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ABSTRACT 

 

Characterization and Genetic Analysis of a Very High Tillering and Dwarf Rice 

(Oryza sativa L.) Mutant. (August 2008) 

Dhananjay Mani, B.Sc. (Hons)., Punjab Agricultural University, Ludhiana, India 

Co-Chairs of Advisory Committee: Dr. Rodante E. Tabien 

                                                          Dr. Scott A. Finlayson 

 

This study focused on characterizing and determining the inheritance pattern of 

very high tillering and dwarf traits of a rice mutant. To characterize the new mutant, 

field phenotyping studies, and response of two mutant lines (M-13662 & M-13684) to 

three levels of nitrogen (179, 202, 224 kg ha
-1

) and five planting densities (1, 2, 3, 4, 5 

plants hill
-1

) in greenhouse conditions were conducted. A separate study was carried out 

to determine the response of the two mutant lines to gibberellic acid (GA) application. 

The mutants were 50-55 cm tall and produced 89-121 tillers plant
-1

 at harvest. 

Dwarfness of the mutants was due to average shortening of the top four internodes as 

well as compression of 2-3 basal internodes. The first tiller emerged at the 4
th

 leaf stage 

whereas no tiller was observed in semi-dwarf rice cultivar, Cocodrie. Results showed 

that the production of high tiller numbers was the result of the release of axillary buds 

from a dormant stage rather than the initiation of additional axillary buds. The mutants 

were late maturing than controls (Cocodrie & Zhe733). The panicles were very short 

(10-12 cm) and had 25-30 small grains. The majority of tillers of the mutants followed 

the dn-type dwarf pattern based on Takeda’s classification, but a few plants had a 
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different dwarfing pattern not included in the classification. Both mutant lines were 

found to have similar agronomic traits but were significantly different from controls. The 

tillering ability of the mutants was affected by the five different planting densities as 

well as the three nitrogen levels.  Mutants produced more tillers, both productive and 

non-productive, at the lowest plant density. The longest and shortest panicles were 

observed at 202 kg ha
-1

 and 179 kg ha
-1

, respectively. Variations in other agronomic 

traits were found not significant. The response of the mutant to GA application was 

similar to Cocodrie, and thus was considered GA responsive. Preliminary DNA data 

using SSR markers supported the presumed origin of the mutants and the genetic 

analysis indicated that one recessive gene controlled both the dwarfing and very high 

tillering traits. 
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CHAPTER I 

INTRODUCTION 

1.1 DISTRIBUTION AND IMPORTANCE OF RICE: Rice (Oryza sativa L.) is one 

of the most important staple food crops of Asia, Africa, and South America, and serves 

as a primary source of food for more than half of the world population (Khush, 2005). It 

is the main source of the 35-60% dietary calories consumed by more than 3 billion 

people (Fageria et al., 2003).  It is considered as the world’s most diverse crop and is 

probably the most versatile crop. It is grown below sea level in Kerala, India, at more 

than 3000 m elevation in the Himalayas, and at sea level in the deltas of the Asian rivers. 

It can be found from 53
0
 North in Northeastern China to 35

0 
South in New South Wales, 

Australia. (Mae, 1997; Santos et al., 2003). There are two species of domestic rice, 

Oryza sativa and Oryza glaberrima. Oryza sativa is cultivated throughout the world but 

Oryza glaberrima is cultivated mostly in West Africa. Oryza sativa is further classified 

into three sub-species based on geographical distribution and morphological traits: 

japonica, indica, and javanica (Takahashi, 1984). Japonica and indica are mainly grown 

in temperate and tropical/sub-tropical areas, respectively. Javanica is also known as 

“tropical japonica” (Mae, 1997) commonly grown in the U.S. The first trial planting of 

rice in the U.S. was established in Virginia in 1609 but the commercial cultivation 

started in South Carolina in the 17
th

 century. Today, rice is being grown in six states: 

Arkansas, California, Louisiana, Mississippi, Missouri, and Texas. 

__________ 

This thesis follows the style and format of Crop Science. 
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Based on grain type, U.S. rice can be classified as long grain, medium grain and short 

grain. Long grain rice is usually grown in the Southern states with a small amount in 

California while medium grain rice is generally grown in Arkansas, California, and 

Louisiana. Short grain rice is mainly produced in California. In 2007, the USDA-ERS 

reported that 72% of total U.S. rice production was long grain rice. USA is the fourth 

largest rice exporting country. Total rice production including long, medium, and short 

grain was 197,911 (1000 cwt) in 2007 (Childs, 2007) and Texas contributed 4.94% of 

total U.S. rice production. Similar to Asian countries, total U.S. rice harvested area is 

decreasing. The total U.S. rice planted area was 2748 (1000 acres) in 2007, which was 

3.17%, less than total planted area in 2006. Only 5.31% of the planted areas were from 

Texas in 2007. The average grain yield per hectare of Texas (7,499.90 kg ha
-1

) ranks 

fifth after California (9,346.90 kg ha
-1

), Mississippi (8,227.50 kg ha
-1

), Arkansas 

(8,059.60 kg ha
-1

), and Missouri (7,611.83 kg ha
-1

) according to the 2007 survey taken 

by the Economic Research Service, USDA. Due to the exponential rate of population 

growth, it is estimated that a 40% increase in rice yield is needed by 2030 to fulfill the 

growing demand without affecting the resource base (Khush, 2005). The agricultural 

land for crop production is decreasing annually due to urban growth and land 

degradation, hence, rice production needs to be increased from the same or even smaller 

amount of land. Novel high yielding rice cultivars, ultra-modern rice production 

practices and technologies need to be developed to meet the increasing rice demand to 

feed the entire world. Today’s situation is similar to the conditions that started ‘Green 

Revolution’ in the late 1960’s that fed the increasing human population by planting 
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semi-dwarf, nitrogen responsive, and disease resistant cultivars of wheat and rice (Peng 

et al., 1999). 

Tillering, plant height and panicle morphology are very important agronomic 

traits that determine grain production of rice. The total number of tillers includes both 

productive and non-productive tillers. The number of productive tillers determines the 

number of panicles that eventually affects the yield and total production of the crop. 

Plant height is mainly determined by the pattern of internode and panicle elongation and 

it is dependent on cultivars and the environment. Rice, like most of the gramineous 

plants, shows internode elongation at a particular developmental stage. Upper internodes 

start successive elongation, while the rest of the lower internodes remain as unelongated 

during panicle formation in early maturing rice cultivars but in the late maturing 

cultivars, the internode elongation precedes panicle formation. Therefore, exploring the 

relationship between internode elongation and the number of internodes is necessary in 

each of the cultivars (Takeda, 1977). Dwarfing genes play a very important role in 

reducing the internode length and/or the number of elongated internodes that affect crop 

production. The introduction of the semi-dwarfing gene in wheat and rice started the 

Green Revolution (Peng et al., 1999). 

Different kinds of rice mutants have been identified and included in rice breeding 

programs as germplasm sources and new ones were introduced as resources for new 

gene discovery, such as the tos17, a T-DNA mutant panel (Hirochika et al., 2004). 

Generally, a reduction of culm length leads to shortening of panicle length in cereal 

crops but the panicle length is highly correlated to the upper internodes than to lower 
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ones in rice. The reduction of the elongation of the third and fourth internodes from the 

top had very little effect on the reduction of panicle length (Takeda, 1975; Takeda, 

1977). Many dwarf rice mutants had pleiotropic phenotypes, such as small panicles, 

small grains, profuse tillers and deformed leaf shapes. These high tillering dwarf rice 

mutants, although identified a long time ago, were usually not fully characterized 

because of their poor appearance, several weaknesses, and lack of their economic 

importance. Earlier dwarf mutants and normal rice cultivars were classified into six 

groups (N, dn-, dm-, d6-, nl- and sh type) based on the elongation pattern of the upper 

four internodes (Takahashi and Takeda, 1969; Takeda, 1977). Since the 1980s, a number 

of different kinds of rice mutants were identified and characterized to establish the 

relationship between the genes responsible for that particular morphology and the 

phenotype (Itoh et al., 2005). Therefore, identification and characterization of the 

different kinds of mutants will be useful in determining the function of genes of the 

completely sequenced rice genome. 

A high tillering dwarf rice mutant was recently identified in a segregating 

population grown in Beaumont, Texas. This mutant is dwarf and has tremendous 

capacity to produce very high numbers of productive tillers. High numbers of productive 

tillers and plant height are two important agronomic traits in several crops and the 

relationship between high tillering and height is not fully elucidated (Zou et al., 2005). 

Therefore, this mutant can be a useful genotype in understanding the genetics of these 

traits and their relationship to one another. Hence, this study aimed to phenotypically 

characterize the mutant, determine the mutant’s response to different levels of nitrogen, 
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population densities, growth regulator, and study the pattern of inheritance of the 

observed phenotypes. 

1.2 MORPHOLOGY OF THE RICE PLANT: The rice plant, Oryza sativa, belongs 

to the grass family. Rice plant growth is mainly divided into three different stages: 

vegetative, reproductive, and grain filling or ripening stages (Counce et al., 2000). 

Germination, emergence, leaf production, seedling establishment and tiller production 

occur in the vegetative stage of the plant life cycle. The reproductive stage includes culm 

elongation, the emergence of the flag leaves, booting, heading, and flowering. The 

ripening stage of rice is defined as grain filling or hardening of the grains. Grains contain 

the lowest amount of moisture at the ripening stage. The whole rice plant is divided into 

three vegetative parts: root, culm and leaf. 

1.2.1 Root: The root of the rice seedling includes the radicle (seminal root), the 

mesocotyl root, and nodal root. The coleorhiza, a covering of the radicle, protrudes from 

the seed first during aerobic seed-germination. If the seeds germinate in anaerobic 

conditions (in water), the coleoptile, a covering of young shoot, protrudes first followed 

by coleorhiza emergence. The rice root system is basically composed of adventitious 

roots (Yoshida, 1981). The root or soil environment has an important role in the 

formation of root hairs which are mainly responsible for the absorption of water and 

nutrients. The root system of upland or aerobic rice is larger, more vigorous, and has 

more root hairs as compared to anaerobic flooded or lowland rice. The root growth to 

maximum root length was estimated using a quadratic function with the advancement of 

plant age from 19 to 120 days after sowing (Fageria, 2007). 
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1.2.2 Culm: The mesocotyl is a structure which helps the coleoptile reach above 

the soil surface. The culm is cylindrical and hollow except at the nodes. The node or 

nodal region bears a leaf and a single bud. 

1.2.3 Leaf: Leaf morphology such as length, width, erectness, thickness, and 

toughness are very important characteristics in determining the yield capacity of a 

cultivar. Erect leaves allow more uniform distribution of light in the plant canopy and 

increases photosynthetic efficiency of the plant. The normal rice leaf consists of a leaf 

sheath, auricles, and a leaf blade. The first leaf has no leaf blade but the second leaf is a 

true leaf with leaf blade and leaf sheath. The remaining leaves of the rice plant are 

normal, except the flag leaf, which is the topmost, or the last leaf produced on the main 

stem. The flag leaf supplies the photosynthetic products to the developing panicles. The 

collar is a structure which joins the leaf blade and leaf sheath. The leaf has parallel 

veination. Auricles are ear-like structures at the base of the blade while the ligule is a 

leaf appendage which is present at the junction of the leaf sheath and the leaf blade. 

Active buds in the leaf axils produce tillers. Primary tillers are produced from the mother 

tiller (main culm) and may produce secondary tillers, which then produce tertiary tillers 

later. Primary tillers are produced in an alternate manner on the main culm. 
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CHAPTER II 

REVIEW OF LITERATURE  

2.1 TILLER FORMATION: Plant architecture is mainly characterized by tiller 

number, tiller angle, plant height, and panicle morphology (Wang and Li, 2005). The 

shoot apical meristem (SAM) has a very important role in the production of axillary 

branches. It is the source of leaves and tillers (Li, 1979; Wang and Li, 2005). Tillers 

arise from the axillary meristems which are present in the leaf axils of the plant. Tiller 

formation depends upon the initiation of axillary meristems in the leaf axil of a leaf, and 

also upon its subsequent activity (Wang and Li, 2005). The shoot apex varies greatly in 

size and shapes. The shape, which depends upon the species and the genetic make-up of 

different plants, may be elongated, conical, dome shaped, flat or even slightly concave. 

The SAM consists of a number of the pluripotent stem cells, which have different 

functions. There are three different zones in the SAM: the central zone, the peripheral 

zone, and the rib zone. The central zone is considered as the reservoir of pluripotent stem 

cells where slow cell division has been observed. The peripheral zone surrounds the 

central zone where cell division is relatively faster than the central zone. In the third 

zone, the rib zone, the rate of cell division is similar to the peripheral zone. The leaves 

originated from the peripheral zone and the rib zone are responsible for the stem 

formation (Bowman and Eshed, 2000). 

2.2 TILLERING IN RICE: The branches of rice are known as tillers. Tiller buds of 

rice are axillary buds, which are formed in the leaf axils and produce tillers after 

differentiation of the axillary buds. The mother culm is the source of nutrients for tiller 
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buds inside the leaf sheath, but after the third leaf stage tillers start their own 

photosynthesis and their mode of nutrition shifts to autotrophy from heterotrophy 

(Hanada, 1995). Usually, tillering begins 15 to 20 days after germination (4
th

 or 5
th

 leaf 

stage) under favorable conditions and emergence of tillers is closely associated with the 

number of leaves. During the tillering stage, the rate of protein synthesis was higher as 

compared to synthesis of starch, lignin, and cellulose (Hayashi, 1995). Rice tillering 

ability was affected by environmental conditions such as light, temperature, plant 

density, and nutrients (Wu et al., 1998). Although it was affected by environmental 

factors, the tiller number of a particular rice cultivar was mainly determined by its 

genetic make-up (Wang and Li, 2005). 

2.3 RELATIONSHIP BETWEEN TILLERS AND YIELD: Tillering is a very 

important agronomic trait under biotic and abiotic stresses due to compensation 

processes. More than 75% of the total mass was represented by tillers in the high 

tillering cultivar (Teqing) at lower plant density, compared with 71% and 69% for the 

moderate tillering cultivars, Gulfmont and Rosemont, respectively (Wu et al., 1998). 

