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ABSTRACT 

 

Estimating Forest Structural Characteristics Using the Airborne Lidar Scanning System 

and a Near-Real Time Profiling Laser System. (August 2008) 

Kaiguang Zhao, B.S.; M.S., Beijing Normal University 

Chair of Advisory Committee: Dr. Sorin C. Popescu 

 

LiDAR (Light Detection and Ranging) directly measures canopy vertical 

structures, and provides an effective remote sensing solution to accurate and spatially-

explicit mapping of forest characteristics, such as canopy height and Leaf Area Index. 

However, many factors, such as large data volume and high costs for data acquisition, 

precludes the operational and practical use of most currently available LiDARs for 

frequent and large-scale mapping. At the same time, a growing need is arising for real-

time remote sensing platforms, e.g., to provide timely information for urgent 

applications. This study aims to develop an airborne profiling LiDAR system, featured 

with on-the-fly data processing, for near real- or real- time forest inventory. The 

development of such a system involves implementing the on-board data processing and 

analysis as well as building useful regression-based models to relate LiDAR 

measurements with forest biophysical parameters. 

This work established a paradigm for an on-the-fly airborne profiling LiDAR 

system to inventory regional forest resources in real- or near real- time. The system was 

developed based on an existing portable airborne laser system (PALS) that has been 

previously assembled at NASA by Dr. Ross Nelson. Key issues in automating PALS as 

an on-the-fly system were addressed, including the design of an archetype for the system 

workflow, the development of efficient and robust algorithms for automatic data 

processing and analysis, the development of effective regression models to predict forest 

biophysical parameters from LiDAR measurements, and the implementation of an 

integrated software package to incorporate all the above development. 
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This work exploited the untouched potential of airborne laser profilers for real-

time forest inventory, and therefore, documented an initial step toward developing 

airborne-laser-based, on-the-fly, real-time, forest inventory systems. Results from this 

work demonstrated the utility and effectiveness of airborne scanning or profiling laser 

systems for remotely measuring various forest structural attributes at a range of scales, 

i.e., from individual tree, plot, stand and up to regional levels. The system not only 

provides a regional assessment tool, one that can be used to repeatedly, remotely 

measure hundreds or thousands of square kilometers with little/no analyst interaction or 

interpretation, but also serves as a paradigm for future efforts in building more advanced 

airborne laser systems such as real-time laser scanners.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Remote Sensing for Forest Resources Inventory 

Forests are some of the most important natural resources for human beings, and 

the importance lies in the roles of forests not only as habitats for wildlife, sources of 

wood for timber industries, resources for human recreation, but also as a regulating 

factor of local or global environments. Forests, for example, serve as a major reservoir of 

carbon terrestrial ecosystems by sequestering atmospheric carbon dioxide, which is a 

complex process coupled with other factors such as climate, land use, and anthropogenic 

activities to dominate the global environmental changes (Houghton, 2007). Accurate 

inventory of forest resources, therefore, is crucial to better characterize the functions of 

forests and understand the predicted responses of forests to climatic variations. Up to 

now, many efforts have been dedicated to the survey of forest resources at various scales 

(Parresol, 1999; Chan et al., 2003). The Forest Inventory and Analysis (FIA) program of 

the USDA Forest Service, for example, offers one of the most intensive surveys 

designed to monitor the USA’s forests with a continuous collection starting from 1930 

(Alerich et al., 2004). The FIA data could be used to monitor and project the status and 

dynamics of forests at regional or national scales. 

Although field collection of forest inventory data provides detailed information 

on forest structural characteristics that can be used for further studies, fieldwork is often 

labor-intensive, time-demanding, prone to errors and difficult to repeat. Moreover, field 

measurements are collected at isolated sites or plots, thus failing to provide spatially  

 
 
 
 
____________ 
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continuous observation over large areas. As an alternative, remote sensing has brought 

new and efficient technologies to remotely collect the earth surface information and map 

natural resources with spatially continuous and temporally repeatable coverage. At the 

heart of remote sensing is the use of electromagnetic radiation to “sense” attributes of 

targets without direct contact with the targets (Liang, 2004; Turner et al., 2004). 

Conventional remote sensing approaches such as visible to mid-infrared optical 

sensors prove successful in numerous applications relevant to natural resources 

inventory (Carter, 1991; Wulder, 1998; Li et al, 2000; Cohen and Goward, 2004). 

Retrieval of canopy biophysical parameters from multi- or hyper- spectral imagery was 

made possible either by statistical- or physical-based methods, but only with partial 

success over moderate to high biomass forests. Statistical methods are usually study- or 

site- specific. Physical-based retrieval schemes usually rely on forward models that 

describe the remote sensing processes. Ironically, more often than not, the more 

complicated the forward modeling, the better the model mimics the real imaging 

processes, but the less accurate the information retrieved by the forward-model-based 

inversion algorithm (Liang, 2004). Furthermore, the representation of spectral 

measurements from conventional optical sensors is presented as multiple 2D images, and 

optical responses are insensitive to dense canopies; therefore, forest vertical structures 

are difficult to characterize by only using multi-spectral images. On the other hand, 

although photogrammetry is a well-established technique capable of deriving 3D 

information on the observed top surfaces, it fails to detect signals from the ground under 

relatively dense canopy conditions due to less opening (Popescu, 2002). 

A breakthough in forestry remote sensing is LIght Detection And Ranging 

(LiDAR), a recently emerged technique to characterize forest vertical structures with its 

capability of directly measuring forest 3D structures (Lefsky et al., 2002). In principle, 

LiDAR transmits pulsed lasers to accurately pinpoint targets by timing the roundtrip 

between the pulse and the intercept targets and multiplying the time of flight with the 

speed of light to get a range measurement. If the intercept target has a multilayer 

structure, the reflected energy will be a short-lived yet continuous waveform where 
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multiple peaks may be present, and by appropriately identifying these peaks through a 

triggering threshold of magnitude, multiple objects can be detected in the illuminating 

path of the pulse (Lefsky et al., 2002; Lim et al., 2003; Popescu, 2002). Such a case with 

multiple laser returns is illustrated in Figure 1.1 for a tree, i.e., a typical example of 

multi-layered feature. 

 

 

Figure 1.1. An illustration of multiple returns from a single laser pulse where the decreasing width of red 

line indicates the attenuation of laser energy as it propagates: discrete returns (the left) and waveform (the 

right) 

 

1.2 LiDAR Background 

LiDAR systems are in use to meet needs of different disciplines, e.g., for the 

purposes of mapping depth of water bodies in bathymetry, and measuring aerosol in the 

atmospheric sciences. For terrestrial applications such as forest inventory, two types of 

LiDAR systems are often differentiated, namely, waveform or discrete-return LiDAR 

(Lim et al., 2003). The former digitizes and records reflected energy continuously with a 

fine time resolution; however, the latter only records several discrete locations at which 

the magnitudes are above a preset threshold to trigger recording (Axelsson, 1999). 

Besides, LiDARs can also be categorized in terms of other standards. An incomplete 

summary of types of LiDARs according to different criteria is listed in Table 1.1. The 
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same LiDAR system can be classified differently with respect to various criteria. For 

example, the system developed by Gutierrez et al. (2005) can be termed as an airborne, 

small-footprint, waveform, profiling LiDAR for terrestrial applications. But it is noted 

that not every combination of these types is currently available; for example, no space-

borne small-footprint discrete-return LiDAR is available at the time of writing. 

Table 1.1. Classification of LiDAR systems according to different criteria 
 

Platform Footprint Size Digitization Mode Operating Mode Applications 

ground-based, 
airborne, space-

borne 

small-footprint, 
large-footprint 

discrete-return, 
waveform profiling, scanning 

oceanic, 
terrestrial, 

atmospheric 

 

A LiDAR system operated in a profiling mode usually emits laser pulses at near-

nadir direction, and therefore, it collects ranging measurements only along the linear 

transects that lie directly under flight lines. Figure 2 shows a typical example of a forest 

canopy profile obtained by profiling LiDARs along the ground track. Figure 1.2a 

suggests that two profiles are involved to characterize stand structures: the top profile 

depicts the envelop of the top canopy surface, and the bottom one describes the terrain 

topography. In fact, the idea to produce a stand profile using accurate instruments was 

presented by Hugershoff as early as in 1939. The introduction of LiDAR into terrain 

applications were evolved from the oceangraphic applications of LiDAR (Hyyppä and 

Hallikainen, 1996).  In 1984, Nelson proposed to use a profiling laser system to obtain 

forest stand profiles for the retrieval of stand characteristics, and found that the elements 

of the stand profile are linearly related to crown closure and may be used to assess tree 

height.  

Airborne laser scanners (ALS) collect data over strips of forested areas by 

oscillating laser pulses, thus, enabling mapping the full extent of a study area with 

multiple swaths (Figure 1.2b). Modern ALS systems are often equipped with a 

Differential GPS to record the trajectory of the platform and with an Inertial 

Measurement Unit (IMU) to track the altitude of the platform (yaw, roll, and pitch); 
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therefore, every laser return can be geo-referenced (Ackermann, 1999). Data acquired by 

a discrete-return ALS consist of a cloud of laser returns with each corresponding to a 

geographical coordinate tripe of (x, y, z) and often tagged with auxiliary information 

such as intensity, acquisition time, and scanning angle. Most of the commercially 

available LiDARs belong to ALS, and the use of ALS data for forest inventory at 

different scales has been extensively investigated. Previous studies suggest that ALS 

holds immense potentials for spatially-explicit mapping of forest resources (Maltamo et 

al., 2000; Zimble et al., 2003; Riaño et al., 2004; Næsset, 2004; Andersen et al., 2005; 

Maltamo et al., 2006; Mutlu et al., 2008). 

 
 

 

Figure 1.2. Schematics of two types of LiDAR systems for measuring forest stands: (a) A profiling LiDAR, 

and (b) a scanning LiDAR 

1.3 Literature Review 

1.3.1 Profiling LiDAR  

Airborne laser profilers were among the first generation of LiDAR systems for 

forestry applications. Nelson et al. (1984) proposed the use of an airborne laser profiler 

to acquire forest stand profiles for the retrieval of stand characteristics over a oak-
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hickory forest, and found that laser-based estimates of canopy height is underestimated 

by an average of 0.6 m in reference to photogrammetric estimates, but with the laser 

estimates being more accurate. They also reported that the penetration rate of laser 

pulses into canopy is highly correlated with canopy closure. Schreier et al. (1985) 

employed a laser system that records both ranging and magnitude of each pulse and 

produces a pulse density of 6.7 pulses per square meter over forests in northeastern 

Ontario, Canada; based on laser height, laser reflection and reflection variability 

parameters, they applied a semi-automated classification approach to distinguish conifer 

from broadleaf forest types. Their research also indicated that the laser system is able to 

trace individual trees and terrain height profiles, and also to obtain accurate estimates of 

tree heights. Maclean and Krabill (1986) found that laser-based canopy profile area is a 

very good predictor of total gross-merchantable timber and that strata-specific 

predictions improved the strength of correlation. They also suggested that the canopy 

profile area could be used to estimate total biomass or total woody biomass.  

The potential use of laser profiling data for estimating forest biomass and the 

repeatability of the laser observations were explored in Nelson et al. (1988a). In this 

study, they found that 3-6% laser estimates of volume and biomass varied between 

comparable sections of different overpasses along the same flight line. Their study 

showed there are 7% and 8% differences of biomass and volume between laser estimates 

and ground measurements while the differences between the two sets of laser estimate 

are 0.9% and 1.2% for biomass and volume, respectively. They concluded that the 

advantages of using an airborne profiling laser to collect data over forests are twofold: 

first, canopy height data can be collected quickly along transects hundreds of miles long; 

second, laser data can be used for extending a limited effort of ground sampling to areas 

that may not be easily accessible by ground inventory crews. In another study, Nelson et 

al. (1988b) estimated biomass and volume by building different regression models and 

using six laser height variables as potential predictors. The best fitted models explained 

between 53% and 65% of variability in the ground measurements of forest biomass and 
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volume. Study results also indicated that species stratification did not consistently 

improve regression relationships for four southern pine species.  

Ritchie et al. (1992) measured canopy cover and distribution in two rangelands of 

south Texas with an airborne profiling laser; a good agreement with a R2 of 0.89 was 

observed between the ground-measured canopy cover and laser estimates for 18 30.5-m 

segments. They stated that airborne laser data can provide quick and reliable 

measurements of canopy cover and distributions over large rangeland areas. Using high-

resolution laser profiler data, Nelson et al. (1997) estimated tree heights, canopy density, 

basal area, and biomass over tropical forests without relying on LiDAR-ground transect 

co-location; instead, they used the simulated canopy laser measurements to develop 

multiple regression models for predicting for basal area, volume, and biomass. 

More recently, an inexpensive, lightweight, airborne-profiling system (PALS) 

has been assembled from off-the-shelf, commercially available components (Nelson et 

al., 2003). The system, with a total cost of US$30,000, includes a laser 

transmitter/receiver, a differential GPS, a charge-coupled device video camera, a laptop 

computer, and an integration software package (LabVIEW) to coordinate and store the 

different data streams, any hardware component of which may be replaced to meet 

specialized needs. PALS is designed to fly aboard small helicopters and single or twin-

engine high wing aircraft without airframe modification. It has a data rate up to 2000 hz 

with an operational envelope up to 300 m above ground. PALS measures both range and 

amplitude along flight transects; it was originally designed to collect only first returns, 

but a later upgrade enabled it to toggle between measurements of first and last returns 

(Nelson et al., 2005). This economical laser system was reported to be capable of 

conducting regional or subcontinental forest inventory worldwide. In the subsequent 

studies, Nelson et al. (2004) used the PALS data acquired along transects spaced 4 km 

apart to measure biomass and carbon in the state of Delaware, USA. Four linear models 

were developed to regress the merchantable volume and total aboveground dry biomass 

against laser-based predictors. The estimates at the level of transect were extended to the 

areal estimates based on the line intercept sampling techniques. The laser-based 
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estimates of merchantable volume fell within 21% of US forest service estimates at the 

county level, and 1% statewide. Estimates of above-ground dry biomass were within 

22% of USFS estimates at the county level and 16% statewide. They also used the 

profiling measurements to estimate the area percentage of impervious and open water 

area for the three counties of Delaware, and the results were comparable to those from 

other sources. Their study indicated that the line intercept sampling techniques can be 

used in conjunction with PALS to investigate multiple resources regionally. Nelson et al. 

(2005) located and estimated the extent of potential Delmarva fox squirrel (DFS) 

habitats using the same profiling dataset of Delaware. Since this particular dataset of 

profiling measurements contain little or no understory vertical structure, the identified 53 

sites are potential but not actual DFS habitat; however, this helped screen the extensive 

unsuitable areas. In addition, they estimated the forest percentage according to 

height/canopy closures levels at both the state and county levels; the average within-

patch crossing distance and average between-patch distances of the landscape were also 

reported. Skowronski et al. (2007) analyzed profiling LiDAR data over the 

Pinelands of New Jersey for measuring canopy structure and fuel loads, and their 

results indicated that profiling LiDAR is an effective tool for regional-scale 

inventory. In order to quantify the variance of the areal estimates from profiling transect 

laser data, Nelson et al. (2008) examined three variance estimators, namely Simple 

Random sampling (SRS), successive difference (SD), and Newton’s method (NM), by 

using PALS data acquired over 56 flight lines spaced 1km apart; they found that the 

variances of the three estimators are conservative as compared to the systematic standard 

errors, and they suggested that SD and NM estimators should be used when flight lines 

are closely spaced (e.g., 2-6 km apart) because autocorrelation between adjacent flight 

lines is high. 

1.3.2 Scanning LIDAR 

An expanding body of literature on scanning LiDAR has been witnessed in 

recent years (McCombs et al., 2003; Riaño et al., 2004; Næsset, 2004; Popescu et al., 
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2004; Andersen et al., 2005; Maltamo et al., 2006; Mutlu et al., 2008). The mainstream 

of the research has been focused on the applications of airborne laser scanners (ALS) for 

vegetation assessment, with aims of developing novel and effective methods for 

mapping such forest structural characteristics as biomass, canopy height, basal area, Leaf 

Area Index, fuel models, canopy closure and timber volume (Popescu, 2002). We herein 

only present a general review on relevant literature. Typically, the first step in extracting 

canopy vertical information is to reconstruct terrain topography of bare grounds because 

canopy heights are relative to grounds and LiDARs only measure the absolute locations 

of canopy elements in a geographic coordinate system. For this purpose, many 

algorithms have been developed to generate Digital Terrain Model (DTM) from ALS 

data by first filtering out ground laser hits and then interpolating them to a regular grid. 

Filtering schemes often involve adaptive and iterative local minimum filters, and the 

interpolation often employ triangulation, inverse distance weighting, and spline, kriging 

and so on (Kraus and Pfeifer, 1998;Young et al., 2000). Once terrain information is 

available, a Canopy Height Model (CHM0, which represents the height of canopy top 

surfaces relative to ground, can be created by taking height differences between laser 

hits from canopy upper surfaces and ground. CHM has become a standard LiDAR-

derived product that proves useful in many forestry applications (Popescu et al., 2003; 

Zhao and Popescu, 2007). 

The use of ALS data for forest inventory has been studied at different scales of 

interest such as tree, plot and stand levels. Individual-tree delineation has attracted many 

research efforts when ALS data with a relatively high density became available. Popescu 

et al. (2003), for example, proposed the use of a local maximum filtering with variable 

circular window for identifying trees on a LiDAR-derived CHM. Based on the simple 

assumption that a higher tree has a wider crown, the window size varies adaptively 

according to canopy heights, and it, in practice, can be determined with the help of a 

crown-height equation that is fitted from ground measurements over the study area. This 

algorithm, as implemented in a software package called TreeVaw, has received many 

applications for various forest types. Chen et al. (2006), adopted a morphological 



 10

analysis scheme to segment CHM for individual tree isolation, and their algorithm 

proves effective for delineating irregular crown shapes. 

Estimation of forest structural characteristics above tree levels typically relies on 

establishing regression models to relate forest biophysical variables of interest to 

sensible LiDAR metrics that need to be carefully selected, and researchers in LiDAR 

remote sensing for forests have been striving to choose the most appropriate LiDAR-

derived metrics and forms of model for a specific application. As described in Naesset 

(2002), standard practice in building prediction models follows a two-stage procedure 

whereby regression models, either linear or nonlinear, are first developed and trained 

based on LiDAR data and coincident ground measurements, and then the trained model, 

upon validation, can be applied to the rest of data to predict forest structural variables. 

Most commonly used LiDAR metrics include but are not limited to a variety of height 

metrics such as mean, maximum, median, quantile-based, and quadratic mean canopy 

heights as well as different canopy density metrics. Lim et al. (2004), for example, 

examined the utility of canopy-based quantile height with a linearly-transformed 

multiplicative model for predicting above-ground biomass, by assuming that canopy 

height distributions are an implicit function of leaf foliage distribution. Their findings 

suggest that any LiDAR-based quantile heights have similar prediction performances, 

provided that the allometry remains the same across forests. Previous studies also 

demonstrated the effectiveness of LiDAR-derived metrics for estimating other forest 

structural variables such as LAI, basal area, and timber volume across a wide range of 

forest conditions. 

Airborne and spaceborne large-footprint waveform LiDARs have also been 

employed to characterize forest structure. These instruments include two airborne 

sensors, i.e., the Scanning LiDAR Imager of Canopies by Echo Recovery (SLICER) and 

the Laser Vegetation Imaging Spectrometer (LVIS), and one spaceborne Geosciences 

Laser Altimeter System (GLAS) onboard the ICESat satellite (Lefsky et al., 1997; 

Lefsky et al., 1999; Means et al., 1999; Drake et al., 2002; Sun et al., 2008). Lefsky et al. 

(2002), for example, found that LiDAR-measured biomass estimated from SLICER data 
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using a regression method can explain 84% variation in the ground measurements made 

at sites in three biomes; their results suggest that large-footprint waveform LiDAR is 

capable of measuring canopy structure in moderate to high biomass forests. 

 

1.4 Research Problems  

1.4.1 The Need for Affordable and Portable Remote Sensing Systems and for 

Repeatable Observations 

Although scanner lasers have already gone far beyond the proof-of-concept 

phase and are attracting considerable research efforts, there still exist gaps between the 

plethora of scientific research and the practical applications, especially for large-scale 

forest inventory. Although these gaps are shrinking, ALS data are expensive and data 

loads can be appreciable (Nelson et al., 2004). The consequent post-processing and 

analysis for information extraction would be equally computationally consuming. On 

another hand, most analysis software is proprietary; and user friendly freeware or 

software routines that make these data more accessible are lacking. In addition, due to 

the sophisticated requirements for hardware systems like Inertial Measurement Units 

(IMU) or Inertial Navigation Systems (INS), a laser scanner may maintain a price tag in 

the range of millions of dollars plus or hundreds of thousands of dollars, depending on 

the level of sophistication. The high costs also exclude the operational foresters from the 

use of such systems. Moreover, such systems sometimes can be prohibited from being 

exported outside the homeland because of security policies, and they often are married to 

particular airborne platforms, or have certain special requirements for the platform 

configurations. The lack of portability and high costs often make ALS systems 

impractical for data collection over remote areas such as the Amazon, the circumpolar 

boreal forests, and the Southeast Asia. Moreover, monitoring changes in forest 

conditions over time is essential to better understand the functional responses of 

terrestrial ecosystems to global changes, and this requires periodic, repeated 
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measurements (Turner et al., 2004). However, the limitations of ALS, e.g., high costs, 

lack of portability and intensive data handling, render repeated observations difficult. 

As such, the advantage of acquiring complete coverage using an airborne scanner 

is somewhat offset by data load, the needs for complicated post-processing, and the 

expense of the scanning system and data acquisition. However, a profiling system, to 

certain extent, can complement all these weaknesses. First, the hardware specification of 

a profiler is relatively simple, thus making the assemblage cost affordable e.g., a total 

cost of about US$ 30000 for PALS (Nelson et al., 2003). Because profiling data are 

collected only along individual flight lines typically several kilometers apart, the data 

volume is much reduced. Profiling measurements are in the form of 1-D height profile, 

so the computational demand for data processing and analysis is low and the 

development of algorithms is relatively easy. The high portability of the PALS allows 

for conducting forest inventory worldwide, especially over some inhospitable areas. 

With all these attractive features, it is practical to deploy a PALS-like profiling laser 

system for missions of repeated data collection. Of particular note is that data from 

profiling lasers capture canopy height profiles only along the ground track of the aircraft, 

hence, containing much less information than those of scanning lasers. Thus, it is 

impractical to use 1-D profiling measurements to estimate forest characteristics at the 

individual tree level, but this constraint is of little concern if the interest is in 

inventorying forest resources at relatively large scales, i.e. a level of counties, states, the 

nation or even the continent. 

 

1.4.2 The Need for Real-time Remote Sensing Platforms 

A large number of Earth Observing Systems are currently operating, producing a 

considerable volume of digital data per day (EOS website). The huge data volume 

presents a new challenge for remote sensing applications in terms of data processing and 

information extraction (Lavender and Groom, 1999; Masayuki and Hidefumi, 2002). 

Traditional techniques of processing and distributing remote sensing data may not be 

sufficient to meet the needs of many end-users, in particular for some emergent 
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applications that need timely information. The conventional work flow for a specific 

remote sensing mission is illustrated in Figure 1.3. Participation of different sectors is 

needed at different phases of a mission, and protocol and cooperation are often 

necessitated to facilitate the transition from one phase to another phase. The completion 

cycle of a mission largely depends on the nature and purpose of the mission, which may 

ranges from weeks, to months, or even to years. 

 

Mission Definition and 
Campaign Preparation

Flying & Data Acquistion

Data Pre-processing

Data Distribution & Processing

Data Analysis & Information Extraction

End-user Produts
 

Figure 1.3. A simplified version of typical workflow for remotely sensed data processing 

 

One important aspect concerning the efficient use of remote sensing data is a 

streamlined flow for data analysis and information extraction, preferably on a real-time 

basis. The design and implementation of a real-time system highly rely on the 

automation of conventional procedures. Different levels of automation exist for a task, 

depending on how much hardware and software facility is available to fulfill the task. To 

implement the workflow for a specific task, a level of automation usually needs to be 

defined with respect to the objective of the task. In practice, the development of such 

real-time systems is far from an easy endeavor because this requires high levels of 

automatic data processing and robust information retrieval algorithms so that  human 
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intervention and manual inputs are minimized as much as possible (Derrien et al., 1993; 

Pearson et al.,1994; Suter and Nuesch, 1995; Chang et al.,2001). Although such systems 

are desired in many sectors, the related researches and investigations are still at an initial 

stage with a lot of obstacles to be overcome. 

 

1.4.3 Motivation and Objectives 

At present, real-time processing and information extraction from remotely sensed 

data represents a novel tendency in the development of new remote sensing systems. In 

the context of forestry remote sensing, a platform capable of real-time delivery of forest 

information is of practical significance, and will have attractive features. It will 

enormously enhance the speed of information delivery, and save a considerable amount 

of labor needed for post-processing and analysis. The quick access to the forestry 

information not only facilitates the process of decision-making but also provides 

capabilities of meeting urgent needs, e.g., in cases of natural or human-induced hazards 

such as forest fires (Li et al., 2000). 

Given the interest in real-time systems and the attractive features of profiling 

laser systems for forest inventory, the primary objective of this research is to develop a 

near-real time profiling LiDAR-based forest inventory and mapping tool that delivers 

end-user products within hours of the final flight of the mission. In order to implement 

such a system, the specific sub-objectives involved are as follows: 

(1) To build a paradigm for processing profiling LiDAR data on-the-fly, as a step 

toward real-time estimates of biophysical parameters. 

(2) To develop algorithms for automatically analyzing and segmenting LiDAR 

height profiles acquired by the system 

(3) To develop accurate models, whether statistical-based or not, for estimating 

forest biophysical parameters, such as canopy height, basal area, merchantable volume, 

biomass, above-ground carbon etc., from the data of canopy height profile; and to 

explore the possibilities of extracting other information from the profiling data. 

(4) To investigate the accuracy of the profiler-derived estimates, and compare 
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them with the scanner-derived products and field measurements; therefore, part of 

efforts will be devoted to investigating new methods of extracting forest characteristics 

from scanning LiDAR data. 

(5) To investigate the potential of the fusion of profiling data with remotely 

sensed data from other platforms, whether airborne-based or satellite-based. One 

possibility is to use profiler-derived product as a quickly accessible source to calibrate 

the satellite-based products. 

(6) To implement all the developed algorithms as computer routines, and 

integrate them into the computer packages to be consistent with hardware components of 

the profiling system. 

