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ABSTRACT 
 
 
 

Exploration of Potential Reservoir Hosts and Vectors of Leishmania 
 

in Nicaragua.  (August 2008) 
 

Russell Wayne Raymond, B.S., University of the Incarnate Word; 
 

M.S., University of the Incarnate Word 
 

Chair of Advisory Committee:  Dr. Norman O. Dronen, Jr. 
 
 
 

 Leishmaniasis is caused by infection with protozoan parasites within the genus 

Leishmania and, in the New World, is transmitted by the bites of female sand flies 

within the genus Lutzomyia.  The occurrence of leishmaniasis in rodent species, the 

geographic distribution of sand fly species in Nicaragua, and environmental factors 

associated with the distribution of human cases of typical cutaneous leishmaniasis were 

investigated.  Three hundred ninety five rodents representing 17 species were collected 

from 13 localities from August 2001–March 2006 and screened for Leishmania 

infections.  One Heteromys desmarestianus and one Peromyscus mexicanus were found 

to be positive for leishmanial infections by PCR.  This is the first report of Leishmania 

infections in rodents in Nicaragua.  Five hundred fifty six sand flies representing 12 

species were collected from 8 localities, including Lutzomyia hartmanni, a new record 

for this species in Nicaragua.  The predominant sand fly species captured in western 

Nicaragua were Lutzomyia longipalpis and Lutzomyia evansi.  The predominant species 

captured in central and eastern Nicaragua was Lutzomyia cruciata.  The geographic 
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distribution of sand flies in this study provides additional support to previously-

published reports of suspected vectors of Leishmania species that cause typical and 

atypical forms of cutaneous leishmaniasis in Nicaragua. 

 Distribution data of human cases of typical cutaneous leishmaniasis obtained 

from the Nicaraguan Ministry of Health, along with GIS and remotely sensed data of 

elevation, precipitation, temperature, soil types and land use/cover classes, were used to 

develop predictive logistic regression models for the presence or absence of human cases 

within 151 municipalities.  Mean annual precipitation and land use/cover were 

determined to be the best environmental variable predictors for the occurrence of typical 

cutaneous leishmaniasis. 
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INTRODUCTION 
 
 
Overview 
 
 The leishmaniases are a complex of vector-borne diseases caused by protozoan 

parasites within the genus Leishmania Ross, 1903 (KINETOPLASTIDA:  

TRYPANOSOMATIDAE).  Infection is initiated when the parasites are inoculated into 

the skin of the host by the bite of an infected sand fly within the genera Phlebotomus 

Rondani and Berte, 1840 and Lutzomyia Franca, 1927 (DIPTERA:  PSYCHODIDAE).  

Leishmaniasis is widespread ecologically and geographically and primarily occurs in 

tropical and subtropical regions on all continents except Antarctica.  It is present in at 

least 88 countries worldwide and is a significant and increasing public health problem, 

with an estimated 12 million people infected worldwide and 350 million people at risk 

(WHO, 1990). 

 Leishmaniasis is endemic in at least 23 nations in the New World and has been 

reported from all mainland countries with the exceptions of Chile and Uruguay 

(Grimaldi et al., 1989; Duprey et al. 2006).  In the New World, autochthonous human 

cases have been reported from Texas in the southern United States to Argentina, in 

South America (Stewart and Pilchard, 1945; Grimaldi et al., 1989; Grogl et al. 1991).  

 Protozoan parasites of the genus Leishmania are responsible for a number of 

disease syndromes within human and other mammalian hosts.  The outcome of infection 

in humans ranges from mild, self-healing cutaneous lesions to severe and often fatal 

_________________ 
This dissertation follows the style and format of Journal of Parasitology. 
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visceral involvement (Lainson and Shaw, 1978; WHO, 1984). 

Clinical manifestations of leishmaniasis 

 The course of disease associated with Leishmania infections primarily is 

dependent on the species of infecting leishmanial parasite, but also may be determined in 

part by the inoculation size, and the immune status of the host (WHO, 1984; Titus and 

Ribeiro, 1988; Ashford, 2000; Gangneux et al., 2000).  Three primary clinical 

syndromes characterize the disease manifestations of leishmaniasis:  cutaneous 

leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis 

(VL).  All 3 primary forms of leishmaniasis occur in Nicaragua (Missoni et al., 1986; 

Darce et al., 1991; Belli et al., 1994; Belli et al., 1999).   

 Cutaneous leishmaniasis often involves mild and self-healing ulcerative skin 

lesions (Fig. 1), but also can be cosmetically disfiguring (Schonian et al., 1996).  

Worldwide, there are an estimated 1 to 1.5 million human cases of cutaneous 

leishmaniasis annually (Desjeux, 2001).  Additionally, these ulcerative lesions may 

predispose infected individuals to bacterial super infections (Fontes et al., 2005).  

 Mucocutaneous leishmaniasis begins when leishmanial parasites metastasize 

from skin lesions that occur at the site of inoculation to mucosal tissue, potentially 

resulting in deformation and massive tissue destruction of the nose, mouth, and throat 

(David et al., 1993; Almeida et al., 1996).  This metastasis of leishmanial parasites from 

the initial site of inoculation in the skin to mucosal tissue typically occurs years after the 

cutaneous lesions develop (Almeida et al., 1996). 

 Visceral leishmaniasis occurs when the parasites travel from the initial site of 
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     Figure 1. Typical cutaneous lesions due to Leishmania infection on the arm of a 
young girl from El Cua, Nicaragua, 2006. 
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inoculation to lymph nodes, bone marrow and internal organs (Satoskar et al., 1995).  

Visceral leishmaniasis is a potentially lethal form of the disease involving tissue 

destruction primarily in the liver and spleen (Ashford, 2000; Heinzel et al., 1989).  

Additionally, visceral leishmanial parasites within the small intestine may contribute to 

malabsorption (Muigai et al., 1983).   

Occurrence of clinical forms of leishmaniasis in Nicaragua 

 Mucocutaneous and visceral leishmaniasis are relatively uncommon in 

Nicaragua, while cutaneous leishmaniasis occurs with considerable frequency (Belli et 

al., 1999).  Additionally, the human cases of cutaneous leishmaniasis are divided into 2 

separate clinical categories, typical and atypical cutaneous leishmaniasis.  Typical 

cutaneous leishmaniasis is characterized by open lesions, while atypical cutaneous 

leishmaniasis is characterized by the occurrence of non-ulcerative cutaneous nodules 

(Zeledon et al., 1989).  In Nicaragua, approximately 2,000–2,500 human cases of 

leishmaniasis are reported annually, with approximately 86% of these cases diagnosed as 

human typical cutaneous leishmaniasis (Ministerio de Salud Nicaragua, 2003). 

 In addition to the different disease syndromes associated with typical and 

atypical cutaneous leishmaniasis, the diseases are a result of infections with different 

species of Leishmania parasites.  There is a definite spatial segregation to the occurrence 

of the typical and atypical forms of cutaneous leishmaniasis in Nicaragua, with typical 

cutaneous leishmaniasis occurring primarily in the central and eastern regions of the 

country and atypical cutaneous leishmaniasis occurring primarily in western Nicaragua 

(Missoni et al., 1986; Darce et al., 1991; Belli et al., 1994; Belli et al., 1999).  It is likely 
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that the parasites that cause these forms of cutaneous leishmaniasis have different 

reservoir hosts and different sand fly vectors.  In Nicaragua, the natural systems in which 

the causative agents of human typical cutaneous leishmaniasis are maintained and 

transmitted are largely unknown. 

 Reservoir hosts serve in the longterm maintenance of the leishmanial parasite 

populations, while vectors are responsible for transmission of the parasite among 

susceptible hosts.  A wide variety of mammals other than humans typically serve as 

reservoir hosts of Leishmania species.  Humans generally are incidental hosts and 

become infected while living or traveling within areas where the normal 

vector−reservoir system is established (Ashford, 1997).  Sand flies within the genus 

Lutzomyia serve as the vector for all species of Leishmania in the New World.  The 

study described herein was conducted in the Central American country of Nicaragua 

(Fig. 2) and its objectives were:  1. Identify geographic areas in Nicaragua that have 

concentrations of human cases of typical cutaneous leishmaniasis; 2. capture and 

identify rodents near human case residences; 3. screen rodents for Leishmania infections 

using polymerase chain reaction (PCR) and culture techniques; 4. identify complexes 

and species of Leishmania; 5. identify sand fly species in areas of Nicaragua having high 

prevalence of human cutaneous leishmaniasis; 6. use geographic information systems 

(GIS) technology, remotely-sensed data, and human incidence data to develop predictive 

models that identify biotic and abiotic environmental factors that influence the spatial 

distribution of human typical cutaneous leishmaniasis. 
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     Figure 2.  Map of the Central American isthmus showing Nicaragua and surrounding 
countries.  This study took place entirely within the country of Nicaragua. 
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Geographic distribution of clinical forms of leishmaniasis in Nicaragua 

The CL form of leishmaniasis is the most common in Nicaragua, as well as the 

rest of Central America, resulting in increasing public health problems and economic 

loss in terms of disability of infected individuals and the cost of treatment (Carreira et 

al., 1995).  Cutaneous leishmaniasis was first documented in Nicaragua by Doctor 

Francisco Baltodano near the town of San Juan de Limay in the department of Estelí in 

1917 (Ministerio de Salud Nicaragua, 2003) (Fig. 3).  It typically is associated with 

sylvan habitats, with human cases primarily occurring in the northern, central, and 

eastern regions of the country in the districts of Jinotega, Matagalpa, the North Atlantic 

Autonomous Region (RAAN), and the South Atlantic Autonomous Regions (RAAS) 

(Darce et al., 1991). 

In addition to typical CL leishmaniasis, which results in ulcerative skin lesions, 

an atypical form of CL also exists in Nicaragua and several other countries in Central 

America (Belli et al., 1999; Convit et al., 2005).  Atypical CL is characterized by the 

presence of non-ulcerative cutaneous nodules.  The first cases of atypical CL in 

Nicaragua were identified in 1997, and the highest prevalence occurs in the Pacific 

plains region in the districts of Chinandega and Leon.  There also is a focus of atypical 

CL in central Nicaragua in the district of Chontales (Belli et al., 1999). 

Mucocutaneous leishmaniasis occurs in Nicaragua to a much lesser extent than 

does cutaneous leishmaniasis, with only a few dozen cases reported each year.  In 2002 

there were 59 cases reported, and in the first 3 months of 2003, there were 21 reported  

 
 



 

 

8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 3.  Map of Nicaragua showing political departments, land areas and freshwater 
lakes and bays. 
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cases of MCL (Ministerio de Salud Nicaragua, 2003).  Human cases of MCL appear to 

be concentrated in the districts of Rio San Juan and Chontales in the south central part of 

the country.  

Although visceral leishmaniasis is the most severe form of disease associated 

with Leishmania infection, it occurs infrequently in Nicaragua (Belli et al., 1999).  The 

first confirmed case of VL in Nicaragua occurred in a patient from the Island of Zapatera 

on Lake Nicaragua in 1988 (Ministerio de Salud Nicaragua, 2003).  The geographic 

distribution of VL in Nicaragua mirrors the distribution of cases of atypical CL (Belli et 

al., 1999).  The distribution of these cases is pertinent because spatial distribution is one 

of the factors considered when placing leishmanial parasites into taxonomic groups. 

Taxonomy of Leishmania parasites 

 Parasites within the genus Leishmania (KINETOPLASTIDA:  

TRYPANOSOMATIDAE) typically have been placed into taxonomic groups based on 

geographic distribution, preference of vertebrate host, manifestation of disease 

symptoms and site of promastigote development within the gut of the arthropod vector 

(Table 1).  The genus Leishmania is divided into 2 subgenera, Leishmania (Viannia) 

Lainson and Shaw, 1987 and Leishmania (Leishmania) Ross, 1903 based primarily upon 

the parasite’s site of attachment and development within the sand fly vector.  Within the 

subgenus Leishmania (Viannia), the flagellated promastigote forms of the parasites 

undergo development within the sand fly hind gut with subsequent migration to the 

midgut and foregut before transmission by bite.  Parasites within the subgenus 

Leishmania (Viannia) are found only in Neotropical regions of the New World.
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Table 1.  General classification of leishmanial parasites.  
 
 
   Domain  Eukarya 
 
   Kingdom  Protista 
  
   Phylum  Sarcomastigophora 
 
   Class   Zoomastigophora 
 
   Order   Kinetoplastida 
 
   Family  Trypanosomatidae 
 
   Genus   Leishmania 
 
 
 
 
 
 
   Subgenus    Leishmania                                                                  Viannia 
 
 
 
 
 
 
Complex L. donovani   L. tropica   L. major   L. aethiopica    L. mexicana       L. braziliensis     L. guyanensis 
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 The subgenus Leishmania (Leishmania) includes those parasites that undergo 

attachment and development solely within the foregut and midgut of the sand fly vector.  

This group also is transmitted by bite of an infected sand fly and includes species found 

in both the Old and New Worlds (Lainson and Shaw, 1987).  A third group of closely 

related parasites undergo development limited to the hindgut of the sand fly.  

Transmission of this group is potentially via the ingestion of the sand fly or sand fly 

feces by the vertebrate host.  These are thought to be more primitive parasites of Old 

World lizards and are placed in the separate genus, Sauroleishmania Saf’janova, 1982 

(Lainson and Shaw, 1979).   

 There is disagreement as to the mode of transmission and the phylogenetic 

placement of species within the genus Sauroleishmania.  Noyes and Chance (1998) 

maintained the mode of transmission between the sand fly vector and the lizard host still 

is unproven.  They hypothesize that, since Sauroleishmania are lizard blood parasites 

that potentially evolved from mammalian blood parasites, transmission by the bite of the 

sand fly is the most likely method of transmission.  Recent comparisons of small subunit 

ribosomal DNA (rDNA) sequences among species within the genus Sauroleishmania 

and mammalian species within the genus Leishmania indicate a close phylogenetic 

relationship (Briones et al., 1992). The small subunit rDNA gene sequences studied by 

Briones et al. (1992) showed a greater than 99% similarity between Sauroleishmania 

tarentolae Wenyon, 1921 and Leishmania donovani Laveran and Mesnil, 1903.  

Additionally, analysis of the mitochondrial minicircle DNA has shown sequences that 

are conserved among Sauroleishmania gymnodactyli Khodukin and Sofiev, 1940, S. 
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guliki Saf’janova, 1982, S. taraentolae and the Old World mammalian parasite 

Leishmania infantum Nicolle, 1908 (Fu and Kolesnikov, 1994).  Croan and Ellis (1996) 

and Croan et al. (1997) provided analysis of the gene sequences that encode DNA 

polymerase catalytic polypeptide and the RNA polymerase II largest subunit gene of 19 

species of Leishmania and Sauroleishmania, showing increased evidence for inclusion 

of the lizard species within the genus Leishmania. 

More recently, extensive biochemical and molecular tests have led to suggestions 

for revision of the classification of leishmanial parasites.  Cupolillo et al. (2000) 

proposed that the genus Leishmania be subdivided into two distinct lineages, the 

Sections Euleishmania and Paraleishmania.  Section Euleishmania would include all the 

parasites currently placed within the subgenera Leishmania (Leishmania) and 

Leishmania (Viannia), while Section Paraleishmania would include those parasites 

thought to be more closely related to the genus Endotrypanum Mesnil and Brimont, 

1908 than to other species of Leishmania.  The Section Paraleishmania would include 

those species of Leishmania that are not pathogenic to man and are primarily parasites of 

sloths and porcupines.  Under the classic classification system, these leishmanial 

parasites had been placed under the subgenus Leishmania but had been difficult to place 

within a defined complex (Cupolillo et al., 2000). 

Leishmania complexes and disease distribution 

Typical CL primarily is associated with parasites within the complexes 

Leishmania (Leishmania) tropica Wright,1903, L. (L.) major, Yakimoff and Schokhor, 

1914 and L. (L.) aethiopica, Ashford & Bray, 1973 in the Old World and within the 
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complexes L. (L.) mexicana Biagi, 1953, L. (Viannia) braziliensis Vianna, 1911, and L. 

(V.) guyanensis Floch, 1954 in the New World (WHO, 1984).  The atypical CL form of 

the disease occurs only in the New World and has been associated with the species L. 

(L.) chagasi Cunha and Chagas, 1937, within the complex L. donovani (Belli et al,. 

1999).  L. (L.) chagasi is the same species that primarily is responsible for VL (Lainson 

and Shaw, 1987). 

Mucocutaneous leishmaniasis in the New World most often is associated with the 

species L. (V.) braziliensis within the complex L. (V.) braziliensis.  Visceral 

leishmaniasis principally is associated with the complex Leishmania donovani in both 

the Old and New World.  The primary species associated with VL in the Old World are 

L. (L.) donovani and L. (L.) infantum.  In the New World, VL most often is associated 

with the species L. (L.) chagasi (Lainson and Shaw, 1987). 

Parasites within the complexes L. (L.) mexicana and L. (V.) braziliensis are the 

most common etiological agents of typical CL in the New World (Grimaldi et al., 1989).  

In Nicaragua, 2 species of Leishmania parasites have been isolated from typical CL 

lesions in human patients; L. (V.) braziliensis and L. (V.) panamensis Lainson and Shaw, 

1972 (Missoni et al., 1986; Belli et al., 1994).  Additionally, a putative L. (V.) 

braziliensis - L. (V.) panamensis hybrid may be the causative agent of some CL in 

Nicaragua (Belli et al., 1994).  This putative L. (V.) braziliensis - L. (V.) panamensis 

hybrid from Nicaragua has been questioned and may have been due to contamination of 

the original sample (Uliana et al., 2000). 
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The known geographic distribution of the L. (L.) mexicana complex extends from 

Arizona and Texas in the western United States to southern Brazil, South America (Kerr 

et al., 1995; Kerr et al., 1999; Uliana et al., 2000).  The known geographic distribution of 

L. (V.) braziliensis complex extends from Mexico (Canto-Lara et al., 1999), El Salvador, 

and Belize in Central America, to southern Brazil (Lainson and Shaw, 1987). 

The ranges of complexes L. (L.) mexicana and L. (V.) braziliensis overlap in 

Central America indicating that CL in Nicaragua potentially may be a result of infection 

with parasites from either complex.  The species Leishmania (L.) mexicana has a 

geographic range from the western United States to northern Columbia and Venezuela 

(Uliana et al., 2000).  Leishmania (L.) mexicana has not been isolated from either 

humans or wild mammalian hosts in Nicaragua; however, it has been isolated from at 

least 9 human cases of cutaneous leishmaniasis in Honduras near the border with 

Nicaragua (Noyes et al., 1997).  Other species within the complex Leishmania (L.) 

mexicana, that are known to infect man, have not been shown to be distributed farther 

north than Panama (Uliana et al., 2000).  The research described herein concentrated on 

identifying actual or potential reservoir hosts of Leishmania species that are known to 

cause human typical CL and the associated sand flies in Nicaragua. 

Leishmania species associated with clinical forms of leishmaniasis in Nicaragua 

 Leishmania (L.) chagasi has been demonstrated to be the causative agent of 

human visceral and atypical cutaneous leishmaniasis in Nicaragua (Belli et al., 1999).  

Leishmania (V.) braziliensis is the primary species that has been isolated from human 

mucocutaneous lesions and L. (L.) panamensis has been demonstrated to be the primary 



 

 

15 

species isolated from human typical cutaneous lesions.  Although, L. (V.) braziliensis 

has been isolated from typical cutaneous lesions and L. (L.) panamensis has been 

isolated from mucocutaneous lesions (Belli et al., 1994). 

General life cycle 

 Leishmania species are obligate heteroxenous parasites that are transmitted to a 

vertebrate host through the bite of an infected sand fly vector (Fig. 4).  Two 

morphologically-distinct forms of the parasite exist, immobile rounded amastigotes and 

mobile promastigotes.  The round to ovoid amastigote stage found within the vertebrate 

host is strictly intracellular and replicates primarily within macrophage phagolysosomes.  

Amastigotes are small, typically 3–6.5 µm in diameter and are among the smallest 

known eukaryotic cells (Lainson and Shaw, 1978; Roberts and Janovy, Jr., 2005).  The 

elongate promastigote stage possesses a single anterior flagellum and is the extracellular 

form of the parasite that replicates within the alimentary canal of the sand fly.  The 

promastigote forms are slender and typically are 5–25 µm in length (Roberts and Janovy, 

Jr., 2005) 

The genus Leishmania is divided into subgenera based primarily on the site of 

development within the sand fly vector.  Suprapylarian leishmanal parasites, subgenus 

Leishmania (Leishmania), attach and replicate within the sand fly midgut, while 

Peripylarian leishmanial parasites, subgenus Leishmania (Viannia), initially attach and 

replicate within the sand fly hindgut, with subsequent migration to the midgut and 

foregut.  Hypopylarian leishmanial species, genus Sauroleishmania, undergo strictly 

posterior station hind gut development and are restricted to reptilian hosts. 
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   Figure 4.  Transmission cycle and morphological forms of Leishmania.  (A) general 
transmission cycle, (B) promastigotes, and (C) amastigotes within hamster liver 
macrophages; larger darkly-stained bodies within the cells are the host cell nuclei. 
Leishmania amastigotes are seen as smaller darkly-stained bodies within the cytoplasm 
(Sullivan, 2004). 
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Life cycle stages within the sand fly vector 

 Sand flies within the family Psychodidae serve as biological vectors for all 

species of Leishmania.  Sand flies of the genus Lutzomyia serve as the vectors in the 

New World, while Old World Leishmania species are transmitted by sand flies of the 

genus Phlebotomus Rondani and Berte, 1840 (Killick-Kendrick, 1990).  Sand flies have 

scissor-like cutting mouthparts and are blood pool feeders.  Upon ingestion of 

amastigotes by a female sand fly feeding on an infected reservoir host, the amastigotes 

transform and complete part of their life cycle as elongated procyclic promastigotes that 

replicate by binary fission within the gut of the insect vector.  The procyclic 

promastigotes attach to the wall of the midgut or hindgut to avoid elimination with the 

digested blood meal from the sand fly digestive tract (Killick-Kendrick, 1990). 

 Pimenta et al. (1994) demonstrated that promastigote survival within the sand fly 

was predicated on the ability of the procyclic forms of the parasite to attach to the gut 

wall of the vector.  This attachment is mediated by modified surface polysaccharides of 

the glycocalyx that bind with receptors on epithelial cells of the sand fly midgut or 

hindgut (Turco and Sacks, 2003).  The primary parasite surface polysaccharide is 

lipophosphoglycan (LPG), and variations within the side chains of LPG among different 

species of Leishmania are believed to be an important factor in determining the ability of 

the parasite to attach and establish infection within a particular species of sand fly.  It is 

this variation within parasite surface LPG molecules and variation within receptors on 

the epithelium of the sand gut that leads to specificity in vector competence (Pimenta et 

al., 1994; McConville et al., 1995).   
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 The extrinsic incubation period is approximately two weeks; the procyclic 

promastigotes then transform into metacyclic promastigotes that detach from the gut 

wall and migrate to the sand fly proboscis and are the forms that are infective to the 

vertebrate host (Molyneux and Killick-Kendrick, 1987; Turco and Sacks, 2003).  The 

detachment of the metacyclic promastigotes from the epithelial cells of the sand fly gut 

wall is mediated by structural changes to the LPG molecules of the glycocalyx resulting 

in the loss of binding domains (Sacks et al., 1995).  Transmission to susceptible 

vertebrate hosts then occurs upon subsequent blood-meal feeding by the female sand fly. 

The role of sand fly saliva in transmission and infectivity 

 Transmission to a susceptible vertebrate host occurs when parasites are 

inoculated into the bite wound by the female sand fly.  Sand flies typically inoculate 

relatively small numbers of leishmanial parasites into the host, usually ranging between 

10–1,000 parasites (Warburg and Schlein, 1986).  Sand fly saliva that is inoculated into 

the bite wound contains anticoagulants and vasodilators that, along with aiding the 

arthropod vector in acquiring a blood meal, also appear to enhance the ability of 

leishmanial parasites to establish infection by suppression of the host immune response 

(Titus and Ribeiro, 1988; Theodos et al., 1991).  Titus and Ribeiro (1988) infected 

laboratory mice with either Leishmania major parasites alone or Leishmania major 

parasites along with salivary gland homogenate from the sand fly Lutzomyia longipalpis 

Lutz and Neiva, 1912.  They reported that mice injected with parasites and salivary 

gland homogenate developed cutaneous lesions that were consistently much larger and 

contained up to 5,000 times more parasites than mice that were injected with parasites 
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alone.  The infectivity-enhancing properties of the sand fly saliva were more pronounced 

when small numbers of parasites were inoculated. 

 Hall and Titus (1995) investigated the infection-enhancing capabilities of sand 

fly saliva from Phlebotomus papatasi on Leishmania major infections in mice 

microphages.  Sand fly saliva that is injected into the bite wound leads to increased 

infectivity through its ability to inhibited nitric oxide (NO) production by macrophages 

in response to Interferon gamma (IFN-γ) produced by host T cells.  Titus and Ribeiro 

(1988) also demonstrated that saliva from other species of arthropods, including Aedes 

aegypti Linnaeus 1762, Rhodnius prolixus Stal, 1859, and Ixodes dammini Say, 1821 did 

not enhance infection.  Theodos et al. (1991) demonstrated similar results while 

conducting experiments using different species of sand flies and different species of 

Leishmania.  Additionally, prior exposure to sand fly saliva through bites of uninfected 

flies may result in the production of anti-saliva antibodies by the host immune system 

which may decrease the virulence-enhancing effects of sand fly saliva on leishmanial 

infections.  This may suggest that individuals that have not been previously exposed to 

sand fly saliva, such as the very young or those from nonendemic locales, may be at 

greater risk for infection with leishmanial parasites (Belkaid et al., 1998b). 

Life cycle stages within the vertebrate host 

Once inoculated into a susceptible vertebrate host by the sand fly and prior to 

phagocytosis by host cell macrophages, the metacyclic promastigotes are able to avoid 

lyses by the host’s innate immune response due to a thickening of the LPG layer 

(Brittingham et al., 1995).  Additionally, the parasite surface glycoprotein, gp63, plays a 
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role in avoiding complement mediated lyses of the metacyclic promastigotes by 

degrading proteins associated with the complement activation pathway.  The metacyclic 

promastigotes are phagocytized by macrophages within hours and transform into oval 

non motile amastigotes (Brittingham et al., 1995). 

 The amastigotes reproduce by binary fission within phagolysosomes.  This is 

remarkable in that the phagolysosomes are the organelles within eukaryotic cells that 

function in the destruction of intracellular pathogens.  Sand fly saliva, inoculated into the 

bite wound along with leishmanial parasites, has been demonstrated to reduce 

intracellular killing of parasites by inhibiting the ability of cytokine Interferon gamma 

(IFN-γ) to stimulate macrophage production of nitric oxide and hydrogen peroxide 

during early phases of infection (Hall and Titus, 1995).  Metacyclic promastigotes, as 

well as amastigotes, also are believed to be able to survive macrophage-mediated killing 

by inhibiting the macrophage’s ability to produce interleukin-12 (IL-12).  Interleukin-12 

up regulates the production of IFN-γ by Leishmania antigen-activated Th1 cells, which 

in turn stimulates macrophages to kill intracellular pathogens (Carrera et al., 1996; 

Belkaid et al., 1998a; Weinheber et al., 1998).  Carrera et al. (1996) demonstrated that 

mouse bone marrow-derived macrophages infected with Leishmania major displayed an 

inability to synthesize IL-12 mRNA and to secrete IL-12. 

 Reproduction of the amastigotes by binary fission occurs until rupture of the host 

cell.  The released amastigotes then are phagocytized by other macrophages where they 

again reproduce by binary fission.  Female sand flies ingest the amastigotes when taking 

a blood meal.  The amastigotes transform into the procyclic promastigote forms and 



 

 

21 

continue to replicate by binary fission within the midgut or hindgut of the sand fly, 

completing the life cycle (Bray and Alexander, 1987).  Although sand flies of the genus 

Lutzomyia are known to serve as vectors for all species of Leishmania in the New 

World, no proven vectors have been described in Nicaragua. 

Lutzomyia species in Nicaragua 

Vectors are those organisms that are responsible for the transmission of parasites 

from their reservoirs to susceptible hosts.  Over 400 species of sand flies have been 

named in the New World, of which 14 have been proven to be vectors for leishmaniasis 

and another 25 species being suspected vectors (Young and Duncan, 1994; Killick-

Kendrick, 1999).  Among all of those, twenty-nine (29) species of sand flies previously 

have been reported in Nicaragua (Table 2). 

In 1953, Fairchild and Hertig (1959, 1961a, 1961b) collected 16 species of sand 

flies from 5 localities in Nicaragua.  They captured 13 species of sand flies from the 

village of Villa Somosa (since renamed Villa Sandino) in the district of Chontales 

including: Lutzomyia (Lu.) aclydifera Fairchild and Hertig, 1952, Lu. bispinosus 

Fairchild and Hertig, 1951, Lu. cruciatus Coquillett, 1907, Lu. gomezi Nitzulescu, 1931, 

Lu. panamensis Shannon, 1926, Lu. shannoni Dyar, 1919, Lu. trinidadensis Newstead, 

1922, Lu. vesicifera Fairchild and Hertig, 1947, Lu. ylephiletor Fairchild and Hertig, 

1952 and 4 previously unnamed species.  The 4 unnamed species later were described as 

Lu. serrana Domasceno and Arouck, 1949, Lu. dasymera Fairchild and Hertig, 1961, Lu. 

odax Fairchild and Hertig, 1961, and Lu. nicaraguensis Fairchild and Hertig, 1961.  

However, Young (1979) considered Lu. nicaraguensis not to be a new species but a
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Table 2.  Known Lutzomyia species of Nicaragua. 

Species         Year Collected      Reference 

Lu. aclydiferus         1953     Fairchild and Hertig 1959 
Lu. barettoi        1953       
Lu. bispinosus        1953       
Lu. cruciatus        1953       
Lu. evansi        1953       
Lu. gomezi        1953       
Lu. ovallesi        1953       
Lu. panamensis         1953       
Lu. shannoni        1953       
Lu. trinidadensis       1953       
Lu. vesiciferus        1953      
Lu.ylephiletor        1953       
Lu. serrana        1953      Fairchild and Hertig 1961 
Lu. dasymera        1953       
Lu. odax        1953       
Lu. nicaraguensis       1953       
Lu. sanquinaria        1977     Zeledon and Murillo 1983 
Lu. trapidoi        1977       
Lu. geniculata        1977      
Lu. olmeca        1977      
Lu. vespertilioniis       1977      
Lu. carpenteri      1988–94       Valle and Rivera 1995 
Lu. cayennensis      1988–94        
Lu. chiapanensis     1988–94        
Lu. longipalpis      1988–94                   
Lu. zeledoni      1988–94     Le Pont 1987 
Lu. legerae      1988–94     Le Pont 1995 
Lu. caprini          1995    Collantes and Martinez-Ortega 1997 
Lu. camposi        1995      
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subspecies of Lu. hirsuta Mangabeira, 1942.  Two species of sand flies were captured in 

the Upper Valley of the Rio Pantasma in the District of Jinotega; Lu. cruciatus and Lu. 

ovallesi Oritz, 1952.  Three sand fly species were captured near the community of 

Guapinolar (near the capitol city of Managua), Lu. barettoi Mangabeira, 1942, Lu. 

cruciatus, and Lu. evansi Nunez Tovar, 1942.  Lutzomyia barettoi also was captured in 

the District of Carrazo.  Lutzomyia. cruciatus and Lu. shannoni also were were captured 

near the community of Casa Colorado near Managua, (Fairchild and Hertig, 1959, 

1961a, 1961b) 

In February of 1977, Zeledon and Murillo (1983) collected 11 species near the 

community of Boca San Carlos in the district of Rio San Juan located on the southern 

border with Costa Rica.  Six species were among those previously collected in 

Nicaragua by Fairchild and Hertig (1959, 1961a, 1961b); however, their collections did 

include 5 previously unreported species:  Lu. sanguinaria Fairchild and Hertig, 1957, 

Lu. trapidoi Fairchild and Hertig, 1952, Lu. geniculata Mangabeira, 1941, Lu. olmeca 

olmeca Vargas and Najera, 1959, and Lu. vespertilionis Fairchild and Hertig, 1947. 

