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ABSTRACT

Some Applications of Wavelets to Time Series Data. (August 2008)

Jae Sik Jeong, B.S., University of Seoul;

M.S., Seoul National University

Co-Chairs of Advisory Committee: Dr. Marina Vannucci
Dr. David B. Dahl

The objective of this dissertation is to develop a suitable statistical methodology for pa-

rameter estimation in long memory process. Time series data with complex covariance

structure are shown up in various fields such as finance, computer network, and economet-

rics. Many researchers suggested the various methodologies defined in different domains:

frequency domain and time domain. However, many traditional statistical methods are not

working well in complicated case, for example, nonstationary process. The development of

the robust methodologies against nonstationarity is the main focus of my dissertation. We

suggest a wavelet-based Bayesian method which shares good properties coming from both

wavelet-based method and Bayesian approach. To check the robustness of the method, we

consider ARFIMA(0, d, 0) with linear trend. Also, we compare the result of the method

with that of several existing methods, which are defined in different domains, i.e. time

domain estimators, frequency domain estimators. Also, we apply the method to functional

magnetic resonance imaging (fMRI) data to find some connection between brain activity

and long memory parameter.

Another objective of this dissertation is to develop a wavelet-based denoising tech-

nique when there is heterogeneous variance noise in high throughput data, especially pro-

tein mass spectrometry data. Since denoising technique pretty much depends on threshold

value, it is very important to get a proper threshold value which involves estimate of stan-
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dard deviation. To this end, we detect variance change point first and get suitable threshold

values in each segment. After that, we apply local wavelet thresholding to each segment,

respectively. For comparison, we consider several existing global thresholding methods.
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CHAPTER I

INTRODUCTION

With the improvement of computer technology, Bayesian approach has been flourished

over the past decades. In many fields, Bayesian approach is being widely used now: fi-

nance, microarray study and so on. Various kinds of data which exist in real world have

very complex structure. In order to deal with the data easily and apply statistical methods

efficiently, we need to simplify such data with complex structure. To this end, wavelet

method has been successfully used because it has many good features including decor-

relation property. Since the covariance with complex structure can be approximately di-

agonalized through wavelet transform, we can use the simplified covariance for efficient

estimation in the wavelet domain. Basically, there are two kinds of wavelets such as con-

tinuous wavelet transform (CWT) and discrete wavelet transform (DWT). DWT has many

variants: Maximal overlap DWT (MODWT), Discrete Wavelet Packet Transform (DWPT),

and Maximal overlap DWPT (MODWPT). Since each wavelet transform has advantages

and disadvantages, we have to carefully decide which wavelet to use based on the situation

we face with.

There are three types of memory in time series: short memory, no memory, and long

memory. Time series which shows long range dependence has been considered in many

fields including hydrology, econometrics, physics, and computer network. Estimation of

model parameters in the presence of long range dependence has been major interest of

many researchers. Especially, the estimation of long memory parameter d, transforming

The format and style follow that of Journal of the American Statistical Association.
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nonstationary process to stationary one, has been the main issue of many research. Addi-

tionally innovation variance σ2 is another crucial parameter to estimate as well.

Long memory is formally defined in an asymptotic sense by the asymptotic decay of

the autocorrelations or the ultimate behavior of spectral density around zero. We will in-

troduce two definitions of a stationary process with long memory which are defined in two

different domains: spectral domain and frequency domain. A stationary time series {Xt}

is said to have long memory when long memory parameter d is between 0 and 0.5. Many

methods of estimating long memory parameter based on its decay rate of autocorrelation

or behavior of spectral density around zero have been studied by many researchers. How-

ever, it is not easy to do that in the presence of long range dependence due to complicated

covariance structure. Thus, we propose a wavelet-based Bayesian method which shares

good properties from both wavelet-based method and Bayesian approach, i.e. which uses

Bayesian modeling on wavelet domain.

Estimation methods in time domain were suggested by many authors. Several heuristic

approaches were based on autocorrelation plot or variance plot. More systematic method is

R/S statistic, proposed by Hurst (1951). R/S statistic has several variants. For robustness,

Beran (1994) and Taqqu, Teverovsky, and Willinger (1995) considered overlapped block

when calculating the statistic. Peters (1994) used disjoint block and averaged the statistic.

Instead of modifying numerator in R/S, Lo (1991) modified the denominator. Mielniczuk

and Wojdyllo (2007) suggested bias corrected R/S estimator and presented simulation result

for several variants of R/S.

Various semiparametric estimators of d were proposed, which are based on the be-

havior of spectral density around zero. The methods are called semiparametric since it

is assumed that the spectral density is asymptotically equivalent to |λ|1−2H . Geweke and

Porter-Hudak (1983) proposed an estimator based on periodogram, which is an estimator

of spectral density. They also suggest a cut-off for frequencies which are used for efficient
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estimation. In the frequency domain, the cut-off value is very important. Under Gaussian

assumption, the asymptotic distribution of estimator has been derived by Fox and Taqqu

(1985). The Gaussian MLE has been studied by several authors. Yajima (1985) and Dal-

haus (1989) presented the asymptotic distribution of exact MLE of long memory parameter.

Unfortunately, calculation of the exact MLE need a lot of computational work. To reduce

such computation work, approximation of the likelihood function could be an alternative.

Fox and Taqqu (1986) used the Whittle method for the estimation of long range depen-

dence parameter. Also, local Whittle method has been studied by Robinson (1995). Taqqu

and Teverovsky (1997) studied the robustness of Whittle-type methods through empirical

study. Asymptotic properties of the local Whittle estimator of ARFIMA(0, d, 0) is given in

Shimotsu and Phillips (2006). Since those methods are parametric or semi-parametric the

performance pretty much depends on how well the parametric assumption fits the data.

Other than those methods, development of estimation methods in spatial process was

studied by Frias, Alonso, Ruiz-Medina, and Angulo (2008). Hall, Hardle, Kleinow, and

Schmidt (2000) suggested new semiparametric bootstrap approach for confidence intervals

for the long range dependence parameter.

In this research, we focus on the process which displays long range dependence: Au-

toRegressive Fractionally Integrated Moving Average (ARFIMA) model, ARFIMA with

linear trend and functional magnetic resonance imaging (fMRI).

As another application, wavelet-based approach for denoising is widely used in pro-

teomics. Since mass spectrometry data require complex pre-processing and poorly pre-

processed data have a bad effect on the result of statistical analysis, pre-processing is

very important. Especially, removal of noise has been the main focus of pre-processing

steps. Wavelet denoising techniques have become standard for such task. We suggest lo-

cal wavelet thresholding method for efficient removal of noise when there is heterogeneous

variance noise. In this research, we will focus on the real ovarian cancer mass spectrometry
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data.
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CHAPTER II

WAVELET TRANSFORM

2.1 Wavelets and wavelet transform

It is very well known that any L2 function can be represented by functions belongings to a

proper basis. Wavelets are those functions which are consisted of orthonormal basis.

Wavelets satisfy some conditions such as admissibility condition, integration to 0 and

square-integrable to 1. Following wavelet transforms, we get two kinds of coefficients such

as scaling coefficients and wavelet coefficients. Generally speaking, scaling coefficients

showing global feature are averages of the original data over corresponding scale while

wavelet coefficients showing local nature are differences of weighted averages. Basically,

there are two main waves of wavelets: continuous wavelet transform (CWT) and Discrete

wavelet transform (DWT). Also, there are three different types of DWT: standard DWT

(DWT), maximal overlap DWT (MODWT), discrete wavelet packet transform (DWPT).

Here we focus on discrete type wavelets.

2.1.1 Porperties of wavelets

Discrete wavelet transform has various good properties: parsimonious representation, en-

ergy decomposition, effective decorrelation properties, and perfect reconstruction. The

beauty of wavelet transform is decorrelation property. For instance, many phenomena in

real world have very complex structure itself. However, since many statistical methods

assume that data have very ideal and simple structure such as independence it doesn’t fit

the problem. Often, we are faced with this gap between statistical methodologies and real

data. Due to the decorrelation property of wavelet transform, this gap can be removed. The

covariance with very complex structure can be simplified into wavelet domain in which
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transformed data are almost uncorrelated, so that we can apply statistical methods to the

data with complex structure.

Parsimonious representation : we can reconstruct the original signal by using a few

coefficients in the wavelet domain via inverse wavelet transform. For illustrative example,

the doppler signal is used. Haar wavelet was used as a decomposing wavelet.

Figure 1: Parsimonious representation.

The mathematical formula of this signal is given

f(x) =
√
x(1− x) sin

(
2.1π

x+ 0.05

)
, 0 ≤ x ≤ 1.

In figure 1, with a few coefficients the signal can be constructed.

Decorrelation property : The data with very complicated structure can be simplified via

wavelet transform. For illustrative example, simulated ARFIMA(0,d,0) data were used.

Here long memory parameter d is 0.4 and sample size is 512. As a decomposing wavelet
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the least asymmetric wavelet with vanishing moments of 8 was used in figure 2.

Figure 2: Decorrelation property.

All estimates of the autocorrelation for each lag in the wavelet domain exist in the

95 % confidence interval which is made under the assumption that the coefficients are

uncorrelated.