Fageria (2007) also reported that high tillering cultivars were better than low tillering 

cultivars, especially at lower plant densities and unfavorable environmental conditions, 

because high tillering cultivars compensate the yield for missing plants at low densities 

by producing more tillers. However, under favorable environmental conditions, there 

was no significant advantage among very high tillering cultivars and low tillering 

cultivars in relation to yield. The tillering ability of the rice plant had a great impact on 

panicle production (Miller et al., 1991), which was highly correlated with grain yield 
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(Counce and Wells, 1990; Miller et al., 1991). Rice grain yield was increased as final 

tiller density increased up to 700 tillers m
-2 

in a continuously flooded and water-seeded 

cultural system (Miller et al., 1991). A recent study has also shown that the number of 

tillers determined at the initiation of panicle growth stage was more highly correlated 

with grain yield than at any other growth stages in lowland rice (Fageria, 2007). In 

spring wheat grown in Saskatoon, Hucl and Baker (1989) found that 67% of the grain 

yield of spring wheat was from the main stem and primary tillers. Recently, Goos and 

Johnson (2001) reported that the main stem and primary tillers contributed 95 to 100% 

of the grain yield of hard red spring wheat. 

2.4 FACTORS AFFECTING TILLERING AND GRAIN YIELD IN RICE 

2.4.1 Nitrogen: Nitrogen is one of the most important nutrients for the rice plant 

because it is associated with chloroplast and protein synthesis, which are physiologically 

important in dry matter production (Dalling, 1985). However, nitrogen represents one of 

the most expensive production inputs, and it is the most limiting nutrient in flooded as 

well as upland non-flooded rice production worldwide (Becker et al., 1994; Baligar and 

Fageria, 1997). Nitrogen plays an important role in carbohydrate accumulation in culms 

and leaf sheaths during the booting stage and in the grains during the grain-filling stage. 

The amount of fertilizers needed during the growth of the plant depends on the type of 

fertilizers, soil type, rice cultivars, climate, and methods of application (Mae, 1997). 

Nitrogen rates for optimum grain yield vary according to cultivar and soil texture 

(Norman et al., 2005; Bond et al., 2006). Additional doses of nitrogen were needed 

during grain filling because nitrogen applied at the early stage or from mineralization of 
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labile soil organic matter has already been used to promote early growth and to increase 

the number of tillers by the maximum tillering stage (Mae, 1997). Higher doses of 

nitrogen at the early stage promote excessive vegetative growth, create lodging problems 

and increase the incidence of foliar pathogens (Bohlool et al., 1992), but topdressing of 

nitrogen at the late phase of panicle formation increases the crop yield rather than 

promoting lodging (Mae, 1997). Topdressing of nitrogen at the heading stage is very 

important to improve the grain yield since rice plants actively absorb nitrogen until two 

weeks after heading and higher nitrogen doses along with elevated carbon dioxide 

concentrations led to higher tiller number production and higher biomass plant
-1 

(Weerakoon et al., 1999). Early tiller production was influenced by the nitrogen level 

and timing of nitrogen application in no-till water-seeded rice but independent from the 

nitrogen timing and the amount of nitrogen interaction (Stevens et al., 2001). The 

application of nitrogen fertilizer in either excess amounts or less than optimum rates 

affected both yield and quality of rice (Liu, 1991; Saito, 1991).  

Mossedaq and Smith (1994) reported that the growth and development of spring 

wheat was dependent on the rate and timing of the nitrogen fertilizer application. It was 

found that the nitrogen demand was abruptly increased just before stem elongation 

during crop growth. In rice, Fageria and Baligar (1999) reported that the rate and timing 

of nitrogen fertilizer application significantly affected the grain yield as well as dry 

matter accumulation of lowland rice. Fageria and Baligar (1996) observed in central 

Brazil on Varzea soil that lowland rice yields were significantly higher at 200 kg N ha
-1

 

than at 100 kg N ha
-1

. The effect of nitrogen application varied with fertilization time 
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(Bacon and Lewin, 1990). Usually, the nitrogen is applied to rice crop in three split 

applications. It allows for more efficient nitrogen use at different stages of plant growth 

as it provides specific amounts of nutrients throughout the growing season and reduces 

leaching of nitrate in the soil. Strong (1986) reported that tiller production was increased 

when nitrogen was applied before planting or during the tillering process in spring 

wheat. Therefore, optimum amounts of nitrogen, timing of application, and method of 

application must be determined for every crop to achieve potential grain yield. The 

production of non-productive tillers varies according to the amount of nitrogen applied 

and cultivars (Amin et al., 2006). The judicious use of available advanced technologies 

and the development of novel cultivars could help achieve desired yield potentials for 

any crop. 

2.4.2 Density: Seeding rate is also one of the principal factors affecting tiller 

production capacity (Counce et al.,1992) and the numbers of total tillers and stems 

increased with increasing planting density, while the numbers of secondary and tertiary 

tillers decreased with increasing planting density in all rice cultivars evaluated 

(Nuruzzaman et al., 2000). Plant density was found inversely proportional to the number 

of secondary and tertiary tillers (Hoshikawa, 1989; Wu et al., 1998). The number of 

productive tiller is a very important agronomic trait, however, it is affected by planting 

density. Ottis and Talbert (2005) reported that the number of productive tillers was 

decreased at higher planting density. Nitrogen and plant density play important roles in 

the production of tiller and eventually, yield of the crop. Higher seeding rate increased 

tiller density but produced low number of grains spike
-1

 in wheat (Done and 
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Whittington, 1980). In rice, tiller density increased significantly with increasing plant 

density from 122 to 458 plants m
-2

, while total biomass above the ground was not 

significantly different among the plant populations (Miller et al., 1991). Tiller abortion 

rates was increased by higher tiller number and a highly significant negative correlation 

(r = -0.86**) was found between percentage of productive tillers and maximum tiller 

number (Schnier et al., 1990). 

2.4.3 Planting date: Planting date has an important role in tiller production apart 

from nitrogen and planting density. Tiller formation was reduced in hard red spring 

wheat which, resulted in a significant reduction of spikes m
-2 

in the case of delayed 

planting (Black and Siddoway, 1977) but on the other hand, more tillers were observed 

in early planting which resulted in a significant increase of spikes m
-2 

(Hucl and Baker, 

1989). In rice, delayed planting significantly reduced the grain yield by 0.88 t ha
-1

 in 

aromatic rice (Ghosh et al., 2004)), however, high planting density can compensate for 

the yield loss caused by the late planting (Baloch et al., 2006). 

2.4.4 Growth regulators: The activity of axillary buds is controlled by multiple 

genetic and developmental or environmental signals, and apical dominance that 

suppresses the growth of axillary bud is one of those signals (Zou et al., 2006). It was 

first demonstrated that the removal of the shoot apex, a major site for auxin biosynthesis, 

facilitated the growth of dormant axillary buds (Thimann and Skoog, 1933). Auxin 

promotes apical shoot dominance, which inhibits axillary bud activity, and on the other 

hand, cytokinin promotes the axillary bud outgrowth. The role of cytokinin in shoot 
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production was supported by the high levels of cytokinin and bushy phenotype in the 

different Arabidopsis mutant studies (Chaudhary et al., 1993; Catterou et al., 2002).  

2.5. FACTORS AFFECTING PLANT HEIGHT, PANICLE DENSITY AND 

GRAIN YIELD: Rice plant height is an important agronomic trait because it improves 

harvest index and it is associated with plant lodging. Semi-dwarf plant stature increases 

harvest index (grain/grain plus straw) and enhances biomass production (Khush, 1999). 

Plant height is defined as the distance from ground level to the tip of the tallest leaf for 

seedling but it is the distance from ground level to the tip of the tallest panicle at harvest 

(Fageria, 2007). It is determined by the total number and length of internodes and varies 

according to genetic make-up of the plant and environmental condition (Wang and Li, 

2005). Qualitative genes and quantitative loci were associated with plant height (Huang 

et al., 1996). The success of green revolution was associated with the semi-dwarf 

cultivars of wheat and rice that were very responsive to heavy doses of fertilizer 

(Yoshida, 1981; Khush, 1999; Peng et al., 1999).  

2.5.1 Nitrogen: Nitrogen fertilizer is essential for higher grain production, but it 

also promotes leaf and stem elongation, which enhance plant stature. Plant heights, 

productive tillers hill
-1

 and panicle length were positively correlated with higher doses of 

nitrogen (Manzoor et al., 2006). Plant height, number of productive tillers hill
-1

, panicle 

length, number of grains panicle
-1

, 1000-grain weight, and yield increased from 0 kg ha
-1

 

to 175 kg ha
-1

 in the Basmati 2000 rice cultivar. On the other hand, total yield, number 

of grains panicle
-1

 and 1000-grain weight started declining beyond the 175 kg N ha
-1

. 

Higher panicle density was the result of higher dose of nitrogen application (Bond et al., 
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2008). Similarly in wheat (Triticum aestivum L.), nitrogen increased plant height and the 

number of grains spike
-1

 (Khan et al., 2000; Iqtidar et al., 2006).  

Spikelet sterility is not desirable in crop improvement program since it reduces 

the grain yield and it depends upon the cultivar as well as nitrogen level (Fageria, 2007). 

Rice grain yield can be increased by as much as 15% if rice breeding eliminates spikelet 

sterility. The application of adequate amount of nitrogen accounted for about 91% 

variation in panicles m
-2

, approximately 75% variation in spikelet sterility, and about 

73% variation in 1000 grain weight in lowland rice (Fageria and Baligar, 2001; Fageria, 

2007). The amount of nitrogen and timing of application had a major role in improving 

grain yields. High yielding rice cultivars needed relatively higher amounts of nitrogen 

than average yielding rice cultivars (Wada et al., 1986). However, the formation of each 

yield component was not only dependent on the absolute amount of nitrogen but it was 

also dependent upon the nitrogen supply pattern and uptake process at each growth stage 

for respective yield component (Mae, 1997). Nitrogen applied during booting or 

flowering stage did not improve grain yield but it kept rice leaves more green during the 

grain filling growth stage. The number of panicles and grains were already fixed when 

the nitrogen was applied at the reproductive stage (Castillo et al., 1992; Fageria and 

Baligar, 1999). Thousand grain weight did not change significantly with nitrogen 

treatments and was a very stable varietal character under different growing conditions 

(Yoshida, 1981; Fageria and Baligar, 1999). 

2.5.2 Density: Agronomic factors such as plant height and grain yield are highly 

affected by plant spacing in rice crop. Plant spacing varies according to cultivars. Short 
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stature or semi-dwarf cultivars had higher yields at close plant spacing compared to 

taller cultivars (Tanaka et al., 1964). Dofing and Knight (1994) reported that taller plant 

height and weaker culms were due to higher plant densities and this may increase the 

potential losses due to lodging and disease in barley. Wells and Faw (1978) reported that 

seeding rates had no significant effect on yield at low nitrogen levels, but lower seeding 

rates had significantly higher yields at high nitrogen dose. An inverse relationship was 

found between panicle size and panicle density because the source becomes a limiting 

factor to fill large sink size, primarily in large number of panicles per unit area (Fageria, 

2007). There was also an inverse relationship between the percentage of ripened spikelet 

and the panicle density (Yoshida, 1981). It was reported that as rice seedling rates 

increased, filled grains panicle
-1

 decreased with no changes in yield (Jones and Synder, 

1987; Gravois and Helms, 1992). Fageria and Baligar (1999) reported that spikelet 

sterility was increased as the number of panicles or number of spikelets per unit area 

increased and it was attributed to imbalance between higher sink (spikelet) capacities 

and comparatively lower source capacity (photosynthesis). Panicle density, spikelet 

panicle
-1

, weight of spikelet, and grain filling were the main yield components and 

panicle density was responsible for the highest variation in grain yield (Fageria, 2007). A 

negative correlation was found between spikelet sterility and grain yield (Fageria and 

Baligar, 1999) and a high positive correlation was found between panicle density and 

total grain yield (Ottis and Talbert, 2005). Fageria (2007) reported that panicle density 

had a major role in determining the total grain yield. Final tiller density was an important 

factor in determining rice grain yield in a flooded, water-seeded cultural system with the 
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maximum yield reported at 700 tillers m
-2

 (Miller et al., 1991). Therefore, there must be 

an appropriate number of panicles and plants per unit area to achieve the maximum 

yield. 

2.5.3. Growth regulators: Two growth regulators, gibberellic acid (GA) and 

brassinosteroid (BR) are known to play major roles in controlling rice plant height 

(Yamamuro et al., 2000; Sasaki et al., 2002; Wang and Li, 2005). GA  was first isolated 

by Cross from the Fusarium moniliforme Sheldon stage of Gibberella fujikuroi (Saw.) 

Wr (Phinney, 1956). GA plays a very important role in promoting cell elongation in a 

number of higher plants and induces hydrolytic enzymes (α-amylase) in the aleurone 

layer of cereal seeds. It was found to enhance the cell division process in the inter-calary 

meristem of submerged deepwater rice by activating histone kinase and cyclin genes 

during the induction of rapid growth in the internodes (Sauter et al., 1995). GAs are 

known as a major plant hormone involved in promoting the growth of the rice leaf 

sheath (Matsukura et al., 1998) and have been found effective in delaying flowering and 

panicle exsertion important in hybrid rice seed production (Virmani and Sharma, 1993). 

Brassinosteroids have a great influence on both plant height and leaf erectness in 

rice which are very important agronomic traits in crop production. Recently, a rice dwarf 

mutant, d61, was characterized. It was found that the pleiotropic abnormal phenotype of 

dwarfism and erect leaves was associated with defect in the synthesis of brassinosteroids 

(Yamamuro et al., 2000). 

2.6. DESCRIPTION AND CLASSIFICATION OF DIFFERENT KINDS OF RICE 

DWARF MUTANTS: Dwarfness plays an important role in lodging resistance. Most of 
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the semi-dwarf cultivars are high yielding because of their lodging resistance and high 

harvest index under intensive cultural practices. Several dwarf mutants were identified 

and characterized in rice but most of them originated from induced mutations 

(chemicals, radiation). On the other hand, breeding populations or big rice production 

areas are good sources of natural mutants, but these mutants are usually not identified 

and kept by the breeders/farmers due to their poor appearance or low agronomic values. 