Between 1988 and 1994, Valle and Rivera (1995) collected 12,556 Lutzomyia 

specimens representing 17 species at 16 different localities, including 4 previously 

unreported species (Table 3).  Lu. carpenteri Fairchild and Hertig, 1953, Lu. cayennensis 

Floch and Abonnenc, 1941, Lu. chiapanensis Dampf, 1947, and Lu. longipalpis Lutz and 

Neiva, 1912 were reported as new records from Nicaragua.  Although this was a large 

collection of sand flies, 5 species comprised nearly 90% of the total individuals 

captured:  Lu. ylephiletor (~ 35%), Lu. panamensis (~ 24 %), 
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Table 3.  Summary of Lutzomyia species captured in Nicaragua by Valle and Rivera, 1995. 

Species        Pacific Region Central Highlands and Atlantic Regions Totals 

Lu. aclydifera           0      49                  49  
Lu. barretoi majuscula        0      66       66 
Lu. carpenteri            0    127     127  
Lu. cayannensis       12        0       12    
Lu. chiapanensis     143        1                144 
Lu. cruciata          4                                       2,097              2,101 
Lu. evansi      733    192      925 
Lu. gomezi          2                                              9                                              11 
Lu. longipalpis     691        0       691 
Lu. ovallesi          1     219      220 
Lu. panamensis                                                               0                                       3,016                                         3,016 
Lu. sanguinaria                                                               0                                            63        63 
Lu. serrana          0       41                                              41 
Lu. shannoni          0      111      111 
Lu. trapidoi                      0                                           590      590 
Lu. vesiscifera        37          3         40 
Lu. ylephyletor           0                                        4,349                                        4,349 
        
               1,623           10,933            12,556 
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Lu. cruciata (~ 17%), Lu. evansi (~ 7%) and Lu. longipalpis (~ 6%).  Valle and Rivera 

(1995) divided the country into 2 large regions based on distribution of sand fly species.  

Lutzomyia evansi and Lu. longipalpis were the dominant species collected in the Pacific 

plains region.  No specimens of Lu. longipalpis were collected from any other region of 

Nicaragua.  Lutzomyia ylephiletor, Lu. panamensis and Lu. cruciata were the dominant 

species collected in the central highlands and Atlantic lowland plains regions of 

Nicaragua.  No specimens of Lu. ylephiletor or Lu. panamensis, and only few specimens 

of Lu. cruciata were collected from the Pacific plains region of western Nicaragua. 

Le Pont et al. (1987, 1995) described the capture of 2 additional species of sand flies in 

Nicaragua, Lu. zeledoni Young and Murillo, 1984 and Lu. legerae Le Pont et al. 1995.  

Lutzomyia zeledoni specimens were collected in the District of Chinandega, near the 

Honduras border as well as near Juigalpa in the District of Chontales.  The Lu. legerae 

specimens were collected near the towns of Juigalpa and Santo Tomas in the District of 

Chontales. 

 Collantes and Martinez-Ortega (1997) collected 79 sand fly specimens, 

representing 10 species from 10 localities in 1995, including 2 new records for 

Nicaragua, Lu. camposi Rodriguez, 1952 and Lu. caprina Osorno-Mesa et al. 1972.  

Two Lu. camposi were captured near the town of El Castillo in the District of Rio San 

Juan and 2 Lu. caprina were captured between Matagalpa and Jinotega in the district of 

Matagalpa. 

 Of the 29 species of Lutzomyia reported from Nicaragua, 4 have been proven to 
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be vectors of Leishmania species in other Central and South American countries: Lu. 

ovallesi vector of L.(V.) braziliensis, Lu. trapidoi vector of L.(V.) panamensis, Lu. 

olmeca olmeca vector of L. (L.) mexicana, and Lu. longipalpis vector of L. (L.) chagasi. 

Three additional reported species, Lu. evansi, Lu. gomezi,, Lu. panamensis have been 

identified as probable vectors elsewhere in Central or South America (Killick-Kendrick 

1999). 

Dispersion patterns of Lutzomyia 

 Leishmaniasis tends to be a highly focal disease in its geographic distribution.  A 

primary reason for this distribution pattern may be the limited flight ranges of the sand 

fly vectors.  Several studies of Neotropical sand fly species have shown that Lutzomyia 

are poor flyers and tend not to disperse over great distances.  During mark-release-

recapture studies most species of Lutzomyia were found to disperse no greater than 200m 

from their initial site of release (Chaniotis et al., 1974; Alexander, 1987).  In fact, the 

vast majority of individuals released during these studies were recaptured within 100m 

of the point of release.  Lutzomyia longipalpis, a vector of the causative agent of visceral 

leishmaniasis L. (L.) chagasi, has been shown to disperse slightly farther than other 

Neotropical sand fly species (Dye et al., 1991; Morrison, 1993).  During a mark-release-

recapture study conducted in Brazil, most individuals of Lu. longipalpis were recaptured 

at or within 20m of the site of release; however, 1 individual male dispersed as far as 

700m from its release point (Dye et al., 1991).  An additional mark-release-recapture 

study of Lu. longipalpis in Colombia demonstrated that this species was capable of 

dispersing up to 960m (Morrison et al., 1993).  Although Morrison et al. (1993) reported 
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that Lu.longipalpis was capable of dispersing over “considerable” distances; the average 

distance traveled by male sand flies was reported to be less than 100m, with females 

traveling significantly less.  I think that this is important to note because only female 

sand flies feed on a vertebrate host in order to acquire a blood meal; therefore, only 

females are responsible for the transmission of Leishmania among hosts. 

Reservoir hosts 

 Reservoir hosts are those responsible for the sustained maintenance of a parasite 

population in a natural system (Ashford, 1996).  The leishmaniases are primarily 

zoonoses, with mammals other than man serving as reservoir hosts.  Canids, rodents and 

sloths usually serve as the reservoirs of Leishmania species in the New World (Grimaldi 

et al., 1989).  Canids are an important reservoir of parasites within the Leishmania 

donovani complex and rodents have been indicated as the primary reservoirs of the 

Leishmania mexicana complex (Shaw and Lainson, 1987).  A wide variety of forest 

mammals have been identified as potential reservoirs for parasites within the Leishmania 

braziliensis complex, including rodents, marsupials, canids, and sloths. 

A number of mammals, primarily rodents, have been incriminated as hosts and 

potential reservoirs of the Leishmania mexicana complex.  Humans typically serve as 

incidental hosts and are not a significant component of the natural transmission cycle 

(Ashford, 1996).  The big-eared climbing rat, Ototylomys phyllotis Merriam, 1901 was 

reported to be the primary reservoir host for Leishmania (L.) mexicana in Belize, with 

the spiny pocket mouse, Heteromys desmarestianus Gray, 1868, the vesper rat Nyctomys 

sumichrasti Saussure, 1860, and the hispid cotton rat, Sigmodon hispidus Say and Ord, 
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1825 also implicated (Disney, 1964; Lainson and Strangways-Dixon, 1964).  In Mexico, 

Leishmania (L.) mexicana has been isolated from the deer mouse, Peromyscus 

yucatanicus J. A. Allen and Chapman, 1897, the black-eared rice rat, Oryzomys 

melanotis Thomas, 1893, Ototylomys phyllotis and Sigmodon hispidus (Chable-Santos et 

al., 1995; Canto-Lara et al., 1999).  In the United States, the southern plains woodrat, 

Neotoma micropus Baird, 1855 has been implicated as a reservoir host of Leishmania 

(L.) mexicana in Texas (McHugh et al., 1990; Kerr et al., 1995).  It also has been 

isolated from a domestic cat, Felis catus Linaeus, 1758  in Texas (Craig et al., 1986); the 

white-throated woodrat Neotoma albigula Hartley, 1894 in Arizona (Kerr et al., 1999); 

and identified in the eastern woodrat, Neotoma floridana Ord, 1818 by polymerase chain 

reaction (PCR) and microscopic examination of histological sections in Texas (McHugh 

et al., 2003).  In Guatemala, Leishmania (L.) mexicana has been identified in the genus 

Ototylomys (Grimaldi et al., 1989).  In Panama, Leishmania (L.) mexicana has been 

identified in the large-headed rice rat Oryzomys capito Olfers, 1818, the spiny rat 

Proechimys semispinosus Tomes, 1860, and the spotted paca Agouti paca Linnaeus, 

1766, as well as in the brown murine opossum Marmosa robinsoni Bangs, 1898 (Herrer 

et al., 1973). 

Rodents within the genus Proechimys J. A. Allen, 1899 are the primary hosts for 

Leishmania (L.) amazonensis, an etiological agent of CL in Brazil.  However, the rice 

rats, Oryzomys capito, O. concolor Wagner, 1845, O. macconnelli Thomas, 1910, the 

bristly mouse, Neacomys spinosus Thomas, 1882, the South American water rat, 

Nectomys squamipes Brants, 1827, the black rumped agouti, Dasyprocta prymnolopha 
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Wagler, 1831, and a number of marsupials also have been implicated as hosts (Lainson 

and Shaw, 1987). 

Leishmania (V.) braziliensis is the most geographically-widespread of the 

parasites that cause human cutaneous leishmaniasis in the New World and it has been 

isolated from a number of mammalian hosts including rodents, edentates, primates, 

marsupials, equines, and carnivores.  The rodent host records of Leishmania (V.) 

braziliensis include: Oryzomys capito, Orysomys concolor, Oligoryzomys nigripes 

Desmarest, 1819, the grass mouse, Akodon arviculoids, Proechimys species, the white-

footed climbing mouse, Rhipidomys leucodactylus Tschudi, 1844, and the house rat, 

Rattus rattus Fischer de Waldheim, 1803 (Lainson and Shaw, 1987; Grimaldi et al., 

1989).  Edentate hosts include the two-toed sloths, Choloepus didactylus Linnaeus 1758 

(Lainson and Shaw, 1987) and Choloepus hoffmanni Peters 1858 (Herrer et al., 1973).  

Primate hosts include the three striped night monkey, Aotus trivirgatus Humboldt, 1811 

and the marmoset, Saguinus geoffroyi Pucheran, 1845 (Herrer et al., 1973).  Marsupial 

hosts include the opossum, Didelphis marsupialis Linnaeus, 1758 (Lainson and Shaw, 

1987).  L. (V.) braziliensis parasites also have been isolated from the equines, Equus 

asinus Linnaeus, 1758 and Equus caballus Linnaeus, 1758 (Grimaldi et al., 1987).  

Carnivore host records include Canis familiaris Linnaeus, 1758 (Grimaldi et al., 1989), 

the ring-tailed coati, Nasua nasua Linnaeus, 1766, the kinkajou, Potos flavus Schreber, 

1774, and the olingo, Bassaricyon gabbii J. A. Allen, 1876 (Herrer et al., 1973).   

Control of leishmaniasis requires an understanding of the reservoir-vector 

transmission system.  Few of these systems have been adequately described anywhere in 
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the world.  Complete objective incrimination of an animal species as a reservoir host of a 

parasite is difficult and in many cases impossible (WHO, 1990).  The World Health 

Organization has outlined criteria for the incrimination of reservoirs hosts; among these 

are that the percentage of individuals within a host population that become infective is 

large and may be greater than 20% (WHO, 1990).  In Nicaragua, no proven reservoirs or 

sand fly vectors have been identified.  This study identified rodent and sand fly species 

that were associated with areas that were known to be foci of human typical CL in order 

to discern their possible role as reservoirs and vectors, and to compare species 

distribution with rodents and sand flies collected in areas where atypical CL is the 

predominant form of leishmaniasis. 

Study area 

Nicaragua is located in the center of the Central American Isthmus and is 

bordered by Honduras to the north and Costa Rica to the south.  It is bounded by the 

Atlantic Ocean on the east and the Pacific Ocean on the west.  The topography of 

Nicaragua previously has been described to be divided into 3 general geographic 

regions:  the Pacific plains, the central highlands, and the Atlantic lowland plains 

(Taylor, 1963) (Fig. 5). 

The Pacific plains region predominantly is characterized by mean annual 

temperatures between 25.5–27.5° C; however a series of volcanoes is located on a 

roughly north-south line through the center of this region and mean annual temperatures 

surrounding the peaks are considerably lower (Fig. 6).  The Pacific plains region has a 

mean annual rainfall between approximately 1,000–1,800 mm (Fig. 7), 
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     Figure 5.  Map of the general geographic regions of Nicaragua as described by 
Taylor, 1963.  This study included rodent and sand fly collections from each of these 
regions. 
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     Figure 6.  Map of the mean annual temperature zones of Nicaragua. 
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Figure 7.  Map of the mean annual precipitation zones of Nicaragua. 

0 100 20050 Kilometers

Precipitation Mean Annual
Millimeters

<800

800-900

900-1000

1000-1200

1200-1400

1400-1600

1600-1800

1800-2000

2000-2400

2400-2800

2800-3200

3200-4000

>4000

�



 

 

34 

but has pronounced wet and dry seasons (Taylor, 1963).  The dry season occurs roughly 

from December until May or June and the wet season lasts from June until November.  

The Pacific plains region has elevations that predominantly range from sea level to 

approximately 200 m above mean sea level (MSL).  Elevations of the volcanoes range to 

nearly 1,600 m above MSL (Fig. 8).  The soils of the Pacific plains are typically sandy 

or sandy-loam to loam, with areas of clay soils scattered throughout (Fig. 9) (Taylor, 

1963 and MARENA 2004).  This region of Nicaragua is the most populous and has 

extensive agricultural usage and natural vegetation cover consisting primarily of 

deciduous forest or deciduous shrub land is generally less that 25% (Fig. 10) 

(MARENA, 2004). 

 The central highlands region has a subtropical climate with mean annual 

temperatures typically ranging between 18.5–24.5° C (MARENA, 2004).  This is the 

driest region of the country with mean annual rainfall between 800–1,600 mm (Taylor, 

1963; MARENA, 2004).  The central highlands also have distinct wet and dry seasons; 

however the dry season is generally shorter than that of the Pacific plains region, 

typically lasting for approximately 3–5 months in areas of seasonal evergreen rain forest 

and 3 months in lower montane rain forest (Taylor, 1963).  The central highlands region 

is characterized by the Segoviana, Isabelia, and Dariense mountain ranges with 

elevations varying from 600 m to 2,000 m above MSL.  The soils of the western portion 

of the central highlands are predominantly clay-loam, while clay soils dominate the 

eastern two-thirds of this region (MARENA, 2004).  Land usage is extremely varied, 
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Figure 8.  Map of the elevation zones of Nicaragua. 
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 Figure 9.  Map of the soil type zones of Nicaragua. 
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Figure 10.  Map of the land use/cover zones of Nicaragua. 
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ranging from areas of extensive agricultural usage to areas of relatively undisturbed 

seasonal evergreen rain forest and lower montane tropical rain forest. 

 The Atlantic lowland plains region is predominantly characterized by a mean 

annual temperature of 26.5° C.  This region is the wettest in Nicaragua with mean annual 

rainfall ranging from approximately 1,800 mm to greater than 4,000 mm, with areas near 

the Atlantic coast receiving the most precipitation (Taylor, 1963).  There are distinct wet 

and dry seasons; however, the dry season is relatively short and lasts approximately 3 

months from February to April (Taylor, 1963).  Elevations throughout most of this 

region are below 200 m above MSL.  However, the very southern extreme of the 

mountain ranges that run through the center of the country extend into the Atlantic 

lowland plains with altitudes in some areas to 600 m above MSL.  Land use and 

coverage of the Atlantic lowland plains varies considerably, with areas of extensive 

agricultural use and 10–15% natural vegetation coverage to areas dominated by tropical 

evergreen broadleaf forest (Taylor, 1963; MARENA, 2004).  This area also has seen the 

greatest amount of timber harvesting and conversion from forest to farm and ranchland 

within the last 25 years (MARENA, 2004). 

Diagnostic screening techniques for Leishmania in tissue 

 A number of diagnostic techniques have been used to identify the presence 

Leishmania parasites within tissues of mammalian hosts.  The most common among 

these have been:  staining and direct microscopic examination of histological sections, 

staining and microscopic examination of prepared tissue smears, Enzyme Linked 

Immunosorbent Assays (ELISA), in vitro culture, and PCR. 
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In vitro culture 

Rearing of live promastigotes of Leishmania in cell culture medium is one 

diagnostic test for the presence of parasites within tissue biopsies.  The culture medium 

is used to simulate the biochemical environment found within the sand fly vector.  

Within the culture medium, the amastigotes within the mammalian host tissue transform 

and reproduce as promastigotes.  Schneider’s Drosophila medium supplemented with 

fetal bovine serum has been used, as well as blood-based media for the cultivation of 

promastigotes (Hendricks and Wright, 1979).  Hendricks and Wright (1979) reported a 

successful cultivation rate of 67% in Schneider’s Drosophila medium compared to a 

success rate of 15% in blood-based media.  Rodriquez and others (1994) indicated a 

successful in vitro cultivation rate of 42% and indicated that the poor success rate may 

be due to secondary contamination with bacteria and fungi.  Promastigotes also have 

been successfully cultured using supplemented M199 medium (Kerr et al., 1999). 

Polymerase chain reaction (PCR) 

The use of PCR is highly sensitive as a diagnostic tool in testing for the presence 

of parasites within tissue (Rodgers et al., 1990; Bensoussan et al., 2006).  Protozoan 

parasites of the genus Leishmania possess a kinetoplast, consisting of approximately 

10,000 copies of DNA minicircles per parasite.  A number of different types of PCR 

have been used to confirm the presence of leishmanial parasites within host tissue.  

Among the most widely used PCR methods are assays which test for the presence of 

either genomic or kinetoplast DNA.  Three of the most commonly used PCR assays are 

kinetoplast DNA (kDNA) PCR, internal transcribed spacer 1 region of the small subunit 
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rRNA genes (ITS1) PCR, and splice leader mini-exon (SLME) PCR of the gp63 gene 

locus (Bensoussan et al., 2006). 

 In a direct comparison of these 3 commonly used diagnostic PCR methods, 

Bensoussan et al. (2006) demonstrated kDNA PCR to be the most sensitive method 

(98.7%) for screening for the presence of leishmanial parasites within host tissue.  ITS1 

PCR showed a sensitivity of 91%, while SLME PCR demonstrated a sensitive of 53.8%.  

Bensoussan et al. (2006) reported that parasite culture detected 62.8% of the positive 

specimens while microscopy accurately detected 74.4% of the positives. 

Rodriquez et al. (1994) reported a positive kDNA PCR test in 98% of patients 

that had been clinically diagnosed with leishmaniasis, while in vitro culture and 

microscopy identified 42% and 64% of the positive cases, respectively.  Belli et al. 

(1998) indicated a sensitivity of 100% using kDNA PCR to test dermal scrapings from 

human patients diagnosed with cutaneous leishmaniasis.  Thus, kDNA PCR was 

determined to be significantly more sensitive in the detection of Leishmania species 

within host tissue than in vitro culture or microscopy. 

Within the kDNA minicircles, there is a region of approximately 200 base pairs 

that is highly conserved among species, while the remaining region of kDNA may vary 

significantly (Rodgers et al., 1990).  It is within this conserved region that a 120 base 

pair sequence of kDNA can be amplified by PCR to identify the presence of parasites 

within the tissue sample.  The genus specific primers, 13A (5’– 

GTGGGGGAGGGGCGTTCT –3’) and 13B (5’– ATTTTACACCAACCCCCAGTT –
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3’) hybridize to a sequence within the kDNA and promote chain elongation at those sites 

during PCR (Rodgers et al., 1990, Rodriquez et al. 1994, Belli et al.1998). 

Geographic Information System (GIS) and remote sensing 

Ecological components influence the spatial and temporal distribution of 

populations of Leishmania species as well as its sand fly vectors and reservoir hosts.  

Regionally-variable ecological conditions can add complexity to the understanding of 

those factors that help to determine the geographic distribution of species (Cromley, 

2003).  An understanding of the specific environmental conditions that serve as the best 

predictors for the distribution of Leishmania species would be useful in determining the 

potential geographic range of the parasite as well as providing useful information to be 

applied in control (Molyneux, 2001). 

GIS and remote sensing capabilities are increasingly being used in 

epidemiological research as tools for displaying and interpreting the ecological factors 

that affect the distribution of vector-borne diseases (Hendrickx et al., 2001).  

Environmental data and georeferenced earth surveillance data are being used in 

conjunction with GIS to develop maps that help to describe the spatial and temporal 

distribution of disease-causing agents, reservoir hosts, and vectors (Molyneux, 2001; 

Rushton, 2003).  These GIS databases and generated maps can be useful tools in 

understanding and communicating the temporal and spatial environmental processes 

associated with vector-borne diseases, like the leishmaniases. 

Previous studies have employed the use of GIS and free and readily-available 

environmental data from remote sensing sources to explain and predict the distribution 
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of leishmaniasis and other vector-borne diseases as well as develop risk models for 

exposure to the parasites (Yilma and Malone, 1998; Bavia et al., 2001; Fuentes et al., 

2001; Kristensen et al., 2001; Malone et al., 2001; Elnaiem et al., 2003; Gebre-Michael 

et al., 2004; King et al., 2004; Klinkenberg et al., 2004).  Distribution of species is a 

result of environmental influences, such as rainfall, temperature, soil type, elevation, and 

vegetative land cover, have been identified in these studies as useful predictors for 

geographic distribution of parasites.  In addition, several recent studies have used GIS 

and remote sensing technology to identify biotic and abiotic factors that influenced the 

distribution of the sand fly vectors associated with leishmaniasis (Thomson et al., 1999; 

Thomson and Conner, 2000). 

King et al. (2004) used GIS and remote sensing data to evaluate and predict the 

risk of CL in Colombia using incidence data obtained from the Colombian Ministry of 

Health, digital elevation models (DEM) from the U.S. Geological Service’s Earth 

Resources Observation System (USGS-EROS), and land cover data obtained from the 

National Oceanic and Atmospheric Administration’s Advanced Very High Altitude 

Radiometer satellite imagery (NOAA-AVHRR).  Satellite images from a 1 year period 

were classified into 25 land cover zones based on spectral characteristics.  The DEM and 

land cover data was overlaid in GIS software over maps of the distribution of human 

cases.  The authors evaluated the predictive power of datasets containing disease 

distribution and elevation data only, disease distribution and land cover data only, and 

disease distribution along with both elevation and land cover data.  They determined that 

land cover was a better predictor of areas where leishmaniasis occurred than elevation.  
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However, combining the two datasets provided increased accuracy of the predictive 

value of their maps. 

El Naiem et al. (2003), used GIS to map and develop risk models in an attempt to 

explain the environmental factors that influenced the geographic distribution of human 

cases of visceral leishmaniasis in Sudan, East Africa between the years 1996–2000.  

They investigated the effect of numerous environmental factors that influenced the 

spatial distribution of the sand fly vectors, the reservoirs, and human hosts including: 

average rainfall, vegetation, soil type, altitude, and the distance from rivers.  Regression 

analyses of environmental variables in the study by El Naiem et al. (2003) indicated that 

the best predictors for the presence of visceral leishmaniasis were the average rainfall 

and elevation, with average rainfall being the single most important variable in affecting 

the spatial distribution.  El Naiem et al. (2003) indicated that the sand fly vectors were 

found to inhabit areas with annual rainfall between 400–1,200 mm and elevations less 

than approximately 500 m above mean sea level.  The authors suggested that these 

variables were the most likely to influence the habitat distribution of the known sand fly 

vector, Phlebotomus orientalis, within the region. 

To date, no studies have been done attempting to define the biotic or abiotic 

environmental factors that affect the spatial distribution of Leishmania species in the 

Nicaragua. 
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MATERIALS AND METHODS 
 
 
Overview 
 

All collecting of rodent and sand fly specimens was accomplished after required 

permissions were obtained from the Nicaraguan Ministry of Health.  In fact a long series 

of meetings were required to gain access to trapping sites.  In Managua, the Minister of 

Health was briefed on the objectives and scope of this research in order to gain approval 

to operate a health-related research study within Nicaragua.  To conduct research 

operations at each of the study sites, meetings were arranged in order to discuss the 

details of our project with the Ministry of Health representative at the department and 

municipality levels, and finally permission from the individual community leaders and 

land owners was obtained.  This process of progressing through a hierarchy of 

permission granting entities often was time consuming.  The time spent in meetings at 

many different government levels cut considerably into the time available for conducting 

field research, and it was quickly learned that extra days needed to be budgeted on each 

trip in order to account for the necessary briefings and coordination with local entities.   

In most instances, this research was conducted while working closely with the 

local hospital or health clinic and I often was accompanied by an employee of the 

Ministry of Health, usually a representative of the vector control program.  Rodent 

trapping and sand fly collections were conducted near localities that were identified as 

having concentrations of human CL.  These localities were identified using records 

obtained from hospitals or clinics and by direct conversation with public health officials 

and community leaders.  Many of the trapping sites were fairly remote and accessible 
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only by four wheel drive truck or on foot.  Additionally, much of the trapping was done 

during the rainy season, which added to the difficulty of gaining site access. 

Study areas 

Rodent collections were accomplished at 13 localities within 9 municipalities and 

7 districts in Nicaragua between August 2001 and March 2006 and included 3,638 trap 

nights (Fig. 11).  These collection localities were widespread throughout the country and 

included areas where human typical CL did and did not occur.  The 13 rodent trapping 

localities (Table 4) included areas within each of the general geographic regions of the 

country: the Pacific plains, the central highlands, and the Atlantic lowland plains. 

Sites within the Pacific plains region included Bella Vista and San Cristobal in 

the district of Chinandega and Las Marias and San Jacinto in the District of Leon.  

Trapping sites within the central highlands region included El Tigre and Selva Negra in 

the district of Matagalpa; Los Mangos in the District of Madriz; and El Cua in the 

District of Jinotega.  Collection localities within the Atlantic lowland plains region 

included El Balsamo and Rosa Grande in the North Atlantic Autonomous Region 

(RAAN) and Nueva Guinea, La Esperanzita 2 and La Fonseca in the South Atlantic 

Autonomous Region (RAAS).  Sand fly traps also were placed at these localities and in 

the city of Bluefields, located on the Caribbean coast. 
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     Figure 11.  Map of the rodent and sand fly collecting localities in Nicaragua during 
August 2001−March 2006. 
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   Table 4.  Rodent collection sites in Nicaragua during August 2001–March 2006. 

Locality   Municipality   Department  Lat/Long 

Bella Vista   Chichigalpa   Chinandega  12 39’N 086 57’W 
 

El Balsamo   Siuna    RAAN1  13 39’N 084 58’W 
 

El Cua    Cua-Bocay   Jinotega  13 20’N 085 39’W 
 

El Paraisito   Nueva Guinea   RAAS2  11 41’N 084 24’W 
 

El Tigre   El Tuma-La Dalia  Matagalpa  13 04’N 085 45’W 
 

La Esperanzita 2  Nueva Guinea   RAAS2  11 32’N 084 20’W 
 

La Fonseca   Nueva Guinea   RAAS2  11 34’N 084 22’W 
 

Las Marias   Telica    Leon   12 37’N 086 48’W 
 

Los Mangos   San Lucas   Madriz   13 26’N 086 35’W 
 

Rosa Grande   Siuna    RAAN1  13 38’N 085 08’W 
 

San Jacinto   Telica    Leon   12 35’N 086 45’W 
 

San Cristobal   Chinandega   Chinandega  12 40’N 087 02’W 
 

Selva Negra   Matagalpa   Matagalpa  12 59’N 085 54’W 
 

1Regíon Autónoma Atlántico Sur (South Atlantic Autonomous Region) 
2Regíon Autónoma Atlántico Norte (North Atlantic Autonomous Region)
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Study areas within the Pacific plains region 

 This region of Nicaragua experiences relatively few cases of human typical CL 

and rodent and sand fly collection were made to compare with regions where the 

prevalence of human typical CL is high.  This region of Nicaragua does, however, have 

the highest prevalence of human atypical CL.  The trapping sites within this region 

included Bella Vista, Las Marias, San Cristobal and San Jacinto.  The Bella Vista site 

(12° 39’N, 086° 57’W) is located within the municipality of Chichigalpa. The trapping 

site was located on the western slopes of the Casita volcano and at an elevation of 

approximately 700 m above MSL.  This area receives between 1,600–1,800 mm of 

rainfall per year and has a mean annual temperature of approximately 23.5° C.  The soil 

predominantly is sandy loam but has numerous rocks.  The trapping locations within this 

site were located in or near an area that is heavily planted in coffee with large trees 

scattered throughout.   

 The Las Marias (12° 37’N, 086° 48’W) and San Jacinto (12° 35’N, 086° 45’W) 

study sites are located within the municipality of Telica.  The Las Marias site has an 

elevation of approximately 175 m above MSL and a mean annual precipitation between 

1,600–1,800 mm.  The mean annual temperature is approximately 26.5° C.  The soil is 

predominantly sandy loam with some scattered rocks; and this area mostly is farm and 

grazing land with smaller trees and brush primarily in hedgerows.  The San Jacinto site 

is located at an elevation of approximately 175 m above MSL and has a mean annual 

rainfall of 1,400–1,600 mm.  The mean annual temperature is approximately 26.5° C.  
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The soil at this site is sandy loam with scattered small rocks.  This area appeared to be 

primarily cattle grazing land and was covered with scattered small scrub brush. 

 The San Cristobal (12° 40’N, 087° 02’W) study site is located within the 

municipality of Chinandega.  It is located on the western slope of the San Cristobal 

volcano and has an elevation of approximately 460 m above MSL and a mean annual 

rainfall between 1,600–1,800 mm.  Mean annual temperature at this site is 

approximately 25.5° C.  The soil in this area is sandy loam and trapping was conducted 

in areas that had extensive coffee plantations with large trees scattered throughout. 

Study areas within the central highlands region 

 Although there are few cases of human typical CL in the north and western areas 

of the central highlands region, the center and eastern sections contain those 

municipalities that reported the greatest number of human cases.  Trapping sites within 

this region included El Cua, El Tigre, Los Mangos and Selva Negra.  El Cua (13° 20’N, 

085° 39’W) is located within the municipality of Cua-Bocay.  This region of Nicaragua 

is rather mountainous and the elevations at this site ranged between 700–800 m above 

MSL.  The mean annual rainfall is between 1,400–1,600 mm.  Mean annual temperature 

is approximately 23.5° C.  Clay soils dominate the region and land usage and coverage 

varies considerably.  Much of the region is dominated by agricultural use including 

coffee and banana plantations.  However parts of this municipality are covered with 

semideciduous broadleaf tropical forest.  The trapping sites near El Cua were located in 

woody areas near the edges of coffee and bean fields. 
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 El Tigre (13° 04’N, 085° 45’W) is located within the municipality of El Tuma - 

La Dalia.  The trapping site has an elevation of approximately 450 m above MSL and 

has a mean annual precipitation rate of 1,200–1,400 mm.  The mean annual temperature 

is approximately 24.5° C.  The soils predominantly are clay and the area consists mainly 

of small farms with scattered trees primarily along hedgerows and river banks.  

 Los Mangos (13° 26’N, 086° 35’W) is located in the northwestern part of the 

central highlands near the Honduras border.  This trapping site has an elevation of 

approximately 980m above MSL and a mean annual rainfall of 1,000–1,200 mm.  The 

mean annual temperature is approximately 22.5° C.  The soil in this area is 

predominantly clay loam but has large rocks scattered throughout.  This is very rugged, 

mountainous terrain and the trapping site was located in an area that had scattered 

evergreen pines and deciduous oak trees with small hillside farms scattered throughout. 

 The trapping site at Selva Negra (12° 59’N, 085° 54’W) is located within the 

northeast section of the municipality of Matagalpa.  This trapping site also is quite 

mountainous and has elevations ranging from 1,200 to 1,600 m above MSL.  The mean 

annual precipitation is between 1,200–1,400 mm and the mean annual temperature is 

20.5° C.  The soils within the area predominantly are clay and clay loam.  This trapping 

site is covered in submontane evergreen tropical forest with scattered coffee plantations. 

Study areas within the Atlantic lowland plains region 

 This region contains several municipalities with high numbers of reported cases 

of human typical CL.  Trapping sites within this region included El Paraisito, La 

Esperanzita 2, La Fonseca located in the southern region of the Atlantic lowland plains 
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and El Balsamo and Rosa Grande located in the northern Atlantic lowland plains.  This 

region is the wettest in the country with some areas receiving greater than 4,000 mm of 

mean annual rainfall. 

 El Balsamo (13° 39’N, 084° 58’W) and Rosa Grande (13° 38’N, 085° 08’W) are 

located within the municipality of Siuna.  The elevation at both localities is 

approximately 300 m above MSL and the mean annual precipitation in both localities is 

1,400–1,600 mm.  The mean annual temperature is approximately 25.5° C and the soils 

in this region are predominantly reddish clay. 

 El Paraisito (11° 41’N, 084° 24’W), La Esperanzita 2 (11° 32’N, 084° 20’W) and 

La Fonseca (11° 34’N, 084° 22’W) are located in the municipality of Nueva Guinea.  