2.1.2 Discrete wavelet transform

Other than many good properties mentioned in the previous section, DWT has an additional

attractive aspect that makes us prefer the method: easy and fast computation. With the help

of pyramid algorithm, which was introduced by Mallat (1989), the output through DWT

can be computed by using O(n) multiplications. Also, it has some relationship with other

wavelet transform. In other words, it can be thought of as a subsampling of the contin-

uous wavelet transforms(CWT) at dyadic scales or wise subsampling and normalizing of
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maximal overlap discrete wavelet transforms(MODWT), see Percival and Walden (1999).

If we let X be a time series realizations, then we can write W = WX, where N is

a length of X and W is an N × N real valued matrix defining the DWT. For example,

each row of W consists of wavelet filter or its shift version of wavelet filter. Let {hl, l =

0, · · · , L − 1} and {gl, l = 0, · · · , L − 1} be wavelet filter and scaling filter, respectively.

L is the size of filter. Sometimes wavelet filter is called the mother wavelet. W consists of

wavelet coefficients, wi,t and scaling coefficients, vi,t obtained by wavelet transform where

i is the resolution level and t is time point of interest.

At the first level, both coefficients are represented

w1,t =
L−1∑
l=0

hlX2t+1−l mod N
, v1,t =

L−1∑
l=0

glX2t+1−l mod N
(2.1)

where t = 0, · · · , N/2. At the jth level, the scaling coefficients obtained in the j − 1 level

can be used.

At the j-th level, both coefficients are represented

wj,t =
L−1∑
l=0

hlvj−1,2t+1−l mod N/2j , vj,t =
L−1∑
l=0

glvj−1,2t+1−l mod N/2j (2.2)

where t = 0, · · · , N/2j. For consistency, some people consider the original data Xt as v0,t.

Due to decimating property, we have N/2j wavelet and scaling coefficients at level j. The

constraint on sample size, N = 2J can be relaxed by considering partial discrete wavelet

transform.

2.1.3 Maximal overlap discrete wavelet transform

Maximal overlap discrete wavelet transform (MODWT), a variation on the DWT, has been

widely used for some reasons. Unlike the DWT, MODWT does not have constraint on

sample size and does not decimate the coefficients as well, which produce the same size

of wavelet and scaling coefficients as data at any level. Furthermore, since it does not
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depend on starting point, MODWT is called shift-invariant or translation-invariant DWT.

Actually, DWT can be considered as a kind of MODWT because we can get all the DWT

coefficients through wise subsampling and renormalizing MODWT coefficients, Percival

and Walden (1999). Let {h̃l, l = 0, · · · , L− 1} and {g̃l, l = 0, · · · , L− 1} be wavelet filter

and scaling filter, respectively. The wavelet coefficients and scaling coefficients at level j

can be represented

wj,t =
L−1∑
l=0

h̃lvj−1,2t+1−l mod N
, v1,t =

L−1∑
l=0

g̃lvj−1,2t+1−l mod N
(2.3)

where t = 0, · · · , N. There is a relationship between filters in DWT and filters in MODWT:

h̃j = hj/2
j/2, g̃j = gj/2

j/2 (2.4)

where t = 0, · · · , N.

2.1.4 Discrete wavelet packet transform

Wavelet packets are introduced by Coifman and Meyer and are extended to more general

case by Wickerhauser (1994). In general, wavelet packets are regarded as linear combina-

tions of wavelet functions, and form an orthonormal basis of L2(R), see Vidakovic (1999).

One major difference between standard DWT and DWPT is the frequency band which

is decomposed by the methods. For example, the j-th level DWPT decomposes the fre-

quency interval [0, 1/2] into 2j equal intervals. On the other hand, in the case of the stan-

dard DWT, wavelet coefficients at level j describe the frequency band [1/2j+1, 1/2j].

Let {hl, l = 0, · · · , L − 1} and {gl, l = 0, · · · , L − 1} be wavelet filter and scaling

filter, respectively. The elements at level j can be represented

wj,n,k =

Lj−1∑
l=0

νj,n,lX2j [t+1]−1−l mod N , t = 0, · · · , Nj − 1

where νj,n,l =
∑L−1

k=0 νn,kνj−1,n/2,l−2j−1k, l = 0, · · · , Lj − 1. Let
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νn,k =

 gl, if n mod 4 = 0, or 3;

hl, if n mod 4 = 1, or 2;

For more details about DWPT and MODWPT, see Percival and Walden (1999) and Vi-

dakovic (1999).

2.2 Thresholding policy

According to the way how we process the wavelet coefficients, the thresholding rules are

determined. There are so many well-known shrinkage rules: soft, hard, semisoft, firm, non-

negative garrote, n-degree garrote, and hyperbole shrinkage and so on. The mathematical

expressions for the hard, soft, semisoft and nonnegative garrote, n degree garrote, and

hyperbole thresholding rules are

δh(d, λ) = d1(|d| > λ) (2.5)

δs(d, λ) = (d− sign(d)λ)1(|d| > λ) (2.6)

δss(d, λ1, λ2) = sign(d)
λ2(|d| − λ1)

λ2 − λ1

1(λ1 < |d| ≤ λ2) + d1(|d| > λ2) (2.7)

δnng(d, λ) = (d− λ2

d
)1(|d| > λ) (2.8)

δg(d, λ) =
d2n+1

λ2n + d2n
(2.9)

δhy(d, λ) = sign(d)
√
d2 − λ21(|d| > λ). (2.10)

The plots for these thresholding rules are given in figure 3.
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Figure 3: First row: Hard (left) and Soft (right). Second row: Semisoft (left) and
nonnegetive-garrote (right). Third row: Hyperbole (left) and n degree garrote (right).

As we can see, the semisoft thresholding rule is getting close to soft rule as λ2 goes to

infinity. Also, it is getting closer to hard thresholding rule as λ2 goes to λ1.

Bickel (1983) showed that hard thresholding uniformly better than soft one in terms

of the maximum of the MSE. For any λ, Gao and Bruce (1996) demonstrated that one can

select appropriate λ1 and λ2 such that risk of semisoft rule is smaller than that of hard one.
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2.2.1 Ways to select threshold value

We have to decide how to select a threshold value before we apply thresholding rules to

the data. To the end, there are so many existing methods: universal, sure, block thresholds,

percentile threshold and so on.

universal threshold : Donoho and Johnstone (1994) call the threshold, λ =
√

2 log nσ

universal threshold. It has asymptotic minimax properties. For the estimator of σ, two esti-

mators are widely used. One is sample standard deviation estimator obtained by using the

finest detail coefficients. The other one is MAD estimator, median absolute deviation from

the median. i.e. σ̂ = 1.4826MEDIAN [|d(J−1) −MEDIAN(d(J−1))|] where n = 2J .

Pickands (1967) proved that under some conditions noise is removed from the data after

thresholding with threshold value given above.

SURE threshold : SureShrink threshold is selected by minimizing Stein’s unbiased esti-

mator of risk. It is adaptive denoising procedure because it is done by specifying thresholds

level-wise.

λsure = argmin
λ

SURE(d, λ), (2.11)

where SURE(d, λ) = k − 2
k∑

i=1

1(|di| ≤ λ) +
k∑

i=1

(|di ∧ λ|)2. The core part of SureShrink

is the combination of λsure and soft thresholding.

Block thresholding : Block thresholding rule shrinks wavelet coefficients in groups while

other methods mentioned above shrink coefficients individually. Since this rule considers

dependence of neighboring coefficients, it has better performance than other rules: small

bias. The rule, however, is more sensitive to selection of threshold.

Other than these rules, there are many other existing rules. Nason (1996) addressed

twofold cross-validation procedure. He showed that optimal threshold can be almost al-

ways found. Also, he said that the rule does not perform well in the case of heavy-tail

noise. Bruce (1994) addressed a heavy-tail noise problem with a robust smoother-cleaner



13

wavelet transformation. In addition to that, threshold selection from the minimum descrip-

tion length (MDL) point of view was introduced by several researchers. According to

Saito’s approximate MDL (AMDL), the biggest k wavelet coefficients are considered.

Other than equal spaced design, nonequispaced (NES) designs are also studied by many

researchers. The simplest way is coercion to equal spacing. i.e. we carry out standard

wavelet transform as if the data are equally spaced. Another method is interpolation and

averaging. This method has basically two steps: interpolate values at equally spaced points

and carry out standard wavelet transform.

2.3 Wavelet denoising

Following the seminal work of Donoho and Johnstone, wavelet thresholding has success-

fully been used in various applications to remove noise and recover the true signal. This

can be done by applying wavelet transform, applying thresholding rule to wavelet coeffi-

cients, and coming back to the wavelet domain through inverse wavelet transform. In the

course of this process, we have to decide several things: soft or hard thresholding, global or

adaptive thresholding, and decomposing wavelet. Soft thresholding maps wavelet coeffi-

cients less than a threshold to 0 while hard one shrinks all coefficients by threshold. Global

thresholding applies the same cut-off value to all coefficients whereas level-dependent or

adaptive thresholding uses different thresholds from level to level, which depend on the

resolution level of the wavelet transform. In addition to that, local wavelet thresholding is

used for special problems under the assumption that there is heteroscedastic variance. Note

that for all rules this work is applied to wavelet coefficients only, not to scaling coefficients.

As an illustrative example for denoising, We consider doppler signal and added normal

noise to the signal such that signal to noise ratio (SNR) is about 3. The original signal and

contaminated signal are given in figure 4.
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Figure 4: First row: Original signal. Second row: Contaminated signal.

