivity through its ability to inhibited nitric oxide (NO) production by macrophages in response to Interferon gamma (IFN- γ) produced by host T cells. Titus and Ribeiro (1988) also demonstrated that saliva from other species of arthropods, including Aedes aegypti Linnaeus 1762, Rhodnius prolixus Stal, 1859, and Ixodes dammini Say, 1821 did not enhance infection. Theodos et al. (1991) demonstrated similar results while conducting experiments using different species of sand flies and different species of Leishmania. Additionally, prior exposure to sand fly saliva through bites of uninfected flies may result in the production of anti-saliva antibodies by the host immune system which may decrease the virulence-enhancing effects of sand fly saliva on leishmanial infections. This may suggest that individuals that have not been previously exposed to sand fly saliva, such as the very young or those from nonendemic locales, may be at greater risk for infection with leishmanial parasites (Belkaid et al., 1998b).

Life cycle stages within the vertebrate host

Once inoculated into a susceptible vertebrate host by the sand fly and prior to phagocytosis by host cell macrophages, the metacyclic promastigotes are able to avoid lyses by the host's innate immune response due to a thickening of the LPG layer (Brittingham et al., 1995). Additionally, the parasite surface glycoprotein, gp63, plays a

19
role in avoiding complement mediated lyses of the metacyclic promastigotes by degrading proteins associated with the complement activation pathway. The metacyclic promastigotes are phagocytized by macrophages within hours and transform into oval non motile amastigotes (Brittingham et al., 1995).

The amastigotes reproduce by binary fission within phagolysosomes. This is remarkable in that the phagolysosomes are the organelles within eukaryotic cells that function in the destruction of intracellular pathogens. Sand fly saliva, inoculated into the bite wound along with leishmanial parasites, has been demonstrated to reduce intracellular killing of parasites by inhibiting the ability of cytokine Interferon gamma (IFN- γ) to stimulate macrophage production of nitric oxide and hydrogen peroxide during early phases of infection (Hall and Titus, 1995). Metacyclic promastigotes, as well as amastigotes, also are believed to be able to survive macrophage-mediated killing by inhibiting the macrophage's ability to produce interleukin-12 (IL-12). Interleukin-12 up regulates the production of IFN- γ by *Leishmania* antigen-activated Th1 cells, which in turn stimulates macrophages to kill intracellular pathogens (Carrera et al., 1996; Belkaid et al., 1998a; Weinheber et al., 1998). Carrera et al. (1996) demonstrated that mouse bone marrow-derived macrophages infected with *Leishmania major* displayed an inability to synthesize IL-12 mRNA and to secrete IL-12.

Reproduction of the amastigotes by binary fission occurs until rupture of the host cell. The released amastigotes then are phagocytized by other macrophages where they again reproduce by binary fission. Female sand flies ingest the amastigotes when taking a blood meal. The amastigotes transform into the procyclic promastigote forms and continue to replicate by binary fission within the midgut or hindgut of the sand fly, completing the life cycle (Bray and Alexander, 1987). Although sand flies of the genus *Lutzomyia* are known to serve as vectors for all species of *Leishmania* in the New World, no proven vectors have been described in Nicaragua.

Lutzomyia species in Nicaragua

Vectors are those organisms that are responsible for the transmission of parasites from their reservoirs to susceptible hosts. Over 400 species of sand flies have been named in the New World, of which 14 have been proven to be vectors for leishmaniasis and another 25 species being suspected vectors (Young and Duncan, 1994; Killick-Kendrick, 1999). Among all of those, twenty-nine (29) species of sand flies previously have been reported in Nicaragua (Table 2).

In 1953, Fairchild and Hertig (1959, 1961a, 1961b) collected 16 species of sand flies from 5 localities in Nicaragua. They captured 13 species of sand flies from the village of Villa Somosa (since renamed Villa Sandino) in the district of Chontales including: *Lutzomyia (Lu.) aclydifera* Fairchild and Hertig, 1952, *Lu. bispinosus* Fairchild and Hertig, 1951, *Lu. cruciatus* Coquillett, 1907, *Lu. gomezi* Nitzulescu, 1931, *Lu. panamensis* Shannon, 1926, *Lu. shannoni* Dyar, 1919, *Lu. trinidadensis* Newstead, 1922, *Lu. vesicifera* Fairchild and Hertig, 1947, *Lu. ylephiletor* Fairchild and Hertig, 1952 and 4 previously unnamed species. The 4 unnamed species later were described as *Lu. serrana* Domasceno and Arouck, 1949, *Lu. dasymera* Fairchild and Hertig, 1961, *Lu. odax* Fairchild and Hertig, 1961, and *Lu. nicaraguensis* Fairchild and Hertig, 1961. However, Young (1979) considered *Lu. nicaraguensis* not to be a new species but a

Species	Year Collected	Reference	
Lu. aclydiferus	1953	Fairchild and Hertig 1959	
Lu. barettoi	1953	-	
Lu. bispinosus	1953		
Lu. cruciatus	1953		
Lu. evansi	1953		
Lu. gomezi	1953		
Lu. ovallesi	1953		
Lu. panamensis	1953		
Lu. shannoni	1953		
Lu. trinidadensis	1953		
Lu. vesiciferus	1953		
Lu.ylephiletor	1953		
Lu. serrana	1953	Fairchild and Hertig 1961	
Lu. dasymera	1953		
Lu. odax	1953		
Lu. nicaraguensis	1953		
Lu. sanquinaria	1977	Zeledon and Murillo 1983	
Lu. trapidoi	1977		
Lu. geniculata	1977		
Lu. olmeca	1977		
Lu. vespertilioniis	1977		
Lu. carpenteri	1988–94	Valle and Rivera 1995	
Lu. cayennensis	1988–94		
Lu. chiapanensis	1988–94		
Lu. longipalpis	1988–94		
Lu. zeledoni	1988–94	Le Pont 1987	
Lu. legerae	1988–94	Le Pont 1995	
Lu. caprini	1995	Collantes and Martinez-Ortega 1997	
Lu. camposi	1995	C	

Table 2. Known Lutzomyia species of Nicaragua.

22

subspecies of *Lu. hirsuta* Mangabeira, 1942. Two species of sand flies were captured in the Upper Valley of the Rio Pantasma in the District of Jinotega; *Lu. cruciatus* and *Lu. ovallesi* Oritz, 1952. Three sand fly species were captured near the community of Guapinolar (near the capitol city of Managua), *Lu. barettoi* Mangabeira, 1942, *Lu. cruciatus*, and *Lu. evansi* Nunez Tovar, 1942. *Lutzomyia barettoi* also was captured in the District of Carrazo. *Lutzomyia. cruciatus* and *Lu. shannoni* also were were captured near the community of Casa Colorado near Managua, (Fairchild and Hertig, 1959, 1961a, 1961b)

In February of 1977, Zeledon and Murillo (1983) collected 11 species near the community of Boca San Carlos in the district of Rio San Juan located on the southern border with Costa Rica. Six species were among those previously collected in Nicaragua by Fairchild and Hertig (1959, 1961a, 1961b); however, their collections did include 5 previously unreported species: *Lu. sanguinaria* Fairchild and Hertig, 1957, *Lu. trapidoi* Fairchild and Hertig, 1952, *Lu. geniculata* Mangabeira, 1941, *Lu. olmeca olmeca* Vargas and Najera, 1959, and *Lu. vespertilionis* Fairchild and Hertig, 1947.

Between 1988 and 1994, Valle and Rivera (1995) collected 12,556 *Lutzomyia* specimens representing 17 species at 16 different localities, including 4 previously unreported species (Table 3). *Lu. carpenteri* Fairchild and Hertig, 1953, *Lu. cayennensis* Floch and Abonnenc, 1941, *Lu. chiapanensis* Dampf, 1947, and *Lu. longipalpis* Lutz and Neiva, 1912 were reported as new records from Nicaragua. Although this was a large collection of sand flies, 5 species comprised nearly 90% of the total individuals captured: *Lu. ylephiletor* (~ 35%), *Lu. panamensis* (~ 24 %),

Species	Pacific Region	Central Highlands and Atlantic Regions	s Totals	
Lu. aclydifera	0	49	49	
Lu. barretoi majuscula	0	66	66	
Lu. carpenteri	0	127	127	
Lu. cayannensis	12	0	12	
Lu. chiapanensis	143	1	144	
Lu. cruciata	4	2,097	2,101	
Lu. evansi	733	192	925	
Lu. gomezi	2	9	11	
Lu. longipalpis	691	0	691	
Lu. ovallesi	1	219	220	
Lu. panamensis	0	3,016	3,016	
Lu. sanguinaria	0	63	63	
Lu. serrana	0	41	41	
Lu. shannoni	0	111	111	
Lu. trapidoi	0	590	590	
Lu. vesiscifera	37	3	40	
Lu. ylephyletor	0	4,349	4,349	
	1,623	10,933	12,556	

Table 3. Summary of *Lutzomyia* species captured in Nicaragua by Valle and Rivera, 1995.

Lu. cruciata (~ 17%), Lu. evansi (~ 7%) and Lu. longipalpis (~ 6%). Valle and Rivera (1995) divided the country into 2 large regions based on distribution of sand fly species. Lutzomyia evansi and Lu. longipalpis were the dominant species collected in the Pacific plains region. No specimens of Lu. longipalpis were collected from any other region of Nicaragua. Lutzomyia ylephiletor, Lu. panamensis and Lu. cruciata were the dominant species collected in the central highlands and Atlantic lowland plains regions of Nicaragua. No specimens of Lu. ylephiletor or Lu. panamensis, and only few specimens of Lu. cruciata were collected from the Pacific plains region of western Nicaragua. Le Pont et al. (1987, 1995) described the capture of 2 additional species of sand flies in Nicaragua, Lu. zeledoni Young and Murillo, 1984 and Lu. legerae Le Pont et al. 1995. Lutzomyia zeledoni specimens were collected in the District of Chinandega, near the Honduras border as well as near Juigalpa in the District of Chontales. The Lu. legerae specimens were collected near the towns of Juigalpa and Santo Tomas in the District of Chontales.

Collantes and Martinez-Ortega (1997) collected 79 sand fly specimens, representing 10 species from 10 localities in 1995, including 2 new records for Nicaragua, *Lu. camposi* Rodriguez, 1952 and *Lu. caprina* Osorno-Mesa et al. 1972. Two *Lu. camposi* were captured near the town of El Castillo in the District of Rio San Juan and 2 *Lu. caprina* were captured between Matagalpa and Jinotega in the district of Matagalpa.

Of the 29 species of Lutzomyia reported from Nicaragua, 4 have been proven to

be vectors of *Leishmania* species in other Central and South American countries: *Lu. ovallesi* vector of *L.(V.) braziliensis, Lu. trapidoi* vector of *L.(V.) panamensis, Lu. olmeca olmeca* vector of *L.* (*L.*) *mexicana*, and *Lu. longipalpis* vector of *L.* (*L.*) *chagasi.* Three additional reported species, *Lu. evansi, Lu. gomezi,, Lu. panamensis* have been identified as probable vectors elsewhere in Central or South America (Killick-Kendrick 1999).

Dispersion patterns of *Lutzomyia*

Leishmaniasis tends to be a highly focal disease in its geographic distribution. A primary reason for this distribution pattern may be the limited flight ranges of the sand fly vectors. Several studies of Neotropical sand fly species have shown that *Lutzomyia* are poor flyers and tend not to disperse over great distances. During mark-releaserecapture studies most species of Lutzomyia were found to disperse no greater than 200m from their initial site of release (Chaniotis et al., 1974; Alexander, 1987). In fact, the vast majority of individuals released during these studies were recaptured within 100m of the point of release. Lutzomyia longipalpis, a vector of the causative agent of visceral leishmaniasis L. (L.) chagasi, has been shown to disperse slightly farther than other Neotropical sand fly species (Dye et al., 1991; Morrison, 1993). During a mark-releaserecapture study conducted in Brazil, most individuals of Lu. longipalpis were recaptured at or within 20m of the site of release; however, 1 individual male dispersed as far as 700m from its release point (Dye et al., 1991). An additional mark-release-recapture study of Lu. longipalpis in Colombia demonstrated that this species was capable of dispersing up to 960m (Morrison et al., 1993). Although Morrison et al. (1993) reported

that *Lu.longipalpis* was capable of dispersing over "considerable" distances; the average distance traveled by male sand flies was reported to be less than 100m, with females traveling significantly less. I think that this is important to note because only female sand flies feed on a vertebrate host in order to acquire a blood meal; therefore, only females are responsible for the transmission of *Leishmania* among hosts.

Reservoir hosts

Reservoir hosts are those responsible for the sustained maintenance of a parasite population in a natural system (Ashford, 1996). The leishmaniases are primarily zoonoses, with mammals other than man serving as reservoir hosts. Canids, rodents and sloths usually serve as the reservoirs of *Leishmania* species in the New World (Grimaldi et al., 1989). Canids are an important reservoir of parasites within the *Leishmania donovani* complex and rodents have been indicated as the primary reservoirs of the *Leishmania mexicana* complex (Shaw and Lainson, 1987). A wide variety of forest mammals have been identified as potential reservoirs for parasites within the *Leishmania braziliensis* complex, including rodents, marsupials, canids, and sloths.

A number of mammals, primarily rodents, have been incriminated as hosts and potential reservoirs of the *Leishmania mexicana* complex. Humans typically serve as incidental hosts and are not a significant component of the natural transmission cycle (Ashford, 1996). The big-eared climbing rat, *Ototylomys phyllotis* Merriam, 1901 was reported to be the primary reservoir host for *Leishmania* (*L.*) *mexicana* in Belize, with the spiny pocket mouse, *Heteromys desmarestianus* Gray, 1868, the vesper rat *Nyctomys sumichrasti* Saussure, 1860, and the hispid cotton rat, *Sigmodon hispidus* Say and Ord,

1825 also implicated (Disney, 1964; Lainson and Strangways-Dixon, 1964). In Mexico, Leishmania (L.) mexicana has been isolated from the deer mouse, Peromyscus yucatanicus J. A. Allen and Chapman, 1897, the black-eared rice rat, Oryzomys melanotis Thomas, 1893, Ototylomys phyllotis and Sigmodon hispidus (Chable-Santos et al., 1995; Canto-Lara et al., 1999). In the United States, the southern plains woodrat, Neotoma micropus Baird, 1855 has been implicated as a reservoir host of Leishmania (L.) mexicana in Texas (McHugh et al., 1990; Kerr et al., 1995). It also has been isolated from a domestic cat, *Felis catus* Linaeus, 1758 in Texas (Craig et al., 1986); the white-throated woodrat Neotoma albigula Hartley, 1894 in Arizona (Kerr et al., 1999); and identified in the eastern woodrat, *Neotoma floridana* Ord, 1818 by polymerase chain reaction (PCR) and microscopic examination of histological sections in Texas (McHugh et al., 2003). In Guatemala, Leishmania (L.) mexicana has been identified in the genus Ototylomys (Grimaldi et al., 1989). In Panama, Leishmania (L.) mexicana has been identified in the large-headed rice rat *Oryzomys capito* Olfers, 1818, the spiny rat Proechimys semispinosus Tomes, 1860, and the spotted paca Agouti paca Linnaeus. 1766, as well as in the brown murine opossum Marmosa robinsoni Bangs, 1898 (Herrer et al., 1973).

Rodents within the genus *Proechimys* J. A. Allen, 1899 are the primary hosts for *Leishmania* (*L.*) *amazonensis*, an etiological agent of CL in Brazil. However, the rice rats, *Oryzomys capito*, *O. concolor* Wagner, 1845, *O. macconnelli* Thomas, 1910, the bristly mouse, *Neacomys spinosus* Thomas, 1882, the South American water rat, *Nectomys squamipes* Brants, 1827, the black rumped agouti, *Dasyprocta prymolopha*

Wagler, 1831, and a number of marsupials also have been implicated as hosts (Lainson and Shaw, 1987).

Leishmania (V.) *braziliensis* is the most geographically-widespread of the parasites that cause human cutaneous leishmaniasis in the New World and it has been isolated from a number of mammalian hosts including rodents, edentates, primates, marsupials, equines, and carnivores. The rodent host records of *Leishmania* (V.)braziliensis include: Oryzomys capito, Orysomys concolor, Oligoryzomys nigripes Desmarest, 1819, the grass mouse, Akodon arviculoids, Proechimys species, the whitefooted climbing mouse, Rhipidomys leucodactylus Tschudi, 1844, and the house rat, Rattus rattus Fischer de Waldheim, 1803 (Lainson and Shaw, 1987; Grimaldi et al., 1989). Edentate hosts include the two-toed sloths, *Choloepus didactylus* Linnaeus 1758 (Lainson and Shaw, 1987) and *Choloepus hoffmanni* Peters 1858 (Herrer et al., 1973). Primate hosts include the three striped night monkey, Aotus trivirgatus Humboldt, 1811 and the marmoset, Saguinus geoffroyi Pucheran, 1845 (Herrer et al., 1973). Marsupial hosts include the opossum, Didelphis marsupialis Linnaeus, 1758 (Lainson and Shaw, 1987). L. (V.) braziliensis parasites also have been isolated from the equines, Equus asinus Linnaeus, 1758 and Equus caballus Linnaeus, 1758 (Grimaldi et al., 1987). Carnivore host records include Canis familiaris Linnaeus, 1758 (Grimaldi et al., 1989), the ring-tailed coati, Nasua nasua Linnaeus, 1766, the kinkajou, Potos flavus Schreber, 1774, and the olingo, Bassaricyon gabbii J. A. Allen, 1876 (Herrer et al., 1973).

Control of leishmaniasis requires an understanding of the reservoir-vector transmission system. Few of these systems have been adequately described anywhere in

the world. Complete objective incrimination of an animal species as a reservoir host of a parasite is difficult and in many cases impossible (WHO, 1990). The World Health Organization has outlined criteria for the incrimination of reservoirs hosts; among these are that the percentage of individuals within a host population that become infective is large and may be greater than 20% (WHO, 1990). In Nicaragua, no proven reservoirs or sand fly vectors have been identified. This study identified rodent and sand fly species that were associated with areas that were known to be foci of human typical CL in order to discern their possible role as reservoirs and vectors, and to compare species distribution with rodents and sand flies collected in areas where atypical CL is the predominant form of leishmaniasis.

Study area

Nicaragua is located in the center of the Central American Isthmus and is bordered by Honduras to the north and Costa Rica to the south. It is bounded by the Atlantic Ocean on the east and the Pacific Ocean on the west. The topography of Nicaragua previously has been described to be divided into 3 general geographic regions: the Pacific plains, the central highlands, and the Atlantic lowland plains (Taylor, 1963) (Fig. 5).

The Pacific plains region predominantly is characterized by mean annual temperatures between 25.5–27.5° C; however a series of volcanoes is located on a roughly north-south line through the center of this region and mean annual temperatures surrounding the peaks are considerably lower (Fig. 6). The Pacific plains region has a mean annual rainfall between approximately 1,000–1,800 mm (Fig. 7),

Figure 5. Map of the general geographic regions of Nicaragua as described by Taylor, 1963. This study included rodent and sand fly collections from each of these regions.

Figure 6. Map of the mean annual temperature zones of Nicaragua.

Figure 7. Map of the mean annual precipitation zones of Nicaragua.

but has pronounced wet and dry seasons (Taylor, 1963). The dry season occurs roughly from December until May or June and the wet season lasts from June until November. The Pacific plains region has elevations that predominantly range from sea level to approximately 200 m above mean sea level (MSL). Elevations of the volcanoes range to nearly 1,600 m above MSL (Fig. 8). The soils of the Pacific plains are typically sandy or sandy-loam to loam, with areas of clay soils scattered throughout (Fig. 9) (Taylor, 1963 and MARENA 2004). This region of Nicaragua is the most populous and has extensive agricultural usage and natural vegetation cover consisting primarily of deciduous forest or deciduous shrub land is generally less that 25% (Fig. 10) (MARENA, 2004).

The central highlands region has a subtropical climate with mean annual temperatures typically ranging between 18.5–24.5° C (MARENA, 2004). This is the driest region of the country with mean annual rainfall between 800–1,600 mm (Taylor, 1963; MARENA, 2004). The central highlands also have distinct wet and dry seasons; however the dry season is generally shorter than that of the Pacific plains region, typically lasting for approximately 3–5 months in areas of seasonal evergreen rain forest and 3 months in lower montane rain forest (Taylor, 1963). The central highlands region is characterized by the Segoviana, Isabelia, and Dariense mountain ranges with elevations varying from 600 m to 2,000 m above MSL. The soils of the western portion of the central highlands are predominantly clay-loam, while clay soils dominate the eastern two-thirds of this region (MARENA, 2004). Land usage is extremely varied,

Figure 8. Map of the elevation zones of Nicaragua.

Figure 9. Map of the soil type zones of Nicaragua.

Figure 10. Map of the land use/cover zones of Nicaragua.

ranging from areas of extensive agricultural usage to areas of relatively undisturbed seasonal evergreen rain forest and lower montane tropical rain forest.

The Atlantic lowland plains region is predominantly characterized by a mean annual temperature of 26.5° C. This region is the wettest in Nicaragua with mean annual rainfall ranging from approximately 1,800 mm to greater than 4,000 mm, with areas near the Atlantic coast receiving the most precipitation (Taylor, 1963). There are distinct wet and dry seasons; however, the dry season is relatively short and lasts approximately 3 months from February to April (Taylor, 1963). Elevations throughout most of this region are below 200 m above MSL. However, the very southern extreme of the mountain ranges that run through the center of the country extend into the Atlantic lowland plains with altitudes in some areas to 600 m above MSL. Land use and coverage of the Atlantic lowland plains varies considerably, with areas of extensive agricultural use and 10–15% natural vegetation coverage to areas dominated by tropical evergreen broadleaf forest (Taylor, 1963; MARENA, 2004). This area also has seen the greatest amount of timber harvesting and conversion from forest to farm and ranchland within the last 25 years (MARENA, 2004).

Diagnostic screening techniques for Leishmania in tissue

A number of diagnostic techniques have been used to identify the presence *Leishmania* parasites within tissues of mammalian hosts. The most common among these have been: staining and direct microscopic examination of histological sections, staining and microscopic examination of prepared tissue smears, Enzyme Linked Immunosorbent Assays (ELISA), in vitro culture, and PCR.

38

In vitro culture

Rearing of live promastigotes of *Leishmania* in cell culture medium is one diagnostic test for the presence of parasites within tissue biopsies. The culture medium is used to simulate the biochemical environment found within the sand fly vector. Within the culture medium, the amastigotes within the mammalian host tissue transform and reproduce as promastigotes. Schneider's *Drosophila* medium supplemented with fetal bovine serum has been used, as well as blood-based media for the cultivation of promastigotes (Hendricks and Wright, 1979). Hendricks and Wright (1979) reported a successful cultivation rate of 67% in Schneider's *Drosophila* medium compared to a success rate of 15% in blood-based media. Rodriquez and others (1994) indicated a successful in vitro cultivation rate of 42% and indicated that the poor success rate may be due to secondary contamination with bacteria and fungi. Promastigotes also have been successfully cultured using supplemented M199 medium (Kerr et al., 1999).

Polymerase chain reaction (PCR)

The use of PCR is highly sensitive as a diagnostic tool in testing for the presence of parasites within tissue (Rodgers et al., 1990; Bensoussan et al., 2006). Protozoan parasites of the genus *Leishmania* possess a kinetoplast, consisting of approximately 10,000 copies of DNA minicircles per parasite. A number of different types of PCR have been used to confirm the presence of leishmanial parasites within host tissue. Among the most widely used PCR methods are assays which test for the presence of either genomic or kinetoplast DNA. Three of the most commonly used PCR assays are kinetoplast DNA (kDNA) PCR, internal transcribed spacer 1 region of the small subunit rRNA genes (ITS1) PCR, and splice leader mini-exon (SLME) PCR of the gp63 gene locus (Bensoussan et al., 2006).

In a direct comparison of these 3 commonly used diagnostic PCR methods, Bensoussan et al. (2006) demonstrated kDNA PCR to be the most sensitive method (98.7%) for screening for the presence of leishmanial parasites within host tissue. ITS1 PCR showed a sensitivity of 91%, while SLME PCR demonstrated a sensitive of 53.8%. Bensoussan et al. (2006) reported that parasite culture detected 62.8% of the positive specimens while microscopy accurately detected 74.4% of the positives.

Rodriquez et al. (1994) reported a positive kDNA PCR test in 98% of patients that had been clinically diagnosed with leishmaniasis, while in vitro culture and microscopy identified 42% and 64% of the positive cases, respectively. Belli et al. (1998) indicated a sensitivity of 100% using kDNA PCR to test dermal scrapings from human patients diagnosed with cutaneous leishmaniasis. Thus, kDNA PCR was determined to be significantly more sensitive in the detection of *Leishmania* species within host tissue than in vitro culture or microscopy.

Within the kDNA minicircles, there is a region of approximately 200 base pairs that is highly conserved among species, while the remaining region of kDNA may vary significantly (Rodgers et al., 1990). It is within this conserved region that a 120 base pair sequence of kDNA can be amplified by PCR to identify the presence of parasites within the tissue sample. The genus specific primers, 13A (5'–

GTGGGGGGGGGGGGGGCGTTCT -3') and 13B (5'- ATTTTACACCAACCCCAGTT -

3') hybridize to a sequence within the kDNA and promote chain elongation at those sites during PCR (Rodgers et al., 1990, Rodriquez et al. 1994, Belli et al.1998).

Geographic Information System (GIS) and remote sensing

Ecological components influence the spatial and temporal distribution of populations of *Leishmania* species as well as its sand fly vectors and reservoir hosts. Regionally-variable ecological conditions can add complexity to the understanding of those factors that help to determine the geographic distribution of species (Cromley, 2003). An understanding of the specific environmental conditions that serve as the best predictors for the distribution of *Leishmania* species would be useful in determining the potential geographic range of the parasite as well as providing useful information to be applied in control (Molyneux, 2001).

GIS and remote sensing capabilities are increasingly being used in epidemiological research as tools for displaying and interpreting the ecological factors that affect the distribution of vector-borne diseases (Hendrickx et al., 2001). Environmental data and georeferenced earth surveillance data are being used in conjunction with GIS to develop maps that help to describe the spatial and temporal distribution of disease-causing agents, reservoir hosts, and vectors (Molyneux, 2001; Rushton, 2003). These GIS databases and generated maps can be useful tools in understanding and communicating the temporal and spatial environmental processes associated with vector-borne diseases, like the leishmaniases.

Previous studies have employed the use of GIS and free and readily-available environmental data from remote sensing sources to explain and predict the distribution of leishmaniasis and other vector-borne diseases as well as develop risk models for exposure to the parasites (Yilma and Malone, 1998; Bavia et al., 2001; Fuentes et al., 2001; Kristensen et al., 2001; Malone et al., 2001; Elnaiem et al., 2003; Gebre-Michael et al., 2004; King et al., 2004; Klinkenberg et al., 2004). Distribution of species is a result of environmental influences, such as rainfall, temperature, soil type, elevation, and vegetative land cover, have been identified in these studies as useful predictors for geographic distribution of parasites. In addition, several recent studies have used GIS and remote sensing technology to identify biotic and abiotic factors that influenced the distribution of the sand fly vectors associated with leishmaniasis (Thomson et al., 1999; Thomson and Conner, 2000).

King et al. (2004) used GIS and remote sensing data to evaluate and predict the risk of CL in Colombia using incidence data obtained from the Colombian Ministry of Health, digital elevation models (DEM) from the U.S. Geological Service's Earth Resources Observation System (USGS-EROS), and land cover data obtained from the National Oceanic and Atmospheric Administration's Advanced Very High Altitude Radiometer satellite imagery (NOAA-AVHRR). Satellite images from a 1 year period were classified into 25 land cover zones based on spectral characteristics. The DEM and land cover data was overlaid in GIS software over maps of the distribution of human cases. The authors evaluated the predictive power of datasets containing disease distribution and elevation data only, disease distribution and land cover data only, and disease distribution along with both elevation and land cover data. They determined that land cover was a better predictor of areas where leishmaniasis occurred than elevation.

However, combining the two datasets provided increased accuracy of the predictive value of their maps.

El Naiem et al. (2003), used GIS to map and develop risk models in an attempt to explain the environmental factors that influenced the geographic distribution of human cases of visceral leishmaniasis in Sudan, East Africa between the years 1996–2000. They investigated the effect of numerous environmental factors that influenced the spatial distribution of the sand fly vectors, the reservoirs, and human hosts including: average rainfall, vegetation, soil type, altitude, and the distance from rivers. Regression analyses of environmental variables in the study by El Naiem et al. (2003) indicated that the best predictors for the presence of visceral leishmaniasis were the average rainfall and elevation, with average rainfall being the single most important variable in affecting the spatial distribution. El Naiem et al. (2003) indicated that the sand fly vectors were found to inhabit areas with annual rainfall between 400–1,200 mm and elevations less than approximately 500 m above mean sea level. The authors suggested that these variables were the most likely to influence the habitat distribution of the known sand fly vector, *Phlebotomus orientalis*, within the region.

To date, no studies have been done attempting to define the biotic or abiotic environmental factors that affect the spatial distribution of *Leishmania* species in the Nicaragua.

MATERIALS AND METHODS

Overview

All collecting of rodent and sand fly specimens was accomplished after required permissions were obtained from the Nicaraguan Ministry of Health. In fact a long series of meetings were required to gain access to trapping sites. In Managua, the Minister of Health was briefed on the objectives and scope of this research in order to gain approval to operate a health-related research study within Nicaragua. To conduct research operations at each of the study sites, meetings were arranged in order to discuss the details of our project with the Ministry of Health representative at the department and municipality levels, and finally permission from the individual community leaders and land owners was obtained. This process of progressing through a hierarchy of permission granting entities often was time consuming. The time spent in meetings at many different government levels cut considerably into the time available for conducting field research, and it was quickly learned that extra days needed to be budgeted on each trip in order to account for the necessary briefings and coordination with local entities.

In most instances, this research was conducted while working closely with the local hospital or health clinic and I often was accompanied by an employee of the Ministry of Health, usually a representative of the vector control program. Rodent trapping and sand fly collections were conducted near localities that were identified as having concentrations of human CL. These localities were identified using records obtained from hospitals or clinics and by direct conversation with public health officials and community leaders. Many of the trapping sites were fairly remote and accessible only by four wheel drive truck or on foot. Additionally, much of the trapping was done during the rainy season, which added to the difficulty of gaining site access.

Study areas

Rodent collections were accomplished at 13 localities within 9 municipalities and 7 districts in Nicaragua between August 2001 and March 2006 and included 3,638 trap nights (Fig. 11). These collection localities were widespread throughout the country and included areas where human typical CL did and did not occur. The 13 rodent trapping localities (Table 4) included areas within each of the general geographic regions of the country: the Pacific plains, the central highlands, and the Atlantic lowland plains.

Sites within the Pacific plains region included Bella Vista and San Cristobal in the district of Chinandega and Las Marias and San Jacinto in the District of Leon. Trapping sites within the central highlands region included El Tigre and Selva Negra in the district of Matagalpa; Los Mangos in the District of Madriz; and El Cua in the District of Jinotega. Collection localities within the Atlantic lowland plains region included El Balsamo and Rosa Grande in the North Atlantic Autonomous Region (RAAN) and Nueva Guinea, La Esperanzita 2 and La Fonseca in the South Atlantic Autonomous Region (RAAS). Sand fly traps also were placed at these localities and in the city of Bluefields, located on the Caribbean coast.

Figure 11. Map of the rodent and sand fly collecting localities in Nicaragua during August 2001–March 2006.

Locality	Municipality	Department	Lat/Long
Bella Vista	Chichigalpa	Chinandega	12 39'N 086 57'W
El Balsamo	Siuna	$RAAN^1$	13 39'N 084 58'W
El Cua	Cua-Bocay	Jinotega	13 20'N 085 39'W
El Paraisito	Nueva Guinea	RAAS ²	11 41'N 084 24'W
El Tigre	El Tuma-La Dalia	Matagalpa	13 04'N 085 45'W
La Esperanzita 2	Nueva Guinea	RAAS ²	11 32'N 084 20'W
La Fonseca	Nueva Guinea	RAAS ²	11 34'N 084 22'W
Las Marias	Telica	Leon	12 37'N 086 48'W
Los Mangos	San Lucas	Madriz	13 26'N 086 35'W
Rosa Grande	Siuna	$RAAN^1$	13 38'N 085 08'W
San Jacinto	Telica	Leon	12 35'N 086 45'W
San Cristobal	Chinandega	Chinandega	12 40'N 087 02'W
Selva Negra	Matagalpa	Matagalpa	12 59'N 085 54'W

Table 4. Rodent collection sites in Nicaragua during August 2001–March 2006.

¹Regíon Autónoma Atlántico Sur (South Atlantic Autonomous Region) ²Regíon Autónoma Atlántico Norte (North Atlantic Autonomous Region)

Study areas within the Pacific plains region

This region of Nicaragua experiences relatively few cases of human typical CL and rodent and sand fly collection were made to compare with regions where the prevalence of human typical CL is high. This region of Nicaragua does, however, have the highest prevalence of human atypical CL. The trapping sites within this region included Bella Vista, Las Marias, San Cristobal and San Jacinto. The Bella Vista site (12° 39'N, 086° 57'W) is located within the municipality of Chichigalpa. The trapping site was located on the western slopes of the Casita volcano and at an elevation of approximately 700 m above MSL. This area receives between 1,600–1,800 mm of rainfall per year and has a mean annual temperature of approximately 23.5° C. The soil predominantly is sandy loam but has numerous rocks. The trapping locations within this site were located in or near an area that is heavily planted in coffee with large trees scattered throughout.

The Las Marias (12° 37'N, 086° 48'W) and San Jacinto (12° 35'N, 086° 45'W) study sites are located within the municipality of Telica. The Las Marias site has an elevation of approximately 175 m above MSL and a mean annual precipitation between 1,600–1,800 mm. The mean annual temperature is approximately 26.5° C. The soil is predominantly sandy loam with some scattered rocks; and this area mostly is farm and grazing land with smaller trees and brush primarily in hedgerows. The San Jacinto site is located at an elevation of approximately 175 m above MSL and has a mean annual rainfall of 1,400–1,600 mm. The mean annual temperature is approximately 26.5° C.

The soil at this site is sandy loam with scattered small rocks. This area appeared to be primarily cattle grazing land and was covered with scattered small scrub brush.

