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ABSTRACT

Quantum Coherence Phenomena in X-ray Optics. (December 2008)

Petr Mikhailovich Anisimov, B.S., Nizhny Novgorod State University, Russia;

M.S., Nizhny Novgorod State University, Russia

Chair of Advisory Committee: Dr. Olga Kocharovskaya

The effects of quantum coherence in X-ray optics at nuclear transitions are

investigated from a theoretical point of view. First, we introduce the general concept

of the decaying dressed states and present a classification of the quantum coherence

effects in a three-level coherently driven system. Second, we show that the interference

effects may appear in X-ray radiation at the nuclear transitions under the condition of

the nuclear level anti-crossing. This effects are similar to electromagnetically induced

transparency, which has been widely studied earlier at the electronic transitions in

optics. We also suggest a new technique for inhomogeneous line narrowing at nuclear

transitions. This technique is based on the combined action of RF and DC fields

and adopted to be applied in the Mössbauer spectroscopy. Numerical simulation of a

simple model with the dipole-dipole interaction is presented in order to demonstrate

the efficiency of the technique. Finally, we study the possibility to suppress the nuclear

elastic forward scattering in the synchrotron experiments using trains of pulses. A

numerical model is developed to confirm this possibility and the main issue of relative

phases of consecutive pulses is discussed.
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resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

H. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

V SUPPRESSION OF NUCLEAR ELASTIC FORWARD SCAT-

TERING IN EXPERIMENTS WITH TRAINS OF ULTRA-

SHORT PULSES . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B. System description . . . . . . . . . . . . . . . . . . . . . . 74

C. Obtained results . . . . . . . . . . . . . . . . . . . . . . . . 77

D. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VI SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



viii

LIST OF TABLES

TABLE Page

I Contribution of the ground state dipole-dipole coupling to the
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onances on ωrf and r is presented for B0 = 30 T, ηg/2π =

2.256MHz, ηe/2π = −1.2927 MHz. The shade coding is used

such that the darker shade corresponds to the narrower resonance.

To provide better resolution, values greater than 3 MHz are not

shown. The regions, where maximal suppression of the inhomo-

geneous broadening is obtained, are aligned along thick lines cor-

responding to the magic angle condition determined by Eq. (4.19). . 69
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CHAPTER I

INTRODUCTION

Coherence is the property of a physical system which implies a maintenance of a phase

relationship and manifests itself in the ability of the system to exhibit some sort of

interference. Interference, in turn, is an inherent property of the waves which orig-

inates from the superposition principle. In quantum mechanics a physical system is

characterized by a wave function which has a wave-like properties. The superposition

principle can be applied to a wave function as well when quantum system has more

than one path to evolve from the same initial to the same final state. In this case, a

resulting wave function is equal to a sum of all individual wave functions correspond-

ing to all possible evolution pathways. Hence, the ability of the wave functions of

quantum system to interfere is called quantum coherence.

A specific example of quantum coherence is the atomic coherence. It is described

by the off-diagonal elements of density matrix of an atom and represents itself as

a coherent superposition of the different eigen states of the atomic Hamiltonian.

Such coherence may be induced at the atomic transition either by resonant coherent

electromagnetic radiation or by bi-chromatic radiation interacting with the adjacent

atomic transitions in a multilevel system. Study of the atomic coherence/interference

effects in multilevel atomic systems interacting with multi-frequency radiation has

very long history. It started in 1924 with experimental observation by R. W. Wood

and A. Ellet [1, 2, 3] and theoretical interpretation by W. Hanle [4] of resonance

fluorescence signal depolarization by an external magnetic field in mercury vapour.

That was a quantum coherence effect in the system including discrete levels. Later,

The journal model is Physical Review B.
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quantum coherence effect in the system including continuum of states was studied

by U. Fano [5]. Many other effects which originate from two-photon excitation of

the atomic coherence were also studied. The list of the effects includes quantum

[6, 7, 8, 9, 10] and Raman [11, 12] beats, Bell-Bloom resonances [13, 14], coherent

population trapping (CPT) [15, 16], laser induced continuum structures [17, 18, 19],

etc. For review on a subject one can read [20, 21].

In the last two decades, study of such effects as electromagnetically induced trans-

parency (EIT) [22, 23, 24, 25], lasing without inversion [26], slow light [27], received

a lot of attention forming one of the most rapidly developing fields of research in

quantum optics. The simplest system in which effects can be observed is a three-level

atomic or molecular system, shown in Fig. 1, interacting with two laser fields in such

a way that the laser driven transitions are dipole allowed while the third transition,

typically Zeeman or hyperfine, is dipole forbidden. The interference occurs between

transition pathways induced by the fields within the internal quantum states of atoms

and molecules. This interference leads to dramatic modifications of the optical re-

sponse of the system. In particular, absorption of a probe field tuned to the resonance

with some transition can be cancelled leading to an initially opaque medium being

rendered transparent for the probe field. Suppression of the resonant absorption pro-

vides also the possibility for lasing without inversion [26]. A narrow transparency

resonance is accompanied by the sharp dispersion leading to the possibility of ma-

nipulation of the group velocity of a light pulse propagating in the medium, i.e. to

reduce it down to a few meters per second or even bring the pulse to a complete stop,

imprint the quantum state carried by pulse photons into a superposition of long-lived

spin states of atoms and to later retrieve it with (ideally) no losses [27], thus realizing

the first steps toward optically carried quantum information storage and processing

and quantum computing.
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|1>

|2>

|1>

|2>

|3> |1>

|2>

|3>

a b c

|3>

FIG. 1. Generic three-level atomic or molecular systems coupled with two electro-

magnetic fields in which the interference effects are most easily realized: a) Λ scheme;

b) V scheme; c) ladder scheme.

The atomic coherence and resulting interference phenomena were widely studied

both theoretically and experimentally in the optical range of frequencies at the elec-

tronic transitions mainly in gaseous media [20, 21, 24, 26, 27, 28] and more recently

in solids [29, 30, 31, 32, 33]. Fast developing of this field is due to many promising

applications such as quantum information storage and processing, efficient and low

intensity wave mixing and optical switching, lasing in the traditionally “difficult”

frequency ranges (such THz, VUV, X-rays), high sensitive spectroscopy, metrolodgy

and magnetometry, controllable optical delay lines, etc.

The major goal of this work is to extend this field of research from optical to X-ray

range of frequencies and simultaneously from the atomic to the nuclear transitions.

More specifically this research is focused on studies of the quantum coherence effects

at the nuclear transitions in solids in the range from about 5 keV to about 150 keV.

In this range of nuclear excitations the Mössbauer spectroscopy technique provides a



4

convenient tool for coherent probing of the resonant nuclear absorption.

Mössbauer spectroscopy is based on Mössbauer effect (i.e. recoilless resonant

absorption/emission of nuclei in sufficiently rigid crystal lattice). The transitions

energies are limited from below by about 5 keV due to the internal electron conversion.

For very high nuclear excitations (higher than 150 keV) the rigidity of the solid host

is not sufficient to provide high enough probability of the recoilless transition.

Along with coherent probing of the resonant absorption, an observation of the

quantum coherence effects at the nuclear transitions requires also sufficiently strong

coherent resonant driving of the adjacent nuclear transition. Coherent radiation in

different frequency ranges could be used in principle for the resonant driving of the

nuclear transitions.

Unfortunately absence of the nuclear transitions in the optical range of energies

does not allow for the direct nuclear excitation by lasers.1 An interesting idea of

indirect laser driving of the Mössbauer transition via resonant interaction of laser

radiation with electronic transition in atom/ion and hyperfine interaction providing

coupling between electron and nuclear degrees of freedom was suggested some time ago

[34, 35, 36, 37]. However, the attempts of its experimental implementation in 57Fe [38]

and 151Eu compounds [39] met a number of difficulties. First of all optical excitation

of sufficiently large (for Mössbauer probing) number of ions in solids requires high

power lasers which heats the sample making difficult interpretation of the data [40].

Comparison of the Mössbauer spectra taken at the same temperature in the absence

and in the presence of laser radiation could be provided using pulsed excitation.

However, the last one leads to the vibrations of the sample [38] which, in turn, provides

1Two transitions at 3.5 eV in Th-229 and 75 eV in U-239 represent an interesting
exception. However both transitions are strongly forbidden with the life time of an
order of several hours.
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a dramatic modifications of the Mössbauer spectra making difficult separation and

study of the pure electronic effects.

Hyperfine nuclear sub-levels with an energy separation of an order of 1 MHz can

be efficiently driven by an RF-field [41]; see also [36, 42, 43, 44, 45] for reviews. Such

effects as dynamic Stark splitting [46, 47, 48, 49], appearance of the RF sidebands in

the nuclear gamma-ray absorption [50, 51, 52] and collapse of the hyperfine structure

[53, 54, 55] have been predicted a long time ago and demonstrated experimentally

in 90th in soft ferromagnetic films. In these materials, a strong internal magnetiza-

tion follows a rather weak external magnetic field allowing for achievement of very

high Rabi frequency. In the case of the nuclear level crossing strong driving of the

corresponding degenerate transition could be provided by the DC-field.

Currently there are no strong coherent sources of radiation in the X-ray range

of frequencies.2 However, the synchrotron radiation is available now as a train of

ultra-short pulses. It could provide under certain conditions coherent manipulation

of the nuclear absorption.

All three possibilities, namely, coherent manipulation of the nuclear Mössbauer

transitions by the RF-field (resonant driving of the hyperfine transitions), by DC-

field (in the case of the nuclear level crossing), and by the trains of pulses from the

synchrotron sources are studied in the frame of this dissertation.

The organization of the dissertation is as follows.

In Chapter II, the general concept of the decaying dressed states in three-level

coherently driven system is introduced. It provides simple and straightforward clas-

sification of the coherent effects in a three-level coherently driven system. Chapter

III discusses the recent experimental results of our group demonstrating suppression

2Hopefully at least two such sources with the wavelength of an order of 1 Å based
on free electron lasers will be available in the near future at SLAC and TESLA.
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of the resonant gamma-ray absorption in the thin single crystal or powder samples

of 57Fe in FeCO3 under the condition of the nuclear level crossing. The notion of the

decaying dressed states introduced in the previous chapter is used to demonstrate

a crucial role of the difference in the dephasing rates of two crossing sub-levels for

interpretation of the observed suppression of the resonant absorption as EIT.

In Chapter IV, a method for suppression of inhomogeneous broadening of Mössbauer

absorption lines based on a combined action of the RF and DC field is suggested. The

method resembles a well-known magic angle technique in the high resolution nuclear

magnetic resonance spectroscopy. It does not suppress, however, hyperfine interac-

tions but rather provides a correlation between such interaction in the ground and

excited nuclear states.

In Chapter V, a possibility of suppression of the nuclear elastic forward scattering

under conditions that the hyperfine splitting is multiple to the pulse repetition rate

of the synchrotron radiation is analyzed.

The list of major results obtained in this dissertation is provided in the Summary.
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CHAPTER II

DECAYING-DRESSED-STATE ANALYSIS OF COHERENTLY DRIVEN

THREE-LEVEL Λ SYSTEM∗

We introduce decaying-dressed states for a three-level Λ system driven at one atomic

transition and probed at the adjacent one. These states allow for a simple interpre-

tation and classification of various coherent effects in such a system.

A. Introduction

A three-level Λ system, driven at one transition and probed at the adjacent one,

was extensively studied in the literature due to appearance of coherent effects in the

system: ac-Stark splitting and electromagnetically induced transparency (EIT). See

[20, 24, 28] for the reviews.

The basis of the dressed states, i.e. eigenstates of the “atom+field” Hamilto-

nian, is widely used for the analysis and interpretation of aforementioned effects. It

is especially useful for describing an atomic system in a driving field so strong that

the corresponding Rabi frequency greatly exceeds all dephasing rates in the system.

In this case the dressed states define the positions of two resonances in the atomic

response separated by twice the Rabi frequency. The appearance of these two reso-

nances is well known as the Autler-Townes effect - the dynamical splitting of a bare

atomic state by a strong driving field [57].

The dressed-state basis also provides a useful analogy between EIT and Fano

type interference in the case of the radiative decay of the excited atomic level and

∗This is a pre-print version of “Decaying-dressed-state analysis of coherently driven
three-level Λ system” by Petr Anisimov and Olga Kocharovskaya from Journal of
Modern Optics (In Press) [56]. Reprinted with permission by Taylor & Francis.
http://www.informaworld.com
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negligible decay of the two-photon coherence. Indeed, the atomic system in the

dressed-state basis under aforementioned conditions is equivalent to a system with

two excited atomic levels closely spaced on the scale of radiative decay. These levels

decay to the same continuum and hence exhibit Fano interference [58].

However in the general case of arbitrary dephasing rates, the transformation of

the original density matrix equations to the dressed-state basis does not yield much

physical insight. Moreover, it complicates the analysis. At the same time, the atomic

response of a strongly driven atomic system can always be (with an exception of

a single bifurcation point) presented as a simple superposition of two resonances.

Thus we propose to define decaying-dressed states as the states corresponding to

these resonances. Such decaying-dressed states allow for transparent classification

of coherent effects and visualization of the qualitative transformation of the atomic

response with the variation of the parameters of the system.

B. Decaying-dressed states

In this section we define decaying-dressed states as the effective states of a system

including atom, driving field and relaxation processes. The properties of the decaying-

dressed states depend on the properties of the atomic system and the driving field as

well as dephasing rates.

We consider a three-level Λ system driven at the |c〉 → |a〉 transition by a laser

field Ec with a frequency ωc, detuning from the atomic resonance ∆ = ωac − ωc, and

a Rabi frequency Ω = dacEc/2~. The system is probed at the adjacent |b〉 → |a〉

transition by a weak laser field Ep with a corresponding Rabi frequency α = dabEp/2~

(see Fig. 2 left).

