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ABSTRACT

Novel Approaches for Solving

Large-scale Optimization Problems on Graphs. (August 2008)

Svyatoslav Trukhanov, B.S., Kyiv Taras Shevchenko University;

M.S., Kyiv Taras Shevchenko University

Chair of Advisory Committee: Dr. Sergiy I. Butenko

This dissertation considers a class of closely related NP -hard otpimization problems

on graphs that arise in many important applications, including network-based data

mining, analysis of the stock market, social networks, coding theory, fault diagnosis,

molecular biology, biochemistry and genomics. In particular, the problems of interest

include the classical maximum independent set problem (MISP) and maximum clique

problem (MCP), their vertex-weighted vesrions, as well as novel optimization models

that can be viewed as practical relaxations of their classical counterparts.

The concept of clique has been a popular instrument in analysis of networks, and

is, essentially, an idealized model of a “closely connected group”, or a cluster. But,

at the same time, the restrictive nature of the definition of clique makes the clique

model impractical in many applications. This motivated the development of clique

relaxation models that relax different properties of a clique. On the one hand, while

still possessing some clique-like properties, clique relaxations are not as “perfect” as

cliques; and on the other hand, they do not exhibit the disadvantages associated with

a clique. Using clique relaxations allows one to compromise between perfectness and

flexibility, between ideality and reality, which is a usual issue that an engineer deals

with when applying theoretical knowledge to solve practical problems in industry.

The clique relaxation models studied in this dissertation were first proposed in the

literature on social network analysis, however they have not been well investigated
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from a mathematical programming perspective.

This dissertation considers new techniques for solving the MWISP and clique

relaxation problems and investigates their effectiveness from theoretical and compu-

tational perspectives. The main results obtained in this work include (i) developing a

scale-reduction approach for MWISP based on the concept of critical set and compar-

ing it theoretically with other approaches; (ii) obtaining theoretical complexity results

for clique relaxation problems; (iii) developing algorithms for solving the clique relax-

ation problems exactly; (iv) carrying out computational experiments to demonstrate

the performance of the proposed approaches, and, finally, (v) applying the obtained

theoretical results to several real-life problems.
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CHAPTER I

INTRODUCTION

In a non-formal way, a graph or a network is defined by a set of dots (vertices, nodes)

and links (edges) between them. Since its first introduction in 1735 by L. Euler in his

famous Königsberg Bridges problem [55, 62], the concept of graph has been serving

for more than 250 years as a convenient, effective, simple and easily understandable

mathematical abstraction for modeling many real-life problems. In practical appli-

cations, a vertex of a graph usually represents an entity, and an edge represents the

relationship of interest between two entities.

For example, in chemistry a molecule can be naturally considered as a graph,

where atoms are vertices and bonds between pairs of atoms are edges. Since each

atom has its valency that may be greater than one, a molecule is an example of a

graph with multiedges, where two vertices may be connected by more than one edge.

Geographical map is also a graph with the vertices corresponding to the cities and

the edges being the roads between cities. In biology, gene co-expression networks

are graphs where vertices are genes and an edge exists between two vertices if the

corresponding genes are co-expressed with correlation higher than a specified thresh-

old, and a protein interaction network is represented by a graph with the proteins

as vertices and known interactions between pairs of vertices as edges. These are just

two examples of many biological structures that may be modeled as graphs [16,40].

Many application of graphs are found in industry, such as the phone call graph

constructed in the following way: each phone number is represented by a vertex,

and each call placed during a specified time period defines an edge between the

The journal model is Mathematical Programming.
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corresponding pair of phone numbers. Experiments with the call graph based on a

12-hour time period in 1997 are described in [3, 121], with the corresponding phone

call graph having over 53 million vertices and over 170 million edges. The U.S. stock

market was modeled as a graph, named the stock-market graph in [25]. Here a vertex

represents a stock, and two vertices are connected by an edge if the correlation of

price fluctuations for the corresponding pair of stocks calculated over a certain period

of time exceeds a specified threshold. Internet can be modeled as a graph at detailed

level, where vertices correspond to individual computers or other networking devices

that have IP address, and edges correspond to the physical links between such devices,

as well as at macro level, where nodes are autonomous systems (usually Internet

service providers or large companies and organizations) and an edge represents an

entry from the global routing table or is obtained by using traceroute or ping probes.

The resulting networks are extremely large, even at the macro level the whole network

consists of more than 100000 nodes [9, 45].

Finally, graphs may be used to model various social phenomena. In social net-

works the vertices usually represent people and the edges represent a certain type of

relationship between them. The well-known “Erdös Number Project” is an example

of a collaboration network, where two mathematicians are connected if they have pub-

lished a paper as co-authors [76]. In another example, Figure 1 shows the 2005 college

football schedule graph, where the vertices are Division I-A college football teams, and

two vertices are connected by an edge if the corresponding teams played each other

during the considered season.

When appropriate, various attributes may be assigned to the graph’s vertices

and edges. Attributes could be different by their nature, e.g., in the college football

schedule graph one obvious attribute of vertices is the college football team name, and

a possible edge attribute is the final score of the corresponding game. In mathematical
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Fig. 1 College football schedule graph for season 2005

programming, only attributes with numerical values are usually considered and called

weights. Weight functions may be associated with vertices as well as edges.

In different studies of real-life networks, one is required to find the closely con-

nected groups in the graph, that are also called cohesive subgroups or clusters. There

are many ways to define the closeness in the group, but the first model that was

used in social network analysis utilized the concept of clique. A clique is defined as

a subset of vertices inducing a subgraph that has all possible edges, i.e., all vertices

in a clique are connected to each other. Obviously, a clique represents a “perfectly”

connected subgroup, thus it is an ideal model for cohesive subgroups. As an example,
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a clique in the aforementioned phone call graph represents a group of people who

called each other, thus, most probably, these people are closely connected and share

similar interests and preferences. The opposite to the clique structure is an indepen-

dent (stable) set, which is defined as a subset of vertices with no edges in between.

These two models are closely related to each other, since a clique in the graph corre-

sponds to an independent set in this graph’s compliment, so both models have many

common properties, as the problem of finding a clique may be reduced to the problem

of finding an independent set in the complement graph and vice versa. In terms of

the stock market graph, an independent set represents a diversified portfolio, which

is one of the key elements of portfolios sought for by the investors.

The problem of finding a clique of the maximum size in the given graph is called

the maximum clique problem. When a graph has vertex weight, then the problem

can be extended to the maximum weight clique problem, which requires one to find

a clique of the maximum weight in the given graph, where the weight of a clique is

defined as the sum of its vertex weights. The complementary problems are the max-

imum independent set problem and the maximum weight independent set problem,

respectively. These problems have many important applications, including network-

based data mining, analysis of the stock market, social networks, coding theory, fault

diagnosis, molecular biology, biochemistry and genomics. Moreover, these problems

often arise as subproblems of more complicated problems, and many other combina-

torial problems may be reduced to these problems. It is well-known that all these

four problems are hard to solve, as they belong to the class of NP -hard problems,

meaning that there is no effective algorithm to solve the problem in general. However,

in practice one still needs to find a way to solve real-life instances of these problems.

Sometimes, a provably optimal solution of the problem is required, in which cases an

exact algorithm is applied to solve the problem. In other cases a non-optimal solution
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is acceptable, and a heuristic algorithm may be applied that does not guarantee the

optimal solution, but provides some “good” solution, usually much faster than the

exact algorithm. An efficient way to speed-up the problem solving process is prepro-

cessing, that is an algorithm executed before the execution of the main algorithm,

aiming to improve the performance of the main algorithm. Also, the properties of

graphs arising in real-life problems, such as low edge-density, help to solve the prob-

lems efficiently. In our research, we consider a new scale-reduction technique for

solving the maximum weight independent set problem, which is particularly efficient

on sparse graphs.

While the popularity of cliques in network-based studies can be explained by the

fact that it represents an ideal “closely connected group”, due to its restrictive nature,

the clique model becomes impractical in many cases, and has been the subject of the

clique model criticism in socail networks literature. This motivated the development

of the clique relaxation models that generalize the clique definition and relax some

of the clique requirements. On the one hand, while still possesing some clique-like

properties, clique relaxation models are not as “perfect” as cliques; and on the other

hand, they do not exhibit the disadvantages that the clique has been criticized for.

Using clique relaxations allows one to compromise between perfectness and flexibility,

between ideality and reality, which is a usual issue that an engineer deals with when

applying theoretical knowledge to solve practical problems in industry. Using clique

relaxations in social networks, such as the phone call graph, allows one to find groups

of people that may not necessarily be friends, but are still closely connected. Depend-

ing of the clique relaxation model used, the way people within a group are connected

may also be different, e.g., they may know each other trough the third person, or

they may know only some people from the group, etc. The clique relaxation models

were first proposed in social network studies rather long time ago [97], but they still
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have not been well investigated from a mathematical programming perspective.

In our research, we emphasize three possible relaxations of clique: the k-clique,

k-club and k-plex models. Of course, these three clique relaxation models do not cover

all possible ways to relax the clique requirements, but they are the most well-known

models in social network analysis. First of all, we defined the optimization problems

corresponding to the introduced models, provided their mathematical programming

formulations and showed that the problems are NP -hard. Next, we concentrated on

methods for solving these problems. We developed an exact algorithm for the max-

imum weight k-plex problem, as well as different scale-reduction techniques for the

maximum k-clique, k-club and k-plex problems. Finally, we demonstrated the appli-

cation of the k-plex model to real life through extensive computational experience.

The remainder of this dissertation is organized as follows. Chapter II provides

background on the networks arising in real world problems; introduces the required

terms and definitions from graph theory; defines the optimization problems of interest;

and provides the relevant literature review. Chapter III concentrates on the scale-

reduction technique developed for the MWISP based on the concept of critical weight

set. Provided in this chapter theoretical results are used to develop the algorithm.

The efficacy of the approach is demonstrated by extensive numerical experiments

with large-scale problem instances. Chapter IV investigates the relation between

this technique and other scale-reduction approaches for the MWISP. Three more

different techniques are considered, the similarity and differences were established

and an extension to one of these approaches was proposed.

In Chapter V, we switch from cliques and independent sets to their relaxation

models. We define the k-clique, k-club and k-plex formally and consider the rela-

tionship between the defined models. Next, the corresponding optimization problems

are formulated, their complexity and mathematical programming formulations are
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established. Finally, we concentrate our attention on one of the relatively easily solv-

able case of the introduced problems, the maximum 2-club problem, and develop the

corresponding algorithm. Chapter VI is dedicated to the development of the exact

algorithm for the maximum weight k-plex problem. The chapter presents the gen-

eral idea of the algorithm as well as implementation details and discusses possible

improvements. The numerical results reported in this chapter allow to evaluate the

algorithm’s performance and show its superiority to existing approaches.

Finally, Chapter VII demonstrates the application of clique relaxation models in

real world, using the instances of market graph. The approach extends the applica-

tion of combinatorial optimization methods to the market graph, presented in earlier

work [27]. Chapter VIII concludes this dissertation and discusses the possible future

work.

Some of the results presented Chapters III and V have appeared in [39] and [16],

respectively, and papers based on the results of Chapters IV, VI and VII will be

submitted for publication.

All figures in this dissertation were generated using Graphviz software [75]

with dot2tex converter [57] and all plots were built using pgfplots package [60]

for LATEX.
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CHAPTER II

BACKGROUND

This chapter introduces the definitions and notations used throughout this disserta-

tion and provides some background information. Section II.1 discusses graph theory

basics. The problem definitions, properties, complexity results and existing solution

approaches are discussed in Section II.2. Finally, Section II.3 reviews selected applica-

tions of the considered problems in solving real-world optimization problems, points

out some issues arising in such applications, and introduces the clique relaxation

models that may address the issues raised.

II.1. Graph Theory

Let G = (V, E) be a graph with the vertex (node) set V = {1, 2, . . . , n} and the edge

set E ⊆ V × V , where (i, j) ∈ E if vertices i and j are adjacent. The number of

vertices of the graph n = |V | is called the order of the graph and the number of edges

m = |E| is called the size of the graph [53]. Here and later, unless specified explicitly,

all considered graphs are assumed to be loopless (edges like (u, u) are not allowed),

undirected (edges (u, v) and (v, u) are not distinguishable), and with no multiedges

(two vertices may not be connected by more than one edge). The notations V (G) and

E(G) denote the vertex and edge sets of graph G, respectively. Given the graph G, its

complement graph Ḡ is the graph with the same vertex set that has all possible edges

not present in G and no edges present in G. A graph is called complete if it contains

all possible edges. The complete graph of order n is denoted by Kn. The subgraph

induced by S ⊆ V is the graph G[S] = (S, E ∩ (S × S)) that has S as its vertex set,

and its edge set contains all possible edges from the original graph that connect pairs
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of vertices from S. Given a vertex v ∈ V and a vertex subset S ⊆ V , let V − v and

V − S denote the graph induced by V \ {v} and V \ S, correspondingly. For a set

S ⊆ V , its neighborhood N(S) is the set of all vertices of G that are adjacent to at

least one vertex of S. The closed neighborhood of S is N [S] = N(S) ∪ S. If S = {s}

is a single vertex set, then instead of writing N({s}) and N [{s}], we will simplify

write N(s) and N [s], respectively, and will speak about the node’s neighborhood.

By degG(v) we understand the degree of vertex v in graph G, which is |N(v)|. The

maximum and minimum degrees of a vertex in graph G are denoted by ∆(G) and

δ(G), respectively. A bipartite graph is a graph whose vertices can be divided into two

disjoint sets called bipartitions V1 and V2, such that every edge connects a vertex in

V1 to a vertex in V2. The complete bipartite graph with bipartitions of sizes p and q is

denoted by Kp,q and is defined as the bipartite graph with all possible edges between

vertices from V1 and V2. In particular, the graph K1,n is called a star. A path in a

graph is a sequence of vertices such that each two consecutive vertices in the sequence

are connected by an edge. A cycle is a path in which the first and the last vertices

are the same. Cycle and path on n vertices are denoted by Cn and Pn respectively.

A graph is called connected if there is a path between every pair of distinct vertices u

and v in the graph. A connected component of G is defined as a maximal by inclusion

connected subgraph of G.

For two vertices u and v from V (G), the distance dG(u, v) between u and v in

G is the length of the shortest path between u and v, where the length of a path

is measured in the number of edges in this path, i.e., is one less than the number

of vertices in the sequence defining the path. The largest distance between any two

vertices in G is called the diameter of G and is denoted by d(G). For graphs that are

not connected, the diameter is assumed to be +∞. For a positive number k, the k-th

power of graph G is the graph with the same vertex set V (G) and the edge set given
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by E(Gk) = {(u, v) : dG(u, v) ≤ k}.

Let w ∈ R|V | (w ∈ R|E|) be a vector defining weights for the graph’s vertices

(edges), which will be assumed to be nonnegative, unless specified explicitly. By w(v)

or wv we denote the weight associated with vertex v, and by w(e), we and by w((u, v))

we denote the weight of edge e = (u, v). w(S) =
∑

i∈S w(i) denotes the weight of a

vertex or edge subset S, and w(G) =
∑

i∈V (G) w(i) denotes the weight of graph G,

which is the sum of weights of all graph vertices.

II.2. Independent Sets and Cliques

A subset I of V is called an independent (stable) set if the subgraph G[I] induced by

I has no edges. A subset C of V is called a clique if the subgraph G[C] is a complete

graph. An independent set (clique) I is called maximal if it could not be extended

by adding vertices from V \ I. A maximum independent set (clique) of G is an

independent set (clique) of the largest cardinality in G. When speaking about graph

vertex subset, the terms maximal and maximum will be distinguished analogously

throughout this work, i.e. maximal means maximal by inclusion, while maximum

means the largest by cardinality or weight. The same is true for the terms minimal

and minimum, i.e., minimal by inclusion and minimum by cardinality. The cardinality

of a maximum independent set is called the independence (stability) number, and is

denoted by α(G). The cardinality of a maximum clique is called the clique number

and is denoted by ω(G). Obviously, if I is an independent set in G then I is a clique

in Ḡ and vice versa, so α(G) = ω(Ḡ). Therefore, all properties of independent sets

in a graph G are also valid for cliques in the complement graph Ḡ.

For a vertex-weighted graph G, a maximum weight independent (stable) set is

an independent set of the largest weight and the maximum weight clique is a clique
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with the largest weight in this graph. The weighted clique and stability numbers

are redefined correspondingly. Let us note that maximal weight independent set

(clique) has no meaning, thus maximality by inclusion will be considered in exactly

the same way as in the unweighted case. The maximum weight independent set

problem (MWISP) may be formulated as follows: given a graph G with the vertex

weights defined by vector w, find an independent set of maximum weight in G [28],

and the maximum weight clique problem (MWCP) asks one to find a clique of the

maximum weight in the given graph.

The independent set (clique) problem is defined as follows: given a graph G

and a positive integer k, does G have an independent set (clique) of cardinality at

least k? This is the decision version of an optimization problem, the maximum

independent set (clique) problem. From the complexity theory [66, 113], it is a well-

known fact that the independent set and clique problems are NP -complete and the

maximum independent set and clique problem are NP -hard [66], which means that

there are no polynomial-time (also called efficient) algorithms for these problems,

under assumption that P 6= NP . These complexity results are easily extendable to

the weighted version of the problems.

The algorithms for any combinatorial optimization problem may be classified

by the type of the solution they provide. In such classification, the algorithms that

provide exact solutions belong to the class of exact algorithms. For the MWISP and

MWCP, the exact algorithms ensure finding an optimal solution, but take exponential

running time to complete, since the problems are NP -hard. Heuristic algorithms or

simply heuristics unlike the exact approaches, do not guarantee that an optimal

solution will be found. In fact, they do not even guarantee that the solution obtained

is close to optimal, but they are constructed with the purpose of finding sufficiently

good solutions in reasonable time [6,74]. When a solution is obtained, even if it seems
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to be of good quality, there is no proof that it is not arbitrarily far away from optimum.

Despite of the lack of mathematically strict conclusion about the solution, heuristics

are very popular in engineering, since they may provide a practical solution when

the exact solution is hard to find or, in case of large-scale real-life problem, virtually

impossible to compute due to time limitations. After such solution is obtained, it

is evaluated from the engineering point of view and may be used in real life, even

without the optimality guarantee.

The approximation algorithms are the middle choice between the exact and

heuristic ones. Unlike exact algorithms, the approximation algorithms are not guar-

anteed to find the exact solution, but unlike heuristics, which usually do not provide

any performance guarantees, the approximation algorithms come with a bound on

how far away the value of the computed solution may be from the optimal one. For

ε > 0 an ε-approximation algorithm has the property that any computed approxi-

mate solution cannot have a value less (for the maximization problem) than the factor

(1 − ε) times the optimal value. Since approximation algorithms provide solutions

that may not be exact, one may want to know what is the complexity of computing

an approximate solution. This question has different answer for different problems.

While for some problems, such as the traveling salesman problem [24, 124] with Eu-

clidean distance, there exists a polynomial-time approximation scheme (PTAS), i.e., it

is possible to find ε-approximation polynomial time algorithm for any ε > 0 [10,132],

the maximum weight independent set and clique problems cannot be approximated

within any constant factor unless P = NP [11, 83,114].

Another important class of algorithm are the algorithms that compute bounds

for the solution. Of course, any heuristic or approximation algorithm that finds

any feasible solution provides a lower bound, but some algorithms may provide the

bounds (upper or lower) without even computing a feasible solution. Such algorithms
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play important role when one needs to evaluate the optimal value, either in real life

problems, or as a subroutine of an exact algorithm, such as a branch-and-bound based

algorithm [94,96].

Next we review some well-known approaches for the maximum weight indepen-

dent set and clique problems. One class of exact algorithms is based on mathematical

programming methods. The advantage of the methods based on mathematical pro-

gramming formulations is due to the possibility they provide for applying a wide

variety of powerful integer, quadratic or non-linear programming techniques for solv-

ing the problem. Let xi be a boolean variable. Then for a vertex set S, the vector

(x1, x2, · · · , xn), where xi = 1 if and only if i ∈ S, is called the characteristic vector

of S. The MWISP may be formulated as an integer programming (IP) problem in

many possible ways. One of the first and the most well-known formulation is the edge

formulation provided by Nemhauser and Trotter in 1975 [110] is given by:

α(G) = max
∑
i∈V

wixi,

s.t xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1} ∀i ∈ V.

(2.1)

where the constraints ensure that two adjacent vertices cannot be included in the set

together at the same time. Another interesting IP formulation was recently found

by Balasundaram [14], when investigating an IP formulation of the maximum k-plex

problem:

α(G) = max
∑
i∈V

wixi,

s. t. :
∑

j∈N(i)

xj ≤ degG(i)(1− xi) ∀ i ∈ V,

xi ∈ {0, 1} ∀ i ∈ V.

(2.2)

The first formulation has as many constraints as the number of edges in the graph, and

each constraint involves only two variables, so the corresponding constraint matrix is
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large and sparse. The second formulation, in contrast, creates a relatively small but

dense constraint matrix.

A wide variety of IP techniques may be applied to such formulations of the

MWISP, including the general, classical IP approaches [49, 67, 73, 109, 137, 138], as

well as specialized approaches designed specifically for the MWISP. For example,

Warrier et al. [133] used a branch-and-price (BP) approach to decompose the orig-

inal graph into smaller subgraphs, solve the MWISP in such subgraphs (which is

much easier than solving the original problem), and use the obtained information to

generate columns in a BP framework for the original graph. By ignoring the integral-

ity requirement for the decision variables, the linear programming (LP) relaxation

is obtained that provides an upper bound for the problem solution. The LP relax-

ation is just a linear problem, that may be solved efficiently using the classic LP

approaches [22,47,51].

Other well-known mathematical programming formulations of the MWISP are

quadratic boolean optimization formulations. The advantage of these formulations is

the absence of the constraints on the decision variables, except for binary restrictions.

One such formulation is studied by Hammer et al. [32, 33]:

α(G) = max
xi∈{0,1}

∑
i∈V

wixi −W
∑

(i,j)∈E

xixj

 , (2.3)

where W = w(V ) is the weight of graph G. Given an optimal solution x∗ to this

problem, the set I = {v : x∗
v = 1} is a maximum independent set of G.

In addition, there exist numerous continuous optimization formulations of the

maximum independent set problem, one of which was provided in [14]:

α(G) = max
x∈[0,1]n

∑
i∈V

xi

1 +
∑

j∈N(i)

xj

, (2.4)
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where N(j) = {v : (j, v) ∈ E} is the neighborhood of vertex j. Note that, unlike two

previous formulations, this formulation allows one to find the size of the maximum

independent set α(G) but not the set itself. However, any global maximum of this

formulation corresponds to a subset of vertices inducing a subgraph whose connected

components are cliques (the so-called independent union of cliques), and a maximum

independent set can be obtained by taking one vertex from each such clique. More

information on non-linear programming approaches for the MWISP may be found

in [36,68,108,115].

All known exact combinatorial algorithms for solving the problems of interest

have exponential time complexity. Many such algorithms utilize branch-and-bound

ideas. Based on a simple heuristic strategy, Carraghan and Pardalos [41] designed

one of the best-known exact algorithms for the maximum clique problem that per-

forms particularly well on sparse graphs. Using different idea, that is also heuristic,

Östergȧrd developed the algorithm for the maximum weight clique problem, which is

considered the state of the art at the moment [111, 112]. The benefit of the combi-

natorial algorithms is their higher performance compared to the IP approach, due to

narrow algorithm specifications.

A wide variety of heuristic techniques was successfully employed in order to solve

the maximum weight independent set and clique problems [118]. Even simple local

search heuristics [2], may be applied to the problem [21]. The tabu search [69–71]

was applied to problems of interest in [63, 128]; Feo and Resende [58, 59] proposed

the Greedy Randomized Adaptive Search Procedure (GRASP) for the maximum

independent set problem; simulated annealing introduced in [1,92] is also applicable to

these problems [29,30]. Finally, neural networks [84,143] and genetic algorithms [72]

were successfully used for solving the maximum independent set problem in [87, 88]

and [31, 82, 101], correspondingly. In addition to the classic approaches, there are



16

many special heuristics developed for the problem, such as a relatively new but very

promising Global Equilibrium Search by Shylo et al. [116,126].

The importance and popularity of the MWISP, is the reason why there are so

many approaches developed for this problem, but at the same time, the problem

also serves as a good challenging benchmark for evaluate the performance of general-

purpose approaches.

The methods described above may be applied to all instances of the MWISP

and, due to the NP -hardness of the problem, they have exponential time complexity.

From the practical point of view this means excessively long running time in general.

However, in many cases, the graphs of interest have some properties that may be ex-

ploited and utilized in solving the maximum independent set problem. Hence, many

studies of the MWISP are restricted to some special classes of graphs. In some cases

such studies include strict theoretical results and provide exact algorithms (as an ex-

ample, Minty showed that the maximum independent set problem can be solved in

polynomial time on a claw-free graph and provided the algorithm for finding the max-

imum independent set that is applicable to this graph class only [106]). Other studies

provide theoretical results without practical algorithms (e.g., Hunt et al. [85] obtained

the result of existence of a polynomial-time approximation scheme for the maximum

independent set problem in unit disk graphs, but presented no algorithm that can

utilize this fact to solve the problem faster). And, finally, many results have been

justified by numerical study only, without any theoretical proof (e.g., based on numer-

ical experiments, it is known that Carraghan-Pardalos [41] and Östergȧrd [111, 112]

algorithms perform extremely well with many instances, but there are no additional

theoretical results related to the complexity of the algorithm, except that the algo-

rithms have exponential complexity in general).

A very useful technique in solving the MWISP is preprocessing. Preprocessing
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may be defined as an optional additional step that is performed before the main al-

gorithm or one of its iterations is executed. Preprocessing could either reduce the

size of the input instance (this is sometimes referred to as kernelization [43, 46]), or

speed up the main algorithm [111]. Such techniques are usually very specific to a

particular instance and algorithm. Preprocessing procedures exist both for combina-

torial algorithms [39,43,46] and for approaches based on mathematical programming

formulations [32,33,110].

II.3. Real Life Networks and Clique Relaxations∗

Study of biological networks and other complex networks such as the Internet and the

world wide web, introduced earlier in Chapter I, have received special attention from

scientists because of their interesting properties and the information they hold. In this

respect, the concept of scale-free networks [8,18] is a recent development. It has been

observed that the degree distributions of a large number of such complex networks

follow a power law. As a consequence, average degree is no longer representative and

a majority of the nodes have few neighbors, while a smaller number of nodes have

very high degrees.

The principle of preferential attachment, which suggests that the new nodes

have a higher probability to link to nodes that already have a high degree, is used

to explain the power-law degree distribution of such scale-free graphs. In addition,

these networks are also hierarchical in the sense that they can be partitioned into

a collection of functional modules. Analysis of several biological networks provides

strong evidence that biological networks are both scale-free and modular. Identifying

∗Parts of this section are reprinted with permission from Balasundaram, B., Butenko,
S., Trukhanov, S.: Novel approaches for analyzing biological networks. Journal of Combi-
natorial Optimization 10(1), 23–39 (2005) c© Springer.
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large clusters or functional modules in biological networks can aid different objectives

depending on the nature of these networks. Clique models have been most popular

in this area as they represent tight clusters in a network. Cliques have been used to

cluster gene co-expression networks [90,119]. Cliques and high density subgraphs have

also been used to cluster protein interaction networks in [65, 129]. However, clique

models could be overly restrictive in describing clusters in such networks. Graph

theoretic clique relaxations that are used in social network analysis for identifying

cohesive subgroups can provide interesting insights into these networks and provide

more information than what is revealed by cliques. Relaxing the restrictions imposed

by clique models could reveal new protein interactions. In particular, structures where

interactions of proteins occur through a central protein, which are likely to be found

in similar biological processes, can be identified [13] by the models suggested in this

paper.

Besides biological networks, cohesive subgroups can be used to cluster airline

networks where reachability is a critical issue. An important classical application

of cohesive subgroups is the study of terrorist and other criminal networks [12, 42,

52]. More recently, these models have been used to study web graphs in Internet

research [130] to facilitate organization and faster retrieval of information from the

web. These approaches have also been used in clustering wireless networks [93] and

for other graph based data mining applications [48,61,134].

Among other applications, cliques are often used to represent clusters of simi-

lar elements. For example, in social networks, a clique represents a group of people

such that any two of them have a certain kind of relationship (friendship, acquain-

tance, etc.) with each other [107]. In fact, some of the earliest works addressing the

concept of cliques and methods of their detection were motivated by applications in

sociometry [78,97,98]. Social network analysis requires three properties in a cohesive
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subgroup model: familiarity, reachability and robustness, that translate to degree,

distance/diameter and connectivity in graph theory. Clique is ideal with respect to

these three properties: it provides the maximum possible familiarity (degree) among

clique members, it has the smallest possible pairwise reachability (distance) between

members, as well as, the smallest possible diameter of the whole graph, finally, clique

has the maximum possible robustness (connectivity).

The clustering problems studied in this dissertation deal with relaxations of the

idea of a clique, in which, for any two vertices, the requirement of their connectedness

is replaced with a less tight condition on the distance between them. We first state the

corresponding definitions of k-clique, k-clan and k-club as they originally appeared in

the literature. Following which, we will point out some drawbacks in these definitions

and modify them according to standard definitions of similar concepts in graph theory.

It is not surprising that the clustering concepts of interest first appeared in studying

cohesive subgroups in social networks, where the vertices correspond to actors in a

social network and an edge indicates a relationship between two actors [135].

Luce [97] defines an k-clique of G as a subset of vertices C ⊆ V such that for all

u, v ∈ C : dG(u, v) ≤ k and this subset is maximal by inclusion. In other words, an

k-clique C is a set of vertices in which any two vertices are a distance of at most k

from each other in G, and no other vertex in the graph is of distance k or less from

every other vertex in C. Thus, if two vertices u, v ∈ V belong to an k-clique C, then

dG(u, v) ≤ k, however this does not imply that dG(C)(u, v) ≤ k. Hence, the concept of

k-clique lacks the requirement of tightness in the group corresponding to vertices of a

k-clique, while such a requirement is essential to applications in social networks. This

observation motivated Alba [7] to introduce the concept of a sociometric clique, which

was later renamed to k-clan by Mokken [107]. An k-clique C is called an k-clan if

the diameter of the induced subgraph G(C) is no more than k. Finally, Mokken [107]



20

defines an k-club to be a maximal (by inclusion) subset of vertices, D ⊆ V such that

the diameter of the induced subgraph G(D) is at most k. A study of relations between

cliques, clans and clubs in a graph can be found in [107].

Even though the concepts just defined are used quite extensively in social net-

works analysis and are even covered in standard textbooks (see, e.g., [135]), their

definitions have some deficiencies from the mathematical viewpoint. One consider-

able drawback of the k-clan definition is that for some graphs an k-clan may not

exist. This point is illustrated in Figure 2, which shows a graph with two 2-cliques

{1, 2, 3, 4, 5, 6, 7} and {1, 2, 3, 5, 6, 7, 8}, neither of which is a 2-clan.

8 4

1

7

3

5

2

6

Fig. 2 A graph with no 2-clans

Some other difficulties arise from the requirement of maximality (by inclusion)

in all three definitions. In particular, this requirement makes checking whether a

given subset of vertices is an k-club a nontrivial matter. Indeed, to check that C is a

k-clique, it suffices to show that there is no vertex outside C that could be added to

C without violating the requirement that all pairwise distances between vertices do

not exceed k. A similar criterion would not work for k-club, however, since in this

case the maximality by inclusion is not equivalent to nonexistence of one vertex that

could increase the size of the k-club [107].
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Taking into account that the above definitions of 1-clique, 1-clan and 1-club all

correspond to the standard definition of a maximal clique, we proposed to modify

the definitions of k-clique and k-club accordingly [16]. Namely, by a k-clique of

graph G = (V, E) we will mean a subset of vertices C, such that for any u, v ∈ C:

dG(u, v) ≤ k. Similarly, by an k-club we will understand a subset of vertices D

such that diam(G(D)) ≤ k. A similar definition of k-clan becomes redundant. The

example in Figure 2 suggests the impracticality of such a concept, so we do not

consider k-clans in the further discussion.