The San Cristobal (12° 40'N, 087° 02'W) study site is located within the municipality of Chinandega. It is located on the western slope of the San Cristobal volcano and has an elevation of approximately 460 m above MSL and a mean annual rainfall between 1,600–1,800 mm. Mean annual temperature at this site is approximately 25.5° C. The soil in this area is sandy loam and trapping was conducted in areas that had extensive coffee plantations with large trees scattered throughout.

Study areas within the central highlands region

Although there are few cases of human typical CL in the north and western areas of the central highlands region, the center and eastern sections contain those municipalities that reported the greatest number of human cases. Trapping sites within this region included El Cua, El Tigre, Los Mangos and Selva Negra. El Cua (13° 20'N, 085° 39'W) is located within the municipality of Cua-Bocay. This region of Nicaragua is rather mountainous and the elevations at this site ranged between 700–800 m above MSL. The mean annual rainfall is between 1,400–1,600 mm. Mean annual temperature is approximately 23.5° C. Clay soils dominate the region and land usage and coverage varies considerably. Much of the region is dominated by agricultural use including coffee and banana plantations. However parts of this municipality are covered with semideciduous broadleaf tropical forest. The trapping sites near El Cua were located in woody areas near the edges of coffee and bean fields. El Tigre (13° 04'N, 085° 45'W) is located within the municipality of El Tuma -La Dalia. The trapping site has an elevation of approximately 450 m above MSL and has a mean annual precipitation rate of 1,200–1,400 mm. The mean annual temperature is approximately 24.5° C. The soils predominantly are clay and the area consists mainly of small farms with scattered trees primarily along hedgerows and river banks.

Los Mangos (13° 26'N, 086° 35'W) is located in the northwestern part of the central highlands near the Honduras border. This trapping site has an elevation of approximately 980m above MSL and a mean annual rainfall of 1,000–1,200 mm. The mean annual temperature is approximately 22.5° C. The soil in this area is predominantly clay loam but has large rocks scattered throughout. This is very rugged, mountainous terrain and the trapping site was located in an area that had scattered evergreen pines and deciduous oak trees with small hillside farms scattered throughout.

The trapping site at Selva Negra (12° 59'N, 085° 54'W) is located within the northeast section of the municipality of Matagalpa. This trapping site also is quite mountainous and has elevations ranging from 1,200 to 1,600 m above MSL. The mean annual precipitation is between 1,200–1,400 mm and the mean annual temperature is 20.5° C. The soils within the area predominantly are clay and clay loam. This trapping site is covered in submontane evergreen tropical forest with scattered coffee plantations. **Study areas within the Atlantic lowland plains region**

This region contains several municipalities with high numbers of reported cases of human typical CL. Trapping sites within this region included El Paraisito, La Esperanzita 2, La Fonseca located in the southern region of the Atlantic lowland plains and El Balsamo and Rosa Grande located in the northern Atlantic lowland plains. This region is the wettest in the country with some areas receiving greater than 4,000 mm of mean annual rainfall.

El Balsamo (13° 39'N, 084° 58'W) and Rosa Grande (13° 38'N, 085° 08'W) are located within the municipality of Siuna. The elevation at both localities is approximately 300 m above MSL and the mean annual precipitation in both localities is 1,400–1,600 mm. The mean annual temperature is approximately 25.5° C and the soils in this region are predominantly reddish clay.

El Paraisito (11° 41'N, 084° 24'W), La Esperanzita 2 (11° 32'N, 084° 20'W) and La Fonseca (11° 34'N, 084° 22'W) are located in the municipality of Nueva Guinea. The average elevation at the El Paraisito study site is approximately 200 m above MSL and the mean annual precipitation is between 2,000–2,400 mm. The mean annual temperature is approximately 26.5° C. The soil here is predominantly brown clay. Much of the area surrounding the El Paraisito site is dotted with cattle ranches and dairy farms with 10–25% natural vegetation coverage. Areas with large trees are scattered and exist primarily along hedge rows and river banks.

The average elevation at the La Fonseca study site is approximately 175m above MSL and the mean annual precipitation is between 2,000–2,400 mm. The mean annual temperature is approximately 26.5° C. The soil predominantly is brown clay. The area around La Fonseca also contains numerous farms, cattle ranches, and dairies; but, there is considerably more natural vegetation coverage than at the El Paraisito site. It is classified as primarily agricultural usage with 25–50% natural vegetation coverage.

The La Esperanzita 2 study site is located near the southern extreme of the Nueva Guinea municipality and has an average elevation of approximately 100 m above MSL. The mean annual precipitation is between 2,400–2,800 mm and the mean annual temperature is approximately 26.5° C. The soil also is predominantly brown clay and the area is classified as evergreen broadleaf tropical forest.

Rodent trapping

Trapping localities for rodent collections were chosen after consultation with individuals within the Nicaragua Ministry of Health and were selected based on proximity to reported cases of human leishmaniasis. Rodents were collected using 12.5 x 12.5 x 38.0 cm Sherman[®] live traps (H. B. Sherman Traps Inc., Tallahassee, FL). Traps were baited with a mixture of locally-obtained fruit and/or oatmeal. Traps were placed near obvious rodent den openings, along easily-distinguishable runways of occupied rodent dens, or at the base of large trees (Fig. 12). Live-animal traps were set in the evening and collected early the next morning to reduce the exposure of rodents to heat, cold or rain. All animal work was conducted under Texas A&M University approved animal use protocol AUP #2005–75.

Tissue collection

Conditions for aseptic processing of rodent tissue were less than ideal. Rodents were transported in the traps to a central processing location which, in many cases, was the tailgate of the truck. They then were transferred from the traps into a cotton stockinette (McKesson General Medical, Richmond, VA) and weighed using a precision

Figure 12. Sherman live mammal traps placed at Selva Negra research site in the municipality of Matagalpa, Nicaragua.

spring scale. Once restrained in the cotton stockinette, the rodents then were euthanized on site by thoracic compression and immediately processed for leishmaniasis screening. After the rodents were euthanized, they then were sexed and identified to species. Two tissue samples were collected from each ear and the base of the tail of all rodents using a sterile, disposable, 2 mm biopsy punch (Sklar Instruments, West Chester, PA). The ears and tail of the rodents generally have less hair coverage and provide the most likely sight for female sand flies to feed. When lesions were present, biopsies were taken from the lesion and surrounding area. The tissue biopsies then were either placed in culture media or frozen until analysis by PCR could be accomplished. All rodents were placed in plastic storage bags and kept in a portable freezer until transfer to an appropriatelylabeled ice chest containing frozen gel packs and, ultimately transported to the United States and the research laboratory at the University of the Incarnate Word in San Antonio, Texas. The United States Centers for Disease Control and Prevention issued a permit (PHS Permit No. 2004–04–021) for the import and transfer of etiological agents and vectors of human disease pertaining to this project.

All collected rodents then were shipped to Dr. Robert Bradley at Texas Tech University, Lubbock, Texas. Dr. Bradley confirmed, or corrected the field identification of rodent species and all rodents were prepared as museum skins and deposited in the Recent Mammals Collection. Samples of muscle, heart, liver, spleen, and kidney tissue were deposited in the Vital Tissues Collection of the museum at Texas Tech University (Appendix A).

Tissue biopsy preparation and screening using culture medium

Tissue biopsies were processed in Nicaragua according to the method described by Kerr et al. (1995). The biopsy tissue was rinsed with isopropyl alcohol and wiped with alcohol swabs to remove dirt and other contaminants. The tissue then was scraped with a sterile scalpel blade to remove excess hair before freezing or placement in cell culture medium. However, there was no access to a laminar flow safety cabinet during the preparation of tissue biopsies and cultures, so bacterial and fungal contamination was a consistent problem. One biopsy from each ear and the tail was stored in a -20° C freezer until analysis by PCR. One biopsy from each ear and the tail was placed in a 500 µl microcentrifuge tube, immersed in 70% isopropyl alcohol and shaken in a vortex mixer for 15 seconds to aid in the removal of contaminants. The tissue samples then were removed from the alcohol and placed in a culture tube containing modified medium M199 (Gibco-BRL, Gaithersburg, MD) supplemented with 20% (v/v) heat-inactivated fetal bovine serum (Summit Biotechnology, Fort Collins, CO), 10mM adenine, 0.25% (v/v) bovine hemin, 50 mM HEPES buffer, 50 IU/ml penicillin, and 50 µg/ml streptomycin (pH 7.4). The tissue samples in culture medium then were stored at room temperature in Nicaragua and monitored using an inverted phase contrast microscope daily for the presence of promastigotes of Leishmania. After the culture samples were returned to the laboratory at the University of the Incarnate Word in San Antonio, they were stored in a 25° C incubator and examined a minimum of twice weekly using an inverted phase contrast microscope.
Tissue biopsy screening using polymerase chain reaction (PCR)

Tissue screening by PCR was accomplished at the laboratory in San Antonio, Texas. Tissue biopsies were prepared for PCR by placing the thawed tissue biopsy samples in 40 μ l of lysing buffer (10 mM Tris / 10 mM EDTA, pH 8.0) and incubating at 95° C for 30 minutes (Rodgers et al., 1990). The samples then were stored at -20° C until PCR could be performed on the lysate.

The PCR master mix was prepared using final concentrations of 1X PCR reaction buffer (Boehringer-Mannheim, Germany), 0.2 mM nucleotides (Boehringer-Mannheim), 1.0 μ M forward primer 13A (5'–GTGGGGGAGGGGGGGGTTCT–3') and reverse primer 13B (5'–ATTTTACACCAACCCCCAGTT–3') (Rogers et al., 1990), RNase free water, and 0.75 U/25 μ L Taq polymerase (Boehringer Mannheim). Twentythree microliters of the master mix were added to individual reaction tubes and 2 μ l of the tissue lysate then was added to each tube. The reaction tubes then were placed in a thermal cycler (Perkin Elmer, Norwalk, CT) and the PCR reactions run for 35 cycles.

Analysis of the PCR product was conducted through gel electrophoresis. A 2% ultrapure DNA grade agarose gel (Bio-Rad, Hercules, CA) was prepared using 0.5X Tris-Borate-EDTA (TBE), agarose, and ethidium bromide $(0.1\mu l / 1ml TBE)$. Two microliters of loading buffer were added to each reaction tube containing the PCR product. After completion of PCR, 10 µl from each reaction tube then was placed into the wells of the gel. A positive control, negative control (H₂O), and a 100 base pair ladder also were loaded into the gel. The positive control was prepared from known concentrations of parasites reared in culture medium. The electrophoresis apparatus was

run at 96 Volts for 1 hour. A band in the 120 base pair region indicated a positive sample.

Sand fly trapping

Insects were collected using Hock new standard miniature light traps (John W. Hock, Gainsville, FL) placed in areas near human case residences and mammal trapping sites (Fig. 13). Sand flies were killed by placing the collection receptacles in a freezer overnight and then the specimens were placed in a covered Petri dish between 2 pieces of tissue for transport. Much of the specimen collection effort took place during the rainy season and although the sand fly traps were equipped with rain hoods, often the insects would become very wet. In those instances, the collection containers were placed in a dark, dry room for a day or two prior to placing them in the freezer to kill any insects that remained alive. Sand flies were identified to species using the guide of Young and Duncan (1994). The United States Centers for Disease Control and Prevention issued a permit (PHS Permit No. 2004–04–021) for the import and transfer of etiological agents and vectors of human disease pertaining to this project.

Geographic Information System (GIS) and remote sensing

Geographic information systems, remote sensing technology, and prevalence data for the distribution of *Leishmania* species in Nicaragua were used to build GIS maps and predictive statistical models for the presence or absence of human typical CL. Prevalence data on the distribution of human cases of typical CL were obtained from Dr. Juan Jose Amador, Director of Epidemiology for the Nicaragua Ministry of Health. These data were of human typical CL reported by various health clinics within the

Figure 13. Insect trap near El Cua in the municipality of El Cua-Bocay, Nicaragua.

country. No data were available about travel history of individuals and it is unknown as to whether the leishmaniasis was contracted in the same municipality as reported. It is possible, and even probable, that some of the reported cases of CL were acquired at locations outside of the reporting municipality. However, assuming that most individuals spend the vast majority of their time near locations were they live and work, it also is likely that most cases were acquired and reported within an individual's home municipality.

GIS was used to investigate relationships between the environmental factors such as mean annual precipitation, elevation, land use and coverage, soil type, mean annual temperature and the prevalence of *Leishmania* infections. GIS maps of environmental variables including precipitation, land cover zones, mean annual temperature and soil types were obtained from Nicaraguan Ministry of Atmosphere and Natural Resources. Digital elevation data used for this analysis were acquired from a raster data set prepared by Earth Systems Research Institute Inc. (ESRI). The original remote sensing data for this elevation raster data set was compiled by the United States Geological Service's Earth Resources Observation System (USGS-EROS) digital elevation model (DEM) GTOP030 data sets of North America. Resolution of the raster data is approximately 1 km².

The GIS data obtained by the Nicaraguan Ministry of Climate and Natural Resources were provided in the form of ArcGIS shapefiles. These shapefile data were converted to raster data sets with a cell size of 1 km^2 . This was done to match the resolution of the DEM and provide consistency during data analysis. The shapefile data

59

included a base map of political boundaries, soil types, mean annual precipitation, mean annual temperature and a land use and coverage map.

The soil map of Nicaragua provided the geographic distribution of 7 categories of soil types. These included heavy clay, clay, loamy sand, sand, loam, clay loam and sandy loam. The precipitation map included 13 different zones of mean annual precipitation ranging from less than 800mm to greater than 4,000mm. The temperature map included 9 different zones of mean annual temperature ranging from 18.5° C to 27.5° C. The land use and coverage map acquired from the Nicaragua Ministry of Climate and Natural Resources included 70 ecological zones. To aid in statistical analysis and to reduce the possibility of any one category being statistically significant by random chance, similar land use/coverage classes were combined into a total of 13 classes (Table 5). The DEM was reclassified to include 11 elevation ranges from 0 to 2,000 meters above mean sea level.

Class Description Urban Area Cropland Agricultural Systems with 10–25% Natural Vegetation Agricultural Systems with 25–50% Natural Vegetation Mangroves Coastal Transition Vegetation Savannah Grassland with Deciduous Shrubs Shrubland Tropical Deciduous Broadleaf Seasonal Forest Tropical Evergreen Pine Seasonal Forest Tropical Evergreen Swamp Forest Tropical Evergreen Broadleaf Seasonal Forest

 Table 5. Nicaragua land use/cover classes used for statistical analysis

Data of human cases of typical CL were entered into the attribute table of the GIS base map of Nicaragua municipalities and displayed as numbers of cases per municipality. The shapefiles for 151 of the 152 municipalities within Nicaragua then were converted to raster format prior to analysis. The municipality of Corn Island (approximately 9 km²) was excluded from GIS analysis because environmental data were unavailable. This base map then was overlaid with the raster data sets of elevation, mean annual precipitation, mean annual temperature, soil types, and land use and coverage. Since the municipalities varied considerably in size and population, leishmaniasis case data also were normalized to municipality population and municipal area (km²) prior to analysis.

Distribution and analysis maps were developed using ArcView 9.0 and ArcGIS Spatial Analyst 8.2 software (ESRI, Redlands, CA). The zonal statistics tool of ArcGIS Spatial Analyst was used to identify the area (km²) of each of the different zones of environmental data that fell within the geographic area representing the distribution of human cases of human typical CL. The geographic coordinate system used for all GIS maps is WGS 1984 and the projected coordinate system is WGS 1984 UTM Zone 16N and the map projection is Transverse Mercator.

Statistical analysis

Binary logistic regression analysis was performed to determine the correlation of the distribution of cases of human typical CL with different environmental variables using SPSS 14.0 (Chicago, IL). Generated statistical models to predict the dichotomous outcome variable, the presence or absence of human typical CL, within a geographic

61

area were based upon all georeferenced data in order to determine the environmental factors that are the best predictors of occurrence. In statistical models built to determine predictor variables of presence or absence of human typical cutaneous leishmaniasis, the occurrence of at least 1 reported case within a municipality was used to identify that municipality as having typical CL present. The predictor variables used in this study were the total number of square kilometers within a municipality of the various classes of: elevation, mean annual precipitation, mean annual temperature, soil type, and land

statistical analysis because no environmental data were available.

Additionally, since >97% of all cases of human typical CL were reported from just 28 of 152 municipalities, binary logistic regression analysis also was performed in an attempt to identify environmental variables that are predictors of municipalities with less than 10 reported cases and municipalities with 10 or more reported cases. The municipality of Corn Island (approximately 9 km²) also was omitted from this data analysis because no environmental data were available.

RESULTS

Rodent collections

Three thousand six hundred-thirty eight trap nights resulted in the capture of 395 rodents representing 17 species between August 2001 and March 2006 at 13 localities in Nicaragua (Table 6). At the Bella Vista trapping site, 29 total rodents representing 6 species were captured and screened for *Leishmania* species. The numbers of rodents trapped by species were: 9 (31%) *Liomys salvini*, 6 (21%) *Mus musculus*, 1 (3%) *Nyctomys sumichrasti*, 2 (7%) *Ototylomys phyllotis*, 6 (21%) *Peromyscus mexicanus* and 5 (17%) *Rattus rattus*.

At the El Balsamo site, 33 total rodents representing 7 species were captured. The numbers of rodents trapped by species were: 15 (46%) *Melanomys caliginosus*, 1 (3%) *Nyctomys sumichrasti*, 2 (6%) *Oligoryzomys fulvescens*, 2 (6%) *Ototylomys phyllotis*, 4 (12%) *Proechimys semispinosus*, 4 (12%) *Scotinomys tequina* and 5 (15%) *Sigmodon hirsutus*.

At the El Cua site, 14 rodents representing 6 species were captured. The numbers of rodents trapped per species were: 2 (14%) *Melanomys caliginosus*, 3 (21%) *Mus musculus*, 1 (7%) *Oryzomys cousei*, 3 (21%) *Oryzomys alfaroi*, 3 (21%) *Peromyscus nudipes*, and 2 (14%) *Sigmodon hirsutus*.

At the El Paraisito site, 52 rodents representing 5 species were captured including 1 (2%) *Mus musculus*, 4 (8%) *Oligoryzomys fulvescens*, 4 (8%) *Oryzomys cousei*, 35 (67%) *Proechimys semispinosus*, and 8 (15%) *Sigmodon hirsutus*. At the El Tigre site, 9 rodents were captured representing 3 species including 1 (11%) *Oryzomys alfaroi*, 5

		Number Positive/Number Screened*									
		Aug	Jan	May/Jun	May	Jul	May/June	Dec	Mar	May	Mar
Location	Species	2001	2002	2002	2003	2003	2004	2004	2005	2005	2006
Bella Vista											
	Liomys salvini	0/1	-	0/8	-	-	-	-	-	-	-
	Mus musculus	0/6	-	-	-	-	-	-	-	-	-
	Nyctomys sumichrasti	-	-	0/1	-	-	-	-	-	-	-
	Ototylomys phyllotis	0/1	0/1	-	-	-	-	-	-	-	-
	Peromyscus mexicanus	-	-	0/6	-	-	-	-	-	-	-
	Rattus rattus	0/5	-	-	-	-	-	-	-	-	-
El Balsamo											
	Melanomys caliginosus	-	-	-	0/1	0/7	0/7	-	-	-	-
	Nyctomys sumichrasti	-	-	-	-	0/1	-	-	-	-	-
	Ototylomys phyllotis	-	-	-	-	0/2	-	-	-	-	-
	Proechimys semispinosus	-	-	-	0/2	-	0/2	-	-	-	-
	Oligoryzomys fulvescens	-	-	-	-	-	0/2	-	-	-	-
	Scotinomys tequina	-	-	-	-	-	0/4	-	-	-	-
	Sigmodon hirsutus	-	-		-	-	0/5	-	-	-	-
El Tigre											
	Oryzomys alfaroi	-	-	0/1	-	-	-	-	-	-	-
	Peromyscus mexicanus	-	-	0/5	-	-	-	-	-	-	-
	Sigmodon hirsutus	-	-	0/3	-	-	-	-	-	-	-
Las Marias											
	Liomys salvini	-	0/1	-	-	-	-	-		-	-

Table 6. Occurrence of *Leishmania* in rodents collected in Nicaragua, 2001–2006.

Table 6 continued.

		Number Positive/Number Screened*									
		Aug	Jan	May/Jun	May	Jul	May/Jun	Dec	Mar	May	Mar
Location	Species	2001	2002	2002	2003	2003	2004	2004	2005	2005	2006
Los Mangos											
	Liomys salvini	-	0/1	-	-	-	-	-	-	-	-
	Peromyscus mexicanus	-	0/2	-	-	-	-	-	-	-	-
Rosa Grande											
	Melanomys caliginosus	-	-	-	-	0/12	-	-	-	-	-
	Ototylomys phyllotis	-	-	-	-	0/4	-	-	-	-	-
	Peromyscus mexicanus	-	-	-	-	0/1	-	-	-	-	-
	Proechimys semispinosus	-	-	-	-	0/4	-	-	-	-	-
San Cristobal											
	Liomys salvini	-	-	0/1	-	-	-	-	-	-	-
	Nyctomys sumichrasti	-	-	0/1	-	-	-	-	-	-	-
	Ototylomys phyllotis	-	-	0/4	-	-	-	-	-	-	-
	Peromyscus mexicanus	-	-	0/2	-	-	-	-	-	-	-
	Peromyscus oaxacensis	-	-	0/20	-	-	-	-	-	-	-
San Jacinto											
	Peromyscus mexicanus	-	-	0/3	-	-	-	-	-	-	-
	Mus musculus	-	-	0/2	-	-	-	-	-	-	-

		Number Positive/Number Screened*									
		Aug	Jan	May/Jun	May	Jul	May/Jun	Dec	Mar	May	Mar
Location	Species	2001	2002	2002	2003	2003	2004	2004	2005	2005	2006
Selva Negra											
	Heteromys desmarestianus	-	0/1	1/2	0/1	-	-	-	-	-	-
	Mus musculus	0/2	-	-	-	-	-	-	-	-	-
	Nyctomys sumichrasti	0/1	-	-	-	-	-	-	-	-	-
	Oryzomys alfaroi	-	0/3	0/3		-	-	-	-	-	-
	Ototylomys phyllotis	-	0/2	0/2		-	-	-	-	-	-
	Peromyscus mexicanus	0/2	1/43	0/48	0/59	-	-	-	-	-	0/11
	Rattus rattus	0/7	0/1	-	-	-	-	-	-	-	-
	Scotinomys tequina	-	0/2	0/2	-	-	-	-	-	-	-
	Tylomys nudicaudus	-	-	-	0/1	-	-	-	-	-	-
El Paraisito											
	Oligoryzomys fulvescens	-	-	-	-	-	0/4	-	-	-	-
	Oryzomys cousei	-	-	-	-	-	0/4	-	-	-	-
	Proechimys semispinosus	-	-	-	-	-	0/26	0/5	0/2	0/2	-
	Sigmodon hirsutus	-	-	-	-	-	0/8	-	-	-	-
	Mus musculus	-	-	-	-	-	-	-	0/1	-	-
La Esperanzita 2											
	Proechimys semispinosus	-	-	-	-	-	-	0/2	-	-	-
La Fonseca											
	Proechimys semispinosus	-	-	-	-	-	-	0/5	-	-	-
El Cua											
	Melanomys caliginosus	-	-	-	-	-	-	-	-	-	0/2
	Mus musculus	-	-	-	-	-	-	-	-	-	0/3
	Oryzomys alfaroi	-	-	-	-	-	-	-	-	-	0/3
	Oryzomys cousei	-	-	-	-	-	-	-	-	-	0/1
	Peromyscus mexicanus	-	-	-	-	-	-	-	-	-	0/3
	Sigmodon hirsutus	-	-	-	-	-	-	-	-	-	0/2

Table 6 continued.

* Screening accomplished by PCR using genus specific primers

(56%) Peromyscus mexicanus and 3 (33%) Sigmodon hirsutus. One Proechimys semispinosus was captured at the La Esperanzita #2 site. At the La Fonseca site, 5 rodents were captured, all were Proechimys semispinosus. One Liomys salvini was captured at the Las Marias site. At the Los Mongos site, 3 rodents representing 3 species were captured including 1 Liomys salvini, 1 Peromyscus mexicanus and 1 Peromyscus *oaxacensis*. The Rosa Grande site produced 21 rodents representing 4 species and included 12 Melanomys caliginosus, 4 Ototylomys phyllotis, 1 Peromyscus nudipes and 4 *Proechimys semispinosus.* The San Cristobal site produced 28 rodents representing 5 species including 1 Liomys salvini, 1 Nyctomys sumichrasti, 4 Ototylomys phyllotis, 2 Peromyscus mexicanus and 20 Peromyscus oaxacensis. The San Jacinto site produced 5 rodents representing 2 species including 2 Mus musculus and 3 Peromyscus mexicanus. At the Selva Negra site, 193 rodents were captured representing 9 species including 4 Heteromys desmarestianus, 2 Mus musculus, 1 Nyctomys sumichrasti, 6 Oryzomys alfaroi, 4 Ototylomys phyllotis, 163 Peromyscus mexicanus, 8 Rattus rattus, 4 Scotinomys tequina, and 1 Tylomys nudicaudus.

Sand fly collections

Between August 2001 and March 2006, 556 sand flies were collected at 8 localities in 6 districts within Nicaragua. Five hundred sixteen sand flies were identified to species, 2 were identified to subgenus, 31 were identified only as *Lutzomyia* species, 1 was identified to the genus *Brumptomyia* and 7 were identified to group (Table 7).

A total of twenty sand flies were captured at the El Balsamo study site, including

Location	Date	Identification		Ŷ	3
El Balsamo	May 2003	Cruciata Group		6	0
		Lutzomyia sp.		1	0
		Lu. cruciata		1	4
	July 2003	Lu. cruciata		1	0
		Lu. shannoni		0	1
		Vespertilionsis Group		1	0
		Lutzomyia sp.		2	0
	May 2004	Lu. cruciata		2	0
		Lu. panamensis		1	0
			Subtotal	15	5
El Cua	March 2006	Lu. cruciata		0	1
		Lu. panamensis		0	1
			Subtotal	0	2
El Paraisito	May 2004	Lu. barrettoi majuscula		2	1
		Lu. species		2	0
	June 2004	Lu. hartmanni		0	1
		Lu. barrettoi majuscula		1	0
		Lu. species		3	1
	Mar 2005	Lu. barrettoi majuscula		1	2
		Lu. species		1	2
	May 2005	Lu. barrettoi majuscula		3	0
		Subgenus Psathyromyia		1	0
		Lu. species		1	0
	June 2005	Lu. barrettoi majuscula		0	1
			Subtotal	15	8
El Tigre	May 2002	Lu. cruciata		4	20
		Lu. longipalpis		0	3
			Subtotal	4	23
Los Mangos	January 2002	Brumptomvia sp.		0	1
Des muiges	ballaal y 2002	Lu, cruciata		23	19
		Lu. longipalpis		1	0
		2	Subtotal	24	20
Rosa Grande	July 2003	Lu. panamensis		0	2
		Subgenus Psychodopygus		1	0
			Subtotal	1	2

Table 7. Sand fly species collected in Nicaragua, 2001–2006.

Table / Conti	nued.
---------------	-------

Location	Date	Identification		9	3
San Jacinto	July 2001	Lutzomyia sp.		11	2
		Lu. cayennensis		0	1
		Lu. chiapanensis		14	5
		Subgenus Micropygomyia		2	1
		Lu. evansi		8	38
		Lu. gomezi		0	1
		Lu. longipalpis		26	60
		Lu. vesicifera		6	0
	August 2001	Lu. chiapanensis		5	2
		Lu. cruciata		9	0
		Lu. evansi		8	11
		Lu. longipalpis		11	42
		Lu. vesicifera		1	0
		Lutzomyia sp.		0	1
	January 2002	Lu. cruciata		1	3
		Lu. evansi		17	13
		Lu. longipalpis		22	109
		Lu. gomezi		1	1
		Lu. zeledoni		2	0
			Subtotal	144	290
Selva Negra	May 2003	Lutzomyia sp.		3	0
			Subtotal	3	0
			Total	206	350

Lutzomyia cruciata (4 female, 4 male), 1 *Lu. panamensis* female, and 1 *Lu. shannoni* male. Six specimens were identified as being *Lutzomyia* species within the Cruciata Group (6 female, 0 male), 1 female *Lutzomyia* species within the Vespertilionsis Group and 3 males were identified only to the Genus *Lutzomyia*.

A total of 2 sand flies were captured at the El Cua study site, including 1 *Lu*. *panamensis* male and 1 *Lu*. *cruciata* male. Twenty three specimens were captured at the

El Paraisito study site, including 11 *Lu. barrettoi majuscula* (7 female, 4 male) and 1 male *Lu. hartmanni* Fairchild and Hertig, 1957. This is a new record for *Lu. hartmanni* in Nicaragua. One female specimen was identified as belonging to the *Lutzomyia* subgenus *Psathryomyia* and 10 specimens (7 female and 3 male) were identified to the Genus *Lutzomyia* level.

A total of 27 sand flies were captured at the El Tigre site, with 24 identified as *Lu. cruciata* (4 female, 20 male) and 3 males as *Lu. longipalpis*. Traps at the Los Mangos study site collected a total of 44 sand flies. One male was identified as belonging to the Genus *Brumptomyia*, 42 (23 female, 19 male) as *Lu. cruciata* and 1 female as *Lu. longipalpis*. Traps at the Rosa Grande test site collected 3 specimens; 2 male *Lu. panamensis* and 1 female identified to the Subgenus *Psychodopygus*.

At San Jacinto, 434 sand flies were captured, including 1 *Lu. cayennensis* male, 26 (19 female, 7 male) *Lu. chiapanensis*, 13 (10 female, 3 male) *Lu. cruciata*, 95 (33 female, 62 male) *Lu. evansi*, 3 (1 female, 2 male) *Lu. gomezi*, 270 (59 female, 211 male) *Lu. longipalpis*, 7 female *Lu. vesicifera* and 2 female *Lu. zeledoni*. Three (2 female, 1 male) specimens were identified to the Subgenus *Micropygomyia* and 14 (11 female, 3 male) were identified only to the Genus *Lutzomyia*. The Selva Negra study site produced 3 specimens. The 3 males were identified to the Genus *Lutzomyia*.

General distribution of sand fly species collected in Nicaragua

Sand flies species collected during this study generally showed a distinct geographic distribution. Most species that were captured in the more arid Pacific plains region were not captured in the central highlands or Atlantic lowland plains regions and those species captured in the central highlands or Atlantic lowland plains regions were not collected during trapping within the Pacific plains regions (Table 8).

Species	Pacific Plains Region	Central Highlands and Atlantic Regions		
Lu. barrettoi majuscula	0	11		
Lu. cayennensis	1	0		
Lu. chiapanensis	26	0		
Lu. cruciata	55	33		
Lu. evansi	95	0		
Lu. gomezi	3	0		
Lu. hartmanni	0	1		
Lu. longipalpis	271	3		
Lu. panamensis	0	4		
Lu. shannoni	0	1		
Lu. vesicifera	7	0		
Lu. zeledoni	2	0		

Table 8. General distribution of sand fly species collected in Nicaragua, 2001–2006.

In vitro culture

Tissue samples from all 395 collected rodents were screened for the presence of *Leishmania* species using supplemented M199 culture medium. All cultures were negative.

PCR

Of the 395 rodents screened by PCR for the presence of *Leishmania*, 2 tested positive using genus-specific primers. The positive rodents represented 2 different species. One was a *Peromyscus mexicanus* captured on 2 January 2002 and the other was a *Heteromys desmarestianus* captured on 20 May 2002. Both of the positive rodents were collected at the Selva Negra research site located in the District of Matagalpa and both are the first records of rodents infected with *Leishmania* in Nicaragua.

Distribution of human cases of typical CL in Nicaragua

During the period from 2003 through 2005, there were a total of 5,765 reported cases of human typical cutaneous leishmaniasis throughout the entire country of Nicaragua. The bulk of the reported cases were distributed in municipalities located in the eastern half of the country (Fig. 14). Of the 152 municipalities, 78 (51.3%) reported no human cases of typical CL and 74 municipalities reported at least 1 case. The greatest number of reported cases (1,828) occurred in the municipality of El Cua-Bocay, located in the north-central region of the country within the district of Jinotega.

Twenty eight (18.3%) municipalities reported \geq 10 cases for the entire 3 year period (Fig. 15). These 28 municipalities represented 5,622 (97.5%) of the total number of human cases of typical CL reported. Additionally, of the 5,765 total cases, 5,547 (96.2%) were reported from 19 municipalities and 5,243 (90.9%) were from just 11 municipalities (Figs. 16 and 17).

Since population and size of municipalities vary greatly, maps also were produced to illustrate the geographic distribution of human typical CL based on the ratio

Figure 14. Map of the geographic distribution of all reported cases of human typical CL in Nicaragua, 2003–2005.

Figure 15. Map of the geographic distribution of 28 municipalities in Nicaragua with at least 10 reported cases of human typical CL representing 97.5% of all reported cases from 2003–2005.

Legend Typical CL Distribution 2003-05 Number of Cases 0 - 20 21 - 1828

Figure 16. Map of the geographic distribution of 19 municipalities in Nicaragua with at least 20 reported cases of human typical CL representing 96.2% of all reported cases, 2003–2005.

Figure 17. Map of the geographic distribution of 11 municipalities in Nicaragua that contained 90.9% of all reported cases of human typical CL, 2003–2005.

of reported cases to municipality population and the ratio of reported cases to the area of each municipality in square kilometers.

The number of human cases of typical CL reported per municipality population varied from 0.000 to 0.024 (Fig. 18). One hundred thirty six municipalities had a ratio of human cases to total municipality population between 0.000 and 0.001. All of the municipalities located within the Pacific plains region of the country fell within this first category. Six municipalities had a ratio of human cases to total municipality population between 0.001 and 0.003. Four municipalities had a human case per municipality population between 0.001 and 0.003. Four municipalities had a human case per municipality population ratio between 0.003 and 0.005. Three municipalities had a ratio between 0.005 and 0.015. Three municipalities had a ratio of human cases per municipality population between 0.015 and 0.024. All of the municipalities with a ratio higher than 0.001 were located within either the central highlands or Atlantic lowland plains regions. Additionally, the 3 municipalities with the highest number of reported cases per municipality population were located in the northern section of the country within the central highlands region.