 

1.5 Dissertation Organization  

The successful implementation of the proposed on-the-fly airborne laser profiler 

relies on streamlining and integrating the conventional workflow by automating data 

analysis and information extraction. As such, the dissertation is organized in such a way 

that each chapter deals with a relatively independent issue that is associated with 

different phases of the workflow of a remote sensing application system. Specific topics 

for each individual chapter are summarized as follows: 

(1) Chapter II presents a framework of automating PALS as an on-the-fly 

reconnaissance tool for forest inventory over large areas, and also details the ground-

finding and segmenting algorithms for automatic processing PALS 1-D height profile 

data. 

(2) Chapter III attempts to develop variance estimators to quantify the 

uncertainty in LiDAR-based estimates of forest characteristics; a case study in 

estimating canopy percentage cover is examined. 

(3) Chapter IV aims to develop prediction models for above-ground biomass. 

The proposed models feature scale-invariance and they can be applied to both profiling 

and scanning LiDAR measurements.  
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(4) Chapter V describes models to estimate Leaf Area Index from both profiling 

and scanning LiDAR data. The potential of integrating satellite products such as MODIS 

with PALS is also examined. 

(5) Chapter VI describes the software development that implements the data 

processing algorithms and prediction models of the previous chapters. 

(6) Chapter VII, the concluding remarks, summarizes the research of the 

dissertation as well as points out the possible directions for future studies. 
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CHAPTER II 

AN ON-THE-FLY AIRBORNE PROFILING LIDAR SYSTEM: PARADIGM 

AND ALGORITHM DEVELOPMENT 

 

2.1 Introduction 

Advances in computational power and memory open up new opportunities to 

build an integrated data acquisition system with near real-time derivation and delivery of 

end-user products (Sandau et al., 2000). Near real-time or real-time remote sensing 

systems can provide unique capabilities for a variety of natural resources-related 

applications, especially those that need timely responses, such as monitoring and 

controlling natural disasters and man-induced forest fires (Honda and Nagai, 

2002;Ramsey et al., 2004). On the other hand, an enormous amount of remotely sensed 

data becomes available as many on-orbit platforms are routinely operated and many 

airborne flight missions are frequently scheduled. The huge data volume often precludes 

manual-based processing, and in such a sense, hardware and software systems dedicated 

to automatic processing and analysis of remote sensing data are in need (Hsu et al., 2001; 

Shutler et al., 2005; Tehranian et al., 2006). 

Although most real-time systems require on-board data processing modules, no 

accepted architecture and techniques exist for such systems (Konare et al., 2003; Plaza, 

2008). The design and implementation of a real-time remote sensing system are often 

mission- or case- specific, largely depending on the availability of hardware/software 

and budgets as well as the purposes of applications. For example, Toth and Grejner-

Brzezinska (2002) proposed a prototype mobile mapping system for automatically 

identifying road centerlines and extracting image features. Their system, developed as an 

integrated GPS/INS/CCD system, features automatic and real-time image processing so 

that no human interaction is needed. Lienert et al. (1999) developed a software system 

for real-time analysis and visualization of scanning LiDAR data for deriving information 

on marine aerosol, and they concluded that the software can be adapted to other LiDAR 
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systems such as Differential absorption LiDAR and oceanic LiDAR.  In addition, a 

journal called “Journal of real-time image processing” was recently started specifically 

for dealing with designing, implementing, and utilizing of real-time image/video 

processing systems.  

Recently, LiDARs, most notably airborne laser scanners, have brought a 

breakthrough in forestry remote sensing (Lefsky et al., 2003). However, due to the   

sophisticated hardware, high costs, huge data volume, and complicated processing 

procedures, it seems quite impractical to develop an on-the-fly scanner system for real-

time forest inventory, especially over large forested areas (Nelson et al., 2004). In 

contrast, a laser profiler such as the portable airborne profiling LiDAR system designed 

by Nelson et al. (2003a) -- featuring technical simplicity, transportability, and 

manageable data volume -- somehow offsets scanning systems’ disadvantages, and thus 

can serve as an archetype to develop an on-the-fly LiDAR system. As pointed out by 

Nelson et al. (2004), it is expected that airborne profiling systems will be automated so 

that they are flown to produce estimates of timber, biomass, and carbon upon landing of 

the aircraft, and that an automated scanning system follows soon afterwards. To this end, 

this research aims to develop such an automated profiling LiDAR system that processes 

data in-flight and estimates inventory information upon landing. This chapter is focused 

on presenting a paradigm framework as well as relevant technical details for the on-the-

fly profiling LiDAR system. 

 

2.2 Paradigm of the on-the-fly Airborne Laser Profiler  

This research is based on the earlier development of profiling laser systems. 

Several previously developed laser profilers prove effective and useful in forest 

inventory (Ritchie, 1995; Tickle et al., 1998; Nelson et al., 2003a; Millette and Hayward, 

2008). Therefore, no attempt is made in this research to assemble a profiler from scratch; 

instead, the PALS system developed by Nelson et al. (2003a) is employed as a prototype 

to develop the on-the-fly system because at present, PALS is one of  the most widely 
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used profilers that has been flown aboard various aircrafts worldwide over areas such as 

the sates of Texas, Delaware and New Jersey of USA, Japan, and Norway. Previous 

studies also demonstrated that PALS is an effective and affordable tool for large-scale 

resources inventory (Nelson et al., 2003b; Nelson et al., 2005; Skowronski et al., 2007). 

In this regard, PALS provides a good prototype system upon which to build for an 

automated laser profiler. 

For completeness, a brief description of PALS is presented below. PALS was 

assembled from off-the-shelf, commercially available components at an approximate 

cost of $30,000 (Nelson et al., 2003a). Its major components are as follows (Figure 2.1): 

(1) A near-infrared laser transmitter/receiver to measure first-return ranges and 

magnitudes from laser to targets; 

(2) A Global Position System (GPS) receiver; 

(3) A charge-couple Device video camera with GPS video titling so that 

time/location synchronization information is available; 

(4) A laptop computer to record data streams from the dGPS and laser receiver; 

(5) And a commercial software implemented in LabView to control, monitor and 

record the data streams. 

 

 

Figure 2.1. The major off-the-shell components of the portable airborne laser system (PALS) (Photos 

courtesy of Dr. Ross Nelson of NASA). 

 

PALS was designed to fly over an altitude up to 300 m above ground. The 
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transmitter, in its original configuration, has a pulse rate of 2000 hz, a 0.2-mr divergence 

and 10-cm optics, thus resulting in a 0.4-m spot at a flight height of 150 m. The system 

as configured currently can record sequential first, last ranging returns at repetition rates 

ranging from near zero up to 2000 hz. Typically, the recording rate is set to provide a 

continuous trace of spatially adjacent pulses based on the nominal speed of the host 

aircraft. For practical applications, any component of the PALS system can be replaced 

or upgraded to meet specialized needs, depending on the availability of budgets and the 

purposes of applications. For example, recently Nelson et al. (2004) reported the upgrade 

of the PALS dGPS system to enable the Wide Area Augmentation System (WAAS), and 

this upgrade allows for an aircraft positional accuracy of 1-2 m horizontal and 2-3 m 

vertical within the continental USA.  However, due to electronic lags inherent in the data 

acquisition system and unknown roll/pitch errors, the locational accuracy of any given 

pulse will be typically on the order of 10 -15 m. 

The scheme to automate PALS for on-the-fly data processing is technically 

straightforward, with the aim being to perform the data processing and analysis tasks in-

flight that originally were done post-flight. A schematic flowchart for the on-the-fly 

system is presented in Figure 2.2. As noted before, a key point in designing and 

implementing an on-the-fly real-time system is to develop on-board data processing 

software that implements computer procedures or algorithms used for analyzing and 

processing the data simultaneously with the flying. More importantly, for the software to 

work smoothly with little or no human interaction, the on-board processing algorithms 

should be robust enough to minimize the human intervention for correcting errors. To 

this end, two major PALS data-processing algorithms, one for finding ground hits and 

another for segmenting canopy height profiles, are integrated in a software package for 

on-board data processing. First, the ground finding algorithm attempts to identify those 

laser hits that are reflected back from ground, and then, the identified grounds hits can be 

interpolated to generate a 1-D terrain topography. With the resulting 1-D topography, a 

canopy height profile can be derived by taking the difference between laser range and 

the corresponding terrain elevation. Next, the segmentation algorithm is used to stratify 
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the canopy height profile into strata with each of them representing a different type of 

land cover, e.g., forest, open ground, and buildings. 

 

  

Figure 2.2. A framework of the proposed on-the-fly PALS profiling LiDAR system. 

 

Prediction models, i.e., regression models that use LiDAR-derived metrics as 

predictors, are also required to convert the LiDAR measurements into forest 

characteristics of interest (Næsset, 2002). Often enough, these models are developed 

based on a training dataset that includes LiDAR-derived metrics and coincident ground-

measured values of forest structural variables. If ground data are not measured, it seems 

not practical to directly train a prediction model. In such a case, it may be helpful to 

resort to either models that are previously developed for the same area or those not for 

the same area but under similar forest conditions. In case that no other models can be 

borrowed at all, a compromise is to develop a computer simulator to generate LiDAR 

measurements with known forest characteristics and then to use the simulated data to 
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build and train models, as demonstrated in Nelson et al. (1997). In fact, most research 

efforts in LiDAR remote sensing for forestry application have been dedicated to looking 

for the most appropriate LiDAR-metrics and forms of model.  

PALS cannot provide a direct areal estimate of forest inventory information, 

primarily due to the incomplete observations that are collected only along transects 

under the flight lines as shown in Figure 2.3 (Nelson et al., 2005; Zhao et al., 2008). As 

such, for regional assessment of forest resources using PALS, standard practice is to rely 

on Line Intercept Sampling procedure to extend the transect-level estimates of forest 

characteristics to the whole extent of the study area (Nelson et al., 2004). Obviously, 

such areal estimates are subject to uncertainties due to its sampling nature, and a 

measure needs to be formulated to quantify the variance of LIS-based areal estimates 

(Nelson et al., 2008). In practice, these variances are essential to guarantee the 

informative use of the PALS-derived estimates. 

 

 

Figure 2.3. The PALS flight line pattern for a mission aiming to assess regional resources in East Texas. 
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2.3 Data Processing Algorithms 

2.3.1 Ground-finding Algorithm 

For real-time or near real-time processing of PALS profiling laser measurements, 

automatic procedures are entailed to process and analyze PALS ranging measurement, as 

shown in Figure 2.4. In essence, the PALS measurements along a transect (flight line) 

can be viewed as a 1-D signal where the ranging is plotted against the pulse numbers. 

First of all, a ground curve, representing the terrain topography along the flight line, 

needs to be derived in order to compute the heights of sensed objects, e.g., trees, relative 

to the ground (Figure 2.4). Hence, that subset of near-ground laser hits that are returned 

back from the actual ground need to be identified. For both profiling and scanning 

LiDAR data, most algorithms for classifying ground hits are based on local minimum 

filtering that may often be refined with some adaptive strategies. 
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Figure 2.4. A profile of ranging measurements measured by PALS where all the laser hits below the 

vertical dashed line are supposed to reflect from the ground. 

 



 24

The basic idea behind local minimum filters for ground-finding is that, given that 

some laser pulses penetrate the canopy to reach the ground, the lowest hits within a 

neighborhood should be a ground hit. Of note is that the penetration rate of lasers 

depends on both the laser characteristics, e.g., wavelength, power, and footprint size, and 

the canopy conditions. A very dense canopy can effectively attenuate all the energy of 

lasers, so ground cannot be sensed. Therefore, caution should be exercised in designing a 

local-minimum algorithm. 

In the original implementation of PALS ground-finding procedure, Nelson et al. 

(2003b) used a non-overlapping moving window to locate local minima as ground hits, 

with the window size defined by analyst. Then a spline interpolator is employed to 

generate the ground curve. Overall, their algorithm, being intuitively simple, performs 

satisfactorily except under certain pathological situations, e.g., step functions-cliff, rapid 

sharp topographic changes, very dense canopies with little or no ground peneration. But 

there is no correcting mechanism in the algorithm to handle these pathologies. Also, the 

spline interpolator sometimes causes overshooting or undershooting due to the 

smoothness constraints of the interpolator. Therefore, the ad hoc post-processing 

supervised by users is usually needed to correct some conspicuous errors in the ground 

curve. Such user intervention makes on-board data processing impractical. To improve 

this algorithm as well as minimize user interaction, some heuristics rules are introduced 

to make the ground-finding algorithm more robust. The improved algorithm is an 

iterative procedure as detailed below. 

(1) Local Minimum Filtering: An overlapping window, instead of a non-

overlapping one, is used to search local minima as potential ground hits. The window 

size is defined by users. To obtain as many ground hits as possible, a maximum overlap 

between consecutive windows are assumed; that is, the window is moved pulse by pulse. 

Obviously, the use of an overlapping window often causes the same ground hit to be 

identified multiple times by several consecutive windows; in such a case, the ground hit 

should be recorded only once. 
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(2) Spline Fitting: With the ground hits picked up, a spline is fitted to generate a 

ground curve. 

(3) Correction Scheme – Adding new ground hits: All non-ground hits are 

compared against the ground curve generated in Step 2. If a laser hit lies below the 

ground curve by a height threshold, say, 0.5 m, the laser hit will be labeled as a ground 

hit. With the expanded set of ground hits including the newly added ground hits and the 

original ones, iterate Step 2 and Step 3 until no ground hit is added. 

(4) Correction Scheme – Eliminating mis-labeled ground hits: Split the ground 

hits obtained after Step 3  into five subsets by taking every 5th ground hit. Combine any 

four subsets to generate an interpolated ground curve, and compare the resulting curve 

with the remaining subset of ground hits. If a ground hit in the remaining subset is above 

the ground curve by a height, e.g., 0.5m,  this hit is considered as a misclassified ground 

hit and is removed from the set of ground hits. After evaluating all five combinations of 

the five subsets, an updated set of ground hit is created. Then, with this new set, repeat 

Steps 2, 3 and 5 until no ground hits is added and eliminated, or a pre-set maximum 

number of iteration is reached. 

Once the ground curve is available from the above procedure, heights of objects 

relative to the ground can be directly obtained by subtracting the ground topography 

from the original height profile. The resulting height profile is called canopy height 

profile (CHP) (Figure 2.5). Be cautious that the same term “CHP” was also used in 

large-footprint LiDAR literature to represent corrected LiDAR waveforms. It, therefore, 

may be necessary to unify and clarify terminologies to avoid possible confusion in the 

community of LiDAR remote sensing. 

 

2.3.2 Segmentation of CHP 

Canopy height profiles need to be segmented with respect to land cover types. 

Since flight lines are typically ten’s or hundreds of kilometers long, not all profile 

measurements come from forest. Figure 2.5, for example, shows that a CHP may  be 

split into four segments, each of which corresponds to one land cover class, i.e., open 
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ground, man-made building (residence area), mixture wood and pine. For forest 

inventory, at least two strata should be differentiated, i.e., forest, non-forest. Although 

the further segmentation of non-forest portions of CHP into more detailed strata is 

desirable, it remains difficult to rely only on the 1-D transact height measurements to 

extract strata information, particularly in an automatic manner. A remedy for this may be 

to refer to some auxiliary data such as optical images, if available. In fact, the CCD 

video camera of PALS is employed to record overhead images of surfaces that could 

later be used to determine the strata of CHP by matching CHP with the videos; and the 

matching is made possible because videos have been synchronized with the ranging 

measurements of CHP. However, this matching process is done visually and manually 

by analysts, and usually very labor-extensive and time-consuming. Because the 

automatic analysis of  video contents is rather difficult, the algorithm proposed in this 

research for segmenting CHP will not take the video into account. 
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Figure 2.5.  Segmentation of a LiDAR-measured canopy height profile with respect to land cover types: 

the left is a false-colored Quickbird image overlaid with  a profiling LiDAR flight line (the green line), 

and the right is the height profile corresponding to the transact denoted by the green line.  

 

To develop an algorithm for segmenting CHP, this research resorts to the 

stationary wavelet transform to perform segmentation on wavelet domain. For ease of 

reference, the basic theory of stationary wavelet transform is described in brief below. 



 27

Wavelet analysis is a powerful tool commonly used to analyze 1-D digital signals. With 

a forward wavelet transform, a signal can be decomposed into a series of coefficients in 

the scale-translation domain. By appropriately enhancing or reducing magnitudes of 

certain coefficients in the new representation of the signal, the reconstructed signal 

through the inverse wavelet transform applied on the modified coefficients can reveal 

certain desirable features or suppress undesirable features. Specifically, for digital signal 

processing, discrete wavelet transform (DWT), i.e., a discretized version of wavelet 

transformation, is probably the most extensively used algorithm. DWT can be 

mathematically expressed as,  

 , ,( ) ( )j k k k
j Z k Z

f t d t
 

  (2.1) 

where 2( ) ( )f t L R  is a 1-D square-integralable function; ,j kd ’s are the DWT 

coefficients,  and / 2
, ( )j j

j k m m t k    are the basis functions with ( )t  being the 

mother wavelet function and 2m  . Because ,j k  are the scaled and translated versions 

of ( )t , DWT provides a multi-scale representation of ( )f t . In practice, DWT, 

however, suffers from a prominent drawback of being translation-invariant, i.e., 

 [ ( )] [ ( )]T DWT f t DWT T f t    (2.2) 

where T  is a translation operator and DWT represents the DWT transformation operator. 

Eq. 2.2 means that when performing DWT, the transformation results depend on the 

choice of the origin. To compensate this drawback, Stationary wavelet transform (SWT) 

is proposed to achieve the translation-invariance. SWT is quite similar to DWT except 

that SWT does not decimate when applying the high and low filters on signals at one 

level to produce two new sequences at the next level. Accordingly, the length of 

coefficients at a level is equal to that at the previous level, and the sequence length of 

decomposed coefficients at each level is equal to the length of the original signal. 

However, to ensure performing the filters appropriately at each level, the filters in SWT 

need to be padded with extra zeroes between each pair of adjacent elements. For 

example, suppose at the level of j  the filter elements are: 
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0 1 2 3, , , , ,h h h h   

Then, the filter elements at the next level of 1j -  should be, 

0 1 2 3,0, ,0, ,0, ,0, ,h h h h   

At the same time, a downsampling needs to follow before performing the filter at next 

level. In principle, SWT has a close relationship with the e-decimated DWT , but SWT 

contains the coefficients of e-decimated DWT for any choice of e. Moreover, it becomes 

clear that SWT is a redundant transformation. This very redundancy, however, facilitates 

the detection of salient features in signals. SWT finds important applications in signal 

processing and analysis, e.g., wavelet shrinkage. More details on SWT can be found in 

Nason and Silverman (1995) or Coifman and Donoho (1995). 

In a LiDAR-measured CHP, the height variations over different land cover types 

may show distinct patterns. For example, heights over a forest segment have more 

variations than those over the other land cover while the height variation of open ground 

is supposed to be zero. But, the actual variation in height of open ground often is 

nonzero due to the random measurement errors as well as the inaccuracy in deriving the 

ground topography. Man-made buildings with linear or flat roofs are also supposed to 

show little variation. Therefore, the pattern in height variation provides hints for 

segmenting CHP, and one possible way to capture these variations (detailed structure of 

the height profile) is to examine the detailed component of the wavelet transformation. 

To guarantee that the coefficients in wavelet domain are mapped to the positions of 

original data one by one, SWT is a preferred choice because it can preserve the signal 

length during the transform. 

The procedure to segment CHPs is technically straightforward as illustrated in 

Figure 2.6; and the following steps are involved: 

(1) Decompose a CHP by SWT to obtain the 1st-level detailed component that 

captures the high-frequency variation in the CHP.  

(2) Take the absolute value of 1st-level detailed component to get positive 

wavelet coefficients, and then apply a mean filter to the positive detailed component to 

obtain a smoothed version of the detailed signal. 
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(2) Threshold the smoothed detailed signal using a cut-off value. 

The resultant binary signal from thresholding is the segmented profile. All the 1’s in the 

binary signal are considered as forest. The zero-valued points need to be further 

classified by referring to the associated height values: those 0’s in the thresholded profile 

that have a height above 3m will be considered as roofs, and otherwise, the 0’s are 

considered as open ground. 

As to the aforementioned procedure, several points need to be clarified. First of 

all, in Step 1, the form of wavelet must be specified to perform SWT, and the 

Daubechies wavelets usually are good choices. In Step 2, the purpose of mean filtering 

before thresholding is to ensure that a more likely continuous segment is obtained.  In 

Step 2 and 3, several parameters involved need to be specified empirically by users, 

including the window size of mean filtering, the cut-off value in thresholding, and the 

height threshold in differentiating between ground and roof.  
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Figure 2.6. The SWT decomposition of height profiles and the subsequent analysis for segmentation: 
(a)The original height profile, (b)the 1st-level detailed component by SWT, (c) the absolute value of (b), 
and (d) the signal obtained by applying a mean filter to (c). 
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2.4 Results and Discussion 

The ground-finding algorithm was applied to the PALS data collected over an 

intensive study area of East Texas, i.e., the highlighted rectangle area in Figure 2.3, 

where coincident scanning LiDAR observations collected by a Leico-geosystems ALS 

are also available.  In the algorithm, a window size of 100 m was used for local 

minimum filtering, and a maximum of 10 iterations was set for the iterative searching. 

Two typical examples of the resulting ground curves are shown in Figure 2.7.  Over flat 

and monotonically decreasing or increasing topographies, the ground curve can be 

accurately recovered, as depicted in Figure 2.7a.. However, the searching for ground hits 

is a little problematic over arched terrains (e.g., the leftmost portion in Figure 2.7b). 

Such failure is an inherent nature of local minimum filtering due to its incapability of 

locating minima over a concave topography that extends longer than the window size; 

the situation can be mitigated if a smaller window is used. But too small a filter window 

cannot guarantee the presence of a ground hit within the filter. Therefore, in practice, a 

balance should be taken for choosing an appropriate filter window size. In particularly, if 

forest conditions are known so that the penetration characteristic is understood, such 

prior knowledge can guide the selection of a filter as small as is allowed for the forests. 
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Figure 2.7. PALS-measured canopy height profiles as well as the ground curves derived by the ground-

finding algorithm, for two different terrain topographies.  

 

The PALS canopy heights over the intensive study area were derived after the 

ground curves became available. Then, these PALS-derived canopy height 

measurements were compared to those obtained by the scanner, (1) to directly evaluate 

the accuracy of PALS measurements using scanner observations as references, and (2) to 

indirectly examine the effectiveness of the ground-finding algorithms since the PALS 

canopy heights were obtained by using the reconstructed ground curve. A typical result 

is presented in Figure 2.8, with a mean canopy height of 7.22 m for PALS as compared 
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to 8.82 m for the scanner; a two-tailed p-test suggests that the difference between the 

two values are insignificant (p-value << 0.05). The difference is suspected to mainly 

result from the misregistration between the PALS with the scanner. 
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Figure 2.8.  A visual comparison of a PALS height profile with the associated scanner-derived profile: a 

scanner-derived CHM, scattered with PALS laser hits, over a subset of the intensive study area (the left), 

and the PALS canopy profile (upper right) as well as the scanner-derived profile (lower right) 

 

 

 

Figure 2.9. The segmentation of a profile where the downward bars indicate the forest segments 

(excluding those back bar at the building edges). 
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To segment the height profile signal in Figure 2.6,  the SWT with the Daub8 

wavelet is applied. The window size of mean filter is chosen to be 25.0 m; the cut-off 

value for thresholding is set to 0.7 m (0.35 is the nominal error of the laser 

measurement). The obtained segment result is shown in Figure 2.9 where the downward 

bars indicate the forest segments (excluding the building). A visual examination on the 

segmentation result suggests the result is reasonable. Notice here that the forestry 

segments are not classified further as mixture, pine, or hardwood; and this should be 

taken into account in the future work. One possible way is to examine the differences of 

the autocorrelation structures for each classes. In addition, more sophisticated schemes 

of thresholding will also be exploited. As a further examination of the segmentation 

algorithm, the ratio of forest strata segmented from the PALS profiles to the total length 

of the profiles was used as an estimate of forest percentage cover. The estimated value, 

79.72%, was comparable to a reference value of 76.14% that was obtained from the 

classified Quickbird image. 
 

Recently, Maeda et al. (2008) developed a computer program to automatically 

overlay PALS-measured profiles with coincident videos simultaneously for on-screen 

visualization based on which to stratify the profiles. The procedure significantly reduces 

the amount of time invested for segmentation as compared to a conventional approach 

that uses a manually-operated video player; however, it still remains labor-intensive 

because analysts are involved to label the profiles according to the visual contents. On 

the other hand, it may be helpful to incorporate a GIS land map to directly stratify PALS 

profiles. But a concern may arise that the positional inaccuracy of PALS measurements 

causes the profiles to be segmented incorrectly due to the misregistration error, as noted 

in Nelson et al. (2004) where they found the PALS segments falling on the water class of 

the GIS map sometime do not have a zero height. A more viable alternative is to employ 

an optical multi-spectral sensor to capture high-resolution mulispectral images 

concurrently with the laser measurements in that the information for the two types of 

measurements complements each other. For example, Millette and Hayward (2008) built 
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such a system with both laser profiler altimetry and multispectral imaging, their system 

proves useful in mapping detailed forest characteristics. However, an integrated system 

like this still maintains a high price tag, thus, somehow precluding its use for regional 

forest inventory over large-scale areas within a reasonable budget. 

 

2.5 Conclusions 

Using PALS as a prototype, a framework for designing an on-the-fly profiling 

LiDAR system was proposed. The PALS system is a portable airborne laser profiler that 

has been widely used for assessing regional forest resources, and the proposed on-the-fly 

LiDAR system not only carries on the full capability of PALS, but more importantly 

extends PALS to produce timely forest inventory information upon landing. Aimed for 

near real-time inventory, the proposed system features on-board data processing. Two 

key data processing algorithms as to profiling measurements, i.e., ground-finding, and 

segmentation, are described in detail. The evaluation of the two algorithms using PALS 

measurements over a study area where coincident scanning LiDAR data were also 

available shows that the algorithms generally perform well. Although more complicated 

algorithms can be investigated to further improve the robustness of the algorithms in 

later studies, the current versions are sufficient for on-board data processing with little or 

no human interaction as demonstrated by the result comparisons. The proposed on-the-

fly profiling system is designed to be a regional assessment tool, one that can be used to 

repeatedly, remotely measure hundreds or thousands of square kilometers with little/no 

analyst interaction or interpretation.  It is also envisioned that an airborne laser system 

integrated with an airborne multi-spectral optical sensor, though with a high price tag, 

brings complementary information valuable to improve the understanding of forest 

characteristics; and the on-the-fly system proposed in this research could serve a 

paradigm for automating the integrated profiling laser systems or even scanning LiDAR 

systems. 
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CHAPTER III 

VARIANCE ESTIMATORS OF PERCENTAGE COVER USING AIRBORNE 

PROFILING LASER WITH LINE-INTERCEPT SAMPLING 

 

3.1 Overview 

The line-intercept sampling (LIS) method has found important applications in 

such areas as forest and wildlife, ecological and biological sciences, and crop and 

agriculture fields. LIS is a sampling technique to make observations along line transects 

in order to make inferences of area properties. The placement of transects can be chosen 

in many different manners, i.e., randomly or systematically. The motivation of this study 

is to use LIS to infer regional information of forestry biophysical parameters based on 

the linear transect measurements of a profiling LiDAR system. However, there is no 

optimum method to properly derive a reasonable measure to the uncertainty of LIS 

estimates. As such, the study first developed a theoretical framework to describe the LIS 

estimation in two settings, one with fixed landscape configuration, and another with 

random configuration. The subsequent simulation of transect observations is realized for 

two categorical maps: the artificial one simulated by SIMMAP, and the real one 

classified from Landsat ETM+ multispectral imagery. The simulated samples were used 

to test four estimators. The methodology employed in this study provides a good starting 

point for practically implementing the quantification of variance estimates with LIS. 