In order to introduce the decaying-dressed states, one should start with a density
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FIG. 2. Three-level Λ system coherently driven at the |c〉 → |a〉 transition and

probed at the |b〉 → |a〉 transition: (left) in the bare-state basis; (right) in the

decaying-dressed-state basis.

matrix formalism in a bare-state basis. We are interested in the atomic response to

the weak laser field Ep with frequency ωp scanned across one-photon ωp = ωab and

two-photon ωp = ωcb +ωc resonances. In general, the atomic response is proportional

to a slow-varying amplitude σab of an atomic coherence ρab. In the lowest order of α,

all the population remains in the ground state |b〉 and the slow-varying amplitude is

[20]:

σab = α
δ − iΓbc

δ2 + (∆ − iγab − iΓbc) δ − |Ω|2 − i∆Γbc − γabΓbc

, (2.1)

where δ = ωcb + ωc − ωp, γab and Γbc are dephasing rates for the |a〉 → |b〉 and

|b〉 → |c〉 transitions respectively.

The atomic response defined by Eq. (2.1) as a function of complex variable δ has

two poles:

δ± =
1

2

(

−∆ + iγab + iΓbc ±
√

4 |Ω|2 + (∆ − iγab + iΓbc)
2

)

. (2.2)
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These poles produce the resonant contributions to the atomic response and hence can

be attributed to the effective states with frequencies and dephasing rates defined by

the real and imaginary parts of δ±, respectively. In terms of these effective states,

a slow-varying amplitude σab can be presented as a superposition of two resonant

responses associated with the transitions from the ground state to the corresponding

decaying-dressed states:

σab =
αA+

(δ − δ+)
+

αA−
(δ − δ−)

, (2.3)

where A± are defined as follows:

A± = ±δ± − iΓbc

δ+ − δ−
= ±

(

−∆ + iγab − iΓbc ±
√

(∆ − iγab + iΓbc)
2 + 4 |Ω|2

)

2
√

(∆ − iγab + iΓbc)
2 + 4 |Ω|2

. (2.4)

Let us note that exactly the same states define the behavior of two-photon coherence

σbc =
α∗B+

(δ − δ+)
+

α∗B−
(δ − δ−)

, (2.5)

where

B± = ± Ω

δ+ − δ−
= ± Ω

√

(∆ − iγab + iΓbc)
2 + 4 |Ω|2

. (2.6)

According to Eq. (2.2), Re (δ+) and Re (δ−) are equal to the level shifts of

usual dressed states (i.e. the eigenvalues of the “atom+field” Hamiltonian) either

when Γbc = γab or when 2 |Ω| ≫ max{|γab − Γbc| , ∆}. Both quantities Im (δ+) and

Im (δ−) in this case are equal to the sum of the dephasing rates regardless of the

effective state involved. However, when dephasing rates Γbc and γab are not equal

Γbc 6= γab, and their difference is non-negligible as compared to the Rabi frequency

of the driving field, Re (δ+) and Re (δ−) are essentially different from the level shifts

expected for the usual dressed states. In addition, the dephasing rates Im (δ+) and

Im (δ−) characterizing the width of the corresponding resonant contributions become
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very different from each other as well. These are the decaying-dressed states (but not

the usual dressed states) which determine two effective resonant contributions to the

atomic response when dephasing rates are essentially different. Hence the analysis

based on decaying-dressed states allows for simple description and interpretation of

various peculiarities of the total atomic response with change of the parameters as it

will be demonstrated below.

C. Resonant driving

In the case of resonant driving, ∆ = 0, both the amplitudes and positions of reso-

nances depend on a single parameter, which is different for the amplitudes and the

positions. Namely, the amplitudes are defined by x = 0.5 (γab − Γbc) / |Ω|, and the

positions are defined by y = 2
√

|Ω|2 + γabΓbc/ (γab + Γbc). In terms of these param-

eters, the following expressions can be written:

A± = 0.5 ± i
x

2
√

1 − x2
(2.7a)

and

δ± = 0.5 (γab + Γbc)
(

i ±
√

y2 − 1
)

. (2.7b)

Figures 3 and 4 present the dependence of A+ and A− on the parameter x, cor-

respondingly. The analysis of these figures reveals three regions of distinctly different

behavior: x < −1, −1 < x < 1, x > 1, and two bifurcation points |x| = 1. Com-

parison of these figures shows that changing x → −x corresponds to exchange of A+

with A− and vice versa.

Figures 5 and 6 present the dependence of Re (δ±) and Im (δ±) on the parameter

y, correspondingly. The analysis of these figures reveals two regions of distinctly

different behavior: 0 < y < 1, y > 1 and a bifurcation point y = 1.
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FIG. 3. Dependence of the real (solid line) and imaginary (dashed line) part of

A+ as a function of dimensionless parameter x defined in text.
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FIG. 4. Dependence of the real (solid line) and imaginary (dashed line) part of

A− as a function of dimensionless parameter x defined in text.
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FIG. 5. Dependence of 2Re (δ+) / (γab + Γbc) and 2Re (δ−) / (γab + Γbc) as a func-

tion of dimensionless parameter y (see text for definition) is presented by solid and

dashed line, respectively.
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FIG. 6. Dependence of 2Im (δ+) / (γab + Γbc) and 2Im (δ−) / (γab + Γbc) as a func-

tion of dimensionless parameter y (see text for definition) is presented by solid and

dashed line, respectively.
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The relationship between the parameters x and y is given by the following:

• if |x| > 1 then 0 < y < 1;

• if |x| = 1 then y = 1;

• if |x| < 1 then y > 1.

1. Weak resonant driving field, |x| > 1

The condition |x| > 1 implies either x > 1 or x < −1. The first possibility means

that the two-photon coherence lives longer than the optical coherence while the second

possibility means that the opposite is true. Careful examination shows that, although

A± and δ± are significantly affected by the choice of the sign of x, it is always possible

to define |1ph〉 - the effective level which is mostly |a〉 and |2ph〉 - the effective level

which is mostly |c〉 . Transition from the ground level |b〉 to |1ph〉 (|2ph〉) is the

one-photon (two-photon) transition.

The main signature of the one-photon transition is its presence in the absence of

the driving field while the signature of the two-photon transition is its appearance if

the driving field is applied. It can be seen from Figs. 3 and 4 that, for x > 1, |+〉

represents the one-photon transition while |−〉 represents a two-photon one. In the

opposite case of x < −1 the role of |+〉 and |−〉 is exchanged. The dependence of the

amplitudes on the strength of the driving field in the case |x| ≫ 1 is the following:

A1ph = 1 + |Ω|2 / (γab − Γbc)
2 , (2.8a)

A2ph = − |Ω|2 / (γab − Γbc)
2 . (2.8b)

These dependences support the one-photon and two-photon assignments. The am-

plitude of the one-photon transition is real and always grater than one. This reflects
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expected absorption from the ground state. The interesting feature of the two-photon

transition is the negative value of its amplitude. This fact means that the two-photon

transition provides gain in a three-level Λ system. Equation (2.8b) states that the

gain increases with increasing of the driving field. The competition between the one-

photon absorption and the two-photon gain depends dramatically on the dephasing

rates γab and Γbc. Thus the choice of positive or negative x affects greatly the profile

of the atomic response and will be discussed later.

The real parts of the poles describe the positions of the decaying dressed states.

In the case of a weak driving considered here, Re (δ±) = 0 which is demonstrated by

the region 0 < y < 1 on Fig. 5. Hence, both resonances are centered at |a〉 → |b〉

transition instead of being split by 2 |Ω| as it could be expected on the basis of the

usual dressed state picture. In turn, the imaginary parts of the poles describe the

widths of the resonances, i.e. the dephasing rates of the transitions from the ground

level to the corresponding decaying dressed state.

In the limit |x| ≫ 1, the poles according to Eq. (2.7b) are defined as:

δ1ph = i
(

γab − |Ω|2 / (γab − Γbc)
)

, (2.9a)

and

δ2ph = i
(

Γbc + |Ω|2 / (γab − Γbc)
)

. (2.9b)

In the absence of the driving field, the dephasing rate for the one-photon transition is

equal to γab, and for the two-photon transition coincides with Γbc. As one can see, the

choice of which transition dephases faster affects mainly the width of the transition

2Im (δ1ph) (2Im (δ2ph)) but not the amplitude A1ph (A2ph).

The dependence of the dephasing rates on the driving field is sensitive to the

sign of x. This can be seen from Eqs. (2.9a) and (2.9b). Depending on γab − Γbc,
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the dephasing rate experiences power broadening or power narrowing. The narrowing

(broadening) introduced to the one-photon transition becomes noticeable for |Ω|2 ≈

γab |γab − Γbc| while for the two-photon transition it becomes noticeable for |Ω|2 ≈

Γbc |γab − Γbc|. Comparison of these two cases shows that the narrower transition is

affected by the presence of the driving field faster. The presence of the driving field

always results in the broadening of the narrower resonance and the narrowing of the

broad. This general tendency of the driving field to make the dephasing rates equal is

supported by Eq. (2.7b), which shows dependence on y only. Finally, this tendency

is demonstrated on Fig. 6 in 0 < y < 1 region.

The profile of the atomic response is substantially different for x > 1 or x < −1.

The case x > 1 corresponds to the broad one-photon absorption and the narrow two-

photon amplification resonances both centered at |b〉 → |a〉 transition (see Fig. 7 top

row). Combination of this two resonances results in a narrow dip at the center of the

absorption profile. The width and the depth of the dip is defined by δ2ph and A2ph.

It is remarkable that the amplification originated from the two-photon feature can be

comparable to the one-photon absorption which leads to the net transparency at the

center of the line. Indeed, the resulting value of Im (σab) at the center of the dip is

Im (σab)δ=0 /α = A1ph/Im (δ1ph) + A2ph/Im (δ2ph)

=
1 + |Ω|2 / (γab − Γbc)

2

γab − |Ω|2 / (γab − Γbc)
− |Ω|2 / (γab − Γbc)

2

Γbc + |Ω|2 / (γab − Γbc)

=
1

γab

(

1 − |Ω|2

γabΓbc + |Ω|2

)

(2.10)

=
1

γab

(

1 + |Ω|2 /(γabΓbc)
) .

According to Eq. (2.10), |Ω|2 = γabΓbc defines the characteristic strength of the

driving field when the absorption at the center of the dip is two times smaller than in



17

-3 -2 -1 1 2 3
∆

-1.0

-0.5

0.5

1.0

1.5

-3 -2 -1 1 2 3
∆

-1.0

-0.5

0.5

1.0

1.5

-3 -2 -1 1 2 3
∆

-1.0

-0.5

0.5

1.0

1.5

FIG. 7. The profile of the atomic response in the regime of electromagnetically

induced transparency (x = 2.84605). (Top left) σ1ph-b. (Top right) σ2ph-b. (Bottom)

Net response σab = σ1ph-b + σ2ph-b. Real and imaginary parts are presented by the

solid and dashed lines correspondingly. The numerical values for parameters used

were the following: γab = 1, Γbc = 0.1, |Ω|2 = γabΓbc.



18

the absence of the driving field. (Note that the width of the two-photon resonance at

this value of |Ω| remains quite narrow ≈ 2Γbc. With further increase of the driving

field, the absorption at the center tends to zero.

In the finite range of the driving field intensities γabΓbc ≤ |Ω|2 < (γab − Γbc)
2,

the sum of the broad absorption and narrow amplification profiles results in the

characteristic feature of electromagnetically induced transparency (see Fig. 7). It has

nothing to do with the Autler-Townes effect (dynamical Stark splitting of the atomic

level in the presence of a strong field by 2Ω). Indeed, if one would formally consider

the sum of two Lorentzians splitted by 2Ω with the effective width (γab + Γbc)/2 the

absorption profile would be smooth with maximum in the center and small absorption

deficit (as compared to the case of Ω = 0) defined by the ratio |Ω|2 /γ2
ab. In fact the

non-absorbing feature originates from the difference of two Lorentzians centered at

the same position, rather than summation of two Lorentzians shifted by the twice the

Rabi frequency, which clearly reflects the importance of interference.

The case x < −1 corresponds to narrow absorption and broad amplification

resonances. In the previous case (x > 1), the small gain present at the two-photon

transition had a stronger impact on the profile of the atomic response. It was due to

the fact that all gain was concentrated in a narrow region δ < Γbc < γab. However

in the present case (x < −1), the gain is small and is spread over a much broader

region γab < δ < Γbc. Therefore, the impact of the two-photon transition is greatly

suppressed. For any x < −1, the summation of two resonances results in a smooth

absorption profile with a maximum in the center (see Fig. 8 for the case of x =

−2.84605) and small absorption deficit (as compared to the case of no driving field).

Since Γbc > γab the condition |Ω|2 ≥ γabΓbc implies |Ω| > γab. Thus, it corresponds

to the case of a strong driving field which is considered below.
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FIG. 8. The profile of the atomic response in the regime of electromagnetically

induced transparency (x = −2.84605). (Top left) σ1ph-b. (Top right) σ2ph-b. (Bottom)

Net response σab = σ1ph-b + σ2ph-b. Real and imaginary parts are presented by the

solid and dashed lines correspondingly. The numerical values for parameters used

were the following: γab = 1, Γbc = 1.9, |Ω|2 = 0.1.
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2. Strong resonant driving field, |x| < 1

In the limit of a strong field, the transitions from the ground level to the decaying-

dressed states can no longer be classified as one- or two-photon transitions. For the

purpose of an illustration let us assume the limit |x| ≪ 1. In this case,

A± =
1

2
± i

(γab − Γbc)

4 |Ω| (2.11a)

and

δ± = ±
(

|Ω| − (γab − Γbc)
2

8 |Ω|

)

+ i
(γab + Γbc)

2
. (2.11b)

Thus, the amplitudes are real, positive quantities, which are equal to each other and

equal to one half (except for a small imaginary correction which goes to zero with

increase of the driving field). The dephasing rate for each transition is equal to an

average dephasing rate 0.5 (γab + Γbc), which does not depend on the driving field.