The number of human cases of typical CL reported per square kilometer of municipality area varied from 0.00 to 2.20 (Fig. 19). One hundred thirty three of 152 municipalities reported fewer than 0.028 cases of typical CL per km². Fourteen municipalities reported between 0.028 and 0.127 cases per km². Three municipalities reported between 0.127 and 0.318 cases per km². One municipality reported 0.688 cases per km² and 1 municipality reported 2.280 cases per km². The 2 municipalities with the highest number of cases per km² were located within the central highlands region in

Figure 18. Map of the geographic distribution of human typical CL in Nicaragua based on the ratio of reported cases per municipality population, 2003–2005.

Figure 19. Map of the geographic distribution of typical human CL in Nicaragua based on the ratio of reported cases per municipality area (km²), 2003–2005.

northern Nicaragua.

GIS analysis of environmental and ecosystem coverage of municipalities

GIS analysis results for number of km² contained within each of the 151 municipalities analyzed for categories of elevation, mean annual precipitation, mean annual temperature, soil type and land usage/cover are found in Appendices C-F.

Statistical analysis, logistic regression models

The results of elevation, mean annual precipitation, mean annual temperature, soil types and land use/coverage predictor variables on the dependent variable of human typical CL presence or absence within a municipality initially were evaluated in separate models. The empty model (-2 Log Likelihood (LL) = 209.17, N=151), which contains only the constant in the model, identified those categories of predictor variables that may be significant in the full model (Tables 9–13). The overall statistic tests the null hypothesis (H₀) that variable coefficients included in the model are zero versus the alternative hypothesis (H_A) that model coefficients are not zero. An overall p-value \leq 0.050 indicated that the H₀ can be rejected and that 1 or more variables used in the model will improve the model's predictive power over the empty model that includes only the constant. The overall statistic for each of the full models indicated that they would be better at predicting human typical CL presence or absence within a municipality than the empty model.

	~	10	<u> </u>
Elevation Variables*	Score	df	Sig
0-100	2.965	1	0.085
100-200	15.029	1	0.000
200-400	15.641	1	0.000
400-600	8.404	1	0.004
600-800	4.686	1	0.030
800-1,000	1.399	1	0.237
1,000-1,200	0.608	1	0.436
1,200–1,400	0.065	1	0.799
1,400-2,000	0.082	1	0.774
Overall Statistics	27.084	9	0.001

Table 9. Elevation variables for Nicaragua not in the equation for the empty model. Variables with a p-value < 0.050 might be significant in the full model.

*Elevation in meters above mean sea level

Table 10. Precipitation variables for Nicaragua not in the equation for the empty model. Variables with a p-value < 0.050 might be significant in the full model.

Precipitation Variables*	Score	df	Sig
<800	3.965	1	0.046
800-900	0.912	1	0.340
900-1,000	0.589	1	0.443
1,000–1,200	0.064	1	0.800
1,200–1,400	1.823	1	0.177
1,400–1,600	2.974	1	0.085
1,600–1,800	11.436	1	0.001
1,800–2,000	3.398	1	0.065
2,000–2,400	10.365	1	0.001
2,400-2,800	7.401	1	0.007
2,800-3,200	0.439	1	0.508
3,200-4,000	3.089	1	0.079
>4,000	0.073	1	0.787
Overall Statistics	38.290	13	0.000

*Mean annual precipitation in millimeters

Temperature Variables*	Score	df	Sig
18.5	0.236	1	0.627
19.5	0.001	1	0.976
20.5	1.548	1	0.213
21.5	0.020	1	0.888
22.5	1.180	1	0.277
23.5	5.746	1	0.017
24.5	9.577	1	0.002
25.5	12.304	1	0.000
26.5	8.914	1	0.003
27.5	0.853	1	0.356
Overall Statistics	27.281	10	0.002

Table 11. Temperature variables for Nicaragua not in the equation for the empty model. Variables with a p-value < 0.050 might be significant in the full model.

*Mean annual temperatures in degrees Celsius

Table 12. Soil type variables for Nicaragua not in the equation for the empty model. Variables with a p-value < 0.050 might be significant in the full model.

Soil type variables	Score	df	Sig
Heavy Clay	0.705	1	0.401
Clay	14.275	1	0.000
Loamy Sand	1.087	1	0.297
Sandy	0.596	1	0.440
Loam	0.320	1	0.572
Clay Loam	0.546	1	0.460
Sandy Loam	0.080	1	0.777
Overall Statistics	18.288	7	0.011

Variable	Score	df	Sig
Urban Areas	1.794	1	0.180
Cropland	0.431	1	0.511
Agricultural 10-25% Natural Vegetation	16.166	1	0.000
Agricultural 25–50% Natural Vegetation	11.882	1	0.001
Mangroves	0.168	1	0.682
Coastal Transition Vegetation	0.127	1	0.721
Savannah	1.525	1	0.217
Grassland with Deciduous Shrubs	0.023	1	0.878
Shrubland	4.013	1	0.045
TDBSF&TEMSF	0.671	1	0.413
TEPSF	0.278	1	0.598
TESF	0.774	1	0.379
TEBSF	6.826	1	0.009
Overall Statistics	38.797	13	0.000

Table 13. Land use/cover variables for Nicaragua not in the equation for the empty model. Variables with a p-value < 0.050 might be significant in the full model.

TDBSF= Tropical deciduous broadleaf seasonal forest; TEMSF=Tropical evergreen mixed seasonal forest, TEPSF=Tropical evergreen pine seasonal forest; TESF=Tropical evergreen swamp forest; TEBSF=Tropical evergreen broadleaf seasonal forest.

The classification of results of observed response categories and predicted response

categories for the empty model including only the constant are shown in Table 14.

Table 14. Percentage of correct model predictions of presence and absence of hum	an
typical CL in Nicaragua by the empty model including only the constant.	

	Predicted Hum		
Observed	Absence	Presence	Percentage correct (%)
Absence	78	0	100.0
Present	73	0	0.0
Overall	_	_	51.7

Logistic regression analysis of elevation and human typical CL presence or absence

Results of the omnibus test of model coefficients indicate the model that includes all elevation variables is significantly better at predicting the presence or absence of human typical CL than the empty model that includes only the constant (-2 LL = 160.38, $\chi^2 = 48.79$, df = 9, P = 0.000). The Hosmer-Lemeshow test ($\chi^2 = 12.509$, df = 8, P = 0.130) indicates that the model adequately fits the data. The R² values for Cox and Snell and Nagelkerke were 0.276 and 0.368 respectively.

The model's ability to predict membership of municipalities within either of the 2 groups of the outcome variable (presence or absence) is summarized in Table 15. The model was correctly able to classify 65 of 78 (83.3%) municipalities as not having human typical CL and correctly able to classify 41 of 73 (56.2%) municipalities as having presence of human typical CL. Overall, with the inclusion of elevation predictor variables, the model correctly identified 70.2% of municipalities with regard to presence or absence of typical CL. This was an improvement over the 51.7% correctly predicted in the empty model.

Table 15. Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with only the constant and elevation variables included in the model.

	Predicted Hur		
Observed	Absence	Presence	Percentage correct
			(%)
Absence	65	13	83.3
Present	32	41	56.2
Overall	_	_	70.2

Statistical analysis results of the full model including all elevation predictor variables are summarized in Table 16. The only elevation predictor variable that was significant at the 95% CI was the range of 100–200 m above MSL. However, the elevation range from 600–800 m above MSL with a p-value of 0.054 is just outside the significant range.

Table 16. Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on all elevation predictor variables.

Elevation Variable*	В	SE	Wald	df	Sig	Exp(B)
0-100	0.000	0.000	0.613	1	0.433	1.000
100-200	0.007	0.002	8.922	1	0.003	1.007
200-400	0.002	0.002	1.469	1	0.226	1.002
400-600	0.002	0.003	0.628	1	0.432	1.002
600-800	0.010	0.005	3.710	1	0.054	1.010
800-1,000	-0.005	0.011	0.228	1	0.633	0.995
1,000-1,200	0.018	0.014	1.616	1	0.204	1.019
1,200-1,400	-0.026	0.027	0.916	1	0.339	0.974
1,400-2,000	-0.014	0.054	0.071	1	0.789	0.986
Constant	-1.453	0.323	20.207	1	0.000	0.234

* Elevation ranges in meters above mean sea level

Logistic regression analysis of precipitation and human typical CL presence or absence

Results of the omnibus test of model coefficients indicate the model that includes all precipitation variables is significantly better at predicting the presence or absence of human typical CL than the empty model that includes only the constant (-2 LL = 150.59 $\chi^2 = 58.58$, df = 13, P = 0.000). The Hosmer-Lemeshow test ($\chi^2 = 8.27$, df = 8, P = 0.407) indicates that the model adequately fits the data. Values for R² for Cox and Snell and Nagelkerke tests were 0.322 and 0.429 respectively. The model's ability to predict membership of municipalities within the 2 groups of the outcome variable (presence or absence) is summarized in Table 17. The model was correctly able to classify 68 of 78 (87.2%) municipalities as not having typical CL and correctly able to classify 49 of 73 (67.1%) municipalities as having presence of typical CL. Overall, with the inclusion of all precipitation predictor variables, the model correctly identified 77.5% of municipalities with regard to presence or absence of human typical CL. This was an improvement over the 51.7% correctly predicted in the empty model and the 70.2% correctly predicted by the model including all elevation predictor variables.

Table 17. Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with the constant and precipitation variables included in the model.

	Predicted Huma	_	
Observed	Absence	Presence	Percentage correct (%)
Absence	68	10	87.2
Present	24	49	67.1
Overall	—	—	77.5

Statistical analysis results of the full model including all precipitation predictor variables are summarized in Table 18. Three mean annual precipitation predictor variables were significant at the 95% CI: 900–1,000 mm, 1,200–1,400 mm, 1,600–1,800 mm and 2,000–2,400 mm.

variables.						
Variable	В	SE	Wald	df	Sig	Exp(B)
<800	-0.050	0.090	0.303	1	0.582	0.951
800-900	-0.001	0.003	0.060	1	0.806	0.999
900-1,000	0.007	0.003	5.009	1	0.025	1.007
1,000-1,200	0.000	0.002	0.021	1	0.885	1.000
1,200-1,400	0.006	0.002	5.674	1	0.017	1.006
1,400-1,600	0.009	0.001	0.106	1	0.745	1.000
1,600-1,800	0.007	0.004	4.988	1	0.026	1.009
1,800-2,000	-0.001	0.004	0.103	1	0.748	0.999
2,000-2,400	0.007	0.004	4.128	1	0.042	1.007
2,400-2,800	0.002	0.001	1.852	1	0.174	1.002
2,800-3,200	0.000	0.000	0.130	1	0.718	1.000
3,200-4,000	0.005	0.003	3.475	1	0.062	1.005
>4,000	-0.004	0.000	1.107	1	0.293	0.996
Constant	-1.387	0.346	16.059	1	0.000	0.250

Table 18. Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on precipitation variables.

Logistic regression analysis of temperature and human typical CL presence or absence

Results of the omnibus test of model coefficients indicate the model that includes all temperature variables is significantly better at predicting the presence or absence of human typical CL than the empty model that includes only the constant (-2 LL = 169.81, $\chi^2 = 39.35$, df = 10, *P* = 0.000). The Hosmer-Lemeshow test ($\chi^2 = 9.76$, df = 8, P = 0.283) indicated that the model adequately fits the data. Values for R² for Cox and Snell and Nagelkerke tests were 0.299 and 0.306, respectively.

The model's ability to predict membership of municipalities within the 2 groups of the outcome variable (presence or absence) is summarized in Table 19. The model was correctly able to classify 66 of 78 (84.6%) municipalities as not having typical CL and correctly able to classify 46 of 73 (63.0%) municipalities as having presence of typical CL. Overall, with the inclusion of all mean annual temperature predictor variables, the model correctly identified 74.2% of municipalities with regard to presence or absence of human typical CL.

Table 19. Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua, with the constant and temperature variables included in the model.

	Predicted Huma		
Observed	Absence	Presence	Percentage correct (%)
Absence	66	12	84.6
Present	27	46	63.0
Overall	_	_	74.2

Statistical analysis results of the full model including all temperature predictor variables are summarized in Table 20. Only the mean annual temperature variable of 26.5° C was significant at the 95% CI.

Table 20. Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on mean annual temperature variables in degrees Celsius.

Variable	В	SE	Wald	df	Sig	Exp(B)
Temperature 18.5	-2.562	2.252	1.294	1	0.255	0.077
Temperature 19.5	0.005	0.280	0.000	1	0.985	1.005
Temperature 20.5	0.089	0.080	1.221	1	0.269	1.093
Temperature 21.5	-0.058	0.033	3.129	1	0.077	0.944
Temperature 22.5	0.026	0.016	2.476	1	0.116	1.026
Temperature 23.5	0.002	0.006	0.125	1	0.723	1.002
Temperature 24.5	0.001	0.005	0.081	1	0.775	1.001
Temperature 25.5	0.003	0.002	3.348	1	0.067	1.003
Temperature 26.5	0.001	0.000	6.174	1	0.013	1.001
Temperature 27.5	-0.001	0.002	0.262	1	0.608	0.999
Constant	-0.984	0.287	11.745	1	0.001	0.374

Logistic regression analysis of soil types and human typical CL presence or absence

Results of the omnibus test of model coefficients indicate the model that includes all soil type variables is significantly better at predicting the presence or absence of human typical CL than the empty model that includes only the constant (-2 LL = 184.15, $\chi^2 = 25.016$, df = 7, P = 0.001). The Hosmer-Lemeshow test ($\chi^2 = 13.02$, df = 8, P = 0.111) indicated that the model adequately fits the data. Values for R² for Cox and Snell and Nagelkerke tests were 0.153 and 0.204, respectively.

The model's ability to predict membership of municipalities within the 2 groups of the outcome variable (presence or absence) is summarized in Table 21. The model was correctly able to classify 65 of 78 (83.3%) municipalities as not having typical CL and correctly able to classify only 34 of 73 (46.6%) municipalities as having presence of typical CL. Overall, with the inclusion of all soil type predictor variables, the model correctly identified just 65.6% of municipalities with regard to presence or absence of human typical CL.

Table 21. Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with the constant and soil type variables included in the model.

_	Predicted Hum	an Typical CL	
Observed	Absence	Presence	Percentage correct (%)
Absence	65	13	83.3
Present	39	34	46.6
Overall	_	_	65.6

Statistical analysis results of the full model including all soil type predictor variables are summarized in Table 22. Only the predictor variable of clay soils was significant at the 95% CI.

Variable	В	SE	Wald	df	Sig	Exp(B)
Heavy Clay	0.002	0.002	1.496	1	0.221	1.002
Clay	0.001	0.000	10.352	1	0.001	1.001
Loamy Sand	-0.011	0.012	0.830	1	0.362	0.989
Sandy	0.142	0.237	0.358	1	0.549	1.152
Loam	0.001	0.004	0.110	1	0.740	1.001
Clay Loam	0.001	0.001	0.174	1	0.676	1.001
Sandy Loam	0.003	0.005	0.411	1	0.521	1.003
Constant	-0.751	0.298	6.336	1	0.012	0.472

Table 22. Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on soil type variables used in the model.

Logistic regression analysis of land cover/use types and human typical CL presence or absence

Results of the omnibus test of model coefficients indicate the model that includes all land use/coverage predictor variables is significantly better at predicting the presence or absence of human typical CL than the empty model that includes only the constant (-2 LL = 155.27, χ^2 = 53.891, df = 13, *P* = 0.000). The results of the Hosmer-Lemeshow test (χ^2 = 6.88, df = 8, *P* = 0.549) indicated that the model adequately fits the data. Values for R² for Cox and Snell and Nagelkerke tests were 0.300 and 0.400 respectively.

The model's ability to predict membership of municipalities within the 2 groups of the outcome variable (presence or absence) is summarized in Table 23. The model was correctly able to classify 67 of 78 (85.9%) municipalities as not having typical CL and correctly able to classify only 49 of 73 (67.1%) municipalities as having presence of typical CL. Overall, with the inclusion of all land use/coverage predictor variables, the model correctly identified 76.8% of municipalities with regard to presence or absence of human typical CL.

Table 23. Percentages of correct model predictions of presence and absence of human typical CL within municipalities in Nicaragua; with the constant and land use/coverage variables included in the model.

Observed	Absence	Presence	Percentage correct
			(%)
Absence	67	11	85.9
Presence	24	49	67.1
Overall	-	_	76.8

Statistical analysis results of the full model including all land use/coverage predictor variables are summarized in Table 24. Three predictor variables of land use/coverage were significant at the 95% CI: Agricultural systems with 10–25% natural vegetation, and tropical evergreen broadleaf seasonal forests showed a significant positive correlation while tropical evergreen seasonal pine forests showed a significant negative correlation.

The sensitivity and specificity comparison analysis of all predictive models for the presence or absence of human typical CL are summarized in Table 25.
В	SE	Wald	df	Sig	Exp(B)
0.067	0.078	0.735	1	0.391	1.069
0.005	0.003	2.568	1	0.109	1.005
0.004	0.001	7.724	1	0.005	1.004
0.002	0.001	3.060	1	0.080	1.002
-0.009	0.011	0.658	1	0.417	0.991
-0.005	0.006	0.659	1	0.417	0.995
0.008	0.006	1.829	1	0.176	1.008
-0.005	0.005	0.961	1	0.327	0.995
0.021	0.011	3.497	1	0.061	1.021
0.001	0.003	0.199	1	0.655	1.001
-0.003	0.001	3.888	1	0.049	0.997
-0.001	0.002	0.186	1	0.666	0.999
0.002	0.001	4.005	1	0.045	1.002
-1.404	0.322	19.049	1	0.000	0.246
	B 0.067 0.005 0.004 0.002 -0.009 -0.005 0.008 -0.005 0.021 0.001 -0.003 -0.001 0.002 -1.404	BSE0.0670.0780.0050.0030.0040.0010.0020.001-0.0090.011-0.0050.0060.0080.006-0.0050.0050.0210.0110.0010.003-0.0030.001-0.0040.0020.0050.001-1.4040.322	B SE Wald 0.067 0.078 0.735 0.005 0.003 2.568 0.004 0.001 7.724 0.002 0.001 3.060 -0.009 0.011 0.658 -0.005 0.006 0.659 0.008 0.006 1.829 -0.005 0.005 0.961 0.021 0.011 3.497 0.001 0.003 0.199 -0.003 0.001 3.888 -0.001 0.002 0.186 0.002 0.001 4.005 -1.404 0.322 19.049	BSEWalddf0.0670.0780.73510.0050.0032.56810.0040.0017.72410.0020.0013.0601-0.0090.0110.6581-0.0050.0060.65910.0080.0050.9611-0.0050.0050.96110.0210.0113.49710.0010.0030.1991-0.0030.0013.8881-0.0040.0020.18610.0020.0014.0051-1.4040.32219.0491	BSEWalddfSig0.0670.0780.73510.3910.0050.0032.56810.1090.0040.0017.72410.0050.0020.0013.06010.080-0.0090.0110.65810.417-0.0050.0060.65910.4170.0080.0061.82910.176-0.0050.0050.96110.3270.0210.0113.49710.0610.0010.0030.19910.655-0.0030.0013.88810.049-0.0010.0020.18610.6660.0020.0014.00510.045-1.4040.32219.04910.000

Table 24. Coefficients and goodness of fit of logistic binary model predicting presence and absence of human typical CL in Nicaragua based on land use/coverage predictor variables.

Table 25. Sensitivity and specificity of all models for presence or absence of human typical CL in Nicaragua.

Predictor Variable Used	Sensitivity (%)	Specificity (%)	Overall (%)
Elevation	56.2	83.3	70.2
Precipitation	67.1	87.2	77.5
Temperature	63.0	84.6	74.2
Soil Type	46.6	83.3	65.6
Land Use/Cover	67.1	85.9	76.8

Logistic regression analysis of combinations of predictive environmental variables

Logistic regression analysis also was performed pair wise among all possible combinations of the predictor variables: elevation, precipitation, temperature, soil types and land use/cover. The models containing the combined variables of elevationtemperature, elevation-soil type, elevation-land cover/use, temperature-soil type were less efficient at identifying the presence or absence of typical cutaneous leishmaniasis within a municipality than the model containing precipitation data alone. The 2 models containing the combined variables of precipitation-land cover and temperature-land cover were rejected due to Hosmer-Lemeshow test statistics of P=0.000 and P=0.024, respectively that indicated that the models do not adequately fit the data. The remaining 4 pair wise combinations of environmental predictor variables, elevation-precipitation, precipitation-temperature, precipitation-soil type and soil type-land cover/use did slightly improve upon the 77.5% percent of municipalities identified as having presence or absence of typical CL in the model containing mean annual precipitation variables alone. However, these four models were rejected based on evaluation of Peterson correlation coefficients which indicated severe co-linearity between the predictor variables.

Logistic regression analysis of the environmental predictor variables and occurrence of < 10 or ≥ 10 cases of human typical CL

Overall 97.5% of all reported cases of human typical CL occurred within 28 municipalities that reported 10 or more cases from 2003–2005. Logistic regression results of the predictor variables of elevation, mean annual precipitation, mean annual

temperature, soil types and land use/coverage on the dichotomous dependent variable of <10 reported cases and \geq 10 reported cases were evaluated.

The empty model (N = 151, -2 Log Likelihood (LL) = 144.82), containing only the constant, identified those predictor variables that may be significant in the full model. Again, the null hypothesis (H_0) that predictor variable coefficients used in the model are zero versus the alternative hypothesis (H_A) that 1 or more predictor variables used in the model will improve the model's predictive power over the constant coefficient alone is tested. The H_o is rejected at an overall statistic p-value of ≤ 0.050 . The overall test statistics for variables not in the empty model were: elevation variable coefficients P = 0.000, mean annual precipitation coefficients P = 0.000, mean annual temperature coefficients P = 0.000, soil type coefficients P = 0.000 and land use/cover coefficients P = 0.000. This indicated that all models using environments predictor variables had 1 or more predictor variables that significantly improved the model's predictive power over the empty model including only the constant. However, only the model including land use/cover predictor variables displayed an ability to correctly predict the occurrence of ≥ 10 reported cases of typical CL within a municipality greater than 50% of the time. Only the results of the full model including land use/cover classes of predictor variables are presented. The empty model classification of municipalities as having < 10 or ≥ 10 cases typical human CL is summarized in Table 26.

	Predicted Human Typical CL		
Observed	< 10	≥ 10	Percentage correct (%)
< 10	123	0	100.0
≥ 10	28	0	0.0
Overall	—	_	81.5

Table 26. Percentage of correct predictions of < 10 or ≥ 10 cases of human typical CL in Nicaragua by the empty model including only the constant.

Results of the omnibus test of model coefficients indicate the full model that includes all land use/cover variables is significantly better at predicting the occurrence of < 10 or \ge 10 cases of human typical CL than the empty model that includes only the constant (-2 LL = 57.04, χ^2 = 87.78, df = 13, *P* = 0.000). The Hosmer-Lemeshow test (χ^2 = 3.13, df = 8, *P* = 0.926) indicates that the model adequately fits the data. The R² values for Cox and Snell and Nagelkerke were 0.441 and 0.715 respectively.

The model's ability to predict membership of municipalities within the 2 groups of the outcome variable (< 10 or \geq 10 cases of typical CL) is summarized in Table 27. The model was correctly able to predict 119 of 123 municipalities as having less than 10 cases of typical CL and correctly able to identify 20 of 28 municipalities as having 10 or more reported cases of typical CL. The overall percentage correct predicted by the model of 92.1% is an improvement over the 81.5% correctly predicted by the empty model. Four land use/cover predictor variable classes were significant at the 95% CI: cropland, agricultural use with 10–25% natural vegetation, agricultural use with 25–50% natural vegetation, and tropical evergreen broadleaf forest (Table 28).

Table 27. Percentages of correct model predictions of < 10 or ≥ 10 cases of typical CL within municipalities in Nicaragua; with the constant and land use/coverage variables included in the model.

	Predicted Hu			
Observed	< 10 Cases	\geq 10 Cases	Percentage correct (%)	
< 10 Cases	119	4	96.7	
\geq 10 Cases	8	20	71.4	
Overall	-	-	92.1	

Table 28. Coefficients and goodness of fit of logistic model predicting < 10 or \geq 10 cases of typical CL in Nicaragua based on land cover/use predictor variables.

Variable	В	SE	Wald	df	Sig	Exp(B)
Urban Areas	-0.188	0.360	0.272	1	0.602	0.829
Cropland	0.019	0.006	9.155	1	0.002	1.019
Agricultural 10-25% Natural Vegetation	0.002	0.001	3.940	1	0.047	1.002
Agricultural 25-50% Natural Vegetation	0.006	0.002	10.482	1	0.001	1.006
Mangroves	-0.340	0.325	1.095	1	0.295	0.377
Coastal Transition Vegetation	-0.257	0.146	1.149	1	0.284	0.642
Savannah	0.339	0.351	0.930	1	0.335	1.403
Grassland with Deciduous Shrubs	-0.044	0.027	2.627	1	0.102	0.957
Shrubland	0.008	0.006	1.631	1	0.202	1.008
Tropical Deciduous Broadleaf Forest	0.002	0.006	0.158	1	0.691	1.002
Tropical Evergreen Pine Forest	-0.114	0.131	0.758	1	0.758	0.892
Tropical Evergreen Swamp Forest	0.002	0.006	.0082	1	0.082	1.002
Tropical Evergreen Broadleaf Forest	0.003	0.001	8.216	1	0.004	1.003
Constant	-4.382	0.861	25.915	1	0.000	0.012

Forest degradation from 1983 to 2000 and the distribution of human cases of typical CL

Most of the 28 municipalities that included 97.5% of the reported cases of human typical CL during the period 2003–2005 also showed a large loss of forest cover between the years 1983 and 2000. Maps of these 28 municipalities, when overlaid with maps of the extent of forest degradation, clearly demonstrate that the vast majority of reported cases of human typical CL were from municipalities where significant forest degradation has occurred over the past 2 decades (Fig. 20).

Temporal distribution of reported cases of human typical CL for the period 2003–2005

Analysis of the temporal distribution of typical human CL for the period from 2003 to 2005 showed that there was an increase in the average number of the weekly reported cases by municipality from approximately late May through early July. The peak average occurred in the twenty-third week of the year with 134 reported cases. This period roughly corresponds with the beginning of the rainy season throughout Nicaragua. The lowest average number of reported cases for the data period available occurred from approximately October through January and falls within the yearly dry season (Fig. 21).

Figure 20. Twenty-eight municipalities representing 97.5% of reported cases of typical human CL for the years 2003–2005; overlaid onto forest coverage maps from the years 1983 and 2000.

Figure 21. Chart of the average number of reported cases of human typical CL in Nicaragua by week for the 3 year period from 2003–2005.

DISCUSSION

Overview

Human leishmaniasis in Nicaragua occurs in 3 primary clinical forms: visceral, mucocutaneous, and cutaneous leishmaniasis. Cutaneous leishmaniasis in Nicaragua is manifested by 2 distinct disease syndromes, ulcerative typical CL and non-ulcerative atypical CL. The vast majority of human cases within the more arid regions of the Pacific plains are atypical cutaneous leishmaniasis caused by *L*. (*L*.) *chagasi* (Belli et al., 1999). In the wetter, rural regions of the central highlands and the Atlantic lowland plains, the predominant form of the disease is typical cutaneous leishmaniasis and it is most likely a result of infections with *L*. (*L*.) *panamensis* and to a lesser extent *L*. (*V*.) *braziliensis* (Belli et al. 1994).

Typical CL, as well as other clinical manifestations associated with human infection with *Leishmania*, tends to display a focal geographic distribution. Within these foci, conditions must exist that allow for the coming together of principle players in the transmission cycle. *Leishmania* species are obligate heteroxenous parasites; requiring that suitable reservoirs and vectors coexist within an ecological habitat. Humans typically enter the equation as incidental hosts (Ashford, 1996).

Sand flies are notorious poor fliers, so human infections result when individuals live, work or travel within areas where natural transmission cycles exist. Little is known of the natural reservoir vector systems responsible for the maintenance and transmission of *Leishmania* species that cause human typical cutaneous leishmaniasis in Nicaragua. No proven reservoirs or sand fly vectors have been described. In fact, little is known about the distribution of rodent species within the various geographic areas of the country. This study attempted to explore the potential reservoir hosts and sand fly vectors within natural systems at 13 study localities in diverse environmental regions of Nicaragua, as well as the environmental factors that correlate with the distribution of reported human cases of typical CL.

Additionally, since the distribution of *Leishmania* species and the various clinical diseases that they cause clearly occur in different and distinct geographical regions of Nicaragua, this study attempted to identify various environmental factors that correlate with areas where human typical CL is predominant.

Rodent collections within the central highlands region, Selva Negra

This study identified 2 rodents that tested positive by PCR for infection with *Leishmania*. These are the first records of *Leishmania* identified in rodents captured in Nicaragua. The positive rodents included 1 *Peromyscus mexicanus* captured in January 2002 and 1 *Heteromys desmarestianus* captured in May 2002; both positive specimens were collected at the Selva Negra study site. *Heteromys desmarestianus* previously has been implicated as a potential reservoir host of *Leishmania* (*L.*) *mexicana* in Belize where it is considered to be a very common species (Lainson and Strangways-Dixon, 1964; Disney, 1964; Zeledon et al., 1977). *Heteromys desmarestianus* also has been shown to be a host of *Leishmania* (V.) *panamensis* in Costa Rica (Zeledon et al., 1977). A related species of *Peromyscus mexicanus*, *P. yucatanicus*, has been found to be a host and potential reservoir of *Leishmania* (*L.*) *mexicana* in Mexico (Chable-Santos et al., 1995; Canto Lara et al., 1999).

Although the percentage (25%) of infected *H. desmarestianus* individuals captured during this study at Selva Negra fulfilled the WHO criteria of infected population proportion for establishing a species as reservoir host, the total number of *H. desmarestianus* collected was quite small. Of the 193 total rodents representing 10 species which were captured at Selva Negra, just 4 *H. desmarestianus* were captured. Assuming that *H. desmarestianus* has equal affinity for entering the traps as other captured species, it is unlikely that *H. desmarestianus* is sufficiently abundant at the Selva Negra locality to serve as the primary reservoir for *Leishmania*. Also of note, the Selva Negra site was the only locality in which *H. desmarestianus* were captured. This would indicate that *H. desmarestianus* is insufficiently dispersed and abundant to serve as a widespread host of *Leishmania* in Nicaragua.

Peromyscus mexicanus appear to be abundantly common within the Selva Negra study site, and were by far the most frequently captured. Of 193 rodents collected, 163 (84.5%) were identified as *P. mexicanus*. This satisfies an additional criterian established by the World Health Organization for incrimination of a reservoirs host in that this species is sufficiently abundant to serve as a common source of blood meals for sand flies (WHO, 1990). However, the proportion of infected individuals captured was low 1/162 (0.6%). The low rate of infection among captured individuals may be indicative of a low infection rate within the entire population, which would suggest that *P. mexicanus* is unlikely to be a significant reservoir of *Leishmania*. Alternatively, given that infections of reservoir hosts with *Leishmania* species tend to be highly focal in nature and that *Leishmania* infection was found to be present within the population, it

is quite possible that *P. mexicanus* does contribute some role as a reservoir host and the primary focus of infections is, as of yet, undiscovered. *Peromyscus mexicanus* also is widespread throughout much of Nicaragua; this species was captured in 8 of the 13 study sites.

Although P. mexicanus and H. desmarestianus were the only species identified as having Leishmania infections at the Selva Negra study site, 3 other captured species or genera have been shown to be suitable hosts of *Leishmania* species that cause typical human cutaneous leishmaniasis elsewhere. These include Nyctomys sumichrasti, Oryzomys sp., and Ototylomys phyllotis. Nyctomys sumichrasti has been demonstrated to be a host of Leishmania (L.) mexicana in Mexico and Belize (Disney, 1964; Lainson and Strangways-Dixon, 1964; Chable-Santos et al., 1995). A number of species within the genus Oryzomys have been found to be hosts of parasites within the Leishmania mexicana Complex at localities in Mexico, Central and South America (Herrer et al., 1973; Lainson and Shaw, 1992; Chable-Santos et al., 1995; Kerr et al., 2006; Rotureau, 2006). Additionally, *Leishmania* (V.) *braziliensis* has been identified or isolated from at least 3 species of Oryzomys in Brazil (Lainson and Shaw, 1969; Forattini et al., 1972; Forattini et al., 1973; Oliveira et al., 2005). Ototylomys phyllotis is a host of Leishmania (L.) mexicana in Belize, Guatemala, and Mexico (Chable-Santos et al., 1995; Lainson and Strangways-Dixon, 1964; Disney, 1968; Zeledon, 1985).

The relatively low numbers of individuals within these 3 genera that were captured at the Selva Negra study site are perhaps an indicator that they may not be a reservoir host of *Leishmania* here. However, all have been incriminated as suitable hosts for parasites within the *Leishmania* (*L*.) *mexicana* Complex at other localities and cannot be ruled out as playing at least some role in the host-vector transmission cycle. Although the only rodents that were identified as being infected with *Leishmania* parasites during this study were captured at the Selva Negra research site, useful information about the occurrence and distribution of rodent species that may serve as potential hosts and reservoirs was obtained.

One additional species, *Rattus rattus*, was captured at the Selva Negra research site and it has been shown to be a potential host of *Leishmania* in South America. Parasites within the *L*. (*V*.) *donovani* Complex were identified in 1 *R. rattus* in a focus of visceral leishmaniasis in Venezuela (Zulueta et al., 1999). *Leishmania* (*V*.) *braziliensis* and *L*. (*L*.) *mexicana* also have been identified in *Rattus rattus* in Brazil, Columbia, and Venezuela (Alexander et al., 1998; De Lima et al., 2002; Brandao-Filho et al., 2003; Oliveira et al., 2005). Although it is possible that *Rattus rattus* serve some role in the transmission cycle involving humans, the only specimens captured in Nicaragua were from within residences. No specimens were captured in the wild and it is doubtful that this species plays a major role in the natural sylvatic transmission cycle in Nicaragua.