There were a number of mutants having abnormal patterns of shoot branching, mostly 

with defects in axillary meristem initiation or subsequent out-growth or both, that were 

identified and described in different species such as maize, tomato, and Arabidopsis 

(Doebley et al., 1995; Schumacher et al., 1999; Stirnberg et al., 1999; Shimizu-Sato and 

Mori, 2001; Hubbard et al., 2002; Ward and Leyser, 2004). Quantitative trait loci and 

molecular analysis showed that the TB1 gene regulates branching in maize (Doebley et 

al., 1995).  

Studies identified many genes in rice, which were involved in the initiation and 

out-growth of rice tiller buds or leaves during the vegetative stage (Komatsu et al., 2003; 

Li et al., 2003; Takeda et al., 2003). LAX and SPA were identified as major regulators of 

axillary meristem formation in rice and the mutants (lax & spa) with these traits had 

reduced number of panicle branches because of the suppression of initiation of lateral 

branches (Komatsu et al., 2003). 

The dwarf stature of plants is highly associated with GAs. The Green revolution 

genes, wheat reduced height1 (Rht1) and rice semi-dwarf1 (sd-1) were involved in GA 

signaling and GA biosynthesis, respectively (Peng et al., 1999; Sasaki et al., 2002; 
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Spielmeyer et al., 2002). The sd-1, a recessive, semi-dwarfing gene, is one of the most 

important genes used in rice breeding program and was first identified in the Chinese 

rice cultivar ‘Dee-geo-woo-gen’. Presence of this gene resulted in a shortened culm with 

high lodging resistance and a greater harvest index, allowing for increased use of 

nitrogen fertilizers (Jennings, 1964). The green revolution rice cultivar IR8 was 

developed by crossing Dee-geo-woo-gen with the sd-1 gene and ‘Peta’ (tall) in 1960 

(IRRI, 1967).  This cultivar produced record yields throughout Asia and formed the basis 

for the development of new high yielding, semi-dwarf plant types. Identification and 

characterization of the Green revolution gene (sd1) opened the door for the development 

of high-yielding semi-dwarf cultivars. After IR8 release, many semi-dwarf rice cultivars 

were developed and released due to the agronomic importance of this trait in the 

breeding programs.  

Extensive studies have been carried out to elucidate the dwarfing mechanism in 

rice dwarf mutants and to identify the genes involved. The first cloned rice dwarf mutant 

gene was d1 and its dwarfing phenotype was associated with non-production of a 

functional GTP-binding protein involved in GA signal transduction (Ashikari et al., 

1999). The two rice dwarf genes, d61 and d2, failed to synthesize and perceive 

brassinosteroid (BR), respectively (Yamamuro et al., 2000; Hong et al., 2003). The d2 

mutant was only 70-80% of the height of the wild-type plant and the dwarfness of this 

mutant was due to complete or partially shortening of the second internode from the top. 

The elongation of other internodes was found not affected in this mutant (Hong et al., 
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2003). On the other hand, the two types of internode elongation (dm-type and d6-type) 

were observed in the d61 mutant (Yamamuro et al., 2000). 

Takeda (1977) classified dwarf mutants into six groups, based on the elongation 

pattern of the top four internodes. The N represents the internode elongation of the 

normal strains, whose internodes generally become shorter from the top internode to the 

basal internode. The dn-type represents the elongation pattern of some dwarf strains 

whose successive internodes are reduced uniformly. On the other hand, dm-type and the 

sh-type mutants show reduced length of the second internode and first uppermost 

internode, respectively. The nl-type shows a dual effect; reducing the length of the 

uppermost internode, and increasing the length of basal internodes. The d6 is another 

type whose uppermost internode measures more than half of the total culm length. 

Another classification of rice dwarf mutants given by Mitsunaga et al. (1994) was based 

on the growth response to gibberellic acid (GA) application. Dwarf rice mutants were 

classified into three groups: T, D, and E. The T group was represented the GA-deficient 

mutants and the D group was comprised of GA-insensitive mutants, whereas those 

mutants that were neither GA-deficient nor GA-insensitive represented the E group. 

2.6.1 Mutants related to tillering: Besides the semi-dwarf habit, tillering is 

another important agronomic trait that affects panicle production. Therefore, several rice 

tillering mutants were identified, but most of them are not completely characterized 

(Goto et al., 2005). Tillering dwarf mutants were characterized by an increase in tiller 

number as well as a reduction in plant height (Kinoshita and Takahashi, 1991). Five 

tillering dwarf rice mutants (d3, d10, d14, d17 and d27) that showed reduced plant 
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height and increased tiller number have been characterized and this phenotype was the 

result of decreased suppression of tiller bud out-growth (Ishikawa et al., 2005). Recently, 

rice ‘fine culm 1’ (fc1) mutant and a single tiller mutant called ‘monoculm 1’ mutant 

(moc1) were identified (Li et al., 2003; Takeda et al., 2003). The fc1 mutant produced 

twice as many tillers as the wild-type rice plant and the pattern of flowering was 

unaffected (Goto et al., 2005). Both the d mutants (d3, d10, d14, d17 and d27) and the 

fc1 mutants were dwarf and high tillering but both mutants differed from each other in 

dwarfing pattern. Dwarfness of d mutants was accounted to suppression of all internodes 

that led to a dwarf phenotype, whereas significant shortening was observed only in the 

most apical internode in fc1 (Arite el al., 2007). The absence of tillering ability in moc1 

mutant was due to the loss of the capacity to initiate tiller buds (Li et al., 2003). The 

MOC1 locus was mapped on the long arm of chromosome 6. Based on sequence 

similarity with maize Teosinte branched1 (TB1), which was involved in lateral 

branching in maize, another rice tillering gene, TB1 gene (OsTB1) was identified 

(Takeda et al., 2003). It was reported that overproduction of OsTB1 significantly reduced 

the lateral branching in rice while its loss-of-function mutation in the mutant fine culm 1 

(fc1) promoted the out-growth of the rice tillers. The initiation of axillary buds, however, 

was not affected in OsTB1 over-expresser transgenic lines. This indicates that the major 

role of OsTB1 was to control the out-growth of tiller buds rather than the initiation of 

tiller buds (Takeda et al., 2003).  In addition to regulating apical dominance, the TB1 

gene that was similar in sequence with the OsTB1 gene of rice was identified to have a 

role in the development of inflorescence in maize (Doebley et al., 1997). TB1 is a 
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member of the TCP binding domain group of transcriptional regulators. Many members 

of the TCP family were involved in controlling cell division and growth either alone or 

combining with some other proteins (Cubas et al., 1999). Recently, the htd-1 (high 

tillering dwarf 1) allele was discovered in rice, and it was responsible for high tillering 

trait. The htd-1 mutant produces excessive number of tillers and the first tillers started 

coming out from their leaf sheath at the third leaf stage. The htd-1 mutant enhanced the 

number of tillers by releasing axillary bud out-growth from the dormant stage rather than 

by initiating more axillary buds in the leaf axils. GA assays revealed that the mutant htd-

1 and Nanjing 6 (wild rice variety) had the same α-amylase activity and had almost the 

same ratio of the lengths of the second leaf sheath with and without prior application of 

GA as Nanjing 6 (control, wild rice variety). This indicated that the mutant htd-1 was 

neither GA deficient nor a GA insensitive dwarf (Zou et al., 2005). Genetic analysis 

revealed that high tillering and dwarf traits of the htd-1 mutant were controlled by a 

single recessive nuclear gene, htd-1 and it was fine mapped in a 30-kb DNA region on 

chromosome 4 (Zou et al., 2005). 
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CHAPTER III 

MATERIALS AND METHODS 

3.1 SOURCE OF MUTANT: A very high tillering dwarf rice mutant was selected from 

an early generation population of an L-202 x Saber cross developed at Texas Agrilife 

Research and Extension Center, Beaumont, Texas as shown in Figure 1. 

 

                                                L-202               x                Saber 

                                                 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 1. Schematic diagram of origin of the very high tillering and dwarf rice mutant. 
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‘Saber’ is a long grain, semi-dwarf rice cultivar having excellent lodging resistance and 

high tillering capacity (McClung et al., 2004). This cultivar was released by USDA-ARS 

for production in the Southern growing region of the U.S.  L-202 is also a long grain and 

early maturity rice cultivar. The identified mutant was advanced for four generations, 

using panicle to row planting under flooded conditions of a China clay soil (fine, 

smectic, hyperthermic Oxyaquic, Dystrudert). Several sister lines were advanced, but 

two lines (M-13662 & M-13684) were used for detailed phenotypic characterization. 

3.2 PHENOTYPIC CHARACTERIZATION: Two cultivars with the semi-dwarf 

gene, sd-1 (Zhe733 & Cocodrie) were chosen as controls to characterize the very high 

tillering and dwarf rice mutant. Currently, Cocodrie is the most popular cultivar in 

southern USA. Zhe733 is a fast tillering cultivar and has a high tillering capacity as 

compared to Cocodrie. Sixteen lines of mutant and two controls were planted in 1.83 m 

single row plots. Nitrogen fertilizer was applied at the rate of 223 kg ha
-1

 in three splits. 

The first, second and third doses of nitrogen were applied at the time of planting, 

flooding, and panicle initiation stage at the rate of 56 kg ha
-1

, 89 kg ha
-1

, and 78 kg ha
-1

, 

respectively. Phosphorus was also applied at the rate of 17 kg ha
-1

 as a pre-plant 

treatment. Plants were treated with different kinds of herbicides and insecticides 

(Command 4EC, Permit, Stam 80 EDF, Bolero 8 EC, Basagram, and Mustang Max) as 

needed. Five plants were selected from each of the mutant lines for tillering studies 

along with Zhe733 and Cocodrie as controls. The numbers of tillers plant
-1

 were counted 

each week starting from 30 days after emergence.  The date of 50% heading and 

maturity were taken. Other agronomic data collected at harvest were as follows: 
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 (a) Number of productive tillers plant
-1

 

      (b) Number of non-productive tillers plant
-1

 

(c) Total tiller number plant
-1

 

(d) Percentage (%) of productive tillers 

(e) Height (cm)-from the base of the plant to tip of the uppermost fully expanded 

leaf. 

(f) Flag leaf length (cm) 

(g) Panicle length (cm) 

(h) Filled grains panicle
-1

 

(i) Non-filled grains panicle
-1 

(j) Ratio of filled grains to non-filled grains 

(k) Percentage of grain filling 

(l) Total number of grains panicle
-1

 

(m) Grain weight plant
-1

 (g plant
-1

) 

(n) Panicle exsertion length (cm) 

(o) Seed length (mm) 

      (p) Seed width (mm) 

(q) 1000 grain weight (g) 

3.3 DESTRUCTIVE SAMPLING TO DESCRIBE THE TILLERING ABILITY 

OF THE TWO VERY HIGH TILLERING AND DWARF RICE MUTANT 

LINES: One hundred and eighty seedlings each for two mutant lines (M-13662 & M-

13684) and control cultivars (Cocodrie and Zhe 733) were planted in Jiffy pots for 
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destructive sampling. After setting up the pots in a big wooden tub, all pots were filled 

with China clay soil (fine, smectic, hyperthermic Oxyaquic Dystrudert) and the seeds 

were direct-seeded on each pot. Two weeks after emergence, thinning was done to one 

plant pot
-1

. Nitrogen fertilizer was applied as recommended. Destructive sampling was 

started at the coleoptile stage of rice seedling and was continued until the maximum 

tillering stage. Three plants of the same stage from each of the mutant and control lines 

were taken at each sampling date. Destructive sampling was repeated after every 4
th

 day 

of the previous sampling. At each sampling date, seedlings were uprooted and cleaned 

with water to get rid of all the soil and then plant height (cm), bud dormancy, 1
st
 tiller 

emergence, number of primary, secondary, and tertiary tillers were recorded. 

3.4 EFFECT OF GIBBERELLIC ACID (GA) ON SECOND LEAF SHEATH 

ELONGATION: The effect of GA on second leaf sheath elongation was determined by 

the modified “Microdrop method” of Murakami (1968). Ten seeds of the very high 

tillering and dwarf rice mutant and control (Cocodrie) were surface-sterilized for 30 min 

with 10% bleach (NaClO) solution, and then washed three times with sterile distilled 

water. Seeds were soaked in sterile distilled water for additional 48 h after washing out 

the bleach. The germinated seeds were placed on top of the solid 1% agar initially 

poured in a glass tube (Diameter: 2.1 cm, and Depth: 8.2 cm). One seedling was 

transplanted and maintained in each tube. All planted tubes with 25 ml of 1% agar were 

arranged in a test tube rack and were kept under fluorescent lamps at 26
0
C until GA 

application. Before GA treatment, GA3 was dissolved in ethanol, followed by dilution 

with sterile distilled water to achieve a 200 pmol concentration of GA3 solution.  After 
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two days, 1µl of GA3 solution (200 pmol plant
-1

) was applied to the coleoptile of each 

seedling at the first leaf stage. After 4 days of GA application, the length of the second 

leaf sheath was measured in each mutant as well as the control cultivar, Cocodrie. 

3.5 GENETIC ANALYSIS 

3.5.1 Development of F1 seeds: Flowering plants of the very high tillering and 

dwarf rice mutants and Cocodrie were balled and potted into black plastic pots early in 

the morning for emasculation. Five or six panicles were selected for emasculation and 

the rest of the tillers were removed from the main plant. Emasculation was started at 

3:00 pm when the pistil was not receptive. About one third of the floret was cut/detached 

using sharp scissors during emasculation. Exposed anthers were sucked out using a 

vacuum emasculator. After removing the anthers, the emasculated panicles were covered 

using a glassine bag to avoid the introduction of foreign pollen. Panicles of the male 

parent, the pollinator, were collected at 10:00 am on the next day from the experimental 

field located at the AgriLife Research and Extension Center, Beaumont, Texas and were 

placed in a flask with water to avoid desiccation. Once the panicles were releasing 

pollens, the glassine bags were removed from the emasculated panicles and the panicles 

of the pollinators were shaken over the top of the emasculated panicles. Care was 

exercised to avoid the introduction of pollen other than the target male parent. After the 

introduction of the pollen, the glassine bags were returned, clipped and labeled. The 

label included the name of the female and male parents, and the date of pollination.  

