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ABSTRACT 

 

Regulation of Epithelial-Mesenchymal Transition and DNA Damage Responses by 

Singleminded-2s.   

(August 2008) 

Brian Laffin, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Weston W. Porter 
      

 
 

 Virtually all signaling pathways that play key roles in development such as the 

transfroming growth factor (TGF)-beta, notch, and wnt pathways also influence tumor 

formation, implying that cancer is in a sense development gone awry. Therefore, 

identification and elucidation of developmental pathways has great potential for 

generating new diagnostic tools and molecular therapy targets. Singleminded-2s 

(SIM2s), a splice variant of the basic helilx-loop-helix / PER-ARNT-SIM (bHLH/PAS) 

transcriptional repressor Singleminded-2, is lost or repressed in approximately 70% of 

human breast tumors and has a profound influence on normal mammary development. In 

order to gain a better understanding of the mechanisms by which SIM2s restricts 

malignant transformation and progression in breast cancer, we depleted SIM2 RNA in 

MCF-7 cells using a retroviral shRNA system and examined gene expression and 

functional abilities of the SIM2-depleted MCF-7 cells (SIM2i) relative to a control MCF 

line expressing a non-specific “scrambled” shRNA (SCR). Depletion of SIM2 resulted 

in an epithelial-mesenchymal transition (EMT)-like effect characterized by increased 
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migration and invasion, altered morphology, and loss of epithelial markers concomitant 

with gain of mesenchymal markers. The root of this effect may be loss of SIM2-

mediated repression of the E-cadherin repressor slug, as SIM2 is able to bind and repress 

transcription from the slug promoter, and slug expression is dramatically elevated in 

SIM2i MCF-7 cells. Consistent with the previously established role of slug in resistance 

to various cancer therapies, SIM2i cells are resistant to the radiomimetic doxorubicin 

and appear to have elevated self-renewal capacity under certain conditions. Intriguingly, 

SIM2 protein levels are elevated by treatment with DNA damaging agents, and SIM2 

interacts with the p53 complex via co-regulation of specific p53- target gene such as 

p21/WAF1/CIP1. These results provide a plausible mechanism for the tumor suppressor 

activity of SIM2, and provide insight into a novel tumor suppressive transcriptional 

circuit that may have utility as a therapeutic target. 
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NOMENCLATURE 

 

AP-1   Activator protein-1 

AHR   Aryl hydrocarbon receptor 

ARNT   Aryl hydrocarbon receptor nuclear translocator 

bHLH   Basic helix-loop-helix 

C/EBPβ  CCAAT/enhancer binding protein, beta 

ChIP   Chromatin immunoprecipitation 

CME   Central midline element 

DMBA  7,12-dimethylbenz[a]anthracene 

DMEM  Dulbecco’s modified Eagle’s medium 

DOX   Doxorubicin 

DS   DS 

DSL   Delta/Serrate/lag-2 

E   Embryonic day 

EGF   Epidermal growth factor 

EGFR   Epidermal growth factor receptor 

EMT   Epithelial-mesenchymal transition 

ETS2   V-ets erythroblastosis virus E26 oncogene homolog 2 

HIF1-α   Hypoxia-inducible factor 1 alpha   

HIF2-α   Hypoxia-inducible factor 2 alpha 

HRE   Hypoxia response element 



  viii

IκB   Inhibitor of kappaB  

IKK    Inhibitor of kappaB kinase  

MAPK   Mitogen-activated protein kinase 

NFκB   Nuclear factor-kappaB 

NICD    Notch intracellular domain 

PAS   Per-Arnt-Sim 

PI3K   Phosphatidylinositol 3′-kinase 

SIM1   Single-minded 1 

SIM2   Single-minded 2 

SIM2s   Single-minded 2, short isoform 

TEB   Terminal end bud 

TGFβ   Transforming growth factor beta 

XRE   Xenobiotic response element 
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CHAPTER I 

INTRODUCTION 

 

Breast cancer is the second most common malignancy in women and the second 

leading cause of cancer death in women, with an estimated 178,480 new cases of invasive 

disease and 62,030 cases of in situ disease along with approximately 40,460 deaths from 

breast cancer in 2007 American Cancer Society.  Breast cancer retains its position as the 

second most common malignancy despite introduction of improved estimation methods, 

which have resulted in new case figures dramatically lower than the 2005 estimate.  Early 

detection and new treatments have significantly improved the mortality rate of breast 

cancer patients, however, it is becoming increasingly clear that many current treatments 

simply diminish the bulk of the tumor without destroying the so-called tumor initiating 

cells the that are primarily responsible for tumor growth, invasion, angiogenesis, 

metastasis, and recurrence (1-5).  This makes understanding the developmental pathways 

that are hijacked or dismantled by tumor-initiating cells to acquire de-differentiated stem 

cell-like properties critical to development of therapies that can truly destroy tumors. 

Understanding how these pathways function in normal development and the adult 

organism is also of great importance for creating targeted therapies that will cause the 

least of amount of suffering possible for the patient while delivering the maximum 

therapeutic effect.  

 

This dissertation follows the style of Cancer Research. 
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1.1 Normal mammary gland development   

The first morphological descriptions of mammary gland development were 

undertaken in the 1900s, proceeding through investigations of tissue interaction in the 

mammary placodes and young virgins glands in the 1960s up to the molecular studies of 

the present day (6, 7).  The mammary gland has evolved in egg-laying synapsids during 

the Pennsylvanian epoch as a means of hydrating and nourishing thin-shelled eggs that 

would otherwise dry out (8, 9).  In mammals, the ectoderm-derived mammary gland 

functions primarily to provide nutrients to offspring, but also confers immune protection 

through transfer of maternal antibodies to the young. The mammary gland develops in 

three distinct stages (Fig. 1), embryonic, pubertal, and adult, the latter two of which are 

under the control of circulating hormones and growth factors.  

 
 The embryonic stage of mouse mammary development begins with the formation 

of mammary placodes along the so-called “milk line”, which is defined by expression of 

Wnt10b (10). In female mice, the epithelium then condenses into bulb-like mammary 

buds at distinct locations on the milk line, while in male mice androgen acting on the 

mammary mesenchyme causes bud regression (11-13). The bulb elongates under control 

of interaction between parathyroid hormone related protein (PTHrP) and bone 

morphogenetic protein (BMP) signaling, invades into the fat pad beneath the skin, and 

forms a nipple with a lumen that opens to the skin (14). This PTHrP – BMP interaction 

also functions to suppress hair follicle development in the vicinity of the nascent gland, 

via induction of MSX2 (14). Invasion into the fat pad is led by dense epithelial structures 

called terminal end buds, or TEBs. TEBs, which appear at the tips of elongating 

mammary ducts in young virgin animals, consist of multiple layers of body cells 
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surrounded by a cap cell layer. Proliferation occurs exclusively in the cap cell layer, 

which expresses enzymes that facilitate fat pad invasion, leaving the elongating duct 

behind (15-17). Interaction between the TEB and the surrounding stroma guides invasion 

into the fat pad, and may also instruct clefting events that result in bifurcation ands 

trifurcations that in concert with side branching events give rise to the ductal tree.  

  

 

 

 

 This process, termed branching morphogenesis, occurs in many organs such as 

the lungs and kidneys (18, 19), suggesting that a conserved branching transcriptional 

module exists and is heavily involved in the execution of all developmental branching 

L L

L L

Early Virgin Adult Virgin 

Pregnant 

Figure 1 Post-natal mammary ductal tree morphology. TEB outgrowth in early virgin glands along with 
side branching events results in a ductal tree that reaches to the end of  the fat pad in the adult virgin. 
Hormonal changes during pregnancy initiate the formation of lobuloalveolar units for milk production, 
which by the time of lactation have almost completely filled the fat pad. After pups are weaned, the 
gland returns to the pre-pregnant state via the process of involution. 
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processes. This branching module orchestrates expression of the tissue remodeling 

factors such as matrix metalloproteases (MMPs) that drive ductal extension and 

branching (15-17). Broad inhibition of MMPs does not block initial formation of lateral 

branches, but ductal extension appears to require MMP activity (15). MMP2 null mice 

display impaired ductal extension as expected (15), and extensive lateral branching in 

MMP2-/- glands suggests that MMP2 supresses lateral branching. Surprisingly, these 

effects appear to be mediated through effects on cell survival and proliferation within the 

TEB, despite localization of the MMP2 activator MMP14 at the tips of TEBs (15). 

MMP3 acts antagonistically to MMP2 and promotes lateral branching, as MMP3 null 

mice had greatly reduced numbers of branch points (15). However, the number of TEBs 

and duct length in MMP3 null mice was unchanged, implying that MMP3 is not involved 

in TEB invasion or bifurcation (15). Other factors can compensate for MMP3, as MMP3 

null mice eventually catch up to wild type controls in ductal development (ref). 

Additionally, there is evidence that as the tree penetrates into the fat pad, morphogen 

gradients created by the geometry of the extending tree have a strong influence on branch 

point selection and the frequency of side branching (20). Growth of the mammary ductal 

tree slows or ceases altogether with the reaching of the end of the fat pad and puberty-

associated rises in estrogen. Although elevated estrogen levels contribute to stopping 

ductal tree outgrowth, estrogen signaling is critical to virgin mammary development, as 

estrogen receptor-α (ERα) null mice lack TEBs and are deficient in ductal invasion into 

the fat pad (21, 22).  This phenotype appears to be due in part to a lack of ERα -driven 

expression of the estrogen-responsive EGFR ligand amphiregulin, as the ductal 

phenotype of ERα, amphiregulin, and EGFR null mice are highly similar (23-26). 
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Amphiregulin function requires proteolytic release from the cell membrane by 

ADAM17/TACE, consistent with the phenotypic similarity of ADAM17-/- mice to ERα, 

amphiregulin, and EGFR null mice (27). Consistent with all of these observations, lack of 

mammary gland development in ovariectomized mice can be rescued by EGF or TGFα 

pellets, but not by insulin or albumin containing pellets (28). This demonstrates that 

circulating hormones exert their effects by driving expression of paracrine-acting growth 

factors. Apoptosis within the body cells left behind by invading TEBs has been proposed 

as the mechanism by which lumen formation occurs, and indeed, deletion of the pro-

apoptotic protein Bim delays lumen formation significantly (29, 30). The ducts in Bim 

null mice eventually form lumens, demonstrating that functionally redundant apoptotic 

processes ensure eventual lumen formation. After puberty, estrogen cycling gives rise to 

waves of side-branch formation and apoptotic dieback, mimicking on a small scale the 

dramatic changes that occur during pregnancy, lactation, and involution. The amount of 

this estrous-related side branching that occurs varies widely between mouse strains, but 

can be quite extensive. 

 

 During pregnancy, the hormones progesterone and prolactin drive the gene 

expression and morphologic changes necessary to effect lactation, namely the formation 

and differentiation of alveolar subunits, where milk production occurs. Progesterone, 

through the action of its receptor, is a prime mover in the formation of side branches and 

alveolar units during pregnancy (31). Progesterone also acts in concert with prolactin 

(PRL) signaling through the prolactin receptor to promote differentiation of the alveolar 

cells, which produce the large quantities milk needed during lactation (31, 32). During 
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lactation, PRL-induced phosphorylation of STAT-5 and subsequent milk protein mRNA 

transcription interact with translational control mechanisms to generate elevated amounts 

of caseins and other milk proteins, resulting in production of up to 5 mL of milk per day 

(33-39).  As the offspring grow and are weaned, milk accumulation triggers involution, a 

cell death and fatty tissue regeneration process that returns the gland to its pre-pregnant 

state. Involution occurs in two distinct stages which are defined by the point at which 

suckling is no longer able to reverse the involution process (40). The first, reversible 

stage lasts roughly 48 hrs and characterized by decreased expression of pro-survival 

proteins and increased expression of pro-apoptotic proteins (41). The second, irreversible 

stage starts with clearance of apoptotic cells and excess milk by the epithelium followed 

by macrophage and MMP-mediated tissue remodeling that reverses the pregnancy-

associated epithelial expansion as the animal resumes estrous cycling (40, 42). In addition 

to the radical changes in the epithelium of the mammary gland during pregnancy and 

lactation, the extracellular matrix (ECM) simultaneously undergoes dynamic changes that 

contribute to mammary gland function and affect the phenotype of pregnancy-associated 

breast cancer (43, 44). 

 
 
1.2 The history of breast cancer and chemotherapy 
 

Breast cancer was one of the first tumors to be described in ancient medical 

writings. The Edwin Smith Papyrus, which is the earliest known medical writing of any 

kind, was written around 1600 BC and describes 8 cases of breast ulcers or tumors in 

humans, one of whom was a man. While Egyptian doctors were sometimes able to 

remove the tumors by cauterizing them with an instrument called a “fire drill”, the 
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disease was essentially incurable at that time. This state of knowledge and care for breast 

cancer patients remained largely unchanged for centuries, until the work of Jean Louis 

Petit and Benjamin Bell in the early 18th century. Bell and Petit were the first to advocate 

removal of surrounding tissue, lymph nodes, and muscle in addition to the tumor mass 

itself to combat recurrence and metastasis. Their work was continued and expanded upon 

by Dr. William Halsted, who performed the first complete mastectomy in 1882.  The 

procedure that bears his name, the Halsted radical mastectomy, is still performed to this 

day. Breast cancer treatment took its next major step forward in 1946. The port-mortem 

observation of lymphoid and myeloid depletion in persons exposed to nitrogen mustard 

gas led to seminal work by Goodman, Gilman, and Linskog which demonstrated that 

lymphomas could be shrunk by injection of nitrogen mustard compounds and established 

the feasibility of cancer chemotherapy (45, 46). In 1952 the first major contribution to 

improving the mental well being of breast cancer patients and survivors was made by 

Terese Lasser when she founded the Reach to Recovery program (47). Reach to 

Recovery employs trained volunteers, many of whom are mastectomy patients and cancer 

survivors, to provide emotional support and guidance to breast cancer patients and help 

them to maintain their feeling of personal dignity. This program and others like it have 

raised awareness of the devastating impact cancer has on a patient’s entire life and had a 

profound positive impact on the quality of life had by breast cancer patients and 

survivors. 

 

Additional steps forward in cancer therapy such as the discovery of the anticancer 

activity of antifolates, 6-mercaptopurine, and vinca alkaloids led congress to establish the 
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National Cancer Chemotherapy Service Center (NCCSC) at the National Cancer Institute 

(NCI) in 1955. The NCCSC was the first federal program promoting cancer drug 

discovery, and generated numerous animal models and cell lines in its pioneering drug 

development efforts, leading to the relatively rapid development of additional 

chemotherapeutic drugs such as the taxanes in 1964 and camptothecins in 1966. Cisplatin 

and Tamoxifen were also discovered during this time, but were not approved for use in 

human cancers until the 1970s. 1965 saw a major paradigm shift in cancer chemotherapy: 

contemplating the problem of mutation-induced drug resistance in tumors, James 

Holland, Emil Freireich, and Emil Frei extrapolated the multi-drug treatment regimens 

used to treat tuberculosis to treatment of leukemias by simultaneously administering 

methotrexate, vincristine, 6-mercaptopurine (6-MP) and prednisone— together referred 

to as the POMP regimen — and induced long-term remissions in children with acute 

lymphoblastic leukaemia (ALL).  Bernard Fisher and Gianni Bonadonna independently 

followed this and additional work by Dr. Frei in osteosarcomas by showing that adjuvant 

chemotherapy after complete surgical resection of breast tumours significantly extended 

survival — particularly in more advanced cancer (48, 49).   