Rodent collections within the central highlands region; El Cua and El Tigre

Although the only positive rodents captured during this study were from the Selva Negra site, rodent collections at other sites identified species that were present and perhaps provide insight into species that are most likely to serve as natural reservoirs of *Leishmania*. A number of these species have been identified as suitable hosts of *Leishmania* elsewhere. The 3 species captured at El Tigre, *Oryzomys alfaroi*, *Peromyscus mexicanus*, and *Sigmodon hirsutus* also were captured at El Cua. Three additional species were collected at El Cua; *Melanomys caliginosus*, *Mus musculus*, and *Oryzomys cousei*. *Oryzomys* and *Peromyscus* also were captured at Selva Negra and have been implicated as reservoirs of *Leishmania* as mentioned previously. *Melanomys caliginosus* were captured at El Cua and it has been found to be a potential host of *L*. (*V*.) *braziliensis* in Columbia (Alexander et al., 1998). *Sigmodon hirsutus* were collected from both localities and this genus has been shown to be a suitable host for *L*. (*L*.) *mexicana* in Belize and Mexico (Disney, 1968; Chable-Santos et al., 1995). De Lima et al. (2002) identified *L*. (*V*.) *braziliensis* within *Sigmodon* in Venezuela.

Rodent collections within the Atlantic lowland plains (north); El Balsamo and Rosa Grande

The 4 species of captured rodents at the Rosa Grande site, *Melanomys caliginosus*, *Ototylomys phyllotis*, *Peromyscus mexicanus* and *Proechimys semispinosus*, also were captured the El Balsamo site. The El Balsamo site also produced *Nyctomys sumichrasti*, *Oligoryzomys fulvescens*, *Scotinomys tequina*, and *Sigmodon hirsutus*. *Leishmania* infections have been reported previously in all but *Scotinomys tequina*. In addition to those species previously discussed, *Oligoryzomys* spp. and *Proechimys* spp. also have been identified has suitable hosts of *Leishmania*. *Oligoryzomys* spp. was reported to be a putative reservoir of *L*. (*L*.) *amazonensis* in Bolivia (Telleria et al., 1999). *Proechimys* spp. has been implicated as a host in a number of studies in Brazil, Columbia, French Guiana, and Panama (Lainson and Shaw, 1968; Herrer et al., 1973, Dedet et al., 1989; Travi et al., 1998). *Melanomys caliginosus* was the most commonly captured species at both the El Balsamo and Rosa Grande study sites and it has been implicated as a possible host of *L*. (*V*.) *braziliensis* in Columbia (Alexander et al., 1998). This species represented 12 of 21 individuals captured at Rosa Grande and 15 of 33 individuals captured at El Balsamo. Its relative abundance at both areas makes it a good candidate for a suitable reservoir. **Rodent collections within the Atlantic lowland plains (south); El Paraisito, La Esperanzito 2, and La Fonseca**

Five species of rodents were captured at the El Paraisito study site. These included *Oligoryzomys fulvescens*, *Oryzomys cousei*, *Proechimys semispinosus*, *Sigmodon hirsutus*, and *Mus musculus*. As previously mentioned, all of these have been implicated as hosts of *Leishmania*, with the exception of *Mus musculus*. *Proechimys semispinosus* was by far the most commonly-captured species at these localities. This species represented 35 of 52 rodents captured at El Paraisito. Two rodents were captured at La Esperanzita 2 and 5 at La Fonseca; all were *Proechimys semispinosus*. This species appears to be widespread and abundant in this region of Nicaragua. Giving its relative abundance and its implication as a reservoir host of *Leishmania* in several countries in Central and South America, *Proechimys* is a likely reservoir candidate in this region of Nicaragua and deserves further study.

Rodent collections in areas where atypical cutaneous leishmaniasis is predominant

Very few cases of typical CL (< 3%) have been reported from the Pacific plains region of western Nicaragua. Most municipalities within this region reported 0 cases for the 2003–2005 time period of this study, and no municipality reported more than 3 cases of typical human CL. The predominant form of leishmaniasis in this region is reported to be atypical CL; and it is associated with *Leishmania* (*L*.) *chagasi*, the same species that is known to cause visceral leishmaniasis (Belli et al., 1999). *Leishmania* (*L*.) *chagasi* and its primary sand fly vectors (*Lu. longipalpis* and *Lu. evansi*) have been demonstrated to exhibit a peridomestic transmission cycle with canids serving as the major reservoir hosts (Morrison et al., 1993). This differs from the primarily sylvatic vector-reservoir systems associated with the causative agents of typical cutaneous leishmaniasis. To my knowledge, no studies in Nicaragua have isolated *L*. (*L*.) *chagasi* from domestic or wild canids; but, it is likely dogs serve as a primary reservoir host here.

Because the reported numbers of human cases of typical CL are low within the Pacific plains region of Nicaragua and data received from the Ministry of Health only included human cases seen within local clinics, it is impossible to discern if the disease was contracted within the reporting municipality or acquired elsewhere. It is likely that some of these infections were acquired at foci within the central highlands or Atlantic lowlands plains and then treated and reported in another municipality. However, typical cutaneous leishmaniasis transmission cycles endemic to the Pacific plains regions cannot be ruled out and potential reservoirs and vectors within this region were explored.

Rodent collections within the Pacific plains region; Bella Vista

Of the 29 rodents representing 6 species collected at the Bella Vista study site, 4 species have been identified as suitable hosts of *Leishmania*. These included the previously mentioned *Nyctomys sumichrasti*, *Ototylomys phyllotis*, *Peromyscus mexicanus*, and *Rattus rattus*. Only 1 *Nyctomys sumichrasti* and 2 *Ototylomys phyllotis*

107

were captured, indicating that they may not be of sufficient abundance to serve as a suitable reservoir. Again, all of the *Rattus rattus* (5) were captured in human dwellings and are probably not a significant contributor to maintenance of the parasite within its natural system. *Peromyscus mexicanus* appears to be fairly common in this area as they represented 6 of the 29 individuals captured. Its relatively high abundance and the fact that *Peromyscus* has been identified as a reservoir of *Leishmania* in Mexico (Chable-Santos et al., 1995; Canto Lara et al., 1999) make it the most likely candidate for a potential reservoir host here. The most frequently captured species was *Liomys salvini* (9 of 29), and it has not previously been implicated as a host of *Leishmania*.

Rodent collections within the Pacific plains region; San Cristobal

Of the 28 rodents representing 5 species captured at the San Cristobal study site, 2 species and 1 genus have been identified as suitable hosts of *Leishmania*. *Nyctomys sumichrasti* and *Ototylomys phyllotis* represented 1 and 4 individuals captured, respectively. Although they have been implicated as hosts elsewhere, as at the Bella Vista study site they appear to be insufficiently abundant to serve as a primary reservoir. The genus *Peromyscus* represented 22 of the 28 captured individuals, with 2 *Peromyscus mexicanus* and 20 *Peromyscus oaxacensis*. Their relatively high abundance and known suitability as reservoirs again make them the prime candidate for reservoirs within this area as well.

Rodent collections within the Pacific plains region; Las Marias, Los Mangos, and San Jacinto.

Insufficient individuals were captured at these 3 sites to gain insight into the numbers and relative abundance of species. However, 2 *Peromyscus mexicanus* were captured at Las Mangos and 3 were captured at San Jacinto. Two *Liomys salvini* were captured at Los Mangos and 1 at Las Marias. This species has not been shown to be a host of *Leishmania* elsewhere.

Sand fly collections

All but 1 species of sand flies collected in Nicaragua during this study appear to have a distinct geographic distribution between the Pacific plains region in the western half of the country where atypical cutaneous leishmaniasis is the dominant form of human disease and the central highlands and Atlantic regions in the eastern half of the country where typical cutaneous leishmaniasis is the dominant form. *Lutzomyia cruciata* was captured with some success throughout the country, with 55 individuals captured in areas with the Pacific plains and 33 individuals captured in the central highlands and Atlantic regions. These results are in contrast to the results of Valle and Rivera (1995), who captured over 2,000 *Lu. cruciata* from areas within the central highlands and Atlantic regions while capturing only 4 individuals from within the Pacific plains region. They reported that *Lu. cruciata* was the dominate species captured within the central highlands and Atlantic regions. Although total numbers of sand flies captured during this study were considerably lower, *Lu. cruciata* also was captured more frequently within the central highlands and Atlantic plains regions of the country than

any other species. Although *Lu. cruciata* was the species that was captured more than any other in this region, in the eastern half of the country its distribution appears to be primarily limited to the central highlands and the northern sections of the Atlantic lowland plains. This supports the results of Valle and Rivera (1995), who captured the vast majority of *Lu. cruciata* specimens near Matagalpa in the central highlands.

Lutzomyia cayennensis, Lu. chiapanensis, Lu. evansi, Lu. gomezi, Lu. vesiscifera, and Lu. zeledoni only were captured in the Pacific plains region. These results generally support the results of previous researchers in Nicaragua. Valle and Rivera (1995) found Lu. evansi to be the most abundant species captured within the Pacific plains region and Fairchild and Hertig (1959) only captured this species near the Pacific coast. Lutzomyia cayennensis and all but 1 Lu. chiapanensis also were captured by Valle and Rivera (1959) only in the Pacific plains region. Lutzomyia vesiscifera appears to be fairly widespread, although in low numbers, throughout the country; this study identified it only at San Jacinto. It previously has been captured from all regions, but is most prevalent in the Pacific plains (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; Valle and Rivera, 1995). Lutzomyia gomezi also previously has been identified in low numbers throughout much of the country (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; Valle and Rivera, 1995). This study identified Lu. gomezi only at San Jacinto.

Lutzomyia barrettoi majuscula, Lu. hartmanni, Lu. panamensis, and *Lu.shannoni*, only were captured within the central highlands or Atlantic lowland plains regions. Fairchild and Hertig (1959) captured *Lu. barrettoi majuscula* near Managua in the Pacific plains and Valle and Rivera (1995) captured it in only the central highlands and the northern region of the Atlantic plains. This study identified *Lu. barrettoi majuscula* at El Paraisito. This extends its known range within the country into the southern part of the Atlantic plains. One *Lu. hartmanni* was captured at El Paraisito. This represents a new record for this species in Nicaragua. *Lutzomyia panamensis* was collected from El Cua, located in the central highlands, and from El Balsamo and Rosa Grande in the northern region of the Atlantic lowland plains. Previous studies have identified its range within Nicaragua extending throughout most of the central highlands and Atlantic lowland plains, but not into the Pacific plains (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; Valle and Rivera, 1995). Although this study identified *Lu. shannnoni* only at El Balsamo, within the northern region of the Atlantic lowland plains, it previously has been reported from all regions (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; Valle and Rivera, 1995).

Lutzomyia longipalpis was the most abundantly-captured species. Of the 274 individuals captured, 270 were collected from San Jacinto located in the Pacific plains. This supports the results obtained by previous investigators, who found this species only within the Pacific plains (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; Valle and Rivera, 1995). Three *Lu. longipalpis* were captured in El Tigre, which extends the known range of this species into the central highlands.

Distribution of sand fly species in relationship to clinical forms of leishmaniasis

Lutzomyia longipalpis and *Lu. evansi* were by far the most commonly captured species within the Pacific plains region during the course of this study. These results

support the findings of others in Nicaragua (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; Valle and Rivera, 1995). This is significant, because *Lu. longipalpis* and *Lu. evansi* are known vectors of *L. (L.) chagasi* (Killick-Kendrick, 1999). *Leishmania* (*L.) chagasi* is the primary etiological agent of human VL leishmaniasis in the New World and this species also has been isolated from patients suffering from VL and atypical CL in Nicaragua. The geographic distribution of VL and atypical CL in Nicaragua. The geographic distribution of *Lu. longipalpis* and *Lu. evansi*. Although *L. chagasi* has not been isolated from either *Lu. longipalpis* or *Lu. evansi* collected in Nicaragua, the large relative abundance of *Lu. longipalpis* and *Lu. evansi* along with the overlapping geographic distributions of the sand flies and the occurrence of human VL and atypical CL hint that they are the most-likely vectors of *L.(L.) chagasi* in Nicaragua.

Additionally, the Pacific plains region of Nicaragua is the driest region of the country and *Lu. longipalpis* previously has been reported to inhabit arid to semi-arid habitats (Morrison et al., 1993). *Lutzomyia evansi* previously has been reported to be a sympatric species of *Lu. longipalpis* (Travi et al., 2002). The capture of *Lu. longipalpis* and *Lu. evansi* primarily within the relatively dry Pacific plains region during this study supports this.

In the central highlands and Atlantic lowland plains regions of Nicaragua, the predominant form of human leishmaniasis is typical CL. The most prevalent species of sand fly captured during this study were *Lu. cruciata* and *Lu. barrettoi majuscula*. Both species are anthropophilic (Young and Duncan, 1994; Rebollar-Téllez et al., 1996a).

Although *Lu. cruciata* has not been proven to be a vector of *Leishmania*, it is anthropophilic; and it has been found to be associated with areas of human typical CL in the New World and it has been found to be naturally infected with leishmanial parasites (Young and Duncan, 1984; Rebollar-Téllez et al., 1996a; Rebollar-Téllez et al., 1996b). *Lutzomyia cruciata* also has been found to be capable of transmitting *Leishmania* (*L.*) *mexicana* under experimental conditions (Williams, 1966).

As in previous studies of the sand fly fauna of Nicaragua, *Lu. panamensis* only was captured in the central highlands and Atlantic lowland plains regions. This is significant in that it has been reported to be a suspected vector of *L. (L.) mexicana* and *L. (V.) braziliensis;* both known to be etiology agents of human typical CL (Killick-Kendrick, 1999). The distribution of *Lu. panamensis* corresponds with the distribution of human cases of typical CL in Nicaragua. Given that *Lu. cruciata* and *Lu. panamensis* are abundant in the central highlands and Atlantic lowland plains regions of Nicaragua, and that they are capable of serving as hosts for *L. (L.) mexicana* and *L. (V.) braziliensis*, I believe that these 2 species play an important role as the vectors of the causative agents of human typical CL in these regions of Nicaragua.

Spatial distribution of human typical CL

Human cutaneous leishmaniasis in Nicaragua occurs in 2 primary clinical forms, typical CL and atypical CL. When reviewing the geographic distribution of human cases of typical CL and atypical CL, it becomes apparent that these forms of the disease are spatially segregated. The vast majority of cases of typical CL occur in the central highlands and Atlantic lowland plains regions in the eastern half of the country. In fact, greater than 96% of the human cases of typical CL reported by the Nicaraguan Ministry of Health were from just 19 municipalities. All of these 19 municipalities are located within the central highlands or Atlantic lowland plains regions. Within the Pacific plains region of western Nicaragua, most municipalities reported no cases of typical CL and no municipality reported greater than 3 cases. Conversely, human cases of atypical CL primarily are reported from municipalities within the Pacific plains region. These 2 forms of CL are the result of infections within different species of *Leishmania*.

Parasites isolated from typical cutaneous lesions in patients from Nicaragua previously have been reported to be *Leishmania* (*V*.) *braziliensis* and *Leishmania* (*V*.) *panamensis*, while those isolated from atypical cutaneous lesion have been characterized as *Leishmania* (*L*.) *chagasi* (Belli et al., 1994; 1998; 1999). The isolation of different species of *Leishmania* from human patients with different clinical forms of the disease is significant in that these species are known to have different vector-reservoir systems as well as different primary ecological habitats (Jimenez et al., 2000).

Logistic regression models of environmental factors associated with the presence or absence of reported cases of human typical CL

Reported human cases of typical CL are likely to be concentrated within geographic areas where the parasite, suitable reservoir hosts, suitable vectors and a susceptible human population intersect. This study used GIS, remotely-sensed satellite data, and logistic regression analysis to investigate the environmental relationships between geographic areas where human typical CL was reported and areas where no human cases were reported from 2003–2005.

Logistic regression models demonstrated that mean annual precipitation and land use/cover classes were the best predictors for the dichotomous dependent variable of human typical CL presence or absence within a municipality between the years 2003–2005. Both models displayed equal sensitivity (67.1%); however, using precipitation as the predictor variable increased the specificity to 87.2% over 85.9% in the model using land use/cover as the predictor variable. Using temperature as the predictor variable resulted in a less efficient model than either precipitation or land use/cover with a sensitivity of 63.0% and a specificity of 84.6%. The individual models using elevation and soil type as the predictor variables were poor predictors of the occurrence of typical CL with model sensitivities of 56.2% and 46.6%, respectively. The results of this study provide partial support to the conclusions of the study conducted in Columbia, as described by King et al. (2004), which found that land cover classes were better predictors of the occurrence of typical cutaneous leishmaniasis than elevation. Although King et al. (2004) did not look at precipitation as a predictor variable, this study showed than its inclusion in a predictive model for the presence or absence of CL may improve the model's capabilities.

One potential drawback that may be associated with the predictive models for the presence or absence of typical CL is that the model does not distinguish municipalities that had 1 reported case from those that had hundreds of cases during the period 2003–2005. It was assumed that transmission of the parasite occurred in the municipalities in which the cases were reported. Travel is difficult within Nicaragua and it is possibly that all cases of human typical CL were acquired within municipality where they are

reported. However, it is possible, and even somewhat likely, that not all reported cases of infection with typical CL causing parasites were acquired within the reporting municipality, but rather may have been acquired during working or visiting endemic areas. Greater than 97% of all reported cases of human typical CL were reported from 28 of 151 municipalities that documented 10 or more cases during the 3 year period analyzed during this study. When logistic regression analysis was applied to environmental predictor variables for these 28 municipalities, land use/cover was by far the best predictor for identifying municipalities with 10 or more cases.

A number of rodent species, which previously have been identified as suspected or proven reservoir hosts for species of *Leishmania* that are known to cause typical CL, are widely-distributed throughout Nicaragua and appear to be better suited to adapt to a variety of ecosystems than species of *Lutzomyia*. Sand fly vectors of *Leishmania* species known to cause human typical CL within Nicaragua are geographically-distinct in their distribution, as this study and others have shown. Therefore, environmental factors are more likely to play a role in the spatial distribution patterns of sand fly species than potential reservoir hosts.

Land use/cover was a good predictor variable in both the model for presence versus absence and for the model predicting the occurrence of 10 and more cases versus less than 10 cases of typical CL. In the model predicting presence or absence, agricultural systems with 10–25% natural vegetation and tropical evergreen broadleaf forests were the 2 variables that were significant positive predictors of human typical CL. In the model predicting the occurance of \geq 10 cases versus <10 cases of human

116

typical CL, cropland, agricultural systems with 10–25% natural vegetation, agricultural systems with 25–50%, and tropical evergreen broadleaf forest were significant positive predictors. This appears to provide evidence that typical CL is associated with rural activities and primarily is found in areas where human activities such as farming and ranching begin to encroach into sylvatic areas where the natural transmission cycle occurs.

Maps of the 28 municipalities in which greater than 97% of the cases of human typical CL were reported in the years 2003–2005, overlaid with maps of the extent of forest coverage in Nicaragua in 1983 and in 2000, clearly show that the vast majority of reported cases have been from municipalities where significant forest degradation has occurred (Fig. 20). The natural system in which the transmission of *Leishmania* parasites among suitable sylvatic rodent hosts , or other forest dwelling mammals, by sand flies probably has existed in Nicaragua since time immemorial. As increasing numbers of a naive and susceptible human population clear native forested lands and establish agricultural systems within geographic areas where the natural transmission cycle of *Leishmania* occurs, the numbers of reported human cases of typical CL likely will continue to remain high. There also is a distinct possibility that the sand fly vectors and rodent reservoir hosts will adapt from a strictly sylvatic lifecycle to a peridomestic lifecycle, further increasing the exposure risk of humans to the parasite.

117

Temporal distribution of reported cases of human typical CL for the period 2003–2005

Data provided by the Nicaragua Ministry of Health showed that the average weekly number of reported cases of human typical CL increased during May through July and this time frame corresponds with the early part of the rainy season throughout the country. The period of time from inoculation to demonstration of typical cutaneous lesions can take weeks and it is likely that in many cases patients delay seeking of treatment until lesions are serious. This would indicate that the most likely period of transmission from the sand fly vector to human hosts occurs during the drier periods of the year from approximately November through April. One possible explanation for the occurance of peak transmission during the dry season is the poor flying capabilities of the sand fly vectors. Movement of sand flies is likely impeded by periods of heavy rain. Further research is required to demonstrate the periods of peak sand fly activity.

SUMMARY AND CONCLUSIONS

In this dissertation, new data have been provided on the occurrence of leishmaniasis in rodent species, the geographic distribution of sand fly species and potential rodent reservoir hosts, and environmental factors associated with geographic distribution of human cases of typical cutaneous leishmaniasis in Nicaragua. This is the first study to investigate potential rodent reservoirs of *Leishmania* in Nicaragua and is the first study to investigate the abiotic and biotic environmental components that are associated with the geographic distribution of human cases of typical CL in Nicaragua. During field studies, 395 rodents representing 17 species were collected from 13 localities from August 2001–March 2006 and screened for *Leishmania* infections. One *Heteromys desmarestianus* and 1 *Peromyscus mexicanus* were found to be positive for leishmanial infections by PCR. These positives represent the first report of *Leishmania* infections in rodents in Nicaragua.

Heteromys desmarestianus does not appear to be sufficiently abundant or adequately widespread geographically to play an important role as a reservoir host of *Leishmania* in Nicaragua. *Peromyscus mexicanus* occur frequently throughout the Central Highland and the northern regions of the Atlantic lowland plains and this species probably does serve as a reservoir of *Leishmania* here. *Proechimys semispinosus* occur throughout the Atlantic lowland plains and it is likely that this species serves as a primary reservoir for *Leishmania* species.

Five hundred fifty six sand flies representing 12 species were collected from 8 localities, including *Lutzomyia hartmanni*, a new record for this species in Nicaragua.

119

The predominant species captured in western Nicaragua were *Lutzomyia longipalpis* and *Lutzomyia evansi*. These 2 species are mostly likely the vectors of *L. chagasi*, the etiolological agent of visceral and atypical cutaneous leishmaniasis in Nicaragua. The predominant species captured in central and eastern Nicaragua was *Lutzomyia cruciata*. This species is likely to be a primary or amplifying vector of *Leishmania* species causing typical CL in this region. Although this study yielded but 4 specimens of *Lu. panamensis*, previous studies have shown it to be abundant throught the central highlands and Pacific plains and is a known vector of *L. braziliensis*, a known causative agent of typical CL and MCL. The geographic distribution of sand flies in this study provides additional support to previously-published reports of suspected vectors of *Leishmania* species causing typical and atypical forms of cutaneous leishmaniasis in Nicaragua.

Distribution data of human cases of typical cutaneous leishmaniasis obtained from the Nicaraguan Ministry of Health, along with GIS and remotely-sensed data of elevation, precipitation, temperature, soil types and land use/cover classes, were used to developed predictive logistic regression models for the presence or absence of human cases within 151 municipalities. Mean annual precipitation and land use/cover were determined to be the best environmental variable predictors for the occurrence of typical cutaneous leishmaniasis. In models using mean annual precipitation as the predictor variable for the dichotomous dependent variable of presence or absence, precipitation ranges of 900–1,000, 1,200–1,400, 1,600–1,800, and 2,000–2,400 mm per year showed a significant positive correlation at the 95% CI; while, precipitation ranges below 900 and above 2,400 millimeters per year did not show a significant positive or negative correlation.

Logistic regression models using land use and cover as the predictor variable for the presence or absence of typical cutaneous leishmaniasis demonstrated that the disease is primarily associated with rural activities, with the land use/cover classes of agricultural systems with 10–25% natural vegetation, agricultural systems with 25–50% natural vegetation, cropland, and tropical evergreen deciduous forest showing significant positive correlation at the 95% CI.

The research presented in this study will serve to increase the awareness among parasitologists, medical entomologists and public health workers of the geographic segregation of typical and atypical cutaneous leishmaniasis, the geographic distribution of potential sand fly vectors and potential rodent reservoir hosts, and the biotic and abiotic environmental factors that may influence the distribution of the disease in Nicaragua. Further research is needed to incriminate vectors and reservoirs hosts within distinct regions of the country in order to better understand local transmission cycles. Research in the following areas would be of use: screening of additional rodent species and of non-rodent species to clarify sylvatic and peridomestic transmission risk; screening of sand fly species to clarify vectors; refinement of statistical models using GIS and remotely-sensed data to determine if models developed for Nicaragua might be useful in predicting the occurrence of leishmaniasis at additional localities.

LITERATURE CITED

- Alexander, B., C. Lozano, D. C. Barker, S. H. E. McCann, and G. H. Adler. 1998.
 Detection of *Leishmania (Viannia) braziliensis* complex in wild mammals from Colombian coffee plantations by PCR and DNA hybridization. Acta Tropica 69: 41–50.
- Alexander, J. B. 1987. Dispersal of phlebotomine sand flies (Diptera: Psychodidae) in a Colombian coffee plantation. Journal of Medical Entomology **24:** 552–558.
- Almeida, M. C., C. A. Cuba-Cuba, M. A. P. Moraes, and M. A. Miles. 1996.
 Dissemination of *Leishmania (Viannia) braziliensis*. Journal of Comparative Pathology 115: 311–316.
- Ashford, R.W. 1996. Leishmaniasis reservoirs and their significance in control. Clinics in Dermatology **14:** 523–532.
- 2000. The leishmaniases as emerging and reemerging zoonoses. International Journal for Parasitology **30:** 1269–1281.
- Bavia, M. E., J. B. Malone, L. Hale, A. Dantas, L. Marroni, and R. Reis. 2001. Use of thermal and vegetation index data from earth observing satellites to evaluate the risk of schistosomiasis in Bahia, Brazil. Acta Tropica 79: 79–85.
- Belkaid, Y., B. Butcher, and D. L. Sacks. 1998a. Analysis of cytokine production by inflammatory mouse macrophages at the single-cell level: selective impairment

of IL-12 induction in *Leishmania*-infected cells. European Journal of Immunology **28:** 389–1400.

- , S. Kamhawi, G. Modi, J. Valenzuela, N. Noben-Trauth, E. Rowton, J. Ribeiro, and D. L. Sacks. 1998b. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of *Leishmania major* infection in the mouse ear dermis. Journal of Experimental Medicine 188: 1941–1953.
- Belli, A., M. A. Miles, and J. M. Kelly. 1994. A putative *Leishmania* panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous leishmaniasis in Nicaragua. Parasitology **109**: 435–442.
 - ——, B. Rodriquez, H. Aviles, and E. Harris. 1998. Simplified polymerase chain reaction detection of new world *Leishmania* in clinical specimens of cutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene **58**: 102–109.
- ——, D. Garcia, X. Palacios, B. Rodriquez, S. Valle, E. Videa, E. Tinoco, F. Marin, and E. Harris. 1999. Widespread atypical cutaneous leishmaniasis caused by *Leishmania (L.) chagasi* in Nicaragua. American Journal of Tropical Medicine and Hygiene **61:** 380–385.

Bensoussan, E., A. Nasereddin, F. Jonas, L. F. Schnur and C. L. Jaffe. 2006. Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. Journal of Clinical Microbiology 44: 1435–1439.

- Brandao-Filho, S. P., M. E. Brito, F. G. Carvalho, E. A. Ishikawa, E. Cupolillo, L.
 Floeter-Winter, and J. J. Shaw. 2003. Wild and syanthropic hosts of *Leishmania* (*Viannia*) *braziliensis* in the endemic cutaneous leishmaniasis locality of Amaraji, Pernambuco State, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene **97**: 291–296.
- Bray, R. S., and J. Alexander. 1987. *Leishmania* and the macrophage. *In* The Leishmaniases in Biology and Medicine vol. I, W. Peters and R. Killick-Kendrick (eds.). Academic Press, London, U.K., p. 211–234.
- Briones, M. R. S., K. Nelson, S. M. Beverley, H. T. Affonso, E. P. Camargo, and L. M. Floeter-Winter. 1992. *Leishmania tarentolae* taxonomic relatedness inferred from phylogenetic analysis of the small subunit ribosomal RNA gene. Molecular and Biochemical Parasitology 53: 121–128.
- Brittingham, A., C. J. Morrison, W. R. McMaster, B. S. McGwire, K. P. Chang, and D.M. Mosser. 1995. Role of the *Leishmania* surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. Journal of Immunology **155**: 3102–3111.
- Canto-Lara, S. B., N. R. Van Wynsberghe, A. Vargas-Gonzalez, F. F. Ojeda-Farfan, and
 F. J. Andrade-Narvaez. 1999. Use of monoclonal antibodies for the
 identification of *Leishmania* spp. isolated from humans and wild rodents in the
 state of Campeche, Mexico. Memorias do Instituto Oswaldo Cruz **94:** 305–309.
- Carreira, P. F., R. Maingon, R. D. Ward, H. Noyes, C. Ponce, A. Belli, B. Arana, R. Zeledon, and O. E. Sousa. 1995. Molecular techniques in the characterization of

Leishmania isolates from Central America. Annals of Tropical Medicine and Parasitology **89:** 31–36 (Supplement 1).

- Carrera, L., R. T. Gazzinelli, R. Badolato, S. Hieny, W. Muller, R. Kuhn, and D. L. Sacks. 1996. *Leishmania* promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. Journal of Experimental Medicine 183: 515–526.
- Chable-Santos, J. B., N. R. Van Wynberghe, S. B. Canto-Lara and F. J. Andrade-Narvaez. 1995. Isolation of *Leishmania* (L.) *mexicana* from wild rodents and their possible role in the transmission of localized cutaneous leishmaniasis in the state of Campeche, Mexico. American Journal of Tropical Medicine and Hygiene 53: 141–145.
- Chaniotis, B. N., M. A. Correa, R. B. Tesh, and K. J. Johnson. 1974. Horizontal and vertical movements of phlebotomine sandflies in a Panamanian rain forest.Journal of Medical Entomology 11: 369–375.
- Collantes, F., and E. Martinez-Ortega. 1997. New records of phlebotomine sand flies
 (Diptera: Psychodidae) from Nicaragua. Revista Nicaragüense de Entomologia
 41: 27–30.
- Convit J., M. Ulrich, M. Perez, J. Hung, J. Castillo, H. Rojas, A. Viquez, L. N. Araya, and H. De Lima. 2005. Atypical cutaneous leishmaniasis in Central America: possible interaction between infectious and environmental elements.
 Transactions of the Royal Society of Tropical Medicine and Hygiene 99: 13–17.

- Craig, T. M., C. L. Barton, S. H. Mercer, B. E. Droleskey, and L. P. Jones. 1986.
 Dermal leishmaniasis in a Texas cat. American Journal of Tropical Medicine and Hygiene 35: 1100–1102.
- Croan, D., and J. Ellis. 1996. Phylogenetic relationships between *Leishmania*, *Viannia* and *Sauroleishmania* inferred from comparison of a variable domain within the RNA polymerase II largest subunit gene. Molecular and Biochemical Parasitology **79:** 97–102.
- , D. A. Morrison, and J. T. Ellis. 1997. Evolution of the genus *Leishmania* revealed by comparison of DNA and RNA polymerase gene sequences.
 Molecular and Biochemical Parasitology 89: 149–159.
- Cromley, E. K. 2003. GIS and disease. Annual Review of Public Health 24: 7–24.
- Cupolillo, E., E. Medina-Acosta, H. Noyes, H. Momen, and G. Grimaldi Jr. 2000. A revised classification for *Leishmania* and *Endotrypanum*. Parasitology Today **16**: 142–144.
- Darce, M., J. Moran, X. Palacios, A. Belli, F. Gomez-Urcuya, D. Zamora, S. Valle, J. C. Gantier, H. Momen, and G. Grimaldi Jr. 1991. Etiology of human cutaneous leishmaniasis in Nicaragua. Transactions of the Royal Society of Tropical Medicine and Hygiene 85: 58–59.
- David, C., L. Dimier-David, F. Vargas, M. Torrez, and J. P. Dedet. 1993. Fifteen years of cutaneous and mucocutaneous leishmaniasis in Bolivia: a retrospective study.
 Transactions of the Royal Society of Tropical Medicine and Hygiene 87: 7–9.

- Dedet, J. P., F. Gay, and G. Chatenay. 1989. Isolation of *Leishmania* species from wild mammals in French Guiana. Transactions of the Royal Society of Tropical Medicine and Hygiene 83: 613–615.
- De Lima, H., Z. De Guglielmo, A. Rodriguez, J. Convit, and N. Rodriguez. 2002.
 Cotton rats (*Sigmodon hispidus*) and black rats (*Rattus rattus*) as possible reservoirs of *Leishmania* spp. in Lara State, Venezuela. Memorias do Instituto Oswaldo Cruz **97:** 169–174.
- Desjeux, P. 2001. Worldwide increasing risk factors for leishmaniasis. Medical Microbiology and Immunology **190:** 77–79.
- Disney, R. H. L. 1964. Visceral involvement with dermal leishmaniases in a wildcaught rodent in British Honduras. Transactions of the Royal Society of Tropical Medicine and Hygiene 58: 581.
- ———. 1968. Observations on a zoonosis: Leishmaniasis in British Honduras. Journal of Applied Ecology 5: 1–59.
- Dye, C., C. R. Davies, and R. Lainson. 1991. Communication among phlebotomine sandflies: a field study of domesticated *Lutzomyia longipalpis* populations in Amazonian Brazil. Animal Behaviour **42**: 183–192.
- Duprey, Z. H., F. J. Steurer, J. A. Rooney, L. V. Kirchhoff, J. E. Jacskson, E. D. Rowton, and P. M. Schantz. 2006. Canine visceral leishmaniasis, United Stated and Canada, 2000–2003. Emerging Infectious Diseases 12: 440–446.
- Elnaiem, D. A., J. Schorscher, A. Bendall, V. Obsomer, M. E. Osman, A. M. Mekkawi, S. J. Conner, R. W. Ashford, and M. Thomson. 2003. Risk mapping of visceral
leishmaniasis: the role of local variation in rainfall and altitude on the presence and incidence of kala-azar in eastern Sudan. American Journal of Tropical Medicine and Hygiene **68:** 10–17.

- Fairchild, G. B., and M. Hertig. 1959. Geographic distribution of the *Phlebotomus* sandflies of Central America (Diptera: Psychodidae). Annals of the Entomological Society of America 52: 121–124.
- _____, and _____. 1961a. Notes on the *Phlebotomus* of Panama XVI (Diptera, Psychodidae) descriptions of new and little-known species from Panama and Central America. Annals of the Entomological Society of America 54: 237–255.
- ——, and ——. 1961b. Three new species of *Phlebotomus* from Mexico and Nicaragua (Diptera: Psychodidae). Proceedings of the Entomological Society of Washington **63**: 22–28.
- Fontes, C. O., M. A. R. Carvalho, J. R. Nicoli, J. S. Hamdan, W. Mayrink, O. Genaro, L. S. Carmo, and L. M. Farias. 2005. Identification of antimicrobial susceptibility of micro-organisms recovered from cutaneous lesions of human American tegumentary leishmaniasis in Minas Gerais, Brazil. Journal of Medical Microbiology 54: 1071–1076.
- Forattini, O.P., D. B. G. Pattoli, E. X. Rabello, and O. A. Ferreira. 1972. Infecções naturais de mamiferos silvestres em área endêmica de leishmaniose tegumentar do estado de São Paulo, Brasil. Revista de Saúde Pública, São Paulo 6: 255–261.