Thirty days after pollination, F1 seeds were harvested, dried and stored in the refrigerator 

until needed. Crosses including reciprocals were made with Cocodrie to determine the 
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inheritance pattern of the very high tillering and dwarf trait. Thus, for each mutant, two 

crosses were made: Cocodrie x mutant, and mutant x Cocodrie. Twenty F1 seeds were 

harvested for each cross combination. 

3.5.2 Generation of F2 population: The F1 plants were grown to generate the F2 

population for genetic analysis.  Ten F1 seeds from each cross combination were treated 

with Vitavex (fungicide) to avoid fungal infection. Treated seeds were placed in a Petri 

dish lined with filter paper. Once the seeds germinated and had vigorous roots and 

shoots, these were transplanted at one seedling pot
-1

 and kept inside the greenhouse. All 

plants were fertilized as recommended and were sprayed with insecticide when needed. 

Plants were maintained until maturity. At harvest, panicles from each F1 plant were 

gathered, threshed, cleaned and dried at 40
o
C in an oven for three days to break seed 

dormancy. No F1 survived in one cross, thus only three populations were generated. 

Seeds were kept inside the refrigerator until needed. 

3.5.3 Plants for genetic analysis: Three hundred sixty seven selfed seeds from 

F1 plants (F2 seeds) of M-13662/Cocodrie cross combinations, together with the parents 

and F1 seeds were used to determine the segregation ratios of the mutant traits in M-

13662, while 413 selfed seeds from the F1 plants (F2 seeds) of M-13684/Cocodrie cross 

combination together with the parents and F1 were used in M-13684. Four hundred sixty 

selfed seeds from F1 plants (F2 seeds) of Cocodrie/M-13662 with the parents and F1 were 

also evaluated as a reciprocal cross for M-13662. The seeds were direct-seeded in black 

plastic pots (Diameter: 14.8 cm, Depth: 17.5 cm) placed in wooden tubs. Thirty days 

after emergence, the tubs were flooded. Recommended fertilizers were applied and 
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insecticides were used if needed. All plants were maintained inside the greenhouse.  At 

maximum tillering (about 45 days after seeding), the number of normal and mutant 

phenotypes were counted.  Harvesting was not done for all plants due to panicle mite 

infestation and quarantine issues. 

3.6 RESPONSE OF THE RICE MUTANT’S AGRONOMIC TRAITS TO 

VARYING LEVELS OF NITROGEN AND PLANT DENSITY IN 

GREENHOUSE CONDITIONS: A separate study was conducted in the greenhouse to 

determine the response of the mutant lines (M-13662 & M-13684) to varying levels of 

plant densities and nitrogen fertilization. Cocodrie and Zhe733 were used as controls. 

Three levels of nitrogen (N1=179 kg ha
-1

, N2=202 kg ha
-1

and N3=224 kg ha
-1

) and five 

plant densities (P1=1 plant pot
-1

, P2=2 plant pot
-1

, P3=3 plant pot
-1

, P4=4 plant pot
-1

, 

P5=5 plant pot
-1

) were evaluated to determine their effects on different agronomic traits. 

Direct seeding was done in black plastic pots (Diameter: 14.8 cm, Depth: 17.5 cm), 

filled with China clay soil (fine, smectic, hyperthermic Oxyaquic Dystrudert). Each 

treatment was replicated three times and laid-out in a split plot, completely randomized 

design. One hundred eighty black plastic pots (Diameter: 14.8 cm, Depth: 17.5 cm) and 

nine wooden tubs (Fig. 2) were used in this study. Each tub had pots of the same N 

treatment to avoid contamination with other N treatments when flooded. Nitrogen 

fertilizer (urea) was applied in three equal splits and that were given at the time of 

planting, maximum tillering stage and the booting stage. Soil moisture was maintained at 

field capacity for proper germination of seeds. Thinning was done at the 3
rd

 leaf stage to 

get the desirable plant density. All the tubs were flooded at the tillering stage (40 days 
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after planting). Weeding was done from time to time as needed. Sevin, Kelthane, and 

Orthene were applied to control insects and mites. Plant height (from base of the stem to 

the tip of the uppermost fully expanded leaf) and total tiller numbers were recorded 

every week until harvest. Date of flowering and maturity (harvesting) were taken for 

both mutants and controls. Agronomic data collected at maturity were as follows: 

(a) Number of productive tillers plant
-1

 

      (b) Number of non-productive tillers plant
-1

 

(c) Total tiller number plant
-1

 

(d) Percentage (%) of productive tillers 

(e) Height (cm)-from the base of the plant to tip of the uppermost fully expanded 

leaf. 

(f) Flag leaf length (cm) 

(g) Panicle length (cm) 

(h) Filled grains panicle
-1

 

(i) Non-filled grains panicle
-1 

(j) Ratio of filled grains to non-filled grains 

(k) Percentage of grain filling 

(l) Total number of grains panicle
-1 

(m) Grain weight plant
-1

 (g plant
-1

) 

(n) Panicle exsertion length (cm) 
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Figure 2. Wooden tub used in the greenhouse experiment to keep the pots flooded. 
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3.7 STATISTICAL ANALYSIS : All the data gathered were statistically 

analyzed using analysis of variance (ANOVA; JMP SAS software). The means were 

separated using Tukey’s HSD test at an alpha level of 0.05. Chi-square tests were used to 

evaluate segregation ratios. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 PHENOTYPIC DESCRIPTION: All mutants exhibited an abnormal phenotype 

from an early stage of development. The most unique feature was the reduction of their 

stature and the presence of several tillers with fine culms forming a bushy phenotype. 

Figure 3 shows the phenotypic differences (height and tiller production) between the 

very high tillering and dwarf rice mutant lines and a normal rice plant at the same 

growth stage grown in the field. Table 1 shows the agronomic traits of the different 

mutant lines relative to Cocodrie and Zhe733 cultivars with the sd-1 dwarfing gene. The 

mutant lines produced tillers faster than the conventional varieties. The first tiller of the 

mutant emerged two weeks after planting but Cocodrie and Zhe733 did not have any 

tillers. The two mutant lines (M-13662 & M-13684) produced more tillers than other 

mutant lines in our studies and the conventional cultivars. M-13684 produced the highest 

number of tillers (121.6) which was 7.8 times more than Cocodrie and 4.9 times than 

Zhe733. The other mutant, M-13662 had 5.5 times more tillers than Cocodrie and 3.5 

times more than Zhe733 in field conditions. M-13684 had 1.36 times more tillers than 

M-13662. The lowest tiller count was obtained from Cocodrie but among the mutant 

lines, M-13621 had the lowest tiller count at 49.80. This tiller number was 3.19 times 

more than Cocodrie and twice that of Zhe733. M-13644, M-13660, M-13667 and M-

13681 had more than 90% productive tillers which was similar to Cocodrie, but on 

average, the mutants had 84% productive tillers. Among the total tillers counted, 

Cocodrie had the highest percentage of productive tillers (93%) while the lowest was  
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Figure 3. Phenotypic differences between very high tillering and dwarf rice mutant lines and normal rice 

plant. 
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Table 1. Agronomic traits of mutant lines and controls (Cocodrie & Zhe733) in field conditions.   

 

 

Genotypes 

 

 

 

Number 

 of 

 productive 

tillers plant-1 

 

 

Number  

of  

non-productive 

tillers plant-1 

 

Number 

 of  

total  

tillers plant-1 

 

% of 

productive 

tillers 

 

 

Height 

(cm) 

 

 

Flag leaf 

length 

(cm) 

 

 

Panicle 

 length 

(cm) 

 

 

Filled  

grains 

panicle-1 

 

Non-Filled 

grains  

panicle-1 

 

M-13603 57.00 ± 18.94 17.00 ± 3.16 74.00 ±  16.49 77.02  54.10 ± 6.06 21.89 ± 2.77  13.62 ± 1.48 16.28 ± 5.61 10.84 ± 6.67 

M-13612 45.80  ±  4.86 15.80 ± 17.28 61.60 ± 20.45 74.35  55.37 ± 3.18 21.25 ± 3.00 12.95 ± 1.59 18.88 ± 7.52 7.16 ± 6.27 

M-13621 41.00 ± 18.93 8.80 ± 5.97 49.80 ± 16.10 82.32  49.53 ± 2.24 17.16 ± 2.69 12.03 ± 2.25 19.08 ± 8.11 5.96 ± 6.43 

M-13632 55.00 ± 14.56 16.80 ± 8.89 71.80 ± 13.46 76.60  47.49 ± 3.43 17.21 ± 2.48 12.39 ± 2.98 19.96 ± 8.97 8.48 ± 6.09 

M-13640 55.60 ± 12.91 8.60 ± 6.50 64.20 ± 13.36 86.60  50.41 ± 3.90 20.29 ± 2.73 13.27 ± 1.48 23.36 ± 9.08 8.20 ± 6.40 

M-13644 71.20 ± 8.40 7.40 ± 4.15 78.60 ± 9.09 90.58  54.35 ± 5.26 22.29 ± 3.37 14.09 ± 1.49 27.20 ± 8.80 13.44 ± 6.93 

M-13652 51.80 ± 15.99 6.00 ±  3.67 57.80 ± 18.83 89.61  53.97 ± 2.28 19.89 ± 3.25 14.05 ± 1.76 27.00 ± 8.87 6.66 ± 4.07 

M-13655 53.60 ± 24.86 9.60 ± 5.59 63.20 ± 25.62 84.81  50.67 ± 6.93 18.12 ± 5.07 12.35 ± 2.03  19.60 ± 10.30 8.68 ± 7.06 

M-13660 56.60 ± 22.64 5.40 ± 3.13 62.00 ± 25.14 91.29  53.97 ± 3.73 19.40 ± 3.2 13.09 ± 1.50 23.08 ± 9.29 9.16 ± 7.72 

M-13662 73.80 ± 26.45 15.20 ± 2.94 89.00 ± 26.30 82.92  50.67 ± 4.96 20.50 ± 2.69 11.68 ± 1.57 20.24 ± 8.00 7.72 ± 4.19 

M-13667 68.00 ± 9.48 5.40 ± 0.89 73.40 ± 10.06 92.64  53.08 ± 1.65 22.68 ± 2.88 14.13 ± 1.19 22.36 ± 5.97 9.72 ± 3.54 

M-13676 66.60 ± 11.17 9.40 ± 4.39 76.00 ± 14.94 87.63  51.68 ± 1.38 22.63 ± 2.65 14.26 ± 1.26 21.88 ± 6.73 11.44 ± 4.13 

M-13681 73.40 ± 16.33 6.80 ± 3.11 80.20 ± 15.44 91.52  53.34 ± 2.00 23.00 ± 3.28 13.62 ± 1.13 22.92 ± 5.76 8.64 ± 3.93 

M-13684 77.60 ± 23.58 44.00 ± 10.83 121.60 ± 24.29 63.81  52.83 ± 4.45 22.58 ± 3.39 12.35 ± 1.52 17.80 ± 6.40 10.32 ± 6.02 

M-13689 63.40 ± 22.78 8.00 ± 3.31 71.40 ± 24.87 88.79  50.80 ± 5.95 22.48 ± 4.30 12.73 ± 2.07 19.68 ± 9.40 7.88 ± 4.80 

M-13691 55.60 ± 17.12 10.08 ± 2.77 66.40 ± 19.75 83.73  54.10 ± 4.86 20.88 ± 4.05 12.49 ± 1.76     17.92 ± 7.07 8.84 ± 5.42 

Cocodrie 14.60 ± 7.53 1.00 ± 0.70 15.60 ± 8.20 93.58  97.15 ± 2.10 25.38 ± 3.33 22.25 ± 1.75 123.56 ± 38.75 61.44 ± 20.14 

Zhe733 17.60 ± 5.77 7.40 ± 3.13 25.00 ±  8.00 70.40  88.39 ± 4.63 27.83 ± 3.66 20.63 ± 1.13   87.52 ± 18.65 23.40 ± 13.18 

 

† Measurements were taken in the form of mean ± SD, (Standard deviation), n=5.
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               Table 1. Continued. 