3.2 Introduction 

The line-intercept method is a quite effective sampling technique, and it has 

found extensive applications in natural resource-related disciplines, such as the 

characterization of landscape patterns and the inventory of forestry tracts.  Instead of 

intensive sampling over the whole study area, Line-Intercept Sampling (LIS) measure 

samples only along linear transects. In practice, the placement of transects over study 
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areas can be done either randomly or systematically with fixed or varying length for 

each transect, and sometimes be done in a prescribed configuration. Basically, LIS is 

used to observe a region consisting of randomly distributed particles or items by only 

measuring the particles intercepted by transects. Particles under investigation can be 

geometrically arbitrary-shaped. Based on the settings of applications, the particles may 

represent different entities such as shrubs, tree crowns, dens, lakes, plants, roads and 

signs, and patches in a landscape. So far, many estimators have been developed to 

extend line transect observations about particles into the inference of area properties, 

e.g., estimating the percentage cover of certain patch type based on the fraction of the 

transects intercepted by the given type of patch (Kaiser, 1983; Butler and McDonald, 

1983). 

Historically, LIS technique can be dated back roughly to as early as 1868 when 

Crofton (1868) discussed the local probability of straight lines drawn randomly in a 

plane. Canfield (1941) first introduced this technique to sample range vegetation; he 

employed the random placement of transects and used the proportion of the sampled 

transect intercepted by the vegetation as an estimate of vegetation percentage cover. 

Bauer (1943) compared the relative efficiency of the transect and quadrate methods of 

sampling vegetation based on a series of simulated plant communities of known 

composition, and he showed that the transect sampling gave more accurate results than 

quadrate methods in the cases he investigated. In 1953, McIntyre furthered the use of the 

LIS technique for estimating plant density. Later, Warren and Olsen (1964) proposed a 

LIS-based estimator for the volume of logging waste and documented the first use of 

LIS in forestry applications, and instead of calling it line-intercept sampling, they coined 

the term line-intersect sampling for this technique. The unbiasedness of Warren and 

Olsen’s estimator was proved true under certain assumptions by Van Wagner (1961). 

Later, Kaiser (1983) presented some theoretical work by introducing two generic 

estimators for LIS, and his theory tends to unify all the LIS results up to that time. He 

employed a geometrical probability approach to prove the unbiasedness of estimators he 

proposed, and provided examples in which his estimators degenerated to some 
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commonly known estimators. Kaiser’s development (1983) proved to be one of the most 

appreciated works in the literature of LIS. More recently, extensive applications of LIS 

have been seen in such areas as forestry, wildlife, ecological and biological sciences, and 

crops and agriculture sciences (Keller et al., 2004; Keane et al., 2005; Nelson et al., 

2005). Recent progress of LIS sampling theory can also be witnessed in the work of 

Affleck et al. (2005), among others. 

In this study, we are interested in developing an on-the-fly portable airborne laser 

profiling system for forest inventory based on an existing system called Portable 

Airborne Laser System (PALS) assembled by Nelson et al. (2003a). The proposed 

system is a profiling laser altimeter or LiDAR (Light Detection And Ranging). A laser 

profiler usually emits laser pulses at near-nadir direction (without scanning) and collects 

the returned pulses. The round-trip travel time of the laser pulse can be converted to 

ranging measurements according to the speed of light. As shown in Figure 3.1, a 

profiling LiDAR can measure the forest canopy height profile along a transect that is 

defined by the flight line (Nelson, 1984). The schematic in Figure 3.1a suggests that two 

profiles are involved to characterize the stand structure: the top one depicting the profile 

of top canopy surface, and the bottom one depicting the terrain topography. Previous 

studies found that forest stand characteristics can be derived from this profiling 

measurement (Maclean and Krabill, 1986). Transects flown over a study site in Figure 

3.2 illustrate the basic idea about how a profiler collects samples and what the placement 

of transects looks like. Unlike most current commercially available scanning LiDAR 

systems capable of continuously sampling the study area (Lefsky et al., 2002; Popescu et 

al., 2002; Popescu et al., 2003), the proposed profiler can make measurements only 

along selected, predefined linear or near-linear flight transects. 
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 Flight line 

 

 

Figure 3.1. An example of a forest canopy profile which might be obtained via a laser profiling instrument. 

 

To infer information on the area-based variables, LIS is needed to analyze 

profiling laser measurements. However, before applying LIS, the profiling laser data 

should be first processed and converted, preferably by some automatic data processing 

algorithms, to information relevant to the forest stand characteristics of interest. These 

processing algorithms includes those for reconstructing ground topography, deriving 

canopy height profiles, and stratifying the canopy height profiles into segments with 

respect to the types of land cover., The stratification of profiling transects is central to 

this study for the purpose of estimating percentage cover of each land cover. To stratify 

a laser height profile, advanced signal processing techniques such as wavelet analysis are 

effective in designing automatic algorithms. No elaboration on these aspects is made in 

this paper, and details concerning the implementation of relevant algorithms may appear 

in subsequent publications.  

Airborne profiling measurements have been used in conjunction with LIS 

sampling techniques to inventory forest resources of large forested areas. Nelson et al. 

(2003b) used over 1300 km of systematic profiling transect measurements acquired on 

14 flight lines 4 km apart to conduct an LIS-based multiple resource inventory of 

Delaware. Their estimates of merchantable volume fell within 21% of US forest service 

estimates at the county level, and 1% statewide, and their estimates of total above-

ground dry biomass estimates were within 22% of USFS estimates at the county level 
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and within 16% statewide. They also used profiling measurements to estimate the areal 

extent of impervious and open water area for three counties of Delaware, and found that 

results were comparable to estimates from other sources. Using the same dataset, Nelson 

et al. (2005) applied the LIS method to estimate the extent of Delmarva Squirrel Fox 

habitat. Although their results showed that airborne profiling laser measurements in 

conjunction with the LIS method offers an effective tool for regional forest inventory, 

the variances of the LIS estimates reported by them only are an approximation to the true 

variances. They also claimed that the variance estimator in their study gives an upward 

conservative estimation (Nelson et al., 2005). 
 

 

Figure 3.2.   Parallel transects flown by a profiling LiDAR (profiler) over a study site: the dark lines are 

the flight lines of the laser profiler, the background is a false-color QuickBird image. 

  

Because the variance or standard error of an estimate provides a quantitative 

measure of the uncertainty surrounding that estimate, reported means or totals without 

the associated estimates of variance are less valuable. Kaiser (1983) gave for his 

estimators a definition formula of the variance which includes two components, i.e., the 

variance terms and the covariance terms; and he stated that even in simple cases the 
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formula is mathematically intractable due to the unknown form of the covariance 

components. He also suggested obtaining a number (m) of independently and identically 

distributed estimates based on m independently chosen transects of certain length L, then 

pooling these m estimates by arithmetic averaging as a final estimate and taking the 

sample variance as the estimated variance. In terms of the intractability of the formula 

for covariance, DeVries (1986) had the same argument, and he offered a similar formula 

to evaluate the variance in the cases of transects of varying length, where the transect 

length is used as weighting in the calculation. Nelson et al. (2005) restated a successive 

difference estimator based on the study of Lindeberg (1926), and envisioned the use of a 

large Monte Carlo experiment to obtain a valid estimate of the estimator’s variance for 

the systematic airborne LiDAR sampling. To effectively analyze and interpret the 

estimated forest attributes from profiling LiDAR measurements, we attempt to 

investigate the uncertainty of LIS estimates by quantifying its variance, which will serve 

as a crucial step in appropriately analyzing and interpreting profiling LiDAR 

measurements. 

Specifically, this study will use both a computer-simulated artificial landscape 

and a real landscape classified from a Landsat ETM+ image in order to simulate transect 

observations in a systematic manner. Based on a series of simulated observations, four 

estimators for cover percentage of certain patch type are tested, and the corresponding 

variance estimators are also constructed and evaluated. To simplify the demonstration, 

we only considered binary landscapes: background versus patches of interest for the 

computer-generated landscape, and forest versus non-forest for the classified ETM+ 

landscape. For conveniences, we, throughout the paper, term 1-valued pixels as forestry 

and 0-valued ones as non-forestry in both the artificial and real landscapes. The results 

can be easily generalized to the multiple-type cases. Also, in this study, we formulate a 

theoretical framework for evaluating the variance estimators under certain assumptions. 
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3.3 Methods 

3.3.1 Computer-simulated Landscape 

A landscape simulation package SIMMAP, which implemented a modified 

random simulation method (Saura and Martínez-Millán, 2000), was utilized to generate a 

categorical landscape map with 2 patch types and an extent of 900 x 900 pixels (Figure 

3.3). In the generation, the minimum patch size was set to 90 pixels. The forest cover 

percentage is the main landscape metric of inference interest. Because in practice, the 

shape of the study area, i.e., a county or state, could be arbitrary, a irregular-shaped mask 

was arbitrarily delineated on-screen in ENVI (ITT Visual Information Solutions, Inc.) 

and applied to the 900 x 900 image to clip out a region of interest, for the purpose of 

mimicking reality (Figure 3.3). 

 
 

 

Figure 3.3. The computer-generated categorical map and a mask of the boundary of study area, and the 

resulting landscape after applying the mask to the original square region. 
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3.3.2 Classified Map from Remotely Sensed Data 

A Landsat ETM+ multispectral image over Huntsville, East Texas, USA, was 

classified with the unsupervised ISO-DATA algorithm into seven classes. Then, the 

seven classes were grouped into two categories: forest and non-forest. Because the 

inference of interest is not the absolutely true value of the percentage covers for the 

Huntsville area, no accuracy assessment was performed. As with the artificial landscape, 

a mask was applied to the ETM+ landscape to mimic a natural shape of study area, and 

the resulting landscape is depicted in Figure 3.4. 

 

 

 

Figure 3.4. The classified Landsat ETM+ image with two classes (green for forest and black for non-

forest), and a mask of the study area boundary, and the resulting landscape after applying the mask to the 

original square region. 
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3.3.3 Total Area of a Given Class 

To simplify the illustration, it is assumed that the landscape contains only two 

categorical classes, i.e., non-forest (0) and forest (1). The interest is in estimating the 

total forested area. In practice, when a profiler system is flown, the flight direction is 

typically set and fixed; the sampling transects are parallel and spaced almost equally. A 

coordinate system was chose such that the x axis is perpendicular to the direction of 

sampling transects and the y axis is selected as the tangent to the left-most boundary 

(Figure 3.5). For a given transect at x, its length l(x) is equal to the distance between the 

upper and lower boundary points connecting the transect, excluding the portion that may 

lie outside the study area if any ( i.e., the second transect from the left in Figure 3.5); and 

the proportion of the transact intercepted by forest patches is denoted by r(x). Note that a 

transect may intercept many patches. Apparently, the total area of all forest patches a  

can be evaluated by, 

 
0

( ) ( )
s

a r x l x dx   (3.1) 

where s represents the span of  study area in the x direction. 

 

 

x 

y 

l(x) 

s 

 

Figure 3.5.  A hypothetical region of study where the black solid lines are transects for LIS and will be 

used to infer information on the colored patches, i.e., the cover percentage.  The transect at x touches the 

upper and lower boundary points of the region, and has a length of l(x); the transect intercepts with 

patches, and denote the proportion intercepted to its total length is r(x). 



 44

 

To clarify notations, lowercase letters will denote variables or functions that are 

deterministic or fixed, while the uppercase is used to denote a random variable or 

function. 

 

3.3.4 LIS Estimators for an Unknown Yet Fixed Landscape 

The geographical extent of a study often is known by referring to some archived 

data source, e.g., a GIS layer. In addition, suppose that the orientation of all sampling 

transects are in the same direction and already determined as is the case for a profiling 

LiDAR survey. Hence, l(x) is known and can be calculated. The proportion of transect 

intercepted by the patches of a certain type (e.g., forest), ( )r x , is fixed at any given x. 

Over the study area, ( )r x  remains unknown except along transects where observations 

have been made. If the placement of transects is uniformly-random over the span [0, s] 

in the x direction and the property of ( )r x  is unknown, the following estimator 1̂a  can be 

effective: 

 1
10

( ) ( )
1 ˆ( ) ( )

n

i is i
r x l x

a s r x l x dx a s
s n

  


   (3.2) 

where n is the number of transects observed, and the variance of 1̂a  is given by, 

  
2 2

2 2
1 1

1ˆ[ ] [ ( ) ( )] ( ) ( ) ( ) ( )
s

sVar a Var r X l X s r x l x dx r x l x dx
n n

        (3.3) 

where 1/ [ ( ) ( )]sVar r X l X  means the variance of ( ) ( )r X l X  when assuming X is uniformly 

distributed, i.e., ~ 1/X s . Since 1̂[ ]Var a  requires evaluating ( )r x  over [0, s], this cannot 

be used directly because ( )r x  are not available for all x. Alternatively, the sample values 

of ( )r x  at the observed transect, i.e., ( ), 1...ir x i n , should be substituted to calculate 

the sample variance of ( ) ( )r X l X  as the estimated variance, that is, 
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1
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ˆ[ ]
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n
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Var a
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





 (3.4) 

where  ( ) ( ) ( ) ( ) /i ir x l x r x l x n  is simply the sample mean. 

Intuitively, the longer l(x), the more contribution of it to the total area. Rather than being 

randomly placed, transects can be located by the probability of l(x)/m, where m is the 

total area of the whole study region. This means that there are more transects placed over 

x’s with larger l(x). According to such a design, a natural estimator should be, 

 1
20

( )
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n

is i
r x

l xa m r x dx a m
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  


  (3.5) 

where again, m is the total area of the whole landscape such that 
0

( )
s

m l x dx  and the 

corresponding variance will be, 
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        (3.6) 

where ( ) / [ ( )]l x mVar r X  is the variance of r(X) by assuming ~ ( ) /X l x m . Similarly, the 

observed samples ( )ir x  can be used to obtain an approximation to the true variance, and 

it follows that, 
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^
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ˆ[ ]

( 1)
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i
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m r x r x
Var a
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





 (3.7) 

3.3.5 LIS Estimators for a Random Landscape 

In contrast to the aforementioned setting, the configuration of a landscape, i.e., 

r(x), is supposed to be an unknown and random function of x and was denotes as R(x).  

Consequently, the total area of forest cover (patch type of interest) is a random variable 

instead of an unknown constant. In reference to Eq. 3.1, it can be computed by, 

 
2

0 0
( ) ( ) [ ] ( ) ( )

s

A RA R x l x E A x l x dx       (3.8) 
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where ( )R x  is the mean function of ( )R x , and in most cases, it may be not a constant 

function. Of particular note is that mathematically ( )R x  cannot be a Gaussian random 

function because for any x, ( )R x  is bounded over [0, 1]; however, for practical 

convenience, ( )R x  may be approximately gaussian. 

In this random setting of landscape configuration, the corresponding parameter of 

interest is [ ]E A , i.e., the mean of A . To simplify, assuming that ( )R x  has a constant 

mean R  independent of x, then, [ ]E A  and [ ]Var A  then can be obtained respectively by: 

 
0

( )
s

A R Rl x dx m     (3.9) 
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( ) ( ) ( ) ( )
s s x

A Rx
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
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where ( )RC x  is the covariance function of ( )R x , and Eq. 3.10 holds if and only if ( )R x  

is  widely-sense stationary, which should not be too rigid a requirement in most cases. 

By further assuming the mean-ergodicity of ( )R x , a reasonable estimator of A  can be 

expressed as, 

 1
,1

( )
ˆ ˆ

n

i
i

A R

m R x
m

n
   


 (3.11) 

and its variance is, 

 
2

,1 2
ˆ[ ] 1 1A R

mVar
n

     (3.12) 

where again, m is the area of whole landscape; ( )iR x ’s are the sampled value at n 

transects that can be either systematically or randomly placed; R  is the variance-

covariance matrix of ( )iR x  and it can be constructed from ( )RC x  which, for the (i, j) 

entry of R , gives (| |)R i jC x x . Unfortunately, the structure of ( )RC x  is usually 

unknown; therefore, in practice prior knowledge about ( )RC x  may be entailed. 

Another estimator of A  is given in Eq. 3.13 with Eq. 3.14 being the associated 

variance:  
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The unbiasedness of ,2ˆ A  depends on both the properties of ( )R x  and the sampling 

schemes of ix . For instance, if ( )R x assumes a constant mean, ,2ˆ A is unbiased when 

ix ’s are randomly sampled. Conversely, suppose that ( )R x  is dependent on x, ,2ˆ A  is 

biased when transects are observed at fixed locations ix ’s.  

3.3.6 Simulation Schemes 

Systematic samples of transects are drawn randomly in a manner similar to that a 

profiling LiDAR observes. The spacing between adjacent transects are purposely 

designed to be randomly distributed around the average spacing since the flight lines of 

profiling LiDAR are not exactly equally spaced. Specifically, for both the computer-

generated landscape and classified categorical map, a range of transect numbers are used; 

and at a given number of transects, a total of 30 realizations are simulated. The sample 

variance calculated from each group of 30 realizations is used to be compared with those 

obtained by the proposed variance formula. 

3.4 Results 

The proportion of transects intercepted by forest patches, i.e., ( )r x , is plotted 

against x in Figure 3.6a and 3.6b for the artificial landscape generated by computer and 

the real landscape created from ETM+ imagery, respectively. The curves suggested that 

in both cases, the ( )r x  appears to be randomly fluctuating and there exists some spatial 

correlation to a certain degree as also shown in Figure 3.7a and 3.7b which show the 

sample covariance function calculated from the corresponding ( )r x ’s. In both cases, the 

correlation monotonically decreases as the lag increases. These two sample covariance 
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functions as ( )RC x  were plugged into the formula in Eqs. 3.10, 3.12, and 3.14 developed 

above to compute the sample variance of the estimators. 
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Figure 3.6.  The proportion of transects intercepted by forest patches , r(x), is plotted against x (pixels) for 

the artificial landscape generated by computer (Fig. 3.5) and the real landscape created from ETM+ 

imagery (Fig. 3.4). 
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Figure 3.7. The sample covariance function calculated from the r(x)’s of Figure 3.5, respectively for the 

artificial landscape (a), and the classified land cover map (b). 

 
Figure 3.8 shows the forest cover percentage estimated by four different 

estimators, at different choices of transect number. The forest cover percentage is simply 

the ratio of estimated forest area to the total area. The four estimators are respectively 

the one used by Nelson et al. (2005), and three of the four discussed above except the 

second one. They are denoted by “Nelson” or “N”, “a1”, “A1” and “A2” as labeled in 

the legends of Figures 3.8-3.11, respectively. The plotted values of estimates in Figures 

3.8 and 3.10 only represent a random realization out of 30 ones. The true reference value 

of forest percentages are 0.368 and 0.228 for the simulated artificial and classified real 

landscape maps, respectively. In both cases, the estimated values tend to come closer to 

the true value as more transects are observed. Moreover, an overall trend of 

overestimation is observed for all the four estimators (Figure 3.8a) in the case of 

simulated landscape, although the estimates are occasionally lower than the true value, 

and the estimator of “N” and “A1” seem to consistently give the estimation closest to the 

true value. On the other hand, an opposite trend was noticed for the classified ETM+ 
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image where overall, all four estimators were apt to underestimate the percentage cover. 
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Figure 3.8. The forest cover percentage estimated by four different estimators as a function of the number 

of transects used. The four estimators are the ones used by Nelson et al. (2005), the first estimator a1 

discussed in “Estimators when the configuration of landscape is fixed yet unknown”, and the two 

estimators A1 and A2 discussed in “Estimators when the configuration of landscape is supposed to be 

random”.  (a) is the case for artificial landscape, and (b) for the classified remote sensing imagery. 

  

One way of calculating estimator variance is to take the sample variance of 30 

realizations, i.e., standard practice that is quite often employed in Monte Carlo 

simulation.  The sample variances obtained so are supposed to offer a quite reasonable 

approximation to the true values inherent in the sampling design. Figure 3.9 suggests 

that for both landscapes the variances of four estimators were similar. To be more 

precise, for the simulated landscape, the estimated standard errors (SE) from the 

simulation with “Nelson” estimator is the lowest with “a1” and “A2” providing the 

highest estimates, while for the classified image, the estimated SE of “Nelson” and those 

of “a1” and “A2”  are very close especially at a large number of transects. In addition, 

another way to calculate the estimator variance is to directly use the aforementioned 

formula which is derived under certain assumptions, with results given in Figure 3.10. 

As with the Monte Carlo simulated estimates, the SEs calculated with variance formula 

appear to follow a similar trend except that “a1” and “A2” have different estimates due 
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to the difference in assumptions. Moreover, in contrast to the decreasing variance with 

more transects for Nelson’s estimator and a1, A1 and A2 exhibit an almost invariant 

pattern. 

 

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Estimated standard error by Monto Carlo simulation 
 for simulated landscape

 Number of Transects

Fo
re

st
 P

er
ce

nt
ag

e 
C

ov
er Nelson

a1,A2
A1

0 10 20 30 40 50
0.

00
0.

02
0.

04
0.

06
0.

08

Estimated standard error by Monto Carlo simulation 
 for ETM+ image

 Number of Transects

Fo
re

st
 P

er
ce

nt
ag

e 
C

ov
er

Nelson
a1,A2
A1

 
Figure 3.9. The estimated variance by sample variance of the simulation: (a) is the case for artificial 

landscape, and (b) for the classified remote sensing imagery  
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Figure 3.10. The estimated variance calculated by the variance formula: (a) is the case 

for artificial landscape, and (b) for the classified remote sensing imagery 
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To further compare the two methods of computing variance, the ratios of SEs 

derived from the formula to that from the Monte Carlo simulation are presented in 

Figure 3.11. Assuming that the simulation-derived sample variance is a more reasonable 

estimate, the closer to 1 the ratio is, the more valid the formula for variances is, or a 

more reasonable assumption is made as to r(x) . As shown in Figure 3.11, the resulting 

plots reveal that in the case of simulated landscape, the ratios fluctuated around 1.0 for 

all four variance estimators, e.g., with a range from 0.72 to 1.41 for the Nelson’s 

estimator; However, for the real landscape of classified image, “A1” and “A2” provided 

inflated estimates compared to the reference values from the Monte Carlo simulation, 

with “A2” producing the most upward estimates and “A1” following next. In contrast, 

Nelson’s estimator and “a1” have fluctuating ratios that are more closer to 1, which 

suggests that in this case these two estimators offer more realistic estimates of variance. 
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Figure 3.11. The ratio of the formula-derived variance (shown in Figure 3.9) to the sample variance of 

simulation (shown in Figure 3.8) as a function of number of transects used. The closer to 1 the ratio is, the 

more valid the variance formula is.  (a) is the case for artificial landscape, and (b) for the classified remote 

sensing imagery. 
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3.5 Discussion and Conclusions 

By mimicking the way a profiling LiDAR collects linear transect observations, 

the simulation of random realizations makes it possible to examine the variability of 

simulated samples as well as quantify the variance of a given estimator. In this study, 

estimators for the percentage cover of a given class is tested; more importantly, the 

variance of these estimates are obtained by either taking sampling variance of the 

simulation or using the proposed formula as expressed in Eqs. 3.4, 3.7, 3.12 and 3.14. 

Two settings of landscapes, whether deterministic or random, are assumed for 

deriving both the estimator and variance formula. Instead of referring to geometrical 

probability as used in Kaiser (1983), Monte Carlo integration approach is employed for 

developing estimators of percentage cover in this study; and the basic ideas are 

illustrated by Eqs. 3.1, 3.2, 3.5 and 3.8.  The estimator ( 1̂a  or a1) of the first setting 

appear to be quite similar to the one used by Nelson et al. (2005), but differences 

between them exist that 1̂a  is an estimator for the area of patches of interest that needs to 

be divided by the already known value of total area of the study area to obtain 

percentage cover, while the estimator in Nelson et al. (2005) provides a direct estimate 

of percentage cover. The estimators for the random setting, however, tend to have a 

much more inflated variance that seems much larger than those obtained by the Monte 

Carlo simulation. This inflation may be caused by treating the systematical sampling as 

random when evaluating the variance, and it may also be an artifact of introducing 

randomness to depict the fixed but unknown landscape, i.e., r(x). Moreover, the 

inference in the second setting of random lanscape can be only made as to the mean 

value since R(x) is random by itself. As such, the simulation of drawing transects from a 

fixed landscape is not too methodologically rigorous; but this appeared not to be a 

problem as demonstrated by the results for the simulated landscape. 

In fact, the apparent disparity between the formula-based and simulation-based 

variance estimates for “A1” and “A2”, as indicated in Figure 3.11. b for the classified 

image, can be most likely attributed to the departure of R(x) from the underlying 
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assumptions made for deriving the variance estimators. It becomes clear that a drift is 

present in r(x) as depicted in Figure 3.6b, which shows a high tail at large x. As a result, 

the incorporation of such an overall trend into the calculation may mislead the estimation 

of covariance function as shown in Figure 3.7b, since covariance function is supposed to 

capture only the random components of underlying stochastic process. Consequently, the 

inappropriate knowledge about covariance function will result in unreasonable variance 

estimates, as also noted for the variance estimator in Kaiser (1983). In this study, 

estimates of covariance function were computed from ( )r x . However, in practice, ( )r x  

remains unknown and is of inference interest based on the available samples observed at 

transects. Because of the limited number of transects, it seems impractical to estimate the 

covariance function, thus preventing the effective use of variance estimators formulated 

for the random setting. A possible remedy is to fit a parametric covariance model of 

known form to the available observation; specifically, the parameter relevant to the 

magnitude is simply estimated by the sample variance of ( )ir x ’s, and parameters 

relevant to effective correlation distance may be inferred by analyzing the observations 

along the transect direction (i.e., the y axis in Figure 3.5), due to continuous 

measurements available in this direction. However, the development of an efficient and 

reliable fitting procedure needs further investigation in future studies.    

