
  

 

REACTION MECHANISM OF CUMENE HYDROPEROXIDE 

DECOMPOSITION IN CUMENE AND EVALUATION OF 

ITS REACTIVITY HAZARDS 

 

 

A Thesis 

by 

YUAN LU  

 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

August 2008 

 

 

Major Subject: Chemical Engineering 



  

 

REACTION MECHANISM OF CUMENE HYDROPEROXIDE 

DECOMPOSITION IN CUMENE AND EVALUATION OF  

ITS REACTIVITY HAZARDS 

 

A Thesis 

by 

YUAN LU  

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  M. Sam Mannan 

Committee Members, Rayford Gaines Anthony 

 Debjyoti Banerjee  

Head of Department, Michael V Pishko 

 

August 2008 

 

Major Subject: Chemical Engineering 



iii 

 

ABSTRACT 

 

Reaction Mechanism of Cumene Hydroperoxide Decomposition in Cumene and 

Evaluation of Its Reactivity Hazards. (August 2008) 

Yuan Lu, B.S., East China University of Science and Technology; 

M.S., East China University of Science and Technology 

Chair of Advisory Committee: Dr. M. Sam Mannan 

 

Cumene hydroperoxide (CHP), a type of organic peroxide, is widely used in the 

chemical industry for diverse applications. However, it decomposes and undergoes 

highly exothermic runaway reactions under high temperature because of its unstable 

peroxide functional group. The risk of runaway reaction is intensified by the fact that 

operation temperature of CHP is close to its onset temperature in many cases. 

 

To ensure safe handling of CHP in the chemical industry, a lot of research has been done 

on it including theoretical research at the microscopic level and experimental research at 

the macroscopic level. However, the unstable radicals in the CHP decomposition 

reactions make it difficult to study its reaction pathway, and therefore lead to incomplete 

understanding of the reaction mechanism. The slow progress in theoretical research 

hinders the application of the theoretical prediction in experimental research. For 

experimental research, the lack of integration of operational parameters into the 

reactivity evaluation limits its application in industrial process. 
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In this thesis, a systematic methodology is proposed to evaluate the reactivity hazards of 

CHP. This methodology is a combination of theoretical research using computational 

quantum chemistry method and experimental research using RSST
TM

. The theoretical 

research determined the dominant reaction pathway of CHP decomposition reaction 

through the study of thermodynamic and kinetic stability, which was applied to the 

analysis of experimental results. The experimental research investigated the effect of 

CHP concentration on runaway reactions by analyzing the important parameters 

including temperature, pressure, self-heat rate and pressure rate. This methodology could 

also be applied to other organic peroxides or other reactive chemicals.  

 

The results of theoretical research on reaction mechanism show that there is a dominant 

reaction pathway, which consumes most of the CHP in decomposition reaction. This 

conclusion agrees with the experimental results that 40 wt% is a critical point for almost 

all important parameters of runaway reactions. In the high concentration range above 40 

wt%, some unknown reaction pathways are involved in decomposition of CHP because 

of lack of cumene. The shift of reaction mechanism causes the change of the effect of 

concentration on runaway reactions. 
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NOMENCLATURE 

 

Symbols                      Definition 

Subscripts 

adj Adjusted value 

c Test cell 

s Sample 

on Refer to the onset temperature of a runaway reaction 

max Maximum 

meas Measured value 

                                  Thermal inertia  

δ                                   Standard deviation 

idg                                Ideal state 

mix                                Refer to the effect of mixing 

press                             Refer to the effect of pressure 

vap                                Refer to vaporization 

Parameters 

A                                   Frequency factor  

Ea                                                 Activation energy 

k                                   Reaction coefficient 

Ea
0
                                Intrinsic barrier 

γp                                  Transfer coefficient 
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Cs                                  Heat capacity of the sample 

Cc                                    Heat capacity of the test cell 

dT/dt                             Heat rate 

dP/dt                             Pressure rate 

P                                   Pressure 

T                                   Temperature 

m                                   Mass 

TSADT                                          Self-accelerating decomposition temperature 

Abbreviations 

CHP                               Cumene hydroperoxide 

RSST                             Reactive System Screening Tool 

ARC                              Accelerating Rate Calorimeter 

APTAC                         Automatic Pressure Tracking Adiabatic Calorimeter 

VSP                               Vent Sizing Package 

AM1                              Austin model 1 

HF                                 Hartree-Fock method 

DFT                               Density Functional Theory method 

CBS                               Complete Basis Set method 

TAM                             Thermal Activity Monitor 

DIERS                           Design Institute for Emergency Relief System 

GC                                 Gas Chromatography 

HPLC                            High Performance Liquid Chromatography 



x 

 

IR                                   Infrared Spectroscopy  

MS                                 Mass Spectrometer  

TSS                                Thermal Safety Software  
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CHAPTER I  

INTRODUCTION 

1.1 Background 

Organic peroxides are a group of organic compounds containing the peroxide functional 

group (ROOR'). The O-O bond in the peroxide functional group of organic peroxides 

can be easily broken and form free radicals in the form of RO·, which are able to initiate 

radical reactions. Because of this property, organic peroxides are used worldwide as 

initiators and catalysts for many polymerization reactions in the polymer, polyester and 

rubber industries. They are also widely used as accelerators, activators, cross-linking 

agents, curing and vulcanization agents, hardeners and promoters in the chemical 

industry. However, the unstable peroxide functional group also makes organic peroxides 

hazardous materials in the process of production, storage and transportation. Improper 

operation or management of these processes may trigger runaway reactions of organic 

peroxides. The runaway reactions can cause dramatic increases of temperature and 

pressure, therefore leading to various consequences such as tank rupture, fire and 

explosion. According to the CSB database, out of a total of 167 serious incidents that 

happened between 1980 and 2001, there were 11 incidents caused by organic peroxides.
1
 

Because of their wide applications and frequent occurrence of related incidents, research 

on organic peroxides is becoming an urgent need to ensure its safety in chemical 

industry. 

_________ 

This thesis follows the style of Journal of Chemical Information and Computer Science. 
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Cumene hydroperoxide (Figure 1) is a typical example of organic peroxide. It is 

produced via the oxidation of cumene with air in the presence of aqueous sodium 

carbonate as the catalyst (Figure 2). CHP is primarily used in the production of acetone 

and phenol. It is also used as a catalyst for rapid polymerization, especially in redox 

systems, a curing agent for unsaturated polyester resins, an initiator for polymerization 

of styrene and acrylic monomer, and a chemical intermediate for the cross-linking agent. 

Commercial CHP is available in the form of CHP/cumene mixture. In this thesis CHP 

solution refers to the CHP/cumene mixture unless specified otherwise, and wt % means 

the weight fraction of CHP in solution.  

 

C

CH3

CH3

OOH

 

 
Figure 1 Molecular structure of cumene hydroperoxide 

 

 

In United States, there are thirteen companies producing CHP, and in 1985, about 1.1 

million pounds of CHP were produced in the United States. Approximately 7 billion 

pounds of CHP are consumed yearly in the United States, indicating that the majority of 

the CHP needs to be imported.
2
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Figure 2 The reaction to produce cumene hydroperoxide 

 

CHP is a colorless to pale yellow liquid with a sharp, irritating odor. It is slightly soluble 

in water but readily soluble in organic solvents like alcohol, esters, acetone, 

hydrocarbons, etc. It sinks in water because its density is greater than water. CHP boils 

at 153 °C and its boiling point can be reduced to 100 °C under the pressure of  8 mmHg.
3
 

The major physical-chemical properties of CHP are listed in Table 1.
2
 

 

Table 1 Physical-chemical properties of cumene hydroperoxide 

 

 

Property Information Reference 

Physical state Colorless to pale yellow 

liquid 

Lewis (1993) 

Odor Sharp, aromatic Radian Corporation 

(1991) 

pH ~ 4 Radian Corporation 

(1991) 

Melting point < -40°C Radian Corporation 

(1991) 

Boiling point 153°C 

100-101°C @ 8 mmHg 

Radian Corporation 

(1991) 
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Table 1 continued 

 

 

Because of the properties mentioned above, CHP is a hazardous material for production, 

storage and transportation processes. First, it is flammable. The National Fire Protection 

Association classified CHP as a class III type flammable.
4
 Once it is on fire, phenol 

Property Information Reference 

Freezing point  -9°C Radian Corporation 

(1991) 

Density 

 

1.024 g/mL@ 20°C 

1.03 g/mL @ 25°C 

Radian Corporation 

(1991) 

Vapor pressure   0.24 mm Hg@ 20°C HSDB (1997) 

Specific gravity  1.05 units HSDB (1997) 

%Volatile (by volume) 100% Radian Corporation 

(1991) 

Flash point 175°C HSDB (1997) 

Flammability 0.9-6.5% HSDB (1997) 

Heat of combustion -7400 cal/g HSDB (1997) 

Heat of decomposition -475 cal/g HSDB (1997) 

Liquid surface tension 25 dynes/cm @ 25°C HSDB (1997) 

Liquid/water interfacial 

tension 

30 dynes/cm @ 25°C HSDB (1997) 

 

Refractive index 1.5210 @ 20 °C Aldrich (1996-1997) 

Solubility (18 °C ) water:  <0.1 mg/mL 

95% ethanol:  > 100 mg/mL 

acetone: > 100  mg/mL 

Radian Corporation 

(1991) 

Corrosion Reactive with metal-

containing 

materials 

Lewis (1993) 
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vapor may form from hot material and the burning rate becomes more rapid as fire burns. 

