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ABSTRACT

Efficient Inference in General Semiparametric Regression Models. (August 2008)

Arnab Maity, B.Stat., Indian Statistical Institute;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Raymond J. Carroll

Semiparametric regression has become very popular in the field of Statistics over the

years. While on one hand more and more sophisticated models are being developed,

on the other hand the resulting theory and estimation process has become more and

more involved. The main problems that are addressed in this work are related to

efficient inferential procedures in general semiparametric regression problems.

We first discuss efficient estimation of population-level summaries in general semi-

parametric regression models. Here our focus is on estimating general population-level

quantities that combine the parametric and nonparametric parts of the model (e.g.,

population mean, probabilities, etc.). We place this problem in a general context,

provide a general kernel-based methodology, and derive the asymptotic distributions

of estimates of these population-level quantities, showing that in many cases the es-

timates are semiparametric efficient.

Next, motivated from the problem of testing for genetic effects on complex traits in

the presence of gene-environment interaction, we consider developing score test in

general semiparametric regression problems that involves Tukey style 1 d.f form of

interaction between parametrically and non-parametrically modeled covariates. We

develop adjusted score statistics which are unbiased and asymptotically efficient and

can be performed using standard bandwidth selection methods. In addition, to over-
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come the difficulty of solving functional equations, we give easy interpretations of the

target functions, which in turn allow us to develop estimation procedures that can be

easily implemented using standard computational methods.

Finally, we take up the important problem of estimation in a general semiparametric

regression model when covariates are measured with an additive measurement error

structure having normally distributed measurement errors. In contrast to methods

that require solving integral equation of dimension the size of the covariate measured

with error, we propose methodology based on Monte Carlo corrected scores to esti-

mate the model components and investigate the asymptotic behavior of the estimates.

For each of the problems, we present simulation studies to observe the performance of

the proposed inferential procedures. In addition, we apply our proposed methodology

to analyze nontrivial real life data sets and present the results.
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CHAPTER I

INTRODUCTION

We consider a wide class of semiparametric regression models in which interest fo-

cuses on population-level quantities that combine both the parametric and the non-

parametric parts of the model. Special cases in this approach include generalized

partially linear models, generalized partially linear single-index models, structural

measurement error models, and many others. For estimating the parametric part of

the model efficiently, profile likelihood kernel estimation methods are well established

in the literature. Here our focus is on estimating general population-level quantities

that combine the parametric and nonparametric parts of the model (e.g., population

mean, probabilities, etc.). We place this problem in a general context, provide a gen-

eral kernel-based methodology, and derive the asymptotic distributions of estimates

of these population-level quantities, showing that in many cases the estimates are

semiparametric efficient. For estimating the population mean with no missing data,

we show that the sample mean is semiparametric efficient for canonical exponential

families, but not in general. We apply the methods to a problem in nutritional epi-

demiology, where estimating the distribution of usual intake is of primary interest and

semiparametric methods are not available. Extensions to the case of missing response

data are also discussed.

Many of the regular semiparametric regression models assume that there is no in-

teraction present between the parametric and the nonparametric components of the

This dissertation follows the style of the Journal of the Royal Statistical Society.
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models. However, this may not be true in many real life situations. Motivated from

the problem of testing for genetic effects on complex traits in the presence of gene-

environment interaction, we consider developing score test in general semiparametric

regression problems that involves Tukey style 1 d.f form of interaction between para-

metrically and non-parametrically modeled covariates. We find that the score-test

in this type of model, as recently developed by Chatterjee et al. (2007) in the fully

parametric setting, is biased and requires undersmoothing to be valid in the pres-

ence of non-parametric components. Moreover, in the presence of repeated outcomes,

the asymptotic distribution of the score test depends on the estimation of functions

which are defined as solutions of complex integral equations, making implementation

difficult and computationally taxing. We develop adjusted score statistics which are

unbiased and asymptotically efficient and can be performed using standard band-

width selection methods. In addition, to overcome the difficulty of solving functional

equations, we give easy interpretations of the target functions, which in turn allow

us to develop estimation procedures that can be easily implemented using standard

computational methods. We present simulation studies to evaluate type-I error and

power of the proposed method compared to a naive test that does not consider inter-

action. Finally, we illustrate our methodology by analyzing data from a case-control

study of colorectal adenoma designed to investigate the association between colorectal

adenoma and the candidate gene NAT2 in relation to smoking history.

Finally, we consider the problem of estimation in a general semiparametric regression

model when covariates are measured with an additive measurement error structure

having normally distributed measurement errors. The semiparametric part of the

model arises with a covariate measured without error being modeled nonparamet-

rically. In contrast to methods that require solving integral equation of dimension
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the size of the covariate measured with error, we propose methodology based on

Monte Carlo corrected scores to estimate the model components and investigate the

asymptotic behavior of the estimates. For example, our method applies to repeated

measures data, while integral equation methods are not practical in this context. The

resulting methods are functional, i.e., they make no assumptions about the distribu-

tion of the error-prone covariates. We investigate the special cases of logistic partially

linear and multivariate partially linear measurement error models and compare our

results with the existing literature. We also present a simulation study to illustrate

the performance of our method. Finally, we demonstrate our method by applying it

to Nevada Test Site (NTS) Thyroid Disease Study data.
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CHAPTER II

EFFICIENT ESTIMATION OF POPULATION-LEVEL SUMMARIES IN

GENERAL SEMIPARAMETRIC REGRESSION MODELS

II.1. Introduction

Often, in semiparametric regression models, one is interested in estimating a popu-

lation quantity such as the mean, variance, probabilities, etc. The unique feature of

the problem is that the quantities of interest are functions of both the parametric and

nonparametric parts of the model. We will also allow for partially missing responses,

but handling such a modification is relatively easy. The main aim of this chapter is to

estimate population quantities that involve both the parametric and nonparametric

parts of the model, and to do so efficiently and in considerable generality.

We will construct estimators of these population-level quantities that exploit the semi-

parametric structure of the problem, derive their limiting distributions, and show in

many cases that the methods are semiparametric efficient. The work is motivated

by and illustrated with an important problem in nutritional epidemiology, namely

estimating the distribution of usual intake for episodically consumed foods such as

red meat.

A special simple case of our results is already established in the literature (Wang,

Linton and Härdle 2004, and references therein), namely the partially linear model

Yi = XT
i β0 + θ0(Zi) + ξi, (2.1)
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where θ0(·) is an unknown function and ξi = Normal(0, σ2
0). We allow the responses

to be partially missing, important in cases that the response is difficult to measure

but the predictors are not. Suppose that Y is partially missing, and let δ = 1 indicate

that Y is observed, so that the observed data are (δiYi, Xi, Zi, δi). Suppose further

that Y is missing at random, so that pr(δ = 1|Y, X, Z) = pr(δ = 1|X,Z).

Usually, of course, the main interest is in estimating β0 efficiently. This is not the

problem we discuss, because in our example the parameters β0 are themselves of rel-

atively minor interest. In their work, Wang et al. (2004) estimate the marginal mean

κ0 = E(Y ) = E{XTβ0 + θ0(Z)}. Note how this combines both the parametric and

nonparametric parts of the model. One of the results of Wang et al. is that if one

uses only the complete data that Y is observed, then fits the standard profile likeli-

hood estimator to obtain β̂ and θ̂(·, β̂), it transpires that a semiparametric efficient

estimator of the population mean κ0 is n−1
∑n

i=1{XT
i β̂ + θ̂(Zi, β̂)}. If there are no

missing data, the sample mean is also semiparametric efficient.

Actually, quite a bit more is true even in this relatively simple Gaussian case. Let

B = (βT, σ2)T and let B̂ and θ̂(·, B̂) be the profile likelihood estimates in the com-

plete data, see for example Severini and Wong (1992) for local constant estimation

and Claeskens and Carroll (2007) for local linear estimation. Consider estimating any

functional κ0 = E[F{X, θ0(Z),B0}] for some function F(·) that is thrice continuously

differentiable: this of course includes such quantities as population mean, probabili-

ties, etc. Then one very special case of our results is that the semiparametric efficient

estimate of κ0 is just κ̂ = n−1
∑n

i=1 F{Xi, θ̂(Zi, B̂), B̂}.

In contrast to Wang et al. (2004), we deal with general semiparametric models
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and general population-level quantities. Thus, consider a semiparametric problem in

which the loglikelihood function given (X,Z) is L{Y,X, θ(Z),B}. If we define LB(·)
and Lθ(·) to be derivatives of the loglikelihood with respect to B and θ(Z), we have

the properties that E[LB{Y, X, θ0(Z),B0}|X, Z] = 0 and similarly for Lθ(·). We use

profile likelihood methods computed at the observed data. With missing data, this

local linear kernel version of the profile likelihood method of Severini and Wong (1992)

works as follows. Let K(·) be a smooth symmetric density function with bounded

support, let h be a bandwidth, and let Kh(z) = h−1K(z/h). For any fixed B, let

(α̂0, α̂1) be the local likelihood estimator obtained by maximizing in (α0, α1)

n∑
i=1

δiKh(Zi − z)L{Yi, Xi, α0 + α1(Zi − z),B}, (2.2)

and then setting θ̂(z,B) = α̂0. The profile likelihood estimator of B0 modified for

missing responses is obtained by maximizing in B
n∑

i=1

δiL{Yi, Xi, θ̂(Zi,B),B}. (2.3)

Our estimator of κ0 = E[F{X, θ0(Z),B0}] is then

κ̂ = n−1

n∑
i=1

F{Xi, θ̂(Zi, B̂), B̂}. (2.4)

We emphasize that the possibility of missing response data and finding a semipara-

metric efficient estimate of B0 is not the focus of the article. Instead, the focus is on

estimating quantities κ0 = E[F{X, θ0(Z),B0}] that depend on both the parametric

and nonparametric parts of the model: this is a very different problem than simply

estimating B0. Previous work in the area has considered only the partially linear

model and only estimation of the population mean: our work deals with general
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semiparametric models and general population-level quantities.

An outline of this chapter is as follows. In Section II.2 we discuss the general semipara-

metric problem with loglikelihood L{Y,X, θ(Z),B} and a general goal of estimating

κ0 = E[F{X, θ0(Z),B0}]. We derive the limiting distribution of (2.4) and show that

it is semiparametric efficient. We also discuss the general problem where the popula-

tion quantity κ0 of interest is the expectation of a function of Y alone, and describe

doubly-robust estimators in this context.

In Section II.3, we consider the class of generalized partially linear single index models

(Carroll, Fan, Gijbels and Wand 1997). Single index modeling, see Härdle and Stoker

(1989) and Härdle, Hall and Ichimura (1993), is an important means of dimension

reduction, one that is finding increased use in this age of high-dimensional data. We

develop methods for estimating population quantities in the generalized partially lin-

ear single index modeling framework, and show that the methods are semiparametric

efficient.

Section II.4 describes an example from nutritional epidemiology that motivated this

work, namely estimating the distribution of usual intake of episodically consumed

foods such as red meat. The model used in this area is far more complex than the

simple partially linear Gaussian model (2.1), and while the population mean is of

some interest, of considerably more interest is the probability that usual intake ex-

ceeds thresholds. We will illustrate why in this context one cannot simply adopt the

percentages of the observed responses that exceeding a threshold.

Section II.5 describes three issues of importance: (a) bandwidth selection (Section
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II.5.1); (b) the efficiency and robustness of the sample mean when the population

mean is of interest (Section II.5.2); and numerical and theoretical insights into the

partially linear model and the nature of our assumptions (Section II.5.3). An inter-

esting special case is of course the partially linear model when κ0 is the population

mean. For this problem, we show in Section II.5.2 that with no missing data, the

sample mean is semiparametric efficient for canonical exponential families but not of

course in general, thus extending and clarifying the results of Wang et al. (2004) that

were specific to the Gaussian case.

All technical results are given in an Appendix.

II.2. Semiparametric Models with a Single Component

II.2.1. Main Results

We benefit from the fact that the limiting expansions for B̂ and θ̂(·) are essentially

already well-known, with the minor modification of incorporating the missing response

indicators. Let f(z) be the density function of Z, assumed to have bounded support

and to be positive on that support. Let Ω(z) = f(z)E{δLθθ(·)|Z = z}. Let Liθ(·) =

Lθ{Yi, Xi, θ0(Zi),B0}, etc. Then it follows from standard results (see the Appendix

for more discussion) that as a minor modification of the work of Severini and Wong

(1992),

θ̂(z, B̂) − θ0(z) = (h2/2)θ
(2)
0 (z) − n−1

n∑
i=1

δiKh(Zi − z)Liθ(·)/Ω(z)

+θB(z,B0)(B̂ − B0) + op(n
−1/2); (2.5)

B̂ − B0 = M−1
1 n−1

n∑
i=1

δiεi + op(n
−1/2), (2.6)
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where

θB(z,B0) = −E{δLBθ(·)|Z = z}/E{δLθθ(·)|Z = z}; (2.7)

εi = {LiB(·) + Liθ(·)θB(Zi,B0)}; (2.8)

M1 = E(δεεT) = −E[δ{LBB(·) + LBθ(·)θT
B (Z,B0)}],

and where under regularity conditions, (2.5) is uniform in z. Conditions guaranteeing

(2.6) are well-known, see the Appendix.

Define

Di(·) = −Liθ(·)
E{Fθ(·)|Zi}

E{δLθθ(·)|Zi}
;

M2 = E{FB(·) + Fθ(·)θB(Z,B0)}.

In the Appendix, we show the following result.

Result 1 Suppose that nh4 → 0 and that (2.5)-(2.6) hold, the former uniformly in

z. Suppose also that Z has compact support, that its density is bounded away from

zero on that support, and that the kernel function also has a finite support. Then

the estimator κ̂ of κ0 = E[F{X, θ0(Z),B0}] is semiparametric efficient in the sense of

Newey (1990). In addition, as n → ∞,

n1/2(κ̂ − κ0) = n−1/2

n∑
i=1

{
Fi(·) − κ0 + MT

2 M−1
1 δiεi + δiDi(·)

}
+ op(1) (2.9)

⇒ Normal(0,V0), (2.10)

where V0 = E{F(·) − κ0}2 + MT
2 M−1

1 M2 + E{δD2(·)}.

Remark 1 In order to obtain asymptotically correct inference about κ0, there are

two possible routes. The first is to use the bootstrap: while Chen, Linton and Van
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Keilegom (2003) only justify the bootstrap for estimating B0, we conjecture that the

bootstrap works for κ0 as well. More formally, one requires only a consistent esti-

mate of the limiting variance in (2.10). This is a straightforward exercise, although

programming-intense: one merely replaces all the expectations by sums in that ex-

pression and all the regression functions by kernel estimates.

Remark 2 Our analysis of semiparametric efficiency in the sense of Newey (1990)

has this outline. We first assume pathwise differentiability of κ, see Section A for

definition. Working with this assumption, we derive the semiparametric efficient

score. With this score in hand, we then prove pathwise differentiability. Details are

in the Appendix.

Remark 3 With a slight modification using a device introduced to semiparametric

methods by Bickel (1982), Theorem 1 also holds for estimated bandwidths. We

confine our discussion to bandwidths of order n−1/3, see Section II.5.1.2 for a reason.

Write such bandwidths as hn = cn−1/3, where following Bickel the values for c are

allowed to take values in the set U = a{0,±1,±2, ....}, where a is an arbitrary small

number. We discretize bandwidths so that they take on values cn−1/3 with c ∈ U .

Denote estimators as κ̂(hn), and note that for an arbitrary c∗, and an arbitrary fixed,

deterministic sequence cn → c0 for finite c0, Theorem 1 shows that n1/2{κ̂(cnn
−1/3)−

κ̂(c0n
−1/3)} = op(1), and that n1/2{κ̂(c0n

−1/3) − κ̂(c∗n−1/3)} = op(1). Hence, it

follows from Bickel (1982, p. 653, just after equation 3.7) that if ĥn = ĉnn
−1/3,

with ĉ ∈ U , is an estimated bandwidth with the property that ĥn = Op(n
−1/3), then

n1/2{κ̂(ĉnn
−1/3) − κ̂(c∗n−1/3)} = op(1). Hence, Theorem 1 holds for these estimated

bandwidths.
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II.2.2. General Functions of the Response and Double-Robustness

It is important to consider estimation in problems where κ0 can be constructed

outside the model. Suppose that κ0 = E{G(Y )}, and define F{X, θ0(Z),B0} =

E{G(Y )|X, Z}. We will discuss two estimators with the properties that (a) if there

are no missing response data, the semiparametric model is not used and the estima-

tor is consistent, and (b) under certain circumstances, the estimator is consistent if

either the semiparametric model is correct or if a model for the missing-data process

is correct.

Our motivating example discussed in Section II.4 dose not fall into the category dis-

cussed in this section.

The two estimators are based upon different constructions for estimating the missing

data process. The first is based upon a nonparametric formulation for estimating

pr(δ = 1|Z) = πmarg, where the subscript indicates a marginal estimation of the prob-

ability that Y is observed. The second is based upon a parametric formulation for

estimating pr(δ = 1|Y,X,Z) = π(X,Z, ζ), where ζ is an unknown parameter esti-

mated by standard logistic regression of δ on (X, Z).

The first estimator, similar to one defined by Wang et al. (2004) and efficient in the

Gaussian partially linear model, can be constructed as follows. Estimate πmarg by

local linear logistic regression of δ on Z, leading to the usual asymptotic expansion

π̂marg(z) − πmarg(z) = n−1

n∑
j=1

{δj − πmarg(Zj)}Kh(z − Zj)/fZ(z) + op(n
−1/2), (2.11)
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assuming that nh4 → 0. Then construct the estimator

κ̂marg = n−1

n∑
i=1

[
δi

π̂marg(Zi)
G(Yi) +

{
1 − δi

π̂marg(Zi)

}
F{Xi, θ̂(Zi, B̂), B̂}

]
.

The estimator has two useful properties: (a) if there are no missing data, it does not

depend on the model and is hence consistent for κ0; and (b) if observation of the

response Y depends only on Z, it is consistent even if the semiparametric model is

not correct.

In a similar vein, the second estimate, also similar to another estimate of Wang et al.

(2004), is given as

κ̂ = n−1

n∑
i=1

[
δi

π(Xi, Zi, ζ̂)
G(Yi) +

{
1 − δi

π(Xi, Zi, ζ̂)

}
F{Xi, θ̂(Zi, B̂), B̂}

]
.

This estimator has the double-robustness property that if either the parametric model

π(X,Z, ζ) or the underlying semiparametric model for {B, θ(·)} are correct, then κ̂

is consistent and asymptotically normally distributed. Generally, the second terms

in both κ̂marg and κ̂ improve efficiency: it is also important for the double robustness

property of κ̂.

If both models are correct, then the following results obtain as a consequence of (2.5)

and (2.6), see the Appendix for a sketch.

Lemma 1 Make the definitions

M2,marg = E

[{
1 − δ

πmarg(Z)

}
{FB(·) + Fθ(·)θB(Z,B0)}T

]
;

Di,marg(·) = −Liθ(·)E
[{

1 − δi

πmarg(Zi)

}
Fiθ(·)|Zi

]
/E{δLθθ(·)|Zi}.
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Then, to terms of order op(1),

n1/2(κ̂marg − κ0) ≈ n−1/2

n∑
i=1

[
δi

πmarg(Zi)
G(Yi) +

{
1 − δi

πmarg(Zi)

}
Fi(·) − κ0

]

+M2,margM−1
1 n−1/2

n∑
i=1

δiεi + n−1/2

n∑
i=1

δiDi,marg(·). (2.12)

Lemma 2 Define πζ(X, Z, ζ) = ∂π(X, Z, ζ)/∂ζ. Assume that

n1/2(ζ̂ − ζ) = n−1/2

n∑
i=1

ψiζ(·) + op(1)

with E{ψζ(·)|X, Z} = 0. Then, to terms of order op(1),

n1/2(κ̂ − κ0) ≈ n−1/2

n∑
i=1

[
δi

π(Xi, Zi, ζ)
{G(Yi) − κ0}

+

{
1 − δi

π(Xi, Zi, ζ)

}
{Fi(·) − κ0}

]
. (2.13)

Remark 4 The expansions (2.12) and (2.13) show that κ̂marg and κ̂ are asymptot-

ically normally distributed. One can show that the asymptotic variances are given

as

Vκ,marg = var

[
δ

πmarg(Z)
G(Y ) +

{
1 − δ

πmarg(Z)

}
F(·) + M2,margM−1

1 δε + δDmarg(·)
]

Vκ = var

[
δi

π(Xi, Zi, ζ)
G(Yi) +

{
1 − δi

π(Xi, Zi, ζ)

}
Fi(·)

]
,

respectively, from which estimates are readily derived.

Finally, we note that Claeskens and Carroll (2007) show that in general likelihood

problems, if there is an omitted covariate, then under contiguous alternatives the

effect on estimators is to add an asymptotic bias, without changing the asymptotic

variance.
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II.3. Single Index Models

One means of dimension reduction is single index modeling. Single index models

can be viewed as a generalized version of projection pursuit, in that only the most

influential direction is retained to keep the model tractable and to reduce dimension.

Since its introduction in Härdle and Stoker (1989), it has been widely studied and

used. A comprehensive summary of the model is given in Härdle, Müller, Sperlich

and Werwatz (2004). Let Z = (R, ST)T where R is a scalar. We consider here the

generalized partially linear single index model (GPLSIM) of Carroll et al. (1997),

namely the exponential family (2.20) with η(X, Z) = XTβ0 + θ0(Z
Tα0), where θ0(·)

is an unknown function, and for identifiability purposes ‖α0‖ = 1. Since identifi-

ability requires that one of the components of Z be a non-trivial predictor of Y ,

for convenience we will make the very small modification that one component of Z,

what we call R, is a known non-trivial predictor of Y . The reason for making this

modification can be seen in Theorem 4 of Carroll et al. (1997) where the final limit

distribution of the estimate of α0 has a singular covariance matrix. In addition, their

main asymptotic expansion, given in their equation (A.12), is about the nonsingular

transformation (I − α0α
T
0 )(α̂ − α0).

With this modification, we write the model as

E(Y |X,Z) = C(1)[c{η(X, Z)}] = µ{XTβ0 + θ0(R + STγ0)}, (2.14)

where γ0 is unrestricted.

Carroll et al. (1997) use profile likelihood to estimate B0 = (γ0, β0) and θ0(·), although

they present no results concerning the estimate of φ0, their interest largely being in
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logistic regression where φ0 = 1 is known. Rewrite the likelihood function (2.20) as

L{Y, X, β, θ(R + STγ), φ}. Then, given B = (γT, βT)T, they form U(γ) = R + STγ

and then compute the estimate θ̂{u(γ),B} by local likelihood of Y on {X, U(γ)} as

in Severini and Staniswalis (1994), using the data with δ = 1. Then they maximize∑n
i=1 δi log[L{Yi, Xi, β, θ̂(Ri + ST

i γ,B), φ}] in B and φ.

Our goal is to estimate κSI = E[F{X, θ0(R + STγ0), β0, φ0}]. Our proposed estimate

is κ̂SI = n−1
∑n

i=1 F{Xi, θ̂(Ri + ST
i γ̂, B̂), β̂, φ̂}.

Our main result is as follows. First define U = R + STγ0, and

G = Dφ(Y, φ0) − [Y c{XTβ0 + θ0(U)} − C{c(·)}]/φ2
0.

Make the further definitions Λ = {STθ
(1)
0 (U), XT}T, ρ�(·) = {µ(1)(·)}�/V (·) and ε =

[Y − µ{XTβ0 + θ0(U)}]ρ1{XTβ0 + θ0(U)}. Define

Ni = Λi − [E{δρ2(·)|Ui}]−1E{δiΛiρ2(·)|Ui}

and Q = E{δNNTρ2(·)}. Make further definitions Fβ(·) = ∂F{X, θ0(U), β0, φ0}/∂β0,

Fφ(·) = ∂F{X, θ0(U), β0, φ0}/∂φ0 and Fθ(·) = ∂F{X, θ0(U), β0, φ0}/∂θ0(U). Also

define

J(U) = [E{δρ2(·)|U}]−1E{Fθ(·)|U};

D =

[
E{Fθ(·)θ(1)(U)S} − E

(
Fθ(·)[E{δρ2(·)|U}]−1θ(1)(U)E{δSρ2(·)|U}

)
E{Fβ(·)} − E

(
Fθ(·)[E{δρ2(·)|U}]−1E{δXρ2(·)|U}

) ]
.

Then we have the following result regarding the asymptotic distribution of κ̂SI:

Result 2 Assume that (Yi, δi, Xi, Zi), i = 1, 2, ..., n are i.i.d and that the conditions
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in Carroll et al. (1997) hold, in particular that nh4 → 0. Then

n1/2(κ̂SI − κSI)

= n−1/2

n∑
i=1

[
F{Xi, θ0(Ui), β0, φ0} − κSI + DTQ−1δiNiεi + δiJ(Ui)εi

+δiGiE{Fφ(·)}/E(δG2)
]

+ op(1) (2.15)

⇒ Normal(0,V),

where

V = E[F{X, θ0(U), β0, φ0} − κSI]
2 + DTQ−1D + var{δJ(U)ε}

+E(δG2)[E{Fφ(·)}]2/{E(δG2)}2.