In our derivation, it is assumed that the geometry of study areas is known, which 

means that given a direction, ( )l x  can be calculated. This is typically the case given that 

the study area is often digitally characterized in a GIS. By changing the observation 

direction, not only ( )l x but also ( )r x  changes; therefore, the orientation of transects has 

great influence on the properties of relevant estimation. There also may exist a favorable 

direction for high-precision estimates; for example, an extreme scenario is hypothesized 

in Figure 3.12 where the dotted half of the square region represents forested area. If a 

single vertical transect is randomly observed (the left of Figure 3.12), the sampled 

percentage can take either 1 or 0 with equal probabilities; however, when observed 

horizontally, the true value 1/2 is always observed. To this end, prior knowledge, if 

available, can be used to guide the selection of appropriate direction; otherwise, the 
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direction that could minimize the variability of ( )l x  may be an option. In fact, when 

( )l x is constant, all the four estimators as well as the one used in Nelson et al. (2005) 

essentially produce the same estimates, but they do have different variance estimates due 

to different assumptions. In deriving the LIS estimates or the corresponding variance 

estimator such as 1̂a  and 2̂ , only the transect length at observed locations is used. To 

compensate this, the primary author suspects that incorporating all information on l(x) 

should increase the precision of estimates.  

 

 

 

Figure 3.12.  An extreme hypothetical landscape of square shape where the dotted half represents forested 

area, for the purpose of demonstrating the effects of transect orientation : vertically-placed transects (the 

left) and horizontally-placed transects (the right) 

 

As a final note, although the aforementioned derivation is based on binary 

categorical landscapes, the proposed estimators can be equally applied to estimate 

percentage cover for landscapes with multiple categories without any modification.  

Moreover, they can also be extended for estimating the mean value of a variable that 

varies continuously across the study area, e.g., regional biomass. To illustrate this point, 

suppose that the variable is a spatially-explicit function denoted by ( , )f x y ; then, by 

assuming the same geometry as in Figure 3.1, the mean of ( , )f x y  averaged over the 
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study area is simply obtained by an integration as follows, 
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where 
( )

( )
( ) ( , )u

l

y x

y y x
f x f x y dy  ; ( )ly x  and ( )uy x  are the y coordinates respectively for 

the lower and upper boundary points at x, and m  is the size of study area. In Eq. 3.15, 

( )yf x  plays the same role as the ( )r x  in Eq. 3.1. Hence, after the samples of ( )yf x  are 

observed at a number of transects that are parallel to y, f  can be estimated by using the 

same estimators as previously discussed. 

The logic to formulate the estimators for LIS is a little different from the mostly 

used geometrical probability approach by Kaiser (1983). Hence, it still remains 

undetermined whether a logically sound reasoning line is followed to deal with the LIS 

problems in this study, or not. Nevertheless, the attempt to rely on Monte Carlo 

integration random simulation for evaluating LIS estimators points to a bright direction 

towards the ease of practical implementation of LIS schemes rather than the 

mathematical intractability. 
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 CHAPTER IV 

SCALE-INVARIANT PREDICTION OF FOREST BIOMASS USING 

AIRBORNE LASERS 

 

4.1 Overview 

Researchers in LiDAR (Light Detection And Ranging) have been striving to 

search for the most appropriate LiDAR-based predictors in regression models for 

estimating forest structural variables. Most of previously developed models are scale-

dependent, and need to be fitted and then applied both at the same scale or cell size. The 

objective of this paper is to develop methods for scale-invariant prediction of forest 

biomass using LiDAR data. We proposed two scale-invariant biomass models: a linear 

model that uses LiDAR-based canopy height distributions (CHD) as predictors, and an 

equivalent nonlinear model that uses the whole canopy height quantile function (CHQ) 

as predictors. The two models were justified by a mathematical framework with several 

moderate assumptions. The validation of models was based on a series of realistic plot-

level data that have been synthesized from the LiDAR Canopy Height Model (for 

predictors) and LiDAR-derived detailed biomass map over a forested region in eastern 

Texas. The models were also applied to six transects of profiling laser data for 

estimating regional biomass. The results from intensive evaluations show that the 

proposed models can accurately predict biomass and have consistent predictive 

performances across a variety of scales with an R2 ranging from 0.80 to 0.95 among all 

the fitted models. The results also show that in our experiments, a training sample size of 

around 50 plots or less is enough to guarantee a good fitting of the linear model. The 

findings of this study suggest that the proposed models are effective for forest inventory 

tasks where the analysis units vary in size and shape, and they also hold promises for 

predicting other forest structural variables such as basal area, timber volume, crown fuel 

weight, and Leaf Area Index. 
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4.2 Introduction 

Accurate estimation of biomass is essential for a better understanding of carbon 

cycles over terrestrial ecosystems where forests serve as a primary reservoir of terrestrial 

carbon (Houghton, 2005). Monitoring changes in biomass over time has both 

environmental and economical significance as typified by the establishment of the Kyoto 

Protocol. In the context of global change and warming, quantification of carbon 

sequestration in forested areas provides insights into relevant biogeochemical processes, 

e.g., vegetation responses to elevated CO2 levels, environmental impacts of 

anthropogenic activities, and characterization of carbon sources and sinks at regional or 

global scales (Houghton et al., 2001). A growing need for spatially-explicit mapping of 

forest biomass has been partially compensated by recent advances in remote sensing 

technologies. In particular, Light Detection And Ranging (LiADR) recently emerged as 

a breakthrough technology in remotely inventorying forest resources. It features direct 

characterization of canopy structures, which makes it a superior choice for accurate 

estimation of above-ground biomass (AGBM) as compared to optical remote sensing 

that suffers from saturation of spectral response to dense canopies with high biomass 

(Lefsky et al., 2002). 

Small-footprint airborne laser scanners (ALS) with discrete-returns continuously 

transmit laser pluses to pinpoint the intercepted targets by accurately timing the 

roundtrip of a pulse between the sensor and a target. LiDAR data from ALS, thus, 

consist of a collection of spatially-distributed points each represented by a coordinate 

triple of (x, y, z) and often tagged with such auxiliary information as reflected intensity, 

scanning-angle, and acquisition time. The mainstream of LiDAR forestry applications 

thus far more appreciates the use of coordinate information of triples than LiDAR 

auxiliary variables, with only few studies partly investigating the applicability of the 

auxiliary information. (Brandtberg et al., 2003; Lim et al., 2003; Holmgren, 2004; 

Popescu and Zhao, 2008). Previous efforts demonstrate the potential of LiDAR for 

extraction of forest structural attributes at different levels (Næsset, 1997; Omasa et al., 
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2003; Nelson et al., 2003a; Popescu, 2007). A variety of algorithms were proposed to 

delineate single trees from LiDAR data and estimate tree height and/or crown 

dimensions at individual tree levels; most results suggest LiDARs tend to underestimate 

tree height due to a large probability of missing treetops even with a high sampling 

density (Popescu et al., 2002; Yu et al., 2004; Chen et al., 2006). Plot- or stand-level 

estimates of forest characteristics from LiDAR, e.g., mean tree height, basal area, 

AGBM, and timber volume, have also been reported for various forest types and 

conditions (Riaño et al., 2004; Næsset, 2004; Popescu et al., 2004; Andersen et al., 2005; 

Maltamo et al., 2006; Mutlu et al., 2008).Standard practice in establishing LiDAR 

prediction models for plot-level forest attributes involves relating the spatially coincident 

in-situ measurements, which are usually prorated if not temporally concomitant with 

laser data, to some carefully-selected LiDAR metrics by regression analysis. Upon 

validation, these regressed models will be applied on the rest of LiDAR data for 

prediction purposes (Nelson et al., 1988; Næsset and Bjerknes, 2001; Næsset, 2002). 

The use of LiDAR for AGBM generally follows the same aforementioned two-

stage procedure where ground reference biomass is obtained with destructive sampling, 

or more often with the recourse to allometric equations. Previous studies showed 

promising results in estimating biomass with LIDARs; however, the selected LiDAR 

metrics and regression models often lack commonalities as also noted by Lim and Treitz 

(2004). The reported LiDAR metrics mainly include mean, maximum and median 

canopy height, quadratic mean canopy height, quantile heights and etc.; these metrics 

were used alone or combined in linear models or nonlinear models. (Lefsky et al., 1999; 

Means et al.,1999; Nelson et al., 2004). Nelson et al. (1988) found, for example, that the 

logarithmic model with mean height of all laser returns as predictor accounts for the 

most variation in ground-measured AGBM using first-return laser profiler data. Popescu 

et al. (2003) reported two plot-level linear biomass models for pine and deciduous plots 

respectively; the significant predictors of the pine model include the LiDAR-derived 

mean and maximum crown diameter, and those of the deciduous model include the 

LiDAR-derived maximum tree height and mean crown diameter. Also, with laser 
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scanner data, Lim et al. (2003) exploited three linearly-transformed single-predictor 

models that use the mode of laser returns, the mean height of all laser returns, and the 

mean height of only laser returns with intensity values above a preset threshold, 

respectively. In another study, Lim and Treitz (2004) explored laser canopy-based 

quantiles for biomass by assuming that the laser canopy height distribution (CHD) is a 

function of the vertical distribution of leaf areas, and they concluded that all quantiles 

have similar prediction capabilities if the tree allometry in forests remains the same. 

The importance of scale in remotely sensing surface biophysical parameters has 

long been recognized, partly due to the incapability of sensors to directly measure the 

heterogeneity at sub-pixel scales (Strahler et al., 1986; Woodcock and Strahler, 1987; 

Marceau, 1999). From either an applied or philosophical perspective, scale issues arise 

virtually from all disciplines of the earth sciences (Oreskes et al, 1994). As far as remote 

sensing theories and applications are concerned, scale problems often reveal themselves 

by a range of incompatibilities among relevant scales such as those at which sensors take 

measurements, those at which physical variables of interest are defined in theory and 

observed in-situ, those at which remote sensing application models are formulated and 

applied, and those at which retrieval algorithms together with the involved remote 

sensing forward and inversion models are formulated and implemented; moreover, ad-

hoc image processing procedures such as resampling and filtering often introduce 

compounding scale effects (Turner et al, 1989; Marceau et al., 1994; Marceau, 1999). To 

compensate those scale discrepancies, practical applications often require devising some 

viable scaling-up or scaling-down schemes. In addition, for a specific application, e.g., 

tree species mapping (Marceau et al., 1994), there often exists an optimal spatial 

resolution that may not be valid to other applications. In the context of LiDAR remote 

sensing of forest structures, most previous studies built prediction models that are likely 

to be not only study- or species-specific but also scale-dependent (Lim and Treitz, 2004; 

Patenaude et al., 2004).These models are typically trained using data collected at a given 

plot size, e.g., the field-measured biomass versus the LiDAR quadratic mean height, and 

for prediction purpose, they need to be applied at a scale or pixel size commensurate to 
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the plot size used in model training (Næsset, 2002). For example, when applying the 

regression equations trained at a plot size of 200 m2 to predict stand-level forest 

characteristics, Næsset (2002) divided each stand into cells of 200 m2 and averaged the 

predicted values of individual cells within a stand for obtaining the overall prediction of 

that stand. Noteworthily, a possible concern arises that some model variables involved, 

either predictors (LiDAR metrics) or dependant variables (forest attributes), are non-

additive, by which we mean that the average of individual value of a variable at many 

cells is not equal to its value over the area aggregated from these cells with regards to the 

definition of that variable. In fact, the scale-dependence of LiDAR approaches was 

explicitly reported in a ground carbon study where the authors found that using the same 

exponential model with the 80th LiDAR height percentile as the predictor, the total 

AGBM calculated by applying the model to each cell is not the same as the one obtained 

by using the single 80th percentile of the whole area (Patenaude et al., 2004). They 

attributed the discrepancy to the nonlinearity of the exponential model, and suggested 

modeling height distributions across the stands, the woodland, or any area of interest as 

an alternative approach to the use of percentiles (Patenaude et al., 2004). To be more 

precise, even if the model is linear with a percentile height as the only predictor, this 

scaling effect still exists due to the nonadditivity of the percentile from two height 

distributions. In general, the scale-dependence of these models is revealed by a simple 

observation that the aggregation of prediction at individual cells is not the same as the 

single prediction based on the single predictor over the aggregated cells (Patenaude et 

al., 2004). This scaling effect may spring from one or more of the nonadditive properties 

of predictors, models, and responses when scale changes (Oreskes et al, 1994). 

One way to quantify AGBM using LiDAR with minimal scaling effects is to 

inventory forests at individual tree levels and calculate biomass per tree (Popescu, 2007), 

and AGBM at scales above tree levels will be immediately available by integrating tree-

level results up to the desired scale. Such a method involves the delineation of trees from 

LiDAR data. Computational demands by tree segmentation should be of little concern 

even for large areas considering the powerful capacities of modern computers. A 
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possible concern, however, is the incapability of current tree-segmentation algorithms to 

identify certain trees, e.g., understory and suppressed trees, as well as the inefficiency of 

the algorithms in delineating trees under certain canopy conditions such as dense forests 

and grouped trees (Maltamo et al., 2004). This limitation probably explains why little 

literature is found to estimate plot or stand-level AGBM through the use of tree-

segmentation -and -integration approach, although there is literature reporting that 

dominant trees contribute significantly to the AGBM for certain forest conditions 

(Zavitkovski, 1976). 

The main objective of this study is to explore the possibility of developing scale-

invariant prediction models of ABGM from airborne laser scanner data. To this end, we 

proposed two scale-invariant models: One is a linear functional model that uses the 

whole curve of LiDAR-derived canopy height distribution (CHD) as the predictor, and 

another is a nonlinear model equivalent to the first one that instead uses canopy height 

quantile function (CHQ) as the predictor. We present a “naive” conceptual framework to 

provide theoretical justification for the development of our biomass models, and we also 

evaluate the models based on a series of synthesized training and testing data sets that 

were extracted through the combined uses of field measurements and LiDAR data over a 

forested area in eastern Texas, USA. Because the proposed models, once developed at a 

given scale, are supposed to make prediction for any forest inventory unit regardless of 

its size and shape, we applied the fitted model to six transects of profiler laser data 

collected over the same forested area by a Portable Airborne Laser System (PALS) both 

for evaluating the effectiveness of the biomass models and for assessing the accuracy of 

PALS estimate in reference to the scanner estimate. 

 

4.3 Materials 

4.3.1 Study Area 

A 4800-ha forested region in eastern Texas, USA, was chosen for this study 

(Figure.4.1). The airborne laser coverage consists of pine plantations in various 
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developmental stages, old growth pine stands in the Sam Houston National Forest, many 

of which with a natural pine stand structure, and upland and bottomland hardwoods. 

Much of the southern U.S. is covered by forest types similar to the ones included in our 

study area, with similar forest types, productivity, and patterns of land use change. The 

study area is characterized by a gentle topography with a mean elevation of 85 m. 

 

 

Figure 4.1. A map of Texas (left) with the study area (right) located in eastern Texas: The study area is a 

forested region depicted by the Quickbird Image, and the six vertical lines represent the profiling laser 

transects measured by the Portable Airborne Profiling Laser System (PALS). 

 

4.3.2 Field Measurements 

Fieldwork was undertaken during May-Jun. 2004 on 62 randomly selected 

circular plots, including 26 0.01-ha plots and 36 0.1-ha plots. The smaller plots are all 

within young unthinned pine plantations. A total of 1004 trees were tallied with respect 

to height, crown width, height to crown base, diameter at breast height (DBH), species, 

and crown class (Kraft). Tree height was measured using a Vertex Forester hypsometer; 
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DBH was measured using a diameter tape; crown width was calculated as the average of 

four perpendicular radii measured with a tape from the bole of a tree towards each 

cardinal direction, and crown class was determined as one of four categories, i.e., 

dominant, co-dominant, intermediate, and overtopped. (USDA Forest Service FIA 

National Core Field Guide, 2005, p. 78). The 261 overtopped trees are excluded in this 

study because they only intercepted a limited number of laser pulses and it is difficult to 

reconstruct their structures from LiDAR data. Of the 743 trees left, 504 are Loblolly 

pines (Pinus taeda L. ) and 239 are deciduous trees, such as water oak (Quercus nigra 

L.), red oak (Quercus falcata Michx), sweetgum (Liquidambar styraciflua L.), and post 

oak (Quercus stellata Wangenh.). 

Tree locations were indirectly calculated according to trigonometric relations 

using the geographical coordinates of plot centers and the azimuth and distance of tree 

boles relative to the plot center that have been measured by a Differential GPS, a Suunto 

compass (KB-14), and the Vertex hypsometer, respectively. Thus, the mapped tree 

locations refer to boles, not treetops that may deviate from tree boles. All of these factors 

caused difficulties in matching the field-measured trees with LiDAR-derived trees 

delineated by the tree segmentation algorithm. As a result, only 117 out of 743 measured 

trees were matched to LiDAR-derived trees including 94 pines and 23 deciduous trees. 

The matching was obtained with high confidence by on-screen examination on the 

overlaid layers of the field-measured trees, LiDAR-derived CHM, and LiDAR-derived 

trees (Popescu and Zhao, 2008). The descriptive statistics of the matched trees are 

summarized in Table 4.1. 
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Table 4.1. Descriptive Statistics of the field-measured trees that have been correctly matched with LiDAR-
derived trees. 
 

 
DBH 

(cm) 
Height (m) 

Crown diameter 

(m) 

Height to crown base 

(m) 

Minimum 5.23 8.83 0.83 3.2 

Maximum 78.49 37.49 13.27 25.9 

Range 73.26 28.66 12.44 22.7 

Standard deviation 17.21 6.91 2.68 4.45 

Average 30.99 19.98 5.94 11.76 

 

4.3.3 Airborne Laser Data and Multispectral Imagery 

Airborne scanning LiDAR data were collected with a Leica-Geosystems ALS40 

during the leaf-off season in March 2004 by M7 Visual Intelligence of Houston, Texas. 

The LiDAR system was operated to record two returns per pulse, i.e., first and last, with 

a reported accuracy of 20-30 cm and 15 cm for horizontal and vertical positioning, 

respectively, and was configured to scan +/- 10 degree from nadir, with an average 

swath of about 350 m wide on the ground. The dataset features a full coverage from 

either of two perpendicular directions, with 19 flight lines in the north-south direction 

and 28 in the east-west direction, resulting in an average of 2.6 laser hits per m2. A 

Digital Elevation Model (DEM) derived from the LiDAR data using a proprietary 

package was also delivered by the data vendor. 

The profiling LiDAR measurements were acquired in February 2004 using the 

PALS instrument developed at NASA (Nelson et al., 2003a). As a portable, light-

weighted, and inexpensive system, PALS provides a feasible means for large-scale 

inventory forest resources, e.g., at statewide, national, and sub-continental scales. For 

this study, the PALS system, has a spacing of .25 m along the flight transect, flying at a 

altitude of 150-300 m above ground with a pulse rate of 2000 per sec. and a sample ratio 

of 10:1, and recording only first returns. The spatially coincident PALS transects within 

scanner-sampled area were spaced about 1 km apart and oriented approximately in the 

north-south direction. Since our proposed biomass model can be applied without any 
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modification to both scanner and profiler laser data as described later, a sub-objective of 

this study is to evaluate the accuracy of profiler biomass estimates, usually reported at a 

regional level, against the reference estimates of laser scanner data. 

A QuickBird image over the study area was acquired in 2004. It was classified by 

the maximum likelihood method to differentiate between pines and deciduous trees 

whereas the other classes such as grounds, water bodies, and buildings, were grouped as 

a non-forest class. The classification yielded an overall accuracy of 89.7% that was 

obtained by examining 100 randomly generated pixels for each class. 

 

4.4 Methodology 

4.4.1 Overview of Methods 

The primary purpose of  this study is to formulate scale-invariant biomass 

models using airborne laser data. It involves selecting appropriate LiDAR metrics and 

model forms so that the models are developed at a given scale but can be applied to 

make prediction of biomass at the same or different scales with minimal scaling effects. 

The development and validation of such models require datasets of ground-reference 

biomass at continuous, or at least, multiple scales (or plot sizes). Such type of field data, 

however, is rarely available in most studies including this investigation. Therefore, we 

resorted to a LiDAR-based individual-tree segmentation approach to create a fine-

resolution raster map of AGBM that serves as a reliable substitute to field data for 

synthesizing reference biomass values at a desired scale or plot size by properly 

aggregating the AGBM map to that scale. The synthesized plot-level AGBM data from 

the resulting map was used for training and testing two scale-invariant biomass models. 

For clarification purposes, we state the major reasons why we prefer such an 

approach rather than directly using field measurements on ground plots: 

(1) All the field plots are fixed in size and circular in shape, thus failing to 

provide ground-reference biomass at various scales or to study the effects of shapes of 
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analysis units, while the LiDAR-derived AGBM map allows for simulating the biomass 

observations at a variety of plot sizes or for different plot shapes. 

(2) A considerable number of reference AGBM values can be generated at each 

scale from the LiDAR-derived biomass map, which, therefore, produces enough data 

points for model validation, as opposed to the limited number of field plots (i.e., 62 

plots). 

(3) LiDAR metrics that will be related to ABGM in the scale-invariant biomass 

model are extracted from the same raw LiDAR data source as the LiDAR-derived 

biomass map; this allows for seamless co-registration between independent and 

dependent variables, thereby, avoiding the mis-registration problem that usually is a 

concern when pairing field-geolocated plots with airborne-geolocated LiDAR CHM, 

particularly at individual tree levels. 

(4) The data for training (i.e., calibration) and testing (i.e., validation) were 

generated in the same manner; this consistency makes model validation more viable 

because uncertainties caused by disparities of data sources are avoided. 

Figure 4.2 outlines the key steps to create the reference AGBM map. These steps 

will be elucidated in the next sub-section. Following that, we develop a theoretical and 

methodological framework to build two equivalent scale-invariant biomass models. For 

the two models, we introduce a K-function as model parameters that need to be 

estimated from the synthesized training data. Predictors we chose for the two models are 

Canopy Height Distribution function (CHD) and Canopy Height Quantile function 

(CHQ), respectively. The models are considered as functional models because the 

predictors are themselves functions. Finally, we describe practical schemes for training 

models. 
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Figure 4.2. A flow chart summarizing the procedures employed to map individual tree biomass in order to 

simulate reference data for training and validating the proposed scale-invariant biomass models: In the 

synthesized data, the predictors are CHDs or CHQs at plots of given size, and the dependent variables are 

biomass at coincident plots. 

 

4.4.2 Processing of PALS Profiling Laser Data 

Each flight line of the PALS first-return data was viewed as a 1-D signal 

(Figure.4.3), and processed following the commonly reported procedures. First, ground 

hits were identified using the local minimum filtering, and then a spline was fitted to 

these selected ground hits to establish a ground curve. The conspicuous errors in the 

interpolated ground curve were eliminated by manually adding some potential ground 
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hits and deleting some mis-identified ones through on-screen visual examination. 

Afterwards, the canopy height profile was readily obtained by subtracting the ground 

curve from the top envelop of laser returns. Of particular note is that flight lines can 

potentially traverse across features such as roofs that are undesirable for forestry 

applications; therefore, segments falling on human-made building were isolated with the 

aid of the classified QuickBird imagery. 
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Figure 4.3. A hypothetical scenario to illustrate the flow of diminishing information contents: A simulated 

plot with hemi-ellipsoid crowns as well as an overlaid transect to mimic a PALS profiling flight line (the 

left), the Canopy Height Model in a 3-D perspective (the middle upper), the 1-D Canopy height Profile 

corresponding to the PALS transect (the middle lower), the Canopy Height Distribution derived from the 

CHM (the right upper), and several height statistics extracted from the CHD. 

 

4.4.3 LiDAR-derived Fine-resolution AGBM Map as Ground-reference Data 

Tree Location, Height and Crown Diameter from CHM 

The raw LiDAR data were first processed to create a canopy height model 

(CHM), as outlined in Figure 4.2. CHM represents heights of the top of canopy surfaces 

relative to grounds. It can be computed as the difference between Digital Surface Model 

(DSM) and DEM. We created a DSM by first selecting the highest LiDAR point within 

each .5 x .5 m cell that contains at least one laser hit and then interpolating the selected 

points into a regular grid of 0.5 x 0.5 m by triangulation. Next, pixel-wise subtraction of 
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DEM from DSM gave the CHM. Similar procedures to create CHM were frequently 

reported in the literature where a different cell size or interpolation algorithm may be 

used. 

Subsequently, we applied the TreeVaw software on the CHM to identify 

individual trees (Popescu and Wynne, 2004). The software implemented a local 

maximum filtering with a variable circular window. The window size is determined 

locally and adaptively according to the CHM height at the window center, assuming that 

a taller tree has a wider crown. The individual tree parameters derived from CHM by the 

algorithm, i.e., tree location, tree height and crown width, were recorded for each 

identified tree. 

 

Individual Tree Crown Base Height (CBH) from LiDAR Multiband Height-bin 

Data 

Height-bin data were generated by first discretizing the 3D spatial domain into 

3D array of voxels with prescribed horizontal and vertical (height-bin) resolutions and 

then recording for each voxel the count of laser hits that fall within that voxel. Unlike 

CHM, height-bin product makes use of the full set of laser hits, and has been proven to 

be useful for analyzing 3D forest structure. Moreover, height-bin data can be analyzed as 

mulit-band images where each horizontal slice at a given height bin is treated as a single-

band image. In this investigation, a voxel dimension of 0.5 x 0.5 x 1.0 m was used with 

up to 31 height bins starting from 0.0 m. 

CBH was estimated at tree levels by referring to the height-bin data. Specifically, 

a vertical profile of laser hits per bin was created for each TreeVaw-identified tree by 

vertically cutting out of the height-bin data a cylinder that is centered at the tree location 

and that has a diameter equal to crown with. We calculated CBH as the height at which 

an abrupt drop in the vertical profile occurs. Interested readers are referred to Popescu 

and Zhao (2008) for an elaboration on the generation of height-bin data and the 

algorithm for estimating CBH. 
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Mapping AGBM at Sub-tree Levels 

DBH is a widely used proxy for biomass through allometric equations. LiDARs, 

however, do not directly measure DBH. Therefore, we incorporated the aforementioned 

LiDAR-derived tree dimension variables, i.e., tree height, crown width and CBH into 

linear models to predict DBH, and two species-specific linear models were developed by 

relating the field-measured DBH and the associated LiDAR-derived tree structural 

variables of 117 matched trees including 94 pines and 27 deciduous trees. The resulting 

models have a R2 of 0.79 for pines, and 0.74 for the deciduous. 