Second, it is explosive. The explosive vapor/air mixture can be formed if the 

environmental temperature exceeds 79 °C.
5
 Third, it is toxic. Inhalation of CHP vapor 

can cause headache and burning throat. Liquid CHP may cause severe irritation, burning 

or even throbbing sensation if it contacts with eyes or skin. Ingestion of CHP may lead 

to irritation of mouth and stomach.
2
  

 

The biggest hazard of CHP is its reactivity. Basically, CHP is intrinsically unstable and 

reactive due to its relatively weak –O–O– linkage in the peroxide functional group. The 

bond-dissociation energy of this linkage is about 20-50 kcal/mol.
6
 This functional group 

is sensitive to heat and incompatible with various contaminants such as bases, acids and 

metal ions.
7
 The breakage of the weak bond can cause the exothermic decomposition of 

CHP and leads to runaway reactions if the heat generated cannot be removed in time.  

 

CHP is particularly dangerous in chemical processes, where, in many cases, operation 

temperature is close to the onset temperature of CHP solution. For example, CHP 

production reactors operate at a temperature range of 115-120°C, while onset 

temperature for 35 wt% CHP solution (concentration of CHP in reactor) measured by 

different calorimeters is in the range between 101 and 135°C.
8, 9

 For condensation 

section, which is used to concentrate CHP solution up to 80 wt%, the operation 

temperature needs to be maintained above the boiling point of 100-101°C under the 

pressure of 8mmHg, which is close to the onset temperature of CHP solution in this 
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section.
10

 Runaway reactions can occur in various units like oxidation reactors, vacuum 

condensation units, storage tanks, etc. Severe fires and explosions caused by thermal 

instability and reactive incompatibility of CHP during transportation, storage, or 

processing have been reported.
10-13

 Therefore, it is of great importance to predict the 

conditions that might lead to runaway reactions in such processes and assess their 

consequences. The evaluation results can be used to prevent runaway reactions as well 

as carry out proper measurements to quench them. The results can also be introduced 

into the design of related equipments to mitigate consequences of runaway reactions.  

 

A series of codes have been developed exclusively to secure the safety of organic 

peroxides or CHP in industry. The United Nations suggested that an organic peroxide 

supplier must make a precise test of self-accelerating decomposition temperature (TSADT) 

in any specific commercial package.
14, 15

 The National Fire Protection Association 

classified CHP as a class III type flammable.
4
 The members of Design Institute for 

Emergency Relief System (DIERS) emphasized research on the characteristics of 

pressure relief for organic peroxides.
16

 

1.2  Motivation 

Compared with its wide application and potential hazards, the research done on CHP is 

inadequate. Until now, research done on CHP has mainly focused on two areas: 

theoretical research on CHP decomposition reaction mechanism and evaluation of its 

reactivity hazards. In theoretical research, decomposition reaction mechanisms were 

postulated based on the analysis of residuals of CHP decomposition reaction.
10, 17

 This 
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work is based on the assumption that each elementary reaction in the reaction 

mechanism is thermodynamically feasible. Therefore, without further research on 

thermodynamic and kinetic stability of CHP reaction mechanism, it is difficult to draw 

any useful conclusion from the reaction mechanism. The poor understanding of the 

reaction mechanism also obstructs the application of theoretical research at the 

microscopic level to experimental research at the macroscopic level.  

 

In the research of reactivity hazard evaluation, experiments have been done to study the 

kinetics of the CHP decomposition reaction; obtain important thermodynamic and 

kinetic parameters; research the incompatibility of CHP with contaminants. However, 

the operation parameters of industrial processes, which determine the potential hazards 

in process, have rarely been focused in former research. For CHP concentration, a 

critical operation parameter varying greatly in many processes, its effect on the runaway 

reactions has only been simply studied in a narrow concentration range (12-35 wt%).
9
 It 

is known that CHP concentration might change the onset temperature of runaway 

reactions and is able to influence its exothermic behavior.
9, 10

 However, lack of 

systematic research blocks the way to comprehensive understanding of the effect of CHP 

concentration and integration of its effect into process safety. 

In order to effectively evaluate the reactivity hazards and integrate the results into safety 

issues, further research in the two areas mentioned above are necessary to overcome the 

existing limitations. In addition, by identification of the interconnections between the 



8 

 

microscopic and macroscopic levels, learning from one level can be applied to the other 

level to facilitate the research. 

1.3  Objective 

The first objective of this research is to develop a comprehensive and fundamental 

understanding of CHP decomposition reaction mechanism. This understanding should 

include the thermodynamic and kinetic stability of the reaction mechanism. The second 

objective is to integrate operation parameters into the evaluation of reactivity hazards of 

CHP. In this research, CHP concentration was chosen to be integrated into the hazards 

evaluation as it varies frequently in various processes. The third objective is to determine 

the interconnections between the theoretical research and experimental research. Guided 

by learning from theoretical research, experimental research can be more efficient and 

effective. 

1.4  Description of the thesis 

Chapter II summarizes the previous research performed on CHP and its safety issues.  

 

 

Chapter III introduces the methodology used in this research. This methodology 

combines the research conducted at microscopic and macroscopic levels, with 

interconnections between each other. The research at the microscopic level is 

implemented using quantum chemistry computation. Experimental thermal analysis is 

applied in the research at the macroscopic level.  
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Chapter IV shows the work performed at the microscopic level using quantum chemistry 

computation with Gaussian 03. Based on the thermodynamic parameters calculated for 

different levels of quantum chemistry computation, research was conducted to study the 

thermodynamic and kinetic stability of the reaction mechanism. A dominant reaction 

pathway was determined according to the results of the reaction mechanism analysis.  

 

Chapter V presents the research on concentration of CHP, an important factor which is 

able to affect the onset temperature as well as exothermic behavior of runaway reactions. 

Calorimeter tests were conducted to determine the effect of CHP concentration on 

runaway reactions. An important conclusion was reached by applying stoichiometry of 

the dominant reaction pathway to experimental thermal analysis.  

 

Chapter VI is the conclusion for the whole research work of this thesis. 

 

Chapter VII is the recommendation for the future work in this area. 
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CHAPTER II  

LITERATURE REVIEW 

Study on the mechanism of CHP decomposition reaction has been performed in the past 

in various solvents such as saturated hydrocarbons,  tertiary alcohols, olefins and organic 

acids.
9, 17, 18

 The reaction mechanisms can be classified into two categories according to 

properties of solvents: induced decomposition and non-induced decomposition. For the 

decomposition reactions occurring in cumene, it is believed to be non-induced 

decomposition reaction and a reaction mechanism was proposed by Kharasch
17

. The 

decomposition reactions in cumene also were studied experimentally using Gas 

Chromatography (GC) and High Performance Liquid Chromatography (HPLC). 

According to the final products determined by analysis, another  reaction scheme for 

thermal decomposition was recommended (Figure 3).
10
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Figure 3 Scheme 1 for CHP decomposition reaction in cumene 
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Further research was done to study kinetics of CHP decomposition reaction using 

different kinds of calorimeters. With the result of isothermal experiments done using 

Differential Scanning Calorimeter (DSC) under different concentrations and 

temperatures, the overall order of CHP decomposition was determined to be a constant 

value of 0.5, which agrees with that obtained through non-isothermal experiment.
10

 By 

using non-isothermal experiments performed in Accelerating Rate Calorimeter (ARC), it 

was verified that concentration of CHP does not change the value of A (5.2±1.9×10
12

 

min
-1

M
1/2

) and Ea (118.2±1.2 kJ/mol) of decomposition reaction, and therefore has no 

effect on decomposition reaction rate coefficient k. 
9
 

 

The reactivity hazards of CHP are basically related to process temperature as well as 

concentration. The thermal hazards of CHP decomposition in cumene were evaluated by 

different calorimeters. Isothermal aging tests for 80 wt% CHP solution carried out by 

Thermal Activity Monitor (TAM) revealed that exothermic behavior can be detected 

even under low temperature and it becomes stronger with increased temperature.
19

 In 

these tests, onset temperature of CHP decomposition in cumene was measured as low as 

75°C. The overall time of the decomposition reaction varies from 10 days to 43 days for 

individual experiment. Heat of reaction was determined to be about 1,200±50 J/g for 80 

wt% CHP solution.
19

 Concentration also was proven to be an important factor for CHP 

safety issues by tests carried out using ARC
9
. With increased CHP concentration, the 

decomposition reaction showed stronger exothermic behavior with higher maximum 

temperature, higher maximum pressure, higher self-heat rate and higher pressure rate. In 
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the tests, adverse relationship was observed between onset temperature and CHP 

concentration within a certain range (12-35 wt%): onset temperature decreased with the 

increase of CHP concentration.
9
 However, this tendency could not be repeated in tests 

carried out by DSC in CHP solution within concentration range of 35-80 wt%.
10

 Infrared 

Spectra was introduced to investigate the CHP decomposition at the atomic level. It was 

concluded from infrared absorption spectrum that absorption peak of –O-H stretching is 

shifted with increased CHP concentration. This phenomenon is due to hydrogen-

bounded association formed between the –O-O-H functional group and the oxygen atom 

of the cyclic dimer (Figure 4). As the dimeric associate of CHP is much more stable than 

its monomer, dimerization reaction of CHP is supposed to be able to affect rate-

determining step of CHP decomposition reaction.
10

 In order to apply experimental 

research results to the safety of production, transportation and storage processes of CHP, 

the critical runaway temperature and unstable reaction criterion, with the initial CHP 

concentration of 15 wt% and 20 wt%, were evaluated from kinetic parameters of the 

decomposition reaction. 
20

  

 

                                                  
 

Figure 4 Molecular structure of cyclic dimer 
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CHP is incompatible with several kinds of contaminants such as bases, acids and metal 

ions. The runaway reactions caused by contaminants are usually complicated because of 

complex reaction mechanisms. To investigate the effects of contaminants on CHP 

runaway reactions, experiments were carried out using DSC in presence of alkalis, acids 

and ferric ion. The result of the experiments showed that all these contaminants have an 

effect on the thermal decomposition reaction of CHP. These impurities can effectively 

lower the onset temperature of runaway reactions by more than 40 °C.
6
 The maximum 

onset temperature reduction occurs when CHP is mixed with ferric ion, as the onset 

temperature was reduced from 135 °C to 40 °C.
6
 Among these three contaminants, 

alkalis and ferric ion were found to be more effective to intensify the exothermic 

behavior of runaway reactions, with more than 25 % additional heat generation detected 

by thermograph according to empirical data. Also, alkalis and ferric ion were found to be 

positive for heat generation of the decomposition reactions and the peak power at lower 

temperature, which makes CHP more unstable and hazardous. Further research was done 

in Vent Sizing Package (VSP) using adiabatic mode to quantify the effect of these 

contaminants. The experimental data revealed that in presence of only 1 wt% of 

impurities, the onset temperature of CHP was obviously lower than that of pure CHP. 