Further, κ̂SI is semiparametric efficient.

II.4. Motivating Example

II.4.1. Introduction

There is considerable interest in understanding the distribution of dietary intake in

various populations. For example, as obesity rates continue to rise in the United

States (Flegal, Carroll, Ogden and Johnson 2002), the demand for information about

diet and nutrition is increasing. Information on dietary intake has implications for

establishing population norms, research, and making public policy decisions (Woteki

2003).

We wish to emphasize that there are no missing response data in this example. We

also emphasize that the problem is vastly different from simply estimating the popu-

lation mean using a Gaussian partially linear model. The strength of our approach is



17

that once one has proposed a semiparametric model, then our methodology, asymp-

totics and semiparametric efficiency results are readily employed.

This work was motivated by the analysis of the Eating at America’s Table (EATS)

study (Subar et al. 2001), where estimating the distribution of the consumption of

episodically consumed foods is of interest. The data consist of 4 24hr recalls over

the course of a year as well as the National Cancer Institute’s (NCI) dietary history

questionnaire (DHQ), a particular version of a food frequency questionnaire (FFQ,

see Willett et al. 1985 and Block et al. 1986). The goal is to estimate the distribu-

tion of usual intake, defined as the average daily intake of a dietary component by

an individual in a fixed time period, a year in the case of EATS. There were n = 886

individuals in the data set.

When the responses are continuous random variables, this is a classical problem of

measurement error, with a large literature. However, little of the literature is relevant

to episodically consumed foods, as we now describe. Consider, for example, consump-

tion of red meat, dark green vegetables and deep yellow vegetables, all of interest in

nutritional surveillance. In the EATS data, 45% of the 24-hour recalls reported no

red meat consumption. In addition, 5.5% of the individuals reported no red meat

consumption on any of the four separate 24-hour recalls: for deep yellow vegetables

these numbers are 63% and 20%, respectively, while for dark green vegetables the

numbers are 78% and 46%, respectively. Clearly, methods aimed at understanding

usual intakes for continuous data are inappropriate for episodically consumed foods

with so many zero-reported intakes.



18

II.4.2. Model

To handle episodically consumed foods, two-part models have been developed (Tooze,

Grunwald and Jones 2002). These are basically zero-inflated repeated measures exam-

ples. Our methods are applicable to such problems when the covariate Z is evaluated

only once for each subject, as it is in our example.

We describe here a simplification of this approach, used to illustrate our methodology.

On each individual, we measure age and gender, the collection being what we call R.

We also observe energy (calories) as measured by the DHQ, the logarithm of which we

call Z. The reader should note that Z is evaluated only once per individual, and hence

while there are repeated measures on the responses, there are no repeated measures

on Z: θ0(Z) occurs only once in the likelihood function, and our methodology applies.

Let X = (R, Z). The response data for an individual i consists of four 24-hour recalls

of red meat consumption. Let ∆ij = 1 if red meat is reported consumed on the jth

24-hour recall for j = 1, ..., 4. Let Yij be the product of ∆ij and the logarithm of

reported red meat consumption, with the convention that 0 log(0) = 0. Then the

response data are Yi = (∆ij,Yij)
4
j=1.

II.4.2.1. Modeling the Probability of Zero Response

The first part of the model is whether the subject reports red meat consumption. We

model this as a repeated measures logistic regression, so that

pr(∆ij = 1|Ri, Zi, Ui1) = H(β0 + XT
i β1 + Ui1), (2.16)
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where H(·) is the logistic distribution function and Ui1 = Normal(0, σ2
u1) is a person-

specific random effect. Note that for simplicity we have modeled the effect of energy

consumption as linear, since in the data there is little hint of nonlinearity.

II.4.2.2. Modeling Positive Responses

The second part of the model consists of a distribution of the logarithm of red meat

consumption on days when consumption is reported, namely

[Yij|∆ij = 1, Ri, Zi, Ui2] = Normal{RT
i β2 + θ(Zi) + Ui2, σ

2}, (2.17)

where Ui2 = Normal(0, σ2
u2) is a person-specific random effect which we take to be

independent of Ui1. Note that (2.17) means that the non-zero Y-data within an indi-

vidual marginally have the same mean RT
i β2 + θ(Zi), variance σ2 + σ2

u2 and common

covariance σ2
u2.

II.4.2.3. Likelihood Function

The collection of parameters is B, consisting of β0, β1, β2, σ2
u1, σ2

u2, and σ2. The

loglikelihood function L(·) is readily computed with numerical integration, as follows:

exp{L(·)} =
1

σu1

∫
φ(u1/σu1)

4∏
j=1

[{H(β0 + XTβ1 + u1)}∆ij

×{1 − H(β0 + XTβ1 + u1)}1−∆ij ] du1

× 1

σu2σ∆i·

∫
φ
( u2

σu2

) 4∏
j=1

(
φ
[Yij − {RT

i β2 + θ(Zi) + u2}
σ

])∆ij

du2,

where ∆i· =
∑

j ∆ij. Of course, the second numerical integral is not necessary, since

the integration can be done analytically.
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II.4.2.4. Defining Usual Intake at the Individual Level

Noting from (2.17) that reported intake on days of consumption follows a lognormal

distribution, the usual intake for an individual is defined as

G{X,U1, U2,B, θ(Z)} = H(β0 + XT
i β1 + U1) exp{RTβ2 + θ(Z) + U2 + σ2/2}.(2.18)

The goal is to understand the distribution of G{X, U1, U2,B, θ(Z)} across a popula-

tion. In particular, for arbitrary c we wish to estimate pr[G{X, U1, U2,B, θ(Z)} > c].

Define F{X,B, θ(Z)} = pr[G{X,U1, U2,B, θ(Z)} > c|X, Z], a quantity that can be

computed by numerical integration. Then κ0 = E[F{X,B, θ(Z)}] is the percentage

of the population whose long-term reported daily average consumption of red meat

exceeds c.

II.4.3. Bias in Naive Estimates, and a Simulation Study

We emphasize that the distribution of mean intake cannot be estimated consistently

by the simple device of computing the sample percentage of the observed 24-hour

recalls that exceed c, and, as a consequence, going through the model fitting process

is actually necessary. To see this, suppose only one 24-hour recall were computed and

the percentage of these 24-hour recalls exceeding c is computed. In large samples,

this percentage converges to

κ24hr = E
(
H(β0 + XTβ1 + U1)Φ

[
{RTβ2 + θ(Z) − log(c)}/(σ2 + σ2

2)
1/2
])

.

In contrast, for σ2 > 0,

κ0 = E
{

Φ
(
[RTβ2 + θ(Z) + σ2/2 − log{c/H(β0 + XTβ1 + U1)}]/σ2

)}
.
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As the number of replicates m of the 24-hour recall → ∞, the percentage κm,24hr of

the means of the 24-hour recalls that exceed c → κ0, so we would expect that the

fewer the replicates, the less our estimate agrees with the sample version of κm,24hr, a

phenomenon observed in our data, see below.

To see this numerically, we ran the following simulation study. Gender, age and the

DHQ were kept the same as in the EATS Study. The parameters (β0, β1, β2, σ
2, σ2

1, σ
2
2)

were the same as our estimated values, see below. The function θ(·) was roughly in

accord with our estimated function, for simplicity being quadratic in the logarithm of

the DHQ, standardized to have minimum 0.0 and maximum 1.0, with intercept, slope

and quadratic parameters being 0.50, 1.50 and −0.75, respectively. The true survival

function, i.e., 1 - the cdf, was computed analytically, while the survival functions for

the mean of two 24-hour recalls and the mean of four 24-hour recalls were computed

by 1, 000 simulated data sets. The results are given in Figure 1, where the bias from

not using a model is evident.

We used our methods with a nonparametrically estimated function, a bandwidth

h = 0.30 and the Epanechnikov kernel function. We generated 300 data sets, with

results displayed in Figure 2. The mean over the simulation was almost exactly

the correct function, not surprising given that the sample size is large (n = 886). In

Figure 2 we also display a 90% confidence range from the simulated data sets, indicat-

ing that in the EATS data at least, the results of our approach are relatively accurate.
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Fig. 1 Results of the simulation study meant to mimic the EATS Study. All results are averages over 1, 000

simulated data sets. Solid line: the mean of the semiparametric estimator of the survival curve, which

is almost identical to the true survival curve. Dotted line: the empirical survival function of the mean

of two 24-hour recalls from 1,000 simulated data sets. Dashed line: the empirical survival function of

the mean of four 24-hour recalls from 1,000 simulated data sets.
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Fig. 2 Results of the simulation study meant to mimic the EATS Study. Plotted is the mean survival

function for 300 simulated data sets, along with the 90% pointwise confidence intervals. The mean

fitted function is almost exact.
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Fig. 3 Results from the EATS Example. Plotted are estimates of the survival function (1 - the cdf) of usual

intake of red meat. The solid line is the semiparametric method described in Section II.4. The dotted

line is the empirical survival function of the mean of the first two 24-hour recalls per person, while

the dashed line is survival function of the mean of all the 24-hour recalls per person.

II.4.4. Data Analysis

We standardized age to have mean zero and variance one. In the logistic part of

the model, the intercept was estimated as −8.15, with the coefficients for (gen-

der,age,DHQ) = (0.13, 0.14, 1.09). The random effect variance was estimated as

σ̂2
1 = 0.66. In the continuous part of the model, we used bandwidths ranging from

0.05 to 0.40, with little change in any of the estimates, as described in more detail in

Section II.5.1. With a bandwidth h = 0.30, our estimates were σ̂2 = 0.76, σ̂2
2 = 0.043,

and the coefficients for gender and age were −0.25 and 0.02, respectively. The coef-

ficient for the person specific random effect σ2
2 appears intrinsic to the data: we used

other methods such as mixed models with polynomial fits and obtained roughly the

same answers.
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We display the computed survival function in Figure 3. Displayed there are our

method, along with the empirical survival functions for the mean of the first two

24-hour recalls and the mean of all four 24-hour recalls. While these are biased, it is

interesting to note that using the mean of only two 24-hour recalls is more different

from our method than using the mean of four 24-hour recalls, which is expected as

described above. The similarity of Figures 1 and 3 is striking, mainly indicating that

naive approaches, such as using the mean of two 24-hour recalls, can result in badly

biased estimates of κ0.

II.5. Bandwidth Selection, the Partially Linear Model, and the Sample Mean

II.5.1. Bandwidth Selection

II.5.1.1. Background

We have used a standard first-order kernel density function, i.e., one with mean zero

and positive variance. With this choice, in Theorem 1 we have assumed that the

bandwidth satisfies nh4 → 0: for estimation of the population mean in the partially

linear model. In contrast, if one were interested only in B0, then it is well-known

that by using profile likelihood the usual bandwidth order h ∼ n−1/5 is acceptable,

and off-the-shelf bandwidth selection techniques yield an asymptotically normal limit

distribution.

The reason for the technical need for undersmoothing is the inclusion of θ0(·) in

κ0. For example, suppose that κ0 = E{θ0(Z)}. Then it follows from (2.5) that

κ̂ − κ0 = Op(h
2 + n−1/2). Thus, in order for n1/2(κ̂ − κ0) = Op(1), we require that

nh4 = Op(1). The additional restriction that nh4 → 0 merely removes the bias term
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entirely.

Note that κ0 is not a parameter in the model, being a mixture of the parametric part

B0, the nonparametric part θ0(·), and the joint distribution of (X, Z). Thus, it does

not appear that κ0 can be estimated by profiling ideas.

II.5.1.2. Optimal Estimation

As seen in Theorem 1, the asymptotic distribution of n1/2(κ̂ − κ0) is unaffected by

the bandwidth, at least to first order. In Section II.5.1.3 below we give intuitive and

numerical evidence of the lack of sensitivity to the bandwidth choice, see also Section

II.5.3 for further numerical evidence. In Section II.5.1.4 we describe three different,

simple practical methods for bandwidth selection in this problem, all of which work

quite well in our simulations and example.

Since first-order calculations do not get squarely at the choice of bandwidth, other

than to suggest that it is not particularly crucial, an alternative theoretical device is

to do second order calculations. Define η(n, h) = n1/2h2 + (n1/2h)−1. In a problem

similar to ours, Sepanski, Knickerbocker and Carroll (1994) show that the variance

of linear combinations of the estimate of B0 has a second order expansion as follows.

Suppose we want to estimate ξTB0. Then, for constants (a1, a2),

n1/2(ξTB̂ − ξTB0) = Vn + op{η(n, h)};

cov(Vn) = constant +
{

a1n
1/2h2 + a2(hn1/2)−1

}2

.

This means that the optimal bandwidth is of the order h = cn−1/3 for a constant c

depending on (a1, a2), which in turn depend on the problem, i.e., on the distribution
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of (Y, X,Z) as well as B0 and θ0(·). In their practical implementation, translated

from the Gaussian kernel function to our Epanechnikov kernel function, Sepanski et

al. (1994) suggest the following device, namely that if the optimal bandwidth for es-

timating θ0(·) is ho = cn−1/5, then they use the correct-order bandwidth h = cn−1/3.

They also did sensitivity analysis, e.g., h = (1/2)cn−1/3, but found little change in

their simulations. One of our three methods of practical bandwidth selection is ex-

actly this one.

A problem not within our framework but carrying a similar flavor was considered by

Powell and Stoker (1996) and Newey, Hsieh and Robins (2004), namely the estima-

tion of the weighted average derivative κAD = E{Y θ
(1)
0 (Z)}. As done by Sepanski et

al. (1994), Powell and Stoker (1996) show that the optimal bandwidth constructed

from second-order calculations is an undersmoothed bandwidth. Newey et al. (2004)

suggest that a simple device of choosing the bandwidth is to choose something opti-

mal when using a standard second-order kernel function but to then undersmooth, in

effect, by using a higher-order kernel such as the twicing kernel. This is our second

bandwidth selection method described in Section II.5.1.4. Like the first, it appears

to be an effective means of eliminating the bias term.

In our problem, the paper by Sepanski et al. (1994) is more relevant. Preliminary

calculations based upon the basic tools in that paper suggest that for our problem, the

optimal bandwidth is also of order n−1/3. We intend to pursue these very calculations

in another paper.
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II.5.1.3. Lack of Sensitivity to Bandwidth

We have used the term technical need for undersmoothing because that is what it

really is. In practice, as Theorem 1 states, the asymptotic distribution of κ̂ is un-

affected by bandwidth choice for very broad ranges of bandwidths. This is totally

different from what happens with estimation of the function θ0(·), where bandwidth

selection is typically critical in practice, and this is seen in theory through the usual

bias-variance tradeoff.

In practice, we expect little effect of the bandwidth selection on estimation of B0, and

even less effect on estimation of κ0. The reason is that broad ranges of bandwidths

lead to no asymptotic effect on the distribution of B̂. The extra amount of smoothing

inherent in the summation in (2.4) should mean that κ̂ will be even less sensitive to

the bandwidth, the so-called double-smoothing phenomenon.

To see this issue, consider the simulation in Wang et al. (2004). They set X and Z

to be independent, with X = Normal(1, 1) and Z = Uniform[0, 1]. In the partially

linear model, they set B0 = 1.5, ε = Normal(0, 1) and θ0(z) = 3.2z2 − 1. They

used the kernel function (15/16)(1 − z2)2I(|z| ≤ 1), and they fixed the bandwidth

to be h = n−2/3, which at least asymptotically is very great undersmoothing, since

h ∼ n−1/3 is already acceptable and typically something like nh2/ log(n) → ∞ is

usually required. In their Case 3, they used effective sample sizes for complete data

of 18, 36 and 60, with corresponding bandwidths 0.146, 0.092 and 0.065, respectively.

We reran the simulation of Wang et al. (2004), with complete response data and

n = 60. We used bandwidths 0.02, 0.06, 0.10, 0.14, ranging from a very small band-
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Fig. 4 Results for a single data set in a simulation as in Wang et al. (2004), the partially linear model

with n = 60, complete response data, and when κ0 = E(Y ). Various bandwidths are used, and the

estimates of the function θ0(·) are displayed. In the legend, the actual estimates of κ0 are displayed.

Note how the bandwidth has a major impact on the function estimate with the bandwidth is too

small (h = 0.02), but very little effect on the estimate of κ0.

width, less than 1/3 that used by Wang et al. (2004), to a larger bandwidth, more

than double that used. As another perspective, if one sets h = σzn
−c, where σz is

the standard deviation of Z, then the bandwidths used are equivalent to c = 0.73,

0.46, 0.34 and 0.26, In other words, a bandwidth here of h = 0.02 is very great under-

smoothing, while even h = 0.14 satisfies the theoretical constraint on the bandwidth.

In Figure 4, we plot the results for a single data set, where, as in Wang et al. (2004),

interest lies in estimating κ0 = E(Y ). As is obvious from this figure, the bandwidth

choice is very important for estimation of the function, but trivially unimportant for

estimation of κ0, the estimate of which ranged from 1.818 to 1.828.

In Figure 5, we plot the mean estimated functions from 100 simulated data sets.

Again the bandwidth matters a great deal for estimating the function θ0(·). Again



29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

h=0.02
h=0.06
h=0.10
h=0.14

Fig. 5 Results for 100 simulated data sets in a simulation as in Wang et al. (2004), the partially linear model

with n = 60 and complete response data. Various bandwidths are used, and the mean estimates of

the function θ0(·) are displayed. Note how even over these simulations, the bandwidth has a clear

impact on the function estimate: there is almost no impact on estimates of the population mean and

variance.

too, the bandwidth matters hardly at all for estimating κ0. Thus, for estimating κ0,

the mean estimates across the bandwidths range from 1.513 to 1.526, and the stan-

dard deviations of the estimates range from 0.249 to 0.252. There is somewhat more

effect of bandwidth on the estimate of B0: for h ≥ 0.06, there is almost no effect, but

choosing h = 0.02 results in a 50% increase in standard deviation.

In other words, as expected by theory and intuition, bandwidth selection has little

effect on the estimate of B0 except when the bandwidth is much too small, and very

little effect on the estimation of κ0 = E(Y ). Similar remarks occur when one looks

at the variance of the errors as the parameter, and κ0 is the population variance.
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II.5.1.4. Bandwidth Selection

As described above in Section II.5.1.3, bandwidth selection is not a vital issue for

estimating κ0: of course, it is vital for estimating θ0(·). Effectively, what this means

is that the real need is simply to get bandwidths that satisfy the technical assump-

tion of undersmoothing but are not too ridiculously small: a precise target is often

unnecessary. In addition, because the asymptotic distribution of κ̂ does not depend

on the bandwidth, simple first-order methods of the type that are used in bandwidth

selection for function estimation are not possible. Thus, in our example, we used

three different methods, all of which gave answers that were as nearly identical as in

the simulation of Wang et al. (2004).

All the methods are based on a so-called ”typical device” to get an optimal bandwidth

for estimating θ0, of the form hopt = cσzn
−1/5. In practice, this can be accomplished

by constructing a finite grid of bandwidths of the form hgrid = cgridσzn
−1/5: we use a

grid from 0.20 to 5.0. After estimating B0 by B̂(hgrid), this value is fixed, and then

a loglikelihood cross-validation score obtained. The maximizer of the loglikelihood

crossvalidation score is selected as hopt.

• If hopt = cσzn
−1/5, an extremely simple device is simply to set h = hoptn

−2/15 =

cσzn
−1/3, which satisfies the technical condition of undersmoothing without

becoming ridiculously too small. This device may seem terribly ad hoc, but the

theory, the simulation of Wang et al. (2004), the discussion in Section II.5.1.3,

and our own work suggests that this method actually works reasonably well.

Note too that in Section II.5.1.2 we give evidence that this bandwidth rate is

most likely optimal.

• A second approach is taken by Newey et al. (2004), and is also an effective
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practical device. The technical need for undersmoothing comes from the fact

that the bias term in a first-order local likelihood kernel regression is of order

O(h2). One can use higher-order kernels to get the bias to be of order O(h2s)

for s ≥ 2, but this does not really help in that the variance remains of or-

der O{(nh)−1}, so that the optimal mean squared error kernel estimator has

h = O{n−1/(4s+1)}, and thus undersmoothing to estimate κ0 is still required.

However, as Newey et al. (2004) point out, if one uses the optimal bandwidth

hopt = cσzn
−1/5, but then does the estimation procedure replacing the first-

order kernel by a higher order kernel, then the bias is O(h2s
opt) = o(n−1/2) if

s ≥ 2. A convenient higher-order kernel is the second-order twicing kernel

Ktw(u) = 2K(u) − ∫ K(u − v)K(v)dv, where K(·) is a first-order kernel.

• One can also use loglikelihood crossvalidation, but with the grid of values be-

ing of the form hgrid = cgridσzn
−1/3. Because crossvalidation scores often have

multiple modes, this is not the same as optimal smoothing.

It may be worth pointing out again that Wang et al. (2004) set h = n−2/3, and

even then, with too much undersmoothing (asymptotically), the performance of the

method is rather good.

II.5.2. Efficiency and Robustness of the Sample Mean

In general problems with complete data, with no assumptions about the response Y

other than that it has a second moment, the sample mean Y is semiparametric effi-

cient for estimating the population mean κ0 = E(Y ), see for example Newey (1990).

Somewhat remarkably, Wang et al. (2004) show that in the partially linear model

with Gaussian errors, with complete data the sample mean is still semiparametric ef-
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ficient. This fact is crucial of course in establishing that with missing response data,

their estimators are still semiparametric efficient.

It is clear that with complete data, the sample mean will not be semiparametric ef-

ficient for all semiparametric likelihood models. Simple counter-examples abound,

e.g., the partially linear model for Laplace or t-errors. More complex examples can

be constructed, e.g., the partially linear model in the Gamma family with loglinear

mean exp{XTB0 + θ0(Z)}: details follow from Lemma 4 below.

The model-robustness of the sample mean for estimating the population mean in

complete data is nonetheless a powerful feature. It is therefore of considerable interest

to know whether there are cases of semiparametric likelihood problems where the

sample mean is still semiparametric efficient, and thus would be used because of

its model-robustness. It turns out that such cases exist. In particular, the sample

mean for complete response data is semiparametric efficient in canonical exponential

families with partially linear form.

Lemma 3 Recall that ε is defined in (2.8). If there are no missing data, the sample

mean is a semiparametric efficient estimator of the population mean only if

Y − E(Y |X, Z) = E(Y εT)M−1
1 ε + Lθ(·)

E{Y Lθ(·)|Z}
E{L2

θ(·)|Z} . (2.19)

It is interesting to consider (2.19) in the special case of exponential families with

likelihood function

f(y|x, z) = exp
[yc{η(x, z)} − C[c{η(x, z)}]

φ
+ D(y, φ)

]
, (2.20)

where η(x, z) = xTβ0 + θ0(z), so that E(Y |X,Z) = C(1)[c{η(X, Z)}] = µ{η(X,Z)} =
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µ(X, Z) and var(Y |X, Z) = φC(2)[c{η(X,Z)}] = φV [µ{η(X, Z)}].

As it turns out, effectively, (2.19) holds and the sample mean is semiparametric

efficient only in the canonical exponential family for which c(t) = t. More precisely,

we show in Appendix A the following result.

Lemma 4 If there are no missing data, under the exponential model (2.20), the sam-

ple mean is a semiparametric efficient estimate of the population mean if ∂c{XTβ +

θ(Z)}/∂θ(Z) is a function only of Z for all β, e.g., the canonical exponential family.

Otherwise, the sample mean is generally not semiparametric efficient: the precise con-

dition is given in equation (A.29) in the appendix. In particular, outside the canonical

exponential family, the only possibility for the sample mean to be semiparametric ef-

ficient is that if for some known (a, b), c{xTβ + θ(z)} = a + b log{xTβ + θ(z)}.

Remark 5 We consider Lemmas 3-4 to be positive results, although an earlier version

of the work had a misplaced emphasis. Effectively, we have characterized the cases,

with complete data, that the sample mean is both model-free and semiparametric

efficient. In these cases, one would use the sample mean, or perhaps a robust version

of it, rather than fit a potentially complex semiparametric model that can do no

better, and if that model is incorrect can incur non-trivial bias.

II.5.3. Numerical Experience and Theoretical Insights in the Partially Linear Model,

and Some Tentative Conclusions

In responding to a referee about the estimation of the population mean in the partially

linear model (2.1), we collect here a few remarks based upon our numerical experi-

ence. Since the problem of estimating the population mean is the problem focused

upon by Chen et al. (2004), we focus on the simulation set-up in their paper, although
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some of the conclusions we reach may be supportable in general cases. To remind

the reader, in their simulation, X and Z are independent, with X = Normal(0, 1),

Z = Uniform[0, 1], β = 1.5, θ(z) = 3.2z2 − 1 and ε = Normal(0, 1).

II.5.3.1. Can Semiparametric Methods Improve Upon the Sample Mean?