Finally, a degree-based relaxation, known as a k-plex, was defined by Seidman

and Foster [125]. A k-plex is a subset of vertices S such that, for each vertex v ∈ S,

the degree of v in the induced subgraph degG[S](v) ≥ |S| − k. If k = 1, then the

k-plex, as previous relaxations, corresponds to the standard definition of a clique.

To demonstrate the advantage of the clique relaxation models over the regular

clique, consider as an example, the college football schedule graph, shown in Figure 1.

Even though this graph has the maximum clique of order 9, that does not provide

much useful information about the graph structure. On the other hand, Figure 3

presents the same graph, with vertices being grouped according to the maximal 4-

plexes found in the graph. In such representation, one may easily observe the college

football schedule structure, that exactly corresponds to the conferences structure:

all teams are divided into 11 conferences of 8 to 12 teams each, and there are 4

independent teams that do not belong to any conference.

An interesting question about cohesive subgroups is, what happens if one or

more members leave the subgroup? Will the subgroup preserve its structure in such

case? For the clique, independent set, k-clique and k-plex this is true, bot not for

the k-club. Strictly speaking, the graph property Π is called hereditary on induced

subgraphs, i.e., if G is a graph with property Π, then deletion of any nodes does not



22

Fig. 3 College football schedule graph clustered on 4-plexes

produce a graph violating Π. Property Π is nontrivial if it is true for a single node

graph and is not satisfied by all the graphs. Finally, a property is interesting if there

are arbitrarily large graphs satisfying Π. The maximum Π problem asks to find the

maximum (or maximum weight) induced subgraph that does not violate property Π.

Yannakakis [140] obtained a general complexity result for such properties Π, that can

be restated under our definitions as follows.

Theorem 1 (Yannakakis, 1978). The maximum Π problem for nontrivial, interesting

graph properties that are hereditary on induced subgraphs is NP-hard.
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Clearly, in social network studies one is interested with nontrivial and interesting

properties only, so it looks like being hereditary on induced subgraphs is the source

of the hardness of the problem. But one should not think that if a property is not

hereditary on induced subgraphs, then the problem becomes easier. In fact, the k-club

is not hereditary on induced subgraphs, but even verifying maximality by inclusion

(which is usually easier than finding the maximum subgraph) is a nontrivial problem.

Even though not stated explicitly, the cohesive subgroup are intended to be

connected. Cliques and k-clubs are always connected, but k-cliques and k-plexes may

not be. A graph consisting of two disjoint cliques of order k− 1 should be considered

as two separate cliques rather than as a k-plex. Again, a restricted version of the

problem, the maximum connected Π problem, may be formulated as follows: given

a graph, find a maximum connected subgraph with the property Π. The effect of

connectivity was considered again by Yannakakis [141] and the corresponding result

may be stated as follows.

Theorem 2 (Yannakakis, 1979). The maximum connected Π problem for graph prop-

erties that are hereditary on induced (connected) graphs, nontrivial and interesting on

connected graphs is NP-hard.

Indeed, these two complexity results do not cover all possible definitions of the

cohesive subgroups, but they give the idea that problems of finding cohesive subgroups

are not easy to solve in general.

All clique relaxation models considered above were based on relaxation require-

ments for vertex properties of a clique. There are also some models based on relaxing

edge properties for clique. Clique has the maximum possible number of edges between

its members, which is equal to n(n−1)/2 for a clique of order n. For a given 0 ≥ γ ≥ 1,

the authors of [4] defined the γ-clique or quasi-clique as a vertex set S ⊆ V (G), such
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that the graph G[S] is connected and has edge density at least γ, where the edge

density is defined in an obvious way as |E(G[S])|/(|S|(|S| − 1)/2). There is some

confusion with terminology, since other authors define quasi-clique based on vertex

degrees. For example, [117] defines a γ-complete graph as a connected graph G such

that every vertex in the graph has a degree at least γ(|V (G)| − 1). They define a

γ-quasi-clique as a maximal by inclusion γ-complete subgraph of G. For γ = 1 both

definitions for quasi-clique are just the regular clique. Both variants of defined quasi-

clique models are widely used in biological and social network analysis along with

many other models that are out of the scope of this dissertation [44,56,144].

Even though the concept of cohesive subgroups is borrowed from social net-

work analysis, these ideas are applicable to any network, and finding these cohesive

subgroups can reveal several important structural aspects of the networks. Despite

a number of important practical applications, the combinatorial optimization prob-

lems concerned with finding large k-cliques, k-clubs and k-plexes have not been well

studied analytically or computationally. In fact, little has been known about the

complexity aspects of such problems and mathematical programming approaches to

these problems are in their infancy.
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CHAPTER III

SCALE REDUCTION APPROACH FOR THE MAXIMUM WEIGHT

INDEPENDENT SET PROBLEM∗

In this chapter, we develop a method that utilizes the polynomially solvable critical

weight independent set problem for solving the maximum weight independent set

problem on graphs with a nonempty critical weight independent set. Section III.1

provides definitions and background of critical weighted sets and critical weight in-

dependent sets. Next, in Section III.2, we establish the relationship between critical

independent and maximum independent sets that allows us to develop the algorithm

in Section III.3. The effectiveness of the proposed approach on large graphs with large

independence number is demonstrated through extensive numerical experiments in

Section III.4.

III.1. Critical and Critical Independent Sets

Let G = (V, E) be a simple undirected graph with vertex weights w : V → R+.

Zhang [142] introduced the critical sets and critical independent sets as follows:

A vertex set Uc ⊆ V is called critical if

µc(G) = |Uc| − |N(Uc)| = max{|U | − |N(U)| : U ⊆ V }. (3.1)

The number µc is called the critical number of G. An independent set Ic ⊆ V is called

∗Parts of this chapter are reprinted with permission from Butenko, S., Trukhanov S.:
Using critical sets for the maximum independent set problem solving. Operations Research
Letters 35(4), 519–524 (2007) c© Elsevier B.V.
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critical if

αc(G) = |Ic| − |N(Ic)| = max{|I| − |N(I)| : I is an independent set of G}. (3.2)

The corresponding number αc(G) is called the critical independence number of G.

Later Ageev [5] made a generalization of these definitions to graphs with vertex

weights. A vertex set Uc ⊆ V is called critical weighted if

µc(G) = w(Uc)− w(N(Uc)) = max{w(U)− w(N(U)) : U ⊆ V }. (3.3)

Ic ⊆ V is a critical weight independent set if

αc(G) = w(Ic)− w(N(Ic)) = max{w(I)− w(N(I)) : I is an independent set of G}.

(3.4)

The main result provided by Ageev [5] is that the problems of finding a critical

weighted and critical weight independent set are polynomially solvable, moreover

αc(G) = µc(G). Obviously, αc(G) ≤ µc(G). Let Uc be a critical weighted set in G,

so µc(G) = w(Uc)− w(N(Uc)). Let A ⊆ Uc be a set of non-isolated vertices of Uc in

G[Uc]. Then A ⊆ N(Uc) and hence A ⊆ Uc ∩N(Uc), but in such case

w(Uc \ A)− w(N(Uc \ A))

≥ w(Uc)− w(A)− (w(N(Uc))− w(A))

= w(Uc)− w(N(Uc)) = µc(G).

On the other hand, Uc is a critical weight set, so w(Uc \A)−w(N(Uc \A)) = µc(G),

moreover V \ A is independent by construction, so Ic = Uc \ A is a critical weight

independent set of G and αc(G) = µc(G). This proof also provides a way to find a

critical weight independent set from a known critical weight set: just take all isolated

vertices in G[Uc] and the resulting set will be a critical weight independent set of G.

To show that the problem of finding a critical weighted set is solvable in polyno-
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mial time, first consider its IP formulation:

µc(G) = max
∑
v∈V

wvxv −
∑
v∈V

wvyv,

s.t. yv ≥ xu ∀(u, v) ∈ E,

xv, yv ∈ {0, 1} ∀v ∈ V.

(3.5)

The formulation means that we try to minimize the difference between the weights of

two vertex subsets such that the vertex from second subset is chosen whenever at least

one of its neighbor is chosen. Ageev has shown that the optimal solution parts x∗ and

y∗ correspond to the critical weighted set and its neighborhood, respectively. Next,

let us make the substitution zv = 1 − yv ∀v ∈ V , then the problem (3.5) transforms

to:

µc(G) = |V |+ max
∑
v∈V

wvxv +
∑
v∈V

wvzv,

s.t. yv + zu ≤ 1 ∀(u, v) ∈ E,

xv, zv ∈ {0, 1} ∀v ∈ V,

(3.6)

which is, up to the constant additive |V |, an IP formulation for an instance of the

maximum weight independent set problem on B(G), the so-called bidual graph of G,

whose vertex set is defined by V (B(G)) = V ∪ V ′, where V ′ is a copy of vertex set

V , and the edge set defined as E(B(G)) = {(u, v′), (u′, v) : (u, v) ∈ E(G)}. Simply

speaking, graph B(G) is a bipartite graph, each of the two partitions of which is a copy

of vertices of the original graph, and the edge between vertices from different partitions

exists if and only if the corresponding vertices in the original graph are connected.

The problem of finding a maximum weight independent set on a bipartite graph is

known to be polynomially solvable [66] by reduction to the maximum flow (minimum

cut) problem on graph B′(G), which is a directed graph with edge weights. B′(G) is

obtained from B(G) by adding artificial vertices s (source) and s′ (sink), connecting

s to all vertices from V , connecting all vertices from V ′ to s′, and directing all edges
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of B(G) from V to V ′. The weights on edges (upper limit for flow) are equal to wv

for edges {(s, v) : v ∈ V } and {(v′, s′) : v′ ∈ V ′}, edges from V to V ′ have no limits

(i.e., the weights are equal to +∞). Vertices that are not adjacent to the edges from

the minimum cut in B′(G) create a maximum weight independent set in B(G) [77]

and thus, provide the way to find a critical weighted set in the original graph G.

This way is not necessarily the best one for finding a critical weighted set, but it

establishes the complexity result and plays an important role in further theoretical

research. Figure 4 shows the original graph and illustrates the corresponding network

flow problem on B′(G).

III.2. Relation Between Critical Independent and Maximum Indepen-

dent Sets

This section establishes the results relating the critical weighted independent set

problem to the maximum weight independent set problem. In particular, the main

theorem states that any critical weighted independent set is a subset of a maximum

weight independent set. This fact is then used to develop a scale-reduction proce-

dure for the maximum independent set problem in graphs with a nonempty critical

independent set.

Lemma 3. If Ic is a critical weighted independent set and a maximal independent

set, then Ic is a maximum weight independent set.

Proof. Since Ic is a maximal independent set, we have N(Ic) = V \ Ic. Assume that

there exists an independent set I with weight w(I) > w(Ic). Then w(V \I) < w(V \Ic)

and

w(I)− w(N(I)) ≥ w(I)− w(V \ I) > w(Ic)− w(V \ Ic),

which contradicts to the fact that Ic is a critical weighted independent set.
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Corollary 1. If Ic is a critical weighted independent set and a maximal independent

set, then w(Ic) ≥ w(V )/2.

Proof. Follows from the non-negativity of w(Ic)− w(N(Ic)).

Theorem 4. If Ic is a critical weighted independent set, then there exists a maximum

weight independent set I, such that Ic ⊆ I.

Proof. Let J be a maximum weight independent set in G, and Ic be a critical weighted

independent set. Put

I = (J ∪ Ic) \N(Ic).

Then I is an independent set, and Ic ⊆ I. To prove that I is a maximum weight

independent set, it suffices to show that w(I) ≥ w(J). Assume that w(I) < w(J),

then w(J \ I) > w(I \ J). Since I \ J = Ic \ J and J \ I = N(Ic)
⋂

J , we obtain

w(N(Ic) ∩ J) > w(Ic \ J).

Using the last inequality and the inequality

w(N(Ic)) ≥ w(N(Ic) ∩ J) + w(N(Ic ∩ J)),

we have

w(Ic)− w(N(Ic)) = w(Ic \ J) + w(Ic ∩ J)− w(N(Ic))

< w(N(Ic) ∩ J) + w(Ic ∩ J)− w(N(Ic) ∩ J)− w(N(Ic ∩ J))

= w(Ic ∩ J)− w(N(Ic ∩ J)).

We obtain a contradiction with the fact that Ic is a critical weighted independent

set.

Theorem 4 states that a nonempty critical weighted set is always a part of a

maximum weight independent set, therefore it can be used in order to reduce the
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number of vertices to be analyzed when solving the maximum weight independent set

problem. The following two lemmas provide some elementary properties of critical

weighted sets and critical weighted independent sets in a graph that will be used in

the reduction algorithm.

Lemma 5. Let U be a critical weighted set of the simple undirected graph G = (V, E).

Then U ′ = U ∪W , where W = V \ (U ∪ N(U)) is also a critical weighted set of G

and U ′ ∪N(U ′) = V .

Proof. By the definition of W , U ∩W = ∅ and N(U) ∩W = ∅, hence

N(W ) ⊆ V \ U ⊆ W ∪N(U).

Since U ′ = U ∪W , we have

N(U ′) = N(U) ∪N(W ) ⊆ N(U) ∪W ∪N(U) = W ∪N(U).

Thus,

w(U ′)− w(N(U ′)) = w(U) + w(W )− w(N(U ′))

≥ w(U) + w(W )− w(W ∪N(U))

= w(U)− w(N(U)),

so U ′ is also a critical weighted set of G.

Note that U ′ ∪N(U ′) = U ∪W ∪N(U) ∪N(W ) = V .

Lemma 6. Let U be a critical weighted set of G = (V, E), such that U ∪N(U) = V ,

I ⊆ U be a critical weighted independent set obtained from U by taking isolated vertices

of G(U). Then

I = U \N(U), N(I) = N(U) \ U,

and

V \ (I ∪N(I)) = U ∩N(U) = U \ I.
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Proof. We first show that I = U \ N(U). Consider v ∈ I. By the definition of I,

v ∈ U . Assume that v ∈ N(U), then there exists w ∈ U,w 6= v : (v, w) ∈ E, so v

is not isolated in G(U), therefore v /∈ I. So, I ⊆ U \ N(U). On the other hand, if

v ∈ U \N(U) then v ∈ U and is isolated in G(U), so v ∈ I. Thus, U \N(U) ⊆ I, so

I = U \N(U).

Next we show that N(I) = N(U) \ U . Note that since U ∪ N(U) = V and

N(I) ∩ U = ∅, we have N(I) ⊆ N(U) \ U . Recall that from [5] we know that

w(I)− w(N(I)) = w(U)− w(N(U)), but

w(U)− w(N(U)) = w(U \N(U)) + w(U ∩N(U))− w(N(U) \ U)− w(U ∩N(U))

= w(I)− w(N(U) \ U).

So, w(N(I)) = w(N(U) \ U) and, since N(I) ⊆ N(U) \ U , we have

N(I) = N(U) \ U.

Finally,

V \ (I ∪N(I)) = (U ∪N(U)) \ ((U \N(U)) ∪ (N(U) \ U))

= (U ∪N(U)) \ (U 4N(U))

= U ∩N(U)

= U \ I,

where 4 denotes the symmetric difference.

III.3. Scale-reduction Algorithm

Theorem 4 allows one to reduce the size of the maximum weight independent set

problem and could be used as a preprocessing step before the main algorithm is
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applied. This idea is implemented in Algorithm 1:

Algorithm 1 Critical set based scale-reduction algorithm

1: procedure CriticalReduction(G)
2: I ← ∅
3: repeat
4: Uc ← Critical(G)
5: Ic ← Uc \N(Uc)
6: I ← I ∪ Ic

7: V ← V \ Ic \N(Ic)
8: G← G[V ]
9: until Ic = ∅
10: Gr ← G
11: return I ∪MIS(Gr)
12: end procedure

1. Initialize I = ∅.

2. Compute a critical set Uc of G. To find a critical set Uc in the unweighted

case, first use a reduction of the critical set problem to the maximum matching

problem in a bipartite graph as proposed by Ageev [5] and then apply a standard

algorithm for computing a maximum matching in bipartite graph in O(|E||V |)

time (see, e.g., the proof of König’s theorem in [49]). In the general case,

the critical weighted set problem may be reduced to the selection problem [5],

which is equivalent to finding a minimum cut (or maximum flow) in a bipartite

graph [17,122].

3. Compute a critical weight independent set of G by putting Ic = Uc \ N(Uc),

which is equivalent to removing all non-isolated vertices from G(Uc) [5, 39].

4. If Ic 6= ∅, put I = I ∪ Ic, V = V \ (Ic ∪N(Ic)), G = G(V ) and go to step 2.

5. Denote the remaining graph G by Gr = (Vr, Er) and output Gr.

6. Find a maximum weight independent set in Gr. Any exact algorithm (e.g.,

[41, 111]) may be used for this purpose.
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7. The maximum weight independent set of G will be a union of I and the maxi-

mum weight independent set of Gr.

III.4. Numerical Experiments

We tested the critical weighted set approach to the maximum weight independent set

problem on graphs G = (V, E) with unit vertex weight and α(G) > |V |/2, since in

this case a critical independent set Ic is guaranteed to be nonempty. Note that it is

easy to prove that the maximum independent set problem remains NP-hard even if

restricted to graphs with α(G) > |V |/2.

To test the proposed approach, we generated a number of graphs with α(G) >

|V |/2 using Sanchis generator of maximum clique instances available from the DI-

MACS ftp server at ftp://dimacs.rutgers.edu/pub/challenge/ (see also [91]). Sanchis

graph generator details may be found in [79, 123]. We took complements of graphs

obtained using the generator, and tested them for connectivity. All graphs considered

in our experiments were connected. Since the Sanchis generator produces graphs with

a predetermined maximum clique size ω(G), the size α(Ḡ) of the maximum indepen-

dent set of its complement Ḡ is known, α(Ḡ) = ω(G). The number of vertices in

the graphs used in our computations ranged from 1000 to 18000. Due to their large

size, the maximum independent set problem in these graphs cannot be solved using

standard exact algorithms. However, the critical set approach presented in this paper

was extremely effective with all of the considered cases. The results of computations

are summarized in Table 1. Here each row corresponds to one graph G = (V, E) and

other notations used in the table are defined as follows. Uc denotes the computed

critical set, Ic is the critical independent set obtained from Uc by taking the isolated

vertices of G(Uc), and, as before, αc(G) = |Ic| − |N(Ic)|. By Gr = (Vr, Er) we denote
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the output of our algorithm, i.e., the graph obtained from G after recursively remov-

ing a critical independent set and its neighborhood. Finally, the last column reports

the CPU time (in seconds) of execution of the proposed algorithm implemented in C

programming language. The programs were compiled with the GCC 3.3.6 compiler

and run on a Dell Inspiron 8600 computer running Linux 2.6 and configured with

Pentium-4M 1400 MHz processor and 512 MB of RAM.

In another set of numerical tests we experimented with Erdös collaboration net-

works available from Batagelj’s Networks/Pajek Graph Files website [20], as well as

complements of the graph coloring problem instances from the Trick’s graph coloring

page [131]. The results of these experiments are presented in Tables 2 and 3, where

all the notations used are the same as in Table 1. In Erdös collaboration networks

considered, the vertices represent authors who are “connected” to Paul Erdös through

a short path of co-authors [19]. More specifically, Table 2 considers instances with

names in the form ERDOS.x.y, where x represents the last two digits of the year for

which the network was constructed, and y represents the largest Erdös number of

an author represented by a vertex in the graph. For example, the vertices in graph

ERDOS.99.1 represent 472 co-authors of Paul Erdös, and the vertices in graph ER-

DOS.99.2 correspond to 6100 researchers who co-authored a paper either with Erdös

or with at least one of his co-authors. We considered such networks for years 1997-

1999 and y = 1 and 2. Note that in all considered instances of Erdös collaboration

networks their independence number exceeds half of the number of vertices, which

is typical for social networks, as well as for large sparse networks arising in many

other applications [3, 80, 81]. Naturally, the approach proposed in this chapter is a

very effective step in solving the maximum independent set problem for such net-

works. On the other hand, complements of most of the standard DIMACS maximum

clique instances have relatively small independence numbers [91] and empty critical
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Table 1 Results of experiments with Sanchis graphs
|V | |E| α(G) |Uc| |Ic| αc(G) |Vr| |Er| Time

1000 181256 524 524 524 476 0 0 0.07

1000 186723 505 505 505 495 0 0 0.04

2000 686341 1103 1103 1103 897 0 0 0.97

2000 711955 1067 1067 1067 933 0 0 0.44

3000 944175 1535 1535 1535 1465 0 0 0.58

3000 954717 1563 1563 1563 1437 0 0 0.87

4000 1014603 2069 2069 2069 1931 0 0 7.08

4000 1090563 2309 2309 2309 1691 0 0 11.27

5000 1533472 2717 2717 2717 2283 0 0 11.43

5000 720845 3132 3132 3132 1868 0 0 47.74

6000 1775988 3302 3305 3259 2741 46 44 86.97

6000 1815973 3412 3412 3412 2588 0 0 33.64

7000 890777 4493 4493 4493 2507 0 0 154.07

8000 3193335 4394 4394 4394 3606 0 0 103.30

8000 481800 5249 5249 5249 2751 0 0 263.44

9000 4040615 4927 4930 4887 4113 43 41 273.70

9000 681131 5899 5899 5899 3101 0 0 381.69

10000 3775385 5811 5813 5799 4201 14 12 625.58

10000 4908379 5507 5508 5478 4522 30 29 249.76

11000 2546883 6862 6862 6862 4138 0 0 594.24

11000 6528244 5901 5902 5868 5132 34 33 220.11

12000 4862197 7098 7097 7075 4925 22 20 1041.04

12000 5549355 6973 6973 6973 5027 0 0 463.30

13000 1339999 8474 8474 8474 4526 0 0 1131.41

13000 5638263 7698 7705 7640 5358 67 58 1865.82

14000 10772525 7417 7423 7346 6654 77 72 1045.77

14000 3371180 8844 8844 8844 5156 0 0 1330.66

15000 4207335 9413 9417 9386 5614 31 27 2288.17

15000 6912205 8993 8994 8983 6017 11 10 1523.01

16000 14346706 8401 8407 8360 7640 47 41 2923.90

16000 4807361 10042 10042 10042 5958 0 0 2215.34

17000 10748092 9898 9901 9862 7138 39 36 2666.40

17000 913028 11239 11239 11239 5761 0 0 2596.95

18000 2038675 11782 11782 11782 6218 0 0 3249.14

18000 5106081 11412 11412 11402 6594 14 10 3830.01
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Table 2 Results of experiments with Erdös networks

Graph |V | |E| α(G) |Uc| |Ic| αc(G) |Vr| |Er| Time

ERDOS.97.1 472 1314 254 317 179 58 158 271 11.96

ERDOS.97.2 5488 8972 5047 5034 5034 4606 26 13 183.52

ERDOS.98.1 485 1381 261 366 152 58 229 526 1.00

ERDOS.98.2 5822 9505 5368 5356 5356 4914 24 12 213.02

ERDOS.99.1 492 1417 263 375 144 56 246 614 0.42

ERDOS.99.2 6100 9939 5639 5629 5629 5178 20 10 239.61

independent sets, thus the critical independence set approach is useless for these in-

stances. The same can be said about the collections of test instances for the maximum

independent set problem available online at

http://www.research.att.com/˜njas/doc/graphs.html and

http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htm

For all of these instances, with exception of several instances that had isolated vertices,

the computed critical independent sets were empty. The results reported in Table 3

show that for a critical independent set to be nonempty, the independence number

does not necessarily need to be very large, as for some of the considered graphs

α(G) < |V |/2.
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Table 3 Results of experiments with coloring problem instances

Graph |V | |E| α(G) |Uc| |Ic| αc(G) |Vr| |Er| Time

anna 138 493 80 75 61 29 45 45 0.01

david 87 406 36 81 13 9 70 305 0.01

fpsol2.i.1 496 11654 307 496 227 227 269 11654 0.31

fpsol2.i.2 451 8691 261 348 172 120 223 977 0.33

fpsol2.i.3 425 8688 238 322 146 94 223 974 0.27

huck 74 301 27 34 16 4 46 143 0.01

inithx.i.1 864 18707 566 741 430 363 367 11079 2.21

inithx.i.2 645 13979 365 383 257 144 273 642 0.97

inithx.i.3 621 13969 360 349 259 132 221 423 0.86

jean 80 254 38 39 26 15 35 108 0.01

zeroin.i.1 211 4100 120 211 85 85 126 3775 0.02

zeroin.i.2 211 3541 127 143 111 59 48 207 0.04

zeroin.i.3 206 3540 123 140 108 56 46 206 0.04
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CHAPTER IV

RELATIONSHIP BETWEEN THE CRITICAL SET METHOD AND

OTHER SCALE-REDUCTION TECHNIQUES

This chapter compares several different approaches used to reduce the size of an in-

stance of the maximum independent set problem that were proposed in the literature

since 1975. Section IV.1 introduces the problem and general characteristic of consid-

ered reductions. Next, Sections IV.2-IV.5 present the scale-reduction approaches of

interest. Then, Section IV.6 investigates the relationship between these approaches

and shows that they are equivalent in some sense. Finally, Section IV.7 highlights the

differences between the considered methods and discusses their possible extensions.

IV.1. Scale Reduction in the Maximum Weight Independent Set Problem

Consider the decision version of the maximum weight independent set problem: given

a simple undirected vertex-weighted graph G = (V, E, w) and a parameter k, decide

if G contain an independent set of weight at least k. All the approaches compared

in this chapter may be viewed as scale-reduction techniques based on the following

idea: given a problem instance G and a parameter k, we can reduce (G, k) to another

instance of the same problem (G′, k′) such that (G, k) is a “yes” instance if and only

if (G′, k′) is a “yes” instance and |V (G′)| < |V (G)|. Simply speaking, the problem

of finding a maximum weight independent set is reduced to the same problem on a

graph with a smaller number of vertices. This reduction technique is also referred to

as kernelization in [43,46], where the irreducible part G′ is called the instance’s kernel,

which is what makes the problem hard to solve. The following section will present

different approaches for the MWISP size reduction. In the next section the relation
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between presented approaches will be stated and their equivalence will be defined.

Finally, the differences between approaches and possible extensions will be considered

at Section IV.7 and one of such possible extensions, based on t-hat structure, will be

presented at Section IV.8.

IV.2. IP Relaxation Based Approach

The first approach of interest was presented by Nemhauser and Trotter [110] in 1975.

The MWISP was formulated as the following integer program, also known as the edge

formulation:

αw(G) = max
∑
i∈V

wixi,

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1} ∀i ∈ V.

(4.1)

Its optimal solution xI ∈ {0, 1}|V | is the characteristic vector of a maximum weight

independent set I of G, i.e., such that v ∈ I if and only if xv = 1. The linear

programming relaxation of the above integer program is given by

max
∑
i∈V

wixi,

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

0 ≤ xi ≤ 1 ∀i ∈ V.

(4.2)

Nemhauser and Trotter proved that any optimal solution x∗ of (4.2) is such that

x∗
i ∈ {0, 1, 1/2}, i = 1, · · · , n. They also considered the partition of graph vertices

(V0, V1, V1/2) corresponding to x∗, where i ∈ Vj if x∗
i = j, i = 1, · · · , n, j ∈ {0, 1/2, 1},

and proved that there exists a maximum weight independent set that contains all

vertices from V1. Thus, the original problem could be reduced to the MWISP on
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G′ = G[V1/2] = G− V1 − V0. The authors also provided an efficient algorithm to find

the sets V0, V1 and V1/2. This algorithm will be referred to as ANT and the notation

G′ = A(G) will mean that G′ is the reduced graph obtained by applying algorithm

A to the graph G.

IV.3. Approach Based on Roof Duality

Hammer et al. [32, 33, 77] used pseudo-boolean optimization for solving discrete op-

timization problems, including the MWISP. For B = {0, 1}, the function f : Bn → R

is called pseudo-boolean. In this subsection, we will first explain a more general scale-

reduction technique for pseudo-boolean optimization based on the concept of roof

duality, and then discuss the application of this technique to the MWISP.

IV.3.1. Roof Duality Essentials

For a problem

max
x∈Bn

f(x), (4.3)

replacing f(x) by an upper plane p(x), i.e., a linear function such that p(x) ≥

f(x) ∀x ∈ Bn, yields a linear relaxation of the problem (4.3) given by

max
x∈Bn

p(x). (4.4)

Let S denote a set of upper planes of f(x). S is called complete if f(x) = min
p(x)∈S

p(x).

If S is complete, then the optimal objective value of problem (4.3) is equal to

max
x∈Bn

min
p(x)∈S

p(x). Since this new problem is as hard as the original one, it is of in-

terest to consider the problem

min
p(x)∈S

max
x∈Bn

p(x), (4.5)
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which is called the plane dual. Note that the optimal objective value of (4.5) is no

less than that of (4.3).

Consider the problem (4.3) with a quadratic objective:

max
x∈Bn

f(x) =
n∑

i=1

n∑
j=1

qijxixj, (4.6)

where qij = 0 whenever i > j, and since qiixixi = qiixi, the linear terms are not

considered separately. In this case, the upper plane p(x) can be generated as sum

of local upper planes pij(xi, xj) = aijxi + bijxj + cij built for each term qijxixj. The

closest to qijxixj local upper plane is called a tile. It is evident that more than

one tile may be generated for each term. Moreover, there are infinitively many tiles

that may be generated for each term, but it is possible to explicitly write down the

analytical expression for tile using parameter λij ∈ [0, qij] [77]. The upper plane built

of tiles has the form p(x, λ) =
n∑

i,j=1

pij(xi, xj, λij) and is called a roof. The problem

(4.5) constructed using roof as upper planes is called the roof dual problem. The

roof-dual bound can be determined efficiently by maximum flow computations in the

implication network corresponding to the problem [77]. Some variables of an optimal

solution to the roof dual problem may have integer values (binary in this case). For

some index j ∈ V and binary value α ∈ B, strong (respectively, weak) persistency

holds for problem min{f(x) : x ∈ Bn} if xj = α holds for all (respectively, for some)

optimal solutions of this problem.

IV.3.2. Roof Duality and the Maximum Weight Independent Set Prob-

lem

In [33], the maximum independent set problem is formulated as the following quadra-

tic unconstrained pseudo-boolean problem:
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α(G) = max
x∈Bn

∑
v∈V

xv −
∑

(i,j)∈E

xixj. (4.7)

Its weighted extension can be written as

αw(G) = max
x∈Bn

∑
v∈V

wvxv −M
∑

(i,j)∈E

xixj, (4.8)

where M is a sufficiently large penalty coefficient (e.g., M = w(V )). The authors of

[33,77] derived the persistency criteria for the solutions of the roof dual problem. After

applying roof duality method to the above quadratic formulation of the maximum

weight independent set problem (4.7), the original graph may be partitioned into

three disjoint subsets (V0, V1, V \V0\V1), where V0 and V1 correspond to the persistent

assignments of xi = 0 and xi = 1, respectively. So, the problem can be reduced by

eliminating vertices from V0 and V1, and the corresponding algorithm will be denoted

as ARD.