Here we consider only hard and soft thresholding, universal and sure threshold. Daubechies

wavelet with vanishing moment of 4 is used. Results obtained by four combinations men-

tioned above are given in figure 5.

As we can see, we get slightly different reconstructed signals according to what de-

composing wavelet we use and what thresholding policy we choose. The selection of de-

composing wavelet and decision of thresholding rule should be made with caution accord-

ing to the situation we face.
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Figure 5: First row: Universal and Hard. Second row: Universal and Soft. Third row: Sure
and Hard. Fourth row: Sure and Soft.
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CHAPTER III

APPLICATION OF WAVELET THRESHOLDING TO THE CASE OF

HETEROGENEOUS ERROR VARIANCE

3.1 Application to proteomics

Over the past decades there has been an increased interest in using high throughput data

in cancer studies: mass spectrometry data and microarray gene expression data. Protein

mass spectrometry data require quite complex preprocessing techniques. Clearly, poorly

preprocessed data have a bad effect on the results of subsequent statistical analysis. Vari-

ous preprocessing techniques were investigated by many authors. Basically, preprocessing

consists of several steps: baseline subtraction, normalization, denoising, peak identifica-

tion, and peak alignment. Here we focus on denoising step only. In principle, there are two

types of noises: the chemical noise and the electrical noise. To remove such noise, wavelet

thresholding technique is considered as a standard tool. Existing methods assume that there

is homogeneous error variance. We, however, notice that there exists heterogeneous error

variance in the mass spectrometry (MS) data. For efficient removal of noise, we apply our

local wavelet thresholding to the MS data after variance change point detection.

3.1.1 Variance change point detection

Suppose that we have baseline subtracted MS data. First of all, we have to detect variance

change points in the data for local wavelet thresholding. To this end, the iterated cumula-

tive sums of squares algorithm (ICSS), proposed by Inclán and Tiao (1994) is used. The

procedure is based on the assumption that the independent observations xt have mean 0

and variance σt
2, t = 1, · · · , n. Null and alternative hypothesis are given:

H0 : σ1
2 = · · · = σn

2 v.s. Ha : not H0
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Cumulative sums of squares is defined: Ck =
∑k

i=1 xi. The test statistic D is given D =

max (D+, D−) where

D+ = max1≤k≤n−1

(
k+1
n
− Pk

)
,

D− = min1≤k≤n−1

(
Pk − k

n

)
,

Pk = Ck

Cn
, k = 1, · · · , n.

If the maximum absolute value of D exceeds a certain predetermined value, then we esti-

mate a change point at point k∗ = argmaxk D. For more details about this algorithm, see

Inclán and Tiao (1994).

Whitcher, Guttorp, and Percival (2000) apply the ICSS algorithm to coefficients of

DWT of long memory data. They also obtained empirical predetermined value of D under

the null hypothesis by using Monte Carlo simulation. Gabbanini, Vannucci, Bartoli, and

Moro (2004) extended the ICSS algorithm to DWPT and MODWPT.

3.1.2 Binary segmentation procedure

The procedure mentioned above is designed for the detection of single change point. This

method, however, can be easily extended to the case of multiple change points. At the first

stage of the procedure we test the null hypothesis for the whole data. If we do not reject

H0 we declare that there is no change point in the data, otherwise we divide the data into

two subseries by the detected change point. We repeat this process until there is no change

point. If this process is done we check those change points detected again to locate more

reliable change points. This confirmatory step is to merge neighboring two subseries which

were divided by change points. Then we test if the change point is detected again. If we

still reject H0 we keep the point as a change point, otherwise we remove it from the set

of change points. This extra step helps to reduce masking effect and to get more reliable

change point estimates.
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3.1.3 Local wavelet thresholding

As mentioned in section 2, we have several things to decide before applying wavelet thresh-

olding. Commonly used universal threshold and sure threshold are used here and median

absolute deviation is used as a noise variance estimator. After variance change point detec-

tion, we apply the local wavelet thresholding. The key steps are

1. Compute the wavelet transforms of the data (DWT, MODWT, DWPT, and MOD-

WPT).

2. Use the ICSS algorithm by using DWPT and MODWPT coefficients to locate the

variance change points.

3. Divide the MODWT coefficients into segments.

4. Compute local threshold values for each segment.

5. Apply standard wavelet thresholdong to each segment.

6. Reconstruct the signal by using denoised coefficients.

3.2 Application to real ovarian cancer data

We briefly describe the MS data. Serum samples collected at the Mayo Clinic between 1980

and 1989 were analyzed by surface-enhanced laser desorption and ionization time-of-flight

(SELDI-TOF) mass spectrometry using the CM10 chip type. The ProteinChip Biomarker

System was used for protein expression profiling. More detailed description of the samples

and exclusion criteria can be found in Moore, Fung, McGuire, Rabkin, Molinaro, Wang,

Zhang, Wang, Yip, Meng, and Pfeiffer (2006).

We focus on the 50 samples obtained after 1986 whose serum was freeze-thawed a

single time and applied a Bayesian variable selection approach for classification. In the
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analysis we discarded small m/z values less than 2000 due to large noise, and large m/z

values greater than 15,000 due to low intensities. For the remaining data, we interpolated

the mass spectra on a grid of equally spaced m/z values with 50,000 equi-spaced points

using piecewise cubic splines. One MS data is given in figure 6.

Figure 6: Ovarian cancer: One sample spectrum.

3.2.1 Wavelet denoising

We use the maximal overlap discrete wavelet transforms (MODWT) with Daub(4) along

with an adaptive soft thresholding rule. Figure 7 shows estimated standard deviations of

the noise for four randomly chosen spectra, which were obtained by running an MAD

estimator with window size 1,500 on the finest MODWT coefficients. This shows explicit

monotonic decrease as the m/z values increase.

For comparison, we consider global thresholding with two different threshold values:

4σ̂2 and 40σ̂2, i.e. C is 4,40.
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Figure 7: Estimated standard deviations for 4 MS spectra randomly chosen.

3.2.2 Comparison

We applied the local thresholding method to each of 50 mass spectra. For each spectrum,

the variance change point detection method was applied. The number of change points

detected varies from 7 to 36. Then for peak detection, the SpecAlign software of Wong,

Cagney, and Cartwright (2005) was used. The approach based on mean spectrum, pro-

posed by Morris, Coombes, Kooman, Baggerly, and Kobayashi (2005) was used. The local

thresholding method detect 58 peaks while the global thresholding detect 53 (C = 4) and

48 (C = 40) peaks, respectively on the entire m/z range. Let’s focus on low range of m/z

values, 2000 to 5000. In this interval, the local thresholding detect 21 peaks while global

thresholding detect 18, 17 peaks, respectively. Figure 8 presents the detected change point

in this part of range.

Then, denoised spectra obtained by using each method are given in figure 9.
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Figure 8: Plot of the location of detected change points by each method.

Figure 9: Denoised mass spectra by global and local thresholding: First and second row:
global thresholding with C = 4, 40, respectively. Third row: local wavelet thresholding.
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CHAPTER IV

LONG MEMORY PROCESS

4.1 Long memory process

Long memory process is defined in an asymptotic sense by the asymptotic decay of the

autocorrelations or the behavior of spectral density around zero. We here introduce two

definitions of a stationary process with long memory or long range dependence which are

defined in two different domains: spectral domain and frequency domain.

Definition 4.1.1. (see J. Beran) Xt is called a stationary process with long memory if there

exists a real number α ∈ (0, 1) and a constant cρ > 0 such that

lim
k→∞

ρ(k)

cρk−α
= 1,

where ρ(·) is autocorrelation function.

Definition 4.1.2. Xt is called a stationary process with long memory if there exists a real

number β ∈ (0, 1) and a constant cf > 0 such that

lim
λ→0

f(λ)

cf |λ|−β
= 1

where f(·) is spectral density function.

Even though two definitions mentioned above are defined in different domains, Zyg-

mund (1953) proved that these two definitions are equivalent in some sense. For more

details about definitions above, see the Beran (1994).

Here we will describe two most widely used models which display long memory or

long range dependence: fractional Gaussian noise (fGN) and autoregressive fractionally

integrated moving average (ARFIMA).
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4.1.1 Fractional Gaussian noise

The fractional Gaussian noise {Xt, t ≥ 1} can be easily obtained through fractional Brow-

nian motion BH(t) where H is a self-similar parameter or Hurst effect. Here we notice

that the relationship between self-similar parameter H and long memory parameter d gives

d = H − 1
2
. Even though the relationship between the long memory parameter and self-

similar parameter changes in the case of long memory process with symmetric α-stable

innovations (H = d+ 1
α

), we don’t consider the case here. For more information, see Stoev

and Taqqu (2005). More specifically, fractional Gaussian noise is the stationary increment

of fractional Brownian motion

Xt = BH(t+ 1)−BH(t), t ≥ 1.

Time series {Xt} is a zero mean stationary process which has autocovariance

γ(h) ∼ H(2H − 1)h2H−2 as h→∞

and spectral density

f(λ) ∼ C|λ|1−2H as λ→ 0

where C is a constant.