When there are missing response data, the simulations in Wang et al. (2004) show

conclusively that substantial gains in efficiency can be made over using the sample

mean of the observed responses alone. In addition, if missingness depends on (X,Z),

the sample mean of the observed responses will be biased.

This leaves the issue of what happens when there are no missing data. Obviously, if

one thought that ε were normally distributed, it would be delusional to use anything

other than the sample mean, it being efficient.

Theoretically, some insight can be gained by the following considerations. Suppose

that X and Z are independent. Suppose also that ε has a symmetric density function

known up to a scale parameter. Let σ2
ε be the variance of ε, and let ζ ≤ σ2

ε be the

inverse of the Fisher information for estimating the mean in the model Y = µ + ε.

Then, it can be shown that E{FB(·)} = 0, that θB(z,B) = 0, and that the asymptotic

mean squared error efficiency (MSE) of the semiparametric efficient estimate of the

population mean compared to the sample mean is

MSE Efficiency of Sample Mean =
β2var(X) + var{θ(Z)} + ζ

β2var(X) + var{θ(Z)} + σ2
ε

≤ 1.

Note that there are cases that ζ/σ2
ε may be quite small, especially when ε is heavy

tailed, so that if β = 0 and θ(·) is approximately constant, the MSE efficiency of
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the sample mean would be ζ/σ2
ε , and then substantial gains in efficiency would be

gained. However, the usual motivation for fitting semiparametric models is that the

regression function is not constant, in which case the MSE efficiency gain will be

attenuated towards 1.0, often dramatically.

We conclude then that with no missing data, in the partially linear model, substan-

tial improvements upon the sample mean will be realized mainly when the regression

errors are heavy-tailed and the regression signal is slight.

We point out that in the example that motivated this work (Section II.4), there is no

simple analogue to the sample mean, one that could avoid fitting models to the data.

II.5.3.2. How Critical Are Our Assumptions on Z?

We have made two assumptions on Z: it has a compact support and its density

function is positive on that support. We have indicated in Section A that all gen-

eral papers in the semiparametric kernel-based literature make this assumption, and

that it appears to be critical for deriving asymptotic results for problems such as our

example in Section II.4. It is certainly well beyond our capabilities to weaken this

assumption as it applies to problems such as our motivating example.

The condition that the density of Z be bounded away from zero warns users that the

method will deteriorate if there are a few sparsely observed outlying Z-values, see

below for numerical evidence of this phenomenon.

Estimation in sub-populations formed by compact subsets of Z can also be of consid-
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erable interest in practice, and these compact subsets can be chosen to avoid density

spareness and meet our assumptions. A simple example might be where Z is age, and

one might be interested in population summaries for those in the 40-60 year age range.

The partially linear model is a special case, however, because all estimates are ex-

plicit and what few Taylor expansions are necessary simplify tremendously. That

is, the estimates are simple functions of sums of random variables. Cheng (1994)

considers the different problem where there is no X and where local constant esti-

mation of the nonparametric function is used, rather than local linear estimation,

so that θ̂(z0) =
∑n

i=1 Kh(Zi − z0)Yi/
∑n

i=1 Kh(Zi − z0). He indicates that the essen-

tial condition for this case is that the tails of the density of Z decay exponentially fast.

We tested this numerically in the normal-based simulation of Wang et al. (2004) with

the sample size of n = 500: similar results were found with n = 100. We use the

Epanechnikov kernel and estimated the bandwidth using the following methods. First,

we regressed Y and X separately on Z, using the DPI bandwidth selection method

of Ruppert, Sheather and Wand (1995) to form different estimated bandwidths on

each. We then calculated the residuals from these fits, and regressed the residual in

Y on the residual in X to get a preliminary estimate β̂start of β. Following this, we

regressed Y −XTβ̂start on Z to get a common bandwidth, then undersmoothed it by

multiplication by n−2/15 to get a bandwidth of order n−1/3 to eliminate bias, and then

reestimated β and θ(·).

We found that for various Beta distributions on Z, e.g., the Beta(2,1) that violates our

assumptions, the sample mean and the semiparametric efficient method were equally

efficient. The same occurs for the case that Z is normally distributed. However, when
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Z has a t-distribution with 9 degrees of freedom, the sample mean greatly outperforms

the undersmoothed estimator (MSE efficiency ≈ 2.0), which in turn out-performed

the method that did not employ undersmoothing (MSE efficiency ≈ 2.5). An inter-

esting quote from Ma, Chiou and Wang (2006) is relevant here: also operating in

a partial linear model, they state “This condition enables us to simplify asymptotic

expression of certain sums of functions of variables .... also excludes pathological

cases where the number of observations in a window defined by the bandwidth may

not increase to infinity when n → ∞”.

We conclude that if the design density in Z is at all heavy tailed, then the semipara-

metric methods will be badly affected. If such a phenomenon happens in the simple

case of the partially linear model, it is likely to hold in most other cases. Otherwise,

in practice at least, as long as their are no design “stragglers”, the assumption is likely

to be one required by the technicalities of the problem. How well this generalizes to

complex nonlinear problems is unknown.
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CHAPTER III

TESTING IN SEMIPARAMETRIC MODELS WITH INTERACTION

III.1. Introduction

Modern genetic association studies often focus on discovery of susceptibility loci, i.e.,

identification of genetic variants that are associated with the trait under study. The

risks of multi-factorial traits, such as cancer, however, are determined by complex in-

teractions among genetic and environmental exposures and the chance for discovery

of the underlying susceptibility genes can be substantially reduced if the possibility

of heterogeneity in genetic effects due to interactions is ignored. Thus, in recent

years, there has been increasing attention in omnibus testing of genetic main effects

and gene-environment/gene-gene interactions for detection of susceptibility genes for

complex traits. Clearly, tests of association incorporating interactions require larger

degrees-of-freedom than those based only on main effects. When the extra degrees-

of-freedom required is relatively small, recent studies have shown that the omnibus

tests can be a robust and powerful approach for detecting genetic association irre-

spective of certain specific forms of interactions are present or not (Chatterjee et al.,

2006; Kraft et al., 2007). However, if the required degrees-of-freedom is large, then

the omnibus tests can have poor power. Thus parsimonious modeling of gene-gene

and gene-environment interactions should be considered for construction of powerful

omnibus tests.

Chatterjee et al. (2006) proposed the use of Tukey style 1 degree-of-freedom model

for interaction for testing the genetic association of a disease with a set of genetic
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variants, such as tagging Single Nucleotide Polymorphisms (SNPs) in a candidate

gene, that may potentially interact with another set of genetic variants or/and with

one or more environmental exposures. SNPs represent a natural genetic variability at

high density in the human genome. A genetic locus corresponding to a SNP has two

possible alleles (states), namely the normal and the variant. The SNP-genotype data

for a subject can have three possible values and are often coded numerically as the

number of variant alleles the subject carries on the pair of homologous chromosomes

inherited from his/her parents.

In this chapter, we will consider extending the work of Chatterjee et al focussing on

the problem of gene-environment interaction. Thus, for example, if D denotes the

binary indicator of a disease outcome, X denotes a “design matrix” associated with a

set genetic variants G, Z denotes the design matrix associated with an environmental

exposure of interest and S denotes a set of additional co-factors, such as age and sex,

then the risk of the disease can be modeled using Tukey’s form of gene-environment

interaction as

pr(D = 1|X,S, Z, γ) = H(XTβ0 + STη0 + ZT θ0 + γXTβ0Z
T θ0), (3.1)

where H(·) is the logistic distribution function. Notice, unlike in the standard lo-

gistic regression model where potentially a separate interaction parameter is allowed

between each pair of design elements of the genetic and environmental factors, in

model (3.1), a single parameter (γ) is used to capture interactions. Moreover, in

model (3.1), the omnibus null hypothesis of interest can be simply stated as β0 = 0

under which both genetic main effects and gene-environment interactions disappear

from the model. A complication, however, is that under β0 = 0, the parameter γ also

disappears from the model and hence is not identifiable from the data. Nevertheless,
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Chatterjee et al. noticed that for each fixed value of γ, the model (3.1) can be used

to construct a valid score-test for β0 = 0. They proposed to use maximal of such

score-statistics over a range of the parameter γ as the final test statistics to be used

for testing β0 = 0. They observed that the score-test has particular computational

advantages, because under the null hypothesis the model (3.1) reduces to a standard

logistic regression model involving only main effects of Z and S.

In this chapter, we extend the work by Chatterjee et al. (2006) in two novel ways.

First, we consider modeling complex effects of continuous environmental exposures

using nonparametric regression models. The problem is particularly motivated by

the fact that modern molecular epidemiologic studies often involve measurement of

environmental exposures through continuous biomarkers, the relationships of which

with the disease can be highly complex and nonlinear. Thus for example in the logistic

context, one might consider the model

pr(D = 1|X, S, Z, γ) = H{XTβ0 + STη0 + θ0(Z) + γXTβ0θ0(Z)}, (3.2)

where θ0(·) is an unknown function. Second, we consider very general semiparametric

models with possible repeated measures (Lin and Carroll, 2006), where the effects are

given through terms roughly of the form on the right-hand-side of (3.2). In particular,

we assume that for each subject or cluster i, there are j = 1, ..., J observations

(Yij, Xij, Sij, Zij). We write Ỹi = (Yi1, ..., YiJ), and work with a criterion function

L{Ỹ , ν1, ..., νJ , ζ0}, with νj = XT
j β0{1 + γθ0(Zj)} + ST

j η0, (3.3)

where a criterion function could mean either a proper likelihood function, a composite

likelihood function, i.e., one that is a likelihood function for a reduced set of data, or

a proper working likelihood function. In particular, criterion functions have scores in
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the parameters (β0, η0, ζ0, θ0) that have mean zero given appropriate subcomponents

of (Xj, Sj, Zj)
J
j=1. The case of no repeated measures as in (3.1) occurs when J = 1.

Our interest in is in testing for the hypothesis of the form H0 : β0 = 0. As in the

Chatterjee, et al. (2006), it is natural to use a score-testing approach to this problem

so as to avoid numerical difficulty associated with parameter estimation under general

models of the form (3.1) and (3.2). In particular, we note that estimation of γ in these

models can be numerically unstable because of lack of identifiability of this parameter

under β0 = 0. Following Chatterjee et al, we propose to perform score-type tests for

each value of γ and then maximize these tests over an interval of γ-values, and use

numerical devices to create significance levels. It is possible to create the score statistic

directly, and to apply the asymptotic expansions developed by Lin and Carroll (2006)

to analyze these statistics. However, two problems arise.

• The first problem is that the direct score statistic requires undersmoothing

for the nonparametric estimation of θ0(·) in (3.3). By modifying the directly

calculated score statistic in a suitable manner, we will show how to create

test statistics that lose no local power yet allow regular smoothing, such as

crossvalidation.

• The second problem to overcome is that in the repeated measures case that

J > 1, the distribution of the direct or modified score statistics depend on

random variables that are formed as solutions to integral equations. Rather

than directly solving the integral equations, we show that the crucial terms

can be estimated using nothing more than the Gaussian repeated measures

algorithm of Wang (2003), see also Lin, et al. (2004) for a non-iterative solution

and Huggins (2006) for another simple computational device.
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Thus, we will develop a test statistic that is straightforward to compute, does not

require undersmoothing but allows it, and the method also allows a simple implemen-

tation when the score test is maximized over a range for γ.

Our methodology is easiest to understand in the non-repeated measures case that

J = 1, and we take this up in Section III.3, after a discussion in Section III.2 of the

difficulties with likelihood ratio testing in this context. The repeated measures case is

described in Section III.4. Section III.5 gives the results of a simulation study. Here

we find that our maximized tests lose little power when there is no interaction, and

can gain great power advantages over a main effects test when there are interactions.

Section III.6 illustrate an application of the proposed method for omnibus testing of

the effects genetic variants in NAT2 and their interactions with the number of years

since stopping smoking on the risk of colorectal adenoma using a case-control study

conducted with the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening

trial (Hayes et al, 2000).

III.2. Identifiability and the Likelihood Ratio Test

The models we study, for example model (3.1), is an example of a problem where γ is

a nuisance parameter, and under the null hypothesis (3.5) that β0 = 0, the nuisance

parameter is unidentified. In other words, the null hypothesis involves a change in

the number of parameters from the alternative hypothesis greater than the number

of parameters in the null hypothesis. Problems such as this arise in other contexts,

see for example Davies (1987).

The mixture problem is a famous case of this phenomenon. Suppose that the null
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hypothesis is that the data come from Normal(µ, σ2), while in the alternative the data

come from a mixture of j = 1, 2 Normal(µj, σ
2
j ), with mixing probability π. The null

hypothesis can be framed as h0 : π = 1, a change of one parameter, but the actual

number of parameters changes from 5 to 2. It is well know that the null asymptotic

distribution of the likelihood ratio test is not chisquared (Titterington, et al., 1985).

In the change point problem, the idea is that parameters change at a change-point.

Thus, for example, in the alternative, one might has a change point η and a shift δ

in the mean at the change point. Under the null hypothesis that δ = 0, there is no

change point and η is not identified. Again, the distribution of the likelihood ratio

test statistic at the null is not chisquared (Brown, et al., 1975).

The model (3.1) is of course reminiscent of Tukey’s 1-degree of freedom test for inter-

action (Tukey, 1949). However, unlike in that context, in our problem the parameter

γ is a nuisance parameter and is not of primary interest. The method of Chatterjee,

et al. (2006) is more closely akin to the basic suggestion in Davies (1987), namely to

fix the nuisance parameter, compute an appropriate test statistic, and then maximize

that test statistic over a range of values for the nuisance parameter. Thus, one way

to think about our testing procedure is as the appropriate, efficient (both computa-

tionally and in terms of power) way of implementing the basic approach of Davies

in our context, while taking care to eliminate the concerns of undersmoothing and

solution of integral equations that arise from a less targeted approach.

It is interesting to note that the nuisance parameter γ cannot be consistently esti-

mated at the null hypothesis, because it is not identified. This also means that γ

cannot be consistently estimated at contiguous alternatives. In practice, even in fully
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parametric models, this lack of identifiability means that estimating γ is numerically

instable, leading to non-convergence if its range is not restricted.

III.3. Testing Without Repeated Measures

III.3.1. Data and Notation

The data consist of a response Y , parametrically modeled covariates S and X, the

latter possibly interacting with a nonparametrically modeled covariate Z. We consider

a general loglikelihood or criterion function

L [Y, STη0 + θ0(Z) + XTβ0{1 + γθ0(Z)}, ζ0

]
, (3.4)

where β0 and η0 are the main effects, θ0(·) is an unknown function, γ is the interaction

effect and ζ0 are nuisance parameters. In this section, we are interested in testing the

parametric hypothesis

H0 : β0 = 0. (3.5)

As described in the introduction, Chatterjee et. al. (2006) addressed a similar prob-

lem for a fully parametric model where Z is also modeled parametrically. They used

a score based testing procedure to test H0. We generalize their idea for the general

semiparametric model given in (3.4). We describe below the major steps to derive

the test statistic for testing (3.5).

In what follows, we use a simple subscripting convention for derivatives of the log-

likelihood. Thus, with (·) = [Y, STη + θ(Z) + XTβ{1 + γθ(Z)}, ζ], we set

Lθ(·) = (∂/∂v)L{Y, STη + v + XTβ(1 + γv), ζ}|v=θ(Z);
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Lθθ(·) = (∂2/∂v2)L{Y, STη + v + XTβ(1 + γv), ζ}|v=θ(Z);

Lζ(·) = (∂/∂ζ)L{Y, STη + v + XTβ(1 + γv), ζ}|v=θ(Z);

Lθζ(·) = (∂/∂ζ)Lθ{Y, STη + v + XTβ(1 + γv), ζ}|v=θ(Z),

etc. Thus, in abuse of notation we do not indicate in the notation that these partial

derivatives do not depend on the parameters and covariates only via ST η + θ(Z) +

XT β{1 + γθ(Z)}.

III.3.2. Estimation of Parameters Under the Null Hypothesis

Here we show how to estimate the parameters and the function at the null hypothesis.

The strength of score tests is that one fits the model under the null hypothesis. Under

the null hypothesis, the loglikelihood or criterion function for the model is written

as L{Y, STη0 + θ0(Z), ζ0}, a standard form that is easy to handle. The loglikelihood

under the alternative is much harder to deal numerically because of the interaction.

By definition of a loglikelihood or criterion function, at the null hypothesis,

0 = E
[Lθ{Y, STη0 + θ0(Z), ζ0}|X,S, Z

]
. (3.6)

The first step of the process is to estimate the function θ0(·) for any fixed value of

δ = δ∗ = (η∗, ζ∗). We will use kernel methods because of their convenient theory, but

this step can be modified in practice using any smoother. The resulting estimate is

denoted as θ̂(·, δ∗). Let K(·) be a smooth symmetric density function with bounded

support, let h be a bandwidth, and let Kh(z) = h−1K(z/h). Define φk =
∫

zkK(z)dz

and Gh(z) = (1, z/h)T. We follow Lin and Carroll (2006) to estimate the parameters

under H0: for any fixed value of δ = δ∗, estimate θ0(z) by solving the local likelihood
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equation

0 = n−1
∑n

i=1Kh(Zi − z)Gh(Zi − z)Lθ{Yi, S
T
i η∗ + α0 + α1(Zi − z), ζ∗},

for α̂0 and set θ̂(z, δ∗) = α̂0.

The second step in the process is now smoothing-method independent. To estimate

δ0 = (η0, ζ0), maximize in δ the function

n−1
∑n

i=1L{Yi, S
T
i η + θ̂(Zi, δ), ζ},

the so-called profile method, which solves

0 = n−1
∑n

i=1{Si + θ̂η(Zi, δ)}Lθ{Yi, S
T
i η + θ̂(Zi, δ), ζ};

0 = n−1
∑n

i=1[Lζ{Yi, S
T
i η + θ̂(Zi, δ), ζ} + θ̂ζ(Zi, δ)Lθ{Yi, S

T
i η + θ̂(Zi, δ), ζ}],

where θ̂η(Zi, δ) and θ̂ζ(Zi, δ) is the derivative of θ̂(Zi, δ) with respect to η or ζ, re-

spectively. all the resulting estimate δ̂.

III.3.3. The Score Function and Asymptotic Theory

III.3.3.1. Derivation

One approach to developing a score statistic is to fix the function θ(·), derive the

score statistic, and then plug-in estimates of nuisance parameters and the function

θ(·). This does not work well because the function estimate itself needs profiling, and

indeed this approach requires undersmoothing for its validity.

In contrast, our test statistic is a particular implementation of the profiled loglikeli-
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hood/criterion function, derived as follows. In general, the loglikelihood function for

an observation is L{Y, STη + XTβ + θ(Z) + γXTβθ(Z), ζ}. Recall that δ = (η, ζ).

For given (β, δ), let θ(Z, β, δ) be the profile function that solves

E
[Lθ{Y, STη + XTβ + θ(Z, β, δ) + γXTβθ(Z, β, δ), ζ}|Z] = 0. (3.7)

Define X̃pro = X {1 + γθ(Z, 0, δ)} + θβ(Z, 0, δ), where θβ(Z, β, δ) = (∂/∂β)θ(Z, β, δ).

The profiled loglikelihood is L{Y, STη + XTβ + θ(Z, β, δ) + γXTβθ(Z, β, δ), ζ}. Dif-

ferentiating it with respect to β and evaluating at the null hypothesis β = 0, the

profiled (efficient) score is easily seen to be X̃proLθ{Y, STη + θ(Z, 0, δ), ζ}.

In addition, differentiating (3.7) with respect to β and evaluating it at β = 0 and

δ = δ0 shows that X̃pro = {1 + γθ0(Z)}X̃, where

X̃ = X − E[XLθθ{Y, STη0 + θ0(Z), ζ0}|Z]/E[Lθθ{Y, STη0 + θ0(Z), ζ0}|Z].

We thus propose the following profiled score statistic for β0:

Tn,pro(γ) = n−1/2
∑n

i=1{1 + γθ̂(Zi, δ̂)}X̃i,estLθ{Yi, S
T
i η̂ + θ̂(Zi, η̂), ζ̂}, (3.8)

where X̃i,est is an estimated version of X̃i, with the terms to be estimated in X̃ ob-

tained by separate nonparametric regressions in the numerator and denominator. The

normalization by n−1/2 is convenient for the asymptotic theory.

III.3.3.2. Theoretical Result

Let δ0 = (ηT
0 , ζT

0 )T and make the definitions

θδ(z0, δ0) = −E[Lθδ{Y, STη0 + θ0(Z), ζ0}|Z = z0]

E[Lθθ{Y, STη0 + θ0(Z), ζ0}|Z = z0]
;
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ε = Lδ{Y, STη0 + θ0(Z), ζ0} + θδ(Z, δ0)Lθ{Y, STη0 + θ0(Z), ζ0};

M = −E(εεT);

N = E
(
X{1 + γθ0(Z)}[Lθδ{Y, STη0 + θ0(Z), ζ0}

+Lθθ{Y, STη0 + θ0(Z), ζ0}θδ(Z, δ0)]
T
)
;

Ψ(γ) = {1 + γθ0(Z)}X̃Lθ{Y, STη0 + θ0(Z), ζ0} − NM−1ε.

The main result of this section justifying our methodology is stated below. Techni-

cally, a precise argument requires little more than that the linear expansions for the

parametric and nonparametric parts given in Lin and Carroll (2006) hold to order

op(n
−1/2), the latter uniformly.

Result 3 Suppose that we are testing for H0 : β0 = 0. Assume that h ∝ n−α with

1/3 ≤ α ≤ 1/5. Then, for any fixed γ, the score function for β0 can be written as

Tn,pro(γ) = n−1/2
∑n

i=1Ψi(γ) + op(1).

In addition, assume that for any γ1 and γ2, V(γ1, γ2) = E{Ψ(γ1)Ψ
T(γ2)} is finite.

Then, under the hypothesis that β0 = 0, Tn,pro(γ) as a function of γ ∈ [L,R] converges

weakly to a Gaussian process W(γ) with mean zero and covariance function V(γ1, γ2).

Remark 6 There are two methods that can be used to estimate the covariance ma-

trix of the estimated score.

• First, suppose as in logistic regression that there are no nuisance parameters ζ0,

and that L(·) is a loglikelihood function and not a general criterion function.

Then we can write Ψi(γ) = Ψ∗
i (γ)Lθ{Yi, S

T
i η0 + θ0(Zi)} with Ψ∗

i (γ) = {1 +

γθ0(Zi)}X̃i −NM−1S̃i, where

S̃ = S − E[SLθθ{Y, STη0 + θ0(Z), ζ0}|Z]/E[Lθθ{Y, STη0 + θ0(Z), ζ0}|Z].
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Let Ψ̂∗
i (γ) be the estimated version of Ψ∗

i (γ). This estimated version requires

through definition of X̃i, S̃i and additional nonparametric regressions, which

are easily accomplished via kernel or spline methods. Further, let Iθ,null{ST
i η0 +

θ0(Zi), ζ0} be the conditional information matrix for θ under the null model.

Then we estimate the covariance matrix of Tn(γ)

Iβ0,n(γ) = n−1
∑n

i=1Iθ,null{ST
i η̂ + θ̂(Zi, η̂)}Ψ̂∗

i (γ){Ψ̂∗
i (γ)}T.

• In general, Iβ0,n(γ) can be estimated as the sample covariance matrix of the

terms Ψ̂i(γ), the estimated version of Ψi(γ). In likelihood problems, simpli-

fications arise because one can compute the covariance matrix of Ψ(·) given

(X,Z, S) using Fisher Information calculations.

Remark 7 The validity and unbiasedness of the profiled score statistic primarily

depends on the use of X̃. In simpler models, such as the Gaussian model, X̃ =

X − E(X|Z) is simply the residual of a nonparametric Gaussian regression of each

component of X on Z. In general, X̃ can be thought of the residual of a weighted

nonparametric Gaussian regression of each component of X on Z, where the error

variance for weighting is taken to be −1/Lθθ(·). This interpretation enables us to

construct estimates of X̃ with considerable ease in many cases, especially in the

presence of repeated measurements, see Section III.4 for details.

III.3.4. The Test Statistic and Its Implementation

Here we define our test statistic and show how to implement it in practice to compute

critical values.
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The score test statistic, for a fixed value of γ, is then given by

Tn,pro(γ)TI−1
β0,n(γ)Tn,pro(γ).

We compute the final test statistic as

T ∗
n = max

L≤γ≤R
T T

n,pro(γ)I−1
β0,n(γ)Tn,pro(γ),

where L and R are pre-specified lower and upper bound of γ. Our approach is also

related to adaptive tests that have been developed for nonparametric alternatives of

functions with unknown smoothness, compare e.g. Horowitz and Spokoiny (2001).