Mixing CHP solution with alkalis can greatly intensify the exothermic behavior of the 

decomposition reactions, with unusually high self-heat rate, maximum temperature and 

maximum pressure. However, concluded from experimental data, acids and ferric ion 

were found be little effective on thermal parameters except onset temperature. 

Considering the difference of performance of these contaminants, it was postulated that 
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the mechanisms of runaway reactions initiated by these additives should be significantly 

different and the speculated decomposition mechanisms in presence of each contaminant 

are shown in Figures 5, 6 and 7.
7
 

 

 
223562356

223562356

33562356

2356235623562356

2356432356

33562356

2356235623562356

2362356

223562356

)()(2

)(

)(

)()()()(

)()(

)(

)()()()(

)(5)(

)()(

CHCHCCHCHC

OHCHCHHCOHCHCHC

COCHCHOHHCOHOCHCHC

OHCHCHCCHCHCHCHCHCOCHCHC

CHCHCCHCHHCHCHC

CHCOCHHCOCHCHC

OHOCHCHCCHCHCHCHCHCOOCHCHC

OHOCHHCOOHCHCHC

OHNaOOCHCHCOOHCHCHCNaOH























 

 
Figure 5 Scheme 2 for alkaline CHP decomposition reaction  

 

 

 



15 

 

 

 

   

 

AerBCHCCHHCCHCHC

AOOHCHCHCBOHCHCHC

OHOCHCHCOOHCHCHC

ACHCCHHCBCHCHC

OHBCHCHCAOHCHCHC

OHCHCHHCOHCHCHC

OHCHCHCCHCHCHCHCHCOCHCHC

OHOCHCHCOOHCHCHC

OHHCCOCHCCHOHCOOHCHCHC

CCHOHCOCHCHC

AOHOCHCHCAOOHCHCHC





































dim)()(

)()(

)(2)(2

)()(

)()(

)(

)()()()(

)()(

)()()(

)()(

)()(

223562356

2356222356

2223562356

23562356

223562356

223562356

2356235623562356

23562356

562323562356

23562356

23562356

 
Figure 6 Scheme 3 for acidic CHP decomposition reaction 
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Figure 7 Scheme 4 for ion-induced CHP decomposition reaction 

 

In another research, detailed work was done to study incompatible characteristics of 

CHP mixed with alkaline solution utilizing DSC.
6
 By mixing with different kinds of 

alkaline solutions, CHP was found to be more unstable because of lower onset 

temperature, with the greatest reduction of 60 °C. The great reduction of onset 
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temperature indicated that hydroxide ion is able to trigger runaway reactions at lower 

temperature. The dosing ratio and the concentration of alkaline solution were also 

believed to be important factors for the CHP runaway reactions. According to the 

exothermic profiles recorded by DSC, the heat generation of the decomposition reaction 

decreased from 1200 to 330 J/g, as dosing ration increased from 20:1 to 1:1 and 

concentration increased from 1 to 9 N. It was observed from the profiles that small 

amount of alkalis was able to induce the initial thermal behavior and moderate the main 

thermal behavior. Further research was done to determine the reaction mechanism of 

CHP decomposition in presence of sodium hydroxide. Using Gas Chromatography 

(GC)/ mass spectrometer (MS) and Infrared spectroscopy (IR) to determine the residuals 

after the decomposition reaction, a reaction mechanism was recommended which was 

different with previous one mentioned earlier (Figure 8).
6
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Figure 8 Scheme 5 for alkaline CHP decomposition reaction 

 

 

Compared with experimental research, which is expensive and time-consuming, a 

kinetic model is a relatively inexpensive and efficient tool to predict runaway reactions 
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and estimate their consequences. Using kinetic and thermodynamic data obtained from 

DSC experiments, a kinetic model was built to simulate the runaway reactions of 88 

wt% CHP solution by thermal safety software (TSS).
21

 In this model, CHP 

decomposition was believed to be an autocatalysis reaction, therefore a typical kinetic 

model for autocatalysis was utilized.
22, 23

 However, this kinetic model did not agree with 

models used in other literature. In one article, the reaction rate of this thermal 

decomposition reaction was believed to be proportional to the square root of CHP 

concentration.
20

 In another publication, based on the assumption that the dimer of CHP 

is much more stable than monomeric CHP, the dimerization reaction can reach 

equilibrium very quickly. Therefore, the decomposition reaction rate was also found to 

be linear to the square root of monomeric CHP concentration.
10

 Another problem with 

this model is its inability to predict overpressure when runaway reactions occur. This 

disadvantage is mainly caused by DSC used in the research, because it cannot measure 

pressure in process of experiment. 
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CHAPTER III  

METHODOLOGY 

3.1  Introduction 

Reactive chemicals are of great concern for chemical industry because of their potential 

hazards. In order to prevent, control or quench these hazards, it is of great importance to 

introduce reactivity hazards into the development of relative industrial codes, design of 

equipments and other safety measurements. The assessment of reactivity is usually 

addressed in a specific case or a specific chemical viewpoint, because the properties of 

reactive chemicals vary greatly even in the same group and conditions for different 

processes or units are also quite different.  

 

However, a generalized methodology is still an ultimate goal for the research of reactive 

chemicals. In order to deal with great differences of reactive chemicals, common 

principles of chemical reactions and analysis methods should be the basis of this 

methodology.  This methodology should be able to draw a standard procedure for 

research on reactive chemicals and make it more convenient and efficient.  

3.2  Methodology 

This methodology is a combination of research at the microscopic level and macroscopic 

level, with interconnections between them. The flow sheet of this methodology is shown 

in Figure 9. 
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The research at microscopic level is based on quantum chemistry method. Utilizing 

different theory levels of quantum chemistry method, study on thermodynamic and 

kinetic stability of the reaction mechanism can be carried out. The fundamental and 

comprehensive understanding of the reaction mechanism can help to predict important 

parameters of runaway reactions such as gas generation, heat generation of reaction and 

stoichiometry, which can be applied to experimental research. In order to ensure the 

accuracy of theoretical postulations, the results of theoretical research on runaway 

reactions still need to be validated by experimental data.  

 

The research at macroscopic level is the experimental study of reactivity using 

calorimetry test. Important parameters such as temperature, pressure, self-heat rate, 

pressure rate and heat generation can be determined by research at this level, which can 

be applied directly to industrial processes. As an interconnection between these two 

levels, results of the microscopic level research can be applied to the macroscopic level 

research to analyze the experimental result.  
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Figure 9 Procedure of methodology 

 

3.3  Theoretical evaluation  

3.3.1 Computational quantum chemistry method 

Computational quantum chemistry method is based on the quantum molecular theory. 

The core idea of the theory is that the motion and distribution of electrons can be 

described in term of probability distributions or molecular orbitals. The method is able to 
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provide a mathematic description of behavior of electrons, with Schrodinger's equation 

as its theoretical basis.  

 

A variety of theoretical levels are involved in computational quantum chemistry method.  

Four different theoretical levels, including semi-empirical method, Hartree-Fock method, 

Density Functional Theory method and Complete Basis Set method, were selected to 

perform molecular simulation in this research. The instructions of these theoretical levels 

are shown as follows. 

 

Semi-empirical method:  these methods are based on the Hartree-Fock formalism, but 

characterized by use of some parameters derived from empirical data. Compared with 

Hartree-Fock method, some inclusions of electron correlation effect are allowed in semi-

empirical method because of using empirical parameters. As such, they are important in 

dealing with the following tasks or systems where it is too expensive to use full Hartree-

Fock method without approximation: very large systems for which semi-empirical 

method is the only practical quantum chemistry method, the first step for a large system 

to get a starting structure for a subsequent optimization, ground state molecular systems 

for which semi-empirical method is well calibrated and well parameterized, obtaining 

qualitative information about a system such as molecular orbitals, vibrational normal 

modes or atomic charges. However, application of empirical data also impose this 

theoretical level a number of limitations: it can only be used for systems where 

parameters are available for all components atoms; it cannot perform well for hydrogen 
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bonding, molecule containing poorly parameterized atoms, transition structures, etc. 

There are a variety of semi-empirical methods, the best known ones among which are 

AM1, PM3 and MNDO.
24

 AM1 is a very common application of the semi-empirical 

calculations and was utilized in this research. 