The average elevation at the El Paraisito study site is approximately 200 m above MSL 

and the mean annual precipitation is between 2,000–2,400 mm.  The mean annual 

temperature is approximately 26.5° C.  The soil here is predominantly brown clay.  

Much of the area surrounding the El Paraisito site is dotted with cattle ranches and dairy 

farms with 10–25% natural vegetation coverage.  Areas with large trees are scattered and 

exist primarily along hedge rows and river banks. 

The average elevation at the La Fonseca study site is approximately 175m above 

MSL and the mean annual precipitation is between 2,000–2,400 mm.  The mean annual 

temperature is approximately 26.5° C.  The soil predominantly is brown clay.  The area 

around La Fonseca also contains numerous farms, cattle ranches, and dairies; but, there 

is considerably more natural vegetation coverage than at the El Paraisito site.  It is 

classified as primarily agricultural usage with 25–50% natural vegetation coverage. 
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The La Esperanzita 2 study site is located near the southern extreme of the Nueva 

Guinea municipality and has an average elevation of approximately 100 m above MSL.  

The mean annual precipitation is between 2,400–2,800 mm and the mean annual 

temperature is approximately 26.5° C.  The soil also is predominantly brown clay and 

the area is classified as evergreen broadleaf tropical forest. 

Rodent trapping 

 Trapping localities for rodent collections were chosen after consultation with 

individuals within the Nicaragua Ministry of Health and were selected based on 

proximity to reported cases of human leishmaniasis.  Rodents were collected using 12.5 

x 12.5 x 38.0 cm Sherman� live traps (H. B. Sherman Traps Inc., Tallahassee, FL).  

Traps were baited with a mixture of locally-obtained fruit and/or oatmeal.  Traps were 

placed near obvious rodent den openings, along easily-distinguishable runways of 

occupied rodent dens, or at the base of large trees (Fig. 12).  Live-animal traps were set 

in the evening and collected early the next morning to reduce the exposure of rodents to 

heat, cold or rain.  All animal work was conducted under Texas A&M University 

approved animal use protocol AUP #2005–75. 

Tissue collection 

Conditions for aseptic processing of rodent tissue were less than ideal.  Rodents 

were transported in the traps to a central processing location which, in many cases, was 

the tailgate of the truck.  They then were transferred from the traps into a cotton 

stockinette (McKesson General Medical, Richmond, VA) and weighed using a precision  
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     Figure 12.  Sherman live mammal traps placed at Selva Negra research site in the 
municipality of Matagalpa, Nicaragua. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Photo: Russell Raymond 
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spring scale.  Once restrained in the cotton stockinette, the rodents then were euthanized 

on site by thoracic compression and immediately processed for leishmaniasis screening. 

After the rodents were euthanized, they then were sexed and identified to species.  Two 

tissue samples were collected from each ear and the base of the tail of all rodents using a 

sterile, disposable, 2 mm biopsy punch (Sklar Instruments, West Chester, PA).  The ears 

and tail of the rodents generally have less hair coverage and provide the most likely sight 

for female sand flies to feed.  When lesions were present, biopsies were taken from the 

lesion and surrounding area.  The tissue biopsies then were either placed in culture 

media or frozen until analysis by PCR could be accomplished.  All rodents were placed 

in plastic storage bags and kept in a portable freezer until transfer to an appropriately-

labeled ice chest containing frozen gel packs and, ultimately transported to the United 

States and the research laboratory at the University of the Incarnate Word in San 

Antonio, Texas.  The United States Centers for Disease Control and Prevention issued a 

permit (PHS Permit No. 2004–04–021) for the import and transfer of etiological agents 

and vectors of human disease pertaining to this project.   

 All collected rodents then were shipped to Dr. Robert Bradley at Texas Tech 

University, Lubbock, Texas.  Dr. Bradley confirmed, or corrected the field identification 

of rodent species and all rodents were prepared as museum skins and deposited in the 

Recent Mammals Collection.  Samples of muscle, heart, liver, spleen, and kidney tissue 

were deposited in the Vital Tissues Collection of the museum at Texas Tech University 

(Appendix A). 
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Tissue biopsy preparation and screening using culture medium 

 Tissue biopsies were processed in Nicaragua according to the method described 

by Kerr et al. (1995).  The biopsy tissue was rinsed with isopropyl alcohol and wiped 

with alcohol swabs to remove dirt and other contaminants.  The tissue then was scraped 

with a sterile scalpel blade to remove excess hair before freezing or placement in cell 

culture medium.  However, there was no access to a laminar flow safety cabinet during 

the preparation of tissue biopsies and cultures, so bacterial and fungal contamination was 

a consistent problem.  One biopsy from each ear and the tail was stored in a -20° C 

freezer until analysis by PCR.  One biopsy from each ear and the tail was placed in a 500 

µl microcentrifuge tube, immersed in 70% isopropyl alcohol and shaken in a vortex 

mixer for 15 seconds to aid in the removal of contaminants.  The tissue samples then 

were removed from the alcohol and placed in a culture tube containing modified medium 

M199 (Gibco-BRL, Gaithersburg, MD) supplemented with 20% (v/v) heat-inactivated 

fetal bovine serum (Summit Biotechnology, Fort Collins, CO), 10mM adenine, 0.25% 

(v/v) bovine hemin, 50 mM HEPES buffer, 50 IU/ml penicillin, and 50 µg/ml 

streptomycin (pH 7.4).  The tissue samples in culture medium then were stored at room 

temperature in Nicaragua and monitored using an inverted phase contrast microscope 

daily for the presence of promastigotes of Leishmania.  After the culture samples were 

returned to the laboratory at the University of the Incarnate Word in San Antonio, they 

were stored in a 25° C incubator and examined a minimum of twice weekly using an 

inverted phase contrast microscope.  
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Tissue biopsy screening using polymerase chain reaction (PCR) 

 Tissue screening by PCR was accomplished at the laboratory in San Antonio, 

Texas.  Tissue biopsies were prepared for PCR by placing the thawed tissue biopsy 

samples in 40 µl of lysing buffer (10 mM Tris / 10 mM EDTA, pH 8.0) and incubating 

at 95° C for 30 minutes (Rodgers et al., 1990).  The samples then were stored at -20° C 

until PCR could be performed on the lysate. 

The PCR master mix was prepared using final concentrations of 1X PCR 

reaction buffer (Boehringer-Mannheim, Germany), 0.2 mM nucleotides (Boehringer-

Mannheim), 1.0 µM forward primer 13A (5’–GTGGGGGAGGGGCGTTCT–3’) and 

reverse primer 13B (5’–ATTTTACACCAACCCCCAGTT–3’) (Rogers et al., 1990), 

RNase free water, and 0.75 U/25 µL Taq polymerase (Boehringer Mannheim).  Twenty-

three microliters of the master mix were added to individual reaction tubes and 2 µl of 

the tissue lysate then was added to each tube.  The reaction tubes then were placed in a 

thermal cycler (Perkin Elmer, Norwalk, CT) and the PCR reactions run for 35 cycles. 

Analysis of the PCR product was conducted through gel electrophoresis.  A 2% 

ultrapure DNA grade agarose gel (Bio-Rad, Hercules, CA) was prepared using 0.5X 

Tris-Borate-EDTA (TBE), agarose, and ethidium bromide (0.1µl / 1ml TBE).  Two 

microliters of loading buffer were added to each reaction tube containing the PCR 

product.  After completion of PCR, 10 µl from each reaction tube then was placed into 

the wells of the gel.  A positive control, negative control (H2O), and a 100 base pair 

ladder also were loaded into the gel.  The positive control was prepared from known 

concentrations of parasites reared in culture medium.  The electrophoresis apparatus was 
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run at 96 Volts for 1 hour.  A band in the 120 base pair region indicated a positive 

sample. 

Sand fly trapping 

Insects were collected using Hock new standard miniature light traps (John W. 

Hock, Gainsville, FL) placed in areas near human case residences and mammal trapping 

sites (Fig. 13).  Sand flies were killed by placing the collection receptacles in a freezer 

overnight and then the specimens were placed in a covered Petri dish between 2 pieces 

of tissue for transport.  Much of the specimen collection effort took place during the 

rainy season and although the sand fly traps were equipped with rain hoods, often the 

insects would become very wet.  In those instances, the collection containers were 

placed in a dark, dry room for a day or two prior to placing them in the freezer to kill any 

insects that remained alive.  Sand flies were identified to species using the guide of 

Young and Duncan (1994).  The United States Centers for Disease Control and 

Prevention issued a permit (PHS Permit No. 2004–04–021) for the import and transfer of 

etiological agents and vectors of human disease pertaining to this project. 

Geographic Information System (GIS) and remote sensing 

Geographic information systems, remote sensing technology, and prevalence 

data for the distribution of Leishmania species in Nicaragua were used to build GIS 

maps and predictive statistical models for the presence or absence of human typical CL.  

Prevalence data on the distribution of human cases of typical CL were obtained from Dr. 

Juan Jose Amador, Director of Epidemiology for the Nicaragua Ministry of Health.  

These data were of human typical CL reported by various health clinics within the  
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Figure 13.  Insect trap near El Cua in the municipality of El Cua-Bocay, Nicaragua.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Photo:  Russell Raymond 
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country.  No data were available about travel history of individuals and it is unknown as 

to whether the leishmaniasis was contracted in the same municipality as reported.  It is 

possible, and even probable, that some of the reported cases of CL were acquired at 

locations outside of the reporting municipality.  However, assuming that most 

individuals spend the vast majority of their time near locations were they live and work, 

it also is likely that most cases were acquired and reported within an individual’s home 

municipality. 

 GIS was used to investigate relationships between the environmental factors such 

as mean annual precipitation, elevation, land use and coverage, soil type, mean annual 

temperature and the prevalence of Leishmania infections.  GIS maps of environmental 

variables including precipitation, land cover zones, mean annual temperature and soil 

types were obtained from Nicaraguan Ministry of Atmosphere and Natural Resources.  

Digital elevation data used for this analysis were acquired from a raster data set prepared 

by Earth Systems Research Institute Inc. (ESRI).  The original remote sensing data for 

this elevation raster data set was compiled by the United States Geological Service’s 

Earth Resources Observation System (USGS-EROS) digital elevation model (DEM) 

GTOP030 data sets of North America.  Resolution of the raster data is approximately 1 

km2.   

 The GIS data obtained by the Nicaraguan Ministry of Climate and Natural 

Resources were provided in the form of ArcGIS shapefiles.  These shapefile data were 

converted to raster data sets with a cell size of 1 km2.  This was done to match the 

resolution of the DEM and provide consistency during data analysis.  The shapefile data 
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included a base map of political boundaries, soil types, mean annual precipitation, mean 

annual temperature and a land use and coverage map. 

 The soil map of Nicaragua provided the geographic distribution of 7 categories 

of soil types.  These included heavy clay, clay, loamy sand, sand, loam, clay loam and 

sandy loam.  The precipitation map included 13 different zones of mean annual 

precipitation ranging from less than 800mm to greater than 4,000mm.  The temperature 

map included 9 different zones of mean annual temperature ranging from 18.5° C to 

27.5° C.  The land use and coverage map acquired from the Nicaragua Ministry of 

Climate and Natural Resources included 70 ecological zones.  To aid in statistical 

analysis and to reduce the possibility of any one category being statistically significant 

by random chance, similar land use/coverage classes were combined into a total of 13 

classes (Table 5).  The DEM was reclassified to include 11 elevation ranges from 0 to 

2,000 meters above mean sea level. 

 

Table 5.  Nicaragua land use/cover classes used for statistical analysis 
Class Description 
Urban Area 
Cropland 
Agricultural Systems with 10−25% Natural Vegetation 
Agricultural Systems with 25−50% Natural Vegetation 
 Mangroves 
Coastal Transition Vegetation 
Savannah 
Grassland with Deciduous Shrubs 
Shrubland 
Tropical Deciduous Broadleaf Seasonal Forest 
Tropical Evergreen Pine Seasonal Forest 
Tropical Evergreen Swamp Forest 
Tropical Evergreen Broadleaf Seasonal Forest 
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 Data of human cases of typical CL were entered into the attribute table of the 

GIS base map of Nicaragua municipalities and displayed as numbers of cases per 

municipality.  The shapefiles for 151 of the 152 municipalities within Nicaragua then 

were converted to raster format prior to analysis.  The municipality of Corn Island 

(approximately 9 km2) was excluded from GIS analysis because environmental data 

were unavailable.  This base map then was overlaid with the raster data sets of elevation, 

mean annual precipitation, mean annual temperature, soil types, and land use and 

coverage.  Since the municipalities varied considerably in size and population, 

leishmaniasis case data also were normalized to municipality population and municipal 

area (km2) prior to analysis. 

 Distribution and analysis maps were developed using ArcView 9.0 and ArcGIS 

Spatial Analyst 8.2 software (ESRI, Redlands, CA).  The zonal statistics tool of ArcGIS 

Spatial Analyst was used to identify the area (km2) of each of the different zones of 

environmental data that fell within the geographic area representing the distribution of 

human cases of human typical CL. The geographic coordinate system used for all GIS 

maps is WGS 1984 and the projected coordinate system is WGS 1984 UTM Zone 16N 

and the map projection is Transverse Mercator. 

Statistical analysis 

 Binary logistic regression analysis was performed to determine the correlation of 

the distribution of cases of human typical CL with different environmental variables 

using SPSS 14.0 (Chicago, IL).  Generated statistical models to predict the dichotomous 

outcome variable, the presence or absence of human typical CL, within a geographic 
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area were based upon all georeferenced data in order to determine the environmental 

factors that are the best predictors of occurrence.  In statistical models built to determine 

predictor variables of presence or absence of human typical cutaneous leishmaniasis, the 

occurrence of at least 1 reported case within a municipality was used to identify that 

municipality as having typical CL present.  The predictor variables used in this study 

were the total number of square kilometers within a municipality of the various classes 

of:  elevation, mean annual precipitation, mean annual temperature, soil type, and land 

 

statistical analysis because no environmental data were available. 

 Additionally, since >97% of all cases of human typical CL were reported from 

just 28 of 152 municipalities, binary logistic regression analysis also was performed in 

an attempt to identify environmental variables that are predictors of municipalities with 

less than 10 reported cases and municipalities with 10 or more reported cases.  The 

municipality of Corn Island (approximately 9 km2) also was omitted from this data 

analysis because no environmental data were available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

63 

RESULTS 

 
Rodent collections 

Three thousand six hundred-thirty eight trap nights resulted in the capture of 395 

rodents representing 17 species between August 2001 and March 2006 at 13 localities in 

Nicaragua (Table 6).  At the Bella Vista trapping site, 29 total rodents representing 6 

species were captured and screened for Leishmania species.  The numbers of rodents 

trapped by species were: 9 (31%) Liomys salvini, 6 (21%) Mus musculus, 1 (3%) 

Nyctomys sumichrasti, 2 (7%) Ototylomys phyllotis, 6 (21%) Peromyscus mexicanus and 

5 (17%) Rattus rattus. 

At the El Balsamo site, 33 total rodents representing 7 species were captured.  

The numbers of rodents trapped by species were: 15 (46%) Melanomys caliginosus, 1 

(3%) Nyctomys sumichrasti, 2 (6%) Oligoryzomys fulvescens, 2 (6%) Ototylomys 

phyllotis, 4 (12%) Proechimys semispinosus, 4 (12%) Scotinomys tequina and 5 (15%) 

Sigmodon hirsutus. 

At the El Cua site, 14 rodents representing 6 species were captured.  The 

numbers of rodents trapped per species were: 2 (14%) Melanomys caliginosus, 3 (21%) 

Mus musculus, 1 (7%) Oryzomys cousei, 3 (21%) Oryzomys alfaroi, 3 (21%) 

Peromyscus nudipes, and 2 (14%) Sigmodon hirsutus.   

At the El Paraisito site, 52 rodents representing 5 species were captured including 

1 (2%) Mus musculus, 4 (8%) Oligoryzomys fulvescens, 4 (8%) Oryzomys cousei, 35 

(67%) Proechimys semispinosus, and 8 (15%) Sigmodon hirsutus.  At the El Tigre site, 9 

rodents were captured representing 3 species including 1 (11%) Oryzomys alfaroi, 5  
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Table 6.  Occurrence of Leishmania in rodents collected in Nicaragua, 2001–2006.  
  Number Positive/Number Screened* 
  Aug Jan May/Jun May Jul May/June Dec Mar May Mar 
Location Species 2001 2002 2002 2003 2003 2004 2004 2005 2005 2006 
Bella Vista            
 Liomys salvini 0/1 - 0/8 - - - - - - - 
 Mus musculus 0/6 - - - - - - - - - 
 Nyctomys sumichrasti - - 0/1 - - - - - - - 
 Ototylomys phyllotis 0/1 0/1 - - - - - - - - 
 Peromyscus mexicanus - - 0/6 - - - - - - - 
 Rattus rattus 0/5 - - - - - - - - - 
            
El Balsamo            
 Melanomys caliginosus - - - 0/1 0/7 0/7 - - - - 
 Nyctomys sumichrasti - - - - 0/1 - - - - - 
 Ototylomys phyllotis - - - - 0/2 - - - - - 
 Proechimys semispinosus - - - 0/2 - 0/2 - - - - 
 Oligoryzomys  fulvescens - - - - - 0/2 - - - - 
 Scotinomys tequina - - - - - 0/4 - - - - 
 Sigmodon hirsutus - - -- - - 0/5 - - - - 
            
El Tigre            
 Oryzomys alfaroi - - 0/1 - - - - - - - 
 Peromyscus mexicanus - - 0/5 - - - - - - - 
 Sigmodon hirsutus - - 0/3 - - - - - - - 
Las Marias            
 Liomys salvini - 0/1 - - - - - -- - - 
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Table 6 continued.  
            
  Number Positive/Number Screened* 
  Aug Jan May/Jun May Jul May/Jun Dec Mar May Mar 
Location Species 2001 2002 2002 2003 2003 2004 2004 2005 2005 2006 
Los Mangos            
 Liomys salvini - 0/1 - - - - - - - - 
 Peromyscus mexicanus - 0/2 - - - - - - - - 
            
Rosa Grande            
 Melanomys caliginosus - - - - 0/12 - - - - - 
 Ototylomys phyllotis - - - - 0/4 - - - - - 
 Peromyscus mexicanus - - - - 0/1 - - - - - 
 Proechimys semispinosus - - - - 0/4 - - - - - 
            
San Cristobal            
 Liomys salvini - - 0/1 - - - - - - - 
 Nyctomys sumichrasti - - 0/1 - - - - - - - 
 Ototylomys phyllotis - - 0/4 - - - - - - - 
 Peromyscus mexicanus - - 0/2 - - - - - - - 
 Peromyscus oaxacensis - - 0/20 - - - - - - - 
            
San Jacinto            
 Peromyscus mexicanus - - 0/3 - - - - - - - 
 Mus musculus - - 0/2 - - - - - - - 
            
            
            
            
            
 



 

 

 

66 

Table 6 continued.   
  Number Positive/Number Screened* 
  Aug Jan May/Jun May Jul May/Jun Dec Mar May Mar 
Location Species 2001 2002 2002 2003 2003 2004 2004 2005 2005 2006 
Selva Negra            
 Heteromys desmarestianus - 0/1 1/2 0/1 - - - - - - 
 Mus musculus 0/2 - - - - - - - - - 
 Nyctomys sumichrasti 0/1 - - - - - - - - - 
 Oryzomys alfaroi - 0/3 0/3  - - - - - - 
 Ototylomys phyllotis - 0/2 0/2  - - - - - - 
 Peromyscus mexicanus 0/2 1/43 0/48 0/59 - - - - - 0/11 
 Rattus rattus 0/7 0/1 - - - - - - - - 
 Scotinomys tequina  - 0/2 0/2 - - - - - - - 
 Tylomys nudicaudus - - - 0/1 - - - - - - 
El Paraisito            
 Oligoryzomys fulvescens - - - - - 0/4 - - - - 
 Oryzomys cousei - - - - - 0/4 - - - - 
 Proechimys semispinosus - - - - - 0/26 0/5 0/2 0/2 - 
 Sigmodon hirsutus - - - - - 0/8 - - - - 
 Mus musculus - - - - - - - 0/1 - - 
La Esperanzita 2            
 Proechimys semispinosus - - - - - - 0/2 - - - 
La Fonseca            
 Proechimys semispinosus - - - - - - 0/5 - - - 
El Cua            
 Melanomys caliginosus - - - - - - - - - 0/2 
 Mus musculus - - - - - - - - - 0/3 
 Oryzomys alfaroi - - - - - - - - - 0/3 
 Oryzomys cousei - - - - - - - - - 0/1 
 Peromyscus mexicanus - - - - - - - - - 0/3 
 Sigmodon hirsutus - - - - - - - - - 0/2 
* Screening accomplished by PCR using genus specific primers 
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(56%) Peromyscus mexicanus and 3 (33%) Sigmodon hirsutus.  One Proechimys 

semispinosus was captured at the La Esperanzita #2 site.  At the La Fonseca site, 5 

rodents were captured, all were Proechimys semispinosus.  One Liomys salvini was 

captured at the Las Marias site.  At the Los Mongos site, 3 rodents representing 3 species 

were captured including 1 Liomys salvini, 1 Peromyscus mexicanus and 1 Peromyscus 

oaxacensis.  The Rosa Grande site produced 21 rodents representing 4 species and 

included 12 Melanomys caliginosus, 4 Ototylomys phyllotis, 1 Peromyscus nudipes and 4 

Proechimys semispinosus.  The San Cristobal site produced 28 rodents representing 5 

species including 1 Liomys salvini, 1 Nyctomys sumichrasti, 4 Ototylomys phyllotis, 2 

Peromyscus mexicanus and 20 Peromyscus oaxacensis.  The San Jacinto site produced 5 

rodents representing 2 species including 2 Mus musculus and 3 Peromyscus mexicanus.  

At the Selva Negra site, 193 rodents were captured representing 9 species including 4 

Heteromys desmarestianus, 2 Mus musculus, 1 Nyctomys sumichrasti, 6 Oryzomys 

alfaroi, 4 Ototylomys phyllotis, 163 Peromyscus mexicanus, 8 Rattus rattus, 4 Scotinomys 

tequina, and 1 Tylomys nudicaudus. 

Sand fly collections 

Between August 2001 and March 2006, 556 sand flies were collected at 8 

localities in 6 districts within Nicaragua.  Five hundred sixteen sand flies were identified 

to species, 2 were identified to subgenus, 31 were identified only as Lutzomyia species, 1 

was identified to the genus Brumptomyia and 7 were identified to group (Table 7). 

A total of twenty sand flies were captured at the El Balsamo study site, including 
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Table 7. Sand fly species collected in Nicaragua, 2001–2006. 
Location Date Identification � � 
El Balsamo May 2003 Cruciata Group 6 0 
  Lutzomyia sp. 1 0 
  Lu. cruciata 1 4 
 July 2003 Lu. cruciata 1 0 
  Lu. shannoni 0 1 
  Vespertilionsis Group 1 0 
  Lutzomyia sp. 2 0 
 May 2004 Lu. cruciata 2 0 
  Lu. panamensis 1 0 
  Subtotal 15 5 
El Cua March 2006 Lu. cruciata 0 1 
  Lu. panamensis 0 1 
  Subtotal 0 2 
El Paraisito May 2004 Lu. barrettoi majuscula 2 1 
  Lu. species 2 0 
 June 2004 Lu. hartmanni 0 1 
  Lu. barrettoi majuscula 1 0 
  Lu. species 3 1 
 Mar 2005 Lu. barrettoi majuscula 1 2 
  Lu. species 1 2 
 May 2005 Lu. barrettoi majuscula 3 0 
  Subgenus Psathyromyia 1 0 
  Lu. species 1 0 
 June 2005 Lu. barrettoi majuscula 0 1 
  Subtotal 15 8 
El Tigre May 2002 Lu. cruciata 4 20 
  Lu. longipalpis 0 3 
     
    Subtotal 4 23 
Los Mangos January 2002 Brumptomyia sp. 0 1 
  Lu. cruciata 23 19 
  Lu. longipalpis 1 0 
  Subtotal 24 20 
Rosa Grande July 2003 Lu. panamensis 0 2 
  Subgenus Psychodopygus 1 0 
  Subtotal 1 2 
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Table 7 continued. 
Location Date Identification � � 
San Jacinto July 2001 Lutzomyia sp. 11 2 
  Lu. cayennensis 0 1 
  Lu. chiapanensis 14 5 
  Subgenus Micropygomyia 2 1 
  Lu. evansi 8 38 
  Lu. gomezi 0 1 
  Lu. longipalpis 26 60 
  Lu. vesicifera 6 0 
 August 2001 Lu. chiapanensis 5 2 
  Lu. cruciata 9 0 
  Lu. evansi 8 11 
  Lu. longipalpis 11 42 
  Lu. vesicifera 1 0 
  Lutzomyia sp. 0 1 
 January 2002 Lu. cruciata 1 3 
  Lu. evansi 17 13 
  Lu. longipalpis 22 109 
  Lu. gomezi 1 1 
  Lu. zeledoni 2 0 
  Subtotal 144 290 
     
Selva Negra May 2003 Lutzomyia sp. 3 0 
  Subtotal 3 0 
       
  Total 206 350 

 
 
 
8 Lutzomyia cruciata (4 female, 4 male), 1 Lu. panamensis female, and 1 Lu. shannoni 

male.  Six specimens were identified as being Lutzomyia species within the Cruciata 

Group (6 female, 0 male), 1 female Lutzomyia species within the Vespertilionsis Group  

and 3 males were identified only to the Genus Lutzomyia.   

 A total of 2 sand flies were captured at the El Cua study site, including 1 Lu. 

panamensis male and 1 Lu. cruciata male.  Twenty three specimens were captured at the 
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El Paraisito study site, including 11 Lu. barrettoi majuscula (7 female, 4 male) and 1 

male Lu. hartmanni Fairchild and Hertig, 1957.  This is a new record for Lu. hartmanni 

in Nicaragua.  One female specimen was identified as belonging to the Lutzomyia 

subgenus Psathryomyia and 10 specimens (7 female and 3 male) were identified to the 

Genus Lutzomyia level. 

 A total of 27 sand flies were captured at the El Tigre site, with 24 identified as 

Lu. cruciata (4 female, 20 male) and 3 males as Lu. longipalpis.  Traps at the Los 

Mangos study site collected a total of 44 sand flies.  One male was identified as 

belonging to the Genus Brumptomyia, 42 (23 female, 19 male) as Lu. cruciata and 1 

female as Lu. longipalpis.  Traps at the Rosa Grande test site collected 3 specimens; 2 

male Lu. panamensis and 1 female identified to the Subgenus Psychodopygus. 

 At San Jacinto, 434 sand flies were captured, including 1 Lu. cayennensis male, 

26 (19 female, 7 male) Lu. chiapanensis, 13 (10 female, 3 male) Lu. cruciata, 95 (33 

female, 62 male) Lu. evansi, 3 (1 female, 2 male) Lu. gomezi, 270 (59 female, 211 male) 

Lu. longipalpis, 7 female Lu. vesicifera and 2 female Lu. zeledoni.  Three (2 female, 1 

male) specimens were identified to the Subgenus Micropygomyia and 14 (11 female, 3 

male) were identified only to the Genus Lutzomyia.  The Selva Negra study site 

produced 3 specimens.  The 3 males were identified to the Genus Lutzomyia. 

General distribution of sand fly species collected in Nicaragua 

 Sand flies species collected during this study generally showed a distinct 

geographic distribution.  Most species that were captured in the more arid Pacific plains 

region were not captured in the central highlands or Atlantic lowland plains regions and 
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those species captured in the central highlands or Atlantic lowland plains regions were 

not collected during trapping within the Pacific plains regions (Table 8).  

 

 

 

In vitro culture 

Tissue samples from all 395 collected rodents were screened for the presence of 

Leishmania species using supplemented M199 culture medium.  All cultures were 

negative. 

Table 8.  General distribution of sand fly species collected in Nicaragua, 2001–
2006. 
 
Species Pacific Plains Region Central Highlands  and 

Atlantic Regions 
   

Lu. barrettoi majuscula 0 11 

Lu. cayennensis 1 0 

Lu. chiapanensis 26 0 

Lu. cruciata 55 33 

Lu. evansi 95 0 

Lu. gomezi 3 0 

Lu. hartmanni 0 1 

Lu. longipalpis 271 3 

Lu. panamensis 0 4 

Lu. shannoni 0 1 

Lu. vesicifera 7 0 

Lu. zeledoni 2 0 
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PCR 

Of the 395 rodents screened by PCR for the presence of Leishmania, 2 tested 

positive using genus-specific primers.  The positive rodents represented 2 different 

species.  One was a Peromyscus mexicanus captured on 2 January 2002 and the other 

was a Heteromys desmarestianus captured on 20 May 2002.  Both of the positive rodents 

were collected at the Selva Negra research site located in the District of Matagalpa and 

both are the first records of rodents infected with Leishmania in Nicaragua.   

Distribution of human cases of typical CL in Nicaragua 

 During the period from 2003 through 2005, there were a total of 5,765 reported 

cases of human typical cutaneous leishmaniasis throughout the entire country of 

Nicaragua.  The bulk of the reported cases were distributed in municipalities located in 

the eastern half of the country (Fig. 14).  Of the 152 municipalities, 78 (51.3%) reported 

no human cases of typical CL and 74 municipalities reported at least 1 case.  The 

greatest number of reported cases (1,828) occurred in the municipality of El Cua-Bocay, 

located in the north-central region of the country within the district of Jinotega.   

 Twenty eight (18.3%) municipalities reported � 10 cases for the entire 3 year 

period (Fig. 15).  These 28 municipalities represented 5,622 (97.5%) of the total number 

of human cases of typical CL reported.  Additionally, of the 5,765 total cases, 5,547 

(96.2%) were reported from 19 municipalities and 5,243 (90.9%) were from just 11 

municipalities (Figs. 16 and 17). 

 Since population and size of municipalities vary greatly, maps also were 

produced to illustrate the geographic distribution of human typical CL based on the ratio 
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     Figure 14.  Map of the geographic distribution of all reported cases of human typical 
CL in Nicaragua, 2003–2005. 
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     Figure 15.  Map of the geographic distribution of 28 municipalities in Nicaragua with 
at least 10 reported cases of human typical CL representing 97.5% of all reported cases 
from 2003–2005.  
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     Figure 16.  Map of the geographic distribution of 19 municipalities in Nicaragua with 
at least 20 reported cases of human typical CL representing 96.2% of all reported cases, 
2003–2005. 
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     Figure 17.  Map of the geographic distribution of 11 municipalities in Nicaragua that 
contained 90.9% of all reported cases of human typical CL, 2003–2005. 
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of reported cases to municipality population and the ratio of reported cases to the area of 

each municipality in square kilometers. 

 The number of human cases of typical CL reported per municipality population 

varied from 0.000 to 0.024 (Fig. 18).  One hundred thirty six municipalities had a ratio 

of human cases to total municipality population between 0.000 and 0.001.  All of the 

municipalities located within the Pacific plains region of the country fell within this first 

category.  Six municipalities had a ratio of human cases to total municipality population 

between 0.001 and 0.003.  Four municipalities had a human case per municipality 

population ratio between 0.003 and 0.005.  Three municipalities had a ratio between 

0.005 and 0.015.  Three municipalities had a ratio of human cases per municipality 

population between 0.015 and 0.024.  All of the municipalities with a ratio higher than 

0.001 were located within either the central highlands or Atlantic lowland plains regions.  

Additionally, the 3 municipalities with the highest number of reported cases per 

municipality population were located in the northern section of the country within the 

central highlands region.   

 The number of human cases of typical CL reported per square kilometer of 

municipality area varied from 0.00 to 2.20 (Fig. 19).  One hundred thirty three of 152 

municipalities reported fewer than 0.028 cases of typical CL per km2.  Fourteen 

municipalities reported between 0.028 and 0.127 cases per km2.  Three municipalities 

reported between 0.127 and 0.318 cases per km2.  One municipality reported 0.688 cases 

per km2 and 1 municipality reported 2.280 cases per km2.  The 2 municipalities with the 

highest number of cases per km2 were located within the central highlands region in  
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     Figure 18.  Map of the geographic distribution of human typical CL in Nicaragua 
based on the ratio of reported cases per municipality population, 2003–2005. 
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      Figure 19. Map of the geographic distribution of typical human CL in Nicaragua 
based on the ratio of reported cases per municipality area (km2), 2003–2005.  
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northern Nicaragua. 