—, —, , and —, 1973. Nota sobre infecção natural de *Oryzomys capito laticeps* em foco enzoótico de leishmaniose tegumentar do estado de São Paulo, Brasil. Revista de Saúde Pública, São Paulo **7:** 181–184.

- Fu, G., and A. A. Kolesnikov. 1994. Leishmania gymnodactyli and Leishmania infantum minicircles contain the same guide RNA genes as do minicircles of Leishmania tarentolae. Molecular and Biochemical Parasitology 67: 171–174.
- Fuentes, M. V., J. B. Malone, and S. Mas-Coma. 2001. Validation of a mapping and prediction model for human fasciolosis transmission in Andean very high altitude endemic areas using remote sensing data. Acta Tropica **79:** 97–95.
- Gangneux, J., A. Sulahian, S. Honore, P. Meneceuk, F. Derouin, and Y. Garin. 2000.
 Evidence for determining parasitic factors in addition to host genetics and immune status in the outcome of murine *Leishmania infantum* visceral leishmaniasis. Parasite Immunology 22: 515–519.
- Gebre-Michael, T., J. B. Malone, M. Balkew, A. Ali, N. Berhe, A. Hailu, and A. Herzi.
 2004. Mapping the potential distribution of *Phlebotomus martini* and *P. orientalis* (Diptera: Psychodidae), vectors of kala-azar in east Africa by use of geographic information systems. Acta Tropica **90:** 73–86.
- Grimaldi, G. Jr., R. B. David, and D. Mcmahon-Pratt. 1989. A review of the geographic distribution and epidemiology of leishmaniasis in the New World. American Journal of Tropical Medicine and Hygiene 41: 687–725.
- Grogl, M., R. D. Kreutzer, C. P. McHugh, and R. K. Martin. 1991. Characterization of a *Leishmania* isolate from the rodent host *Neotoma micropus* collected in Texas

and comparison with human isolates. American Journal of Tropical Medicine and Hygiene **45:** 714–722.

- Hall, L. R., and R. G. Titus. 1995. Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of *Leishmania major* and nitric oxide production. Journal of Immunology 155: 3501–3506.
- Heinzel, F. P., M. D. Sadick, B. J. Holaday, R. L. Coffman, and R. M. Locksley. 1989.
 Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Journal of Experimental Medicine 169: 59–72.
- Hendricks, L., and N. Wright. 1979. Diagnosis of cutaneous leishmaniasis by *in vitro* cultivation of saline aspirates in Schneider's *Drosophila* medium. American Journal of Tropical Medicine and Hygiene 28: 962–964.
- Hendrickx, G., S. de La Rocque, R. Reid, and W. Wint. 2001. Spatial trypanosomosis management: from data-layers to decision making. Trends in Parasitology 17: 35–41.
- Herrer, A., H. A. Christensen, and R. J. Beumer. 1973. Reservoir hosts of cutaneous leishmaniasis among Panamanian forest mammals. American Journal of Tropical Medicine and Hygiene 22: 585–591.
- Jimenez A. E., J. C. Rojas, and F. Vargas. 2000. Temporal and spatial variation of phlebotomine (Diptera: Psychodidae) community diversity in a cutaneous leishmaniasis endemic area of Costa Rica. Journal of Medical Entomology 37: 216–221.

- Kerr, S. F., C. P. McHugh, and N. O. Dronen Jr. 1995. Leishmaniasis in Texas.
 Prevalence and seasonal transmission of *Leishmania mexicana* in *Neotoma micropus*. American Journal of Tropical Medicine and Hygiene 53: 73–77.
- ——, ——, and R. Merkelz. 1999. Short report: a focus of *Leishmania mexicana* near Tucson, Arizona. American Journal of Tropical Medicine and Hygiene **61:** 378–379.
- , L. H. Emmons, P. C. Melby, C. Liu, L. E. Perez, M. Villegas, and R. Miranda.
 2006. *Leishmania amazonensis* infections in *Oryzomys acritus* and *Oryzomys nitidus* from Bolivia. American Journal of Tropical Medicine and Hygiene 75:
 1069–1073.
- Killick-Kendrick, R. 1990. Phlebotomine vectors of the leishmaniases: a review. Medical and Veterinary Entomology **4:** 1–24.
- ———. 1999. The biology and control of phlebotomine sand flies. Clinics in Dermatology. 17: 279–289.
- King, R. J., D. H. Campbell-Lendrum, and C. R. Davies. 2004. Predicting geographic variation in cutaneous leishmaniasis, Columbia. Emerging Infectious Diseases 10: 598–607.
- Klinkenberg, E., W. van der Hoek, and F. P. Amerasinghe. 2004. A malaria risk analysis in an irrigated area in Sri Lanka. Acta Tropica **89:** 215–225.
- Kristensen, T. K., J. B. Malone, and J. C. McCarroll. 2001. Use of satellite remote sensing and geographic information systems to model the distribution and

abundance of snail intermediate hosts in Africa: A preliminary model for *Biomphalaria pfeifferi* in Ethiopia. Acta Tropica **79:** 73–78.

- Lainson, R., and J. Strangways-Dixon. 1964. The epidemiology of dermal leishmaniasis in British Honduras: Part II. Reservoir hosts of *Leishmania mexicana* among forest rodents. Transactions of the Royal Society of Tropical Medicine and Hygiene **58:** 136–153.
 - —, and J. J. Shaw. 1968. Leishmaniasis in Brazil: I. observations on enzootic rodent leishmaniasis-incrimination of *Lutzomyia flaviscutellata* (Mangabeira) as the vector in the lower Amazonian Basin. Transactions of the Royal Society of Tropical Medicine and Hygiene **62:** 385–395.
- _____, and _____. 1969. Some reservoir hosts of *Leishmania* in wild animals of Mato Grasso State, Brazil, two distinct strains of parasites isolated from man and rodents. Transactions of the Royal Society of Tropical Medicine and Hygiene 63: 408.
- ———, and ———. 1978. Epidemiology and ecology of leishmaniasis in Latin-America. Nature **273:** 595–600.
 - ——, and ——. 1979. The role of animals in the epidemiology of South American leishmaniasis. *In* Biology of the Kinetoplastida, W. H. R. Lumsden and D. A. Evans (eds.). Academic Press, London, U.K., p. 1–44.
- _____, and _____. 1987. Evolution, classification and geographical distribution.
 In The Leishmaniases in Biology and Epidemiology vol. I, W. Peters and R.
 Killick-Kendrick (eds.). Academic Press, London, U.K., p. 1–120.

- _____, and _____. 1992. A brief history of the genus *Leishmania* (Protozoa: Kinetoplastida) in the Americas with particular reference to Amazonian Brazil.
 Journal of the Brazilian Association for the Advancement of Science 44: 94–106.
- Le Pont, F., P. Desjeux, and A. Gonzales. 1987. Phlebotomes du Nicaragua. I. description de la femelle de Lutzomyia zeledoni Young et Murillo, 1984 (Diptera, Psychodidae), et implication epidemiologique de la presence de Lutzomyia longipalpis sur la façade Pacifique. Memorias do Instituto Oswaldo Cruz **82:** 273–276.
- , J. C. Gantier, S. Hue, and S. Valle. 1995. Phlebotomes du Nicaragua. II.
 Description de Lutzomyia legerae N. sp. (Diptera: Psychodidae). Parasite 2: 75– 79.
- Malone, J. B., J. M. Yilma, J. C. McCarroll, B. Erko, S. Mukaratirwa, and X. Zhou.
 2001. Satellite climatology and the environmental risk of *Schistosoma mansoni* in Ethiopia and east Africa. Acta Tropica **79**: 59–72.
- McConville, M. J., L. F. Schnur, C. Jaffe, and P. Schneider. 1995. Structure of *Leishmania* lipophosphoglycan: inter- and intra-specific polmorphism in Old World species. Biochemistry Journal **310**: 807–818.
- McHugh, C. P., M. Grogl, and S. F. Kerr. 1990. Isolation of *Leishmania mexicana* from *Neotoma micropus* collected in Texas. Journal of Parasitology **76:** 741–742.
 - , M. L. Theis, P. C. Melby, L. D. Yantis Jr., R. W. Raymond, M. D. Villegas, and S. F. Kerr. 2003. Short Report: a disseminated infection of *Leishmania*

mexicana in an eastern woodrat, Neotoma floridana, collected in Texas.

American Journal of Tropical Medicine and Hygiene **69:** 470–472.

- Ministerio de Salud Nicaragua. 2003. Situación epidemiologica de la leishmaniasis en Nicaragua. Boletin Epidemiologico, Semana **37:** 1–4.
- Ministerio del Ambiente y los Recursos Naturales (MARENA). 2004. Atlas Forestral 1a ed. Managua, Nicaragua, 55p.
- Missoni, E., R. Morelli, L. Balladares, J. Berrios, M. D. de Solan, C. I. Baldwin, and D.
 A. Evans. 1986. Isolation and characterization of leishmaniasis from Nicaragua.
 Transactions of the Royal Society of Tropical Medicine and Hygiene 80: 999–100.
- Molyneux, D. H. 2001. Vector-borne infections in the tropics and health policy issues in the twenty-first century. Transactions of the Royal Society of Tropica Medicine and Hygiene **95:** 233–238.
- ———, and R. Killick-Kendrick. 1987. Morphology, ultrastructure and life cycles. *In* The Leishmaniases in Biology and Medicine vol. I, W. Peters and R. Killick-Kendrick (eds.). Academic Press, London, U.K., p. 121–176.
- Morrison, A. C., C. Ferro, A. Morales, R. B. Tesh, and M. L. Wilson. 1993. Dispersal of the Sand Fly *Lutzomyia longipalpis* (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Columbia. Journal of Medical Entomology **30:** 427– 435.
- Muigai, R. D. B. Gatei, S. Shaunak, A. Wozniak, and A. D. M. Bryceson. 1983. Jejunal function and pathology in visceral leishmaniasis. Lancet **2:** 476–479.

Noyes, H. A., M. L. Chance, C. Ponce, E. Ponce, and R. Maingon. 1997. *Leishmania chagasi*: genotypically similar parasites from Honduras cause both visceral and cutaneous leishmaniasis in human. Experimental Parasitology 85: 264–273.
, and ——. 1998. *Leishmania (Sauroleishmania)*: a comment on

classification. Parasitology Today 14: 167.

- Oliveira, F. S., C. Pirmez, M. Q. Pires, R. P. Brazil, and R. S. Pacheco. 2005. PCR based diagnosis for detection of *Leishmania* in skin and blood of rodents from an endemic area of cutaneous and visceral leishmaniasis in Brazil. Veterinary Parasitology **129**: 219–227.
- Pimenta, P. F. P., E. M.B. Saraiva, E. Rowton, G. B. Modi, L.A. Garraway, S. M.
 Beverley, S. J. Turco, and D. L. Sacks. 1994. Evidence that the vectorial competence of phlebotomine sand flies for different species of *Leishmania* is controlled by structural polymorphisms in the surface lipophosphoglycan.
 Proceedings of the National Academy of Science **91**: 9155–9159.
- Rebollar-Téllez E. A., A. Ramirez-Fraire, and F. J. Andrade-Narvaez. 1996a. A two years study on vectors of cutaneous leishmaniasis. Evidence for sylvatic transmission cycle in the state of Campeche, Mexico. Memorias do Instituto Oswaldo Cruz **91:** 555–560.

—, F. Reyes-Villanueva, I. Fernandez-Salas, and F. J. Andrade-Narvaez. 1996b. Abundance and parity rate of *Lutzomyia cruciata* (Diptera: Psychodidae) in an endemic focus of localized cutaneous leishmaniasis in southern Mexico. Journal of Medical Entomology **33**: 683–685.

- Roberts, L. S., and J. Janovy, Jr. 2005. Foundations of Parasitology, 7th ed. McGraw-Hill, Boston, Massachusetts, 702 p.
- Rodgers, M. R., S. J. Popper, and D. F. Wirth. 1990. Amplification of kinetoplast DNA as a tool in the detection and diagnosis of *Leishmania*. Experimental Parasitology
 71: 267–275
- Rodriquez, N., B. Guzman, A. Rodas, H. Takiff, B. R. Bloom, and J. Convit. 1994.
 Diagnosis of cutaneous leishmaniasis and species discrimination of parasites by PCR and hybridization. Journal of Clinical Microbiology 32: 2246–2252.
- Rotureau, B. 2006. Ecology of the *Leishmania* species in the Guianan ecoregion complex. American Journal of Tropical Medicine and Hygiene **74:** 81–96.
- Rushton, G. 2003. Public health, GIS, and spatial analytic tools. Annual Reviews in Public Health **24:** 43–56.
- Sacks, D. L., P. F. P. Pimenta, M. J. McConville, P. Schneider, and S. F. Turco. 1995.
 Stage-specific binding of *Leishmania donovani* to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan.
 Journal of Experimental Medicine 181: 685–697.
- Satoskar, A., H. Bluethmann, and J. Alexander. 1995. Disruption of the murine interleukin-4 gene inhibits disease progression during *Leishmania mexicana* infection but does not increase control of *Leishmania donovani* infection.
 Infection and Immunity 63: 4894–4899.

- Schonian, G., C. Schweynoch, K. Zlateva, L. Oskam, N. Kroon, Y. Graser, and
 W. Presber. 1996. Identification and determination of the relationships of species and strains within the genus *Leishmania* using single primers in the polymerase chain reaction. Molecular and Biochemical Parasitology 77: 19–29.
- Shaw, J. J., and R. Lainson. 1987. Ecology and epidemiology: New World. In The Leishmaniases in Biology and Medicine vol. I, W. Peters and R. Killick-Kendrick (eds.). Academic Press, London, U.K., p. 291–364.
- Stewart, C. D., and J. F. Pilchard. 1945. American leishmaniasis: report of an autochthonous case. Archives of Dermatology and Syphilology 51: 124–128.
- Sullivan, J. T. 2004. Electronic Atlas of Parasitology, ver. 2.0. University of San Francisco, San Francisco, California. CD-ROM.
- Taylor, B. W. 1963. An outline of the vegetation of Nicaragua. The Journal of Ecology 51: 27–54.
- Telleria, J., M. F. Bosseno, T. Tarifa, R. Buitrago, E. Martinez, M. Torrez, F. Le Pont, and S. F. Breniere. 1999. Putative reservoirs of *Leishmania amazonensis* in a sub-andean focus of Bolivia identified by kDNA-polymerase chain reaction. Memorios do Instituto Oswaldo Cruz **94:** 5–6.
- Theodos, C. M., J. M. C. Ribeiro, and R. G. Titus. 1991. Analysis of enhancing effect of sand fly saliva on *Leishmania* infection in mice. Infection and Immunity 59: 1592–1598.
- Thomson, M. C., D. A. Elnaiem, R. W. Ashford, and S. J. Connor. 1999. Towards a kala- azar risk map for Sudan: mapping the potential distribution of *Phlebotomus*

orientalis using digital data and environmental variable. Tropical Medicine and International Health **4:** 105–113.

- ———, and S. J. Connor. 2000. Environm ental information systems for the control of arthropod vectors of disease. Medical and Veterinary Entomology **14:** 227–244.
- Titus, R. G., and J. M. C. Ribeiro. 1988. Salivary gland lysates from the sand fly *Lutzomyia longipalpis* enhance *Leishmania* infectivity. Science 239: 1306–1308.
- Travi, B. L., Y. Osorio, M. T. Becerra, and G. H. Adler. 1998. Dynamics of *Leishmania chagasi* infection in small mammals of the undisturbed and degraded tropical dry forest of northern Columbia. Transactions of the Royal Society of Tropical Medicine and Hygiene 92: 275–278.
- ———, G. H. Adler, M. Lozano, H. Cadena, and J. Montoya-Lerma. 2002. Impact of habitat degradation on Phlebotominae (Diptera: Psychodidae) of tropical dry forest in northern Colombia. Journal of Medical Entomology **39:** 451–456.
- Turco, S. J., and D. L. Sacks. 2003. Control of *Leishmania*-sand fly interactions by polymorphisms in lipophosphoglycan structure. Methods in Enzymology 363: 377–381.
- Uliana, S. R., E. Ishikawa, V. A. Stempliuk, A. deSouza, J. J. Shaw, and L. M. Floeter-Winter. 2000. Geographical distribution of neotropical *Leishmania* of the subgenus *Leishmania* analysed by ribosomal oligonucleotide probes.
 Transactions of the Royal Society of Tropical Medicine and Hygiene 94: 261–264.

- Valle, S., and P. Rivera. 1995. Dispersion de las especies de *Lutzomyia* y *Brumptomyia* (Diptera: Psychodidae) en Nicaragua. Revista Nicaragüense Entomologia 32: 19–27.
- Warburg, A., and Y. Schlein. 1986. The effect of post-bloodmeal nutrition of *Phlebotomus papatasi* on the transmission of *Leishmania major*. American Journal of Tropical Medicine and Hygiene **35:** 926–930.
- Weinheber, N., M. Wolfram, D. Harbecke, and T. Aebischer. 1998. Phagocytosis of *Leishmania mexicana* amastigotes by macrophages leads to a sustained suppression of II-12 production. European Journal of Immunology 28: 2467– 2477.
- Williams, P. 1966. Experimental transmission of *Leishmania mexicana* by *Lutzomyia cruciata*. Annals of Tropical Medicine and Parasitology **60**: 365.
- World Health Organization (WHO). 1984. The Leishmaniases. Technical report series 701, Geneva, Switzerland, 140 p.
- . 1990. Control of the Leishmaniases. Technical report series 793, Geneva,
 Switzerland, 158 p.
- Yilma, J. M., and J. B. Malone. 1998. A geographic information system forecast model for strategic control of fasciolosis in Ethiopia. Veterinary Parasitology 78: 103– 127.
- Young, D. G. 1979. A review of the bloodsucking psychodid flies of Colombia (Diptera: Phlebotominae and Sycoracinae). Technical bulletin 806. Agriculture

Experiment Stations Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, 226 p.

- , and M. A. Duncan. 1994. Guide to the identification and geographic distribution of *Lutzomyia* sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Associated Publishers, Gainsville, Florida, 881 p.
- Zeledon R., B. McPherson, and C. Ponce. 1977. Isolation of *Leishmania braziliensis* from a wild rodent in Costa Rica. American Journal of Tropical Medicine and Hygiene 26: 1044–1045.
- , and J. Murillo. 1983. Anthropophilic sandflies of Nicaragua, Central America.
 Royal Society of Tropical Medicine and Hygiene 77: 280.
- . 1985. Leishmaniasis in North America, Central America and the Caribbean Islands. In *Leishmaniasis*, K. P. Chang and R. S. Bray (eds.). Elsevier Science, Amsterdam, The Netherlands, p. 313–351.
- , H. Hidalgo, A. Viquez, and A. Urbina. 1989. Atypical cutaneous
 leishmaniasis in a semiarid region of north-west Costa Rica. Transactions of the
 Royal Society of Tropical Medicine and Hygiene 83: 786.
- Zulueta, A. M., E. Villarroel, N. Rodriguez, M. D. Feliciangeli, M. Mazzarri, O. Reyes,
 V. Rodriguez, M. Centeno, R. M. Barrios, and M. Ulrich. 1999. Epidemiologic aspects of American visceral leishmaniasis in an endemic focus in eastern
 Venezuela. American Society of Tropical Medicine and Hygiene 61: 945–950.

APPENDIX A

8-Aug-01Nica-00172915Mus musculusF11Bella Vista8-Aug-01Nica-00272909Mus musculusM9Bella Vista9-Aug-01Nica-00372907Rattus rattusF89Bella Vista9-Aug-01Nica-00572910Rattus rattusF90Bella Vista9-Aug-01Nica-00672911Rattus rattusF110Bella Vista9-Aug-01Nica-00772912Liomys salviniM41Bella Vista9-Aug-01Nica-00872913Rattus rattusM40Bella Vista9-Aug-01Nica-00972914Mus musculusF19Bella Vista9-Aug-01Nica-01072916Mus musculusF19Bella Vista9-Aug-01Nica-01172916Mus musculusM9Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Otorylomys phyllotisF88Bella Vista14-Aug-01Nica-01672921Rattus rattusM30Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872920Mus musculusF20Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01772926Rattus rattusM105Selva Negra	Date	UIW Number	Texas Tech TK #	Species ID	Sex	Weight grams	Locality
8-Aug-01Nica-00272909Mus musculusM9Bella Vista9-Aug-01Nica-00472907Rattus rattusF89Bella Vista9-Aug-01Nica-00572910Rattus rattusF90Bella Vista9-Aug-01Nica-00672911Rattus rattusF110Bella Vista9-Aug-01Nica-00772912Liomys salviniM41Bella Vista9-Aug-01Nica-00872913Rattus rattusF19Bella Vista9-Aug-01Nica-00772914Mus musculusF19Bella Vista9-Aug-01Nica-01072916Mus musculusF19Bella Vista9-Aug-01Nica-01172917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Otoylomys phyllotisF88Bella Vista9-Aug-01Nica-01472924Rattus rattusM30Selva Negra14-Aug-01Nica-01572921Rattus rattusM105Selva Negra14-Aug-01Nica-01672922Nyctomys sumichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872926Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM50Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Se	8-Aug-01	Nica-001	72915	Mus musculus	F	11	Bella Vista
9-Aug-01 Nica-003 72907 Rattus rattus M 111 Bella Vista 9-Aug-01 Nica-004 72908 Rattus rattus F 89 Bella Vista 9-Aug-01 Nica-006 72911 Rattus rattus F 110 Bella Vista 9-Aug-01 Nica-007 72912 Liomys salvini M 40 Bella Vista 9-Aug-01 Nica-007 72913 Rattus rattus M 40 Bella Vista 9-Aug-01 Nica-007 72914 Mus musculus F 19 Bella Vista 9-Aug-01 Nica-011 72917 Mus musculus M 9 Bella Vista 9-Aug-01 Nica-012 72921 Rattus rattus F 135 Selva Negra 14-Aug-01 Nica-016 72922 Nyctomys sunichrasti M 30 Selva Negra 14-Aug-01 Nica-017 72919 Rattus rattus M 105 Selva Negra 14-Aug-01 Nica-017 72920 Mus mu	8-Aug-01	Nica-002	72909	Mus musculus	Μ	9	Bella Vista
9-Aug-01Nica-00472908Rattus rattusF89Bella Vista9-Aug-01Nica-00572910Rattus rattusF90Bella Vista9-Aug-01Nica-00772912Liomys salviniM41Bella Vista9-Aug-01Nica-00872913Rattus rattusM40Bella Vista9-Aug-01Nica-00972914Mus musculusF19Bella Vista9-Aug-01Nica-01072916Mus musculusF19Bella Vista9-Aug-01Nica-01172918Mus musculusF19Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01472924Rattus rattusM30Selva Negra14-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01672920Mus musculusM105Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872927Rattus rattusM65Selva Negra14-Aug-01Nica-02772937Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02872937Rattus rattusM50Selva Negra14-Aug-01Nica-02772937Rattus rattusM50 <td< td=""><td>9-Aug-01</td><td>Nica-003</td><td>72907</td><td>Rattus rattus</td><td>Μ</td><td>111</td><td>Bella Vista</td></td<>	9-Aug-01	Nica-003	72907	Rattus rattus	Μ	111	Bella Vista
9-Aug-01Nica-00572910Rattus rattusF90Bella Vista9-Aug-01Nica-00772912Liomys salviniM41Bella Vista9-Aug-01Nica-00772912Liomys salviniM40Bella Vista9-Aug-01Nica-00972914Mus musculusF19Bella Vista9-Aug-01Nica-00972914Mus musculusF20Bella Vista9-Aug-01Nica-01072916Mus musculusF19Bella Vista9-Aug-01Nica-01172917Mus musculusM9Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sumichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01772920Mus musculusF20Selva Negra14-Aug-01Nica-02772920Mus musculusM155Selva Negra14-Aug-01Nica-02772927Rattus rattusM65Selva Negra14-Aug-01Nica-02772931Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02772934Rattus rattusM50Selva Negra15-Aug-01Nica-02772936Mus musculusF125S	9-Aug-01	Nica-004	72908	Rattus rattus	F	89	Bella Vista
9-Aug-01Nica-00672911Rattus rattusF110Bella Vista9-Aug-01Nica-00772912Liomys salviniM41Bella Vista9-Aug-01Nica-00872913Rattus rattusM40Bella Vista9-Aug-01Nica-00972914Mus musculusF19Bella Vista9-Aug-01Nica-01072916Mus musculusF19Bella Vista9-Aug-01Nica-01172917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista9-Aug-01Nica-01472924Rattus rattusM30Selva Negra14-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01772920Mus musculusM15Selva Negra14-Aug-01Nica-01772927Rattus rattusM15Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02472933Rattus rattusM50Selva Negra14-Aug-01Nica-02672934Rattus rattusM55	9-Aug-01	Nica-005	72910	Rattus rattus	F	90	Bella Vista
9-Aug-01Nica-00772912Liomys salviniM41Bella Vista9-Aug-01Nica-00872913Rattus rattusM40Bella Vista9-Aug-01Nica-00972914Mus musculusF19Bella Vista9-Aug-01Nica-01072916Mus musculusF19Bella Vista9-Aug-01Nica-01172918Mus musculusM9Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sumichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01772920Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM15Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Selva Negra14-Aug-01Nica-02372931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02472932Rattus rattusM15Selva Negra14-Aug-01Nica-02572934Rattus rattusM35Selva Negra14-Aug-01Nica-02572934Rattus rattusM35<	9-Aug-01	Nica-006	72911	Rattus rattus	F	110	Bella Vista
9-Aug-01Nica-00872913Rattus rattusM40Bella Vista9-Aug-01Nica-00972914Mus musculusF19Bella Vista9-Aug-01Nica-01072916Mus musculusF20Bella Vista9-Aug-01Nica-01172918Mus musculusF19Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01672921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sumichrastiM50Selva Negra14-Aug-01Nica-01672920Mus musculusM15Selva Negra14-Aug-01Nica-01772919Rattus rattusM15Selva Negra14-Aug-01Nica-01772925Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM15Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusM<	9-Aug-01	Nica-007	72912	Liomys salvini	Μ	41	Bella Vista
9-Aug-01Nica-00972914Mus musculusF19Bella Vista9-Aug-01Nica-01072916Mus musculusF20Bella Vista9-Aug-01Nica-01172918Mus musculusF19Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01472924Rattus rattusM30Selva Negra14-Aug-01Nica-01672921Nyctomys sunichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872920Mus musculusM15Selva Negra14-Aug-01Nica-01972925Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM15Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-0279358Liomys salviniF25Las Marias8-Jan-02Nica-02993683Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM	9-Aug-01	Nica-008	72913	Rattus rattus	Μ	40	Bella Vista
9-Aug-01Nica-01072916Mus musculusF20Bella Vista9-Aug-01Nica-01172918Mus musculusF19Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sumichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872920Mus musculusM15Selva Negra14-Aug-01Nica-01972925Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusM35Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-03093701Rattus rattusF10Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusF	9-Aug-01	Nica-009	72914	Mus musculus	F	19	Bella Vista
9-Aug-01Nica-01172918Mus musculusF19Bella Vista9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01472924Rattus rattusF135Selva Negra14-Aug-01Nica-01672921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sunichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872920Mus musculusM15Selva Negra14-Aug-01Nica-01972925Mus musculusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM115Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02472933Rattus rattusM50Selva Negra15-Aug-01Nica-02793598Liomys salviniF125San Nacinto5-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacinto9-Jan-02Nica-03193647Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscu	9-Aug-01	Nica-010	72916	Mus musculus	F	20	Bella Vista
9-Aug-01Nica-01272917Mus musculusM9Bella Vista9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01472924Rattus rattusF135Selva Negra14-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sunichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872920Mus musculusM15Selva Negra14-Aug-01Nica-02072926Rattus rattusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02672936Mus musculusF125Selva Negra15-Aug-01Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-03993647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03693506Peromyscus	9-Aug-01	Nica-011	72918	Mus musculus	F	19	Bella Vista
9-Aug-01Nica-01372923Ototylomys phyllotisF88Bella Vista14-Aug-01Nica-01472924Rattus rattusF135Selva Negra14-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sumichrastiM50Selva Negra14-Aug-01Nica-01672920Mus musculusM105Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01972925Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM115Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02672936Mus musculusF125San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-03093701Rattus rattusM50Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus me	9-Aug-01	Nica-012	72917	Mus musculus	Μ	9	Bella Vista
14-Aug-01Nica-01472924Rattus rattusF135Selva Negra14-Aug-01Nica-01572921Rattus rattusM30Selva Negra14-Aug-01Nica-01672922Nyctomys sumichrastiM50Selva Negra14-Aug-01Nica-01772919Rattus rattusM105Selva Negra14-Aug-01Nica-01872920Mus musculusM15Selva Negra14-Aug-01Nica-01972925Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM50Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02672936Rattus rattusM35Selva Negra15-Aug-01Nica-02672936Mus musculusF125San Jacinto5-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03393647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793652Peromy	9-Aug-01	Nica-013	72923	Ototylomys phyllotis	F	88	Bella Vista
14-Aug-01 Nica-015 72921 Rattus rattus M 30 Selva Negra 14-Aug-01 Nica-016 72922 Nyctomys sumichrasti M 50 Selva Negra 14-Aug-01 Nica-017 72919 Rattus rattus M 105 Selva Negra 14-Aug-01 Nica-018 72920 Mus musculus M 15 Selva Negra 14-Aug-01 Nica-019 72925 Mus musculus F 20 Selva Negra 14-Aug-01 Nica-020 72926 Rattus rattus M 65 Selva Negra 14-Aug-01 Nica-021 72927 Rattus rattus M 115 Selva Negra 14-Aug-01 Nica-022 72931 Peromyscus mexicanus M 50 Selva Negra 14-Aug-01 Nica-023 72932 Peromyscus mexicanus M 50 Selva Negra 14-Aug-01 Nica-024 72933 Rattus rattus M 35 Selva Negra 15-Aug-01 Nica-026 72936 Mus musculus F 15 San Jacitto 5-Jan-02	14-Aug-01	Nica-014	72924	Rattus rattus	F	135	Selva Negra
14-Aug-01 Nica-016 72922 Nyctomys sumichrasti M 50 Selva Negra 14-Aug-01 Nica-017 72919 Rattus rattus M 105 Selva Negra 14-Aug-01 Nica-018 72920 Mus musculus M 15 Selva Negra 14-Aug-01 Nica-019 72925 Mus musculus F 20 Selva Negra 14-Aug-01 Nica-020 72926 Rattus rattus M 65 Selva Negra 14-Aug-01 Nica-021 72927 Rattus rattus M 115 Selva Negra 14-Aug-01 Nica-021 72931 Peromyscus mexicanus M 50 Selva Negra 14-Aug-01 Nica-023 72932 Peromyscus mexicanus M 35 Selva Negra 15-Aug-01 Nica-025 72934 Rattus rattus M 35 Selva Negra 16-Aug-01 Nica-027 93598 Liomys salvini F 125 San Jacito 5-Jan-02 Nica-030 93701 Rattus rattus F 100 Selva Negra 9-Jan-02	14-Aug-01	Nica-015	72921	Rattus rattus	Μ	30	Selva Negra
14-Aug-01 Nica-017 72919 Rattus rattus M 105 Selva Negra 14-Aug-01 Nica-018 72920 Mus musculus M 15 Selva Negra 14-Aug-01 Nica-019 72925 Mus musculus F 20 Selva Negra 14-Aug-01 Nica-020 72926 Rattus rattus M 65 Selva Negra 14-Aug-01 Nica-021 72927 Rattus rattus M 115 Selva Negra 14-Aug-01 Nica-022 72931 Peromyscus mexicanus M 50 Selva Negra 14-Aug-01 Nica-023 72932 Peromyscus mexicanus M 50 Selva Negra 15-Aug-01 Nica-024 72933 Rattus rattus F 125 Selva Negra 16-Aug-01 Nica-026 72936 Mus musculus F 125 Selva Negra 16-Aug-01 Nica-027 93598 Liomys salvini F 25 Las Marias 8-Jan-02 Nica-030 93701 Rattus rattus F 100 Selva Negra 9-Jan-02	14-Aug-01	Nica-016	72922	Nyctomys sumichrasti	Μ	50	Selva Negra
14-Aug-01Nica-01872920Mus musculusM15Selva Negra14-Aug-01Nica-01972925Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM115Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusM35Selva Negra16-Aug-01Nica-02672936Mus musculusF125Selva Negra16-Aug-01Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacinto9-Jan-02Nica-03193647Peromyscus mexicanusF100Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893650	14-Aug-01	Nica-017	72919	Rattus rattus	Μ	105	Selva Negra
14-Aug-01Nica-01972925Mus musculusF20Selva Negra14-Aug-01Nica-02072926Rattus rattusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM115Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusF125Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03593651Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893650<	14-Aug-01	Nica-018	72920	Mus musculus	Μ	15	Selva Negra
14-Aug-01Nica-02072926Rattus rattusM65Selva Negra14-Aug-01Nica-02172927Rattus rattusM115Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusF125Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893600Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-038936	14-Aug-01	Nica-019	72925	Mus musculus	F	20	Selva Negra
14-Aug-01Nica-02172927Rattus rattusM115Selva Negra14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusF125Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacito9-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893650Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-039 <td< td=""><td>14-Aug-01</td><td>Nica-020</td><td>72926</td><td>Rattus rattus</td><td>Μ</td><td>65</td><td>Selva Negra</td></td<>	14-Aug-01	Nica-020	72926	Rattus rattus	Μ	65	Selva Negra
14-Aug-01Nica-02272931Peromyscus mexicanusM50Selva Negra14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusF125Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793650Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-038 </td <td>14-Aug-01</td> <td>Nica-021</td> <td>72927</td> <td>Rattus rattus</td> <td>Μ</td> <td>115</td> <td>Selva Negra</td>	14-Aug-01	Nica-021	72927	Rattus rattus	Μ	115	Selva Negra
14-Aug-01Nica-02372932Peromyscus mexicanusM50Selva Negra15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusF125Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-040 <td>14-Aug-01</td> <td>Nica-022</td> <td>72931</td> <td>Peromyscus mexicanus</td> <td>Μ</td> <td>50</td> <td>Selva Negra</td>	14-Aug-01	Nica-022	72931	Peromyscus mexicanus	Μ	50	Selva Negra
15-Aug-01Nica-02472933Rattus rattusM35Selva Negra15-Aug-01Nica-02572934Rattus rattusF125Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacinto9-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-040 <td>14-Aug-01</td> <td>Nica-023</td> <td>72932</td> <td>Peromyscus mexicanus</td> <td>Μ</td> <td>50</td> <td>Selva Negra</td>	14-Aug-01	Nica-023	72932	Peromyscus mexicanus	Μ	50	Selva Negra
15-Aug-01Nica-02572934Rattus rattusF125Selva Negra16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacinto9-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-0	15-Aug-01	Nica-024	72933	Rattus rattus	Μ	35	Selva Negra
16-Aug-01Nica-02672936Mus musculusF15San Jancito5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacinto9-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793650Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	15-Aug-01	Nica-025	72934	Rattus rattus	F	125	Selva Negra
5-Jan-02Nica-02793598Liomys salviniF25Las Marias8-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacinto9-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	16-Aug-01	Nica-026	72936	Mus musculus	F	15	San Jancito
8-Jan-02Nica-02993683Peromyscus mexicanusF65San Jacinto9-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793650Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093650Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	5-Jan-02	Nica-027	93598	Liomys salvini	F	25	Las Marias
9-Jan-02Nica-03093701Rattus rattusF100Selva Negra9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	8-Jan-02	Nica-029	93683	Peromyscus mexicanus	F	65	San Jacinto
9-Jan-02Nica-03193647Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM52Selva Negra	9-Jan-02	Nica-030	93701	Rattus rattus	F	100	Selva Negra
9-Jan-02Nica-03293648Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03393649Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM52Selva Negra	9-Jan-02	Nica-031	93647	Peromyscus mexicanus	Μ	50	Selva Negra
9-Jan-02Nica-03393649Peromyscus mexicanusF50Selva Negra9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-032	93648	Peromyscus mexicanus	Μ	50	Selva Negra
9-Jan-02Nica-03493651Peromyscus mexicanusF40Selva Negra9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-033	93649	Peromyscus mexicanus	F	50	Selva Negra
9-Jan-02Nica-03593652Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-034	93651	Peromyscus mexicanus	F	40	Selva Negra
9-Jan-02Nica-03693596Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-035	93652	Peromyscus mexicanus	Μ	30	Selva Negra
9-Jan-02Nica-03793653Peromyscus mexicanusM50Selva Negra9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-036	93596	Peromyscus mexicanus	Μ	50	Selva Negra
9-Jan-02Nica-03893620Peromyscus mexicanusM30Selva Negra9-Jan-02Nica-03993650Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-037	93653	Peromyscus mexicanus	Μ	50	Selva Negra
9-Jan-02Nica-03993650Peromyscus mexicanusF35Selva Negra9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-038	93620	Peromyscus mexicanus	Μ	30	Selva Negra
9-Jan-02Nica-04093656Peromyscus mexicanusM52Selva Negra9-Jan-02Nica-04193658Peromyscus mexicanusM35Selva Negra	9-Jan-02	Nica-039	93650	Peromyscus mexicanus	F	35	Selva Negra
9-Jan-02 Nica-041 93658 Peromyscus mexicanus M 35 Selva Negra	9-Jan-02	Nica-040	93656	Peromyscus mexicanus	Μ	52	Selva Negra
	9-Jan-02	Nica-041	93658	Peromyscus mexicanus	М	35	Selva Negra

Table A–1. Rodents collected in Nicaragua; raw data, 2001–2006.