Finally, the positions of decaying-dressed states essentially coincide with positions

defined by the usual dressed states and are just slightly affected by the dephasing

rates.

All the previous combined, the imaginary part of the atomic profile is represented

by a sum of two Lorentzian profiles separated by the twice the Rabi frequency with

the widths (γab + Γbc)/2. This corresponds to the ac-Stark splitting where the EIT

feature is not present. It is worthwhile to point out that a strong field limit, |x| < 1,

implies |Ω| > |γab − Γbc| rather than |Ω| > max{γab, Γbc}. At the same time, an

observation of the resolved dynamic Stark splitting requires |Ω|2 > 0.5 (γ2
ab + Γ2

bc).

Thus in the case Γbc > γab it requires |Ω| > Γbc > γab rather than just |Ω| > γab.
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3. Bifurcation points x = 1 and x = −1

A bifurcation point is a special case for which |x| = 1 and where the atomic response

has a pole of the second order:

σab =
α (δ − iΓbc)

(δ − i (γab + Γbc) /2)2
, (2.12)

In this degenerate case, the presentation of the atomic response as a superposition of

two Lorentzians is no longer valid.

Figures 9 and 10 demonstrate the atomic response at the bifurcation point x = 1

and x = −1 respectively. Dip in the center is present for x = 1 and is absent for

x = −1.
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FIG. 9. Demonstration of the atomic response at the bifurcation point x = 1 where

the behavior of the effective states changes. The following numerical parameters we

used: γab = 1, Γbc = 0.1 and Ω = 0.45.
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FIG. 10. Demonstration of the atomic response at the bifurcation point x = −1

where the behavior of the effective states changes. The following numerical parameters

we used: γab = 1, Γbc = 1.9 and Ω = 0.45.

D. Weak far detuned driving field

In the case when a weak driving field is far detuned from the one-photon resonance,

one can assume for all practical purposes that ∆ − iγab + iΓbc ≈ ∆ and ∆ ≫ |Ω|.

Under such assumptions the decaying-dressed states are represented by

A1ph = 1 − |Ω|2
∆2

, (2.13a)

δ1ph = −∆

(

1 +
|Ω|2
∆2

)

+ iγab

(

1 − |Ω|2
∆2

)

, (2.13b)

and

A2ph =
|Ω|2
∆2

, (2.14a)

δ2ph =
|Ω|2
∆

+ i

(

Γbc +
|Ω|2 γab

∆2

)

. (2.14b)
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Here, the one- and two-photon nature of the resonances clearly appears again. The

positions of the resonances (Re (δ±)) coincide with positions of the usual dressed

states split by ∆. Therefore, two resonances in this case are well separated and never

overlap. It makes sense to discuss the profile of atomic response for the one-photon

transition independently from the two-photon transition.

1. One-photon transition

The atomic response for one-photon transition is equivalent to the atomic response

of an effective two level system and is proportional to

σ−b =
1 − ζ

δ + ∆ (1 + ζ) − iγab (1 − ζ)
, (2.15)

where ζ = |Ω|2 /∆2 and is valid for ζ ≪ 1. It describes Lorentzian absorption profile

centered at δ0 = −∆ (1 + ξ). Thus, the center of the profile is slightly shifted up from

|a〉 → |b〉 transition by the two-photon Rabi frequency |Ω|2 /∆. The width of this

resonance in the weak field is defined by γab. Both the width and amplitude decrease

with increase of the driving field in such a manner that the magnitude of the maximal

absorption remains constant.

2. Two-photon transition

The |b〉 → |+〉 transition is a two-photon transition. Corresponding atomic response

is fully defined by the presence of the driving field and is proportional to

σ+b =
Γbc

γab

ξ

(δ − Γbc(∆/γab)ξ − i(ξ + 1)Γbc)
, (2.16)

where ξ = γabζ/Γbc, which can be greater than one if Γbc ≪ γab even at ζ ≪ 1.

This atomic response corresponds to the absorption in an effective two-level

system, which resonance frequency is shifted down from |a〉 → |b〉 transition by
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∆ + |Ω|2 /∆. The last term can be presented also as ∆ξΓbc/γab. At the first stage

of increasing ξ, while ξ < 1, the width of the resonance is defined by Γbc (hence it

may be much more narrow than the width of one-photon resonance) and the absorp-

tion is increasing linearly with ξ. When ξ = 1, the power broadening doubles the

width of the resonance and Im (σ+b)max = 0.5γ−1
ab . It is half of the maximal value:

Im (σ+b)max = γ−1
ab which is reached when ξ → ∞. Further increase in ξ leads to

increase of the width of the resonance.

It is remarkable that strong response (Im (σ+b)max = 0.5γ−1
ab - comparable to the

resonant one-photon response in the absence of the driving field) can be achieved

in the far-detuned (∆ ≫ γab and ∆ ≫ |Ω|) three-level system at the two-photon

transition under the condition ξ ≈ 1 due to the slow dephasing of the two-photon

coherence σbc.

E. Strong far detuned driving field

In the case of a strong far-detuned drive such that ζ ≫ 1. The atomic response is

described by

A± =
1

2
∓ ∆ − i (γab − Γbc)

4 |Ω| (2.17)

δ± = −∆

2
± |Ω| + i

2
(γab + Γbc) ±

(∆ − i (γab − Γbc))
2

8 |Ω| (2.18)

Thus the case of a strong far-detuned drive is equivalent to a strong resonant drive

considered in Section 2.
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F. Large decay rate at the two-photon transition

In the case of fast dephasing of two-photon coherence, Γbc ≫ max {∆, γab, |Ω|}, only

one effective level contributes to the atomic response:

A− = 1 (2.19a)

and

δ− = −∆ + iγab + i
|Ω|2
Γbc

(2.19b)

It means that only one-photon resonance is important for a probe field. Its position

is defined by the usual dressed state (δ− = −∆) and its width is defined by dephasing

of the corresponding one-photon transition γab which is slightly power broadend by

the driving field.

G. Conclusion

We discussed decaying dressed states of a coherently driven three-level system as the

effective states providing resonant contributions to the total atomic response. The

analysis of such contributions allows for simple and straightforward classification of

different regimes. In the case of slow dephasing of two-photon coherence and suffi-

ciently weak driving field the decaying dressed states are dramatically different from

the eigenstates of the “atom+field” Hamiltonian and especially useful for understand-

ing the structure of the atomic response and its modifications with the variation of

the parameters. Using decaying dressed sates should be helful also for analysis of

other schemes including strong driving field.
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CHAPTER III

SUPPRESSION OF γ-PHOTON ABSORPTION VIA QUANTUM

INTERFERENCE∗

We show that the interference effects (similar to electromagnetically induced trans-

parency, which was widely studied earlier at the electronic transitions in optics) may

appear in γ-radiation at the nuclear transitions under the condition of the nuclear

level anticrossing. We demonstrate it also experimentally in the optically thin sam-

ples of FeCO3.

A. Introduction

The quantum interference effects (such as electromagnetically induced transparency

(EIT), slow light, lasing without inversion, etc.) represent one of the most rapidly

developing fields of research in quantum optics. These effects appear in the three-level

quantum systems driven by the strong coherent field at one transition and probed

by the weak field at the adjacent transition. In the particular case of two quantum

states having the same energy, the transition between these degenerate levels can be

efficiently driven by a dc-field. This situation can be realized, for example, under

the condition of level anticrossing (i.e. level mixing) in the external magnetic field.

Quantum interference effects were widely studied both theoretically and experimen-

tally in the optical range of frequencies at the electronic transitions mainly in gaseous

∗This is a pre-print version of “Suppression of γ-photon absorption via quantum
interference” by Petr Anismov, Farit Vagizov, Yuri Rostovtsev, Rustem Shakhmura-
tov and Olga Kocharovskaya from Journal of Modern Optics (2007) Vol. 54 (16
& 17), pp. 2595 - 2605 [59]. Reprinted with permission by Taylor & Francis.
http://www.informaworld.com
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media [20, 24, 26, 27, 21, 28] and more recently in solids [29, 30, 31, 32, 33].

A few years ago a level mixing induced transparency (LMIT) was reported for

the first time at the nuclear γ-ray transition [60]. A more detailed experimental and

theoretical analysis of this effect was provided in the following papers [61, 62, 36, 63,

64, 65]. The experiments were done in a FeCO3 crystal with an optical thickness for

the resonant γ-quanta of the order of 10. About 25% suppression of the resonant γ-

ray absorption in 57Fe was observed under the condition of the nuclear level crossing.

This effect was attributed to the multiple scattering with a polarization change in the

optically thick sample [63, 64, 65]. Hence it should not appear in the thin samples.

In this paper we report an experimental demonstration of the level mixing in-

duced transparency for γ-photons in the thin sample of FeCO3 and show that this

effect can be viewed as EIT for single γ-photons at the nuclear transitions.

B. The characteristics of the samples and the experimental results

We perform the Mössbauer experiments in the natural mineral siderite, FeCO3. The

nuclear spin of 57Fe is equal to Ig = 1/2 in the ground state and to Ie = 3/2 in

the excited (14.4 keV) state. The siderite does not have cubic symmetry thus it has

an electric field gradient which interacts with the nucleus’ quadrupole moment and

splits the excited state by 23.84 MHz. At the temperature below the Néel temperature

[TN = 38.3◦ K] (see Ref. [66]) siderite becomes anti-ferromagnetic with an internal

magnetic field, B0 being parallel or anti-parallel to the electric field gradient. This

direction is naturally chosen as a quantization z-axis. Thus the Hamiltonian of the

system has a form:

H =







He Vγ

(Vγ)
† Hg






(3.1)
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where He is a 4×4 Hamiltonian for an excited state manifold; Hg is a 2×2 Hamiltonian

for a ground state manifold, and Vγ = −µγBγ describes a magnetic dipole interaction

with a probing γ-radiation, where µγ is a magnetic dipole moment of the transition,

and Bγ is a magnetic field of a probing γ-radiation.

The Hamiltonian for an excited state manifold includes magnetic and quadrupole

contributions He = HZ + HQ which are in turn

HZ = −γe (Ie)z B0 (3.2)

and

HQ = Vq

(

3 (Ie)
2
z − Ie (Ie + 1)

)

, (3.3)

where γe is the gyromagnetic ratio for an excited state. While the Hamiltonian for a

ground state manifold includes only magnetic contribution Hg = −γg (Ig)z B0, where

γg is the gyromagnetic ratio for a ground state. Vq = eQVzz/ (4I (2I − 1)), where

Q is the nuclear quadrupole moment, and Vzz is zz-component of the electrostatic

gradient tensor.

The structure of the energy levels is given in Fig. 11. In the crystal sample

the transition probability depends on the geometry of the experiment. If a probe

γ-radiation propagates along z-axis, the transitions with ∆m = +1 (correspond-

ing to the lines 1 and 5 in Fig. 11 and described by V +
γ = −µ+

(

(Bγ)x + i (Bγ)y

)

)

and with ∆m = −1 (corresponding to the lines 3 and 4 and described by V −
γ =

−µ−
(

(Bγ)x − i (Bγ)y

)

) are allowed. In the case when a probe γ-radiation propa-

gates in the direction perpendicular to z-axis the transitions with ∆m = 0 (lines 2

and 6; V 0
γ = −µ0 (Bγ)z) also become possible. Because of equal populations in the

ground state and a fundamental chiral symmetry of electromagnetic interaction the

transitions m → m′ should be identical to the transitions −m → −m′ (corresponding
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FIG. 11. Level diagram and possible transitions in siderite. Energy levels, we are

focused on, are shaded.

to the reverse direction of z axis). Thus, for a single crystal sample depending on a

geometry of the experiment the Mössbauer absorption spectra should consist of either

two (1-4 and 3-5) or three doublets (1-4, 3-5 and 2-6) with identical lines (i.e. the

same shape, width and amplitudes) in each doublet.

At T=30◦ K, when the internal magnetic field B0 is approximately 15 T, Zeeman

sublevels −3/2 and 1/2 should cross each other and therefore two lines 4 and 5 should

merge into one line. Thus, in the optically thin sample an absorption of the merging

line should be equal to the sum of the absorption of lines 4 and 5, which in turn is

equal to the sum of 1 and 3 absorption lines.

On the other hand, in an optically thick sample one could expect that an in-

crease of the optical thickness of merging line to lead to summation of the absorption

coefficients in the exponent rather than to summation of two exponents with original
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absorption coefficients. It would result in absorption saturation of lines 4 and 5 at

their crossing point as compared to the sum of absorption of their partner’s lines

1 and 3 at the exit of the absorbing medium. However such a simple “thickness”

argument does not hold in the case of a parallel geometry.

Indeed, the radioactive source in both our and the previous experiments was

unpolarized and thus could be thought of as emitting γ-photons of a right and left

circular polarizations one by one following each other with an equal probability. In a

parallel geometry each of these photons may excite only one corresponding transition:

either ∆m = +1 (line 5) or ∆m = −1 (line 4) depending on the polarization of the

coming photon. Thus the total absorption of the merging lines should be determined

by the sum of 1 and 3 absorption lines at the exit of the sample independent on its

thickness. However, the earlier experiments in the optically thick samples with an

optical thickness for the resonant γ-quanta of an order of 10 done at the Catholic

Leuven University had shown that an absorption at the level crossing was about 25%

smaller than the sum of absorptions at 1 and 3 lines independent on the geometry.