To implement the test, we need to simulate the null distribution of T ∗
n and obtain the

desired critical values. Our method avoids the need to determine critical values for

the maximum of a function of a Gaussian process. Using Result 3 we can generate

realizations from the limiting distribution of the score statistic as

T0(γ) = n−1/2
∑n

i=1Ψ̂i(γ)Zi,

where Ψ̂(γ) is Ψ(γ) evaluated at δ̂ and θ̂(z, δ̂), and Z1, . . . ,Zn are standard normal

random variates which are drawn independent of the data. The null distribution of

T ∗
n is then simulated by generating T ∗

0 = maxL≤γ≤R T0(γ)TI−1
β0,n(γ)T0(γ) repeatedly.

This method is the semiparametric version of a method discussed by Lin and Zhou

(2004) and Chatterjee, et al. (2006).

III.4. General Interaction Model with Repeated Measures

III.4.1. Data and Notation

In this section we generalize the ideas presented earlier to the case when repeated

measures are present in the data. Repeated measures models can arise from vari-



51

ous fields of research, e.g., matched case-control studies, finance, epidemiology and

many others. The key feature of these models is that the nonparametric function is

evaluated for each of the repeated measurements. Lin and Carroll (2006) developed

kernel-based estimation procedures and investigated asymptotic properties of the es-

timators in general semiparametric regression problems. We will use their results and

methodology in our context.

In this section we set out the notation to be used. For simplicity only, we suppose

that there are J repeated measurements for each individual. Only obvious notational

changes are required for the more general case. Specifically, we consider a loglikelihood

or criterion function

L{Ỹ , ν1(β0, θ0, η0), . . . , νJ(β0, θ0, η0), ζ0},

where νj(β0, θ0, η0) = XT
j β0{1+γθ0(Zj)}+θ0(Zj)+ST

j η0, γ is the common interaction

parameter for each of the repeated measurements and ζ0 is the collection of all the

nuisance parameters. Then, with a slight abuse of notation in the first formula below,

E[∂L{Ỹ , ν1(β0, θ0, η0), . . . , νJ(β0, θ0, η0), ζ0}/∂{θ0(Zk)}|(Xj, Zj, Sj)
J
j=1] = 0;

E[∂L{Ỹ , ν1(β0, θ0, η0), . . . , νJ(β0, θ0, η0), ζ0}/∂(β, η, ζ)|(Xj, Zj, Sj)
J
j=1] = 0,

see Lin and Carroll (2006) for more discussion. In Section III.4.6, we describe meth-

ods for the partially linear model when working independence among the errors is

used, and hence weaker conditioning assumptions are required.

Letting

· = {Ỹ , ν1(β, θ, η), . . . , νJ(β, θ, η), ζ},
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we define terms Ljθ(·), Ljkθ(·), Lζ(·), Ljθζ(·) in the same was as described in Section

III.3.1. Thus, for example,

Ljθ(·) =
∂

∂vj

L
[
Ỹ , ST

1 η + θ(Z1) + XT
1 β{1 + γθ(Z1)}, ..., ST

j η + vj + XT
j β(1 + γvj),

..., ST
J η + θ(ZJ) + XT

J β{1 + γθ(ZJ)}, ζ
]

vj=θ(Zj)
;

Ljkθ(·) =
∂2

∂vj∂vk

L
[
Ỹ , ST

1 η + θ(Z1) + XT
1 β{1 + γθ(Z1)}, ...

ST
j η + vj + XT

j β(1 + γvj), ...

ST
k η + vk + XT

k β(1 + γvk), ...

ST
J η + θ(ZJ) + XT

J β{1 + γθ(ZJ)}, ζ
]

vj=θ(Zj),vk=θ(Zk)
,

etc.

III.4.2. Estimation Under the Null Model

In this section, we display the method for estimation of parameters and the function

θ(·), at the null hypothesis.

Under the null hypothesis, the criterion function is given by

L{Ỹ , θ0(Z1) + ST
1 η0, . . . , θ0(ZJ) + ST

J η0, ζ0}.

Let δ = (η, ζ). We estimate θ0(·) and δ0 under the null model using methodology

proposed in Lin and Carroll (2006): for any fixed δ = δ∗ = (η∗, ζ∗), estimate θ0(z) by

solving for (α0, α1)

0 =
∑n

i=1

∑J
j=1Kh(Zij − z)G(Zij − z)

×Ljθ

{
Ỹi, θ̂(Zi1, δ

∗) + ST
i1η

∗, . . . , α0 + α1(Zij − z)/h + ST
ijη

∗, . . . ,
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θ̂(ZiJ , δ∗) + ST
iJη∗, ζ∗

}
,

and setting θ̂(z, δ∗) = α̂0. Next, estimate δ by maximizing

∑n
i=1L{Ỹi, θ̂(Zi1, δ) + ST

i1η, . . . , θ̂(ZiJ , δ) + ST
iJη, ζ}

with respect to δ. This can be accomplished by implementing a profiling algorithm

as in Lin and Carroll (2006).

III.4.3. The Score Function and Asymptotic Theory

III.4.3.1. Derivation of the Profile Score

As we have seen in Section III.3.3, our test statistic will be based upon the score

function of a profiled loglikelihood. In this section, we derive the profiled loglikelihood

and the score function, but here the repeated measures aspect makes the calculations

less transparent and indeed leads to real issues of implementation. Let fj(z) be the

marginal density of Zj Again, for any (β, δ), we define θ(z, β, δ) by the repeated

measures version of (3.7), namely the solution to the equation

0 =
J∑

j=1

fj(z)E
[
Ljθ{Ỹ , XT

1 β{1 + γθ(Z1, β, δ)} + θ(Z1, β, δ) + ST
1 η, ...,

XT
J β{1 + γθ(ZJ , β, δ)} + θ(ZJ , β, δ) + ST

J η, ζ}|Zj = z
]
. (3.9)

Defining ωj(β, θ, δ) = XT
j β{1 + γθ(Zj, β, δ)} + θ(Zj, β, δ) + ST

j η, the profiled loglike-

lihood function is L{Ỹ , ω1(β, θ, δ), ..., ωJ(β, θ, δ), ζ}.

Let Ljθβ{Ỹ , ω1(β, θ, δ), ..., ωJ(β, θ, δ), ζ} and Ljkθ{Ỹ , ω1(β, θ, δ), ..., ωJ(β, θ, δ), ζ} be

the derivatives of Ljθ{Ỹ , ω1(β, θ, δ), ..., ωJ(β, θ, δ), ζ} with respect to β and θ(Zk, β, δ),
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respectively. Differentiating and setting β = 0, the profiled score becomes

J∑
j=1

[{1 + γθ(Zj, 0, δ)}Xj + θβ(Zj, 0, δ, γ)]Ljθ{Ỹ , ω1(0, θ, δ), ..., ωJ(0, θ, δ), ζ},

where by differentiating (3.9) with respect to β and solving, θβ(z, β, δ, γ) is the solution

of the functional integral equation:

0 =
∑J

j=1fj(z)E
[
Ljθβ{Ỹ , ω1(β, θ, δ), . . . , ωJ(β, θ, δ), ζ}

+
∑J

k=1Ljkθ{Ỹ , ω1(β, θ, δ), . . . , ωJ(β, θ, δ), ζ0}θβ(Zk, β, δ, γ)
∣∣∣Zj = z

]
.(3.10)

Then, for any fixed value of γ, the profiled score function for β0 evaluated at β0 = 0,

δ0 = δ̂ and θ(z) = θ̂(z, δ̂) is given by

Tn,pro(γ) = n−1/2
∑n

i=1

∑J
j=1[{1 + γθ̂(Zij, δ̂)}Xij + θ̂β(Zij, 0, δ̂, γ)]

×Ljθ{Ỹ , θ̂(Zi1, δ̂) + ST
i1η̂, . . . , θ̂(ZiJ , δ̂) + ST

iJ η̂, ζ̂}.

III.4.3.2. Asymptotic Theory

Denote (·) = {Ỹ , ω1(β0, θ0, δ0), ..., ωJ(β0, θ0, δ0), ζ0} and denote (·i) to be (·) evaluated

at the ith observation. Do all calculations at the null model β0 = 0. Define θδ(z, δ0)

such that

0 =
∑J

j=1fj(z)E{Ljθδ(·) +
∑J

k=1θδ(Zk, δ0)Ljkθ(·)|Zj = z}.

Further define

M1 = −cov
[
Lδ(·) +

∑J
j=1Ljθ(·)θδ(Zj, δ0)

]
;

M2 = E
[∑J

j=1{1 + γθ0(Zj)}Xj{Ljθδ(·) +
∑J

k=1θδ(Zk, η0)Ljkθ(·)}T
]
;
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Ψi(γ) =
∑J

j=1[Xij{1 + γθ0(Zij)} + θβ(Zij, 0, δ0, γ)]Ljθ(·i)

−M2M−1
1 {Lδ(·i) +

∑J
j=1Ljθ(·i)θδ(Zij, δ0)}.

Then we have the following result:

Result 4 Suppose that we are interested in testing H0 : β0 = 0. Assume that

h ∝ n−α where 1/3 ≤ α ≤ 1/5. Then, for any fixed γ, the score function for β0 can

be written as

Tn,pro(γ) = n−1/2
∑n

i=1Ψi(γ) + op(n
−1/2).

In addition, assume that, for any γ1 and γ2, V(γ1, γ2) = E{Ψ(γ1)Ψ
T(γ2)} is finite.

Then, under the hypothesis that β0 = 0, Tn,pro(γ) as a function of γ ∈ [L,R] converges

weakly to a Gaussian process W(γ) with mean zero and covariance function V(γ1, γ2).

Using Result 4, we construct the test statistic and the critical values in the obvious

analogy with Sections III.3.3-III.3.4. To implement this in practice though, we have

to solve the integral equations for θβ(·) and θδ(·), which is very difficult to do. In the

next section, we show how to estimate these quantities without directly solving the

integral equations.

III.4.4. Computation of θβ(·) and θδ(·)
The main difficulty in performing the score test is that for each γ, one has to compute

θ̂β(z, 0, δ0, γ) and θ̂δ(z, 0, δ0), the former of which is the solution of a integral equation

(3.10), making implementation difficult. In this section we show that θβ(z, 0, δ0, γ) can

be viewed as a regression function and hence can be computed via a nonparametric

Gaussian repeated measures regression, which is easily computed and for which the

exact solution is known, see Huggins (2006) and Lin, et al. (2004). The result can be
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stated as follows: details are in the Appendix.

Result 5 Define Qij = −Xij{1+γθ0(Zij)}. Let Vi be the J×J matrix with elements

vijk = −Ljkθ(·i). Then θβ(z, 0, δ0, γ) is identified as the formal solution of the Gaus-

sian repeated measures problem solved by Wang (2003) and Huggins (2006) with

“responses” being the components of Qij and the inverse of the covariance matrix

being Vi.

The algorithm for estimating θβ(·) now is quite simple. Define

Q̂ij = −{1 + γθ̂(Zij, δ̂)}Xij.

Then we construct each component of θ̂β(z, 0, δ̂, γ) by performing a nonparametric

repeated measures regression under the null model with β = 0, with the response be-

ing the appropriate component of Q̂ij and the inverse of the covariance matrix being

V̂i = (v̂ijk), where v̂ijk = −Ljkθ{Ỹi, θ̂(Zi1, δ̂)+ST
i1η̂, . . . , θ̂(ZiJ , δ̂)+ST

iJ η̂, ζ̂} and θ̂(z, δ̂)

is computed under the null model with β0 = 0.

One can estimate θδ(·) in a similar manner. We do this componentwise. Let Ljθδ,�(·)
denote the �th component of Ljθδ(·), and similarly for θδ,�(·). Define (R�

i1, . . . , R
�
iJ)T =

−V −1
i {Li1θδ,�(·), . . . ,LiJθδ,�(·)}T. Then θδ,�(·) can be thought as the Gaussian repeated

measures regression of R�
ij on Zij pretending the inverse of the covariance matrix for

the ith cluster is Vi. In practice, one constructs θ̂δ,�(·) using R̂�
ij and (V̂i)

−1.
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III.4.5. Special Case: Partially Linear Repeated Measurement Model

In this section we consider the partially linear Gaussian model as an example to

demonstrate our methodology. Specifically, we consider the model

Yij = XT
ijβ0{1 + γθ0(Zij)} + θ0(Zij) + ST

ijη0 + εij,

where ε̃i = (εi1, . . . , εiJ) has a Normal(0, Σ) distribution. We want to test for H0 :

β0 = 0. The asymptotic theory is not affected by estimation of Σ, so here we assume

it is known.

Let Σ = (σjk)j,k=1,...,J and Σ−1 = V = (vjk). Then the loglikelihood function is given

by

L = −(1/2)
∑J

q=1

∑J
�=1v

q�(Yq − µq)(Y� − µ�),

where µj = XT
j β0{1 + γθ0(Zj)} + θ0(Zj) + ST

j η0. Now we observe that when β0 = 0,

Ljθ(·) =
∑J

�=1v
j�(Y� − µ�);

Ljθβ(·) = γXj

∑J
�=1v

j�(Y� − µ�) −
∑J

�=1v
j�X�{1 + γθ0(Z�)};

Ljkθ(·) = −vjk.

For β0 = 0, θβ(z, 0, η0, γ) solves:

0 =
∑J

j=1fj(z)E
(∑J

k=1v
jk[Xk{1 + γθ0(Zk)} + θβ(Zk, 0, η0, γ)]

∣∣∣Zj = z
)
. (3.11)

Hence the profiled score function is given by

Tn,pro(γ) = n−1/2
∑n

i=1

∑J
j=1

∑J
k=1v

jk[{1 + γθ̂(Zij, η̂)}Xij + θ̂β(Zij, 0, η̂, γ)]

×{Yik − θ̂(Zik, η̂) − ST
ikη̂}.
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Now one can construct the score test by using Result 4.

Remark 8 Referring to Section III.4.4, we observe that estimation of θβ(·) becomes

much simpler in this case. Using the fact that Ljkθ(·) = −vjk, one can construct θ̂β(·)
by performing a nonparametric componentwise Gaussian repeated measures regres-

sion of Q̂k = −{1 + γθ̂(Zk, η̂)}Xk on Zk pretending the error covariance matrix to be

Σ, where θ̂(z, η̂) is computed under the null model with β0 = 0. Similarly, one can

estimate θη(·) by performing a nonparametric Gaussian repeated measures regression

of −Sij on Zij using Σ as the error covariance matrix.

III.4.6. Testing Under Working Independence

In practice, often working independence is used to simplify the computations in the

presence of repeated measures. In this setup, one pretends that there is no correlation

among the data. In our context, this leads to the assumption that σjk = 0 for j �= k,

and we work with the criterion function

LWI = −(1/2)
∑J

j=1σ
−1
jj (Yj − µj)

2,

where µj = XT
j β0{1 + γθ0(Zj)} + θ0(Zj) + ST

j η0. Note that the use of this criterion

function simplifies the calculations to a great extent. For any generic random variable

W , define W̃j = Wj − mW
Z (Zj) with

mW
Z (z) =

∑J
j=1σ

−1
jj fj(z)E(Wj|Zj = z)/

∑J
j=1σ

−1
jj fj(z).

Under the hypothesis that H0 : β0 = 0, we then observe that now θβ(·) and θη(·) have

closed form expressions:

θβ(z, 0, η0, γ) = −{1 + γθ0(z)}mX
Z (z);
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θη(z, η0) = −mS
Z(z).

The profiled score statistic is given by

T WI
n,pro(γ) = n−1/2

∑n
i=1

∑J
j=1σ

−1
jj {1 + γθ̂(Zij, η̂)}X̃ij,est{Yij − θ̂(Zij, η̂) − ST

ij η̂},

where X̃ij,est = Xij −m̂X
Z (Zij). One can compute m̂X

Z (z) by running a componentwise

Gaussian repeated measures regression on Xij and Zij using working independence

setup.

Further define

M1 = −cov
[∑J

j=1σ
−1
jj S̃j{Yj − θ0(Zj) − ST

j η0}
]
;

M2 = −E
[∑J

j=1σ
−1
jj {1 + γθ0(Zj)}XjS̃

T
j

]
,

Result 4 then translates to the following result:

Result 6 Assume that h ∝ n−α where 1/3 ≤ α ≤ 1/5. Then, under the assumption

of working independence

T WI
n,pro(γ) = n−1/2

∑n
i=1

∑J
j=1σ

−1
jj

[
{1 + γθ0(Zij)}X̃ij + M2M−1

1 S̃ij

]
×{Yij − θ0(Zij) − ST

ijη0} + op(1).

Define Ψ∗
ij(γ) = {1+γθ0(Zij)}X̃ij +M2M−1

1 S̃ij and let Ψ̂∗
ij(γ) be the sample version.

Under the null hypothesis, we estimate the covariance matrix of T WI
n,pro by

IWI
β0,n = n−1

∑n
i=1

∑J
j=1σ

−1
jj Ψ̂∗

ij(γ){Ψ̂∗
ij(γ)}T.
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The score statistic, maximized over γ, is then given by

T ∗
n = max

γ∈[L,R]
T WI

n,pro(γ)T(IWI
β0,n)−1T WI

n,pro(γ).

Using Lemma 6, we can now implement the score test using the technique described

in Section III.3.4. We start by generating

T WI
0 (γ) = n−1/2

∑n
i=1

∑J
j=1σ

−1
jj Ψ̂∗

ij(γ)Zij,

where Zi = (Zi1, . . . , ZiJ)T, i = 1, . . . , n are independent random vectors generated

from Normal(0, Σ̂). One can form Σ̂ as the sample covariance matrix of the residuals

{Yij − θ̂(Zij, η̂) − ST
ij η̂}. The null distribution of T ∗

n is then simulated by repeatedly

generating

T ∗
0 = max

γ∈[L,R]
T WI

0 (γ)T(IWI
β0,n)−1T WI

0 (γ).

Remark 9 We reiterate that one needs to estimate m̂X
Z (Zij) and m̂S

Z(Zij) to imple-

ment the score test. These quantities can be easily estimated by performing com-

ponentwise Gaussian repeated measures regressions of Xij and Sij on Zij using the

working independence setup.

III.5. Simulations

III.5.1. Testing Without Repeated Measures

For the simulation for the test for β0 = 0, we used the following conventions. We

used 31 values of γ in the range [−3, 3]. The variable Z = Uniform[−2, 2], while the

function θ0(z) = sin(2z) is distinctly nonlinear. In keeping with our data example,

the sample size was n = 1, 400.
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We generated X in three ways.

• As a bivariate standard normal random variable.

• X = (X1, X2) where X1 = Bernoulli(0.6) and X2 = Normal(0, 1).

• As two dummy variables. Thus, we first generated a standard normal random

variable r, and X1 = I(r < −0.4) while X2 = I(r > 0.4).

We set β0 = c(1, 1)T, where we set c = 0.0, 0.01, ..., 0.15 for power calculations. The

true value of γ was varied: γtrue = 0, 1, 2. We ran simulations both with and without

additional covariates S: in the former case, we set S to be generated from a univariate

Normal(0, 1) distribution and use η0 = 1.

For each scenario, we ran 1, 000 simulated data sets. To estimate the significance level,

we applied the method in Section III.3.4 with 1, 500 replications. The Epanechnikov

kernel was used to carry out the computation. We used different bandwidth of the

form h = κ× std(Z)n−1/5 with different values of κ ranging from 0.5 to 2. The results

are very similar in each of those cases and hence we report the results for κ = 1 only.

The results are displayed in Figures 6, 7 and 8. There three main conclusions are

clear:

• The test level of our method is near-nominal, being 0.051 without S and 0.057

with S in the model.

• For the main effects model with γtrue = 0, our maximized score-type test loses

only modest power compared to the efficient (in this case) main effects score

test.

• When there are interactions, our methods greatly dominate the main effects

score test as γtrue increases.
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Fig. 6 Results of the simulation for testing whether β = 0 as described in Section III.5.1 using Kernel based

calculations. Here X is a bivariate standard normal random variable. Solid line is our method, while

the dashed line is the naive test which assumes γ = 0. The top rows gives power where there are

no additional covariates S, while the bottom row includes a covariate S. The true value used was

β = c(1, 1)T: the horizontal axis plots the value of c and the vertical axis plots the corresponding

power.
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Fig. 7 Results of the simulation for testing whether β = 0 as described in Section III.5.1 using Kernel based

calculations. Here X = (X1, X2) where X1 = Bernoulli(0.6) and X2 = Normal(0, 1). Solid line is

our method, while the dashed line is the naive test which assumes γ = 0. The top rows gives power

where there are no additional covariates S, while the bottom row includes a covariate S. The true

value used was β = c(1, 1)T: the horizontal axis plots the value of c and the vertical axis plots the

corresponding power.
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Fig. 8 Results of the simulation for testing whether β = 0 as described in Section III.5.1 using Kernel based

calculations. Here X = (X1, X2) is two dummy variables. Thus, we first generated a standard normal

random variable r, and X1 = I(r < −0.4) while X2 = I(r > 0.4). Solid line is our method, while

the dashed line is the naive test which assumes γ = 0. The top rows gives power where there are

no additional covariates S, while the bottom row includes a covariate S. The true value used was

β = c(1, 1)T: the horizontal axis plots the value of c and the vertical axis plots the corresponding

power.
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For comparison purposes, we repeated the simulation using penalized B-spline regres-

sion, using a second-order B-spline with 10 basis functions and with a second-order

difference penalty. The smoothing parameter was chosen by GCV. The results were

very similar to those obtained for kernel methods. The near equivalence of kernel

and spline methods here is no surprise, since there is evidence in Gaussian cases

that smoothing splines are equivalent to kernel methods (Silverman, 1984; Lin, et al.,

2004). Recently, Li and Ruppert (2008) showed that penalized B-spline regression is

also asymptotically equivalent to kernel regression methods in the Gaussian case.

III.5.2. Testing With Repeated Measures

We use the following setup for our simulations for testing β0 = 0. We generate

samples from the partially linear Gaussian repeated measures model: for i = 1, . . . , n

and j = 1, . . . , J ,

Yij = XT
ijβ0 + θ0(Zij)(1 + γXT

ijβ0) + εij,

with n = 200 and J = 3, where we take the true value of the parameter to be

β0 = c(1,−1)T and set c = 0, 0.01, . . . , 0.06 for power calculation. We set θ0(z) =

sin(2z) to be the true function. We generated X from the standard bivariate nor-

mal distribution and Z from the Uniform[−2, 2] distribution. The error vectors

(ε1, . . . , εJ)T are generated from a multivariate normal distribution with covariance

matrix Σ = I + 0.6(11T − I).

We use 11 values of γ in [0, 2] to compute the test statistic. The true values of γ

that are used to generate the data are taken to be γtrue = 0, 1, 2. As in the previous

simulation, we use the Epanechnikov kernel with bandwidth h = κ × std(Z)n−1/5

where the value of κ ranged from 0.5 to 2. In this case also, we observe that the

results are very similar for each of the bandwidth choices and hence we report the
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Fig. 9 Results of the simulation for testing whether β0 = 0, as described in Section III.5.2. Solid line is our

method, while the dashed line is the usual test. The true value used was β = c(1,−1)T: the horizontal

axis plots the value of c and the vertical axis plots the corresponding power.

results for κ = 1. We generate 1,000 data sets for each case and for each data set we

apply our method using 1,000 replications. The results are given in Figure 9. The

level of our test is 0.051, which is very close to the nominal level of 0.05. It is evident

that while our test loses very little power when γtrue = 0, it achieves great power gain

in the presence of interaction as seen in cases where γtrue = 1, 2.

We redid the simulation using B-splines with 10 basis functions where the penalty

parameter is estimated at the null model using GCV. The results are nearly identical

to Figure 9, as one would expect in the Gaussian case.

III.6. Data Analysis

Chatterjee et al illustrated application of their methodology using a case-control study

for investigation of association between colorectal adenoma, a precursor of colorectal

cancer and NAT2, a candidate gene that is known to play important role in detoxifi-

cation of certain aromatic carcinogen present in cigarette smoke. The study involved
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about 700 cases and 700 controls who were genotyped for six known functional poly-

morphisms related to NAT2 acetylation activity. The genotype data were used to

construct diplotype information, i.e. the pair of haplotypes the subjects carried along

their pair of homologous chromosomes. The frequency distribution of these diplotypes

and associated acetylation phenotypes are shown in Table 4 of Chatterjee et al. In

principle, the diplotypes are not observed directly and we can only assign diplotypes

based on the unphased genotype data. However, in many instances such as this ex-

ample, when we have very tightly linked SNPs, the phase ambiguity is often minimal,

i.e., one can assign a very large proportion (> 90%) of the subjects a specific diplo-

type with a very high probability (> 0.95). In such cases, it is easier to just remove

those few people for whom the diplotypes are more uncertain and assume that for

the rest of the people the diplotypes are known. In our data set, we removed a small

number of people whose haplotypes were quite uncertain.

Chatterjee et al considered an omnibus test that can account for interaction of NAT2

history with smoking history, defined as ever, former or never smokers. We consider

a similar application involving NAT2 diplotypes, but model the effect of CIG STOP

(years since stopping smoking) in a continuous fashion with nonparametric regression

among smokers. Because of a few high-leverage values, we censored CIG STOP at 45.