The classified QuickBird image was used to determine the species of LiDAR-

derived trees, namely, pine or deciduous. The diameter-based general allometric 

equations for pine and mixed hardwood as compiled in Jenkins et al. (2003) were 

applied to the LiDAR-based estimates of DBH to compute above-ground component 

biomass. The estimated component biomass of each LiDAR-derived tree was then used 

to generate a spatially-explicit biomass map at a resolution of .5 m. The generation 

process proceeded tree by tree: The bole biomass was assigned to the pixel at the tree 

location and the foliage biomass was distributed uniformly over the pixels covered by 

the crown. The resultant map is shown in Figure.4.4 where we can clearly see patterns of 

trees and spatial distribution of AGBM. 
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Figure 4.4. The detailed biomass map with a spatial resolution of 0.5 x 0.5 m that was derived from 

LiDAR scanner data (left) and a close-up of the subset highlighted by the white rectangle (right). The map 

uses a gray scheme such that brighter pixels indicate higher biomass. 

 

4.4.4 ModelingCanopy Height Distributions (CHD) 

This sub-section is dedicated to developing a simple CHD model to relate plot-

level CHDs and the distributions of DBH with the aid of tree allometric relationships. 

Rather than to be theoretically rigorous, the modeling purpose is to provide theoretical 

justification for the scale-invariant biomass models that will be proposed next, 

considering that AGBM is dictated by DBH and LiDAR provides measurements on 

CHDs. Before proceeding, it is helpful to first clarify variables and notations: 

h    “Canopy height” which is the height of the top surfaces that are visible from above, 

and refers to both open grounds ( 0h  ) and canopy surfaces ( 0h  ). 
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( )p h  “ Canopy height distribution” (CHD), i.e., the probability distribution of h  on a 

unit forested area, which refers to the probability of observing the portion of the 

unit area that has a height of h , and consists of two terms, i.e., one for the open 

ground and another for the canopy (Figure.4.3). 

c    “Canopy cover” which defines the fraction of a unit area obscured by vertically 

projected crowns when assuming that crowns are opaque. 

n   “Stem density” which is the number of trees per unit area.  

   “Crown projection area” (CPA) which refers to the vertically projected area of a 

single tree crown onto the ground. 

( )p   “Distribution of CPA” which specifies a distribution of CPA for trees on a unit 

area. 

H    “Tree Height”. 

D   “DBH” of a tree. 

cbhh   “Crown base height”. 

( )Dp D  “Distribution of DBH” over a unit area. 

( )Hp H  “Distribution of tree height” for all trees over a unit area. 

( | , , )tr cbhp h H h  “Per-tree crown height distribution” conditioned on tree dimension 

parameters H , , and cbhh . The distribution is defined for a tree concerning the 

canopy height over its CPA, and it is determined by the geometry of the tree. 

In the above, the definition of ( )p h  is made more compatible with that of LiDAR CHM, 

but ( )p h  is different from the height distribution of raw LiDAR hits that may be 

reflected from inside crowns. Of note is that  , D , H , and cbhh  are defined for single 

trees while n, h , and c  for an unit area. Other relevant variables will be introduced 

when necessary. 

The variables and distributions defined above are related to each other, e.g., 

through allometric equations. First, the canopy cover c of a unit forested area is given by 

the Boolean model (Li and Strahler, 1992), 
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 1 exp( [ ])c n E      (4.1) 

where [ ] ( )E p d      is the mean per-tree CPA. For simplifying illustrations but 

without losses of generality, we assumed the first-order approximation of Eq. 4.1, i.e., 

[ ]c n E   , which corresponds to the case of non-overlapping crowns. 

Next, given c, the CHD is composed of two terms, 

 ( ) (1 ) ( ) ( )cp h c h c p h      (4.2) 

where ( )h  is the Dirac function that is infinity at h = 0 and is 0 otherwise. The first 

term (1 ) ( )c h   means that the open ground is seen with a probability of (1-c), i.e., the 

proportion of open ground. The second term ( )cc p h  means that when viewed vertically 

downward, crowns can be seen with a probability of c, i.e., the proportion of the 

aggregated CPAs. ( )cp h  is the seen CHD over the canopy only ( 0h  ), and it can be 

elucidated as a CPA-weighted sum of crown height distributions. If the stem density n is 

relatively large, ( )cp h  is approximated by, 

 ( )( ) ( | ) ( )
[ ]c tr D
Dp h p h D p D dD

E



   (4.3) 

where ( | )trp h D  is the per-tree crown height distribution conditional on D , and 

( ) [ | ]D E D   is the mean per-tree CPA given D.  

To model ( | )trp h D  of Eq. 4.3, let us first address ( | , , )tr cbhp h H h , which can 

be explicitly modeled if the crown geometry is unknown. Also, note that CPA   can be 

explicitly computed from crown diameters if crown shapes take some known geometry 

primitives, e.g., ellipsoid and cone. For some crown geometries, it holds that 

( | , , ) ( | , )tr cbh tr cbhp h H h p h H h  . Meanwhile, allometric relationships, whether 

deterministic or probabilistic, can be used to derive the distributions of H ,   and cbhh  

conditioned on D, i.e., ( | )Hp H D , ( | )p D  and ( | )
cbhh cbhp h D , (Tewari and Gadow, 

1999; Li et al., 2002). Let us further assume the independence of the conditional 
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distributions of H ,   and cbhh  given D. As a result, we obtain the per-tree crown height 

distribution conditioned on D , 

 ( | ) ( | , , ) ( | ) ( | ) ( | )
ctr tr c H h c cp h D p h H h p H D p D p h D dH d dh      (4.4) 

which generally depends on tree species. Nevertheless, if there are multiple species, 

e.g., ( | , )trp h D i , i =1, …, m, they could be assimilated into an overall distribution that is 

unconditioned on species by assuming that the occurrence probabilities of each species, 

ir , could be elicited using some prior knowledge 1 2( , ..., )r mp r r r  where 1ir  . Often, it 

is convenient to model 1 2( , ..., )r mp r r r  with a multinomial distribution. Marginalizing 

over 1 2, ..., mr r r  yields 

 1 2 1 2
1

( | ) ( ( | , ) ) ( , ,..., )
m

tr tr i r m m
i

p h D p h D i r p r r r dr dr dr


     (4.5) 

To finalize the model description, we substituted Eqs .4.1 and 4.3 into Eq. 4.2 

and obtained an expression for CHD, 

 ( ) (1 [ ]) ( ) ( | ) ( ) ( )tr Dp h n E h n p h D D p D dD          (4.6) 

which establishes a link between CHD ( ( )p h ) and the distribution of DBH ( ( )Dp D ) 

through the known crown geometry and allometric relationships. On the other hand, the 

AGBM over the unit forested area, M , is readily calculated from ( )Dp D  and n with the 

recourse to the DBH-based biomass allometric equation ( )B D , 

 ( ) ( )DM n B D p D dD   (4.7) 

 

4.4.5 A Scale-invariant Linear Functional Model for Biomass 

It becomes clear from Eqs. 4.6 and 4.7 that CHD ( )p h  is related with biomass 

M  through ( )Dn p D . Once an estimate of CHD ˆ ( )p h  is extracted from LiDAR data or 

LiDAR-derived products such as CHMs, the inversion of Eq. 4.6, if possible at all, 

provides knowledge about ( )Dn p D  that then can be incorporated into Eq. 4.7 to infer 
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M . As per this logic, we proposed the use of CHD ( )p h  as a predictor for estimating 

AGBM. Also, denote the AGBM model by [ ( )]M f p h , which is a functional because 

the argument ( )p h  is a function of h by itself. More interestingly, we gleaned an extra 

benefit that the predictor, ( )p h , is linearly scalable, which means, for example, that if 

1( )p h  and 2 ( )p h  are CHDs defined for two contiguous regions with areas of a and b, 

respectively, the CHD for the combined region, 12 ( )p h , is an area-weighted linear 

combination of 1( )p h  and 2 ( )p h , 

 1 2
12

( ) ( )( ) a p h b p hp h
a b

  



 (4.8) 

For the AGBM model to be scale-invariant, f  must satisfy, 

 1 2 1 2( ) ( ) [ ( )] [ ( )][ ]a p h b p h a f p h b f p hf
a b a b

     


 
 (4.9) 

where a , b , 1( )p h  and 2 ( )p h  assume certain arbitrariness; therefore, [ ]f   should be a 

linear functional of ( )p h . A natural choice for such an f  is [ ( )] ( ), ( )f p h p h K h   

where ,     denotes an inner product in function spaces and ( )K h  is a fixed function 

that needs to be inferred, e.g., from training data. For simplicity, we chose the most 

common inner product and proposed the following scale-invariant AGBM model, 

 
0

[ ( )] ( ), ( ) ( ) ( )
h

M f p h p h K h p h K h dh


     (4.10) 

In practice, ( )p h  is estimated or extracted from LiDAR measurements, and its 

function values are available only at a discrete set of points, i.e., 

1{ ( )} , ( 1)k
i i ip h h i h    . Accordingly, from Eq. 4.10, f  can be approximated by, 

 1
1

[{ ( )} ] ( ) ( )
k

k
i i i i

i
M f p h p h K h h



    (4.11) 

where h  is a height step (height-bin) used to sample ( )p h . In essence, Eq. 4.11 is a 

linear model that has 1{ ( )}k
i ip h   as predictors with the corresponding coefficients being 

( )iK h h . 
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4.4.6 A Scale-invariant Nonlinear Functional Model for Biomass 

Because a quantile function is mathematically equivalent to its associated 

probability density and they can be converted to each other without any loss of 

information, instead of using the density CHD ( )p h , we also attempted to use canopy 

height quantile function (CHQ) as an alternative predictor for scale-invariant biomass 

prediction. However, one undesirable feature of CHQs is their nonlinear scaling 

property, by which we mean that the overall CHQ over a forested region cannot be 

generally aggregated as a linear combination of the multiple CHQs over the sub-regions 

that partition the region. This scale-dependence indicates that linearity and scale-

invariance are unlikely to be achieved at the same time for a model using CHQs as 

predictors; hence, a nonlinear model is needed when using CHQs as predictors. 

Considering the equivalence of the CHQ to the CHD, we derived a nonlinear version of 

biomass model by first transforming CHQ into CHD and then substituting the 

transformed CHQ into the aforementioned linear model in Eq. 4.10. For this purpose, let 

( )F h  be the cumulative CHD, i.e., ( ) / ( )dF h dh p h . The inversion of ( )F h  is the 

CHQ ( )Q q , i.e., 1( ) ( )Q q F q  where 0 1q  . Using this CHD-CHQ relationship as 

well as the integration-by-parts theorem, Eq. 4.10 can be re-written as,  

 
1

max 0

( ( ))( ) dK Q qM K h q dq
dq

    (4.12) 

where max min( ; ( ) 1)h h F h   is the maximum canopy height observed over the analysis 

unit, and ( )K   is the same function as introduced in Eq. 4.10. Eq. 4.12 is a biomass 

model using the CHQ ( )Q q  as predictor, and ( )K   is fixed but need to be estimated 

either by resorting to training data or theoretical calculation. 

As with ( )p h , ( )Q q  are practically observed only at a discrete set of q’s, i.e., 
1

1{ ( )}k
i i ih Q q 

  where ( 1) /iq i k  . With this discrete set of values ( )iQ q , we arrived at 

the following approximation of the nonlinear biomass model, 

 1
1

( ) /
k

i
i

M K h k


  (4.13) 
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where 1ih   is the (i+1)-th (k+1)-quantiles of CHD. This model is believed to be nonlinear 

with respect to ih  due to the potential nonlinearity of ( )K h , but it essentially is 

equivalent to the linear one in Eq. 4.13, 

 

4.4.7 Derivation of the Scale-invariant Biomass Model from the CHD Model 

The two biomass models proposed above can be directly uncovered from the 

CHD model formulated in Eqs. 4.1-4.7. Because the two models are equivalent except 

for the use of different predictors, the following will focus only on the derivation of the 

linear model of Eq. 14. By comparing Eq. 4.2 with Eq. 4.6, we isolated the canopy part 

of CHD, i.e., the second term of ( )p h , as given below, 

 ( ) ( | ) ( ) ( )c tr Dc p h p h D D n p D dD      (4.14) 

which essentially is a Fredholm integral equation of the first kind with an aim to solve 

out ( )Dn p D  given ( )cc p h  and ( | ) ( )trp h D D (Aster et al., 2004). In practice, 

( )cc p h  may be estimated from LiDAR CHM by discarding the ground component 

from ( )p h , and ( | ) ( )trp h D D  may be derived from empirical relationships such as 

height-diameter equations. Once ( )Dn p D  is solved from Eq. 4.14, it can be 

incorporated into Eq. 4.7 with a known allometric equation ( )B D  to compute AGBM. 

To derive the linear functional model, we present a symbolic scheme for solving 

Eq. 4.14, although this is of little practical value due to its numerical unstability of an ill-

posed problem. First, denote sec ( ) ( )cp h c p h   for notional convenience; then discretize 

the integral equation using 1{ ( 1) }k
i ih i h     for h  and 1{ ( 1) }l

j jD j D     for D . As 

a result, Eq. 4.14 reduces to, 

 sec,( 1) ( ) , ,( )k k l n D k l   p A p  (4.15) 
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where sec,( 1) sec 1 sec[ ( ),..., ( )]T
k kp h p h p , , ,( 1) 1[ ( ),..., ( )]T

n D l D D ln p D n p D   p , and ( )k lA  

is a k l  matrix with its (i, j) element being ( | ) ( )tr i j jp h D D D  . Applying 1
( )k l

A , 

i.e., the generalized inverse of ( )k lA , to Eq. 4.15,  , ,( 1)n D lp  is obtained as, 

 1
sec

1
( ) ( )

k

D j ji i
i

n p D a p h



    (4.16) 

where 1
jia  is the (j, i) element of 1

( )k l

A . Combining Eq.7 and Eq. 4.16, AGBM can be 

estimated by, 

 1

1 1

( ) ( )
k l

i ji j
i j

M p h a B D D

 

      (4.17) 

which is a linear model of the same form as Eq. 4.13. A comparison between Eq. 13 and 

Eq. 17 reveals the following relationship, 

 1

1

( ) ( )
l

i ji j
j

DK h a B D
h






  

   (4.18) 

 

4.4.8 K-function 

The newly introduced function ( )K h  acts like a weighting function in the 

integral of Eq. 1, and represents the contribution to per-area biomass by the portion of 

canopies that has a height falling within/around h . However, ( )K h  cannot be an 

arbitrary function. It is beneficial to impose certain constraints on it with recourse to 

intuitive prior knowledge. First of all, we supposed that the AGBM becomes zero if no 

tree is present ( ( ) ( )p h h ), i.e., ( ( )) ( ) ( ) 0M h h K h dh   ; this indicates (0) 0K  . 

Moreover, we assumed that ( )K h  is non-decreasing with respect to h , considering that 

the larger the percentage of tall trees, the higher AGBM. 

Numerically, ( )K h  can be solved out by inverting the following Fredholm integral 

equation of the first kind,  

 
0

( ) ( ) ( | ) ( )tr
h

B D K h p h D D dh


   (4.19) 
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which is derived by substituting ( )p h  of Eq. 4.6 into Eq. 4.10 and then relating Eq. 4.10 

with Eq. 4.7. The inversion of Eq. 4.19 for ( )K h  with known allometic relationships 

including ( )B D  and ( | ) ( )trp h D D  is an ill-posed problem that usually requires 

regularization schemes for numerical solutions. A symbolic solution to Eq. 4.19 for 

( )K h  is the same as in Eq. 4.18. 

In this investigation, we made no attempt to infer ( )K h  by directly solving the 

integral equation or using Eq. 4.18 because this involves explicit modeling of ( | )trp h D . 

Instead, we turn to a constrained regression technique to infer ( )K h  through the linear 

functional model in light of training data sets, as detailed below. 

 

4.4.9 Synthesized Training and Testing Datasets  

Synthesized data were simulated to test and train the proposed models. In the 

datasets, the predictor variables extracted from the CHM are the discretized CHDs 

1{ ( )}k
i ip h   and CHQs 1

1{ ( )}k
i i ih Q q 

  for the linear and nonlinear models, respectively. 

The response variables (i.e., dependent variables) are the associated AGBM obtained by 

aggregating the detailed biomass map on the coincident plots. In the process of 

synthesis, we investigated two plot shapes, both circular and square. For each shape, we 

used 10 different plot sizes that are 2(10 )i m2 with i ranging from 1 to 10, thus resulting 

in a total of 20 shape-by-size combinations. Furthermore, for each combination, a total 

of 2000 simulated plots (data points) were sampled systematically over the study area, 

thus yielding 40000 data points.  

4.4.10 The Constrained Least-squares Method for Model Inference 

For simplicity, the discretized linear model of Eq. 4.13 is used to infer the 

coefficients ( )iK h (i.e., the discretized version of ( )K h ), although other complicated or 

possibly more effective quadrature methods may be referred to for the discretization of 

the integral equation in Eq. 13 (Aster et al., 2004). However, even with Eq. 4.13, 
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common regression procedures fail to work out partly due to the constraints imposed on 

( )K h . Alternatively, we chose a constrained least-square procedure, as implemented in 

Matlab (lsqlin function, Mathworks, Inc.), to iteratively search the optimal values of 

( )iK h  in terms of minimizing the mean square error with regard to the training data. The 

constraints took both inequality and equality forms such as 1( ) ( )i iK h K h   for 1i   and 

0( 0) 0K h   .  

 

4.5 Results 

4.5.1 Evaluation of the Linear Functional Model 

In the synthesized data, we first used a 0.25 m height bin (sampling interval) to 

discretize the CHDs up to 35 m, therefore, resulting in a predictor vector of CHD that 

contains 140 scalar values. For a given group of 2000 plots of a given size and shape, we 

repeatedly split the group randomly into 100 datasets of 100 training and 1900 test plots 

to assess the consistency of the models across different training/test datasets. 

The regression results are presented in Table 4.2, which includes the mean, 

minimum and maximum of coefficients of determination (R2) as well as the mean root 

mean square errors (RMSE) over each group of 100 runs. It is observed that for all plot 

sizes, plot shapes had no significant impacts on model inferences in terms of both R2 and 

RMSE (all p-values << 0.01). Overall, R2 values increase with an associated decrease in 

RMSE as the plot size varies from 0.01 ha to 1.0 ha. For example, in a random trial 

using the 0.01-ha square-plot data, R2 for training and testing are 0.85 and 0.83, 

respectively, with the associated RMSEs of 30.3 and 31.2, respectively, (Figure 4.5); and 

in the case of 1-ha square-plot data, R2 for training and testing are both about 0.94, with 

a RMSE of 14.1 and 14.4, respectively (Figure 4.5). In all 2000 cases we evaluated (2 

plot shapes by 10 plot sizes by 100 random runs), performances of the linear functional 

model in training are consistent with those in testing as indicated by a good agreement of 

R2 or RMSE (all p-values << 0.01) between training and testing (Table 4.2). Such 
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consistence partially validates the proposed linear model, and also shows its good 

generalization ability. 

 

Table 4.2. The coefficients of determination (R2) and RMSEs of the linear model (140 predictors with a 
height bin of 0.25 m) trained and tested across a series of plot sizes for both square and circular shapes. 
Note that, in each case, R2 is reported as the mean, minimum and maximum over 100 random runs, and 
RMSE is reported as the mean over the 100 runs. 
Plot size 

(ha) 

Square Plots Circular Plots 

Training Testing Training Testing 

R2 (min,max) rmse R2 (min,max) rmse R2 (min,max) rmse R2 (min,max) rmse 

.01 .832 (.804, .855) 33.3 .825 (.813, .830) 34.2 .831 (.805, .854) 33.7 .823 (.815, .828) 34.6 

.04 .892 (.877, .908) 24.3 .889 (.885, .892) 24.7 .892 (.874, .909) 24.3 .887 (.882, .891) 25.0 

.09 .912 (.897, .922) 21.0 .910 (.907, .913) 21.3 .912 (.897, .928) 19.9 .911 (.907, .913) 21.3 

.16 .921 (.910, .933) 19.2 .919 (.917, .921) 19.5 .921 (.909, .936) 19.1 .919 (.916, .921) 19.6 

.25 .926 (.914, .934) 18.0 .925 (.923, .927) 18.2 .925 (.914, .934) 18.1 .924 (.923, .927) 18.3 

.36 .931 (.919, .943) 16.9 .929 (.927, .931) 17.2 .932 (.921, .945) 16.9 .929 (.927, .930) 17.3 

.49 .933 (.923, .943) 16.2 .932 (.930, .934) 16.4 .932 (.920, .943) 16.3 .932 (.930, .934) 16.5 

.66 .937 (.925, .948) 15.4 .934 (.933, .936) 15.7 .935 (.924, .946) 15.6 .934 (.932, .936) 15.8 

.81 .937 (.928, .948) 15.0 .937 (.934, .938) 15.1 .937 (.927, .947) 15.0 .936 (.935, .938) 15.2 

1 .940 (.928, .952) 14.3 .938 (.936, .940) 14.6 .938 (.928, .946) 14.6 .938 (.937, .940) 14.7 

 

 

Four examples of the regressed ( )K h  function, as obtained from the series of 

optimized coefficients of the linear model, are plotted in Figure 4.6 where each of the 

four curves is the average over the estimates of 100 random runs. Across all the 20 

combination of factors considered, i.e., two plot shapes by 10 plot sizes, there is no 

significant difference (all p-values << 0.01) between any two average ( )K h  curves as 

depicted in Figure 4.6, although minor differences may be observed , especially at the 

end of curves or between the estimated curves from individual runs even for the same 

plot size. 

 



 83

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Training (square plot:0.01ha) 

Reference Value (Mg/ha)

Fi
tte

d 
V

al
ue

 (M
g/

ha
)

Data points
Fitted Line:R2=0.85 rmse=30.3
Y=X

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Testing (square plot:0.01ha)

Reference Value (Mg/ha)

P
re

di
ct

ed
 V

al
ue

 (M
g/

ha
)

Data points
Fitted Line:R2=0.83 rmse=31.2
Y=X

 

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Training (square plot:1ha) 

Reference Value (Mg/ha)

Fi
tte

d 
V

al
ue

 (M
g/

ha
)

Data points
Fitted Line:R2=0.94 rmse=14.1
Y=X

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Testing (square plot:1ha)

Reference Value (Mg/ha)

P
re

di
ct

ed
 V

al
ue

 (M
g/

ha
)

Data points
Fitted Line:R2=0.94 rmse=14.4
Y=X

 

Figure 4.5. Scatterplots of predicted vs. reference biomass for the training (the left two) and the testing 

(the right two), respectively, and also over the plot sizes of 0.01 ha (the upper two) and 1 ha (the lower 

two), respectively. The model is the linear model with 140 predictors ( height bin: 0.25 m). 

 

4.5.2 Evaluation of the Nonlinear Functional Model 

It is not an easy endeavor to estimate ( )K h  directly from fitting the nonlinear 

model in Eq. 22. Therefore, we applied the ( )K h  estimated for the linear model to the 

nonlinear model to show the equivalence of the two models. The predictors in the 
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nonlinear model are heights associated with CHQs which we discretized at 

iq  ( 0.5) /100%i  , 1, 2,...,100i  , as well as 99.6%, 99.7%, 99.8% and 99.9%. Because 

the estimated values of ( )K h  are available only at discrete heights, we interpolated these 

values to calculate ( )K h  at an arbitrary height for the nonlinear model. To assess the 

equivalence of the nonlinear model to the linear model, we compared the biomass 

prediction of the two models in the form of scatterplots where, for brevity, only two 

cases are depicted: one for the 0.01 ha square plot and another for the 1.0 ha square plot 

(Figure 4.7). In both cases, the two models matched each other exactly for all but several 

testing data points. Most of the exceptions are due to truncation errors in the CHDs of 

the linear model that have been discreizted only up to 35 m. As an example, Figure 4.8 

illustrates a truncated CHD that corresponds to the outlier plot circled in Figure 4.7(a). 
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Figure 4.6. K-functions: The estimated coefficients of the linear model are plotted as curves with respect 

to h. Each curve is the average over the respective 100 runs. 
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 (a)    (b) 

Figure 4.7. The scatterplots of prediction by the nonlinear model versus those by the linear model for (a) 

the 0.01 ha plot-level data and (b) the 1ha plot-level data. 
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Figure 4.8. An example of truncated canopy distributions where portion of canopy above 35 m are not 

taken into account due to the discretization scheme: This example corresponds to the outlier case circled in 

Figure 4.5(a). 
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4.5.3 Model Analysis  

To provide practical guides, we examined the effects of the length of height bin 

(a step in height to sample CHD) and the size of training dataset on performances of the 

linear model. The choice of a sampling interval or height bin not only affects the 

characterization of discretized CHD, but also determines the dimension of CHD 

predictor with a larger height bin corresponding to lower dimension in the same way as 

that a spectral signature is characterized by different spectral resolution (Figure 4.9). 

With a training data set size of 100 and a test set size of 1900 for all plot sizes, we 

evaluated the linear model by using a series of height bins ranging from 0.25 m to 20 m 

that corresponds to a predictor dimension ranging from 140 to 2. Typical results of R2 in 

training and testing are demonstrated for 0.01-ha and 1.0-ha square plots, respectively 

(Figure 4.10). It is noted that the model performances showed no degrading trend until 

the height bin increases above around 6.0 m, and that the R2 dropped significantly when 

using a height bin larger than 12.0 m. This observation suggests that it is practical and 

effective to choose a relatively large height bin below a critical value with no great loss 

of model performances. The critical value may vary with respect to specific applications, 

e.g., around 5 to 6 m in this investigation. 
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Figure 4.9. An example showing that the same canopy height distribution is discretized with two different 

height bins. A larger height bin leads to a coarser-resolution canopy height distribution. 
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In addition to the height bin, we varied the size of training data from 10 to 500 

with an increment of 10 to evaluate the effects of training sizes on model performances, 

and the models trained with these different training data sizes were tested on the same 

independent set of 1500 data points. Meanwhile, we also varied the CHD dimension 

from 7 to 140 that corresponds to a height bin ranging from 5 m to 0.25 m in disretizing 

the CHDs. In this analysis, all evaluations were based on 0.49-ha square-plot data 

because plot shapes and sizes have no or little influences on the model inference. To 

avoid plethora of figures, we reported the changes of R2 with training data sizes only for 

two extreme models, i.e., one with a predictor dimension of 140 (height bin: 0.25 m) and 

another with a predictor dimension of 7 (height bin: 5 m) as shown in Figure 4.11. It is 

found that, for all the models considered, the addition of new data into training sets with 

a size of above 70 contributed to no significant gain in terms of testing R2, although the 

R2 for training may fluctuate a little bit which suggests a possibility of slightly 

overfitting in some cases. The result indicates that, in our cases, a training size of 50 is 

typically enough for the purposes of fitting the model and making prediction. However, 

caution should be exercised that in practice, training data should be collected over a wide 

range of conditions so that no extrapolation is risked. 
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Figure 4.10. R2 vs. Sampling interval of height (height bin): Changes in R2 for training and testing as a 

function of the sampling interval of height or height bin used to discretize the canopy height distributions. 
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Figure 4.11. The effects of training sample sizes on the R2 for two different height bins: 0.25m (the left) 

and 5.0 m (the right). The dataset used is the 1 ha plot-level data. 