It is important to note that we repeated the same experiment at Texas A&M

University with a crystal sample with an optical thickness of 7 for the resonant γ-

quanta3 in a parallel geometry and received a similar result (see Fig. 12). Such a

deficit in absorption at the level crossing point was interpreted via the scattering

of γ-photons with a polarization change in the optically thick crystal sample with a

broken axial symmetry [63, 64, 65]. If this scattering process and the simple thickness

effect would be the only mechanisms for the observed transparency, the transparency

3The reason for the high transparency is the following. The recoilless fraction
of radiation both in the emitter and absorber is only about 70% while our detector
registers both resonant and off-resonant gamma-quanta. Besides, emitted radiation
is not polarized, while absorption of each resonant line is specified for radiation with
particular polarization, left or right circularly polarized.
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FIG. 12. Transmission spectrum of a single crystal sample (left). The FeCO3

single crystal sample is cleaved and polished on both sides; it is a 60-70 µm thick

platelet of 0.8x0.7 cm2 area. The angle of the c-axis with the cleavage plane {101̄1}
is about π/4, and γ-ray wave vector is along the c-axis. This platelet is pasted up on

a thin 1.1 mm copper plate with γ-ray aperture of 6 mm in diameter. The copper

plate is screwed on a cold finger of the He closed cycle cryostat from Cryo Industries.

Sample’s optical thickness for the resonant γ-quanta is about 7. Zoom in at the level

crossing is shown on the right.

should vanish in the optically thin sample.

We did the further Mössbauer experiments with the poly-crystal powder for

two reasons. First, it is technically easier to prepare optically thin powder samples.

Second, the scattering mechanism discussed in Ref. [63, 64] should be eliminated in

a powder sample where the orientation of the optical axis is random and hence all

three doublets are present in the spectrum. The experiments were performed by

using a conventional Mössbauer set up. It includes a source of γ-radiation (Co57 in

Rhodium), an absorber (FeCO3 in powder), and a detector. The results for different

optical thicknesses of an absorber are presented in Fig. 13. It clearly shows that
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FIG. 13. Transmission spectra of 57Fe:FeCO3 powder samples for different optical

thicknesses (te) of an absorber. Dots are the observed absorption while solid lines are

the fitting curves based on the assumption that absorption at a merging line is equal

to the sum of individual absorptions. Samples were cooled down to 30◦ K.
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FIG. 14. Absorption curves for V −
0 probing γ-radiation. (i) dotted line corre-

sponds to Ω = 0, γc = 1, and γa = 0.31; (ii) solid line corresponds to Ω = 0.1644γc,

γc = 1, and γa = 0.31; (iii) dashed line corresponds to Ω = 0.1644γc, γc = 1, and

γa = 1

transparency is reduced with a decrease of the sample thickness. At the same time

an appreciable deficit in absorption (about 8%) appears even in the sample with an

optical thickness for the resonant γ-quanta equal to 0.8.

In the next section we provide a theoretical analysis of the level crossing trans-

parency effect in thin samples. We show that the mechanism of LMIT in thin samples

is essentially the same as EIT which was widely studied at the electronic optical tran-

sitions.

C. Mechanism of LMIT in thin samples

In order to understand the origin of the absorption deficit at the level crossing con-

dition we consider a simplified three-level system involving only sublevels of interest.

Namely, these are m = 1/2 and m = −3/2 sublevels, which are crossing in the excited
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state, and a single m = −1/2 sublevel in the ground state. Let us denote them a, c,

and b accordingly (Fig. 14). Similar to previous papers [60, 61, 62, 36, 63, 64, 65]

we suppose that the axial symmetry is broken. (It may be caused by the presence of

either perpendicular components of the internal magnetic field or asymmetry of the

electric field gradient.) Breaking of the axial symmetry means coupling between the

two degenerated upper levels a and c. Such a coupling results in the nuclear responses

to probe γ-radiation simultaneously at c− b and a− b transitions. Their interference

under certain conditions may lead to the reduced absorption. Indeed, when the axial

symmetry is broken, the effective Hamiltonian of the system takes the form (~ = 1):

Heff =

a b c

a

b

c













ωa V + Ω

V + 0 V −

Ω V − ωa













(3.4)

where Ω is a coupling due to the broken axial symmetry. Assuming that γ-radiation

interacts with both ∆m = −1 and ∆m = +1 transitions and taking into account

that it is weak and does not perturb the populations (i.e. ρbb = 1, ρaa = ρcc = 0), we

obtain in the rotation wave approximation the following equations for the off-diagonal

matrix elements at the probed transitions :

∂ρab

∂t
= − (γa + iδ) ρab − i

(

V +
0 + Ωρcb

)

, (3.5)

∂ρcb

∂t
= − (γc + iδ) ρcb − i

(

V −
0 + Ωρab

)

, (3.6)

where γa and γc are decay constants for the off-diagonal density matrix elements, and

δ is the detuning from the transition frequency [67].

To get a deeper insight into the physics of LMIT we consider first the case when

the probe field interacts only with the ∆m = −1 transition (i.e. V +
0 = 0). Then we
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come to the so called Λ scheme. The steady-state solution of the above equations

takes the form:

ρab = − Ω

(γa + iδ)

V −
0

(

γc + iδ + |Ω|2 / (γa + iδ)
) , (3.7)

and

ρcb = −i
V −

0

γc + iδ + |Ω|2 / (γa + iδ)
. (3.8)

Hence the susceptibility of the system is defined as:

χ ∼ −i
|µ−|2

γc + iδ + |Ω|2 / (γa + iδ)
(3.9)

or

χ ∼ −i
|µ−|2

2

(

1 + A

B+ + iδ
+

1 − A

B− + iδ

)

(3.10)

where

A =
γc − γa

√

(γc − γa)
2 − 4Ω2

, (3.11)

and

B± =
γa + γc

2
± i

√

Ω2 −
(

γc − γa

2

)2

. (3.12)

If the linewidths of both a−b and c−b transitions were equal to each other (γa = γc),

then for arbitrary coupling between the excited states the total line shape (Eq. 3.10)

presents the sum of two Lorentzians with centers separated by a coupling constant 2Ω

and identical linewidths and amplitudes. This result has a transparent interpretation

in the basis of the states dressed by Ω. Namely, it means that the total line results

from the summation of the dressed level lines separated by 2Ω at the crossing point

(level anti-crossing), and interference effects (associated with a contribution of the

coherence between the dressed states) do not play any role. This effect is also well-

known as the Autler-Townes effect (i.e. probing by γ-radiation of the Stark splitting

produced by Ω). If the linewidths at a − b and c − b transitions in our Mössbauer
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experiments were defined by the radiative decay, they would be equal to each other.

Hence the absorption deficit (if any) in this case could be caused only by the level

splitting and nuclear interference would not appear.

However, as it is clearly seen from the experimental data (see Fig. 12), the

linewidths for these transitions are different, namely, ∆ω±3/2 = 0.592 mm/s and

∆ω±1/2 = 0.260 mm/s. In this case the total line shape (Eq. 3.10) cannot be viewed

as a sum of two Lorentzians produced by the dressed states, and the interference

effects play a crucial role. Let us consider the case when γc > γa (which corresponds

to our experimental scheme). According to (Eqs. 3.10-3.12), in the weak coupling case,

namely Ω ≪ (γc − γa) /2, the total linewidth represents itself as the difference of two

Lorentzians both centered at the merging lines frequency. The positive Lorentzian

has a broad linewidth defined as γc−Ω2/ (γc − γa) (which is reduced with an increase

of Ω) and a negative Lorentzian has a narrower linewidth γa + Ω2/ (γc − γa) which

is power broadened. The absorption coefficient in the crossing point is proportional

to (γc + Ω2/γa)
−1

. Thus an absorption deficit due to the coupling is proportional to

Ω2/ (γcγa). Note that the deficit in absorption for a given γc in the case γa < γc is

larger than in the case γa = γc . This means that an interference in absorption is

destructive (coherence between the dressed states reduces the absorption).

According to our experimental data, the linewidth at c−b transition is about two

times broader than the linewidth at a − b transition (see Fig. 12). (It is worthwhile

to point out that this fact was noticed earlier and connected to the broadening of

1/2 → −3/2 line by coupling of the nuclear spin to the fast fluctuating electronic

spin [66, 68]). This experimentally measured linewidth results from a convolution of

both the radiative source and absorber lines. Taking into account that the linewidth

of our source is known to be equal to 0.11 mm/s we conclude that γc/γa ≈ 3.217.

The absorption curves for V −
0 probing γ-radiation corresponding to the cases (i)
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FIG. 15. Absorption curves for V −
0 probing γ-radiation in the case of a strong

coupling. (i) dotted line corresponds to Ω = 0, γc = 1, and γa = 0.31; (ii) solid line

corresponds to Ω = (γc − γa) /2 = 0.345, γc = 1, and γa = 0.31; (iii) dashed line

corresponds to Ω = 0.345, γc = 1, and γa = 1

Ω = 0 and (ii) Ω = 0.1644γc for γc/γa = 3.217 are shown in Fig. 14. As it can be seen

from the figure the absorption deficit is about 8%. The case (iii) Ω = 0.1644γc and

γa = γc is also presented for comparison. Note again that the deficit in absorption is

larger in the case of γc/γa = 3.217 than it would be in the case γa = γc, indicating a

constructive contribution of the destructive interference into the deficit of absorption.

In principle, in the case of stronger coupling, Ω ≫ (γc − γa) /2, the total absorp-

tion line could be viewed as the sum of two lines separated by 2Ω (similar to the case

γa = γc) though with the deformed line shapes (as compared with the Lorentzian

ones) due to interference effects.

In this case the line splitting should actually be noticeable (see Fig. 15). Moreover

such strong coupling would apparently appear in the overall Mössbauer spectra and

not just for merging lines (where it was observed experimentally).
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FIG. 16. Absorption curves for V +
0 probing γ-radiation. (i) dotted line corre-

sponds to Ω = 0, γc = 1, and γa = 0.31; (ii) solid line corresponds to Ω = 0.1644γc,

γc = 1, and γa = 0.31; (iii) dashed line corresponds to Ω = 0.1644, γc = 0.31, and

γa = 0.31

Let us consider now the case when the linewidth at the transition probed by

γ-radiation is narrower than at the adjacent transition. It corresponds to our exper-

imental scheme with γa < γc probed at ∆m = 1, i.e. a-b, transition only. In this

case the same formulas (see Eq. 3.10) can be used with a replacement of γc by γa and

γa by γc. So that in the week coupling limit the positive Lorentzian is getting to be

narrower than the negative one. Note that the deficit in absorption for a given γa

caused by Ω is smaller for γc > γa in this case than for γa = γc indicating constructive

contribution of the coherence between the dressed states to the absorption. The ab-

sorption curves for V +
0 probing γ-radiation corresponding to the same cases as were

considered before for V −
0 probe are given in Fig. 16. Note that an absorption deficit

for V +
0 probe at Ω = 0.1644 is smaller than for V −

0 probe.

As it has already been noticed above, in the case of the unpolarized Mössbauer
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FIG. 17. Net absorption curves for unpolarized γ-radiation. (i) dashed line cor-

responds to Ω = 0, γc = 1, and γa = 0.31; (ii) solid line corresponds to Ω = 0.1644γc,

γc = 1, and γa = 0.31.

source and single crystal absorber in the parallel geometry, the total absorption spec-

trum of a thin sample may be obtained just by summation of absorption for V −
0 and

V +
0 probes (see Fig. 17). The absorption deficit for Ω = 0.1644γc in this case is equal

to 8%.

Thus we may conclude that nuclear interference effects should result in the ab-

sorption deficit under the level anti-crossing condition.

As it has been mentioned above, a breaking of an axial symmetry may occur

either via electric quadrupole or magnetic interaction. However, a transverse com-

ponent of a magnetic field does not provide a direct coupling between the crossing

sublevels (m = 1/2 and m = −3/2). It couples them only in the second order via the

sublevel m = −1/2 of the excited state manifold. Besides it leads to an additional

coupling between the sublevels m = 1/2 and m = 3/2 in the excited state manifold

and the sublevels m = 1/2 and m = −1/2 in the ground state manifold. As a result
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of this, along with an absorption deficit at the crossing point, it would lead simulta-

neously to the appearance of additional lines in the Mössbauer spectra which were

not observed experimentally.

Thus we focus on the case when mixing of the upper levels occurs via quadrupole

interaction, which couples the crossing sublevels directly and does not lead to any

additional couplings. In case of quadrupole coupling Ω =
√

3ηVq, where η = (Vxx −

Vyy)/Vzz. Hence Ω = 0.1644γc corresponds to η = 0.067.

D. Conclusion

We experimentally observed a reduction of the resonant γ-ray absorption under the

nuclear level crossing condition in the optically thin sample of FeCO3. We analytically

analyzed a simplified three-level model (including two crossing upper levels and the

single lower state) assuming coupling between the crossing levels due to the axial

symmetry breaking in the system and proved that the nuclear interference (similar to

EIT at atomic transitions in optics) caused by this coupling may lead to suppression

of the Mössbauer absorption at the level crossing point. Finally, we estimated that

a week breaking of an axial symmetry via quadrupole interaction, η = 0.067, would

result in the observed 8% deficit of the resonant absorption.
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CHAPTER IV

CONCEPT OF SPINNING MAGNETIC FIELD AT MAGIC-ANGLE

CONDITION FOR LINE NARROWING IN MÖSSBAUER SPECTROSCOPY∗

A new technique for narrowing of Mössbauer resonances in crystals is suggested.

Similar to high-resolution nuclear magnetic resonance spectroscopy, it uses a combined

action of a continuous wave radio-frequency and dc magnetic field under a “magic-

angle” condition. However, the condition itself is essentially different from the one

known previously. Moreover, this technique suppresses the contribution of the dipole-

dipole interaction to the energy of Mössbauer transition only (it does not suppress

the contribution of the dipole-dipole interaction to the energy of individual levels).

It works rather well even in the case of relatively strong dipole-dipole interaction.

A. Introduction

Since the experimental discovery of the Mössbauer effect (a physical phenomenon of

resonant recoil-free emission and absorption of γ-ray photons by nuclei bound in a

crystal) in 1957, it has been observed for nearly 100 nuclear transitions in about 80

nuclides distributed over almost half of all chemical elements. This effect forms the

basis of Mössbauer spectroscopy (MS) which has a number of applications, especially

in solid state physics and chemistry [70, 71, 72, 73, 74].