 

From the 1970s to the 1990s, several other classes of drugs were developed such 

as the anthracyclines, nitrosoureas, and epipodophyllotoxins, as well as supporting 

therapies such as anti-nausea drugs. With the advent of genomics, proteomics, and other 

high-throughput techniques, knowledge of tumor signaling networks has exploded to the 

point that therapies that target specific weak points of tumors with greatly reduced 

damage to normal tissue are now possible. Examples of this are tyrosine kinase inhibitors 
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such as imatinib, which specifically targets the oncogenic fusion protein BCR-ABL, and 

humanized antibodies such trastuzumab, which inactivates the product of the HER2/neu 

oncogene in breast tumors (50, 51). The promise of these targeted therapies makes 

understanding tumor signaling networks of the utmost importance, so as to elucidate new 

targets and create the most possibilities for combination therapies in the infinitely 

heterogeneous tumor signaling networks encountered in patients. 

 

 
1.3 Types and subtypes of breast cancer 
 
 Breast cancer is a remarkably heterogeneous disease, with well over 50 types and 

subtypes of invasive disease currently recognized by the World Health Organization (52), 

a summary of which appears in Table 1(53-102) (103). Invasive ductal carcinomas 

represent the vast majority of breast tumors (52). While these tumors fall into the same 

category histologically, they are quite variable in clinical behavior, underscoring that 

these tumors cannot be broadly treated in the same way as might be warranted in rarer 

subtypes that have a more uniform set of genetic abnormalities. Groundbreaking work by 

Perou et al (104) and Sorlie et al (105) has provided a new approach to the problem posed 

by the morphologic similarity and behavioral heterogeneity of invasive ductal 

carcinomas. These studies demonstrated that gene expression profiling could sort 

invasive ductal carcinomas into 5-6 molecular subtypes - luminal A, luminal B, luminal 

C, normal breast-like, HER2 overexpressing, and basal-like – and that these groupings 

had significant predictive value for patient outcome. Luminal subtype may be viewed as a 

subset of luminal B tumors. Abbreviated molecular definitions of these subtypes and their 

relative prognosis is presented in table 2. 
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Table 1. Types and subtypes of invasive breast carcinomas. 

Type / Subtype 

Fr
eq

ue
nc

y 
 

Pr
og

no
si

s Description / characteristics 

Invasive ductal carcinoma (not 
otherwise specified) 

35-50% __ Generally ER-positive, Epithelioid 

Basal-like carcinoma 7-20% Poor Expression of high-molecular weight cytokeratins 5, 14 
and 17, Triple negative (ER, PR, p53) 

Mixed type carcinoma <1% Varies  Varies widely 
Pleomorphic carcinoma <1% Poor Frequent E-cadherin gene inactivation / LOH 
Carcinoma with osteoclastic 
giant cells 

<1% Good Osteoclastic giant cells present in stroma surrounding 
tumor  

Carcinoma with 
choriocarcinomatous features 

<1% Poor Elevated human chorionic gonadotropin-β expression, 
presence of multinucleated syncytiotrophoblast-like giant 
cells 

Invasive lobular carcinoma 10% Similar Small, “lens-like” nuclei, mucin-filled acini. Rows of 
cells sandwiched between collagen fascicles, poorly 
defined margins 

Tubular carcinoma 5% Good Highly differentiated, Low recurrence rate, low potential 
for metastasis, Generally ER positive 

Invasive cribriform carcinoma <1% Good Mucin positive, laminin negative cystic appearance. 
Luminal epithelial ultrastructural appearance. 

Medullary carcinoma  / 
Atypical medullary carcinoma 

6% Good Predominant syncytial growth pattern, featuring broad 
anastamosing sheets, microscopically complete 
circumscription, marked mononuclear stromal infiltrate, 
nuclear grade II or III. 

Mucinous carcinoma <5% Good Monomorphic ductal epithelial tumor cells “floating” in 
abundant background mucin pool, comprising more than 
90% of tumor. Low rate of metastatis, generally hormone 
receptor positive. 

Cystadenocarcinoma and 
columnar cell mucinous 
carcinoma 

<1% Good Predominantly tall, columnar mucinous epithelium. 
Presence of both intracellular and extracellular mucin 

Signet ring cell carcinoma <1% Poor Abundant intracellular mucin. Metastasis to the 
peritoneum, gastrointestinal tract, lung, and gynecologic 
organs. 

Neuroendocrine 
tumors  
 

<1% Varies Positive IHC for neuroendocrine markers. Small cell / oat 
cell carcinoma is the most agressive type. 

Invasive papillary carcinoma <1% Good Fibrovascular stromal core lined by epithelial and 
myoepithelial cells, attached to the wall of the duct and 
extending into the duct lumen 

Invasive micropapillary 
carcinoma 

<1% Poor Micropapillary epithelial architecture surrounded by 
lymphatic duct–like empty space. Aggressive behavior 
with frequent lymph node metastasis 

Apocrine carcinoma <1% Good ER, PR negative. Elevated expression of Androgen 
Receptor, psoriasin, S100A9, and p53. Low proliferative 
index.  

Metaplastic carcinomas <1% Poor Tumor cells display differentiation along multiple 
lineages. Generally aggressive clinical course, 
haematogenous metastasis pattern (lung and bone). 

Squamous cell carcinoma <1% Poor Presence of cells with squamous differentiation forming a 
keratinizing tissue, frequent lymph node metastasis, rapid 
growth 

All WHO-recognized histological types and subtypes for which there is sufficient published data to make 
statements about prognosis are shown. Prognosis shown is relative to not otherwise listed invasive ductal 
carcinomas.  
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Table 1, Continued. 

Type / Subtype 

Fr
eq

ue
nc

y 
 

Pr
og

no
si

s 

Description / characteristics 

Adenosquamous carcinoma 
 

<1% Similar Combination of glandular and squamous 
differentiation 

Mucoepidermoid carcinoma <1% Good Nesting pattern with multiple well-circumscribed 
squamous nests containing numerous clear cells. 
Prominent mucin-secreting component frequently 
present. Myoepithelial differentiation common.  

Mixed 
epithelial/mesenchymal 
metaplastic carcinomas 

<1% Poor Tumor cells display epithelial (carcinoma) and 
mesenchymal (sarcoma) differentiation. Generally 
agrgressive clinical course. 

Secretory carcinoma  
 

<1% Good Frequent presence of oncogenic ETV6-NTRK3 
fusion kinase. Most common in children.  

 Glycogen-rich clear cell 
carcinoma  

<1% Poor Finely granular eosinophilic cytoplasm or foamy to 
clear cytoplasm with well-defined cytoplasmic 
membranes, moderate to marked nuclear 
pleomorphism with prominent nucleoli 

Inflammatory carcinoma <10% Poor Presence of skin erythema and oedema. Rapidly 
growing tumors that are highly angiogenic, angio-
invasive,  numerous tumour emboli filling the 
dermal lymphatics causing inflammatory signs 

Myofibroblastoma <1% Good Densely packed large cells with a solid or 
trabecular growth pattern, focally arranged in nests,  
with abundant eosinophilic glassy cytoplasm and 
sharp cellular borders. Large and round nuclei, 
prominent nucleoli. P63 and vimentin positive. 

Inflammatory 
myofibroblastic tumor 

<1% Good Large cohesive sheets of histiocytes intermingled 
with clusters of spindle cells and mixed 
inflammatory cells. Lack of granulomas and ductal 
epithelial cells.  

Granular cell tumor <1% Good Granular cytoplasm. Fat necrosis, duct ectasia. 

Neurofibroma <1% Good Schwann cell origin. Composed of spindle cells 
with thin, often wavy nuclei. S100 positive, 
generally well-circumscribed.  

Schwannoma <1% Good S100 positive. Compact and spongy biphasic 
pattern, nuclear palisading, interlacing bundles of 
numerous elongated spindle shaped cells.  

Angiosarcoma <1% Poor Rapid growth. Malignant endothelial cells lining 
vascular channels are flat, and most nuclei are pale 
and small. Contains anastomosing vascular 
channels that surround and invade lobules.  

Liposarcoma <1% Variable Mature adipocytic proliferation, variable cell size, 
focal nuclear atypia of adipocytes and stromal cells. 

Osteosarcoma <1% Poor Osteoid production present. Broad eosinophilic 
seams were that may display mature bone 
formation. Frequent mitoses, early recurrence, 
haematogenous metastasis pattern (lung and bone). 

Leiomysarcoma <1% Similar Pleomorphic spindle cells,  hyperchromatism and 
elongated nuclei, eosinophilic cytoplasm, large 
nucleoli and numerous mitoses.  
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 In addition to their prognostic value, these classifications have implications for 

targeted therapies that will grow more important as understanding of tumor signaling 

pathways increases. Indeed, larger, more refined gene expression profiling studies 

centered around analysis of kinase gene expression can not only differentiate the subtypes 

previously described, but predict prognosis within the luminal A subtype (106). Many of 

these kinases, which were selected in an unbiased fashion for their ability to discriminate 

between the subtypes, are already therapeutic targets under investigation while others are 

potential targets.  

Table 2. Molecular subtypes of invasive ductal carcinoma. 

 

 
 
 
 

IDC subtype: Highly expressed 
genes: 

Weakly expressed 
genes: 

Average relative 
prognosis 

Normal breast-like Adipose tissue genes 
Basal epithelial genes 

Luminal epithelial genes Good 

Luminal A ERα 
Gata-3 
TFF3 
Keratin 8/18 
Luminal epithelial genes 

Basal epithelial genes 
Non-epithelial genes 

Best 

Luminal B Luminal epithelial genes ER cluster (moderate 
expression) 

Average 

Luminal C Luminal epithelial genes 
Subset of basal 
epithelial genes of 
unknown function 

ER cluster (moderate 
expression) 

Poor 

Basal-like Keratin 5 
Keratin 17 
FABP7 
Laminin 

ER cluster 
PR 
ERBB2 cluster 

Worst  

ERBB2+ ERBB2 
Others in ERBB2 
amplicon 

ER cluster Poor 
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1.4 Basal-like carcinomas 
 

Basal-like carcinomas are a subset of invasive ductal carcinomas that consistently 

have the poorest prognosis of all breast carcinomas whether grouped by histological 

appearance or molecular signature (104, 106-108). Basal-like carcinomas are also more 

aggressively metastatic than other invasive ductal carcinomas (109, 110). While recent 

studies have provided a fairly robust molecular definition for basal-like carcinomas, 

tumors displaying basal / myoepithelial differentiation were first described in the 1970s 

(111, 112). The basal phenotype is defined histologically by pushing margins, frequent 

central necrosis and lymphatic infiltrate, expression of high molecular weight keratins 

such as 5, 14 and 17, overexpression of EGFR / HER1, and frequently triple negative 

status for ER, PR, and ERBB2 / HER2 (113, 114).  On the molecular level, basal-like 

breast carcinomas frequently feature inactivation of the Rb tumor suppressor pathway, 

up-regulation of slug and other EMT-like changes (113-117). These abnormalities are 

frequently present in the in situ lesion (118-120), and may explain why basal-like 

carcinomas are highly sensitive to some treatments despite their poor prognosis (121, 

122). It has been proposed that basal-like carcinoma may have a more stem-cell-like 

phenotype, due to the significant overlap in their respective gene expression profiles 

(114, 123, 124). However, there is no published evidence that basal-like carcinomas have 

functionally greater stem cell capacity than luminal tumors, and the basal phenotype has 

an inverse correlation with some stem cell markers (108). Basal-like tumors have a more 

consistent pheontype in terms of metaplastic EMT-like elements. While the relevance of 

strictly-defined EMT to human breast carcinogenesis remains controversial (125), 

evidence is mounting that transient EMTs or EMT-like events are real phenomena that 
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are associated with metastasis, invasion, disease progression (114, 117, 126-132). These 

findings challenge assumptions made about the biology of basal-like carcinomas, and 

demonstrate the need for additional study into their molecular origins to develop targeted 

therapies and animal models for basal-like tumors, which are thus far confined to BRCA1 

models (133, 134).  

 

1.5 Epithelial-mesenchymal transition 

The importance of epithelial-mesenchymal transitions in embryonic development 

has been appreciated since work done in the laboratory of Elizabeth Hay in 1967 (135), 

when the role of EMT in gastrulation was established. Since that time, multiple studies 

have revealed a crucial role for EMT in the patterning of multiple mature and embryonic 

tissues including the heart, palate, and neural crest (136-139). During gastrulation, 

epiblast cells ingressing through the primitive groove undergo EMT and migrate into the 

blastocoel to form the mesoderm (140), until Noggin-mediated suppression of BMP 

signaling halts gastrulation (138). Blockage of EMT via disruption of BMP signaling 

leads to failure in either mesoderm or neural crest formation (141-143), demonstrating 

the centrality of EMT to these processes. During heart development, endocardial cushion 

mesenchyme formation occurs via EMT in cells residing in the atrioventicular (AV) 

canal, which invade into the underlying cardiac jelly and form the septal and valvular 

primordia via process dependent upon cross talk between the TGF-beta and Notch 

pathways (144-149). TGF-beta3 induced EMT is necessary for palate fusion, and 

involves induction of a LEF1-Smad2-Smad4 transcriptional complex that represses E-

cadherin and up-regulates vimentin and fibronectin in a beta-catenin independent fashion 
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(137, 150-153).  A central feature of EMT during gastrulation and other developmental 

events, as well as in pathological EMTs, is loss or suppression of E-cadherin and other 

epithelial adhesion molecules (127-130, 137, 139, 154-158) and acquisition of 

mesenchymal markers such as vimentin and N-cadherin (131, 159-162). These gene 

expression changes have functional consequences as in the case of cadherins, which have 

different adhesion strengths that can affect invasion and metastasis (163). 

 

 EMT is thought to be associated with the most aggressive cancers (117), and is 

likely to be more heterogenous in manifestation than EMTs in developmental settings, 

leading to the proposal that EMT-like events in tumor cells generate “metastable” cells 

that are an abnormal blending of epithelial and mesenchymal phenoypes and 

transcriptomes (164). This hypothesis is supported by the involvement of EMT-related 

factors in the metastasis of epithelioid cancers (126, 127, 162, 165-170), the similarity in 

phenotype of metastatic nodules to the parent tumor (171), and the dynamic EMT-MET 

processes known to be involved in bladder and colorectal cancer metastasis (172-175). 