Table A–1 continued.

1 able A - 1 co	onunued.					
Date	UIW	Texas Tech	exas fech Species ID		Weight	Locality
	Number	TK #			grams	
9-Jan-02	Nica-042	93657	Peromyscus mexicanus	Μ	55	Selva Negra
10-Jan-02	Nica-043	93621	Peromyscus mexicanus	M	60	Selva Negra
10-Jan-02	Nica-044	93655	Peromyscus mexicanus	M	40	Selva Negra
10-Jan-02	Nica-045	93645	Peromyscus mexicanus	F	40	Selva Negra
10-Jan-02	IN1ca-046	93039	Peromyscus mexicanus	M	40	Selva Negra
10-Jan-02	Nica-047	93654	Peromyscus mexicanus	M	45	Selva Negra
10-Jan-02	Nica-048	93646	Oryzomys alfaroi	M	30	Selva Negra
10-Jan-02	Nica-049	93622	Peromyscus mexicanus	M	5/	Selva Negra
10-Jan-02	N1ca-050	93682	Heteromys desmarsestianus	M	80	Selva Negra
10-Jan-02	Nica-051	93684	Ototylomys phyllotis	M	50	Selva Negra
10-Jan-02	Nica-052	93686	Peromyscus mexicanus	F	30	Selva Negra
10-Jan-02	Nica-053	93687	Peromyscus mexicanus	F	50	Selva Negra
10-Jan-02	Nica-054	93681	Peromyscus mexicanus	М	30	Selva Negra
10-Jan-02	Nica-055	93694	Peromyscus mexicanus	М	55	Selva Negra
11-Jan-02	Nica-056	93688	Peromyscus mexicanus	М	50	Selva Negra
11-Jan-02	Nica-057	93675	Peromyscus mexicanus	F	40	Selva Negra
11-Jan-02	Nica-058	93689	Peromyscus mexicanus	М	50	Selva Negra
11-Jan-02	Nica-059	93601	Ototylomys phyllotis	F	90	Selva Negra
11-Jan-02	Nica-060	93696	Peromyscus mexicanus	М	45	Selva Negra
11-Jan-02	Nica-061	93644	Scotinomys teguina	М	10	Selva Negra
11-Jan-02	Nica-062	93695	Peromyscus mexicanus	М	40	Selva Negra
11-Jan-02	Nica-063	93575	Scotinomys teguina	Μ	?	Selva Negra
11-Jan-02	Nica-064	93700	Oryzomys alfaroi	М	20	Selva Negra
11-Jan-02	Nica-065	93697	Peromyscus mexicanus	М	40	Selva Negra
11-Jan-02	Nica-066	93698	Peromyscus mexicanus	М	50	Selva Negra
11-Jan-02	Nica-067	93699	Peromyscus mexicanus	М	40	Selva Negra
13-Jan-02	Nica-068	93685	Didelphis marsupialis	F	145	San Lucas
15-Jan-02	Nica-069	93577	Liomys salvini	F	40	Los Mangos
15-Jan-02	Nica-070	93600	Peromyscus nudipes	F	61	Los Mangos
15-Jan-02	Nica-071	93678	Peromyscus mexicanus	М	50	Los Mangos
16-Jan-02	Nica-072		Rattus rattus	М	80	San Jacinto
17-Jan-02	Nica-073	93679	Mus musculus	F	15	San Jacinto
24-Jan-02	Nica-080	93690	Peromyscus mexicanus	М	50	Selva Negra
24-Jan-02	Nica-081	93691	Peromyscus mexicanus	М	30	Selva Negra
24-Jan-02	Nica-082	93676	Peromyscus mexicanus	М	35	Selva Negra
24-Jan-02	Nica-083	93677	Peromyscus mexicanus	М	30	Selva Negra
24-Jan-02	Nica-084	93692	Peromyscus mexicanus	F	45	Selva Negra
24-Jan-02	Nica-085	93693	Peromyscus mexicanus	F	45	Selva Negra
24-Jan-02	Nica-086	93680	Peromyscus mexicanus	F	30	Selva Negra
24-Jan-02	Nica-087	93599	Peromyscus mexicanus	M	35	Selva Negra
24-Jan-02	Nica-088	93576	Oryzomys sp	M	45	Selva Negra
24-Jan-02	Nica-089	93702	Peromyscus mexicanus	M	55	Selva Negra
24-Jan-02	Nica-000	93702	Peromyscus mexicanus	M	35	Selva Negra
24 Jan-02	Nica-090	93704	Peromyscus mexicanus	M	35	Selva Negra
2 jan-02	1100-091	JJ/0 1	i eromyseus mexicunus	TAT	55	Servariegia

UIW Weight Date Tech Species ID Sex Locality TK # Number grams 24-Jan-02 Nica-092 93705 F 45 Selva Negra Peromyscus mexicanus F 40 24-Jan-02 Nica-093 93706 Selva Negra Peromyscus mexicanus 18-May-02 Nica-094 113501 Peromyscus mexicanus F 35 Selva Negra 18-May-02 Nica-095 113502 Peromyscus mexicanus Μ 50 Selva Negra F 35 18-May-02 Nica-096 113503 Peromyscus mexicanus Selva Negra Nica-097 F 12 Selva Negra 18-May-02 113508 Scotinomys teguina Nica-098 113507 50 18-May-02 Μ Selva Negra Peromyscus mexicanus 18-May-02 Nica-099 113504 Peromyscus mexicanus Μ 40 Selva Negra 18-May-02 Nica-100 F 35 Selva Negra 113506 Peromyscus mexicanus F 40 18-May-02 Nica-101 113505 Peromyscus mexicanus Selva Negra 18-May-02 Nica-102 113509 F 35 Selva Negra Peromyscus mexicanus 40 18-May-02 Μ Selva Negra Nica-103 113510 Peromyscus mexicanus 18-May-02 Nica-104 113511 Peromyscus oaxacensis Μ 50 Selva Negra 19-May-02 Nica-105 113512 Ototylomys phyllotis F 120 Selva Negra 19-May-02 Nica-106 113525 Μ 50 Selva Negra Peromyscus mexicanus Peromyscus mexicanus 50 19-May-02 Nica-107 113526 Μ Selva Negra F 19-May-02 Nica-108 113527 Peromyscus mexicanus 45 Selva Negra F 35 19-May-02 Nica-109 113528 Peromyscus mexicanus Selva Negra 19-May-02 Nica-110 113529 Μ 45 Selva Negra Peromyscus mexicanus F 48 20-May-02 Nica-111 113530 Peromyscus mexicanus Selva Negra 20-May-02 Nica-112 113516 Μ 25 Selva Negra Oryzomys sp. 20-May-02 Nica-113 113531 Heteromys desmarsianus Μ 45 Selva Negra 20-May-02 Nica-114 113532 Peromyscus mexicanus Μ 45 Selva Negra F 105 20-May-02 Nica-115 Selva Negra 113534 Ototylomys phyllotis 20-May-02 Nica-116 113533 Μ 40 Selva Negra Peromyscus mexicanus 50 20-May-02 Nica-117 113535 Peromyscus mexicanus Μ Selva Negra 20-May-02 Nica-118 113536 Μ 55 Selva Negra Peromyscus mexicanus 20-May-02 Nica-119 113542 Peromyscus mexicanus F 50 Selva Negra 20-May-02 Nica-120 Μ 46 Selva Negra 113541 Peromyscus mexicanus 20-May-02 Nica-121 113537 Μ 38 Selva Negra Peromyscus mexicanus 20-May-02 Nica-122 113538 F 38 Selva Negra Peromyscus mexicanus 20-May-02 F 45 Nica-123 113539 Selva Negra Peromyscus mexicanus 20-May-02 Nica-124 113540 Peromyscus mexicanus F 40 Selva Negra Μ 55 20-May-02 Nica-125 113543 Peromyscus mexicanus Selva Negra F 50 20-May-02 Nica-126 113515 Heteromys desmarsianus Selva Negra 21-May-02 Nica-127 113513 Μ 35 Selva Negra Oryzomys sp. 21-May-02 Nica-128 113544 Μ 35 Selva Negra Peromyscus mexicanus 21-May-02 Nica-129 113514 Oryzomys sp. Μ 25 Selva Negra 21-May-02 Nica-130 113545 Peromyscus mexicanus Μ 50 Selva Negra F 50 21-May-02 Selva Negra Nica-131 113548 Peromyscus mexicanus 60 El Tigre 22-May-02 Nica-132 113518 Sigmodon hirsutus Μ 105 El Tigre 22-May-02 Nica-133 113546 Sigmodon hirsutus Μ 50 22-May-02 Nica-134 113547 Peromyscus mexicanus Μ El Tigre

Peromyscus mexicanus

Μ

45

El Tigre

22-May-02

Nica-135

113549

Texas

Table A–1 continued.

D	1 1111 7	Texas		C	XX7. 1 /	Locality
Date	UIW	Tech	Species ID	Sex	Weight	Locality
22 Ma 02	Number	1 K #	D	3.4	grams	E1 72'
22-May-02	Nica-136	113550	Peromyscus mexicanus	M	35	El Tigre
22-May-02	Nica-137	113555	Peromyscus mexicanus	F	30	El Tigre
23-May-02	Nica-138	113519	Sigmodon hirsutus	Μ	80	El Tigre
23-May-02	Nica-139	113552	Peromyscus mexicanus	Μ	50	El Tigre
23-May-02	Nica-140	113553	Oryzomys sp.	М	40	El Tigre
26-May-02	Nica-141	113554	Peromyscus mexicanus	М	60	Selva Negra
26-May-02	Nica-142	113551	Peromyscus mexicanus	М	45	Selva Negra
26-May-02	Nica-143	113556	Peromyscus mexicanus	F	45	Selva Negra
26-May-02	Nica-144	113558	Peromyscus mexicanus	Μ	45	Selva Negra
26-May-02	Nica-145	113559	Peromyscus mexicanus	М	50	Selva Negra
26-May-02	Nica-146	113560	Peromyscus mexicanus	F	50	Selva Negra
26-May-02	Nica-147	113561	Peromyscus mexicanus	Μ	40	Selva Negra
26-May-02	Nica-148	113524	Scotinomys teguina	Μ	15	Selva Negra
26-May-02	Nica-149	113562	Peromyscus mexicanus	F	45	Selva Negra
26-May-02	Nica-150	113563	Peromyscus mexicanus	Μ	40	Selva Negra
26-May-02	Nica-151	113564	Peromyscus mexicanus	F	45	Selva Negra
26-May-02	Nica-152	113565	Peromyscus mexicanus	Μ	45	Selva Negra
26-May-02	Nica-153	113566	Peromyscus mexicanus	Μ	50	Selva Negra
26-May-02	Nica-154	113573	Peromyscus mexicanus	F	40	Selva Negra
26-May-02	Nica-155	113581	Peromyscus mexicanus	F	55	Selva Negra
26-May-02	Nica-156	113571	Peromyscus mexicanus	F	45	Selva Negra
26-May-02	Nica-157	113570	Peromyscus mexicanus	Μ	45	Selva Negra
26-May-02	Nica-158	113572	Peromyscus mexicanus	М	45	Selva Negra
26-May-02	Nica-159	113567	Peromyscus mexicanus	М	45	Selva Negra
31-May-02	Nica-160	113517	Nyctomys sumichrasti	F	50	Bella Vista
31-May-02	Nica-161	113575	Peromyscus mexicanus	М	40	Bella Vista
31-May-02	Nica-162	113576	Peromyscus mexicanus	F	45	Bella Vista
31-May-02	Nica-163	113577	Peromyscus mexicanus	F	40	Bella Vista
31-May-02	Nica-164	113574	Peromyscus mexicanus	М	40	Bella Vista
1-Jun-02	Nica-165	113580	Liomys salvini	F	35	Bella Vista
1-Jun-02	Nica-166	113578	Liomys salvini	М	40	Bella Vista
1-Jun-02	Nica-167	113579	Liomys salvini	М	35	Bella Vista
1-Jun-02	Nica-168	113568	Ototylomys phyllotis	F	80	Bella Vista
1-Jun-02	Nica-169	113522	Liomys salvini	F	25	Bella Vista
1-Jun-02	Nica-170	113582	Peromyscus mexicanus	F	45	Bella Vista
1-Jun-02	Nica-171	113583	Liomys salvini	M	40	Bella Vista
1-Jun-02	Nica-172	113586	Peromyscus mexicanus	F	45	Bella Vista
2-Jun-02	Nica-173	113584	Liomys salvini	M	25	Bella Vista
2-Jun-02	Nica-174	113569	Liomys salvini	F	40	Bella Vista
2-Jun-02	Nica-175	113587	Liomys salvini	M	35	Bella Vista
6-Jun-02	Nica-176	113585	Peromys surviu	F	40	San Cristobal
$6_Jun=02$	Nica-177	113588	Peromyscus nexiculus	F	40	San Cristobal
6_{-} Jun 02	Nica 179	112580	Peromyscus ouracensis	г Б	25	San Cristobal
	1×10^{-1}	11.0.07		Г	23	– oan Chistodal

Table A-1 C	Jittilueu.					
Dut	1 11337	Texas	Second and ID	C.	W7 1. (T
Date	UIW	Tech	Species ID	Sex	weight	Locality
(X 0 0	Number	1K#			grams	
6-Jun-02	Nica-180	113590	Peromyscus oaxacensis	M	40	San Cristobal
6-Jun-02	Nica-181	113520	Ototylomys phyllotis	F	95	San Cristobal
6-Jun-02	Nica-182	113591	Peromyscus oaxacensis	F	40	San Cristobal
6-Jun-02	Nica-183	113593	Peromyscus oaxacensis	М	35	San Cristobal
6-Jun-02	Nica-184	113594	Peromyscus oaxacensis	F	45	San Cristobal
6-Jun-02	Nica-185	113595	Nyctomys sumichrasti	Μ	50	San Cristobal
6-Jun-02	Nica-186	113596	Peromyscus oaxacensis	F	45	San Cristobal
6-Jun-02	Nica-187	113597	Peromyscus oaxacensis	F	40	San Cristobal
6-Jun-02	Nica-188	113599	Peromyscus oaxacensis	Μ	40	San Cristobal
10-Jun-02	Nica-189	113598	Ototylomys phyllotis	F	80	San Cristobal
10-Jun-02	Nica-190	113600	Peromyscus oaxacensis	F	40	San Cristobal
10-Jun-02	Nica-191	113601	Peromyscus oaxacensis	F	40	San Cristobal
10-Jun-02	Nica-192	113602	Peromyscus oaxacensis	F	40	San Cristobal
10-Jun-02	Nica-193	113521	Ototylomys phyllotis	F	90	San Cristobal
10-Jun-02	Nica-194	113605	Peromyscus oaxacensis	М	40	San Cristobal
10-Jun-02	Nica-195	113606	Peromvscus oaxacensis	F	40	San Cristobal
10-Jun-02	Nica-196	113607	Liomys salvini	F	20	San Cristobal
10-Jun-02	Nica-197	113608	Peromyscus oaxacensis	F	35	San Cristobal
10-Jun-02	Nica-198	113609	Peromyscus oaxacensis	M	30	San Cristobal
10 Jun 02	Nica-199	113610	Peromyscus oaxacensis	M	45	San Cristobal
11 Jun 02	Nica-200	113611	Peromyscus oaxacensis	F	35	San Cristobal
11 Jun 02	Nica-201	113603	Ototylomys nhvllotis	M	60	San Cristobal
11 - Jun - 02	Nica 202	113523	Paromyscus maxicanus	M	25	San Cristobal
11 Jun 02	Nica 202	113525	Paromysous ogracousis	M	25	San Cristobal
11-Juli-02	Nica-203	115175	Denormana nudinas	M	50	Salua Nagra
11-May-03	Nica-204	115175	Peromyscus nuaipes	IVI E	30 40	Selva Negra
11-May-03	Nica-205	115170	Peromyscus nuaipes	Г	40	Selva Negra
11-May-03	Nica-206	1151//	Peromyscus nuaipes	M	45	Selva Negra
11-May-03	Nica-207	115178	Peromyscus nuaipes	F	40	Selva Negra
11-May-03	Nica-208	115179	Peromyscus nudipes	M	50	Selva Negra
11-May-03	Nica-209	115180	Peromyscus nudipes	M	40	Selva Negra
11-May-03	Nica-210	115181	Peromyscus nudipes	F	35	Selva Negra
11-May-03	Nica-211	115182	Peromyscus nudipes	M	50	Selva Negra
11-May-03	Nica-212	115199	Peromyscus nudipes	F	50	Selva Negra
11-May-03	Nica-213	115183	Peromyscus nudipes	М	50	Selva Negra
11-May-03	Nica-214	115184	Peromyscus nudipes	F	40	Selva Negra
12-May-03	Nica-215	115185	Peromyscus nudipes	F	45	Selva Negra
12-May-03	Nica-216	115186	Peromyscus nudipes	Μ	48	Selva Negra
12-May-03	Nica-217	115187	Peromyscus nudipes	F	45	Selva Negra
12-May-03	Nica-218	115188	Peromyscus nudipes	Μ	52	Selva Negra
12-May-03	Nica-219	115189	Peromyscus nudipes	Μ	45	Selva Negra
12-May-03	Nica-220	115190	Peromyscus nudipes	Μ	39	Selva Negra
12-May-03	Nica-221	115191	Peromyscus nudipes	F	35	Selva Negra
12-May-03	Nica-222	115192	Peromyscus nudipes	Μ	45	Selva Negra
12-May-03	Nica-223	115195	Peromyscus nudipes	М	45	Selva Negra

Table A–1 continued.

Table A-T CC	minueu.	-				
Date	UIW	Texas Tech	Species ID	Sex	Weight	Locality
	Number	TK #	I.		grams	
12-May-03	Nica-224	115196	Heteromys desmarsestianus	F	68	Selva Negra
12-May-03	Nica-225	115197	Peromyscus nudipes	Μ	40	Selva Negra
12-May-03	Nica-226	115198	Peromyscus nudipes	Μ	45	Selva Negra
12-May-03	Nica-227	115193	Peromyscus nudipes	Μ	45	Selva Negra
12-May-03	Nica-228	115194	Peromyscus nudipes	Μ	40	Selva Negra
12-May-03	Nica-229	115200	Peromyscus nudipes	Μ	49	Selva Negra
13-May-03	Nica-230	115201	Peromyscus nudipes	Μ	50	Selva Negra
13-May-03	Nica-231	115202	Peromyscus nudipes	Μ	50	Selva Negra
13-May-03	Nica-232	115203	Peromyscus nudipes	Μ	40	Selva Negra
13-May-03	Nica-233	115204	Peromyscus nudipes	Μ	45	Selva Negra
13-May-03	Nica-234	115205	Peromyscus nudipes	Μ	50	Selva Negra
13-May-03	Nica-235	115206	Peromyscus nudipes	F	35	Selva Negra
13-May-03	Nica-236	115207	Peromyscus nudipes	Μ	55	Selva Negra
13-May-03	Nica-237	115208	Peromyscus nudipes	Μ	50	Selva Negra
13-May-03	Nica-238	115209	Peromyscus nudipes	Μ	40	Selva Negra
13-May-03	Nica-239	115210	Peromyscus nudipes	Μ	50	Selva Negra
14-May-03	Nica-240	115219	Peromyscus nudipes	F	50	Selva Negra
14-May-03	Nica-241	115220	Peromyscus nudipes	F	42	Selva Negra
14-May-03	Nica-242	115221	Peromyscus nudipes	F	45	Selva Negra
14-May-03	Nica-243	115222	Peromyscus nudipes	F	50	Selva Negra
14-May-03	Nica-244	115223	Peromyscus nudipes	F	45	Selva Negra
14-May-03	Nica-245	115224	Peromyscus nudipes	Μ	45	Selva Negra
14-May-03	Nica-246	115225	Peromyscus nudipes	Μ	45	Selva Negra
18-May-03	Nica-247	115226	Peromyscus nudipes	Μ	45	Selva Negra
18-May-03	Nica-248	115227	Peromyscus nudipes	F	45	Selva Negra
18-May-03	Nica-249	115228	Peromyscus nudipes	F	50	Selva Negra
18-May-03	Nica-250	115211	Peromyscus nudipes	Μ	40	Selva Negra
18-May-03	Nica-251	115212	Peromyscus nudipes	Μ	40	Selva Negra
18-May-03	Nica-252	115213	Peromyscus nudipes	F	50	Selva Negra
18-May-03	Nica-253	115214	Peromyscus nudipes	Μ	45	Selva Negra
18-May-03	Nica-254	115215	Peromyscus nudipes	Μ	45	Selva Negra
19-May-03	Nica-255	115216	Peromyscus nudipes	М	50	Selva Negra
19-May-03	Nica-256	115217	Peromyscus nudipes	F	45	Selva Negra
19-May-03	Nica-257	115218	Peromyscus nudipes	Μ	45	Selva Negra
19-May-03	Nica-258	115229	Peromyscus nudipes	F	40	Selva Negra
19-May-03	Nica-259	115230	Peromyscus nudipes	Μ	48	Selva Negra
19-May-03	Nica-260	115235	Tylomys nudicaudus	М	90	Selva Negra
19-May-03	Nica-261	115236	Peromyscus nudipes	F	50	Selva Negra
19-May-03	Nica-262	115231	Peromyscus nudipes	F	35	Selva Negra
19-May-03	Nica-263	115232	Peromyscus nudipes	F	45	Selva Negra
19-May-03	Nica-264	115239	Peromyscus nudipes	М	50	Selva Negra
21-May-03	Nica-266	115237	Proechimys semispinosus	Μ	245	El Balsamo
22-May-03	Nica-267	115238	Proechimys semispinosus	Μ	90	El Balsamo
22-May-03	Nica-268	115233	Sigmodon hirsutus	Μ	20	El Balsamo

Table A–1 continued.

Table A-1 C	minueu.	-				
Date	UIW	UIW Tech Species ID		Sex	Weight	Locality
	Number	TK #			grams	
22-May-03	Nica-269	115234	Melanomys caliginosus	Μ	40	El Balsamo
19-Jul-03	Nica-270	121424	Nyctomys sumichrasti	Μ	70	El Balsamo
19-Jul-03	Nica-271	121412	Melanomys caliginosus	Μ	47	El Balsamo
21-Jul-03	Nica-272	121413	Ototylomys phyllotis	Μ	80	El Balsamo
21-Jul-03	Nica-273	121414	Melanomys caliginosus	Μ	30	El Balsamo
21-Jul-03	Nica-274	121415	Melanomys caliginosus	F	30	El Balsamo
21-Jul-03	Nica-275	121416	Melanomys caliginosus	Μ	40	El Balsamo
21-Jul-03	Nica-276	121417	Melanomys caliginosus	Μ	37	El Balsamo
21-Jul-03	Nica-277	121418	Melanomys caliginosus	F	40	El Balsamo
22-Jul-03	Nica-278	121419	Ototylomys phyllotis	F	120	El Balsamo
22-Jul-03	Nica-279	121420	Melanomys caliginosus	F	20	El Balsamo
24-Jul-03	Nica-280	121421	Ototylomys phyllotis	Μ	118	Rosa Grande
24-Jul-03	Nica-281	121422	Ototylomys phyllotis	F	50	Rosa Grande
25-Jul-03	Nica-282	121423	Melanomys caliginosus	Μ	55	Rosa Grande
25-Jul-03	Nica-283	121427	Melanomys caliginosus	F	50	Rosa Grande
25-Jul-03	Nica-284	121428	Melanomys caliginosus	Μ	58	Rosa Grande
25-Jul-03	Nica-285	121425	Proechimvs semispinosus	F	325	Rosa Grande
26-Jul-03	Nica-286	121426	Ototylomys phyllotis	F	80	Rosa Grande
26-Jul-03	Nica-287	121429	Melanomys caliginosus	F	389	Rosa Grande
26-Jul-03	Nica-288	121430	Melanomys caliginosus	F	346	Rosa Grande
26 Jul 03	Nica-289	121430	Melanomys caliginosus	M	57	Rosa Grande
26 Jul-03	Nica-290	121131	Proechimys semisninosus	F	453	Rosa Grande
26 Jul 03	Nica-201	123014	Proechimys semispinosus	F	365	Rosa Grande
26-Jul-03	Nica 202	121457	Malanomys caliginosus	M	303 41	Rosa Grande
26-Jul-03	Nica 203	121437	Melanomys caliginosus	M	306	Rosa Granda
20-Jul-03	Nica-293	121439	Melanomys caliginosus		27	Rosa Granda
20-Jul-03	Nica-294	121430	Melanomys caliginosus	Г	27	Rosa Grande
20-Jul-03	Nica-295	121452	Metanomys caliginosus	Г	42	Rosa Grande
27-Jul-03	Nica-296	121433	Peromyscus nualpes	M	42	Rosa Grande
27-Jul-03	Nica-297	121434	Ototylomys phyllotis	M	92	Rosa Grande
27-Jul-03	Nica-298	121435	Melanomys caliginosus	F	40	Rosa Grande
27-Jul-03	Nica-299	121436	Proechimys semispinosus	M	462	Rosa Grande
27-Jul-03	Nica-300	121437	Melanomys caliginosus	M	45	Rosa Grande
19-May-04	N1ca-301	119158	Scotinomys teguina	F	15	El Balsamo
19-May-04	Nica-302	119161	Scotinomys teguina	F	15	El Balsamo
19-May-04	Nica-303	119122	Proechimys semispinosus	F	300	El Balsamo
19-May-04	Nica-304	119146	Sigmodon hirsutus	F	110	El Balsamo
19-May-04	Nica-305	119159	Scotinomys teguina	Μ	15	El Balsamo
19-May-04	Nica-306	119160	Scotinomys teguina	Μ	15	El Balsamo
20-May-04	Nica-307	119165	Sigmodon hirsutus	М	55	El Balsamo
20-May-04	Nica-308	119163	Melanomys caliginosus	Μ	45	El Balsamo
20-May-04	Nica-309	119166	Melanomys caliginosus	F	35	El Balsamo
20-May-04	Nica-310	119162	Melanomys caliginosus	Μ	40	El Balsamo
20-May-04	Nica-311	119164	Melanomys caliginosus	Μ	40	El Balsamo
20-May-04	Nica-312	119123	Proechimys semispinosus	Μ	400	El Balsamo

Table A–1 continued.

Table A–1 continued.

	minucu.	T				
Dete	I TIM	Texas	Species ID	C	Walat	L a a a 1:4
Date	UIW	i ech	species ID	Sex	weight	Locality
A A A A A A A A A A	Number	1K#			grams	
21-May-04	Nica-313	119167	Oligoryzomys fulvescens	M	35	El Balsamo
21-May-04	Nica-314	119168	Melanomys caliginosus	M	35	El Balsamo
21-May-04	Nica-315	119147	Sigmodon hirsutus	Μ	150	El Balsamo
21-May-04	Nica-316	119169	Melanomys caliginosus	Μ	30	El Balsamo
21-May-04	Nica-317	119148	Sigmodon hirsutus	F	120	El Balsamo
21-May-04	Nica-318	119170	Oligoryzomys fulvescens	Μ	50	El Balsamo
21-May-04	Nica-319	119171	Melanomys caliginosus	F	40	El Balsamo
25-May-04	Nica-320	119124	Proechimys semispinosus	Μ	490	El Paraisito
25-May-04	Nica-321	119149	Proechimys semispinosus	Μ	480	El Paraisito
25-May-04	Nica-322	119138	Proechimys semispinosus	Μ	55	El Paraisito
26-May-04	Nica-323	119150	Proechimys semispinosus	Μ	555	El Paraisito
26-May-04	Nica-324	119151	Proechimys semispinosus	Μ	520	El Paraisito
26-May-04	Nica-325	119154	Proechimys semispinosus	Μ	175	El Paraisito
27-May-04	Nica-326	119173	Oryzomys cousei	Μ	90	El Paraisito
27-May-04	Nica-327	119174	Sigmodon hirsutus	Μ	75	El Paraisito
27-May-04	Nica-328	119157	Proechimys semispinosus	F	500	El Paraisito
27-May-04	Nica-329	119152	Proechimys semispinosus	F	450	El Paraisito
27-May-04	Nica-330	119153	Proechimys semispinosus	F	325	El Paraisito
27-May-04	Nica-331	119155	Proechimys semispinosus	М	190	El Paraisito
27-May-04	Nica-332	119172	Oryzomys cousei	М	485	El Paraisito
28-May-04	Nica-333	119176	Sigmodon hirsutus	М	100	El Paraisito
28-May-04	Nica-334	119125	Proechimys semispinosus	F	405	El Paraisito
28-May-04	Nica-335	119144	Proechimys semispinosus	М	545	El Paraisito
28-May-04	Nica-336	119175	Sigmodon hirsutus	М	45	El Paraisito
28-May-04	Nica-337	119156	Proechimys semispinosus	М	65	El Paraisito
29-May-04	Nica-338	119135	Proechimys semispinosus	М	>600	El Paraisito
30-May-04	Nica-339	119178	Sigmodon hirsutus	М	80	El Paraisito
30-May-04	Nica-340	119179	Sigmodon hirsutus	М	145	El Paraisito
30-May-04	Nica-341	119181	Oligoryzomys fulvescens	F	285	El Paraisito
31-May-04	Nica-342	119134	Proechimys semispinosus	F	415	El Paraisito
31-May-04	Nica-343	119180	Oligoryzomys fulvescens	F	35	El Paraisito
1-Jun-04	Nica-344	119130	Proechimys semispinosus	F	440	El Paraisito
2-Jun-04	Nica-345	119139	Proechimys semispinosus	М	425	El Paraisito
3-Jun-04	Nica-346	119143	Proechimys semispinosus	М	425	El Paraisito
3-Jun-04	Nica-347	119131	Proechimys semispinosus	М	45	El Paraisito
3-Jun-04	Nica-348	119182	Orvzomvs cousei	M	80	El Paraisito
7-Jun-04	Nica-349	119132	Proechimys semispinosus	M	275	El Paraisito
7-Jun-04	Nica-350	119183	Orvzomvs cousei	M	70	El Paraisito
7-Jun-04	Nica-351	119145	Sigmodon hirsutus	F	325	El Paraisito
7-Jun-04	Nica-352	110184	Sigmodon hirsutus	M	115	El Paraisito
7-Jun-04	Nica-353	110188	Propertieves semisninosus	M	65	El Paraisito
$7_{-111} - 04$	Nica-354	110185	Oligoryzomys fulvascans	M	50	Fl Paraisito
8_Jun_04	Nica-355	110177	Propertieves contention	M	<u>>600</u>	Fl Paraisito
$8_{\rm Jun} 0.4$	Nice 356	1101/7	Proschimys semispinosus	F	355	El Paraisito
0-Jull-04	110d-330	117144	i roecnimys semispinosus	T.	555	

Table A-T C	Jinninueu.					
Date	UIW	UIW Tech Species ID		Sex	Weight	Locality
	Number	TK #			grams	
8-Jun-04	Nica-357	119133	Proechimys semispinosus	Μ	110	El Paraisito
8-Jun-04	Nica-358	119187	Sigmodon hirsutus	Μ	125	El Paraisito
8-Jun-04	Nica-359	119186	Oligoryzomys fulvescens	Μ	45	El Paraisito
9-Jun-04	Nica-360	119136	Proechimys semispinosus	F	520	El Paraisito
9-Jun-04	Nica-361	119137	Proechimys semispinosus	F	390	El Paraisito
16-Dec-04	Nica-368	137043	Proechimys semispinosus	F	408	La Sardina
17-Dec-04	Nica-369	137054	Proechimys semispinosus	Μ	175	El Paraisito
17-Dec-04	Nica-370	137035	Proechimys semispinosus	Μ	253	El Paraisito
18-Dec-04	Nica-371	137053	Proechimys semispinosus	F	145	El Paraisito
18-Dec-04	Nica-372	137042	Proechimys semispinosus	Μ	250	El Paraisito
19-Dec-04	Nica-373	137038	Proechimys semispinosus	F	295	El Paraisito
21-Dec-04	Nica-374	137037	Proechimys semispinosus	F	290	Esperanzita #2
22-Dec-04	Nica-375	137042	Proechimys semispinosus	F	315	La Fonseca
22-Dec-04	Nica-376	137-57	Proechimys semispinosus	F	395	La Fonseca
23-Dec-04	Nica-377	137039	Proechimvs semispinosus	М	233	La Fonseca
23-Dec-04	Nica-378	137051	Proechimys semispinosus	Μ	130	La Fonseca
23-Dec-04	Nica-379	137050	Proechimys semispinosus	Μ	397	La Fonseca
16-Mar-05	Nica-380	137040	Proechimys semispinosus	M	360	El Paraisito
17-Mar-05	Nica-381	137069	Mus musculus	F	10	El Paraisito
18-Mar-05	Nica-382	137036	Proechimys semisninosus	F	385	El Paraisito
10 10101 05	Nica-	157050	1 rocentinys semispitosus	1	505	Li i didibito
12-May-05	382B	137034	Proechimys semispinosus	F	325	El Paraisito
13-May-05	Nica-383	137041	Proechimys semispinosus	М	510	Nueva Guinea
12-Mar-06	Nica-384	137046	Peromyscus nudipes	М	34	Selva Negra
12-Mar-06	Nica-385	137044	Peromyscus nudipes	М	44	Selva Negra
12-Mar-06	Nica-386	137047	Peromyscus nudipes	М	40	Selva Negra
12-Mar-06	Nica-387	133252	Peromyscus nudipes	М	40	Selva Negra
12-Mar-06	Nica-388	137048	Peromyscus nudipes	М	45	Selva Negra
12-Mar-06	Nica-389	137045	Peromyscus nudipes	М	38	Selva Negra
12-Mar-06	Nica-390	137049	Peromyscus nudipes	F	50	Selva Negra
12-Mar-06	Nica-391	137058	Peromyscus nudipes	F	45	Selva Negra
12-Mar-06	Nica-392	137055	Peromyscus nudipes	М	45	Selva Negra
12-Mar-06	Nica-393	137059	Peromyscus nudipes	F	45	Selva Negra
12-Mar-06	Nica-394	137052	Peromyscus nudipes	M	50	Selva Negra
12 Mar 00	Nica-395	137061	Sigmodon hirsutus	M	70	El Cua
14-Mar-06	Nica-396	137073	Sigmodon hirsutus	F	70	El Cua
14-Mar-06	Nica-397	137066	Peromyscus nudines	M	40	El Cua
14-Mar-06	Nica-398	137063	Orvzomys cousei	M	50	El Cua
14-Mar-06	Nica-399	137071	Melanomys caliginosus	M	30	El Cua
14-Mar-06	Nica-400	137070	Mus musculus	M	7	El Cua
14-Mar-06	Nica-401	137064	Melanomys caliginosus	M	, 45	Fl Cua
14_Mar_06	Nica-402	137072	Mus musculus	E	10	Fl Cua
14-Mar-06	Nica_403	137062	Mus musculus	M	5	El Cua
15-Mar-06	Nica-404	137068	Orvzomys alfaroi	M	26	El Cua
15 10101-00	1100-404	157000	or yzom ys uijuroi	141	20	Li Cua

Table A–1 continued.