Fundamentally, the width of recoilless γ-ray resonances, Mössbauer resonances,

is limited only by the radiative linewidth of the given nuclear transition. However,

inhomogeneous broadening, δωinh, often sets a limit on the width of Mössbauer res-

∗Reprinted in full with permission from [69] as follows: Petr Anisi-
mov, Yuri Rostovtsev, and O. Kocharovskaya, Physical Review B, 76,
094422 (2007). Copyright (2007) by the American Physical Society.
http://link.aps.org/abstract/PRB/v76/e094422
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onances. In particular for transitions with a lifetime longer than 10 µs, δωinh defines

the ultimate width of Mössbauer resonances. Large inhomogeneous broadening of

long-lived recoilless transitions, as compared to the radiative broadening, is the ma-

jor factor restricting their applications in Mössbauer spectroscopy. (Homogeneous

broadening caused by spin-lattice relaxation can be suppressed down to 0.1 Hz by

cooling a sample below 1 K.) In the case of nuclear transitions with a lifetime shorter

than 10 µs, δωinh may sometimes exceed the radiative linewidth and limit the reso-

lution of MS. An example of such a transition is the 14.4 keV transition in 57Fe. For

this transition, the width of Mössbauer resonances in some compounds may be four

to nine times larger than the radiative linewidth [75, 76]. Therefore, the suppression

of inhomogeneous broadening would both improve the resolution of Mössbauer spec-

troscopy in the cases where an interaction with an environment prevents an accurate

measurement and would allow for extension of the Mössbauer technique to the longer-

lived isomers and for observing Mössbauer resonances narrower than those currently

achieved.

Inhomogeneous broadening also sets a fundamental obstacle to the realization of

a Mössbauer γ-ray laser. The original idea of the Mössbauer γ-ray laser was suggested

in 1961 by Lev Rivlin [77]. For lasing to occur, the net gain should exceed off-resonant

losses caused by ionization and Compton scattering of γ-radiation in crystals. The

net resonant gain, in turn, is proportional to the ratio of the radiative linewidth over

the total linewidth. For sufficiently long-lived isomers (for which pumping could be

feasible) this ratio is very small. Thus, an increase of this ratio via the suppression

of inhomogeneous broadening would lead to dramatic release in the amplification

condition, as discussed in the literature devoted to the problem of γ-ray laser [78, 79].

The inhomogeneous broadening of Mössbauer resonances is caused by the inho-

mogeneities of hyperfine (HF)interactions. This mechanism is essentially the same
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as in the case of nuclear magnetic transitions in solids. Very efficient methods of

suppression of inhomogeneous broadening down to 0.1 Hz have been developed in

high resolution solid state nuclear magnetic resonance spectroscopy (HRSSNMRS)

[80]. The field of HRSSNMR started with the pioneering work of Raymond Andrew

[81, 82]. He showed that mechanical spinning of a sample can greatly reduce the

width of nuclear magnetic resonances if the axis of rotation makes a particular angle

with a constant magnetic field. The same result was achieved by the application of

a radio-frequency (RF) field without rotation of the sample [80]. Finally apart from

the mechanical spinning of a sample, two different techniques have been developed.

The first one uses sequences of resonant π/2 RF pulses [83, 84]. The second one

exploits a slightly detuned continuous RF field satisfying a “magic-angle” condition

[85]. Both techniques are based on the symmetry of the HF interactions which allows

the suppression of the contribution of the HF interactions down to zero if such a

contribution is sufficiently small.

For the last forty years, HRSSNMRS has been developed into the flourishing field

of research and applications. Therefore, the extension of the techniques of HRSSN-

MRS to Mössbauer spectroscopy appears to be promising. The mechanical rotation

of a sample would be inappropriate since MS essentially uses the Doppler effect for

changing the transition frequency. However, the application of a rotating RF field is

possible. The influence of the RF field on the Mössbauer resonance was widely stud-

ied theoretically since the 1960’s [41]; see also [42, 43, 44, 45, 36] for reviews. Some

coherent effects in MS caused by the RF field, such as collapse of the HF structure

[53, 54, 55], ac-Stark splitting [46, 47, 48, 49], and two-photon gamma-RF transitions

[50, 51, 52], were observed experimentally. The idea to apply the HRSSNMRS tech-

niques to narrow Mössbauer resonances was pioneered in the 1970’s. It was suggested

to use sequences of π/2 RF pulses [86] or quasi-continuous RF fields [78]. The pecu-
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liarity of MS as compared to HRSSNMRS lies in the presence of HF structure in an

excited nuclear state as well as in a ground nuclear state. For example, the dipole-

dipole interaction couples pairs of nuclei in a ground state as well as in an excited

state; moreover, it couples pairs of nuclei one of which is in a ground and the other

one is in an excited state. Thus, the idea presented in the previous papers [86, 78] was

to suppress HF interactions both in ground and excited nuclear states. The outcome

of such an approach would be simultaneous elimination of all possible contributions

from HF interactions. The drawback of such an approach was the requirement for

rather complicated sequence of cycles of bichromatic RF field. One RF frequency was

meant to affect ground nuclear states while the other was supposed to affect excited

nuclear states only. After all, line narrowing was still limited by the fact that each RF

frequency was affecting both ground and excited nuclear states. As far as we know,

no experimental attempts for the verification of this proposal were undertaken.

In our recent papers [87, 88], we considered the possibility to narrow Mössbauer

resonances by a monochromatic cw RF field. We used a combination of a traditional

“magic-angle” condition with effective time-averaging. It was shown that partial

narrowing could be achieved and that an optimization of the parameters used is

required for further improvement.

In this paper, we suggest an essentially different approach for the suppression of

the inhomogeneous broadening of Mössbauer resonances caused by the dipole-dipole

interaction. Namely, we look for a condition where the contribution of the dipole-

dipole interaction to the frequency of a Mössbauer resonance vanishes under the action

of a monochromatic continuous RF field. At the same time we are not attempting

full suppression of the dipole-dipole interaction and its contributions to the energy of

individual levels. The frequency of γ-ray absorption remains well-defined even though

the energy of individual nuclear levels deviates significantly. This happens due to the
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cancellation of these deviations when the energy difference is observed. In this way,

we define the magic-angle condition for MS and show that efficient suppression of

the inhomogeneous broadening of Mössbauer resonances becomes possible with one

monochromatic continuous RF field.

B. Theoretical model

A typical Mössbauer experiment involves a nuclear transition between two levels, with

energy separation of about 10-100 keV. Each nuclear level has sublevels with a definite

projection of the nuclear moment onto a quantization axis. The energy separation of

nuclear sublevels is on the order of 10 neV. These sublevels are actually responsible

for the HF structure of observed spectra. In a typical Mössbauer setup, the flux of

incident γ-photons from a radioactive source is not sufficient to excite several nuclei

in the close vicinity of each other. Therefore, one can always consider that only one

(primary) nucleus interacts with γ-radiation and the rest of the nuclei (of the same

type as the primary nucleus or some different nuclei in the crystal host) represent the

environment and can not be excited. For the sake of further discussion, we label the

primary nucleus as “1” and a nucleus from the environment as “2”(see Fig. 18).

In order to introduce the inhomogeneous broadening in our system, we assume

that the primary nucleus interacts with the environment through the dipole-dipole

interaction. This is a short-range pairwise interaction, which depends on a distance r0

between the nuclei in the pair and on a relative position n0 = (cos φ sin θ, sin φ sin θ, cos θ)

of the pair with respect to the axis of quantization (z-axis). Short-range interactions

mostly involve the nearest nuclei. Therefore, we assume r0 to be constant and equal

to the distance between nuclei. Furthermore, due to the pairwise nature of the dipole-

dipole interaction, we can reduce our system to the pair of nuclei, which contains the
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FIG. 18. Schematic representation of the studied system in the case of 57Fe. Hg

and He represent an interaction of the primary nucleus in the ground and excited

states with its environment respectively.

primary nucleus and a nucleus from the environment. Thus in order to calculate a

bulk response, one has to average the pairwise response over θ and φ.

Our system has a close resemblance to the one used to describe HRSSNMR except

for the possibility of the primary nucleus to be in the excited state. Thus, there are

two contributions to the width of Mössbauer resonances instead of one contribution

to the width of nuclear magnetic resonances. The first contribution is due to the

interaction of the primary nucleus in the ground state with the environment, Hg, and

is also present in the case of HRSSNMR. The second contribution comes from the

interaction of the primary nucleus in the excited state with the environment, He, and

is specific for Mössbauer resonances. Thus, the HRSSNMR techniques have to be

modified to consider this contribution.

For all further estimates and numerical simulations, we assume the primary nu-

cleus to be 57Fe in a soft ferromagnetic material [89]. Such nuclei experience a strong

internal magnetization, which can be easily manipulated in soft ferromagnets by a

rather weak external magnetic field. In principle, the environment may contain nuclei

other than 57Fe. However for further estimates, we also use all typical characteris-



47

tics of 57Fe except for the magnitude of the dipole-dipole coupling constant. At the

atomic distances, the dipole-dipole interaction between 57Fe is relatively weak when

compared to the width of the Mössbauer resonance. For the sake of demonstration,

we assume that the dipole-dipole coupling constant η ∼ µ1µ2/r
3
0 (where µi is the

magnetic dipole moment of the ith nucleus) is large enough to provide substantial

inhomogeneous broadening of the Mössbauer spectrum.

In order to achieve the suppression of inhomogeneous broadening, we place the

system in the external magnetic field which consists of two components: a constant

component (this component defines the z-axis) and a time-dependent one. We choose

the time-dependent component in such a way that the total external magnetic field

spins around the z-axis: B = B0 (r cos ωrf t,−r sin ωrf t, 1). In the previous expression,

we introduced r as the ratio of the magnitudes of the time-dependent and the constant

components of the magnetic field.

The Hamiltonian of the system consisting of the pair of nuclei placed in the

external magnetic field and coupled through the dipole-dipole interaction is written

as follows (~ = 1):

H = −B (γ1I1 + γ2I2) + η (I1I2 − 3 (n0I1) (n0I2)) , (4.1)

where γi and Ii are the gyromagnetic ratio and the nuclear moment of the ith nucleus.

For our system, γ1 and I1 are not fixed and depend on the state of the nucleus;

however, γ2 and I2 are fixed to γg = 1.373 MHz T−1 and Ig = 1/2 respectively since

the second nucleus can be in the ground state only. For the primary nucleus, the

gyromagnetic ratio and the nuclear moment can also be equal to γe = −0.787 MHz

T−1 and Ie = 3/2 if the nucleus is in the excited state.

Depending on the state of the primary nucleus, the system can be in the ground
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state described by the Hamiltonian

Hg = −B (γgIg1 + γgIg2) + ηg (Ig1Ig2 − 3 (n0Ig1) (n0Ig2)) , (4.2)

or in the excited state, with energy ~Ω0 = 14.4 keV, described by the Hamiltonian

He = −B (γeIe1 + γgIg2) + ηe (Ie1Ig2 − 3 (n0Ie1) (n0Ig2)) , (4.3)

where ηe/ηg = γe/γg = −0.573. The energy of the excited state is omitted here, a

condition which is equivalent to the rotating wave approximation in quantum optics

[90].

For Hg, we have two nuclei with Ig1 = 1/2 and Ig2 = 1/2, which leads to the basis

|1/2, m1 = 1/2,−1/2〉 ⊗ |1/2, m2 = 1/2,−1/2〉. However, as shown in our previous

work [88], the basis of the total moment, |0, 0〉,|1, 1〉, |1, 0〉, and |1,−1〉, is the most

useful for a system of two identical nuclei. This observation is based on the fact that a

state with a total moment equal to zero |0, 0〉 is not affected by magnetic interactions.

Thus, it can be excluded from consideration.

For He, the primary nucleus has Ie1 = 3/2, which leads to the basis

|3/2, m1 = 3/2, ...,−3/2〉 ⊗ |1/2, m2 = 1/2,−1/2〉. In this case, there is no actual

preference for the basis of the total moment.

The Mössbauer transition in the primary nucleus from the ground to the excited

level is considered to be magnetic dipole-allowed (corresponding to the case of 57Fe).

It means that a transition operator can be written as V = −µ̂ · Bγ. In the previous

expression, we introduced the magnetic field of a γ-quantum, Bγ , and the magnetic

moment of the transition, µ̂. The magnetic moment µ̂ is proportional to
∑1

m=−1 µ̂m ·

Xm, where (µ̂m)me,mg
= 〈Ig, 1,−mg, m| |Ie, me〉 are the Clebsch-Gordan coefficients

[91], and X0 = z0, X±1 = ∓ (x0 ± iy0) /
√

2. We assume that an incident γ-radiation

propagates along the y-axis and can have either Bγ ‖ z0 or Bγ ‖ x0. Hence, the
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transition operator is represented by the matrix V 0
z in the case of Bγ ‖ z0 or by the

matrix V 0
x in the case of Bγ ‖ x0:

V 0
z = K
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, (4.4)

where K is some constant which is irrelevant for further discussion. Here, the follow-

ing basis for the primary nucleus is assumed: |Ie = 3/2, me = 3/2, ...,−3/2〉 for the

excited and |Ig = 1/2, mg = 1/2,−1/2〉 for the ground state. Finally, the transition

matrices for our system of two nuclei with one nucleus confined to the ground state

are Ṽ 0
x,z = V 0

x,z ⊗ 1̂2×2, which have to be transformed to the basis discussed above.

We calculate Mössbauer spectra based on the Floquet-state perturbation theory

presented in [92, 87]. This theory was developed to study homogeneously broadened

Mössbauer spectra under the influence of the RF field. It treats γ-radiation as a per-

turbation which is always the case for MS allowing for a nonperturbative treatment of

the RF field. It is important to note that it also allows for a nonperturbative analysis

of the dipole-dipole interaction. As far as we know, nobody has used this method to

study inhomogeneously broadened Mössbauer spectra (the broadening caused by the

dipole-dipole interaction). This theory predicts a time-averaged absorption spectrum

to be the sum of the Lorentzians:

L = |Vk (e, g)|2 · 2

π

Γ

(Ω − Ωn,m,k)
2 + Γ2

, (4.5)

where Vk (e, g) = T−1
T
∫

0

〈ne| Ṽ 0
x,z |mg〉 eikωrf tdt is the k-th coefficient of the Fourier

series of the matrix element of the transition operator Ṽ 0
x,z between the Floquet states

|ne〉 and |mg〉; Ωn,m,k = Ω0 + Ee
{n} − Eg

{m} − kωrf is the resonance frequency of the
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corresponding transition.