IV.4. Crown Structure Elimination

Chleb́ık and Chleb́ıkova [46] introduced the concept of crown structure for vertex-

weighted graphs as follows. Given a graph G = (V, E, w), a crown (respectively, a

strong crown) in G is a subgraph C induced by I ∪S in G, where I is an independent

set, S is the set of neighbors of I in G, and w(N(U) ∩ I) ≥ w(U) (respectively,

w(N(U)∩I) > w(U)) holds for every nonempty set U ⊆ S. If graph G is unweighted,

then the following equivalent definition by Chen and Zhang [43] provides intuitive

understanding of the crown structure: the crown structure is a subgraph C induced

by I ∪ S in G where I is an independent set, S is the set of neighbors of I in G and

|I| ≥ |S| and there is a matching between I and S that saturates S, i.e., all vertices

in S are in the matching. If |I| > |S|, the crown is called a proper crown or strong
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crown. Figure 5 shows a graph that is a crown.

I

S

Fig. 5 Crown structure

The scale reduction in this case is done by eliminating proper crown structures

from the original graph. The paper [46] demonstrates that the part I in the definition

of the crown structure is a part of a maximum weight independent set, so no vertices

from part S can belong to such a maximum independent set. The corresponding

partition is given by (I, S, V \ I \ S) and is called a crown decomposition. Again, the

algorithm is applied in iterative fashion until all proper crowns are eliminated from

the graph. The remaining graph is called crown-free and has only the trivial crown

decomposition (∅, ∅, V ). The algorithm utilizing the crown elimination decomposition

will be denoted by ACE.

IV.5. Approach Based on Critical Sets

To be consistent, we restate and fit to the current format our result that allows to

utilize critical weighted independent set in order to reduce the size of the MWISP.

After a critical weighted independent set Ic is found in G, the similar vertex partition

may be introduced: (Ic, N(Ic), V \ Ic \ N(Ic)). According to our result, there exists

a maximum weight independent set I such that the vertices from the first partition
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Ic are a part of I (i.e., xi : i ∈ Ic are fixed to 1), therefore the vertices from the

second partition are not in the set I, and the original graph could be reduced to

G′ = G− Ic −N(Ic).

Denote byACS the iterative algorithm based on the critical weighted independent

set elimination, i.e., the algorithm applied to the reduced graph until the critical

weighted independent set is empty.

IV.6. Relation Between Approaches

For the set of algorithms {Ai : i ∈ {NT, RD, CE, CS}}, let us define the following

equivalence relation:

Ai ∼ Aj ⇔ Aj(Ai(G)) = Ai(G) & Ai(Aj(G)) = Aj(G)

Simply speaking, the algorithms Ai and Aj are equivalent if no additional reduction

may be obtained by applying algorithm Aj after Ai and vice versa. The defined

relation is reflective (Ai ∼ Ai), symmetric (Ai ∼ Aj ⇔ Aj ∼ Ai) and transitive

(Ai ∼ Aj & Aj ∼ Ak ⇒ Ai ∼ Ak), so this is an equivalence relation. The relation

between the four approaches described above is given by the next proposition.

Proposition 7. Algorithms presented by Nemhauser and Trotter (ANT ), Boros,

Hammer and Tavares (ARD), Chen and Zhang (ACE), and Butenko and Trukhanov

(ACS), are equivalent with respect to the equivalence relation defined above.

Proof. • ANT ∼ ACE

Proved by Chen and Zhang [43] for unweighted case and by Chleb́ık and Chleb́ı-

ková [46] for the general case.

• ACS ∼ ACE

The following observations are valid:
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– A non-empty critical weighted independent set with a positive critical num-

ber is a proper crown. Assume Ic ⊆ V is a critical weighted independent

set, but is not a proper crown. Then there exists U ⊆ N(Ic) such that

w(N(U)∩ Ic) > w(U). Let J = N(U)∩ Ic and consider set Ic \ J which is

also an independent set. We have:

w(Ic \ J)− w(N(Ic \ J)) = w(Ic)− w(J)− w(N(Ic \ J))

= w(Ic)− w(J)− w(N(Ic)) + w(N(J) ∩N(I)),

since N(Ic \ J) ⊆ N(Ic). Also, since N(J) = N(N(U) ∩ Ic), U ⊆ N(Ic)

and Ic \ J ⊆ Ic, we have

U ⊆ N(J) ⊆ N(Ic)

and

w(U) ≤ w(N(J)) ≤ w(N(Ic)).

Thus,

w(Ic \ J)− w(N(Ic \ J))

≥ w(Ic)− w(J)− w(N(Ic)) + w(U ∩N(Ic))

= w(Ic)− w(N(Ic))− w(J) + w(U) > w(Ic)− w(N(ic)),

which contradicts to the assumption that Ic is a critical weight set.

– A crown (even a proper one) is not necessarily a critical weight independent

set, since there is no maximality requirement on the difference between

weight of the set of vertices and its neighborhood.

– If the graph contains a proper crown, then this graph contains a non-empty
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critical weighted independent set with positive critical number, since

max{w(I)− w(N(I)) : I is an independent set in G}

≥ max{w(C)− w(N(C)) : C is a proper crown in G},

which is greater than zero.

– ACS(ACE(G)) = ACE(G). If we assume the opposite, then ACS has found

a non-empty critical weighted independent set Ic in ACE(G), but Ic is also

a proper crown, which leads to a contradiction, since ACE has eliminated

all proper crowns from G.

– ACE(ACS(G)) = ACS(G). If we assume the opposite, then ACE has found

a proper crown C in ACS(G). But this implies that there is a non-empty

critical weighted independent set in ACS(G) with positive critical number.

This contradicts to the fact that ACS has eliminated all such sets.

So, the proper crown elimination procedure and the critical weighted indepen-

dent set procedure produce the same result: the new graph is a proper crown

free graph, and ACE ∼ ACS. It should be noted that it is not guarantied

that the new graph will be the same in both cases (even when applying criti-

cal weighted independent set detection algorithm to the same graph more than

once starting from different vertices, it is possible to obtain different resulting

sets).

• ACS ∼ ARD

Consider the graph B′(G) that is used in the critical set algorithm. B′(G) is

constructed from B(G) by adding two vertices s and s′ (source and sink) and a

set of edges {(s, v), (v′, s′) : ∀v ∈ V, v′ ∈ V ′}. The original edges of B(G) will be

directed from V to V ′. Edge weight will be assigned as follow: wsv = wvs′ = wv,
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and all other edges have weight +∞ (or big M). Since B′(G) is symmetric,

it may be considered as an implication network [33] for some quadratic posi-

form. Using the procedure inverse to the implication network construction, the

quadratic posiform corresponding to implication network B′(G) is given by

φ(x) = 2
∑

v∈V (G)

wix0x̄i + 2M
∑

(i,j)∈E(G)

xixj.

After excluding artificial variable x0, we obtain:

φ(x) = 2
∑

v∈V (G)

wi(1− xi) + 2M
∑

(i,j)∈E(G)

xixj

According to [77] the maximum flow in implication network gives a fractional

optimal solution for problem of minimization of the corresponding quadratic

posiform over binary hypercube, i.e.

min
xi∈{0,1}

φ(x)

= min
xi∈{0,1}

2
∑

v∈V (G)

wi(1− xi) + 2M
∑

(i,j)∈E(G)

xixj

= 2w(V ) + min
xi∈{0,1}

(−
∑

v∈V (G)

(−wixi) + 2M
∑

(i,j)∈E(G)

xixj)

∼ max
xi∈{0,1}

∑
v∈V (G)

wixi −M
∑

(i,j)∈E(G)

xixj,

(4.9)

which is a quadratic binary formulation of the maximum weight independent

set problem. The procedure of finding a weakly persistent assignment based on

the implication network proposed in [33, 77] picks exactly the same vertices as

those used for a critical weighted independent set construction in [39]. So, the

partition obtained by ARD is exactly the same as for ACS.

Note that from [77] it follows that ANT ∼ ARD, so ACS ∼ ARD can be alterna-

tively shown by transitivity.

• Finally, ANT ∼ ARD ∼ ACE ∼ ACS by transitivity.
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IV.7. Extensions and Differences

Motivated by our work described in the previous chapter, Larsen [95] proposed a

modified algorithm that allows to find a maximum weight critical independent set.

The advantages of the approach include the following:

• more vertices may be eliminated (actually, not only proper, but also non-proper

crowns crown will be eliminated);

• a maximum weight critical independent set needs to be found only once, and af-

ter this set is eliminated, the empty set is the only critical weighted independent

set of the remaining graph (recall that the original algorithm ACS eliminates

critical independent sets recursively);

• the modified algorithm was used to develop a necessary and sufficient condition

for existence of a non-empty critical weighted independent set in a given graph.

The disadvantage is the complexity of the modified algorithm, which is |V | times

higher than the complexity of the original algorithm.

Chen and Zhang [43] also extended their algorithm (unweighted case only) to

eliminate non-proper crowns (crowns that have |I| = |S|). Part I belongs to some

maximum independent set and part S is its neighborhood in non-proper crown case

too. The result of this algorithm is the same as Larsen’s algorithm result [95], with the

same advantages, disadvantages and complexity. In addition, Chen and Zhang [43]

consider a structure called t-hat, which is similar to crown, but |I|− |S| = −t is nega-

tive. The main result shown is that for minimal t-hat, i.e. t-hat that has the property

|N(C)| − |C| ≥ t ∀C ⊂ I, the minimum vertex cover (maximum independent set)
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problem is branchable on I (i.e., there exists a solution for the problem that contains

I completely or not at all). The paper [43] has considered only the unweighted version

of the problem, while all other aforementioned papers dealt with the weighted case.

Finally, the roof-duality approach is much more general and may be useful for

many other quadratic unconstrained problem in addition to the maximum weight

independent set problem.

IV.8. t-Hat Structures and Maximum Weight Independent Set

Recall that the authors of [43] defined the t-hat structure (C, H) in graph G = (V, E)

as a subgraph with vertex set C ∪ H in which C is an independent set, H = N(C)

is its neigborhood, and |H| − |C| = t. In such a graph, C is called the cap and H

is called the head (Figure 6). A t-hat (C, H) is called minimal if for any C ′ ⊆ C,

|N(C ′)| − |C ′| ≥ t. For t ≤ 0 the t-hat is a crown, and for t < 0 it is a proper crown,

so the crown elimination procedure may be applied to make the graph decomposition.

C

H

Fig. 6 t-hat structure

For t > 0 it is not possible to claim that part C belongs to a maximum inde-

pendent set, but the authors provided the results that the maximum independent set

problem is branchable on C, i.e., there exists a maximum independent set that either
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contains all vertices from C or not at all.

The definition and result may be extended to the weighted graphs. First of all,

the t-hat structure (C, H) in a weighted graph G = (V, E, w) is a subgraph with

vertex set C ∪H, where C is an independent set, H = N(C), and w(H)−w(C) = t.

In such definition t is not required to be integer. In the same way as in the original

paper, the t-hat (C, H) is minimal, if ∀C ′ ⊆ C, w(N(C ′))− w(C ′) ≥ t. If t ≤ 0, the

results from [43] still hold for this case, i.e., in such case t-hat is a crown and could be

eliminated from the graph when solving the MWISP, as shown in [46]. For the case

when t > 0, the following theorem provides a result that extends the original one:

Theorem 8. For t > 0, given a graph G = (V, E, w) and a minimal t-hat (C, H) of

G, the MWISP is branchable on C.

Proof. The proof mostly follows the idea of the proof of the original theorem, extend-

ing the arguments to weighted case when needed.

Let some C ′ ⊂ C be a part of I, a maximum weight independent set in G. Then

N(C ′) ⊆ N(I), and since (C, H) is minimal t-hat and C ′ ⊆ C, we have

w(H)− w(N(C ′)) = t + w(C)− w(N(C ′))

≤ t + w(C)− (t + w(C ′))

= w(C)− w(C ′)

= w(C \ C ′).

Now, let J = (I \H) ∪ (C \ C ′). This set has the following properties:

• J is an independent set;

• C ′ ⊆ J and C \ C ′ ⊆ J , thus, C ⊆ J ;

• since N(C ′) ⊆ N(I), w(J) = w(I)− (w(H)− w(N(C ′))) + w(C \ C ′) ≥ w(I).

So, J is a maximum weight independent set that contains all vertices from C.
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The proved result allows one to speed up a branch-and-bound algorithm for

the MWISP as follows: when the minimal t-hat structure (C, H) is detected in the

graph, it is possible to make only two branches, putting all vertices from C to the

maximum weight independent set together and then put all of them out, instead of

doing branching on each vertex separatelly and creating 2|C| branches.
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CHAPTER V

CLIQUE RELAXATION MODELS∗

This chapter concentrates on the clique relaxation models, corresponding optimiza-

tion problems and their properties. Section V.1 discusses possible ways of relaxing

the clique requirements and introduces models that are obtained as a result of such

relaxations. Section V.2 establishes the complexity results for optimization problems

related to the introduced models. In Section V.3, we provide mathematical program-

ming formulations of the considered problems. Section V.4 emphasizes one particular

case of the problem, which is easier to solve than the general case. Finally, Section V.5

presents the result of numerical experiments.

V.1. Motivation and Models

As was already mentioned, all vertices in a set that forms a clique have the maximum

possible degree (the clique size minus one), the smallest possible diameter (one), and

the smallest possible distance between any pair of vertices (one). By relaxing one of

the properties (degree, distance, or diameter), clique relaxation models arise.

Relaxing the restriction on the distance between vertices yields the k-clique

model:

For a graph G, a k-clique is a subset of vertices C such that ∀i, j ∈ C, dG(i, j) ≤

k.

By relaxing the requirement on the diameter of the induced subgraph, the k-club

∗Parts of this chapter are reprinted with permission from Balasundaram, B., Butenko,
S., Trukhanov, S.: Novel approaches for analyzing biological networks. Journal of Combi-
natorial Optimization 10(1), 23–39 (2005) c© Springer.



54

6 3

1

5

2

4

Fig. 7 2-club and 2-clique example [7]

definition is obtained.

For a graph G, a vertex subset D is called a k-club if diam(G[D]) ≤ k.

It is clear that a k-club is also a k-clique, but the opposite is not necessarily true,

since the shortest distance between two vertices is the original graph (as required for

k-clique) does not guarantee the same distance between these vertices in the induced

subgraph as required for a k-club.

To highlight the differences between these structures, we turn to the graph in

Figure 7, that first appeared in Alba [7] and was subsequently adopted by other

authors. In this graph, the maximal 2-cliques are given by C1 = {1, 2, 3, 4, 5} and

C2 = {1, 2, 4, 5, 6}. It is easy to see that C1 is not a 2-club, since the diameter

of induced subgraph G(C1) is 3. The 2-clubs of this graph are D1 = {1, 2, 3, 4},

D2 = {2, 3, 4, 5} and D3 = C2. A study of relations between cliques, clans and clubs

in a graph can be found in [107].

Finally, a degree-based relaxation called k-plex is defined as follows:

A subset of vertices S is called a k-plex if for each vertex v ∈ S, degG[S](v) ≥

|S| − k.

In other words, each vertex of k-plex may have at most k non-neighbors from
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Fig. 8 Triangle free 4-plex

this k-plex. Figure 8 presents a 4-plex consisting of 8 vertices.

Similar to the relation between the cliques and independent sets, the comple-

ment of a k-plex is called a co-k-plex, but at the same time there is no meaningful

complementary for the k-clique and k-club models. Formally, a set of vertices C is

called a co-k-plex, if for any i ∈ C, degG[C](i) < k.

The corresponding optimization problems that require to find a maximum weight

k-clique (k-club, k-plex) are formulated as follows: given a graph G with vertex

weights given by a vector w, find a k-clique (k-club, k-plex) of maximum weight in G.

The optimal solution values of these problems are denoted by ω̃k(G), ω̄k(G), ωk(G)

and are called the k-clique, k-club and k-plex number of graph G, respectively. The

maximum co-k-plex problem is defined in the same fashion, and its optimal solution

value is denoted by αk(G). An obvious observation is that with increasing k, the

k-clique (k-club, k-plex) number is increasing too, since a k-clique (k-club, k-plex) is

also an m-clique (m-club, m-plex), for all m > k.

The clique relaxation models were first introduced in social network analysis as
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a replacement for a clique, since the social networks are often built based on inexact

data and usually have a small maximum clique, that may not be useful in analysis.

Hence, since the clique relaxations overcome this issue, a logical question is, how

much larger can the weight of a k-clique (k-club, k-plex) be compared to that of

the maximum weight clique? For a k-club (and, thus, for a k-clique) the answer is

straightforward: it is possible to find graphs with any given maximum clique size that

have arbitrarily large k-club. The star K1,n is one such example, since it is a k-club

for any k ≥ 2, but its maximum clique size is only 2.

As for the k-plex number, we establish the following theorem to answer our

question.

Theorem 9. For any graph G and a positive integer k,

αk(G) ≤ kα(G) (5.1)

and

ωk(G) ≤ kω(G). (5.2)

Proof. Assume, that the theorem statement is incorrect, then there exists a graph G

with α(G) = m and αk(G) > km for some positive integer m. Let G′ be a maximum

co-k-plex in G. Apply Algorithm 2, which is a simple greedy approach, to find an

independent set I in G′. At each step, this algorithm maintains an independent set I

and the set N , that is the neighborhood of I. At each iteration, the algorithm picks

a vertex u with the maximum weight among the remaining vertices and adds it to I

(line 5 of Algorithm 2), so

w(u) ≥ w(v) ∀v ∈ NG′−N−I(u),
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Algorithm 2 Greedy algorithm for the Maximum Weight Independent Set problem

1: procedure GreedyMWIS(G)
2: I ← ∅
3: N ← ∅
4: while V (G) \N \ I 6= ∅ do
5: u← arg max{w(u) : u ∈ V (G) \N \ I}
6: I ← I ∪ {u}
7: N ← N ∪N(u)
8: end while
9: return I
10: end procedure

and

|NG′−N−I(u)| ≤ |NG(u)| ≤ k − 1,

since G′ and all its induced subgraphs are co-k-plexes. Thus,

(k − 1)w(u) ≥ w(NG′−N−I(u)),

which implies that (k − 1)w(I) ≥ w(N) at any step of the algorithm. The algorithm

terminates when V (G′) \ N \ I is empty, which is equivalent to I ∪ N = V (G′).

Moreover, since I ∩N = ∅, we obtain:

(k − 1)w(I) ≥ w(N)⇒ kw(I) ≥ w(N) + w(I) = w(V (G′)) > km.

So, α(G) ≥ α(G′) ≥ w(I) > m, that contradicts to the initial assumption.

Finally,

ωk(G) = αk(Ḡ) ≤ kα(Ḡ) = kω(G).

Note that the bounds obtained in Theorem 9 are sharp for any k. As an example,

the unweighted graph that is a disjoint union of m cliques of order k is a co-k-plex of

order km, but only one vertex from each clique may be included in any independent

set, so the stability number of this graph is just m. For the graph in Figure 8 and
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k = 4 the bound is also exact, since its 4-plex number is 8 and its clique number is

2, since the graph is triangle free.

When defining clique relaxations, only one of three original properties is required

to be preserved in the relaxed structure, so it is of interest to see what happens with

the other two properties in the clique relaxation models. As it was shown before, a

k-clique guarantees neither a small diameter nor a high vertex degree. The k-club,

being also a k-clique, preserves the distance between vertices, but does not guarantee

a high vertex degree (K1,n, the star on n + 1 vertices, is a good example). For the

k-plex, Seidman and Foster [125] established the fact that for n ≥ 2k − 1 the k-plex

of order n has the diameter at most 2. So, a large enough k-plex has a small diameter

and is also a 2-club and a 2-clique.

V.2. Complexity Results

Before stating the complexity results, we introduce the recognition version of each

problem. The k-Clique (k-Club, k-Plex) problem is defined as follows: Given a

graph G = (V, E) and positive integers k and m, does there exist an k-clique (k-club,

k-plex) of size ≥ m in G? For a weighted graph, the corresponding problems are

stated in terms of the weight instead of the size.

Theorem 10. The k-Clique and k-Club problems are NP -complete for any fixed

positive integer k.

Proof. To prove NP -completeness of a problem P , it suffices to show that [66]

1. P ∈ NP ;

2. Some known NP -complete problem is polynomially reducible to P .

Note that for k = 1 both problems coincide with Clique problem, which is a
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well-known NP -complete problem. So, we consider k > 1. Given a “yes” instance of

k-Clique (k-Club), any k-clique (k-club) of size ≥ m can be used as a certificate to

verify that this is indeed a “yes” instance in polynomial time. Thus, k-Clique and

n-Club are in NP . To complete the proof, we reduce Clique, which is a well known

NP -complete problem, to k-Clique (k-Club). Let G = (V, E) be an instance of

Clique, which, we assume, does not contain isolated vertices, as no isolated vertex

can be included in any clique of size two or more. We construct a corresponding

instance of k-Clique (k-Club) which is a (bk/2c + 2)-partite graph G′ = (V ′, E ′).

We define the vertex set as a union of bk/2c copies of V , a copy of E and one more

auxiliary vertex 0:

V ′ =

bk/2c⋃
i=1

V (i) ∪ E ∪ {0},

where V (i) = {1(i), 2(i), . . . , n(i)} is the i-th copy of V , i = 1, . . . , bk/2c. For any

v ∈ V , by v(i) ∈ V (i) we denote the i-th copy of v. The edge set connects copies of

the same vertex in V (i) and V (i+1), i = 1, . . . , bk/2c − 1. A vertex vbk/2c in V bk/2c is

connected to a vertex e ∈ E if v is an endpoint of e in G. Finally, all vertices from E

in G′ are connected to 0. To summarize,

E ′ =
bk/2c−1⋃

i=1

{(v(i), v(i+1)) : v ∈ V }

∪{(v(bk/2c), e) : v ∈ V, v is an endpoint of e in G}

∪{(e, 0) : e ∈ E}.

Figure 9 shows graph G′ corresponding to graph G from Figure 7 for k = 5. Graph

G′ contains bk/2c|V | + |E| + 1 vertices and can obviously be constructed in time

polynomial with respect to the size of G.

Our reduction is based on the observation that G has a clique of size m if and

only if G′ has an k-clique (k-club) of size m + (bk/2c − 1)|V |+ |E|+ 1. Note that G′
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Fig. 9 An illustration to the proof of NP -completeness of the k-Club problem, for

k = 5



61

is connected and diam(G) ≤ 2(bk/2c) + 2. Indeed, in G′, all vertices of V ′ \ V (1) can

be included in any k-clique (k-club). Two vertices u(1), v(1) ∈ V (1) belong to the same

k-clique (k-club) in G′ if and only if (u, v) ∈ E in G. Thus, k-Clique and k-Club

are NP -complete problems for any positive integer k.

Theorem 11. The k-Plex problem is NP -complete for any fixed positive integer k.

Proof. Proof can be found in [14, 15], or, alternatively, since the property of a graph

“to be a k-plex” is non-trivial, interesting and holds on the induced subgraphs, the

k-Plex problem complexity directly follows from the result by Yannakakis [140].

It is known that many massive networks arising in various applications have a

relatively small diameter. This observation is commonly referred to as the small

world phenomenon [105, 136]. Therefore, the clustering problems on graphs of small

diameter are of particular interest. This motivates us to consider the k-Clique and

k-Club problems on graphs of fixed diameter. Note that if diam(G) ≤ k then both

the maximum k-clique problem and the maximum k-club problem are trivial as G

is the maximum k-clique (k-club), therefore we are only interested in the case where

diam(G) > k. For any d > k, we define the k-Clique(d) (k-Club(d)) problem as

follows: Given a graph G of diameter d and positive integers k and m, does there

exist an k-clique (k-club) of size ≥ m in G?

Theorem 12. For any fixed positive integer n and d > k, the k-Clique(d) and

k-Club(d) problems are NP -complete.

Proof. Obviously both considered problems are in NP . To complete the proof we

reduce Clique to k-Clique(d) and k-Club(d). We first prove the statement for

k = 1. Given G = (V, E) with no isolated vertices and d > 1, we construct a graph
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Ĝ = (V̂ , Ê) of diameter d as follows.

V̂ = V ∪ {ui : i = 1, . . . , d};

Ê = E ∪ {(v, u1) : v ∈ V } ∪ {(ui, ui+1) : i = 1, . . . , d− 1}.

Then G has a clique of size m if and only if Ĝ has a clique of size m+1 and the proof

is complete for k = 1.

If k > 1, we consider two cases, for odd and even n. If n is odd, then we use

the same construction of graph G′ as in the proof of Theorem 10 to reduce Clique

to k-Clique(d) and k-Club(d). This is true since diam(G′) ≤ k + 1 ≤ d when k

is odd and G has a clique of size m if and only if G′ has an k-clique (k-club) of size

m + (k−1
2
− 1)|V | + |E| + 1. If k is even, a similar construction can be used (see

Figure 10) to prove the reduction. As before, we use k/2 copies of V and a copy of

E for the vertex set of the constructed graph G′′ = (V ′′, E ′′).

V ′′ =

k/2⋃
i=1

V (i) ∪ E.

The edge set E ′′ is also similar to E ′ in the previous construction, but instead of

connecting vertices from the copy of E to an auxiliary vertex, we make the subset of

vertices corresponding to E a clique.

E ′′ =
n/2−1⋃

i=1

{(v(i), v(i+1)) : v ∈ V }

∪{(v(k/2), e) : v ∈ V, v is an endpoint of e in G}

∪{(e1, e2) : e1, e2 ∈ E, e1 6= e2}.

Once again, diam(G′′) ≤ k + 1 ≤ d and G has a clique of size m if and only if G′′

has an k-clique (k-club) of size m + (k/2− 1)|V | + |E|. This completes the proof of

NP -completeness on fixed diameter graphs.
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V (1) V (2) E

1(1)

2(1)

3(1)

4(1)

5(1)

6(1)

1(2)

2(2)

3(2)

4(2)

5(2)

6(2)

1, 2

1, 6

2, 3

2, 4

3, 4

4, 5

5, 6

Fig. 10 An illustration to the proof of Theorem 12 for k = 4

These complexity results illustrate two important facts. Firstly, these generaliza-

tions are hard to solve not only because they generalize cliques, but because they are

hard in their own respect (NP -complete for any k). Secondly, the transition in com-

plexity is also sudden, while the problems are easily solved under trivial circumstances

when the diameter is bounded above by k, but immediately become NP -complete

whenever the diameter of the graph is strictly larger than k.
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V.3. Mathematical Programming Formulations

V.3.1. Maximum k-clique Problem

The IP formulation for the maximum k-clique problem on a graph G = (V, E) may

be obtained by reducing the problem to the maximum clique problem on the kth

power of G, Gk = (V, Ek), where Ek = {(i, j) : i, j ∈ V, i < j, dG(i, j) ≤ k}. Gk

is constructed from the original graph by adding edges corresponding to all pairs of

vertices with distance no more than k between them in G. Consider the following

formulation for k-clique.

ω̃k(G) = max
∑
i∈V

xi,

s. t. : xi + xj ≤ 1 + k
dG(i,j)

∀ i, j ∈ V,

xi ∈ {0, 1} ∀ i ∈ V.

(5.3)

The constraint ensures that two vertices with dG(i, j) > k are not simultaneously

included in a k-clique, but becomes redundant for pairs of vertices with dG(i, j) ≤ k.

Since for all pairs of vertices, the shortest path distance is known, the constraint in

the system can be replaced by

xi + xj ≤ 1 ∀ (i, j) ∈ {(i, j) : i, j ∈ V, i < j, dG(i, j) > k} = Ek.

The formulation then becomes a maximum clique formulation on Gk. Note that even

though the existing heuristics and algorithms for maximum clique problem can be

applied to the power of the graph to solve the maximum k-clique problem, their

performance may be poorer as the edge density is higher in Gk.

V.3.2. Maximum k-club Problem

The following integer program describes the k-club number.
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ω̄k(G) = max
∑
i∈V

xi,

s.t.: xi + xj ≤ 1 +
∑

l:P l
ij∈Pij

yl
ij ∀ (i, j) /∈ E,

xp ≥ yl
ij ∀ p ∈ V (P l

ij), P l
ij ∈ Pij, (i, j) /∈ E,

xi ∈ {0, 1} ∀ i ∈ V,

yl
ij ∈ {0, 1} ∀ P l

ij ∈ Pij, (i, j) /∈ E,

(5.4)

where Pij is an indexed collection of all paths of length at most equal to k between

vertices i, j in G and P l
ij is the path with index l between vertices i, j. The formulation

essentially ensures that if two vertices are in a k-club, then all the vertices in at least

one path between them with length less than or equal to k are also included in the

k-club. Even though the formulation presented may not be very useful in practice for

large values of k, it plays a role in polyhedral study of the problem [16].

V.3.3. Maximum k-plex Problem

The maximum k-plex problem formulation provided here is taken from [15]:

ωk(G) = max
∑
i∈V

xi,

s. t. :
∑

j∈V \N [i]

xj ≤ (k − 1)xi + degḠ(i)(1− xi) ∀ i ∈ V,

xi ∈ {0, 1} ∀ i ∈ V.

(5.5)

The main constraint here ensures, that if the vertex is in the k-plex (xi = 1),

then it has at most k − 1 non-neighbors inside the k-plex. If the vertex is not in the

k-plex, the constraint is redundant. More detail on the mathematical programming

formulation of the maximum k-plex problem and its properties may be found in [14,

15].
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V.4. Maximum 2-club Problem

An IP Formulation for the maximum 2-club problem can be induced from the for-

mulation for the maximum k-club problem in the previous section. Thus, the 2-club

number ω̄2(G) of a graph G = (V, E) admits the following integer programming

formulation:

ω̄2(G) = max
∑
i∈V

xi,

s.t. xi + xj −
∑

k∈N(i)∩N(j)

xk ≤ 1 ∀ (i, j) /∈ E,

xi ∈ {0, 1} ∀ i ∈ V.

(5.6)

The formulation ensures that if two vertices are in a 2-club and they are not

connected, then they have at least one common neighbor inside the 2-club.

A lower bound can be obtained by observing that complete bipartite graphs have

diameter 2 and form “edge essential” 2-clubs. That is, if we remove any edge from a

complete bipartite graph, its diameter increases to 3. Hence we know that, if the size

of the largest complete bipartite subgraph (not necessarily induced) of G is b∗, then

ω̄2(G) ≥ b∗ ≥ b ≥ ∆ + 1, where b is the size of a largest known complete bipartite

subgraph of G and ∆ is the maximum degree. A vertex of maximum degree with its

neighbors (star subgraphs) is an easy-to-find complete bipartite subgraph of G and

hence the bound. The need for b, computed using heuristics or other techniques arises

because of the fact that finding b∗ is NP -hard [66].

V.5. Numerical Results

For the numerical experiments, two popular protein interaction networks were chosen.

The first network is the protein-protein interaction map of the yeast Saccharomyces

Cerevisiae [89] and the second is the protein-protein interaction map of a gastric
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pathogen Helicobacter Pylori [34, 120].

As mentioned before, both these networks exhibit power-law degree distribution

as shown in Figure 11 and Figure 12. Table 4 and Table 5 contain information on the

order and the number of connected components of that order in S. Cerevisiae protein

network and H. Pylori protein network respectively. Figure 13 graphically illustrates

the protein-protein network of H. Pylori.

100 101

100

101

102

103

Degree(k)

X
k

Fig. 11 Degree distribution, in logarithmic scale, for the protein network of S. Cere-

visiae, Xk is the number of vertices of degree k

Table 4 S. Cerevisiae. Vertices: 2114; Edges: 2203; Connected components: 417

Order #Components Order #Components

1 268 5 5

2 101 6 3

3 25 7 4

4 10 1458 1

A maximum clique, 2-clique and 2-club were found on both these networks and

a maximum 3-clique was found in S. Cerevisiae using exact approaches. Table 6 con-

tains this information. Clique, 2-clique and 3-clique numbers were found by applying
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Fig. 12 Degree distribution, in logarithmic scale, for the protein network of H. Pylori,

Xk is the number of vertices of degree k

Table 5 H. Pylori. Vertices: 1570; Edges: 1403; Connected components: 858

Order Number of Components

1 850

2 7

706 1

the Carraghan-Pardalos algorithm [41] for the maximum clique on G, G2 and G3,

respectively. The 2-club number was found by solving the IP formulation (5.6) using

CPLEXr [86]. However, in order to solve the maximum 2-club problem on these

graphs, some preprocessing techniques were used to reduce the size of the instances.