These observations suggest that metastatic cells must shed enough of their epithelial 

nature to escape their tissue of origin, but retain the abilty to become epithelioid once 

again to facilitate extravasation and survival in the new tissue.  

 

Transcriptional control of EMT is complex, and in developmental settings 

typically begins with receipt of local molecular signals such as TGF-beta receptor ligands 

(141-143, 147) Wnts (176, 177), FGFs (178-181), and Notch ligands (149). TGF-beta 

and BMP signaling results both in broad chromatin remodeling via HMGA2 (182, 183) 
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and the assembly of numerous transcriptional complexes on pro-EMT gene promoter 

regions. These complexes include, but are not limited to Smad/LEF, Ets1, FoxC2, and 

MRTF-containing complexes, which drive expression of genes that suppress E-cadherin 

and other epithelial proteins while upregulating those associated with mesenchyme (137, 

152, 184-187). The list of E-cadherin repressors is long and includes Snail family 

members, Twist, Zeb proteins, EZH2, and E47 proteins, as well as many others, which 

are thought to act in concert in vivo to effect E-cadherin repression (127-129, 161, 182, 

188). One or more of these proteins are the eventual targets of all EMT-promoting 

signaling pathways. 

 

1.6 Transforming growth factor (TGF)-beta signaling 

TGF-β signaling (Fig. 2) begins with the synthesis of one of 30 or more TGF-β  

superfamily preprotein dimers, all of which must be proteolytically processed to be 

secreted (189). The TGF-β superfamily includes bone morphogenetic proteins (BMPs), 

TGF-β s, activin beta-chains, growth and differentiation factors (GDFs), and the protein 

nodal of which are typically secreted as homodimers, although some members can form 

heterodimers (190, 191). While most TGF-β superfamily members can be proteolytically 

processed after secretion, only GDF8, GDF11, and the TGF-β s require post-secretion 

processing to initiate signal transduction, which is performed by proteases such as BMP1, 

MMP2, MMP14, plasmin, or elastase (192-195). TGF-β s are secreted in a form known 

as the large latent complex, in which TGF-β  and its prodomain are bound by latent TGF-

β  binding proteins (LTBPs) and subsequently targeted to the ECM (193). After secretion 
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and in some cases proteolytic release of the mature, active ligand, TGF-β superfamily 

members bind their cognate receptors and induce formation of heterotetrameric  

 

Figure 2. TGF-β - SMAD signaling. TGF-β in its latent form is proteolytically cleaved and released for receptor binding by one of 
several proteases, and can be sequestered by ligand binding antagonists such as Noggin. Receptor-bound TGF-β triggers 
clustering and auto-phosphorylation of type I and type II TGF-β receptors, which phosphorylate and activate R-SMADs causing 
interaction with SMAD4 and nuclear translocation. Activate SMAD complexes displace the Ski/SnoN repressors, which are 
targeted to the prpteasome by the ubiquitin ligase Arkadia. The SMAD complex then recruits co-regulatory proteins such as 
SWI/SNF, p300, and CBP to effect target gene activation and repression. I-SMADs inhibit the TGF-β at multiple points, 
including blocking association of R-SMADs with active TGF-β receptors and target gene promoters, promotion of receptor de-
phosphorylation via recruitment of phosphatases, and targeting of active R-SMADs and receptors for degradation via the 
ubiquitin ligase SMURF. 
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complexes that then activate through autophosphorylation (196-198). These tetrameric 

complexes form from preexisting dimers of type I and type II TGF-β receptors, 

whereupon the constitutively active type II receptor dimer activates the type I receptor 

via phosphorylation (197, 198). TGF-β pathway activation can be stifled at this level by 

ligand-sequestering antagonists such as Chordin, Noggin, and Cerebus, which can either 

modulate the TGF-β signal strength or block it altogether. Activated receptor complexes 

recruit and activate members of the SMAD family of transcription factors (SMADs 1, 2, 

3, 5 and 8), which upon phosphorylation by the receptor complex are able to interact with 

SMAD4, the common binding partner of all receptor-regulated SMADs. Individual 

SMADs are recruited by specific type I TGF-β receptors; SMADs 1, 5, and 8 are 

phosphorylated by ALK1, 2, 3, and 6, while SMADs 2 and 3 are phosphorylated by 

ALK4, 5, and 7. SMAD complexes can act as transcriptional activators or repressors, 

depending upon phosphorylations and other modifications to SMADs that determine 

which proteins are recruited to target promoters. All SMADs with the exception of 

SMAD2 directly bind DNA, but are unable to recruit the basal transcriptional machinery, 

and act via chromatin remodeling enzymes such as SWI-SNF, p300, and CBP. In the 

absence of TGF-β pathway activation, SMAD response elements are often occupied by 

the transcriptional repressors SKI and SNON, which are rapidly degraded by the 

ubiquitin ligase Arkadia to allow for SMAD binding. 

 

In addition to the receptor associated SMADs and the co-SMAD, SMAD4, the 

inhibitory SMADS (I-SMADs) SMAD6 and SMAD7 provide feedback inhibition for 

TGF-β signaling. I-SMADs are induced by R-SMAD transcriptional activity and 
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attenuate TGF-β pathway activation through several mechanisms such as competition 

with R-SMADs for receptor binding, recruitment of SMURF ubiquitin ligases to 

activated TGF-β  receptors resulting in their degreadation, recruitment of phosphatases to 

active receptors causing their deactivation, and competition R-SMADs for binding to 

SMAD response elements in target promoters.  In addition to targeting genes involved in 

EMT such as E-cadherin and Vimentin, TGF-β receptor stimulation in untransformed 

cells elicits cell cycle arrest via SMAD/Sp mediated induction p15(Ink4b)(199, 200).  

This cytostatic induction of p15 is mediated by the transcription factor C/EBP-β and is 

required for the tumor suppressive effects of intact TGF-β pathway function (201, 202).  

 

1.7 The Wnt / β-catenin pathway 

 Wnt glycoproteins are the ligands for Frizzled receptor complexes, which consist 

of frizzled receptors and low density lipoprotein receptors. While Wnt/Frizzled signal 

transduction (Fig. 3) has numerous downstream effectors that contribute to EMT, the 

majority of its output proceeds through either the canonical (β-catenin) or planar cell 

polarity (PCP) pathway.  β-catenin normally resides at cell-cell junctions in a dynamic 

complex with other catenins and cadherins. When β-catenin is freed from these 

membrane-associated complexes, it ordinarily resides in a cytoplasmic pool that is 

targeted for destruction by a complex containing the scaffolding protein Axin and the 

Adenomatous polyposis coli (APC) tumor suppressor (203). Upon receipt of Wnt signals, 

β-catenin residing in this pool is stabilized by a mechanism that is poorly understood but 

appears to involve all 3 human homologs of the drosophila protein dishevelled in non-

overlapping roles (204).  
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Figure 3. Wnt-frizzled signaling. Engagement of the Wnt ligand by Frizzled receptors results in stabilization of cytoplasmic β-
catenin, which is a potent co-activator of LEF/TCF transcription factors. β-catenin normally exists in dynamic membrane -bound 
complexes with other catenins and cadherins, with some exiting to form a cytoplasmic pool that is targeted for proteosomal 
degradation by the Axin / APC / GSK-3β complex, which phosphorylates β-catenin priming it for ubiquitination. p68 RNA 
helicase promotes β-catenin stabilization by blocking this phosphorylation event. Wnt/Frizzled signaling also acts in β-catenin-
independent signaling modes such as through promotion of PKC-mediated phosphorylation and activation of Snail. 
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 The RNA helicase p68, which blocks phosphorylation of β-catenin in response to 

PDGF to promote EMT, may also play a role in Wnt-induced EMT or similar proteins 

may act in the fashion or p68 (205). Stabilized β-catenin translocates to the nucleus, 

where it acts as a potent co-activator for the LEF/ TCF family of transcription factors, 

leading to EMT (206-210). Wnt signaling can also lead to EMT through β-catenin-

independent pathways. Wnt5A induces EMT via PKC-dependent induction of Snail, even 

in the presence of dominant-negative TCF4, demonstrating that Wnt signaling promotes 

EMT via several pathways besides β-catenin (211). Similar to the action of the BMP 

antagonist Noggin in the TGF-β pathway, secreted inhibitors such as the Dickkopf 

proteins attenuate and modulate Wnt signal strength in both β-catenin-dependent and 

independent Wnt signaling modes (212-214).  Wnt signaling also exhibits extensive 

cross-talk with other EMT-promoting pathways, most notably the Notch pathway (215-

217). 

 

1.8 Notch and EMT 

Notch signaling (Fig. 4) is relatively simple compared to other EMT-related 

pathways such as TGF-β and Wnt / Frizzled signaling, and has considerable cross-talk 

with both, being required for TGF-β-induced EMT in some cases (218). Notch signaling, 

similar to the TGF-β and Wnt / Frizzled pathways, begins with engagement of a ligand - 

Delta, Lag, or Serrate - by the Notch receptor, triggering cleavage of Notch and release of 

its intracellular domain (219). Cleavage of membrane-bound Notch occurs in two steps, 

the first step is catalyzed by ADAMs family metalloproteases and results in release of the 

extracellular domain of Notch (220-222). Step two is carried out by the activity of the 
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presenilin-nicastrin-Aph1-Pen2 protein complex, which is more commonly referred to as 

-secretase, and releases the intracellular domain of Notch (NICD) which translocates to 

the nucleus (223). Freed NICD displaces co-repressors such as NcoR, SMRT and 

SHARP from their interaction with Notch target-gene bound CSL, clearing the way for 

recruitment of co-activators such as Mastermind (224-230).  During EMT, the most 

important Notch targets appear to be the E-cadherin reprssors snail and slug. Snail and 

slug are up-regulated directly via association of the NICD with their promoters and Snail 

indirectly via induction of lysyl oxidase, which stabilizes Snail via phosphorylation (149, 

231, 232).  

 

1.9 Snail 

 Snail promotes EMT in response to all the major pathways known to elicit EMT, 

such as the Wnt, Notch, TGF-β, and FGF signaling pathways (176, 182, 208, 211, 231, 

233). Snail's function in EMT is centered around its role as a repressor of E-cadherin 

gene expression (234, 235), although it also targets other epithelial genes such as ERα,  

MUC1 and tight junction proteins (236-238). Snail effects repression of these genes by 

recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex and C-

terminal binding protein (CtBP) (239-241). Snail also promotes cell survival via 

induction of cell cycle arrest (242-244), and suppression of the PTEN phosphatase (245). 

Consistent with the aggressive, metaplastic nature of many ERα- tumors, Snail 

expression is restricted by estrogen signaling (246), suggesting the existence of a Snail- 

ERα regulatory loop that governs cellular plasticity. ERα signaling represses Snail 

indirectly by activating transcription of MTA3, a component of the Mi-2 / NuRD 
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transcriptional repressor, which then targets Snail (246). Like many other factors 

involved in EMT, Snail is associated with metastasis, recurrence, and poor prognosis 

(247-249). 

 

 

 

 

 

Figure 4. Notch signaling. Binding of a Delta - Serrate - Lag2 family ligand by the Notch receptor triggers cleavage of the receptor 
and releases of the intracellular domain of Notch (NICD). Cleavage takes place in two steps, the first is an extracellular cleavage 
event mediated by TACE  that primes the receptor for the second cleavage event in the transmembrane domain performed by the γ-
secretase complex. Once released, the NICD translocates to the nucleus where it disrupts interactions between the transcription 
factor CBL and co-repressors such as NcoR and SMRT. Co-activators such as Mastermind and then free to bind to CBL, which 
constitutively resides on the promoter regions of Notch target genes.    
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1.10 Twist 

 Similar to Snail proteins (Fig. 5), Twist has been reported to promote EMT via 

suppression of E-cadherin (161, 182, 250, 251), and up-regulation of genes associated 

with mesenchyme such as N-cadherin, FGFR2, and cadherin 11 (187, 252, 253). While 

the mechanisms by which Twist activates or represses transcription has not been solved 

fully, it is clear that dimerization partner selection is the major determinant of Twist 

activity (252, 254). Twist homodimerization or dimerization with E2A E12 results in 

transactivation (252, 254), while partnering with Id proteins and other bHLH repressors 

results in repression (252). In addition to targets associated with EMT, twist has profound 

effects on cell survival and genome integrity (255, 256). Twist represses expression of 

p14 (ARF) while upregulating AKT2, leading to checkpoint failure, drug resistance, and 

genomic instability (257, 258). Twist is also a key mediator of drug resistance induced by 

NF-kB activation, and appears to regulate phosphorylation of Bcl-2 proteins (259). 

Regulation of twist occurs mainly at the transcriptional level. Twist can be induced by 

Wnt, hypoxia, Notch, TGF-β, NF-kB, and VEGF, amongst other pro-EMT pathways and 

stimuli (162, 182, 259-261). Twist is a direct target of HIF1α and HIF2α and is associated 

with tumor vascularity, suggesting that Twist participates in angiogenesis and may 

promote metastasis via enabling access to the bloodstream as well as through EMT (162, 

165, 262).  In additon to its role in EMT and angiogenesis, Twist is associated with 

distant metastasis, recurrence, poor prognosis, and tumor vascularity (162, 165, 263-267), 

a common finding with transcription factors related to EMT. 
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Figure 5. Regulation of  the E-cadherin repressors snail, slug, and twist in breast cancer.  Snail, slug, and twist are induced by 
activation of  multiple signaling pathways such as the Wnt / β-catenin, TGF-β, and notch pathways (black arrows), as well as by 
microenvironmental stimuli (hypoxia and inflammation, blue and red arrows, respectively). In breast tissue, estrogen signaling 
represses snail via MTA3 and is repressed by snail, consistent with the agressive nature of ERα-negative tumors. The output that 
procedes from these pro-emt factors promotes motility and invasiveness through repression of cadherins and desmosomal 
proteins, as well as survival via repression of p14ARF and PTEN and up-regulation of AKT2.  
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1.11 Slug 

The zinc finger transcriptional repressor slug (SNAI2) provides a link between 

EMT and acquisition of stem-cell like properties by tumor-initiating cells. Slug facilitates 

EMT downstream of multiple pathways such as the TGF-beta, notch, Wnt, and FGF 

pathways (182, 232, 268, 269), which promote maintenance of stem cell identity (270-

276).  Additionally, slug is a key player in stem cell biology, with important 

transcriptional targets unrelated to EMT such as PUMA and BRCA2 (124, 277-283). 