 

Hartree-Fock (HF) method: It is an approximate method to determine the ground-state 

wave function and ground-state energy of a quantum many-body system. This method is 

based on the assumption that exchange correlation effect between electrons can be 

ignored due to mean filed approximation. As a good base-level theory, HF method is 

useful for making initial, first-level prediction for many systems and also good at 

simulating the structures and vibration frequencies of stable molecules as well as some 

transition states. However, for some systems where electron correlation is necessary for 

accurate prediction, HF method is not good enough to do accurate simulation.
24

 

 

Density functional Theory (DFT) method:  this method is based on the density functional 

theory. According to this theory, the ground state energy of a system of electrons is a 

function of the electron charge density. So, this method calculates the molecular energy 

using electron density instead of wave functions. In DFT method, the electronic energy 

is partitioned into several parts and computed separately by functional: kinetic energy, 

the Coulomb repulsion, electron-nuclear interaction and exchange-correlation term 

(account for the remainder for the electron-electron interaction). Because of the way to 

calculate electron correlation, this method can achieve much greater accuracy than HF 
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method with only relatively low increase in cost.
24

 B3LYP is a common theory level of 

DFT method and was utilized in this research. 

 

Complete Basis Set (CBS) method: this method was developed by George Petersson and 

other collaborators, trying to deal with the largest errors in ab initio calculation resulted 

from basis set truncation. Typically, in CBS model, the initial calculation starts from 

frequency calculation and geometry optimization at HF level with a very large basis set. 

Then the geometry of the molecular is optimized further at MP2 level with a medium-

sized basis set, followed by one or more high-level calculations with medium to modest 

basis sets. CBS method includes a number of methods such as CBS-4, CBS-Q, CBS-

APNC, in which CBS-4 method is less expensive.
25-28

 CBS-4M is a new version of 

CBS-4 method. Compared with CBS-4 method, CBS-4M method can reach higher 

accuracy because of utilizing minimal population localization.
29

 

Gaussian 03 is one of the most popular and widely-used computational chemistry 

package, originally developed by Nobel Prize winner John Pople.
30 It is used by 

researchers in different areas for research in established and emerging areas of chemical 

interest.  

Starting from the basic laws of quantum mechanics, Gaussian software is able to predict 

the molecular structures, energies, and vibration frequencies of molecular systems, along 

with numerous molecular properties derived from the theoretical computations. It is an 

effective tool to study molecules and reactions, including species and compounds which 
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are difficult or impossible to be researched experimentally such as short-lived 

intermediates and transition structures. In this research, all the calculations based on 

computational quantum chemistry method were performed using this software. 

3.3.2 Thermodynamic and kinetic analysis 

Reaction mechanism postulated from final products of a reaction gives rise to complex 

reaction pathways which are hard to be validated. Molecular simulation can be carried 

out on the reaction mechanism to get preliminary information, based on which further 

analysis about reaction mechanism can done, such as thermodynamic stability and 

kinetic stability. 

a. Thermodynamic stability 

Gibbs free energy change, ∆rG, can be used to determine the thermodynamic feasibility 

of chemical reactions. Negative Gibbs free energy change means that the chemical 

reaction is thermodynamic infeasible, or in another word, this reaction will definitely not 

take place.
31

 Gibbs free energy change can be calculated using the Equation 1.  

                                       
STHG rrr 

                                                                
(1)

 
                                                                                                                                                                                     

This equation also indicates that Gibbs free energy change is dependent on temperature. 

So with the increase of temperature, a reaction which was thermodynamically infeasible 

under a certain temperature might become feasible.  
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Enthalpy change term, ∆rH, could be expressed as the sum of four terms contributed by 

ideal mixture, vaporization, mixture effects (e.g. solvent interaction) and pressure 

(Equation 2).  
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 ∆rH
idg

: enthalpy change of reaction calculated in the ideal gas phase 

 ∆vapHi: enthalpies change of vaporization or sublimation evaluated for the N condensed 

species 

 ∆rH
mix

: effect of mixing and solvent on enthalpy 

 ∆rH
press

: effect of pressure on enthalpy 

 

∆rH
idg

 is defined as the linear combination of enthalpy of formation, given below. 
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The entropic change which is involved in Equation 1 could be obtained in a similar way 

as enthalpy (Equation 4).  
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∆rS
idg

: entropy change of reaction in ideal gas phase 

 ∆rS
mix

: effect of mixing and solvent on entropy change 

∆rS
press

: effect of pressure on entropy change 

 

∆rS
idg

 can be calculated using Equation 5.  
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Usually, the effect of pressure on enthalpy and entropy is much less significant than 

other contributions, so it is reasonable to neglect it in the calculation of entropy change 

and enthalpy change.
31

 So, based on this assumption, the Gibbs free energy change could 

be expressed as the sum of two distributions, reaction in ideal gas phase and the effect of 

solvent and mixing (Equation 6). 

                                                  
mix

r

idg

rr GGG 
                                                          

(6) 

                                                                                                    

 

In most cases, the effect of solvent and mixture interaction on enthalpy and entropy is 

relatively small compared with the contribution of reaction in ideal gas phase. Unless 

particularly strong affinities between solvent and solute, the term corresponding to the 

effect of mixing and solvent can be neglected.
31

 

 

For a reaction composed of a series of elementary reactions, any elementary reaction 

involved in the reaction mechanism must be thermodynamically feasible. A postulated 

reaction pathway would be ruled out if any elementary reaction employed in this 

pathway is thermodynamically infeasible.
32

 A screening procedure was proposed by 

Bruneton et al. to determine the stoichiometry of chemical reactions (Figure 10).
31

 

Another indicator for reactivity hazards is enthalpy change of chemical reactions. High 

enthalpy change means more heat generated in reaction while low value presents less 

heat generation. 
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Figure 10 Screening procedure for secondary reaction stoichiometry determination 

proposed by Bruneton et al. (1997) 

 

b. Kinetic stability 

Thermodynamic research is not sufficient to evaluate the reactivity of chemical 

reactions. A reaction with negative Gibbs free energy still can be immeasurable slow 

because of the high activation energy. This means the criteria for determining the 

reactivity of a reaction should include two kinds of stabilities, thermodynamic stability 

and kinetic stability.  
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Activation energy is an important parameter to research kinetic stability. Activation 

energy is defined as the energy that must be overcome by a chemical reaction in order to 

take place. Arrhenius equation shows the relation between activation energy and the 

reaction rate (Equation 7): 

                                                        











RT

E
Ak aexp

                                              

              (7) 

                                                                                                    

 

where k is the rate constant for reaction, A is the frequency factor for reaction, Ea is 

activation energy, T is temperature of reaction and R is universal gas constant. 

 

Efforts have also been made to find out the relationship between activation energy and 

measurable parameters. As a meaningful attempt, an equation was developed by Polanyi 

and Evans, which is also called Polanyi relationship (Equation 8), trying to address such 

a relationship between activation energy and thermodynamic parameters.  

                                                      rpaa HEE  
0

                                                               
(8) 

where Ea
0
 is the intrinsic barrier of reaction, γp is the transfer coefficient. 

 

This equation implies that the activation energy varies linearly with the heat of reaction 

for a series of closely related reactions. Therefore, for the same type of reaction, the 

activation energy decreases as the reaction becomes more exothermic, indicating the 

reaction is easier to take place.  However, this relationship is imposed with several 

limitations. One major limitation with Polanyi relationship is that this principle is 

subjected to small ranges of enthalpy change. Because of this, plot of empirical data over 
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large range of enthalpy change can not fit Polanyi relationship well. The second 

limitation is that for very exothermic reaction, the Polanyi relationship may yield 

unreasonable results such as negative activation energy. Therefore Polanyi relationship 

is not applicable for strong exothermic reactions.
33

 

 

In order to overcome limitations mentioned above, Marcus developed another 

relationship for activation energy, which can be viewed as an extension of the Polanyi 

relationship (Equation 9). This principle is able to address some extreme situations like 

strong exothermic and strong endothermic reactions.  
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(9) 

 

Compared with Polanyi relationship, Marcus equation is applicable for some reactions 

which cannot be addressed by Polanyi relationship. In Marcus equation, activation 

energy can vary nonlinearly with enthalpy change, which makes this equation fit very 

well with empirical data in many cases. However, in some other cases, Marcus equation 

still cannot perform well over a wide range of ∆rH, which means it can not entirely 

eliminate the limitation of Polanyi relationship. Another weakness of Marcus equation is 

that intrinsic barrier is assumed to be a constant, which makes this equation difficult to 

explain some empirical data.
33

 

3.4  Experimental thermal analysis 

Calorimeter is the device used for the research of calorimetry. The objective of 

calorimetry is to study the heat generation of chemical reactions, physical changes as 
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well as heat capacity. Different kinds of calorimeters have been developed for 

calorimetry research. The most commonly used calorimeters are Differential Scanning 

Calorimeter (DSC), Isothermal Microcalorimeter, Accelerated Rate Calorimeters (ARC), 

etc. In this research, Reactive System Screening Tool was chosen as the equipment to 

evaluate the reactivity hazards of CHP. 