Since ω̄2(G) is bounded below by ∆ + 1, a vertex v such that |N [N [v]]| < ∆ + 1

cannot be in any optimal solution and can be removed from the graph. This approach

can be used to reduce the size of the instance. The reduced instance was decomposed

into subproblems externally by setting xv = 1 for a non-leaf vertex v in the reduced

graph and deleting all vertices that are at distance 3 or more from v. We consider

only non-leaf vertices, because if a leaf vertex is in a maximum 2-club, then so is its
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neighbor. This yields the largest 2-club containing v. Now we can delete v and repeat

this process. Algorithm 3 is a pseudo-code summarizing this procedure.

Algorithm 3 Maximum 2-club algorithm

1: procedure PreProcessing(G)
2: ∆← max{degG(v) : v ∈ V
3: X ← {v ∈ V : |N [N [v]]| < ∆ + 1}
4: if X 6= ∅ then
5: G← G[V \X]
6: go to 2
7: end if
8: return G
9: end procedure
10:
11: procedure Maximum2Club(G)
12: G← PreProcessing(G)
13: v ← min{i : i ∈ V, degG(i) ≥ 2}
14: xv = 1
15: SolveIP(G[N [N [v]]])
16: G← PreProcessing(G− v)
17: if ∆(G) ≥ 2 then
18: go to 13
19: end if
20: end procedure

In line 15 the IP program (5.6) is formulated for distance-2 closed neighborhood

of the chosen vertex v, for which xv is fixed to be 1, and the problem is solved exactly

by CPLEX.

A Pentiumr 4 1.4GHz laptop computer was used in the experiments and the

run-times were under a minute in cases where the optimum was obtained. In both

biological networks, it turned out that the maximum 2-clique and maximum 2-club

correspond to the same solution (subset of vertices). Figure 14 and Figure 15 are

the maximum 2-clubs (and maximum 2-cliques) of S. Cerevisiae and H. Pylori re-

spectively. Figure 16 shows the maximum 3-clique that was found in S. Cerevisiae.

Observe that it is also a (maximum) 3-club, as it basically consists of three star graphs

with their central vertices forming a triangle.
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Table 6 Clique, 2-Clique, 2-Club, 3-Clique, 3-Club numbers of S. Cerevisiae and

H. Pylori protein maps

Network ω(G) ω̃2(G) ω̄2(G) ω̃3(G) ω̄3(G)

S. Cerevisiae 6 57 57 68 68

H. Pylori 3 56 56 N/A N/A

Fig. 13 Protein-protein interaction map of H. Pylori
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Fig. 14 A maximum 2-club and 2-clique of S. Cerevisiae

Fig. 15 A maximum 2-club and 2-clique of H. Pylori
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Fig. 16 A maximum 3-clique and 3-club of S. Cerevisiae
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CHAPTER VI

EXACT ALGORITHM FOR THE MAXIMUM WEIGHT k-PLEX

PROBLEM

This chapter presents the algorithm we developed for the maximum weight k-plex

problem. Section VI.1 describes the idea and provides the outline of the algorithm

without emphasizing the implementation details. Next sections concentrate with al-

gorithm implementation details, i.e. Section VI.2 discusses the k-plex verification

procedure, that is one of the core parts of the algorithm, and Section VI.3 concen-

trates on the preprocessing part of the algorithm, which is also a crucial point of the

algorithm’s performance. In Section VI.4, we consider some special cases where the

algorithm could be modified to perform better on specific instances. Finally, the algo-

rithm’s performance is evaluated by conducting numerical experiments and analyzing

the obtained results in Section VI.5 and comparing them with the performance of

other existing algorithms in Section VI.6.

VI.1. Algorithm Implementation

Our algorithm for the maximum weight k-plex problem is applicable to a simple

undirected graph G with vertex weights given by vector w. We restrict the weight

vector to be non-negative. Indeed, a maximum weight k-plex cannot contain a vertex

with a negative weight, since removal of such a vertex provides a k-plex with larger

weight. The proposed algorithm belongs to the class of exact algorithms, i.e., it

provides the exact value of the weighted k-plex number wk(G) and the corresponding

vertex subset that forms a maximum weight k-plex in graph G. The algorithm is

based on the idea used by Östergȧrd [111] in his well-known maximum weight clique
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detection algorithm. We decided to follow this approach due to the following reasons.

Firstly, Östergȧrd algorithm is known as the the state-of-the-art exact algorithm for

the maximum weight clique problem. Secondly, the idea can be easily generalized to a

wide class of combinatorial optimization problems in graphs. Moreover, the algorithm

works with both weighted and unweighted graphs. And, finally, all implementation

details, as well as an extensive numerical study is well documented and is available

online at the author’s website.

Assume that we have a problem of finding a maximum weight subgraph that

holds some property Π, and the corresponding number ν(G) = max{w(P ) : P ⊆

V, G[P ] holds property Π}. An important assumption about the property Π is that

it is hereditary on induced subgraph. Recall from chapter II, that if the property

Π is nontrivial, interesting and hereditary on the induced subgraphs, then according

to Yannakakis [140,141], the problem of finding a maximum (and maximum weight)

induced subgraph with property Π is NP -hard. Generalized algorithm works in the

following manner. First, let us fix some order on the vertex set V and use the notation

V = {v1, v2, · · · , vn} to refer to the set of ordered vertices. Next, we define the sets

Si ⊆ V as Si = {vi, vi + 1, · · · , vn}. In the algorithm, one needs to compute the

function c(i) that is the weight of the maximum induced subgraph with property Π in

the induced subgraph G[Si]. Obviously, c(n) = w(vn) and c1 = ν(G), since Sn = {vn}

and S1 = V , respectively. The algorithm computes the value of c(i) starting from

c(n) and down to c(1). Obviously, c(i) ≥ c(i + 1), moreover, if c(i) > c(i + 1), then

the subgraph that provides the value of c(i) contains vertex vi. If we assume that

the graph Pi, such that c(i) = w(Pi), does not contain the vertex vi, then its vertex

set V (Pi) ⊆ Si \ {vi} = Si+1, so Pi ⊆ G[Si+1], and hence, c(i + 1) = c(i), which
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contradicts to the initial condition. Thus, for unweighted graphs

c(i) =

 c(i + 1) + 1, if the corresponding graph contains vi

c(i + 1), otherwise

For the weighted case it is not possible to claim the same conclusion, but still,

in case when c(i) > c(i + 1), vi belongs to the corresponding graph and c(i) ≤

c(i + 1) + w(vi). The algorithm computes c(n), c(n− 1), · · · , c(1) using backtracking,

and whenever the weight of the current subgraph P and the best possible weight of

the remaining part c(i) is less than the best weight weight found so far, we prune.

Algorithm 4 Generalization of Östergȧrd algorithm

1: procedure GeneralizedOstergard(G)
2: Order(V )
3: max = 0
4: for i = n downto 1 do
5: FindMaxPi(Si+1, {vi})
6: c(i) = max
7: end for
8: return max
9: end procedure
10:
11: procedure FindMaxPi(C,P)
12: if |C| = 0 then
13: if w(P ) > max then
14: max = w(P )
15: end if
16: return
17: end if
18: while C 6= ∅ do
19: if w(C) + w(P ) < max then
20: return . Prune point 1
21: end if
22: i = min{j : vj ∈ C}
23: if c(j) + w(P ) < max then
24: return . Prune point 2
25: end if
26: C = C \ {vi}
27: P ′ = P ∪ {vi}
28: C ′ = {v ∈ C : P ′ ∪ {v} holds property Π}
29: FindMaxPi(C ′,P ′)
30: end while
31: end procedure
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Algorithm 4 describes the generalized Östergȧrd algorithm. The main procedure

GeneralizedOstergard accepts graph G as the input and calls the recursive pro-

cedure FindMaxPi to compute the values of c(i). The procedure FindMaxPi is the

core of the algorithm and finds a maximum weight subgraph with property Π using

two sets as the input: (i) the working set (also known as candidate list or candidate

set) is the set of vertices that may be used to build a subgraph with property Π, and

(ii) the set of vertices, that represents the currently found subgraph with property Π.

The procedure picks vertices from C one by one, adds a picked vertex to the current

graph P , updates the candidate list, and calls itself with new values of input sets.

Obviously, if the candidate set is empty, the procedure terminates returning the best

weight value found. Other points of termination are the two prune points, which are

equivalent to pruning the branch-and-bound tree. Pruning of the first type occurs

when the weight of the current subgraph together with the weight of the whole can-

didate set is less than the best found so far. The second type pruning occurs when

the weight of the current subgraph together with c(i) (which is best possible in G[Si])

is less then the best found so far.

The maximum weight k-plex algorithm is obtained from the generalized algo-

rithm by using k-plex specific routines for the candidate list update. Algorithm 5

presented below finds a maximum weight k-plex in given graph G. It will be referred

to as the algorithm or the main algorithm in the remaining part of this chapter.

The following sections concentrate on details of the maximum weight k-plex al-

gorithm implementation, optimization and tuning its configuration settings. In order

to evaluate the performance difference caused by changes in the algorithm, we formed

a small test-bed from a subset of graphs instances that will be considered in the nu-

merical experiments. We tried to choose graphs that belong to different classes and

can be solved within a suitable running time. By a suitable running time we under-
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Algorithm 5 Maximum weight k-plex algorithm

1: procedure MaxKPlex(G)
2: Order(V )
3: max = 0
4: for i = n downto 1 do
5: FindKPlex(Si+1, {vi})
6: c(i) = max
7: end for
8: return max
9: end procedure
10:
11: procedure FindKPlex(C,P)
12: if |C| = 0 then
13: if w(P ) > max then
14: max = w(P )
15: end if
16: return
17: end if
18: while C 6= ∅ do
19: if w(C) + w(P ) < max then
20: return . Prune point 1
21: end if
22: i = min{j : vj ∈ C}
23: if c(j) + w(P ) < max then
24: return . Prune point 2
25: end if
26: C = C \ {vi}
27: P ′ = P ∪ {vi}
28: C ′ = {v ∈ C : IsKPlex(P ′ ∪ {v})}
29: FindKPlex(C ′,P ′)
30: end while
31: end procedure

stand the running time which is not too large, since we need to perform experiments

many times for the performance evaluation, but, at the same time, not too small, so

that we can easily observe the differences in running time and do not have to deal

with hardware clock resolution problem. The test bed consists of two parts, contain-

ing weighted and unweighted graphs, respectively. We need to consider both cases,

since some of the algorithm’s features are applicable to either weighted or unweighted

graphs only. The following instances were chosen for the unweighted benchmarks:

six instances from DIMACS test bed [54], four instances of Sanchis graphs, used by
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Balasundaram [14, pp. 94–96] (two from each of the two classes considered in [14]),

and one instance of the market graph (see Chapter VII for a detailed description of

the market graph). For the weighted case, the choice of instances is more challenging,

since there is no good, widely accepted test set for weighted graph problems. There-

fore, we used five instances of the market graph with different order and parameters,

and four of the Sanchis graphs used in the unweighted case with randomly generated

integer vertex weights, uniformly distributed between 0 and 100. The parameters

of interest for this test-bed, such as order, size, edge density and maximum k-plex

weight (size for unweighted graphs) for k = 1, 2, 3, 4, 5 are presented in Table 9. Note

that most of the referenced here, and later in this chapter, tables are located in Ap-

pendices due to their large size. Each modification of the algorithm’s parameters was

evaluated by comparing the running time or other reasonable indicators measured

before and after making the modification (with all other algorithm configuration set-

tings unchanged and using exactly the same hardware and software). The results

obtained in the process of evaluation of different parameters are not necessarily com-

parable between themselves, since they could be obtained with different algorithm

configuration settings.

VI.2. k-plex Verification Routine

The main difference between the maximum weight clique algorithm and its maximum

weight k-plex counterpart is the working set update procedure, which actually mostly

determines the running time of the whole algorithm. In case of the maximum clique

algorithm, the candidate list is just the intersection of neighborhoods of vertices

from the currently constructed clique. The requirement for vertices to belong to

all the neighborhoods is a necessary and sufficient condition for them to be in the
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candidate list for the maximum weight clique problem algorithm. If the vertex vi

was added at current iteration, then the working set C ′ for the next iteration is

just the intersection of the current working set and the neighborhood of the newly

added vertex: C ′ = C ∩ N(vi). But it is not so easy in the case of k-plex. The

working set must be updated explicitly by verifying that each member from the

current working set creates a k-plex together with the currently constructed one.

This issue caused us to create the k-plex verification function IsKPlex that is used

in line 28 of Algorithm 5. The function is called for each members of current working

set each time the working set needs to be updated. Table 10 shows the number of

IsKPlex calls for the selected graph instances. The speed of IsKPlex determines

the speed of working set update process, and, hence, the whole algorithm running

time. So, this function is the bottleneck in the algorithm’s performance and, thus,

there are two ways to improve it: either improve the running time of this function by

optimizing it, or reduce the number of calls to this function by changing the outer

algorithm structure.

Here we discuss how to optimize the k-plex verification procedure. Formally,

IsKPlex is a decision function that accepts a vertex subset K ⊆ V and a positive

integer number k and determines whether G[K] is a k-plex. The implementation of

this function is trivial: verify that the degree of each vertex from K is at least |K|−k,

as shown in Algorithm 6:

Algorithm 6 Simple k-plex verification algorithm

1: function IsKPlex1(K,k)
2: for v ∈ K do
3: if degG[K](v) < |K| − k then
4: return false
5: end if
6: end for
7: return true
8: end function
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The function IsKPlex1 has a quadratic run time complexity with respect to its

argument K size (one loop goes over all vertices explicitly, and a linear-time procedure

for determining the degree is called at each loop iteration), and it looks like it is

not possible to improve this function in general case. However, it appears that we

can improve it by using information already known from previous algorithm’s steps.

Assume that the vertex u has just been added to the k-plex K at current iteration,

so the new k-plex is K ′ = K ∪ {u}. Then we know that K ∪ {u} is a k-plex and

K ∪{v} is a k-plex for any vertex v from C. To determine whether v will be included

in C ′, we need to verify that K ∪ {u} ∪ {v} is a k-plex. Let us call a vertex v ∈ K

saturated if |K \N(v)| = |K| − k, which means that it is not possible to add vertices

to K if they are not in N(v) without violating the k-plex requirement. Since K ∪{v}

is already known to be a k-plex, the only possible violations may be caused by the

newly added vertex u. First, by adding u it is possible for some vertex w ∈ K to

increase the number of vertices that w is not connected to. This number may be

increased by at most one, and only when the vertex u is not connected to w. If the

vertex w becomes saturated, then C ′ must be a subset of N(w). Second, the vertex

u may not be connected to some vertices from K, and thus could be saturated itself,

in which case C ′ ⊆ N(u). All other vertices that are still not saturated after the

k-plex extension, do not bring any restrictions to the candidate list. This allows one

to create a faster procedure for updating the candidate list. Namely, after adding

a new vertex we determine the list of vertices that become saturated, including the

newly added one. Then the next iteration candidate list is obtained from the current

one by intersecting the current list with the neighborhood of each saturated vertex.

In order to find vertices that become saturated fast, we keep and update the list and

number of non-neighbors of vertices from K. Algorithm 7 formalizes the incremental

k-plex verification procedure.
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Algorithm 7 Incremental k-plex verification algorithm

Require:
1: nonneigh[v] - list of non neighbors for vertex v
2: nncnt[v] - number of non neighbors for vertex v
3: both arrays are external to this function and are maintained incrementally
4: At the beginning nonneigh[v] = ∅ and nncnt[v] = 0, ∀v ∈ V
5:
6: function MakeSaturatedList(K,k)
7: u← last vertex added to K
8: S ← ∅ . Saturated vertex list
9: for v ∈ K \ {u} do
10: if (u, v) 6∈ E(G) then
11: nncnt[u]← nncnt[u] + 1
12: nncnt[v]← nncnt[v] + 1
13: if nncnt[v] = k − 1 then
14: S ← S ∪ {v}
15: end if
16: end if
17: end for
18: if nncnt[u] = k − 1 then
19: S ← S ∪ {u}
20: end if
21: return S
22: end function
23:
24: function IsKplex2(K, k, v)
25: for u ∈ S do
26: if (u, v) 6∈ E(G) then
27: return false
28: end if
29: end for
30: return true
31: end function

Recall that the aforementioned straightforward verification procedure runs in

O(|K|2) time. The new procedure consists of two parts: generation of the list of

saturated vertices, which can be done in O(|K|) time and is performed once, and

verification whether a vertex is in the neighborhood of saturated vertices, which is

performed for every vertex from the candidate list. The theoretical complexity of the

second part is O(|K|), but each vertex can be a member of the saturated vertex list

only once during the whole process of building K (once a vertex is included in this

list, the candidate list will be intersected with this vertex neighborhood, and no more
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vertices from the candidate list may satisfy the condition in line 10 of Algorithm 7).

So, practically, the loop in IsKPlex2 is usually empty or performs a small number

of iterations.

The comparison of running time of the maximum weight k-plex algorithms, that

utilize the original and the alternative functions for the k-plex verification procedure,

shows the great improvement in the algorithm’s performance, as can be seen from

Table 11.

VI.3. Preprocessing Techniques

While the previous section dealt with improvement of the k-plex verification procedure

in order to increase algorithm performance, this section investigates whether one can

decrease the number of calls to this procedure. Algorithm 5 is a branch and bound

algorithm, where isKPlex is called in each branching node many times. It is not

possible to just regulate the number of isKPlex calls, since this routine must be called

each time when the working set is updated for each vertex from the current working

set. So, the possible ways are either to shrink the working set faster (i.e., the branch

is cut off because of feasibility), or to prune more often (e.g., the branch is cut off

because of the bound). Both goals may be achieved by preprocessing, which is of very

different type from the one that was considered in Chapter III. The main difference

is that this preprocessing does not reduce the size of the problem, but modifies the

order in which the vertices will be considered. The vertex ordering is the main reason

of high performance in Östergȧrd’s maximum weight clique algorithm. We also try

to utilize vertex ordering to improve the performance of the maximum weight k-plex

algorithm. Preprocessing based on ordering is a heuristic approach, moreover, it is

very different for weighted and unweighted graphs. The simplest ordering, that does
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not modify the vertex order at all, serves as the base; and the algorithm’s performance

depending on different orderings will be evaluated by comparison with the algorithm

with no ordering. The following subsections consider the ordering procedures for

weighted and unweighted graphs separately.

VI.3.1. Weight Based Ordering

Since we are looking for a k-plex of maximum weight, the natural way to order vertices

is according to their weights. The following algorithm presents such an ordering:

Algorithm 8 Weight based vertex ordering

1: procedure OrderWeight(V )
2: U ← ∅ . Set U is ordered
3: for i = |V | downto 1 do
4: ui ← arg min{w(v) : v ∈ V }
5: V ← V \ {ui}
6: end for
7: return U
8: end procedure

One may think that the algorithm should start from the vertex of the largest

weight, as many greedy approaches do, but this is not the case for the exact algo-

rithms. Plots in Figure 17 show the weight of the best found k-plex and the running

time as functions of the number of iterations, when applying the algorithm to one

of the Sanchis graphs with 100 vertices and random vertex weights, for both strate-

gies: the smallest to largest weight vertex ordering and the opposite one. As we can

see, when started from the vertex of the largest weight, the algorithm finds a large

weight k-plex fast, but later is spends much more time than the second strategy. This

phenomenon can be explained as follows: the values c(i) and the weight of the best

known k-plex W grow very fast in the beginning, but later they cannot grow, since W

is already close, or perhaps equal, to the optimal value. Thus, the values of c(i) and

W remain equal for a long time, and the algorithm stalls without any improvement.
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This leads to the situation, when the pruning in line 24 of Algorithm 5 does not occur,

since c(i) = W , and that is the reason why the algorithm takes so much time.

Ordering from the smallest to the largest weight benefits from the opposite effect:

the values of c(i) are maintained to be as small as possible in order to yield more

prunes at point 2, and, thus, despite of a slow start, the algorithm performs much

better in general with this ordering strategy than the previous one. Results from

Table 12 demonstrate that even after the largest-to-smallest strategy finds the optimal

value, it spends approximately the same amount of time additionally to finish the

branching, i.e., to prove that the k-plex found is optimal.

According to the results summarized in Table 13, we made the conclusion, that

the preprocessing based on vertex weight ordering significantly improves the perfor-

mance of the algorithm in the case, when the vertices are ordered from the smallest

weight to the largest one, but the algorithm performs very poorly, if the opposite

ordering is used.

In the original algorithm for the maximum weight clique, Östergȧrd used the

ordering similar to the one considered here, with additional considerations for the

situation, when more than one vertices have the same weight.

VI.3.2. Degree Based Ordering

When looking for a maximum clique in an unweighted graph, it is natural to order

vertices according to their degree. When Östergȧrd’s algorithm [111] is applied to

unweighted graphs, he performs the vertex ordering based on their degree in the graph

induced by remaining vertices (Algorithm 9).

Note, that the resulting set U is formed in reverse order, i.e., the vertices with

smallest degree will be the last ones in the ordering. But, since Östergȧrgd’s algo-

rithm starts from the last vertex in the ordered set, the small degree vertices will
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Algorithm 9 Degree based vertex ordering

1: procedure OrderOstergard(V )
2: U ← ∅ . Set U is ordered
3: for i = |V | downto 1 do
4: ui ← arg min{degG[V ](v) : v ∈ V }
5: V ← V \ {ui}
6: end for
7: return U
8: end procedure

be considered before large degree vertices, which is exactly opposite to the simple

heuristics for the maximum clique problem, that usually start from a largest degree

vertex. The order from smaller degree to larger is supported by the fact that the

clique C that contains vertex v is a subset of N [v], so starting with vertices of small

degree provides small values for c(i), which yields more cuts at the prune point 2

(Algorithm 4, line 20).

Even though it was created for the maximum clique problem, the degree based

ordering performs very well when used with the maximum k-plex algorithm, as was

confirmed by numerical experiments (Table 14), and may be justified as follows. On

the one hand, since a k-plex is not necessarily a subset of its vertex neighborhood, the

ordering is not as justified as for the maximum clique algorithm. On the other hand,

a large k-plex induces a small diameter subgraph, and many of its vertices belong to

the neighborhood. A natural question arises: how to modify this ordering to cover

the whole k-plex and follow exactly the idea used in the maximum clique algorithm?

Fortunately, a large order k-plex has diameter at most 2, so it is a subset of N2[v] for

its arbitrary vertex v. A trivial modification in Algorithm 9 provides a new ordering

based on the size of the double neighborhood of a vertex instead of its degree.

Numerical comparison between the approaches is presented in Table 15.
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Algorithm 10 Double neighborhood based vertex ordering

1: procedure OrderOstergard2(V )
2: U ← ∅ . Set U is ordered
3: for i = |V | downto 1 do
4: ui ← arg min{N [NG[V ][v]] : v ∈ V }
5: V ← V \ {ui}
6: end for
7: return U
8: end procedure

VI.3.3. Coloring Based Approach

Another popular vertex ordering for the maximum clique problem emphasizes reduc-

ing the working set as fast as possible and is based on the fact that no more than

one vertex from an independent set can be included in a clique. The corresponding

ordering splits a graph into independent sets (performs graph coloring) and groups

vertices of the same color together. Since the problem of graph coloring is NP -hard,

the coloring is performed greedily, and the corresponding ordering is computed as

shown in Algorithm 11.

Algorithm 11 Coloring based vertex ordering

1: procedure OrderColoring(V )
2: U ← ∅ . Set U is ordered
3: col[v]← 0 ∀v ∈ V
4: for i = 1 to |V | do . Assign the colors
5: u← arg min{degG(v) : col[v] = 0 and v ∈ V }
6: col[u]← min{c ∈ N : c 6= col[v] ∀v ∈ N(u)}
7: end for
8: for j = 1 to max{col[v] : v ∈ V } do
9: U ← U ⊕ {u : col[u] = j} . ⊕ means “append to the end”
10: end for
11: return U
12: end procedure

Obviously, such an ordering is expected to reduce the working set fast, since all

vertices of some color will be removed after one vertex of this color will be chosen

for inclusion into clique. An interesting question is, in which order to consider the

vertices: starting from those, that belong to the color class of the largest cardinality or
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in the opposite order. We may represent the algorithm as a branching tree, where each

branch represents a vertex and each color has its level, at which the corresponding

vertices are grouped.

Then the first strategy, when the largest group of vertices of the same color

is considered first (Figure 18(a)), provides a smaller number of possible choices at

the lower level, that are verified with the highest frequency. The second strategy

(Figure 18(a)), on contrary, cares more about the upper level of the branching tree

and creates less brunches at the upper level, that keeps the whole tree more narrow,

but requires more time to consider each node at the lower levels. Since there is no

clear indication of which strategy is better, we considered both of them.

When switching from clique to k-plex, the implementation of coloring based or-

dering also must be changed. First of all, coloring guaranties that only one vertex

of each color could be included in a clique. This is not the case for k-plex, since as

many as k vertices of the same color may be included. Moreover, there cannot be

any property of a vertex set that prevents any k vertices to be included in a k-plex,

since any k vertices create a k-plex by definition. In fact, we may still use coloring

based ordering for k-plex, but it will be not as efficient for maximum weight k-plex

algorithm, as it is for the maximum weight clique algorithm. Another possible choice

is to replace the independent set by some other structure, most probably by inde-

pendent set relaxation, that also limits the number of vertices that may be included

together into a k-plex. One possible such structure is the co-k-plex. Balasundaram

et al. [15] show that for any co-k-plex, at most 2k − 1− (1− (−1)k)/2 vertices may

be included into a k-plex. It is not known how many vertices from co-m-plex may

be included in a k-plex together for arbitrary values of m and k, but obviously for

a fixed k this number increases when m is increased. From one side, increasing m

creates more branches at each step, but from another side, the number of partitions
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Fig. 18 Branching strategies in maximum weight clique algorithm
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in the graph will be smaller. The problem of partitioning a graph into co-k-plexes is

known in the literature as defective k-coloring [50, 64] and is NP -hard, so we use a

simple greedy procedure (Algorithm 12) to obtain the needed partitions.

Algorithm 12 Defective m-coloring based vertex ordering

1: procedure OrderColoring(V , m)
2: U ← ∅ . Set U is ordered
3: col[v]← 0 ∀v ∈ V . Color assigned to vertex
4: colnum[v]← 0 ∀v ∈ V . Number of neighbors of the same color
5: for i = 1 to |V | do . Assign the colors
6: u← min{v : col[v] = 0 and v ∈ V }
7: C ← {col[v] : colnum[v] < m− 1 ∀v ∈ N(u)}
8: if C = ∅ then
9: col[u]← max col[v] + 1
10: else
11: col[u]← min C
12: end if
13: colnum[u] = |{v ∈ N(u) : col[u] = col[v]}|
14: colnum[v] = colnum[v] + 1 ∀v ∈ N(u) : col[u] = col[v]
15: end for
16: for j = 1 to max{col[v] : v ∈ V } do
17: U ← U ⊕ {u : col[u] = j} . ⊕ means “append to the end”
18: end for
19: return U
20: end procedure

Experiments were conducted for m = 1, 2, · · · , 5 using both ordering strategies

(largest color partition first and the opposite one). Table 16 shows the running time

for the largest color first branching strategy and Table 17 presents the running time

for the smallest color first strategy.

If the graph is weighted then the next vertex in line 6 of Algorithm 12 is chosen

as the smallest weight non-colored vertex. For vertices with the same weight, the

one with the largest neighborhood weight is chosen, following the rules similar to the

original ordering in [111, 112]. The results for the modified defective coloring based

vertex ordering preprocessing are presented in Tables 18 and 19 for both branching

strategies.

The main observation from these numerical results is that the preprocessing based
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on defective coloring yields better algorithm performance than with no preprocessing

at all. As we can see, there is no single answer to the question of which coloring

provides the best results. In many cases, the classical coloring (i.e., partitioning the

graph into independent sets) provides the best result, but also very often the best

result is obtained when m = k. Less often, the best running time is given by values

of m that are in between 1 and k, and even more rarely, when m > k.

In summary, the techniques provided in this section aim to improve the perfor-

mance of the main algorithm by affecting the branch-and-bound part of the algorithm.

The preprocessing techniques based on vertex ordering are heuristic in nature, thus

they cannot provide a predictable performance improvement on all problem instances,

as approach from Section VI.2. But if they do provide an improvement, it is usually

much more significant than that obtained using the techniques from Section VI.2. Fi-

nally, the two approaches are not conflicting with each other and can be used together

at the same time.

VI.4. Special Cases

VI.4.1. Maximum Weight 2-plex Problem

The idea of incremental k-plex verification presented in Section VI.2 allows one to

reduce the running time of the algorithm drastically in most cases, especially for large

values of k, but at the same time, the complex and memory-consuming data structure

needed to keep the required information, provides some overhead. This includes one-

time initial setup, that may cause performance degradation, when the number of

verification is relatively small. From Table 11, we can observe that sometimes, when

k = 2, the running time of the algorithm that used the advanced procedure for k-plex

verification is even slightly higher than the running time of the algorithm with the
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straightforward verification routine. The described phenomenon does not occur when

k > 2, most probably since the initial setup overhead does not contribute much to

the total algorithm running time.

In order to avoid the degradation of the algorithm’s performance when k = 2,

we created a simpler and better tuned verification routine that works for such case

only. If k = 2, then the list of possible non-neighbors for a vertex, that is in k-plex,

may contain only one element, and thus could be replaced by just a single variable.

Also, the number of non-neighbors does not need to be tracked explicitly in this case.

Moreover, only one vertex may be saturated at each step. Further, to simplify the

algorithm, for each vertex from the working set, we also keep its non-neighbor from

the 2-plex already built (if such a non-neighbor exists). So, when adding a new vertex

to a 2-plex, it is easy to find a saturated vertex. If a saturated vertex found, it also

means that the newly added vertex is also saturated, and the new working set is just

an intersection of the current one with the saturated vertex neighborhood and the

newly added vertex neighborhood. If there was no saturation, then the non-neighbor

values for candidates could be updated depending on whether they are connected

to the newly added vertex. The proposed procedure allows one to verify whether a

vertex from the candidate list still remain a candidate in constant time. Algorithm 13

demonstrates the described approach:

Table 20 shows the advantage of using the modified routine over the general one

for k = 2.

VI.4.2. k-plex in Sparse Graphs

The simple fact that for a vertex v from clique C, C ⊆ N [v], allows to reduce the

problem of finding the maximum clique from the whole graph to several single-vertex

neighborhoods. Utilizing this idea, Carraghan and Pardalos [41] created one of the
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Algorithm 13 Incremental 2-plex verification algorithm

Require:
1: nonneigh[v] - non neighbor for vertex v
2: At the beginning nonneigh[v] = −1, ∀v ∈ V , that means no non-neighbors
3:
4: function Is2plex(K, u, v) . u - newly added, v - candidate
5: if nonneigh[u] 6= −1 then
6: if (u, v) ∈ E(G) and (nonneigh[u], v) ∈ E(G) then
7: return true
8: else
9: return false
10: end if
11: else
12: if (u, v) ∈ E(G) then
13: return true
14: else
15: if nonneigh[v] = −1 then
16: nonneigh[v]← u
17: return true
18: else
19: return false
20: end if
21: end if
22: end if
23: end function

best known maximum clique algorithms. We used the same idea in Section V.5 to

shrink the maximum 2-club finding problem to the induced subgraph of N2[v], if

vertex v is assumed to be in the 2-club. A logical question arises for k-plex. Seidman

and Foster [125] showed that if G is a k-plex and |V (G)| > 2k−2, then G is connected

and diam(G) ≤ 2. The connectivity of large k-plex has already been used indirectly

is Section VI.2, when the candidate list was shrunk by intersection of neighborhoods

of saturated vertices, which means that all other candidates to be included in k-plex

are connected to the saturated vertex.