4.1.2 ARFIMA(p, d, q) models

Autoregressive fractional integrated moving average(ARFIMA) models are a natural ex-

tension of the classic ARIMA models. It was introduced by Granger and Joyeux (1980)

and Hosking (1981).

A process {Xt, t ≥ 1} is called ARFIMA(p, d, q) process if it is the stationary solution

of

φ(B)(1−B)dXt = ψ(B)εt (4.1)



24

where B is the backshift operator;

φ(B) = 1−
p∑

i=1

φiB
i (4.2)

ψ(B) = 1 +

q∑
i=1

ψiB
i (4.3)

Since we are interested in stationary (d < 1
2
) and invertible (d > −1

2
) process, the long

memory parameter d in (4.1) can be assumed to be any real value in this interval −1
2
<

d < 1
2
. Furthermore, since we are interested in long memory process, our focus in on

d ∈ (0, 1/2). By binomial expansion, (1−B)d can be written as

(1−B)d =
∞∑

k=0

(
d

k

)
(−1)kBk (4.4)

with the binomial coefficients(
d

k

)
=

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
. (4.5)

The simplest case of ARFIMA(p, d, q) models is ARFIMA(0, d, 0) process defined by

(1−B)dXt = εt. (4.6)

The autocovariance function of ARFIMA(0, d, 0) process is given by

γ(k) =
(−1)kΓ(1− 2d)

Γ(1− d+ k)Γ(1− d− k)
∼ Cγk

2d−1 (4.7)

and the autocorrelation function is given by

ρ(k) =
Γ(1− d)Γ(d+ k)

Γ(d)Γ(1− d+ k)
∼ Cρ|k|2d−1 (4.8)

These processes are stationary if d < 0.5 and possess an invertible moving average repre-

sentation if d > −0.5. More specifically, they have long memory for 0 < d < 0.5, white

noise for d = 0 and short memory for −0.5 < d < 0.
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4.2 Estimation methods: review of existing methods

Many different estimation methods of long memory parameter or long range dependence

parameter are introduced by many authors over the past several decades. There are several

ways that we can categorize these estimators. For example, each estimator is included

in one of these categories: parametric, semi-parametric, and nonparametric estimators.

However, we classify each estimator into three different types of methods in terms of the

domain in which each estimator is defined: time domain estimators, frequency domain

estimators, and wavelet domain estimators.

4.2.1 Time domain estimators

4.2.1.1 Correlogram

As we know, the autocorrelation of the stationary process with long range dependence is

proportional to k2d−1 where k is lag. The heuristic idea of the correlogram is as follows:

1. calculate sample autocorrelation for each lag k

2. plot log |ρ(k)| vs log k

3. estimate the slope (β)

We expect the points in the plot to be scattered around a straight line with slope of 2d− 1.

Thus we can get long memory parameter estimate of d̂ = β̂+1
2

4.2.1.2 Variance-time estimator

The variance of a stationary process with long range dependence has the following asymp-

totic order:

V ar(X̄n) ∼ CHn
2H−2.

The variance-time estimator, proposed by Cox and Smith (1953), has the following steps:

For an integer k,
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1. divide the sequence into mk non-overlapping subseries of length k = n/mk

2. calculate the sample means and overall mean

X̄j = sample mean of j subseries, X̄ = mk
−1

mk∑
i=1

X̄i

3. calculate the sample variance of the sample means

S2
k = (mk − 1)−1

mk∑
i=1

(X̄i − X̄)2

4. plot logS2
k vs log k

5. estimate the slope

We can get estimate of long memory parameter, d̂ = 1+β̂
2

.

4.2.1.3 HR estimator

Yajima (1985) and Dalhaus (1989) proved that, for Gaussian processes with long memory,

the MLE is asymptotically efficient in the sense of Fisher. However, the calculation of the

log-likelihood function or its derivative requires lots of computational work. Suppose that

Xt is a Gaussian process. The log-likelihood function is given by

Ln(x; θ) = −n
2

log(2π)− 1

2
log |Σ(θ)| − 1

2
xtΣ−1(θ)x, (4.9)

where x = (x1, · · · , xn)t ∈ Rn and θ = (σ2, H). The first partial derivative of (4.9) is

given by

L′n(x; θ) = −1

2

∂

∂θj

log |Σ(θ)| − 1

2
xt

[
∂

∂θj

Σ−1(θ)

]
x (j = 1, 2). (4.10)

The MLE θ̂ is the solution of the L′n(x; θ̂) = 0. If the dimension of parameters is high or if

we have a long time series, the calculation of the exact MLE is not easy and not numerically

stable as well because the equation (4.10) involves the calculation of the determinant and
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the inverse of Σ(θ). Maximizing an approximation to the likelihood function could be an

alternative to solving the exact maximum likelihood equation. There are several approxi-

mate MLE methods which are obtained by approximating the likelihood function in many

different ways. This HR estimator is one of the approximate MLE’s obtained by using the

fast and accurate method of Haslett and Raftery. The heuristic idea of approximation of

this method is to use the autoregressive approximations. A Gaussian ARFIMA process can

be represented by autoregressive process of infinite order. However, since we observe a

finite number of samples we have the truncated model:

Xt − θ1Xt−1 − · · · − θmXt−m = εt, m < t ≤ n

where θi are the coefficients of Φ(B)Θ−1(B)(1 − B)d. After more approximations and

refinements, a quasi maximum likelihood estimator (QMLE) θ̂n is obtained by maximizing

L∗n(x; θ) = K − n

2
log (σ̂2

ε (θ))

where σ̂2
ε (θ) = 1

n

∑n
t=1

(Xt−X̂t)2

νt
, νt = var(Xt − X̂t), X̂t = Φ(B)Θ(B)−1

∑t−1
i=1 φtiXt−i

and φti = −
(

t
i

)Γ(i−d)Γ(t−d−i+1)
Γ(−d)Γ(t−d+1)

. For more information about this approximation, see Haslett

and Raftery (1989).

4.2.1.4 Beran estimator

Another version of the autoregressive approximation approach is proposed by Beran (1994).

The sequence of innovations is given

εt = Xt −
∞∑
i=1

πiXt−i

Using observable finite past only, the truncated εt, ut is given

ut(θ) = Xt −
t−1∑
i=1

πiXt−i, t = 2, · · · , n.
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Let θ = (σε, φ1, · · · , φp, θ1, · · · , θq, d) and rt(θ) = ut(θ)/σε. The approximate MLE is

obtained by minimizing

L2 = n log(θ1) +
n∑

t=2

rt
2(θ).

We can see more details about this method in Beran (1994).

4.2.1.5 R/S statistic

This method is based on the rescaled adjusted range statistic, proposed by Hurst (1951). For

a time series {Xt, t = 1, · · · , n}, let Yj =
∑j

i=1Xi denote the partial sum. The adjusted

range R(t, k) is defined by

R(t, k) = max
0≤i≤k

[Yt+i − Yt −
i

k
(Yt+k − Yt)]− min

0≤i≤k
[Yt+i − Yt −

i

k
(Yt+k − Yt)].

Also, the function S2(t, k) is defined by

S2(t, k) =
1

k

t+k∑
i=t+1

(Xi − X̄t,k)
2

where X̄t,k = 1
k

∑t+k
i=t+1Xi and k is the block size.

The rescaled adjusted range statistic is defined by the ratio of the two terms above:

R/S =
R(t, k)

S(t, k)
.

The idea of the method proposed by Hurst (1951) is to regress the log (R/S) on log (k).

Since the expectation of the R/S is asymptotically equivalent to CHn
H , the estimate Ĥ

can be obtained in the pox-plot, which is equal to the slope, i.e. d̂ = β̂ + 1/2.

There are several variants ofR/S method according to the way we calculate the statis-

tic. Peters (1994) considered the disjoint block and averaged log (R/S) while Beran (1994)

and Taqqu et al. (1995) used overlapped block and pox-plot.
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4.2.1.6 Modified R/S statistic

Lo (1991) proposed the modified R/S statistic which is defined by

R/Slo =
1

Sq

[ max
1≤k≤n

k∑
j=1

(Xj − X̄n)− min
1≤k≤n

k∑
j=1

(Xj − X̄n)]

where Sq
2 = S2(0, n) + 2

n

∑q
j=1(1−

j
q+1

)[
∑n

i=j+1(Xi − X̄n)(Xi−j − X̄n)], q < n.

He applied this method to U.S. market data and noticed that there is a little evidence

of long range dependence in the data.

4.2.2 Frequency domain estimators

The behavior of periodogram around origin is widely used for estimation of long memory

parameter because a stationary process with long range dependence has a spectral density

proportional to |λ|1−2H . For example, spectral densities for the most widely used processes

with long range dependence are given as follows:

ARFIMA(0, d, 0) ∼ |2 sin(λ/2)|1−2H and fGN ∼ |λ|1−2H . (4.11)

We note that lim
λ→0

sin λ
λ

= 1, i.e. sin(λ) is aysmptotically equivalent to λ around zero. Thus,

the choice of cut off for frequencies is very crucial in this case.