3.4.1 Reactive System Screening Tool  

The Reactive System Screening Tool (RSST
TM

) is a relatively inexpensive calorimeter 

used to determine the potential hazards quickly and safely in chemical industry. It was 

developed by Fauske and Associates, Inc. in 1993, with the primary purpose to evaluate 

emergency relief venting requirements such as gas release rate, energy and effect of two-

phase flow. RSST
TM

 can measure and record profiles of temperature and pressure in 

reaction process, from which other important parameters such as self-heat rate and 

pressure rate can be derived. The result of RSST
TM 

test can be utilized to research 

potential runaway reactions as well as corresponding venting size of emergency relief 

systems. As an economic and effective tool, RSST
TM

 can approach the accuracy of VSP 

while it still keeps the ease of use of DSC.
34

 

 

The core idea of RSST
TM 

is that the heat loss from the sample is zero if the sample is 

heated up with sufficient exterior heat even in exothermic process. According to this 

principle, heat ramp mode is applied in RSST
TM

 by ramping sample at a constant rate 

through a desired temperature range. Therefore, any deviation from this ramp rate is 

recognized as the exothermic behavior (Figure 11).
35
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Figure 11 Typical temperature and pressure profiles of RSST

TM
 test 

(Adapted from Aldeeb 2003) 

 

3.4.1.1 Equipment description  

There are three major components which assemble RSST
TM

: the containment vessel, the 

control box and the computer control board/software (Figure 12, 14). The containment 

vessel, which is connected to the control box by wire cable set, houses test cell, 

thermocouple and insulation assembly. The wire cable set enable the transfer of 

temperature and pressure singles between control box and sensors, and the power supply 
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to heater.  The control box consists of heater power supply, temperature and pressure 

signal conditioners, and microprocessor heater controller. The computer board, which is 

mounted in an expansion board slot of a compatible PC, is also connected to the control 

box via a wire cable. 

 

 

 
Figure 12 Overall schematic of RSST

TM 
[with permission from Fauske & Associates, Inc.] 

 

The test cell is an open spherical glass cell (10 ml) of low thermal mass placed in a 

pressure containment vessel (Figure 13). It is well insulated and equipped with either an 

immersion heater or an external bottom heater. In order to compensate the heat loss and 

initiate runaway reactions, the heater is controlled by feedback from the sample 

temperature measurement to overcome heat loss and maintain a fixed temperature ramp 
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rate. With the computer control option, the imposed ramp rate can be chosen in the range 

of 0.25 to 2 °C. The software of RSST
TM

 allows the implementation of fixed ramp rate 

or programmed ramp rate in test procedure. A magnetic stirrer is included in the test cell 

assembly, driven by magnetic stirrer drive base. The design of open test cell and external 

filling device makes it possible to add sample during tests.  

3.4.1.2 Operation procedure 

Before running a test, inspection should be carried out for every main component of 

RSST
TM

. Unsuccessful runs might be caused by failure of examining the health of parts 

exposed to wear and corrosion. The pre-test inspection includes examining on heater, 

thermocouple, pressure transducer, O-ring, heater/TC penetration gland. Before loading 

sample, pressure check needs to be done to avoid any potential leak of containment 

vessel. The calibration check is also necessary to ensure the quality of thermal data, 

including the calibration check on temperature, pressure and strip chart recorder. 

 



34 

 

 

 
Figure 13 Test cell assembly [with permission from Fauske & Associates, Inc.] 

 

After the sample is loaded, the containment vessel is pressurized with nitrogen to 250-

300 psig to mitigate the boil-off as well as sample loss from the test cell. Then, sample is 

heated up at a constant ramp rate. In order to shorten the total time of a test run, a mode 

of high ramp rate followed by low ramp rate can be applied. The heat ramp rate is 

switched from high level to low level to ensure the sensitivity of the equipment when the 

temperature of the sample is close the onset temperature. Experiment shutdown criteria 

can be customized to decide the time to turn off heater and quit the program. 
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Figure 14 RSST

TM
 including pressure vessel and control unit 

(Source: http://www.chem.mtu.edu/~crowl/rsst.htm) 

 

3.4.2 Thermal inertia 

Thermal inertia is a term used to describe the property related to thermal conductivity 

and volumetric capacity of bulk material. It is known that in calorimeter test, part of the 

heat loss is caused by heating up of test cell. Energy balance of the system is established 

to describe the heat loss in calorimeter test (Equation 10). 

                                           measadccssadjadss TCmCmTCm ,, )( 
                                     

(10) 

 

ms: sample mass 

Cs: heat capacity of sample 
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Cc: heat capacity of test cell 

∆Tad,meas: adiabatic temperature rise measured of the overall system 

∆Tad,adj: adjusted adiabatic temperature rise 

So, the thermal inertia factor,  , can be defined as: 
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(11) 

 

Using thermal inertia, the adiabatic temperature rise measured and the adjusted adiabatic 

temperature rise can be converted to each other using Equation 12. The high value of   

is equal to 1 under ideal adiabatic condition. The inverse of thermal inertia, is defined as 

the degree of adiabaticity.  

                                                 
measadadjad TT ,,  

                                                       
(12) 

 

Temperature of systems with different   can be converted to each other using Equation 

13. 

                                                

 1,1

2

1
2,2 OO TTTT 














                                                      

 (13) 

 

For the same self-heat rate in adiabatic environment, the performance of reactions in 

calorimetry tests with different values of   are different (Equation 14). To compare 

onset temperatures determined by different calorimeters, Equation 15 was derived to 

realize this conversion based on Equation 14. 

                                                           21  dt

dT

dt

dT


                                                                

(14) 
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The self-heat rate can also be converted between tests with different   values using 

Equation 16. This is usually applied to the conversion of maximum self-heat rate in 

calorimetry tests. 
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(16) 

 

Using the same principle, parameters like maximum temperature and heat generation of 

reactions can be corrected by taking thermal inertia into account. 

                                                       measadadjo TTT ,,max  
                                                

(17) 

                                                        measadcr TmCH , 
                                                      

(18) 

 

The time to maximum reaction rate can be adjusted to ideal adiabatic environment using 

Equation 19. 
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CHAPTER IV  

COMPUTATIONAL RESEARCH ON DECOMPOSITION REACTION 

MECHANISM OF CUMENE HYDROPEROXIDE 

4.1 Introduction 

The reaction mechanism of CHP decomposition has been studied by different 

researchers. Using experimental analysis method, the decomposition reaction 

mechanism was studied in presence of different solvents and contaminants
6, 7, 17, 18, 36

. 

However, because of the instability of intermediates in the decomposition reaction, it 

was difficult to investigate the reaction mechanism in detail. With the help of 

computational quantum chemistry method, it is possible to study the intermediates 

involved in the decomposition reaction and the elementary reactions. Based on the 

information obtained through quantum chemistry method, the mechanism of the 

decomposition reaction can be studied, including the research on thermodynamic 

stability and kinetic stability.   

4.2  Result and discussion 

Based on the proposed CHP decomposition reaction mechanism (Figure 15), a picture of 

postulated reaction pathways can be drawn (Figure 16)
10

. In order to yield estimation of 

Gibbs free energy and enthalpy, different computational quantum chemistry methods 

were applied to each molecule involved in the reaction mechanism.  The computed result 

of Gibbs free energy and enthalpy in ideal gas phase are listed in Table 2 and Table 3. 

Based on these data, Gibbs free energy change and enthalpy change of each possible 
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elementary reaction in a decomposition mechanism was calculated, as listed in Table 4 

and Table 5. 
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Figure 15 Elementary reactions involved in CHP decomposition reaction 
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Figure 16 Posulated reaction pathways of CHP decomposition 
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Table 2 Gibbs free energy of CHP decomposition components calculated using four levels 

of theory 

 

Component 

Gibbs free energy of component (Hartree)* 

AM1 HF/6-31G(d) 
B3LYP/6-

31G(d) 
CBS-4M 

C6H5C(CH3)2OOH 0.146900 -497.250000 -500.380000 -499.810000 

C6H5(CH3)2O· NA -421.891000 -424.599000 -424.082000 

·OH -0.007630 -75.390100 -75.732100 -75.675400 

C6H5COCH3 0.083079 -382.361000 -384.790000 -384.321000 

·CH3 0.059781 -39.546300 -39.826600 -39.778700 

C6H5C(CH3)2H 0.160845 -347.643000 -350.041000 -349.603000 

CH4 0.012999 -40.164700 -40.490500 -40.446500 

C6H5C(CH3)2· 0.171478 -347.064000 -349.413000 -348.945000 

H2O -0.091630 -76.005400 -76.405500 -76.367600 

C6H5C(CH3)2OH 0.100328 -422.491000 -425.249000 -424.756000 

C6H5OH 0.042214 -305.475000 -307.389000 -307.028000 

CH3COCH3 -0.021230 -191.901000 -193.100000 -192.890000 

C6H5CH3CCH2 0.182487 -346.481000 -348.835000 -348.389000 

[C6H5C(CH3)2]2 0.368768 -694.092000 -698.851000 -697.996000 

 * Hartree = 627.51 kcal/mol 

 

The reference state used for all calculation conducted in this thesis: 298.15 K, 1 

atmosphere, ideal gas phase. 
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Table 3 Enthalpy of CHP decomposition components calculated using four levels of theory 

 

Component 

enthalpy of component (Hartree) * 

AM1 HF/6-31G(d) 
B3LYP/6-

31G(d) 
CBS-4M 

C6H5C(CH3)2OOH 0.195780 -497.200000 -500.330000 -499.760000 

C6H5(CH3)2O· NA -421.847000 -424.555000 -424.036000 

·OH 0.012545 -75.369900 -75.711800 -75.655200 

C6H5COCH3 0.125601 -382.320000 -384.749000 -384.280000 

·CH3 0.081716 -39.523800 -39.804400 -39.756500 

C6H5C(CH3)2H 0.204424 -347.601000 -349.998000 -349.560000 

CH4 0.034185 -40.1436000 -40.469400 -40.425400 

C6H5C(CH3)2· 0.216170 -347.019000 -349.368000 -348.900000 

H2O -0.070210 -75.984000 -76.384000 -76.346200 

C6H5C(CH3)2OH 0.146196 -422.447000 -425.204000 -424.711000 

C6H5OH 0.077822 -305.440000 -307.354000 -306.992000 

CH3COCH3 0.011485 -191.866000 -193.065000 -192.856000 

C6H5CH3CCH2 0.224911 -346.440000 -348.793000 -348.347000 

[C6H5C(CH3)2]2 0.430630 -694.033000 -698.790000 -697.935000 

* Hartree = 627.51 kcal/mol 

4.2.1 Thermodynamic stability 

From the data of Gibbs free energy in Table 4, it can be concluded that all the 

elementary reactions are thermodynamically feasible except reaction i (Figure 15), 

because of negative Gibbs free energy change. For reaction viii, the Gibbs free energy 

change calculated is positive using AM1 and HF method. However, reaction viii is still 

determined to be thermodynamically feasible because of negative Gibbs free energy 

obtained using other two more advanced theory levels.  In ideal gas phase, elementary 
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reaction i, the initiation step of decomposition reaction, is thermodynamically infeasible 

because of positive Gibbs free energy change. However, as Gibbs free energy varies 

linearly with temperature, it will become negative if temperature rises up to an 

appropriate level. This agrees with the phenomenon that CHP is stable under 

atmospheric temperature but begins to decompose in the environment of high 

temperature. The thermodynamic feasibility of reaction i was also validated by previous 

research
17, 37

. Therefore, based on the analysis of data obtained through four different 

levels of computational quantum chemistry method, it can be concluded that every 

elementary reaction in postulated mechanism is thermodynamically feasible in practical 

environment. 