Consistent with the current thought on stem-cell like properties of tumors cells in basal-

like carcinomas, slug is a driving force behind the basal phenotype (114). Slug also 

predicts poor prognosis and recurrence in multiple tumor types including breast cancer, 

which further suggests that slug is at the heart of the aggressive nature of basal-like 

carcinomas (127, 168, 169, 248).  In the context of EMT, slug is best known as a 

repressor of E-cadherin expression (129). However, slug targets multiple epithelial genes 

such as high molecular weight keratins and desmosomal proteins to promoter cellular 

motility and suppression of the epithelial phenotype (158, 268, 284). Multiple studies 

have implicated slug in DNA damage responses, particularly those of stem/progenitor 

cells and transformed cells (124, 278, 279, 282, 283, 285). Slug promotes survival in the 

face of genotoxic stress, centered on its ability to stifle p53-mediated induction of the 

pro-apoptotic protein PUMA (278).  This fact may explain the frequency of recurrence in 

basal-like carcinomas of the breast, which frequently display initial sensitivity to 

treatment but have high recurrence rates (122). Structurally, slug consists of a SNAG 

domain that effects transcriptional repression and five DNA-binding ZNF domains, and is 

the most conserved of all mammalian snail homologs (286). The SNAG domain, which is 
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common to all snail family proteins and multiple other oncogenes, functions as an 

interaction domain with scaffolding proteins to recruit macromolecular repression 

complexes to slug target genes (287). Examples of this include recruitment of Ajuba LIM 

proteins, which in turn recruit protein arginine methyltransferase 5 (PRMT5) to repress 

transcription (287-289), and recruitment of the Sin3A/Histone Deacetylase 1 

(HDAC1)/HDAC2 repressor complex (239), both to the E-cadherin promoter. Several 

studies have shed light on the regulation of slug expression. The promoter region of 

SLUG contains multiple regulatory elements, including MyoD, TCF/LEF, AhR, E2A-

HLF, and SMAD-responsive regions (184, 290-293), all of which facilitate 

transactivation of the SLUG gene. However, the factors that restrict inappropriate slug 

expression have thus far remained unidentified.  

 

1.12 Comparison of pathological and developmental EMT 
 
 EMT in developmental contexts is tightly controlled in space and time (294).  

Often, likely always, multiple pathways associated with EMT induction are 

simultaneously activated, and crosstalk between them confers the precision needed for 

proper development of embryonic and mature tissues. An example of this precision can 

be found during gastrulation, which is tightly controlled by the BMP antagonist Noggin 

(138). Spatially and temporally controlled NOG expression brings gastrulation to an end 

in an appropriate time frame, while still allowing for EMT-like events to shape the 

tailbud. Mice mutant for NOG fail to bring a halt to the ingressive cell movements of 

gastrulation, and NOG null mice have severe skeletal defects and mesenchymal 

hyperplasias by the time of lethality on embryonic day 18.5 (295, 296). Additionally, 
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mice and humans haploinsufficient for NOG suffer from skeletal defects such as carpal 

and tarsal fusions, which highlights the necessity for an "off-switch" for non-pathologic 

EMT processes to function normally (296). In the developing heart, defects in NOG or 

the EMT "on-switch" BMP2 leads to defects in the endocardial cushions and derived 

structures, and proper functioning of both switches requires input from the notch, leptin, 

Wnt, and HGF signaling pathways to ensure appropriate expression of the downstream 

targets slug and snail (136, 148, 149, 296-298). This implies that one of the ways that 

EMT is suppressed in mature tissues is a requirement for convergence of mulitple EMT-

promoting pathways to initiate and sustain EMT, and may explain the rarity of EMT 

events observed in solid tumors, since activation of an EMT promoting pathway could be 

sufficient to drive tumor growth without reaching the signal threshold for EMT. That is, 

pro-EMT signals must hit a specific pitch before the anti-EMT signals are overridden and 

EMT occurs. Thus it appears one of three phenomena drive pathologic EMT: a relentless 

on-switch, a malfunctioning or absent off-switch, or the creation of new on-switches 

which results in enough "on" signal to drive EMT (Fig. 6). 

 

 Overexpression of EMT-promoting factors and loss of antagonistic factors has 

been reported in many cancers (173). An important example of a malfunctioning switch 

was recently elucidated by Gomis et al, when they discovered that loss of the LIP isoform 

of the transcription factor C/EBPβ eliminated the cytostatic effects of TGFβ in human 

breast tumors (202). This malfunctioning switch allows the cancer cells to receive the 

benefit of the pro-invasive properties of TGFβ and explains the biphasic action of TGFβ 

in tumors. As more intrinsic breaks and feedback loops on the EMT process are 
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uncovered, the apparently contradictory tissue specific roles of other EMT-related factors 

such as Notch may be understood more fully (299).  

 

1.13 Pathologic vs. non-pathologic EMT: role of hypoxia 

 Two major EMT-promoting switches are present under pathologic conditions that 

are absent in developmental EMT: hypoxia and inflammation. Hypoxia is present even in 

microscopic tumors, and contributes to tumor progression, angiogenesis, and 

radioresistance (300-302). Hypoxia results in prolylhydroxylase-dependent stabilization, 

dissociation from the VHL ubiquitin ligase, and activation of hypoxia-inducible factor 1-

α (HIF1α), as well as activation of HIF2α, both of which activate genes involved in 

angiogenesis as well as those involved in EMT (162, 303). HIF1α directly binds the 

hypoxia response element (HRE) in the Twist1 proximal promoter region in response to 

hypoxia and induces EMT, an effect reversible by siRNA directed to Twist (162). HIF2α 

has also been reported to transactivate Twist in response to hypoxia, but intriguingly 

HIF2α targets intronic HREs that are not responsive to HIF1α (262). This is particularly 

interesting in light of previous reports that HIF1α and HIF2α are differentially activated 

during acute and prolonged hypoxia in tumors, where high HIF2α expression correlated 

with VEGF expression, advanced clinical stage, and poor prognosis (304). This would 

suggest that during initial acute hypoxia HIF1α expression triggers angiogenesis and pro-

survival Twist expression, while continued low-level hypoxia causes continued 

expression of Twist via HIF2α and promotes EMT and metastasis. As HIF-driven EMT 

appears to be dependent upon Twist, arrival in a mature, oxygenated tissue may decrease 

Twist expression sufficiently to allow for MET and establishment of metastatic colonies. 
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 Several other factors appear to be required for hypoxia driven EMT. The Notch 

signaling pathway is necessary to convert the hypoxic stimulus into a pro-EMT signal 

and promote Snail expression directly and via lysyl oxidase mediated phosphorylation of 

Snail (231). Additionally, increased expression of the urokinase-type plasminogen 

activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR 

Figure 6. Pathological and developmental EMT. Developmental and pathological EMTs and METs share many common features 
such as loss of E-cadherin in EMT, as shown in the orange panel. Developmental EMT (orange and yellow panels) is characterized 
by strict spatial and temporal control, while pathological EMTs such as those occurring during metastasis and fibrosis have lost or 
eluded the molecular brakes on the EMT process. Pathological EMTs also occur in microenviroments rife with EMT-promoting 
hypoxic and inflammatory stimuli, which may disappear during extravasation thereby facilitating MET. The metastatic colony soon 
generates hypoxic and inflammatory stimuli of its own, maintaining the plasticity of the cells to spread further even if the original 
tumor is removed. 
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such as Akt and Rac1 have been shown to be required for full manifestation of the EMT 

phenotype in response to hypoxia (305). Blockage of either Notch or uPAR signaling in 

these studies was sufficient to halt hypoxia-induced EMT, and activation of Notch or 

overexpression of uPAR could substitute for hypoxia in EMT promotion. This is further 

evidence that EMT signaling must reach a threshold before EMT is initiated, and that 

tumor-associated hypoxia represents a pro-EMT signal that tilts the balances in favor of 

EMT but is not sufficient to initiate it alone, else nearly all solid tumors would display 

EMT. Hypoxia also contributes to pathogenic EMT in non-transformed cells, such as 

during kidney fibrosis (306, 307), suggesting that EMT and transformation are separate 

processes that can employ many of the same effectors. 

 

1.14 Pathologic vs. non-pathologic EMT: role of inflammation 

 The most well known link between inflammation and cancer is the transcription 

factor NF-κB, which activates transcription of genes that promote inflammation, cell 

survival, EMT, and cellular transformation, both initiating and feeding forward in these 

repsonses (308). NF-κB mediates EMTs initiated by the pro-inflammatory cytokine 

Tumor Necrosis Factor-α (TNFα) via induction of the E-cadherin repressors ZEB-1 and 

ZEB-2, and  up-regulates Twist and Snail  (259, 309, 310).  In addition to activation by 

inflammatory stimuli, NF-κB-driven EMT can be activated by genotoxicants such as 

7,12-dimethylbenz(a)anthracene (DMBA), and by hypoxia (311, 312). NF-κB can also be 

activated by loss of E-cadherin via p38 MAPK, providing a feed-forward mechanism for 

sustained EMT signaling (313). NF-κB can also feed forward on itself (314), suggesting 

another possible mechanism by which NF-κB signaling can sustain EMT.  Ectopic 
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expression of supraphysiological levels of active NF-κB is also capable of inducing EMT 

(309), indicating that NF-κB activity represents another EMT on-switch that initiates 

EMT upon reaching of a threshold signal. Physiological levels of cancer-related NF-κB 

activity do appear to be sufficient to drive EMT on their own, given the prevalence of 

aberrant NF-κB activation and rarity of EMT in breast cancers (116, 132, 315). EMT in 

breast cancer is often associated with ERα negative tumors, which have poorer 

progonosis than ERα positive tumors (117). Therefore, it is not surprising that ERα 

represses expression of the RelB subunit of NF-κB (316). ERα is in turn suppressed by 

the NF-κB target Snail (238), which is itself a target of suppression by MTA3, a 

downstream effector of ERα (246). 

 

 Inflammtory NF-κB-mediated signialing pathways also have extensive cross-talk 

with other EMT-promoting factors such as Wnt, Notch, HIF1α, and TGF-β (317-323). 

NF-κB transactivates the HIF1α promoter, and is required for hypoxia-induced HIF1α 

accumulation (321). HIF1α returns the favor by promoting NF-κB activation via 

phosphorylation of IKK and NF-κB itself, suggesting cooperation between hypoxia and 

inflammation in pathogenic EMT (324). Inflammatory signaling pathways can also 

crosstalk with HIF1α in an NF-κB-independent fashion, as LPS-induced HIF1α 

activation appears to be NF-κB-independent but is sensitive to antioxidants (325), and 

processes that generate reactive nitrogen species can stabilize HIF1α through S-

nitrosylation of HIF1α's oxygen-dependent degradation domain, preventing interaction 

with VHL (326). Knowledge of the extensive entanglements between the various EMT-

promoting pathways has provided numerous potential therapeutic targets, however, 
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relatively little work has been done to elucidate the factors that restrain EMT in normal 

tissues and less advanced cancers. 

 

1.15 SIM2 

 In the developing Drosophila CNS, specification of the CNS midline is dependent 

upon the basic helix-loop-helix Per-Arnt-Sim transcription factor single-minded (sim), 

which serves as the master regulator of midline differentiation (327, 328). Singleminded-

2 (SIM2) is one of two vertebrate orthologs of the Drosophila sim (dsim) protein, but it 

differs in functioning as a transcriptional repressor (329-332). SIM2 was initially 

identified by positional cloning around the DS (DS) critical region of chromosome 21 and 

is believed to contribute to many of the physiological abnormalities associated with 

trisomy 21 (333). SIM2 functions as a heterodimer with ARNT, similar to drosophila 

counterpart dsim that dimerizes with the ARNT ortholog Tango to control expression of 

midline genes in the central nervous system (CNS) (334, 335). SIM2 is expressed in 

multiple tissues including the kidneys, lungs, brain, and breast, in both adult and 

developing tissues (329, 336-338). Sim2 plays an important role in development, as Sim2 

null mice die shortly after birth due to multiple abnormalities, including cleft palate, 

improper diaphragm development, and rib defects (337, 338). The molecular mechanisms 

controlling these processes are complex and involve the concerted actions of many 

factors, and suggesting a master regulatory role for SIM2 in the many developmental 

processes that are severely disrupted in Sim2 null mice. Indeed, SIM2s, a splice variant 

of SIM2, was recently identified as a regulator of MMP3 gene expression, which plays a 

critical role in the development of the palate, mammary gland, and neuromuscular 
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junctions (15, 339-342). As the phenotype of MMP3 null mice is significantly different 

from and less severe than that of Sim2 null mice, it is clear than many more important 

developmental targets of SIM2 remain to be elucidated. 

 

1.16 The Down syndrome (DS) tumor profile 

 Individuals with DS have a markedly different tumor spectrum than the general 

population. Specifically, leukemias are greatly increased while solid tumors are decreased 

in DS patients (343-350). Most striking is the profound protection women with DS enjoy 

from breast cancer, with as much as 25-fold protection compared to the non-DS 

population (344, 347-350). Recently, this solid tumor protection was proposed to be due 

to at least in part to gene dosage-mediated increases in ETS2 levels (351). However, this 

cannot explain the protection that women with DS enjoy, as there is overwhelming 

evidence that ETS2 acts as an oncogene in breast tissue by promoting tamoxifen 

resistance and suppressing the tumor suppressor BRCA1 (352-355). Therefore, other 

mechanisms must be invoked to fully explain the tumor spectrum of DS patients. 

 

 Due to its position in the DSCR of chromosome 21, and its roles in regulating 

responses to xenobiotics and hypoxia, SIM2 is a strong candidate for contributing to 

trisomy 21-related solid tumor suppression. Other laboratories have reported that SIM2s 

is oncogenic in the pancreas, prostate, and colon (356-359), a conclusion based largely on 

the observation that antisense oligos targeted to the 3' untranslated region of the SIM2s 

mRNA resulted in apoptosis. However, as loss of tumor suppressors such as VHL can 
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lead to senescence (360), this conclusion requires mechanistic support, especially in light 

of the frequency of SIM2s loss in breast tumors (336).  

 

1.17 The mechanism of SIM2-mediated tumor suppression 

To attempt to shed light on the true nature of SIM2s as relates to cancer, we used 

a retroviral shRNA system to silence SIM2s in the relatively non-invasive breast cancer 

cell line MCF-7, which expresses high amounts of SIM2s relative to more invasive cell 

lines (336). Based on previous studies from MDA-MB-435 cells, we hypothesized that 

loss of SIM2s would confer enhanced invasiveness and tumorigeneic properties. As 

expected, silencing of SIM2s lead to enhanced invasiveness, and also promoted EMT, 

xenograft tumor growth, and metastasis. Investigation into the mechanism underlying 

these observations revealed that the oncogenic E-cadherin repressor slug and the 

invasion-associated metalloprotease MMP2 are direct targets of SIM2s-mediated 

transcriptional repression. Furthermore, SIM2s binds the slug promoter directly and 

represses transcription, making it the first known repressor of slug expression. Sim2-/- 

mammary glands also displayed hallmarks of EMT such as E-cadherin loss and increased 

nuclear accumulation of β-catenin, suggesting that Sim2s' roles in regulating slug is 

conserved amongst mammals. Silencing of SIM2 also severely disrupted acinar 

morphogenesis in untransformed MCF-10A cells, but was not sufficient to induce EMT. 