 

Genotypes 

 

 

 

Filled grains 

panicle-1/Non-

filled grains 

panicle-1 

 

% 

Grain 

filling 

Number 

of total 

grains panicle-1 

 

 

Grain 

yield 

(g plant-1) 

Panicle 

exsertion 

length 

(cm) 

Heading 

days 

DAE* 

 

 

Harvesting 

days 

DAE* 

 

1000 

grain 

weight 

(g) 

 

Seed 

length 

(mm) 

 

Seed 

width 

(mm) 

 

Ratio 

(Seed length/Seed 

width) 

M-13603 1.50 60.02 27.12 ± 10.26 14.01 ± 4.65 3.43 ± 1.57 93 121 15.10 7.12 ± 0.11 2.11 ±  0.22 3.37 

M-13612 2.63 72.50 26.04 ± 9.00 13.57 ± 1.44 3.77 ± 2.40 93 121 15.70 7.46 ± 0.07 2.08 ± 0.15 3.58 

M-13621 3.20 76.32 25.00 ± 11.52 11.89 ± 5.49 1.74 ± 1.64 92 121 15.20 7.70 ± 0.06 2.18 ± 0.11 3.53 

M-13632 2.35 76.41 28.24 ± 10.99 16.41 ± 4.34 1.32 ±  1.43 93 121 14.95 7.86 ± 0.03 2.05 ± 0.15 3.83 

M-13640 2.84 74.01 31.56 ± 10.82 20.26 ± 4.70 2.48 ± 1.64 92 121 15.60 7.99 ± 0.03 2.20 ± 0.08 3.63 

M-13644 2.02 67.26 40.44 ±  11.62 29.82 ± 3.52 1.85 ± 1.29 93 121 15.40 8.10 ±0.04 2.11 ± 0.10 3.83 

M-13652 3.86 76.48 33.66 ± 11.73 21.46 ± 6.62 2.33 ± 1.30 92 121 15.35 8.19 ± 0.02 2.09 ± 0.10 3.91 

M-13655 2.27 69.30 28.28 ± 12.87 15.57 ± 7.22 2.32 ± 1.30 92 121 14.83 8.31 ±0.04 2.18 ± 0.13 3.81 

M-13660 2.51 71.58 32.24 ± 11.84 19.56 ± 7.82 2.19 ± 1.58 92 121 14.98 8.58 ± 0.17 2.05 ± 0.18 3.91 

M-13662 2.62 72.38 27.96 ± 9.61 24.09 ± 9.43 3.37 ± 1.77 95 121 15.50 7.87 ± 0.04 2.11 ± 0.12 3.72 

M-13667 2.30 69.70 32.08 ± 7.25 23.82 ± 3.32 4.21 ± 2.02 92 121 15.67 7.47 ± 0.04 2.05 ± 0.09 3.64 

M-13676 1.91 65.82 33.24 ± 7.86 22.58 ± 3.78 2.87 ± 1.67 92 121 15.50 7.60 ± 0.04 2.14 ± 0.08 3.55 

M-13681 2.65 73.55 31.16 ± 6.84 27.90 ± 6.21 3.27 ± 2.23 95 121 16.59 7.76 ± 0.04 2.08 ± 0.11 3.74 

M-13684 1.72 63.30 28.12 ± 10.47 21.40 ± 6.50 3.07 ± 1.58 93 121 15.50 7.85 ± 0.04 2.06 ± 0.16 3.81 

M-13689 2.49 71.40 27.56 ± 10.95 19.62 ± 7.05 3.44 ± 1.77 92 121 15.73 7.95 ± 0.03 2.07 ± 0.15 3.84 

M-13691 2.02 67.98 26.36 ± 9.08 15.22 ± 4.22 3.53 ± 1.63 92 121 14.85 8.07 ± 0.03 2.12 ± 0.11 3.80 

Cocodrie 2.01 66.77 185.04 ± 45.33 45.35 ± 22.97 4.04 ± 1.88 75 105 24.80 8.91 ± 0.04 2.60 ± 0.05 3.15 

Zhe733 3.74 79.18 110.52 ± 21.55 45.11 ± 14.79 4.70 ± 1.59 75 105 29.29 9.17 ±0.06 3.00 ± 0.11 3.05 

 

  † Measurements were taken in the form of mean ± SD (Standard deviation), n=5. 

  ‡ * DAE – Days after emergence. 
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from M-13684 at 63%. It can be noted that the mutant lines had a narrow range for the 

number of productive tillers but differed widely in the number of non-productive tillers. 

The mutants had a tendency to produce small and fine tillers even at the maturity stage, 

thus increasing the total number of non-productive tillers. The 37% non-productive 

tillers of M-13684 were generally the newly emerged small tillers with 3-4 leaves at 

harvest. Based on the phenotype, the gene that promotes tiller growth in these mutants 

may be similar to d3 in the five d mutants with weaker ability to suppress activity of 

tiller bud (Ishikawa et al., 2005) or rice d10 with enhanced branching (Arite et al., 2007) 

indicating non-suppression of bud dormancy. The highest tiller count was 165 obtained 

in one of the M-13684 mutant plants at the maturity stage. This was more than the tiller 

count of the htd-1 mutant with 99.5 ± 12.2 tillers (Zou et al., 2005) but less than nearly 

200 tillers from d10 (Arite et al., 2007). The reported height of htd-1 mutant was nearly 

similar to Zhe733 with sd-1 gene, thus our mutants resemble much with the d- 

phenotypes. 

The weekly tiller count of mutants (M-13662 & M-13684) relative to controls 

is shown in Figure 4. Tiller number was doubled every week until seventh weeks after 

emergence of the first tiller in M-13662 as well as in M-13684 but the rate was lower in 

the controls (Cocodrie & Zhe733). The rates of production of new tillers in mutants 

slowed between the 13
th

 and 16
th

 week. However, after this period, the mutants produced 

tillers at a rate similar to that of the first seven weeks after emergence. The temporary 

cessation of new tiller production in mutants was observed for only three weeks  
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Figure 4. Weekly tiller production of field-grown very high tillering and dwarf rice mutants (M-13662 & 

M-13684) as compared to conventional cultivars (Zhe733 & Cocodrie) with semi-dwarf (sd-1) gene. 
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coinciding with the ripening of the grains (one week before, and two weeks after 50% 

flowering). Grains were generally ready for harvest 30 days after 50% flowering 

(heading date). The conventional rice nearly stopped producing tillers at one week 

before 50% flowering known as the maximum tillering stage. While the mutants started 

producing new tillers again two weeks after heading, a few tillers in the conventional 

rice started to dry and die. The late heading of the both mutants (M-13662 & M-13684) 

prolonged the period of tiller production; however, like Cocodrie and Zhe733, these 

mutants reached a maximum tiller count before heading. On average, the mutants were 

36 and 45 cm shorter than Zhe733 and Cocodrie, respectively. M-13662 was the shortest 

(47.49 cm) and M-13612 (55.37) was the tallest among all mutant lines in the field 

condition. Based on the reported plant height, the mutants were close to the d mutants 

with height of about 40-65 cm (Arite al., 2007). The htd-1 mutant was much taller at 83 

cm (Zou et al., 2005) nearly as tall as Zhe733 with sd-1 dwarfing gene. The average 

height of the rice mutants (M-13662 & M-13684) was only 60-64% of the recently 

identified high tillering dwarf rice mutant, htd-1. The different growing conditions could 

be the main cause of these differences, thus a valid comparison can only be made if these 

mutants are grown together at the same time and location. Development and evaluation 

of isolines of the mutants will further verify their phenotype similarities or differences. 

Dwarfness of the M-13662 and M-13684 mutants could be attributed to the abnormal 

pattern of internode elongation and these patterns were observed for the other mutant 

lines. The mutants headed after 95 days of planting and it took 121 days to ripen whereas 

conventional rice headed after 75 days of planting and it took 105 days to ripen. The 
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average flag leaf length of mutants was 21.50 cm. The longest and shortest flag leaf 

lengths were from Zhe733 (27.83 cm) and M-13621 (17.16 cm), respectively. Among 

the mutants, the longest flag leaf length (23 cm) was observed in M-13681. The flag leaf 

length of M-13662 (20.50 cm) was shorter than M-13684 (22.58 cm). It was also 

observed that the mutants had darker green leaves at maturity than Cocodrie and 

Zhe733. The mutants had much shorter panicles than Cocodrie and Zhe733 as shown in 

Figure 5. The mutants had an average panicle length of 13.94 cm. M-13662 had shorter 

panicle at 11.68 cm than M-13684 with 12.35 cm but both had almost the same number 

of grains panicle
-1

 (28-29 grains panicle
-1

). The mutants needed only 26 days for grain 

filling because of the small number of grains panicle
-1

.  The longest and the shortest 

mutant panicles were from M-13676 (14.26 cm) and M-13632 (11.45 cm), respectively. 

On the other hand, the panicle lengths of the controls (Cocodrie & Zhe733) were more 

than two times longer than the panicle lengths of the rice mutants (M-13662 & M-

13684). The highest (185.04) and lowest (25.00) number of grains panicle
-1

 were from 

Cocodrie and M-13621, respectively. 

The pattern of flowering was normal for all entries and the mutants had an 

average panicle exsertion length of 2.90 cm. Cocodrie and Zhe733 had 4.04 cm and 4.70 

cm panicle exsertion length respectively and these were well exserted as compared to 

other mutants in our studies, Among the mutants entries, M-13667 had the most exserted 

panicle (4.21 cm) while the least was M-13632 (1.32 cm). M-13662 had a longer 

exsertion length (3.37 cm) as compared to M-13684 (3.07 cm). The percentage of grain 

filling varied for all entries. The highest and lowest grain filling was obtained from 
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Figure 5. Comparison of panicle length and number of grains panicle
-1

 between very high tillering and 

dwarf rice mutants (M-13662 & M-13684) and controls (Cocodrie & Zhe733). 
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Zhe733 and M-13684, respectively. Among the mutants, the highest grain filling was 

observed in M-13652. Generally, the growth of the rice plant is completed during the 

ripening stage and photosynthates are accumulated in panicles. Apart from accumulation 

of photosynthates in panicles (sink) resulting from flag leaf photosynthesis, mobile 

carbohydrates, protein, and mineral nutrients, from different sources also move to the 

panicles during the grain filling stage and the plant gradually becomes senescent 

(Murayama, 1995). The number of grains in a panicle was very low in the mutant as 

compared to controls (Cocodrie & Zhe733). It is likely that the mobile carbohydrates, 

protein, and mineral nutrients from different sources were not transported to the panicles 

and these were used to produce large number of tillers even after the harvesting stage. 

The mutant lines also produced smaller seeds relative to controls. The length and width 

of the seeds of both mutants (M-13662 & M-13684) were less than Cocodrie and 

Zhe733. Considering the ratio of seed length and width, both mutants (M-13662: 3.72 & 

M-13684: 3.81) were nearly comparable to the controls (Cocodrie= 3.42 & Zhe733= 

3.05). With these ratios, all entries can be grouped under the long grain category. Rice in 

the U.S. is generally grouped as long (> 3.0:1), medium (2.0:1) and short grain (<2.0:1). 

The highest 1000 seed weight was obtained from Zhe733 (29.29 gm) followed by 

Cocodrie (24.80 gm). The highest and lowest 1000 seed weight among all mutant lines 

were obtained from M-13681 (16.59 gm) and M-13655 (14.83 gm), respectively. The 

seed weight indicated the smaller seeds of mutants relative to Cocodrie and Zhe733. 

Takeda et al. (2003) described the  fc1 mutant as showing a dwarf phenotype and 

increased branching, and recently, five rice tillering dwarf mutant genes (D3, D10, D14, 
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D17 and D27) and a high tillering dwarf 1, (htd-1), were reported and characterized.  

These mutants showed reduced plant height and increased tiller number (Ishikawa et al., 

2005; Zou et al., 2005). The very high tillering dwarf rice mutants (M-13662 & M-

13684) in this study have phenotypes similar to the previously described rice mutants 

(increased tiller number and dwarfness) but have the unique trait of continuous tiller 

production. The d mutants, htd-1, fc1, M-13662 and M-13684 can be differentiated from 

each other on the basis of dwarfing pattern. Arite et al. (2007) reported that elongation 

was suppressed in all internodes in d mutants, which accounts for their dwarf phenotype, 

whereas shortening of the most apical internode was observed in fc1. Average shortening 

of the top four internodes and panicle is the main cause of dwarfness in htd-1 mutant. M-

13662 and M-13684 was like htd-1 in the internode elongation pattern of the top four 

internodes but compression of 2-3 basal internodes also accounted for the dwarfness of 

both mutant (M-13662 & M-13684) in addition to average shortening of top internodes. 

The tremendous tiller production might account for the shorter stature of both mutants as 

compared to the htd-1 mutant. From the early stage of development, M-13662 and M-

13684 showed a similar phenotype; a tremendous increase in tiller numbers, a reduction 

of plant stature and small grain size and these were similar to the d mutants (d3, d10, 

d14, d1, and d27). Dwarf and high tillering traits were associated traits in all reported 

high tillering dwarf mutants of rice (Zou et al., 2005) similar to branching and dwarfism 

in Arabidopsis and pea (Sorefan et al., 2003; Goto et al., 2005). The same associated 

traits were observed in our rice mutants (M-13662 & M-13684). The short stature of the 
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mutant could be the result of reduced apical dominance, however, it should be 

determined in future studies. 

Destructive sampling showed the developmental pattern of tiller and leaf 

growth in the very high tillering and dwarf rice mutant. The first fully expanded leaf of 

the main culm was formed approximately 9 days after planting in mutants and each new 

fully expanded leaf was formed every 4 days. Almost the same pattern of leaf formation 

was observed for control (Cocodrie). The lateral bud under the first leaf sheath remains 

dormant in wild type japonica cultivars (Cocodrie), whereas this bud was active in both 

rice mutants (M-13662 & M-13684). The first clear evidence of a difference between 

mutants and control was the out-growth of tiller buds in the first leaf axil at the 3
rd

 leaf 

stage in the mutants, which was not observed in the wild type plants (Cocodrie). The 

first tiller with a fully expanded leaf was observed at the 4
th

 leaf stage in case of both 

mutant lines (M-13662 & M-13684), whereas, no tiller was observed in Cocodrie 

(Figure 6). On average, mutants produced 2-3 tillers at the 5
th

 leaf stage but no tillers 

were formed in Cocodrie even at the 5
th

 leaf stage. Both mutants produced eight times 

(24) the tillers of Cocodrie (3) 48 days after seedling emergence. The average height of 

both mutants becomes almost static 48-52 days after seedling emergence but an increase 

in height was observed in Cocodrie after 48-52 days. At the 6
th

 leaf stage, the M-13684 

had four emerged tillers (two primary and two secondary) while Cocodrie had only one 

primary tiller (Figure 7). There was only one axillary bud present in the leaf axils of the 

rice mutants (M-13662 & M-13684) similar to the control plants (Cocodrie & Zhe733).  
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Figure 6. Emergence of 1
st
 tiller at 4

th
 leaf stage. 
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Figure 7. Comparison of tiller production rate at the 6
th

 leaf stage of Cocodrie and the two very high 

tillering and dwarf rice mutants (M-13662 & M-13684). 
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On average, the mother culm of the mutant produced 3-4 primary tillers while each of 

the primary tillers produced 2-3 secondary tillers. Each secondary tiller was able to 

produce 1-2 tertiary tiller and tertiary tiller further produced 1-2 quaternary tillers and 

quaternary tillers produced at least one tiller and so on. In the wild type (Cocodrie and 

Zhe733), however, only the main culm, primary tiller and secondary tillers produced 

new tillers. The pattern of tillering in the mutant is shown in Figure 8. It was also 

observed that the first 2-3 nodes of the mutants (M-13662 & M-13684) were so 

compressed forming a structure like a crown thus it was difficult to differentiate between 

these nodes by the naked eye during destructive sampling. This could be another reason 

for the dwarfness of the mutants in addition to the shortening of the top four internodes. 