GIS analysis of environmental and ecosystem coverage of municipalities 

 GIS analysis results for number of km2 contained within each of the 151 

municipalities analyzed for categories of elevation, mean annual precipitation, mean 

annual temperature, soil type and land usage/cover are found in Appendices C-F. 

Statistical analysis, logistic regression models 

  The results of elevation, mean annual precipitation, mean annual temperature, 

soil types and land use/coverage predictor variables on the dependent variable of human 

typical CL presence or absence within a municipality initially were evaluated in separate 

models.  The empty model (-2 Log Likelihood (LL) = 209.17, N=151), which contains 

only the constant in the model, identified those categories of predictor variables that may 

be significant in the full model (Tables 9−13).  The overall statistic tests the null 

hypothesis (H0) that variable coefficients included in the model are zero versus the 

alternative hypothesis (HA) that model coefficients are not zero.  An overall p-value � 

0.050 indicated that the H0 can be rejected and that 1 or more variables used in the model 

will improve the model’s predictive power over the empty model that includes only the 

constant.  The overall statistic for each of the full models indicated that they would be 

better at predicting human typical CL presence or absence within a municipality than the 

empty model. 
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Table 9. Elevation variables for Nicaragua not in the equation for the 
empty model.  Variables with a p-value < 0.050 might be significant 
in the full model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 10. Precipitation variables for Nicaragua not in the equation for 
the empty model.  Variables with a p-value < 0.050 might be 
significant in the full model. 
Precipitation Variables* Score df    Sig 
             <800 3.965 1 0.046 
      800−900 0.912 1 0.340 
   900−1,000 0.589 1 0.443 
1,000−1,200 0.064 1 0.800 
1,200−1,400 1.823 1 0.177 
1,400−1,600 2.974 1 0.085 
1,600−1,800 11.436 1 0.001 
1,800−2,000 3.398 1 0.065 
2,000−2,400 10.365 1 0.001 
2,400−2,800 7.401 1 0.007 
2,800−3,200 0.439 1 0.508 
3,200−4,000 3.089 1 0.079 
          >4,000 0.073 1 0.787 
Overall Statistics 38.290 13 0.000 
*Mean annual precipitation in millimeters 

 
 

Elevation Variables* Score df    Sig 
          0−100 2.965 1 0.085 
      100−200 15.029 1 0.000 
      200−400 15.641 1 0.000 
      400−600 8.404 1 0.004 
      600−800 4.686 1 0.030 
   800−1,000 1.399 1 0.237 
1,000−1,200 0.608 1 0.436 
1,200−1,400 0.065 1 0.799 
1,400−2,000 0.082 1 0.774 
Overall Statistics 27.084 9 0.001 
*Elevation in meters above mean sea level 
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Table 11. Temperature variables for Nicaragua not in the equation for 
the empty model.  Variables with a p-value < 0.050 might be 
significant in the full model. 
Temperature Variables* Score df    Sig 
18.5 0.236 1 0.627 
19.5 0.001 1 0.976 
20.5 1.548 1 0.213 
21.5 0.020 1 0.888 
22.5 1.180 1 0.277 
23.5 5.746 1 0.017 
24.5 9.577 1 0.002 
25.5 12.304 1 0.000 
26.5 8.914 1 0.003 
27.5 0.853 1 0.356 
Overall Statistics 27.281 10 0.002 
*Mean annual temperatures in degrees Celsius 

 
 
 
 

Table 12. Soil type variables for Nicaragua not in the equation for the 
empty model.  Variables with a p-value < 0.050 might be significant in 
the full model. 

Soil type variables  Score df         Sig 
Heavy Clay 0.705 1 0.401 
Clay 14.275 1 0.000 
Loamy Sand 1.087 1 0.297 
Sandy 0.596 1 0.440 
Loam 0.320 1 0.572 
Clay Loam 0.546 1 0.460 
Sandy Loam 0.080 1 0.777 
Overall Statistics 18.288 7 0.011 
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Table 13. Land use/cover variables for Nicaragua not in the equation for 
the empty model.  Variables with a p-value < 0.050 might be significant 
in the full model. 
Variable Score df    Sig 
Urban Areas 1.794 1 0.180 
Cropland 0.431 1 0.511 
Agricultural 10–25% Natural Vegetation 16.166 1 0.000 
Agricultural 25–50% Natural Vegetation 11.882 1 0.001 
Mangroves 0.168 1 0.682 
Coastal Transition Vegetation 0.127 1 0.721 
Savannah 1.525 1 0.217 
Grassland with Deciduous Shrubs 0.023 1 0.878 
Shrubland 4.013 1 0.045 
TDBSF&TEMSF 0.671 1 0.413 
TEPSF 0.278 1 0.598 
TESF 0.774 1 0.379 
TEBSF 6.826 1 0.009 
Overall Statistics 38.797 13 0.000 

 TDBSF= Tropical deciduous broadleaf seasonal forest; TEMSF=Tropical 
evergreen mixed seasonal forest, TEPSF=Tropical evergreen pine seasonal 
forest; TESF=Tropical evergreen swamp forest; TEBSF=Tropical 
evergreen broadleaf seasonal forest. 

 
 
 
 
The classification of results of observed response categories and predicted response 

categories for the empty model including only the constant are shown in Table 14.  

 

Table 14. Percentage of correct model predictions of presence and absence of human 
typical CL in Nicaragua by the empty model including only the constant. 

 Predicted Human Typical CL  
Observed Absence Presence Percentage correct (%) 
Absence 78 0 100.0 
Present 73 0     0.0 
Overall – –   51.7 
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Logistic regression analysis of elevation and human typical CL presence or absence 
 
 Results of the omnibus test of model coefficients indicate the model that includes 

all elevation variables is significantly better at predicting the presence or absence of 

human typical CL than the empty model that includes only the constant (-2 LL = 160.38, 

�2 = 48.79, df = 9, P = 0.000).  The Hosmer-Lemeshow test (�2 = 12.509, df = 8, P = 

0.130) indicates that the model adequately fits the data.  The R2 values for Cox and Snell 

and Nagelkerke were 0.276 and 0.368 respectively. 

 The model’s ability to predict membership of municipalities within either of the 

2 groups of the outcome variable (presence or absence) is summarized in Table 15.  The 

model was correctly able to classify 65 of 78 (83.3%) municipalities as not having 

human typical CL and correctly able to classify 41 of 73 (56.2%) municipalities as 

having presence of human typical CL.  Overall, with the inclusion of elevation predictor 

variables, the model correctly identified 70.2% of municipalities with regard to presence 

or absence of typical CL.  This was an improvement over the 51.7% correctly predicted 

in the empty model.   

 

Table 15. Percentages of correct model predictions of presence and absence of 
human typical CL within municipalities in Nicaragua; with only the constant and 
elevation variables included in the model. 
 Predicted Human Typical CL  
Observed Absence Presence Percentage correct 

(%) 
Absence 65 13 83.3 
Present 32 41 56.2 
Overall – – 70.2 
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Statistical analysis results of the full model including all elevation predictor variables are 

summarized in Table 16.  The only elevation predictor variable that was significant at 

the 95% CI was the range of 100−200 m above MSL.  However, the elevation range 

from 600−800 m above MSL with a p-value of 0.054 is just outside the significant range. 

 

Table 16. Coefficients and goodness of fit of logistic binary model predicting presence 
and absence of human typical CL in Nicaragua based on all elevation predictor 
variables. 

Elevation Variable* B SE Wald df    Sig Exp(B) 
          0−100 0.000 0.000 0.613 1 0.433 1.000 
      100−200 0.007 0.002 8.922 1 0.003 1.007 
      200−400 0.002 0.002 1.469 1 0.226 1.002 
      400−600 0.002 0.003 0.628 1 0.432 1.002 
      600−800 0.010 0.005 3.710 1 0.054 1.010 
   800−1,000 -0.005 0.011 0.228 1 0.633 0.995 
1,000−1,200 0.018 0.014 1.616 1 0.204 1.019 
1,200−1,400 -0.026 0.027 0.916 1 0.339 0.974 
1,400−2,000 -0.014 0.054 0.071 1 0.789 0.986 
Constant -1.453 0.323 20.207 1 0.000 0.234 
* Elevation ranges in meters above mean sea level 

 
 
 
Logistic regression analysis of precipitation and human typical CL presence or 

absence 

 Results of the omnibus test of model coefficients indicate the model that includes 

all precipitation variables is significantly better at predicting the presence or absence of 

human typical CL than the empty model that includes only the constant (-2 LL = 150.59 

�2 = 58.58, df = 13, P = 0.000).  The Hosmer-Lemeshow test (�2 = 8.27, df = 8, P = 

0.407) indicates that the model adequately fits the data.  Values for R2 for Cox and Snell 

and Nagelkerke tests were 0.322 and 0.429 respectively. 
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 The model’s ability to predict membership of municipalities within the 2 groups 

of the outcome variable (presence or absence) is summarized in Table 17.  The model 

was correctly able to classify 68 of 78 (87.2%) municipalities as not having typical CL 

and correctly able to classify 49 of 73 (67.1%) municipalities as having presence of 

typical CL.  Overall, with the inclusion of all precipitation predictor variables, the model 

correctly identified 77.5% of municipalities with regard to presence or absence of human 

typical CL.  This was an improvement over the 51.7% correctly predicted in the empty 

model and the 70.2% correctly predicted by the model including all elevation predictor 

variables. 

 

Table 17. Percentages of correct model predictions of presence and absence of human 
typical CL within municipalities in Nicaragua; with the constant and precipitation 
variables included in the model. 
 Predicted Human Typical CL  
Observed Absence Presence Percentage correct (%) 
Absence 68 10 87.2 
Present 24 49 67.1 
Overall – – 77.5 

 

 

Statistical analysis results of the full model including all precipitation predictor 

variables are summarized in Table 18.  Three mean annual precipitation predictor 

variables were significant at the 95% CI:  900−1,000 mm, 1,200−1,400 mm, 

1,600−1,800 mm and 2,000−2,400 mm. 
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Table 18. Coefficients and goodness of fit of logistic binary model predicting 
presence and absence of human typical CL in Nicaragua based on precipitation 
variables. 
Variable B SE Wald df    Sig Exp(B) 
            <800 -0.050 0.090 0.303 1 0.582 0.951 
      800−900 -0.001 0.003 0.060 1 0.806 0.999 
   900−1,000 0.007 0.003 5.009 1 0.025 1.007 
1,000−1,200 0.000 0.002 0.021 1 0.885 1.000 
1,200−1,400 0.006 0.002 5.674 1 0.017 1.006 
1,400−1,600 0.009 0.001 0.106 1 0.745 1.000 
1,600−1,800 0.007 0.004 4.988 1 0.026 1.009 
1,800−2,000 -0.001 0.004 0.103 1 0.748 0.999 
2,000−2,400 0.007 0.004 4.128 1 0.042 1.007 
2,400−2,800 0.002 0.001 1.852 1 0.174 1.002 
2,800−3,200 0.000 0.000 0.130 1 0.718 1.000 
3,200−4,000 0.005 0.003 3.475 1 0.062 1.005 
         >4,000 -0.004 0.000 1.107 1 0.293 0.996 
Constant -1.387 0.346 16.059 1 0.000 0.250 

 

Logistic regression analysis of temperature and human typical CL presence or 

absence  

Results of the omnibus test of model coefficients indicate the model that includes 

all temperature variables is significantly better at predicting the presence or absence of 

human typical CL than the empty model that includes only the constant (-2 LL = 169.81, 

�2 = 39.35, df = 10, P = 0.000).  The Hosmer-Lemeshow test (�2 = 9.76, df = 8, P = 

0.283) indicated that the model adequately fits the data.  Values for R2 for Cox and Snell 

and Nagelkerke tests were 0.299 and 0.306, respectively. 

 The model’s ability to predict membership of municipalities within the 2 groups 

of the outcome variable (presence or absence) is summarized in Table 19.  The model 

was correctly able to classify 66 of 78 (84.6%) municipalities as not having typical CL 

and correctly able to classify 46 of 73 (63.0%) municipalities as having presence of 
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typical CL.  Overall, with the inclusion of all mean annual temperature predictor 

variables, the model correctly identified 74.2% of municipalities with regard to presence 

or absence of human typical CL.   

 

Table 19. Percentages of correct model predictions of presence and absence of 
human typical CL within municipalities in Nicaragua, with the constant and 
temperature variables included in the model. 
 Predicted Human Typical CL  
Observed Absence Presence Percentage correct (%) 
Absence 66 12 84.6 
Present 27 46 63. 0 
Overall – – 74.2 

 
 
 
Statistical analysis results of the full model including all temperature predictor variables 

are summarized in Table 20.  Only the mean annual temperature variable of 26.5° C was 

significant at the 95% CI. 

 

Table 20.  Coefficients and goodness of fit of logistic binary model predicting 
presence and absence of human typical CL in Nicaragua based on mean annual 
temperature variables in degrees Celsius. 
Variable B SE Wald df    Sig Exp(B) 
Temperature 18.5 -2.562 2.252 1.294 1 0.255 0.077 
Temperature 19.5 0.005 0.280 0.000 1 0.985 1.005 
Temperature 20.5 0.089 0.080 1.221 1 0.269 1.093 
Temperature 21.5 -0.058 0.033 3.129 1 0.077 0.944 
Temperature 22.5 0.026 0.016 2.476 1 0.116 1.026 
Temperature 23.5 0.002 0.006 0.125 1 0.723 1.002 
Temperature 24.5 0.001 0.005 0.081 1 0.775 1.001 
Temperature 25.5 0.003 0.002 3.348 1 0.067 1.003 
Temperature 26.5 0.001 0.000 6.174 1 0.013 1.001 
Temperature 27.5 -0.001 0.002 0.262 1 0.608 0.999 
Constant -0.984 0.287 11.745 1 0.001 0.374 
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Logistic regression analysis of soil types and human typical CL presence or absence 
 
 Results of the omnibus test of model coefficients indicate the model that includes 

all soil type variables is significantly better at predicting the presence or absence of 

human typical CL than the empty model that includes only the constant (-2 LL = 184.15, 

�2 = 25.016, df = 7, P = 0.001).  The Hosmer-Lemeshow test (�2 = 13.02, df = 8, P = 

0.111) indicated that the model adequately fits the data.  Values for R2 for Cox and Snell 

and Nagelkerke tests were 0.153 and 0.204, respectively. 

 The model’s ability to predict membership of municipalities within the 2 groups 

of the outcome variable (presence or absence) is summarized in Table 21.  The model 

was correctly able to classify 65 of 78 (83.3%) municipalities as not having typical CL 

and correctly able to classify only 34 of 73 (46.6%) municipalities as having presence of 

typical CL.  Overall, with the inclusion of all soil type predictor variables, the model 

correctly identified just 65.6% of municipalities with regard to presence or absence of 

human typical CL. 

 

Table 21. Percentages of correct model predictions of presence and absence 
of human typical CL within municipalities in Nicaragua; with the constant 
and soil type variables included in the model. 
 Predicted Human Typical CL  
Observed Absence Presence Percentage correct (%) 
Absence 65 13 83.3 
Present 39 34 46.6 
Overall – – 65.6 
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Statistical analysis results of the full model including all soil type predictor variables are 

summarized in Table 22.  Only the predictor variable of clay soils was significant at the 

95% CI. 

 

Table 22. Coefficients and goodness of fit of logistic binary model 
predicting presence and absence of human typical CL in Nicaragua 
based on soil type variables used in the model. 
Variable B SE Wald df    Sig Exp(B) 
Heavy Clay 0.002 0.002 1.496 1 0.221 1.002 
Clay 0.001 0.000 10.352 1 0.001 1.001 
Loamy Sand -0.011 0.012 0.830 1 0.362 0.989 
Sandy 0.142 0.237 0.358 1 0.549 1.152 
Loam 0.001 0.004 0.110 1 0.740 1.001 
Clay Loam 0.001 0.001 0.174 1 0.676 1.001 
Sandy Loam  0.003 0.005 0.411 1 0.521 1.003 
Constant -0.751 0.298   6.336 1 0.012 0.472 

 
 
 
Logistic regression analysis of land cover/use types and human typical CL presence 

or absence 

 
 Results of the omnibus test of model coefficients indicate the model that includes 

all land use/coverage predictor variables is significantly better at predicting the presence 

or absence of human typical CL than the empty model that includes only the constant (-2 

LL = 155.27, �2 = 53.891, df = 13, P = 0.000).  The results of the Hosmer-Lemeshow test 

(�2 = 6.88, df = 8, P = 0.549) indicated that the model adequately fits the data.  Values 

for R2 for Cox and Snell and Nagelkerke tests were 0.300 and 0.400 respectively. 

 The model’s ability to predict membership of municipalities within the 2 groups 

of the outcome variable (presence or absence) is summarized in Table 23.  The model 
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was correctly able to classify 67 of 78 (85.9%) municipalities as not having typical CL 

and correctly able to classify only 49 of 73 (67.1%) municipalities as having presence of 

typical CL.  Overall, with the inclusion of all land use/coverage predictor variables, the 

model correctly identified 76.8% of municipalities with regard to presence or absence of 

human typical CL. 

 

Table 23. Percentages of correct model predictions of presence and absence of 
human typical CL within municipalities in Nicaragua; with the constant and land 
use/coverage variables included in the model. 
 Predicted Human Typical CL  
Observed Absence Presence Percentage correct 

(%) 
Absence 67 11 85.9 
Presence 24 49 67.1 
Overall – – 76.8 

 
 
 
Statistical analysis results of the full model including all land use/coverage predictor 

variables are summarized in Table 24.  Three predictor variables of land use/coverage 

were significant at the 95% CI:  Agricultural systems with 10–25% natural vegetation, 

and tropical evergreen broadleaf seasonal forests showed a significant positive 

correlation while tropical evergreen seasonal pine forests showed a significant negative 

correlation. 

 The sensitivity and specificity comparison analysis of all predictive models for 

the presence or absence of human typical CL are summarized in Table 25. 
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Table 24. Coefficients and goodness of fit of logistic binary model predicting presence 
and absence of human typical CL in Nicaragua based on land use/coverage predictor 
variables. 
Variable B SE Wald df    Sig Exp(B) 

Urban Areas 0.067 0.078 0.735 1 0.391 1.069 

Cropland 0.005 0.003 2.568 1 0.109 1.005 

Agricultural 10−25% Natural Vegetation 0.004 0.001 7.724 1 0.005 1.004 

Agricultural 25−50% Natural Vegetation 0.002 0.001 3.060 1 0.080 1.002 

Mangroves -0.009 0.011 0.658 1 0.417 0.991 

Coastal Transition Vegetation -0.005 0.006 0.659 1 0.417 0.995 

Savannah 0.008 0.006 1.829 1 0.176 1.008 

Grassland with Deciduous Shrubs -0.005 0.005 0.961 1 0.327 0.995 

Shrubland 0.021 0.011 3.497 1 0.061 1.021 

Tropical Deciduous Broadleaf Forest 0.001 0.003 0.199 1 0.655 1.001 

Tropical Evergreen Pine Forest -0.003 0.001 3.888 1 0.049 0.997 

Tropical Evergreen Swamp Forest -0.001 0.002 0.186 1 0.666 0.999 

Tropical Evergreen Broadleaf Forest 0.002 0.001 4.005 1 0.045 1.002 

Constant -1.404 0.322 19.049 1 0.000 0.246 

 
  

 

Table 25. Sensitivity and specificity of all models for presence or absence 
of human typical CL in Nicaragua. 

Predictor Variable Used Sensitivity (%) Specificity (%) Overall (%) 

Elevation 56.2 83.3 70.2 

Precipitation 67.1 87.2 77.5 

Temperature 63.0 84.6 74.2 

Soil Type 46.6 83.3 65.6 

Land Use/Cover 67.1 85.9 76.8 
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Logistic regression analysis of combinations of predictive environmental variables 

 Logistic regression analysis also was performed pair wise among all possible 

combinations of the predictor variables: elevation, precipitation, temperature, soil types 

and land use/cover.  The models containing the combined variables of elevation-

temperature, elevation-soil type, elevation-land cover/use, temperature-soil type were 

less efficient at identifying the presence or absence of typical cutaneous leishmaniasis 

within a municipality than the model containing precipitation data alone.  The 2 models 

containing the combined variables of precipitation-land cover and temperature-land 

cover were rejected due to Hosmer-Lemeshow test statistics of P=0.000 and P=0.024, 

respectively that indicated that the models do not adequately fit the data. The remaining 

4 pair wise combinations of environmental predictor variables, elevation-precipitation, 

precipitation-temperature, precipitation-soil type and soil type-land cover/use did 

slightly improve upon the 77.5% percent of municipalities identified as having presence 

or absence of typical CL in the model containing mean annual precipitation variables 

alone.  However, these four models were rejected based on evaluation of Peterson 

correlation coefficients which indicated severe co-linearity between the predictor 

variables. 

Logistic regression analysis of the environmental predictor variables and 

occurrence of < 10 or � 10 cases of human typical CL 

 Overall 97.5% of all reported cases of human typical CL occurred within 28 

municipalities that reported 10 or more cases from 2003−2005.  Logistic regression 

results of the predictor variables of elevation, mean annual precipitation, mean annual 
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temperature, soil types and land use/coverage on the dichotomous dependent variable of 

<10 reported cases and �10 reported cases were evaluated.  

 The empty model (N = 151, -2 Log Likelihood (LL) = 144.82), containing only 

the constant, identified those predictor variables that may be significant in the full 

model.  Again, the null hypothesis (HO) that predictor variable coefficients used in the 

model are zero versus the alternative hypothesis (HA) that 1 or more predictor variables 

used in the model will improve the model’s predictive power over the constant 

coefficient alone is tested.  The HO is rejected at an overall statistic p-value of � 0.050.  

The overall test statistics for variables not in the empty model were:  elevation variable 

coefficents P = 0.000, mean annual precipitation coefficients P = 0.000, mean annual 

temperature coefficients P = 0.000, soil type coefficients P = 0.000 and land use/cover 

coefficients P = 0.000.  This indicated that all models using environments predictor 

variables had 1 or more predictor variables that significantly improved the model’s 

predictive power over the empty model including only the constant.  However, only the 

model including land use/cover predictor variables displayed an ability to correctly 

predict the occurrence of �10 reported cases of typical CL within a municipality greater 

than 50% of the time.  Only the results of the full model including land use/cover classes 

of predictor variables are presented.  The empty model classification of municipalities as 

having < 10 or � 10 cases typical human CL is summarized in Table 26. 
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Table 26. Percentage of correct predictions of < 10 or � 10 cases of human 
typical CL in Nicaragua by the empty model including only the constant. 

 Predicted Human Typical CL  
Observed < 10 � 10 Percentage correct (%) 
< 10 123 0 100.0 
� 10 28 0     0.0 
Overall – –   81.5 

 
 
 
 Results of the omnibus test of model coefficients indicate the full model that 

includes all land use/cover variables is significantly better at predicting the occurrence of 

< 10 or � 10 cases of human typical CL than the empty model that includes only the 

constant (-2 LL = 57.04, �2 = 87.78, df = 13, P = 0.000).  The Hosmer-Lemeshow test (�2 

= 3.13, df = 8, P = 0.926) indicates that the model adequately fits the data.  The R2 

values for Cox and Snell and Nagelkerke were 0.441 and 0.715 respectively. 

 The model’s ability to predict membership of municipalities within the 2 groups 

of the outcome variable (< 10 or � 10 cases of typical CL) is summarized in Table 27.  

The model was correctly able to predict 119 of 123 municipalities as having less than 10 

cases of typical CL and correctly able to identify 20 of 28 municipalities as having 10 or 

more reported cases of typical CL.  The overall percentage correct predicted by the 

model of 92.1% is an improvement over the 81.5% correctly predicted by the empty 

model.  Four land use/cover predictor variable classes were significant at the 95% CI:  

cropland, agricultural use with 10–25% natural vegetation, agricultural use with 25–50% 

natural vegetation, and tropical evergreen broadleaf forest (Table 28). 
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Table 27. Percentages of correct model predictions of < 10 or � 10 cases of 
typical CL within municipalities in Nicaragua; with the constant and land 
use/coverage variables included in the model. 
 Predicted Human Typical CL  
Observed < 10 Cases � 10 Cases Percentage correct (%) 

< 10 Cases 119 4 96.7 
� 10 Cases 8 20 71.4 
Overall - - 92.1 

 
 
 
 
Table 28. Coefficients and goodness of fit of logistic model predicting < 10 or � 10 cases 
of typical CL in Nicaragua based on land cover/use predictor variables. 
Variable B SE Wald df    Sig Exp(B) 

Urban Areas -0.188 0.360 0.272 1 0.602 0.829 

Cropland 0.019 0.006 9.155 1 0.002 1.019 

Agricultural 10−25% Natural Vegetation 0.002 0.001 3.940 1 0.047 1.002 

Agricultural 25−50% Natural Vegetation 0.006 0.002 10.482 1 0.001 1.006 

Mangroves -0.340 0.325 1.095 1 0.295 0.377 

Coastal Transition Vegetation -0.257 0.146 1.149 1 0.284 0.642 

Savannah 0.339 0.351 0.930 1 0.335 1.403 

Grassland with Deciduous Shrubs -0.044 0.027 2.627 1 0.102 0.957 

Shrubland 0.008 0.006 1.631 1 0.202 1.008 

Tropical Deciduous Broadleaf Forest 0.002 0.006 0.158 1 0.691 1.002 

Tropical Evergreen Pine Forest -0.114 0.131 0.758 1 0.758 0.892 

Tropical Evergreen Swamp Forest 0.002 0.006 .0082 1 0.082 1.002 

Tropical Evergreen Broadleaf Forest 0.003 0.001 8.216 1 0.004 1.003 

Constant -4.382 0.861 25.915 1 0.000 0.012 
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Forest degradation from 1983 to 2000 and the distribution of human cases of 

typical CL 

 Most of the 28 municipalities that included 97.5% of the reported cases of human 

typical CL during the period 2003−2005 also showed a large loss of forest cover 

between the years 1983 and 2000.  Maps of these 28 municipalities, when overlaid with 

maps of the extent of forest degradation, clearly demonstrate that the vast majority of 

reported cases of human typical CL were from municipalities where significant forest 

degradation has occurred over the past 2 decades (Fig. 20).   

Temporal distribution of reported cases of human typical CL for the period 

2003−−−−2005 

 Analysis of the temporal distribution of typical human CL for the period from 

2003 to 2005 showed that there was an increase in the average number of the weekly 

reported cases by municipality from approximately late May through early July.  The 

peak average occurred in the twenty-third week of the year with 134 reported cases.  

This period roughly corresponds with the beginning of the rainy season throughout 

Nicaragua.  The lowest average number of reported cases for the data period available 

occurred from approximately October through January and falls within the yearly dry 

season (Fig. 21). 
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     Figure 20.  Twenty-eight municipalities representing 97.5% of reported cases of typical human CL for the years 
2003−2005; overlaid onto forest coverage maps from the years 1983 and 2000. 
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     Figure 21. Chart of the average number of reported cases of human typical CL in Nicaragua by week for the 3 year period 
from 2003−2005.
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DISCUSSION 

 
Overview  

 Human leishmaniasis in Nicaragua occurs in 3 primary clinical forms:  visceral, 

mucocutaneous, and cutaneous leishmaniasis.  Cutaneous leishmaniasis in Nicaragua is 

manifested by 2 distinct disease syndromes, ulcerative typical CL and non-ulcerative 

atypical CL.  The vast majority of human cases within the more arid regions of the 

Pacific plains are atypical cutaneous leishmaniasis caused by L. (L.) chagasi (Belli et al., 

1999).  In the wetter, rural regions of the central highlands and the Atlantic lowland 

plains, the predominant form of the disease is typical cutaneous leishmaniasis and it is 

most likely a result of infections with L. (L.) panamensis and to a lesser extent L. (V.) 

braziliensis (Belli et al. 1994). 

Typical CL, as well as other clinical manifestations associated with human 

infection with Leishmania, tends to display a focal geographic distribution.  Within these 

foci, conditions must exist that allow for the coming together of principle players in the 

transmission cycle.  Leishmania species are obligate heteroxenous parasites; requiring 

that suitable reservoirs and vectors coexist within an ecological habitat.  Humans 

typically enter the equation as incidental hosts (Ashford, 1996).   

Sand flies are notorious poor fliers, so human infections result when individuals 

live, work or travel within areas where natural transmission cycles exist.  Little is known 

of the natural reservoir vector systems responsible for the maintenance and transmission 

of Leishmania species that cause human typical cutaneous leishmaniasis in Nicaragua.  

No proven reservoirs or sand fly vectors have been described.  In fact, little is known 
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about the distribution of rodent species within the various geographic areas of the 

country.  This study attempted to explore the potential reservoir hosts and sand fly 

vectors within natural systems at 13 study localities in diverse environmental regions of 

Nicaragua, as well as the environmental factors that correlate with the distribution of 

reported human cases of typical CL. 

Additionally, since the distribution of Leishmania species and the various clinical 

diseases that they cause clearly occur in different and distinct geographical regions of 

Nicaragua, this study attempted to identify various environmental factors that correlate 

with areas where human typical CL is predominant. 

Rodent collections within the central highlands region, Selva Negra 

 This study identified 2 rodents that tested positive by PCR for infection with 

Leishmania.  These are the first records of Leishmania identified in rodents captured in 

Nicaragua.  The positive rodents included 1 Peromyscus mexicanus captured in January 

2002 and 1 Heteromys desmarestianus captured in May 2002; both positive specimens 

were collected at the Selva Negra study site.  Heteromys desmarestianus previously has 

been implicated as a potential reservoir host of Leishmania (L.) mexicana in Belize 

where it is considered to be a very common species (Lainson and Strangways-Dixon, 

1964; Disney, 1964; Zeledon et al., 1977).  Heteromys desmarestianus also has been 

shown to be a host of Leishmania (V.) panamensis in Costa Rica (Zeledon et al., 1977).  

A related species of Peromyscus mexicanus, P. yucatanicus, has been found to be a host 

and potential reservoir of Leishmania (L.) mexicana in Mexico (Chable-Santos et al., 

1995; Canto Lara et al., 1999). 
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 Although the percentage (25%) of infected H. desmarestianus individuals 

captured during this study at Selva Negra fulfilled the WHO criteria of infected 

population proportion for establishing a species as reservoir host, the total number of H. 

desmarestianus collected was quite small.  Of the 193 total rodents representing 10 

species which were captured at Selva Negra, just 4 H. desmarestianus were captured.  

Assuming that H. desmarestianus has equal affinity for entering the traps as other 

captured species, it is unlikely that H. desmarestianus is sufficiently abundant at the 

Selva Negra locality to serve as the primary reservoir for Leishmania.  Also of note, the 

Selva Negra site was the only locality in which H. desmarestianus were captured.  This 

would indicate that H. desmarestianus is insufficiently dispersed and abundant to serve 

as a widespread host of Leishmania in Nicaragua. 

 Peromyscus mexicanus appear to be abundantly common within the Selva Negra 

study site, and were by far the most frequently captured.  Of 193 rodents collected, 163 

(84.5%) were identified as P. mexicanus.  This satisfies an additional criterian 

established by the World Health Organization for incrimination of a reservoirs host in 

that this species is sufficiently abundant to serve as a common source of blood meals for 

sand flies (WHO, 1990).  However, the proportion of infected individuals captured was 

low 1/162 (0.6%).  The low rate of infection among captured individuals may be 

indicative of a low infection rate within the entire population, which would suggest that 

P. mexicanus is unlikely to be a significant reservoir of Leishmania.  Alternatively, 

given that infections of reservoir hosts with Leishmania species tend to be highly focal 

in nature and that Leishmania infection was found to be present within the population, it 
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is quite possible that P. mexicanus does contribute some role as a reservoir host and the 

primary focus of infections is, as of yet, undiscovered.  Peromyscus mexicanus also is 

widespread throughout much of Nicaragua; this species was captured in 8 of the 13 

study sites. 

 Although P. mexicanus and H. desmarestianus were the only species identified 

as having Leishmania infections at the Selva Negra study site, 3 other captured species 

or genera have been shown to be suitable hosts of Leishmania species that cause typical 

human cutaneous leishmaniasis elsewhere.  These include Nyctomys sumichrasti, 

Oryzomys sp., and Ototylomys phyllotis.   Nyctomys sumichrasti has been demonstrated 

to be a host of Leishmania (L.) mexicana in Mexico and Belize (Disney, 1964; Lainson 

and Strangways-Dixon, 1964; Chable-Santos et al., 1995).  A number of species within 

the genus Oryzomys have been found to be hosts of parasites within the Leishmania 

mexicana Complex at localities in Mexico, Central and South America (Herrer et al., 

1973; Lainson and Shaw, 1992; Chable-Santos et al., 1995; Kerr et al., 2006; Rotureau, 

2006).  Additionally, Leishmania (V.) braziliensis has been identified or isolated from at 

least 3 species of Oryzomys in Brazil (Lainson and Shaw, 1969; Forattini et al., 1972; 

Forattini et al., 1973; Oliveira et al., 2005).  Ototylomys phyllotis is a host of Leishmania 

(L.) mexicana in Belize, Guatemala, and Mexico (Chable-Santos et al., 1995; Lainson 

and Strangways-Dixon, 1964; Disney, 1968; Zeledon, 1985). 