4.2.2.1 GPH estimator

This estimator is based on the first k periodogram ordinates

Ij =
1

2πn

∣∣∣∣∣
n−1∑
t=0

Xte
iwjt

∣∣∣∣∣
2

, j = 1, · · · , k, (4.12)

where wj = 2πj/n and k is a positive integer. In the case of ARFIMA(0,d,0),

log f(λ) ∼ Cλ + (1− 2H) log |2 sin(λ/2)|

where f is spectral density. Since periodogram I(λ) is an asymptotically unbiased estima-

tor of f , we notice the linear relationship between log periodogram and log frequencies.
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The estimaotr of d is given by

d̂GPH = −
0.5

k∑
j=1

(xj − x̄) log Ij

k∑
j=0

(xj − x̄)2

, (4.13)

where xj = log |2 sin(wj/2)| and x̄ =
k∑

j=1

xj .

4.2.2.2 SR estimator

This estimator is based on the regression equation using the smoothed periodogram func-

tion in (4.13). The estimaotr of d is given by

d̂SR = −
0.5

k∑
j=1

(xj − x̄) log IS
j

k∑
j=0

(xj − x̄)2

, (4.14)

where IS
j is the smoothed version of Ij in (4.13).

4.2.2.3 Whittle estimator

This estimator is based on approximate maximum likelihood estimator using spectral den-

sity and periodogram. As mentioned above, since exact maximum likelihood method re-

quires lots of computational work Whittle consider approximation of determinant and in-

verse of covariance matrix. Following Grenander and Szecö (1958), 1
n

log |Σ−1| can be

approximated by
1

2π

∫ π

−π

log f(λ; θ)dλ.

Also, the second term in likelihood equation (4.9) 1
2n
x′Σ−1x is approximated by

1

4π

∫ π

−π

I(λ)

f(λ)
dλ

where I(λ) = 1
n
|
∑n

j=1(Xj − X̄)e(iλj)|2. After appropriate normalization which makes the

first approximation term be 0, the Whittle estimator can be regarded as the value of the



31

parameter which minimizes the function

Q(θ) =

∫ π

−π

I(λ)

f(λ; θ)
dλ. (4.15)

For example, the parameter θ is (σε
2, d) in the case of ARFIMA(0,d,0) process. Also, for

simplicity, the discrete version of Whittle estimator, proposed by Graf (1983) for fGN, is

considered

Q∗(θ) =
M∑

j=1

I(λj)

f ∗(λj, θ)

where λj = 2πj/n, M = (n− 1)/2 if n is odd number.

4.2.2.4 Aggregated Whittle estimator

Since the Whittle method is parametric, the Whittle estimator may not be accurate if the

parametric assumption is not correct. To reduce this kind of risk, the robust aggregated

Whittle estimator was suggested. When a time series is long enough, the estimator is more

robust. The idea is to aggregate the data first and get shorter series

Xk
(m) =

1

m

mk∑
i=(k−1)m+1

Xi, k = 1, · · · ,m/n

where m is the aggregation level and n is the length of time series. The choice of m is

very crucial because the best value of m is not known. Thus, practical choice of m was

used by several authors. The idea is to estimate long range parameter for different levels of

aggregation. Then, we find a region in which the plot of estimates is flat.

4.2.2.5 Local Whittle estimator

Robinson (1995) proposed a semiparametric estimator, local Whittle estimator. This method

involves two properties from both Whittle estimator and aggregated Whittle estimator: the

behavior of the spectral density around zero and minimization of the functionQ in equation
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(4.15). We get estimate which minimizes the function

R(H) = log

(
1

M

M∑
i=1

I(λi)

λi
1−2H

)
− (2H − 1)

1

M

M∑
i=1

log(λi)

where λi = 2πi
n

and M is the number of periodogram used. Under the some conditions,

Robinson (1995) showed that Ĥ converges in probability to the true value. Also, he showed

that Ĥ had asymptotically normal distribution with mean of H and variance 1
4M

.

4.2.3 Wavelet domain estimators

The parametric methods mentioned above are not accurate if the assumed parametric as-

sumption is not correct. To reduce such risk, various ideas like averaging and aggregation

were introduced by many authors. In spite of that, the methods still have some problems

if there is deterministic trend, a kind of nonstationarity. However, wavelet-based method

is efficient and robust against this kind of nonstationarity when we estimate long memory

parameter in the presence of deterministic trend.

4.2.3.1 Abry Veitch estimator

Abry and Veitch (1998) proposed an estimator, which is based on wavelet coefficient ob-

tained by Mallat’s pyramidal algorithm. The AV statistic is defined by

AV (j, k) =
1

nj

∑
k

|d(j, k)|2

where d(j, k) is the wavelet coefficient at level j and nj is the number of wavelet coefficient

at level j. This estimator is obtained in the following way:

1. calculate wavelet coefficients, d(j, k) for level j = j1, · · · , j2

2. calculate each AV statistic

3. regress log2 (AV (j, k)) on j by weighted least square with weight (n ln2 2)/2j+1
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4. estimate the slope approximately equal to 2H − 1

Here, the choice of N , vanishing moment is important. Theoretically, the larger N is the

better the estimation. In practical situations, however, the estimator is affected by boundary

effect because largerN need longer wavelet filter. They suggestedH+1 as a good practical

compromise. Also, we have to consider the choice of j1, j2 and decomposing wavelet as

well. They used Daubechies wavelet because it has finite support and it does not result in

an excessive extension of the support even though we increase the vanishing moment.

4.2.3.2 Wavelet-based Bayesian estimator

Ko and Vannucci (2006) proposed a wavelet-based Bayesian estimator. They take discrete

wavelet transform and compute the exact variances and covariances of the wavelet coef-

ficients via efficient recursive algorithm proposed by Vannucci and Corradi (1999). They

used the decorrelation property of wavelet. Twefik and Kim (1992) and Dijkerman and

Mazumdar (1994) showed that the correlation of wavelet coefficients decrease exponen-

tially and hyperbolically across scales and along time, respectively. The method is given in

the following way:

1. take discrete wavelet transform

2. specify priors on wavelet coefficients

3. calculate posterior

4. get parameter estimates via MCMC

In Ko and Vannucci (2006), they used Daubechies minimum phase wavelet with vanishing

moment of 7 and Haar wevelet. They used non-informative prior for unknown parameters

and MCMC technique for posterior inference. For comparison, they considered GPH esti-

mator and MLE estimator. By comprehensive simulation study, they noticed that wavelet-
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based Bayesian method is better than GPH and MLE in terms of bias and MSE. Also, they

apply the method to real US GNP data and Nile river data. In the case of Nile data, they

found that their estimate agrees with other estimates obtained by several existing methods.

Furthermore, they got empirical credible interval of long memory parameter d.
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CHAPTER V

BAYESIAN ESTIMATION VIA WAVELETS

5.1 Linear model

Consider the following usual form of linear regression equation,

y = Xβ + ε, (5.1)

where y is an (N × 1) signal, X is an (N × p) deterministic design matrix and ε is an

(N × 1) zero-mean Gaussian 1/f -like noise with ARFIMA(0, d, 0) process with variance-

covariance matrix Σε. The first two moments of y are

E(y) = Xβ (5.2)

and

cov(y) = Σy = Σε. (5.3)

We take discrete wavelet transform (DWT) to the both sides of the model (5.1) in

order to get approximately diagonalized variance-covariance matrix of 1/f -type noise ε.

We assume that N is a power of two. The original model (5.1) becomes via DWT

yw = Xwβ + εw, (5.4)

where yw = Wy, Xw = WX and εw = Wε where W is an N × N real-valued and

orthogonal matrix defining the DWT. The first two moments of yw are

E(yw) = Xwβ (5.5)

and

cov(yw) = cov(εw) = σ2Σd, (5.6)
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where Σd is an (N × N) nearly diagonalized matrix such that its diagonal elements are

fj(d) for the approximation level j = 1, 2, . . . , J of DWT, where fj(d) is a function of the

long memory parameter d. We express it in matrix notation by the product of σ2 and Σd.

Since y is multivariate normal distribution and DWT is a linear transformation, yw are also

multivariate normal distribution.

5.2 Bayesian modeling on wavelet domain

The likelihood function is

L(yw|Θ, Xw) =
|Σw|−1/2

(
√

2π)N
exp

{
−1

2
(yw −Xwβ)′Σw

−1(yw −Xwβ)

}
=

(σ2)−N/2|Σd|−1/2

(
√

2π)N
exp

{
− 1

2σ2
(yw −Xwβ)′Σd

−1(yw −Xwβ)

}
,

(5.7)

where Θ = (β, σ2, d). Putting priors on parameters of long memory process, we derive

posterior distribution for posterior inference.

5.2.1 Prior specification and joint posterior

We use beta distribution as the prior distribution of d which indicate the long range depen-

dent behavior of error term ε

π(2d) =
Γ(η + ν)

Γ(η)Γ(ν)
(2d)η−1(1− 2d)ν−1, 0 < d < 1/2. (5.8)

For the prior distribution of (β, σ2), we use normal-inverse gamma

π(β, σ2) = π(β|σ2)π(σ2)

(
i.e. N(β0, σ

2I2)× IG

(
δ0
2
,
γ0

2

))
= (σ2)−1 exp

{
− 1

2σ2
(β − β0)

′(β − β0)

}
× 1

(σ2)δ0/2+1
exp

{
− γ0

2σ2

}
.