 

Table 4 Gibbs free energy change of elementary reactions of CHP decomposition 

calculated using four levels of theory 

 

reaction 

Gibbs free energy change of elementary reaction (kcal/mol) 

AM1 HF/6-31G(d) 
B3LYP/6-

31G(d) 
CBS-4M 

i NA -22.8 28.0 34.0 

ii NA -9.6 -10.9 -11.3 

iii -22.7 -24.7 -22.2 -6.2 

iv -46.0 -22.7 -28.2 -21.5 

v NA -12.9 -13.1 -10.4 

vi NA -58.8 -99.0 -100.7 

vii -45.8 -20.2 -59.9 -85.1 

viii 16.2 22.9 -15.8 -65.8 

 



43 

 

Enthalpy change of each elementary reaction can be calculated based on data in Table 3. 

By analysis of the enthalpy change data (Table 5), reaction i was found to be 

endothermic. Reaction ii cannot be determined to be exothermic or endothermic because 

the enthalpy change calculated using B3LYP/6-31G(d) and CBS-4M method does not 

agree with each other. Considering the small value of enthalpy change of reaction ii, its 

exothermic or endothermic behavior should be very weak. It needs to be noticed that 

there are three extraordinary exothermic elementary reactions, reaction vi, vii and viii. 

These three reactions have to be scrutinized in the research of kinetic stability since it is 

possible that these extreme exothermic reactions cannot be addressed by Polanyi 

equation or Marcus equation.  

 

Table 5 Enthalpy change of elementary reactions of CHP decomposition calculated using 

four levels of theory 

 

Component 

enthalpy change of elementary reaction (kcal/mol) 

AM1 HF/6-31G(d) 
B3LYP/6-

31G(d) 
CBS-4M 

i NA -11.6 38.2 44.4 

ii NA 2.00 1 -0.1 

iii -22.4 -23.9 -21.8 -5.6 

iv -44.6 -20.4 -26.3 -19.4 

v NA -11.7 -11.7 -9.2 

vi NA -55.9 -95.5 -98.2 

vii -46.4 -21.6 -61.2 -86.2 

viii -1.1 3.8 -34.0 -84.3 
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4.2.2 Kinetic stability 

In order to carry out complete hazards evaluation on reaction mechanism, besides 

thermodynamic stability, kinetic stability has to be analyzed as well. As an important 

parameter presenting the kinetic stability of reaction, activation energy of each 

elementary reaction was calculated using both Polanyi equation and Marcus equation. 

Intrinsic activation energy (Ea
0
 ) and transfer coefficient (γp) were chosen from literature 

according to the types of reactions
38

. In most cases, compared with AM1 and HF 

methods, DFT and CBS methods are more accurate and reliable for prediction of energy 

and other thermodynamic parameters of molecules. Therefore, enthalpy change 

calculated using B3LYP/6-31G(d) and CBS-4M method were applied to the activation 

energy evaluation. The result is shown in Table 6 and Table 7. 

 

 It should be noted that the application of Polanyi equation and Marcus equation to 

evaluation of activation energy of reactions yielded some unrealistic values for reaction 

vii and viii. This might be caused by the extraordinary exothermicity of these reactions 

which cannot be addressed by Polanyi equation or Marcus equation.   

 

The first step of the reaction mechanism is believed to be the rate-determining step of the 

whole reaction by former researchers
11, 17

. After the initiation step, radical 

C6H5C(CH3)2O· produced by the first step faces three thermodynamically feasible 

routes: it can decompose further via reaction ii; it can react with cumene to create new 

radical via reaction v; or it can join the termination reaction vi to form final products. 
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Comparing activation energy of these three elementary reactions, it is found that the 

activation energy for reaction ii is much lower than that of reaction v and vi. So, under 

the same reaction condition, the reaction ii is much more competitive and consumes 

most of the radical C6H5C(CH3)2O· produced.  

 

For the radical ·OH produced by the initial step, there are three possible reaction routes, 

one is to react with cumene via reaction iv; one is to react with C6H5C(CH3)2O· to form 

acetone and phenol via reaction vi; another one is to follow termination reaction vii. 

According to activation energy data, reaction vi and vii have much higher energy barrier 

than that of reaction iv. So, it can be concluded that the proportion of radical ·OH that 

reacts with cumene via reaction iv is much larger than that follows the reaction vi and 

vii.  

 

Two termination reactions, reaction vii and viii, share the same reactant C6H5C(CH3)2· , 

By comparison of these two activation energies, it is revealed that reaction viii is more 

competitive than reaction vii, but not overwhelming. But considering the fact that 

reaction vii is already depressed by reaction iv, it is a reasonable conclusion that reaction 

viii is the overwhelming one between these two reactions. 
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Table 6 Activation energy of CHP decomposition elementary reactions calculated using the 

Polanyi and Marcus equations and the B3YLP/6-31G(d) enthalpy of reaction 

 

Component 

Transfer 

coefficient, 

γp 

Intrinsic 

activation 

energy, Ea
0
 

Activation energy of reaction, Ea 

(kcal/mol) 

Polanyi Equation   Marcus Equation 

i 1 1 39.2 111.4 

ii 1 1 2.0 1.6 

iii 0.3 12 5.4 3.6 

iv 0.3 12 4.1 2.4 

v 0.3 12 8.5 6.9 

vi 0.5 50 2.2 13.6 

vii 1 2 - 88.3 

viii 0 1 1 56.2 

-: unrealistic value 

 

Table 7 Activation energy of CHP decomposition elementary reactions calculated using the 

Polanyi and Marcus equations and the CBS-4M enthalpy of reaction 

 

Component 

Transfer 

coefficient, 

γp 

Intrinsic 

activation 

energy, Ea
0
 

Activation energy of reaction, Ea 

(kcal/mol) 

Polanyi Equation   Marcus Equation 

i 1 1 45.4 146.3 

ii 1 1 0.9 0.9 

iii 0.3 12 10.3 9.4 

iv 0.3 12 6.2 4.2 

v 0.3 12 9.2 7.8 

vi 0.5 50 0.9 12.9 

vii 1 2 - - 

viii 0 1 1 - 
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Based on the kinetic analysis above, five elementary reactions, i, ii, iii, vi and viii are 

determined to be kinetic plausible elementary reactions in the CHP decomposition 

reaction mechanism. The formation of 2-Phenyl-2-propanol, acetone, phenol, alpha-

methylstyrene are limited. The simplified decomposition reaction mechanism is shown is 

Figure 17.  
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Figure 17 Proposed reaction mechanism of CHP decomposition 

 

The dominant reaction pathway consisting of these four kinetic plausible elementary 

reactions is as follows: 

 

 
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Using enthalpy change of these four dominant elementary reactions calculated in three 

theory levels, enthalpy change of this dominant reaction pathway can be obtained. The 

results are listed in Table 8. According to this reaction, the mole of methane produced in 

the runaway reaction is equal to the mole of CHP consumed. Final products derived 
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from dominant reaction pathway agree with experimental result of previous research that 

methane and acetophenone are major components of CHP decomposition products
10

.   

 

Table 8 Enthalpy change of dominant reaction pathway calculated in four levels of theory 

for CHP decomposition 

 

Level of theory 
Enthalpy of reaction pathway 

(kcal/mol) 

HF/61-31G(d) -50.1 

B3LYP/61-31G(d) -43.0 

CBS-4M -65.1 

 

As results obtained in Table 8 are purely based on computational quantum chemistry 

method, experimental data need to be applied to the validation of the dominant reaction 

pathway. It was reported that the experimental value of enthalpy change of CHP 

decomposition is about 68.1 kcal/mol
10

. The prediction result was compared with this 

data. The result of the comparison is shown in Table 9. 
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Table 9 Comparison of prediction value with empirical data for CHP decomposition 

reaction enthalpy change in two four levels of theory 

 

Level of theory Prediction value/ empirical data (%) 

HF/61-31G(d) 73.6 

B3LYP/61-31G(d) 63.0 

CBS-4M 95.5 

 

The data from Table 9 shows that the ratio between predicted value and empirical data 

varies from 63% to 95.5 %. This result indicates that prediction of enthalpy change 

derived from dominant reaction pathway is quite close to empirical data. However, it 

should be noticed that the predicted enthalpy change was calculated in ideal gas phase, 

which does not include the heat of vaporization. By taking the heat of vaporization into 

account, the final predicted enthalpy change should be lower than present value. Though 

heat of vaporization is supposed to be much smaller than enthalpy change calculated in 

ideal gas phase, quantitative validation is still needed to support this assumption.  In 

order to validate the postulated dominant reaction pathway, the predicted enthalpy needs 

to be corrected by the term of heat of vaporization and compared with experimental data. 