 The relatively low numbers of individuals within these 3 genera that were 

captured at the Selva Negra study site are perhaps an indicator that they may not be a 

reservoir host of Leishmania here.  However, all have been incriminated as suitable hosts 
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for parasites within the Leishmania (L.) mexicana Complex at other localities and cannot 

be ruled out as playing at least some role in the host-vector transmission cycle.  

Although the only rodents that were identified as being infected with Leishmania 

parasites during this study were captured at the Selva Negra research site, useful 

information about the occurrence and distribution of rodent species that may serve as 

potential hosts and reservoirs was obtained. 

 One additional species, Rattus rattus, was captured at the Selva Negra research 

site and it has been shown to be a potential host of Leishmania in South America.  

Parasites within the L. (V.) donovani Complex were identified in 1 R. rattus in a focus of 

visceral leishmaniasis in Venezuela (Zulueta et al., 1999).  Leishmania (V.) braziliensis 

and L. (L.) mexicana also have been identified in Rattus rattus in Brazil, Columbia, and 

Venezuela (Alexander et al., 1998; De Lima et al., 2002; Brandao-Filho et al., 2003; 

Oliveira et al., 2005).  Although it is possible that Rattus rattus serve some role in the 

transmission cycle involving humans, the only specimens captured in Nicaragua were 

from within residences.  No specimens were captured in the wild and it is doubtful that 

this species plays a major role in the natural sylvatic transmission cycle in Nicaragua. 

Rodent collections within the central highlands region; El Cua and El Tigre 

 Although the only positive rodents captured during this study were from the 

Selva Negra site, rodent collections at other sites identified species that were present and 

perhaps provide insight into species that are most likely to serve as natural reservoirs of 

Leishmania.  A number of these species have been identified as suitable hosts of 

Leishmania elsewhere.  The 3 species captured at El Tigre, Oryzomys alfaroi, 
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Peromyscus mexicanus, and Sigmodon hirsutus also were captured at El Cua.  Three 

additional species were collected at El Cua; Melanomys caliginosus, Mus musculus, and 

Oryzomys cousei.  Oryzomys and Peromyscus also were captured at Selva Negra and 

have been implicated as reservoirs of Leishmania as mentioned previously.  Melanomys 

caliginosus were captured at El Cua and it has been found to be a potential host of L. 

(V.) braziliensis in Columbia (Alexander et al., 1998).  Sigmodon hirsutus were collected 

from both localities and this genus has been shown to be a suitable host for L. (L.) 

mexicana in Belize and Mexico (Disney, 1968; Chable-Santos et al., 1995).  De Lima et 

al. (2002) identified L. (V.) braziliensis within Sigmodon in Venezuela.   

Rodent collections within the Atlantic lowland plains (north); El Balsamo and Rosa 

Grande 

 The 4 species of captured rodents at the Rosa Grande site, Melanomys 

caliginosus, Ototylomys phyllotis, Peromyscus mexicanus and Proechimys semispinosus, 

also were captured the El Balsamo site.  The El Balsamo site also produced Nyctomys 

sumichrasti, Oligoryzomys fulvescens, Scotinomys tequina, and Sigmodon hirsutus.  

Leishmania infections have been reported previously in all but Scotinomys tequina.  In 

addition to those species previously discussed, Oligoryzomys spp. and Proechimys spp. 

also have been identified has suitable hosts of Leishmania.  Oligoryzomys spp. was 

reported to be a putative reservoir of L. (L.) amazonensis in Bolivia (Telleria et al., 

1999).  Proechimys spp. has been implicated as a host in a number of studies in Brazil, 

Columbia, French Guiana, and Panama (Lainson and Shaw, 1968; Herrer et al., 1973, 

Dedet et al., 1989; Travi et al., 1998).   
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 Melanomys caliginosus was the most commonly captured species at both the El 

Balsamo and Rosa Grande study sites and it has been implicated as a possible host of L. 

(V.) braziliensis in Columbia (Alexander et al., 1998).  This species represented 12 of 21 

individuals captured at Rosa Grande and 15 of 33 individuals captured at El Balsamo.  

Its relative abundance at both areas makes it a good candidate for a suitable reservoir.  

Rodent collections within the Atlantic lowland plains (south); El Paraisito, La 

Esperanzito 2, and La Fonseca 

 Five species of rodents were captured at the El Paraisito study site.  These 

included Oligoryzomys fulvescens, Oryzomys cousei, Proechimys semispinosus, 

Sigmodon hirsutus, and Mus musculus.  As previously mentioned, all of these have been 

implicated as hosts of Leishmania, with the exception of Mus musculus.  Proechimys 

semispinosus was by far the most commonly-captured species at these localities.   This 

species represented 35 of 52 rodents captured at El Paraisito.  Two rodents were 

captured at La Esperanzita 2 and 5 at La Fonseca; all were Proechimys semispinosus.  

This species appears to be widespread and abundant in this region of Nicaragua.  Giving 

its relative abundance and its implication as a reservoir host of Leishmania in several 

countries in Central and South America, Proechimys is a likely reservoir candidate in 

this region of Nicaragua and deserves further study. 

Rodent collections in areas where atypical cutaneous leishmaniasis is predominant 

 Very few cases of typical CL (< 3%) have been reported from the Pacific plains 

region of western Nicaragua.  Most municipalities within this region reported 0 cases for 

the 2003−2005 time period of this study, and no municipality reported more than 3 cases 
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of typical human CL.  The predominant form of leishmaniasis in this region is reported 

to be atypical CL; and it is associated with Leishmania (L.) chagasi, the same species 

that is known to cause visceral leishmaniasis (Belli et al., 1999).  Leishmania (L.) 

chagasi and its primary sand fly vectors (Lu. longipalpis and Lu. evansi) have been 

demonstrated to exhibit a peridomestic transmission cycle with canids serving as the 

major reservoir hosts (Morrison et al., 1993).  This differs from the primarily sylvatic 

vector-reservoir systems associated with the causative agents of typical cutaneous 

leishmaniasis.  To my knowledge, no studies in Nicaragua have isolated L. (L.) chagasi 

from domestic or wild canids; but, it is likely dogs serve as a primary reservoir host here. 

 Because the reported numbers of human cases of typical CL are low within the 

Pacific plains region of Nicaragua and data received from the Ministry of Health only 

included human cases seen within local clinics, it is impossible to discern if the disease 

was contracted within the reporting municipality or acquired elsewhere.  It is likely that 

some of these infections were acquired at foci within the central highlands or Atlantic 

lowlands plains and then treated and reported in another municipality.  However, typical 

cutaneous leishmaniasis transmission cycles endemic to the Pacific plains regions cannot 

be ruled out and potential reservoirs and vectors within this region were explored. 

Rodent collections within the Pacific plains region; Bella Vista 

 Of the 29 rodents representing 6 species collected at the Bella Vista study site, 4 

species have been identified as suitable hosts of Leishmania.  These included the 

previously mentioned Nyctomys sumichrasti, Ototylomys phyllotis, Peromyscus 

mexicanus, and Rattus rattus.  Only 1 Nyctomys sumichrasti and 2 Ototylomys phyllotis 



 

 

108 

were captured, indicating that they may not be of sufficient abundance to serve as a 

suitable reservoir.  Again, all of the Rattus rattus (5) were captured in human dwellings 

and are probably not a significant contributor to maintenance of the parasite within its 

natural system.  Peromyscus mexicanus appears to be fairly common in this area as they 

represented 6 of the 29 individuals captured.  Its relatively high abundance and the fact 

that Peromyscus has been identified as a reservoir of Leishmania in Mexico (Chable-

Santos et al., 1995; Canto Lara et al., 1999) make it the most likely candidate for a 

potential reservoir host here.  The most frequently captured species was Liomys salvini 

(9 of 29), and it has not previously been implicated as a host of Leishmania.   

Rodent collections within the Pacific plains region; San Cristobal 

 Of the 28 rodents representing 5 species captured at the San Cristobal study site, 

2 species and 1 genus have been identified as suitable hosts of Leishmania.  Nyctomys 

sumichrasti and Ototylomys phyllotis represented 1 and 4 individuals captured, 

respectively.  Although they have been implicated as hosts elsewhere, as at the Bella 

Vista study site they appear to be insufficiently abundant to serve as a primary reservoir.  

The genus Peromyscus represented 22 of the 28 captured individuals, with 2 Peromyscus 

mexicanus and 20 Peromyscus oaxacensis.  Their relatively high abundance and known 

suitability as reservoirs again make them the prime candidate for reservoirs within this 

area as well. 
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Rodent collections within the Pacific plains region; Las Marias, Los Mangos, and 

San Jacinto. 

 Insufficient individuals were captured at these 3 sites to gain insight into the 

numbers and relative abundance of species.  However, 2 Peromyscus mexicanus were 

captured at Las Mangos and 3 were captured at San Jacinto.  Two Liomys salvini were 

captured at Los Mangos and 1 at Las Marias.  This species has not been shown to be a 

host of Leishmania elsewhere. 

Sand fly collections 

 All but 1 species of sand flies collected in Nicaragua during this study appear to 

have a distinct geographic distribution between the Pacific plains region in the western 

half of the country where atypical cutaneous leishmaniasis is the dominant form of 

human disease and the central highlands and Atlantic regions in the eastern half of the 

country where typical cutaneous leishmaniasis is the dominant form.  Lutzomyia 

cruciata was captured with some success throughout the country, with 55 individuals 

captured in areas with the Pacific plains and 33 individuals captured in the central 

highlands and Atlantic regions.  These results are in contrast to the results of Valle and 

Rivera (1995), who captured over 2,000 Lu. cruciata from areas within the central 

highlands and Atlantic regions while capturing only 4 individuals from within the 

Pacific plains region.  They reported that Lu. cruciata was the dominate species captured 

within the central highlands and Atlantic regions.  Although total numbers of sand flies 

captured during this study were considerably lower, Lu. cruciata also was captured more 

frequently within the central highlands and Atlantic plains regions of the country than 
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any other species.  Although Lu. cruciata was the species that was captured more than 

any other in this region, in the eastern half of the country its distribution appears to be 

primarily limited to the central highlands and the northern sections of the Atlantic 

lowland plains.  This supports the results of Valle and Rivera (1995), who captured the 

vast majority of Lu. cruciata specimens near Matagalpa in the central highlands.   

 Lutzomyia cayennensis, Lu. chiapanensis, Lu. evansi, Lu. gomezi, Lu. vesiscifera, 

and Lu. zeledoni only were captured in the Pacific plains region.  These results generally 

support the results of previous researchers in Nicaragua.  Valle and Rivera (1995) found 

Lu. evansi to be the most abundant species captured within the Pacific plains region and 

Fairchild and Hertig (1959) only captured this species near the Pacific coast.  Lutzomyia 

cayennensis and all but 1 Lu. chiapanensis also were captured by Valle and Rivera 

(1959) only in the Pacific plains region.  Lutzomyia vesiscifera appears to be fairly 

widespread, although in low numbers, throughout the country; this study identified it 

only at San Jacinto.  It previously has been captured from all regions, but is most 

prevalent in the Pacific plains (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; 

Valle and Rivera, 1995).  Lutzomyia gomezi also previously has been identified in low 

numbers throughout much of the country (Fairchild and Hertig, 1959; Zeledon and 

Murillo, 1983; Valle and Rivera, 1995).  This study identified Lu. gomezi only at San 

Jacinto.  

 Lutzomyia barrettoi majuscula, Lu. hartmanni, Lu. panamensis, and 

Lu.shannoni, only were captured within the central highlands or Atlantic lowland plains 

regions.  Fairchild and Hertig (1959) captured Lu. barrettoi majuscula near Managua in 
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the Pacific plains and Valle and Rivera (1995) captured it in only the central highlands 

and the northern region of the Atlantic plains.  This study identified Lu. barrettoi 

majuscula at El Paraisito.  This extends its known range within the country into the 

southern part of the Atlantic plains.  One Lu. hartmanni was captured at El Paraisito.  

This represents a new record for this species in Nicaragua.  Lutzomyia panamensis was 

collected from El Cua, located in the central highlands, and from El Balsamo and Rosa 

Grande in the northern region of the Atlantic lowland plains.  Previous studies have 

identified its range within Nicaragua extending throughout most of the central highlands 

and Atlantic lowland plains, but not into the Pacific plains (Fairchild and Hertig, 1959; 

Zeledon and Murillo, 1983; Valle and Rivera, 1995).  Although this study identified Lu. 

shannnoni only at El Balsamo, within the northern region of the Atlantic lowland plains,  

it previously has been reported from all regions (Fairchild and Hertig, 1959; Zeledon and 

Murillo, 1983; Valle and Rivera, 1995). 

 Lutzomyia longipalpis was the most abundantly-captured species.  Of the 274 

individuals captured, 270 were collected from San Jacinto located in the Pacific plains.  

This supports the results obtained by previous investigators, who found this species only 

within the Pacific plains (Fairchild and Hertig, 1959; Zeledon and Murillo, 1983; Valle 

and Rivera, 1995).  Three Lu. longipalpis were captured in El Tigre, which extends the 

known range of this species into the central highlands. 

Distribution of sand fly species in relationship to clinical forms of leishmaniasis 

 Lutzomyia longipalpis and Lu. evansi  were by far the most commonly captured 

species within the Pacific plains region during the course of this study.  These results 
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support the findings of others in Nicaragua (Fairchild and Hertig, 1959; Zeledon and 

Murillo, 1983; Valle and Rivera, 1995).  This is significant, because Lu. longipalpis and 

Lu. evansi are known vectors of L. (L.) chagasi (Killick-Kendrick, 1999).  Leishmania 

(L.) chagasi is the primary etiological agent of human VL leishmaniasis in the New 

World and this species also has been isolated from patients suffering from VL and 

atypical CL in Nicaragua.  The geographic distribution of VL and atypical CL in 

Nicaragua corresponds with the geographic distribution of Lu. longipalpis and Lu. 

evansi.  Although L. chagasi has not been isolated from either Lu. longipalpis or Lu. 

evansi collected in Nicaragua, the large relative abundance of Lu. longipalpis and Lu. 

evansi along with the overlapping geographic distributions of the sand flies and the 

occurrence of human VL and atypical CL hint that they are the most-likely vectors of 

L.(L.) chagasi in Nicaragua. 

 Additionally, the Pacific plains region of Nicaragua is the driest region of the 

country and Lu. longipalpis previously has been reported to inhabit arid to semi-arid 

habitats (Morrison et al., 1993).  Lutzomyia evansi previously has been reported to be a 

sympatric species of Lu. longipalpis (Travi et al., 2002).  The capture of Lu. longipalpis 

and Lu. evansi primarily within the relatively dry Pacific plains region during this study 

supports this. 

 In the central highlands and Atlantic lowland plains regions of Nicaragua, the 

predominant form of human leishmaniasis is typical CL.  The most prevalent species of 

sand fly captured during this study were Lu. cruciata and Lu. barrettoi majuscula.  Both 

species are anthropophilic (Young and Duncan, 1994; Rebollar-Téllez et al., 1996a).  
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Although Lu. cruciata has not been proven to be a vector of Leishmania, it is 

anthropophilic; and it has been found to be associated with areas of human typical CL in 

the New World and it has been found to be naturally infected with leishmanial parasites 

(Young and Duncan, 1984; Rebollar-Téllez et al., 1996a; Rebollar-Téllez et al., 1996b).  

Lutzomyia cruciata also has been found to be capable of transmitting Leishmania (L.) 

mexicana under experimental conditions (Williams, 1966).  

 As in previous studies of the sand fly fauna of Nicaragua, Lu. panamensis only 

was captured in the central highlands and Atlantic lowland plains regions.  This is 

significant in that it has been reported to be a suspected vector of L. (L.) mexicana and L. 

(V.) braziliensis; both known to be etiology agents of human typical CL (Killick-

Kendrick, 1999).  The distribution of Lu. panamensis corresponds with the distribution 

of human cases of typical CL in Nicaragua.  Given that Lu. cruciata and Lu. panamensis 

are abundant in the central highlands and Atlantic lowland plains regions of Nicaragua, 

and that they are capable of serving as hosts for L. (L.) mexicana and L. (V.) braziliensis, 

I believe that these 2 species play an important role as the vectors of the causative agents 

of human typical CL in these regions of Nicaragua. 

Spatial distribution of human typical CL 

 Human cutaneous leishmaniasis in Nicaragua occurs in 2 primary clinical forms, 

typical CL and atypical CL.  When reviewing the geographic distribution of human 

cases of typical CL and atypical CL, it becomes apparent that these forms of the disease 

are spatially segregated.  The vast majority of cases of typical CL occur in the central 

highlands and Atlantic lowland plains regions in the eastern half of the country.  In fact, 
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greater than 96% of the human cases of typical CL reported by the Nicaraguan Ministry 

of Health were from just 19 municipalities.  All of these 19 municipalities are located 

within the central highlands or Atlantic lowland plains regions.  Within the Pacific plains 

region of western Nicaragua, most municipalities reported no cases of typical CL and no 

municipality reported greater than 3 cases.  Conversely, human cases of atypical CL 

primarily are reported from municipalities within the Pacific plains region.  These 2 

forms of CL are the result of infections within different species of Leishmania.   

 Parasites isolated from typical cutaneous lesions in patients from Nicaragua 

previously have been reported to be Leishmania (V.) braziliensis and Leishmania (V.) 

panamensis, while those isolated from atypical cutaneous lesion have been characterized 

as Leishmania (L.) chagasi (Belli et al., 1994; 1998; 1999).  The isolation of different 

species of Leishmania from human patients with different clinical forms of the disease is 

significant in that these species are known to have different vector-reservoir systems as 

well as different primary ecological habitats (Jimenez et al., 2000). 

Logistic regression models of environmental factors associated with the presence or 

absence of reported cases of human typical CL 

 Reported human cases of typical CL are likely to be concentrated within 

geographic areas where the parasite, suitable reservoir hosts, suitable vectors and a 

susceptible human population intersect.  This study used GIS, remotely-sensed satellite 

data, and logistic regression analysis to investigate the environmental relationships 

between geographic areas where human typical CL was reported and areas where no 

human cases were reported from 2003–2005. 
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 Logistic regression models demonstrated that mean annual precipitation and land 

use/cover classes were the best predictors for the dichotomous dependent variable of 

human typical CL presence or absence within a municipality between the years 

2003−2005.  Both models displayed equal sensitivity (67.1%); however, using 

precipitation as the predictor variable increased the specificity to 87.2% over 85.9% in 

the model using land use/cover as the predictor variable.  Using temperature as the 

predictor variable resulted in a less efficient model than either precipitation or land 

use/cover with a sensitivity of 63.0% and a specificity of 84.6%.  The individual models 

using elevation and soil type as the predictor variables were poor predictors of the 

occurrence of typical CL with model sensitivities of 56.2% and 46.6%, respectively.  

The results of this study provide partial support to the conclusions of the study 

conducted in Columbia, as described by King et al. (2004), which found that land cover 

classes were better predictors of the occurrence of typical cutaneous leishmaniasis than 

elevation.  Although King et al. (2004) did not look at precipitation as a predictor 

variable, this study showed than its inclusion in a predictive model for the presence or 

absence of CL may improve the model’s capabilities. 

 One potential drawback that may be associated with the predictive models for the 

presence or absence of typical CL is that the model does not distinguish municipalities 

that had 1 reported case from those that had hundreds of cases during the period 2003–

2005.  It was assumed that transmission of the parasite occurred in the municipalities in 

which the cases were reported.  Travel is difficult within Nicaragua and it is possibly 

that all cases of human typical CL were acquired within municipality where they are 
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reported.  However, it is possible, and even somewhat likely, that not all reported cases 

of infection with typical CL causing parasites were acquired within the reporting 

municipality, but rather may have been acquired during working or visiting endemic 

areas.  Greater than 97% of all reported cases of human typical CL were reported from 

28 of 151 municipalities that documented 10 or more cases during the 3 year period 

analyzed during this study.  When logistic regression analysis was applied to 

environmental predictor variables for these 28 municipalities, land use/cover was by far 

the best predictor for identifying municipalities with 10 or more cases. 

 A number of rodent species, which previously have been identified as suspected 

or proven reservoir hosts for species of Leishmania that are known to cause typical CL, 

are widely-distributed throughout Nicaragua and appear to be better suited to adapt to a 

variety of ecosystems than species of Lutzomyia.  Sand fly vectors of Leishmania species 

known to cause human typical CL within Nicaragua are geographically-distinct in their 

distribution, as this study and others have shown.  Therefore, environmental factors are 

more likely to play a role in the spatial distribution patterns of sand fly species than 

potential reservoir hosts.   

 Land use/cover was a good predictor variable in both the model for presence 

versus absence and for the model predicting the occurrence of 10 and more cases versus 

less than 10 cases of typical CL.  In the model predicting presence or absence, 

agricultural systems with 10–25% natural vegetation and tropical evergreen broadleaf 

forests were the 2 variables that were significant positive predictors of human typical 

CL.  In the model predicting the occurance of  �10 cases versus <10 cases of human 
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typical CL, cropland, agricultural systems with 10–25% natural vegetation, agricultural 

systems with 25–50%, and tropical evergreen broadleaf forest were significant positive 

predictors.  This appears to provide evidence that typical CL is associated with rural 

activities and primarily is found in areas where human activities such as farming and 

ranching begin to encroach into sylvatic areas where the natural transmission cycle 

occurs. 

 Maps of the 28 municipalities in which greater than 97% of the cases of human 

typical CL were reported in the years 2003−2005, overlaid with maps of the extent of 

forest coverage in Nicaragua in 1983 and in 2000, clearly show that the vast majority of 

reported cases have been from municipalities where significant forest degradation has 

occurred (Fig. 20).  The natural system in which the transmission of Leishmania 

parasites among suitable sylvatic rodent hosts , or other forest dwelling mammals, by 

sand flies probably has existed in Nicaragua since time immemorial.  As increasing 

numbers of a naive and susceptible human population clear native forested lands and 

establish agricultural systems within geographic areas where the natural transmission 

cycle of Leishmania occurs, the numbers of reported human cases of typical CL likely 

will continue to remain high.  There also is a distinct possibility that the sand fly vectors 

and rodent reservoir hosts will adapt from a strictly sylvatic lifecycle to a peridomestic 

lifecycle, further increasing the exposure risk of humans to the parasite. 
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Temporal distribution of reported cases of human typical CL for the period 

2003−−−−2005 

 Data provided by the Nicaragua Ministry of Health showed that the average 

weekly number of reported cases of human typical CL increased during May through 

July and this time frame corresponds with the early part of the rainy season throughout 

the country.  The period of time from inoculation to demonstration of typical cutaneous 

lesions can take weeks and it is likely that in many cases patients delay seeking of 

treatment until lesions are serious.  This would indicate that the most likely period of 

transmission from the sand fly vector to human hosts occurs during the drier periods of 

the year from approximately November through April.  One possible explanation for the 

occurance of peak transmission during the dry season is the poor flying capabilities of 

the sand fly vectors.  Movement of sand flies is likely impeded by periods of heavy rain.  

Further research is required to demonstrate the periods of peak sand fly activity. 
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SUMMARY AND CONCLUSIONS 
 
 

In this dissertation, new data have been provided on the occurrence of 

leishmaniasis in rodent species, the geographic distribution of sand fly species and 

potential rodent reservoir hosts, and environmental factors associated with geographic 

distribution of human cases of typical cutaneous leishmaniasis in Nicaragua.  This is the 

first study to investigate potential rodent reservoirs of Leishmania in Nicaragua and is 

the first study to investigate the abiotic and biotic environmental components that are 

associated with the geographic distribution of human cases of typical CL in Nicaragua. 

During field studies, 395 rodents representing 17 species were collected from 13 

localities from August 2001–March 2006 and screened for Leishmania infections.  One 

Heteromys desmarestianus and 1 Peromyscus mexicanus were found to be positive for 

leishmanial infections by PCR.  These positives represent the first report of Leishmania 

infections in rodents in Nicaragua.   

Heteromys desmarestianus does not appear to be sufficiently abundant or 

adequately widespread geographically to play an important role as a reservoir host of 

Leishmania in Nicaragua.  Peromyscus mexicanus occur frequently throughout the 

Central Highland and the northern regions of the Atlantic lowland plains and this species 

probably does serve as a reservoir of Leishmania here.  Proechimys semispinosus occur 

throughout the Atlantic lowland plains and it is likely that this species serves as a 

primary reservoir for Leishmania species.   

Five hundred fifty six sand flies representing 12 species were collected from 8 

localities, including Lutzomyia hartmanni, a new record for this species in Nicaragua.  



 

 

120 

The predominant species captured in western Nicaragua were Lutzomyia longipalpis and 

Lutzomyia evansi.  These 2 species are mostly likely the vectors of L. chagasi, the 

etiolological agent of visceral and atypical cutaneous leishmaniasis in Nicaragua.  The 

predominant species captured in central and eastern Nicaragua was Lutzomyia cruciata.  

This species is likely to be a primary or amplifying vector of Leishmania species causing 

typical CL in this region.  Although this study yielded but 4 specimens of Lu. 

panamensis, previous studies have shown it to be abundant throught the central 

highlands and Pacific plains and is a known vector of L. braziliensis, a known causative 

agent of typical CL and MCL.  The geographic distribution of sand flies in this study 

provides additional support to previously-published reports of suspected vectors of 

Leishmania species causing typical and atypical forms of cutaneous leishmaniasis in 

Nicaragua. 

 Distribution data of human cases of typical cutaneous leishmaniasis obtained 

from the Nicaraguan Ministry of Health, along with GIS and remotely-sensed data of 

elevation, precipitation, temperature, soil types and land use/cover classes, were used to 

developed predictive logistic regression models for the presence or absence of human 

cases within 151 municipalities.  Mean annual precipitation and land use/cover were 

determined to be the best environmental variable predictors for the occurrence of typical 

cutaneous leishmaniasis.  In models using mean annual precipitation as the predictor 

variable for the dichotomous dependent variable of presence or absence, precipitation 

ranges of 900−1,000, 1,200−1,400, 1,600−1,800, and 2,000−2,400 mm per year showed 

a significant positive correlation at the 95% CI; while, precipitation ranges below 900 



 

 

121 

and above 2,400 millimeters per year did not show a significant positive or negative 

correlation.  

 Logistic regression models using land use and cover as the predictor variable for 

the presence or absence of typical cutaneous leishmaniasis demonstrated that the disease 

is primarily associated with rural activities, with the land use/cover classes of 

agricultural systems with 10−25% natural vegetation, agricultural systems with 25−50% 

natural vegetation, cropland, and tropical evergreen deciduous forest showing significant 

positive correlation at the 95% CI. 

 The research presented in this study will serve to increase the awareness among 

parasitologists, medical entomologists and public health workers of the geographic 

segregation of typical and atypical cutaneous leishmaniasis, the geographic distribution 

of potential sand fly vectors and potential rodent reservoir hosts, and the biotic and 

abiotic environmental factors that may influence the distribution of the disease in 

Nicaragua.  Further research is needed to incriminate vectors and reservoirs hosts within 

distinct regions of the country in order to better understand local transmission cycles.  

Research in the following areas would be of use:  screening of additional rodent species 

and of non-rodent species to clarify sylvatic and peridomestic transmission risk; 

screening of sand fly species to clarify vectors; refinement of statistical models using 

GIS and remotely-sensed data to determine if models developed for Nicaragua might be 

useful in predicting the occurrence of leishmaniasis at additional localities. 
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APPENDIX A 

 
Table A−1. Rodents collected in Nicaragua; raw data, 2001–2006.  

Date 
  

UIW 
Number 

Texas 
Tech 
TK # 

Species ID 
  

Sex 
  

Weight 
grams 

Locality 
  

8-Aug-01 Nica-001 72915 Mus musculus F 11 Bella Vista 
8-Aug-01 Nica-002 72909 Mus musculus M 9 Bella Vista 
9-Aug-01 Nica-003 72907 Rattus rattus M 111 Bella Vista 
9-Aug-01 Nica-004 72908 Rattus rattus F 89 Bella Vista 
9-Aug-01 Nica-005 72910 Rattus rattus F 90 Bella Vista 
9-Aug-01 Nica-006 72911 Rattus rattus F 110 Bella Vista 
9-Aug-01 Nica-007 72912 Liomys salvini M 41 Bella Vista 
9-Aug-01 Nica-008 72913 Rattus rattus M 40 Bella Vista 
9-Aug-01 Nica-009 72914 Mus musculus F 19 Bella Vista 
9-Aug-01 Nica-010 72916 Mus musculus F 20 Bella Vista 
9-Aug-01 Nica-011 72918 Mus musculus F 19 Bella Vista 
9-Aug-01 Nica-012 72917 Mus musculus M 9 Bella Vista 
9-Aug-01 Nica-013 72923 Ototylomys phyllotis F 88 Bella Vista 
14-Aug-01 Nica-014 72924 Rattus rattus F 135 Selva Negra 
14-Aug-01 Nica-015 72921 Rattus rattus M 30 Selva Negra 
14-Aug-01 Nica-016 72922 Nyctomys sumichrasti M 50 Selva Negra 
14-Aug-01 Nica-017 72919 Rattus rattus M 105 Selva Negra 
14-Aug-01 Nica-018 72920 Mus musculus M 15 Selva Negra 
14-Aug-01 Nica-019 72925 Mus musculus F 20 Selva Negra 
14-Aug-01 Nica-020 72926 Rattus rattus M 65 Selva Negra 
14-Aug-01 Nica-021 72927 Rattus rattus M 115 Selva Negra 
14-Aug-01 Nica-022 72931 Peromyscus mexicanus M 50 Selva Negra 
14-Aug-01 Nica-023 72932 Peromyscus mexicanus M 50 Selva Negra 
15-Aug-01 Nica-024 72933 Rattus rattus M 35 Selva Negra 
15-Aug-01 Nica-025 72934 Rattus rattus F 125 Selva Negra 
16-Aug-01 Nica-026 72936 Mus musculus F 15 San Jancito 
5-Jan-02 Nica-027 93598 Liomys salvini F 25 Las Marias 
8-Jan-02 Nica-029 93683 Peromyscus mexicanus F 65 San Jacinto 
9-Jan-02 Nica-030 93701 Rattus rattus F 100 Selva Negra 
9-Jan-02 Nica-031 93647 Peromyscus mexicanus M 50 Selva Negra 
9-Jan-02 Nica-032 93648 Peromyscus mexicanus M 50 Selva Negra 
9-Jan-02 Nica-033 93649 Peromyscus mexicanus F 50 Selva Negra 
9-Jan-02 Nica-034 93651 Peromyscus mexicanus F 40 Selva Negra 
9-Jan-02 Nica-035 93652 Peromyscus mexicanus M 30 Selva Negra 
9-Jan-02 Nica-036 93596 Peromyscus mexicanus M 50 Selva Negra 
9-Jan-02 Nica-037 93653 Peromyscus mexicanus M 50 Selva Negra 
9-Jan-02 Nica-038 93620 Peromyscus mexicanus M 30 Selva Negra 
9-Jan-02 Nica-039 93650 Peromyscus mexicanus F 35 Selva Negra 
9-Jan-02 Nica-040 93656 Peromyscus mexicanus M 52 Selva Negra 
9-Jan-02 Nica-041 93658 Peromyscus mexicanus M 35 Selva Negra 
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Table A−1 continued.  