 

 As slug plays an important role in stem cell biology and SIM2i cells were much 

more tumorigenic than their control "scrambled" (SCR) counterparts, we asked whether 

SIM2 loss affected self-renewal capacity or expression of stem cell markers. When 
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grown under low attachment conditions in normal growth media, SIM2i cells had a 

decided advantage in self-renewal as measured by mammosphere formation, but this 

effect was masked by supplementation with growth factors. Using commonly used 

markers for tumor-initiating cells in MCF-7 populations, we found that SIM2i cells had a 

significantly larger number of putative tumor-initiating CD29+ CD24lo cells, consistent 

with their enhanced tumorgenecity. In both stem cells and cancer cells, slug has been 

reported to enhance cell survival in the face of DNA damage, and therefore we asked 

whether depletion of SIM2s enhanced chemoresistance. MCF-7 cells infected with the 

SIM2-specific virus (SIM2i) were resistant to doxorubicin, but not ionizing radiation 

when compared to SCR cells. Additionally, we found that the reported slug target PUMA 

was not induced in response to DNA damage in SIM2i cells, consistent with their high 

levels of slug expression. Interestingly, SIM2s deficient MCF-7 cells also failed to induce 

the cyclin-dependent kinase inhibitor p21/ WAF1/CIP1 under conditions where it was 

robustly induced in SCR cells, suggesting a role for SIM2 in DNA damage signaling. 

Further examination of the DNA damage response in SIM2i cells revealed that they were 

p53 positive, and had extremely elevated constitutive p53 levels, with no mutations in 

p53. While apparently insufficient to drive expression of p21 or PUMA, other p53 targets 

such as MDM2 and NOXA were induced similarly in both cell types in response to DNA 

damaging agents. ChIP analysis of the p21 promoter confirmed that SIM2 binds the p21 

promoter near the p53 response element in response to doxorubicin and ionizing radiation 

(R. Metz, unpublished results), raising the question of whether SIM2 and p53 interact 

either directly or in a complex. Indeed, we observed a DNA-damage dependent 

interaction between SIM2 and p53, which occurred with 4 hours of DNA damage. We 
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also found that SIM2 is itself stablized by DNA damage, while its RNA expression 

remains unchanged. Our studies suggest strongly that SIM2s is a tumor suppressor, 

although it is possible that SIM2 has tissue-specific activities that make tumor-promoting 

in other tissues. Based on our data presented here and published work on slug, EMT, and 

basal-like carcinomas of the breast, we hypothesize that SIM2 loss contributes to the 

basal phenotype and may be a useful diagnostic marker for these tumors.   
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Cell line maintenance and drug treatment  

 MCF7 cells were maintained in DMEM supplemented with 10% fetal bovine 

serum and 1% penicillin and streptomycin.  MCF10A cells were maintained in 

DMEM/F-12 supplemented with 5% fetal bovine serum, 1% penicillin and streptomycin 

as well as 20 ng/ml epidermal growth factor, 0.5 µg/ml hydrocortisone, 100 ng/ml 

cholera toxin and 10 µg/ml insulin. All cells were grown in 5% CO2 at 37oC. 

 

2.2 Plasmids 

 A 3,280 bp region of the human SLUG gene promoter region was amplified from 

human genomic DNA (Roche) using Accuprime Taq DNA polymerase (Invitrogen) and 

the primers F 5’-GCC TAT GCC ACA CTC TGG TT-3’ and R 5’-GGC GCC TCT GAA 

GTC ACC-3’ and cloned into the pGL3-basic luciferase reporter vector (Promega). The 

human SIM2s expression vector has been described previously (336). The human SIM2-

specific shRNA constructs were generated by ligating a dsDNA insert designed by 

Ambion into their pSilencer U6-retro 5.1 shRNA vector. The dsDNA insert sequences 

were based upon Ambion pre-designed siRNA sequences #3116 (SIM2i #1), 114477 

(SIM2i #2), and 114478 (SIM2i #3). The insert was created by annealing the oligos 5'-

GAT CCG GTC GTT CTT TCT TCG AAT TTC AAG AGA ATT CGA AGA AAG 

AAC GAC CTC TTT TTT GGA AA-3’ (top) and  5'-AGC TTT TCC AAA AAA GAG 

GTC GTT CTT TCT TCG AAT TCT CTT GAA ATT CGA AGA AAG AAC GAC CG-
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3' (bottom) for 3116;  5'-GAT CCG CAG TGA CCT TCT GTA CAC TTC AAG AGA 

GTG TAC AGA AGG TCA CTG CTT TTT TGG AAA-3' (top) and AGC TTT TCC 

AAA AAA  GCA GTG ACC TTC TGT ACA CTC TCT TGA AGT GTA CAG AAG 

GTC ACT GCG-3' (bottom) for 114477; and 5'-GAT CCG CGG GCA ACA GTA TTT 

ATG ATT CAA GAG ATC ATA AAT ACT GTT GCC CGT GTT TTT TGG AAA-3' 

(top) and 5'-AGC TTT TCC AAA AAA CAC GGG CAA CAG TAT TTA TGA TCT 

CTT GAA TCA TAA ATA CTG TTG CCC GCG-3' (bottom) for 114478 to yield 

overhangs compatible with the vector. The scrambled control vector was provided by 

Ambion. 

 

2.3 RNA isolation and real time RT-PCR 

 RNA was isolated using a Qiaquick RNeasy Mini kit with Qiashredder columns 

(Qiagen) and DNase digested (Roche).  Two µg of RNA was reverse transcribed with 

Superscript II Reverse Transcriptase (Invitrogen) with an oligo d(T)12-18 primer.  Relative 

quantitative PCR was performed using Sybr Green master mix and cDNA-specific 

primers.  TBP was used as the housekeeping gene.  Data were collected using ABI 7500 

system software, and analyzed by the CT method.  Primers used for real time RT-PCR 

are shown in the table 3.  
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Table 3. Real-time RT-PCR primers. 
Gene Forward Primer Reverse Primer 
ATM CCG ACG GGC CGA ATG T AGC CGC AGA GCA CGG TAT 
ATR TTG CCA ACG TTT TCG ACT TTC TCC TAA AGT TCG AAT GAG AGC AGA A 
β2M CGC  TCC GTG GCC TTA GC AAT CTT TGG AGT ACG CTG GAT AGC 
BCL2 CAT GTG TGT GGA GAG CGT CAA GCC GGT TCA GGT ACT CAG TCA 
BID CTT TTT CTC TTT CCA TGA CAT CAA GA GGG CAT CGC AGT AGC TTC TG 
BIM CGG TCT CCT GGT GCC ATT AT AGC TCG GTG TCT TCT GAA ACG 
BRCA1 AGC GGT AGC CCC TTG GTT GCG CAG TCG CAG TTT TAA TTT 

 
BRCA2 CGC GGT TTT TGT CAG CTT ACT 

 
ACG ATA TTC CTC CAA TGC TTG GT 
 

E-cadherin CAC AGA CGC GGA CGA TGA T GAT CTT GGC TGA GGA TGG TGT AA 
ERα TCT GCC AAG GAG ACT CGC TAC T CGT TAT GTC CTT GAA TAC TTC TCT 

TGA 
GATA3 CTG GCT CGC AGA ATT GCA AAC TGG GTA TGG CAG AAT AAA ACG 
Keratin 18 GAG GCT GAG ATC GCC ACC TA CCA AGG CAT CAC CAA GAT TAA AG 
MDM2 GGG ACG CCA TCG AAT CC TGA ATC CTG ATC CAA CCA ATC A 
MDM4 CAG CAG GAG CAG CAT ATG GTA T AGA AGC TCT GAC GTC CCA GTA GTT 
MMP2 CAA GGA GTA CAA CAG CTG CAC TGA TA GGT GCA GCT CTC TCA TAT TTG TTG C 
MMP3 TTC CTG ATG TTG GTC ACT TCA GA TCC TGT ATG TAA GGT GGG TTT TCC 
MMP14 GCC TGC GTC CAT CAA CAC T ACA CCC AAT GCT TGT CTC CTT T 
N-cadherin CAG CAA CGA CGG GTT AGT CA  TGC AGC AAC AGT AAG GAC AAA CA 
NOXA CTG CAG GAC TGT TCG TGT TCA GGA ACC TCA GCC TCC AAC TG 
p21 CCT AAT CCG CCC ACA GGA A AAG ATG TAG AGC GGG CCT TTG 
p27 GCT AAC TCT GAG GAC ACG CAT TT CGC ATT GCT CCG CTA ACC 
p53 TCT TTG AAC CCT TGC TTG CA CCG GGA CAA AGC AAA TGG 
PR CCG GGC ACT GAG TGT TGA AT GTT TCA CCA TCC CTG CCA AT 
PS2 GTG CCT CGG CTC ACA ACA C CGA TCT CTT TTA ATT TTT AGG CCA AT 
PUMA GGG CCC AGA CTG TGA ATC CT 

 
CGT CGC TCT CTC TAA ACC TAT GC 

SIM2 AGA CAA AGC TGA GAA CAA ACC CCG CAT TCC AGT TTG TCC AT 
SLUG GGC TGG CCA AAC ATA AGC A  CCT TGT CAC AGT ATT TAC AGC TGA 

AA  
SNAIL GCG TGT GGC TTC GGA TGT CTG CAA ATA CTG CAA CAA GGA ATA C  
TIMP2 CCC CTC CTC GGC AGT GT CCC CCT CGG CCT TTC C 
TBP TGC ACA GGA GCC AAG AGT GAA CAC ATC ACA GCT CCC CAC CA 
Vimentin TTC TCT GCC TCT TCC AAA CTT TTC   GGG TAT CAA CCA GAG GGA GTG A  
 

All primers were designed based on the human NCBI reference mRNA sequence using primer 
express software from ABI and purchased from IDT.  
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2.4 Chromatin immunoprecipitation 

 ChIP assays were carried out as described by the manufacturer (Upstate Cell 

Signaling) with a few modifications.  Briefly, cells were fixed with 1% formaldehyde for 

10 minutes.  Crosslinking was stopped by addition of 125 mM glycine.  Cells were 

washed in the presence of protease inhibitors (Complete tablets, Roche), pelleted at 2000 

rpm for 4 minutes at 4oC and resuspended in SDS lysis buffer with protease inhibitors 

(Complete tablets, Roche).  Aliquots of 200 µl (1x106 cells) were sonicated for 10 pulses 

of 10 seconds each to shear chromatin to between 200 and 1500 bp.  The supernatant was 

collected and diluted in ChIP dilution buffer to an appropriate amount.  After pre-clearing 

twice with salmon sperm DNA/protein A agarose-50% slurry in TE/Na azide/0.1% BSA, 

the supernatant was incubated overnight with antibody at 4oC.  Antibodies used were 

normal rabbit IgG (5 µg, Upstate), anti-Sim2 (Rb pAb, 5 µg, Chemicon), and anti-slug 

(Rb pAb, 5 µg, Santa Cruz).  The salmon sperm DNA/protein A agarose-50% slurry was 

then used to collect the antibody complexes for 1 hour at 4oC.  Agarose was pelleted at 

1000 x g at 4oC for 1 minute and washed sequentially with low salt wash buffer, high salt 

wash buffer, lithium chloride wash buffer and TE buffer.  The protein complex was 

eluted with 1% SDS, 0.1 M NaHCO3, and the crosslinking was reversed in 200 mM NaCl 

at 65oC for 4 hours.  Ethanol was added to precipitate the DNA, which was then 

resuspended in TE and digested with proteinase K for 1-2 hours at 45oC.  DNA was 

purified using the Qiaquick PCR purification kit.  PCR was performed with primers 

flanking the CME in the SLUG promoter region (5′- TGT GTC CAC GTG GCT CTA 

AG -3′ and 5′- CGC GTG CTA GCG AGT AAC A -3′), and sites 500-1000 bp upstream 

(5′-ATG CCC GCT CTG ACA ATT T-3′ and 5′-GGT GTG TAA AAA GCA GTG 
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CAA-3′), and downstream (5′-CCA GGT TTC CAG TTT GTG TG-3′ and 5′-TGT GTA 

TGG TCT TCA ATC TA-3′) of the CME primer set. Primers flanking the first two E-box 

elements in the E-cadherin promoter were: 5′- AAA AGC CCT TTC TGA TCC CA -3′ 

and 5′- TGG AGT CTG AAC TGA CTT CCG -3′.     

 

2.5 Western blot 

 Protein was isolated using RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 

1% NP-40, 1% sodium deoxycholate, 0.1% SDS) with protease inhibitors and MG-132 

added or with Nonidet-P40 (NP-40) buffer (20 mM Tris HCl pH 8, 137 mM NaCl, 10% 

glycerol, 1% nonidet P-40, 2 mM EDTA) with protease and phosphatase inhibitors.  

Protein was loaded and run on an 8% or 10% acrylamide gel at 110 V until the dye front 

reached the bottom of the gel.  Protein was transferred to a PVDF membrane (Bio-Rad) at 

100 mA for 2 hours or at 60 mA overnight in a cold room.  Membranes were blocked in 

5% milk and probed with the primary antibody for 2 hours at RT or overnight at 4oC.  

Membranes were washed in PBS, 0.1% Tween-20 and probed with the appropriate 

secondary antibody, anti-rabbit (Bio-Rad) or anti-mouse (Santa Cruz), at 1:5000 for 45 

minutes at room temperature.  Blots were again washed in PBS, 0.1% Tween-20 and 

developed with the ECL Plus Western Blotting Detection System (Amersham). All 

washing, blocking, and antibody incubation steps were peformed with gentle rocking.  

Antibodies used for western blotting and immunostaining are summarized in table 4. 
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Table 4. Antibodies and conditions. 