 

4.5.4 Scaling-up for Overall Biomass Prediction 

The linear functional model was assessed in an extreme case by treating the 

whole study area as one large analysis unit where a single CHD with a dimension of 140 

was extracted as an overall predictor to predict the overall biomass. Only the models 

trained on square-plot data were examined, and there were 100 random runs for each 

plot size. These overall AGBM estimates are presented in the box-whisker plots of 

Figure 4.12 where each column summarizes the estimates from 100 runs for a certain 

plot size. On average, all the models overestimated AGBM in comparison to the 

reference value of 109.0 Mg/ha.  
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Figure 4.12. The box-whisker plot of the overall biomass estimated by using the single overall CHD of the 

whole scanner LiDAR CHM. For each plot size, there are 100 models obtained respectively from 100 runs 

with different random training sets. The 100 models applied to the overall canopy height distribution then 

produced 100 estimates of the overall biomass. 

 

To assess the effectiveness of profiling laser measurements in predicting overall 

biomass, we enumerated all the combinations of six PALS transects where, for each 

given number of transects, i.e., m , there are in total 6 5 (6 1) / !m m     possibilities. It 

is obvious that only one possibility exists when using all the six transects. The profiler-

based CHDs were extracted from the pooled PALS transects of each combination. The 

linear model used is the mean ( )K h  averaged over the 100 runs for the 1.0 ha square-

plot data. It is found that, on average, there is an overestimate for any given number of 

transects as compared to the reference biomass value obtained by averaging the scanner 

LiDAR-derived biomass map (Figure 4.13). As also noted, there is a decrease in the 

variability of estimates when using more PALS transects because PALS provides 

incomplete observation of the study area only along several transects and the addition of 

extra transects is expected to lead to better inference about the overall CHD. 
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Figure 4.13. The box-whisker plot of the estimated overall biomass using the six PALS profiling transects. 

Each column represents the estimates obtained from all the possible transect combinations that draw the 

given number of transects from the six available.  

 

4.6 Discussion 

In the development of scale-invariant biomass models, we chose either CHDs or 

equivalently CHQs as predictors for the use in functional models. The major tenet 

behind such choices is that a CHD or CHQ, perceived as a function curve, is able to 

retain as much information as possible, in comparison to the extracted single statistics of 

CHDs such as mean height, truncated mean height, and quantile-based height (Næsset, 

2002; Lim and Treitz, 2004) . Our models, therefore, have potentials of making the most 

of information available in LiDAR observations (Figure 4.3), and they also have the 

advantages of being scale-invariant and mathematically justifiable. The functional forms 

of our models rely on a newly introduced K function that has a specific physical 

meaning. In this study, we referred to a constrained linear regression procedure to infer 

the K function through the linear biomass model. Alternatively, it is recommended that 
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future studies investigate the usefulness of advanced data mining techniques such as 

Support Vector Machines and Gaussian Processes to uncover the possibly nonlinear 

relationships between biomass and CHDs or CHQs (e.g., high-dimensional data due to 

the discertization of curves) since previous studies reported the successful applications 

of these techniques for supervised learning with high-dimensional data (Durbha et al., 

2007; Zhao et al., in review).  

Also, concomitant with the scale-invariance, our models feature shape- and 

translation invariance, by which we mean that the model outputs for a forested region 

remain the same irrespectively of the choices of modifiable analysis units that partitions 

the study region as well as the origins where these units are placed. We suspect, 

however, that most previously developed models are subject to not only scale-

dependence as already recognized by the authors (Næsset, 2002) but also shape- and 

translation- dependence, although the latter two types of dependence that may also be 

caused by the nonlinearity of models and the non-scaling property of predictors have not 

been examined yet. Thus, the scale-invariant models in this study hold great promises for 

more effective and wider uses in multi-scale forest inventory on variable analysis units 

that have been obtained by segmenting CHM as reported in van Aardt et al. (2006) and 

Zhao and Popescu (2007). For example, this study has shown an extreme case of 

predicting overall biomass from PALS profiling data where the analysis units are 

individual lines. 

Another important aspect about scale or plot size is concerned with our model 

formulation. By analogy to the formulation of radiative transfer theory in forest canopies 

(Ross, 1981), the derivation of our conceptual model involves some contradictory 

assumptions: on the first hand, we expect that the number of trees within a plot is small 

enough so that not too much overlapping exists to validate the first-order approximation 

of canopy cover in the Boolean model; on the other hand, we assume that there is a large 

sample of trees for justifying a continuous distribution. The number of trees largely 

depends on the plot size that is used to define the problem. Nevertheless, it is 

advantageous in practice to train a model on large plots, but the choices of plot size or 
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cell size for prediction purposes make no difference as far as the total biomass in the 

study area is concerned. However, be aware that creating a biomass map with our 

approach at an extremely finer resolution, e.g., 0.1 x 0.1 m, makes no physical sense at 

all. Our models are expected to predict biomass at least above individual tree levels. 

The increase in R2 with plot sizes as noted in Table 4.2 is likely due to plot-edge 

effects: Because tree stems contains a high percentage of total tree biomass and the 

methods for extracting predictor and dependent variables count only the components that 

fall into a plot, discrepancies occur whenever a tree stem falls outside the plot while a 

large portion of the tree crown falls inside the plot, or vice versa. The edge effect is more 

pronounced for small plots (Andersen et al.; 2005). However, the edge effect has only 

minor influence on the model parameter inference (i.e., the K function) as has been 

demonstrated by the statistically indistinguishable mean functions of K that were 

estimated for different plot sizes (Figure.4.6). In practice, it may be desirable to 

undertake field-work on larger plots while keeping a reasonable cost. If the inventory 

budget is limited, an alternative is to first construct a computer-based canopy simulator 

based on the limited ground data and then run the simulator to generate synthesized 

observations for model development (Nelson, 1997). 

Two assumptions, i.e., non-negativity and non-decreasing, have been made about 

the K function. However, more stringent constraints can be imposed on K. For example, 

we can assume that K take certain parametric forms. A simple choice is ( )K h a h b   , 

giving a familiar model, 

 ( ) ( )M a h b p h dh ah b      (4.20) 

where h  is the mean canopy height. Other rather complicated parametric forms, 

e.g., ( ) [exp( ) 1]K h a b h     or [ 1]ba h  , may be explored in further studies. In such 

cases, the inference of K  can boil down to the estimation of its functional parameters 

only, e.g., a  and b  in the above examples. In addition, we have presumed that (0) 0K   

such that the biomass on a plot empty of trees is zero. This assumption makes our 

models different from those that produce non-zero biomass for non-tree plots (e.g., zero 
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canopy height). Patenaude et al. (2004) explained that such initial values at zero LiDAR-

recorded height represent the biomass in ground vegetation and litter compartments. In 

such a sense, the model of this study only considers the biomass present in “standing” 

trees. However, as to those models of non-zero initial biomass, a possible concern arises 

that the prediction for zero or small canopy heights may risk anomalous biomass values 

associated withextrapolation because these low-canopy plots (e.g., clear-cut) are 

sometimes excluded from the model fitting, e.g., for numerical reasons (Lim and Treitz, 

2004). To this end, the model proposed by us has the advantages of being applicable 

across a wide range of biomass values, and yields exactly zero biomass value for open 

grounds where no trees are present. 

Unlike previous studies that extracted LiDAR-based statistics directly from LiDAR 

raw laser hits or full-digitized waveforms (Riaño et al., 2004; Næsset, 2004; Andersen et 

al., 2005), this study extracted the LiDAR predictors, i.e., CHDs or CHQs, from the 

LiDAR-derived CHM. However, certain implicit relationships exist between raw laser 

hits and CHMs, and such relationships can be modeled so that CHDs and the height 

distributions of laser hits could be inferred from each other under certain assumptions 

(Sun and Ranson, 2000; Kotchenova et al., 2003). Therefore, it is suggested that the 

proposed models be extended to use the height distributions of original laser hits as 

predictors that may include first, last or all LiDAR returns as deemed appropriated by 

the analysts. By doing so, one may characterize understory structures. However, a side 

effect is that the use of intermediate or last laser returns should invalidate the scale-

invariance of the models due to the nonlinear scalability of the height distributions 

derived from such laser returns. In such a situation, the scale-independence is caused by 

the non-uniform sampling pattern of laser hits. Future studies may investigate the utility 

and applicability to such functional models for biomass estimation using LiDAR height 

distributions of raw laser hits as the predictor. 

No explicit form is assumed for the allometry equation ( )B D  in Eq. 4.7 during 

the derivation of the linear model. Therefore, although it is intended to predict biomass, 

the model can also be applied to estimate other forest structural variables such as basal 
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area, stem density, crown fuel weight, canopy base height and timber volume if these 

structural variables use the DBH as a proxy in their allometry equations. For example, 

assuming 2( ) / 4B D D , we get a model for basal area; as an extreme case, taking 

( ) 1B D  , we get a model for stem density. Besides, , we strongly suggest that future 

studies should examine the utility of the linear models with CHDs as predictors to 

estimate those forest structural variables such as Leaf Area Index (LAI) that have no 

explicit functional relationship with stem diameters, mainly for two major reasons: first, 

structural variables such as LAI are linearly scalable when changing scales, and the 

scale-invariant linear model we proposed can guarantee this scalable property; second, a 

canopy or LiDAR height distribution contains more information than any subset of its 

extracted statistics such as mean height, quantile-based heights and canopy density 

metrics. As discussed earlier, investigators may also use the discretized high-

dimensional data of CHQs as predictors with a machine learning technique for 

developing an implicit nonlinear prediction model. 

The overestimation of the overall biomass with either scanner CHM or PALS 

transects is attributed to several factors. First, the reference value of biomass, obtained 

by averaging the LiDAR-derived biomass map, only captures the biomass in those trees 

that were identified from CHM by the tree-finding algorithm. Due to the omission errors 

of the algorithm, the reference value represents an underestimate of the biomass in the 

vegetative components captured by CHM. This point is illustrated by the scatterplots of 

Figure.4.5, the lower left corners of which show a plot-level reference value of zero due 

to absence of identified trees, but the predicted values are small yet non-zero due to 

presence of some canopies in CHM. This discrepancy also leveraged all the fitted lines 

to the scatterplots of prediction vs. reference to tilt upward near zero biomass as shown 

by the solid lines compared with the 1:1 lines (Figure.4.5). Second, although we 

attempted to mask out the non-forest area by referring to the QuickBird image, not all 

the non-vegetative components are removed from CHM by doing so. Therefore, the 

retained man-man structures in the masked CHM contributed to the overestimation of 

biomass. As to the PALS profiling transects, besides the above two factors, the 
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overestimation may also be caused by the use of Line intersect sampling for estimation 

of areal attributes. Forest and non-forest patches are not homogeneously mixed over the 

study area; therefore, the use of systematic line sampling, especially with only few 

transects, could result in an overall bias (Zhao et al., 2008), which corresponds to an 

overestimate in our case. Overall, the PALS-based biomass estimate using all six 

transects is within 10% of the scanner reference value, which suggests the utility of 

PALS as a reconnaissance tool for quick assessment of forest resources.  

 

4.7 Conclusions 

In this chapter, we proposed the use of CHDs or CHQs as independent variables 

for biomass prediction, and accordingly presented two scale-invariant functional 

biomass models: one is a linear model that uses the whole curve of LiDAR-drived CHD 

as a predictor, and another is an equivalent nonlinear model that uses the CHQ as a 

predictor. In addition to scale-invariance, another major consideration for choosing these 

predictors is to incorporate as much information available in LiDAR measurements as 

possible into the models. Although they retain no horizontal information of LiDAR 

hits(x and y coordinates), CHQs or LiDAR height distributions of raw laser hits contain 

much more information than any subset of its extracted statistics such as mean height, 

truncated mean height, quantile-based height and canopy density metrics. To provide 

theoretical justification, we also developed an accompanied mathematical framework 

that helps to formulate our models based on several moderate assumptions.  

The results from intensive evaluations based on the synthesized realistic datasets 

provide initial proofs that our models can accurately predict biomass and have consistent 

predictive performances across a variety of scales. Since the CHDs are obtained in the 

form of normalized histograms with a specified sampling height bin, we find that models 

with a carefully selected large height bin (e.g., less than 5.0 m) can be as effective as 

those with finer height bins. The results also show that in our experiments, a training 

sample size of around 50 or less is enough to guarantee a good fitting of the linear 
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functional model, as long as the training sample is representative of the forest conditions 

that the model will be applied to. No attempt was made to directly fit the nonlinear 

model, and future studies may examine the effectiveness of advanced nonlinear 

regression techniques such as SVM and Gaussian Processes in regressing biomass on the 

high-dimensional data obtained from the discretization of CHQs. For further research, it 

is expected that the proposed models can be effectively used to predict forest structural 

variables other than AGBM, such as stem density, basal area, timber volume, crown fuel 

weight, and even LAI, either from CHDs or LiDAR height distributions. Future research 

should also be carried out to use the models for forest inventory tasks where analysis 

units vary in size and shape. To augment the applicability of our models, it is suggested 

that auxiliary information from multispectral imagery should be integrated with LiDAR 

data for developing strata-specific models. 
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CHAPTER V 

LIDAR-BASED MAPPING OF LEAF AREA INDEX AND ITS COMPARISON 

WITH MODIS LAI PRODUCTS IN AN EASTERN TEXAS FOREST 

 

5.1 Introduction 

As a key canopy structural characteristic, Leaf Area Index (LAI) serves as 

important input or state variable for a variety of process-based ecological and 

biogeochemical models, especially for those that involve modeling the exchanges of 

energy and mass at the atmosphere-land interface, or the photosynthesis and respiration 

of vegetation for carbon cycling simulation (Turner et al., 2004).  LAI is typically 

defined as the total one-sided area of green foliage per unit ground surface (Chen & 

Black, 1992). Both direct and indirect techniques, e.g., destructive sampling and optical 

methods, exist for collecting in-situ LAI measurements (Jonckheere et al., 2004). These 

in-situ techniques, however, are impractical for measuring LAI over large areas due to 

the prohibitive costs (Cohen et al., 2003). Instead, researchers often resort to remote 

sensing for spatially-explicit mapping of LAI at landscape or regional levels. Reliable 

and accurate estimation of LAI, therefore, has become a primary task in exploiting the 

potential of remotely-sensed data for biophysical variable retrieval, as demonstrated both 

by early work in using optical imagery for LAI, and more recent efforts in estimating 

LAI with ranging measurements of LiDAR (LIght Detection And Ranging) (Lefsky et 

al., 2002). 

The foundation for optical remote sensing of LAI is based on the spectral 

responses to LAI changes. The strong relationship between LAI and some vegetation 

indices is observed from experimental data, and also revealed theoretically by physical-

based canopy reflectance models (Myneni et al. 1997; Eklundh et al., 2001). Among 

others, the utility of NDVI for estimating LAI has been proven by the extensive studies 

across various biomes using different remote sensing datasets such as Landsat 

TM/ETM+, MODIS, AVHRR. It is found that LAI-NDVI relationships not only depend 
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on vegetation types but also vary seasonally and annually (Wang et al., 2005). Many 

studies report that NDVI saturates with high LAI, particularly over deciduous forests 

(Birky,2001). At present, MODIS LAI layers at a resolution of 1 km are operationally 

produced by means of a radiative transfer-based algorithm together with an LAI-NDVI 

backup scheme. The accuracy of these products is of major concern to the scientific 

community. In a study over broadleaf forests, Shabanov et al. (2005) concluded that the 

precision of MODIS reflectance, the natural variability of surface spectrum and the 

mixture of species usually set a limit on the accuracy improvement of LAI retrieval. In 

practice, to guide the informed use of MODIS LAI products, a lot of validation effort has 

been done or is ongoing at a range of sites worldwide. Previous results suggested that 

there often exists an overestimate in the MODIS LAI of Collection 3 as compared to in-

situ values or the extended estimates from relatively high-resolution imageries (Wang et 

al., 2004; Cohen et al., 2006). The major recognized difficulties in assessing the quality 

of MODIS LAI include the limited number of representative validation sites and the 

scale discrepancies between in-situ and MODIS measurements, although other factors, 

such as the uncertainties in radiometric correction of MODIS surface reflectance and the 

mis-registration of MODIS data with reference data, also will complicate the validation 

processes.  

Recent advances in airborne laser scanners (commonly known as LiDAR) bring a 

breakthrough in canopy remote sensing, with an enhanced capability of direct 

characterization of canopy vertical structures. A relatively high probability of laser 

penetration into canopy allows for better characterization of understories, and at the 

same time alleviates the saturation problem of optical remote sensing for large LAIs or 

biomass. The body of LiDAR literature on ecological and environmental studies is 

growing in such aspects as mapping terrain topography and estimating biophysical 

parameters (e.g., biomass, canopy density, LAI and fuel parameters) at various analysis 

units (e.g., individual tree, plot, stand, and woodland) (Brandtberg et al., 2003; Lim et 

al., 2003; Holmgren, 2004; Popescu and Zhao, 2008). A key factor concerning the 

above-tree level estimation with LiDAR is the choice of appropriate LiDAR metrics 



 99

(predictors) in an effective model form, preferably with certain physical meaning. 

LiDAR metrics that have been previously investigated for LAI mainly include mean 

height, maximum height, percentile height, height of median energy, and percentage of 

certain type of LiDAR hits (ratio metrics). In particular, the ratio metrics such as Laser 

Penetration Index (LPI) and Laser Interception Index (LII) prove effective in estimating 

LAI (Barilotti et al., 2006). Kusakabe et al. (2005) also suggested the use of “mean free 

path” (penetration length into canopy) as a proxy for estimating LAI.  Like optical 

remote sensing of LAI (Tian et al., 2002; Sarriguesa et al., 2006), estimating LAI by 

LiDAR is also subject to scale issues, which include but are not limited to the choice of 

an “optimal” resolution at which to build regression models as well as the scaling-

up/down problems due to the scale-independence of the regressed models (Patenaude et 

al., 2004). Though not indicated explicitly, almost all the LiDAR LAI models 

investigated previously are scale-dependent, which is exemplified by the fact that the 

estimated LAI of a region by using a single metric extracted for the region does not 

equal the aggregated value of estimations over the sub-regions that partitions the region 

(Patenaude et al., 2004).  

Our primary goal of this study is to continue exploring the capability of discrete-

return LiDAR for spatially-explicit mapping of LAI, with a secondary goal to examine 

the consistence of our LiDAR-derived LAI map with MODIS standard LAI products 

over an eastern Texas forest. We addressed the following specific sub-problems: (1) to 

investigate the effectiveness of a set of LiDAR metrics, including several newly 

proposed ones, (2) to propose the use of laser height distribution (LHD) as predictor in a 

linear functional LAI model, (3) to assess the utility of integrating multispectral imagery 

(i.e., QuickBird) with LiDAR for improving the LAI estimate accuracy, and (4) to scale 

up the LiDAR LAI map for comparison with MODIS products. 
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5.2 Materials 

5.2.1 Study Area 

The study area is a 48-km2 forested region in the eastern Texas of the southern U. 

S. (30° 42' N, 95° 23' W). The area mainly comprises pine plantations in various 

developmental stages, old growth pine stands in the Sam Houston National Forest with 

many of them having a natural pine stand structure, and upland and bottomland 

hardwoods. The major species include Loblolly pines (Pinus taeda L.) and deciduous 

trees such as water oak (Quercus nigra L.), red oak (Quercus falcata Michx), sweetgum 

(Liquidambar styraciflua L.), and post oak (Quercus stellata Wangenh.). Much of the 

southern U.S. is covered by forest types similar to those of our study area, with similar 

species, productivity and patterns of land use and land cover. The area is characteristic 

of a gentle topography; its elevation varies from 62 m to 105 m with an average of 85 m. 

 

   
(a)  (b) 

Figure 5.1. The study area, i.e., a 48-km2 forested region in the eastern Texas of the southern USA: (a) The 

pattern of scanning LiDAR swaths, and (b) a Quickbird mulitspectral image over the study area. 

 



 101

5.2.2 Hemispherical Photographs and In-situ LAI 

Field work was undertaken from May to July in 2004. Hemispherical 

photographs were taken at 53 circular plots established across the study area, with plot 

centers geo-referenced by a differential GPS. The photographs have a resolution of 3264 

× 2448 pixels, and were captured at 1.5 m above ground using a horizontally-leveled 

CoolPix 8700 digital camera (Nikon) equipped with an FC-E9 fisheye lens converter 

(Nikon). Other ground inventory data such as tree height, crown width, and crown class, 

were also tallied but will not be used in the present study. 

 

5.2.3 LiDAR Dataset 

The ALS data were acquired during the leaf-off season in March 2004 with an 

Leica-Geosystems ALS40 flying at an average elevation of 1000 m, by M7 Visual 

Intelligence of Houston, Texas. The LiDAR system was operated to record two returns 

per pulse, i.e., first and last, with a reported horizontal and vertical accuracy of 20-30 cm 

and 15 cm, respectively, and was configured to scan +/- 10 degree from nadir, resulting 

in a swath of about 350 m wide on the ground. The dataset features a full coverage from 

either of two perpendicular directions, with 19 flight lines in the north-south direction 

and 28 in the east-west direction, resulting in an average of 2.6 laser hits per m2. From 

the raw LiDAR points, a Digital Elevation Model (DEM) was derived using a 

proprietary ground-filtering package by the data vendor; a Canopy Height Model (CHM) 

at a resolution of 0.5 m was created by first interpolating the canopy hits that are the 

laser hits of maximum height on 0.5 x 0.5 m cells and then subtracting the DEM from 

the interpolated canopy surface. Furthermore, in reference to the DEM, the z coordinate 

of the original LiDAR hits were registered locally relative to the ground so that ground 

hits have a z of zero. All the LiDAR-related data was georeferenced in a UTM 15N 

coordinate system with the WGS84 datum. 
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5.2.4 QuickBird Multispectral Imagery 

A Quickbird (Digital Globe, Inc.) scene acquired in 2004 is available over our 

study area. The image has a spatial resolution of 2.4 m with four spectral bands, i.e., blue 

(450-520 nm), green (520-600 nm), red (630-690 nm), and NIR (760-900 nm). 

Radiometric calibration and ortho-rectification were applied to the image by our data 

vendor. The coordinate system used is the UTM 15N with WGS84 datum. An 

examination of 10 conspicuous feature points revealed that the image and LiDAR CHM 

geographically registers well with an error of less than 2.4 m. 

The purpose of incorporating the Quickbird image into this study is to extract 

thematic information for distinguishing forest types as well as to assess the utility of 

NDVI for estimating LAI when integrated with LiDAR. For the first purpose, we applied 

the maximum likelihood classifier to the image for mainly differentiating pines, 

hardwood, mixed forests, and grassland. The classification produced an overall accuracy 

of 86.5% through an on-screen evaluation of a random subset of 200 testing pixels. 

 

5.2.5 MODIS LAI Products 

A series of Terra MODIS 8-day composite LAI products from the Julian day of 

177 to 241 in 2004 were obtained from the Earth Observing System data gateway. These 

are Collection 4 products that are retrieved from MODIS surface reflectance products by 

a radiative transfer-based LUT algorithm. Due to various factors that influence the 

retrieval process, all the LAI products contain a quality flag layer indicating the LAI 

quality and cloud states. Such status information, for example, includes which algorithm, 

the main or backup, is invoked, whether the retrieval is conducted under “saturation 

condition”, and so on. The products are delivered at a resolution of 1 km in the 

Integerized Sinusoidal Projection (ISP). Our co-registration schemes for overlaying 

MODIS products with LiDAR data will be detailed in a later section.  
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5.3 Methods 

5.3.1 In-situ LAI from Hemispherical Analysis 

To better understand the uncertainties in ground LAI estimates, we considered 

two factors in hemispherical analysis, i.e., analysts and LAI algorithms. As such, we first 

employed two experienced analysts to perform binary segmentation on the hemiphotos 

into sky or obscured pixels using HemiView (Delta-T Devices Ltd., UK, 1999), for the 

purpose of evaluating the subjectivity in hemispherical analysis due to the manual and 

interactive selection of segmentation threshold values. Then, we applied two LAI 

methods to the segmented hemiphotos in order to assess the sensitivity of LAI estimates 

to algorithms.  

The two methods, though with slightly different assumptions, are all based on 

“gap-fraction” formula of the Beer’s law in a canopy, 

  ( , ) exp[ ( , ) / cos( )]G L        (5.1) 

where L  is LAI; )(  represents the gap fraction in the direction of (  , ) where   is 

the zenith angle and   the azimuth angle; and G is the Ross-Nilson G-function that 

refers to the fraction of a unit foliage area projected onto the plane normal to (  , ). Eq. 

5.1 assumes that foliage elements are distributed randomly and independently. From the 

segmented hemiphotos, we obtained estimates of ),(   over some annuli or sectors, 

which will be used to calculate LAI according to Eq. 5.1 with the following two 

methods. 

 

Method 1 

This method makes use of a specific leaf angle distribution, i.e., the ellipsoidal 

distribution, which gives, 

 
2 2 2

0.733

cos sin( ; )
1.774( 1.182)
xG x
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 




 
 (5.2) 

where the leaf distribution is supposed to be azimuthally symmetrical so that G  only 

depends on zenith angles, and x  is a constant parameterizing G . Assuming Eq. 5.2, LAI 
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and x  can be simultaneously estimated by an iterative optimization procedure in terms 

of minimizing the squared error between the gap fractions t  observed from hemiphotos 

and those predicted theoretically from the combination of Eqs. 5.1 and 5.2, as 

implemented in HemiView (Delta-T Devices Ltd., UK, 1999). In this study, the 

observed gap fractions   for this method were estimated over 18 x 8 sky sectors with 5 

and 45 degrees for zenith and azimuth divisions, respectively. 