The top four internodes of the M-13662, M-13684 and Cocodrie were measured and 

compared. Based on the dwarfing pattern of the top four internodes, the very high 

tillering and dwarf rice mutants could be categorized into the dn-type dwarf defined by 

Takeda, but a few plants had different dwarfing patterns not included in the same 

classification. Second and fourth internodes were found shorter than third internodes in 

few plants of M-13662 & M-13684. Likewise, third internode was shorter than second 

and fourth internode in some other plants of both mutants (M-13662 & M-13684) 

(Figure 9). 

Usually, wild type cultivars (Cocodrie & Zhe733) increase their tiller numbers 

until the onset of culm elongation and panicle initiation, and then the tiller numbers of 

each plant are static or started decreasing because of the senescence of old tillers. 
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Figure 8. Schematic diagram of tiller formation in the very high tillering and dwarf rice mutants (M-13662 

& M-13684).  
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                         a                                    b                               c                            d 

Figure 9. Elongation pattern of the top four internodes in wild type and the very high tillering and dwarf 

rice mutants (M-13662 & M-13684). (a) Schematic representation of internode elongation patterns of wild 

type (WT) and various rice dwarf mutants (d6-, dn-, dm-, nl- and sh- types; redrawn from Takeda, 1977). 

(b) Internode elongation pattern of Cocodrie, showing dn-type pattern. (c) Very high tillering and dwarf 

rice mutant lines showing dn-type internode elongation pattern. (d) Few plants of M-13662 and M-13684 

showing the unique internode elongation patterns that were not included in Takeda’s classification. 
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However, the very high tillering and dwarf rice mutant lines (M-13662 & M-13684) kept 

producing new tillers even at the harvesting stage. The same number of tillers and height 

were observed in both destructive sampling and field phenotyping until 48-52 days after 

seedling emergence indicating consistent trait expression at different growing 

environment. These observations further suggest that the enhanced tillering capacity of 

the very high tillering and dwarf mutant lines is the result of the release of axillary buds 

from their dormant state. The same observation was made in htd-1, d3 and d10 rice 

mutants (Ishikawa et al., 2005; Zou et al., 2005; Arite et al., 2007). Both mutants (M-

13662 & M-13684) described here never stops producing new tillers even at the late 

reproductive stage. Each mutant tiller (main culm, primary tiller, secondary tiller, 

tertiary tiller, quaternary tiller and beyond quaternary tiller) had the capacity to serve as 

a tiller source for further tiller production, whereas only the main culm, primary and 

secondary tillers of wild type had the same capacity to serve as mother tillers and 

produces new tillers. High tillering trait is important in biomass production as tillers 

accounted for 75% of the biomass in rice (Wu et al., 1998) and the efficiency of ratoon 

crops also depends upon the rate of tiller production after harvesting. Thus, these 

mutants might be a good material for higher biomass production and ratooning studies. 

4.2 THE RESPONSE OF THE VERY HIGH TILLERING AND DWARF RICE 

MUTANTS (M-13662 & M-13684) TO GIBBERELLIC ACID: An examination of 

the elongation of second leaf sheath of the mutant as well as control in response to GA 

application (200 pmol) was conducted to determine the possible relation between the 

dwarfing of the mutants (M-13662 & M-13684) and its ability to respond to GA 
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application. Even before GA application, Cocodrie had a longer 2
nd

 leaf sheath than the 

mutants and it had the longest leaf sheath among the entries. M-13684 had the shortest 

leaf sheath among all genotypes (Table 2). M-13662 and M-13684 had just a 0.94 cm 

and 0.79 cm increase in the length of the leaf sheath after application of GA3, 

respectively and Cocodrie and M-13662 had a 0.99 cm increase but the test of means 

using t-test supported the differences. Considering the ratios, all three lines gave 

approximately the same ratios of the lengths of the second leaf sheath with and without 

application of GA. It indicates that both mutants (M-13662 & M-13684) were GA-

responsive, similar to Cocodrie. Cocodrie is a semi-dwarf rice cultivar with the sd-1, 

gene and sd-1 plants were shown to retained responsiveness to GA at seedling, tillering 

and heading stage (He and Li, 1996; Mitsunaga et al., 1994) supporting the above 

observations. Spielmeyer et al. (2002) proposed that Os20ox2 gene correspond to sd-1 

locus and the semi-dwarf phenotype was due to defective Os20ox2 gene, resulting to 

deficiency of active GA. It was shown that GA3, the substrate of GA20-oxidase was 

accumulating in elongating stems of semi-dwarf plants but the content of major product 

(GA20) and bioactive GA1 were low relative to tall phenotypes. The sd-1 gene cloned in 

Japan (Mona et al., 2002) revealed to encode the same GA20-oxidase and the lower 

amounts of GA20 and bioactive GA1 in semi-dwarf cultivars causes the short phenotype. 

Both rice mutants (M-13662 & M-13684) retained the ability to respond to the 

applications of bioactive gibberellins similar to Cocodrie, the difference between the 

mutants (M-13662 & M-13684) and Cocodrie (sd-1) could be in the amount of 

endogenous bioactive GA1. It is possible that the mutants had much less bioactive GA1 
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than Cocodrie, thereby reducing the plant height. Two independent alleles of sd-1 gene 

had different amount of GA1, about 20-35% less than tall plants. These reductions in 

GA, however, were not substantiate enough to remarkably reduce height in the semi-

dwarf plants. 

Reduction of plant height is another unique agronomic trait/characteristic of the 

mutants besides the tremendous number of tiller produced. Gibberellic acid has a very 

important role in controlling rice plant height and has equal importance in the growth of 

rice leaf sheaths (Matsukara et al., 1998; Yamamuro et al., 2000; Sasaki et al., 2002; 

Wang and Li, 2005). Application of GA3 to Tan-ginbozu, a GA-deficient dwarf mutant 

of rice, restored the normal phenotype (Murakami, 1968). The mutants (M-13662 & M-

13684) may be GA deficient mutants based on phenotype. Sakamoto et al. (2004) 

screened for GA deficient mutants using the following criteria: dwarfism without other 

aberrant morphology, dark green leaves and restoration of dwarfism to wild type by GA3 

treatment. Although the leaves of the mutants (M-13662 & M-13684) were not dark 

green and the phenotype was not restored to normal with GA3 application, it had 

abnormal morphology other than being short and responded to GA3 like sd-1 plant 

known to be GA deficient (Spielmeyer et al., 2002). Quantitative analysis of endogenous 

GA levels is needed to elucidate its possible role in the dwarfness of M-13662 & M-

13684. 
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Table 2. Effect of gibberellic acid (GA) on the elongation of the second leaf sheath. Mean ± SD, n=10. 

 

Variety 

 

Length of the second leaf sheath (cm). Mean ± SD, n=10 

 

Ratio 

 

  

                 

                 -GA3                                       +GA3 

 

+GA3/-GA3 

 

 

Cocodrie              5.18 ± 0.62                             6.17 ± 0.58 1.19 

 

M-13662              4.69 ± 0.66                             5.63 ± 0.91 1.20 

 

M-13684 

 

             3.41 ± 0.65                             4.20 ± 0.65 

 

1.23 

 

 

† GA3, Gibberellic acid; - = without GA3; + = with GA3 

‡ SD, Standard deviation 
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4.3 GENETIC ANALYSIS: The ten F1 plants from the three crosses between M-13662 

& M-13684 and Cocodrie showed a wild type phenotype similar to Cocodrie, which is 

typical for a recessive trait. Only two distinct phenotypes were observed in the 1,246 

individuals from three F2 populations grown in the greenhouse, thus the plants were 

classified into two groups according to these phenotypes. The tall plants with few tillers 

like Cocodrie dominated the population and the dwarf plants with a high number of 

tillers like the mutant were less in number. After counting the plants in each group, it 

was determined that the F2 progenies segregated in approximately a 3: 1 ratio (3 wild 

type to 1 dwarf and high tillering mutant type). Chi-square analysis (X
2
<X

2
0.05) showed a 

fit between observed and expected ratios (Table 3). Based on the segregation analysis, it 

was concluded that the very high tillering and dwarf traits of the rice mutants were 

controlled by a single recessive gene. 

No plants in these populations were much taller than Cocodrie and none were 

much shorter than the mutant. Cocodrie is known to have a recessive semi-dwarf gene,  
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sd-1.  If the two genes are allelic or closely linked, there should be no segregation and if 

these were two independent genes, at least four classes should be identified. The 3:1 

ratio suggests that Cocodrie has the wild dominant allele that was absent in the mutant 

lines. Analysis of SSR markers linked to sd-1 indicated that both mutants had sd-1 gene 

and these were derived from the parents (L-202 & Saber), both having sd-1 gene. The 

gene controlling the traits in the mutant lines could be another allele at sd-1allele locus 

acting recessive to sd-1 in Cocodrie or it involves another locus. Spielmeyer et al. (2002) 

reported two independent alleles at sd-1 locus (Os20ox), GA20-oxidase. Both had 

alteration with Os20ox (a deletion of 280 bp and amino acid substitution) resulting to 

deficiency of active GA. The same sd-1 locus was reported by Mona et al., (2001) but 

existence of at least one more locus of GA20-oxidase was suggested. Screening 

candidates genes and evaluating GA-deficient mutants, Sakamoto et al. (2004) reported 

four GA20ox like genes located in chromosome 1, 7, 5, and 7. The gene located in 

chromosome 1 was the previously reported sd-1 gene. 
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Table 3. Chi-square analysis of the segregation ratios of F2 population derived from 

mutant and Cocodrie cross. 

 

Cross Wild type (Cocodrie) Mutant Total X
2
 (3:1) 

M-13662*/Cocodrie 281 86 367 0.48 

M/13684*/Cocodrie 313 100 413 0.13 

Cocodrie/M-13662* 336 130 466 2.08 

 

† X
2
: Chi square 

* Mutant 
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4.4 RESPONSE OF THE VERY HIGH TILLERING AND DWARF RICE 

MUTANTS (M-13662 & M-13684), COCODRIE AND ZHE733 TO VARYING 

LEVELS OF NITROGEN AND POPULATION DENSITIES: The analysis of 

variance (ANOVA) for traits measured in the greenhouse experiment is shown in Table 

4. The variation due to genotype was highly significant for all agronomic traits evaluated 

and there were no significant differences observed among the three different nitrogen 

levels for any agronomic traits studied except panicle length.  The longest panicle was 

observed at the highest nitrogen level and the shortest was from the lowest nitrogen 

level. The density and genotype x density interaction were significant for all agronomic 

traits studied except panicle exsertion length. A genotype x nitrogen level interaction 

was found significant for the number of non-productive tillers, total number of tillers and 

total grains panicle
-1

. The ANOVA also indicated that the genotype x density x nitrogen 

interaction was not significant for all studied agronomic traits. 

Comparisons among the means of various traits of the genotypes across N level 

and densities indicated significant differences among entries (Table 5). M-13662 and M-

13684 had statistically the same number of productive and non-productive tillers, total 

tillers, plant-height, flag-leaf length, panicle length, filled-grain panicle
-1

, non-filled 

grain panicle
-1

, total grains panicle
-1

, grain yield plant
-1

 and panicle exsertion length. The 

very high tillering and dwarf rice mutants (M-13662 & M-13684) were significantly 

different from conventional rice (Cocodrie & Zhe733) for productive tiller number, non-

productive tiller number, total tiller number, plant height, flag leaf length, panicle length, 
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Table 4. Means squares of the ANOVA showing the effects of N-levels, genotype, population density and their interaction on number of 

productive tillers, number of non-productive tillers, number of total tillers, plant height, flag leaf length, panicle length, filled grains 

panicle
-1

, non-filled grains panicle
-1

, total grains panicle
-1

, grain yield plant
-1

 and panicle exsertion length. 

 

  

 

Number of productive 

tillers 

 

Number of non-

productive tillers 

 

Number of 

 total tillers 

 

 

Plant 

height 

 

Flag 

leaf length 

 

 

Source 

 

df 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

 

Rep(N-level) 

 

6 

 

93.203 

 

NS 

 

74.0787 

 

** 

 

253.701 

 

NS 

 

20.8167 

 

NS 

 

24.1154 

 

* 

 

N-level 

 

2 

 

200.917 

 

NS 

 

139.973 

 

NS 

 

628.047 

 

NS 

 

12.2056 

 

NS 

 

13.4273 

 

NS 

 

genotype 

 

3 

 

21599 

 

** 

 

966.863 

 

** 

 

31682.3 

 

** 

 

30586.2 

 

** 

 

613.551 

 

** 

 

density 

 

4 

 

7479.88 

 

** 

 

448.658 

 

** 

 

11574.6 

 

** 

 

439.689 

 

** 

 

102.096 

 

** 

 

genotype*density 

 

12 

 

2001.39 

 

** 

 

105.344 

 

** 

 

3008.87 

 

** 

 

111.219 

 

** 

 

33.7122 

 

** 

 

genotype*N-level 

 

6 

 

150.438 

 

NS 

 

94.7489 

 

** 

 

386.064 

 

** 

 

37.6426 

 

NS 

 

23.2194 

 

NS 

 

density*N-level 

 

8 

 

79.353 

 

NS 

 

23.3215 

 

NS 

 

141.249 

 

NS 

 

20.4972 

 

NS 

 

12.0848 

 

NS 

 

genotype*density*N-level 

 

 

24 

 

72.5186 

 

NS 

 

17.8717 

 

NS 

 

92.2979 

 

NS 

 

12.5824 

 

NS 

 

7.60969 

 

NS 

 

 † *, ** Significant at the 5 and 1% levels of probability, respectively. NS = Not significant at the 5% level of probability. 

               ‡ N-level: Nitrogen level. g: Gram 
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      Table 4. (continued).  

 
         † *, ** Significant at the 5 and 1% levels of probability, respectively. NS = Not significant at the 5% level of probability. 