In our analysis, the co-factor S included gender and 3 indicator dummy variables for

age-level: between 60 and 65, between 65 and 70, and more than 70. For modeling the

effect of NAT2 diplotypes, we considered a series of 14 different analysis where in the

kth analysis we compare the risk associated with the k (k = 1, . . . , 14) most common

diplotypes in reference to the rest, with the associated design matrix Xk being defined

by k corresponding dummy variables. To account for non-smokers in this analysis, we

defined δ to be the indicator of smoking (ever vs never) and considered the following
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Table 1. Significance levels (p-values) of the test for genetic effects in a regression model in which Z is years

since stopped smoking. Age category and gender were modeled additively and parametrically. The

analysis is done for the most common diplotype, the most common two diplotypes, and so on.

The nonparametric regression was done using penalized order-2 B-splines with 10 segments, with

penalization done via GCV.

Our Method γ = 0
diplotypes Test p-value Test p-value

1 11.4 0.001 3.3 0.066
2 13.9 0.003 5.7 0.055
3 16.6 0.002 9.8 0.016
4 16.7 0.007 9.8 0.041
5 19.5 0.007 11.3 0.045
6 19.7 0.017 11.4 0.087
7 20.0 0.021 12.3 0.098
8 21.3 0.025 13.1 0.111
9 24.1 0.015 14.2 0.116
10 25.2 0.016 15.3 0.120
11 25.2 0.027 15.4 0.180
12 25.6 0.036 15.4 0.214
13 25.9 0.055 15.8 0.262
14 26.7 0.066 16.6 0.279

model:

pr(D = 1|X,S, Z) = H{(1 − δ)β0 + STβ1 + XTβ2 + δθ(Z) + γδXTβ2θ(Z)}.

Modifying our methods to handle this slightly more complex model is straightforward:

details are available from the authors.

Table 1 compares results of the proposed method for testing β2 = 0 based on

model (3.12) with those for a test for only the corresponding main effects of the

diplotypes, ignoring NAT2-smoking interaction, i.e. assuming γ = 0. We observe

that in each analysis, stronger evidence of association is seen in our new test. For

example, when the 12 most common diplotypes were used, our method had a sig-

nificance level of 0.036 versus a significance level of 0.214 for the main-effect based

test. Interestingly, when all 14 common diplotypes are used, the significance level of
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the proposed test was 0.066, quite close to that for the test used by Chatterjee et al,

also using all the 14 diplotypes, but accounting for interaction with the categorical

smoking history variable defined as never, former or current smoker.



70

CHAPTER IV

ESTIMATION VIA CORRECTED SCORES IN GENERAL SEMIPARAMETRIC

REGRESSION MODELS WITH ERROR-PRONE COVARIATES

IV.1. Introduction

Ma and Carroll (2006), building upon work of Tsiatis and Ma (2004), develop a func-

tional methodology for semiparametric measurement error models when a covariate

measured precisely is modeled nonparametrically. Specifically, a response Y given co-

variates (X, S, Z) has the loglikelihood function L{Y, X, S,B0, θ0(Z)} for an unknown

parameter B0 and an unknown function θ0(·). In the measurement error problem, X

is unobserved, and instead they suppose that W is observed, where they assume that

the distribution of W given X is specified parametrically. For example, the case

considered here is the standard additive measurement error model

Wi = Xi + Ui, Ui = Normal(0, Σu), (4.1)

where Ui is independent of (Yi, Xi, Si, Zi). Equation (4.1) may hold after a data trans-

formation.

The method of Ma and Carroll works as follows. First, they specify a parametric dis-

tribution for X given (S,Z), with density function pc(x|s, z, ξlatent), where ”c” stands

for ”conjectured”. They assume that ξlatent can be estimated at the rate n1/2. Their

method has two important properties:

• It is a functional measurement error method (Carroll, et al., 2006), in the sense

that their estimates of B0 and θ0(·) are consistent and asymptotically normally
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distributed no matter what the distribution for X is. In particular, it is consis-

tent and asymptotically normally distributed even when the conjectured density

function pc(x|s, z, ξlatent) for X is misspecified.

• If the density function pc(x|s, z, ξlatent) for X is specified correctly, their esti-

mate of B0 is semiparametric efficient among all functional measurement error

methods.

Despite these strengths and great generality, as described in detail Section IV.2.1, the

Ma and Carroll method suffers from the fact that its implementation requires solving

integral equations, which may be problematic for cases of large measurement error (Y.

Ma, personal communication) and is not really practical for multivariate X, e.g., in

longitudinal data settings. In addition, Ma and Carroll use a discrete approximation

to solve the integral equations which leads their solution to be only approximately

consistent.

In this chapter, we develop an alternative functional measurement error model for

the standard additive measurement error model (4.1). Our method is based upon

the idea of Monte Carlo corrected scores (Novick and Stefanski, 2002). While it uses

complex-value arithmetic, our method is easily implemented, does not require the

solution of integral equations, and its theory falls into the framework of standard

profiling methods for criterion functions in semiparametric problems, thus for exam-

ple yielding standard errors of parameter estimates as a by-product. One important

aspect of our method is that despite being a corrected score based method it does not

require the exact form of the corrected score. As long as one knows the log-likelihood

(or criterion function) one can compute the “Monte Carlo corrected score” and our

method is applicable even to those cases where the exact form of the corrected score
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can not be derived.

Within the additive normal measurement error context, our method also applies to

much more complex models than those considered by Ma and Carroll. For example,

in longitudinal and repeated measures data, the underlying loglikelihood function

might be of the form

L{Yi, X̃i, S̃i,B0, θ0(Zi1), ..., θ0(Zim)}, (4.2)

for a parameter B0, where the key is that unlike in the Ma and Carroll context, the

nonparametric component θ0(·) is evaluated multiple times per individual, see Lin and

Carroll (2006) for many examples and the theory and methods when X is observable.

We use the notation X̃ to indicate the possibility of a vector of covariates evaluated

repeatedly, e.g.., (Xi1, ..., Xim). Once again, our method in this general context is a

functional method, based on a criterion function, and with a theoretical development

that follows easily from existing literature. It is worth pointing out that in (4.2), the

Ma and Carroll method is not really practical. Suppose the covariate measures with

error is time varying, so that X̃i = (Xi1, . . . , Xim), where Xij is of dimension p. The

the integral equation to be solved is of dimension m × p, clearly infeasible in many

applications. In contrast, our method is easily applied.

An outline of this chapter is as follows. In Section IV.2, we review the basic method

of Ma and Carroll, define our method as it applies to their problem, and derive its

asymptotic theory. The last step is particularly easy because our formulation sits

within standard semiparametric modeling for criterion functions. In Section IV.3, we

consider the multivariate response and predictor partially linear measurement error

model, an example of (4.2), showing that our method is as efficient numerically as the
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semiparametric efficient functional method, the derivation of which is new. In Section

IV.4, we redo the simulation of Ma and Carroll in the logistic partially linear model

with a quadratic effect in X, showing that our method is as efficient numerically as

theirs, even with larger measurement error, while being computationally much easier.

In Section IV.5, we apply our method to Nevada Test Site (NTS) Thyroid Disease

Study data and report the results. All technical details are collected in an appendix.

IV.2. Methodology

This section considers problems in which the likelihood function for the semipara-

metric model is of the form L{Y, X, S,B0, θ0(Z)}. Section IV.3 discusses the more

complex model (4.2).

IV.2.1. The Ma and Carroll Method

The method of Ma and Carroll (2006) works as follows. Let Y = (Y,W, S, Z) be the

observed data. Let B0 be the true parameter in this model, and θ0(z) the true function.

The method requires a conjectured density for X given (S, Z), pc(x|S, Z, ξlatent) based

upon a parameter ξlatent that can be estimated with rate n1/2. Let SB(·) and Sθ(·)
be the loglikelihood scores of the observed data for B and θ, respectively, computed

under pc(x|S, Z, ξlatent), the conjectured model for X given (S, Z). Let expectations

computed under the true model and the conjectured model for X given (S, Z) be

denoted by “E” and “E∗”, respectively. Then there exist functions aB(X,S, Z) and

aθ(X,S, Z) such that

E{SB(·)|X,S, Z} = E[E∗{aB(X, S, Z)|Y}|X,S, Z]; (4.3)
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E{Sθ(·)|X,S, Z} = E[E∗{aθ(X, S, Z)|Y}|X, S, Z]. (4.4)

Ma and Carroll then form estimating functions LB(·) = SB(·) − E∗{aB(X, S, Z)|Y}
and Ψθ(·) = Sθ(·) − E∗{aθ(X,S, Z)|Y}. These estimating functions are unbiased at

B0 and θ0(·), i.e., have mean zero, even if the conjectured model for X given Z is

incorrect. They then propose a backfitting algorithm similar to one described below

in Section IV.2.3 for estimating B0 and θ0(·), but based upon the estimating functions

LB(·) and Ψθ(·).

The main issue with implementation of the Ma and Carroll approach lies in solving the

integral equations (4.3)-(4.4) while at the same time implementing backfitting. They

propose to approximate the integrals by discretizing the support of X into a finite set

(x1, ..., xJ). Let pX,S,Z|Y(·) be the conjectured conditional density of (X, S, Z) given

Y , and denote pi(Y) = pX,S,Z|Y(xi, S, Z|Y). In this case, (4.3) becomes

J∑
i=1

aB(xi, S, Z)E∗{pi(Y)|X, S, Z} = E∗{SB(Y)|X,S, Z}. (4.5)

Setting X = x1, . . . , xJ in (4.5) will thus provide J linear equations, and then one

subsequently solves the J-equation linear system to obtain aθ(xi, S, Z), i = 1, . . . , J .

A similar calculation is done for aθ(xi, S, Z).

The implementation difficulties in the Ma and Carroll approach are now clear. It is

not obvious how one should choose the number of discretization points J , and presum-

ably J will need to become fairly large if X is multivariate. In addition, the various

conditional expectations in (4.5) may be more-or-less difficult to compute accurately.

In contrast, the semiparametric-MCCS is simple to implement and, as we will see in

our numerical examples, performs as well as Ma and Carroll method, even when the
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measurement error in the model is relatively large.

IV.2.2. Semiparametric Monte-Carlo Corrected Scores

Let K(·) be a symmetric density function with finite support, let h be a bandwidth

and define Kh(v) = h−1K(v/h).

If the true covariate, X, were observed then a profile likelihood estimation procedure

for B0 and θ0(·) is discussed in Lin and Carroll (2006): for a fixed value of B = B∗,

compute θ̂(z,B∗) by solving the local-linear estimating equations

n∑
i=1

Kh(Zi − z){1, (Zi − z)/h}TLθ {Yi, Xi, Si,B∗, α̂0 + α̂1(Zi − z)/h} = 0 (4.6)

for α̂0 and setting θ̂(z,B∗) = α̂0. Then, maximize

n∑
i=1

L
{

Yi, Xi, Si,B, θ̂(Zi,B)
}

(4.7)

in B and set the maximizer B̂ to be the estimate of B0.

However, in the presence of measurement errors, we observe Wi instead of Xi. Hence

the estimation procedure given by (4.6) and (4.7), when applied based on W instead

of X, produce biased estimates.
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IV.2.3. Corrected Score Estimation

We follow the idea of Novick and Stefanski (2002) to solve this problem using methods

based on corrected scores. Consider the complex variate

W̃ib = Wi + ιVib, b = 1, . . . , B,

where ι =
√−1 and Vib is a normal random vector generated by computer with mean

0 and covariance matrix Σu. Stefanski and Cook (1995) showed that if f(·) is an

entire function then under integrability conditions

E{f(W̃ib)|Xi} = E[Re{f(W̃ib)}|Xi] = f(Xi).

Assume that L(·) is an entire function of its second argument. We define the corrected

score as

Ri(·) = B−1

B∑
b=1

Re[L{Yi, W̃ib, Si,B0, θ0(Zi)}].

Note that, R(·) is a real valued function of real arguments {Yi,Wi, Si, Ṽi,B0, θ0(Zi)},
where Ṽi = (Vi1, . . . , ViB). Define Rθ(·) and RB(·) as the derivatives of R(·) with

respect to θ and B, respectively. Define Gi(z, h) = {1, (Zi − z)/h}.For a fixed B∗, we

propose to estimate θ0(z) by solving

0 = n−1

n∑
i=1

Kh(Zi − z)Gi(z, h)TRθ

{
Yi,Wi, Si, Ṽi,B∗, α̂0 + α̂1(Zi − z)/h

}
(4.8)

for α̂0 and setting θ̂(z,B∗) = α̂0.

There are two methods to estimate B:

1. Profiling maximizes n−1
∑n

i=1 R
{

Yi,Wi, Si, Ṽi,B, θ̂(Zi,B)
}

in B. If we define
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θ̂B(z,B) to be the derivative of θ̂(z,B) with respect to B, then profiling solves

0 = n−1

n∑
i=1

[
RB
{

Yi,Wi, Si, Ṽi,B, θ̂(Zi,B)
}

+Rθ

{
Yi,Wi, Si, Ṽi,B, θ̂(Zi,B)

}
θ̂B(Zi,B)

]
. (4.9)

Call the solution B̂pf .

2. Backfitting estimates B iteratively. Based on the current estimate, B̂cur, back-

fitting solves

n−1

n∑
i=1

RB
{

Yi,Wi, Si, Ṽi,B, θ̂(Zi, B̂cur)
}

= 0. (4.10)

Let B̂bf be the backfitting estimator.

It is important to note that while R(·) may not be a valid loglikelihood function,

it is a criterion function in the sense of Lin and Carroll (2006). Also note that the

results given in Lin and Carroll for the profiling and backfitting methods are true

for any criterion function as long as various conditions are satisfied: these conditions

translate to A1-A5, given in the Appendix.

IV.2.4. Asymptotic Properties

In this section, we derive the asymptotic properties of our method in the case that

the measurement error covariance matrix Σu is known, see Section IV.2.6 for the case

that it is estimated. We make use of the results of Lin and Carroll (2006). Define

θB(z,B0) = −E[RθB{Y, W, S, Ṽ ,B0, θ(Z)}|Z = z]

E[Rθθ{Y, W, S, Ṽ ,B0, θ(Z)}|Z = z]
;

Ω(z) = fZ(z)E{Rθθ(·)|Z = z};
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M = E{RBB(·) + RBθ(·)θT
B (Z,B0)}.

Then the following result is a direct consequence of the main results of Lin and Carroll

(2006).

Result 7 Assume that (Yi, Zi,Wi, Si), i = 1, . . . , n are independent and identically

distributed and B̂pf and θ̂(·) are estimates obtained from (4.8) and (4.9). Also assume

that h ∝ n−c with 1/5 ≤ c ≤ 1/3. Let θ(2)(z) be the second derivative of θ(z) and

φ2 =
∫

z2K(z)dz. Then,

θ̂(z, B̂pf) − θ0(z) = (h2/2)φ2θ
(2)(z) − n−1

n∑
i=1

Kh(Zi − z)Riθ(·)/Ω(z)

−θB(z0,B0)
TM−1n−1

n∑
i=1

{RiB(·) + Riθ(·)θB(Zi,B0)} + op(n
−1/2);

n1/2(B̂pf − B0) = −M−1n−1/2

n∑
i=1

{RiB(·) + Riθ(·)θB(Zi,B0)} + op(n
−1/2)

⇒ Normal(0,M−1FM−1),

where F = cov[RB(·) + Rθ(·)θB(Z,B0)].

Result 8 Make the same assumptions as in Theorem 7 but assume nh4 → 0. Then

the backfitting estimator Bbf has the same limiting distribution as the profile estima-

tor.

Remark 10 Estimation of the asymptotic variance of B0 is a straightforward exer-

cise. To construct such estimates, all the expectations in the definitions of M and F
are replaced by sums and all the regression functions are replaced by kernel estimates.

Alternatively, one can use the bootstrap: Chen, et al. (2003) justify the use of the
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bootstrap for estimating B0 in semiparametric models with general criterion functions.

IV.2.5. Special Case: Partially Linear Model

One common but important example is the partially linear measurement error model.

Estimation in the partially linear model with error prone covariates are described in

Liang, Hardle and Carroll (1999). In this section we derive the asymptotic distribu-

tion of our estimates explicitly and compare our estimates to that of Liang, et al.

Consider the model

Yi = XT
i γ + θ(Zi) + εi,

for i = 1, . . . , n. Assume that ε = Normal(0, σ2). Instead of observing X, we observe

Wi = Xi + Ui, where Ui is independent of (Xi, Zi, Yi) and has a Normal(0, Σuu)

distribution. Assume that Σuu is known. Define β = (γT, σ2)T. Then the loglikelihood

is

L{Y, X, θ(Z), β} = −log(σ2)/2 − (2σ2)−1{Y − XTγ − θ(Z)}2.

Define W̃ib = Wi + ιVib, where Vib = Normal(0, Σuu) are independent random vectors

generated by computer. Let Ṽi = (Vi1, . . . , Vib). Then, the corrected score is

R{Y, W, Ṽ , θ(Z), β}

= −log(σ2)/2 − B−1

B∑
b=1

Re[(2σ2)−1{Y − (W + ιVb)
Tγ − θ(Z)}2]

= −log(σ2)/2 − (2σ2)−1[{Y − WTγ − θ(Z)}2 − γTB−1

B∑
b=1

VbV
T
b γ].
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Also, define

Γ = E[{X − E(X|Z)}(ε − UTγ)2{X − E(X|Z)}T] + E(UUTε2)

+E{(UUT − Σuu)γγT(UUT − Σuu)
T};

S = cov{X − E(X|Z)};

τ 2 = E{(ε − UTγ)2 − (σ2 + γTΣuuγ)}2.

Then we have the following result:

Result 9 Let γ̂ and σ̂2 denote the estimate based on our method. Then marginally,

n1/2(γ̂ − γ) → Normal{0,S−1ΓS−1 + R1(B)};

n1/2(σ̂2 − σ2) → Normal{0, τ 2 + R2(B)};

where R1(B) = B−1S−1E{(V V T − Σuu)γγT(V V T − Σuu)
T}S−1 → 0 and R2(B) =

B−1var{γT(VbV
T
b − Σuu)γ}] → 0 as B → ∞.

It is important to note that R1(B) and R2(B) vanish as B → ∞, giving us the exact

same result as in Liang, et al. (1999).

IV.2.6. Estimation of the Error Covariance Matrix

It is straightforward to modify our results to account for estimation of the measure-

ment error covariance matrix Σu. The usual way to estimate Σu is via replication

of the W -data, so as an illustration suppose that Wi = (Wi(1) + Wi(2))/2, where

Wi(j) = Xi + Ui(j) and Ui(j) = Normal(0, Σu). Then a root-n consistent estimate

Σ̂u of Σu is the sample covariance matrix of the terms Di = (Wi(1) − Wi(2))/2. Let

γ = vech(Σu), where ”vech” is the vector half, i.e., the vector of the unique elements of

Σu. Then with γ̂ = vech(Σ̂u), we have that γ̂−γ = n−1
∑

i vech(Di−Σu)+op(n
−1/2).
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Since Vib can be written as Σ
1/2
u ei with ei = Normal(0, I), we can redefine the crite-

rion function as R{Y, W, S, Σ
1/2
u ẽi,B, θ(Z,B, Σu)}. Let Rγ(·) be its derivative with

respect to γ. Then following Section 4 of Lin and Carroll (2006), we have the following

asymptotic expansion for the profile estimator, up to terms of order op(1),

n1/2(B̂pf − B0) = −M−1[n−1/2

n∑
i=1

{RiB(·) + Riθ(·)θB(Zi,B0)} + MBγn
1/2(γ̂ − γ)]

= −M−1n−1/2

n∑
i=1

[RiB(·) + Riθ(·)θB(Zi,B0) + MBγ{vech(Di − Σu)}],

where

MBγ = E{RiBγ(·) + θB(Zi,B0)RT
iθγ(·)}.

The covariance of the asymptotic distribution of n1/2(B̂pf −B0) follows from the above

expressions and a consistent estimator of asymptotic covariance matrix can be easily

constructed, see Remark 10.

IV.3. Multivariate Measurement Error Models

In longitudinal and repeated measures data, the likelihood function when X is ob-

served is given by (4.2). Use the notation θ(Z̃i) = {θ(Zi1), ..., θ(Zim)}T. Instead of

observing Xij, we observe Tij = Xij + Uij. Define Ũi = (Ui1, . . . , Uim)T and assume

that vec(Ũ) has a Normal distribution with mean zero and covariance matrix Σu

which is assumed known, see Remark 11 below for comments. Define X̃, Z̃, S̃ and T̃

similarly. Let W̃ib = T̃i + ιṼib for b = 1, . . . , B, where vec(Ṽib) = Normal(0, Σu). Then

the MCCS criterion function is given by

L∗(·) = B−1

B∑
b=1

Re
[
L{Ỹ , W̃b, S̃,B0, θ0(Z̃)}

]
. (4.11)
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Equation (4.11) is a criterion function in the sense of Lin and Carroll (2006), and

their asymptotic results then apply.

IV.3.1. Special Case: The Partially Linear Model

We illustrate this approach in the multivariate partially linear measurement error

model discussed in Lin and Carroll (2006). In particular, they considered the model

Yij = XT
ijβ0 + θ0(Zij) + εij, (4.12)

for i = 1, . . . , n and j = 1, . . . , m, where ε̃i = (εi1, . . . , εim)T = Normal(0, Σε). Let

B = (β, Σε) be the parameter of interest. Then the criterion function ignoring the

measurement errors is given by

L{Ỹ , X̃,B, θ(Z̃)} = (1/2) log{det(Σ−1
ε )}

−(1/2){Ỹ − X̃β − θ(Z̃)}TΣ−1
ε {Ỹ − X̃β − θ(Z̃)}.

The Monte-Carlo Corrected Scores criterion function is given by

R(·) = B−1

B∑
b=1

Re[L{Ỹ , W̃b,B, θ(Z̃)}]

= (1/2) log{det(Σ−1
ε )} − (1/2){Ỹ − T̃ β − θ(Z̃)}TΣ−1

ε {Ỹ − T̃ β − θ(Z̃)}

+(1/2)βT(B−1

B∑
b=1

Ṽ T
b Σ−1

ε Ṽb)β.

The backfitting algorithm is easy to apply in this case. Given the current estimates,

B̂cur = (β̂cur, Σ̂ε,cur), the new estimates are given by

β̂new =
[
n−1

n∑
i=1

{T̃T
i Σ̂−1

ε,curT̃i − B−1

B∑
b=1

(Ṽ T
ib Σ̂−1

ε,curṼib)}
]−1

×n−1

n∑
i=1

T̃T
i Σ̂−1

ε,cur{Ỹi − θ̂(Z̃i, B̂cur)};
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Σ̂ε,new = n−1

n∑
i=1

[
{Ỹi − T̃iβ̂cur − θ̂(Z̃i, B̂cur)}{Ỹi − T̃iβ̂cur − θ̂(Z̃i, B̂cur)}T

−B−1

B∑
b=1

(Ṽibβ̂curβ̂
T
curṼ

T
ib )
]
.

Profile pseudolikelihood estimates are also easily constructed. Let S be a smoother

matrix as in Lin et al. (2004) and define Y = (Y11, · · · , Ynm)T and T = (T̃T
1 , · · · , T̃T

n )T.

Let T∗ = (I − S)T , Y∗ = (I − S)Y and Σ̃ε = In

⊗
Σε. Then for given Σε, the profile

estimate of β is given by

{T T
∗ Σ̃−1

ε T∗ −
∑

i

(B−1
∑

b

Ṽ T
ib Σ−1

ε Ṽib)}−1T T
∗ Σ̃−1

ε Y∗.

A simple estimate of Σε is to form the working independence estimate of β and to

apply the above equation for Σ̂ε,new.

Remark 11 Estimation of the error covariance matrix Σu and its impact on limiting

distribution theory for estimation of B0 is described in Section IV.2.6.

Remark 12 Note that as B → ∞, our estimators converges to those given in Lin

and Carroll (2006).

In fact, under the assumption that X is generated from a Gaussian distribution, Lin

and Carroll’s procedure (equivalently, our method with B → ∞) performs very sim-

ilar to the semiparametric efficient method, as we now show.

Suppose we assume a Gaussian distribution for X with mean µx and covariance matrix

Σx; and for simplicity of notation we let β be a scalar. Then the criterion function

becomes

LG(·) = −(1/2) log(|J |) − (1/2)(Ỹ − V)TJ −1(Ỹ − V)
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−(1/2) log(|Σx + Σu|) − (1/2)(T̃ − µ̃x)
T(Σx + Σu)

−1(T̃ − µ̃x),

where

V = V{T̃ , β, θ(Z̃), µ̃x, Σx} = βµ̃x + θ(Z̃) + βΣx(Σx + Σu)
−1(T̃ − µx);

J = J (β, Σx, Σε) = Σε + β2Σx(Σx + Σu)
−1Σu.

By the results of Lin and Carroll (2006), the estimates based on LG(·) are semipara-

metric efficient.