 

Method 2 

 In Method 2, we also assume that G is azimuthally-independent, but do not 

restrict its functional form. The method, instead, is based on the Miller’s theorem 

 
/ 2

0
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      (5.3) 

which, combined with Eq. 5.1, gives an LAI formula, 

 

/ 2

0
/ 2

0

2 ln[ ( )]cos sin d

( )dw

L

l





    

 

 






 (5.4) 

where for notational convenience, the integrand has been denoted by  

 ( ) 2ln[ ( )]cos sinwl        (5.5) 

However, two practical difficulties exist when applying Eq. 5.4 to the observed ( )i   for 

LAI L . First, some values of the observed  , especially on annuli at large zenith angles, 

tend to be zero, thus causing numerical overflows in logarithm evaluations ln[ ( )]i  . A 

remedy for this problem in previous studies is to simply add 1.0 or 0.5 pixel of openness 

to these problematic annuli or sectors; such addition, however, appears to be artificial 

(van Gardingen et al., 1999). Second, an appropriate quadrature procedure is needed to 

evaluate the integral of Eq. 5.4 based on the gap fractions ( )i   observed at only several 

zeniths i ’s. To solve these two difficulties, in Method 2 we fit a nonparametric curve 

using the smoothing spline to all the observed ( )wl  ’s except the problematic ones that 

have zeros of ( )i  ; by doing so, ( )wl   can be estimated at any  , including the i  
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associated with problematic annuli. Then, the resulting curve is integrated to estimate 

LAI according to Eq. 5.4, (Figure 5.2) 
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Figure 5.2. An illustration of Method 2 for calculating LAI with Eq. 5.4 

 

The effects of analysts and methods on the in-situ estimates of LAI were 

analyzed with the Repeated measures ANOVA analysis. Due to the lack of ground-truth 

LAI data of higher accuracy, we fail to determine which of the four sets of LAI (two 

analysts by two methods) is more accurate. As a compromise, we instead used the 

average of the four sets in the subsequent analysis for relating the in-situ LAI with 

LiDAR metrics in the model development. 

 

5.3.2 Parametric LAI Models Using LiDAR 

Analysis of the LiDAR Data for Model Development 

A better understanding of the LiDAR data characteristics helps to extract more 

meaningful LiDAR metrics. Our LiDAR dataset, collected by a first/last return scanner, 

consists of three types of laser hits: single returns (SR), which correspond to those of 

pulses that produce only one echo; first returns (FR) and last returns (LR) which are the 

first and last echoes of the pulses that have multiple echoes. In the later presentation, we 

strictly discriminate SRs from FRs, although SRs can be loosely deemed as either FRs or 

LRs. In terms of the targets intercepted, laser hits can be categorized into either ground 
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or canopy hits: Ground hits are often identified as those that are below a prescribed 

height threshold so that they include not only the true “ground” hits of zero height but 

also near-ground understory hits; canopy hits can be further divided into those from 

crown surfaces and those from inside or below crowns (Figure 5.3). 

 

First return, 
crown

First return, 
crown

last return, 
inside crown single return, 

crown

Last return, 
ground

Single  
return, 
ground

 

Figure 5.3. Classification of LiDAR hits into single, first and last returns that could be reflected back from 

different layers of canopies, e.g., crown surfaces, inside or below top crowns, and ground. Note that the 

arrows indicate the locations of laser hits. 

 

For conceptual conveniences, we presume that crown-surface hits (CSH) can 

only be SRs or FRs; inside- or below-crown hits (IBCH) can only be LRs, and ground 

hits (GH) can only be SRs or LRs. The last presumption is based on the consideration 

that a pulse rarely produces two distinct echoes within a short distance near the ground 

so that no pulse can have both FR and LR coming from the ground. The above 

classification scheme of laser hits is also illustrated in Figure 5.3., In addition, the 

following relationships should roughly hold as to the numbers of each type of laser hits 

over an area: 
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 (5.6) 

where pulseN  and totalN , i.e., numbers of laser pulses and laser hits, are different in that a 

pulse with two returns is counted only once in pulseN  while it is counted twice in totalN  

due to the two returns;  the other subscripts in Eq. 5.6 should be self-explanatory. Of 

particular note, the relationships only roughly hold, due to the boundary effects that the 

first return of a pulse does hit within the area but its last return is outside the boundary. 

LiDAR ancillary data such as the intensity and scanning-angle provide additional 

information which may be of practical value for specific applications. For example, 

Hopkinson and Chasmer (2007) recently examined an intensity-based ratio metric, i.e., 

the ground power versus the total power, and found it an effective predictor for canopy 

gap fractions. According to a single-scattering model for “hot-spot” viewing geometry, 

the reflected laser intensity from a volume dV  over crown surfaces is formulated as, 

 0 0 ( ) ( )lI I u z R G dV   (5.7) 

where 0I  is the incident laser intensity; 0 ( )u z  is the leaf area density defined over  

crown surfaces at a location z ; lR  is the reflectance of leaves which are assumed to be 

Lambertian; and ( )G   is the G-function as defined in Eq . 5.1. Eq. 5.7 shows that the 

intensity of returns from crown surfaces is proportional to leaf area densities. Be aware, 

however, that 0I  varies from pulse to pulse, depending on sensor-target distances, and 

therefore, flight altitude and scan angle; and that LiDAR intensity measurements of most 

currently commercial ALS are not calibrated, which somehow limits the practical use of 

LiDAR intensity data for quantitative applications, e.g., estimating leaf area densities. 

On the other hand, the scanning angle of a pulse, recorded by an ALS, may be 

different from the local look angle i  that is defined as the angle between the pulse 

incident direction and the local normal to the ground. This disparity is due to the 

instability of flying platforms and the rugged topography. If needed, the local look angle 

iq  for a pulse with two returns can be calculated from the coordinates of the first and last 
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returns by, 
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where the subscripts i , fr  and lr refer to the pulse index, first return and last return, 

respectively; z  is the height after the terrain is subtracted. For a single-returned pulse, 

i  can be approximated by considering its nearest two-returned pulse. 

 

Based on the above analysis, we examined a variety of LiDAR metrics to be related with 

LAI. These metrics include penetration-based indices and canopy height metrics, some 

of which have been examined previously. Noteworthily, most of the metrics are chosen 

and constructed simply on the basis of heuristic clues rather than analytical and physical 

evidences. Therefore, although our choices possess certain physical meaning, their 

prediction abilities need to be justified only by experiential performances when 

regressed against in-situ LAI. 

 

Laser Penetration Metrics (LPM) 

The tenet of using penetration metrics is that, by analogy to gap fractions of the 

Beer’s Law in Eq. 1, the percentage of penetrating laser hits provides an indication of the 

density and amount of foliage. However, the proper form of a laser-based ratio 

percentage is unclear because the LiDAR measurements, observed with a finite-size 

beam laser spot, reflect the collective responses of an ensemble of leaves while field 

measurements with a thin beam, e.g., MacArthur and Horn (1969), represents 

observations at smaller scales.  

To construct penetration ratios, we used three types of penetrating hits as 

numerators: ground hits (grd), ground plus inside-canopy hits (in+grd), and ground hits 

only of single returns (“sr^grd”); also, we used two types of total number of laser hits as 

denominator: totalN  that corresponds to all hits where a pulse with two returns are 
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counted twice, and pulseN  that corresponds to incoming pulses or first returns. 

Consequently, a total of six ratios were produced that are presented respectively by, 

 ^ ^
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As variants to the above metrics, intensity-based ratios can also be derived using 

the sums of intensity values rather than the numbers of hits. However, to constrain the 

value of ratios within [0,1], we considered only the intensity ratios that use the sum of 

intensity of all hits as denominators. The three resulting intensity-based counterparts are 

symbolized respectively as /grd totali , /in grd totali  , and ^ /sr grd totali  

 

LPMs Adjusted by Look-angles 

Penetration rates through a canopy also depend on incident directions, often with 

a larger incident angle resulting in less penetration as revealed in Eq. 5.1. In the LiDAR 

data, incident directions of laser pulses slightly oscillate from pulse to pulse between a 

maximum of scann angle, due to the scanning mechanism of ALS. Moreover, the 

displacements of different field plots relative to the flightlines are different, thus 

contributing to the variation in incident angles among different plots. In this study, most 

of our field plots were observed from multiple flight lines due to the cross-hatch flight 
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patterns, thus increasing the disparity of incident angles among different plots. Therefore, 

to compensate such variations, we take into account looking angles when designing a 

penetration ratio metric for LAI, and the LPMs adjusted by looking angle i  are given, 

for example, as follows, 

 0
, /

1/ cos
grdN

i
i

adjust grd total
total

r
N





 (5.10) 

where cos i  is obtained with Eq. 5.8. We adjusted for the look angle effects only for 

those LPMs based on pulse counts, i.e., Eq. 5.9, not for the intensity-based LPMs. The 

adjusted counterparts to the remaining five ratios of Eq. 5.9  can be obtained by analogy 

to Eq. 5.10. It is noted that the form of the formula for the adjusted LPM is not strictly 

physical-based.  

 

Height-related Metrics (HRM) 

LAI should be proportional to canopy volume, foliage density, or their product. 

For canopy volume, a LiDAR-based surrogate is LiDAR-based height metrics, e.g., 

mean canopy height as used in Chen et al. (2007). For foliage density, a surrogate is the 

“mean free path”, i.e., the mean penetration length of lasers into top canopy surfaces, 

which is deemed to be inversely related to foliage density as argued in Kusakabe et al.  

(2005); another surrogate to foliage density, i.e., the average intensity of first canopy 

returns, could be obtained by referring to Eq. 5.7 where 0( )u z  is the foliage density near 

crown tops.  

Based on the above heuristics for predicting LAI, we investigated several height 

metrics, including the mean height of first returns, frh , the mean height of all returns, 

totalh , the 50% and 80% percentile heights of all returns, 50%h  and 80%h , the maximum 

height, maxh , and the mean CHM height, chmh . We also investigated both the surrogates 

to foliage density. Specifically, the “mean free path” is calculated based on only canopy 

hits with the free path of a single-return pulse being zero and that of a double-return 
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pulse being the distance between its first and last returns; the average intensity of canopy 

hits is based on only canopy hits of first return. 

 

Statistical Analysis Relevant to LPMs and HRMs 

Several apparent factors make it difficult to build models using the 

aforementioned LiDAR metrics to predict LAI. First, in deriving the penetration indices, 

an appropriate height threshold for separating ground and canopy hits needs to be 

determined. In several earlier studies, the threshold is chosen as the height at which the 

camera was set up, but such a choice guarantees no optimality. Second, exact forms of 

relationships between LAI with each metric are not theoretically available, although both 

linear and logarithmic models have been used in previous studies (Morsdorf et al., 2006). 

Third, it remains undetermined as to which metric or subset of the metrics provides the 

best prediction power. Fourth, the selection of predictors and models is affected by plot 

sizes at which LiDAR metrics are extracted as reported in Riaño et al. (2004) because 

there is not a definite plot size corresponding to the hemiphotos that were used to derive 

in-situ LAI. Last, forest types, i.e., pines or hardwood, may well influence the 

relationships between LAI and LiDAR metrics. Due to the compounding effects of the 

above factors as well as the limited number of ground LAI observations, it seems 

impractical to enumerate all the combinations of metrics, models, plot sizes, and forest 

types for model selection. As an expedient, the following strategy is employed to seek an 

“optimal” model. 

When using the LPMs or the adjusted LPMs as predictors, the logarithmic model 

(log-model) with no intercept term is used because of its resemblance to the Beer’s law; 

however, to accommodate possible difference between pines and hardwood, the species-

stratified equation was used, i.e., 

 1 2ln( ) ln( )L x t x          (5.11) 

where x  stands for any one of the 15 LPMs, including six hit-number-based ones, three 

intensity-based ones, and six adjusted ones; t  is a binary variable distinguishing pine 

plots from those of hardwood/mixed; i ’s are coefficients to be determined, and   is 
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the error term. Due to the possible combined effects of LPM and plot size on the model 

performance, the model of Eq. 5.11 was examined for each LPM predictor at a series of 

plot sizes ranging from 5.0 m to 39.0 m in radius with a step of 1.0 m in order to choose 

a most appropriate scale for building the LAI model. Among the 525 fitted models, i.e., 

15 LPMs by 35 plot sizes, the one with the least root mean square (RMSE) was selected, 

which indicates not only the best predictor but also the most appropriate plot size for the 

predictor. Of particular note is that during the model selection, we fixed the height 

threshold to be 2.56 m that was used to separate ground and canopy hits in constructing 

all the LPMs. This threshold, not equal to the camera setup height (1.5m), was chosen 

for reasons that will become clear later.  

When using HRMs as predictors, two cases were investigated, i.e., single-

variable and multiple-variable regression models. In the case of models using single 

variable, a total of 18 predictors were examined, including six height metrics and 12 

product metrics (i.e., six height metrics by two foliage density proxies). The model form 

was chosen to be, 

 0 1 2 3y L t x x t             (5.12) 

where x  is any of 18 predictors; t  again is the binary variable used to differentiate pine 

plots from those of hardwood/mixed; i ’s are the regression coefficients, and   is the 

error term. Furthermore, to accommodate any possible nonlinear relationships, the power 

transformed LAI and predictors are also examined, i.e, 

 1 2 2
0 1 2 3y L t x x t             (5.13) 

where 1  and 2  are exponents that do power transformation to LAI and the predictor, 

respectively, and all the other terms are the same as in Eq. 5.12. The two exponents are 

estimated by the bi-variate Box-cox transform methods. A zero exponent in the Box-cox 

transform reduces to the logarithm transform. In addition, the use of the Box-Cox 

method renders the regression analysis more theoretically sound. In the case of multiple 

regression models, the pooled set of the above 18 predictors, without power 

transformation, was employed as candidates to be selected into an optimal multiple 
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linear regression model by using the stepwise regression procedure; in this case, the 

model was not stratified by species (forest types), due to the relatively small sample size, 

especially those of hardwood plots. Of note, the effect of plot size was fixed in both 

cases of single- and multiple variable models, and we used the optimal plot size of the 

LPM-based model for extracting the HRMs. It is also noted that in this study, we made 

no attempt to build a model that uses both LPM and HRMs as predictors. 

 

5.3.3  Functional Models Using LiDAR Height Distributions 

LiDAR height distributions (LHD) represent the relative frequencies of laser hits 

at given heights, which can be obtained for an analysis unit (e.g., plots) by counting laser 

hits that fall into a short height-bin around a given height, and then normalizing the 

count with the respect to the product of  the total number of hits and the length of height-

bin. An unarguable advantage of LHD is that it retains as much information as possible 

in that most traditional metrics such as mean height, quadratic mean height, truncated 

mean height, quantile height, LPMs, and percentages of canopy hits all can be directly 

derived from LHD. As an example, the LPM /grd totalr  in Eq. 5.9 can be calculated from 

the LHD of all hits ( )p h , 

 / 0
( )thrh

grd totalr p h dh   (5.14) 

where thrh  is a height threshold below which laser hits are classified as ground hits. 

A prediction model that uses ( )p h  as predictor should be considered as a 

functional model because ( )p h , a curve with respect to h , is a function by itself. 

However, in practice, the values of ( )p h  are often available at a discrete set of heights, 

i.e., 1{ ( )}n
i ip h  , ( 1)ih i h   , where h  is a height bin used to sample ( )p h , and n  is  

the number of height-bins used. In this study, we investigated two such functional 

models for LAI, both of which are in the form of,  

 max

0
ln ( ) ( )

h
L k K h p h dh        (5.15) 
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where ( )K h  is a kernel function introduced into the model; k  is the extinction 

coefficient and it holds from Eq. 5.1 that ( ) / cosk G    where   is the observation 

direction; maxh n h   denotes a height above which no laser hits are present;   is the 

normal error term. In essence, Eq. 5.15  is the Beer’s law so that max

0
( ) ( )

h
K h p h dh  

represents the gap fraction observed at the bottom of a canopy. The model parameters or 

unknowns that need to be inferred from training data are k  and ( )K h  which are a scalar 

and a function, respectively.  

In practice, the unknown ( )K h  in Eq. 5.15 can take either parametric or 

nonparametric form. As such, the following will deal with two models, the first of which 

has a parameterized ( )K h , and the second of which has a nonparametric ( )K h . The 

consideration in building the models is also presented to justify the choice of ( )K h . 

Functional LAI Model with a Parametric ( )K h  

In the first model, we employed a specific parametric model of ( )K h , namely, 

the logistic function, 

 log 0
0

1( ; , )
1 exp[ ( )]

K h s h
s h h


  

 (5.16) 

where s , and 0h  are the specifying parameters. As shall be seen later from the results, 

logK  is a restricted logistic curve whose maximum and minimum asymptotes are set to 1 

and 0 respectively. The specifying parameter 0h  is the height associated with the 

inflection point, and s  is the slope parameter that determines the steepness of the 

transition zone around the inflection point. It is interesting to notice that when s  is 

relatively large, e.g., > 2.0, so that the logistic curve can be approximated by a step 

function, the model reduces to a linear one with /grd totalr  as predictor, 

 log 0 /ln( ( ; , ) ( ) ) ln( )grd totalL k K h h p h dh k r          (5.17) 
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where  /grd totalr is the LPM derived by using 0h  as a threshold to separate ground/canopy 

hits. In such a sense, the inference of the functional model with log 0( ; , )K h s h provides us 

an optimal threshold of height  0ĥ for determining ground hits.  

The parameters to be inferred for this model includes the extinction coefficient k , 

and the logK ’s specifying parameters s  and 0h . These three parameters can be estimated 

with gradient-based optimization methods in terms of minimizing a weighted mean 

square error; and a conjugate gradient method was employed for this purpose. Details on 

the gradients used by this method are relegated to a later publication. 

Functional LAI Model with a Nonparametric ( )K h  

Instead of parametrizing ( )K h , a nonparametric curve for ( )K h  can be used in 

the functional LAI model. As a result, the model inference must yield an estimate for the 

whole curve of ( )K h . Moreover, it is usually beneficial to apply some constraints on 

( )K h  according to some physical heuristics. Next, we describe the choice of constraints 

and provide some justification for the choice as well. 

Previous studies reported the use of LiDAR height distribution ( )p h  for 

estimating several forest stand characteristics. Intuitively, ( )p h  is similar to a waveform 

that is measured by large-footprint LiDARs because both of them represent the vertical 

structure of canopies, but in fact, they are obtained in different manners and are not 

equivalent to each other. Therefore, ( )p h  is called a pseudo-waveform by some 

researchers. On the other hand, both ( )p h  and a large-footprint waveform are different 

from the gap probability of the canopy ( )P h , and they can be treated as some observed 

responses of LiDAR to the gap probability. Therefore, to retrieve ( )P h , the LiDAR 

waveform or ( )p h  need to be “de-convoluted” back. For example, a commonly used 

technique to correct waveform for gap probability ( )P h  is the Macarthur-Horn method 

(Lefsky et al., 2003). For convenience of model development, we assume that the gap 

probability of a canopy ( )P h  can be linked with the pseudo-waveform ( )p h  of scanner 

data can with the help of a de-convolution kernel ( , )C x y , 
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 ( ) ( , ) ( )P h C x h p x dx   (5.18) 

Hence, the gap probability at 0h  (the bottom of the canopy) can be written as, 

 0(0) ( ,0) ( ) ( ) ( )P C x p x dx K h p h dh     (5.19) 

where for notational convenience we denote 0 ( ) ( ,0)K h C h . By the Beer’s law, i.e., 

ln[ (0)]L k P  , LAI can be calculated as, 

 0ln[ ( ) ( ) ]L k K h p h dh    (5.20) 

which exactly is the functional model given in Eq. 5.15, and 0 ( )K h  is the nonparametric 

curve that needs to be estimated. 

To ensure that (0)P  of Eq. 5.19 falls into the interval of [0, 1] for any possible 

( )p h , 0 ( )K h  cannot be arbitrary and must meet some conditions. For simplicity, we 

only present some sufficient conditions for this, but they may be not necessary. First, we 

put a constraint that, 

 00 ( ) 1K h   (5.21) 

Second, we restrict 0 ( )K h  to be a non-increasing function. This constraint is based on 

the facts that ( )p h  and ( )P h  bears some resemblance to each other, and (0)P  is 

essentially a weighted sum of ( )p h ; therefore, it is sensible to assume that the 

contribution of ( )p h  to (0)P  at a large height should be less than that at a small height, 

i.e.,  

 0 1 0 2( ) ( )K h K h  if 1 2h h . (5.22) 

Unlike the parametric function model, the unknowns in this nonparametric 

models consist of the extinction coefficient k  and the whole curve of 0 ( )K h . In addition, 

the model inference is subject to the constraints applied on 0 ( )K h , as listed in Eqs. 5.21, 

and 5.22. In this study, we used a hybrid iterative constrained and weighted linear 

regression technique to infer k  and 0 ( )K h . 
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5.3.4 LiDAR-derived LAI Map 

An appropriate plot size was identified by examining the overall model 

performances at various plot sizes, and it then was used to determine the spatial 

resolution at which to generate the LiDAR-based LAI maps. Specifically, the pixel size 

of LAI maps should be approximately equal to the plot area. Even at this identified plot 

size, there are a variety of models evaluated, so only those with good performances were 

selected to be applied for producing the LiDAR maps. 

5.3.5 Registration between LiDAR and MODIS  LAI Maps for Comparison 

Difficulties exist when attempting to compare a LiDAR-based LAI map with that 

of MODIS. First of all, co-registration between LiDAR and MODIS maps must be first 

performed in order to compare them; however, the two types of maps, both being a raster 

one, are not only generated at different resolutions with the MODIS LAI maps having a 

1 km2 pixel size that is much larger than that of the LIDAR maps, but also, are geo-

referenced in different coordinate systems. The registration of a MODIS LAI map in 

reference to a LIDAR one may be problematic because this process needs to interpolate 

the original MODIS pixels to obtain new values at a re-organized grid of 1km2 pixels, 

and positional errors may also be exaggerated during this process due to the large 

MODIS pixel size relative to the LiDAR map. On the other hand, even if the re-mapping 

and interpolation processes contribute to no mis-registration, the original positional 

errors in the two sources of data can make it impractical to do pixelwise comparison 

(Tan et al, 2003). For this reason, no pixel-wise comparison is made in this study; 

instead, the statistics of LAI values over the study area, e.g., mean and variance, were 

referred to for a patch-level comparison. In addition, unlike most previous studies that 

re-projected one map to another map with the help of re-sampling, we transformed only 

the extent of the study area, i.e., a rectangle in UTM 15N, from the UTM 15N projection 

of the LiDAR map to the ISP of MODIS. The resulting extent in the ISP is a 

parallelogram and was overlaid with MODIS maps to determine the MODIS pixels that 

fall into the study area (Figure 5.4). The MODIS pixels intersecting the boundary of the 
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parallelogram were included for comparison only if more than 1/3 of the pixel area falls 

within the boundary. 

 

  

Figure 5.4. Registration scheme for determining the MODIS pixels that fall within the boundary of the 

study area (red parallelogram). 

 

5.4 Results and Discussion 

5.4.1 Estimates of In-situ LAI  

The effects of analysts and hemiphoto analysis methods on the in-situ LAI 

estimates were examined. Figure 5.5  presents the comparison of LAI values obtained by 

two analysts as well as the comparison between the two methods. To avoid plethora of 

figures, the scatterplots in Figure 5.5 refer to the mean LAI values averaged over the two 

cases (levels) of a factor when making comparison between the two cases of another 

factor. It is observed that both factors affect the estimation of LAI. In terms of the 

strength of correlation between the two cases of each factor, the effect of methods seems 

more distinct than that of analysts, as also revealed by the scattering patterns of two 

factors. According to a Repeated measures ANOVA test that used analysts and methods 

as within-subject factors, and species as between-subject factor, both analysts and 

methods have no significant influences on estimating mean in-situ LAI values at a level 

of 0.05; however, the test did show that the factor of methods (p-value: 0.09) appears to 
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affect the LAI estimation for both species more than the factor of analysts (p-value: 

0.36). 
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(a)   (b) 

Figure 5.5. Scatterplots of in-situ LAI estimates (a) between two analysts, and (b) between two hemiphoto 

analysis methods 

 

For each factor, two root mean square differences (RMSD) were first obtained 

from the four groups of LAI estimates by taking the differences between the two levels 

of the factor, at each level of another factor; and the average of two RMSD (ARMSD) is 

used to represent the variability caused by that factor. For example, ARMSD for the 

factor of analysts was calculated by, 

 1, 1 2, 1 1, 2 2, 2|| || || ||
2

a m a m a m a m
analyst

L L L L
ARMSD

  
   (5.23) 

where 1a  and 2a  represents the two analysts; 1m  and 2m  represents the two methods; 

and || ||  denotes the RMSD. The ARMSD for analysts and methods are 0.318 and 0.178 

respectively; and in such a sense, it appears that analysts have more influences on the 

uncertainties in the in-situ LAI estimates, differently from what the Repeated measures 

ANOVA suggested. 
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5.4.2 LiDAR-based LAI Estimates Using LPMs 

Four of the 15 LPM predictors were identified to consistently have good 

prediction abilities across different plot sizes in terms of R2 as well as the root mean 

square errors (RMSE), and they are /in grd totalr  , /in grd totali  , /grd totalR , and /grd totalr , 

respectively. The prediction abilities of these four LPMs are very close to each other  

with /in grd totalr   slightly better than the others and /grd totalr  yielding the least R2 among the 

four. All these four LPMs are far more effective than the remaining 11 predictors when 

using the log-model; for example, a comparison among the R2 values of 15 LPMs for a 

plot radius of 20 m is depicted in Figure 5.6. 
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Figure 5.6. R2 of the fitted models for different LPMs that are extracted using a plot size of 20 m. For ease 

of displaying, the names of LPM predictors are shortened in such a way that “g”, “i”, “s”, “t”, and “p” 

represent ground, inside crown, single return, total, and pulse, respectively. The first six columns are hit-

number-based LPMs, the next three are intensity-based ones, and the last six are looking-angle adjusted 

LPMs. 

 

The size of plots used to extract LPMs also affects the model behaviors. Our 

results show that for all predictors, a range of plot radii from 12 m to 30 m were 

generally appropriate choices for extracting LPMs to be related with in-situ LAI of 

hemiphotos. Over this range of plot size, only slight fluctuations in R2 were observed, as 

shown in Figure 5.7 where changes in R2 with plot size are plotted for the best four 

LPMs. It is noted that when using too small a plot, e.g., less than 8 m in radius, the fitted 
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models degraded greatly with a relatively large decrease in R2, e.g., from 0.78 at a radius 

of 8 m to 0.63 at a radius of 6 m for the predictor /grd totalr . 
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Figure 5.7. The effects of plot size on the model fitting for the best four LPMs.  