Date UIW 
Texas 
Tech Species ID Sex Weight Locality 

  Number TK #     grams   
9-Jan-02 Nica-042 93657 Peromyscus mexicanus M 55 Selva Negra 

10-Jan-02 Nica-043 93621 Peromyscus mexicanus M 60 Selva Negra 
10-Jan-02 Nica-044 93655 Peromyscus mexicanus M 40 Selva Negra 
10-Jan-02 Nica-045 93645 Peromyscus mexicanus F 40 Selva Negra 
10-Jan-02 Nica-046 93659 Peromyscus mexicanus M 40 Selva Negra 
10-Jan-02 Nica-047 93654 Peromyscus mexicanus M 45 Selva Negra 
10-Jan-02 Nica-048 93646 Oryzomys alfaroi M 30 Selva Negra 
10-Jan-02 Nica-049 93622 Peromyscus mexicanus M 37 Selva Negra 
10-Jan-02 Nica-050 93682 Heteromys desmarsestianus M 80 Selva Negra 
10-Jan-02 Nica-051 93684 Ototylomys phyllotis M 50 Selva Negra 
10-Jan-02 Nica-052 93686 Peromyscus mexicanus F 30 Selva Negra 
10-Jan-02 Nica-053 93687 Peromyscus mexicanus F 50 Selva Negra 
10-Jan-02 Nica-054 93681 Peromyscus mexicanus M 30 Selva Negra 
10-Jan-02 Nica-055 93694 Peromyscus mexicanus M 55 Selva Negra 
11-Jan-02 Nica-056 93688 Peromyscus mexicanus M 50 Selva Negra 
11-Jan-02 Nica-057 93675 Peromyscus mexicanus F 40 Selva Negra 
11-Jan-02 Nica-058 93689 Peromyscus mexicanus M 50 Selva Negra 
11-Jan-02 Nica-059 93601 Ototylomys phyllotis F 90 Selva Negra 
11-Jan-02 Nica-060 93696 Peromyscus mexicanus M 45 Selva Negra 
11-Jan-02 Nica-061 93644 Scotinomys teguina M 10 Selva Negra 
11-Jan-02 Nica-062 93695 Peromyscus mexicanus M 40 Selva Negra 
11-Jan-02 Nica-063 93575 Scotinomys teguina M ? Selva Negra 
11-Jan-02 Nica-064 93700 Oryzomys alfaroi M 20 Selva Negra 
11-Jan-02 Nica-065 93697 Peromyscus mexicanus M 40 Selva Negra 
11-Jan-02 Nica-066 93698 Peromyscus mexicanus M 50 Selva Negra 
11-Jan-02 Nica-067 93699 Peromyscus mexicanus M 40 Selva Negra 
13-Jan-02 Nica-068 93685 Didelphis marsupialis F 145 San Lucas 
15-Jan-02 Nica-069 93577 Liomys salvini F 40 Los Mangos 
15-Jan-02 Nica-070 93600 Peromyscus nudipes F 61 Los Mangos 
15-Jan-02 Nica-071 93678 Peromyscus mexicanus M 50 Los Mangos 
16-Jan-02 Nica-072  Rattus rattus M 80 San Jacinto 
17-Jan-02 Nica-073 93679 Mus musculus F 15 San Jacinto 
24-Jan-02 Nica-080 93690 Peromyscus mexicanus M 50 Selva Negra 
24-Jan-02 Nica-081 93691 Peromyscus mexicanus M 30 Selva Negra 
24-Jan-02 Nica-082 93676 Peromyscus mexicanus M 35 Selva Negra 
24-Jan-02 Nica-083 93677 Peromyscus mexicanus M 30 Selva Negra 
24-Jan-02 Nica-084 93692 Peromyscus mexicanus F 45 Selva Negra 
24-Jan-02 Nica-085 93693 Peromyscus mexicanus F 45 Selva Negra 
24-Jan-02 Nica-086 93680 Peromyscus mexicanus F 30 Selva Negra 
24-Jan-02 Nica-087 93599 Peromyscus mexicanus M 35 Selva Negra 
24-Jan-02 Nica-088 93576 Oryzomys sp. M 45 Selva Negra 
24-Jan-02 Nica-089 93702 Peromyscus mexicanus M 55 Selva Negra 
24-Jan-02 Nica-090 93703 Peromyscus mexicanus M 35 Selva Negra 
24-Jan-02 Nica-091 93704 Peromyscus mexicanus M 35 Selva Negra 



 

 

143 

Table A−1 continued.  

Date UIW 
Texas 
Tech Species ID Sex Weight Locality 

  Number TK #     grams   
24-Jan-02 Nica-092 93705 Peromyscus mexicanus F 45 Selva Negra 
24-Jan-02 Nica-093 93706 Peromyscus mexicanus F 40 Selva Negra 

18-May-02 Nica-094 113501 Peromyscus mexicanus F 35 Selva Negra 
18-May-02 Nica-095 113502 Peromyscus mexicanus M 50 Selva Negra 
18-May-02 Nica-096 113503 Peromyscus mexicanus F 35 Selva Negra 
18-May-02 Nica-097 113508 Scotinomys teguina F 12 Selva Negra 
18-May-02 Nica-098 113507 Peromyscus mexicanus M 50 Selva Negra 
18-May-02 Nica-099 113504 Peromyscus mexicanus M 40 Selva Negra 
18-May-02 Nica-100 113506 Peromyscus mexicanus F 35 Selva Negra 
18-May-02 Nica-101 113505 Peromyscus mexicanus F 40 Selva Negra 
18-May-02 Nica-102 113509 Peromyscus mexicanus F 35 Selva Negra 
18-May-02 Nica-103 113510 Peromyscus mexicanus M 40 Selva Negra 
18-May-02 Nica-104 113511 Peromyscus oaxacensis M 50 Selva Negra 
19-May-02 Nica-105 113512 Ototylomys phyllotis F 120 Selva Negra 
19-May-02 Nica-106 113525 Peromyscus mexicanus M 50 Selva Negra 
19-May-02 Nica-107 113526 Peromyscus mexicanus M 50 Selva Negra 
19-May-02 Nica-108 113527 Peromyscus mexicanus F 45 Selva Negra 
19-May-02 Nica-109 113528 Peromyscus mexicanus F 35 Selva Negra 
19-May-02 Nica-110 113529 Peromyscus mexicanus M 45 Selva Negra 
20-May-02 Nica-111 113530 Peromyscus mexicanus F 48 Selva Negra 
20-May-02 Nica-112 113516 Oryzomys sp. M 25 Selva Negra 
20-May-02 Nica-113 113531 Heteromys desmarsianus M 45 Selva Negra 
20-May-02 Nica-114 113532 Peromyscus mexicanus M 45 Selva Negra 
20-May-02 Nica-115 113534 Ototylomys phyllotis F 105 Selva Negra 
20-May-02 Nica-116 113533 Peromyscus mexicanus M 40 Selva Negra 
20-May-02 Nica-117 113535 Peromyscus mexicanus M 50 Selva Negra 
20-May-02 Nica-118 113536 Peromyscus mexicanus M 55 Selva Negra 
20-May-02 Nica-119 113542 Peromyscus mexicanus F 50 Selva Negra 
20-May-02 Nica-120 113541 Peromyscus mexicanus M 46 Selva Negra 
20-May-02 Nica-121 113537 Peromyscus mexicanus M 38 Selva Negra 
20-May-02 Nica-122 113538 Peromyscus mexicanus F 38 Selva Negra 
20-May-02 Nica-123 113539 Peromyscus mexicanus F 45 Selva Negra 
20-May-02 Nica-124 113540 Peromyscus mexicanus F 40 Selva Negra 
20-May-02 Nica-125 113543 Peromyscus mexicanus M 55 Selva Negra 
20-May-02 Nica-126 113515 Heteromys desmarsianus F 50 Selva Negra 
21-May-02 Nica-127 113513 Oryzomys sp. M 35 Selva Negra 
21-May-02 Nica-128 113544 Peromyscus mexicanus M 35 Selva Negra 
21-May-02 Nica-129 113514 Oryzomys sp. M 25 Selva Negra 
21-May-02 Nica-130 113545 Peromyscus mexicanus M 50 Selva Negra 
21-May-02 Nica-131 113548 Peromyscus mexicanus F 50 Selva Negra 
22-May-02 Nica-132 113518 Sigmodon hirsutus M 60 El Tigre 
22-May-02 Nica-133 113546 Sigmodon hirsutus M 105 El Tigre 
22-May-02 Nica-134 113547 Peromyscus mexicanus M 50 El Tigre 
22-May-02 Nica-135 113549 Peromyscus mexicanus M 45 El Tigre 
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Table A−1 continued.  

Date UIW 
Texas 
Tech Species ID Sex Weight Locality 

  Number TK #     grams   
22-May-02 Nica-136 113550 Peromyscus mexicanus M 35 El Tigre 
22-May-02 Nica-137 113555 Peromyscus mexicanus F 30 El Tigre 
23-May-02 Nica-138 113519 Sigmodon hirsutus M 80 El Tigre 
23-May-02 Nica-139 113552 Peromyscus mexicanus M 50 El Tigre 
23-May-02 Nica-140 113553 Oryzomys sp. M 40 El Tigre 
26-May-02 Nica-141 113554 Peromyscus mexicanus M 60 Selva Negra 
26-May-02 Nica-142 113551 Peromyscus mexicanus M 45 Selva Negra 
26-May-02 Nica-143 113556 Peromyscus mexicanus F 45 Selva Negra 
26-May-02 Nica-144 113558 Peromyscus mexicanus M 45 Selva Negra 
26-May-02 Nica-145 113559 Peromyscus mexicanus M 50 Selva Negra 
26-May-02 Nica-146 113560 Peromyscus mexicanus F 50 Selva Negra 
26-May-02 Nica-147 113561 Peromyscus mexicanus M 40 Selva Negra 
26-May-02 Nica-148 113524 Scotinomys teguina M 15 Selva Negra 
26-May-02 Nica-149 113562 Peromyscus mexicanus F 45 Selva Negra 
26-May-02 Nica-150 113563 Peromyscus mexicanus M 40 Selva Negra 
26-May-02 Nica-151 113564 Peromyscus mexicanus F 45 Selva Negra 
26-May-02 Nica-152 113565 Peromyscus mexicanus M 45 Selva Negra 
26-May-02 Nica-153 113566 Peromyscus mexicanus M 50 Selva Negra 
26-May-02 Nica-154 113573 Peromyscus mexicanus F 40 Selva Negra 
26-May-02 Nica-155 113581 Peromyscus mexicanus F 55 Selva Negra 
26-May-02 Nica-156 113571 Peromyscus mexicanus F 45 Selva Negra 
26-May-02 Nica-157 113570 Peromyscus mexicanus M 45 Selva Negra 
26-May-02 Nica-158 113572 Peromyscus mexicanus M 45 Selva Negra 
26-May-02 Nica-159 113567 Peromyscus mexicanus M 45 Selva Negra 
31-May-02 Nica-160 113517 Nyctomys sumichrasti F 50 Bella Vista 
31-May-02 Nica-161 113575 Peromyscus mexicanus M 40 Bella Vista 
31-May-02 Nica-162 113576 Peromyscus mexicanus F 45 Bella Vista 
31-May-02 Nica-163 113577 Peromyscus mexicanus F 40 Bella Vista 
31-May-02 Nica-164 113574 Peromyscus mexicanus M 40 Bella Vista 
1-Jun-02 Nica-165 113580 Liomys salvini F 35 Bella Vista 
1-Jun-02 Nica-166 113578 Liomys salvini M 40 Bella Vista 
1-Jun-02 Nica-167 113579 Liomys salvini M 35 Bella Vista 
1-Jun-02 Nica-168 113568 Ototylomys phyllotis F 80 Bella Vista 
1-Jun-02 Nica-169 113522 Liomys salvini F 25 Bella Vista 
1-Jun-02 Nica-170 113582 Peromyscus mexicanus F 45 Bella Vista 
1-Jun-02 Nica-171 113583 Liomys salvini M 40 Bella Vista 
1-Jun-02 Nica-172 113586 Peromyscus mexicanus F 45 Bella Vista 
2-Jun-02 Nica-173 113584 Liomys salvini M 25 Bella Vista 
2-Jun-02 Nica-174 113569 Liomys salvini F 40 Bella Vista 
2-Jun-02 Nica-175 113587 Liomys salvini M 35 Bella Vista 
6-Jun-02 Nica-176 113585 Peromyscus mexicanus F 40 San Cristobal 
6-Jun-02 Nica-177 113588 Peromyscus oaxacensis F 40 San Cristobal 
6-Jun-02 Nica-178 113589 Peromyscus oaxacensis F 25 San Cristobal 
6-Jun-02 Nica-179 113592 Peromyscus oaxacensis F 45 San Cristobal 
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Date UIW 
Texas 
Tech Species ID Sex Weight Locality 
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6-Jun-02 Nica-180 113590 Peromyscus oaxacensis M 40 San Cristobal 
6-Jun-02 Nica-181 113520 Ototylomys phyllotis F 95 San Cristobal 
6-Jun-02 Nica-182 113591 Peromyscus oaxacensis F 40 San Cristobal 
6-Jun-02 Nica-183 113593 Peromyscus oaxacensis M 35 San Cristobal 
6-Jun-02 Nica-184 113594 Peromyscus oaxacensis F 45 San Cristobal 
6-Jun-02 Nica-185 113595 Nyctomys sumichrasti M 50 San Cristobal 
6-Jun-02 Nica-186 113596 Peromyscus oaxacensis F 45 San Cristobal 
6-Jun-02 Nica-187 113597 Peromyscus oaxacensis F 40 San Cristobal 
6-Jun-02 Nica-188 113599 Peromyscus oaxacensis M 40 San Cristobal 

10-Jun-02 Nica-189 113598 Ototylomys phyllotis F 80 San Cristobal 
10-Jun-02 Nica-190 113600 Peromyscus oaxacensis F 40 San Cristobal 
10-Jun-02 Nica-191 113601 Peromyscus oaxacensis F 40 San Cristobal 
10-Jun-02 Nica-192 113602 Peromyscus oaxacensis F 40 San Cristobal 
10-Jun-02 Nica-193 113521 Ototylomys phyllotis F 90 San Cristobal 
10-Jun-02 Nica-194 113605 Peromyscus oaxacensis M 40 San Cristobal 
10-Jun-02 Nica-195 113606 Peromyscus oaxacensis F 40 San Cristobal 
10-Jun-02 Nica-196 113607 Liomys salvini F 20 San Cristobal 
10-Jun-02 Nica-197 113608 Peromyscus oaxacensis F 35 San Cristobal 
10-Jun-02 Nica-198 113609 Peromyscus oaxacensis M 30 San Cristobal 
11-Jun-02 Nica-199 113610 Peromyscus oaxacensis M 45 San Cristobal 
11-Jun-02 Nica-200 113611 Peromyscus oaxacensis F 35 San Cristobal 
11-Jun-02 Nica-201 113603 Ototylomys phyllotis M 60 San Cristobal 
11-Jun-02 Nica-202 113523 Peromyscus mexicanus M 25 San Cristobal 
11-Jun-02 Nica-203 113604 Peromyscus oaxacensis M 35 San Cristobal 
11-May-03 Nica-204 115175 Peromyscus nudipes M 50 Selva Negra 
11-May-03 Nica-205 115176 Peromyscus nudipes F 40 Selva Negra 
11-May-03 Nica-206 115177 Peromyscus nudipes M 45 Selva Negra 
11-May-03 Nica-207 115178 Peromyscus nudipes F 40 Selva Negra 
11-May-03 Nica-208 115179 Peromyscus nudipes M 50 Selva Negra 
11-May-03 Nica-209 115180 Peromyscus nudipes M 40 Selva Negra 
11-May-03 Nica-210 115181 Peromyscus nudipes F 35 Selva Negra 
11-May-03 Nica-211 115182 Peromyscus nudipes M 50 Selva Negra 
11-May-03 Nica-212 115199 Peromyscus nudipes F 50 Selva Negra 
11-May-03 Nica-213 115183 Peromyscus nudipes M 50 Selva Negra 
11-May-03 Nica-214 115184 Peromyscus nudipes F 40 Selva Negra 
12-May-03 Nica-215 115185 Peromyscus nudipes F 45 Selva Negra 
12-May-03 Nica-216 115186 Peromyscus nudipes M 48 Selva Negra 
12-May-03 Nica-217 115187 Peromyscus nudipes F 45 Selva Negra 
12-May-03 Nica-218 115188 Peromyscus nudipes M 52 Selva Negra 
12-May-03 Nica-219 115189 Peromyscus nudipes M 45 Selva Negra 
12-May-03 Nica-220 115190 Peromyscus nudipes M 39 Selva Negra 
12-May-03 Nica-221 115191 Peromyscus nudipes F 35 Selva Negra 
12-May-03 Nica-222 115192 Peromyscus nudipes M 45 Selva Negra 
12-May-03 Nica-223 115195 Peromyscus nudipes M 45 Selva Negra 
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12-May-03 Nica-224 115196 Heteromys desmarsestianus F 68 Selva Negra 
12-May-03 Nica-225 115197 Peromyscus nudipes M 40 Selva Negra 
12-May-03 Nica-226 115198 Peromyscus nudipes M 45 Selva Negra 
12-May-03 Nica-227 115193 Peromyscus nudipes M 45 Selva Negra 
12-May-03 Nica-228 115194 Peromyscus nudipes M 40 Selva Negra 
12-May-03 Nica-229 115200 Peromyscus nudipes M 49 Selva Negra 
13-May-03 Nica-230 115201 Peromyscus nudipes M 50 Selva Negra 
13-May-03 Nica-231 115202 Peromyscus nudipes M 50 Selva Negra 
13-May-03 Nica-232 115203 Peromyscus nudipes M 40 Selva Negra 
13-May-03 Nica-233 115204 Peromyscus nudipes M 45 Selva Negra 
13-May-03 Nica-234 115205 Peromyscus nudipes M 50 Selva Negra 
13-May-03 Nica-235 115206 Peromyscus nudipes F 35 Selva Negra 
13-May-03 Nica-236 115207 Peromyscus nudipes M 55 Selva Negra 
13-May-03 Nica-237 115208 Peromyscus nudipes M 50 Selva Negra 
13-May-03 Nica-238 115209 Peromyscus nudipes M 40 Selva Negra 
13-May-03 Nica-239 115210 Peromyscus nudipes M 50 Selva Negra 
14-May-03 Nica-240 115219 Peromyscus nudipes F 50 Selva Negra 
14-May-03 Nica-241 115220 Peromyscus nudipes F 42 Selva Negra 
14-May-03 Nica-242 115221 Peromyscus nudipes F 45 Selva Negra 
14-May-03 Nica-243 115222 Peromyscus nudipes F 50 Selva Negra 
14-May-03 Nica-244 115223 Peromyscus nudipes F 45 Selva Negra 
14-May-03 Nica-245 115224 Peromyscus nudipes M 45 Selva Negra 
14-May-03 Nica-246 115225 Peromyscus nudipes M 45 Selva Negra 
18-May-03 Nica-247 115226 Peromyscus nudipes M 45 Selva Negra 
18-May-03 Nica-248 115227 Peromyscus nudipes F 45 Selva Negra 
18-May-03 Nica-249 115228 Peromyscus nudipes F 50 Selva Negra 
18-May-03 Nica-250 115211 Peromyscus nudipes M 40 Selva Negra 
18-May-03 Nica-251 115212 Peromyscus nudipes M 40 Selva Negra 
18-May-03 Nica-252 115213 Peromyscus nudipes F 50 Selva Negra 
18-May-03 Nica-253 115214 Peromyscus nudipes M 45 Selva Negra 
18-May-03 Nica-254 115215 Peromyscus nudipes M 45 Selva Negra 
19-May-03 Nica-255 115216 Peromyscus nudipes M 50 Selva Negra 
19-May-03 Nica-256 115217 Peromyscus nudipes F 45 Selva Negra 
19-May-03 Nica-257 115218 Peromyscus nudipes M 45 Selva Negra 
19-May-03 Nica-258 115229 Peromyscus nudipes F 40 Selva Negra 
19-May-03 Nica-259 115230 Peromyscus nudipes M 48 Selva Negra 
19-May-03 Nica-260 115235 Tylomys nudicaudus M 90 Selva Negra 
19-May-03 Nica-261 115236 Peromyscus nudipes F 50 Selva Negra 
19-May-03 Nica-262 115231 Peromyscus nudipes F 35 Selva Negra 
19-May-03 Nica-263 115232 Peromyscus nudipes F 45 Selva Negra 
19-May-03 Nica-264 115239 Peromyscus nudipes M 50 Selva Negra 
21-May-03 Nica-266 115237 Proechimys semispinosus M 245 El Balsamo 
22-May-03 Nica-267 115238 Proechimys semispinosus M 90 El Balsamo 
22-May-03 Nica-268 115233 Sigmodon hirsutus M 20 El Balsamo 
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22-May-03 Nica-269 115234 Melanomys caliginosus M 40 El Balsamo 
19-Jul-03 Nica-270 121424 Nyctomys sumichrasti M 70 El Balsamo 
19-Jul-03 Nica-271 121412 Melanomys caliginosus M 47 El Balsamo 
21-Jul-03 Nica-272 121413 Ototylomys phyllotis M 80 El Balsamo 
21-Jul-03 Nica-273 121414 Melanomys caliginosus M 30 El Balsamo 
21-Jul-03 Nica-274 121415 Melanomys caliginosus F 30 El Balsamo 
21-Jul-03 Nica-275 121416 Melanomys caliginosus M 40 El Balsamo 
21-Jul-03 Nica-276 121417 Melanomys caliginosus M 37 El Balsamo 
21-Jul-03 Nica-277 121418 Melanomys caliginosus F 40 El Balsamo 
22-Jul-03 Nica-278 121419 Ototylomys phyllotis F 120 El Balsamo 
22-Jul-03 Nica-279 121420 Melanomys caliginosus F 20 El Balsamo 
24-Jul-03 Nica-280 121421 Ototylomys phyllotis M 118 Rosa Grande 
24-Jul-03 Nica-281 121422 Ototylomys phyllotis F 50 Rosa Grande 
25-Jul-03 Nica-282 121423 Melanomys caliginosus M 55 Rosa Grande 
25-Jul-03 Nica-283 121427 Melanomys caliginosus F 50 Rosa Grande 
25-Jul-03 Nica-284 121428 Melanomys caliginosus M 58 Rosa Grande 
25-Jul-03 Nica-285 121425 Proechimys semispinosus F 325 Rosa Grande 
26-Jul-03 Nica-286 121426 Ototylomys phyllotis F 80 Rosa Grande 
26-Jul-03 Nica-287 121429 Melanomys caliginosus F 389 Rosa Grande 
26-Jul-03 Nica-288 121430 Melanomys caliginosus F 346 Rosa Grande 
26-Jul-03 Nica-289 121431 Melanomys caliginosus M 57 Rosa Grande 
26-Jul-03 Nica-290 121480 Proechimys semispinosus F 453 Rosa Grande 
26-Jul-03 Nica-291 123014 Proechimys semispinosus F 365 Rosa Grande 
26-Jul-03 Nica-292 121457 Melanomys caliginosus M 41 Rosa Grande 
26-Jul-03 Nica-293 121439 Melanomys caliginosus M 396 Rosa Grande 
26-Jul-03 Nica-294 121438 Melanomys caliginosus F 37 Rosa Grande 
26-Jul-03 Nica-295 121432 Melanomys caliginosus F 27 Rosa Grande 
27-Jul-03 Nica-296 121433 Peromyscus nudipes M 42 Rosa Grande 
27-Jul-03 Nica-297 121434 Ototylomys phyllotis M 92 Rosa Grande 
27-Jul-03 Nica-298 121435 Melanomys caliginosus F 40 Rosa Grande 
27-Jul-03 Nica-299 121436 Proechimys semispinosus M 462 Rosa Grande 
27-Jul-03 Nica-300 121437 Melanomys caliginosus M 45 Rosa Grande 

19-May-04 Nica-301 119158 Scotinomys teguina F 15 El Balsamo 
19-May-04 Nica-302 119161 Scotinomys teguina F 15 El Balsamo 
19-May-04 Nica-303 119122 Proechimys semispinosus F 300 El Balsamo 
19-May-04 Nica-304 119146 Sigmodon hirsutus F 110 El Balsamo 
19-May-04 Nica-305 119159 Scotinomys teguina M 15 El Balsamo 
19-May-04 Nica-306 119160 Scotinomys teguina M 15 El Balsamo 
20-May-04 Nica-307 119165 Sigmodon hirsutus M 55 El Balsamo 
20-May-04 Nica-308 119163 Melanomys caliginosus M 45 El Balsamo 
20-May-04 Nica-309 119166 Melanomys caliginosus F 35 El Balsamo 
20-May-04 Nica-310 119162 Melanomys caliginosus M 40 El Balsamo 
20-May-04 Nica-311 119164 Melanomys caliginosus M 40 El Balsamo 
20-May-04 Nica-312 119123 Proechimys semispinosus M 400 El Balsamo 
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21-May-04 Nica-313 119167 Oligoryzomys fulvescens M 35 El Balsamo 
21-May-04 Nica-314 119168 Melanomys caliginosus M 35 El Balsamo 
21-May-04 Nica-315 119147 Sigmodon hirsutus M 150 El Balsamo 
21-May-04 Nica-316 119169 Melanomys caliginosus M 30 El Balsamo 
21-May-04 Nica-317 119148 Sigmodon hirsutus F 120 El Balsamo 
21-May-04 Nica-318 119170 Oligoryzomys fulvescens M 50 El Balsamo 
21-May-04 Nica-319 119171 Melanomys caliginosus F 40 El Balsamo 
25-May-04 Nica-320 119124 Proechimys semispinosus M 490 El Paraisito 
25-May-04 Nica-321 119149 Proechimys semispinosus M 480 El Paraisito 
25-May-04 Nica-322 119138 Proechimys semispinosus M 55 El Paraisito 
26-May-04 Nica-323 119150 Proechimys semispinosus M 555 El Paraisito 
26-May-04 Nica-324 119151 Proechimys semispinosus M 520 El Paraisito 
26-May-04 Nica-325 119154 Proechimys semispinosus M 175 El Paraisito 
27-May-04 Nica-326 119173 Oryzomys cousei M 90 El Paraisito 
27-May-04 Nica-327 119174 Sigmodon hirsutus M 75 El Paraisito 
27-May-04 Nica-328 119157 Proechimys semispinosus F 500 El Paraisito 
27-May-04 Nica-329 119152 Proechimys semispinosus F 450 El Paraisito 
27-May-04 Nica-330 119153 Proechimys semispinosus F 325 El Paraisito 
27-May-04 Nica-331 119155 Proechimys semispinosus M 190 El Paraisito 
27-May-04 Nica-332 119172 Oryzomys cousei M 485 El Paraisito 
28-May-04 Nica-333 119176 Sigmodon hirsutus M 100 El Paraisito 
28-May-04 Nica-334 119125 Proechimys semispinosus F 405 El Paraisito 
28-May-04 Nica-335 119144 Proechimys semispinosus M 545 El Paraisito 
28-May-04 Nica-336 119175 Sigmodon hirsutus M 45 El Paraisito 
28-May-04 Nica-337 119156 Proechimys semispinosus M 65 El Paraisito 
29-May-04 Nica-338 119135 Proechimys semispinosus M >600 El Paraisito 
30-May-04 Nica-339 119178 Sigmodon hirsutus M 80 El Paraisito 
30-May-04 Nica-340 119179 Sigmodon hirsutus M 145 El Paraisito 
30-May-04 Nica-341 119181 Oligoryzomys fulvescens F 285 El Paraisito 
31-May-04 Nica-342 119134 Proechimys semispinosus F 415 El Paraisito 
31-May-04 Nica-343 119180 Oligoryzomys fulvescens F 35 El Paraisito 
1-Jun-04 Nica-344 119130 Proechimys semispinosus F 440 El Paraisito 
2-Jun-04 Nica-345 119139 Proechimys semispinosus M 425 El Paraisito 
3-Jun-04 Nica-346 119143 Proechimys semispinosus M 425 El Paraisito 
3-Jun-04 Nica-347 119131 Proechimys semispinosus M 45 El Paraisito 
3-Jun-04 Nica-348 119182 Oryzomys cousei M 80 El Paraisito 
7-Jun-04 Nica-349 119132 Proechimys semispinosus M 275 El Paraisito 
7-Jun-04 Nica-350 119183 Oryzomys cousei M 70 El Paraisito 
7-Jun-04 Nica-351 119145 Sigmodon hirsutus F 325 El Paraisito 
7-Jun-04 Nica-352 119184 Sigmodon hirsutus M 115 El Paraisito 
7-Jun-04 Nica-353 119188 Proechimys semispinosus M 65 El Paraisito 
7-Jun-04 Nica-354 119185 Oligoryzomys fulvescens M 50 El Paraisito 
8-Jun-04 Nica-355 119177 Proechimys semispinosus M >600 El Paraisito 
8-Jun-04 Nica-356 119142 Proechimys semispinosus F 355 El Paraisito 
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8-Jun-04 Nica-357 119133 Proechimys semispinosus M 110 El Paraisito 
8-Jun-04 Nica-358 119187 Sigmodon hirsutus M 125 El Paraisito 
8-Jun-04 Nica-359 119186 Oligoryzomys fulvescens M 45 El Paraisito 
9-Jun-04 Nica-360 119136 Proechimys semispinosus F 520 El Paraisito 
9-Jun-04 Nica-361 119137 Proechimys semispinosus F 390 El Paraisito 

16-Dec-04 Nica-368 137043 Proechimys semispinosus F 408 La Sardina 
17-Dec-04 Nica-369 137054 Proechimys semispinosus M 175 El Paraisito 
17-Dec-04 Nica-370 137035 Proechimys semispinosus M 253 El Paraisito 
18-Dec-04 Nica-371 137053 Proechimys semispinosus F 145 El Paraisito 
18-Dec-04 Nica-372 137042 Proechimys semispinosus M 250 El Paraisito 
19-Dec-04 Nica-373 137038 Proechimys semispinosus F 295 El Paraisito 
21-Dec-04 Nica-374 137037 Proechimys semispinosus F 290 Esperanzita #2 
22-Dec-04 Nica-375 137042 Proechimys semispinosus F 315 La Fonseca 
22-Dec-04 Nica-376 137-57 Proechimys semispinosus F 395 La Fonseca 
23-Dec-04 Nica-377 137039 Proechimys semispinosus M 233 La Fonseca 
23-Dec-04 Nica-378 137051 Proechimys semispinosus M 130 La Fonseca 
23-Dec-04 Nica-379 137050 Proechimys semispinosus M 397 La Fonseca 
16-Mar-05 Nica-380 137040 Proechimys semispinosus M 360 El Paraisito 
17-Mar-05 Nica-381 137069 Mus musculus F 10 El Paraisito 
18-Mar-05 Nica-382 137036 Proechimys semispinosus F 385 El Paraisito 

12-May-05 
Nica-
382B 137034 Proechimys semispinosus F 325 El Paraisito 

13-May-05 Nica-383 137041 Proechimys semispinosus M 510 Nueva Guinea 
12-Mar-06 Nica-384 137046 Peromyscus nudipes M 34 Selva Negra 
12-Mar-06 Nica-385 137044 Peromyscus nudipes M 44 Selva Negra 
12-Mar-06 Nica-386 137047 Peromyscus nudipes M 40 Selva Negra 
12-Mar-06 Nica-387 133252 Peromyscus nudipes M 40 Selva Negra 
12-Mar-06 Nica-388 137048 Peromyscus nudipes M 45 Selva Negra 
12-Mar-06 Nica-389 137045 Peromyscus nudipes M 38 Selva Negra 
12-Mar-06 Nica-390 137049 Peromyscus nudipes F 50 Selva Negra 
12-Mar-06 Nica-391 137058 Peromyscus nudipes F 45 Selva Negra 
12-Mar-06 Nica-392 137055 Peromyscus nudipes M 45 Selva Negra 
12-Mar-06 Nica-393 137059 Peromyscus nudipes F 45 Selva Negra 
12-Mar-06 Nica-394 137052 Peromyscus nudipes M 50 Selva Negra 
14-Mar-06 Nica-395 137061 Sigmodon hirsutus M 70 El Cua 
14-Mar-06 Nica-396 137073 Sigmodon hirsutus F 70 El Cua 
14-Mar-06 Nica-397 137066 Peromyscus nudipes M 40 El Cua 
14-Mar-06 Nica-398 137063 Oryzomys cousei M 50 El Cua 
14-Mar-06 Nica-399 137071 Melanomys caliginosus M 30 El Cua 
14-Mar-06 Nica-400 137070 Mus musculus M 7 El Cua 
14-Mar-06 Nica-401 137064 Melanomys caliginosus M 45 El Cua 
14-Mar-06 Nica-402 137072 Mus musculus F 10 El Cua 
14-Mar-06 Nica-403 137062 Mus musculus M 5 El Cua 
15-Mar-06 Nica-404 137068 Oryzomys alfaroi M 26 El Cua 
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15-Mar-06 Nica-405 137060 Peromyscus nudipes M 50 El Cua 
15-Mar-06 Nica-406 137065 Oryzomys alfaroi M 35 El Cua 
15-Mar-06 Nica-407 133251 Peromyscus nudipes F 45 El Cua 
15-Mar-06 Nica-408 137067 Oryzomys alfaroi M 35 El Cua 
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APPENDIX B 
  