(5.9)

Under the assumption of independence between (β, σ2) and d, the joint prior distribution

is,

π(β, σ2, d) = π(β|σ2)π(σ2)π(d). (5.10)
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The posterior distribution of Θ given (yw, Xw) is

π(β, σ2, d|yw, Xw) ∝ L(yw|Xw,Θ)π(Θ)

∝ (σ2)−(
N+δ0+2

2
+1)|Σd|−

1
2 (2d)η−1(1− 2d)ν−1

× exp

{
− 1

2σ2
[γ0 + T (β,Σd) + (β − β0)

′(β − β0)]

} (5.11)

where T (β,Σd) = (yw −Xwβ)′Σd
−1(yw −Xwβ).

5.2.2 Full conditional distribution for posterior inference

We can get easily the full conditional distributions of each parameter. The full conditional

distribution of β in our model is

β|σ2, d, yw, Xw ∼ N
(
(Xw

∗′Xw
∗ + I2)

−1(Xw
∗′yw

∗ + β0), σ
2(Xw

∗′Xw
∗ + I2)

−1
)
,

(5.12)

where Xw
∗ = Σd

−1/2Xw and yw
∗ = Σd

−1/2yw.

The full conditional distribution of σ2 is

σ2|β, d, yw, Xw ∼ IG

(
N + δ0 + 2

2
,

1

2
[γ0 + T (β,Σd) + (β − β0)

′(β − β0)]

)
(5.13)

where T (β,Σd) = (yw −Xwβ)′Σd
−1(yw −Xwβ).

The full conditional distribution of d is

π(d|β, σ2, yw, Xw) ∝ |Σd|−1/2 exp

{
− 1

2σ2

[
(yw −Xwβ)′Σd

−1(yw −Xwβ)
]}

× (2d)η−1(1− 2d)ν−1.

(5.14)

Since the full conditional distribution (5.14) of d is not a closed form of known distribution,

the MCMC can be employed by implementing a Metropolis step using beta proposal dis-

tribution for d within Gibbs steps for β and σ2. In the Metropolis step for d the acceptance

probability α of a candidate point dnew is

α = min

{
π(dnew|β, σ2, yw, Xw)

π(dold|β, σ2, yw, Xw)
, 1

}
. (5.15)
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Derivation of full conditional distribution of β: from equation (5.11), we get

π(β|σ2, d, yw, Xw) ∝ (σ2)−(
N+δ0+2

2
+1)|Σd|−

1
2 (2d)η−1(1− 2d)ν−1

× exp

{
− 1

2σ2
[γ0 + T (β,Σd) + (β − β0)

′(β − β0)]

}
∝ exp

{
− 1

2σ2

[
β′X ′

wΣd
−1Xwβ + β′β − 2y′wΣd

−1Xwβ − 2β′0β
]}

= exp

{
− 1

2σ2

[
β′(I +X ′

wΣd
−1Xw)β +−2(y′wΣd

−1Xw − 2β′0)β
]}

∝ exp

{
− 1

2σ2
(β −K)′[I +X ′

wΣd
−1Xw](β −K)

}
(5.16)

whereK = [I+X ′
wΣd

−1Xw]−1(β0 +X ′
wΣd

−1yw) and T (β,Σd) = (yw−Xwβ)′Σd
−1(yw−

Xwβ). K can be represented by (Xw
∗′Xw

∗+I2)
−1(Xw

∗′yw
∗+β0) since Xw

∗ = Σd
−1/2Xw

and yw
∗ = Σd

−1/2yw.

Since the last row of equation (5.16) is the kernel function of multivariate normal distribu-

tion, we get the posterior distribution in equation (5.12) mentioned above.

Derivation of full conditional distribution of σ2: from equation (5.11), we get directly

σ2|β, d, yw, Xw ∝ exp

{
− 1

2σ2
[γ0 + T (β,Σd) + (β − β0)

′(β − β0)]

}
× (σ2)−(

N+δ0+2
2

+1).

(5.17)

where T (β,Σd) = (yw −Xwβ)′Σd
−1(yw −Xwβ). Since the equation (5.17) is the kernel

function of Inverse Gamma distribution we get the posterior distribution in equation (5.13).

Vannucci and Corradi (1999) have proposed a recursive way of computing covariances

of wavelet coefficients by using the recursive filters of the DWT and the algorithm has

an interesting link to the two-dimensional discrete wavelet transform (DWT2) that makes

computations simple. In the context of this paper, the variance-covariance matrix Σε of

the wavelet coefficients in equation (5.6) can be computed by first applying the DWT2 to

the matrix Σε in equation (5.3). The diagonal blocks of the resulting matrix will provide
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the within-scale variances and covariances at the different levels. One can then apply the

one-dimensional DWT to the rows of the off-diagonal blocks to obtain the across-scale

variances and covariances.

5.3 MCMC

Markov chain Monte Carlo (MCMC) methods are defined in Roberts and Sahu (1997) this

way: A MCMC method for the simulation of a distribution f is any method producing

an ergodic Markov chain X(t) whose stationary or equilibrium distribution is f. i.e., if the

chain is irreducible and aperiodic, then the chain will become stationary at target distribu-

tion. Thus, if we run chain long enough, we can consider samples after burn-in period as

random samples from a target distribution. Here we introduce two basic MCMC algorithms

which are used in application section.

5.3.1 The Metropolis-Hastings Algorithm

Hastings (1970) extended the Metropolis’ algorithm to the case when proposal distribu-

tion is not necessarily symmetric. Suppose that the distribution q is proposal distribution.

Metropolis-Hastings algorithm is given as follows: for given xt,

1. generate a new value Yt ∼ q(y|xt)

2. take X(t+1) =

 Yt with prob. a(xt, Yt),

xt with prob. 1− a(xt, Yt),

where acceptance probability, a(xt, Yt) = min{ f(y)
f(x)

q(x|y)
q(y|x)

, 1}.

In the case of random-walk Metropolis, Roberts and Gilks (1994) suggested that the rule

of thumb of acceptance rate is to maintain a 25% to 35%.
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5.3.2 The Gibbs sampling

The Gibbs sampling algorithm is a special case of Metropolis-Hastings algorithm with

acceptance probability of 1. Two types of Gibbs sampling algorithms are given in Liu

(2004).

Randon− Scan Gibbs Sampler : For a given x(t) = (x1
(t), · · · , xp

(t)),

1. iterate the steps below

(a) randomly select a index i from {1, · · · , p} according to a given probability

vector(e.g. discrete uniform probability)

(b) generate xi
(t+1) = fi(xi|x−i),

where the density fi is the full conditional.

Systematic− Scan Gibbs Sampler : For a given x(t) = (x1
(t), · · · , xp

(t)),

1. generate x1
(t+1) = f1(x1|x2

(t), · · · , xp
(t)),

2. generate x2
(t+1) = f2(x2|x1

(t+1), x3
(t), · · · , xp

(t)),

...

p. generate xp
(t+1) = fp(xp|x1

(t+1), · · · , xp−1
(t+1)),

where the densities f1, · · · , fp are the full conditionals.

Under regularity conditions, it turned out that a Gibbs sampler chain converges geo-

metrically to stationary distribution and its convergence rate varies according to the correla-

tion among variables. Roberts and Sahu (1997) have shown that random scan strategy can

outperform systematic scan in terms of convergence rate. Also, for the discrete space prob-

lem, Liu (1996) proposed a modified Gibbs sampler, metropolized Gibbs sampler and he

proved that this sampler is statistically more efficient than the random scan Gibbs sampler.
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In real life example, we can use the combination of the two algorithms above, Metropo-

lis within Gibbs algorithm. Especially, when some full conditionals are known form of

distribution and the others are not known form we often use the hybrid algorithm.

More information about Metropolis Hastings sampler and Gibbs sampler is available

in various MCMC materials, e.g. Liu (2004) and Robert (1999).
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CHAPTER VI

APPLICATION TO ARFIMA AND FMRI

6.1 Simulation design

There are numerous ways to generate a time series that exhibits long memory properties.

A computationally simple one was proposed by McLeod and Hipel (1978). It involves the

Cholesky decomposition of the correlation matrix. Here we consider two simple processes

with long range dependence: ARFIMA and ARFIMA with linear trend. In the application

to ARFIMA(0, d, 0), we compare the performance of several methods. Then, we apply

the wavelet-based Bayesian method to the simulated ARFIMA data with linear trend and

simulated fMRI data. In the second application, we can compare the robustness of each

method against nonstationarity such as linear trend.

6.2 Application to simple ARFIMA model

Here we consider the ARFIMA(0, d, 0) model

(1−B)dXt = εt, εt ∼ (0, σ2) (6.1)

where B is the backshift operator.

We generated 100 simulated time series of length 128, 256 and 512 for three different

d values (0.1, 0.25, 0.4) respectively. Also, three different σ2’s (0.5,1,3) are considered.

The following figure 10 shows trace plot of a time series of length 512 when the long

memory parameter is 0.25 and σ2 = 1.

The following figure 11 presents the variability of GPH estimator according to sample

size n and the figure 12 displays the variability of 4 estimators for sample size of 512.
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Figure 10: ARFIMA(0,d,0): a time series (d = 0.25 and σ2 = 1).

Figure 11: ARFIMA(0, d, 0): Boxplot of d̂(GPH).

The following tables (1) and (2) represent the estimates of long memory parameters and

the corresponding MSEs obtained by the methods mentioned in the previous section when

σ2 = 1.