C. Ground state magic-angle condition

The strength of the dipole-dipole interaction can be judged by ηg/ |∆eff | - the ratio

of the coupling constant to the Zeeman splitting in the effective magnetic field, which

is defined in the Appendix A. If the ratio is small, then the dipole-dipole interaction

can be treated by perturbation method. First, we consider the primary nucleus in

the ground state and the ratio being small. In this case our system is described in the

co-rotating frame of reference by a so-called truncated Hamiltonian (see Ref. [93]):

H0
g = −γg (Beff)g (Ig1 + Ig2) − ηgA

(

Ig1 · Ig2 − 3 (Ig1)z (Ig2)z

)

, (4.6)

where Igi is the nuclear moment of the ith nucleus, γg - the gyromagnetic ratio and

ηg - the dipole-dipole coupling for the ground state, and A = 3 cos2 θ − 1 repre-

sents the dependence of the interaction Hamiltonian on the relative position of the

nuclear pair. Eigenvalues of H0
g in the absence of the dipole-dipole interaction are

{0, ∆eff , 0,−∆eff} (see Appendix A), which are the dynamical energy levels corre-

sponding to the states dressed by the RF field with a corresponding total moment

equal to zero for the first eigenvalue and one for the last three eigenvalues. The

dipole-dipole interaction provides an additional contribution to the eigenvalues:

{0,−ηgD (θeff ) , 2ηgD (θeff) ,−ηgD (θeff)} . (4.7)

These linear corrections are proportional to D (θeff ) = A (3 cos2 θeff − 1) /8, and thus

can be set to zero all at once if

3 cos2 θeff − 1 = 0. (4.8)
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This condition is well-known in solid state high resolution nuclear magnetic resonance

spectroscopy as the magic-angle condition, which defines the magic-angle as: θeff =

arccos
(

1/
√

3
)

.

D. Strong dipole-dipole interaction in the ground state

A typical value of the magnetic field experienced by 57Fe in the soft ferromagnets is

on the order of 30 T. In such a field, a Zeeman splitting is |∆| /2π = 41.2 MHz, i.e.

it exceeds the radiative linewidth, which is equal to 2Γ/2π = 2.256 MHz, only by

a factor of 18. Thus if the inhomogeneous broadening caused by the dipole-dipole

coupling exceeds the radiative linewith, then this coupling should be relatively strong,

so that the ratio ηg/ |∆| can not be smaller than 1/18. In other words a range of the

dipole-dipole coupling constants where the magic-angle condition works well is quite

narrow: 2.256 MHz< ηg/2π ≪ 41.2 MHz.

When the dipole-dipole constant becomes comparable or even exceeds Zeeman

splitting ηg/ |∆eff | ≥ 1, we cannot use perturbation theory anymore. In this case the

energies of the ground state should be calculated numerically. We are going to use

Floquet analysis according to the prescription outlined in the Appendix B.

Figure 19 presents quasi-energies (circles) of the Floquet states, which correspond

to the states with a total nuclear moment equal to one, in the case ηg/2π = 9.024

MHz. There are more than three values at each particular frequency ωrf , but unique

points are confined to the first Floquet zone, which lies in between two dashed lines

±ωrf/2.

In the absence of the dipole-dipole interaction, quasi-energies can be calculated

analytically. They are represented by the solid lines marked as ε1, ε0, and ε−1.

The frequencies of the RF field satisfying the magic-angle condition (defined by
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FIG. 19. Quasi-energies of Hg as a function of the RF frequency for the states

with the total moment equal to one. These values, marked by circles, are calculated

for the following set of parameters: ηg/2π = 9.024 MHz, r = 0.44, ∆/2π = 41.2 MHz,

θ = π/4. Solid lines labeled by ε1, ε0 and ε−1 correspond to the quasi-energies of Hg

calculated analytically in the absence of the dipole-dipole interaction. Dashed lines

represent the limits of the Floquet zone. Vertical short-dashed lines correspond to

the magic-angle condition. More detailed analysis of the selected region is presented

in Fig. 20.
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the ground state and the value obtained analytically in the absence of the dipole-dipole

interaction (see Eq. (4.9)) as a function of ωrf is represented. The parameters are the

same as in Fig. 19.
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Eq. (4.8) for the chosen parameters) presented by the vertical short-dashed lines in

Fig. 19.

As it is obvious from the Fig. 19, the higher value of the frequency satisfying to

magic-angle condition (which lays above the nuclear magnetic resonance frequency

for the ground state ωrf/2π = 41.2 MHz) does not correspond to the vanishing

contribution of the dipole-dipole interaction to the ground state energy. It is less

obvious for the lower value of the frequency. Therefore, we provide a closer look at

the selected area in Fig. 20. Moreover, we plot the normalized difference between an

exact numerical value of the energy and that obtained analytically in the absence of

the dipole-dipole interaction:

∆ε

Γ
=

εnum − ε0

Γ
. (4.9)

As it follows from the Fig. 20, only ε−1 is unaffected by the dipole-dipole coupling

at MAC. The contribution of the dipole-dipole interaction to ε0 and ε1 does not

vanish at magic-angle condition. Finally, it is important to note that it is possible to

minimize the ground state dipole-dipole contribution, if ωrf/2π = 30.7 MHz, for all

three quasi-energies at once.

Let us study how the dipole-dipole coupling in the ground state affects a Mössbauer

spectrum. For this purpose, we temporarily put ηe = 0 (see also [87]) and use the

same coupling constant ηg/2π = 9.024 MHz as above. This coupling is strong enough

to provide a noticeable broadening of the Mössbauer resonances (see Fig. 21). This

figure contains contributions from x- and z-polarized γ-radiation which sums up to

a total spectrum for unpolarized radiation. One can see that there are four major

Mössbauer resonances: two for x- and two for z-polarized radiation which are marked

accordingly as XR, XL, ZR, and ZL in Fig. 21.

We calculated Mössbauer absorption spectra for a broad range of parameters
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FIG. 21. Mössbauer absorption spectrum calculated in the presence of a constant

magnetic field B0 = 30 T and a strong dipole-dipole interaction in the ground state

only: ηg/2π = 9.024 MHz and ηe/2π = 0 MHz. The dipole-dipole interaction results

in a substantial broadening of the Zeeman sextet. The four strongest Mössbauer

resonances are labeled accordingly: ZL and ZR for z-polarized radiation, and XL and

XR for x-polarized radiation. A shift of 80 arb. units is introduced to separate the

spectrum for unpolarized radiation from its polarized contributions.
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FIG. 22. The dependence of the width of the four major Mössbauer resonances

on the frequency ωrf and the relative strength r of the RF field is presented. All

parameters are the same as in Fig. 21. A shade coding is used, such that the darker

shade corresponds to the smaller width of a resonance. In order to provide a better

resolution, values greater than 4 MHz are whited out. Along solid lines ωrf and r

satisfy to the ground state magic angle condition defined by Eq. (4.8).
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of the RF field. Figure 22 presents dependence of the width of the four strongest

Mössbauer resonances on the relative strength r (vertical scale) and the frequency

ωrf (horizontal scale) of the RF magnetic field. As it could be expected, the regions,

where the linewidth reaches its minimal value, extend along the solid lines defined

by the magic angle condition (see Eq. (4.8)). However, due to the large strength of

the dipole-dipole interaction, the actual minima for XR and ZR, which involve ε1,

are shifted to the higher values of ωrf . This result could be expected based on the

behavior of ε1 described in the beginning of this section.

Table I summarizes the analysis of the ground state contribution to the width of

Mössbauer resonances and contains numerical values of the ground state contribution

to the width of the four major Mössbauer resonances. This contribution was estimated

as ∆ωd = ∆ωinh − 2Γ, where ∆ωinh is the total linewidth and 2Γ is the linewidth

in the absence of the dipole-dipole interaction. The first row of Table I presents

the dipole-dipole contributions in the absence of the RF field. The next four rows

show absolute minima of ∆ωd for each of the four strongest Mössbauer resonances

with corresponding labels presented in the last column. The last row of Table I

corresponds to the minimum of the function defined as follows

F (r, ωrf) = 0.5
∑

α&β∈Ω

(

(∆ωd)α − (∆ωd)β

)2

, (4.10)

where Ω = {XL, ZL, ZR, XR}, and (∆ωd)α is a contribution of the dipole-dipole

coupling to the width of the Mössbauer resonance marked by α.

A final conclusion of this section is that suppression of the ground state contribu-

tion is possible. However, it does not happen at the magic angle condition and needs

an adjustment of the parameters. Moreover, efficient suppression requires different

sets of parameters for each Mössbauer resonance. Nevertheless, Table I shows that a



58

TABLE I. Contribution of the ground state dipole-dipole coupling to the width of the four strongest Mössbauer

resonances. The first row presents contributions in the absence of the RF field. The next four rows present residual

contributions after applying the RF field. Each row corresponds to maximal suppression for a particular Mössbauer reso-

nance, specified in the last column. The last row presents parameters and values corresponding to the case when function

defined in Eq. (4.10) reaches minimum, which means that all four Mössbauer resonances have residual contributions of

the same order.

ωrf ,

MHz
r

∆ωd for XL,

MHz

∆ωd for ZL,

MHz

∆ωd for ZR,

MHz

∆ωd for XR,

MHz
Abs min for

0 0 3.2546 3.3171 3.7089 3.6831 -

29.66 0.4614 0.1716 0.1814 0.2054 0.1953 XL

30 0.4517 0.1781 0.1651 0.2012 0.2068 ZL

29.56 0.4398 0.1848 0.1809 0.1857 0.1891 ZR

29.39 0.4472 0.1846 0.1911 0.1921 0.1861 XR

29.989 0.4108 0.19845 0.19863 0.20071 0.20102 Optimal
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compromise can be found and an equivalent suppression can be achieved simultane-

ously for all the strongest Mössbauer resonances (see Fig. 23).

E. Excited state “magic-angle” condition

In this section, we consider the primary nucleus in the excited state. When the

contribution of the dipole-dipole interaction to the energy of the excited state is small,

ηe/ |∆eff | ≪ 1 it can be treated perturbatively, similar to the analysis carried out

for the ground state in Section D. In a co-rotating frame of reference, the truncated

Hamiltonian for the excited state (taking into account the dipole-dipole coupling in

the first order of the perturbation theory) takes a form:

H0
e = −γe (Beff)e · Ie1 − γg (Beff)g · Ig2 + ηeA

(

Ie1 · Ig2 − 3 (Ie1)z (Ig2)z

)

, (4.11)

where (Beff)g and (Beff)e are the different effective magnetic fields for the magnetic

dipole moments in the ground and excited state respectively; I(g/e)i and γg/e are the

nuclear moment of the ith nucleus and the gyromagnetic ratio for the ground/excited

state; ηe - the dipole-dipole coupling for the excited state, and A = 3 cos2 θ − 1

represents a dependence on the relative position. Eigenvalues of H0
e in the absence of

the dipole-dipole interactions are

3

2
∆e

eff ± 1

2
∆g

eff , (4.12)

1

2
∆e

eff ± 1

2
∆g

eff , (4.13)

−1

2
∆e

eff ±
1

2
∆g

eff , (4.14)

−3

2
∆e

eff ±
1

2
∆g

eff , (4.15)

(see Appendix A).
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FIG. 23. Mössbauer absorption spectrum calculated in the presence of the

spinning magnetic field with the following parameters: B0 = 30 T, r = 0.4108,

ωrf/2π = 29.989 MHz. The dipole-dipole coupling constants are ηg/2π = 9.024 MHz

and ηe/2π = 0 MHz. A shift of 120 arb. units is introduced to separate the spectrum

for unpolarized radiation from its polarized contributions. The residual ground state

contribution to the width of the strongest Mössbauer resonances is given in Table I.
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Since there are two different effective fields, the magic angle condition for only one

effective angle becomes meaningless now. Nevertheless, some condition connecting

two parameters of the RF field, namely, its relative strength r and its frequency ωrf ,

can be derived based on the requirement of vanishing of the linear order corrections

to the energy of the excited state.

{

∓3ηeD̃,∓ηeD̃,±ηeD̃,±3ηeD̃
}

. (4.16)

These corrections are proportional to the following function of the two arguments

D̃
(

θg
eff , θ

e
eff

)

=
A

8

(

3 cos2

(

θe
eff + θg

eff

2

)

− 1 − sin2

(

θe
eff − θg

eff

2

))

, (4.17)

which reduces to D (θeff ) in the case of θe
eff = θg

eff . Zero values of D̃
(

θg
eff , θ

e
eff

)

define the following condition for the suppression of the linear order correction to the

energy of the excited state:

3 cos2

(

θe
eff + θg

eff

2

)

− 1 − sin2

(

θe
eff − θg

eff

2

)

= 0. (4.18)

F. Strong dipole-dipole interaction in the excited state

When the dipole-dipole coupling constant ηe becomes comparable or even exceeds

Zeeman splitting in the excited state, the dipole-dipole interaction cannot be treated

perturbatively. Similar to the case of the ground state, the energies of the excited

state can be calculated numerically using Floquet analysis.