Antibody Manufacturer Host IF/IHC Conditions WB 
Conditions 

β-actin SIGMA M N/A 1:8000 
Active β-
Catenin Clone 
8E7 

Upstate M M.O.M. kit 
recommedations 

N/A 

Aquaporin 5 Alpha 
Diagnostics 

Rb 1:150 N/A 

BrdU Molecular 
Probes 

 1:50 N/A 

CD31 Santa Cruz G 1:100 N/A 
E-Cadherin BD 

Transduction 
M 1:1000 1:2500 

ERα Santa Cruz  Rb 1:500 1:1000 
γ-H2AX Calbiochem Rb 1:1000 N/A 
Keratin 14 Covance Rb 1:1000 1:2000 
Keratin 18 Neomarkers M 1:500 1:1500 
Ki-67 Santa Cruz  G 1:100 N/A 
Laminin V Chemicon M 1:1000 N/A 
MDM2 Chemicon M N/A 1:1000 
MMP2 Affinity 

Bioreagents 
Rb 1:250 1:2000 

MMP3 Affinity 
Bioreagents 

Rb 1:250 1:2000 

N-Cadherin BD 
Transduction 

M 1:1000 1:2500 

NOXA Abcam M N/A 1:1000 
p21 DAKO M 1:1000 1:2000 
p53 R&D Systems G 1:1000 1:2500 
p53 NeoMarkers M 1:250 1:1000 
PUMA Santa Cruz  G 1:250 1:1000 
Phospho- β-
Catenin 

Cell Signaling Rb 1:250 N/A 

α-Smooth 
Muscle Actin 

SIGMA M 1:1000 1:2000 

SIM2 Chemicon Rb 1:250 1:700 
Sim2s Santa Cruz  G 1:100 N/A 
Slug Santa Cruz Rb 1:500 1:1000 
VEGF DAKO M Manufacturer's 

recommendations 
 

Vimentin Clone 
V9 

Sigma M 1:500 1:1000 

 
N/A indicates that the antibody is suitable for the application but was not used or opimized. 
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2.6 Zymography 

 To determine MMP2 activity, conditioned medium from  cells was concentrated 

~20-fold using Centricon 10 spin concentrators (Amicon).  Equal amounts of protein 

were mixed with Laemmli sample buffer without reducing agents, incubated for 15 

minutes at 37°C, and separated on 8% polyacrylamide slab gels containing 1 mg/ml 

gelatin. Following electrophoresis, gels were placed in 2.5% Triton X-100 for 30 minutes 

then incubated at 37°C in 50 mM Tris-HCl, pH 7.4, containing 5 mM CaCl2 for 18 hrs.  

MMP2 activity was visualized by Coomassie blue staining.   

 

2.7 Stable transduction  

 HEK-293T amphotrophic Phoenix cells were transfected with 15 μg pSilencer 

U6-retro 5.1 retroviral vector (Ambion, Austin, TX) with SIM2-specific insert or a non-

specific "scrambled" insert, or a non-retroviral plasmid (pcDNA3) for mock infection. 

After 24 hours, cells were placed at 32oC.  Viral media was harvested 48 and 72 hours 

after transfection and used to infect cells after passage through a 0.45 μM filter.  Infected 

cells were centrifuged at room temperature immediately after application of viral media, 

and housed at 32oC during infection. 24 hours after the second application of viral media, 

cells were rested for 24 hours in their respective normal growth media before initiation of 

puromycin selection. Selection was considered complete when all mock-infected cells 

had died. 
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2.8 Transient transfection 

 MCF-7 cells were used for all transient transfections.  One hundred ng (0.1 μg) of 

plasmid containing transcription factor was mixed with 0.2 μg of plasmid containing 

promoter construct.  Three μL of Genejuice (Novagen) was used per microgram of DNA.  

DNA and Genejuice were mixed in Opti-MEM media (Invitrogen).  Protein was 

harvested 2 days after transfection, using Reporter Lysis Buffer (Promega).  Luciferase 

activity and total protein were measured as described previously (336).  Luciferase 

activities were normalized to total protein values and are represented as the means ± SE 

for three wells per condition.  

 

2.9 Cell proliferation/death assay 

 Cells were seeded at 25,000 cells/well (MCF-7) or 10,000 cells/well (MCF-10A) 

in triplicate in 6-well plates containing selection medium. Cells were harvested and 

counted with a Coulter counter days 2-7 after plating. For drug-induced cell death assays, 

SCR and SIM2-depleted MCF-7 cells were seeded at 500,000 cells per well in 6-well 

plates.  The next day cells were treated with 1 μM doxorubicin or 10Gy of ionizing 

radiation.  Cells were counted, using a Coulter counter, in triplicate (3 wells) at the time 

of treatment and 24 hours intervals thereafter for 3 days. 
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2.10 Migration and invasion assays 

Migration and invasion were measured using control and matrigel-coated invasion 

chambers (Falcon BD, Franklin Lakes, New Jersey). 12,500 cells were seeded in serum-

free DMEM in the upper chamber with serum-containing medium in the lower chamber 

as a chemoattractant. After 20 hours at 37°C, cells were scraped from the upper chamber 

with a cotton swab, and the underside of the membranes were fixed in 100% MeOH, 

stained with DAPI, and counted. Percent invasion was calculated as per the 

manufacturer’s instructions.  

 

2.11 Immunofluorescence 

 Cells were seeded on cover slips in 6-well plates.  The following day the cells 

were fixed in 3.8% paraformaldehyde and permeabilized with 0.1% Triton X-100 for 15 

minutes at 4oC.  The cells were blocked in 5% BSA for 45 minutes and then probed with 

primary antibody for 2 hours at room temperature.  After washing in PBS, the secondary 

antibody was applied in blocking buffer for 45 minutes at room temperature. The 

secondary antibody was then washed off in PBS and 5ug/mL DAPI was applied for 5 

minutes in the dark at room temperature. After thorough washing in PBS, Cells were 

mounted in Prolong Gold fluorescence mounting media without DAPI (Molecular 

Probes) and allowed to cure overnight before viewing.  DAPI and fluorescent Alexa 

Fluor-conjugated secondary antibodies and phalloidin were purchased from Molecular 

Probes and applied according to the manufacturer’s instructions.  
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2.12 Immunohistochemistry 

Mammary gland and xenograft tumor sections on Superfrost plus microscope 

slides were baked at 62oC for 30 minutes in an upright position then rehydrated by 

sequential washes in xylene and a series of graded ethanol washes. Antigen retrieval was 

performed for 10 minutes at 98°C in 0.01 mol/L sodium citrate buffer, pH 6.0, in a 

microwave oven.  When appropriate, sections were incubated in 3% hydrogen peroxide 

for 6 minutes to block endogenous peroxidase activity.  After a 45 minute block in 10% 

serum, the sections were incubated with the primary antibody overnight at 4oC or for two 

hours at room temperature. Secondary detection was performed with a fluorescent 

secondary antibody or the appropriate biotinylated secondary antibody, Vectastain ABC 

elite kit, and DAB (Vector Labs, Burlingame, CA).  

 

2.13 Co-immunoprecipitation 

 Protein samples from MCF-7 cells were harvested in non-denaturing protein lysis 

buffer supplemented with protease and phosphostase inhibtors.  100 were pre-cleared 

twice with salmon sperm DNA/protein A agarose-50% slurry in TE/Na azide/0.1%BSA, 

the supernatant was incubated overnight with antibody at 4oC.  Antibodies used were 

anti-Sim2 (1:100, Chemicon), normal rabbit IgG (1:1000, Upstate), and anti-NFκB p65 

(1:100, Abcam).  The salmon sperm DNA/protein A agarose-50% slurry was then used to 

collect the antibody complexes for 1 hour at 4oC.  Agarose was pelleted at 1000 x g at 

4oC for 1 minute and washed consecutively with low salt immune complex wash buffer, 

high salt immune complex wash buffer, lithium chloride immune complex wash buffer 

and TE buffer.  The pellet was resuspended in 50 μl of 1X SDS-PAGE loading buffer, 
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boiled for 5 minutes and 10 μl of sample was run by SDS-PAGE.  Western blotting was 

performed as described above, with anti-Sim2 and rabbit anti-NFκB p65 (1:1000, 

Abcam) primary antibodies.   

 

2.14 Flow cytometry 

 MCF-7 cells bearing either a control (SCR) or SIM2-specific (SIM2i) shRNA 

expression construct were analysed by flow cytometry according to the protocol 

recommended by BD. Briefly, cells were washed, trypsinized, counted on a Coulter 

counter, and resuspended in PBS, 1% FBS at 2.5 million cells per ml.  250,000 cell 

aliquots of this suspension were incubated with 20 μl of experimental antibodies or 

isotype controls for 30 minutes at RT in the dark as recommended by BD. Cells were 

again washed, resuspended in PBS 1% FBS and analyzed on a FACSCalibur (Becton 

Dickinson Immunocytometry Systems) flow cytometer, equipped with a 15 mW air-

cooled argon laser, using CellQuest (Becton Dickinson) acquisition software.  List mode 

data were acquired on a minimum of 10,000 events falling within light scatter gates set to 

include cells while excluding dead cells and clumps of cells.  Data analysis was 

performed in FlowJo (Treestar, Inc.) using forward and side light scatter to gate the cells. 

Antibodies and isotype controls used in flow cytometry experiments were purchased 

from Becton Dickinson and used according to the manufacturer's protocol. 

 

 

 

 
 



  49

CHAPTER III 
 

LOSS OF SIM2s INDUCES EMT IN MCF-7 CELLS* 

 

3.1 shRNA directed to SIM2s promotes EMT 

 Previously, we have shown that SIM2s expression is lost in human breast tumors 

and correlates inversely with breast cancer cell invasiveness (336). Furthermore, 

reintroduction of SIM2s into highly invasive cancer cells resulted in decreased 

proliferation, migration and invasion. To determine if loss of SIM2s is sufficient to cause 

progression, MCF-7 cells were transduced with either a non-specific “scrambled” control 

(SCR) shRNA retroviral construct, or one of three SIM2-specific shRNA constructs 

targeting different regions of the SIM2 mRNA (SIM2i114478, and SIM2i3116 and 

SIM2i114477, Fig. 7A). Significant reduction in SIM2s protein was observed in the 

SIM2i114478, and SIM2i3116 cell lines (Fig. 7B), but not in SIM2i114477 (data not shown).  

In three independent infections, MCF-7 SIM2i3116 and SIM2i114478 cells showed 

significantly enhanced invasive ability (Fig. 6C) and underwent a morphological change 

from the cobblestone epithelial shape typical of MCF-7 cells to a spindly mesenchymal 

cell-like morphology (Fig. 7D), suggesting that loss of SIM2s expression had induced 

EMT.  

 

*Part of the data reported in this chapter is reprinted with permission from “Loss of singleminded-2s in the 
mouse mammary gland induces an epithelial-mesenchymal transition associated with up-regulation of slug 
and matrix metalloprotease 2” by Laffin et al., 2008. Molecular and Cellular Biology, 2008 
Mar;28(6):1936-46. Copyright 2008 American Society for Microbiology 
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To confirm that the morphological changes observed with the loss of SIM2s was 

indeed an EMT, we utilized the SIM2i3116 MCF-7 cell line, which will be referred to from 

here on as SIM2i, to assay the expression of additional epithelial and mesenchymal cell 

markers.  Western blots (Fig. 7E), differential interference contrast microscopy (Fig. 8A) 

and immunofluorescence analysis (Fig. 8B) confirmed that SIM2i cells lost expression of 

keratin 18 and E-cadherin and increased expression of N-cadherin and vimentin. 

Although SIM2i MCF-7 cells express mesenchymal markers and do not express E-

cadherin, increased nuclear accumulation of ß-catenin was not detectable by antibodies 

against the active, non-phosphorylated (S37, T41) form (data not shown). There was, 

however, a marked increase in nuclear accumulation of the phospho-S33, S37, T41 form 

of ß-catenin (Fig. 8B), a phenomenon recently shown to be associated with poor 

prognosis in aggressive breast carcinomas (361). Changes in SIM2i protein levels were 

accompanied by dramatic decreases in keratin 18 and E-cadherin message and increased 

N-cadherin and vimentin mRNA, as measured by real-time RT-PCR (Fig. 8C).  Together, 

these data indicate that loss of SIM2s in MCF-7 cells results in a morphological, 

functional and biochemical switch from an epithelial to a more mesenchymal-like 

phenotype.  
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3.2 SIM2i MCF-7 cells form rapidly growing ERα- tumors in nude mice 

To assess the tumorigenic effects of SIM2s loss, we compared tumor forming 

ability of SIM2i cells to control cells using a nude mouse xenograft assay. SIM2i cells 

rapidly developed into tumors that were three times larger than controls by day 10 (Fig. 

9A). SIM2i cell derived tumors maintained this size advantage throughout the experiment 

and were 6-fold larger than SCR-derived tumors with an average weight 7-fold higher 

than control tumors at the conclusion of the study seventeen days after injection (Fig. 

9B). SIM2i tumors appeared to be more vascularized than control tumors (Fig. 9C), an 

observation that was confirmed by increased CD31 and VEGF immunoreactivity of 

SIM2i-derived tumor sections (Fig. 9D). Quantification of BrdU-positive cells from  
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Figure 7. Silencing of SIM2s causes EMT in MCF-7 cells. (A) Structure of the SIM2s mRNA transcript showing 
region targeted by shRNA constructs. Exons are indicated by numbered boxes. (B) Infection of MCF-7 cells with 
shRNA constructs SIM2i3116 (SIM2i) or SIM2i114478 (SIM2i2) resulted in decreased SIM2s protein levels in 
comparison to a non-specific control shRNA construct (SCR). SIM2i3 was ineffective (data not shown). (C) Down 
regulation of SIM2s significantly increased MCF-7 cell invasive ability. Data are represented as the mean ± SEM, 
* indicates p<0.05. (D) Phaloidin staining demonstrates that decreased SIM2s expression correlated with loss of 
epithelial morphology and acquisition of a more spindly appearance. Bar = 100μm. (E) Western analyses of SCR 
Keratin, E-cadherin, N-cadherin, and Vimentin indicated that MCF-7 cells targeted for SIM2s down regulation 
lose epithelial markers and gain mesenchymal ones. 
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xenograft tumor sections showed a 35-fold increase in SIM2i cell proliferation (Fig. 9D; 

SCR = 1.1% ± 0.543%, SIM2i = 35.1% ± 2.24%), suggesting a link between increased 

vascularity, cell proliferation and tumor growth in SIM2i-derived tumors.  Similar to our 

in vitro studies (Fig. 8), SIM2i-derived tumors displayed signs of EMT with decreased E-

cadherin and increased vimentin staining (Fig. 9D). 
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Figure 8. Conformation of EMT in SIM2i MCF-7 cells. (A) Differential interference contrast images showing detailed 
morphology of SCR and SIM2i MCF-7 cells. (B)Immunofluorescent staining of control (SCR, top panels) and SIM2i 
(bottom panels) MCF-7 cells corroborated the Western blot data showing that loss of SIM2s expression results in a 
switch from an epithelial to a more mesenchymal phenotype. In addition, increased nuclear staining of 
phosphorylated ß-catenin, a phenomenon recently associated with poor breast cancer prognosis, can be seen in 
SIM2i cells. (C) Real time RT-PCR analyses of SCR and SIM2i MCF-7 cells for expression of Keratin 18, E-
cadherin, N-cadherin and Vimentin mRNA. Data were obtained from three wells per group, analyzed by the ΔCT 
method and are expressed as the average fold difference ± S.E.M. * p>0.05.  
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Normally, tumor development in the MCF-7 xenograft model requires exogenous 

estrogen to sustain growth. Therefore, we were surprised to see tumors develop so rapidly 

in the absence of estrogen. The accelerated rate of SIM2i tumor growth coupled with the 

apparent estrogen-independent nature of this growth prompted us to look at ERα 

expression. Indeed, ERα was undetectable in SIM2i-derived tumors by 

immunohistochemistry (Fig. 9D), or in SIM2i MCF-7 cells by either real-time RT-PCR 

(Fig. 10A) or western blot (Fig. 10B).  Furthermore, SIM2i cells no longer responded to 

estrogen treatment as measured by induction of the estrogen-responsive genes PR and 

PS2 (Fig. 10C and 9D). The striking increase in SIM2i MCF-7 cell tumorigenesis 

confirms that loss of SIM2 has functional consequences in vivo and provides further 

evidence that SIM2s may represent an important hurdle to breast cancer progression.  
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3.3 MMP3 and Rac1b are not induced in MCF-7 cells upon loss of SIM2s and MMP 

inhibition does not affect the EMT phenotype 

In previous studies utilizing MDA-MB-435 cells, we reported that MMP3 is a 

direct target of SIM2s-mediated transcriptional repression (362). MMP3 has also been  
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reported to be sufficient to initiate EMT via generation of reactive oxygen species and a 

splice variant of Rac1, Rac1b (363). Therefore, we hypothesized that up-regulation of 

MMP3 may contribute to the aggressive, invasive phenotype observed in SIM2s-depleted 

cells. We observed an increase in MMP3 promoter activity in the SIM2i cells, and SIM2s 

retained its ability to repress the MMP3 promoter in a dose-dependent fashion in MCF-7 

cells (Fig. 11A and 10B), consistent with previous results. However, in contrast to our 
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findings in MDA-MB-435 cells, MMP3 mRNA expression was not significantly altered 

(Fig. 11C), and MMP3 protein expression and activity were unchanged (Fig. 11D), 

suggesting that this apparently inconsistent result is due to intrinsic differences in basal 

MMP3 expression between MDA-MB-435 and MCF-7 cells. 