Table B−2.  Human typical CL cases reported per municipality, 2003-2005.   
Municipality Cases   Municipality Cases 
Achuapa 0  El Rosario 0 
Acoyapa 1  El Sauce 3 
Altagracia 0  El Tortuguero 31 
Belen 0  El Tuma - La Dalia 21 
Bluefields 40  El Viejo 0 
Boaco 2  Esquipulas 0 
Bonanza 241  Esteli 0 
Buenos Aires 0  Granada 1 
Camoapa 0  Jalapa 3 
Cardenas 0  Jinotega 25 
Catarina 0  Jinotepe 0 
Chichigalpa 2  Juigalpa 11 
Chinandega 2  Kukrahill 10 
Cinco Pinos 1  La Concepcion 0 
Ciudad Antigua 0  La Concordia 0 
Ciudad Dario 0  La Conquista 0 
Ciudad Sandino 0  La Cruz de Rio Grande 64 
Comalapa 1  La Libertad 0 
Condega 0  La Paz Centro 0 
Corinto 0  La Paz de Carazo 0 
Cua-Bocay 1828  La Trinidad 0 
Desembocadura  0  Laguna de Perlas 10 
Dipilto 0  Larreynaga 0 
Diria 0  Las Sabanas 0 
Diriamba 0  Leon 1 
Diriomo 0  Macuelizo 0 
Dolores 0  Managua 3 
El Almendro 4  Masatepe 1 
El Ayote 18  Masaya 0 
El Castillo 57  Matagalpa 10 
El Coral 3  Mateare 0 
El Crucero 0  Matiguas 7 
El Jicaral 0  Morrito 0 
El Jicaro 1  Mosonte 0 
El Rama 146  Moyogalpa 0 
El Realejo 0  Mulle de los Bueyos 11 
Murra 6  San Juan del Norte 0 
Muy Muy 0  San Juan del Rio Coco 0 
Nagarote 0  San Juan del Sur 1 
Nandaime 0  San Lorenzo 19 
Nandasmo 0  San Lucas 0 
Nindiri 1  San Marcos 0 
Niquinohomo 1  San Miguelito 8 
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Municipality Cases   Municipality Cases 
Nueva Guinea 494  San Nicolas 0 
Ocotal 0  San Pedro de Lovago 1 
Paiwas 1  San Pedro Del Norte 1 
Palacaguina 0  San Rafael del Norte 5 
Posoltega 1  Santa Maria 0 
Potosi 0  Santa Maria de Pantasma 21 
Prinzapolka 0  Santa Rosa del Penon 1 
Pueblo Nuevo 0  Santa Teresa 0 
Puerto Cabezas 45  Santo Domingo 10 
Puerto Morazan 0  Santo Tomas 8 
Quezalguaque 1  Santo Tomas del Norte 0 
Quilali 2  Sebaco 1 
Rancho Grande 412  Siuna 466 
Rio Blanco 3  Somotillo 1 
Rivas 0  Somoto 1 
Rosita 207  Telica 0 
San Carlos 95  Telpaneca 0 
San Dionisio 1  Terrabona 0 
San Fernando 0  Teustepe 1 
San Francisco de Cuapa 0  Ticuantepe 2 
San Francisco del Norte 1  Tipitapa 3 
San Francisco Libre 0  Tisma 0 
San Isidro 2  Tola 0 
San Jorge 0  Totogalpa 0 
San Jose de Bocay 818  Villa Carlos Fonseca 0 
San Jose de Cusmapa 0  Villa Sandino 2 
San Jose de Los Remates 1  Villanueva 1 
San Juan de Limay 0  Waslala 423 
San Juan de Oriente 0  Waspan 7 
San Rafael del Sur 0  Wiwili de Jinotega 113 
San Ramon 16  Wiwili de Nueva Segovia 0 
San Sebastian de Yali 1  Yalaguina 0 
Santa Lucia 0       
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APPENDIX C 

Table C−1. Area in square kilometers of temperature zones within municipalities. 
  Temperature Zones (Degrees Celsius) 
Municipality 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 
Achuapa 0 0 0 3 14 35 90 170 78 0 
Acoyapa 0 0 0 0 0 0 0 42 1329 0 
Altagracia 0 0 1 5 10 9 20 41 108 0 
Belen 0 0 0 0 0 0 0 23 22 0 
Bluefields 0 0 0 0 0 0 48 433 3650 311 
Boaco 0 0 0 0 5 96 387 562 34 0 
Bonanza 0 0 0 0 10 71 225 860 751 0 
Buenos Aires 0 0 0 0 0 0 0 0 54 0 
Camoapa 0 0 0 0 3 9 266 1005 201 0 
Cardenas 0 0 0 0 0 0 3 20 169 3 
Catarina 0 0 0 0 0 0 8 3 0 0 
Chichigalpa 0 0 0 0 2 4 4 18 85 108 
Chinandega 0 1 1 9 12 19 40 59 508 8 
Cinco Pinos 0 0 0 0 0 0 14 47 0 0 
Ciudad Antigua 0 0 0 0 0 60 66 0 0 0 
Ciudad Dario 0 0 0 0 3 16 45 575 80 6 
Ciudad Sandino 0 0 0 0 0 0 0 7 42 0 
Comalapa 0 0 0 0 0 0 54 274 303 0 
Condega 0 0 4 78 149 171 0 0 0 0 
Corinto 0 0 0 0 0 0 0 0 0 27 
Cua-Bocay 0 6 16 29 93 261 353 41 3 0 
Desembocadura  0 0 0 0 0 0 0 0 1716 0 
Dipilto 0 3 3 51 40 7 0 0 0 0 
Diria 0 0 0 0 0 0 1 23 0 0 
Diriamba 0 0 0 0 0 14 50 52 219 12 
Diriomo 0 0 0 0 0 0 0 53 0 0 
Dolores 0 0 0 0 0 1 3 0 0 0 
El Almendro 0 0 0 0 0 0 0 41 962 0 
El Ayote 0 0 0 0 0 0 0 138 687 0 
El Castillo 0 0 0 0 0 0 2 176 1460 0 
El Coral 0 0 0 0 0 0 0 9 303 0 
El Crucero 0 0 0 0 7 67 80 66 3 0 
El Jicaral 0 0 0 0 0 0 0 76 117 232 
El Jicaro 0 0 0 0 26 164 240 0 0 0 
El Rama 0 0 0 0 0 0 2 54 3680 0 
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Table C−1 continued. 
  Temperature Zones (Degrees Celsius) 
Municipality 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 
El Realejo 0 0 0 0 0 0 0 0 8 89 
El Rosario 0 0 0 0 0 0 13 0 0 0 
El Sauce 0 0 0 0 0 41 74 144 434 0 
El Tortuguero 0 0 0 0 0 0 0 0 3082 0 
El Tuma - La Dalia 0 1 8 20 84 163 245 125 0 0 
El Viejo 0 0 0 0 0 0 18 53 640 467 
Esquipulas 0 0 0 3 26 40 96 54 0 0 
Esteli 0 0 13 233 428 99 17 0 0 0 
Granada 0 0 0 2 5 10 19 57 388 33 
Jalapa 0 0 16 46 110 383 90 0 0 0 
Jinotega 0 12 88 197 403 92 24 0 0 0 
Jinotepe 0 0 0 0 0 6 49 33 188 6 
Juigalpa 0 0 0 0 0 10 45 107 554 0 
Kukrahill 0 0 0 0 0 0 0 0 1116 67 
La Concepcion 0 0 0 0 0 28 34 5 0 0 
La Concordia 0 1 1 54 61 33 0 0 0 0 
La Conquista 0 0 0 0 0 0 0 30 59 0 
La Cruz de Rio Grande 0 0 0 0 0 0 0 0 3315 0 
La Libertad 0 0 0 0 0 17 262 400 96 0 
La Paz Centro 0 0 0 0 0 11 5 26 273 347 
La Paz de Carazo 0 0 0 0 0 0 2 15 0 0 
La Trinidad 0 0 0 13 40 111 113 0 0 0 
Laguna de Perlas 0 0 0 0 0 0 0 0 1810 128 
Larreynaga 0 0 0 0 0 2 7 16 585 135 
Las Sabanas 0 7 17 32 10 0 0 0 0 0 
Leon 0 0 0 0 0 1 2 30 329 417 
Macuelizo 0 0 0 24 91 96 52 0 0 0 
Managua 0 0 0 0 0 4 23 81 158 0 
Masatepe 0 0 0 0 0 0 47 13 0 0 
Masaya 0 0 0 0 0 0 5 27 114 0 
Matagalpa 0 0 35 80 120 198 191 22 0 0 
Mateare 0 0 0 0 0 0 0 76 209 3 
Matiguas 0 0 0 16 34 74 334 886 184 0 
Morrito 0 0 0 0 0 0 0 0 665 0 
Mosonte 3 22 18 20 23 45 81 0 0 0 
Moyogalpa 0 0 0 0 0 0 0 9 53 0 
Mulle de los Bueyos 0 0 0 0 0 0 0 371 1025 0 
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Table C−1 continued. 
  Temperature Zones (Degrees Celsius) 
Municipality 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 
Murra 0 0 0 64 169 119 77 0 0 0 
Muy Muy 0 0 0 2 6 31 60 280 0 0 
Nagarote 0 0 0 0 0 0 0 0 361 236 
Nandaime 0 0 0 0 0 0 0 24 347 0 
Nandasmo 0 0 0 0 0 0 11 3 0 0 
Nindiri 0 0 0 0 0 0 4 31 121 0 
Niquinohomo 0 0 0 0 0 0 22 10 0 0 
Nueva Guinea 0 0 0 0 0 0 2 187 2479 0 
Ocotal 0 0 0 0 0 36 60 0 0 0 
Paiwas 0 0 0 0 0 0 2 533 1813 0 
Palacaguina 0 0 0 0 9 62 94 0 0 0 
Posoltega 0 0 0 0 0 0 13 23 105 9 
Potosi 0 0 0 0 0 0 0 0 144 0 
Prinzapolka 0 0 0 0 0 0 0 13 6693 0 
Pueblo Nuevo 0 4 13 22 52 106 0 0 0 0 
Puerto Cabezas 0 0 0 0 0 0 0 1028 4714 0 
Puerto Morazan 0 0 0 0 0 0 0 13 360 87 
Quezalguaque 0 0 0 0 0 0 0 5 59 18 
Quilali 0 0 0 0 33 109 122 83 0 0 
Rancho Grande 0 0 0 10 32 174 137 136 102 0 
Rio Blanco 0 0 0 4 10 15 70 296 278 0 
Rivas 0 0 0 0 0 0 0 0 277 0 
Rosita 0 0 0 0 0 2 7 101 2088 0 
San Carlos 0 0 0 0 0 0 0 2 1348 2 
San Dionisio 0 0 0 1 11 49 76 34 0 0 
San Fernando 1 8 14 22 75 81 32 0 0 0 
San Francisco de Cuapa 0 0 0 0 0 17 86 148 24 0 
San Francisco del Norte 0 0 0 0 0 11 24 73 12 0 
San Francisco Libre 0 0 0 0 0 0 0 8 81 548 
San Isidro 0 0 0 0 11 36 91 155 0 0 
San Jorge 0 0 0 0 0 0 0 0 24 0 
San Jose de Bocay 0 3 3 8 38 465 786 2383 46 0 
San Jose de Cusmapa 0 0 6 16 30 30 31 18 0 0 
San Jose de Los Remates 0 0 0 1 49 42 146 43 0 0 
San Juan de Limay 0 0 8 21 38 72 98 179 19 0 
San Juan de Oriente 0 0 0 0 0 0 7 1 0 0 
San Juan del Norte 0 0 0 0 0 0 2 12 1499 59 
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Table C−1 continued. 
  Temperature Zones (Degrees Celsius) 
Municipality 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 
San Juan del Rio Coco 0 0 0 25 70 59 23 10 0 0 
San Juan del Sur 0 0 0 0 0 0 1 120 279 0 
San Lorenzo 0 0 0 0 0 10 55 136 339 0 
San Lucas 0 0 3 33 57 58 0 0 0 0 
San Marcos 0 0 0 0 0 53 45 18 3 0 
San Miguelito 0 0 0 0 0 0 0 30 1072 0 
San Nicolas 0 0 5 26 39 56 34 14 0 0 
San Pedro de Lovago 0 0 0 0 0 2 39 384 35 0 
San Pedro Del Norte 0 0 2 6 7 20 21 10 0 0 
San Rafael del Norte 0 4 13 83 100 35 0 0 0 0 
San Rafael del Sur 0 0 0 0 0 0 8 54 271 21 
San Ramon 0 0 0 18 112 143 107 40 0 0 
San Sebastian de Yali 0 3 12 40 159 141 38 11 0 0 
Santa Lucia 0 0 0 0 15 31 34 38 8 0 
Santa Maria 0 0 0 0 19 52 63 16 0 0 
Santa Maria de Pantasma 0 0 0 0 63 76 219 191 0 0 
Santa Rosa del Penon 0 0 0 0 0 9 39 107 71 0 
Santa Teresa 0 0 0 0 0 0 8 70 130 0 
Santo Domingo 0 0 0 0 0 1 55 309 311 0 
Santo Tomas 0 0 0 0 0 0 60 358 74 0 
Santo Tomas del Norte 0 0 0 0 0 0 0 30 11 0 
Sebaco 0 0 0 2 16 28 136 109 0 0 
Siuna 0 1 11 17 68 207 452 1054 3269 0 
Somotillo 0 0 0 0 0 0 0 14 699 0 
Somoto 0 0 0 18 83 245 112 0 0 0 
Telica 0 0 0 0 0 11 28 58 293 0 
Telpaneca 0 0 3 31 58 144 117 1 0 0 
Terrabona 0 0 0 1 17 51 91 85 0 0 
Teustepe 0 0 0 0 0 4 85 282 267 0 
Ticuantepe 0 0 0 0 0 3 21 38 1 0 
Tipitapa 0 0 0 0 0 0 0 108 637 208 
Tisma 0 0 0 0 0 0 0 0 109 5 
Tola 0 0 0 0 0 0 0 45 424 0 
Totogalpa 0 0 0 0 15 81 51 0 0 0 
Villa Carlos Fonseca 0 0 0 0 0 0 12 47 403 97 
Villa Sandino 0 0 0 0 0 0 69 431 183 0 
Villanueva 0 0 0 0 0 0 0 4 792 0 



 

 

157 

Table C−1 continued. 
  Temperature Zones (Degrees Celsius) 
Municipality 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 
Waslala 0 0 0 6 79 116 167 780 180 0 
Waspan 0 0 0 0 2 24 92 1542 6820 0 
Wiwili de Jinotega 2 12 24 43 134 562 672 851 146 1 
Wiwili de Nueva Segovia 0 0 0 3 27 83 152 142 0 0 
Yalaguina 0 0 0 0 0 61 9 0 0 0 
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APPENDIX D 
 
Table D−1. Area in square kilometers of mean annual precipitation zones within municipalities. 
 Mean Annual Precipitation Zones (millimeters) 

Municipality <800 
800-
900 

900-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

2000-
2400 

2400-
2800 

2800-
3200 

3200-
4000 >4000 

Achuapa 0 0 0 9 36 53 115 177 0 0 0 0 0 
Acoyapa 0 0 0 0 84 1044 207 40 0 0 0 0 0 
Altagracia 0 0 0 0 45 158 0 0 0 0 0 0 0 
Belen 0 0 0 76 109 58 0 0 0 0 0 0 0 
Bluefields 0 0 0 0 0 0 0 0 1 186 818 2005 1400 
Boaco 0 0 0 141 383 332 143 81 4 0 0 0 0 
Bonanza 0 0 0 0 0 0 13 71 313 1521 0 0 0 
Buenos Aires 0 0 0 26 31 0 0 0 0 0 0 0 0 
Camoapa 0 0 0 191 219 205 103 104 331 331 0 0 0 
Cardenas 0 0 0 0 0 0 71 32 100 0 0 0 0 
Catarina 0 0 0 0 10 2 0 0 0 0 0 0 0 
Chichigalpa 0 0 0 0 0 17 162 42 0 0 0 0 0 
Chinandega 0 0 0 0 93 224 267 73 0 0 0 0 0 
Cinco Pinos 0 0 0 0 40 21 0 0 0 0 0 0 0 
Ciudad Antigua 0 18 66 42 0 0 0 0 0 0 0 0 0 
Ciudad Dario 0 636 69 25 0 0 0 0 0 0 0 0 0 
Ciudad Sandino 0 0 0 1 40 8 0 0 0 0 0 0 0 
Comalapa 0 0 0 600 48 0 0 0 0 0 0 0 0 
Condega 198 158 46 0 0 0 0 0 0 0 0 0 0 
Corinto 0 0 0 0 0 39 0 0 0 0 0 0 0 
Cua-Bocay 0 0 0 0 0 802 0 0 0 0 0 0 0 
Desembocadura  0 0 0 0 0 0 0 0 0 0 1219 512 0 
Dipilto 0 24 80 0 0 0 0 0 0 0 0 0 0 
Diria 0 0 0 0 19 5 0 0 0 0 0 0 0 
Diriamba 0 0 0 0 0 351 0 0 0 0 0 0 0 
Diriomo 0 0 0 1 52 0 0 0 0 0 0 0 0 
Dolores 0 0 0 0 0 4 0 0 0 0 0 0 0 
El Almendro 0 0 0 0 0 9 316 468 210 0 0 0 0 
El Ayote 0 0 0 0 0 0 0 0 0 825 0 0 0 



 

 

 

159 
 

Table D−1 continued. 
Mean Annual Precipitation Zones (millimeters) 

Municipality <800 
800-
900 

900-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

2000-
2400 

2400-
2800 

2800-
3200 

3200-
4000 >4000 

El Castillo 0 0 0 0 0 0 0 0 53 476 800 313 0 
El Coral 0 0 0 0 0 0 0 17 295 0 0 0 0 
El Crucero 0 0 0 0 0 223 0 0 0 0 0 0 0 
El Jicaral 0 0 11 361 58 0 0 0 0 0 0 0 0 
El Jicaro 0 0 2 215 213 0 0 0 0 0 0 0 0 
El Rama 0 0 0 0 0 0 0 0 0 634 2562 546 0 
El Realejo 0 0 0 0 0 69 27 0 0 0 0 0 0 
El Rosario 0 0 0 0 0 13 0 0 0 0 0 0 0 
El Sauce 0 0 0 26 128 252 204 83 0 0 0 0 0 
El Tortuguero 0 0 0 0 0 0 0 0 0 113 2606 363 0 
El Tuma - La Dalia 0 0 0 0 100 422 114 10 0 0 0 0 0 
El Viejo 0 0 0 0 0 944 195 77 0 0 0 0 0 
Esquipulas 0 0 10 53 145 11 0 0 0 0 0 0 0 
Esteli 0 526 204 60 0 0 0 0 0 0 0 0 0 
Granada 0 0 242 157 184 0 0 0 0 0 0 0 0 
Jalapa 0 0 0 0 168 475 0 0 0 0 0 0 0 
Jinotega 0 0 19 136 338 337 0 0 0 0 0 0 0 
Jinotepe 0 0 0 0 76 212 0 0 0 0 0 0 0 
Juigalpa 0 0 0 346 183 189 0 0 0 0 0 0 0 
Kukrahill 0 0 0 0 0 0 0 0 0 0 6 1178 0 
La Concepcion 0 0 0 0 0 67 0 0 0 0 0 0 0 
La Concordia 0 99 51 0 0 0 0 0 0 0 0 0 0 
La Conquista 0 0 0 0 89 0 0 0 0 0 0 0 0 
La Cruz de Rio 
Grande 0 0 0 0 0 0 0 0 0 390 2936 0 0 
La Libertad 0 0 0 0 93 180 140 79 127 156 0 0 0 
La Paz Centro 0 0 0 357 159 168 0 0 0 0 0 0 0 
La Paz de Carazo 0 0 0 0 11 6 0 0 0 0 0 0 0 
La Trinidad 0 245 32 0 0 0 0 0 0 0 0 0 0 
Laguna de Perlas 0 0 0 0 0 0 0 0 0 0 6 1925 0 
Larreynaga 0 0 0 365 290 90 0 0 0 0 0 0 0 
Las Sabanas 0 0 0 66 0 0 0 0 0 0 0 0 0 
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Table D−1 continued. 
Mean Annual Precipitation Zones (millimeters) 

Municipality <800 
800-
900 

900-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

2000-
2400 

2400-
2800 

2800-
3200 

3200-
4000 >4000 

Leon 0 0 0 0 51 601 154 0 0 0 0 0 0 
Macuelizo 0 112 151 0 0 0 0 0 0 0 0 0 0 
Managua 0 0 0 86 76 104 0 0 0 0 0 0 0 
Masatepe 0 0 0 0 0 60 0 0 0 0 0 0 0 
Masaya 0 0 4 30 103 9 0 0 0 0 0 0 0 
Matagalpa 0 27 66 199 315 39 0 0 0 0 0 0 0 
Mateare 0 0 0 167 114 14 0 0 0 0 0 0 0 
Matiguas 0 0 0 0 0 0 99 261 1144 24 0 0 0 
Morrito 0 0 0 0 0 569 97 0 0 0 0 0 0 
Mosonte 27 90 66 29 0 0 0 0 0 0 0 0 0 
Moyogalpa 0 0 0 0 62 0 0 0 0 0 0 0 0 
Mulle de los Bueyos 0 0 0 0 0 0 0 0 159 1195 42 0 0 
Murra 0 0 0 93 256 80 0 0 0 0 0 0 0 
Muy Muy 0 0 0 0 3 239 136 1 0 0 0 0 0 
Nagarote 0 0 0 33 179 388 0 0 0 0 0 0 0 
Nandaime 0 0 0 368 5 0 0 0 0 0 0 0 0 
Nandasmo 0 0 0 0 0 14 0 0 0 0 0 0 0 
Nindiri 0 0 1 48 83 24 0 0 0 0 0 0 0 
Niquinohomo 0 0 0 0 0 32 0 0 0 0 0 0 0 
Nueva Guinea 0 0 0 0 0 0 0 0 1070 1329 271 2 0 
Ocotal 0 96 0 0 0 0 0 0 0 0 0 0 0 
Paiwas 0 0 0 0 0 0 0 0 134 2219 0 0 0 
Palacaguina 118 47 0 0 0 0 0 0 0 0 0 0 0 
Posoltega 0 0 0 0 0 0 136 14 0 0 0 0 0 
Potosi 0 0 0 88 58 0 0 0 0 0 0 0 0 
Prinzapolka 0 0 0 0 0 0 0 0 0 1491 5298 0 0 
Pueblo Nuevo 0 48 88 61 0 0 0 0 0 0 0 0 0 
Puerto Cabezas 0 0 0 0 0 0 0 57 1803 3247 644 0 0 
Puerto Morazan 0 0 0 0 189 263 16 0 0 0 0 0 0 
Quezalguaque 0 0 0 0 0 0 82 0 0 0 0 0 0 
Quilali 0 0 0 100 247 0 0 0 0 0 0 0 0 
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Table D−1 continued. 
Mean Annual Precipitation Zones (millimeters) 

Municipality <800 
800-
900 

900-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

2000-
2400 

2400-
2800 

2800-
3200 

3200-
4000 >4000 

Rancho Grande 0 0 0 0 0 59 255 146 135 0 0 0 0 
Rio Blanco 0 0 0 0 0 0 0 0 673 0 0 0 0 
Rivas 0 0 0 0 144 125 8 0 0 0 0 0 0 
Rosita 0 0 0 0 0 0 0 0 1176 1023 0 0 0 
San Carlos 0 0 0 0 0 0 1 617 650 90 0 0 0 
San Dionisio 0 0 0 67 104 0 0 0 0 0 0 0 0 
San Fernando 0 4 13 108 108 0 0 0 0 0 0 0 0 
San Francisco de 
Cuapa 0 0 0 158 105 12 0 0 0 0 0 0 0 
San Francisco del 
Norte 0 0 0 0 64 54 2 0 0 0 0 0 0 
San Francisco Libre 0 11 272 370 0 0 0 0 0 0 0 0 0 
San Isidro 0 240 53 0 0 0 0 0 0 0 0 0 0 
San Jorge 0 0 0 0 24 0 0 0 0 0 0 0 0 
San Jose de Bocay 0 0 0 0 0 2070 590 1066 9 0 0 0 0 
San Jose de Cusmapa 0 0 0 9 103 19 0 0 0 0 0 0 0 
San Jose de Los 
Remates 0 73 58 105 45 0 0 0 0 0 0 0 0 
San Juan de Limay 0 0 24 75 116 116 68 36 0 0 0 0 0 
San Juan de Oriente 0 0 0 0 5 3 0 0 0 0 0 0 0 
San Juan del Norte 0 0 0 0 0 0 0 0 0 0 0 553 1015 
San Juan del Rio 
Coco 0 0 93 94 0 0 0 0 0 0 0 0 0 
San Juan del Sur 0 0 0 0 1 291 127 0 0 0 0 0 0 
San Lorenzo 0 0 342 210 0 0 0 0 0 0 0 0 0 
San Lucas 0 0 76 74 0 0 0 0 0 0 0 0 0 
San Marcos 0 0 0 0 0 119 0 0 0 0 0 0 0 
San Miguelito 0 0 0 0 0 2 440 406 256 0 0 0 0 
San Nicolas 0 2 98 67 7 0 0 0 0 0 0 0 0 
San Pedro de Lovago 0 0 0 0 119 110 53 44 134 0 0 0 0 
San Pedro Del Norte 0 0 0 0 66 0 0 0 0 0 0 0 0 
San Rafael del Norte 0 1 114 120 0 0 0 0 0 0 0 0 0 
San Rafael del Sur 0 0 0 0 0 360 0 0 0 0 0 0 0 
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Table D−1 continued. 
Mean Annual Precipitation Zones (millimeters) 

Municipality <800 
800-
900 

900-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

2000-
2400 

2400-
2800 

2800-
3200 

3200-
4000 >4000 

San Ramon 0 0 0 0 178 206 36 0 0 0 0 0 0 
San Sebastian de Yali 7 113 185 99 0 0 0 0 0 0 0 0 0 
Santa Lucia 0 0 9 117 0 0 0 0 0 0 0 0 0 
Santa Maria 0 0 149 0 0 0 0 0 0 0 0 0 0 
Santa Maria de 
Pantasma 0 0 0 189 297 63 0 0 0 0 0 0 0 
Santa Rosa del Penon 0 0 28 142 56 0 0 0 0 0 0 0 0 
Santa Teresa 0 0 0 59 105 46 0 0 0 0 0 0 0 
Santo Domingo 0 0 0 0 0 0 0 46 314 316 0 0 0 
Santo Tomas 0 0 0 0 0 110 99 57 182 44 0 0 0 
Santo Tomas del 
Norte 0 0 0 0 5 36 0 0 0 0 0 0 0 
Sebaco 0 222 59 10 0 0 0 0 0 0 0 0 0 
Siuna 0 0 0 0 0 1101 557 687 1761 976 0 0 0 
Somotillo 0 0 0 0 412 218 83 0 0 0 0 0 0 
Somoto 0 146 313 0 0 0 0 0 0 0 0 0 0 
Telica 0 0 0 0 48 103 239 0 0 0 0 0 0 
Telpaneca 149 96 108 1 0 0 0 0 0 0 0 0 0 
Terrabona 0 87 104 54 0 0 0 0 0 0 0 0 0 
Teustepe 0 261 360 17 0 0 0 0 0 0 0 0 0 
Ticuantepe 0 0 0 0 1 62 0 0 0 0 0 0 0 
Tipitapa 0 240 706 10 0 0 0 0 0 0 0 0 0 
Tisma 0 0 74 38 5 0 0 0 0 0 0 0 0 
Tola 0 0 0 0 11 467 0 0 0 0 0 0 0 
Totogalpa 95 52 0 0 0 0 0 0 0 0 0 0 0 
Villa Carlos Fonseca 0 0 0 0 5 556 0 0 0 0 0 0 0 
Villa Sandino 0 0 0 0 0 0 79 189 407 8 0 0 0 
Villanueva 0 0 0 0 40 215 539 2 0 0 0 0 0 
Waslala 0 0 0 0 0 408 373 320 231 0 0 0 0 
Waspan 0 0 0 0 0 0 0 5212 2840 455 0 0 0 
Wiwili de Jinotega 0 0 0 0 202 1792 371 89 0 0 0 0 0 
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Table D−1 continued. 
Mean Annual Precipitation Zones (millimeters) 

Municipality <800 
800-
900 

900-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

2000-
2400 

2400-
2800 

2800-
3200 

3200-
4000 >4000 

Wiwili de Nueva 
Segovia 0 0 0 0 379 28 0 0 0 0 0 0 0 
Yalaguina 13 57 0 0 0 0 0 0 0 0 0 0 0 
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APPENDIX E 
 

 Table E−1.  Area in square kilometers of elevation zones within municipalities.       
  Elevation Zones (Height Above MSL) 

 Municipality 0-100 
100-
200 

200-
400 

400-
600 

600-
800 

800-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

 Achuapa 2 40 189 78 64 13 4 0 0 0 0 
 Acoyapa 898 402 73 2 0 0 0 0 0 0 0 
 Altagracia 62 46 43 21 13 10 7 1 0 0 0 
 Belen 46 169 28 0 0 0 0 0 0 0 0 
 Bluefields 2801 1071 552 26 0 0 0 0 0 0 0 
 Boaco 0 0 499 420 151 14 0 0 0 0 0 
 Bonanza 30 775 773 295 42 3 0 0 0 0 0 
 Buenos Aires 57 0 0 0 0 0 0 0 0 0 0 
 Camoapa 0 60 1000 389 31 4 0 0 0 0 0 
 Cardenas 139 34 31 0 0 0 0 0 0 0 0 
 Catarina 0 1 1 10 0 0 0 0 0 0 0 
 Chichigalpa 155 31 24 7 4 0 0 0 0 0 0 
 Chinandega 371 106 81 46 23 16 11 3 0 0 0 
 Cinco Pinos 0 1 44 16 0 0 0 0 0 0 0 
 Ciudad Antigua 0 0 0 0 107 19 0 0 0 0 0 
 Ciudad Dario 0 4 50 483 157 35 1 0 0 0 0 
 Ciudad Sandino 3 28 16 2 0 0 0 0 0 0 0 
 Comalapa 91 190 290 74 3 0 0 0 0 0 0 
 Condega 0 0 0 0 173 141 74 14 0 0 0 
 Corinto 22 0 0 0 0 0 0 0 0 0 0 
 Cua-Bocay 0 0 1 297 278 152 46 15 13 0 0 
 Desembocadura  1732 0 0 0 0 0 0 0 0 0 0 
 Dipilto 0 0 0 0 0 14 55 33 2 0 0 
 Diria 0 2 22 0 0 0 0 0 0 0 0 
 Diriamba 144 69 60 52 11 0 0 0 0 0 0 
 Diriomo 0 0 53 0 0 0 0 0 0 0 0 
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 Table E−1 continued. 
  Elevation Zones (Height Above MSL) 

 Municipality 0-100 
100-
200 

200-
400 

400-
600 

600-
800 

800-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

 Dolores 0 0 0 4 0 0 0 0 0 0 0 
 El Almendro 23 466 514 0 0 0 0 0 0 0 0 
 El Ayote 4 541 280 0 0 0 0 0 0 0 0 
 El Castillo 502 789 350 1 0 0 0 0 0 0 0 
 El Coral 0 277 35 0 0 0 0 0 0 0 0 
 El Crucero 0 2 63 80 58 20 0 0 0 0 0 
 El Jicaral 227 48 87 68 0 0 0 0 0 0 0 
 El Jicaro 0 0 0 114 263 52 1 0 0 0 0 
 El Rama 2334 1212 189 7 0 0 0 0 0 0 0 
 El Realejo 96 0 0 0 0 0 0 0 0 0 0 
 El Rosario 0 0 0 13 0 0 0 0 0 0 0 
 El Sauce 26 282 221 115 37 12 0 0 0 0 0 
 El Tortuguero 2257 804 20 1 0 0 0 0 0 0 0 
 El Tuma - La Dalia 0 0 64 225 186 109 49 12 1 0 0 
 El Viejo 844 193 94 33 0 0 0 0 0 0 0 
 Esquipulas 0 0 39 99 43 37 1 0 0 0 0 
 Esteli 0 0 0 13 41 318 303 110 5 0 0 
 Granada 367 103 74 22 11 5 1 0 0 0 0 
 Jalapa 0 0 0 34 365 129 64 49 4 0 0 
 Jinotega 0 0 0 7 57 214 406 97 49 0 0 
 Jinotepe 94 84 45 50 1 0 0 0 0 0 0 
 Juigalpa 318 245 116 38 1 0 0 0 0 0 0 
 Kukrahill 1143 34 6 1 0 0 0 0 0 0 0 
 La Concepcion 0 0 0 32 31 4 0 0 0 0 0 
 La Concordia 0 0 0 0 7 70 35 35 3 0 0 
 La Conquista 0 36 53 0 0 0 0 0 0 0 0 
 La Cruz de Rio Grande 2443 877 6 0 0 0 0 0 0 0 0 
 La Libertad 0 48 340 356 31 0 0 0 0 0 0 
 La Paz Centro 357 234 51 23 12 7 0 0 0 0 0 
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 Table E−1 continued. 
  Elevation Zones (Height Above MSL) 