The problem with the approach based on limited diameter is that, unlike to the

clique and 2-club, the property holds for k-plexes of order at least 2k−1 only and not

necessarily holds for induced subgraphs of G, that are k-plexes too. From the first

glance, the limited diameter property cannot be used in the algorithm. Assume that
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K is a maximum weight k-plex in G and |K| ≥ 2k − 1, then for any pair of vertices

u, v ∈ K, the distance dG(u, v) ≤ 2, since diam(K) ≤ 2. To be mathematically

precise, we define the property Π′ on the graph K as follows: K is a k-plex in G and

∀u, v ∈ K dG(u, v) ≤ 2. The solution to the problem of finding maximum weight

set that holds Π′ in G equals to the solution of the maximum weight k-plex problem

in G, if the cardinality of the solution set is at least 2k − 1. But Π′ is hereditary

on any induced subgraph and thus can be solved using the generalized framework

from VI.1. The only difference between the original maximum k-plex algorithm and

the modified one is that after adding new vertex v to the formed k-plex, the working

set part outside of N2[v] is simply cut off, and the problem of finding the required

k-plex is reduced to the N2[v]. The only issue about this modified algorithm is that

if the resulting k-plex has cardinality smaller than 2k−1, then the original algorithm

must be executed in order to find a proper solution.

The described scale-reduction is the key point in performance improvement, when

applied to the sparse graphs with large diameter. Using this technique we were able

to find a maximum weight k-plex in instances of the market graph with more than

5000 vertices in Chapter VII. Table 21 shows the advantage of the modified algorithm

over the original one.

VI.5. Numerical Experiments

All numerical experiments presented in this chapter were conducted on Dell Op-

tiplex GX620 computer with Intel(R) Pentium(R) D 3.2GHz processor and

2GB of RAM. The algorithm was implemented in C programming language, using

Microsoft Visual C++ .NET 2003 (v 7.1) development environment for Win32

platform. Despite of Dual Core feature of CPU, the algorithm is implemented using
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single threaded model and cannot use this advantage of hardware.

In these experiments, the algorithm always used the incremental k-plex verifi-

cation routine, as described in Section VI.2 and the diameter based pruning from

Section VI.4.2, since this modification should not degrade the algorithm’s perfor-

mance on any of the considered instances. The special verification routine for 2-plex

was not used. In order to decide which vertex ordering to use, we have conducted

preliminary experiments for each instance in the following way. The algorithm was

executed several times with different preprocessing and ran for only a predefined

short amount of time (we limited this execution time to 1 minute), then the progress

was compared for different vertex ordering, and the ordering that provides the best

progress was chosen for the further benchmarking. The algorithm progress was mea-

sured as the number of vertices processed, not as the size of the best found k-plex,

due to the specifics of this algorithm.

The test-bed of instances used in our experiments consists of two groups. The

first group is comprised of benchmark clique and coloring instances from the Second

DIMACS Challenge [54, 91, 131]. Most of the graph from group one are known to

be hard instances for the Maximum Clique Problem, so we do not expect them to be

easy for the Maximum k-plex Problem either. Instances come from different sources,

such as coding theory [35,37,99,127], fault diagnosis [23] and others. For more detail

about these instances see [28,79,123]. The total number of instances in this group is

88, and we preserve their original names in the table of results. Later we will refer to

this group as Dimacs.

The second group consists of graphs, generated by Sanchis generator [123] and

used by Balasundaram [14] in his numerical experiments. The Sanchis graphs are

known as some of the hardest instances for the Maximum Clique problem [79] and

could be generated using given order (n), density (d) and clique number (c). The total
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number of graphs generated is 120, half of them has the clique number equal to 1/5 of

the total vertex number, while the second half has the clique number approximately

equal to −2 logd n. The parameter n was changed from 100 to 1000 with increment

interval 100, and parameter d was changed from 0.4 to 0.9 with step size of 0.1.

The resulting graphs were named as prefix-sanchis-n-d, where prefix is “n5” for the

first subgroup and “ln2” for the second one, n is the order of the graph and d is its

density. Graphs of this group will be referred to as “Sanchis-linear” and “Sanchis-log”,

following the original [14, pp. 94–96].

In total, we have 208 graphs for this test-bed. Table 22 shows the parameters

of the instances: graph order, size, density, clique number and k-plex number for

k = 2, 3, 4, 5. The clique numbers for DIMACS graphs were obtained either from [54]

or from other available sources, while for the Sanchis graphs this number is known

in advance. The k-plex numbers were obtained by our algorithm. If the algorithm

could not find the optimal solution in a reasonable time, the best found k-plex size is

provided, which is the lower bound for the optimal one, so such cases are indicated

with ≥ in the k-plex number column of the table .

Next, Table 23 provides the running time of the maximum weight k-plex algo-

rithm in CPU seconds. As it was mentioned before, the preprocessing was chosen

individually for each instance according to the best performance achieved on prelim-

inary tests. The preprocessing algorithm is specified by its abbreviation in the table.

The ordering from the Östergȧrd maximum weight clique algorithm is denoted by

O1, the ordering that uses double neighborhood instead of single one (Algorithm 10)

is denoted by O2, the degree based ordering is denoted by D, the defective coloring

based ordering is denoted by Cm, where m is the parameter of co-m-plex, and fi-

nally, the defective coloring based algorithm with weight/degree based greediness is

denoted by Wm, where m has exactly the same meaning. The letter R at the end of
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abbreviation means that the algorithm started its work in the order that is reverse to

the provided by the ordering. Table 7 shows the 10 most frequently used orderings

used for each k and 10 most used orderings overall.

Table 7 Top 10 most used orderings
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1 O1R 104 O1R 112 O1R 91 O1R 89 O1R 396

2 O1 27 C1 24 O1 41 O1 47 O1 137

3 C1 21 O1 22 C1 19 C1 24 C1 88

4 C1R 19 C5R 8 O2 8 O2 7 C1R 32

5 D 9 C3 6 C2R 8 C3R 5 C2R 20

6 C3 4 C1R 5 C4 6 C3 5 C3 19

7 C2R 4 C5 4 C5 5 C2 5 O2 17

8 DR 3 C3R 4 C2 5 C4R 4 C2 17

9 C5R 3 C2R 4 C3 4 C2R 4 D 16

10 C3R 3 C2 4 C1R 4 C1R 4 C3R 15

The most used ordering is the same as used by Östergȧrd in [112] for the maxi-

mum clique algorithm, and the second was the ordering from [111] that was used for

the maximum weight clique. Coloring and defective coloring perform well in many

cases using both strategies. This numerical result confirms the conclusion made before

that there is no any single preprocessing technique, that is the best for all instances.

Next group of test instances consists of networks that arise from real-life prob-

lems and includes some of the aforementioned networks, in particular Erdös col-

laboration networks described in Section III.4; protein-protein interaction maps of

Saccharomyces Cerevisiae and Helicobacter Pylori used in numerical experiments in

Section V.5; college football schedule graph from Chapter I; as well as the airline

networks, constructed for the 7 major U.S. carriers according to Bureau of Trans-
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portation Statistics data for July 2005. In the airline network, vertices represent

airports and connections correspond to the airline’s flight between these airports.

These networks are named as NN.net, where NN is a two-letter code representing

an airline. Finally, we consider All7.net graph, which is basically a union of airline

network for all 7 airlines; SkyTeam.net is the airline network for SkyTeam; and

USAir97.net is obtained from [20] and models all US airports and all regular air

flights between them as of 1997.

Table 24 presents the parameters and the maximum k-plexes order for these

networks. It is easy to observe, that all these networks are very sparse and their

maximum k-plexes are rather small. The same approach as for previous groups was

used to determine the best preprocessing ordering. Optimal solution was found in

all instances of this group. The algorithm running times are presented in Table 25.

Interestingly, the simple ordering based on vertex degree dominates in this group,

which may be explained in the following way. The running time of the main algorithm

is determined by graph density, while the running time of the preprocessing ordering

is mostly determined by the number of vertices in the graph. Compared to the Dimacs

and Sanchis graphs, the graphs of current group are sparser, so the main algorithm

performs better, but at the same time, the order of the graph is larger, causing the

preprocessing to take more time. So, the ratio between the preprocessing running

time and the main algorithm running time for this group is much larger than for

Dimacs and Sanchis graphs, and the preprocessing running time may be a significant

part of the total running time. This is the reason why the fastest of the proprocessing

procedures was chosen during the preliminary run.

Finally, we applied the algorithms to the weighted graphs. We used instances of

the market graph generated for one-year time periods for years 1990 to 2006 using

zero correlation threshold, see Section VII.2 for more detail. Due to the large size of
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these instances, we are not able to find the maximum weight k-plex for k > 2. The

graph parameters, maximum weight clique and 2-plex size and weight, as well as CPU

time are provided in Table 28. Note that the maximum weight clique or k-plex is not

necessarily the largest one by cardinality, moreover, the cardinality of the maximum

weight 2-plex may be even less than the cardinality of the maximum weight clique.

The common tendency is that for the market graph the coloring based preprocessing

starting in reverse order is the best one in most of the cases. This fact supports the

hypothesis about the similarity of the structure of these graph instances and may

serve as motivation for developing a specialized maximum weight k-plex algorithm

for the market graph.

VI.6. Comparison with Existing Approaches

The introduction of the maximum weight k-plex problem to the operations research

community by Balasundaram at el. [15] attracted a lot of interest and triggered the

development of several algorithms for solving the problem. As a result, at least four

approaches (including the original one and the current one) were presented in the last

two years.

The first approach was introduced in [14], where Balasundaram developed a

brunch-and-cut approach for the maximum 2-plex problem and conducted numerical

experiments for a subset of Dimacs, Sanchis-linear and Sanchis-log groups. Two

versions of the branch-and-cut algorithm for the maximum k-plex problem were im-

plemented. Both versions employ CPLEX for solving the IP formulation of the

problem, the difference between versions being in the cuts used. One version incor-

porates the maximum independent set cuts (referred as BC-MIS), while the other

incorporates co-k-plex cuts (referred as BC-C2PLX). For more detail about these
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approaches see [14, pp. 98–99].

The author has not considered the weighted version of the problem, so we provide

the comparison for the unweighted case. Table 27 shows the running time of the three

approaches: BC-MIS and BC-C2PLX by Balasundaram and our algorithm (referred

as T), conducted on exactly the same hardware system. In most cases, our algorithm

outperforms both branch-and-cut approaches, which is expected due to optimization

of the algorithm to the concrete problem, while branch-and-cut is a more general

approach. Also, higher running times result from using an IP solver that is universal

and is not optimized for the concrete problem.

McClosky [103, 104] considered two different ways of finding a maximum k-plex

in a graph. One way is based on Carraghan-Pardalos [41] ideas, while the second

one is based on the aforementioned Östergȧrg’s idea. Both algorithms were tested

on a subset of Dimacs benchmarks. Since the second of his approaches outperforms

the first one on all test instances, we will make comparison with the second approach

only. In his experiments, McClosky limited the algorithm execution time to one hour,

so we also disregard all results that were obtained in a larger amount of time. The

numerical results were provided for k = 2, 3, 4 with precision 1 sec, the running time

0 in McClosky experiments was interpreted as <1sec. Running time comparison was

done only for those cases where the algorithms terminated at the optimum. Table 26

provides the running times, where the columns marked with M refer to McClosky’s

experiments and those marked by T show our results. From the results, we conclude

that our algorithm demonstrated better running time, perhaps due to applying the

preprocessing technique.

Finally, Wu and Pei [139] developed a parallel algorithm for enumeration of all

the maximal k-plexes in the graph. Since they enumerate all maximal k-plexes, they

are also able to find the maximum one. However, their work emphasizes the par-
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allelization of the algorithm and comparison between serial and parallel algorithms

performance. They do not provide any numerical results for the well-known bench-

mark instances, and we cannot make any comparison with our approach.
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CHAPTER VII

PORTFOLIO SELECTION VIA IDENTIFYING WEIGHTED

k-PLEXES IN FINANCIAL NETWORKS

In this chapter, we introduce a new approach to selecting robust diversified portfolios

by modeling the stock market as a network and utilizing combinatorial optimization

techniques proposed in this dissertation to identify maximum weight k-plexes in the

obtained networks. The proposed approach is based on the market graph model, which

was previously used for efficient grouping of stocks according to certain correlation-

based criteria. The proposed techniques provide a new framework for diversified

portfolio selection, which results in robust portfolios that consistently outperform the

market trends. Section VII.1 provides stock market essentials. Then in Section VII.2

we demonstrate how to apply the k-plex approach to the stock market. Finally,

Section VII.3 provides numerical results, comparison with previously used model and

concludes the study.

VII.1. Introduction

Making efficient and profitable investments in the highly volatile conditions of the

modern stock market is a challenging and exciting problem. Many strategies of

restricting the potential risks of investments deal with the well-known concept of

diversified portfolios. In general, in a diversified portfolio, the pairwise correlation

between the behavior of different stocks in the portfolio does not exceed a certain

(low) correlation threshold. The goal of this approach is to ensure that the behavior

of the portfolio is more robust with respect to potential downswings of the entire

market. In addition, the most important issue in selecting a good diversified port-
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folio is its overall profitability. Therefore, the main challenge in diversified portfolio

selection is finding a balance between the goals that often contradict to each other:

the profitability and the robustness of the portfolio.

Portfolio selection techniques have a long history, dating back to the classical

work of Markowitz [102]. Since then, a lot of mathematical modeling techniques were

developed for the analysis of the stock market and portfolio selection. However, a rel-

atively new technique for visualization, information retrieval, and portfolio selection

in the stock market that utilizes the concepts from graph theory has been introduced

very recently, and its potential in terms of diversified portfolio selection has been

indicated. Boginski et al. [25–27] have introduced the network-based model of the

stock market (referred to as the market graph), which was constructed based on the

information on pairwise correlations between all stocks traded in the U.S. stock mar-

kets over a specified period of time. One of the main challenge that authors dealt

with is that the large number of stocks on the market, that is increasing over the

time (Figure 19). A number of interesting results regarding the global properties of

this graph and their dynamics have been obtained by Boginski et al., including the

important fact that this graph has a power-law degree distribution, which is common

in a number of other real-world networks arising in sociology, biology, telecommuni-

cations, etc. Moreover, it has been indicated that cliques and independent sets in this

graph can be used for tackling clustering problems in the stock market; specifically,

identifying groups of similar and dissimilar stocks according to the natural criterion

of pairwise correlation thresholds. In particular, independent sets, which represent

groups of vertices with no connections, were utilized to find “perfectly diversified”

portfolios, where the correlation between each pair of stocks did not exceed a certain

low threshold value. This innovative approach was the first application of graph the-

ory in the context of portfolio selection; however, its main disadvantage was the fact
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that the profitability of the portfolios was not explicitly taken into account. In this

study, we make the further step to extend this graph theoretic methodology that will

allow selecting robust diversified portfolios that have superior profitability.
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Fig. 19 Market graph order over time

The idea behind the proposed approach is to utilize the introduced graph theo-

retic concepts of clique relaxations in weighted graphs, where the weight of each vertex

(stock) corresponds to its return over the considered time period, and each pair of

vertices is connected by an edge if the correlation between the corresponding pair of

stocks does not exceed a certain threshold. More specifically, the problems of finding

maximum weight cliques and maximum weight k-plexes in the market graph will be

considered. The optimal solutions of these combinatorial optimization problems will

be analyzed from the profitability and robustness perspectives.
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VII.2. Problem Setup

VII.2.1. Constructing the Market Graph

The main concept utilized in this study is the market graph originally proposed in [25],

which essentially is a network-based representation of the entire U.S. stock market.

In this network, each stock traded in the U.S. stock markets is represented by a

vertex. For all pairs of vertices (i, j), i = 1, . . . , N , j = 1, . . . , N , where N is the

total number of stocks, the correlation coefficient Cij is calculated using the following

simple procedure.

Assume that Pi(t) is the price of stock i on day t. Then Ri(t) = ln Pi(t)
Pi(t−1)

is

defined as the logarithm of return of the stock i from day (t−1) to day t [100]. Then,

the correlation coefficient between instruments i and j is

Cij =
〈RiRj〉 − 〈Ri〉〈Rj〉√
〈R2

i − 〈Ri〉2〉〈R2
j − 〈Rj〉2〉

, (7.1)

where 〈Ri〉 is the mean of Ri(t) over N trading days, that is, 〈Ri〉 = 1
N

N∑
t=1

Ri(t)).

Further, in the context of the considered problem, an edge (i, j) will exist between

vertices i and j if the corresponding correlation coefficient Cij ≤ θ, where θ is the

correlation threshold value, which can be changed to construct different instances of

the market graph. Note that a complementary graph, where an edge (i, j) would be

placed if Cij > θ, can also be constructed. Figure 20 shows such an example of market

graph, built for ten randomly chosen stocks with correlation threshold θ = 0.05.

It is also worth mentioning that the parameter θ, which can be controlled by

the user, can be treated as a quantitative measure of the degree of diversification, or

intra-portfolio correlation.
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Fig. 20 Market graph for 10 randomly chosen stocks

VII.2.2. Weighted Market Graphs

Cliques in the market graphs constructed using the aforementioned procedure corre-

spond to independent sets in the graphs considered by Boginski et al. in [25–27]. In

these studies, it has been indicated that finding independent sets (i.e., cliques in the

present settings) in the market graph represents a promising innovative approach to

selecting diversified portfolios in the market. Moreover, it has been shown that for

any given stock, it is possible to identify a diversified portfolio containing this stock,

where the size of these portfolios is determined primarily by the value of the correla-
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tion threshold θ. However, the main drawback of this approach is the fact that the

returns of the identified diversified portfolios were not explicitly taken into account.

In this work, we address this issue and propose an efficient model for selecting

high-return diversified portfolios using a modified weighted market graph model, where

each vertex is assigned a weight, which represents the return of the corresponding

stock over the considered time period. To calculate the weight wi of each vertex i,

the following definitions can be used:

• w1
i = log Pi(N)

Pi(1)
,

• w2
i = Pi(N)

Pi(1)
− 1,

which essentially characterize the overall return of each stock i over the entire con-

sidered period of N trading days.

We proceed with constructing the weighted market graphs corresponding to 500-

day trading periods based on the stock prices data between 1990 and 2006. Using

the concepts of weighted cliques and weighted clique relaxations, such as weighted

k-plexes described above, we can solve the corresponding combinatorial optimization

problems on the constructed graph instances.

It should be noted that weighted clique relaxations have certain advantages com-

pared to weighted cliques in the context of portfolio selection. In particular, weighted

2-plexes appear to be appropriate network structures that can be considered in these

settings. The reasoning behind this idea is the fact that cliques tend to be overly

restrictive models of diversified portfolios, where every two stocks in the portfolio

need to be uncorrelated, which makes it challenging to find large diversified portfolios

modeled as cliques in the market graph, as indicated in [27]. On the other hand, rea-

sonably “tight” clique relaxations, such as 2-plexes provide a good balance between

the quality and the size of the identified diversified portfolios.
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Next, we can compare the optimal solutions of different optimization problems

that can be formulated in the considered context and draw conclusions regarding

the practical efficiency of the proposed approaches. In the following subsection, we

present and analyze the results of these computational experiments.

VII.3. Computational Experiments

Taking into account the arguments mentioned above, we formulated and solved dif-

ferent optimization problems for several instances of the market graph corresponding

to different time periods. Similarly to the computations performed in [27], each of

the considered time periods consisted of 500 trading days over approximately 2 years.

The solutions of the following optimization problems were considered and compared:

• maximum (unweighted) clique problem (similar to [27]);

• maximum weight clique problem;

• maximum weight 2-plex problem.

In our numerical results we used the second definition of weight (w2
i ), since it ex-

actly expresses the rate of return. The stock price data, collected from public sources

is not perfect, so we do not consider the stocks that have missed more than 10% of

price values. For the stocks, that have at least 90% of prices we used linear interpola-

tion to recover missed data. Moreover, stocks that have large price fluctuations, like

50% over year period, were also considered, as outliers and were not included in the

resulting market graph.

After solving these optimization problems, we investigated the optimal solutions

in terms of weighted diversified portfolios corresponding to different time periods. In
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the case of the maximum unweighted clique problem, the total weight of the identified

portfolio was calculated after the optimal solution was found.

Table 8 presents the results corresponding to 500-day trading periods between

1990 and 2006. Not surprisingly, the total weight of the diversified portfolios found

by solving the maximum unweighted clique problem is inferior to the solutions of the

maximum weight clique and maximum weight 2-plex problems. However, an interest-

ing observation is that the optimal solutions of the maximum weight 2-plex problem

consistently outperform the ones corresponding to the maximum weight clique prob-

lem in terms of both the size and the total weight of the portfolios. Clearly, both of

these characteristics of the selected portfolios are important from the investor’s point

of view, since in addition to the overall profitability, a good quality diversified portfo-

lio needs to contain a relatively large number of stocks to provide better “robustness”

properties. In addition, one can observe that in the first and the fourth considered

time periods, the portfolios selected by solving the maximum weight 2-plex problem

also outperform the weighted clique counterparts in terms of the ratio of the total

weight to the total number of stocks (i.e., weight per stock in the portfolio).

These results suggest that solving the maximum weight 2-plex problem is an

appropriate and promising technique for portfolio selection, since the obtained re-

sults exhibit attractive performance characteristics in all the considered recent time

periods.

In this study, we proposed an innovative and promising method for tackling a

challenging problem of selecting diversified portfolios in the modern stock market.

The graph theoretic concepts of clique relaxations that have been studied from theo-

retical and algorithmic points of view in this dissertation were successfully applied for

the first time in the context of financial markets. Computational results presented in

this study are encouraging in terms of the performance of selected portfolios over all
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Table 8 Parameters of calculated weighted diversified portfolios corresponding to

500-day trading periods

Portfolio size Portfolio weight

Weighted Weighted Weighted Weighted

Period N Clique Clique 2-plex Clique Clique 2-plex

1990–1991 867 10 7 8 2.78 8.43 10.57

1991–1992 1265 12 8 10 2.88 14.83 19.86

1992–1993 1421 12 9 10 2.12 14.51 18.64

1993–1994 1787 12 9 10 1.65 12.12 15.82

1994–1995 2080 13 8 11 1.67 14.48 18.76

1995–1996 2256 13 11 11 5.58 15.21 18.37

1996–1997 2658 13 9 12 2.38 14.66 17.51

1997–1998 2962 14 9 9 0.95 10.02 15.25

1998–1999 3200 13 8 9 -0.04 12.23 16.76

1999–2000 3479 13 8 10 0.48 13.76 17.13

2000–2001 3943 13 9 9 2.90 16.15 21.05

2001–2002 4208 13 8 11 0.87 15.42 19.15

2002–2003 4379 13 9 12 5.48 19.32 22.76

2003–2004 4630 13 10 12 6.86 21.48 25.37

2004–2005 5025 13 10 10 0.96 16.19 20.37

2005–2006 5516 15 10 11 -0.87 15.84 19.05

the considered time periods.

We believe that this approach can be successfully used in practice. Moreover,

the results presented in this study along with the previous work presented in [25–

27] suggest that applications of advanced graph theoretic techniques in quantitative

finance are worth investigating in-depth in a variety of related problems.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

This dissertation mostly concentrates on solving NP -hard problems on graphs, par-

ticularly, on the MWISP and the maximization problems for the clique relaxation

models.

For the first problem we developed a new scale-reduction approach based on

critical weight set. The proposed approach should be used as a preprocessing phase

for the exact algorithm, and allows to reduce the size of the original problem by fixing

some graph vertices to be present or absent in the final optimal solution. Since the

problem of finding a critical weight set is easy to solve, the approach does not require

as much running time as the main algorithm, and using the critical set approach

before applying the main algorithm results in faster computation than applying the

exact algorithm directly to the original problem instance. The numerical experiments

confirmed the theoretical results. We have also studied the relationship between our

approach and other preprocessing approaches used for the MWISP based on very

different techniques, but providing similar results in the end.

As for future work in this direction, an interesting question is whether it is

possible to extend the critical weight approach to the relaxations of the independent

set, in particular to the co-k-plex. First of all, similarly to the critical weighted

independent set, we may define the critical weighted co-k-plex in the following way:

for a graph G = (V, E), let Ik denote the set of all co-k-plexes of G. Then Ic is a

critical weight co-k-plex if it maximizes the difference w(I) − w(N(I)) over all co-

k-plexes in the graph G (over set Ik). The corresponding critical numbers will be
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defined as α
(k)
c (G) = max{w(I)− w(N(I)) : ∀I ∈ Ik}. Since

I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ · · · ⊆ 2V ,

we have

αc(G) = α(1)
c (G) ≤ α(2)

c (G) ≤ · · · ≤ α(k)
c (G) ≤ · · · ≤ µ(G).

Recalling from Section III.1 that αc(G) = µ(G), we obtain:

αc(G) = α(1)
c (G) = α(2)

c (G) = · · · = α(k)
c (G) = · · · = µ(G).

Thus, the problem of finding a critical weight co-k-plex in the graph is polynomially

solvable. Moreover, a critical weight independent set is an optimal solution of the

critical weight co-k-plex problem for any k. This fact provides the hope that the

critical set approach may be used for the maximum weight co-k-plex problem, but the

logical question is how to find a more useful solution for the critical weight co-k-plex

set, i.e., a critical weight co-k-plex that is not an independent set. We think that the

answer to this question may be obtained by extending the work by Larsen [95], that

allows one to find the maximum weight critical weight independent set in polynomial

time. Finally, a major open question in this approach concerns with obtaining results

similar to Lemma 3 and Theorem 4 from Section III.2, that allow to develop the scale-

reduction algorithm. More generally, as it was mentioned in [140], if property Π is non-

trivial, interesting and hereditary on induced subgraphs, then either all independent

sets or all cliques satisfy Π. If cliques satisfies property Π, but independent sets do

not, then we may switch to the problem of finding Π̄ on Ḡ and all independent sets

satisfy Π̄. So, without loss of generality, from all properties Π we consider only those

that are satisfied by all independent sets and define α
(π)
c (G) = max{w(I)−w(N(I)) :

I ⊆ V and I holds Π}. Then αc(G) = α
(π)
c (G) = µ(G), and the problem of finding
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a critical weight induced subgraph with property Π is solvable in polynomial time.

The same questions as for the critical weight co-k-plex problem arise: how to find a

non-trivial solution and is it possible to utilize the critical weight set with property

Π for finding a maximum weight induced subgraph with property Π?

If such a method is developed, then we may think about approaches from Chap-

ter IV with respect to the introduced properties Π, in particular with respect to

co-k-plex. It is of interest to investigate the optimal solution of the integer program-

ming formulation for the maximum co-k-plex problem and to determine whether it

has the structure similar to that from [110]; formulate the problem as a quadratic

unconstrained pseudo-boolean problem and apply the roof-duality approach to this

formulation in order to find the possible weak or strong persistence. As it was already

mentioned, the roof-duality may be applied to any quadratic unconstrained binary

problem, but it does not guarantee that scale-reduction will be obtained. So, the

hardest point to find is an appropriate problem formulation. Finally, it is of interest

to consider a structure, that extends the concept of t-hat to the co-k-plex, and verify

whether the result similar to the one obtained in Theorem 8 of Section IV.8 still holds.

For the second group of problems, we first needed to perform a mathematical

study of these problems. It has not been done before, since the clique relaxation

models were considered in social network studies and were not studied well from

the mathematical point of view. We considered three possible clique relaxations: k-

clique, k-club, k-plex, and formulated the corresponding optimization problems. Also,

we proved, that all three problems are NP -hard and presented new mathematical

programming formulations.

There are still many open questions concerning the clique relaxation models that

should be addressed in future work. First, it would be interesting to analyze the

complexity of the k-clique, k-club and k-plex (co-k-plex) problems on some restricted
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graph classes, such as bipartite or planar graphs. Another complexity related ques-

tion deals with the issue of gap recognition between ωk(G) and ωm(G), and may be

formulated as follows. Given a graph G and fixed positive integers k and m, does G

has the same weight for maximum k-plex and m-plex? Most likely, the problem in

NP -hard, since the same question for the k-club and m-club (k-clique and m-clique)

has been recently answered in [38] and the corresponding problem has been deter-

mined to be NP -hard. Another question mentioned in Section VI.3 is the following:

what is the order of a maximum k-plex in a co-m-plex? The answers for m = 1 and

m = k were given by Balasundaram et al. [15], but are still unknown for other values

of m. One may try to generalize the result from Theorem 9 that established the

relation between ω(G) and ωk(G), in order to find the relation between ωk(G) and

ωm(G). Finally, it is of interest to find a quadratic unconstrained binary formulation

for the problems and apply the roof-duality approach.

In this dissertation we developed the algorithm for the maximum weight k-plex

problem and studied its performance issues in details. The efficiency of the developed

algorithm was confirmed by conducting extensive computational experiments and,

also, by comparing the obtained results with results for existing approaches. The

algorithm provided for the maximum weight k-plex problem is not only important for

this problem solution, but also provides a general framework for developing similar

algorithms for many other problems.

The possible future extensions of this algorithm can be seen at several different

levels. On the highest and most theoretical level, one can study the necessity of the key

requirement for this algorithm, that is heredity on induced subgraphs requirement for

property Π, which makes the problem of finding a maximum induced subgraph with

property Π NP -hard, according to the work by Yannakakis [140]. Since later, in [141],

the author considered the effect of connectivity for this problem class and stated the
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similar result when additional requirement of connectivity is applied to the property

Π, an interest point is to investigate the effect of connectivity on the algorithm and

to determine if it is possible to modify Algorithm 4 in order to find the maximum

weight connected induced subgraph with property Π. At the middle level, since the

generalization of the Östergȧrd algorithm for the maximum weight clique problem

may be applied to any problem of finding a maximum weight induced subgraph that

holds property Π, when property Π is hereditary on induced subgraphs, it is natural to

apply this algorithm to different possible Π. The general scheme provides an algorithm

for solving the corresponding problem, however, one needs to provide an effective

routine for updating the working set and an effective ordering based preprocessing

to ensure a good algorithm performance. One may also investigate different possible

preprocessing strategies that may improve the algorithm even for the maximum weight

k-plex problem. Finally, a good software programming exercise is to develop an

efficient data structure for initial graph and temporary data representation in order

to improve the running time of the candidate list updating routine for the maximum

weight k-plex algorithm, and to confirm that “coefficient does matter” when solving

engineering problems.