         ‡ N-level: Nitrogen level. g: Gram 
 

 

 
 

 

 

 

 

 

 

  

     Panicle length 

              

 

         Filled 

     grains panicle-1 

 

Non-filled grains 

panicle-1 

 

Total  

grains panicle-1 

 

 

    Grain yield 

    (g plant-1) 

 

 

Panicle exsertion 

Length  

 

 

Source 

 

df 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

MSE 

 

Prob > F 

 

 

Rep(N-level) 

 

6 

 

1.55188 

 

NS 

 

444.374 

 

** 

 

367.365 

 

NS 

 

1172.13 

 

* 

 

23.1672 

 

NS 

 

3.19368 

 

NS 

 

N-level 

 

2 

 

9.58952 

 

* 

 

683.17 

 

NS 

 

338.203 

 

NS 

 

2367.16 

 

NS 

 

48.0291 

 

NS 

 

5.65291 

 

NS 

 

genotype 

 

3 

 

1153.23 

 

** 

 

57173.8 

 

** 

 

30224.3 

 

** 

 

120868 

 

** 

 

182.679 

 

** 

 

142.326 

 

** 

 

density 

 

4 

 

23.9009 

 

** 

 

1181.4 

 

** 

 

3861.43 

 

** 

 

4024.09 

 

** 

 

1104.78 

 

** 

 

3.49835 

 

NS 

 

genotype*density 

 

12 

 

7.20718 

 

** 

 

363.115 

 

** 

 

2030.09 

 

** 

 

1218.07 

 

** 

 

49.4341 

 

** 

 

5.10321 

 

NS 

 

genotype*N-level 

 

6 

 

2.95 

 

NS 

 

188.058 

 

NS 

 

296.621 

 

NS 

 

1027.19 

 

* 

 

23.8629 

 

NS 

 

9.10115 

 

NS 

 

density*N-level 

 

8 

 

2.19042 

 

NS 

 

169.665 

 

NS 

 

163.685 

 

NS 

 

510.402 

 

NS 

 

15.9108 

 

NS 

 

2.68604 

 

NS 

 

genotype*density*N-level 

 

 

24 

 

 

1.82405 

 

 

NS 

 

 

180.958 

 

 

NS 

 

 

281.603 

 

 

NS 

 

 

224.932 

 

 

NS 

 

 

13.3422 

 

 

NS 

 

 

4.83856 

 

 

NS 
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Table 5. Means of agronomic traits of the very high tillering and dwarf rice mutants (M-13662 & M-13684), Cocodrie and Zhe733 across three 

levels of nitrogen and five different plant densities. 

 

Genotypes 

 

 

Number of 

productive 

tillers 

 

 

Number 

of non-

productive 

tillers 

 

Number 

of total 

tillers 

 

% of 

productive 

tillers 

 

Plant 

height 

(cm) 

 

Flag leaf 

length 

(cm) 

 

Panicle 

length 

(cm) 

 

Filled 

grains 

panicle-1 

 

Non-filled 

grains 

panicle-1 

 

 

Total 

grains 

panicle-1 

 

Grain 

yield 

(g plant-1) 

Panicle 

exsertion 

length 

(cm) 

 

 

M-13662 

 

39.95a 

 

7.93a 

 

47.88a 83.43 63.51c 25.81c 12.48c 17.19c 13.29c 30.48b 

 

10.32a 1.73b 

 

M-13684 

 

42.36a 

 

9.15a 

 

51.52a 82.22 63.08c 25.42c 12.60c 11.53c 17.94c 29.48b 

 

8.18ab 1.94b 

 

Cocodrie 

 

2.61b 

 

0.23b 

 

2.85b 91.57 103.15b 29.11b 20.18b 88.57a 51.96b 124.66a 

 

5.87b 4.55a 

 

Zhe733 

 

 

 

3.90b 

 

 

 

0.91b 

 

 

4.82b 

 

 

 

80.91 

 

 

112.73a 

 

 

33.38a 

 

 

22.20a 

 

  

52.00b 

 

 

66.43a 

 

 

114.22a 

 

 

 

6.38b 5.21a 

 

 

 

† Within columns, means followed by a common lowercase letters are not significantly different at the 0.05 level. 

‡ g: Gram.
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filled grains panicle
-1

, non-filled grains panicle
-1

, total grains panicle
-1

 and panicle 

exsertion length. Both mutant lines produced more tillers than conventional cultivars. M-

13684 and Cocodrie produced the highest (51.52) and the lowest tiller (2.85) number, 

respectively across three levels of nitrogen and five plant densities. The same trend was 

observed in field conditions but their values were much lower in the greenhouse. The 

final tiller count of both mutants was least affected relative to controls in greenhouse 

condition. A drastic reduction of final tiller count of Cocodrie was observed in the 

greenhouse as compared to the field.  M-13662 and M-13684 produced 53.79% and 

42.36%, respectively of the total field tiller count in the greenhouse but Cocodrie and 

Zhe733 produced only 18.26% and 19.28% of the total field tiller count, respectively. 

Although M-13662 had many more tillers than Cocodrie and Zhe733, it followed the 

trend of having lower tiller counts in the greenhouse compared to the field planting like 

the two conventional cultivars. Among the total tillers counted, Cocodrie had the highest 

percentage of productive tillers (91.57%) while the lowest was from Zhe733 at 80.91%. 

The percentage of productive tillers of both mutants was higher than Zhe733 but lower 

than Cocodrie. The percentage of productive tillers of Cocodrie and M-13662 was nearly 

the same for both field and greenhouse conditions, but the proportion of productive 

tillers was increased under varying levels of nitrogen and plant densities for M-13684 

and Zhe733. The height of the mutants and Zhe733 differed by 36-38 cm and 45-47 cm 

relative to Cocodrie in the greenhouse, but under field conditions these varied from 40 to 

49 cm. Plants were 25%, 28% and 6% taller in the greenhouse compared to field 

conditions for the mutants, Zhe733 and Cocodrie, respectively, across different nitrogen 
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fertilization and plant densities. The increase in plant height in the greenhouse might be 

due to less competition and more favorable environmental conditions. The flag leaf 

length of the mutants (M-13662 & M-13684) was approximately 12-23% shorter than 

the controls (Cocodrie & Zhe733). Similarly, the panicle length of the mutant lines was 

55-60% shorter than the controls but the increase in flag leaf length was observed in the 

greenhouse as compared to field conditions for both mutants as well as controls. M-

13662 mutant was significantly different from both controls (Cocodrie & Zhe733) with 

highest grain yield plant
-1

 (10.32 g) whereas, lowest grain yield plant
-1 

was recorded 

from Cocodrie cultivar (5.87 g). M-13684 mutant had statistically same grain yield plant
-

1
 as Cocodrie and Zhe733 cultivars. Although the mutant had few grains panicle

-1
, the 

large number of tillers compensated for this, thereby increasing grain yield plant
-1

 in 

greenhouse condition. In contrast, controls (Cocodrie & Zhe733) produced highest grain 

yield plant
-1

 in field condition as compared to both mutants (M-13662 & M-13684). This 

can be attributed to more productive tillers and grains panicle
-1

 in the controls at field 

condition. The two mutant lines however, were consistent for grain yield plant-
1
 in both 

growing conditions (greenhouse and field study). Tillering ability of rice plant is known 

to impact panicle production and it was highly correlated with grain yield (Counce and 

Wells, 1990; Miller et al., 1991). Significant differences for plant-height, flag leaf 

length, panicle length, filled grains panicle
-1

, and non-filled grains panicle
-1

 were 

observed between Cocodrie and Zhe733, but not for productive tiller number, non-

productive tiller number, total tiller number, total grains panicle
-1

, grain yield plant
-1

 and 

panicle exsertion length.  
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Across genotypes and nitrogen levels, the highest number of productive, non-

productive and total tillers was obtained at one plant per pot and it decreased as planting 

density increased. Increased numbers of productive tillers at lower plant density was also 

reported in previous studies (Ottis and Talbert, 2005). A reduction of plant height, flag-

leaf length, panicle length, filled grains panicle
-1

, non-filled grains panicle
-1

, total grains 

panicle
-1

, and grain yield plant
-1

 was observed at higher plant density compared to lower 

plant density (Table 6).   There was no significant difference between one and two plants 

pot
-1

 for plant height, flag leaf length, panicle length, filled grains panicle
-1

 and total 

grains panicle
-1

 across genotypes and nitrogen levels. Higher numbers of non-filled 

grains panicle
-1

 were observed at one plant pot
-1

 than at two plants pot
-1

. No other 

significant differences were observed among three, four and five plants pot
-1

 for plant 

height, flag leaf length, panicle length, filled grains panicle
-1

, non-filled grains panicle
-1

, 

total grains panicle
-1

 and grain yield panicle
-1

. This can be attributed to higher 

competition among plants at higher plant densities. 

A comparison of means across N levels reflecting genotype x density 

interactions is shown in Table 7. The highest number of productive, non-productive and 

total tillers was found in both mutants at the lowest density and it decreased as planting 

density increased. Although the controls had statistically the same number of 

productive tillers, non-productive tillers and total tillers, the trend of decreasing values 

for each trait was also observed (Table 7). These results suggest that the tillering ability 

of both mutants is affected by different levels of plant density. The same response of 

high tillering mutants to planting density was reported by Ishikawa et al., (2005). Even 
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the highest tillering mutant (Id3) responded to planting density. The different levels of 

planting densities had no effect on the plant height, flag leaf length, panicle length, 

filled grains panicle
-1

, non-filled grains panicle
-1

 and total grains panicle
-1

 for both 

mutants but this was not the case for the control (Table 7). Different plant densities had 

significant effect on grain yield plant
-1

 in both mutants (M-13662 & M-13684) and 

Zhe733 cultivar whereas Cocodrie cultivar yielded same at different plant densities. 

Highest grain yield plant
-1

was achieved at lowest plant density in M-13662 among four 

genotypes. The highest grain yield plant
-1

 of M-13662 is the result of higher percentage 

of productive tillers as well as higher tiller number. A reduction in plant height, flag 

leaf length, panicle length, number of filled grains panicle
-1

, number of non-filled 

grains panicle
-1

 and number of total grains panicle
-1

 was observed at higher planting 

densities in Cocodrie. Previous research has also reported that as rice seeding rate 

increased, panicle density increased but filled grains panicle
-1

 decreased with no 

changes in yield (Jones and Synder, 1987; Gravois and Helms, 1992). 
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Table 6. Effects of plant densities to mean agronomic traits across four genotypes and three N levels. 

 

Density 

level 

 

Number of 

productive 

tillers 

 

 

Number 

of non-

productive 

tillers 

 

Number of 

total tillers 

 

 

 

% of 

productive 

tillers 

 

 

 

Plant 

height 

(cm) 

 

 

 

Flag leaf 

length 

(cm) 

 

 

 

Panicle 

length 

(cm) 

 

 

 

Filled 

grains 

panicle-1 

 

 

 

Non-filled 

grains 

panicle-1 

 

 

 

Total 

grains 

panicle-1 

 

 

 

Grain 

yield 

(g plant-1) 

 

 

 

D1 

 

46.72a 

 

10.61a 

 

57.33a 81.49 

 

89.61a 

 

30.98a 

 

17.88a 

 

50.95a 

 

52.79a 

 

86.34a 
16.85a 

 

D2 

 

22.40b 

 

4.18b 

 

26.58b 84.27 

 

89.02a 

 

29.10ab 

 

17.59a 

 

45.47ab 

 

43.23b 

 

86.11a 
8.70b 

 

D3 

 

17.63bc 

 

3.91b 

 

21.55bc 81.80 

 

84.52b 

 

27.81bc 

 

16.52b 38.14b 

 

31.91c 66.78b 
5.64c 

 

D4 

 

13.94cd 

 

2.27b 

 

16.22cd 85.94 

 

82.86b 26.56c 16.11b 39.03b 

 

31.08c 68.72b 
4.14c 

 

D5 

 

 

10.33d 

 

1.82b 

 

12.16d 84.95 

 

 

82.08b 27.71bc 

 

16.22b 

 

38.01b 

 

28.01c 

 

65.59b 

 

3.10c 

 
† Within columns, means followed by a common lowercase letters are not significantly different at the 0.05 level. 

‡ D1= 1 plant pot-1, D2= 2 plants pot-1, D3= 3 plants pot-1, D4= 4 plants pot-1 and D5= 5 plants pot-1. g: Gram 
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Table 7. Performance of the very high tillering and dwarf rice mutants, Cocodrie and Zhe733 as influenced by five planting densities. 