 

3.4 SIM2s represses MMP2 expression and activity  
 

As previous work had suggested that SIM2s may regulate several MMPs, we 

measured expression of several MMPs and related factors in SCR and SIM2i cells by real 

time RT-PCR to determine if another MMP could be playing a similar role to MMP3 in 

EMT promotion.  We found MMP2 to be up regulated >4,500-fold in SIM2i cells, while 

others including MMP9 were unchanged (Fig. 12A and not shown).   MMP14 and 

TIMP2, which are required for MMP2 activation, were also up regulated approximately 

6- and 7-fold, respectively, in SIM2i cells (Fig. 12A). The MMP2 mRNA increase 

observed in SIM2i cells was corroborated at the protein and activity levels (Fig. 12B). In 

addition, MMP2 levels were markedly elevated in xenograft tumor sections derived from 

SIM2i cells in comparison to those derived from control cells (Fig. 12C), confirming that 

loss of SIM2s lead to increased MMP2 expression. 
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 Increased MMP2 expression was attributable to de-repression of the MMP2 

promoter, as expression of an MMP2-controlled luciferase reporter was significantly 

higher in SIM2i cells (Fig. 12D). Co-transfection of the MMP2 reporter and increasing 

amounts of SIM2s expression vector into MCF-7 cells resulted in dose-dependent 

inhibition of luciferase activity (Fig. 12E).  These results suggested that MMP2 could be 

playing a role in EMT regulation similar to MMP3, however, we could not modulate 

expression of any EMT-related factors in MCF-7 with MMP inhibitors or free radical 

scavengers, and Rac1b expression was lower after the onset of EMT (data not shown). 

This implies that MMP2 does not regulate EMT in MCF-7 cells, and that protease-

mediated mechanisms are not involved in the EMT observed after SIM2 depletion. 

Recently, other studies have also shown that MMP activity is not required for EMT 

(136). These findings suggest that regulation of MMPs by SIM2s is important for its 

tumor suppressor function but is not the mechanism by which SIM2s regulates EMT-like 

processes. 
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3.5 SIM2s participates in maintenance of E-cadherin expression via repression of 

slug   

 We next explored the possibility that SIM2s may regulate other factors involved 

in EMT. Members of the SNAIL family of transcription factors have been implicated in 

regulation of both normal and pathological EMT events (242, 364-366).  During cancer 

progression, increased SNAIL binding to E-box regulatory DNA elements causes 

transcriptional repression of E-cad, which contributes to transformation, angiogenesis and 

EMT (242, 364-366). To determine if members of the SNAIL family are involved in the 

EMT induced by SIM2s loss, SCR and SIM2i cells were analyzed for snail and slug 

mRNA levels by real time RT-PCR.  SNAIL mRNA levels were not significantly 

affected by SIM2 loss in MCF-7 cells (Fig. 13A). In contrast, slug expression was up 

regulated more than 250-fold in SIM2i cells (Fig. 13A), which corresponded to an 

increase in slug protein levels as determined by Western analysis (Fig. 13B). 

 

Since SIM2s functions as a transcriptional repressor (18, 20, 25), we hypothesized 

that SIM2s directly inhibits slug expression at the promoter level. A luciferase reporter 

under control of the human SLUG promoter was transfected into SCR and SIM2i MCF7 

cells and analyzed for activity.  In SIM2i MCF-7 cells, basal reporter expression was 

increased 10-fold over control cells (Fig. 13C). In addition, we observed concentration-

dependent repression of SLUG promoter-controlled gene expression with increasing 

amounts of SIM2s in MCF-7 cells (Fig. 13D). The human SLUG promoter contains 

multiple putative regulatory elements including E-boxes, xenobiotic response elements 

(XREs), and central midline element (CME) core sequences (Fig. 13E). Using an 
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antibody to SIM2 in ChIP analyses, we found that SIM2s binds a region of the SLUG 

promoter containing the CME and two XRE core sequences in SCR, but not SIM2i MCF-

7 cells (Fig. 13E). Analysis with primer sets 500 bp upstream and 500 bp downstream of 

the CME demonstrate that the binding is specific to the CME region (Fig 12E). SIM2s 

was unable to bind a region of the E-cadherin promoter containing E-boxes that are 

targeted by SNAIL protein family members; however, increased binding of SLUG to this 

region was apparent in SIM2i MCF-7 cells (Fig. 13F).  As the ChIP primers used in our 

study flank the putative CME and two XREs, it seems likely that SIM2s-mediated 

repression of SLUG involves binding of SIM2s to one or more of these elements.  Taken 

together, these data suggest that loss of SIM2s leads to de-repression of SLUG expression 

and increased slug binding to the E-cadherin promoter where it potentially plays a role in 

repressing E-cadherin transcription. 

 

3.6 Sim2-/- mammary glands display hallmarks of EMT 

Our initial analyses of Sim2-/- mammary outgrowths, coupled with in vitro MCF-7 

cell studies, strongly suggest that Sim2s restricts tumor progression associated with 

EMT-like events. To confirm this in vivo, Sim2-/- mammary sections were analyzed for 

various epithelial and mesenchymal markers. Uniform polarity (measured by Aquaporin-

5 staining) and robust E-cadherin staining was observed throughout wild-type mammary 

epithelium, but was totally absent in Sim2-/- glands (Fig. 14A). Not surprisingly, the 

increased invasive ability of Sim2-/- epithelial cells was associated with increased Mmp2 

protein levels (Fig. 14A). These observations strongly suggest that an EMT similar to that 

observed in SIM2i MCF-7 cells had occurred in Sim2-/- glands. This was further 
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supported by increased nuclear accumulation of ß-catenin in Sim2-/- ductal epithelium 

(Fig. 14A). Consistent with our model that SIM2s-mediated repression of SLUG 

suppresses EMT, we found increased slug staining in Sim2-/- glands (Fig. 14A). Taken 

together, these data show that loss of Sim2s during mouse mammary gland ductal 

development results in slug up regulation, loss of epithelial cell characteristics, increased 

Mmp2 expression and invasion into the surrounding stroma, reminiscent of an EMT.  

 

 

 

 

 

 

 

 

 

 

 

 

3.7 Silencing of SIM2 in normal breast-derived cells results in increased motility, 

invasiveness, and abnormal 3D acinar morphogenesis 

 EMT is rarely observed in breast tumors, typically in the most advanced 

metastatic cancers. Therefore, we asked whether silencing SIM2 in non-tumorigenic 

MCF-10A cells was sufficient to cause cellular transformation and / or EMT. SIM2 
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Figure 14. Loss of Sim2s in the mouse mammary gland results in a   phenotype consistent with EMT. Analysis of mouse mammary 
outgrowths from WT and Sim2 - / - mice revealed that loss of Sim2s expression is associated with    events including disrupted polarity as 
measured by aquaporin - 5 expression, loss of E-cadherin, up regulation of Mmp2 and increased nuclear accumulation of      ß     -      catenin. 
Consisten with our hypothesis that Sim2s -  mediated down regulation of Slug represses EMT, we found that  slug protein levels were 
significantly elevated in Sim2  -  /  -  mammary glands. 
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depletion had no effect on in vitro proliferation rate, consistent with results from MCF-7 

cells (Fig. 15A and not shown). However, SIM2 loss did increase invasiveness and cause 

up-regulation of mesenchymal markers in cells grown as monolayers (Fig. 15A and 15B). 

Gene expression changes were modest, and not statistically significant (Fig. 15C). Thus, 

as expected, silencing of SIM2 was not sufficient to cause EMT in MCF-10A cells. This 

likely reflects that in the tumor-derived MCF-7 cells, other barriers to EMT have been 

lost, or that MCF-7 cells could overcome the cell cycle arrest often seen during EMT (30, 

243, 367, 368). MCF-10A cells can be grown in a matrigel basement as three-

dimensional spheroids, which more closely recreate the natural microenvironment of 

epithelial cells than does monolayer culture (369, 370).  As in the mouse or human 

mammary gland, cells in these spheroids growth arrest and form a hollow lumen through 

an apoptotic mechanism, and in some cases can be induced to differentiate and produce 

milk (30, 371-374). Due to the highly disrupted structure we had observed in Sim2-/- 

mammary glands, we expected that depletion of SIM2 would disrupt acinar structure. By 

day 15, the control SCR MCF-10A cells had formed regular spheres with a single layer of 

polarized cells and a hollow lumen (Fig. 15D). In contrast, SIM2i MCF-10A cells were 

irregular and in some cases multi-lobular, and had small, misshapen, or absent lumens 

(Fig. 15D).  Individual cells could be observed delaminating from the acinar structures  

and invading into the matrigel basement (Fig. 15D), suggestive of an EMT like event. 

However, E-cadherin expression was maintained in the SIM2i acini and no mesenchymal 

markers assayed were seen to be upregulated (Fig. 15D). As in Sim2 -/- mammary 

glands, the cells surrounding the lumens of SIM2i acini were poorly polarized and 

disorganized (Fig. 15D). Although highly abnormal, the SIM2i acini did undergo growth 
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arrest and remained growth factor dependent (not shown), suggesting that loss of SIM2 

expression caused at most a partial transformation.  

 



  66

CHAPTER IV 

EFFECT OF DEPLETION OF SIM2s ON SELF RENEWAL AND DNA DAMAGE 

RESPONSES IN MCF-7 CELLS 

 

4.1 Loss of SIM2s increases mammosphere formation in MCF-7 cells 

 Multiple reports have established that a subpopulation of cells within tumors and 

cell lines is the reservoir of the vast majority of self-renewal and tumorigenic capacities 

possessed by the population as a whole (3, 375-379), and have termed these cells cancer 

stem cells or tumor-initiating cells. The SLUG oncogene, which we have previously 

shown to be a direct target of SIM2s in breast cancer cells (Fig. 13), has been shown to 

play a role in DNA damage responses and the biology of normal and transformed stem 

cells (114, 124, 277-280, 380). Therefore, we assessed in vitro self-renewal activity and 

DNA damage signaling in SCR and SIM2i MCF-7 cells. When plated under ultra-low 

attachment conditions in standard growth media, SIM2i MCF-7 cells had a 6-fold greater 

rate of mammosphere formation (Fig. 15), suggesting that depletion of SIM2s resulted in 

enhanced self-renewal capacity. However, when plated in serum free media 

supplemented with EGF and bFGF, there was no significant advantage for either cell line 

(not shown). This may indicate that loss of SIM2 did not increase self-renewal capacity 

per se, but conferred resistantance to the pro-differentiation effects of serum.  

Alternatively, the mammosphere forming population in the SCR MCF-7 line may be 

more growth factor-dependent than their counterparts in the SIM2i cells, which is masked 

by excess growth factors in the media.   
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Several reports suggest that expression of CD24, in combination with either CD29 or 

CD44, can be used in FACS experiments to sort out stem cell-like tumor initiating cells 

in MCF-7 cells (270, 381, 382), which are generally CD24lo and CD29 or CD44 positive.  
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 Comparison of these markers in SCR and SIM2i MCF-7 revealed that nearly all 

SCR MCF-7 cells were CD24+ CD44+, and the putative tumor-initiating cell enriched 

CD24low CD44+ population comprised approximately 5% of the total population, 

consistent with previous results from other laboratories (Fig. 16). SIM2i cells had largely 

ceased to express CD44, consistent with an EMT (Fig. 16).  CD24 expression was also 
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greatly reduced, but a significant population of CD24low cells could still be observed 

(Fig. 16). These results were difficult to interpret due to the complete loss of CD44 in the 

SIM2i cells, so we performed a similar experiment using antibodies to CD24 and CD29. 

As shown in Fig 16, the SCR cells were largely double positive for the markers assayed, 

but contained a CD24low CD29+ subpopulation which accounted for approximately 5% 

of the cells.  The majority of SIM2i MCF-7 cells were also CD29+, but only a small 

fraction were CD24+, and these expressed low amounts of CD24 (Fig. 16). There 

appeared to greater numbers of CD24low CD29+ cells in the SIM2i cells, suggesting that 

they contained more tumor-initiating cells, which is consistent with their greater 

tumorgenicity (Fig. 16 and 8). It has been observed that treatments with ionizing 

radiation can enrich for stem-like cells, which are more resistant to cellular stress and 

DNA damage (278, 381). In order to determine if the expanded CD24low CD29+ 

population in the SIM2i MCF-7 cells could be stem-cell like, we analyzed sham exposed  

and 10Gy - exposed cells for expression of CD24 and CD29.  As expected, treatment 

with ionizing radiation enriched for CD24low CD29+ cells, suggesting that expansion of 

this cell type in the SIM2i MCF-7 cells may explain their greater tumorgenicity and in 

vitro self-renewal (Fig. 17).  

 

4.2 Loss of SIM2s increases DNA damage resistance and alters DNA damage 

responses 

Expression of slug and stem cell-like behavior are associated with drug resistance, 

and therefore we expected that SIM2i MCF-7 cells would be more resistant to DNA  
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damaging agents than their SCR counterparts. As expected, SIM2i MCF-7 cells 

were resistant to the anthrcycline radiomimetic doxorubicin (Fig. 18A). However, the 

SIM2i MCF-7 cells were at least as sensitive to ionizing radiation as the SCR cells (Fig. 

18A), raising the possibility that the resistance to doxorubicin was due to stem cell 

associated drug pumps (383). 