Finally, considering other clique relaxation models that were not covered in this

dissertation provides a wide area of research opportunities.
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APPENDIX A

EXACT k-PLEX ALGORITHM NUMERICAL STUDY

Table 9 Graph parameters for small test-bed

Densi- Maximum k-plex weight

Graph |V | |E| ty, % k = 1 k = 2 k = 3 k = 4 k = 5

DSJR500.1.col 500 3555 2.85 12 14 15 15 16

MANN a9.clq 45 918 92.73 16 26 36 36 45

c-fat500-10.clq 500 46627 37.38 126 126 126 126 126

hamming6-4.clq 64 704 34.92 4 6 8 10 12

johnson8-2-4.clq 28 210 55.56 4 5 8 9 12

ln2-sanchis-100-40 100 1980 40.00 11 12 18 18 19

ln2-sanchis-100-50 100 2475 50.00 14 14 21 23 23

m200 -0.05 200 946 4.75 4 5 6 8 9

mulsol.i.1.col 197 3925 20.33 49 50 51 51 52

n5-sanchis-100-40 100 1980 40.00 20 20 20 20 21

n5-sanchis-200-40 200 7960 40.00 40 40 40 40 40

ln2-sanchis-100-40w 100 1980 40.00 568 763 928 1000 1073

ln2-sanchis-100-50w 100 2475 50.00 582 936 1115 1248 1318

m200-0 200 3916 19.68 14885 17893 22852 25824 30095

m300-0.01 300 9486 21.15 13962 18271 23417 26941 31538

m300-0 300 8779 19.57 13945 17361 22074 26594 29964

m400 -0.05 400 3611 4.53 9010 12590 15502 18612 22171

m500 -0.05 500 6122 4.91 9721 13031 18058 21170 23156

n5-sanchis-100-40w 100 1980 40.00 999 1132 1132 1132 1220

n5-sanchis-200-40w 200 7960 40.00 1810 2061 2061 2061 2061
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Table 10 Number of k-plex verification routine calls

Number of calls

Graph k = 2 k = 3 k = 4 k = 5

DSJR500.1.col 547598 6694248 105082633 920620676

MANN a9.clq 58884 779585 95806974 15180

c-fat500-10.clq 676167 1282267 6498362 62778714

hamming6-4.clq 40330 392476 3676930 48342370

johnson8-2-4.clq 15042 69063 646741 938339

ln2-sanchis-100-40 1065358 6513307 187793367 3547760332

ln2-sanchis-100-50 5720933 8762473 348022549 10237520121

m200 -0.05 286888 9725368 93617693 1276171531

mulsol.i.1.col 120353 992520 23310124 184932820

n5-sanchis-100-40 92546 1681256 36210618 1048020088

n5-sanchis-200-40 415235 8200652 175073469 4157527829

ln2-sanchis-100-40w 231253 2130531 38423731 620325464

ln2-sanchis-100-50w 260628 2153812 45584585 661038617

m200-0 487722 8093854 122117459 1451143619

m300-0.01 1622679 38121918 746279875 11798946328

m300-0 1281898 23615834 437367455 6936706302

m400 -0.05 1342493 31687253 550408984 8348157174

m500 -0.05 3126802 110164439 3025629492 71922640064

n5-sanchis-100-40w 82048 1073733 10555688 144152407

n5-sanchis-200-40w 843975 16968442 386526747 8473020447
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Table 11 Original and incremental k-plex verification routine

Runtime, sec

k = 2 k = 3 k = 4 k = 5

Graph O
ri
gi

n
al
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cr

em
en

ta
l

O
ri
gi

n
al
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cr

em
en

ta
l

O
ri
gi

n
al

In
cr

em
en

ta
l

O
ri
gi

n
al

In
cr

em
en

ta
l

DSJR500.1.col 0.20 0.22 0.47 0.38 5.25 2.92 52.73 25.66

MANN a9.clq 0.06 0.01 0.91 0.03 266.32 3.00 0.05 0.02

c-fat500-10.clq 2.44 0.24 2.95 0.22 9.30 0.30 89.56 1.52

hamming6-4.clq 0.02 0.02 0.08 0.05 0.78 0.16 12.91 1.75

johnson8-2-4.clq 0.01 0.01 0.03 0.01 0.30 0.05 0.55 0.05

ln2-sanchis-100-40 0.20 0.08 0.97 0.24 37.23 5.94 898.87 114.98

ln2-sanchis-100-50 1.52 0.22 1.83 0.31 106.38 11.38 3919.93 345.74

m200 -0.05 0.08 0.09 0.45 0.27 4.66 1.95 78.17 27.08

mulsol.i.1.col 0.09 0.08 0.14 0.09 1.38 0.48 11.84 3.45

n5-sanchis-100-40 0.05 0.05 0.28 0.09 6.77 1.13 262.33 34.06

n5-sanchis-200-40 0.16 0.09 2.98 0.27 76.17 4.33 1728.42 105.86

ln2-sanchis-100-40w 0.08 0.08 0.44 0.11 10.30 1.23 218.19 19.28

ln2-sanchis-100-50w 0.09 0.05 0.58 0.09 15.89 1.50 293.22 21.20

m200-0 0.11 0.09 0.78 0.25 13.56 2.52 188.72 28.20

m300-0.01 0.25 0.16 4.56 0.98 106.31 17.08 2007.31 261.14

m300-0 0.20 0.14 2.25 0.59 47.33 8.92 889.66 135.26

m400 -0.05 0.19 0.19 1.28 0.67 21.83 8.92 380.64 132.60

m500 -0.05 0.28 0.25 3.67 1.78 111.02 42.27 3042.08 984.60

n5-sanchis-100-40w 0.05 0.03 0.27 0.06 2.97 0.36 51.44 4.44

n5-sanchis-200-40w 0.22 0.09 3.70 0.53 116.99 10.55 3378.30 235.26
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Table 12 5-plex in ln2-san-100-40w

Iteration Best k-plex size Best k-plex weight Running time, sec
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1 0 1 0 99 0.00 0.00

2 0 2 0 197 0.00 0.00

3 1 3 1 294 0.00 0.00

4 2 4 2 390 0.00 0.00

5 3 5 4 486 0.00 0.00

6 4 5 9 486 0.00 0.00

7 5 6 15 577 0.00 0.00

8 5 6 22 577 0.00 0.00

9 6 6 31 577 0.00 0.00

10 6 6 39 577 0.00 0.00

11 6 7 48 661 0.00 0.00

12 6 8 50 750 0.00 0.00

13 7 8 62 750 0.00 0.00

14 7 8 66 750 0.00 0.01

15 6 8 72 750 0.00 0.01

16 7 8 86 750 0.00 0.01

17 6 9 88 809 0.02 0.01

18 7 9 103 809 0.02 0.01

19 6 9 109 809 0.02 0.01

20 6 10 114 868 0.02 0.01

21 6 10 121 868 0.02 0.01

22 8 10 140 868 0.02 0.01

23 8 10 150 868 0.02 0.01

24 8 10 150 868 0.02 0.01

25 8 10 167 868 0.02 0.03

26 8 10 183 868 0.02 0.03

27 9 10 210 868 0.02 0.05

28 9 11 210 911 0.02 0.05

29 9 11 210 920 0.02 0.06

30 9 12 213 927 0.02 0.08
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Table 12 (continued)

Iteration Best k-plex size Best k-plex weight Running time, sec
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31 9 12 213 927 0.02 0.11

32 9 12 216 927 0.02 0.14

33 9 12 222 967 0.02 0.20

34 9 12 222 967 0.02 0.23

35 10 12 253 967 0.03 0.28

36 10 13 263 985 0.03 0.36

37 10 13 277 985 0.03 0.42

38 10 13 277 985 0.05 0.48

39 11 13 295 985 0.05 0.63

40 10 13 296 985 0.05 0.88

41 11 13 324 985 0.06 1.05

42 11 14 327 1033 0.06 1.27

43 11 14 342 1033 0.08 1.58

44 11 14 360 1033 0.08 1.86

45 11 14 360 1033 0.09 2.69

46 12 14 376 1033 0.11 3.19

47 12 15 400 1083 0.11 3.67

48 12 15 410 1083 0.11 3.69

49 13 15 428 1083 0.11 3.73

50 13 15 428 1083 0.13 3.83

51 13 15 428 1083 0.14 4.22

52 13 15 447 1083 0.17 4.50

53 14 15 475 1083 0.19 4.88

54 14 15 475 1083 0.20 4.94

55 14 15 475 1083 0.22 5.73

56 14 15 475 1083 0.28 6.95

57 12 15 490 1083 0.31 7.69

58 12 16 513 1123 0.36 9.36

59 12 16 513 1123 0.41 9.67

60 12 17 523 1161 0.45 10.56



131

Table 12 (continued)

Iteration Best k-plex size Best k-plex weight Running time, sec
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61 12 17 558 1161 0.50 10.61

62 13 17 599 1161 0.53 11.11

63 13 17 599 1161 0.56 11.83

64 14 17 628 1161 0.63 12.72

65 14 18 628 1195 0.69 13.50

66 14 18 628 1195 0.75 13.55

67 14 18 628 1195 0.80 13.64

68 14 18 682 1195 0.94 13.94

69 15 18 743 1195 0.95 14.17

70 15 18 743 1195 0.97 14.38

71 15 18 743 1195 0.97 14.66

72 15 18 743 1195 1.02 15.88

73 15 18 743 1195 1.16 16.39

74 17 18 796 1195 1.30 17.48

75 15 18 802 1195 1.41 17.86

76 15 18 802 1195 1.53 22.75

77 15 18 843 1195 1.58 24.39

78 15 19 843 1220 1.67 26.34

79 15 19 843 1220 1.83 26.80

80 15 19 843 1220 1.92 27.22

81 16 19 847 1220 2.16 27.48

82 16 19 900 1220 2.38 28.27

83 16 19 900 1220 2.56 29.28

84 17 19 965 1220 2.70 29.97

85 17 19 965 1220 2.75 30.69

86 17 19 981 1220 2.86 31.14

87 16 19 987 1220 2.97 31.72

88 16 19 987 1220 3.27 32.44

89 17 19 1076 1220 3.64 33.50

90 17 19 1076 1220 3.78 34.42
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Table 12 (continued)

Iteration Best k-plex size Best k-plex weight Running time, sec
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91 17 19 1076 1220 3.94 35.28

92 18 19 1110 1220 4.17 40.14

93 18 19 1110 1220 4.36 41.77

94 18 19 1110 1220 4.44 43.39

95 18 19 1110 1220 4.92 46.45

96 18 19 1110 1220 5.14 48.52

97 19 19 1161 1220 5.70 49.56

98 19 19 1161 1220 5.92 50.38

99 19 19 1220 1220 6.27 50.39

100 19 19 1220 1220 6.45 50.39
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Table 13 Running time for weight based ordering

Running time, sec

Graph k = 2 k = 3
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ln2-sanchis-100-40w 0.06 0.05 0.06 0.31 0.09 0.66

ln2-sanchis-100-50w 0.08 0.05 0.13 0.69 0.11 0.41

m200-0 0.09 0.08 0.11 0.89 0.24 2.52

m300-0.01 0.31 0.16 0.55 8.38 1.00 31.55

m300-0 0.27 0.14 0.45 6.38 0.59 21.61

m400 -0.05 0.20 0.22 0.25 3.02 0.67 4.00

m500 -0.05 0.31 0.23 0.33 8.45 1.77 11.44

n5-sanchis-100-40w 0.06 0.03 0.03 0.13 0.08 0.06

n5-sanchis-200-40w 0.14 0.11 0.09 2.28 0.59 0.34

Graph k = 4 k = 5
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ln2-sanchis-100-40w 6.63 1.19 14.67 166.06 18.99 966.52

ln2-sanchis-100-50w 7.34 1.45 6.63 194.26 22.59 517.17

m200-0 18.67 2.52 110.30 380.54 29.08 > 3600

m300-0.01 465.12 17.14 1772.38 > 3600 261.37 > 3600

m300-0 242.14 8.95 1109.38 > 3600 136.71 > 3600

m400 -0.05 180.16 8.84 165.40 > 3600 131.05 > 3600

m500 -0.05 591.26 42.17 682.06 > 3600 984.55 > 3600

n5-sanchis-100-40w 3.98 0.38 1.72 89.29 4.55 33.86

n5-sanchis-200-40w 66.42 12.42 9.41 2506.74 261.01 > 3600
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Table 14 Running time for Östergȧrd ordering

Running time, sec

Graph k = 2 k = 3
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DSJR500.1.col 0.30 0.22 0.22 1.80 0.38 0.52

MANN a9.clq 0.14 0.01 0.03 0.03 0.03 0.01

c-fat500-10.clq 0.20 0.24 0.30 0.25 0.22 0.22

hamming6-4.clq 0.03 0.02 0.02 0.03 0.05 0.03

johnson8-2-4.clq 0.01 0.01 0.03 0.02 0.01 0.01

ln2-sanchis-100-40 0.06 0.08 0.09 0.14 0.24 0.09

ln2-sanchis-100-50 0.25 0.22 0.70 0.19 0.31 0.16

m200 -0.05 0.08 0.09 0.13 0.66 0.27 0.24

mulsol.i.1.col 0.36 0.08 0.09 0.16 0.09 0.13

n5-sanchis-100-40 0.03 0.05 0.08 0.13 0.09 0.20

n5-sanchis-200-40 0.14 0.09 54.50 1.53 0.27 278.94

Graph k = 4 k = 5
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DSJR500.1.col 135.12 2.92 6.83 > 600 25.66 214.74

MANN a9.clq 11.94 3.00 12.67 0.01 0.02 0.01

c-fat500-10.clq 0.78 0.30 0.44 8.41 1.52 2.50

hamming6-4.clq 0.16 0.16 0.16 1.75 1.75 1.74

johnson8-2-4.clq 0.06 0.05 0.05 0.09 0.05 0.09

ln2-sanchis-100-40 5.14 5.94 0.92 120.77 114.98 17.97

ln2-sanchis-100-50 5.88 11.38 2.03 264.05 345.74 43.75

m200 -0.05 20.31 1.95 4.51 625.78 27.08 84.63

mulsol.i.1.col 1.88 0.48 1.47 33.34 3.45 21.33

n5-sanchis-100-40 2.89 1.13 1.77 90.44 34.06 24.41

n5-sanchis-200-40 34.94 4.33 1048.32 933.05 105.86 > 600
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Table 15 Running time for Östergȧrd like ordering using double neighborhood

Running time, sec

Graph k = 2 k = 3
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DSJR500.1.col 0.19 0.19 0.22 0.19 0.19 1.17

MANN a9.clq 0.05 0.05 0.11 0.22 0.22 0.03

c-fat500-10.clq 0.17 0.22 0.20 0.20 0.19 0.23

hamming6-4.clq 0.02 0.02 0.02 0.03 0.03 0.03

johnson8-2-4.clq 0.00 0.01 0.00 0.01 0.01 0.03

ln2-sanchis-100-40 0.08 0.08 0.08 0.19 0.19 0.14

ln2-sanchis-100-50 0.27 0.28 0.25 0.20 0.20 0.20

m200 -0.05 0.08 0.08 0.08 0.19 0.20 0.30

mulsol.i.1.col 0.13 0.06 0.08 0.16 0.08 0.13

n5-sanchis-100-40 0.05 0.05 0.03 0.16 0.17 0.11

n5-sanchis-200-40 0.14 0.14 0.16 2.02 2.00 1.50

Graph k = 4 k = 5
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DSJR500.1.col 0.20 0.19 41.55 0.25 0.17 -

MANN a9.clq 14.30 14.31 11.98 0.03 0.02 0.02

c-fat500-10.clq 0.34 0.31 1.03 2.50 1.78 22.05

hamming6-4.clq 0.14 0.14 0.16 1.73 1.73 1.73

johnson8-2-4.clq 0.05 0.05 0.06 0.06 0.06 0.09

ln2-sanchis-100-40 4.20 4.22 5.14 145.69 145.87 120.94

ln2-sanchis-100-50 5.05 5.06 5.84 258.39 258.61 264.13

m200 -0.05 0.84 0.81 5.97 6.31 9.05 130.77

mulsol.i.1.col 0.25 0.13 1.39 0.73 0.42 14.70

n5-sanchis-100-40 3.23 3.25 2.91 138.55 138.48 89.91

n5-sanchis-200-40 44.19 44.13 34.80 1458.50 1457.47 929.86
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Table 16 Running time for defective coloring

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 2

DSJR500.1.col 0.30 0.22 0.20 0.23 0.22 0.22

MANN a9.clq 0.14 0.03 0.05 0.11 0.05 0.05

c-fat500-10.clq 0.20 0.20 0.19 0.20 0.19 0.19

hamming6-4.clq 0.03 0.03 0.02 0.02 0.02 0.05

johnson8-2-4.clq 0.01 0.01 0.01 0.01 0.01 0.00

ln2-sanchis-100-40 0.06 0.06 0.08 0.08 0.08 0.08

ln2-sanchis-100-50 0.25 0.61 0.27 0.28 0.39 0.33

m200 -0.05 0.08 0.08 0.08 0.09 0.08 0.08

mulsol.i.1.col 0.36 0.06 0.08 0.08 0.08 0.09

n5-sanchis-100-40 0.03 0.05 0.03 0.05 0.05 0.05

n5-sanchis-200-40 0.14 0.08 0.08 0.08 0.08 0.09

ln2-sanchis-100-40w 0.06 0.06 0.06 0.08 0.06 0.06

ln2-sanchis-100-50w 0.08 0.08 0.06 0.09 0.08 0.06

m200-0 0.09 0.11 0.11 0.09 0.09 0.11

m300-0.01 0.31 0.34 0.25 0.30 0.31 0.33

m300-0 0.27 0.22 0.25 0.30 0.30 0.25

m400 -0.05 0.20 0.19 0.20 0.20 0.20 0.20

m500 -0.05 0.31 0.25 0.30 0.27 0.30 0.30

n5-sanchis-100-40w 0.06 0.05 0.05 0.05 0.05 0.03

n5-sanchis-200-40w 0.14 0.11 0.16 0.09 0.11 0.11
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Table 16 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 3

DSJR500.1.col 1.80 0.80 0.86 1.08 1.44 1.48

MANN a9.clq 0.03 0.34 0.98 0.02 0.66 0.95

c-fat500-10.clq 0.25 0.24 0.25 0.24 0.25 0.25

hamming6-4.clq 0.03 0.03 0.03 0.03 0.03 0.03

johnson8-2-4.clq 0.02 0.02 0.01 0.01 0.01 0.01

ln2-sanchis-100-40 0.14 0.17 0.13 0.13 0.09 0.11

ln2-sanchis-100-50 0.19 0.28 0.17 0.13 0.14 0.13

m200 -0.05 0.66 0.25 0.31 0.33 0.38 0.44

mulsol.i.1.col 0.16 0.08 0.19 0.13 0.14 0.13

n5-sanchis-100-40 0.13 0.09 0.08 0.09 0.06 0.08

n5-sanchis-200-40 1.53 0.33 0.16 0.17 0.19 0.19

ln2-sanchis-100-40w 0.31 0.28 0.25 0.30 0.20 0.20

ln2-sanchis-100-50w 0.69 0.41 0.23 0.45 0.45 0.38

m200-0 0.89 0.59 0.50 0.56 0.48 0.42

m300-0.01 8.38 7.06 4.24 6.19 6.66 8.92

m300-0 6.38 3.52 3.38 4.42 5.36 3.78

m400 -0.05 3.02 1.83 1.50 1.75 2.16 1.94

m500 -0.05 8.45 3.89 5.63 2.56 6.41 5.56

n5-sanchis-100-40w 0.13 0.19 0.09 0.13 0.09 0.13

n5-sanchis-200-40w 2.28 1.44 2.67 0.33 1.55 1.02
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Table 16 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 4

DSJR500.1.col 135.12 19.70 19.66 47.72 63.64 49.34

MANN a9.clq 11.94 10.20 17.73 11.97 13.34 15.67

c-fat500-10.clq 0.78 0.63 0.66 0.78 0.84 0.88

hamming6-4.clq 0.16 0.16 0.14 0.16 0.16 0.14

johnson8-2-4.clq 0.06 0.03 0.05 0.05 0.05 0.05

ln2-sanchis-100-40 5.14 3.00 3.06 3.05 3.30 2.66

ln2-sanchis-100-50 5.88 21.84 6.59 4.20 4.38 4.25

m200 -0.05 20.31 3.42 4.42 5.26 13.06 13.86

mulsol.i.1.col 1.88 0.48 3.69 0.69 0.61 0.48

n5-sanchis-100-40 2.89 1.91 1.22 1.27 0.83 1.11

n5-sanchis-200-40 34.94 18.05 1.34 1.44 1.67 2.52

ln2-sanchis-100-40w 6.63 8.95 6.27 8.19 6.47 4.86

ln2-sanchis-100-50w 7.34 6.09 4.97 12.55 6.28 5.19

m200-0 18.67 12.91 12.47 17.05 11.64 8.64

m300-0.01 465.12 373.39 150.30 282.91 247.05 323.28

m300-0 242.14 115.14 105.41 178.88 187.58 119.21

m400 -0.05 180.16 74.36 68.98 94.02 107.68 91.35

m500 -0.05 591.26 173.63 237.79 180.19 305.76 258.45

n5-sanchis-100-40w 3.98 5.86 2.14 2.67 2.52 4.17

n5-sanchis-200-40w 66.42 55.88 75.07 10.56 29.67 36.81
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Table 16 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 5

DSJR500.1.col >3599.32 793.33 921.40 2026.71 >3591.77 >3577.40

MANN a9.clq 0.01 0.02 0.01 0.01 0.01 0.01

c-fat500-10.clq 8.41 6.08 6.42 8.45 9.36 9.27

hamming6-4.clq 1.75 1.74 1.75 1.75 1.75 1.75

johnson8-2-4.clq 0.09 0.05 0.06 0.06 0.11 0.08

ln2-sanchis-100-40 120.77 107.32 75.25 81.09 89.72 82.77

ln2-sanchis-100-50 264.05 725.25 253.98 141.26 218.08 286.39

m200 -0.05 625.78 80.21 137.41 118.24 280.32 326.55

mulsol.i.1.col 33.34 3.53 12.92 5.95 4.20 3.73

n5-sanchis-100-40 90.44 50.28 41.89 31.86 22.48 49.60

n5-sanchis-200-40 933.05 603.15 43.27 33.48 60.92 100.87

ln2-sanchis-100-40w 166.06 226.26 191.55 209.24 177.41 145.94

ln2-sanchis-100-50w 194.26 172.11 205.76 438.67 191.75 153.21

m200-0 380.54 290.39 285.80 486.09 232.82 182.37

m300-0.01 >3296.52 >3210.53 3274.64 >3422.35 >600.71 >3499.72

m300-0 >3444.73 3551.15 >2016.73 >3248.89 >3220.15 >2629.55

m400 -0.05 >3541.49 3096.88 2110.83 3366.76 3559.07 2590.41

m500 -0.05 >3571.75 >3519.03 >3598.01 >3571.89 >3548.22 >600.49

n5-sanchis-100-40w 89.29 126.77 70.58 60.25 85.10 124.47

n5-sanchis-200-40w 2506.74 3365.60 >3529.48 420.78 1183.04 2092.76
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Table 17 Running time for defective coloring with reverse order

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 2

DSJR500.1.col 0.30 0.22 0.20 0.23 0.22 0.22

MANN a9.clq 0.14 0.03 0.05 0.11 0.05 0.05

c-fat500-10.clq 0.20 0.20 0.19 0.20 0.19 0.19

hamming6-4.clq 0.03 0.03 0.02 0.02 0.02 0.05

johnson8-2-4.clq 0.01 0.01 0.01 0.01 0.01 0.00

ln2-sanchis-100-40 0.06 0.06 0.08 0.08 0.08 0.08

ln2-sanchis-100-50 0.25 0.61 0.27 0.28 0.39 0.33

m200 -0.05 0.08 0.08 0.08 0.09 0.08 0.08

mulsol.i.1.col 0.36 0.06 0.08 0.08 0.08 0.09

n5-sanchis-100-40 0.03 0.05 0.03 0.05 0.05 0.05

n5-sanchis-200-40 0.14 0.08 0.08 0.08 0.08 0.09

ln2-sanchis-100-40w 0.06 0.06 0.06 0.08 0.06 0.06

ln2-sanchis-100-50w 0.08 0.08 0.06 0.09 0.08 0.06

m200-0 0.09 0.11 0.11 0.09 0.09 0.11

m300-0.01 0.31 0.34 0.25 0.30 0.31 0.33

m300-0 0.27 0.22 0.25 0.30 0.30 0.25

m400 -0.05 0.20 0.19 0.20 0.20 0.20 0.20

m500 -0.05 0.31 0.25 0.30 0.27 0.30 0.30

n5-sanchis-100-40w 0.06 0.05 0.05 0.05 0.05 0.03

n5-sanchis-200-40w 0.14 0.11 0.16 0.09 0.11 0.11
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Table 17 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 3

DSJR500.1.col 1.80 0.80 0.86 1.08 1.44 1.48

MANN a9.clq 0.03 0.34 0.98 0.02 0.66 0.95

c-fat500-10.clq 0.25 0.24 0.25 0.24 0.25 0.25

hamming6-4.clq 0.03 0.03 0.03 0.03 0.03 0.03

johnson8-2-4.clq 0.02 0.02 0.01 0.01 0.01 0.01

ln2-sanchis-100-40 0.14 0.17 0.13 0.13 0.09 0.11

ln2-sanchis-100-50 0.19 0.28 0.17 0.13 0.14 0.13

m200 -0.05 0.66 0.25 0.31 0.33 0.38 0.44

mulsol.i.1.col 0.16 0.08 0.19 0.13 0.14 0.13

n5-sanchis-100-40 0.13 0.09 0.08 0.09 0.06 0.08

n5-sanchis-200-40 1.53 0.33 0.16 0.17 0.19 0.19

ln2-sanchis-100-40w 0.31 0.28 0.25 0.30 0.20 0.20

ln2-sanchis-100-50w 0.69 0.41 0.23 0.45 0.45 0.38

m200-0 0.89 0.59 0.50 0.56 0.48 0.42

m300-0.01 8.38 7.06 4.24 6.19 6.66 8.92

m300-0 6.38 3.52 3.38 4.42 5.36 3.78

m400 -0.05 3.02 1.83 1.50 1.75 2.16 1.94

m500 -0.05 8.45 3.89 5.63 2.56 6.41 5.56

n5-sanchis-100-40w 0.13 0.19 0.09 0.13 0.09 0.13

n5-sanchis-200-40w 2.28 1.44 2.67 0.33 1.55 1.02
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Table 17 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 4

DSJR500.1.col 135.12 19.70 19.66 47.72 63.64 49.34

MANN a9.clq 11.94 10.20 17.73 11.97 13.34 15.67

c-fat500-10.clq 0.78 0.63 0.66 0.78 0.84 0.88

hamming6-4.clq 0.16 0.16 0.14 0.16 0.16 0.14

johnson8-2-4.clq 0.06 0.03 0.05 0.05 0.05 0.05

ln2-sanchis-100-40 5.14 3.00 3.06 3.05 3.30 2.66

ln2-sanchis-100-50 5.88 21.84 6.59 4.20 4.38 4.25

m200 -0.05 20.31 3.42 4.42 5.26 13.06 13.86

mulsol.i.1.col 1.88 0.48 3.69 0.69 0.61 0.48

n5-sanchis-100-40 2.89 1.91 1.22 1.27 0.83 1.11

n5-sanchis-200-40 34.94 18.05 1.34 1.44 1.67 2.52

ln2-sanchis-100-40w 6.63 8.95 6.27 8.19 6.47 4.86

ln2-sanchis-100-50w 7.34 6.09 4.97 12.55 6.28 5.19

m200-0 18.67 12.91 12.47 17.05 11.64 8.64

m300-0.01 465.12 373.39 150.30 282.91 247.05 323.28

m300-0 242.14 115.14 105.41 178.88 187.58 119.21

m400 -0.05 180.16 74.36 68.98 94.02 107.68 91.35

m500 -0.05 591.26 173.63 237.79 180.19 305.76 258.45

n5-sanchis-100-40w 3.98 5.86 2.14 2.67 2.52 4.17

n5-sanchis-200-40w 66.42 55.88 75.07 10.56 29.67 36.81
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Table 17 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 5

DSJR500.1.col >3599.32 793.33 921.40 2026.71 >3591.77 >3577.40

MANN a9.clq 0.01 0.02 0.01 0.01 0.01 0.01

c-fat500-10.clq 8.41 6.08 6.42 8.45 9.36 9.27

hamming6-4.clq 1.75 1.74 1.75 1.75 1.75 1.75

johnson8-2-4.clq 0.09 0.05 0.06 0.06 0.11 0.08

ln2-sanchis-100-40 120.77 107.32 75.25 81.09 89.72 82.77

ln2-sanchis-100-50 264.05 725.25 253.98 141.26 218.08 286.39

m200 -0.05 625.78 80.21 137.41 118.24 280.32 326.55

mulsol.i.1.col 33.34 3.53 12.92 5.95 4.20 3.73

n5-sanchis-100-40 90.44 50.28 41.89 31.86 22.48 49.60

n5-sanchis-200-40 933.05 603.15 43.27 33.48 60.92 100.87

ln2-sanchis-100-40w 166.06 226.26 191.55 209.24 177.41 145.94

ln2-sanchis-100-50w 194.26 172.11 205.76 438.67 191.75 153.21

m200-0 380.54 290.39 285.80 486.09 232.82 182.37

m300-0.01 >3296.52 >3210.53 3274.64 >3422.35 >600.71 >3499.72

m300-0 >3444.73 3551.15 >2016.73 >3248.89 >3220.15 >2629.55

m400 -0.05 >3541.49 3096.88 2110.83 3366.76 3559.07 2590.41

m500 -0.05 >3571.75 >3519.03 >3598.01 >3571.89 >3548.22 >600.49

n5-sanchis-100-40w 89.29 126.77 70.58 60.25 85.10 124.47

n5-sanchis-200-40w 2506.74 3365.60 >3529.48 420.78 1183.04 2092.76
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Table 18 Running time for weight based defective coloring

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 2

DSJR500.1.col 0.30 0.25 0.31 0.22 0.22 0.25

MANN a9.clq 0.14 0.11 0.11 0.11 0.11 0.11

c-fat500-10.clq 0.20 0.20 0.20 0.20 0.19 0.22

hamming6-4.clq 0.03 0.03 0.03 0.01 0.03 0.03

johnson8-2-4.clq 0.01 0.01 0.01 0.01 0.02 0.01

ln2-sanchis-100-40 0.06 0.08 0.08 0.06 0.06 0.08

ln2-sanchis-100-50 0.25 0.25 0.25 0.25 0.25 0.25

m200 -0.05 0.08 0.09 0.09 0.09 0.08 0.08

mulsol.i.1.col 0.36 0.08 0.08 0.09 0.08 0.08

n5-sanchis-100-40 0.03 0.03 0.03 0.03 0.03 0.05

n5-sanchis-200-40 0.14 0.14 0.14 0.14 0.14 0.16

ln2-sanchis-100-40w 0.06 0.06 0.06 0.06 0.05 0.05

ln2-sanchis-100-50w 0.08 0.08 0.08 0.06 0.08 0.06

m200-0 0.09 0.11 0.09 0.09 0.09 0.09

m300-0.01 0.31 0.31 0.34 0.31 0.31 0.30

m300-0 0.27 0.27 0.28 0.27 0.28 0.27

m400 -0.05 0.20 0.20 0.20 0.20 0.20 0.20

m500 -0.05 0.31 0.31 0.31 0.31 0.31 0.31

n5-sanchis-100-40w 0.06 0.05 0.03 0.03 0.05 0.03

n5-sanchis-200-40w 0.14 0.16 0.14 0.16 0.14 0.14
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Table 18 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 3

DSJR500.1.col 1.80 1.80 1.81 1.81 1.81 1.81

MANN a9.clq 0.03 0.02 0.03 0.03 0.03 0.03

c-fat500-10.clq 0.25 0.24 0.25 0.27 0.25 0.24

hamming6-4.clq 0.03 0.03 0.03 0.03 0.03 0.06

johnson8-2-4.clq 0.02 0.00 0.02 0.00 0.01 0.01

ln2-sanchis-100-40 0.14 0.16 0.14 0.16 0.14 0.16

ln2-sanchis-100-50 0.19 0.19 0.19 0.19 0.19 0.20

m200 -0.05 0.66 0.63 0.64 0.66 0.64 0.64

mulsol.i.1.col 0.16 0.14 0.13 0.13 0.14 0.13

n5-sanchis-100-40 0.13 0.11 0.11 0.14 0.11 0.11

n5-sanchis-200-40 1.53 1.50 1.52 1.53 1.52 1.52

ln2-sanchis-100-40w 0.31 0.33 0.33 0.31 0.31 0.31

ln2-sanchis-100-50w 0.69 0.69 0.69 0.69 0.69 0.67

m200-0 0.89 0.88 0.88 0.88 0.89 0.88

m300-0.01 8.38 8.34 8.36 8.39 8.34 8.36

m300-0 6.38 6.41 6.38 6.41 6.38 6.42

m400 -0.05 3.02 3.00 3.02 3.02 3.00 3.03

m500 -0.05 8.45 8.45 8.44 8.47 8.45 8.47

n5-sanchis-100-40w 0.13 0.11 0.13 0.11 0.13 0.13

n5-sanchis-200-40w 2.28 2.30 2.30 2.30 2.31 2.30
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Table 18 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 4