Modification of the Mössbauer absorption spectrum due to the dipole-dipole

interaction in the excited state is demonstrated in Fig. 24. Here we assume that

ηe/2π = −5.171 MHz and ηg = 0. According to the relationship ηe = (γe/γg)ηg =

−0.573ηg, the dipole-dipole coupling constant ηe/2π = −5.171 MHz corresponds to

the previously used ground state coupling constant ηg/2π = 9.024 MHz.
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FIG. 24. Broadening of the Mössbauer resonances caused by the dipole-dipole

interaction in the excited state assuming that ηe/2π = −5.171 MHz and ηg = 0. The

shift of 80 arb. units is introduced to separate the spectrum for unpolarized radiation

from its polarized contributions.
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FIG. 25. Mössbauer absorption spectrum broadened due to the dipole-dipole

interaction in both ground and excited states in the absence of the RF field. B0 = 30

T, ηg/2π = 9.024 MHz, ηe/2π = −0.573ηg/2π = −5.171 MHz. A shift of 80 arb. units

is introduced to separate the spectrum for unpolarized radiation from its polarized

contributions.
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TABLE II. Comparison of the contributions due to the dipole-dipole couplings in the ground, excited or both ground

and excited states to the width of the Mössbauer resonances in the absence of the RF field.

∆ωd for XL,

MHz

∆ωd for ZL,

MHz

∆ωd for ZR,

MHz

∆ωd for XR,

MHz
ηg/2π, MHz ηe/2π, MHz

3.2546 3.3171 3.7089 3.6831 9.024 0

5.9498 3.4867 5.5633 9.3575 0 −5.171

10.9444 7.8394 7.9814 13.8331 9.024 −5.171
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The contribution of the dipole-dipole couplings in the ground and excited states

to the widths of the Mössbauer resonances can be seen in the Table II. Note that

the contribution to the excited state, ∆ωd, for x-polarized radiation is larger than for

z-polarized radiation. It is due to the fact that the corresponding transitions involve

states with three times larger projection of the nuclear moment. Finally, when both

contributions are combined, the Zeeman sextet becomes hard to recognize (see Fig. 25)

because inhomogeneous broadening becomes comparable to the separation between

the Mössbauer resonances (see the last row of Table II).

G. Magic angle condition for narrowing of the Mössbauer resonances

In order to suppress the dipole-dipole coupling both in the ground and excited states

(when this coupling is relatively week) in the presence of the spinning magnetic field,

two different magic angle conditions derived above (Eq. (4.8) and Eq. (4.18)) should

be fulfilled. However, it is easy to see that it is impossible to satisfy both conditions

simultaneously. On the other hand, these are not the energies of the excited and

ground state themselves but their difference, Ee
{n}−Eg

{m}, which defines the frequencies

of the Mössbauer resonances. Therefore, there is no need to suppress the contribution

of the dipole-dipole interaction to the energies of the excited and ground states, rather,

we have to make these contributions equal to each other in order for the frequencies

of the Mössbauer transitions to remain unaffected by the dipole-dipole coupling. The

following equation expresses this requirement mathematically:

ηg

(

3 cos2 θg
eff − 1

)

= κηe

(

3 cos2

(

θe
eff + θg

eff

2

)

− 1 − sin2

(

θe
eff − θg

eff

2

))

, (4.19)

where κ = ±0.5, ±1, ±1.5, and ±3. The choice of κ depends on the Floquet states,

which contribute to the particular Mössbauer resonance. This condition provides the
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FIG. 26. Mössbauer absorption spectrum calculated in the absence of the RF

magnetic field. B0 = 30 T, ηg/2π = 2.256 MHz and a corresponding ηe/2π = −1.2927

MHz. A shift of 120 arb. units is introduced to separate the spectrum for unpolarized

radiation from its polarized contributions.
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suppression of the dipole-dipole contribution to a particular Mössbauer resonance by

applying only one spinning magnetic field.

We demonstrate it numerically choosing B0 = 30 T, ηg/2π = 2.256 MHz and

ηe/2π = (γe/γg)ηg = −0.573ηg = −1.2927MHz.

The initial Mössbauer absorption spectrum (in the absence of the RF field) is

shown in Fig. 26. This spectrum has a well-defined Zeeman sextet and a noticeable

contribution from the dipole-dipole interaction to the width of Mössbauer resonances.

Numerical values of this contribution to the four strongest Mössbauer resonances are

given in the first row of Table III.

We calculated the Mössbauer absorption spectra for a broad range of the param-

eters of the RF field. Figure 27 presents the width of the four strongest Mössbauer

resonances as a function of the relative strength r (vertical scale) and the frequency

ωrf (horizontal scale) of the RF magnetic field. It clearly follows from Fig. 27 that

the regions, where maximal suppression of the inhomogeneous broadening is obtained,

are aligned along thick lines corresponding to the magic angle condition determined

by Eq. (4.19). Mössbauer resonances with x-polarized radiation are described by the

condition with κ = ±1.5 (dashed) and κ = ±3 (solid) while Mössbauer resonances

with z-polarized radiation are described by the condition with κ = ±0.5 (dashed)

and κ = ±1 (solid). When ωrf passes through the resonance for the ground state,

κ changes sign since the effective magnetic field for the ground state changes the di-

rection. Positive κ corresponds to the frequencies below the ground state resonance,

and negative κ corresponds to the frequencies above the resonance.

Table III contains the sets of the parameters for which the best line narrowing

in the case of individual Mössbauer resonance is achieved. The last row in Table III

corresponds to the somewhat balanced case defined by the minimum of the function

defined in Eq. (4.10), when broadening of the four strongest Mössbauer resonances
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reaches common minimal broadening. The Mössbauer spectrum corresponding to this

optimal set of the parameters, r = 0.4796 and ωrf/2π = 31.90 MHz, is presented in

Fig. 28. In addition, Figure 29 compares this optimal configuration with the initial

Mössbauer spectrum, presented in Fig. 26. One can easily see that the line narrowing

effect takes place.

H. Conclusion

In this work, we suggested a new technique for suppression of inhomogeneous broad-

ening of Mössbauer resonances. This technique relies on the mutual compensation

of the contributions of HF interactions to the ground and excited states rather than

total suppression of HF interactions. It is based on the combined action of the contin-

uous wave RF and dc-magnetic fields satisfying the specific “magic-angle” condition

Eq. (4.19). This technique is demonstrated numerically in a simple model dealing

with a specific HF interaction, namely the dipole-dipole interaction. It can be gen-

eralized for other types of HF interactions, in particular the quadrupole interaction,

exhibiting similar symmetry with respect to rotation.
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FIG. 27. Dependence of the width of the four strongest Mössbauer resonances on

ωrf and r is presented for B0 = 30 T, ηg/2π = 2.256MHz, ηe/2π = −1.2927 MHz.

The shade coding is used such that the darker shade corresponds to the narrower res-

onance. To provide better resolution, values greater than 3 MHz are not shown. The

regions, where maximal suppression of the inhomogeneous broadening is obtained,

are aligned along thick lines corresponding to the magic angle condition determined

by Eq. (4.19).
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TABLE III. Broadening of the four strongest Mössbauer resonances caused by the dipole-dipole interaction for

ηg/2π = 2.256 MHz and a corresponding ηe/2π = −1.2927 MHz. The last row presents parameters and values cor-

responding to the case when function defined in Eq. (4.10) reaches minimum, which means that all four Mössbauer

resonances have residual contributions of the same order.

ωrf ,

MHz
r

∆ωd for XL,

MHz

∆ωd for ZL,

MHz

∆ωd for ZR,

MHz

∆ωd for XR,

MHz
Abs min for

0 0 2.648 1.017 1.436 2.894 -

33.55 0.4701 0.0809 0.1489 0.0996 0.0920 XL

31.50 0.4000 0.2727 0.0326 0.0722 0.2973 ZL

32.00 0.4310 0.1689 0.0516 0.0591 0.1946 ZR

35.30 0.4504 0.0858 0.1747 0.0934 0.0842 XR

31.90 0.4796 0.1332 0.1568 0.1270 0.1511 Optimal
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FIG. 28. Mössbauer absorption spectrum calculated in the presence of the spin-

ning magnetic field. It illustrates the Mössbauer lines narrowing at the optimal set

of the parameters, r = 0.4796 and ωrf/2π = 31.90 MHz. A shift of 120 arb. units

is introduced to separate the spectrum for unpolarized radiation from its polarized

contributions. The residual broadening of the Mössbauer resonances can be found in

Table III.
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CHAPTER V

SUPPRESSION OF NUCLEAR ELASTIC FORWARD SCATTERING IN

EXPERIMENTS WITH TRAINS OF ULTRASHORT PULSES∗

We study nuclear elastic forward scattering of synchrotron radiation. In a simple

model, we show that suppression of nuclear excitation by synchrotron radiation as

well as nuclear elastic forward scattering are possible due to the formation of nuclear

coherent population trapping. We consider a nucleus with ground- and excited-state

nuclear momenta Ig = 3/2, Ie = 1/2, respectively. We demonstrate that nuclear

coherent population trapping can be achieved for random phases of pulses in syn-

chrotron radiation.

A. Introduction

The coherence excited by laser radiation in atoms is responsible for a variety of inter-

ference phenomena. These phenomena include coherent population trapping (CPT)

[22, 20], electromagnetically induced transparency (EIT) [95, 24], lasing without pop-

ulation inversion (LWI) [96], slow light [27], and many others. The interest in these

phenomena is fueled by many applications such as storage and processing of quan-

tum information, ultrasensitive magnetometry, metrology, the development of lasers

in vacuum ultraviolet (VUV), X-ray and γ-ray ranges, enhanced nonlinear optical

conversions, etc. Nevertheless, CPT and related phenomena have not been demon-

strated in the X-ray and γ-ray ranges, except for EIT in Mössbauer absorption [60].

It was predicted in Ref. [22] and shown in recent experiments [97, 30] that a

∗This is a pre-print version of “Suppression of nuclear elastic forward scattering in
experiments with trains of ultrashort pulses” by Petr Anisimov, Yuri Rostovtsev and
Jos Odeurs from Journal of Modern Optics (2006) vol. 53 (16 & 17), pp. 2459 - 2467
[94]. Reprinted with permission by Taylor & Francis. http://www.informaworld.com
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FIG. 30. (a) Level structure and decay channels of the nucleus with ground- and

excited-state nuclear angular momenta Ig = 3/2, Ie = 1/2, respectively. (b) The

choice of coordinate system with respect to the synchrotron source.

train of short optical pulses interacting with a three-level atom can effectively excite

a coherence between ground states if the ground-state splitting is a multiple of the

pulse repetition frequency 1/T . We believe that it is possible to use synchrotron

radiation as a source of a periodic train of short pulses to create CPT in nuclei. This

would be the first demonstration of CPT in the X-ray range that can be used to

suppress nuclear elastic forward scattering of synchrotron radiation and provide the

conditions for studying electronic scattering alone.

In the next section, we describe the model studied in this paper. The results

obtained are presented in Sec. C, and a conclusion is drawn in Sec. D.

B. System description

To illustrate the excitation of nuclear CPT by the synchrotron radiation, consider a

nucleus with ground- and excited-state nuclear angular momenta Ig = 3/2, Ie = 1/2,

respectively. The level structure of such a nucleus and the decays for magnetic dipole-

allowed transitions are presented in Fig. 30(a). Figure 30(b) shows the frame of



75

reference used in this paper with respect to the synchrotron radiation. Consider

further a magnetic field in the simplest configuration, B ‖ ẑ0, which results in the

Zeeman interaction described by (~=1)

H(e,g) = −γ(e,g)

(

I(e,g)

)

z
Bz, (5.1)

where γ(e,g) and
(

I(e,g)

)

z
are gyromagnetic ratios and z-projections of the excited- and

ground-state nuclear angular momenta of the nucleus, respectively. Numerical values

of the gyromognetic ratio are based on the values of 57Fe: γg = 1.373 MHz T−1 and

γe = −0.787 MHz T−1.

The Mössbauer transitions from the ground to the excited states are magnetic

dipole-allowed, which means that the transition probability amplitude is proportional

to V = −µ̂ · Bγ. In the transition operator V , we introduced Bγ, the magnetic

field of the gamma quantum, in order to describe the polarization of the gamma

quantum, and the magnetic moment of the transition µ̂ to characterize the cou-

pling. The magnetic moment is proportional to
∑1

m=−1 µ̂mXm, where (µ̂m)me,mg
=

〈Ig, 1,−mg, m| Ie, me〉 is the Clebsch-Gordan coefficient [91], and X0 = z0, X±1 =

∓(1/
√

2) (x0 ± iy0). In the frame of reference defined in Fig. 30(b), the incoming

γ-radiation propagates along the direction of the y axis; therefore, Bγ is parallel

to x0, which results in two independent Λ-systems (see Fig. 31), and the tran-

sition matrix in the basis |Ig = 3/2, mg = 3/2, ...,−3/2〉 for the ground state and

|Ie = 1/2, me = 1/2,−1/2〉 for the excited state is given by

V +
x = −Ω (t)



















1√
2

0

0 1√
6

− 1√
6

0

0 − 1√
2



















, (5.2)
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FIG. 31. Two independent Λ-systems are created by radiation with Bγ ‖ x0.

Transitions caused by such a radiation are shown as solid lines. Individual Λ-systems

are highlighted by different shadings.

where Ω (t) =
∑∞

n=0 Ωmax exp(−(t − nT )2/2τ 2) with the values of the parameters

Ωmax, T and τ are based on the parameters of the transition and the properties of the

incoming X-ray radiation. The period of this function, T , is defined by the repetition

rate of the synchrotron source and is equal to 153 ns in the case of the Advanced

Photon Source at Argonne. The duration of each pulse, 2τ = 200 ps, is about the

duration of pulses for the X-ray source mentioned above. The last parameter Ωmax

depends on the intensity of the X-ray source and the dipole moment of the transition.

The choice of the intensity of the X-ray radiation is not addressed in this paper; thus,

the numerical value of Ω (t) is chosen to create the coherence within the reasonable

time interval. Furthermore, we take Ωmax with a phase, which can be random. The

ability to use pulses with random phases is important because there is no phase

control of the synchrotron radiation. Our final assumption is a finite lifetime of the

ground state coherence; however, such a coherence can live very long and lifetimes of

100 µs to 1 ms seems reasonable [93].