Table A-1 continued.

		Texas					
Date	UIW	UIW Tech Speci		Sex	Weight	Locality	
	Number	TK #			grams		
15-Mar-06	Nica-405	137060	Peromyscus nudipes	М	50	El Cua	
15-Mar-06	Nica-406	137065	Oryzomys alfaroi	М	35	El Cua	
15-Mar-06	Nica-407	133251	Peromyscus nudipes	F	45	El Cua	
15-Mar-06	Nica-408	137067	Oryzomys alfaroi	М	35	El Cua	

APPENDIX B

Municipality	Cases	Municipality	Cases
Achuapa	0	El Rosario	0
Acoyapa	1	El Sauce	3
Altagracia	0	El Tortuguero	31
Belen	0	El Tuma - La Dalia	21
Bluefields	40	El Viejo	0
Boaco	2	Esquipulas	0
Bonanza	241	Esteli	0
Buenos Aires	0	Granada	1
Camoapa	0	Jalapa	3
Cardenas	0	Jinotega	25
Catarina	0	Jinotepe	0
Chichigalpa	2	Juigalpa	11
Chinandega	2	Kukrahill	10
Cinco Pinos	1	La Concepcion	0
Ciudad Antigua	0	La Concordia	0
Ciudad Dario	0	La Conquista	0
Ciudad Sandino	0	La Cruz de Rio Grande	64
Comalapa	1	La Libertad	0
Condega	0	La Paz Centro	0
Corinto	0	La Paz de Carazo	0
Cua-Bocay	1828	La Trinidad	0
Desembocadura	0	Laguna de Perlas	10
Dipilto	0	Larreynaga	0
Diria	0	Las Sabanas	0
Diriamba	0	Leon	1
Diriomo	0	Macuelizo	0
Dolores	0	Managua	3
El Almendro	4	Masatepe	1
El Ayote	18	Masaya	0
El Castillo	57	Matagalpa	10
El Coral	3	Mateare	0
El Crucero	0	Matiguas	7
El Jicaral	0	Morrito	0
El Jicaro	1	Mosonte	0
El Rama	146	Moyogalpa	0
El Realejo	0	Mulle de los Bueyos	11
Murra	6	San Juan del Norte	0
Muy Muy	0	San Juan del Rio Coco	0
Nagarote	0	San Juan del Sur	1
Nandaime	0	San Lorenzo	19
Nandasmo	0	San Lucas	0
Nindiri	1	San Marcos	0
Niquinohomo	1	San Miguelito	8

Table B–2. Human typical CL cases reported per municipality, 2003-2005.

Municipality	Cases	Municipality	Cases
Nueva Guinea	494	San Nicolas	
Ocotal	0	San Pedro de Lovago	
Paiwas	1	San Pedro Del Norte	
Palacaguina	0	San Rafael del Norte	
Posoltega	1	Santa Maria	
Potosi	0	Santa Maria de Pantasma	2
Prinzapolka	0	Santa Rosa del Penon	
Pueblo Nuevo	0	Santa Teresa	
Puerto Cabezas	45	Santo Domingo	1
Puerto Morazan	0	Santo Tomas	
Quezalguaque	1	Santo Tomas del Norte	
Quilali	2	Sebaco	
Rancho Grande	412	Siuna	46
Rio Blanco	3	Somotillo	
Rivas	0	Somoto	
Rosita	207	Telica	
San Carlos	95	Telpaneca	
San Dionisio	1	Terrabona	
San Fernando	0	Teustepe	
San Francisco de Cuapa	0	Ticuantepe	
San Francisco del Norte	1	Tipitapa	
San Francisco Libre	0	Tisma	
San Isidro	2	Tola	
San Jorge	0	Totogalpa	
San Jose de Bocay	818	Villa Carlos Fonseca	
San Jose de Cusmapa	0	Villa Sandino	
San Jose de Los Remates	1	Villanueva	
San Juan de Limay	0	Waslala	42
San Juan de Oriente	0	Waspan	
San Rafael del Sur	0	Wiwili de Jinotega	11
San Ramon	16	Wiwili de Nueva Segovia	
San Sebastian de Yali	1	Yalaguina	
Santa Lucia	0	-	

APPENDIX C

			Tem	peratui	e Zone	s (Deg	rees Co	elsius)		
Municipality	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5
Achuapa	0	0	0	3	14	35	90	170	78	0
Acoyapa	0	0	0	0	0	0	0	42	1329	0
Altagracia	0	0	1	5	10	9	20	41	108	0
Belen	0	0	0	0	0	0	0	23	22	0
Bluefields	0	0	0	0	0	0	48	433	3650	311
Boaco	0	0	0	0	5	96	387	562	34	0
Bonanza	0	0	0	0	10	71	225	860	751	0
Buenos Aires	0	0	0	0	0	0	0	0	54	0
Camoapa	0	0	0	0	3	9	266	1005	201	0
Cardenas	0	0	0	0	0	0	3	20	169	3
Catarina	0	0	0	0	0	0	8	3	0	0
Chichigalpa	0	0	0	0	2	4	4	18	85	108
Chinandega	0	1	1	9	12	19	40	59	508	8
Cinco Pinos	0	0	0	0	0	0	14	47	0	0
Ciudad Antigua	0	0	0	0	0	60	66	0	0	0
Ciudad Dario	0	0	0	0	3	16	45	575	80	6
Ciudad Sandino	0	0	0	0	0	0	0	7	42	0
Comalapa	0	0	0	0	0	0	54	274	303	0
Condega	0	0	4	78	149	171	0	0	0	0
Corinto	0	0	0	0	0	0	0	0	0	27
Cua-Bocay	0	6	16	29	93	261	353	41	3	0
Desembocadura	0	0	0	0	0	0	0	0	1716	0
Dipilto	0	3	3	51	40	7	0	0	0	0
Diria	0	0	0	0	0	0	1	23	0	0
Diriamba	0	0	0	0	0	14	50	52	219	12
Diriomo	0	0	0	0	0	0	0	53	0	0
Dolores	0	0	0	0	0	1	3	0	0	0
El Almendro	0	0	0	0	0	0	0	41	962	0
El Ayote	0	0	0	0	0	0	0	138	687	0
El Castillo	0	0	0	0	0	0	2	176	1460	0
El Coral	0	0	0	0	0	0	0	9	303	0
El Crucero	0	0	0	0	7	67	80	66	3	0
El Jicaral	0	0	0	0	0	0	0	76	117	232
El Jicaro	0	0	0	0	26	164	240	0	0	0
El Rama	0	0	0	0	0	0	2	54	3680	0

Table C–1. Area in square kilometers of temperature zones within municipalities.

Table C–1 continued.

	Temperature Zones (Degrees Celsius)									
Municipality	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5
El Realejo	0	0	0	0	0	0	0	0	8	89
El Rosario	0	0	0	0	0	0	13	0	0	0
El Sauce	0	0	0	0	0	41	74	144	434	0
El Tortuguero	0	0	0	0	0	0	0	0	3082	0
El Tuma - La Dalia	0	1	8	20	84	163	245	125	0	0
El Viejo	0	0	0	0	0	0	18	53	640	467
Esquipulas	0	0	0	3	26	40	96	54	0	0
Esteli	0	0	13	233	428	99	17	0	0	0
Granada	0	0	0	2	5	10	19	57	388	33
Jalapa	0	0	16	46	110	383	90	0	0	0
Jinotega	0	12	88	197	403	92	24	0	0	0
Jinotepe	0	0	0	0	0	6	49	33	188	6
Juigalpa	0	0	0	0	0	10	45	107	554	0
Kukrahill	0	0	0	0	0	0	0	0	1116	67
La Concepcion	0	0	0	0	0	28	34	5	0	0
La Concordia	0	1	1	54	61	33	0	0	0	0
La Conquista	0	0	0	0	0	0	0	30	59	0
La Cruz de Rio Grande	0	0	0	0	0	0	0	0	3315	0
La Libertad	0	0	0	0	0	17	262	400	96	0
La Paz Centro	0	0	0	0	0	11	5	26	273	347
La Paz de Carazo	0	0	0	0	0	0	2	15	0	0
La Trinidad	0	0	0	13	40	111	113	0	0	0
Laguna de Perlas	0	0	0	0	0	0	0	0	1810	128
Larreynaga	0	0	0	0	0	2	7	16	585	135
Las Sabanas	0	7	17	32	10	0	0	0	0	0
Leon	0	0	0	0	0	1	2	30	329	417
Macuelizo	0	0	0	24	91	96	52	0	0	0
Managua	0	0	0	0	0	4	23	81	158	0
Masatepe	0	0	0	0	0	0	47	13	0	0
Masaya	0	0	0	0	0	0	5	27	114	0
Matagalpa	0	0	35	80	120	198	191	22	0	0
Mateare	0	0	0	0	0	0	0	76	209	3
Matiguas	0	0	0	16	34	74	334	886	184	0
Morrito	0	0	0	0	0	0	0	0	665	0
Mosonte	3	22	18	20	23	45	81	0	0	0
Moyogalpa	0	0	0	0	0	0	0	9	53	0
Mulle de los Bueyos	0	0	0	0	0	0	0	371	1025	0

Temperature Zones (Degrees Celsius										
Municipality	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5
Murra	0	0	0	64	169	119	77	0	0	0
Muy Muy	0	0	0	2	6	31	60	280	0	0
Nagarote	0	0	0	0	0	0	0	0	361	236
Nandaime	0	0	0	0	0	0	0	24	347	0
Nandasmo	0	0	0	0	0	0	11	3	0	0
Nindiri	0	0	0	0	0	0	4	31	121	0
Niquinohomo	0	0	0	0	0	0	22	10	0	0
Nueva Guinea	0	0	0	0	0	0	2	187	2479	0
Ocotal	0	0	0	0	0	36	60	0	0	0
Paiwas	0	0	0	0	0	0	2	533	1813	0
Palacaguina	0	0	0	0	9	62	94	0	0	0
Posoltega	0	0	0	0	0	0	13	23	105	9
Potosi	0	0	0	0	0	0	0	0	144	0
Prinzapolka	0	0	0	0	0	0	0	13	6693	0
Pueblo Nuevo	0	4	13	22	52	106	0	0	0	0
Puerto Cabezas	0	0	0	0	0	0	0	1028	4714	0
Puerto Morazan	0	0	0	0	0	0	0	13	360	87
Quezalguaque	0	0	0	0	0	0	0	5	59	18
Quilali	0	0	0	0	33	109	122	83	0	0
Rancho Grande	0	0	0	10	32	174	137	136	102	0
Rio Blanco	0	0	0	4	10	15	70	296	278	0
Rivas	0	0	0	0	0	0	0	0	277	0
Rosita	0	0	0	0	0	2	7	101	2088	0
San Carlos	0	0	0	0	0	0	0	2	1348	2
San Dionisio	0	0	0	1	11	49	76	34	0	0
San Fernando	1	8	14	22	75	81	32	0	0	0
San Francisco de Cuapa	0	0	0	0	0	17	86	148	24	0
San Francisco del Norte	0	0	0	0	0	11	24	73	12	0
San Francisco Libre	0	0	0	0	0	0	0	8	81	548
San Isidro	0	0	0	0	11	36	91	155	0	0
San Jorge	0	0	0	0	0	0	0	0	24	0
San Jose de Bocay	0	3	3	8	38	465	786	2383	46	0
San Jose de Cusmapa	0	0	6	16	30	30	31	18	0	0
San Jose de Los Remates	0	0	0	1	49	42	146	43	0	0
San Juan de Limay	0	0	8	21	38	72	98	179	19	0
San Juan de Oriente	0	0	0	0	0	0	7	1	0	0
San Juan del Norte	0	0	0	0	0	0	2	12	1499	59

			Tem	peratur	e Zone	s (Deg	rees Ce	elsius)		
Municipality	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5
San Juan del Rio Coco	0	0	0	25	70	59	23	10	0	0
San Juan del Sur	0	0	0	0	0	0	1	120	279	0
San Lorenzo	0	0	0	0	0	10	55	136	339	0
San Lucas	0	0	3	33	57	58	0	0	0	0
San Marcos	0	0	0	0	0	53	45	18	3	0
San Miguelito	0	0	0	0	0	0	0	30	1072	0
San Nicolas	0	0	5	26	39	56	34	14	0	0
San Pedro de Lovago	0	0	0	0	0	2	39	384	35	0
San Pedro Del Norte	0	0	2	6	7	20	21	10	0	0
San Rafael del Norte	0	4	13	83	100	35	0	0	0	0
San Rafael del Sur	0	0	0	0	0	0	8	54	271	21
San Ramon	0	0	0	18	112	143	107	40	0	0
San Sebastian de Yali	0	3	12	40	159	141	38	11	0	0
Santa Lucia	0	0	0	0	15	31	34	38	8	0
Santa Maria	0	0	0	0	19	52	63	16	0	0
Santa Maria de Pantasma	0	0	0	0	63	76	219	191	0	0
Santa Rosa del Penon	0	0	0	0	0	9	39	107	71	0
Santa Teresa	0	0	0	0	0	0	8	70	130	0
Santo Domingo	0	0	0	0	0	1	55	309	311	0
Santo Tomas	0	0	0	0	0	0	60	358	74	0
Santo Tomas del Norte	0	0	0	0	0	0	0	30	11	0
Sebaco	0	0	0	2	16	28	136	109	0	0
Siuna	0	1	11	17	68	207	452	1054	3269	0
Somotillo	0	0	0	0	0	0	0	14	699	0
Somoto	0	0	0	18	83	245	112	0	0	0
Telica	0	0	0	0	0	11	28	58	293	0
Telpaneca	0	0	3	31	58	144	117	1	0	0
Terrabona	0	0	0	1	17	51	91	85	0	0
Teustepe	0	0	0	0	0	4	85	282	267	0
Ticuantepe	0	0	0	0	0	3	21	38	1	0
Tipitapa	0	0	0	0	0	0	0	108	637	208
Tisma	0	0	0	0	0	0	0	0	109	5
Tola	0	0	0	0	0	0	0	45	424	0
Totogalpa	0	0	0	0	15	81	51	0	0	0
Villa Carlos Fonseca	0	0	0	0	0	0	12	47	403	97
Villa Sandino	0	0	0	0	0	0	69	431	183	0
Villanueva	0	0	0	0	0	0	0	4	792	0

			Tem	peratur	e Zone	es (Deg	rees Ce	elsius)		
Municipality	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5
Waslala	0	0	0	6	79	116	167	780	180	0
Waspan	0	0	0	0	2	24	92	1542	6820	0
Wiwili de Jinotega	2	12	24	43	134	562	672	851	146	1
Wiwili de Nueva Segovia	0	0	0	3	27	83	152	142	0	0
Yalaguina	0	0	0	0	0	61	9	0	0	0

APPENDIX D

	<u>Mean Annual Precipitation Zones (millimeters)</u>												
		800-	900-	1000-	1200-	1400-	1600-	1800-	2000-	2400-	2800-	3200-	
Municipality	<800	900	1000	1200	1400	1600	1800	2000	2400	2800	3200	4000	>4000
Achuapa	0	0	0	9	36	53	115	177	0	0	0	0	0
Acoyapa	0	0	0	0	84	1044	207	40	0	0	0	0	0
Altagracia	0	0	0	0	45	158	0	0	0	0	0	0	0
Belen	0	0	0	76	109	58	0	0	0	0	0	0	0
Bluefields	0	0	0	0	0	0	0	0	1	186	818	2005	1400
Boaco	0	0	0	141	383	332	143	81	4	0	0	0	0
Bonanza	0	0	0	0	0	0	13	71	313	1521	0	0	0
Buenos Aires	0	0	0	26	31	0	0	0	0	0	0	0	0
Camoapa	0	0	0	191	219	205	103	104	331	331	0	0	0
Cardenas	0	0	0	0	0	0	71	32	100	0	0	0	0
Catarina	0	0	0	0	10	2	0	0	0	0	0	0	0
Chichigalpa	0	0	0	0	0	17	162	42	0	0	0	0	0
Chinandega	0	0	0	0	93	224	267	73	0	0	0	0	0
Cinco Pinos	0	0	0	0	40	21	0	0	0	0	0	0	0
Ciudad Antigua	0	18	66	42	0	0	0	0	0	0	0	0	0
Ciudad Dario	0	636	69	25	0	0	0	0	0	0	0	0	0
Ciudad Sandino	0	0	0	1	40	8	0	0	0	0	0	0	0
Comalapa	0	0	0	600	48	0	0	0	0	0	0	0	0
Condega	198	158	46	0	0	0	0	0	0	0	0	0	0
Corinto	0	0	0	0	0	39	0	0	0	0	0	0	0
Cua-Bocay	0	0	0	0	0	802	0	0	0	0	0	0	0
Desembocadura	0	0	0	0	0	0	0	0	0	0	1219	512	0
Dipilto	0	24	80	0	0	0	0	0	0	0	0	0	0
Diria	0	0	0	0	19	5	0	0	0	0	0	0	0
Diriamba	0	0	0	0	0	351	0	0	0	0	0	0	0
Diriomo	0	0	0	1	52	0	0	0	0	0	0	0	0
Dolores	0	0	0	0	0	4	0	0	0	0	0	0	0
El Almendro	0	0	0	0	0	9	316	468	210	0	0	0	0
El Ayote	0	0	0	0	0	0	0	0	0	825	0	0	0

Table D–1. Area in square kilometers of mean annual precipitation zones within municipalities.

Mean Annual Precipitation Zones (millimeters)													
		800-	900-	1000-	1200-	1400-	1600-	1800-	2000-	2400-	2800-	3200-	
Municipality	<800	900	1000	1200	1400	1600	1800	2000	2400	2800	3200	4000	>4000
El Castillo	0	0	0	0	0	0	0	0	53	476	800	313	0
El Coral	0	0	0	0	0	0	0	17	295	0	0	0	0
El Crucero	0	0	0	0	0	223	0	0	0	0	0	0	0
El Jicaral	0	0	11	361	58	0	0	0	0	0	0	0	0
El Jicaro	0	0	2	215	213	0	0	0	0	0	0	0	0
El Rama	0	0	0	0	0	0	0	0	0	634	2562	546	0
El Realejo	0	0	0	0	0	69	27	0	0	0	0	0	0
El Rosario	0	0	0	0	0	13	0	0	0	0	0	0	0
El Sauce	0	0	0	26	128	252	204	83	0	0	0	0	0
El Tortuguero	0	0	0	0	0	0	0	0	0	113	2606	363	0
El Tuma - La Dalia	0	0	0	0	100	422	114	10	0	0	0	0	0
El Viejo	0	0	0	0	0	944	195	77	0	0	0	0	0
Esquipulas	0	0	10	53	145	11	0	0	0	0	0	0	0
Esteli	0	526	204	60	0	0	0	0	0	0	0	0	0
Granada	0	0	242	157	184	0	0	0	0	0	0	0	0
Jalapa	0	0	0	0	168	475	0	0	0	0	0	0	0
Jinotega	0	0	19	136	338	337	0	0	0	0	0	0	0
Jinotepe	0	0	0	0	76	212	0	0	0	0	0	0	0
Juigalpa	0	0	0	346	183	189	0	0	0	0	0	0	0
Kukrahill	0	0	0	0	0	0	0	0	0	0	6	1178	0
La Concepcion	0	0	0	0	0	67	0	0	0	0	0	0	0
La Concordia	0	99	51	0	0	0	0	0	0	0	0	0	0
La Conquista	0	0	0	0	89	0	0	0	0	0	0	0	0
La Cruz de Rio													
Grande	0	0	0	0	0	0	0	0	0	390	2936	0	0
La Libertad	0	0	0	0	93	180	140	79	127	156	0	0	0
La Paz Centro	0	0	0	357	159	168	0	0	0	0	0	0	0
La Paz de Carazo	0	0	0	0	11	6	0	0	0	0	0	0	0
La Trinidad	0	245	32	0	0	0	0	0	0	0	0	0	0
Laguna de Perlas	0	0	0	0	0	0	0	0	0	0	6	1925	0
Larreynaga	0	0	0	365	290	90	0	0	0	0	0	0	0
Las Sabanas	0	0	0	66	0	0	0	0	0	0	0	0	0

Table D-1 continued.

Table D-1 continued.													
				Mear	n Annual Pre	cipitation Z	ones (millim	neters)					
		800-	900-	1000-	1200-	1400-	1600-	1800-	2000-	2400-	2800-	3200-	
Municipality	<800	900	1000	1200	1400	1600	1800	2000	2400	2800	3200	4000	>4000
Leon	0	0	0	0	51	601	154	0	0	0	0	0	0
Macuelizo	0	112	151	0	0	0	0	0	0	0	0	0	0
Managua	0	0	0	86	76	104	0	0	0	0	0	0	0
Masatepe	0	0	0	0	0	60	0	0	0	0	0	0	0
Masaya	0	0	4	30	103	9	0	0	0	0	0	0	0
Matagalpa	0	27	66	199	315	39	0	0	0	0	0	0	0
Mateare	0	0	0	167	114	14	0	0	0	0	0	0	0
Matiguas	0	0	0	0	0	0	99	261	1144	24	0	0	0
Morrito	0	0	0	0	0	569	97	0	0	0	0	0	0
Mosonte	27	90	66	29	0	0	0	0	0	0	0	0	0
Moyogalpa	0	0	0	0	62	0	0	0	0	0	0	0	0
Mulle de los Bueyos	0	0	0	0	0	0	0	0	159	1195	42	0	0
Murra	0	0	0	93	256	80	0	0	0	0	0	0	0
Muy Muy	0	0	0	0	3	239	136	1	0	0	0	0	0
Nagarote	0	0	0	33	179	388	0	0	0	0	0	0	0
Nandaime	0	0	0	368	5	0	0	0	0	0	0	0	0
Nandasmo	0	0	0	0	0	14	0	0	0	0	0	0	0
Nindiri	0	0	1	48	83	24	0	0	0	0	0	0	0
Niquinohomo	0	0	0	0	0	32	0	0	0	0	0	0	0
Nueva Guinea	0	0	0	0	0	0	0	0	1070	1329	271	2	0
Ocotal	0	96	0	0	0	0	0	0	0	0	0	0	0
Paiwas	0	0	0	0	0	0	0	0	134	2219	0	0	0
Palacaguina	118	47	0	0	0	0	0	0	0	0	0	0	0
Posoltega	0	0	0	0	0	0	136	14	0	0	0	0	0
Potosi	0	0	0	88	58	0	0	0	0	0	0	0	0
Prinzapolka	0	0	0	0	0	0	0	0	0	1491	5298	0	0
Pueblo Nuevo	0	48	88	61	0	0	0	0	0	0	0	0	0
Puerto Cabezas	0	0	0	0	0	0	0	57	1803	3247	644	0	0
Puerto Morazan	0	0	0	0	189	263	16	0	0	0	0	0	0
Quezalguaque	0	0	0	0	0	0	82	0	0	0	0	0	0
Quilali	0	0	0	100	247	0	0	0	0	0	0	0	0

TT 1 1	D 1	. •	1
Table	1)-1	confinit	Pd.
1 uoic		continu	Ju.

				Mear	n Annual Pre	cipitation Z	ones (millim	neters)					
		800-	900-	1000-	1200-	1400-	1600-	1800-	2000-	2400-	2800-	3200-	
Municipality	<800	900	1000	1200	1400	1600	1800	2000	2400	2800	3200	4000	>4000
Rancho Grande	0	0	0	0	0	59	255	146	135	0	0	0	0
Rio Blanco	0	0	0	0	0	0	0	0	673	0	0	0	0
Rivas	0	0	0	0	144	125	8	0	0	0	0	0	0
Rosita	0	0	0	0	0	0	0	0	1176	1023	0	0	0
San Carlos	0	0	0	0	0	0	1	617	650	90	0	0	0
San Dionisio	0	0	0	67	104	0	0	0	0	0	0	0	0
San Fernando San Francisco de	0	4	13	108	108	0	0	0	0	0	0	0	0
Cuapa San Francisco del	0	0	0	158	105	12	0	0	0	0	0	0	0
Norte	0	0	0	0	64	54	2	0	0	0	0	0	0
San Francisco Libre	0	11	272	370	0	0	0	0	0	0	0	0	0
San Isidro	0	240	53	0	0	0	0	0	0	0	0	0	0
San Jorge	0	0	0	0	24	0	0	0	0	0	0	0	0
San Jose de Bocay	0	0	0	0	0	2070	590	1066	9	0	0	0	0
San Jose de Cusmapa San Jose de Los	0	0	0	9	103	19	0	0	0	0	0	0	0
Remates	0	73	58	105	45	0	0	0	0	0	0	0	0
San Juan de Limay	0	0	24	75	116	116	68	36	0	0	0	0	0
San Juan de Oriente	0	0	0	0	5	3	0	0	0	0	0	0	0
San Juan del Norte San Juan del Rio	0	0	0	0	0	0	0	0	0	0	0	553	1015
Coco	0	0	93	94	0	0	0	0	0	0	0	0	0
San Juan del Sur	0	0	0	0	1	291	127	0	0	0	0	0	0
San Lorenzo	0	0	342	210	0	0	0	0	0	0	0	0	0
San Lucas	0	0	76	74	0	0	0	0	0	0	0	0	0
San Marcos	0	0	0	0	0	119	0	0	0	0	0	0	0
San Miguelito	0	0	0	0	0	2	440	406	256	0	0	0	0
San Nicolas	0	2	98	67	7	0	0	0	0	0	0	0	0
San Pedro de Lovago	0	0	0	0	119	110	53	44	134	0	0	0	0
San Pedro Del Norte	0	0	0	0	66	0	0	0	0	0	0	0	0
San Rafael del Norte	0	1	114	120	0	0	0	0	0	0	0	0	0
San Rafael del Sur	0	0	0	0	0	360	0	0	0	0	0	0	0

Table D-1 continued.													
				Mear	n Annual Pre	cipitation Z	ones (millim	eters)					
		800-	900-	1000-	1200-	1400-	1600-	1800-	2000-	2400-	2800-	3200-	
Municipality	<800	900	1000	1200	1400	1600	1800	2000	2400	2800	3200	4000	>4000
San Ramon	0	0	0	0	178	206	36	0	0	0	0	0	0
San Sebastian de Yali	7	113	185	99	0	0	0	0	0	0	0	0	0
Santa Lucia	0	0	9	117	0	0	0	0	0	0	0	0	0
Santa Maria	0	0	149	0	0	0	0	0	0	0	0	0	0
Santa Maria de	0	0	0	100	207	(2)	0	0	0	0	0	0	0
Pantasma	0	0	0	189	297	63	0	0	0	0	0	0	0
Santa Rosa del Penon	0	0	28	142	56	0	0	0	0	0	0	0	0
Santa Teresa	0	0	0	59	105	46	0	0	0	0	0	0	0
Santo Domingo	0	0	0	0	0	0	0	46	314	316	0	0	0
Santo Tomas	0	0	0	0	0	110	99	57	182	44	0	0	0
Santo Tomas del	0	0	0	0	_	26	0	0	0	0	0	0	0
Norte	0	0	0	0	5	30	0	0	0	0	0	0	0
Sebaco	0	222	59	10	0	0	0	0	0	0	0	0	0
Siuna	0	0	0	0	0	1101	557	687	1761	976	0	0	0
Somotillo	0	0	0	0	412	218	83	0	0	0	0	0	0
Somoto	0	146	313	0	0	0	0	0	0	0	0	0	0
Telica	0	0	0	0	48	103	239	0	0	0	0	0	0
Telpaneca	149	96	108	1	0	0	0	0	0	0	0	0	0
Terrabona	0	87	104	54	0	0	0	0	0	0	0	0	0
Teustepe	0	261	360	17	0	0	0	0	0	0	0	0	0
Ticuantepe	0	0	0	0	1	62	0	0	0	0	0	0	0
Tipitapa	0	240	706	10	0	0	0	0	0	0	0	0	0
Tisma	0	0	74	38	5	0	0	0	0	0	0	0	0
Tola	0	0	0	0	11	467	0	0	0	0	0	0	0
Totogalpa	95	52	0	0	0	0	0	0	0	0	0	0	0
Villa Carlos Fonseca	0	0	0	0	5	556	0	0	0	0	0	0	0
Villa Sandino	0	0	0	0	0	0	79	189	407	8	0	0	0
Villanueva	0	0	0	0	40	215	539	2	0	0	0	0	0
Waslala	0	0	0	0	0	408	373	320	231	0	0	0	0
Waspan	0	0	0	0	0	0	0	5212	2840	455	0	0	0
Wiwili de Jinotega	0	0	0	0	202	1792	371	89	0	0	0	0	0

Table D-1 continued.													
				Mear	n Annual Pre	ecipitation Zo	ones (millim	eters)					
		800-	900-	1000-	1200-	1400-	1600-	1800-	2000-	2400-	2800-	3200-	
Municipality	<800	900	1000	1200	1400	1600	1800	2000	2400	2800	3200	4000	>4000
Wiwili de Nueva													
Segovia	0	0	0	0	379	28	0	0	0	0	0	0	0
Yalaguina	13	57	0	0	0	0	0	0	0	0	0	0	0
APPENDIX E

					Elevatior	n Zones (H	leight Abov	e MSL)			
		100-	200-	400-	600-	800-	1000-	1200-	1400-	1600-	1800-
Municipality	0-100	200	400	600	800	1000	1200	1400	1600	1800	2000
Achuapa	2	40	189	78	64	13	4	0	0	0	0
Acoyapa	898	402	73	2	0	0	0	0	0	0	0
Altagracia	62	46	43	21	13	10	7	1	0	0	0
Belen	46	169	28	0	0	0	0	0	0	0	0
Bluefields	2801	1071	552	26	0	0	0	0	0	0	0
Boaco	0	0	499	420	151	14	0	0	0	0	0
Bonanza	30	775	773	295	42	3	0	0	0	0	0
Buenos Aires	57	0	0	0	0	0	0	0	0	0	0
Camoapa	0	60	1000	389	31	4	0	0	0	0	0
Cardenas	139	34	31	0	0	0	0	0	0	0	0
Catarina	0	1	1	10	0	0	0	0	0	0	0
Chichigalpa	155	31	24	7	4	0	0	0	0	0	0
Chinandega	371	106	81	46	23	16	11	3	0	0	0
Cinco Pinos	0	1	44	16	0	0	0	0	0	0	0
Ciudad Antigua	0	0	0	0	107	19	0	0	0	0	0
Ciudad Dario	0	4	50	483	157	35	1	0	0	0	0
Ciudad Sandino	3	28	16	2	0	0	0	0	0	0	0
Comalapa	91	190	290	74	3	0	0	0	0	0	0
Condega	0	0	0	0	173	141	74	14	0	0	0
Corinto	22	0	0	0	0	0	0	0	0	0	0
Cua-Bocay	0	0	1	297	278	152	46	15	13	0	0
Desembocadura	1732	0	0	0	0	0	0	0	0	0	0
Dipilto	0	0	0	0	0	14	55	33	2	0	0
Diria	0	2	22	0	0	0	0	0	0	0	0
Diriamba	144	69	60	52	11	0	0	0	0	0	0
Diriomo	0	0	53	0	0	0	0	0	0	0	0

Table E–1. Area in square kilometers of elevation zones within municipalities.