Genotype x Plant 

density 

 

 

Number 

of 

productive 

tillers 

 

Number 

of non-

productive 

tillers 

 

Number 

of 

total 

tillers 

 

% of 

productive 

tillers 

 

 

Plant 

height 

(cm) 

 

 

Flag leaf 

length 

(cm) 

 

 

Panicle 

length 

(cm) 

 

 

Filled 

grains 

panicle-1 

 

 

Non-filled 

grains 

panicle-1 

 

 

Total 

grains 

panicle-1 

 

 

 

Grain 

yield 

(g plant-1) 

 

 

 

M-13662*D1 89.11a 18.77a 107.88a 82.60 62.77f 27.21def 12.27e 18.40f 13.33e 31.73e 22.37a 

M-13662*D2 40.50b 7.61bc 48.11b 84.18 64.55f 27.23def 13.38e 20.68f 12.48e 33.17e 12.32cd 

M-13662*D3 30.21bcd 6.44bc 36.66bcd 82.40 63.55f 25.87def 12.93e 17.13f 14.73e 31.86e 8.09cdef 

M-13662*D4 22.66cd 3.69bc 26.36cde 85.96 62.77f 24.90ef 12.34e 16.62f 12.38e 29.01e 5.60def 

M-13662*D5 17.26def 3.13bc 20.40def 84.60 63.88f 23.86f 11.50e 13.13f 13.51e 26.64e 3.19ef 

M-13684*D1 86.00a 20.33a 106.33a 80.88 64.77f 27.74cdef 13.58e 16.28f 18.62e 34.91e 20.44ab 

M-13684*D2 42.16b 8.44b 50.61b 83.30 64.77f 26.46def 12.86e 14.93f 17.12e 32.05e 9.32cdef 

M-13684*D3 34.84bc 8.40b 43.25bc 80.55 62.33f 25.32ef 12.57e 9.84f 18.00e 27.84e 5.15def 

M-13684*D4 28.72bcd 4.75bc 33.47bcd 85.80 61.88f 23.46f 12.04e 8.53f 18.50e 27.03e 3.52ef 

M-13684*D5 20.06de 3.86bc 23.93de 83.82 61.66f 24.12ef 11.92e 8.08f 17.46e 25.55e 2.48f 

Cocodrie*D1 4.00fg 0.33c 4.33fg 92.37 111.11bcd 35.66a 23.06a 108.68a 101.14a 146.95ab 10.42cde 

Cocodrie*D2 2.88fg 0.16c 3.05fg 94.42 108.88cd 29.72bcde 21.03abc 92.95ab 64.30bc 152.08a 6.73def 

Cocodrie*D3 2.51g 0.25c 2.77fg 90.61 98.44e 25.88def 18.40d 70.91cd 32.09de 94.73d 4.45ef 

Cocodrie*D4 2.00g 0.27c 2.27fg 88.10 98.66e 26.48def 18.90cd 84.22bc 31.58de 112.77bcd 4.15ef 

Cocodrie*D5 1.68g 0.15c 1.82g 92.30 98.66e 27.82cdef 19.49bcd 86.06bc 30.68de 116.75abcd 3.60ef 

Zhe733*D1 7.77efg 3.00bc 10.77efg 72.14 119.77a 33.31abc 22.60a 60.45de 78.08ab 131.77abc 14.17bc 

Zhe733*D2 4.05fg 0.50c 4.55fg 89.01 117.88ab 32.99abc 23.08a 53.32de 79.02ab 127.13abcd 6.40def 

Zhe733*D3 2.94fg 0.55c 3.51fg 83.76 113.77abc 34.16ab 22.18a 54.70de 62.82bc 112.68bcd 4.87ef 

Zhe733*D4 2.38g 0.38c 2.77fg 85.92 108.11cd 31.42abcd 21.18abc 46.76e 61.84bc 106.08cd 3.30ef 

Zhe733*D5 

 

2.33g 

 

0.15c 

 

2.48fg 

 

93.95 

 

104.11de 

 

35.05ab 

 

21.97ab 

 

44.77e 

 

50.40cd 

 

93.42d 

 

3.14ef 

 

 

† Within columns, means followed by a common lowercase letters are not significantly different at the 0.05 level. D1= 1 Plant hill-1, D2= 2 plants hill-1, D3= 3 plants hill-1, D4= 4 plants  

hill-1 and D5= 5 plants hill-1. 

‡ g: Gram.
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Across plant densities, the number of total tillers plant
-1

 of the mutants was 

greatly affected by different levels of nitrogen. There was a 32% and 40% increase in 

tiller numbers at the lower nitrogen levels as compared to the highest nitrogen level in 

M-13662 and M-13684, respectively. The ANOVA indicated no significant differences 

for productive tiller number among the three nitrogen levels, however, M-13662 and M-

13684 produced the numerically highest number of productive tillers at the intermediate 

and lowest nitrogen levels, respectively. The number of productive tillers, non- 

productive tillers and total tillers were unaffected by different levels of nitrogen in 

controls (Table 8). Non-productive tiller production responded to nitrogen differently 

among cultivars (Amin et al., 2006). The same results were seen in the present study 

with respect to nitrogen fertilization and production of non-productive tillers. 

Genotype x nitrogen level interactions were not significant for plant height, flag 

leaf length, panicle length, filled grains panicle
-1

, non-filled grains panicle
-1

, grain yield 

plant
-1

 and panicle exsertion length but were significant for total number of grains 

panicle
-1

. The highest number of total grains panicle
-1

 was achieved at the highest 

nitrogen level for Zhe733 but Cocodrie was not influenced by the three levels of 

nitrogen.  Similarly in wheat (Triticum aestivum L.), nitrogen increased the number of 

grains per spike (Khan et al., 2000; Iqtidar et al., 2006).  

The production of tillers in rice is influenced by several agronomic practices, 

such as the planting density but these practices do not affect the formation of axillary 

buds (Hoshikawa, 1989; Takeda et al., 2003). Several axillary buds remain dormant at 

high planting density. The tiller number plant
-1

 of mutants did vary significantly under 
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different growing condition (nitrogen & density). In contrast, other agronomic traits, 

such as the height of the mutants were not affected by different levels of plant density or 

nitrogen levels. Considering that the recessive gene controls both plant height and 

tillering ability, this indicates that the expression of the gene for the tillering trait can be 

modified depending on the growing condition or may be there are other modifiers that 

contribute to tillering but its role in the control of height is fixed. Previous studies 

indicated that some QTLs for tillering could affect plant height (Wu. P, 1996; Yan et al., 

1998). Takeda et al. (2003) concluded that rice may have additional factors other than 

OsTB1 that negatively regulates lateral branching or may have some positive regulator 

that promotes the axillary buds. Either or both (factors and regulators) may be involved 

in the regulatory mechanism for shoot branching related to planting density. These novel 

mutants, therefore, could be an important genetic resource to study the molecular 

pathway related to tillering in rice and other grasses. 
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 Table 8. Performance of the very high tillering dwarf rice mutants, Cocodrie and Zhe733 as influenced by three levels of nitrogen. 

Genotype x Nitrogen level 

 

 

Number of 

productive 

tillers 

 

 

Number of non-

productive 

tillers 

 

Number 

 of  total 

tillers 

 

% of 

productive 

tillers 

 

Plant 

height 

(cm) 

 

Flag leaf 

length 

(cm) 

 

Panicle 

length 

(cm) 

 

Filled 

grains 

panicle-1 

 

Non-filled 

grains 

panicle-1 

 

Total 

grains 

panicle-1 

 

 

Grain 

yield 

(g plant-1) 

M-13662*N1 38.64a 8.01bc 46.66abc 82.81 64.53c 26.27cd 12.56d 15.94c 13.01d 28.96c 

 

9.04ab 

M-13662*N2 46.14a 9.04abc 55.18ab 83.61 62.33c 24.66d 12.30d 18.06c 13.05d 31.12c 

 

12.84a 

M-13662*N3 35.06a 6.73bcd 41.80c 83.87 63.66c 26.51cd 12.59d 17.57c 13.80d 31.38c 

 

9.07a 

M-13684*N1 45.61a 13.93a 59.54a 76.6 62.13c 23.36d 12.60d 11.44c 17.44d 28.88c 

 

8.09ab 

M-13684*N2 42.57a 9.88ab 52.45abc 81.16 62.86c 26.38cd 12.10d 11.29c 17.63d 28.92c 

 

9.08ab 

M-13684*N3 38.90a 3.65cde 42.55bc 91.42 64.26c 26.52cd 13.08d 11.88c 18.74d 30.62c 

 

7.36b 

Cocodrie*N1 2.59c 0.10e 2.70d 95.92 102.53b 29.09bc 19.95c 83.23a 45.93c 112.21ab 

 

5.56b 

Cocodrie*N2 2.66c 0.34e 3.00d 88.66 104.93b 29.39bc 20.21bc 87.40a 55.68bc 134.38a 

 

5.74b 

Cocodrie*N3 2.59c 0.26e 2.85d 90.87 102.00b 28.85bc 20.38bc 95.08a 54.27bc 127.38a 

 

6.30b 

Zhe733*N1 3.38c 0.77e 4.16d 81.25 112.86a 34.04a 21.38bc 44.38b 66.56ab 101.17b 

 

4.69b 

Zhe733*N2 3.96c 1.32de 5.29d 74.85 110.80a 32.08ab 21.98ab 54.34b 59.06abc 110.53ab 

 

6.83b 

 

Zhe733*N3 

 

4.35c 

 

0.65e 

 

5.01d 

 

86.82 

 

114.53a 

 

34.03a 

 

23.25a 

 

57.28b 

 

73.68a 

 

130.96a 

 

 

7.61ab 

 
 † Within columns, means followed by a common lowercase letters are not significantly different at the 0.05 level. N1= 179 kg ha-1, N2= 202 kg ha-1 and N3= 224 kg ha-1. 

 ‡ g: Gram. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Tillering and height in rice are important agronomic traits, which determine the 

yield potential of a particular cultivar. Tillering ability is affected by environmental 

conditions such as light, temperature, plant density, and nutrients and genotypes. Sixteen 

very high tillering and dwarf rice mutant lines along with Cocodrie, and Zhe733 

(controls) were planted in a field at the Texas AgriLife Research and Extension Center, 

Beaumont, Texas. Phenotypic characterization was done for all the mutant lines. Two 

mutant lines (M-13662 & M-13684) were further selected to determine the effect of 

three different levels of nitrogen, and five different planting densities on different 

agronomic traits, and the effect of GA application on second leaf sheath elongation was 

assessed. Crosses including reciprocals were made with Cocodrie to determine the 

inheritance pattern of the gene controlling very high tillering and dwarf traits in the 

mutant. The novel rice mutants were characterized by their dwarf stature (50-55 cm) and 

their bushy phenotype due to the production of fine culm tillers (89-121 tillers plant
-1

). 

Reduced elongation of the top four internodes and the compression of the basal 2-3 

internodes accounted for their dwarf stature. The rice mutants were similar to the d 

mutants in terms of plant height (40-65 cm). The mutant lines produced tillers faster than 

semi-dwarf conventional cultivars. The first tiller of the mutant emerged at the 4
th

 leaf 

stage whereas, no tiller was observed in Cocodrie at the same leaf stage. The first active 

lateral bud under the first leaf sheath at the 3
rd

 leaf stage of mutant was observed in this 

study. Active buds were observed in each leaf axil until the 7
th

 leaf stage in both mutants 



 

 

70707070 

and Cocodrie but only 2-3 lateral buds in the main culm of mutants were able to produce 

primary tillers. The rate of tiller production was doubled every week until seven weeks 

after emergence of the first tiller but the rate of tiller production was slow between the 

13
th

 to 16
th

 weeks after emergence of the first tiller. However, after this period, the 

mutants started producing tillers at the rate similar to that observed during the first seven 

weeks after emergence, which resulted in a final tiller number that was nearly 6-8 times 

and 4-5 times of the tillers in Cocodrie and Zhe733, respectively. In Cocodrie and 

Zhe733, the production of new tillers became static after the panicle initiation stage but 

the mutants kept producing new tillers even at the late reproductive stage. The mutants 

were late in heading and maturity as compared to both controls (Cocodrie and Zhe733) 

and were not ready for harvest until 26 days later. Panicles were very short (12-13 cm) 

with few grains panicle
-1

 (25-30) as compared to controls. Since the mutant had a small 

number of grains panicle
-1

, shorter plant stature and duration of grain filling, and the 

leaves remain green at harvest, much of the mobile carbohydrates, protein and mineral 

nutrients from different sources were likely not transported and remained in the stem and 

leaves.  These resources were likely used to produce the large number of tillers even at 

the late reproductive stage. Generally, dwarf and high tillering traits are associated in all 

high tillering dwarf mutants of rice, and the same associated traits were observed in our 

rice mutants. Field observation and destructive sampling suggested that the production 

of high tiller numbers was the result of the release of axillary buds from a dormant stage 

rather than initiation of additional axillary buds.  Each tiller of the mutant had the 

capacity to serve as a mother tiller for further tiller production whereas only the main 
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culm, primary and secondary tiller of wild type plants produced new tillers. Reduced 

apical dominance might be one of the factors contributing towards the dwarf stature of 

the very high tillering dwarf rice mutants. Other agronomic traits like flag leaf length, 

panicle length, filled grains panicle
-1

, total grains panicle
-1

, seed size and 1000 grain 

weight were found to be reduced compared to the controls. The mutants were classified 

into a typical long grain category based on seed length-width ratio (> 3.00:1). The 

mutant had similarities to the d mutants (d3, d10, d14, d1 and d27) from the early stage 

of development in terms of high number of fine tillers, short stature and small grain size. 

However, the average shortening of the top four internodes observed in the very high 

tillering dwarf rice mutants indicated its similarity to the htd-1 mutant. The internode 

elongation pattern of the mutant followed the dn-type dwarf pattern based on Takeda’s 

classification but a few plants had different dwarfing patterns, which were not included 

in the classification. 

Across different densities and N levels, both rice mutants (M-13662 & M-13684) 

were similar to each other but significantly different from conventional rice cultivars 

with the sd-1 semi-dwarf gene (Cocodrie & Zhe733) for all studied agronomic traits. 

Five different planting densities as well as three different nitrogen levels affected the 

tillering capacity of mutants. More tillers (productive, non-productive and total tillers) 

were observed at 179 kg ha
-1

. There were no significant differences observed between 

179 and 202 kg ha
-1

 for total tiller number. Different planting densities as well as 

nitrogen levels did not affect height of the mutants (M-13662 & M-13684). Variation in 

flag leaf length, panicle length, filled grains panicle
-1

, non-filled grains panicle
-1

 and 
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total grains panicle
-1

 were not significant for different planting densities and nitrogen 

level in both mutants but the grain yield plant
-1

 was highly significant for both mutants 

and Zhe733 cultivar. 

Both mutants were considered GA responsive based on a GA bioassay. The 

segregation ratio of F2 populations showed that the very high tillering and dwarf traits 

were likely controlled by a single recessive gene. 

Different kinds of rice mutants have vital roles in forming the basis of genetic 

analysis and functional genomics studies and hundreds of increased tillering dwarf rice 

mutants are included in the mutant collection. However, most of them are 

uncharacterized (Ishikawa et al., 2005). Studies have indicated that rice tillering is a 

complex process and is controlled by genes and QTL (Miyamoto et al., 2004; Ishikawa 

et al., 2005; Zou et al., 2005). The identification, characterization and genetic analysis of 

new novel mutants are initial steps to elucidate the molecular mechanism and gene 

relationships related to the expression of the mutant traits. The characterization of the 

very high tillering dwarf mutant will be important in understanding the mechanisms that 

control tiller formation in rice or shoot branching in other crop plants. Such 

characterization may also help unravel the mechanisms involved in the determination of 

plant height in rice and its relationship to tiller growth and development. 
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