 

5.4.3 LiDAR-based LAI Estimates Using HRMs 

Less success was gained in using HRMs to predicted LAIs. A range of R2 from 

0.067 to 0.302 for the untransformed single-variable linear models, was observed using 

the training data extracted at a plot size of 20 m in radius, and the predictor with the 

largest R2 0.30 is the mean height of first returns. The two product predictors resulting 

from the multiplication of mean height of first returns with the two foliage-density 

surrogates did not improve the prediction abilities. On the other hand, the transformed 

single-variable models using Box-cox methods have a similar range of R2 from 0.071 to 

0.302 with only marginally or no improvements in most cases. Interesting enough, for 

the multiple-variable models, the stepwise linear regression procedure resulted in the 

following model with two predictors f

free

h
l

 and a

free

h
l

, 

 1ˆ 0.4 2.87 2.58 0.4 (2.87 2.58 )f a
f a

free free free

h hL h h
l l l

        (5.24) 
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which has an adjusted R2 of 0.75. Because 1/ freel  is used as a proxy to foliage density, 

(2.87 2.58)f ah h  then can be considered as a proxy to the canopy volume. 

5.4.4 LiDAR-based LAI Estimates Using Functional Models 

The plot size of 20 m in radius was chosen to extract LiDAR height distributions 

(LHD), and the extracted LHDs were used to train the two functional LAI models. The 

estimated parametric log ( )K h  has an inflection point at  2.56h  m as shown in Figure 

5.8. This height provides an optimal threshold to separate ground and canopy hits, and in 

fact, it has been used in deriving all the LPMs. The estimated nonparametric 0( )K h  is 

plotted in Figure 5.8. An examination on the two estimated 0( )K h  curves reveals that 

0( )K h  has more weighting on ( )p h  at large heights than ( )K h , due to the heavy tail of 

0( )K h . 
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Figure 5.8. The estimated curves of parametric log ( )K h  and nonparametric 0 ( )K h  for the functional LAI 

models. The LiDAR height distributions used to estimate these curves are extracted at a plot size of 20 m 

in radius.  

 

Figure 5.9 depicts the scatterplots of estimated LAI versus in-situ LAI, for the 

functional model with the nonparametric 0( )K h  and the best LPM model with the 

predictor /in grd totalr +  , respectively. Although it appears that the estimates from the LPM 

model are better correlated with the in-situ values  (R2=0.843) than those from the 
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functional model (R2=0.839), the functional model has a slightly smaller RMSE of 0.294 

as compared to 0.298 of the LPM model. In addition, the estimates of extinction 

coefficients in the two cases differ greatly, with k  being 0.1 and 0.45 for the functional 

and LPM models, respectively. 
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Figure 5.9. Scatterplots of estimated LAI versus in-situ LAI, for (a) the functional model with the 

nonparametric 0( )K h  and (b) the best LPM model with the predictor /in grd totalr + . 

5.4.5 LiDAR-derived LAI Map and Its Comparison with MODIS Products 

 

 

Figure 5.10. LiDAR-derived LAI map with a spatial resolution of 35 m; it was generated by using the 

LPM predictor /rin grd total .  
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The LPM model with /in grd totalr +  as predictor was chosen to be applied to the 

whole study area for generating a LiDAR-derived LAI map (Figure 5.10), and the spatial 

resolution of the map is 35 m X 35 m which is determined by equaling the area of a pixel 

to that of a plot 20 m in radius. Although the QuickBird classification map was available 

to provide species information, the LPM model used was not stratified by species 

because stratification did not significantly improve the model performance. The LAI 

map was created by using the following non-stratified model, 

 /ˆ 2.24 ln( )in grd totalL r += -  (5.25) 

And the resulting map is displayed in Figure 5.10. 

Fifty-nine MODIS LAI pixels that fall within or on the boundary of the study 

area were selected for comparison with LiDAR LAI estimates. A series of mean and 

standard deviation of MODIS LAI were calculated from the 59 pixels for the time period 

from Julian Day of 177 to 241 with an eight day interval (Figure 5.11), and these results 

are compared to that obtained from the LiDAR LAI map. The mean LiDAR LAI is 1.76 

with a standard deviation of 1.0; the MODIS products for the 10 dates all overestimated 

the mean LAI in comparison to LiDAR, and the overestimation was significant at a level 

of 0.05 for seven of the ten dates. 
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Figure 5.11. Comparison of the mean LAI over the study area between LiDAR and MODIS products on 

ten dates. The MODIS mean LAIs are denoted by diamonds with bars of standard deviation; the horizontal 

bold line is the mean LiDAR-based LAI with the two dashed lines indicating the standard deviation. 
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The LiDAR and MODIS LAI maps show disparate patterns in the LAI 

distributions. The relative frequencies of LAI for LiDAR-based and several MODIS 

maps are compared in Figure 5.12. It becomes clear that an upward shift exist in the 

MODIS LAI distributions, which indicates the overestimation by MODIS relative to 

LiDAR. A considerable number of pixels have zero-valued LAI in the LiDAR map 

while no zero LAI appears in the MODIS LAI. Only a very small portion of the MODIS 

pixels are below a LAI value of 3.0 whereas most of them are above 3.5; in contrast, 

besides the zero-valued pixels, most pixels in the LiDAR map were found within the 

range of 2.2 – 2.3. In addition, during the period observed, the mean MODIS LAIs over 

the study area vary from 3.0 to 5.3 which is 70.5% to 201.2% above that of the LiDAR 

LAI map. 
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Figure 5.12. Comparison of the distributions of LAI values of the study area between the LiDAR map and 

the MODIS products on three dates. 

 

5.5 Discussion and Conclusions 

LiDAR measurements hold great potentials for estimating LAI accurately, in 

particular over medium to high biomass forests. This study demonstrates the use of 

several LiDAR-derived metrics as predictors for LAI over a pine-dominant eastern 
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Texas forest. The LiDAR predictors investigated include a variety of laser penetration 

indices and canopy height-related metrics as well as the height distributions of LiDAR 

hits. LPMs prove effective in a log-model by analogy to the Beer’s law, and only partial 

success was achieved when using canopy height metrics. The proposed use of LiDAR 

height distribution as a predictor in a functional model was also shown to be feasible in 

estimating LAI. An unarguable advantage of a LHD is that it tends to retain as much 

information as possible when extracting LiDAR metrics from the raw LiDAR data, 

because many other commonly used predictors such as mean height and canopy density 

metrics can also be calculated from the LHD. On the other hand, LiDAR-derived LAI 

maps should be reliable enough to serve as reference data for validating the relevant LAI 

products generated from other sources. The LiDAR LAI map generated was compared to 

the MODIS LAI products at a patch level by examining the mean LAI over the study 

area, and it is found that the MODIS LAIs produce an overestimation as compared to 

that of LiDAR-derived map. 

Many factors contribute to uncertainties in mapping LAI with LiDAR. First of all, 

the in-situ LAI data used to train a prediction model are subject to errors. The effects of 

analysts and methods on the in-situ estimates of LAI were examined, and the results 

indicate that in this study, the uncertainties caused by these factors are in the same order 

of magnitude as the RMSE of the fitted models. However, it seems difficult to assess the 

accuracy of in-situ estimates because reference LAI values with higher accuracy are not 

available. The discrepancies caused by the analysts are obvious because of their 

subjectivity in thresholding the hemiphotos, and those caused by methods result from the 

different assumptions in designing the algorithms. The first method of this study has a 

more restrictive assumption because it specifies the exact form of leaf angle distribution, 

which may invalidate the algorithm if the real forest conditions are far from what is 

assumed. A notable difficulty in developing inversion algorithm for in-situ LAI concerns 

the modeling of foliage clustering at different structural levels. Modeling efforts have 

been devoted to solving the difficulties; for example, Nilson (1999) developed formula 
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for inverting canopy structural variables such as LAI from gap data by explicitly 

considering the foliage clustering of separate crowns. 

The LPM LiDAR predictors were examined only in the log-model with no 

intercept. Although previous studies also used some penetration indices for LAI with 

linear models, these models are not investigated in this study primarily due to some of 

their artifacts: LPM often takes values between 0 and 1; therefore, the use of LPM as a 

predictor in a linear model sets a limit on the dynamic range of LAI values that could be 

predicted, thus resulting in artificial saturation in LAI estimates; also, the intercept term, 

if negative, may also cause unrealistic estimates. If the intercept term is introduced in the 

log- models used in this study, problems may also occur; this explains why only non-

intercept log-models were explored in this study. It is noted that in most cases the 

unrealistic LAI prediction occurs as LPM takes extreme values, and thus extrapolation 

may be exercised. On the other hand, some of LPM predictors such as /in grd totali + , 

performed poorly when used in the no-intercepted log-model, but if an intercept term is 

used, the model fitting can be greatly improved; for example, when using a plot size of 

15 m in radius, the R2 increased from 0.10 to 0.65 by adding the intercept term. However, 

this may not necessarily justify the use of a log-model with intercept when using LPMs. 

The height-related metrics, which were found useful to predict a variety of forest 

structural characteristics such as timber volume, crown base height and basal area, are 

found to be not well correlated to LAI. The products of height metrics with foliage-

density LiDAR surrogates also do not improve their prediction power for LAI. In this 

study, HRMs were much less effective than LPMs for predicting LAI. But a multiple 

regression model resulting from the stepwise analysis seems useful in estimating LAI, 

and the variables selected into this model partially conform to the original heuristics that 

LAI is proportional to the product of canopy volume and foliage density. In Eq. 5.24, 

1/ freel  is the inverse of “mean free path”, which is assumed to be positively related to the 

foliage density as argued in Kusakabe et al. (2005), and as such, (2.87 2.58 )f ah h  can 

be effectively deemed as a canopy volume metric.  
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The choice of an appropriate scale, e.g., plot size, for extracting LIDAR metrics 

is another important factor in developing LiDAR-based models. The reason for choosing 

the plot size is mainly because that no direct information is available about how far a 

camera can “see” when taking hemiphotos. Trial-and-error may be a basic method to 

determine an “optimal” plot size. Previous studies also provide experiential evidences on 

how to choose a reasonable plot size (Riaño et al., 2004). In this study, it is found that a 

plot radius from 10 m to 50 m were generally appropriate, and even a radius up to 100m 

can be used without significant degradation in the fitted model. This large upper radius 

limit as compared to that reported in previous studies is due to the fact that the study area, 

which has a large portion of pine plantations, are relatively homogeneous. Of particular 

note is that according to the Beer’s law, the camera will see through a shorter distance 

under thick canopy conditions that usually have higher LAIs. The opposite is also true; 

for example, a hemiphoto taken under a relatively open ground with only sparse low 

vegetation may observe a few hundreds of meters. Therefore, a fixed plot size as used in 

this study may not be sufficient; future studies may investigate the use of a varying plot 

size for extracting LiDAR metrics during the development of models. One possible way 

is to examine the observed LAI values because they provide hints on how far a camera 

can see.  

The results for the comparison of LiDAR LAI with MODIS products are 

consistent with previous findings that the MODIS algorithm usually overestimates LAI 

and the variation in MODIS LAI is often higher than that in the true values. All these 

findings urge the needs for possible improvement on the MODIS algorithm. At the same 

time, efforts are entailed to develop more appropriate procedures to validate the MODIS 

products, especially concerning the creation of a reference map. A commonly used 

approach to creating high-resolution LAI map is to rely on multispectral images to scale 

the in-situ LAI for a LAI map over local regions by either referring to statistical-based 

relationships or physical-based algorithms; one apparent drawback of this approach is 

the use of multispectral images which may by themselves cause problems over medium 

to high biomass forests. To this end, the approach developed in this study to etimate LAI 
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with LiDARs provides a superior alternative for generating local LAI maps as a reliable 

source for validating MODIS products. 
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CHAPTER VI 

SOFTWARE IMPLEMENTATION 

 

6.1 Introduction 

Implementation of a remote sensing real-time processing system necessitates an 

integrated software package to coordinate hardware components for data acquisition, and 

more importantly to process and analyze the acquired data in-flight for information 

extraction. However, due to the wide variety of remote sensing systems that are designed 

and implemented using varied architectures and techniques, depending on the 

availability of hardware and the purposes of applications, no accepted protocol exists for 

developing software packages for real-time systems. Lienert et al. (1999), for example, 

developed a software system for real-time analysis and visualization of scanning LiDAR 

data for deriving information on marine aerosol. The software, written in Visual C++, 

has implemented an iterative forward stepping technique for inversion of LiDAR 

backscattering data. They also concluded that the software can be easily transplanted for 

other LiDAR systems such as Differential absorption LiDAR and oceanic LiDAR. Often 

enough, in some real-time systems, software is developed to be integrated with specific 

hardware equipment. As an example, Wu et al. (2004) developed the one-path 

photogrammetric program for a real-time photogrammetric mapping system in order to 

automatically generate Digital Elevation Models, ortho-images, and contour lines; and 

their computer program was developed in coordination with a digital frame camera, a 

position and orientation system, and an aerial survey control tool navigation system. In 

some cases especially when the data volume is huge and computational demands are 

high, core algorithms of a real-time system can be implemented directly on chips instead 

of being programmed by computer languages (Masayuki et al., 2002). 

The choice of a language in programming for a real-time system often needs to 

take into consideration such factors as the compatibility between software and hardware, 
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the capability or functionality of a language in terms of the task needs, the cost or 

availability of a language to developers, and the existing version of accessible library of 

subroutines or procedures. Other than these major factors, the rest of the choice is up to 

developers’ personal preferences. In this research, a scientific programming language 

called Interactive Data Language (IDL) is chosen to develop computer software for the 

proposed on-the-fly profiling LiDAR system. IDL is a so-called fourth-generation 

language allowing users to process data interactively. It is rich in a wide spectrum of 

numerical and image processing routines that are callable and apparent to users. IDL 

finds broad applications in the signal and image processing community. For example, 

ENVI, a leading remote sensing image analysis package, is developed in IDL, and being 

constantly extended by new IDL add-ons. Many researchers in LiDAR forestry remote 

sensing also develop computer procedures using IDL to handle and process LiDAR data. 

In this study, other reasons why IDL is preferred include the facts that IDL is platform-

independent, that it allows developing event-driven graphical user interface (GUI), and 

that stand-alone IDL packages can be distributed and executed in an IDL virtual machine 

with no need for users to purchase an IDL license. 

 

6.2 Software Implementation for in-flight Processing of PALS Data 

The software package implemented in this study aims to streamline and integrate 

the conventional flow of processing profiling LiDAR data, which mainly include finding 

ground, and segmenting profiles, and applying prediction model to convert processed 

PALS measurements to forest structural information either at segment or regional levels. 

I started to develop the software based on the existing IDL routines that had been 

programmed by Dr. Ross Nelson for processing PALS data, and a lot of his codes were 

re-used with his permission (Ross Nelson, personal communication). In the software, the 

basic data processing unit is a flight line. Therefore, the software in a typical mode 

initiates data processing modules after each flight line is done, similar to some 

previously developed real-time remote sensing systems that process images scene by 
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scene. The software was also designed to be able to start data processing once all flight 

lines are collected. The choice of processing mode can be made based on the extent of 

the study area. For a small area, the once-for-all mode is workable, but for a large area 

with long flight lines, the typical per-flight line mode is preferred in order to apportion 

the computational overhead across the flight time.  

 

Program started 
by a operator

All flight lines 
processed?

Yes

No Pre-processing of 
Raw PALS data Ground-finding Canopy Height 

Profile (CHP)
 Segmentation of 

CHP

PALS flight 
line data

Segmented 
Data 

Outputting to 
files

Prediction models 
for forest inventory

Inventory 
Information

Outputting 

Setting Model 
Parameters (optinal)

Graphical User Interface for interactive 
data processing

Preview of 
data

 

Figure 6.1.A simplified flowchart of the IDL program for on-board data processing. 

 

The software framework for the once-for-all mode is outlined in Figure 6.1, and 

the per-flight line mode has a similar framework except that the ingested data are only 

for a single flight line. In Figure 6.1, modules outlined in dash are optional and are 

provided for users’ conveniences. For example, if analysts believe that there exist 
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conspicuous errors in ground curves, they can correct ground curves interactively by 

adding new ground hits or eliminating misclassified hits. 

6.3 Overview of the Software 

Several key components of the software are described, with the aid of program 

snapshots if available. The PALS data used in the snapshot for illustration purposes are 

those collected over the intensive study area in Huntsville, east Texas.  

6.3.1 PALS Raw Data Format 

PALS records aircraft altitude information, such as dGPS readings, and aircraft 

heading and speed, every 2 seconds. Thus, raw laser data collected by PALS is 

organized and stored by chunks. Each chunk consists of aircraft altitude information and 

all laser pulses measured before the next dGPS reading. Figure 6.2 illustrates the data 

structure of PALS measurements. Of particular note is that in cases especially when a 

water surface is intercepted, reflected energies are not enough to trigger the PALS 

receiver so that no hits are recorded. These “no-return” pulses are indicated by a specific 

code, i.e., a zero value of ranging. 

 
GPS record, time, flight altitude, speed

Laser ranging, amplitutde
Laser ranging, amplitutde
Laser ranging, amplitutde
Laser ranging, amplitutde

.

.

.
GPS record, time, flight altitude, speed

Laser ranging, amplitutde
Laser ranging, amplitutde
Laser ranging, amplitutde
Laser ranging, amplitutde

.

.

.

GPS record, time, flight altitude, speed
Laser ranging, amplitutde
Laser ranging, amplitutde
Laser ranging, amplitutde
Laser ranging, amplitutde

.

.

.  

Figure 6.2. Data structure of PALS raw laser measurements. 
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6.3.2 Pre-processing and Preview of PALS Data 

The pre-processing module interpolates 0.5 hz dGPS readings to geo-reference 

each laser hits, and it also identifies those pulses that have no returns. To facilitate 

locating flight lines, a pre-view module in the software is provided to help navigate 

through flight lines interactively, and an example of flight lines observed in a mission is 

given in Figure 6.3. 

 

 
 

Figure 6.3. A navigation panel that shows trajectory of flight lines and also allows users to navigate 

through flight lines for viewing data. 

 

6.3.3 Program Main Interface 

Figure 6.4 depicts the main interface for the program. The buttons within the 

right-hand vertical provide links to execute each function module; the display window is 

used to visualize PALS raw or processed data by drawing LiDAR profiles and other 

relevant information, such as ground curves and strata, if available, where different 

symbols or colors are used to represent different information; and the menu bar on the 

top provides various functionalities to set up the program. 
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Figure 6.4. A snapshot of the main interface of the program. 

 

6.3.4 Automatic and Interactive Ground-finding  

The iterative local minimum filtering algorithm for ground-finding was 

implemented into the software. As discussed in Chapter II, there occasionally exist 

conspicuous errors in the identified terrain that cannot be rectified by the algorithm. For 

example, an abrupt dip or well may be identified wrongly as a ground hit, thus causing a 

downward erroneous ground curve, as shown in Figure 6.5a where the top rugged curve 

is the canopy envelop and the bottom one is the terrain with triangles indicting the 

identified ground hits. Figure 6.5b indicates that the program allows interactively 

deleting and adding ground hits, and an updated curve after correction appears more 

reasonable. 

  

   

Figure 6.5. An illustration of the interactive rectification of ground curve 
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6.3.5 Segmentation of Canopy Height Profile 

The segmentation algorithm currently implemented mainly distinguishes forest 

and non-forest. Roofs in the non-forest stratum will also be identified. The processed and 

segmented canopy height profile can be viewed or edited interactively through the main 

interface as shown in Figure 6.6. For later reference, each pulse of the processed and 

segmented data can also be saved to files according to a format illustrated in Figure 6.7. 

 

 

Figure 6.6. A PALS height profile that has been processed and segmented where the horizontal bars 

represents the resulting strata with the upper ones and lower ones being forest and non-forest, respectively. 

 
 

 

Figure 6.7.The format of output files for processed and segmented PALS data. 
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6.3.6 Using Models to Predict Forest Attributes from PALS Measurements 

As a final step, the analyzed PALS data are converted into forest inventory 

information by using prediction models. These models are usually built based on pairs of 

ground-measured and coincident LiDAR measurements. However, ground-measured 

field data may be not available prior or during the flight such that no such models are 

directly available. As discussed earlier in Chapter II, generic models or those developed 

previously for the same study area or similar forest conditions could be used. To this end, 

a list of default models that were established in previous studies is maintained by the 

program. Users can choose one or more of these models to make prediction. Moreover, 

the program also allows users to build their own models by specifying model equations. 

To facilitate the model building, a set of the most commonly used LiDAR predictors, 

such as canopy height metrics and canopy density metrics, are provided to users’ choices 

(Figure 6.8). 

 

 

Figure 6.8. The program interface for setting up prediction models. 

 

Models make prediction at segment levels, with either fixed- or varying- length 

segments. The model outputs can be exported to files. The files consist of a series of 

segment-level record. Each record summarizes the segment information such as starting 

and ending pulse IDs, segment length, and coordinates of the middle pulse, as well as the 

predictions from the selected models, as demonstrated in Figure 6.9. 
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Figure 6.9. File format of outputs predicted from models 

 

6.3.7 Parameter Setup for the Program 

The program is flexible enough to allow users to set up parameters used in the 

algorithms if needed (Figure. 6.10). In addition, the program offers other user-friendly 

features for easy operation; for example, a number of shortkeys are available to provide 

quick operations such as panning and zooming of PALS height profiles. 

 

 

Figure 6.10. The program interface for setting up algorithm parameters. 
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6.4 Summary 

An integrated software package was developed that incorporates the PALS data 

processing algorithms and LiDAR-based prediction models in order to extract forest 

inventory information from PALS measurements in real-time. The software requires 

only minimum or no human inputs so as to achieve automatic data processing. But, to 

allow users more flexibility, interactive modules with user-friend interfaces are also 

provided in case that human intervention in the data processing flow is needed. 

Moreover, the software, implemented in IDL, is easy to be extended if other modules are 

desired, e.g., when users need their own LiDAR predictors other than the default ones. 

As a pilot study, this research tested the software in an ad hoc manner using the existing 

PALS data previously collected in Huntsville, eastern Texas. It is expected that a flight 

will be arranged in the near future to test the software in the air. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

This work considers establishing a framework for an on-the-fly airborne profiling 

laser system in order to inventory regional forest resources in real- or near real- time. 

The proposed system features on-board data processing, and is able to produce instant 

assessments of forest resources once the airplane lands after the final fight line is flown. 

Such a system was developed in this work based on an existing portable airborne laser 

system (PALS) that has been previously assembled at NASA by Dr. Ross Nelson 

(Nelson et al., 2003). Key issues in automating PALS as an on-the-fly system were 

addressed, including the design of an archetype for the system workflow, the 

development of efficient and robust algorithms for automatic data processing and 

analysis, the development of effective regression models to predict forest biophysical 

parameters from LiDAR measurements, and the implementation of an integrated 

software package to incorporate all the above development. 

 The on-the-fly laser system developed in this study is of both scientific and 

practical significances in that it brings a reliable and affordable tool for repeatedly, 

quickly, and accurately assessing regional forest resources, such as forest volume, 

carbon stock, and biomass, at large scales such as counties, states, regions, and even 

continents. In the context of global environment changes, there is an arising interest in 

better understanding the carbon stocks of terrestrial ecosystems where forests serve as a 

major reservoir of carbon and play important roles in dictating the global carbon cycle. 

The need for spatially-explicit mapping of forest above-ground biomass over regions, 

continents, or the globe is resolved mostly by remote sensing. LiDAR proves to be one 

of the most successful remote sensing techniques for producing high-accuracy biomass 

map under a variety of forest conditions whereas conventional remote sensing such as 

optical imaging has difficulties in measuring medium to high biomass. At present, 

airborne scanning LiDAR, though established as an effective tool to measure canopy 

vertical structure, remains costly for data acquisition particularly over large areas. 
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Repeated measurements, which are crucial to understand changes in carbon stocks over 

time or monitor forest disturbances, often cannot be routinely operated with laser 

scanners even over local areas. On the other hand, there is a trend in the remote sensing 

community to build real-time remote sensing systems especially for meeting special 

needs of quick turn-round applications; however, in the current stage, laser scanners 

remains difficult to automate for airborne forestry remote sensing due to such factors as 

their large data volume, high costs, intensive computation, and complicated processing 

procedures. To these ends, the on-the-fly laser system of this study provides a viable 

solution to overcome all these difficulties by providing an economical means for 

accurately inventorying forest resources like biomass on large regions with frequent 

observations. 

This work exploited the untouched potential of airborne laser profilers for real-

time forest inventory, and therefore, documented an initial step toward developing 

airborne-laser-based, on-the-fly, real-time, forest inventory systems. Although the data 

processing algorithms cannot be directly adapted to laser scanner system, the on-the-fly 

airborne laser profiler developed in this study can serve as a paradigm for future efforts 

in building more advanced airborne laser systems such as real-time laser scanners. The 

algorithms currently implemented still leave room to improve. Future studies may 

continue investigating more sophisticated data processing algorithms for more 

robustness or functionalities. One possible way to improve segmentation, for example, is 

to examine the usefulness of the moving-window-based frequency analysis that has been 

used to analyze 1-D sound signals.  

The model development of deriving useful LiDAR predictors for predicting 

forest biophysical parameters is as important as, if not more than, the algorithms 

development of data processing. Primary LiDAR research efforts have been focused on 

searching the most effective LiDAR metrics in an appropriate model form for a given 

forest attribute of interest, and little commonality has been found between previously 

reported LiDAR predictors. In this study, a new form of model, i.e., linear functional 

models, with canopy height distributions as LiDAR predictors, has been proposed; 
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moreover, the model development is justified by a theoretical treatment. The use of 

LiDAR-derived canopy height distribution as predictor is based on the consideration that 

as much information in the LiDAR measurements are preserved as possible, since most 

previously used predictors are simple statistics that can be extracted from canopy height 

distribution, but not vice versa. Although this research only looks at the use of the model 

for biomass, it is expected that it is equally effective for other relevant forest structural 

variables. Thus, it is strongly suggested that future studies examine its utility in 

predicting other forest attributes of interest under a variety of forest conditions. 

No accepted architecture exists for developing a software package for various 

real-time systems because earlier studies showed that the implementation of computer 

programs is often task-specific. However, the integrated software package that has been 

implemented in IDL should be able to be transplanted to other PALS-like laser profilers, 

either airborne- or ground-based. In this study, the software was only tested in an ad-hoc 

manner using previously collected PALS data to simulate the scenario of data 

acquisition. It is expected that in the near future, a real flight will be scheduled to test the 

software and the system on air. 

Continuing interests arise in employing LiDAR systems for mapping vegetation 

information at various scales, e.g., plot, stand, local, regional, and global. As more and 

more LiDAR systems, especially advanced systems equipped with scanning capabilities 

and high-precision navigation system, are operated and more and more LiDAR datasets, 

especially those with high density of laser hits and continuous coverage, become 

available, the profiler systems, such as the one developed in this study, may lose their 

positions in decades, as it first appears. I cannot admit that this conclusion is a hasty one. 

The original purpose of developing the system, however, is not to map forest or trees at 

local levels, but to provide an effective and operational tool that could be used for 

mapping large areas with reasonable costs. 
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