Table 1: ARFIMA(0, d, 0): estimates d̂ from each method (σ2 = 1)

d n GPH SR HR fEXP
128 0.0780 0.0298 0.0751 0.0954

0.1 256 0.0942 0.0362 0.0806 0.0945
512 0.1108 0.0688 0.0906 0.0990
128 0.2229 0.1419 0.1969 0.2296

0.25 256 0.2263 0.1851 0.2230 0.2407
512 0.2203 0.1943 0.2365 0.2460
128 0.3783 0.3038 0.3436 0.3936

0.4 256 0.4112 0.3494 0.3700 0.3981
512 0.4026 0.3653 0.3901 0.4056
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Figure 12: ARFIMA(0, d, 0): Boxplot of d̂ of 4 methods (d = 0.25, n = 512).

Table 2: ARFIMA(0, d, 0): MSE from each method (σ2 = 1).

d n GPH SR HR fEXP
128 0.0904 0.0425 0.0043 0.0061

0.1 256 0.0448 0.0338 0.0024 0.0023
512 0.0222 0.0170 0.0012 0.0011
128 0.0808 0.0534 0.0086 0.0067

0.25 256 0.0544 0.0310 0.0031 0.0027
512 0.0313 0.0201 0.0015 0.0014
128 0.0971 0.0559 0.0071 0.0057

0.4 256 0.0391 0.0250 0.0035 0.0034
512 0.0204 0.0168 0.0013 0.0015

The results for different values of σ2 = 0.5, 3 are given in table (3) to table (6),

respectively.

Table 3: ARFIMA(0, d, 0): estimates d̂ from each method (σ2 = 0.5)

d n GPH SR HR fEXP
128 0.0915 0.0132 0.0811 0.1035

0.1 256 0.0870 0.0578 0.0802 0.0935
512 0.0819 0.0602 0.0901 0.0980
128 0.2668 0.1847 0.2030 0.2376

0.25 256 0.2522 0.2035 0.2360 0.2547
512 0.2596 0.2195 0.2352 0.2447
128 0.3827 0.3185 0.3504 0.4033

0.4 256 0.4415 0.3795 0.3742 0.4012
512 0.4089 0.3621 0.3866 0.4024
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Table 4: ARFIMA(0, d, 0): MSE from each method (σ2 = 0.5)

d n GPH SR HR fEXP
128 0.0682 0.0424 0.0044 0.0064

0.1 256 0.0488 0.0289 0.0027 0.0026
512 0.0300 0.0168 0.0011 0.0011
128 0.0671 0.0453 0.0093 0.0083

0.25 256 0.0450 0.0291 0.0023 0.0024
512 0.0231 0.0175 0.0017 0.0016
128 0.0678 0.0490 0.0067 0.0060

0.4 256 0.0571 0.0256 0.0024 0.0021
512 0.0268 0.0205 0.0011 0.0011

Table 5: ARFIMA(0, d, 0): estimates d̂ from each method (σ2 = 3)

d n GPH SR HR fEXP
128 0.1390 0.0598 0.0800 0.1007

0.1 256 0.1460 0.0885 0.0850 0.0986
512 0.0836 0.0474 0.0923 0.1002
128 0.2481 0.1716 0.2111 0.2474

0.25 256 0.2143 0.1630 0.2307 0.2491
512 0.2744 0.2085 0.2420 0.2521
128 0.3813 0.2949 0.3339 0.3800

0.4 256 0.4258 0.3694 0.3762 0.4053
512 0.4082 0.3520 0.3884 0.4035

Table 6: ARFIMA(0, d, 0): MSE from each method (σ2 = 3)

d n GPH SR HR fEXP
128 0.0864 0.0438 0.0048 0.0069

0.1 256 0.0372 0.0233 0.0024 0.0026
512 0.0300 0.0193 0.0014 0.0014
128 0.0654 0.0513 0.0075 0.0069

0.25 256 0.0553 0.0420 0.0030 0.0029
512 0.0308 0.0233 0.0015 0.0015
128 0.0628 0.0553 0.0093 0.0071

0.4 256 0.0342 0.0158 0.0026 0.0026
512 0.0329 0.0233 0.0014 0.0015
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Table 7: ARFIMA(0, d, 0) with linear trend: The estimates d̂ from each method(σ2 =
1, β = 0.001)

d n GPH SR HR fEXP WB
256 0.0539 -0.0063 0.0730 0.0804 0.1190

0.1 512 0.0359 0.0050 0.0813 0.0851 0.1022
1024 0.0653 0.0372 0.0905 0.1000 0.1014
256 0.1657 0.1311 0.2208 0.2209 0.2556

0.25 512 0.2234 0.1756 0.2312 0.2275 0.2439
1024 0.2063 0.1864 0.2404 0.2348 0.2489
256 0.3484 0.2723 0.3501 0.3488 0.3665

0.4 512 0.3413 0.3167 0.3831 0.3617 0.3965
1024 0.3557 0.3329 0.3890 0.3752 0.3968

6.3 Application to ARFIMA model with linear trend

We consider the model with linear trend

y = Xβ + ε

where ε follows AFRIMA(0, d, 0). For comparison, we consider the same estimation meth-

ods mentioned in the previous section.

We generated 100 simulated time series of length 256, 512 and 1024 for three different

d values (0.1, 0.25, 0.4) respectively. Also, two different σ2 (0.5, 1) and β (0.01, 0.001) are

considered. The following table (7) represents the estimates of long memory parameter and

the corresponding MSEs obtained by the methods explored in the previous section when

σ2 = 1 and β = 0.001. In order that we compare our method with other methods, we

use the idea of Beran (1994). He fit a linear trend g(xt) = β0 + β1t to the data and then

a ARFIMA(0, d, 0) model to the residuals. Our method estimates both the slope and the

long memory parameter simultaneously while other methods estimate d after detrending

the data with the help of OLS estimates. We used 5000 MCMC iterations and the first 2500

was used as burn-in.
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Table 8: ARFIMA(0, d, 0) with linear trend: MSE from each method(σ2 = 1, β = 0.001)

d n GPH SR HR fEXP WB
256 0.0685 0.0505 0.0028 0.0355 0.0023

0.1 512 0.0331 0.0311 0.0019 0.0075 0.0012
1024 0.0178 0.0155 0.0006 0.0039 0.0006
256 0.0438 0.0368 0.0043 0.0217 0.0036

0.25 512 0.0340 0.0280 0.0016 0.0075 0.0015
1024 0.0267 0.0175 0.0007 0.0048 0.0007
256 0.0608 0.0526 0.0047 0.0240 0.0036

0.4 512 0.0358 0.0276 0.0013 0.0159 0.0012
1024 0.0293 0.0210 0.0009 0.0088 0.0008

The corresponding MSEs of the estimators of long memory parameter is given in table

(8).

The following box-plot (figure 13) gives us more insight into the bias and MSE. As

we can see, the estimators of long-memory parameter are getting closer and closer to the

true d and the variances of those estimators are getting smaller and smaller as sample size

increases.

Figure 13: Boxplot of d̂.

Three following tables present the estimates d̂ and corresponding MSE for different

values of σ2 and β.

The table (9) presents the estimated value when σ2 = 0.5 and β = 0.001.
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Table 9: ARFIMA(0, d, 0) with linear trend: The estimates d̂ and MSE(σ2 = 0.5, β =
0.001)

d n d̂/MSE σ̂2/MSE(σ2 = 0.5) β̂/MSE(β = 0.001)

256 0.1266/0.0022 0.5878/0.0091 0.0010/2.9814×10−6

0.1 512 0.1110/0.0015 0.5433/0.0027 0.0009/3.6058×10−7

1024 0.1054/0.0008 0.5240/0.0012 0.0010/4.9228×10−8

256 0.2435/0.0030 0.5797/0.0078 0.0058/4.8804×10−5

0.25 512 0.2504/0.0011 0.5401/0.0023 0.0008/9.2552×10−7

1024 0.2526/0.0006 0.5232/0.0009 0.0010/1.5215×10−7

256 0.3811/0.0021 0.5780/0.0073 0.0015/1.5322×10−5

0.4 512 0.3894/0.0016 0.5365/0.0022 0.0008/2.9519×10−6

1024 0.3946/0.0007 0.5231/0.0009 0.0009/6.2392×10−7

Table 10: ARFIMA(0, d, 0) with linear trend: The estimates d̂ and MSE(σ2 = 0.5, β =
0.01)

d n d̂/MSE σ̂2/MSE(σ2 = 0.5) β̂/MSE(β = 0.01)

256 0.1245/0.0027 0.5789/0.0076 0.0099/2.6058×10−6

0.1 512 0.1125/0.0012 0.5446/0.0030 0.0100/3.2935×10−7

1024 0.1067/0.0007 0.5255/0.0011 0.0100/5.2547×10−8

256 0.2512/0.0029 0.5843/0.0087 0.0103/4.9333×10−6

0.25 512 0.2496/0.0013 0.5440/0.0027 0.0100/8.4964×10−7

1024 0.2443/0.0006 0.5247/0.0012 0.0100/3.2295×10−7

256 0.3839/0.0028 0.5835/0.0084 0.0103/1.2890×10−5

0.4 512 0.3966/0.0012 0.5397/0.0024 0.0102/2.6690×10−6

1024 0.3968/0.0007 0.5218 /0.0010 0.0099 /8.3810×10−7

The table (10) presents the estimated value when σ2 = 0.5 and β = 0.01.