We compared the two methods via a simulation study. We set m = 3 and β = 0.7,

θ(z) = 0.5 cos(2z)−1. We set Σε to be identity matrix and Σu = 0.3I3 +0.2J3, where

Jk denotes the k× k matrix with all the elements equal to one. We take Σx = I3 and

µx = (−1,−1,−1)T. We generated Z from a Uniform(0, π) distribution.

Under this setup, we generated 1000 data sets following the model given by (4.12) with

n = 500 samples each. Using each data set we estimated β using both the methods,

with the bandwidth estimated as σ̂zn
−1/3, where σ̂z is the sample standard deviation

of Z. The estimates based on Lin and Carroll method and LG(·) have asymptotic

root mean squared error (RMSE) of 0.06 and 0.057, respectively, evidence that the

performance of both the methods is very close indeed.

IV.4. Simulation Study

We repeated the simulation study of Ma and Carroll (2006) to demonstrate our

method. They considered the logistic regression model logit{pr(Y = 1|X, Z)} =

β1X +β2X
2 + θ(Z), where W = X +U and U = Normal(0, σ2

u) with σ2
u known. They
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Table 2. Mean, empirical standard errors (emp s.e.), root mean squared error (RMSE) and empirical coverage

of 95% confidence intervals of β1 and β2 when σ2
u = 0.16. Results based on 1000 simulated data sets

each with sample size n = 500. For each choice of θ(z), the top row presents the results using our

method and bottom row shows the results from Ma and Carroll (2006).

β1(= 0.7) β2(= 0.7)

mean emp s.e. RMSE 95% mean emp s.e. RMSE 95%

θ(z) = 0.5 cos(z) − 1 0.638 0.261 0.268 0.942 0.653 0.149 0.156 0.940
0.720 0.277 0.278 0.947 0.726 0.156 0.158 0.939

θ(z) = 0.5 cos(2z) − 1 0.615 0.238 0.253 0.943 0.639 0.135 0.148 0.942
0.727 0.276 0.277 0.951 0.728 0.155 0.158 0.940

set σ2
u = 0.16 , B = (β1, β2) = (0.7, 0.7), and n = 500. We used B = 150 Monte Carlo

iterations. They used two different forms θ(z),

1. θ(z) = 0.5 cos(z) − 1

2. θ(z) = 0.5 cos(2z) − 1

For both of the setups, X was generated from Normal(−1, 1) and Z was generated

from Uniform(0, π).

Several bandwidth selection methods can be applied in this situation. One possibility

is to use the “Direct plug-in” (DPI) method suggested by Ruppert, Sheather and

Wand (1995). One can also opt for the globally fixed bandwidth σ̂zn
−1/3, where σ̂z

is the estimated standard deviation of Z. For comparison’s sake, we use the global

bandwidth hn = σ̂zn
−1/3, the same as in Ma and Carroll (2006). The Epanechnikov

kernel was used to estimate the nonparametric function.

Technically, the logistic regression setup as described above does not fall into our

framework as the logistic distribution function is not entire in the complex plane.

However, Novick and Stefanski (2002) pointed out that for small measurement error
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Table 3. Mean, empirical standard errors (emp s.e.), root mean squared error (RMSE) and empirical coverage

of 95% confidence intervals of β1 and β2 using our method when σ2
u = 0.5. Here we generated 1000

simulated data sets each with sample size n = 500. Ma and Carroll (2006) did not consider this

example.
β1(= 0.7) β2(= 0.7)

mean emp s.e. RMSE 95% mean emp s.e. RMSE 95%

θ(z) = 0.5 cos(z) − 1 0.621 0.272 0.283 0.948 0.633 0.161 0.175 0.943

θ(z) = 0.5 cos(2z) − 1 0.600 0.250 0.269 0.942 0.618 0.155 0.175 0.945

variance one can still apply corrected score based methods, with only minor bias.

The results are displayed in Table 2. It is evident that our method is comparable in

both cases to that of Ma and Carroll in terms of mean squared error and coverage

probability, albeit with the small bias expected from the fact that the logistic function

is not entire on the complex plane.

The simulation was repeated for a much larger measurement error variance, σ2
u = 0.5

versus σ2
u = 0.16. The results are shown in Table 3. Again, our results indicate

only a small bias and favorable coverage probability. Ma and Carroll did not report

results for this situation so it is not possible to compare our method with theirs in

this situation.

IV.5. Nevada Test Site Thyroiditis Data Example

In this section we apply our method to the Nevada test site (NTS) thyroid study

data. The study was conducted in 1980’s by the University of Utah. The original

study is described in Stevens, et al. (1992), Kerber, et al. (1993) and Simon, et al.

(1995). The main idea of the study was to relate the incidence of thyroid related dis-

ease to the exposure of radiation to the thyroid. In this study, 2, 491 individuals, who
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were exposed to radiation as children, were tested for thyroid disease. The primary

radiation exposure to the thyroid glands of these children came from the ingestion of

milk and vegetables contaminated with radioactive isotopes of iodine. Recently, the

dosimetry for the study was redone (Simon, et al., 2006), and the study results were

reported in Lyon, et al. (2006).

Due to the fact that the actual radiation doses in foods or in the thyroid gland

of the individuals are not available, the estimated radiation doses are well known

to be contaminated with measurement errors. Many authors have studied and de-

scribed measurement error properties and analysis in this context (Reeves, et al.,

1998; Schafer, et al., 2001; Mallick, et al., 2002; Stram and Kopecky, 2003; Lubin,

et al., 2004; Pierce and Kellerer, 2004; Schafer and Gilbert, 2006; Li, et al., 2007).

A common approach is to build a large dosimetry model that attempts to convert

the known data about above-ground nuclear testing to the radiation actually ab-

sorbed into the thyroid. Dosimetry calculations for individual subjects were based

upon several variables, such as, age at exposure, gender, residence history, whether

as a child the individual was breast-fed, and a diet questionnaire filled out by the

parent focusing on milk consumption and vegetables. The data were then input into

a complex model and for each individual, the point estimate of thyroid dose (the

arithmetic mean of a lognormal distribution of dose estimates) and an associated er-

ror term (the geometric standard deviation) for the measurement error were reported.

It is typical to assume that radiation doses are estimated with a combination of

Berkson measurement error and a classical type of measurement error (Reeves, et al.,

1997). In the log-scale, true log-dose T is related to observed or calculated log-dose
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W by a latent intermediate X via

T = X + Uberk;

W = X + Uclass,

where Uberk and Uclass are the Berkson uncertainty and the classical uncertainty, re-

spectively, with corresponding variances σ2
u,berk and σ2

u,class depending on the individ-

ual. It is typical to assume that the errors Uberk have Gaussian distributions. In

the NTS study, the total uncertainty σ2
u,berk + σ2

u,class is known but not the relative

contributions. We will let 50% of the total uncertainty be classical in our illustration.

If the latent, X, could be observed then typically the total mean dose, exp(X +

σ2
u,berk/2) is taken to be the main predictor and we will take this as our target.

We take the incidence of thyroiditis (inflammation of the thyroid gland), Y , as the

response variable. In addition, we consider Z, the sex of the patient and A, age

at exposure (standardized to have mean zero and variance 1), which are measured

without measurement error. A typical parametric model relating total mean dose and

gender to disease is the excess relative risk model

pr(Y = 1|X,Z) = H[β0 + β1Z + log{1 + γ exp(X + σ2
u,berk/2)}], (4.13)

where H(·) is the logistic distribution function and γ is called the excess relative

risk. We instead include A, age at exposure, nonparametrically in the model (4.13)

as follows:

pr(Y = 1|X, Z) = H[βZ + log{1 + γ exp(X + σ2
u,berk/2)} + θ(A)], (4.14)

where θ(·) is an unknown function.
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Fig. 10 Estimated age effect in the Nevada Test Site thyroiditis data. Solid line: the MCCS estimate.

Dashed line: the naive estimate ignoring the presence of measurement error.

We employed our method discussed in Section IV.2 for the model given by (4.14). We

compared our method to the naive method where one ignores the measurement error

altogether. We used the Epanechnikov kernel and the bandwidth chosen was 1.5,

but similar results were obtained for 1.0 and 2.0. For MCCS calculations, we used

B = 100. The estimated effect of gender, β̂1 ≈ 1.75 for both the naive and MCCS

method. This can be explained from the fact that gender and radiation dose for an

individual are essentially independent and hence the effect of gender is not affected

by measurement error in radiation dose.

The estimated value of the relative risk parameter was 8.54 for the naive method and

17.19 for the proposed MCCS method. The effect of age, A, is displayed in Figure 10

for both the naive and MCCS procedures. It is evident from the results that because
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of the change in the estimate of the excess relative risk γ, there is a corresponding

change in the estimated age effect when the presence of the measurement error is

taken into account.

Remark 13 As noted in Section IV.4, the logistic regression setup does not fall into

our framework as the logistic distribution function is not entire in the complex plane.

To observe the performance of semiparametric-MCCS in this example, we compared

our results to the well known SIMEX procedure (Cook and Stefanski, 1994; Stefanski

and Cook, 1995). To apply SIMEX, we modeled the age effect parametrically by a

quadratic polynomial. We used a quartic extrapolant for SIMEX and obtained the

estimated value of the excess relative risk parameter to be 15.92. We can see that in

this case the SIMEX estimate is not very different from what semiparametric-MCCS

produces.
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CHAPTER V

SUMMARY AND CONCLUSIONS

In Chapter II, we considered the problem of estimating population-level quantities

κ0 such as the mean, probabilities, etc. Previous literature on the topic applies only

to the simple special case of estimating a population mean in the Gaussian partially

linear model. The problem was motivated by an important issue in nutritional epi-

demiology, estimating the distribution of usual intake for episodically consumed food,

where we considered a zero-inflated mixture measurement error model: such a prob-

lem is very different from the partially linear model, and the main interest is not in

the population mean.

The key feature of the problem that distinguishes it from most work in semiparamet-

ric modeling is that the quantities of interest are based on both the parametric and

the nonparametric parts of the model. Results were obtained for two general classes

of semiparametric ones: (a) general semiparametric regression models depending on a

function θ0(Z); and (b) generalized linear single index models. Within these semipara-

metric frameworks, we suggested a straightforward estimation methodology, derived

its limiting distribution, and showed semiparametric efficiency. An interesting part

of the approach is that we also allow for partially missing responses.

In the case of standard semiparametric models, we have considered the case that

the unknown function θ0(Z) was a scalar function of a scalar argument. The results

though readily extend to the case of a multivariate function of a scalar argument.
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We have also assumed that κ0 = E[F{X, θ0(Z),B0}] and F(·) are scalar, which in

principle excludes the estimation of the population variance and standard deviation.

It is however readily seen that both F(·) and κ0 or κSI can be multivariate, and hence

the obvious modification of our estimates is semiparametric efficient.

In Chapter III, we have developed methodology for efficient score test for genetic effect

in general semiparametric models that can account for gene-environment interaction

with nonparametrically specified environmental effects. The proposed procedure al-

lows for repeated measurements.

We have noted that direct application of the usual likelihood based score test is gen-

erally invalid when standard bandwidth selection criteria are used, making the user

rely on undersmoothing to achieve validity. This creates a difficulty in performing

smoothing. To solve this problem, we proposed a profiled score statistic which can be

performed using standard bandwidth selection procedures. We also found that these

profiled score tests are efficient.

The main difficulty of performing the score test is that one has to estimate a func-

tion which itself is a solution of a complex integral equation. In case of repeatedly

measured data, the solution generally does not have any closed form expression and

hence some sort of numerical procedure is required for estimation. We overcome this

problem by developing an easily implementable estimation procedure which does not

involve solving integral equations and can be performed easily via standard software.

The key idea lies in the fact that the target functions, based on their estimating

equations, can be interpreted as Gaussian repeated measures regressions.
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Simulations presented in the paper show that the proposed score-tests maintains the

desired type-I error level, indicating that the asymptotic approximations work well

for studies such as ours. Moreover, both simulation studies and the data example

indicate that the proposed score test taking account of the interaction can achieve

higher statistical power than naive tests which ignore interaction altogether. Fu-

ture research areas of interest include extension of the score-test to account for the

interaction of the genetic factors with several different, but biologically related, en-

vironmental factors, such as different biomarkers for a nutrient, simultaneously. In

principle, the score-test can be extended using generalized additive models (GAM) to

account for the effect of several different continuous exposures. Further theoretical de-

velopment, however, is needed to establish the asymptotic theory for such procedures.

We address the problem of presence of measurement error in covariates in Chapter

IV. We propose a Monte Carlo Corrected Score (MCCS) based method for estima-

tion of parameters. To recap briefly, our method is a functional measurement error

method, in that it makes no assumptions about the distribution of the error-prone

covariate X. Its implementation is straightforward in any programming language

that allows for complex-value arithmetic. Since the method is based upon profiling

and backfitting for a criterion function, its theoretical development is straightforward,

and standard errors are easily computed. In two examples, the multivariate partially

linear model and the logistic model with quadratic effects of X, our method is numer-

ically as efficient as the semiparametric efficient method. In fact, in the logistic case,

our method performs well in presence of large measurement errors where the Ma and

Carroll method faced computational problems (personal communication with Y. Ma).
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We have focused on the case that the covariate Z modeled nonparametrically is

univariate. However, the idea of building a semiparametric criterion function using

Monte-Carlo corrected scores can be applied to more general problems, e.g., additive

models.
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Liang, H., Härdle, W. and Carroll, R. J. (1999) Estimation in a semiparametric
partially linear errors-in-variables model. Annals of Statistics, 27, 1519–1535.

Lin, D. Y. and Zou, F. (2004) Assessing genomewide statistical significance in linkage
studies. Genetic Epidemiology, 27, 202–214.

Lin, X. and Carroll, R. J. (2000) Nonparametric function estimation for clustered data
when the predictor is measured without/with error. Journal of the American
Statistical Association, 95, 520–534.

Lin, X. and Carroll, R. J. (2006) Semiparametric estimation in general repeated
measures problems. J. R. Stat. Soc. Ser. B Stat. Methodol., 68, 69–88.

Lin, X., Wang, N., Welsh, A. H. and Carroll, R. J. (2004) Equivalent kernels of
smoothing splines in nonparametric regression for clustered/longitudinal data.
Biometrika, 91, 177–193.

Lubin, J. H., Schafer, D. W., Ron, E., Stovall, M. and Carroll, R. J. (2004) A
reanalysis of thyroid neoplasms in the israeli tinea capitis study accounting for
dose uncertainties. Radiation Research, 161, 359–368.

Lyon, J. L., Alder, S. C., Stone, M. B., Scholl, A., Reading, J. C., Holubkov, R.,
Sheng, X., White, G., Hegmann, K. T., Anspaugh, L., Hoffman, F., Simon,
S. L., Thomas, B., Carroll, R. J. and Meikle, A. W. (2006) Thyroid disease
associated with exposure to the nevada test site radiation: a reevaluation based
on corrected dosimetry and examination data. Epidemiology, 17, 604–614.



97

Ma, Y. and Carroll, R. J. (2006) Locally efficient estimators for semiparametric mod-
els with measurement error. Journal of the American Statistical Association,
101, 1465–1474.

Ma, Y., Chiou, J. M. and Wang, N. (2006) Efficient semiparametric estimator for
heteroscedastic partially linear models. Biometrika, 93, 75–84.

Mallick, B., Hoffman, F. O. and Carroll, R. J. (2002) Semiparametric regression
modeling with mixtures of Berkson and classical error, with application to fallout
from the Nevada test site. Biometrics, 58, 13–20.

Newey, W. K. (1990) Semiparametric efficiency bounds. Journal of Applied Econo-
metrics, 5, 99–135.

Newey, W. K., Hsieh, F. and Robins, J. M. (2004) Twicing kernels and a small bias
property of semiparametric estimators. Econometrica, 72, 947–962.

Novick, S. J. and Stefanski, L. A. (2002) Corrected score estimation via complex vari-
able simulation extrapolation. Journal of the American Statistical Association,
97, 472–481.

Pierce, D. A. and Kellerer, A. M. (2004) Adjusting for covariate errors with nonpara-
metric assessment of the true covariate distribution. Biometrika, 91, 863–876.

Powell, J. L. and Stoker, T. M. (1996) Optimal bandwidth choice for density-weighted
averages. Journal of Econometrics, 75, 291–316.

Reeves, G., Cox, D. R., Darby, S. C. and Whitley, E. (1998) Some aspects of measure-
ment error in explanatory variables for continuous and binary regression models.
Statistics in Medicine, 17, 2157–2177.

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995) An effective bandwidth selector
for local least squares regression. Journal of the American Statistical Association,
90, 1257–1270.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric regression, vol. 12
of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge:
Cambridge University Press.

Schafer, D. W. and Gilbert, E. S. (2006) Some statistical implications of does uncer-
tainty in radiation dose-response analyses. Radiation Research, 166, 303–312.

Schafer, D. W., Lubin, J. H., Ron, E., Stovall, M. and Carroll, R. J. (2001) Thyroid
cancer following scalp irradiation: a reanalysis accounting for uncertainty in
dosimetry. Biometrics, 57, 689–697.

Sepanski, J. H., Knickerbocker, R. and Carroll, R. J. (1994) A semiparametric cor-
rection for attenuation. Journal of the American Statistical Association, 89,
1366–1373.

Severini, T. A. and Staniswalis, J. G. (1994) Quasilikelihood estimation in semipara-
metric models. Journal of the American Statistical Association, 89, 501–511.



98

Severini, T. A. and Wong, W. H. (1992) Profile likelihood and conditionally para-
metric models. Annals of Statistics, 20, 1768–1802.

Silverman, B. W. (1984) Spline smoothing: the equivalent variable kernel method.
Annals of Statistics, 12, 898–916.

Simon, S., Till, J. E., Lloyd, R. D., Kerber, R., Thomas, D. C., Preston-Martin,
S., Lyon, J. L. and Stevens, W. (1995) The utah leukemia case–control study:
dosimetry methodology and results. Health Physics, 68, 460–471.

Simon, S. L., Anspaugh, L. R., Hoffman, F. O., Scholl, A. E., Stone, M. B., Thomas,
B. A. and Lyon, J. L. (2006) 2004 update of dosimetry for the utah thyroid
cohort study. Radiation Research, 165, 208–222.

Stefanski, L. A. and Cook, J. R. (1995) Simulation-extrapolation: the measurement
error jackknife. Journal of the American Statistical Association, 90, 1247–1256.

Stevens, W., Till, J., Thomas, D., Lyon, J., Kerber, R., Preston-Martin, S., Simon, S.,
Rallison, M. and Lloyd, R. (1992) Assessment of leukemia and thyroid disease
in relation to fallout in utah: report of a cohort study of thyroid disease and
radioactive fallout from the nevada test site. Tech. rep., University of Utah, Salt
Lake City.

Stram, D. O. and Kopecky, K. J. (2003) Power and uncertainty analysis of epidemio-
logical studies of radiation-related disease risk in which dose estimates are based
on a complex dosimetry system: some observations. Radiation Research, 160,
408–417.

Subar, A. F., Thompson, F. E., Kipnis, V., Midthune, D., Hurwitz, P., McNutt,
S., McIntosh, A. and Rosenfeld, S. (2001) Comparative validation of the block,
willett and national cancer institute food frequency questionnaires: the eating
at america’s table study. American Journal of Epidemiology, 154, 1089–1099.

Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985) Statistical analysis of
finite mixture distributions. Chichester: John Wiley & Sons Ltd.

Tooze, J. A., Grunwald, G. K. and Jones, R. H. (2002) Analysis of repeated measures
data with clumping at zero. Statistical Methods in Medical Research, 11, 341–
355.

Tsiatis, A. A. and Ma, Y. (2004) Locally efficient semiparametric estimators for
functional measurement error models. Biometrika, 91, 835–848.

Tukey, J. W. (1949) One degree of freedom for non-additivity. Biometrics, 5, 232–242.

Wang, N. (2003) Marginal nonparametric kernel regression accounting for within-
subject correlation. Biometrika, 90, 43–52.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER II

In what follows, the arguments for L and its derivatives are in the form L(·) =

L{Y, X,B0, θ0(Z)}. The arguments for F and its derivatives are (·) = {X, θ0(Z),B0}.
Also, please note that in our arguments about semiparametric efficiency, we use the

symbol d exactly as it was used by Newey (1990). It does not stand for differential.

A.1. Assumptions and Remarks

A.1.1. General Considerations

The main results needed for the asymptotic distribution of our estimator are (2.5)

and (2.6). The single-index model assumptions are given already in Carroll et al.

(1997).

Results (2.5) and (2.6) hold under smoothness and moment conditions for the like-

lihood function, and under smoothness and boundedness conditions for θ(·). The

strength of these conditions depends on the generality of the problem. For the par-

tially linear Gaussian model of Wang et al. (2004), because the profile likelihood

estimator of β is an explicit function of regressions of Y and X on Z, the conditions

are simply conditions about uniform expansions for kernel regression estimators, as

in for example Claeskens and Van Keilegom (2003). For generalized partially lin-

ear models, Severini and Staniswalis (1994) give a series of moment and smoothness

conditions towards this end. For general likelihood problems, Claeskens and Carroll

(2007) state that the conditions needed are as follows.
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(C1) The bandwidth sequence hn → 0 as n → ∞, in such a way that nhn/ log(n) →
∞ and hn ≥ {log(n)/n}1−2/λ for λ as in condition (C4).

(C2) The kernel function K is a symmetric, continuously differentiable pdf on [−1, 1]

taking on the value zero at the boundaries. The design density f(·) is differen-

tiable on an interval B = [b1, b2], the derivative is continuous, and infz∈B f(z) >

0. The function θ(·,B) has 2 continuous derivatives on B and is also twice

differentiable with respect to B.

(C3) The Kullback-Leibler distance between L{·, ·,B, θ(·,B)}, and L{·, ·,B′, θ(·,B′)}
is strictly positive for B �= B′. For every (y, x), third partial derivatives of

L{y, x,B, θ(z)} with respect to B exist and are continuous in B. The 4th par-

tial derivative exists for almost all (y, x). Further, mixed partial derivatives

∂r+s

∂Br∂vsL{y, x,B, v}|v=θ(z), with 0 ≤ r, s ≤ 4, r + s ≤ 4 exist for almost all (y, x)

and E{supB supv

∣∣∣ ∂r+s

∂Br∂vsL{y, x,B, v}
∣∣∣2} < ∞. The Fisher information, G(z),

possesses a continuous derivative and infz∈B G(z) > 0.

(C4) There exists a neighborhood N{B0, θ0(z)} such that

max
k=1,2

sup
z∈B

∥∥∥∥∥ sup
(B,θ)∈N{B0,θ0(z)}

∣∣∣∣ ∂k

∂θk
log{L(Y, X,B, θ)}

∣∣∣∣
∥∥∥∥∥

λ,z

< ∞

for some λ ∈ (2,∞], where ‖·‖λ,z is the Lλ-norm, conditional on Z = z. Further,

sup
z∈B

Ez

[
sup

(B,θ)∈N{B0,θ0(z)}
| ∂3

∂θ3
log{L(Y,X,B, θ)}|

]
< ∞.

The above regularity conditions are the same as those used in a local likelihood setting

where one wishes to obtain strong uniform consistency of the local likelihood estima-

tors. Condition (C3) requires the 4th partial derivative of the log profile likelihood

to have a bounded second moment, it further requires the Fisher information matrix
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to be invertible and to be differentiable with respect to z. Condition (C4) requires a

bound on the first and second derivatives of the log profile likelihood and of the first

moment of the third partial derivative, in a neighborhood of the true parameter values.

A.1.2. Compactly Supported Z

Multiple reviewers of earlier drafts of this paper commented that the assumption that

Z be compactly supported with density positive on this support is too strong.

However, this assumption is completely standard in the kernel-based semiparametric

literature for estimation of B0, because it is needed for uniform expansions for esti-

mation of θ0(·). The assumption is made in the founding papers on semiparametric

likelihood estimation (Severini and Wong 1992, p. 1875, part e); the first paper on

generalized linear models (Severini and Staniswalis 1994, p. 511, assumption D), the

first paper on efficient estimation of partially linear single index models (Carroll et

al. 1997, p. 485, condition 2a); and the precursor paper to ours that is focused on

estimation of the population mean in a partially linear model (Wang et al. 2004, p.

341, condition C.T). The uniform expansions for local likelihood given in Claeskens

and van Keilegom (2003) also make this assumption, see their page 1869, condition

R0. Thus, our assumption on the design density of Z is a standard one.

The reason this assumption is made has to do with kernel technology, where proofs

generally require a uniform expansion for the kernel regression, or at least uniform in

all observed values of Z which is the same thing. The Nadaraya-Watson estimator,

for example, has a denominator that is a density estimate, and the condition on Z

stops this denominator from getting too close to zero. Ma et al. (2006), who make



102

the same assumption (their condition 6 on page 83), state that it is necessary to avoid

“pathological cases”.