77

The total Hamiltonian of the system in the rotating wave approximation is

H =







Hg V +
x

Vx He






. (5.3)

For further discussion, we assign labels 1 to 4 to the states |Ig = 3/2, mg = 3/2, ...,−3/2〉

and 5 to 6 to the states |Ie = 1/2, me = 1/2,−1/2〉.

C. Obtained results

We carried out a numerical simulation of the system. For the simulation, we used

the fourth/fifth order Runge-Kutta method to solve the set of ordinary differential

equations

dρ

dt
= −i [H, ρ] − Γ̂ρ. (5.4)

where ρ is the density matrix of the system; Γ̂ρ is a symbolic notation for the proper

decay rates of the populations and coherences in the system. The result of the numer-

ical simulation is the density matrix as a function of time; however, for the purpose of

this paper, we will discuss the following physical quantities: |ρ13|, |ρ24|, and |Px|2. The

excitation of the first two is a signature of nuclear CPT for the two Λ-systems. The

absolute values of the coherences demonstrate the growth of the coherence and the

establishment of nuclear CPT without distraction caused by their oscillatory nature.

|Px|2 is the intensity of the polarization excited by the pulses, and it characterizes the

response of the medium. It has the following relation to the elements of the density

matrix

Px ∼ 1√
2

(ρ51 − ρ64) +
1√
6

(ρ62 − ρ53) . (5.5)

We will discuss the absolute square of this quantity only.

The broad bandwidth of the synchrotron radiation excites all (allowed) transi-
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FIG. 32. The coherence between ground states for Ωmax = 1000 rad/s without

the assumption of random phases is presented. ρ13 and ρ24 are identical and are

presented by the same line in each case. Difference between Case 1, Case 2 and

Case 3 is discussed in the text.

tions. This excitation results in beating of Px as time passes after the pulse arrival.

In the time domain, the idea of CPT with a train of pulses is based on succes-

sive excitations of the system before the coherences have decayed completely; thus,

Tdecoherence ≫ T . Such successive excitations have to have a proper timing to assure

constructive interference of individual excitations; thus, ∆Eg = iT−1, where i is a

positive integer. In the spectral domain, the idea of CPT with a train of pulses is

based on the resonances of individual harmonics in the excitation spectrum of the pe-

riodic synchrotron radiation with the ground state separation, provided the selection

rules allow such resonances.

Let us consider three cases. The first case, 2 × γgBz/2π = 1/0.153 = 2 ×

3.268 MHz, is a primary resonance with i = 1 and corresponds to the separation

of the ground levels 1(2) and 3(4) participating in the formation of the Λ-systems.

The second case, γgBz/2π = 1/0.153 = 6.5359 MHz, is a secondary resonance with
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FIG. 33. The intensity of the nuclear polarization in the case of the primary reso-

nance is presented and a pump with Ωmax = 1000 rad/s is chosen. The corresponding

coherences are discussed in Fig. 32. The first maximum is normalized to 1; however,

a maximum of the order of 10 is reached after several initial pulses. The envelope of

the polarization beating pattern demonstrates the suppression of the response of the

system to the incoming radiation. A better view of the beating pattern can be found

in Fig. 34.

i = 2. In this case, the resonance with the first harmonic is not relevant since it

is forbidden due to selection rules; however, the second harmonic of the excitation

spectrum matches the separation of the ground levels 1(2) and 3(4) participating in

the formation of the Λ-systems, which also leads to nuclear CPT. The last case is

an intermediate condition, γgBz/2π = 0.75/0.153 = 4.902 MHz, when the resonant

condition is not met.

In the first simulation, we assume that there is no phase change between pulses

and a pump with Ωmax = 1000 rad/s. The coherences between the ground levels
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FIG. 34. The intensity of the nuclear polarization in the case of the primary

resonance and a pump with Ωmax = 1000 rad/s is presented. The dashed line presents

the polarization during the first microsecond after arrival of the first pulse. The solid

line presents the polarization normalized by 4.03 · 10−3 after CPT is reached.
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1(2) and 3(4) are identical and are shown in Fig. 32 by the solid lines. Efficient

coherence build up is achieved only if the resonance condition for the first or the

second harmonic of the excitation spectrum is met. As is expected, the coherence is

created faster in the case of the primary resonance.

The creation of a coherent superposition of nuclear levels is a signature of nuclear

CPT; however, it manifests itself in two different ways. The most common way is

the suppression of the polarization and thus the nuclear elastic forward scattering.

Figure 33 presents the nuclear polarization in the case of the primary resonance.

One observes a beating pattern after each individual pulse and the envelope of |Px|2.

The envelope shows that, although |Px (t = 0)|2 = 1, |Px|2 reaches a maximum of

the order of 10 soon after the arrival of the first pulse; however, it drops several

orders of magnitude after thirty microseconds. Such a drop is a clear signature of

CPT. The second manifestation of nuclear CPT is the modification of the beating

pattern of the polarization decay. Figure 34 presents such a change. The dashed

line is the polarization intensity during the first microsecond after arrival of the first

pulse. It shows the amplification of the polarization after several pulses and the

beating pattern. The solid line is the polarization intensity after nuclear CPT is

established. This intensity is multiplied by a factor of (4.03 · 10−3)
−1

to compensate

for the suppression due to nuclear CPT and demonstrates the change in the time

pattern of the polarization beating.

The main disadvantage of the first simulation is the assumption that the con-

secutive pulses have the same phase, which is not true in a real experiment. To

address this concern, we introduce the assumption that consecutive pulses have ran-

dom phases. The result of the simulations with random phases and Ωmax = 1000

rad/s is presented in Fig. 35 in the case of the primary resonance and in the case

when the resonant condition is not met. This result has to be compared directly with
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FIG. 35. Coherence between the ground states for a pump with Ωmax = 1000

rad/s and a random phase shift. ρ13 and ρ24 are distinguishable as compared to the

case of pulses with the same phases. ρ13 is presented by the solid line with squares.

ρ24 is presented by the dashed line with circles.
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the result in Fig. 32. The coherences ρ13 and ρ24 are distinguishable now. We do not

show the case of the secondary resonance but it is almost identical with the case of

the primary resonance. It can be seen that the coherence in the case of the primary

resonance (1st case) reaches a maximum of 0.21, as it was under the assumption

that consecutive pulses have the same phases, while the off-resonance case (3rd case)

struggles to create a noticeable coherence but has a larger coherence than in the case

when all pulses have the same phase. The explanation for this result is obvious if the

spectral domain is considered. In this domain, the nuclear CPT is formed by a pair

of harmonics in the excitation spectrum so that the frequency separation of the pair

is equal to the separation of the ground states; thus, the relative phase of these two

harmonics is important, not the absolute phase.

Finally, we want to draw attention to the intensities of the X-ray radiation neces-

sary to create a substantial coherence. We assume no limitations for Ωmax; however,

if one reduces this value by 10 with the corresponding reduction of the intensity by a

factor of 100, much smaller coherences will be excited than those created by a stronger

pump (see Fig. 36). It can be rectified if one assumes longer pulses than those that

are typically available at the Advanced Photon Source at Argonne. Nevertheless, the

synchrotron radiation with random pulses continues to excite the coherence almost

as well as when all pulses have the same phases.

D. Conclusion

We demonstrated the possibility of nuclear CPT as well as suppression of nuclear

elastic forward scattering with trains of ultrashort pulses of the synchrotron radiation.

Several resonances can be used but the primary resonance can be considered as the

most favorable one for synchronized pulses. We also addressed the issue of the phases
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FIG. 36. Coherence between the ground states for a weaker pump with Ωmax = 100

rad/s with and without a random phase shift in the case of the primary resonance.
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of consecutive pulses, and showed that, as long as the periodicity was conserved,

nuclear CPT was created; however, the primary and secondary resonances become

indistinguishable.
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CHAPTER VI

SUMMARY

The goal of this dissertation was to extend the quantum coherence phenomena, which

are well-known in the optical frequency range, to a new field of X-ray optics and

nuclear transitions. The major results are the following:

1. Analysis of the atomic response in resonant and off-resonant Λ-configurations

is presented on the basis of the decaying dressed states. These states are intro-

duced as the effective states which provide resonant contributions to the total

atomic response. Such an approach has allowed for simple and straightforward

classification of different regimes. The most interesting regime is for slow de-

phasing of two-photon coherence and sufficiently weak driving field. In this

case, the decaying dressed states are dramatically different from the eigenstates

of the “atom+field” Hamiltonian and especially useful for understanding the

structure of the atomic response and its modifications with the variation of the

parameters.

2. A simplified three-level model for the description of level-mixing induced trans-

parency in FeCO3 is suggested and analytically analyzed. It includes two cross-

ing upper levels and a single lower level and assumes coupling between the cross-

ing levels due to the axial symmetry breaking in the system. We have shown that

the nuclear interference (similar to electromagnetically induced transparency at

atomic transitions in optics) caused by this coupling may lead to suppression

of the Mössbauer absorption at the level crossing point.

3. A new technique for suppression of inhomogeneous broadening of Mössbauer

resonances is suggested. The suppression of the hyperfine contribution to the
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width of Mössbauer resonances is due to the mutual compensation of the contri-

butions of hyperfine interaction to the ground and excited states. This technique

is based on the combined action of monochromatic RF and DC fields satisfying

the modified “magic-angle” condition. Suggested modification was necessary to

accommodate the specifics of the Mössbauer resonances. Nearly perfect suppres-

sion has been demonstrated numerically in a simple model involving a specific

hyperfine interaction, namely the dipole-dipole interaction.

4. The possibility of coherent population trapping at nuclear transitions and its

manifestation via suppression of nuclear elastic forward scattering with trains

of ultrashort pulses of the synchrotron radiation was studied. Numerical sim-

ulations confirm such possibility. The main issued here has been the relative

phases of consecutive pulses. The conclusion is that nuclear coherent population

trapping is possible as long as the periodicity is maintained.
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APPENDIX A

CONCEPT OF EFFECTIVE MAGNETIC FIELD

Floquet analysis can be used to study behavior of the magnetic moment in the

continuous wave RF and dc-magnetic fields Brf = rB0 (cos (ωrf t)x0 − sin (ωrf t)y0)

and B0 = B0z0 respectively. However, an equivalent description in terms of an

effective magnetic field is more insightful.

The concept of the effective magnetic field may be introduced by carrying out a

transformation to the co-rotating frame of reference |old〉 = R (−ωrf t) |new〉, where

R (θ) = e−iθIz0 is a rotation operator with a direction of rotation along the z-axis.

This transformation gives:

d

dt
|new〉 = −iHnew |new〉 , (A.1)

where Hnew = R−1 (−ωrf t)HoldR (−ωrf t) + ωrfIz = −γBeff . Here we introduce the

effective magnetic field Beff =
(

rB0, 0, B0 − ωrf

γ

)

. The effective magnetic field is

time-independent and makes an angle with the z-axis θeff = tan−1

(

r
(

1 − ωrf

γB0

)−1
)

.

A Zeeman splitting corresponding to this field is ∆eff = −γ |Beff | = ∆
√

(

1 +
ωrf

∆

)2
+ r2,

where ∆ = −γ |B0| is a Zeeman splitting in the lab frame. Thus, the eigenvalues are

Zeeman splittings En = mz,n∆eff in the effective magnetic field, and the eigenvectors

are obtained by rotating the system around the y-axis by the angle θeff :

|n〉 =
I
∑

m=−I

dI
m, mz,n

(θeff ) |m〉 , (A.2)

where a function dI
m,mz,n

(θeff ) = DI
m,mz,n

(0, θeff , 0) is an element of the rotation

matrix [98].



97

An equivalence with Floquet analysis can be shown by a transformation to the

lab frame. It gives:

|n, t〉 =
I
∑

m=−I

dI
m, mz,n

(θeff) eiωrf tm |m〉 , (A.3)

This is the Floquet state of the initially time-dependent Hamiltonian corresponding

to a quasi-energy En = mod (mz,n∆eff , ωrf).

If the system consists of two non-interacting subsystems, the Floquet states are

obtained as a direct product of the Floquet states of individual subsystems |n, t〉 =

|n1, t〉 ⊗ |n2, t〉 with quasi-energy En = En1
+ En2

.



98

APPENDIX B

THE PRESCRIPTION FOR THE FLOQUET ANALYSIS

According to the Floquet theorem in the case of periodic Hamiltonian H0 (t),

there is a set of time-dependent Floquet states |n, t〉 and corresponding quasi-energies

ǫn which satisfy the following conditions: (i) each state is periodic in time |n, t〉 =

|n, t + T 〉, where we have denoted the period by T; (ii) the quasi-energies and the

Floquet states satisfy the Schrödinger equation

i
∂

∂t

(

e−iǫnt |n, t〉
)

= H0 (t)
(

e−iǫnt |n, t〉
)

. (B.1)

In order to avoid inherent ambiguity in a definition of the Floquet states, we al-

ways assume that the corresponding quasi-energies are chosen in the interval ǫn ∈
[

0, ωrf = 2π
T

)

. Furthermore, at any fixed time, the Floquet states may be chosen to

form an orthonormal basis. This property allows us to write a time evolution operator

in terms of the Floquet states as

U (t, 0) =
∑

n

e−iǫnt |n, t〉 〈n, 0| , (B.2)

which obeys the equation U̇ (t, 0) = −iH0 (t) U (t, 0) with an initial condition U (0, 0) =

1̂. The first step is to diagonalize U (T, 0) because U (T, 0) =
∑

n e−iǫnT |n, T 〉 〈n, 0|

is diagonal in the basis of the Floquet states with eigenvalues λn = e−iǫnT . It is

true due to the periodicity condition |n, T 〉 = |n, 0〉. The final step is to propa-

gate the obtained states over the period |n, t〉 = eiǫntU (t, 0) |n, 0〉, where we used

ǫn = − 1
T

arg (λn) shifted by ωrf to fit the interval ǫn ∈ [0, ωrf).
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