					Elevation	<u> Zones (H</u>	eight Abov	e MSL)			
		100-	200-	400-	600-	800-	1000-	1200-	1400-	1600-	1800-
Municipality	0-100	200	400	600	800	1000	1200	1400	1600	1800	2000
Dolores	0	0	0	4	0	0	0	0	0	0	0
El Almendro	23	466	514	0	0	0	0	0	0	0	0
El Ayote	4	541	280	0	0	0	0	0	0	0	0
El Castillo	502	789	350	1	0	0	0	0	0	0	0
El Coral	0	277	35	0	0	0	0	0	0	0	0
El Crucero	0	2	63	80	58	20	0	0	0	0	0
El Jicaral	227	48	87	68	0	0	0	0	0	0	0
El Jicaro	0	0	0	114	263	52	1	0	0	0	0
El Rama	2334	1212	189	7	0	0	0	0	0	0	0
El Realejo	96	0	0	0	0	0	0	0	0	0	0
El Rosario	0	0	0	13	0	0	0	0	0	0	0
El Sauce	26	282	221	115	37	12	0	0	0	0	0
El Tortuguero	2257	804	20	1	0	0	0	0	0	0	0
El Tuma - La Dalia	0	0	64	225	186	109	49	12	1	0	0
El Viejo	844	193	94	33	0	0	0	0	0	0	0
Esquipulas	0	0	39	99	43	37	1	0	0	0	0
Esteli	0	0	0	13	41	318	303	110	5	0	0
Granada	367	103	74	22	11	5	1	0	0	0	0
Jalapa	0	0	0	34	365	129	64	49	4	0	0
Jinotega	0	0	0	7	57	214	406	97	49	0	0
Jinotepe	94	84	45	50	1	0	0	0	0	0	0
Juigalpa	318	245	116	38	1	0	0	0	0	0	0
Kukrahill	1143	34	6	1	0	0	0	0	0	0	0
La Concepcion	0	0	0	32	31	4	0	0	0	0	0
La Concordia	0	0	0	0	7	70	35	35	3	0	0
La Conquista	0	36	53	0	0	0	0	0	0	0	0
La Cruz de Rio Grande	2443	877	6	0	0	0	0	0	0	0	0
La Libertad	0	48	340	356	31	0	0	0	0	0	0
La Paz Centro	357	234	51	23	12	7	0	0	0	0	0

Table E-1 continued.

	Elevation Zones (Height Above MSL)										
		100-	200-	400-	600-	800-	1000-	1200-	1400-	1600-	1800-
Municipality	0-100	200	400	600	800	1000	1200	1400	1600	1800	2000
La Paz de Carazo	0	0	17	0	0	0	0	0	0	0	0
La Trinidad	0	0	0	14	126	100	28	9	0	0	0
Laguna de Perlas	1898	4	0	0	0	0	0	0	0	0	0
Larreynaga	448	215	67	10	4	1	0	0	0	0	0
Las Sabanas	0	0	0	0	0	1	27	29	9	0	0
Leon	516	157	91	6	0	0	0	0	0	0	0
Macuelizo	0	0	0	2	66	111	72	12	0	0	0
Managua	65	65	89	37	9	1	0	0	0	0	0
Masatepe	0	0	13	47	0	0	0	0	0	0	0
Masaya	7	50	85	4	0	0	0	0	0	0	0
Matagalpa	0	0	20	73	233	160	83	72	5	0	0
Mateare	85	60	150	0	0	0	0	0	0	0	0
Matiguas	0	47	917	402	113	27	21	1	0	0	0
Morrito	468	198	0	0	0	0	0	0	0	0	0
Mosonte	0	0	0	0	98	40	18	22	18	14	2
Moyogalpa	36	21	5	0	0	0	0	0	0	0	0
Mulle de los Bueyos	95	656	645	0	0	0	0	0	0	0	0
Murra	0	0	0	45	88	171	119	6	0	0	0
Muy Muy	0	0	283	57	29	9	1	0	0	0	0
Nagarote	367	194	12	0	0	0	0	0	0	0	0
Nandaime	149	178	48	0	0	0	0	0	0	0	0
Nandasmo	0	0	4	10	0	0	0	0	0	0	0
Nindiri	14	68	63	11	0	0	0	0	0	0	0
Niquinohomo	0	0	11	21	0	0	0	0	0	0	0
Nueva Guinea	341	1610	720	1	0	0	0	0	0	0	0
Ocotal	0	0	0	0	72	22	2	0	0	0	0
Paiwas	134	1317	888	14	0	0	0	0	0	0	0
Palacaguina	0	0	0	0	156	9	0	0	0	0	0
Posoltega	42	47	45	11	5	0	0	0	0	0	0
e											

Table E–1 continued.

					Elevation	<u>Zones (H</u>	eight Abov	e MSL)			
		100-	200-	400-	600-	800-	1000-	1200-	1400-	1600-	1800-
Municipality	0-100	200	400	600	800	1000	1200	1400	1600	1800	2000
Potosi	144	2	0	0	0	0	0	0	0	0	0
Prinzapolka	6763	42	0	0	0	0	0	0	0	0	0
Pueblo Nuevo	0	0	0	0	92	47	34	17	6	1	0
Puerto Cabezas	5619	156	15	0	0	0	0	0	0	0	0
Puerto Morazan	400	35	37	0	0	0	0	0	0	0	0
Quezalguaque	44	26	12	0	0	0	0	0	0	0	0
Quilali	0	0	36	122	124	61	4	0	0	0	0
Rancho Grande	0	15	176	135	156	91	17	5	0	0	0
Rio Blanco	0	178	341	111	25	10	6	2	0	0	0
Rivas	223	53	1	0	0	0	0	0	0	0	0
Rosita	1770	347	74	8	0	0	0	0	0	0	0
San Carlos	934	403	21	0	0	0	0	0	0	0	0
San Dionisio	0	0	17	67	60	27	0	0	0	0	0
San Fernando	0	0	0	0	59	82	50	20	15	6	1
San Francisco de Cuapa	0	32	131	75	36	1	0	0	0	0	0
San Francisco del Norte	0	8	51	46	15	0	0	0	0	0	0
San Francisco Libre	374	149	94	27	7	2	0	0	0	0	0
San Isidro	0	0	0	173	76	37	7	0	0	0	0
San Jorge	24	0	0	0	0	0	0	0	0	0	0
San Jose de Bocay	0	158	2203	1074	250	43	5	2	0	0	0
San Jose de Cusmapa	0	0	13	32	29	35	18	4	0	0	0
San Jose Los Remates	0	0	10	142	70	53	6	0	0	0	0
San Juan de Limay	0	10	160	103	77	50	24	9	2	0	0
San Juan de Oriente	0	0	3	5	0	0	0	0	0	0	0
San Juan del Norte	1241	263	67	6	0	0	0	0	0	0	0
San Juan del Rio Coco	0	0	0	18	38	78	38	15	0	0	0
San Juan del Sur	142	143	96	0	0	0	0	0	0	0	0
San Lorenzo	246	64	155	70	17	0	0	0	0	0	0
San Lucas	0	0	0	0	27	69	35	16	5	0	0

Table E-1 continued.

	Table	E-1	continued.
--	-------	-----	------------

	Elevation Zones (Height Above MSL)										
	0-	100-	200-	400-	600-	800-	1000-	1200-	1400-	1600-	1800-
Municipality	100	200	400	600	800	1000	1200	1400	1600	1800	2000
San Marcos	0	4	18	43	53	1	0	0	0	0	0
San Miguelito	394	659	51	0	0	0	0	0	0	0	0
San Nicolas	0	0	1	28	57	49	25	14	0	0	0
San Pedro de Lovago	0	22	368	61	9	0	0	0	0	0	0
San Pedro Del Norte	0	0	11	20	19	9	4	2	1	0	0
San Rafael del Norte	0	0	0	0	28	26	118	55	8	0	0
San Rafael del Sur	178	95	70	9	0	0	0	0	0	0	0
San Ramon	0	0	39	93	123	108	54	3	0	0	0
San Sebastian de Yali	0	0	0	37	89	181	73	19	5	0	0
Santa Lucia	0	3	45	31	29	18	0	0	0	0	0
Santa Maria	0	0	0	62	61	24	3	0	0	0	0
Santa Maria de Pantasma	0	0	22	328	98	77	24	0	0	0	0
Santa Rosa del Penon	0	0	104	89	27	6	0	0	0	0	0
Santa Teresa	38	52	105	9	0	0	0	0	0	0	0
Santo Domingo	0	136	443	88	9	0	0	0	0	0	0
Santo Tomas	1	16	371	104	0	0	0	0	0	0	0
Santo Tomas del Norte	1	22	18	0	0	0	0	0	0	0	0
Sebaco	0	0	0	167	96	23	4	1	0	0	0
Siuna	752	2413	1111	555	150	69	24	8	0	0	0
Somotillo	611	94	8	0	0	0	0	0	0	0	0
Somoto	0	0	0	8	254	136	55	6	0	0	0
Telica	106	114	109	46	14	1	0	0	0	0	0
Telpaneca	0	0	0	0	217	92	34	11	0	0	0
Terrabona	0	0	11	122	66	40	6	0	0	0	0
Teustepe	6	116	317	156	40	3	0	0	0	0	0
Ticuantepe	0	0	27	25	10	1	0	0	0	0	0
Tipitapa	604	107	149	95	1	0	0	0	0	0	0
Tisma	80	37	0	0	0	0	0	0	0	0	0
Tola	278	146	28	0	0	0	0	0	0	0	0

	Elevation Zones (Height Above MSL)										
		100-	200-	400-	600-	800-	1000-	1200-	1400-	1600-	1800-
Municipality	0-100	200	400	600	800	1000	1200	1400	1600	1800	2000
Totogalpa	0	0	0	0	92	50	5	0	0	0	0
Villa Carlos Fonseca	281	165	77	15	0	0	0	0	0	0	0
Villa Sandino	0	58	535	78	12	0	0	0	0	0	0
Villanueva	651	134	11	0	0	0	0	0	0	0	0
Waslala	0	100	756	256	138	72	10	0	0	0	0
Waspan	4646	2543	1156	179	7	2	0	0	0	0	0
Wiwili de Jinotega	0	166	610	866	500	201	59	36	16	0	0
Wiwili de Nueva Segovia	0	0	15	210	109	65	8	0	0	0	0
Yalaguina	0	0	0	0	62	8	0	0	0	0	0

Appendix E. Area in square kilometers of elevation zones within municipalities.

APPENDIX F

	Soil Type Zones								
	Heavy		Loamy			Clay	Sandy		
Municipality	Clay	Clay	Sand	Sandy	Loam	Loam	Loam		
Achuapa	0	0	0	0	1	389	0		
Acoyapa	745	90	0	0	16	524	0		
Altagracia	0	83	0	0	23	63	32		
Belen	69	149	0	0	24	1	0		
Bluefields	0	4410	0	0	0	0	0		
Boaco	40	445	0	0	0	599	0		
Bonanza	0	1918	0	0	0	0	0		
Buenos Aires	4	0	0	0	13	19	14		
Camoapa	7	1013	0	0	0	401	63		
Cardenas	0	202	0	0	0	0	0		
Catarina	0	0	0	0	0	9	0		
Chichigalpa	25	0	0	0	132	3	61		
Chinandega	46	150	0	0	197	46	218		
Cinco Pinos	0	0	0	0	0	61	0		
Ciudad Antigua	0	0	0	0	70	53	3		
Ciudad Dario	145	0	0	0	0	585	0		
Ciudad Sandino	0	0	11	0	0	26	12		
Comalapa	131	138	0	0	38	332	6		
Condega	0	33	0	0	41	328	0		
Corinto	9	0	0	0	0	30	0		
Cua-Bocay	0	802	0	0	0	0	0		
Desembocadura	0	1731	0	0	0	0	0		
Dipilto	0	0	0	0	0	63	41		
Diria	0	0	0	0	6	18	0		
Diriamba	0	187	0	0	34	130	0		
Diriomo	0	0	0	0	46	6	1		
Dolores	0	0	0	0	4	0	0		
El Almendro	147	815	0	0	0	41	0		
El Ayote	0	825	0	0	0	0	0		
El Castillo	0	1642	0	0	0	0	0		
El Coral	0	312	0	0	0	0	0		
El Crucero	0	1	0	0	138	84	0		

Table F–1. Area in square kilometers of soil zones within municipalities.

	Soil Type Zones								
	Heavy		Loamy			Clay	Sandy		
Municipality	Clay	Clay	Sand	Sandy	Loam	Loam	Loam		
El Jicaral	125	82	0	0	70	151	0		
El Jicaro	0	57	2	0	210	161	0		
El Realejo	26	0	0	0	58	12	0		
El Rosario	0	0	0	0	2	11	0		
El Sauce	76	0	0	0	0	617	0		
El Tortuguero	0	3082	0	0	0	0	0		
El Tuma - La Dalia	0	646	0	0	0	0	0		
El Viejo	155	62	302	0	256	413	28		
Esquipulas	0	78	0	0	0	141	0		
Esteli	23	168	0	0	271	328	0		
Granada	241	46	0	0	21	130	138		
Jalapa	34	77	77	0	204	251	0		
Jinotega	0	518	0	0	0	297	0		
Jinotepe	30	159	0	0	35	64	0		
Juigalpa	220	172	0	0	133	193	0		
Kukrahill	0	1184	0	0	0	0	0		
La Concepcion	0	0	0	0	39	0	28		
La Concordia	0	112	0	0	0	38	0		
La Conquista	0	66	0	0	0	23	0		
La Cruz de Rio									
Grande	0	3326	0	0	0	0	0		
La Libertad	0	749	0	0	21	5	0		
La Paz Centro	204	73	50	0	73	230	51		
La Paz de Carazo	0	0	0	0	0	17	0		
La Trinidad	2	14	0	0	0	261	0		
Laguna de Perlas	0	1931	0	0	0	0	0		
Larreynaga	324	123	0	0	31	173	94		
Las Sabanas	0	0	0	0	0	66	0		
Leon	200	72	61	12	146	166	149		
Macuelizo	0	2	0	0	0	176	85		
Managua	0	0	3	0	32	148	83		
Masatepe	0	0	0	0	31	12	16		
Masaya	0	0	0	0	0	124	22		
Matagalpa	4	345	0	0	0	297	0		
Mateare	0	0	7	0	0	271	13		

	Soil Type Zones							
	Heavy		Loamy			Clay	Sandy	
Municipality	Clay	Clay	Sand	Sandy	Loam	Loam	Loam	
Matiguas	73	1455	0	0	0	0	0	
Morrito	367	223	0	0	0	76	0	
Moyogalpa	0	5	0	0	20	0	37	
Mulle de los Bueyos	0	1396	0	0	0	0	0	
Murra	0	253	0	0	0	176	0	
Muy Muy	164	174	0	0	0	41	0	
Nagarote	201	0	0	0	99	295	5	
Nandaime	109	118	0	0	9	87	47	
Nandasmo	0	0	0	0	3	7	4	
Nindiri	0	0	0	0	12	35	106	
Niquinohomo	0	0	0	0	0	32	0	
Nueva Guinea	0	2672	0	0	0	0	0	
Ocotal	0	0	0	0	0	58	38	
Paiwas	0	2324	0	0	0	29	0	
Palacaguina	0	0	0	0	0	165	0	
Posoltega	7	0	0	0	45	0	98	
Potosi	110	0	0	0	16	10	10	
Prinzapolka	0	6789	0	0	0	0	0	
Pueblo Nuevo	0	2	0	0	18	177	0	
Puerto Cabezas	0	5771	0	0	0	0	0	
Puerto Morazan	259	0	0	0	89	120	0	
Quezalguaque	34	0	0	0	21	6	21	
Quilali	0	192	0	0	73	82	0	
Rancho Grande	0	595	0	0	0	0	0	
Rio Blanco	0	673	0	0	0	0	0	
Rivas	110	48	0	0	33	83	0	
Rosita	0	2199	0	0	0	0	0	
San Carlos	0	1358	0	0	0	0	0	
San Dionisio	0	64	0	0	0	107	0	
San Fernando	0	14	92	0	95	18	14	
San Francisco de	_						_	
Cuapa	0	64	0	0	0	208	3	
San Francisco del	Ο	1	0	Ο	0	116	Ο	
San Francisco Libre	304	58	0	0	125	156	0	

	Soil Type Zones							
	Heavy		Loamy			Clay	Sandy	
Municipality	Clay	Clay	Sand	Sandy	Loam	Loam	Loam	
San Isidro	137	0	0	0	0	156	0	
San Jorge	0	0	0	0	15	8	0	
San Jose de Bocay	0	3735	0	0	0	0	0	
San Jose de								
Cusmapa	0	47	0	0	0	84	0	
San Jose de Los								
Remates	0	66	0	0	0	215	0	
San Juan de Limay	10	93	0	0	36	296	0	
San Juan de Oriente	0	0	0	0	0	8	0	
San Juan del Norte	0	1568	0	0	0	0	0	
San Juan del Rio								
Coco	0	0	0	0	119	68	0	
San Juan del Sur	135	284	0	0	0	0	0	
San Lorenzo	252	124	0	0	0	175	0	
San Lucas	0	79	0	0	0	71	0	
San Marcos	0	4	0	0	95	17	3	
San Miguelito	150	942	0	0	0	12	0	
San Nicolas	26	0	0	0	0	148	0	
San Pedro de								
Lovago	1	349	0	0	33	77	0	
San Pedro Del								
Norte	0	0	0	0	0	66	0	
San Rafael del	0	150	0	0	0	70	0	
Norte	0	156	0	0	0	/9	0	
San Rafael del Sur	0	103	0	0	100	157	0	
San Ramon	6	349	0	0	0	65	0	
San Sebastian de	0	205	0	0	0	100	0	
	0	295	0	0	0	109	0	
Santa Lucia	6	51	0	0	0	59	0	
Santa Maria	0	0	0	0	0	90	59	
Santa Maria de	0	406	0	0	0	50	0	
Pantasina Santa Rosa del	0	490	0	0	0	55	0	
Penon	20	0	0	0	0	206	0	
Santa Teresa	Δ0 Δ	124	0	0	0	200	0	
	F		0	0	0	02	0	

	Soil Type Zones									
	Heavy		Loamy			Clay	Sandy			
Municipality	Clay	Clay	Sand	Sandy	Loam	Loam	Loam			
Santo Tomas	1	467	0	0	0	24	0			
Santo Tomas del										
Norte	0	0	0	0	0	41	0			
Sebaco	76	0	0	0	0	215	0			
Siuna	0	5082	0	0	0	0	0			
Somotillo	416	15	0	0	76	206	0			
Somoto	0	216	0	0	63	86	94			
Telica	81	3	0	3	48	33	222			
Telpaneca	0	0	0	0	29	325	0			
Terrabona	27	0	0	0	0	218	0			
Teustepe	77	284	0	0	80	197	0			
Ticuantepe	0	0	0	0	22	3	38			
Tipitapa	473	197	0	0	166	117	0			
Tisma	22	0	0	0	0	92	0			
Tola	255	178	0	0	32	12	0			
Totogalpa	0	7	0	0	0	132	8			
Villa Carlos										
Fonseca	64	119	0	0	6	373	0			
Villa Sandino	1	576	0	0	0	106	0			
Villanueva	336	53	0	0	1	406	0			
Waslala	0	1332	0	0	0	0	0			
Waspan	0	8521	0	0	0	0	0			
Wiwili de Jinotega	0	2454	0	0	0	0	0			
Wiwili de Nueva										
Segovia	0	384	0	0	0	23	0			
Yalaguina	0	0	0	0	0	70	0			

APPENDIX G

_	Area (km ²) of classification zones*												
Municipality	1	2	3	4	5	6	7	8	9	10	11	12	13
Achuapa	0	8	15	339	0	0	0	0	11	6	11	0	0
Acoyapa	0	27	247	906	0	0	0	71	0	93	0	0	0
Altagracia	0	9	57	36	0	0	0	0	0	91	0	0	3
Belen	0	88	103	17	0	0	0	0	0	35	0	0	0
Bluefields	2	0	2	150	19	49	32	0	0	0	8	1532	2665
Boaco	1	0	471	612	0	0	0	0	0	0	0	0	0
Bonanza	0	0	15	350	0	0	0	0	0	24	0	0	1528
Buenos Aires	0	33	0	0	0	0	0	0	0	0	0	0	0
Camoapa	0	0	788	688	0	0	0	0	8	0	0	0	0
Cardenas	0	6	6	127	0	0	0	0	0	34	0	0	20
Catarina	0	0	0	12	0	0	0	0	0	0	0	0	0
Chichigalpa	0	183	3	24	1	0	0	0	0	10	0	0	0
Chinandega	6	303	6	52	24	0	11	0	0	252	3	0	0
Cinco Pinos	0	14	0	47	0	0	0	0	0	0	0	0	0
Ciudad Antigua	0	0	0	1	0	0	0	0	65	13	47	0	0
Ciudad Dario	0	65	93	485	0	0	0	72	0	15	0	0	0
Ciudad Sandino	0	27	15	0	0	0	0	0	0	7	0	0	0
Comalapa	0	58	240	26	0	0	0	0	293	22	0	0	2
Condega	0	40	71	291	0	0	0	0	0	0	0	0	0
Corinto	2	2	0	0	35	0	0	0	0	0	0	0	0
Cua-Bocay	0	41	3	690	0	0	0	0	0	23	0	0	45
Desembocadura	0	0	0	0	0	193	135	0	0	0	168	176	1044
Dipilto	0	0	0	0	0	0	0	0	0	3	100	0	0
Diria	0	0	2	3	0	0	0	0	0	19	0	0	0

Table G–1. Area in square kilometers of land cover/use classification zones within municipalities.

Table G–1 continued.

	Area (km ²) of classification zones*												
Municipality	1	2	3	4	5	6	7	8	9	10	11	12	13
Diriamba	0	26	72	141	0	0	0	5	0	106	0	0	0
Diriomo	0	0	6	0	0	0	0	0	0	1	0	0	0
Dolores	0	0	0	0	4	0	0	0	0	0	0	0	0
El Almendro	0	0	650	329	0	0	0	0	0	24	0	0	0
El Ayote	0	0	722	102	0	0	0	0	0	0	0	0	1
El Castillo	0	0	61	135	0	0	0	0	0	0	0	0	1446
El Coral	0	0	299	13	0	0	0	0	0	0	0	0	0
El Crucero	0	0	0	140	0	0	0	0	0	83	0	0	0
El Jicaral	0	53	16	165	0	0	0	175	0	20	0	0	0
El Jicaro	0	3	0	0	0	0	0	0	15	18	376	0	18
El Rama	1	0	2029	1436	0	0	0	0	0	0	18	23	235
El Realejo	0	75	0	0	11	0	0	13	0	0	0	0	0
El Rosario	0	0	5	8	0	0	0	0	0	0	0	0	0
El Sauce	0	0	312	291	0	0	0	7	0	83	0	0	0
El Tortuguero	0	0	1546	394	0	0	4	0	0	0	0	21	1117
El Tuma - La Dalia	0	289	78	255	0	0	0	0	0	0	0	0	24
El Viejo	4	464	11	235	141	10	4	17	0	331	0	0	0
Esquipulas	0	0	110	105	0	0	0	0	0	0	0	0	4
Esteli	7	15	79	605	0	0	0	0	38	0	37	0	9
Granada	11	190	77	58	0	0	0	17	0	156	0	0	2
Jalapa	0	229	0	0	0	0	0	0	0	96	316	0	0
Jinotega	2	168	184	299	0	0	0	0	55	13	0	0	91
Jinotepe	0	26	112	40	0	0	0	33	0	76	0	0	0
Juigalpa	1	180	201	223	0	0	0	43	10	17	0	0	25
Kukrahill	0	0	0	300	0	70	437	0	0	0	46	0	330
La Concepcion	0	0	0	67	0	0	0	0	0	0	0	0	0
La Concordia	0	0	105	29	0	0	0	0	0	0	0	0	16

Table G–1 continued.

	Area (km ²) of classification zones*												
Municipality	1	2	3	4	5	6	7	8	9	10	11	12	13
La Conquista	0	3	74	0	0	0	0	0	0	12	0	0	0
La Cruz de Rio Grande	0	0	993	985	0	0	5	0	0	0	35	32	1276
La Libertad	0	0	538	234	0	0	0	0	0	0	0	0	3
La Paz Centro	2	137	106	95	0	0	0	25	0	313	0	0	0
La Paz de Carazo	0	0	17	0	0	0	0	0	0	0	0	0	0
La Trinidad	0	2	36	219	0	0	0	0	20	0	0	0	0
Laguna de Perlas	0	0	0	88	1	446	258	0	0	0	12	2	1128
Larreynaga	0	199	278	93	0	0	0	120	0	55	0	0	0
Las Sabanas	0	23	0	13	0	0	0	0	0	0	30	0	0
Leon	15	304	88	154	39	3	0	72	0	123	0	0	0
Macuelizo	0	30	0	0	0	0	0	0	2	57	170	0	0
Managua	67	79	36	30	0	0	0	0	0	53	0	0	0
Masatepe	0	0	0	57	0	0	0	0	0	3	0	0	0
Masaya	0	10	57	79	0	0	0	0	0	0	0	0	0
Matagalpa	1	0	338	124	0	0	0	0	4	136	0	0	43
Mateare	0	102	9	0	0	0	0	3	0	177	0	0	0
Matiguas	0	0	1056	409	0	0	0	0	0	0	0	0	63
Morrito	0	35	385	43	0	0	0	51	0	133	0	0	0
Mosonte	0	1	0	6	0	0	0	0	0	41	164	0	0
Moyogalpa	0	35	10	0	0	0	0	0	0	17	0	0	0
Mulle de los Bueyos	0	0	1396	0	0	0	0	0	0	0	0	0	0
Murra	0	0	18	0	0	0	0	0	0	366	44	0	0
Muy Muy	0	0	293	86	0	0	0	0	0	0	0	0	0
Nagarote	0	6	332	1	7	0	0	146	0	104	0	0	0
Nandaime	0	142	121	34	0	0	0	23	0	40	0	0	0
Nandasmo	0	0	0	14	0	0	0	0	0	0	0	0	0
Nindiri	0	28	97	11	0	0	3	0	3	14	0	0	0

Table G–1 continued.

	Area (km ²) of classification zones*												
Municipality	1	2	3	4	5	6	7	8	9	10	11	12	13
Niquinohomo	0	0	1	26	0	0	0	0	0	5	0	0	0
Nueva Guinea	0	0	1335	524	0	0	0	0	0	0	0	3	810
Ocotal	2	26	0	0	0	0	0	0	0	23	45	0	0
Paiwas	0	0	2158	137	0	0	0	0	0	54	0	0	4
Palacaguina	1	96	0	68	0	0	0	0	0	0	0	0	0
Posoltega	0	80	17	28	0	0	0	0	0	25	0	0	0
Potosi	0	129	6	6	0	0	0	0	0	0	0	0	0
Prinzapolka	0	0	13	542	29	326	424	0	0	53	2296	469	2616
Pueblo Nuevo	0	121	0	69	0	0	0	0	0	0	7	0	0
Puerto Cabezas	0	0	222	120	124	89	912	0	0	15	2178	0	2116
Puerto Morazan	0	38	0	73	260	3	0	0	0	95	0	0	0
Quezalguaque	0	61	0	12	0	0	0	0	0	9	0	0	0
Quilali	0	49	6	7	0	0	0	0	0	96	31	0	158
Rancho Grande	0	87	262	191	0	0	0	0	0	42	0	0	13
Rio Blanco	0	0	418	77	0	0	0	0	0	133	0	0	45
Rivas	0	198	45	21	0	0	0	0	0	4	0	0	0
Rosita	0	0	55	630	0	0	0	0	0	0	17	72	1425
San Carlos	0	0	589	400	0	0	167	0	0	0	0	18	148
San Dionisio	0	0	16	110	0	0	0	0	0	45	0	0	0
San Fernando	0	4	0	0	0	0	0	0	0	0	229	0	0
San Francisco de Cuapa	0	16	247	12	0	0	0	0	0	0	0	0	0
San Francisco del Norte	0	2	0	118	0	0	0	0	0	0	0	0	0
San Francisco Libre	0	94	59	105	0	0	0	265	0	102	0	0	0
San Isidro	0	94	71	73	0	0	0	0	55	0	0	0	0
San Jorge	0	24	0	0	0	0	0	0	0	0	0	0	0
San Jose de Bocay	0	0	170	699	0	0	0	0	0	18	0	0	2848
San Jose de Cusmapa	0	0	0	91	0	0	0	0	0	0	40	0	0

Table G–1 continued.

	Area (km ²) of classification zones*												
Municipality	1	2	3	4	5	6	7	8	9	10	11	12	13
San Jose de Los Remates	0	0	18	192	0	0	0	0	0	71	0	0	0
San Juan de Limay	1	13	59	339	0	0	0	0	0	0	23	0	0
San Juan de Oriente	0	0	0	6	0	0	0	0	0	2	0	0	0
San Juan del Norte	1	0	1	19	0	0	0	0	0	0	0	124	1428
San Juan del Rio Coco	0	1	0	7	0	0	0	0	0	65	6	0	108
San Juan del Sur	0	67	51	137	0	0	0	0	0	165	0	0	0
San Lorenzo	0	74	144	57	0	0	0	4	189	71	0	0	0
San Lucas	0	110	2	19	0	0	0	0	0	0	21	0	0
San Marcos	0	0	0	89	0	0	0	0	0	30	0	0	0
San Miguelito	0	0	399	621	0	0	0	33	0	1	0	0	0
San Nicolas	0	0	19	155	0	0	0	0	0	0	0	0	0
San Pedro de Lovago	0	0	374	86	0	0	0	0	0	0	0	0	0
San Pedro Del Norte	0	0	0	53	0	0	0	0	0	0	11	0	0
San Rafael del Norte	0	9	74	135	0	0	0	0	0	0	0	0	17
San Rafael del Sur	0	35	0	225	0	0	0	0	0	99	0	0	0
San Ramon	0	44	121	157	0	0	0	0	0	55	0	0	43
San Sebastian de Yali	0	5	41	307	0	0	0	0	0	1	31	0	19
Santa Lucia	0	0	0	81	0	0	0	0	10	35	0	0	0
Santa Maria	0	0	0	0	0	0	0	0	12	0	137	0	0
Santa Maria de Pantasma	0	168	0	359	0	0	0	0	0	0	0	0	22
Santa Rosa del Penon	0	0	15	211	0	0	0	0	0	0	0	0	0
Santa Teresa	0	0	149	22	0	0	0	0	0	39	0	0	0
Santo Domingo	0	0	313	363	0	0	0	0	0	0	0	0	0
Santo Tomas	0	0	401	91	0	0	0	0	0	0	0	0	0
Santo Tomas del Norte	0	4	0	0	37	0	0	0	0	0	0	0	0
Sebaco	0	56	168	18	0	0	0	4	45	0	0	0	0
Siuna	1	0	639	3186	0	0	0	0	0	342	0	0	914

Table G–1 continued.

	Area (km ²) of classification zones*												
Municipality	1	2	3	4	5	6	7	8	9	10	11	12	13
Somotillo	0	53	236	66	126	0	0	65	0	95	0	0	0
Somoto	1	126	18	4	0	0	0	132	146	0	32	0	0
Telica	0	170	27	50	0	0	0	1	0	142	0	0	0
Telpaneca	0	8	0	200	0	0	0	0	45	71	1	0	29
Terrabona	0	17	133	82	0	0	0	0	0	13	0	0	0
Teustepe	0	0	57	136	0	0	0	12	186	231	0	0	0
Ticuantepe	0	2	3	56	0	0	0	0	2	0	0	0	0
Tipitapa	0	318	110	118	0	0	0	231	28	137	0	0	0
Tisma	0	50	28	11	0	0	0	0	0	0	0	0	0
Tola	0	91	189	35	0	0	0	0	0	163	0	0	0
Totogalpa	0	64	0	69	0	0	0	0	0	9	5	0	0
Villa Carlos Fonseca	0	50	333	67	0	0	0	0	0	111	0	0	0
Villa Sandino	0	0	610	73	0	0	0	0	0	0	0	0	0
Villanueva	0	21	345	224	0	0	0	126	0	80	0	0	0
Waslala	0	0	509	639	0	0	0	0	0	184	0	0	0
Waspan	0	0	217	595	19	45	49	0	0	63	2077	428	5043
Wiwili de Jinotega	0	34	303	632	0	0	0	0	0	0	0	0	1485
Wiwili de Nueva Segovia	0	2	149	66	0	0	0	0	0	117	0	0	73
Yalaguina	0	28	0	42	0	0	0	0	0	0	0	0	0

* 1–Urban areas. 2–Cropland. 3–Agricultural areas with 10–25% natural vegetation. 4–Agricultural areas with 25–50% natural vegetation. 5–Mangroves. 6–Coastal transition vegetation. 7–Savannah. 8–Grassland with deciduous shrubs. 9–Shrubland. 10–Deciduous broadleaf seasonal forest. 11–Tropical evergreen pine forest. 12–Tropical evergreen swamp forest. 13–Tropical evergreen broadleaf seasonal forest.

VITA

Russell Wayne Raymond received an A.S. in Aviation Technology from Southwest Texas Junior College in 1983. He worked for Doss Aviation as an instructor pilot in the United States Air Force Flight Screening Program and later with Northrop Grumman as a production test pilot at the T-3A assembly plant in Hondo, Texas. He received a B.S. in Biology in 1998 and an M.S. in Biology in 2000 from the University of the Incarnate Word in San Antonio, Texas where his research centered on the ecology of *Leishmania mexicana* within woodrat (*Neotoma* sp.) populations. He received a Ph.D. in 2008 from Texas A&M University in College Station, Texas. He currently is employed as an Instructor of Biology at the University of the Incarnate Word and can be reached at: University of the Incarnate Word, Biology Department CPO 311, 4301 Broadway, San Antonio, TX 78209.