Also, because the enthalpy changes are different in the levels of B3LYP/61-31G(d) and 

CBS-4M, calculation in more advanced level such as G2 is expected to be carried out to 

ensure the accuracy of  the theoretical calculation. 
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4.3  Conclusion  

Using computational quantum chemistry as an effective tool, fundamental research can 

be conducted on the reaction mechanism of CHP decomposition, which was difficult to 

be investigated earlier because of unstable radicals in the reaction mechanism.  

 

According to the analysis of thermodynamic and kinetic stability of CHP decomposition 

reaction mechanism, a dominant reaction pathway was determined, which is not only 

thermodynamically feasible but also kinetically plausible. This dominant reaction 

pathway agrees with the experimental result that methane and acetophenone are major 

components of CHP decomposition products. Also, the prediction of enthalpy change of 

this reaction pathway is close to experimental data in all four theory levels.  

 

Some valuable information can be derived from the dominant reaction pathway. 

According to the stoichiometry of the reaction pathway, the ratio between CHP and 

cumene is 1 to 2. This indicates CHP decomposition reaction only follows this reaction 

pathway when there is sufficient cumene. If the ratio between CHP and cumene is less 

than 1 to 2, unknown decomposition reactions pathway might be involved in CHP 

decomposition reaction.  

 

Another important prediction based on postulated reaction pathway is the gas generation. 

According to the reaction equation, the mole of methane generated in reaction process is 

equal to the mole of the CHP consumed if there is sufficient cumene. This conclusion is 
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the theoretical basis for the prediction of non-condensable pressure. The non-

condensable pressure is the difference between the pressure before the runaway reaction 

and the pressure after the completion of reaction under a certain temperature. The non-

condensable pressure is an estimation of the gas generation, which rules out the 

influence of reaction heat. It is also a good way to validate the postulated reaction 

pathway using the parameter of non-condensable pressure, which will be included in the 

future work. 
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CHAPTER V  

EVALUATION OF CHP REACTIVITY HAZARDS 

5.1  Introduction  

CHP is a hazardous material for industrial process because of its sensitivity to heat and 

incompatibility to contaminants. Any improper management or operation might trigger 

runaway reactions in the process of production, transportation or storage. Therefore, it is 

of great importance to evaluate the reactivity hazards of CHP decomposition reaction. 

The evaluation results can be used to prevent the occurrence of runaway reaction. Also, 

it is necessary to introduce the evaluation results into design of related equipment as well 

as development of industrial codes.  

 

In this research, calorimetry tests using RSST
TM

 were carried out to evaluate the 

reactivity hazards of CHP. Considering the importance of operation parameters in 

process safety, the effect of CHP concentration was chosen as the focal point for hazards 

evaluation. The effect of CHP concentration on onset temperature, an important 

parameter to prevent runaway reaction, was studied in this research. Also the effect of 

CHP concentration on exothermic behavior of runaway reactions was investigated. The 

objective is to get a comprehensive understanding of the effect of CHP concentration, 

which can be applied to industrial process. 

 

In this research, concentration range of CHP was chosen as 12-80 wt%. 80 wt% is the 

highest concentration encountered in CHP production. The lower concentration of 12 
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wt% was selected so that the results from this research can be compared against previous 

research (12-35%)
9
. 

5.2  Sample 

Aldrich 88 % CHP, catalog number 513296, was employed in the experimental research. 

Fisher 99.9 % cumene, catalog number AC-32973-5000, was used as dilution solvent in 

the experiment. 

 

The summary of experimental data for sample and thermal inertia   is presented in 

Table 10.  

 

Table 10 Summary of sample weight and thermal inertia 

 

Concentration  

(wt%) 
Test No. 

Weight of test cell 

(g) 

Sample weight 

(g) 
  

12 

1 1.54 4.6 1.13 

2 1.55 4.62 1.13 

3 1.52 4.61 1.12 

20 

1 1.47 4.63 1.12 

2 1.43 4.61 1.12 

3 1.39 4.6 1.11 

30 

1 1.51 4.62 1.12 

2 1.38 4.62 1.11 

3 1.49 4.59 1.12 
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Table 10 continued 

 

Concentration  

(wt%) 
Test No. Weight of test cell 

(g) 

Sample weight 

(g) 
  

40 

1 1.50 4.61 1.12 

2 1.44 4.59 1.12 

3 1.50 4.59 1.12 

50 

1 1.48 4.61 1.12 

2 1.44 4.63 1.12 

3 1.32 4.61 1.11 

60 

1 1.49 4.62 1.12 

2 1.48 4.64 1.12 

3 1.46 4.63 1.12 

70 

1 1.42 4.59 1.12 

2 1.43 4.60 1.12 

3 1.44 4.59 1.12 

80 

1 1.39 4.63 1.11 

2 1.34 4.60 1.11 

3 1.47 4.60 1.12 

 

5.3 Operation mode 

i. Before test, pressure containment should be pressurized by nitrogen up to 300 psi. 

ii. The ramp rate is set at 2 °C/min in the temperature interval of 0 to 90 °C. In the 

temperature interval higher than 90 °C, the ramp rate is 0.5 °C /min. 

iii. The heater will be turned off automatically if one of the following conditions is 

satisfied. 
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1. Running time is longer than 250 min.  

2. Temperature of the test is higher than 480 °C. 

3. Pressure of the test is higher than 500 psi. 

 

iv. The system will automatically save data and quit the program once the 

temperature is lower than 25 °C after the heater is turned off. 

5.4  Experimental results and analysis 

Experiments were performed in RSST
TM

 to determine the effect of CHP concentration 

on runaway reactions. Eight different initial concentrations were included in this 

research: 12, 20, 30, 40, 50, 60, 70, 80 wt%. 

5.4.1 Temperature analysis 

Figure 18 shows the temperature profiles of RSST
TM

 tests in different concentrations. By 

comparison of these profiles, a phenomenon observed is that the exothermic behavior of 

the runaway reaction becomes stronger with the increase of CHP concentration. This 

tendency is quite clear in the range of low concentration. In the test of 12 wt% CHP, the 

temperature profile is pretty smooth and moderate. However, this curve becomes much 

sharper in the test of 20 wt% CHP and reached much higher temperature peak value.  

The tendency remains the same until the concentration is raised to 40 wt%. Above the 

concentration of 40 wt%, there is no significant difference between the temperature 

profiles of the tests. This phenomenon agrees with the numerical analysis result of 

maximum temperature of the runaway reactions (Table 11). By plotting the maximum 
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temperature versus CHP concentration, two divisions can be identified (Figure 19). In 

the concentration range below 40 wt%, a considerable increase from 200 to 300 °C of 

maximum temperature can be observed. Whereas over the concentration range of 40 to 

80 wt%, the maximum temperature has only insignificant change from 299 °C to 337 °C. 

The change of the temperature profile over concentration is reasonable according to 

theoretical postulation. As the total weight of the sample is similar in each test, more 

CHP is involved in decomposition reaction with the increase of CHP concentration. 

Considering CHP decomposition reaction is a self-accelerating reaction, the reaction rate 

keeps increasing until the depletion of the reactants. With more reactant involved in 

decomposition reaction, the release of heat becomes faster and fiercer, and higher 

maximum temperature can be reached at the end of the reaction. However, the change of 

exothermic behavior across 40 wt% is an interesting phenomenon which cannot be 

explained by the kinetic knowledge mentioned above. This phenomenon was observed 

in almost all important parameters and is discussed in the conclusion part of this chapter. 
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Figure 18 Temperature profile of RSST
TM 

tests at different CHP concentrations 

 

Table 11 Maximum temperature for different CHP concentrations 

 

Concentration (wt %) Tmax (°C) δ (°C) 

12 199.5 11.7 

20 234.5 5.8 

30 262.6 7.7 

40 299.0 2.0 

50 311.1 3.5 

60 316.5 5.3 

70 321.9 1.7 

80 337.0 6.0 

δ: standard deviation 
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Figure 19 Effect of CHP concentration on the maximum temperature  

 

 

 

Onset temperature, a critical parameter used to prevent runaway reactions, was 

determined by the temperature profiles (Table 12, Figure 20). Numerically, onset 

temperature does not vary greatly over concentration range according to the 

experimental results. Considering the small difference between onset temperature and 

operation temperature in industry process, it is still of great importance to study the 

change of the onset temperature over concentration range, which could be applied to 

industry process as a guideline for precise control of process temperature. 
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Table 12 Onset temperature for different CHP concentrations 

 

Concentration (wt %) Ton (°C) δ (°C) 

12 133.8 2.1 

20 133.5 0.7 

30 130.1 1.7 

40 129.0 0.9 

50 121.4 1.7 

60 118.0 3.7 

70 117.5 0.3 

80 108.3 4.0 

δ: standard deviation 

 

Onset temperature remains above 129 °C with little change in the concentration range 

from 12 to 40 wt%. Once CHP concentration exceeds 40 wt%, a slow but observable 

decrease was detected in RSST
TM

 tests. Finally, the onset temperature can reach as low 

as 108.3 °C in 80 wt% CHP solution. This tendency is particularly important for 

condensation unit of CHP, where CHP solution (35 wt%) is concentrated up to 80 wt%. 