A.2. Proof of Result 1

A.2.1. Asymptotic Expansion

We first show (2.9). First note that L is a loglikelihood function conditioned on

(X, Z), so that we have

E{δLθθ(·)|X, Z} = −E{δLθ(·)Lθ(·)|X,Z};

E{δLθB(·)|X, Z} = −E{δLθ(·)LB(·)|X, Z}. (A.1)

By a Taylor expansion,

n1/2(κ̂ − κ0) = n−1/2

n∑
i=1

[
Fi(·) − κ0 + {FiB(·) + Fiθ(·)θB(Zi,B0)}T(B̂ − B0)

+Fiθ(·){θ̂(Zi,B0) − θ0(Zi)}
]

+ op(1)

= MT
2 n1/2(B̂ − B0)

+n−1/2

n∑
i=1

[
Fi(·) − κ0 + Fiθ(·){θ̂(Zi,B0) − θ0(Zi)}

]
+ op(1).

Because nh4 → 0, using (2.5), we see that

n−1/2

n∑
i=1

Fiθ(·){θ̂(Zi,B0) − θ0(Zi)}

= −n−1/2

n∑
i=1

Fiθ(·)n−1

n∑
j=1

δjKh(Zj − Zi)Ljθ(·)/Ω(Zi) + op(1)

= −n−1/2

n∑
i=1

δiLiθ(·)n−1

n∑
j=1

Kh(Zj − Zi)Fjθ(·)/Ω(Zj) + op(1)

= n−1/2

n∑
i=1

δiDi(·) + op(1),
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the last step following because the interior sum is a kernel regression converging to

Di, see Carroll et al. (1997) for details. Result (2.9) now follows from (2.6). The

limiting variance (2.10) is an easy calculation, noting that (A.1) implies that

E{δεLθ(·)|Z} = E{δLθ(·)LB(·) + δLθ(·)Lθ(·)θB(Z,B0)|Z}

= −E{δLBθ(·) + δLθθ(·)θB(Z,B0)|Z} = 0 (A.2)

by the definition of θB(·) given at (2.7), and hence the last two terms in (2.9) are

uncorrelated. We will use (A.2) repeatedly in what follows.

A.2.2. Pathwise Differentiability

We now turn to the semiparametric efficiency, using results of Newey (1990). The

relevant text of his paper is in his Section 3, especially through his equation (9). A

parameter κ = κ(Θ) is pathwise differentiable under two conditions. The first is that

κ(Θ) is differentiable for all smooth parametric submodels: in our case, the paramet-

ric submodels include B, parametric submodels for θ(·), and parametric submodels

for the distribution of (X,Z) and the probability function pr(δ = 1|X,Z). This con-

dition is standard in the literature and fairly well required. Our motivating example

clearly satisfies this condition.

The second condition is that there exists a random vector d such that E(dTd) < ∞,

and ∂κ(Θ)/∂Θ = E(dST
Θ), where SΘ is the loglikelihood score for the parametric

submodel. Newey notes that pathwise differentiability also holds if the first condition

holds, and if there is a regular estimator in the semiparametric problem. Generally,

as Newey notes, finding a suitable random variable d can be difficult.
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Assuming pathwise differentiability, which as stated above we later show, the efficient

influence function is calculated by projecting d onto the nuisance tangent space. One

innovation here is that we can calculate the efficient influence function without having

an explicit representation for d.

Our development below will consist of two steps. In the first, we will assume path-

wise differentiability, and derive the efficient score function under that assumption.

Using this derivation, we will then exhibit a random variable d that has the requisite

property.

A.2.3. Efficiency

Recall that pr(δ = 1|X, Z) = π(X,Z). Let fX,Z(x, z) be the density function of

(X, Z). Let the model under consideration be denoted by M0. Now consider a smooth

parametric submodel Mλ, with fX,Z(x, z, α1), θ(z, α2) and π(X, Z, α3) in place of

fX,Z(x, z), θ0(z) and π(X, Z) respectively. Then under Mλ the loglikelihood is given

by

L(·) = δL(·) + δlog{π(X, Z, α3)} + (1 − δ)log{1 − π(X,Z, α3)}

+log{fX,Z(X,Z, α1)},

where (·) represents the argument {Y, X, θ(Z, α2),B0}. Then the score functions in

this parametric submodel are given by

∂L(·)/∂B = δLB(·);

∂L(·)/∂α1 = ∂log{fX,Z(X,Z, α1)}/∂α1;

∂L(·)/∂α2 = δLθ(·)∂θ(Z, α2)/∂α2;
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∂L(·)/∂α3 = {∂π(X, Z, α3)/∂α3}{δ − π(X,Z, α3)}/[π(X, Z, α3){1 − π(X,Z, α3)}].

Thus, the tangent space is spanned by the functions δLB(·)T, sf (x, z), δLθ(·)g(Z),

a(X, Z){δ − π(X,Z)}, where sf (x, z) is any function with mean 0, while g(z) and

a(X, Z) are any functions. For computational convenience, we rewrite the tangent

space as the linear span of four subspaces T1, T2, T3, T4 that are orthogonal to each

other (see below) and defined as follows:

T1 = δLB(·)T + δLθ(·)θT
B (Z,B0)

T2 = sf (x, z)

T3 = δLθ(·)g(Z)

T4 = a(X, Z){δ − π(X, Z)}.

To show that these spaces are orthogonal, we first note that by assumption, the

data are missing at random, and hence pr(δ = 1|Y, X, Z) = π(X, Z). This means

that T4 is orthogonal to the other three spaces. Note also that, by assumption,

E{LB(·)|X, Z} = E{Lθ(·)|X, Z} = 0. This shows that T2 is orthogonal to T1 and T3.

It remains to show that T1 and T3 are orthogonal, which we showed in (A.2). Thus,

the spaces T1-T4 are orthogonal.

Note that, under model Mλ,

κ0 =

∫
F{X, θ(Z, α2),B0}fX,Z(x, z, α1) dxdz.

Hence we have that

∂κ0/∂B = E{FB(·)};

∂κ0/∂α1 = E[F(·)∂log{fX,Z(X,Z, α1)}/∂α1];
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∂κ0/∂α2 = E{Fθ(·)∂θ(Z, α2)/∂α2};

∂κ0/∂α3 = 0.

Now, by pathwise differentiability and equation (7) of Newey (1990), there exists a

random variable d, which we need not compute, such that

E{FB(·)} = E[d{δLB(·)}]; (A.3)

E{F(·)sf (X,Z)} = E{dsf (X,Z)}; (A.4)

E{Fθ(·)g(Z)} = E{dδLθ(·)g(Z)}; (A.5)

0 = E[da(X, Z){δ − π(X,Z)}]. (A.6)

Next we compute the projections of d into T1, T2, T3 and T4. First note that, by (A.4),

for any function sf (X,Z) with expectation zero, we have E[{d−F(·)+κ0}sf (X, Z)] =

0, which implies that the projection of d into T2 is given by

Π(d|T2) = F(·) − κ0. (A.7)

Also, by (A.1) and (A.5), for any function g(Z), we have

E[{d − δD(·)}δg(Z)Lθ(·)]

= E{Fθ(·)g(Z)} + E[δg(Z)L2
θ(·)E{Fθ(·)|Z}/E{δLθθ(·)|Z}]

= 0,

and hence the projection of d onto T3 is given by

Π(d|T3) = δD(·). (A.8)

In addition, by (A.3) and (A.5),

E[{d −MT
2 M−1

1 δε}δεT] = E{FT
B (·)} − E{Fθ(·)θT

B (Z,B0)} − E(MT
2 M−1

1 δεεT)
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= 0.

Hence the projection of d into T1 is given by

Π(d|T1) = δMT
2 M−1

1 ε. (A.9)

Also by (A.6), we have Π(d|T4) = 0. Using (A.7), (A.8) and (A.9) we get the efficient

influence function for κ0 is

ψeff = Π(d|T1) + Π(d|T2) + Π(d|T3) + Π(d|T4) = F(·) − κ0 + δMT
2 M−1

1 ε + δD(·),

which is same as (2.9), hence completing the proof under the assumption of pathwise

differentiability. In the calculations that follow, we will write FB rather than FB(·),
a rather than a(X, Z), etc.

We now show pathwise differentiability, and hence semiparametric efficiency, i.e., we

show that (A.3)-(A.6) hold for d = F − κ0 + δD + δMT
2 M−1

1 ε.

To verify (A.3), we see that

E(dδLB) = E[(F − κ0 + δD + δMT
2 M−1

1 ε)δLB]

= E[δDLB + δMT
2 M−1

1 εLB]

= −E{Lθ
E(Fθ|Z)

E(δLθθ|Z)
LBδ} + E{δLB(LB + LθθB)T}M−1

1 M2

= E{δLθB
E(Fθ|Z)

E(δLθθ|Z)
} − E{δ(LBB + LBθθ

T
B )}M−1

1 M2

= −E(FθθB) + M2

= E(FB).
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To verify (A.4), we see that

E(dsf ) = E{(F − κ0 + δD + δMT
2 M−1

1 ε)sf}

= E(Fsf ) − κ0E(sf ) + E{E(δD + δMT
2 M−1

1 ε|X, Z)sf}

= E(Fsf ).

To verify (A.5), we see that

E(dδLθg) = E{(F − κ0 + δD + δMT
2 M−1

1 ε)δLθg}

= E(DLθδg) + MT
2 M−1

1 E(εLθδg)

= −E{Lθ
E(Fθ|Z)

E(δLθθ|Z)
Lθδg} + MT

2 M−1
1 E{(LB + LθθB)Lθδg}

= E(Fθg) −MT
2 M−1

1 E{(LBθ + LθθθB)δg}

= E(Fθg) −MT
2 M−1

1 E{E(δLBθ + δLθθθB|Z)g}

= E(Fθg),

where again we have used (A.2). Finally, because the responses are missing at ran-

dom, (A.6) is immediate. This completes the proof.

A.3. Sketch of Lemma 1

We have that

κ̂marg = n−1

n∑
i=1

[ δi

π̂marg(Zi)
G(Yi) +

{
1 − δi

π̂marg(Zi)

}
F{Xi, θ̂(Zi, B̂), B̂}

]
= A1 + A2.

By calculations that are similar to those above, and using (2.11), it is readily shown

that

A1 = n−1

n∑
i=1

δi

πmarg(Zi)
G(Yi)
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−n−1

n∑
i=1

{δi − πmarg(Zi)}E
[ δiG(Yi)

{πmarg(Zi)}2
|Zi

]
+ op(n

−1/2).

We can write

A2 = B1 + B2 + op(n
−1/2);

B1 = n−1

n∑
i=1

{
1 − δi

πmarg(Zi)

}
F{Xi, θ̂(Zi, B̂), B̂}

B2 = n−1

n∑
i=1

δiF{Xi, θ̂(Zi, B̂), B̂}
{πmarg(Zi)}2

{π̂marg(Zi) − πmarg(Zi)}.

Using (2.5) and (2.6), it is easy to show that

B1 = n−1

n∑
i=1

{
1 − δi

πmarg(Zi)

}
Fi(·) + M2,margM−1

1 n−1

n∑
i=1

δiεi

+n−1

n∑
i=1

δiDi,marg(·) + op(n
−1/2).

Using (2.11) once again, we see that

B2 = n−1

n∑
i=1

{δi − πmarg(Zi)}E
[ δiFi(·)
{πmarg(Zi)}2

|Zi

]
+ op(n

−1/2).

Collecting terms, and noting that

0 = E
[δi{G(Yi) −Fi(·)}

{πmarg(Zi)}2
|Zi

]
,

this proves (2.12).

A.4. Sketch of Lemma 2

We have that

κ̂ = n−1

n∑
i=1

[ δi

π(Xi, Zi, ζ̂)
G(Yi) +

{
1 − δi

π(Xi, Zi, ζ̂)

}
F{Xi, θ̂(Zi, B̂), B̂}

]
= A1 + A2,
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say. By a simple Taylor series expansion,

A1 = n−1

n∑
i=1

δi

π(Xi, Zi, ζ)
G(Yi)

−E
{ 1

π(X, Z, ζ)
G(Y )πζ(X, Z, ζ)

}T

n−1

n∑
i=1

ψiζ + op(n
−1/2).

In addition,

A2 = B1 + B2 + op(n
−1/2);

B1 = n−1

n∑
i=1

{
1 − δi

π(Xi, Zi, ζ)

}
F{Xi, θ̂(Zi, B̂), B̂};

B2 = n−1

n∑
i=1

δiF{Xi, θ̂(Zi, B̂), B̂}
{π(Xi, Zi, ζ)}2

πζ(Xi, Zi, ζ)T(ζ̂ − ζ) + op(n
−1/2).

Using the fact that

0 = E
{

1 − δi

π(Xi, Zi, ζ)
|X,Z

}
,

it follows easily that

B1 = n−1

n∑
i=1

{
1 − δi

π(Xi, Zi, ζ)

}
Fi(·) + op(n

−1/2).

It also follows that

B2 = E
{ 1

π(X,Z, ζ)
F(·)πζ(X,Z, ζ)

}T

n−1

n∑
i=1

ψiζ(·) + op(n
−1/2).

Collecting terms and using the fact that E{G(Y )|X, Z} = F(·), the result follows.
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A.5. Proof of Result 2

A.5.1. Asymptotic Expansion

We first show the expansion (2.15). Recall that B = (γ, β). The only things that

differ with the calculations of Carroll et al. (1997) is that we add in terms involving

δi and we need not worry about any constraint on γ, and thus we avoid items like

their Pα on their page 487.

In their equation (A.12), they show that

n1/2(B̂ − B0) = n−1/2Q−1

n∑
i=1

δiNiεi + op(1). (A.10)

Define H(u) = [E{ρ2(·)|U = u}]−1. In their equations (A.13), Carroll et al. (1997)

show that

θ̂(R + STγ̂, B̂) − θ0(R + STγ0) = θ
(1)
0 (R + STγ0)S

T(γ̂ − γ0) (A.11)

+θ̂(R + STγ0, B̂) − θ0(R + STγ0) + op(n
−1/2).

Also, in their equation (A.11), they show that

θ̂(u, B̂) − θ0(u) = n−1

n∑
i=1

δiKh(Ui − u)εiH(u)/f(u) (A.12)

−H(u)[E{δΛρ2(·)|U = u}]T(B̂ − B0) + op(n
−1/2).

Carroll et al. (1997) did not consider an estimate of φ. Make the definition

G{φ, Y, X,B, θ(U)} = Dφ(Y, φ) − [Y c{XTβ + θ(U)} − C{c(·)}]/φ2.

Of course, G(·) is the likelihood score for φ. If there are no arguments, we denote
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G = G{φ0, Y, X,B0, θ0(R + STγ0)}. The estimating function for φ solves

0 = n−1/2

n∑
i=1

δiG{φ̂, Yi, Xi, B̂, θ̂(Ri + ST
i γ̂, B̂)}.

Since G is a likelihood score, it follows that

E[Gφ{φ0, Y, X,B0, θ0(R + STγ0)}|X,R, S] = −E{G2|X, R, S}.

By a Taylor series,

E(δG2)n1/2(φ̂ − φ0) = n−1/2

n∑
i=1

δiG{φ0, Yi, Xi, B̂, θ̂(Ri + ST
i γ̂, B̂)} + op(1)

= n−1/2

n∑
i=1

δiGi + E(δGT
B )n1/2(B̂ − B0)

+n−1/2

n∑
i=1

δiGiθ{θ̂(Ri + ST
i γ̂, B̂) − θ0(Ri + ST

i γ0)} + op(1).

However, it is readily verified that E(δGB|X,R, S) = 0 and that E(δGθ|X,R, S) = 0.

It thus follows via a simple calculation using (A.11) that

E(δG2)n1/2(φ̂ − φ0) = n−1/2

n∑
i=1

δiGi + n−1/2

n∑
i=1

δiGiθ{θ̂(Ui,B0) − θ0(Ui)} + op(1)

= n−1/2

n∑
i=1

δiGi + op(1),

the last step following from an application of (A.12).

With some considerable algebra, (2.15) now follows from calculations similar to those

in the proof of Result 1. The variance calculation follows because it is readily shown

that for any function h(U),

0 = E[(N ε){δh(U)ε)}]. (A.13)



113

A.5.2. Efficiency

We now turn to semiparametric efficiency. Recall that the GPLSIM follows the form

(2.20) with XTβ0 + θ0(R + STγ0), and that U = R + STγ0. It is immediate that

V {µ(t)} = µ(1)(t)/c(1)(t), that c(1)(t) = ρ1(t) and that ρ2(t) = ρ2
1(t)V {µ(t)} =

c(1)(t)µ(1)(t). We also have that

E(ε|X, Z) = 0; (A.14)

E(ε2|X, Z) = E
(
[Y − µ{XTβ0 + θ0(U)}]2|X, Z

)
[ρ1{XTβ0 + θ0(U)}]2

= var(Y |X,Z)[ρ1{XTβ0 + θ0(U)}]2

= φρ2(·). (A.15)

Let the semiparametric model be denoted as M0. Consider a parametric submodel

Mλ with fX,Z(X,Z; ν1), θ0(R + STγ0, ν2) and π(X, Z, ν3). The joint loglikelihood of

Y, X and Z under Mλ is given by

L(·) = (δ/φ)
(
Y c{XTβ0 + θ0(R + STγ0, ν2)} − C[c{XTβ0 + θ0(R + STγ0, ν2)}]

)
+δD(Y, φ) + log{fX,Z(X,Z, ν1)}

+δlog{π(X,Z, ν3)} + (1 − δ)log{1 − π(X,Z, ν3)}.

As before, recall that ε = ρ1(·){Y −µ(·)} = c(1)(·){Y −µ(·)}. Then the score functions

evaluated at M0 are

∂L/∂β = δXc(1)(·){Y − µ(·)}/φ = δXε/φ

∂L/∂γ = δθ(1)(U)Sc(1)(·){Y − µ(·)}φ = δθ(1)(U)Sε/φ

∂L/∂ν1 = sf (X, Z)

∂L/∂ν2 = δh(U)c(1)(·){Y − µ(·)}/φ = δh(U)ε/φ

∂L/∂ν3 = a(X, Z){δ − π(X,Z)};
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∂L/∂φ = δDφ(Y, φ) − δ[Y c(·) − C{c(·)}]/φ2 = δG,

where Dφ(Y, φ) is the derivative of D(Y, φ) with respect to φ, sf (X, Z) is a mean zero

function and h(U) and a(X,Z) are any functions. This means that the tangent space

is spanned by

(
T1 = δ{STθ

(1)
0 (U), XT}ε/φ, T2 = sf (X, Z), T3 = δh(U)ε/φ,

T4 = a(X, Z){δ − π(X, Z)}, T5 = δG
)
.

An orthogonal basis of the tangent space is given by [T1 = δNTε, T2 = sf (X,Z),

T3 = δh(U)ε, T4 = a(X, Z){δ − π(X, Z)}] and T5 = δG; the orthogonality is a

straightforward calculation. Now notice that

κ0 =

∫
F{x, θ0(z; ν2),B0, φ0}fX,Z(x, z; γ) dxdz

and hence

∂κ0/∂β = E{Fβ(·)};

∂κ0/∂γ = E{Fθ(·)θ(1)(U)S};

∂κ0/∂ν1 = E{F(·)sf (X, Z)};

∂κ0/∂ν2 = E[Fθ(·)h(Z)];

∂κ0/∂ν3 = 0;

∂κ0/∂φ = E{Fφ(·)}.

As before, we first assume pathwise differentiability to construct the efficient score.

We verify this later.
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By equation (7) of Newey (1990) there is a random quantity d such that

E(dδXε/φ) = E{Fβ(·)}; (A.16)

E{dδθ(1)(U)Sε/φ} = E{Fθ(·)θ(1)(U)S}; (A.17)

E{dsf (X,Z)} = E{F(·)sf (X,Z)}; (A.18)

E{dδh(U)ε/φ} = E{Fθ(·)h(U)}; (A.19)

E[da(X, Z){δ − π(X,Z)}] = 0; (A.20)

E(dδG) = E{Fφ(·)}. (A.21)

Now we compute the projection of d into the tangent space. It is immediate that

Π(d|T2) = F(·) − κ0 and that Π(d|T4) = 0. Since

E[{δJ(U)ε}{δh(U)ε/φ}] = E{h(U)Fθ(·)},

it is readily shown that Π(d|T3) = δJ(U)ε. It is a similarly direct calculation to show

that Π(d|T1) = DTQ−1δN ε. Finally, Π(d|T5) = δGE{Fφ(·)}/E(δG2).

These calculations thus show that, assuming pathwise differentiability, the efficient

influence function for κ0 is

Ψ = DTQ−1δN ε + F(·) − κ0 + δJ(U)ε + δGE{Fφ(·)}/E(δG2).

Hence from (2.15) we see that κ̂SI has the semiparametric optimal influence function

and hence is asymptotically efficient.
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A.5.3. Pathwise Differentiability

For d = DTQ−1δN ε + F(·) − κ0 + δJ(U)ε + δGE{Fφ(·)}/E(δG2), we have to show

that (A.16) - (A.21) hold. Let

d1 = DTQ−1δN ε;

d2 = F(·) − κ0;

d3 = δJ(U)ε;

d4 = 0;

d5 = δGE{Fφ(·)}/E(δG2).

Then, d = d1 + . . . + d5. Since T1, T2, T3, T4 and T5 are orthogonal and di ∈ Ti for

i = 1, . . . , 5, we have

E(d1T1) = E(DTQ−1δNNTε2) = φE(DT); (A.22)

E(d2T2) = E[{F(·) − κ0}sf (X,Z)] = E{F(·)sf (X, Z)}; (A.23)

E(d3T3) = E{δJ(U)h(U)ε2} = E{π(X, Z)J(U)h(U)φρ2(·)}; (A.24)

E(d4T4) = 0; (A.25)

E(d5T5) = E[δG2E{Fφ(·)}/E(δG2)] = E{Fφ(·)}; (A.26)

E(diTj) = 0, i �= j. (A.27)

To verify (A.16) and (A.17), we have to prove

E

[
dδθ(1)(U)Sε/φ

dδXε/φ

]T

= E

[Fθ(·)θ(1)(U)S

Fβ(·)

]T

Recall that, Λ = {θ(1)(U)ST, XT}T. So,

E

[
dδθ(1)(U)Sε/φ

dδXε/φ

]T

= E(dδΛTε/φ)
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= E
{

dδ
(
NT + [E{δρ2(·)|Ui}]−1E{δiΛ

T
i ρ2(·)|Ui}

)
ε/φ
}

= E{dδNTε/φ}

+E
{

dδ
(
[E{δρ2(·)|Ui}]−1E{δiΛ

T
i ρ2(·)|Ui}

)
ε/φ
}

= E(dT1/φ) + E(dδh(U)ε/φ)

= B1 + B2,

where h(U) = [E{δρ2(·)|U}]−1E{δΛTρ2(·)|U}. Hence, using (A.22), (A.24) and

(A.27), we see B1 = E(d1T1/φ) = E(DT) and

B2 = E(d3δh(U)ε/φ)

= E{π(X,Z)J(U)h(U)ρ2(·)}

= E{δJ(U)h(U)ρ2(·)}

= E[J(U)h(U)E{δρ2(·)|U}]

= E
{
Fθ(·)[E{δρ2(·)|U}]−1E{δΛTρ2(·)|U}

}
,

and hence

B1 + B2 = E(DT) + E
{
Fθ(·)[E{δρ2(·)|U}]−1E{δΛTρ2(·)|U}

}
= E

[Fθ(·)θ(1)(U)S

Fβ(·)

]T

.

To verify (A.19), we use (A.24) and (A.27) and get

E{dδh(U)ε/φ} = E(d3T3/φ)

= E{π(X, Z)J(U)h(U)ρ2(·)}

= E{δJ(U)h(U)ρ2(·)}

= E[J(U)h(U)E{δρ2(·)|U}]

= E[Fθ(·)h(U)].
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Finally, (A.18) follows directly from (A.23) and (A.27), (A.20) follows directly from

(A.25) and (A.27) and (A.21) follows directly from (A.26) and (A.27).

A.6. Proof of Lemma 3

Denote the model under consideration by M0. Now consider any regular paramet-

ric submodel Mλ, with fX,Z(x, z, α1) and θ(z, α2) in place of fX,Z(x, z) and θ0(z)

respectively. For the model Mλ we have the joint loglikelihood of Y,X and Z,

L(y, z, x) = L(·) + log{fX,Z(x, z, α1)},

where (·) represents the argument {Y, X, θ(Z, α2),B0}. The score functions are given

by,

∂L/∂B = LB(·);

∂L/∂α1 = ∂log{fX,Z(x, z, α1)}/∂α1;

∂L/∂α2 = Lθ(·)∂θ(z, α2)/∂α2;

The tangent space is spanned by Sλ = {LB(·)T, sf (x, z)T,Lθ(·)g(z)T} or equivalently

by

T = {T1 = LB(·)T + Lθ(·)θT
B (Z,B0) = εT, T2 = sf (X,Z)T, T3 = g(Z)TLθ(·)}.

where sf (x, z) is any function with expectation 0, and g(z) is any function of z. Note

that, under model Mλ, κ0 =
∫

Y exp{L(·)}fX,Z(x, z, α1)dydxdz. Hence we have

∂κ0/∂B = E{Y LB(·)} = E{Y (∂L/∂B)};

∂κ0/∂α1 = E{Y sf (X, Z)} = E{Y (∂L/∂α1)};

∂κ0/∂α2 = E{Y Lθ(·)g(Z)} = E{Y (∂L/∂α2)}.
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Hence we see that κ0 is pathwise differentiable and d = Y . The projection of d into

T is then given by

Π(d|T1) = E(Y εT)M−1
1 ε;

Π(d|T2) = E(Y |X,Z) − κ0;

Π(d|T3) = Lθ(·)E{Y Lθ(·)|Z}/E[{Lθ(·)}2|Z],

and hence the efficient influence function is

Π(d|T ) = E(Y εT)M−1
1 ε + {E(Y |X,Z) − κ0} + Lθ(·)E{Y Lθ(·)|Z}/E[{Lθ(·)}2|Z].