 Municipality 0-100 
100-
200 

200-
400 

400-
600 

600-
800 

800-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

 La Paz de Carazo 0 0 17 0 0 0 0 0 0 0 0 
 La Trinidad 0 0 0 14 126 100 28 9 0 0 0 
 Laguna de Perlas 1898 4 0 0 0 0 0 0 0 0 0 
 Larreynaga 448 215 67 10 4 1 0 0 0 0 0 
 Las Sabanas 0 0 0 0 0 1 27 29 9 0 0 
 Leon 516 157 91 6 0 0 0 0 0 0 0 
 Macuelizo 0 0 0 2 66 111 72 12 0 0 0 
 Managua 65 65 89 37 9 1 0 0 0 0 0 
 Masatepe 0 0 13 47 0 0 0 0 0 0 0 
 Masaya 7 50 85 4 0 0 0 0 0 0 0 
 Matagalpa 0 0 20 73 233 160 83 72 5 0 0 
 Mateare 85 60 150 0 0 0 0 0 0 0 0 
 Matiguas 0 47 917 402 113 27 21 1 0 0 0 
 Morrito 468 198 0 0 0 0 0 0 0 0 0 
 Mosonte 0 0 0 0 98 40 18 22 18 14 2 
 Moyogalpa 36 21 5 0 0 0 0 0 0 0 0 
 Mulle de los Bueyos 95 656 645 0 0 0 0 0 0 0 0 
 Murra 0 0 0 45 88 171 119 6 0 0 0 
 Muy Muy 0 0 283 57 29 9 1 0 0 0 0 
 Nagarote 367 194 12 0 0 0 0 0 0 0 0 
 Nandaime 149 178 48 0 0 0 0 0 0 0 0 
 Nandasmo 0 0 4 10 0 0 0 0 0 0 0 
 Nindiri 14 68 63 11 0 0 0 0 0 0 0 
 Niquinohomo 0 0 11 21 0 0 0 0 0 0 0 
 Nueva Guinea 341 1610 720 1 0 0 0 0 0 0 0 
 Ocotal 0 0 0 0 72 22 2 0 0 0 0 
 Paiwas 134 1317 888 14 0 0 0 0 0 0 0 
 Palacaguina 0 0 0 0 156 9 0 0 0 0 0 
 Posoltega 42 47 45 11 5 0 0 0 0 0 0 
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 Table E−1 continued. 
  Elevation Zones (Height Above MSL) 

 Municipality 0-100 
100-
200 

200-
400 

400-
600 

600-
800 

800-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

 Potosi 144 2 0 0 0 0 0 0 0 0 0 
 Prinzapolka 6763 42 0 0 0 0 0 0 0 0 0 
 Pueblo Nuevo 0 0 0 0 92 47 34 17 6 1 0 
 Puerto Cabezas 5619 156 15 0 0 0 0 0 0 0 0 
 Puerto Morazan 400 35 37 0 0 0 0 0 0 0 0 
 Quezalguaque 44 26 12 0 0 0 0 0 0 0 0 
 Quilali 0 0 36 122 124 61 4 0 0 0 0 
 Rancho Grande 0 15 176 135 156 91 17 5 0 0 0 
 Rio Blanco 0 178 341 111 25 10 6 2 0 0 0 
 Rivas 223 53 1 0 0 0 0 0 0 0 0 
 Rosita 1770 347 74 8 0 0 0 0 0 0 0 
 San Carlos 934 403 21 0 0 0 0 0 0 0 0 
 San Dionisio 0 0 17 67 60 27 0 0 0 0 0 
 San Fernando 0 0 0 0 59 82 50 20 15 6 1 
 San Francisco de Cuapa 0 32 131 75 36 1 0 0 0 0 0 
 San Francisco del Norte 0 8 51 46 15 0 0 0 0 0 0 
 San Francisco Libre 374 149 94 27 7 2 0 0 0 0 0 
 San Isidro 0 0 0 173 76 37 7 0 0 0 0 
 San Jorge 24 0 0 0 0 0 0 0 0 0 0 
 San Jose de Bocay 0 158 2203 1074 250 43 5 2 0 0 0 
 San Jose de Cusmapa 0 0 13 32 29 35 18 4 0 0 0 
 San Jose  Los Remates 0 0 10 142 70 53 6 0 0 0 0 
 San Juan de Limay 0 10 160 103 77 50 24 9 2 0 0 
 San Juan de Oriente 0 0 3 5 0 0 0 0 0 0 0 
 San Juan del Norte 1241 263 67 6 0 0 0 0 0 0 0 
 San Juan del Rio Coco 0 0 0 18 38 78 38 15 0 0 0 
 San Juan del Sur 142 143 96 0 0 0 0 0 0 0 0 
 San Lorenzo 246 64 155 70 17 0 0 0 0 0 0 
 San Lucas 0 0 0 0 27 69 35 16 5 0 0 
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 Table E−1 continued. 
  Elevation Zones (Height Above MSL) 

 Municipality 
0-

100 
100-
200 

200-
400 

400-
600 

600-
800 

800-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

 San Marcos 0 4 18 43 53 1 0 0 0 0 0 
 San Miguelito 394 659 51 0 0 0 0 0 0 0 0 
 San Nicolas 0 0 1 28 57 49 25 14 0 0 0 
 San Pedro de Lovago 0 22 368 61 9 0 0 0 0 0 0 
 San Pedro Del Norte 0 0 11 20 19 9 4 2 1 0 0 
 San Rafael del Norte 0 0 0 0 28 26 118 55 8 0 0 
 San Rafael del Sur 178 95 70 9 0 0 0 0 0 0 0 
 San Ramon 0 0 39 93 123 108 54 3 0 0 0 
 San Sebastian de Yali 0 0 0 37 89 181 73 19 5 0 0 
 Santa Lucia 0 3 45 31 29 18 0 0 0 0 0 
 Santa Maria 0 0 0 62 61 24 3 0 0 0 0 
 Santa Maria de Pantasma 0 0 22 328 98 77 24 0 0 0 0 
 Santa Rosa del Penon 0 0 104 89 27 6 0 0 0 0 0 
 Santa Teresa 38 52 105 9 0 0 0 0 0 0 0 
 Santo Domingo 0 136 443 88 9 0 0 0 0 0 0 
 Santo Tomas 1 16 371 104 0 0 0 0 0 0 0 
 Santo Tomas del Norte 1 22 18 0 0 0 0 0 0 0 0 
 Sebaco 0 0 0 167 96 23 4 1 0 0 0 
 Siuna 752 2413 1111 555 150 69 24 8 0 0 0 
 Somotillo 611 94 8 0 0 0 0 0 0 0 0 
 Somoto 0 0 0 8 254 136 55 6 0 0 0 
 Telica 106 114 109 46 14 1 0 0 0 0 0 
 Telpaneca 0 0 0 0 217 92 34 11 0 0 0 
 Terrabona 0 0 11 122 66 40 6 0 0 0 0 
 Teustepe 6 116 317 156 40 3 0 0 0 0 0 
 Ticuantepe 0 0 27 25 10 1 0 0 0 0 0 
 Tipitapa 604 107 149 95 1 0 0 0 0 0 0 
 Tisma 80 37 0 0 0 0 0 0 0 0 0 
 Tola 278 146 28 0 0 0 0 0 0 0 0 
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 Appendix E.  Area in square kilometers of elevation zones within municipalities. 
  Elevation Zones (Height Above MSL) 

 Municipality 0-100 
100-
200 

200-
400 

400-
600 

600-
800 

800-
1000 

1000-
1200 

1200-
1400 

1400-
1600 

1600-
1800 

1800-
2000 

 Totogalpa 0 0 0 0 92 50 5 0 0 0 0 
 Villa Carlos Fonseca 281 165 77 15 0 0 0 0 0 0 0 
 Villa Sandino 0 58 535 78 12 0 0 0 0 0 0 
 Villanueva 651 134 11 0 0 0 0 0 0 0 0 
 Waslala 0 100 756 256 138 72 10 0 0 0 0 
 Waspan 4646 2543 1156 179 7 2 0 0 0 0 0 
 Wiwili de Jinotega 0 166 610 866 500 201 59 36 16 0 0 
 Wiwili de Nueva Segovia 0 0 15 210 109 65 8 0 0 0 0 
 Yalaguina 0 0 0 0 62 8 0 0 0 0 0 
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APPENDIX F 
  

 Table F−1.  Area in square kilometers of soil zones within municipalities. 
  Soil Type Zones 
  Heavy  Loamy   Clay Sandy 
 Municipality Clay Clay Sand Sandy Loam Loam Loam 
 Achuapa 0 0 0 0 1 389 0 
 Acoyapa 745 90 0 0 16 524 0 
 Altagracia 0 83 0 0 23 63 32 
 Belen 69 149 0 0 24 1 0 
 Bluefields 0 4410 0 0 0 0 0 
 Boaco 40 445 0 0 0 599 0 
 Bonanza 0 1918 0 0 0 0 0 
 Buenos Aires 4 0 0 0 13 19 14 
 Camoapa 7 1013 0 0 0 401 63 
 Cardenas 0 202 0 0 0 0 0 
 Catarina 0 0 0 0 0 9 0 
 Chichigalpa 25 0 0 0 132 3 61 
 Chinandega 46 150 0 0 197 46 218 
 Cinco Pinos 0 0 0 0 0 61 0 
 Ciudad Antigua 0 0 0 0 70 53 3 
 Ciudad Dario 145 0 0 0 0 585 0 
 Ciudad Sandino 0 0 11 0 0 26 12 
 Comalapa 131 138 0 0 38 332 6 
 Condega 0 33 0 0 41 328 0 
 Corinto 9 0 0 0 0 30 0 
 Cua-Bocay 0 802 0 0 0 0 0 
 Desembocadura  0 1731 0 0 0 0 0 
 Dipilto 0 0 0 0 0 63 41 
 Diria 0 0 0 0 6 18 0 
 Diriamba 0 187 0 0 34 130 0 
 Diriomo 0 0 0 0 46 6 1 
 Dolores 0 0 0 0 4 0 0 
 El Almendro 147 815 0 0 0 41 0 
 El Ayote 0 825 0 0 0 0 0 
 El Castillo 0 1642 0 0 0 0 0 
 El Coral 0 312 0 0 0 0 0 
 El Crucero 0 1 0 0 138 84 0 
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 Table F−1 continued. 
  Soil Type Zones 
  Heavy  Loamy   Clay Sandy 
 Municipality Clay Clay Sand Sandy Loam Loam Loam 
 El Jicaral 125 82 0 0 70 151 0 
 El Jicaro 0 57 2 0 210 161 0 
 El Realejo 26 0 0 0 58 12 0 
 El Rosario 0 0 0 0 2 11 0 
 El Sauce 76 0 0 0 0 617 0 
 El Tortuguero 0 3082 0 0 0 0 0 
 El Tuma - La Dalia 0 646 0 0 0 0 0 
 El Viejo 155 62 302 0 256 413 28 
 Esquipulas 0 78 0 0 0 141 0 
 Esteli 23 168 0 0 271 328 0 
 Granada 241 46 0 0 21 130 138 
 Jalapa 34 77 77 0 204 251 0 
 Jinotega 0 518 0 0 0 297 0 
 Jinotepe 30 159 0 0 35 64 0 
 Juigalpa 220 172 0 0 133 193 0 
 Kukrahill 0 1184 0 0 0 0 0 
 La Concepcion 0 0 0 0 39 0 28 
 La Concordia 0 112 0 0 0 38 0 
 La Conquista 0 66 0 0 0 23 0 

 
La Cruz de Rio 
Grande 0 3326 0 0 0 0 0 

 La Libertad 0 749 0 0 21 5 0 
 La Paz Centro 204 73 50 0 73 230 51 
 La Paz de Carazo 0 0 0 0 0 17 0 
 La Trinidad 2 14 0 0 0 261 0 
 Laguna de Perlas 0 1931 0 0 0 0 0 
 Larreynaga 324 123 0 0 31 173 94 
 Las Sabanas 0 0 0 0 0 66 0 
 Leon 200 72 61 12 146 166 149 
 Macuelizo 0 2 0 0 0 176 85 
 Managua 0 0 3 0 32 148 83 
 Masatepe 0 0 0 0 31 12 16 
 Masaya 0 0 0 0 0 124 22 
 Matagalpa 4 345 0 0 0 297 0 
 Mateare 0 0 7 0 0 271 13 
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 Table F−1 continued. 
  Soil Type Zones 
  Heavy  Loamy   Clay Sandy 
 Municipality Clay Clay Sand Sandy Loam Loam Loam 
 Matiguas 73 1455 0 0 0 0 0 
 Morrito 367 223 0 0 0 76 0 
 Moyogalpa 0 5 0 0 20 0 37 
 Mulle de los Bueyos 0 1396 0 0 0 0 0 
 Murra 0 253 0 0 0 176 0 
 Muy Muy 164 174 0 0 0 41 0 
 Nagarote 201 0 0 0 99 295 5 
 Nandaime 109 118 0 0 9 87 47 
 Nandasmo 0 0 0 0 3 7 4 
 Nindiri 0 0 0 0 12 35 106 
 Niquinohomo 0 0 0 0 0 32 0 
 Nueva Guinea 0 2672 0 0 0 0 0 
 Ocotal 0 0 0 0 0 58 38 
 Paiwas 0 2324 0 0 0 29 0 
 Palacaguina 0 0 0 0 0 165 0 
 Posoltega 7 0 0 0 45 0 98 
 Potosi 110 0 0 0 16 10 10 
 Prinzapolka 0 6789 0 0 0 0 0 
 Pueblo Nuevo 0 2 0 0 18 177 0 
 Puerto Cabezas 0 5771 0 0 0 0 0 
 Puerto Morazan 259 0 0 0 89 120 0 
 Quezalguaque 34 0 0 0 21 6 21 
 Quilali 0 192 0 0 73 82 0 
 Rancho Grande 0 595 0 0 0 0 0 
 Rio Blanco 0 673 0 0 0 0 0 
 Rivas 110 48 0 0 33 83 0 
 Rosita 0 2199 0 0 0 0 0 
 San Carlos 0 1358 0 0 0 0 0 
 San Dionisio 0 64 0 0 0 107 0 
 San Fernando 0 14 92 0 95 18 14 

 
San Francisco de 
Cuapa 0 64 0 0 0 208 3 

 
San Francisco del 
Norte 0 4 0 0 0 116 0 

 San Francisco Libre 304 58 0 0 125 156 0 
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 Table F−1 continued. 
  Soil Type Zones 
  Heavy  Loamy   Clay Sandy 
 Municipality Clay Clay Sand Sandy Loam Loam Loam 
 San Isidro 137 0 0 0 0 156 0 
 San Jorge 0 0 0 0 15 8 0 
 San Jose de Bocay 0 3735 0 0 0 0 0 

 
San Jose de 
Cusmapa 0 47 0 0 0 84 0 

 
San Jose de Los 
Remates 0 66 0 0 0 215 0 

 San Juan de Limay 10 93 0 0 36 296 0 
 San Juan de Oriente 0 0 0 0 0 8 0 
 San Juan del Norte 0 1568 0 0 0 0 0 

 
San Juan del Rio 
Coco 0 0 0 0 119 68 0 

 San Juan del Sur 135 284 0 0 0 0 0 
 San Lorenzo 252 124 0 0 0 175 0 
 San Lucas 0 79 0 0 0 71 0 
 San Marcos 0 4 0 0 95 17 3 
 San Miguelito 150 942 0 0 0 12 0 
 San Nicolas 26 0 0 0 0 148 0 

 
San Pedro de 
Lovago 1 349 0 0 33 77 0 

 
San Pedro Del 
Norte 0 0 0 0 0 66 0 

 
San Rafael del 
Norte 0 156 0 0 0 79 0 

 San Rafael del Sur 0 103 0 0 100 157 0 
 San Ramon 6 349 0 0 0 65 0 

 
San Sebastian de 
Yali 0 295 0 0 0 109 0 

 Santa Lucia 6 51 0 0 0 59 0 
 Santa Maria 0 0 0 0 0 90 59 

 
Santa Maria de 
Pantasma 0 496 0 0 0 53 0 

 
Santa Rosa del 
Penon 20 0 0 0 0 206 0 

 Santa Teresa 4 124 0 0 0 82 0 
 Santo Domingo 0 676 0 0 0 0 0 
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 Table F−1 continued. 
  Soil Type Zones 
  Heavy  Loamy   Clay Sandy 
 Municipality Clay Clay Sand Sandy Loam Loam Loam 
 Santo Tomas 1 467 0 0 0 24 0 

 
Santo Tomas del 
Norte 0 0 0 0 0 41 0 

 Sebaco 76 0 0 0 0 215 0 
 Siuna 0 5082 0 0 0 0 0 
 Somotillo 416 15 0 0 76 206 0 
 Somoto 0 216 0 0 63 86 94 
 Telica 81 3 0 3 48 33 222 
 Telpaneca 0 0 0 0 29 325 0 
 Terrabona 27 0 0 0 0 218 0 
 Teustepe 77 284 0 0 80 197 0 
 Ticuantepe 0 0 0 0 22 3 38 
 Tipitapa 473 197 0 0 166 117 0 
 Tisma 22 0 0 0 0 92 0 
 Tola 255 178 0 0 32 12 0 
 Totogalpa 0 7 0 0 0 132 8 

 
Villa Carlos 
Fonseca 64 119 0 0 6 373 0 

 Villa Sandino 1 576 0 0 0 106 0 
 Villanueva 336 53 0 0 1 406 0 
 Waslala 0 1332 0 0 0 0 0 
 Waspan 0 8521 0 0 0 0 0 
 Wiwili de Jinotega 0 2454 0 0 0 0 0 

 
Wiwili de Nueva 
Segovia 0 384 0 0 0 23 0 

 Yalaguina 0 0 0 0 0 70 0 
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APPENDIX G 
 
Table G−1.  Area in square kilometers of land cover/use classification zones within municipalities.   

 Area (km2) of classification zones* 

Municipality 1 2 3 4 5 6 7 8 9 10 11 12 13 
Achuapa 0 8 15 339 0 0 0 0 11 6 11 0 0 
Acoyapa 0 27 247 906 0 0 0 71 0 93 0 0 0 
Altagracia 0 9 57 36 0 0 0 0 0 91 0 0 3 
Belen 0 88 103 17 0 0 0 0 0 35 0 0 0 
Bluefields 2 0 2 150 19 49 32 0 0 0 8 1532 2665 
Boaco 1 0 471 612 0 0 0 0 0 0 0 0 0 
Bonanza 0 0 15 350 0 0 0 0 0 24 0 0 1528 
Buenos Aires 0 33 0 0 0 0 0 0 0 0 0 0 0 
Camoapa 0 0 788 688 0 0 0 0 8 0 0 0 0 
Cardenas 0 6 6 127 0 0 0 0 0 34 0 0 20 
Catarina 0 0 0 12 0 0 0 0 0 0 0 0 0 
Chichigalpa 0 183 3 24 1 0 0 0 0 10 0 0 0 
Chinandega 6 303 6 52 24 0 11 0 0 252 3 0 0 
Cinco Pinos 0 14 0 47 0 0 0 0 0 0 0 0 0 
Ciudad Antigua 0 0 0 1 0 0 0 0 65 13 47 0 0 
Ciudad Dario 0 65 93 485 0 0 0 72 0 15 0 0 0 
Ciudad Sandino 0 27 15 0 0 0 0 0 0 7 0 0 0 
Comalapa 0 58 240 26 0 0 0 0 293 22 0 0 2 
Condega 0 40 71 291 0 0 0 0 0 0 0 0 0 
Corinto 2 2 0 0 35 0 0 0 0 0 0 0 0 
Cua-Bocay 0 41 3 690 0 0 0 0 0 23 0 0 45 
Desembocadura  0 0 0 0 0 193 135 0 0 0 168 176 1044 
Dipilto 0 0 0 0 0 0 0 0 0 3 100 0 0 
Diria 0 0 2 3 0 0 0 0 0 19 0 0 0 
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Table G−1 continued. 
 Area (km2) of classification zones* 
Municipality 1 2 3 4 5 6 7 8 9 10 11 12 13 
Diriamba 0 26 72 141 0 0 0 5 0 106 0 0 0 
Diriomo 0 0 6 0 0 0 0 0 0 1 0 0 0 
Dolores 0 0 0 0 4 0 0 0 0 0 0 0 0 
El Almendro 0 0 650 329 0 0 0 0 0 24 0 0 0 
El Ayote 0 0 722 102 0 0 0 0 0 0 0 0 1 
El Castillo 0 0 61 135 0 0 0 0 0 0 0 0 1446 
El Coral 0 0 299 13 0 0 0 0 0 0 0 0 0 
El Crucero 0 0 0 140 0 0 0 0 0 83 0 0 0 
El Jicaral 0 53 16 165 0 0 0 175 0 20 0 0 0 
El Jicaro 0 3 0 0 0 0 0 0 15 18 376 0 18 
El Rama 1 0 2029 1436 0 0 0 0 0 0 18 23 235 
El Realejo 0 75 0 0 11 0 0 13 0 0 0 0 0 
El Rosario 0 0 5 8 0 0 0 0 0 0 0 0 0 
El Sauce 0 0 312 291 0 0 0 7 0 83 0 0 0 
El Tortuguero 0 0 1546 394 0 0 4 0 0 0 0 21 1117 
El Tuma - La Dalia 0 289 78 255 0 0 0 0 0 0 0 0 24 
El Viejo 4 464 11 235 141 10 4 17 0 331 0 0 0 
Esquipulas 0 0 110 105 0 0 0 0 0 0 0 0 4 
Esteli 7 15 79 605 0 0 0 0 38 0 37 0 9 
Granada 11 190 77 58 0 0 0 17 0 156 0 0 2 
Jalapa 0 229 0 0 0 0 0 0 0 96 316 0 0 
Jinotega 2 168 184 299 0 0 0 0 55 13 0 0 91 
Jinotepe 0 26 112 40 0 0 0 33 0 76 0 0 0 
Juigalpa 1 180 201 223 0 0 0 43 10 17 0 0 25 
Kukrahill 0 0 0 300 0 70 437 0 0 0 46 0 330 
La Concepcion 0 0 0 67 0 0 0 0 0 0 0 0 0 
La Concordia 0 0 105 29 0 0 0 0 0 0 0 0 16 
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Table G−1 continued. 
 Area (km2) of classification zones* 
Municipality 1 2 3 4 5 6 7 8 9 10 11 12 13 
La Conquista 0 3 74 0 0 0 0 0 0 12 0 0 0 
La Cruz de Rio Grande 0 0 993 985 0 0 5 0 0 0 35 32 1276 
La Libertad 0 0 538 234 0 0 0 0 0 0 0 0 3 
La Paz Centro 2 137 106 95 0 0 0 25 0 313 0 0 0 
La Paz de Carazo 0 0 17 0 0 0 0 0 0 0 0 0 0 
La Trinidad 0 2 36 219 0 0 0 0 20 0 0 0 0 
Laguna de Perlas 0 0 0 88 1 446 258 0 0 0 12 2 1128 
Larreynaga 0 199 278 93 0 0 0 120 0 55 0 0 0 
Las Sabanas 0 23 0 13 0 0 0 0 0 0 30 0 0 
Leon 15 304 88 154 39 3 0 72 0 123 0 0 0 
Macuelizo 0 30 0 0 0 0 0 0 2 57 170 0 0 
Managua 67 79 36 30 0 0 0 0 0 53 0 0 0 
Masatepe 0 0 0 57 0 0 0 0 0 3 0 0 0 
Masaya 0 10 57 79 0 0 0 0 0 0 0 0 0 
Matagalpa 1 0 338 124 0 0 0 0 4 136 0 0 43 
Mateare 0 102 9 0 0 0 0 3 0 177 0 0 0 
Matiguas 0 0 1056 409 0 0 0 0 0 0 0 0 63 
Morrito 0 35 385 43 0 0 0 51 0 133 0 0 0 
Mosonte 0 1 0 6 0 0 0 0 0 41 164 0 0 
Moyogalpa 0 35 10 0 0 0 0 0 0 17 0 0 0 
Mulle de los Bueyos 0 0 1396 0 0 0 0 0 0 0 0 0 0 
Murra 0 0 18 0 0 0 0 0 0 366 44 0 0 
Muy Muy 0 0 293 86 0 0 0 0 0 0 0 0 0 
Nagarote 0 6 332 1 7 0 0 146 0 104 0 0 0 
Nandaime 0 142 121 34 0 0 0 23 0 40 0 0 0 
Nandasmo 0 0 0 14 0 0 0 0 0 0 0 0 0 
Nindiri 0 28 97 11 0 0 3 0 3 14 0 0 0 
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Table G−1 continued. 
 Area (km2) of classification zones* 
Municipality 1 2 3 4 5 6 7 8 9 10 11 12 13 
Niquinohomo 0 0 1 26 0 0 0 0 0 5 0 0 0 
Nueva Guinea 0 0 1335 524 0 0 0 0 0 0 0 3 810 
Ocotal 2 26 0 0 0 0 0 0 0 23 45 0 0 
Paiwas 0 0 2158 137 0 0 0 0 0 54 0 0 4 
Palacaguina 1 96 0 68 0 0 0 0 0 0 0 0 0 
Posoltega 0 80 17 28 0 0 0 0 0 25 0 0 0 
Potosi 0 129 6 6 0 0 0 0 0 0 0 0 0 
Prinzapolka 0 0 13 542 29 326 424 0 0 53 2296 469 2616 
Pueblo Nuevo 0 121 0 69 0 0 0 0 0 0 7 0 0 
Puerto Cabezas 0 0 222 120 124 89 912 0 0 15 2178 0 2116 
Puerto Morazan 0 38 0 73 260 3 0 0 0 95 0 0 0 
Quezalguaque 0 61 0 12 0 0 0 0 0 9 0 0 0 
Quilali 0 49 6 7 0 0 0 0 0 96 31 0 158 
Rancho Grande 0 87 262 191 0 0 0 0 0 42 0 0 13 
Rio Blanco 0 0 418 77 0 0 0 0 0 133 0 0 45 
Rivas 0 198 45 21 0 0 0 0 0 4 0 0 0 
Rosita 0 0 55 630 0 0 0 0 0 0 17 72 1425 
San Carlos 0 0 589 400 0 0 167 0 0 0 0 18 148 
San Dionisio 0 0 16 110 0 0 0 0 0 45 0 0 0 
San Fernando 0 4 0 0 0 0 0 0 0 0 229 0 0 
San Francisco de Cuapa 0 16 247 12 0 0 0 0 0 0 0 0 0 
San Francisco del Norte 0 2 0 118 0 0 0 0 0 0 0 0 0 
San Francisco Libre 0 94 59 105 0 0 0 265 0 102 0 0 0 
San Isidro 0 94 71 73 0 0 0 0 55 0 0 0 0 
San Jorge 0 24 0 0 0 0 0 0 0 0 0 0 0 
San Jose de Bocay 0 0 170 699 0 0 0 0 0 18 0 0 2848 
San Jose de Cusmapa 0 0 0 91 0 0 0 0 0 0 40 0 0 
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Table G−1 continued. 
 Area (km2) of classification zones* 
Municipality 1 2 3 4 5 6 7 8 9 10 11 12 13 
San Jose de Los Remates 0 0 18 192 0 0 0 0 0 71 0 0 0 
San Juan de Limay 1 13 59 339 0 0 0 0 0 0 23 0 0 
San Juan de Oriente 0 0 0 6 0 0 0 0 0 2 0 0 0 
San Juan del Norte 1 0 1 19 0 0 0 0 0 0 0 124 1428 
San Juan del Rio Coco 0 1 0 7 0 0 0 0 0 65 6 0 108 
San Juan del Sur 0 67 51 137 0 0 0 0 0 165 0 0 0 
San Lorenzo 0 74 144 57 0 0 0 4 189 71 0 0 0 
San Lucas 0 110 2 19 0 0 0 0 0 0 21 0 0 
San Marcos 0 0 0 89 0 0 0 0 0 30 0 0 0 
San Miguelito 0 0 399 621 0 0 0 33 0 1 0 0 0 
San Nicolas 0 0 19 155 0 0 0 0 0 0 0 0 0 
San Pedro de Lovago 0 0 374 86 0 0 0 0 0 0 0 0 0 
San Pedro Del Norte 0 0 0 53 0 0 0 0 0 0 11 0 0 
San Rafael del Norte 0 9 74 135 0 0 0 0 0 0 0 0 17 
San Rafael del Sur 0 35 0 225 0 0 0 0 0 99 0 0 0 
San Ramon 0 44 121 157 0 0 0 0 0 55 0 0 43 
San Sebastian de Yali 0 5 41 307 0 0 0 0 0 1 31 0 19 
Santa Lucia 0 0 0 81 0 0 0 0 10 35 0 0 0 
Santa Maria 0 0 0 0 0 0 0 0 12 0 137 0 0 
Santa Maria de Pantasma 0 168 0 359 0 0 0 0 0 0 0 0 22 
Santa Rosa del Penon 0 0 15 211 0 0 0 0 0 0 0 0 0 
Santa Teresa 0 0 149 22 0 0 0 0 0 39 0 0 0 
Santo Domingo 0 0 313 363 0 0 0 0 0 0 0 0 0 
Santo Tomas 0 0 401 91 0 0 0 0 0 0 0 0 0 
Santo Tomas del Norte 0 4 0 0 37 0 0 0 0 0 0 0 0 
Sebaco 0 56 168 18 0 0 0 4 45 0 0 0 0 
Siuna 1 0 639 3186 0 0 0 0 0 342 0 0 914 
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Table G−1 continued. 
 Area (km2) of classification zones* 
Municipality 1 2 3 4 5 6 7 8 9 10 11 12 13 
Somotillo 0 53 236 66 126 0 0 65 0 95 0 0 0 
Somoto 1 126 18 4 0 0 0 132 146 0 32 0 0 
Telica 0 170 27 50 0 0 0 1 0 142 0 0 0 
Telpaneca 0 8 0 200 0 0 0 0 45 71 1 0 29 
Terrabona 0 17 133 82 0 0 0 0 0 13 0 0 0 
Teustepe 0 0 57 136 0 0 0 12 186 231 0 0 0 
Ticuantepe 0 2 3 56 0 0 0 0 2 0 0 0 0 
Tipitapa 0 318 110 118 0 0 0 231 28 137 0 0 0 
Tisma 0 50 28 11 0 0 0 0 0 0 0 0 0 
Tola 0 91 189 35 0 0 0 0 0 163 0 0 0 
Totogalpa 0 64 0 69 0 0 0 0 0 9 5 0 0 
Villa Carlos Fonseca 0 50 333 67 0 0 0 0 0 111 0 0 0 
Villa Sandino 0 0 610 73 0 0 0 0 0 0 0 0 0 
Villanueva 0 21 345 224 0 0 0 126 0 80 0 0 0 
Waslala 0 0 509 639 0 0 0 0 0 184 0 0 0 
Waspan 0 0 217 595 19 45 49 0 0 63 2077 428 5043 
Wiwili de Jinotega 0 34 303 632 0 0 0 0 0 0 0 0 1485 
Wiwili de Nueva Segovia 0 2 149 66 0 0 0 0 0 117 0 0 73 
Yalaguina 0 28 0 42 0 0 0 0 0 0 0 0 0 
* 1−Urban areas.  2−Cropland.   3−Agricultural areas with 10−25% natural vegetation.  4−Agricultural areas with 
25−50% natural vegetation.  5−Mangroves.  6−Coastal transition vegetation.  7−Savannah.  8−Grassland with 
deciduous shrubs.  9−Shrubland.  10−Deciduous broadleaf seasonal forest.  11−Tropical evergreen pine forest.  
12−Tropical evergreen swamp forest.  13−Tropical evergreen broadleaf seasonal forest. 
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