DSJR500.1.col 135.12 135.13 134.56 135.25 135.16 134.56

MANN a9.clq 11.94 11.97 11.95 11.97 12.00 11.98

c-fat500-10.clq 0.78 0.78 0.80 0.77 0.78 0.78

hamming6-4.clq 0.16 0.16 0.16 0.16 0.17 0.16

johnson8-2-4.clq 0.06 0.05 0.05 0.05 0.05 0.05

ln2-sanchis-100-40 5.14 5.12 5.13 5.11 5.12 5.14

ln2-sanchis-100-50 5.88 5.83 5.84 5.84 5.84 5.86

m200 -0.05 20.31 20.33 20.41 20.38 20.36 20.45

mulsol.i.1.col 1.88 1.88 1.89 1.91 1.88 1.88

n5-sanchis-100-40 2.89 2.89 2.89 2.91 2.89 2.89

n5-sanchis-200-40 34.94 34.83 34.91 34.94 34.88 34.97

ln2-sanchis-100-40w 6.63 6.63 6.64 6.61 6.61 6.63

ln2-sanchis-100-50w 7.34 7.33 7.34 7.31 7.39 7.36

m200-0 18.67 18.64 18.63 18.56 18.63 18.64

m300-0.01 465.12 466.38 466.64 466.51 467.23 465.19

m300-0 242.14 242.16 242.56 241.22 242.05 243.38

m400 -0.05 180.16 179.51 180.31 180.19 179.48 180.11

m500 -0.05 591.26 589.18 591.24 589.79 592.27 591.16

n5-sanchis-100-40w 3.98 3.97 3.97 3.95 3.95 3.95

n5-sanchis-200-40w 66.42 66.31 66.15 66.33 66.09 66.33
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Table 18 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 5

DSJR500.1.col >3599.32 >3539.71 >3593.49 >3595.96 >3539.63 >3596.29

MANN a9.clq 0.01 0.01 0.01 0.02 0.01 0.03

c-fat500-10.clq 8.41 8.39 8.41 8.41 8.37 8.41

hamming6-4.clq 1.75 1.74 1.74 1.73 1.73 1.73

johnson8-2-4.clq 0.09 0.08 0.09 0.09 0.09 0.08

ln2-sanchis-100-40 120.77 120.85 121.35 120.95 120.95 120.92

ln2-sanchis-100-50 264.05 265.15 265.17 264.11 263.96 264.55

m200 -0.05 625.78 625.29 628.13 627.83 625.95 628.48

mulsol.i.1.col 33.34 33.39 33.28 33.44 33.47 33.42

n5-sanchis-100-40 90.44 90.11 89.86 90.19 90.22 90.25

n5-sanchis-200-40 933.05 929.33 933.61 933.06 934.25 934.36

ln2-sanchis-100-40w 166.06 166.33 165.61 166.10 166.27 165.68

ln2-sanchis-100-50w 194.26 195.02 194.19 194.88 194.97 194.23

m200-0 380.54 380.64 380.39 380.50 378.92 380.45

m300-0.01 >3296.52 >3296.87 >3312.96 >3299.03 >3312.00 >3310.36

m300-0 >3444.73 >3449.55 >3433.31 >3443.55 >3444.99 >3443.70

m400 -0.05 >3541.49 >3540.61 >3553.93 >848.63 >3552.81 >3554.38

m500 -0.05 >3571.75 >3571.21 >3558.34 >598.39 >3571.27 >3570.76

n5-sanchis-100-40w 89.29 90.19 89.64 89.28 89.58 89.66

n5-sanchis-200-40w 2506.74 2505.41 2513.45 >519.29 2515.88 2514.19



148

Table 19 Running time for weight based defective coloring, reverse order

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 2

DSJR500.1.col 0.30 0.25 0.31 0.22 0.22 0.25

MANN a9.clq 0.14 0.11 0.11 0.11 0.11 0.11

c-fat500-10.clq 0.20 0.20 0.20 0.20 0.19 0.22

hamming6-4.clq 0.03 0.03 0.03 0.01 0.03 0.03

johnson8-2-4.clq 0.01 0.01 0.01 0.01 0.02 0.01

ln2-sanchis-100-40 0.06 0.08 0.08 0.06 0.06 0.08

ln2-sanchis-100-50 0.25 0.25 0.25 0.25 0.25 0.25

m200 -0.05 0.08 0.09 0.09 0.09 0.08 0.08

mulsol.i.1.col 0.36 0.08 0.08 0.09 0.08 0.08

n5-sanchis-100-40 0.03 0.03 0.03 0.03 0.03 0.05

n5-sanchis-200-40 0.14 0.14 0.14 0.14 0.14 0.16

ln2-sanchis-100-40w 0.06 0.06 0.06 0.06 0.05 0.05

ln2-sanchis-100-50w 0.08 0.08 0.08 0.06 0.08 0.06

m200-0 0.09 0.11 0.09 0.09 0.09 0.09

m300-0.01 0.31 0.31 0.34 0.31 0.31 0.30

m300-0 0.27 0.27 0.28 0.27 0.28 0.27

m400 -0.05 0.20 0.20 0.20 0.20 0.20 0.20

m500 -0.05 0.31 0.31 0.31 0.31 0.31 0.31

n5-sanchis-100-40w 0.06 0.05 0.03 0.03 0.05 0.03

n5-sanchis-200-40w 0.14 0.16 0.14 0.16 0.14 0.14
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Table 19 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 3

DSJR500.1.col 1.80 1.80 1.81 1.81 1.81 1.81

MANN a9.clq 0.03 0.02 0.03 0.03 0.03 0.03

c-fat500-10.clq 0.25 0.24 0.25 0.27 0.25 0.24

hamming6-4.clq 0.03 0.03 0.03 0.03 0.03 0.06

johnson8-2-4.clq 0.02 0.00 0.02 0.00 0.01 0.01

ln2-sanchis-100-40 0.14 0.16 0.14 0.16 0.14 0.16

ln2-sanchis-100-50 0.19 0.19 0.19 0.19 0.19 0.20

m200 -0.05 0.66 0.63 0.64 0.66 0.64 0.64

mulsol.i.1.col 0.16 0.14 0.13 0.13 0.14 0.13

n5-sanchis-100-40 0.13 0.11 0.11 0.14 0.11 0.11

n5-sanchis-200-40 1.53 1.50 1.52 1.53 1.52 1.52

ln2-sanchis-100-40w 0.31 0.33 0.33 0.31 0.31 0.31

ln2-sanchis-100-50w 0.69 0.69 0.69 0.69 0.69 0.67

m200-0 0.89 0.88 0.88 0.88 0.89 0.88

m300-0.01 8.38 8.34 8.36 8.39 8.34 8.36

m300-0 6.38 6.41 6.38 6.41 6.38 6.42

m400 -0.05 3.02 3.00 3.02 3.02 3.00 3.03

m500 -0.05 8.45 8.45 8.44 8.47 8.45 8.47

n5-sanchis-100-40w 0.13 0.11 0.13 0.11 0.13 0.13

n5-sanchis-200-40w 2.28 2.30 2.30 2.30 2.31 2.30
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Table 19 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 4

DSJR500.1.col 135.12 135.13 134.56 135.25 135.16 134.56

MANN a9.clq 11.94 11.97 11.95 11.97 12.00 11.98

c-fat500-10.clq 0.78 0.78 0.80 0.77 0.78 0.78

hamming6-4.clq 0.16 0.16 0.16 0.16 0.17 0.16

johnson8-2-4.clq 0.06 0.05 0.05 0.05 0.05 0.05

ln2-sanchis-100-40 5.14 5.12 5.13 5.11 5.12 5.14

ln2-sanchis-100-50 5.88 5.83 5.84 5.84 5.84 5.86

m200 -0.05 20.31 20.33 20.41 20.38 20.36 20.45

mulsol.i.1.col 1.88 1.88 1.89 1.91 1.88 1.88

n5-sanchis-100-40 2.89 2.89 2.89 2.91 2.89 2.89

n5-sanchis-200-40 34.94 34.83 34.91 34.94 34.88 34.97

ln2-sanchis-100-40w 6.63 6.63 6.64 6.61 6.61 6.63

ln2-sanchis-100-50w 7.34 7.33 7.34 7.31 7.39 7.36

m200-0 18.67 18.64 18.63 18.56 18.63 18.64

m300-0.01 465.12 466.38 466.64 466.51 467.23 465.19

m300-0 242.14 242.16 242.56 241.22 242.05 243.38

m400 -0.05 180.16 179.51 180.31 180.19 179.48 180.11

m500 -0.05 591.26 589.18 591.24 589.79 592.27 591.16

n5-sanchis-100-40w 3.98 3.97 3.97 3.95 3.95 3.95

n5-sanchis-200-40w 66.42 66.31 66.15 66.33 66.09 66.33
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Table 19 (continued)

Graph Running time, sec

No Defective m-coloring parameter

ordering 1 2 3 4 5

k = 5

DSJR500.1.col >3599.32 >3539.71 >3593.49 >3595.96 >3539.63 >3596.29

MANN a9.clq 0.01 0.01 0.01 0.02 0.01 0.03

c-fat500-10.clq 8.41 8.39 8.41 8.41 8.37 8.41

hamming6-4.clq 1.75 1.74 1.74 1.73 1.73 1.73

johnson8-2-4.clq 0.09 0.08 0.09 0.09 0.09 0.08

ln2-sanchis-100-40 120.77 120.85 121.35 120.95 120.95 120.92

ln2-sanchis-100-50 264.05 265.15 265.17 264.11 263.96 264.55

m200 -0.05 625.78 625.29 628.13 627.83 625.95 628.48

mulsol.i.1.col 33.34 33.39 33.28 33.44 33.47 33.42

n5-sanchis-100-40 90.44 90.11 89.86 90.19 90.22 90.25

n5-sanchis-200-40 933.05 929.33 933.61 933.06 934.25 934.36

ln2-sanchis-100-40w 166.06 166.33 165.61 166.10 166.27 165.68

ln2-sanchis-100-50w 194.26 195.02 194.19 194.88 194.97 194.23

m200-0 380.54 380.64 380.39 380.50 378.92 380.45

m300-0.01 >3296.52 >3296.87 >3312.96 >3299.03 >3312.00 >3310.36

m300-0 >3444.73 >3449.55 >3433.31 >3443.55 >3444.99 >3443.70

m400 -0.05 >3541.49 >3540.61 >3553.93 >848.63 >3552.81 >3554.38

m500 -0.05 >3571.75 >3571.21 >3558.34 >598.39 >3571.27 >3570.76

n5-sanchis-100-40w 89.29 90.19 89.64 89.28 89.58 89.66

n5-sanchis-200-40w 2506.74 2505.41 2513.45 >519.29 2515.88 2514.19
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Table 20 General and special algorithm for k = 2

Runtime, sec

Graph General Special

DSJR500.1.col 0.01 0.00

MANN a9.clq 0.01 0.00

c-fat500-10.clq 0.03 0.00

hamming6-4.clq 0.00 0.00

johnson8-2-4.clq 0.00 0.00

ln2-sanchis-100-40 0.03 0.00

ln2-sanchis-100-50 0.14 0.00

m200 -0.05 0.01 0.00

mulsol.i.1.col 0.00 0.00

n5-sanchis-100-40 0.00 0.00

n5-sanchis-200-40 0.01 0.00

ln2-sanchis-100-40w 0.01 0.00

ln2-sanchis-100-50w 0.02 0.00

m200-0 0.02 0.00

m300-0.01 0.17 0.00

m300-0 0.03 0.00

m400 -0.05 0.03 0.00

m500 -0.05 0.05 0.00

n5-sanchis-100-40w 0.00 0.00

n5-sanchis-200-40w 0.05 0.00
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Table 21 Running time with N2 based pruning

Runtime, sec

k = 2 k = 3 k = 4 k = 5

Graph W
it

h
ou

t
p
ru

n
in

g

W
it

h
p
ru

n
in

g

W
it

h
ou

t
p
ru

n
in

g

W
it

h
p
ru

n
in

g

W
it

h
ou

t
p
ru

n
in

g

W
it

h
p
ru

n
in

g

W
it

h
ou

t
p
ru

n
in

g

W
it

h
p
ru

n
in

g

DSJR500.1.col 0.28 0.01 4.38 0.14 256.05 1.94 > 600 17.28

MANN a9.clq 0.03 0.01 0.05 0.02 2.81 2.20 0.01 0.00

c-fat500-10.clq 0.22 0.03 0.25 0.03 0.45 0.09 3.14 0.98

hamming6-4.clq 0.03 0.00 0.05 0.00 0.14 0.08 1.55 1.25

johnson8-2-4.clq 0.01 0.00 0.01 0.00 0.05 0.03 0.05 0.03

ln2-sanchis-100-40 0.08 0.03 0.22 0.14 5.22 4.14 100.91 81.28

ln2-sanchis-100-50 0.20 0.14 0.30 0.19 10.19 8.30 308.00 255.37

m200 -0.05 0.13 0.01 0.83 0.14 17.91 1.27 822.45 18.11

mulsol.i.1.col 0.08 0.00 0.20 0.02 5.58 0.30 102.77 2.23

n5-sanchis-100-40 0.05 0.00 0.09 0.03 1.00 0.78 29.98 24.20

n5-sanchis-200-40 0.08 0.01 0.27 0.13 3.77 3.00 92.44 75.34

ln2-sanchis-100-40w 0.05 0.01 0.09 0.06 1.08 0.91 17.14 14.56

ln2-sanchis-100-50w 0.05 0.02 0.09 0.06 1.34 1.11 18.98 15.72

m200-0 0.08 0.02 0.20 0.16 2.13 1.80 23.56 19.72

m300-0.01 0.13 0.17 0.86 0.72 14.56 11.89 220.76 187.10

m300-0 0.13 0.03 0.52 0.38 7.45 6.03 112.13 94.28

m400 -0.05 0.17 0.03 0.98 0.38 24.89 5.86 751.20 88.44

m500 -0.05 0.20 0.05 2.03 1.11 70.72 27.98 2521.03 654.25

n5-sanchis-100-40w 0.03 0.00 0.06 0.03 0.31 0.23 3.98 3.25

n5-sanchis-200-40w 0.08 0.05 0.47 0.34 9.36 7.56 207.91 175.99
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APPENDIX B

EXACT k-PLEX ALGORITHM NUMERICAL RESULTS AND

COMPARISONS

Table 22 Dimacs and Sanchis instances information

Densi- Maximum k-plex size

Graph Nodes Edges ty, % k = 1 k = 2 k = 3 k = 4 k = 5

C125.9.clq 125 6963 89.85 34 43 ≥35 ≥48 ≥51

C250.9.clq 250 27984 89.91 ≥40 ≥31 ≥31 ≥51 ≥54

C500.9.clq 500 112332 90.05 ≥41 ≥30 ≥28 ≥28 ≥51

DSJC125.1.col 125 736 9.50 4 5 7 8 9

DSJC125.5.col 125 3891 50.21 10 13 14 17 ≥18

DSJC125.9.col 125 6961 89.82 34 ≥40 ≥35 ≥48 ≥50

DSJC250.1.col 250 3218 10.34 4 6 7 8 10

DSJC250.5.col 250 15668 50.34 12 14 17 ≥16 ≥17

DSJC250.9.col 250 27897 89.63 ≥38 ≥31 ≥42 ≥47 ≥50

DSJC500.1.col 500 12458 9.99 5 6 8 9 ≥10

DSJC500.5.clq 500 62624 50.20 13 16 ≥15 ≥15 ≥15

DSJC500.5.col 500 62624 50.20 13 16 ≥15 ≥15 ≥15

DSJC500.9.col 500 112437 90.13 ≥40 ≥29 ≥29 ≥43 ≥55

DSJR500.1.col 500 3555 2.85 12 14 15 15 16

DSJR500.1c.col 500 121275 97.21 ≥35 ≥37 ≥54 ≥95 ≥95

DSJR500.5.col 500 58862 47.18 ≥120 123 ≥115 ≥89 ≥84

MANN a27.clq 378 70551 99.01 126 ≥235 351 ≥350 ≥350

MANN a9.clq 45 918 92.73 16 26 36 36 44

R125.1.col 125 209 2.70 5 6 6 7 9

R125.1c.col 125 7501 96.79 46 70 87 100 109

R125.5.col 125 3838 49.52 36 36 38 39 40

R250.1.col 250 867 2.79 8 8 9 11 11

R250.1c.col 250 30227 97.11 ≥49 ≥54 ≥63 ≥90 ≥122

R250.5.col 250 14849 47.71 65 65 67 68 ≥60

brock200 1.clq 200 14834 74.54 21 ≥24 ≥23 ≥23 ≥23

brock200 2.clq 200 9876 49.63 12 13 16 ≥17 ≥16
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Table 22 (continued)

Densi- Maximum k-plex size

Graph Nodes Edges ty, % k = 1 k = 2 k = 3 k = 4 k = 5

brock200 3.clq 200 12048 60.54 15 17 ≥19 ≥19 ≥19

brock200 4.clq 200 13089 65.77 17 20 ≥20 ≥20 ≥19

brock400 1.clq 400 59723 74.84 27 ≥23 ≥22 ≥22 ≥21

brock400 2.clq 400 59786 74.92 29 ≥23 ≥22 ≥21 ≥21

brock400 3.clq 400 59681 74.79 31 ≥22 ≥22 ≥21 ≥22

brock400 4.clq 400 59765 74.89 33 ≥22 ≥22 ≥21 ≥22

c-fat200-1.clq 200 1534 7.71 12 12 12 12 14

c-fat200-2.clq 200 3235 16.26 24 24 24 24 24

c-fat200-5.clq 200 8473 42.58 58 58 58 58 58

c-fat500-1.clq 500 4459 3.57 14 14 14 14 15

c-fat500-10.clq 500 46627 37.38 126 126 126 126 126

c-fat500-2.clq 500 9139 7.33 26 26 26 26 26

c-fat500-5.clq 500 23191 18.59 64 64 64 64 64

flat300 20 0.col 300 21375 47.66 11 14 17 ≥16 ≥17

flat300 26 0.col 300 21633 48.23 11 14 ≥16 ≥16 ≥16

flat300 28 0.col 300 21695 48.37 12 14 ≥16 ≥16 ≥16

gen200 p0.9 44.clq 200 17910 90.00 44 ≥33 ≥41 ≥50 ≥55

gen200 p0.9 55.clq 200 17910 90.00 55 ≥49 ≥33 ≥53 ≥57

gen400 p0.9 55.clq 400 71820 90.00 55 ≥39 ≥29 ≥53 ≥61

gen400 p0.9 65.clq 400 71820 90.00 65 ≥30 ≥28 ≥28 ≥54

gen400 p0.9 75.clq 400 71820 90.00 75 ≥54 ≥40 ≥43 ≥60

hamming6-2.clq 64 1824 90.48 32 32 32 40 48

hamming6-4.clq 64 704 34.92 4 6 8 10 12

hamming8-2.clq 256 31616 96.86 128 128 128 ≥45 ≥60

hamming8-4.clq 256 20864 63.92 16 16 ≥20 ≥18 ≥18

johnson16-2-4.clq 120 5460 76.47 8 10 ≥16 ≥19 ≥21

johnson32-2-4.clq 496 107880 87.88 16 ≥21 ≥24 ≥25 ≥26

johnson8-2-4.clq 28 210 55.56 4 5 8 9 12

johnson8-4-4.clq 70 1855 76.81 14 14 18 22 ≥24

keller4.clq 171 9435 64.91 11 15 21 ≥22 ≥20

le450 15a.col 450 8168 8.09 15 15 15 15 15

le450 15b.col 450 8169 8.09 15 15 15 15 15

le450 15c.col 450 16680 16.51 15 15 15 16 ≥15
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Table 22 (continued)

Densi- Maximum k-plex size

Graph Nodes Edges ty, % k = 1 k = 2 k = 3 k = 4 k = 5

le450 15d.col 450 16750 16.58 15 15 15 15 ≥14

ln2-sanchis-100-40 100 1980 40.00 11 12 18 18 19

ln2-sanchis-100-50 100 2475 50.00 14 14 21 23 23

ln2-sanchis-100-60 100 2970 60.00 19 20 23 24 26

ln2-sanchis-100-70 100 3465 70.00 26 26 26 ≥26 ≥26

ln2-sanchis-100-80 100 3960 80.00 42 42 42 42 ≥40

ln2-sanchis-100-90 100 4455 90.00 88 88 88 88 88

ln2-sanchis-1000-40 1000 199800 40.00 16 ≥16 ≥11 ≥30 ≥33

ln2-sanchis-1000-50 1000 249750 50.00 20 ≥20 ≥13 ≥13 ≥38

ln2-sanchis-1000-60 1000 299700 60.00 28 ≥16 ≥16 ≥46 ≥55

ln2-sanchis-1000-70 1000 349650 70.00 39 ≥18 ≥18 ≥74 ≥94

ln2-sanchis-1000-80 1000 399600 80.00 62 ≥21 ≥86 ≥22 ≥31

ln2-sanchis-1000-90 1000 449550 90.00 132 ≥89 ≥198 ≥59 ≥60

ln2-sanchis-200-40 200 7960 40.00 12 13 ≥19 ≥24 ≥30

ln2-sanchis-200-50 200 9950 50.00 16 17 ≥24 ≥32 ≥36

ln2-sanchis-200-60 200 11940 60.00 21 23 33 ≥37 ≥38

ln2-sanchis-200-70 200 13930 70.00 30 ≥31 45 ≥39 ≥21

ln2-sanchis-200-80 200 15920 80.00 48 48 ≥48 ≥24 ≥24

ln2-sanchis-200-90 200 17910 90.00 101 101 101 101 ≥58

ln2-sanchis-300-40 300 17940 40.00 13 ≥15 ≥21 ≥28 ≥32

ln2-sanchis-300-50 300 22425 50.00 17 ≥18 ≥24 ≥36 ≥33

ln2-sanchis-300-60 300 26910 60.00 23 ≥23 ≥33 ≥40 ≥43

ln2-sanchis-300-70 300 31395 70.00 32 ≥32 ≥43 ≥53 ≥18

ln2-sanchis-300-80 300 35880 80.00 52 ≥52 ≥62 ≥23 ≥33

ln2-sanchis-300-90 300 40365 90.00 109 ≥99 ≥93 ≥56 ≥62

ln2-sanchis-400-40 400 31920 40.00 14 ≥15 ≥21 ≥28 ≥30

ln2-sanchis-400-50 400 39900 50.00 18 ≥19 ≥27 ≥33 ≥43

ln2-sanchis-400-60 400 47880 60.00 24 ≥24 ≥33 ≥36 ≥60

ln2-sanchis-400-70 400 55860 70.00 34 ≥34 ≥32 ≥59 ≥19

ln2-sanchis-400-80 400 63840 80.00 54 ≥47 ≥79 ≥81 ≥22

ln2-sanchis-400-90 400 71820 90.00 114 ≥88 ≥138 ≥132 ≥66

ln2-sanchis-500-40 500 49900 40.00 14 ≥15 ≥21 ≥25 ≥23

ln2-sanchis-500-50 500 62375 50.00 18 ≥19 ≥27 ≥34 ≥43
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Table 22 (continued)

Densi- Maximum k-plex size

Graph Nodes Edges ty, % k = 1 k = 2 k = 3 k = 4 k = 5

ln2-sanchis-500-60 500 74850 60.00 25 ≥25 ≥16 ≥42 ≥65

ln2-sanchis-500-70 500 87325 70.00 35 ≥35 ≥18 ≥72 ≥18

ln2-sanchis-500-80 500 99800 80.00 56 ≥56 ≥84 ≥21 ≥22

ln2-sanchis-500-90 500 112275 90.00 118 ≥95 ≥28 ≥61 ≥68

ln2-sanchis-600-40 600 71880 40.00 14 ≥15 ≥21 ≥27 ≥32

ln2-sanchis-600-50 600 89850 50.00 19 ≥19 ≥29 ≥39 ≥38

ln2-sanchis-600-60 600 107820 60.00 26 ≥26 ≥35 ≥42 ≥63

ln2-sanchis-600-70 600 125790 70.00 36 ≥18 ≥18 ≥71 ≥30

ln2-sanchis-600-80 600 143760 80.00 58 ≥22 ≥82 ≥23 ≥29

ln2-sanchis-600-90 600 161730 90.00 122 ≥115 ≥27 ≥51 ≥53

ln2-sanchis-700-40 700 97860 40.00 15 ≥15 ≥18 ≥26 ≥34

ln2-sanchis-700-50 700 122325 50.00 19 ≥19 ≥30 ≥32 ≥32

ln2-sanchis-700-60 700 146790 60.00 26 ≥26 ≥15 ≥39 ≥60

ln2-sanchis-700-70 700 171255 70.00 37 ≥19 ≥18 ≥74 ≥18

ln2-sanchis-700-80 700 195720 80.00 59 ≥22 ≥87 ≥21 ≥21

ln2-sanchis-700-90 700 220185 90.00 125 ≥124 ≥122 ≥59 ≥61

ln2-sanchis-800-40 800 127840 40.00 15 ≥15 ≥21 ≥22 ≥20

ln2-sanchis-800-50 800 159800 50.00 20 ≥20 ≥13 ≥24 ≥38

ln2-sanchis-800-60 800 191760 60.00 27 ≥15 ≥15 ≥45 ≥64

ln2-sanchis-800-70 800 223720 70.00 38 ≥18 ≥37 ≥76 ≥43

ln2-sanchis-800-80 800 255680 80.00 60 ≥22 ≥84 ≥21 ≥31

ln2-sanchis-800-90 800 287640 90.00 127 ≥96 ≥26 ≥61 ≥69

ln2-sanchis-900-40 900 161820 40.00 15 ≥15 ≥16 ≥26 ≥24

ln2-sanchis-900-50 900 202275 50.00 20 ≥21 ≥14 ≥26 ≥31

ln2-sanchis-900-60 900 242730 60.00 27 ≥26 ≥37 ≥46 ≥41

ln2-sanchis-900-70 900 283185 70.00 39 ≥18 ≥17 ≥75 ≥28

ln2-sanchis-900-80 900 323640 80.00 61 ≥21 ≥22 ≥21 ≥21

ln2-sanchis-900-90 900 364095 90.00 130 ≥27 ≥26 ≥57 ≥63

mulsol.i.1.col 197 3925 20.33 49 50 51 51 52

n5-sanchis-100-40 100 1980 40.00 20 20 20 20 21

n5-sanchis-100-50 100 2475 50.00 20 20 20 21 22

n5-sanchis-100-60 100 2970 60.00 20 20 22 24 26

n5-sanchis-100-70 100 3465 70.00 20 20 24 27 ≥25
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Table 22 (continued)

Densi- Maximum k-plex size

Graph Nodes Edges ty, % k = 1 k = 2 k = 3 k = 4 k = 5

n5-sanchis-100-80 100 3960 80.00 20 24 29 ≥28 ≥33

n5-sanchis-100-90 100 4455 90.00 20 37 ≥41 ≥47 ≥53

n5-sanchis-1000-40 1000 199800 40.00 200 200 200 ≥200 ≥200

n5-sanchis-1000-50 1000 249750 50.00 200 200 200 ≥200 ≥200

n5-sanchis-1000-60 1000 299700 60.00 200 200 ≥200 ≥200 ≥128

n5-sanchis-1000-70 1000 349650 70.00 200 ≥148 ≥200 ≥200 ≥19

n5-sanchis-1000-80 1000 399600 80.00 200 ≥200 ≥120 ≥21 ≥22

n5-sanchis-1000-90 1000 449550 90.00 200 ≥29 ≥25 ≥57 ≥60

n5-sanchis-200-40 200 7960 40.00 40 40 40 40 40

n5-sanchis-200-50 200 9950 50.00 40 40 40 40 ≥40

n5-sanchis-200-60 200 11940 60.00 40 40 40 ≥40 ≥40

n5-sanchis-200-70 200 13930 70.00 40 40 ≥40 ≥40 ≥20

n5-sanchis-200-80 200 15920 80.00 40 ≥40 ≥40 ≥25 ≥25

n5-sanchis-200-90 200 17910 90.00 40 ≥31 ≥30 ≥31 ≥54

n5-sanchis-300-40 300 17940 40.00 60 60 60 60 ≥60

n5-sanchis-300-50 300 22425 50.00 60 60 60 60 ≥60

n5-sanchis-300-60 300 26910 60.00 60 60 60 ≥60 ≥38

n5-sanchis-300-70 300 31395 70.00 60 60 ≥60 ≥60 ≥19

n5-sanchis-300-80 300 35880 80.00 60 ≥60 ≥30 ≥24 ≥29

n5-sanchis-300-90 300 40365 90.00 60 ≥30 ≥30 ≥57 ≥62

n5-sanchis-400-40 400 31920 40.00 80 80 80 80 ≥80

n5-sanchis-400-50 400 39900 50.00 80 80 80 80 ≥80

n5-sanchis-400-60 400 47880 60.00 80 80 80 ≥80 ≥61

n5-sanchis-400-70 400 55860 70.00 80 80 ≥80 ≥56 ≥19

n5-sanchis-400-80 400 63840 80.00 80 ≥80 ≥80 ≥22 ≥23

n5-sanchis-400-90 400 71820 90.00 80 ≥32 ≥28 ≥56 ≥60

n5-sanchis-500-40 500 49900 40.00 100 100 100 100 ≥100

n5-sanchis-500-50 500 62375 50.00 100 100 100 ≥100 ≥100

n5-sanchis-500-60 500 74850 60.00 100 100 100 ≥100 ≥80

n5-sanchis-500-70 500 87325 70.00 100 100 ≥100 ≥100 ≥19

n5-sanchis-500-80 500 99800 80.00 100 ≥100 ≥100 ≥23 ≥23

n5-sanchis-500-90 500 112275 90.00 100 ≥31 ≥27 ≥56 ≥63

n5-sanchis-600-40 600 71880 40.00 120 120 120 120 ≥120
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Table 22 (continued)