 

 

 

 

 In order to test this, we performed immunofluorescent staining of gH2AX foci, 

which localized to sites of DNA damage under repair. Both SCR and SIM2i MCF-7 cells 

had numerous gH2AX foci after doxorubicin treatment, and there was no observable  
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Figure 21, Continued. 
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difference the number of foci or repair kinetics (Fig. 18B and not shown), indicating that 

the SIM2i MCF-7 cells resistance to doxorubicin was unlikely to be due to enhanced drug 

efflux. MCF-7 cells have a functional p53 response that closely resembles that found in 

tumors with wild-type p53 (384).   

 

To ensure that the differences in survival were not due to alterations in p53 status, 

we performed western blot analysis of p53 and sequenced the p53 mRNA in SCR and 

SIM2i MCF-7 cells. Sequence analysis revealed no mutations in the mRNA. However, 

we observed that p53 levels in the SIM2i MCF-7 cells were dramatically higher than in 

the SCR cells, in the absence of any stress treatment (Fig. 19A and 19B). This caused us 

to ask how p53 target gene expression was affected in SCR and SIM2i MCF-7 cells. The 

majority of p53 target proteins such as NOXA and MDM2 were induced normally by 

ionizing radiation and doxorubicin, with most genes induced more rapidly by ionizing 

radiation (Fig. 19A and 19B). However, p21 and the pro-apoptotic protein NOXA were 

not induced by either treatment in the absence of SIM2 (Fig. 19A and 19B). 

Immunofluoerescence analysis confirmed that even in cells that had sustained massive 

DNA damage as measured by formation of H2AX repair foci, p21 was uninducible in 

SIM2i MCF-7 cells (Fig. 19C). Analysis of p53 target gene mRNA expression suggested 

that the defect in induction of p21 was at the level of transcription, while the effect on 

NOXA was unclear (Fig. 20).Other p53 targets such as MDM2 were induced normally in 

the absence of SIM2 (Fig. 20), suggesting that SIM2 may be a promoter-specific p53 co-

regulator. ChIP experiments confirmed that SIM2s binds to the p21 promoter after 

doxorubicin treatment (R. Metz, unpublished observations), raising the possibility that 
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transcriptional complexes containing SIM2 and p53 regulate p21 expression. To begin to 

address this, we asked if SIM2 is inducible by DNA damage and performed co-

immunoprecipitation experiments with p53 and SIM2. We found that SIM2 is not 

induced by DNA damage at the RNA level (not shown). 
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Figure 22. DNA damage triggers stabilization of SIM2 and interaction with p53 complexes. (A) Western blot analysis of SIM2 
expression  at the indicated times after treatment with either Doxorubicin or ionizing radiation. (B) Co-immunoprecipitation of 
SIM2 and p53. Antibodies used for IP are indicated above lanes. IP samples were blotted with anti-p53 antibody.  
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Intriguingly, SIM2 protein levels were robustly increased by both ionizing 

radiation and by doxorubicin (Fig. 22A), and as SIM2 is regulated by ubiquitin ligases 

(385, 386), this data suggests a stabilization mechanism similar to those known to 

mediate p53 and HIF1α responses (387-391). Additionally, we found that SIM2 and p53 

appear to interact after treatment with DNA damaging agents (Fig. 22B), leading to 

hypothesize that SIM2 is a promoter-specific co-regulator of p53 target genes during 

DNA damage response signaling. These studies demonstrate that the molecular basis of 

tumor suppression by SIM2s is highly complex and multi-facetted, involving at least 3 

distinct pathways: MMPs, EMT, and DNA damage response. 
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CHAPTER V 

CONCLUSIONS 

 

5.1 SIM2 is a transcriptional barrier to EMT 
 
 EMT has been studied in the context of development for several decades. 

However, only recently has the relevance of EMT to carcinogenesis and metastasis 

become widely accepted. Despite the rarity of full-blown EMT in human tumors, 

hundreds of published articles have identified dozens of transcription factors that initiate 

or promote EMT. Many of these factors such as twist, slug, and snail have been shown to 

be oncogenic in vivo, despite a lack of association in tumors with the clear EMTs they 

elicit in some contexts in vitro. The majority of studies on EMT involve ectopic 

expression techniques that raise the expression levels of these factors to hundreds or 

thousands of times beyond physiologic levels, which taken together with data from tumor 

samples suggests that a relatively high threshold of pro-EMT signalling must be reached 

before a clear phenotypic change results. This implies the existence of multiple factors 

that coordinately oppose EMT, though these factors have received little attention 

compared to pro-EMT pathways and transcription factors. In this study, we demonstrated 

that loss of SIM2 promotes EMT-like changes in vivo and in vitro (Fig. 8 and Fig.13). 

SIM2 is to our knowledge the first factor shown to repress the SLUG oncogene, and with 

the exception of work showing that estrogen signaling suppresses Snail expression via 

MTA3 (246), the first to elucidate a factor that opposes EMT at the level of transcription. 

SIM2 has been shown previously to stifle xenobiotic and hypoxia-driven gene expression 

(329, 330), suggesting that SIM2 stands astride and stifles several paths to EMT. Loss of 
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SIM2 was insufficient to stimulate EMT in non-transformed MCF-10A cells (Fig. 15), 

implying that multiple redundant factors block EMT in mature tissues and that these 

factors tend to be lost during transformation, whether the tumor cells display EMT-like 

features or not. SIM2-/- mammary glands displayed some features of EMT such as loss 

of E-cadherin, overexpression of slug, and nuclear accumulation of β-catenin (Fig.13). 

This apparent discrepancy between the untransformed cells in the gland and the MCF-

10A cells which did not undergo EMT may be explained by the difference in 

effectiveness between a gene knockout and shRNA-mediated silencing. If SIM2 were to 

be fully deleted in MCF-10A cells, it is possible that the anti-EMT barrier would be 

lowered sufficiently to allow for EMT to occur.  

 

 EMT is central to developmental processes in the early embryo and structural 

assembly of tissues such as the heart, palate, muscle, and bone (392, 393), although 

uncontrolled EMT can lead to defects due to mesenchymal hyperplasia (297). 

Development of many tissues such as the kidneys also requires MET, which suggests a 

critical role for proteins that restrict EMT.  Defects in palate fusion, diaphragm 

development, and bone formation in Sim2-/- mice imply that SIM2-mediated cessation of 

EMT is crucial for development of multiple tissues (337).  Considering that EMT-like 

changes tend to occur in advanced tumors and EMT-promoting factors are tumor-

promoting without regard to EMT, strategies aimed at re-establishing expression of SIM2 

or other barriers to EMT identified in the future have great therapeutic potential. 

 
 
 
 



  80

5.2 SIM2 has important tumor suppressor function independent of slug regulation 
 
 Previously, MMP3 was identified as a direct target of SIM2-mediated repression 

(336). In this study, we showed that SIM2 represses MMP2 at the expression and 

activation levels. Both MMP2 and MMP3 are associated with poor outcomes multiple 

tumor types, with one of the consistent associations being MMP2 and poor outcome in 

breast tumors (394-400). MMP2 is associated with metastasis, angiogenesis, tumor grade, 

size, and relapse free survival (401-403), consistent with the rapid metastasis and large 

vascular tumors formed by SIM2i MCF-7 cells in our study (Fig. 9). While the 

mechanism by which SIM2s represses MMP2 is unclear, we hypothesize it involves 

direct binding and repression of the MMP2 promoter. How SIM2 loss resulted in MMP2 

activation is likely to be more complicated and indirect. NF-κB has been reported to 

promote MMP2 activation via induction of MMP14, which processes the MMP2 

proenzyme (404, 405). Additionally, preliminary results suggest that SIM2 can 

antagonize NF-κB in some cases (T. Gustafson and R. Metz, unpublished observations), 

and MMP14 expression is elevated in SIM2i MCF-7 cells (Fig. 12), suggesting that this 

pathway may explain the effect of SIM2 on MMP2 activation. These results strongly 

suggest that SIM2 has multiple oncogenic targets and provide a rationale for therapeutic 

strategies based on re-establishing SIM2 expression in tumors without EMT-like features. 

 

 
5.3 p53 responses are modulated by SIM2 
 
 We show in this study that SIM2 modulates p53 signaling directly through target 

genes such as p21, and likely indirectly through regulation of slug (Fig. 13). As p53 is 

central to DNA damage responses and suppression of tumorigenesis in virtually every, if 
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not all tissues, this implies that SIM2 is crucial for tumor suppression in a variety of 

tissues. By co-regulating genes such as p21 and PUMA, and through suppressing slug, 

SIM2 may function to fine tune the output of p53 activation, which can lead either to cell 

cycle arrest or apoptosis. Given the tumor suppressive potency of p53 and the frequency 

with which it is deleted or mutated in human cancers, it seems possible that those tumors 

with no overt defects in p53 itself may have found other ways to neutralize p53 pathway 

output, that is, all tumors are to one degree or another aberrant in p53 signaling. SIM2, as 

a promoter-specific modulator of p53 function, may represent a path for evasion of p53. 

It is noteworthy that the p53 targets whose transcription is apparently promoted by SIM2 

are generally tumor suppressive (p21, PUMA), while some of those unaffected are 

oncogenic (MDM2). SIM2 loss may even in some cases act as a gain-of function p53 

mutation, and allow hijacking of p53 signaling to benefit the tumor, which can 

differentially effect treatment response (406). As SIM2i cells displayed altered responses 

to ionizing radiation and the radiomimetic doxorubicin (Fig. 16), SIM2 may therefore 

have value not only as a prognostic indicator, but assist in selection of appropriate 

therapies. 

 
 
5.4 Implications of SIM2 loss in breast cancer 

 Given the known oncongenic potency of the SIM2 target genes SLUG and 

MMP2, we hypothesize that SIM2 loss associates with poor prognosis in breast cancer. 

Slug and MMP2 promote angiogenesis, metastasis, and recurrence, suggesting that loss 

of SIM2 would also be associated with these processes. SIM2s-mediated antagonism of 

HIF1α is another factor that could influence the effect of SIM2 loss in breast tumors. In 
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addition to promoting EMT, angiogenesis and metastasis, hypoxia interfaces with p53 

signaling in the presence and absence of DNA damage, resulting in unique gene 

expression patterns in each case (407). It is possible that SIM2 loss could act as a hypoxia 

mimetic, or simply compound the hypoxia that is found in even the smallest tumors 

(301). SIM2 is also likely to function in the interface between hypoxia and p53, and play 

a role in the cell's decision to survive and initiate angiogenesis or undergo apoptosis.  

 

 We also demonstrated that loss of SIM2 increased self-renewal and putative stem-

cell-like tumor initiating cell populations in MCF-7 cells (Fig. 15). These cells are 

thought to be the root of tumor recurrence, and to play roles in angiogenesis(1). This 

implies that SIM2 promotes differentiation, and that reestablishment of SIM2 expression 

would synergize with many treatments in use and under investigation. This is supported 

by the ability of Singleminded proteins to promote differentiation of isotocin cells, CNS 

midline cells, and possibly TRH and somatostatin-secreting neurons (408-410). The 

potential role of SIM2 in suppression of stem cell identity will require in vivo validation, 

and studies underway to generate a conditional SIM2 allele that will clarify this issue. 

 

5.5 SIM2 and basal-like breast carcinoma 

 Basal-like carcinomas are associated with poor prognosis, EMT, recurrence, drug 

resistance, aggressive clinical course, and are hypothesized to contain greater numbers of 

tumor-initiating cells (108, 110, 117, 121). Recently, it was reported that the basal 

phenotype is regulated by slug and hypoxia (114), suggesting that loss of SIM2 might 

also form part of the molecular definition of basal-like tumors via permission of slug 
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expression and HIF1α activity. Consistent with this theory, SIM2 is not expressed in 

basal / myoepithelial cells in the mouse mammary gland, indicating its expression may 

suppress basal identity, or that basal-like carcinomas arise from cells that do not express 

SIM2. SIM2 loss is not likely to be sufficient to permit manifestation of the basal 

phenotype, as SIM2 is lost or reduced in up to 70% of tumors while basal-like 

carcinomas comprise less than 15% of invasive ductal carcinomas (113, 336). Whether 

SIM2 loss promotes the basal phenotype or basal carcinomas arise from cells without 

SIM2, SIM2 is a potential diagnostic marker to distinguish basal-like carcinomas. 

 

 
5.6 SIM2 and Down syndrome 

 Individuals with DS have a spectrum of health disorders that is significantly 

different from the general population. In addition to differential risk for development of 

many cancers, DS patients have increased incidence of palatal abnormalities and 

atrioventricular (AV) septum defects, all of which involve EMT or genes that control 

EMT (136, 137, 151, 411). DS patients have greatly increased risk for development of 

leukemias, but we are unable to detect SIM2 in white blood cells and believe SIM2 does 

not play a role in DS-related leukemias. We hypothesize that regulation of EMT and 

tissue remodeling factors by SIM2 contributes both to the physical abnormalities and 

unique solid tumor protection experienced by DS patients. 
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5.7 Proposed model of SIM2 function in epithelia 

 

  

 

 

 

Our results in mouse mammary epithelium and breast cancer cells suggest the 

function of SIM2 in mature tissue is to preserve epithelial identity within individual cells 

and in the tissue as a whole (Fig. 23), and does so along 3 main paths: Suppression of 

slug and possibly other EMT-promoting factors, maintenance of tissue integrity by 

suppression of MMPs, and by ensuring an appropriate response to DNA damage. We 

hypothesize that SIM2 expression is low under normal conditions, perhaps via E3 

ubiquitin ligase-mediated degradation. Upon a challenge such as hypoxia or DNA 

Figure 23. The role of SIM2 in breast epithelium. In normal cells, SIM2 contributes to maintenance of differentation by suppressing 
slug, thereby preserving expression of epithelial genes such as E-cadherin and keratin 18. SIM2 may also actively promote 
differentiation by this mechanism, though  it is not known at which point during differentiation of mammary stem cells SIM2 
expression commences. In tumor cells, SIM2 exerts similar pro-differentiation effects and its loss leads to progression. Via 
regulation of MMPs and slug, SIM2 inhibits invasion and metastasis 
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damage, SIM2 is rapidly stabilized, perhaps under the control of DNA-damage activated 

kinases such as CHK1. SIM2 would then suppress genes that might perturb the 

epithelium such as slug, while promoting cell cycle arrest via p21, thereby maintaining 

the tissue. As progenitor cells rely upon slug for protection from radiation-induced death 

(124, 278), SIM2 may be an important difference between the DNA damage responses of 

stem cells and differentiated cells. This also suggests that lack of SIM2 might be a useful 

stem cell marker, as based upon its apparently pro-differentiation effects SIM2 seems 

highly unlikely to be expressed in stem cells, and it is restricted to the epithelial 

compartment where stem cells are thought to reside. While it remains to be elucidated 

whether SIM2 is a cause or effect of differentiation, this study strongly suggests that 

SIM2 has a key role in safeguarding the structural and genomic integrity of epithelial 

tissues. 
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