But we see that the influence function of the sample mean is Y − κ0. Hence the

sample mean is semiparametric efficient if and only if (2.19) holds.

A.7. Proof of Lemma 4

It suffices to consider only the case that φ = 1 is known, since the estimates of β0

and θ0(z) do not depend on the value of φ.

It is convenient to write c{η(x, z)} as d(x, z), and to denote the derivative of d(x, z)

with respect to θ0(z) as dθ(x, z). Note that the derivative with respect to β is

dβ(x, z) = Xdθ(x, z). Direct calculations show that

Lθ(·) = dθ(X,Z){Y − µ(X,Z)};

Lβ(·) = Xdθ(X, Z){Y − µ(X, Z)};

θβ(Z) = −E[Xd2
θ(X, Z)V {µ(X,Z)}|Z]

E[d2
θ(X,Z)V {µ(X, Z)}|Z]

;

ε = {X + θβ(Z)}dθ(X,Z){Y − µ(X,Z)};

E(Y ε) = E[{X + θβ(Z)}dθ(X, Z)V {µ(X,Z)}];
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Lθ(·)
E{Y Lθ(·)|Z}
E{L2

θ(·)|Z} = {Y − µ(X, Z)}dθ(X, Z)
E[dθ(X,Z)V {µ(X, Z)}|Z]

E[d2
θ(X, Z)V {µ(X,Z)}|Z]

.

If dθ(x, z) depends only on z, then θβ(Z) = −E[XV {µ(X, Z)}|Z]/E[V {µ(X, Z)}|Z],

E(Y ε) = 0 and also

1 ≡ dθ(X, Z)
E[dθ(X,Z)V {µ(X, Z)}|Z]

E[d2
θ(X, Z)V {µ(X, Z)}|Z]

, (A.28)

so that by Lemma 3 the sample mean is semiparametric efficient.

The cases that the sample mean is not semiparametric efficient are the following.

Consider problems not of canonical exponential forms. First of all, it cannot be semi-

parametric efficient if E(Y ε) = 0 and dθ(x, z) depends on x, for then (A.28) fails.

This means then that dθ(x, z) cannot be a function of x, i.e., the data must follow a

canonical exponential family.

If E(Y ε) �= 0, we must have that

1 ≡ dθ(X,Z)
(
E(Y εT)M−1

1 {X + θβ(Z)} +
E[dθ(X, Z)V {µ(X,Z)}|Z]

E[d2
θ(X,Z)V {µ(X, Z)}|Z]

)
. (A.29)

Examples that (A.29) fails to hold are easily constructed. Because the term inside

the parenthesis in (A.29) is linear in X and a function of Z, (A.29) can only hold

in principle if d(x, z) = c{xTβ + θ(z)} = a + b log{xTβ + θ(z)} for known constants

(a, b).
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER III

For simplicity of notation, we first consider only the case that there are no nuisance

parameters ζ0. The more general case is a simple extension and is presented later.

B.1. Proof of Result 3

To prove the results, we rely on several technical conditions that we do not state here

explicitly for the sake of saving space. These conditions are well known and standard

in smoothing theory. Refer to Claeskens and Van Keilegom (2003), Claeskens and

Carroll (2007) and Lin and Carroll (2006) among many others for the details of these

assumptions. As stated just before Result 3, we require that the linear expansions

for the parametric and nonparametric parts given in Lin and Carroll (2006) hold to

order op(n
−1/2), the latter uniformly.

B.1.1. Expansion of Tn(γ)

Let θ(j)(·) be the jth derivative of θ(·) with respect to z0. Let fZ(z0) be the density

function of Z. Make the definitions

Ω(z0) = E[Lθθ{Y, STη0 + θ0(Z)}|Z = z0];

θη(z0, η0) = −E[SLθθ{Y, STη0 + θ0(Z)}|Z = z0]/Ω(z0).

Note that Si + θη(Zi, η0) = S̃i, and recall

M = −cov[{S + θη(Z, η0)}Lθ{Y, STη0 + θ(Z)}].
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Then using Lin and Carroll (2006) we have that uniformly in z0,

θ̂(z0, η0) − θ0(z0, η0)=−n−1
∑n

i=1Kh(Zi − z0)Lθ{Yi, S
T
i η0 + θ0(Zi)}/{fZ(z0)Ω(z0)}

+(φ2h
2/2)θ

(2)
0 (z0) + Op

{
h4 + log(n)/(nh)

}
; (B.1)

η̂ − η0 =−M−1n−1
∑n

i=1S̃iLθ{Yi, S
T
i η0 + θ(Zi)} + op(n

−1/2). (B.2)

The score statistic for β is, via Taylor series,

Tn,adj(γ) = n−1/2
∑n

i=1{1 + γθ(Zi)}X̃iLθ{Yi, S
T
i η0 + θ0(Zi)}

+n−1/2
∑n

i=1S1i(γ){θ̂(Zi) − θ0(Zi)}

+n−1/2
∑n

i=1S2i(γ)(η̂ − η0) + op(1)

= A1n + A2n + A3n + op(1),

where

S1i(γ) = X̃i

[
γLθ{Yi, S

T
i η0 + θ0(Zi)} + {1 + γθ0(Zi)}Lθθ{Yi, S

T
i η0 + θ0(Zi)}

]
;

S2i(γ) = γθη(Zi)X̃iLθ{Yi, S
T
i η0 + θ0(Zi)}

+{1 + γθ0(Zi)}X̃iS̃
T
i Lθθ{Yi, S

T
i η0 + θ0(Zi)}.

By definition of X̃, it is easy to see that to order op(1),

A2n = −n−1/2
∑n

i=1Lθ{Yi, S
T
i η0 + θ0(Zi)}E{S1i(γ)|Zi}/Ω(Zi) = 0,

where we have used (3.6) and (B.1). Also, using (B.2) and definition of N we obtain

A3n = −NM−1n−1/2
∑n

i=1S̃iLθ{Yi, S
Tη0 + θ0(Zi)} + op(1).

The result now follows by collecting all the terms. It is readily seen that the expan-

sion is uniform in γ ∈ [L,R].
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B.1.2. Weak Convergence

Weak convergence is trivial. Examining the form of the test statistic Tn,adj(γ) in (3.8),

we see that it is linear in γ and can be written as Un +γVn, where (Un, Vn) are jointly

asymptotically normally distributed.

B.2. Proof of Result 4

Define Ω(z) =
∑J

j=1fj(z)E{Ljjθ(•)|Zj = z} and

A(B, z1, z2) =
∑J

j=1

∑J
k �=j=1fj(z1)E {Ljkθ(•)B(Zk, z2)/Ω(Zk)|Zj = z1} ;

Q(z1, z2) =
∑J

j=1

∑J
k �=j=1fjk(z1, z2)E {Ljkθ(•)|Zj = z1, Zk = z2} /Ω(z2),

where fj(z) is the density of Zj and fjk(z1, z2) is the bivariate density of (Zj, Zk),

assumed to have bounded support and are positive on the support. Let G(z1, z2) be

the solution to

G(z1, z2) = Q(z1, z2) −A(G, z1, z2).

Using the results of Lin and Carroll (2006) we obtain that uniformly in z,

θ̂(z, η0) − θ0(z) = (φh2/2)b(z) − n−1
∑n

i=1

∑J
j=1Kh(Zij − z)Lijθ(·)/Ω(z)

+n−1
∑n

i=1

∑J
j=1Lijθ(·)G(z, Zij)/Ω(z)

+Op{h4 + log(n)/(nh)}; (B.3)

η̂ − η0 = −M−1
1 n−1

∑n
i=1

∑J
j=1{Sij + θη(Zij, η0)}Lijθ(·)

+op(n
−1/2). (B.4)
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Define

Tk,n(γ) =
∑J

j=1[Xj{1 + γθ0(Zj)} + θβ(Zj, 0, η0, γ)]Ljkθ(•);

Tη,n(γ) =
∑J

j=1

∑J
k=1[Xj{1 + γθ0(Zj)} + θβ(Zj, 0, η0, γ)]{Sk + θη(Zk, η0)}TLjkθ(•).

It is easily shown that

Tn,adj(γ) = n−1/2
∑n

i=1

∑J
j=1[Xij{1 + γθ0(Zij)} + θβ(Zij, 0, η0, γ)]Lijθ(•)

+n−1/2
∑n

i=1Tiη,n(γ)(η̂ − η0)

+n−1/2
∑n

i=1

∑J
k=1Tik,n(γ){θ̂(Zik, η0) − θ0(Zik)}

+n−1/2
∑n

i=1

∑J
j=1Lijθ(•){θ̂β(Zij, 0, η̂, γ) − θβ(Zij, 0, η0, γ)} + op(1).

Using (B.4) and the fact that E{Tη,n(γ)} = M2, it is easy to see that

n−1/2
∑n

i=1T T
iη,n(γ)(η̂ − η0)

= −M2M−1
1 n−1/2

∑n
i=1

∑J
j=1{Sij + θη(Zij, η0)}Lijθ(·) + op(1).

Next, using (B.3), we now derive that up to terms of op(1),

n−1/2
∑n

i=1

∑J
k=1Tik,n(γ){θ̂(Zik, η0) − θ0(Zik)}

= −n−1/2
∑n

i=1

∑J
k=1Tik,n(γ)

[
n−1
∑n

r=1

∑J
j=1Kh(Zrj − Zik)Lrjθ(•)/Ω(Zik)

]
+n−1/2

∑n
i=1

∑J
k=1Tik,n(γ)

[
n−1
∑n

r=1

∑J
j=1Lrjθ(•)G(Zik, Zrj)/Ω(Zik)

]
= n−1/2

∑n
r=1

∑J
j=1Lrjθ(•){C1(Zrj) + C2(Zrj)},

where we define

C1(z, γ) = −∑J
k=1fk(z)E{Tik,n(γ)|Zk = z}/Ω(z);

C2(z, γ) = E
[∑J

k=1E{Tik,n(γ)|Zk}G(Zk, z)/Ω(Zk)
]
.
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We now note that
∑J

k=1fk(z)E{Tik,n(γ)|Zk = z} = 0 by definition of θβ(·) with β0 = 0

and hence C1(z, γ) = C2(z, γ) = 0.

Finally, we recognize that θ̂β(·) is the repeated measures regression of Qij on Zij and

hence yields an asymptotic expansion similar to (B.3). Together with the fact that

E{Ljθ(·)|X, S, Z} = 0, it is now straightforward to show that the fourth term in the

expansion of Tn,adj(γ) = op(1), completing the proof.

B.3. Proof of Result 5

Under the null hypothesis, θβ(z, 0, δ0, γ) solves

0 =
∑J

j=1fj(z)E
(∑J

k=1[Xk{1 + γθ0(Zk)} + θβ(Zk, 0, δ0, γ)]Ljkθ(·)
∣∣∣Zj = z

)
. (B.5)

Recall that Kh(z) = h−1K(z/h) and Gh(z) = (1, z/h)T. Consider the problem of

solving for {m(z), m(1)(z)},

0 = n−1
∑n

i=1

∑J
j=1Kh(Zij − z)G(Zij − z)

×
[∑J

k �=j=1v
ijk{Qik − m(Zik)} + vijjQij − vijjG(Zij − z)T{m(z),m(1)(z)}T

]
where vijk = −Lijkθ(·). Define Fn(z) = n−1

∑n
i=1

∑J
j=1v

ijjKh(Zij−z)G(Zij−z)G(Zij−
z)T. The solution then satisfies

Fn(z){m(z),m(1)(z)}T = n−1
∑n

i=1

∑J
j=1Kh(Zij − z)G(Zij − z)

×
[∑J

k �=j=1v
ijk{Qik − m(Zik)} + vijjQij

]
.

Notice that

Fn(z) =
∑J

j=1E(vjj|Zj = z)

[ fj(z) 0

0 φ2

]
+ op(1),
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where φ2 =
∫

z2k(z) dz. Hence, taking limit of both the sides we obtain that m(z)

satisfies

∑J
j=1E(vjj|Zj = z)fj(z)m(z) =

∑J
j=1fj(z)

∑J
k �=j=1E[vjk{Qk − m(Zk)}|Zj = z]

+
∑J

j=1fj(z)E(vjjQj|Zj = z),

which is identical to (B.5) with m(z) = θβ(z, 0, δ0, γ). This completes the argument.

B.4. Proof of Result 3 With Nuisance Parameters

Let θ(j)(·) be the jth derivative of θ(·) with respect to z0. Let fZ(z0) be the density

function of Z. Define Ω(z0) = E[Lθθ{Y, STη0 + θ0(Z), ζ0}|Z = z0] and recall that

δ0 = (ηT
0 , ζT

0 )T and

θδ(z0, δ0) = −E[Lθδ{Y, STη0 + θ0(Z), ζ0}|Z = z0]/Ω(z0);

ε = Lδ{Y, STη0 + θ(Z), ζ0} + θδ(Z, δ0)Lθ{Y, STη0 + θ(Z), ζ0};

M = −E(εεT).

Then using Lin and Carroll (2006) we have that uniformly in z0,

θ̂(z0, δ0) − θ0(z0, δ0)=−n−1
∑n

i=1Kh(Zi − z0)Lθ{Yi, S
T
i η0 + θ0(Zi), ζ0}/{fZ(z0)Ω(z0)}

+(φ2h
2/2)θ

(2)
0 (z0) + Op

{
h4 + log(n)/(nh)

}
; (B.6)

δ̂ − δ0 =−M−1n−1
∑n

i=1εi + op(n
−1/2). (B.7)

The score statistic for β is, with a first-order Taylor series,

Tn,gen(γ) = n−1/2
∑n

i=1{1 + γθ0(Zi)}X̃iLθ{Yi, S
T
i η0 + θ0(Zi), ζ0}

+n−1/2
∑n

i=1S1i(γ){θ̂(Zi) − θ0(Zi)} + n−1/2
∑n

i=1S2i(γ)(δ̂ − δ0) + op(1)
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= A1n + A2n + A3n + op(1),

where

S1i(γ) = X̃i[γLθ{Yi, S
T
i η0 + θ0(Zi), ζ0} + {1 + γθ0(Zi)}Lθθ{Yi, S

T
i η0 + θ0(Zi), ζ0}];

S2i(γ) = X̃i

(
{1 + γθ0(Zi)}[Lθδ{Yi, S

T
i η0 + θ0(Zi), ζ0}

+Lθθ{Yi, S
T
i η0 + θ0(Zi), ζ0}θδ(Zi, δ0)]

T

+γθT
δ (Zi, δ0)Lθ{Yi, S

T
i η0 + θ0(Zi), ζ0}

)
.

Using the fact that h ∝ n−α where 1/3 ≤ α ≤ 1/5, we obtain, to order op(1),

A2n = −n−1/2
∑n

i=1Lθ{Yi, S
T
i η0 + θ0(Zi), ζ0}E{S1i(γ)|Zi}/Ω(Zi) = 0,

where we have used (B.6) and definition of X̃. Also, using (B.7) we obtain

A3n = −NM−1n−1/2
∑n

i=1εi + op(1).

Collecting all the terms we now see that the score statistic is, up to terms of op(1),

Tadj,n(γ) = n−1/2
∑n

i=1

[
{1 + γθ0(Zi)}X̃iLθ{Yi, S

T
i η0 + θ0(Zi), ζ0} − NM−1εi

]
.

The proof of weak convergence and tightness of Tadj,n follows along the same line as

in the main text.

B.5. Proof of Result 4 with Nuisance Parameter

Make the definitions of Ω(z) and G(z1, z2) as in Section III.4.3 using the general

likelihood. We use results from Lin and Carroll (2006) to see that

θ̂(z, δ0) − θ0(z) = (φh2/2)b(z) − n−1
∑n

i=1

∑J
j=1Kh(Zij − z)Lijθ(·)/Ω(z)
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+n−1
∑n

i=1

∑J
j=1Lijθ(·)G(z, Zij)/Ω(z) + OP{h4 + log(n)/(nh)};

δ̂ − δ0 = −M−1
1 n−1

∑n
i=1{Lδ(·) +

∑J
j=1Lijθ(·)θδ(Zij, δ0)} + op(n

−1/2).

Define

Tk,n(γ) = γXkLkθ(•) +
∑J

j=1[{1 + γθ0(Zj)}Xj + θβ(Zj, 0, δ0, γ)]Ljkθ(•);

Tδ,n(γ) =
∑J

j=1γXjθ
T
δ (Zj, δ0)Ljθ(•)

+
∑J

j=1[Xj{1 + γθ0(Zj)} + θβ(Zj, 0, δ0, γ)]

×{Ljθδ(•) +
∑J

k=1θδ(Zk, δ0)Ljkθ(•)}T.

Using a Taylor’s series expansion, Tn(γ) can be written as

Tn,adj(γ) = n−1/2
∑n

i=1

∑J
j=1[Xij{1 + γθ0(Zij)} + θβ(Zij, 0, δ0, γ)]Lijθ(•)

+n−1/2
∑n

i=1Tiδ,n(γ)(δ̂ − δ0)

+n−1/2
∑n

i=1

∑J
k=1Tik,n(γ){θ̂(Zik, δ0) − θ0(Zik)} + op(1).

The second term in the right hand side can be written as

n−1/2
∑n

i=1T T
iδ,n(γ)(δ̂ − δ0)

= −M2M−1
1 n−1/2

∑n
i=1

{
Lδ(·) +

∑J
j=1Lijθ(·)θδ(Zij, δ0)

}
+ op(1).

Using the expansion of θ̂(z, δ0), we can write the third term, up to terms of order

op(1), as

n−1/2
∑n

i=1

∑J
k=1Tik,n(γ){θ̂(Zik, δ0) − θ0(Zik)}

= −n−1/2
∑n

i=1

∑J
k=1Tik,n(γ)

[
n−1
∑n

r=1

∑J
j=1Kh(Zrj − Zik)Lrjθ(•)/Ω(Zik)

]
+n−1/2

∑n
i=1

∑J
k=1Tik,n(γ)

[
n−1
∑n

r=1

∑J
j=1Lrjθ(•)G(Zik, Zrj)/Ω(Zik)

]
= n−1/2

∑n
r=1

∑J
j=1Lrjθ(•)C1(Zrj, γ) + n−1/2

∑n
r=1

∑J
j=1Lrjθ(•)C2(Zrj, γ),



129

where we define

C1(z, γ) = −∑J
k=1fk(z)E{Tik,n(γ)|Zk = z}/Ω(z);

C2(z, γ) = E
[∑J

k=1E{Tik,n(γ)|Zk}G(Zk, z)/Ω(Zk)
]
.

Now we note that by definition of θβ(z, β0, δ0, γ) with β0 = 0 we have

0 =
∑J

j=1fj(z)E
(∑J

k=1[X{1 + γθ0(Zk)} + θβ(Zk, 0, δ0, γ)]Ljkθ(·)
∣∣∣Zj = z

)
.

Hence we obtain that C1(z, γ) = C2(z, γ) = 0. Now the result follows by collecting

all the terms.



130

APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER IV

We first state the required conditions below and then provide a sketch of Result 9.

C.1. Regularity conditions.

We require the following conditions.

A1. Z is absolutely continuous and has compact support Z, its density fZ(·)
is differentiable on Z, the derivative is continuous and infz∈Z fZ(z) > 0. Moreover

supz∈Z |θ0(z)| ≤ M < ∞.

A2. Assume that B ∈ B, where B is a compact subset of Rk. For B �= B′ ∈ B,

the Kullback-Leibler distance between L(Y, X, S,B, θ) and L(Y, X, S,B′, θ′) is strictly

positive.

A3. L(·, x, ·,B, θ) is an entire function with respect to x. Denote the kth deriva-

tive with respect to x as L(k)(·, x, ·,B, θ), k = 0, 1, · · ·. For every (y, x, s) third partial

derivatives of L(k)(y, x, s,B, θ) with respect to B exist and are continuous. Further-

more mixed partial derivatives ∂r+t

∂Br∂θtL(k)(·, ·, ·,B, θ) with 0 ≤ r, t,≤ 4, r + t ≤ 4, exist

for almost all (y, x, s) and E{supB∈B sup|θ|≤M | ∂r+t

∂Br∂θtL(Y, X, S,B, θ)|2} < ∞.

A4. The Fisher information matrix

G(Z) =
∂

∂(BT , θT )T ∂(BT , θT )
E{L(Y,X, S,B0, θ)|θ=θ0(Z)|Z}

possesses a continuous derivative and infz∈Z G(z) > 0.

A5. There exists a neighborhood N{B0, θ0(z)} such that

max
k=1,2

sup
z∈Z

∣∣∣∣∣
∣∣∣∣∣ sup
(B,θ)∈N{B0,θ0(z)}

∣∣∣∣ ∂k

∂θk
L(Y, Z, S,B, θ)

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
λ,z

< ∞
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for some λ ∈ (2,∞], where || · ||λ,z is the Lλ norm, conditioned on Z = z.

C.2. Sketch of Result 9

Define ε∗ = Y − WTγ − θ(Z). Direct calculations yield

R(•) = −log(σ2)/2 − (ε∗2 − γTB−1

B∑
b=1

VbV
T
b γ)/(2σ2);

Rβ(•) =

(
(Wε∗ + B−1

∑B
b=1 VbV

T
b γ)/σ2

−1/(2σ2) + [ε∗2 − γTB−1
∑B

b=1 VbV
T
b γ]/(2σ4)

)
;

Rθ(•) = ε∗/σ2;

Rββ(•) =

[Rββ,11(•) Rββ,12(•)
Rββ,21(•) Rββ,22(•)

]
;

Rββ,11(•) = (−WWT + B−1

B∑
b=1

VbV
T
b )/σ2;

Rββ,12(•) = −[Wε∗ + B−1

B∑
b=1

VbV
T
b γ]/σ4;

Rββ,21(•) = −[Wε∗ + B−1

B∑
b=1

VbV
T
b γ]/σ4;

Rββ,22(•) = 1/(2σ4) − [ε∗2 − γTB−1

B∑
b=1

VbV
T
b γ]/σ6;

Rβθ(•) =

(−W/σ2

−ε∗/σ4

)
;

Rθθ(•) = −1/σ2.

Using these, we see that

θβ = −E{Rβθ(•)|Z}/E{Rθθ(•)|Z} = −
{

E(W |Z)

0

}
;

E{Rββ(•)} =

[−E(XXT)/σ2 0

0 1/(2σ4)

]
;
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E{Rβθ(•)θβ(Z, β)T} =

[
(σ2)−1E{WE(W |Z)T} 0

0 0

]
=

[
E{XE(X|Z)T}/σ2 0

0 0

]
;

M =

[−S/σ2 0

0 1/(2σ4)

]
.

Also, let

K = Rβ + Rθθβ = (1/σ2)

( {W − E(W |Z)}ε∗ + B−1
∑B

b=1 VbV
T
b γ

−1/2 + [ε∗2 − γTB−1
∑B

b=1 VbV
T
b γ]/(2σ2)

)

= (1/σ2)

(K1

K2

)
.

Hence,

cov(K1) = cov[{X − E(X|Z) + U}(ε − UTγ) + B−1

B∑
b=1

VbV
T
b γ]

= cov[{X − E(X|Z)}(ε − UTγ) + Uε − UUTγ + B−1

B∑
b=1

VbV
T
b γ]

= cov[{X − E(X|Z)}(ε − UTγ)] + cov(Uε) + cov{(UUT − Σuu)γ}

+cov{B−1

B∑
b=1

(VbV
T
b − Σuu)γ}

= cov[{X − E(X|Z)}(ε − UTγ)] + cov(Uε) + cov{(UUT − Σuu)γ}

+B−1cov{(VbV
T
b − Σuu)γ}

= Γ + B−1cov{(VbV
T
b − Σuu)γ}.

Also,

cov(K2) = (4σ4)−1{var(ε∗2) + var(γTB−1

B∑
b=1

VbV
T
b γ)}

= (4σ4)−1[E{(ε − UTγ)4} − (σ2 + γTΣuuγ)2

+B−2

B∑
b=1

var{γT(VbV
T
b − Σuu)γ}]
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= E{(ε − UTγ)2 − (σ2 + γTΣuuγ)}2 + B−1var{γT(VbV
T
b − Σuu)γ}],

and the result follows from Result 7.
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