Densi- Maximum k-plex size

Graph Nodes Edges ty, % k = 1 k = 2 k = 3 k = 4 k = 5

n5-sanchis-600-50 600 89850 50.00 120 120 120 ≥120 ≥120

n5-sanchis-600-60 600 107820 60.00 120 120 120 ≥120 ≥120

n5-sanchis-600-70 600 125790 70.00 120 120 ≥120 ≥86 ≥19

n5-sanchis-600-80 600 143760 80.00 120 ≥120 ≥120 ≥23 ≥22

n5-sanchis-600-90 600 161730 90.00 120 ≥28 ≥28 ≥57 ≥67

n5-sanchis-700-40 700 97860 40.00 140 140 140 140 ≥140

n5-sanchis-700-50 700 122325 50.00 140 140 140 ≥140 ≥140

n5-sanchis-700-60 700 146790 60.00 140 140 ≥140 ≥140 ≥39

n5-sanchis-700-70 700 171255 70.00 140 140 ≥140 ≥97 ≥18

n5-sanchis-700-80 700 195720 80.00 140 ≥140 ≥22 ≥21 ≥21

n5-sanchis-700-90 700 220185 90.00 140 ≥27 ≥28 ≥50 ≥74

n5-sanchis-800-40 800 127840 40.00 160 160 160 ≥152 ≥160

n5-sanchis-800-50 800 159800 50.00 160 160 160 ≥160 ≥160

n5-sanchis-800-60 800 191760 60.00 160 160 ≥131 ≥160 ≥108

n5-sanchis-800-70 800 223720 70.00 160 160 ≥160 ≥160 ≥18

n5-sanchis-800-80 800 255680 80.00 160 ≥160 ≥22 ≥21 ≥29

n5-sanchis-800-90 800 287640 90.00 160 ≥28 ≥29 ≥58 ≥65

n5-sanchis-900-40 900 161820 40.00 180 180 180 ≥180 ≥180

n5-sanchis-900-50 900 202275 50.00 180 180 180 ≥180 ≥180

n5-sanchis-900-60 900 242730 60.00 180 180 ≥154 ≥180 ≥92

n5-sanchis-900-70 900 283185 70.00 180 180 ≥180 ≥73 ≥18

n5-sanchis-900-80 900 323640 80.00 180 ≥180 ≥180 ≥21 ≥21

n5-sanchis-900-90 900 364095 90.00 180 ≥27 ≥27 ≥60 ≥66

p hat300-1.clq 300 10933 24.38 8 10 12 14 ≥13

p hat300-2.clq 300 21928 48.89 25 30 ≥30 ≥19 ≥18

p hat300-3.clq 300 33390 74.45 36 ≥26 ≥22 ≥20 ≥20

p hat500-1.clq 500 31569 25.31 9 12 14 ≥13 ≥14

p hat500-2.clq 500 62946 50.46 36 ≥23 ≥19 ≥16 ≥15

p hat500-3.clq 500 93800 75.19 ≥49 ≥22 ≥19 ≥18 ≥69

r100.5 100 2508 50.67 9 12 14 16 18

r200.5 200 10036 50.43 11 14 17 ≥17 ≥17

r300.5 300 22361 49.86 12 14 ≥17 ≥16 ≥16

r400.5 400 40061 50.20 13 15 ≥16 ≥16 ≥16
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Table 22 (continued)

Densi- Maximum k-plex size

Graph Nodes Edges ty, % k = 1 k = 2 k = 3 k = 4 k = 5

r500.5 500 62161 49.83 13 16 ≥16 ≥15 ≥16

san200 0.7 1.clq 200 13930 70.00 30 ≥30 ≥43 ≥57 ≥72

san200 0.7 2.clq 200 13930 70.00 18 ≥24 ≥31 ≥44 ≥51

san200 0.9 1.clq 200 17910 90.00 70 ≥82 124 125 ≥124

san200 0.9 2.clq 200 17910 90.00 60 ≥59 105 ≥79 ≥54

san200 0.9 3.clq 200 17910 90.00 44 ≥45 ≥58 ≥73 ≥43

san400 0.5 1.clq 400 39900 50.00 13 ≥11 ≥21 ≥28 ≥34

san400 0.7 1.clq 400 55860 70.00 40 ≥27 ≥45 ≥57 ≥89

san400 0.7 2.clq 400 55860 70.00 30 ≥24 ≥41 ≥55 ≥65

san400 0.7 3.clq 400 55860 70.00 22 ≥17 ≥17 ≥45 ≥56

san400 0.9 1.clq 400 71820 90.00 100 ≥81 ≥113 ≥153 ≥109

sanr200 0.7.clq 200 13868 69.69 18 22 ≥21 ≥21 ≥21

sanr200 0.9.clq 200 17863 89.76 42 ≥34 ≥33 ≥33 ≥49

sanr400 0.5.clq 400 39984 50.11 13 15 ≥15 ≥16 ≥16

sanr400 0.7.clq 400 55869 70.01 21 ≥20 ≥20 ≥20 ≥20

school1.col 385 19095 25.83 14 ≥28 ≥38 ≥40 ≥41

school1 nsh.col 352 14612 23.65 14 28 37 41 ≥42
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Table 23 Dimacs and Sanchis instances running time

k = 2 k = 3 k = 4 k = 5
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C125.9.clq O1 6186.06 O1R >10800 O1 >10800 O1 >10800

C250.9.clq O1R >10800 O1R >10800 O1 >10800 O1 >10800

C500.9.clq O1R >10800 O1R >10800 O1R >10800 O1 >10800

DSJC125.1.col O1R 0.06 W4R 0.08 O2 0.39 C1 13.25

DSJC125.5.col O1R 0.28 O1R 19.17 O1R 1239.17 O1R >10800

DSJC125.9.col O1 >10800 O1R >10800 O1 >10800 O1 >10800

DSJC250.1.col O1R 0.13 O1R 1.13 O1R 58.97 O1R 1489.09

DSJC250.5.col O1R 23.98 O1R 4547.94 O1R >10800 O1R >10800

DSJC250.9.col O1R >10800 O1 >10800 O1 >10800 O1 >10800

DSJC500.1.col O1R 0.47 O1R 18.44 C2R 4576.47 W4 >10800

DSJC500.5.clq O1R 6457.14 O1R >10800 O1R >10800 O1R >10800

DSJC500.5.col O1R 6465.76 O1R >10800 O1R >10800 O1R >10800

DSJC500.9.col O1R >10800 O1R >10800 W4R >10800 C4R >10800

DSJR500.1.col D 0.20 D 0.19 O2 0.22 O2 0.45

DSJR500.1c.col C1 >10800 C1 >10800 C2R >10800 C3R >10800

DSJR500.5.col C1 1030.65 C1 >10800 C1 >10800 O1R >10800

MANN a27.clq D >10800 O1R 0.24 W2R >10800 O2 >10800

MANN a9.clq O1R 0.01 O1R 0.03 C1 6.23 DR 0.03

R125.1.col D 0.05 W2R 0.03 C1R 0.06 W3R 0.06

R125.1c.col O1R 15.30 O1R 4465.74 O1 1.44 O1R 0.19

R125.5.col DR 0.08 C1 0.30 C1 10.11 C3R 53.49

R250.1.col O1 0.09 C1R 0.09 D 0.09 C4R 0.09

R250.1c.col O1 >10800 O1 >10800 O1 >10800 O1 >10800

R250.5.col C2R 0.59 C5R 15.27 C3R 154.19 C1 >10800

brock200 1.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800

brock200 2.clq O1 4.74 O1R 446.68 O1R >10800 O1R >10800

brock200 3.clq O1R 76.33 O1R >10800 O1R >10800 O1R >10800

brock200 4.clq O1R 398.65 O1R >10800 O1R >10800 O1R >10800

brock400 1.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800

brock400 2.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800
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Table 23 (continued)

k = 2 k = 3 k = 4 k = 5
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brock400 3.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800

brock400 4.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800

c-fat200-1.clq O1R 0.06 C5R 0.08 W1R 0.08 D 0.09

c-fat200-2.clq O1 0.08 O1 0.08 O1 0.11 O1 0.20

c-fat200-5.clq D 0.08 D 0.08 C4R 0.13 O2 0.75

c-fat500-1.clq C5R 0.16 C5R 0.17 O2 0.27 O2 0.24

c-fat500-10.clq O1 0.19 O1 0.22 O2 0.42 O1 1.70

c-fat500-2.clq O1R 0.19 C5R 0.17 D 0.31 O2 1.41

c-fat500-5.clq O1 0.17 O1 0.19 O2 0.30 O1 1.03

flat300 20 0.col O1R 27.36 C5 10454.7 O1R >10800 C1 >10800

flat300 26 0.col D 47.08 O1R >10800 O1R >10800 O1R >10800

flat300 28 0.col C1 53.13 O1R >10800 O1R >10800 O1R >10800

gen200 p0.9 44.clq O1R >10800 C1 >10800 O1 >10800 O1 >10800

gen200 p0.9 55.clq O1R >10800 O1R >10800 O1 >10800 O1 >10800

gen400 p0.9 55.clq C1 >10800 O1R >10800 O1 >10800 O1 >10800

gen400 p0.9 65.clq O1R >10800 O1R >10800 O1R >10800 O1 >10800

gen400 p0.9 75.clq O1R >10800 C1 >10800 C4 >10800 O1 >10800

hamming6-2.clq O1R 0.03 O1R 0.14 W5 131.86 DR 16.11

hamming6-4.clq D 0.02 O1R 0.03 O1R 0.16 O1R 1.75

hamming8-2.clq W3R 0.13 C3R 1500.83 C4R >10800 W5 >10800

hamming8-4.clq C5 7.45 W4 >10800 C4 >10800 O2R >10800

johnson16-2-4.clq C1R 3124.10 C4 >10800 C5 >10800 O2 >10800

johnson32-2-4.clq W1R >10800 D >10800 D >10800 O1 >10800

johnson8-2-4.clq O1 0.01 O1R 0.01 O2 0.05 O1 0.06

johnson8-4-4.clq DR 0.05 W3R 4.92 O2 769.75 C4R >10800

keller4.clq W5 55.45 O2 5356.47 O1R >10800 O1R >10800

le450 15a.col C1 0.19 O1R 1.48 O1R 56.72 O2R 8253.35

le450 15b.col C1 0.19 C1 1.20 O1R 65.55 O2R 9804.87

le450 15c.col O1 0.28 C4R 10.11 C1 894.74 C1 >10800

le450 15d.col O1 0.30 C3R 11.39 O1R 1399.44 O1R >10800

ln2-sanchis-100-40 D 0.08 O1R 0.09 O1R 0.94 O1R 18.14
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Table 23 (continued)

k = 2 k = 3 k = 4 k = 5

Graph O
rd

er
in

g

R
u
n
n
in

g

ti
m

e,
se

c

O
rd

er
in

g

R
u
n
n
in

g

ti
m

e,
se

c

O
rd

er
in

g

R
u
n
n
in

g

ti
m

e,
se

c

O
rd

er
in

g

R
u
n
n
in

g

ti
m

e,
se

c

ln2-sanchis-100-50 C1R 0.20 C3 0.13 C3R 10.17 O1R 43.99

ln2-sanchis-100-60 C1R 0.06 O1 1.80 O1R 139.38 O1R 6553.74

ln2-sanchis-100-70 C1R 0.06 C1 16.34 O1R >10800 O1R >10800

ln2-sanchis-100-80 C1R 0.08 C2R 10.94 O1R 89.89 O1R >10800

ln2-sanchis-100-90 O1R 0.03 O1R 0.05 O1 0.05 DR 0.05

ln2-sanchis-1000-40 O1R >10800 O1R >10800 C2 >10800 C1 >10800

ln2-sanchis-1000-50 O1R >10800 O1R >10800 O1R >10800 C1 >10800

ln2-sanchis-1000-60 O1R >10800 O1R >10800 C3R >10800 O1 >10800

ln2-sanchis-1000-70 O1R >10800 O1R >10800 O1 >10800 O1 >10800

ln2-sanchis-1000-80 O1R >10800 O1 >10800 O1R >10800 C1 >10800

ln2-sanchis-1000-90 O1 >10800 O1 >10800 O1 >10800 O1 >10800

ln2-sanchis-200-40 C1 46.89 O1R >10800 O1R >10800 C4 >10800

ln2-sanchis-200-50 O1R 9946.19 O1R >10800 C1 >10800 C4R >10800

ln2-sanchis-200-60 O1 393.28 C3 1028.47 C2R >10800 O1 >10800

ln2-sanchis-200-70 C3 >10800 O1R 1051.50 O1 >10800 O1R >10800

ln2-sanchis-200-80 C1R 365.91 O1R >10800 O1R >10800 O1R >10800

ln2-sanchis-200-90 O1 0.11 O1R 8.39 O1 1116.05 O1R >10800

ln2-sanchis-300-40 O1R >10800 O1R >10800 C4 >10800 C1 >10800

ln2-sanchis-300-50 O1R >10800 O1R >10800 C2 >10800 C1R >10800

ln2-sanchis-300-60 O1R >10800 O1R >10800 C2R >10800 O1 >10800

ln2-sanchis-300-70 O1R >10800 C1R >10800 O1 >10800 O1R >10800

ln2-sanchis-300-80 O1R >10800 O1 >10800 O1R >10800 C4 >10800

ln2-sanchis-300-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

ln2-sanchis-400-40 O1R >10800 O1R >10800 C5 >10800 C1 >10800

ln2-sanchis-400-50 O1R >10800 C3 >10800 C1R >10800 C3R >10800

ln2-sanchis-400-60 O1R >10800 C3 >10800 C1 >10800 O1 >10800

ln2-sanchis-400-70 C2 >10800 C1 >10800 O1 >10800 O1R >10800

ln2-sanchis-400-80 C1 >10800 O1 >10800 O1 >10800 O1R >10800

ln2-sanchis-400-90 O1R >10800 O1 >10800 O1 >10800 O1 >10800

ln2-sanchis-500-40 O1R >10800 O1R >10800 C5 >10800 C2 >10800

ln2-sanchis-500-50 O1R >10800 C3 >10800 C1 >10800 C2R >10800
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Table 23 (continued)

k = 2 k = 3 k = 4 k = 5
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ln2-sanchis-500-60 O1R >10800 O1R >10800 C1R >10800 O1 >10800

ln2-sanchis-500-70 O1R >10800 O1R >10800 O1 >10800 O1R >10800

ln2-sanchis-500-80 O1R >10800 O1 >10800 O1R >10800 O1R >10800

ln2-sanchis-500-90 O1 >10800 O1R >10800 O1 >10800 O1 >10800

ln2-sanchis-600-40 O1R >10800 O1R >10800 C3 >10800 C2 >10800

ln2-sanchis-600-50 O1R >10800 C4 >10800 C1 >10800 C1 >10800

ln2-sanchis-600-60 O1R >10800 C1 >10800 C1 >10800 O1 >10800

ln2-sanchis-600-70 O1R >10800 O1R >10800 O1 >10800 C1 >10800

ln2-sanchis-600-80 O1R >10800 O1 >10800 O1R >10800 C1 >10800

ln2-sanchis-600-90 O1 >10800 O1R >10800 O1 >10800 O1 >10800

ln2-sanchis-700-40 O1R >10800 O1R >10800 C4 >10800 C1 >10800

ln2-sanchis-700-50 O1R >10800 C3 >10800 C1 >10800 C1 >10800

ln2-sanchis-700-60 O1R >10800 O1R >10800 C1 >10800 O1 >10800

ln2-sanchis-700-70 O1R >10800 O1R >10800 O1 >10800 O1R >10800

ln2-sanchis-700-80 O1R >10800 O1 >10800 O1R >10800 O1R >10800

ln2-sanchis-700-90 O1 >10800 O1 >10800 O1 >10800 O1 >10800

ln2-sanchis-800-40 O1R >10800 O1R >10800 C1 >10800 C3 >10800

ln2-sanchis-800-50 O1R >10800 O1R >10800 C4 >10800 C1R >10800

ln2-sanchis-800-60 O1R >10800 O1R >10800 C2R >10800 O1 >10800

ln2-sanchis-800-70 O1R >10800 C1 >10800 O1 >10800 C1 >10800

ln2-sanchis-800-80 O1R >10800 O1 >10800 O1R >10800 C1 >10800

ln2-sanchis-800-90 O1 >10800 O1R >10800 O1 >10800 O1 >10800

ln2-sanchis-900-40 O1R >10800 O1R >10800 C3 >10800 C1 >10800

ln2-sanchis-900-50 O1R >10800 O1R >10800 C1 >10800 C1 >10800

ln2-sanchis-900-60 C3 >10800 C1 >10800 C1 >10800 C1 >10800

ln2-sanchis-900-70 O1R >10800 O1R >10800 O1 >10800 C1 >10800

ln2-sanchis-900-80 O1R >10800 O1R >10800 O1R >10800 O1R >10800

ln2-sanchis-900-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

mulsol.i.1.col C3 0.08 C1 0.09 O2 0.31 O2 0.72

n5-sanchis-100-40 O1 0.03 C2R 0.06 C2R 0.58 C2R 20.22

n5-sanchis-100-50 O1 0.05 C1 0.16 C1 10.17 O1R 112.07
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Table 23 (continued)

k = 2 k = 3 k = 4 k = 5
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n5-sanchis-100-60 O1 0.06 C1R 1.34 O1R 179.99 O1R 7151.72

n5-sanchis-100-70 O1 1.53 O1 47.27 O1R 6592.18 O1R >10800

n5-sanchis-100-80 O1 26.80 O1R 9103.81 O1R >10800 C1 >10800

n5-sanchis-100-90 O1 185.33 O1 >10800 C1 >10800 C1 >10800

n5-sanchis-1000-40 C2R 0.66 W4 11.39 O1R >10800 O1R >10800

n5-sanchis-1000-50 C3R 1.72 C5R 47.06 O1R >10800 O1R >10800

n5-sanchis-1000-60 C3R 14.89 O1R >10800 O1R >10800 O1 >10800

n5-sanchis-1000-70 C1 >10800 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-1000-80 O1R >10800 O1 >10800 O1R >10800 O1R >10800

n5-sanchis-1000-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

n5-sanchis-200-40 C1 0.08 C2 0.16 C2 1.36 C3 33.69

n5-sanchis-200-50 O1 0.11 O1 0.64 O1 19.22 O1R >10800

n5-sanchis-200-60 C1R 0.16 C1R 12.97 O1R >10800 O1R >10800

n5-sanchis-200-70 D 12.42 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-200-80 O1R >10800 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-200-90 O1R >10800 O1R >10800 O1R >10800 C2R >10800

n5-sanchis-300-40 C1R 0.13 C2 0.39 DR 12.73 O1R >10800

n5-sanchis-300-50 C1 0.13 C2R 2.70 C2 73.05 O1R >10800

n5-sanchis-300-60 C1 0.22 C1 14.42 O1R >10800 C1R >10800

n5-sanchis-300-70 C2R 17.86 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-300-80 O1R >10800 O1R >10800 O1R >10800 C3 >10800

n5-sanchis-300-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

n5-sanchis-400-40 C1R 0.17 C5 0.88 C5 12.06 O1R >10800

n5-sanchis-400-50 C1 0.20 C3R 14.91 C5R 130.29 O1R >10800

n5-sanchis-400-60 C1R 0.83 C1 118.13 O1R >10800 O1 >10800

n5-sanchis-400-70 C5R 31.11 O1R >10800 O1 >10800 O1R >10800

n5-sanchis-400-80 O1R >10800 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-400-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

n5-sanchis-500-40 DR 0.23 DR 1.11 DR 20.38 O1R >10800

n5-sanchis-500-50 C2R 0.31 W1 12.66 O1R >10800 O1R >10800

n5-sanchis-500-60 C1 0.69 C1 45.28 O1R >10800 C1R >10800
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Table 23 (continued)
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n5-sanchis-500-70 C3R 38.47 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-500-80 O1R >10800 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-500-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

n5-sanchis-600-40 C1R 0.27 C5R 1.61 C5R 30.36 O1R >10800

n5-sanchis-600-50 C1R 0.36 C1 12.64 O1R >10800 O1R >10800

n5-sanchis-600-60 C1 1.28 C2R 122.68 O1R >10800 O1R >10800

n5-sanchis-600-70 C1 24.41 O1R >10800 O1 >10800 O1R >10800

n5-sanchis-600-80 O1R >10800 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-600-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

n5-sanchis-700-40 C1R 0.44 C3R 10.23 C2R 518.10 O1R >10800

n5-sanchis-700-50 D 1.06 C1 25.58 O1R >10800 O1R >10800

n5-sanchis-700-60 C1 1.44 O1R >10800 O1R >10800 C5 >10800

n5-sanchis-700-70 C1R 223.47 O1R >10800 O1 >10800 O1R >10800

n5-sanchis-700-80 O1R >10800 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-700-90 O1R >10800 O1R >10800 C2R >10800 O1 >10800

n5-sanchis-800-40 C1R 0.48 C1R 10.47 C5 >10800 O1R >10800

n5-sanchis-800-50 C1R 0.88 C1 22.88 O1R >10800 O1R >10800

n5-sanchis-800-60 W2 17.09 C2 >10800 O1R >10800 O1 >10800

n5-sanchis-800-70 C1 63.00 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-800-80 O1R >10800 O1R >10800 O1R >10800 C1 >10800

n5-sanchis-800-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

n5-sanchis-900-40 C1R 0.48 C5 11.17 O1R >10800 O1R >10800

n5-sanchis-900-50 C1R 0.73 C5R 18.31 O1R >10800 O1R >10800

n5-sanchis-900-60 O2 9.80 C4 >10800 O1R >10800 C3R >10800

n5-sanchis-900-70 C1R 127.91 O1R >10800 C1R >10800 O1R >10800

n5-sanchis-900-80 O1R >10800 O1R >10800 O1R >10800 O1R >10800

n5-sanchis-900-90 O1R >10800 O1R >10800 O1 >10800 O1 >10800

p hat300-1.clq O1R 0.48 O1R 41.74 O1R 3041.44 O1R >10800

p hat300-2.clq C3 2097.06 C1 >10800 O1R >10800 O1R >10800

p hat300-3.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800

p hat500-1.clq O1 10.53 O1R 1640.52 O1R >10800 C2 >10800
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Table 23 (continued)
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p hat500-2.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800

p hat500-3.clq O1R >10800 O1R >10800 O1R >10800 O1 >10800

r100.5 O1 0.08 O1R 2.22 O1R 94.11 O1R 3305.26

r200.5 C2 10.00 O1R 597.51 O1R >10800 O1R >10800

r300.5 O1R 111.60 O1R >10800 O1R >10800 O1R >10800

r400.5 O1R 1173.21 O1R >10800 O1R >10800 O1R >10800

r500.5 O1R 4402.76 O1R >10800 O1R >10800 O1R >10800

san200 0.7 1.clq C2 >10800 C2 >10800 C2 >10800 C2 >10800

san200 0.7 2.clq C1 >10800 C1 >10800 C4 >10800 C1 >10800

san200 0.9 1.clq C1 >10800 O1 0.19 O1R 19.92 O1 2403.20

san200 0.9 2.clq O1R >10800 O1 17.14 O1R >10800 O1 >10800

san200 0.9 3.clq C5R >10800 O1R >10800 O1R >10800 C2 >10800

san400 0.5 1.clq O1R >10800 C1 >10800 C1 >10800 C3 >10800

san400 0.7 1.clq O1R >10800 C1 >10800 C1 >10800 C3R >10800

san400 0.7 2.clq C1 >10800 C5R >10800 C4R >10800 C3 >10800

san400 0.7 3.clq O1R >10800 O1R >10800 C3 >10800 C4 >10800

san400 0.9 1.clq C4 >10800 O1R >10800 O1R >10800 O1R >10800

sanr200 0.7.clq O1R 1411.91 O1R >10800 O1R >10800 O1R >10800

sanr200 0.9.clq O1R >10800 O1R >10800 O1R >10800 C2R >10800

sanr400 0.5.clq O1R 1276.39 O1R >10800 O1R >10800 O1R >10800

sanr400 0.7.clq O1R >10800 O1R >10800 O1R >10800 O1R >10800

school1.col C5 >10800 C5 >10800 C3 >10800 O1R >10800

school1 nsh.col O1R 84.11 C1 24.45 C1 2381.73 O1R >10800
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Table 24 Real-life networks information
Maximum k-plex size

Graph Nodes Edges Density, % k = 1 k = 2 k = 3 k = 4 k = 5

Erdos97-1 472 1314 1.18 7 8 8 9 11

Erdos97-2 5488 8972 0.06 7 8 9 11 12

Erdos98-1 485 1381 1.18 7 8 9 11 12

Erdos98-2 5822 9505 0.06 7 8 9 11 12

Erdos99-1 492 1417 1.17 7 8 8 10 11

Erdos99-2 6100 9939 0.05 8 8 9 11 12

HPylori 1570 1401 0.11 3 5 6 7 8

SCerevisiae 2112 2203 0.10 6 6 7 7 8

Football2005 119 633 9.02 9 10 11 12 12

AA.net 90 331 8.26 7 9 10 11 12

CO.net 73 156 5.94 5 6 7 8 9

DL.net 104 330 6.16 7 9 10 11 12

NW.net 113 317 5.01 7 8 9 10 11

UA.net 80 258 8.16 7 9 10 11 11

US.net 63 282 14.44 7 8 10 11 12

WN.net 63 793 40.60 14 18 20 22 23

WNc.net 63 733 37.53 13 18 19 21 22

All7.net 162 1944 14.91 20 25 28 30 32

SkyTeam.net 140 760 7.81 11 12 15 17 19

USAir97 332 2126 3.87 22 24 26 28 29
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Table 25 Real-life network instances running time

k = 2 k = 3 k = 4 k = 5
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Erdos97-1 W1R 0.16 D 0.16 D 0.22 D 0.30

Erdos97-2 D 2.03 D 3.78 D 60.64 D 1932.11

Erdos98-1 D 0.17 D 0.19 D 0.28 W1R 1.36

Erdos98-2 D 2.19 D 4.44 D 83.47 D 2920.34

Erdos99-1 D 0.17 D 0.19 D 0.19 D 0.28

Erdos99-2 D 2.31 D 4.73 D 90.41 D 3172.94

HPylori D 0.53 D 0.55 W1R 0.78 D 2.36

SCerevisiae D 0.69 D 0.72 D 0.80 D 1.69

Football2005 O1R 0.05 O1R 0.05 WR 0.05 D 0.05

AA.net O1R 0.03 W1R 0.03 D 0.09 WR 0.92

CO.net O1R 0.03 O1R 0.05 O2R 0.08 O2R 0.59

DL.net O1R 0.03 DR 0.05 O2R 0.16 O2R 1.78

NW.net C 0.05 W1R 0.05 WR 0.23 WR 3.00

UA.net CR 0.03 DR 0.03 D 0.06 D 0.59

US.net C1 0.01 C1 0.03 O1R 0.05 O2R 0.23

WN.net C1R 0.03 DR 0.02 C1 0.03 O1R 0.13

WNc.net C 0.02 O1R 0.03 O1R 0.05 C1 0.14

All7.net O1 0.08 O1 0.19 O1 2.59 DR 12.05

SkyTeam.net O1R 0.05 WR 0.06 W1R 0.14 D 0.67

USAir97 D 0.14 D 0.19 D 0.77 D 7.25
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Table 26 Running time comparson with McClosky’s algorithm

Runtime, sec

k = 2 k = 3 k = 4

Graph M T M T M T

brock200 1 - - - - - -

brock200 2 64 4.74 - 446.68 - -

brock200 4 - 398.65 - - - -

brock400 2 - - - - - -

brock400 4 - - - - - -

c-fat200-1 0 0.06 0 0.08 18 0.08

c-fat200-2 0 0.08 0 0.08 3 0.11

c-fat200-5 0 0.08 0 0.08 1 0.13

c-fat500-1 0 0.16 8 0.17 1234 0.20

c-fat500-2 0 0.19 2 0.17 92 0.25

c-fat500-5 0 0.17 1 0.19 8 0.27

c-fat500-10 0 0.19 0 0.22 4 0.33

gen400 p0.9 55 - - - - - -

gen400 p0.9 65 - - - - - -

gen400 p0.9 75 - - - - - -

hamming6-2 0 0.03 1 0.14 951 131.86

hamming6-4 0 0.02 0 0.03 1 0.16

hamming8-2 1 0.13 - 1500.83 - -

hamming8-4 58 7.45 - - - -

johnson8-2-4 0 0.01 0 0.01 0 0.05

johnson8-4-4 0 0.05 35 4.92 - 768.80

johnson16-2-4 - 3124.10 - - - -

johnson32-2-4 - - - - - -

keller4 913 55.45 - - - -

MANN a9 0 0.01 2 0.03 141 6.23

MANN a27 - - - 0.24 - -

p hat300-1 5 0.48 416 41.74 - 3041.44

p hat300-2 - 2097.06 - - - -

p hat300-3 - - - - - -

san200 0.7 2 - - - - - -

san200 0.9 1 - - 964 0.19 - 19.92

san200 0.9 2 - - - 17.14 - -



171

Table 27 Running time comparson with Balasundaram’s algorithms

Runtime, sec

Graph BC-MIS BC-C2PLX T

MANN a27.clq >10800 >10800 >10800

MANN a9.clq 0.262 0.289 0.01

brock200 1.clq >10800 >10800 >10800

c-fat200-1.clq 25.891 212.239 0.06

c-fat200-2.clq 24.235 7636.49 0.08

c-fat200-5.clq 90.564 5006.05 0.08

c-fat500-1.clq 1263.81 9587.21 0.16

c-fat500-10.clq >10800 >10800 0.19

c-fat500-2.clq 2985.04 >10800 0.19

c-fat500-5.clq 10142.8 >10800 0.17

hamming6-2.clq 0.421 1.686 0.03

hamming6-4.clq 4.609 6.767 0.02

hamming8-2.clq >10800 >10800 0.13

hamming8-4.clq >10800 >10800 7.45

johnson16-2-4.clq >10800 >10800 3124.10

johnson32-2-4.clq >10800 >10800 >10800

johnson8-2-4.clq 1.952 1.171 0.01

johnson8-4-4.clq 1951.87 3283.15 0.05

keller4.clq >10800 >10800 55.45

ln2-sanchis-100-40 11.92 124.92 0.08

ln2-sanchis-100-50 29.13 307.09 0.20

ln2-sanchis-100-60 29.23 479.00 0.06

ln2-sanchis-100-70 19.36 505.87 0.06

ln2-sanchis-100-80 1.67 56.47 0.08

ln2-sanchis-100-90 0.01 0.02 0.03

ln2-sanchis-200-40 684.53 >10800 46.89

ln2-sanchis-200-50 2467.22 >10800 9946.19

ln2-sanchis-200-60 7920.65 >10800 393.28

ln2-sanchis-200-70 >10800 >10800 >10800

ln2-sanchis-200-80 >10800 >10800 365.91

ln2-sanchis-200-90 1.09 1.08 0.11

ln2-sanchis-300-40 9050.57 - >10800

ln2-sanchis-300-50 >10800 >10800 >10800
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Table 27 (continued)

Runtime, sec

Graph BC-MIS BC-C2PLX T

ln2-sanchis-300-60 >10800 - >10800

ln2-sanchis-300-90 >10800 >10800 >10800

ln2-sanchis-400-40 >10800 - >10800

ln2-sanchis-400-90 >10800 - >10800

ln2-sanchis-500-40 >10800 - >10800

n5-sanchis-100-40 2.02 18.20 0.03

n5-sanchis-100-50 6.31 107.10 0.05

n5-sanchis-100-60 21.91 426.46 0.06

n5-sanchis-100-70 325.18 4109.14 1.53

n5-sanchis-100-80 >10800 >10800 26.80

n5-sanchis-100-90 291.59 >10800 185.33

n5-sanchis-1000-40 >10800 - 0.66

n5-sanchis-200-40 16.75 667.42 0.08

n5-sanchis-200-50 92.91 5418.70 0.11

n5-sanchis-200-60 179.19 >10800 0.16

n5-sanchis-200-70 2025.52 >10800 12.42

n5-sanchis-200-80 >10800 - >10800

n5-sanchis-200-90 >10800 - >10800

n5-sanchis-300-40 84.27 7453.67 0.13

n5-sanchis-300-50 539.76 >10800 0.13

n5-sanchis-300-60 1115.40 - 0.22

n5-sanchis-300-70 >10800 - 17.86

n5-sanchis-400-40 298.60 >10800 0.17

n5-sanchis-400-50 2106.16 >10800 0.20

n5-sanchis-400-60 4392.91 - 0.83

n5-sanchis-400-70 >10800 - 31.11

n5-sanchis-500-40 855.32 - 0.23

n5-sanchis-500-50 5675.32 - 0.31

n5-sanchis-500-60 >10800 - 0.69

n5-sanchis-600-40 1761.98 - 0.27

n5-sanchis-600-50 >10800 - 0.36

n5-sanchis-600-60 >10800 - 1.28

n5-sanchis-700-40 3495.51 - 0.44
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Table 27 (continued)

Runtime, sec

Graph BC-MIS BC-C2PLX T

n5-sanchis-700-50 >10800 - 1.06

n5-sanchis-700-60 >10800 - 1.44

n5-sanchis-800-40 6491.40 - 0.48

n5-sanchis-900-40 10627.00 - 0.48
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