The table (11) presents the estimated value when σ2 = 1 and β = 0.001.

6.3.1 Inference on other parameters

Since our method estimates innovation variance as well as slope other than long-memory

parameter, we can see the results for two other parameters. The following table (12) shows

us the estimates (σ̂2, β̂) and the corresponding MSE’s. 1 and 0.01 were considered as the

true value for innovation variance and slope, respectively.
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Table 11: ARFIMA(0, d, 0) with linear trend: The estimates d̂ and MSE(σ2 = 1, β =
0.001)

d n d̂/MSE σ̂2/MSE(σ2 = 1) β̂/MSE(β = 0.001)

256 0.1188/0.0022 1.0081/0.0067 0.0009/4.2312×10−6

0.1 512 0.1027/0.0015 1.0055/0.0036 0.0009/7.3720×10−7

1024 0.1028/0.0007 1.0019/0.0023 0.0011/1.2182×10−7

256 0.2409/0.0042 0.9959/0.0071 0.0010/1.0543×10−5

0.25 512 0.2449/0.0016 1.0031/0.0033 0.0011/1.9395×10−6

1024 0.2422/0.0007 1.0035/0.0016 0.0009/3.4809×10−7

256 0.3662/0.0041 0.9972/0.0062 0.0013/2.1019×10−5

0.4 512 0.3893/0.0014 1.0052/0.0036 0.0007/5.8666×10−6

1024 0.3968/0.0005 1.0032/0.0019 0.0011/1.4461×10−6

Table 12: ARFIMA(0, d, 0) with linear trend: The estimates σ̂2, β̂ and corresponding
MSE(σ2 = 1, β = 0.01)

d n σ̂2/MSE(σ2 = 1) β̂/MSE(β = 0.01)

256 1.0227/0.0082 0.0102/4.7843×10−6

0.1 512 1.0068/0.0034 0.0101/7.8048×10−7

1024 1.0032/0.0014 0.0100/1.4192×10−7

256 1.0153/0.0048 0.0103/1.1568×10−6

0.25 512 1.0122/0.0034 0.0101/2.2790×10−6

1024 0.9986/0.0025 0.0100/3.9425×10−7

256 1.0129/0.0065 0.0106/3.1462×10−5

0.4 512 0.9995/0.0033 0.0097/5.8004×10−6

1024 0.9966/0.0019 0.0099/9.8694×10−7

6.4 Application to fMRI

Various applications of long memory process have been extended to many fields such as

genetics and psychology. Here we apply our method to simulated functional magnetic

resonance imaging (fMRI) data. The model we adopt here can be written as

y = Xβ + e, (6.2)

where e is a long memory process with an innovation variance σL
2.
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We generated fMRI data by convolving a square wave signal with a Poisson hemody-

namic response function (HRF). A square wave signal can be defined as

x(t) = A

∞∑
k=−∞

g(t− kP ), (6.3)

where A and P are amplitude and fundamental period of the signal, respectively. The

function g(t) is defined as

g(t) =


1, 0 ≤ t < P/2

−1, P/2 ≤ t < P

0, ow

. (6.4)

Since the typical size of fMRI data is between 300 and 400, we considered three

different sample sizes such as 128, 256 and 512 in this section. We consider σ2 = 1,

β = 0.01. For other parameters, three different d(0.1, 0.25, 0.4) and SNR (0.5,5,10) are

considered, respectively. The figure 14 shows a simulated fMRI signal which is generated

by convolving a square wave signal with N = 512, d = 0.1 and a period of 16 with

the poisson HRF with λ = 4. Parameters (β, σL
2) is set to (0.01,1). The three different

signal-to-noise ratio (SNR) are considered:

SNR = 10 log

(
A

σL
2

)
. (6.5)

Figure 14: Simulated fMRI signals(d = 0.1).

The following tables (table (13) to table (15)) represent estimated parameters and

MSEs based on 100 replications.
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Table 13: fMRI: The estimates d̂ and MSE(SNR = 0.5)

SNR=0.5, σ2 = 1, β = 0.01

d n d̂/MSE σ̂2/MSE β̂/MSE
128 0.1380/0.0052 1.0276/0.0107 0.0025/0.0101

0.1 256 0.1151/0.0020 1.0288/0.0064 0.0063/0.0040
512 0.1052/0.0014 1.0019/0.0031 0.0018/0.0019
128 0.2387/0.0064 0.9981/0.0087 0.0125/0.0110

0.25 256 0.2582/0.0042 1.0280/0.0062 0.0026/0.0044
512 0.2544/0.0016 1.0077/0.0037 -0.0032/0.0020
128 0.3463/0.0076 0.9921/0.0095 -0.0126/0.0100

0.4 256 0.3822/0.0027 1.0074/0.0065 0.0016/0.0034
512 0.4001/0.0017 1.0051/0.0042 0.0063/0.0020

The results for different parameter values are given in the following tables (table (13)

and table (14)).

The following box plot (figure 15) includes results for 9 combinations of sample size

and long memory parameter.(SNR=5)

Figure 15: Box plot for SNR=5.

It is not surprising that the estimates are getting closer to the true value as sample

size increases and that the variation of estimates is decreasing according to the increase of

sample size.
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Table 14: fMRI: The estimates d̂ and MSE(SNR = 5)

SNR=5, σ2 = 1, β = 0.01

d n d̂/MSE σ̂2/MSE β̂/MSE
128 0.1413/0.0050 1.0406/0.0137 0.0063/0.0098

0.1 256 0.1146/0.0023 1.0208/0.0064 0.0005/9.3771×10−5

512 0.0989/0.0012 1.0154/0.0036 0.0085/0.0015
128 0.2579/0.0058 1.0304/0.0089 -0.0064/0.0087

0.25 256 0.2546/0.0041 1.0211/0.0069 -0.0014/0.0018
512 0.2552/0.0016 1.0045/0.0027 0.0047/0.0018
128 0.3574/0.0056 1.0240/0.0092 0.0043/0.0081

0.4 256 0.3782/0.0023 1.0032/0.0048 0.0062/0.0046
512 0.3923/0.0013 1.0078/0.0027 0.0058/0.0020

Table 15: fMRI: The estimates d̂ and MSE(SNR = 10)

SNR=10, σ2 = 1, β = 0.01

d n d̂/MSE σ̂2/MSE β̂/MSE
128 0.1453/0.0066 1.0299/0.0130 -0.0068/0.0061

0.1 256 0.1192/0.0025 1.0143/0.0075 -0.0107/0.0030
512 0.1054/0.0011 1.0096/0.0028 -0.0047/0.0022
128 0.2519/0.0068 1.0237/0.0110 -0.0080/0.0068

0.25 256 0.2465/0.0033 1.0002/0.0060 -0.0043/0.0032
512 0.2554/0.0012 1.0061/0.0035 0.0006/0.0018
128 0.3546/0.0067 1.0339/0.0117 -0.0115/0.0061

0.4 256 0.3917/0.0026 1.0171/0.0065 -0.0011/0.0045
512 0.3974/0.0011 0.9918/0.0037 0.0063/0.0018
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CHAPTER VII

SUMMARY AND FUTURE STUDY

7.1 Summary

We have investigated a wavelet-based Bayesian parameter estimation method in the pro-

cess which shows long range dependence. The method uses the decorrelation property of

wavelet transform and introduces the Markov chain Monte Carlo method in the Bayesian

framework for fast and efficient posterior inference. Simulation studies have shown that

the method displays robustness against nonstationarity such as linear trend.

The commonly used models are ARFIMA(0, d, 0) and fractional Gaussian model. For

an illustrative example, we considered simple Gaussian ARFIMA(0, d, 0) model to check

the performance of several existing methods. In the analysis, four estimation methods are

chosen for comparison. The performance of each method is getting better based on bias and

MSE as sample size increases. Also, we noticed that maximum likelihood based estimator

is stable in terms of MSE.

To check if the estimation methods behave well even in the case of nonstationarity, we

considered ARFIMA model with linear trend. As we expected, wavelet-based Bayesian

method is the most robust against nonstationarity such as linear trend. We can see that

GPH estimator is not stable while the maximum likelihood-based estimator is relatively

stable.

Since wavelet has many good properties, it is very widely used in various fields. In the

estimation process, it is commonly used because of its robustness against nonstationarity

and model misspecification. In addition to that, wavelet has been used as a shrinkage

tool. For example, it has been used as a standard tool for noise removal. For this purpose,

we used wavelet transform in the high throughput data, mass spectrometry data in which
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there is heterogeneous noise variance. First of all, the local thresholding method detects

variance change points and uses the points detected to get better estimate of threshold

value in each segment. To check the performance of the method, we applied the local

thresholding method to the real ovarian cancer data. For comparison, we also considered

global thresholding method with different threshold values along with soft thresholding

policy. The local thresholding method is quite helpful to detect peak or biomarker which

has important biological meaning in proteomics.

7.2 Future study

The application of long memory parameter estimation is extended to various fields includ-

ing functional magnetic resonance imaging(fMRI). We are going to apply wavelet-based

Bayesian method to fMRI data to find some connection between brain activity and long

memory parameter. Also, we will consider estimating other parameters as well as long

memory parameter simultaneously in the more complicated setup, for example, nonsta-

tionary ARFIMA (p, d, q).
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