Therefore, in condensation process or other processes where considerable variance of 

concentration exists in the range of 40 to 80 wt%, it is important to keep the process 

operating temperature lower than the onset temperature of the highest concentration in 

the process. In order to get more accurate assessment for onset temperature of CHP 

solution in different concentrations, further research using more advanced equipment 

such as APTAC or ARC is recommended. 
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Figure 20 Effect of CHP concentration on the onset temperature 

 

 

The maximum temperature increase is the difference between onset temperature and 

maximum temperature reached in the runaway reaction process in the same test. Because 

onset temperature does not change greatly over the concentration range (108.3-133.8 °C), 

the similar phenomenon was observed with maximum temperature increase that 40 wt% 

is a critical point (Table 13, Figure 21). The maximum temperature increases almost 

linearly with the increase of concentration in the range of 12 to 40 wt%. When the 

concentration is higher than 40 wt%, this increase tendency becomes much slower. 
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Table 13 Maximum temperature increase for different CHP concentrations 

 

Concentration (wt %) ΔTmax (°C) δ (°C) 

12 65.7 11.8 

20 98.8 3.6 

30 132.5 8.0 

40 179.0 2.1 

50 189.8 4.0 

60 198.5 3.0 

70 204.4 1.6 

80 228.7 9.9 

δ: standard deviation 
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Figure 21 Effect of CHP concentration on the maximum temperature increase 
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5.4.2 Pressure analysis 

Pressure profiles obtained by RSST
TM

 are shown in Figure 22. The pressure rise caused 

by runaway reaction was observed in all tests of different concentrations. In the 

concentration range from 12 to 40 wt%, the pressure of RSST
TM

 tests keeps at a 

relatively low level, with the maximum value varying from 314.9 to 357.7 psig. The 

increase of pressure is also moderate and smooth in this concentration range. Once the 

CHP concentration exceeds 40 wt%, there is a significant change in the shape of 

pressure curve. The pressure jumps up dramatically and even explosively once the 

runaway reaction is triggered. The maximum pressure of each RSST
TM

 test is 

summarized in Figure 23 and Table 14. Based on the analysis of numerical value and 

graph, 40 wt% of CHP concentration can still be regarded as a critical point for the effect 

of CHP concentration on pressure. The effect of CHP concentration on maximum 

pressure is obviously greater in the range lower than 40 wt% than in higher 

concentration range. The explanation for this is presented in conclusion part of this 

chapter. 
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Figure 22 Pressure profiles of RSST
TM

 tests at different CHP concentrations 

 

       Table 14 Maximum pressure for different CHP concentrations 

 

Concentration (wt %) Pmax (Psig) δ (Psig) 

12 314.9 11.7 

20 331.4 1.86 

30 336.0 4.6 

40 357.7 5.2 

50 425.5 5.8 

60 442.6 9.3 

70 488.4 6.1 

80 509.8 22.1 

δ: standard deviation 

 



64 

 

Maximum pressure

300

350

400

450

500

550

0 10 20 30 40 50 60 70 80 90

Concentration (wt% )

P
m

a
x 

(p
si

g
)

 
 

Figure 23 Effect of CHP concentration on the maximum pressure 

 

The maximum pressure increase is the difference between the initial pressure of a 

runaway reaction and the maximum pressure reached in the runaway reaction process.  

The maximum pressure increase is a measurement of the pressure generation of runaway 

reactions. The curve of maximum pressure increase over concentration is similar with 

that of maximum pressure. Compared with lowest concentration of 12 wt%, maximum 

pressure increase reached almost 20 times when the concentration was raised to 80 wt%. 

The shape of the curve changes around 40 wt%, which can be viewed as a critical point. 

The experimental results are shown in Table 15 and Figure 24. 
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Table 15 Maximum pressure increase for different CHP concentrations 

 

Concentration (wt %) ΔPmax (Psig) δ (Psig) 

12 12.2 3.4 

20 19.4 0.9 

30 23.9 5.1 

40 54.2 1.2 

50 114.6 4.5 

60 135.2 11.2 

70 179.4 6.9 

80 201.8 20.4 

δ: standard deviation 
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Figure 24 Effect of CHP concentration on the maximum pressure increase 
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5.4.3 Self-heat rate analysis 

Self-heat rate profiles of RSST
TM

 tests are shown and compared in Figure 25. The 

maximum self-heat rate is summarized in Table 16 and plotted in Figure 26 to clearly 

describe the self-heat rate of each test. With the increase of CHP concentration up to 40 

%, a considerable increase of self-heat rate was observed in the process of runaway 

reactions. However, this tendency is not that clear and definite if the CHP concentration 

is above 40 wt%.  This phenomenon agrees with temperature profiles mentioned 

previously. 
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Figure 25 Self-heat rate profiles of RSST
TM

 tests at different CHP concentrations 

 

A plot in logarithmic scale of maximum self-heat rate can describe this phenomenon 

more clearly.  In Figure 26, two different obvious tendencies can be observed. The 
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concentration effect on maximum self-heat rate follows an almost linear relationship 

over concentration when CHP concentration is below 40%. In this range, the maximum 

self-heat rate increases by 6 to 8 times between each two adjunct concentrations. Above 

40 wt%, an observable but much slower increase of maximum self-heat rate was found 

over CHP concentration. Starting from 40 wt%, a total four-fold increase was observed 

when the concentration finally went up to 80 wt%. 
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Figure 26 Effect of CHP concentration on the maximum self-heat rate 
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Table 16 Maximum self-heat rate for different CHP concentrations 

 

Concentration (wt %) (dT/dt)max (Psig/min) δ (Psig/min) 

12 9.7 1.1 

20 77.6 12.0 

30 445.3 50.5 

40 2523.3 196.1 

50 5128.3 1004.8 

60 6694.7 950.7 

70 7417.0 1453.9 

80 9098.0 1603.2 

δ: standard deviation 

 

5.4.4 Pressure rate analysis 

The pressure rate profiles are similar with that of self-heat rate (Figure 27). The point of 

40 wt% can still be viewed as a critical point, beyond which the effect of CHP 

concentration on pressure rate changes. This conclusion is supported by the 

summarization presented in Figure 28 and Table 17, showing that the tendency of 

maximum pressure rate over concentration range changed around 40 wt%. The change 

of tendency is clearly presented by Figure 28 using logarithmic scale, where pressure 

rate remains in the same order of magnitude after rapid increase below 40 wt%. 
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Figure 27 Pressure rate profiles of RSST

TM
 tests at different CHP concentrations 
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Figure 28 Effect of CHP concentration on the maximum pressure rate 
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Table 17 Maximum pressure rate for different CHP concentrations 

 

Concentration (wt %) (dP/dt)max (Psig/min)  δ (Psig/min) 

12 1.8 0.3 

20 12.4 0.9 

30 92.3 6.1 

40 2975.0 356.8 

50 15838.3 7367.1 

60 22333.3 10005.8 

70 35800.0 14924.5 

80 37875.0 22116.6 

δ: standard deviation 

 

5.5 Discussion and conclusion  

Concentration, an important operation parameter for CHP solution in industrial process, 

varies greatly in different units or processes. According to previous research, it is 

believed that this parameter is able to influence the exothermic behavior of runaway 

reaction, and might also be an important factor for the onset temperature of CHP 

solution.  

 

By carrying out a series of tests in RSST
TM

 over the wide CHP concentration range of 12 

to 80 wt%, several important parameters such as onset temperature, maximum 

temperature, maximum pressure, maximum self-heat rate and maximum pressure rate, 

were obtained from the analysis of the RSST
TM

 tests results. Through analysis of 

experimental data, it was found that concentration of 40 wt% can be viewed as a critical 
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point for CHP concentration, because the exothermic behavior of runaway reaction over 

concentration changed around this point. Below the concentration of 40 wt%, the extent 

of exothermic behavior of runaway reaction is proportional to the concentration. 

However, this tendency is not that clear or becomes weaker once CHP concentration 

exceeds 40 wt%. This conclusion is supported by parameters of maximum temperature, 

maximum temperature increase self-heat rate and pressure rate. These parameters show a 

dramatic surge followed by a slow and smooth increase with increased CHP 

concentration. The parameters of maximum pressure and maximum pressure increase 

also follow the conclusion that 40 wt% is a critical point, but with different tendencies 

across that critical point. On the contrary, the increases of these two parameters are more 

dramatic in high concentration range (>40 wt%) than those in low concentration range 

(<40 wt%).  

 

As the concentration of 40 wt% is a critical point for almost all important parameters of 

runaway reactions, the reaction mechanism might be a theoretical basis for the 

explanation of this phenomenon. By converting weight fraction into mole fraction, it is 

found that for 40 wt% CHP solution, the mole ratio between cumene and CHP is 1.9: 1, 

which is quite close to the ratio of 2: 1 predicted by reaction pathway proposed earlier. 

Therefore, it is speculated that the shift of reaction mechanism might be the major course 

for the change of exothermic behavior beyond 40 wt%. When CHP concentration is 

lower than 40 wt%, the reaction follows proposed reaction pathway. Once the 

concentration exceeds this critical point, part of the CHP follows some unknown 
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reaction pathways because of lack of cumene. With the increase of concentration in the 

range of 40 to 80 wt%, the percentage of CHP follows the unknown reaction pathway 

also increases (Figure 29). It is postulated that the alternative unknown reaction 

pathways might not be as exothermic as proposed dominant reaction pathway, which can 

be an explanation for slow increase of maximum temperature, maximum temperature 

increase, maximum self-heat rate and maximum pressure rate, when CHP concentration 

is above 40 wt%. Another speculation on alternative reaction pathway is that more gas 

generation might be involved in these unknown reaction pathways. This is helpful to 

figure out the different tendency that maximum pressure and maximum pressure increase 

surge more dramatically above 40 wt% of concentration.  
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Figure 29 Percentage of CHP follow unknown reaction pathway 
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For onset temperature, the critical point of 40 wt% should not be caused by the unknown 

reaction pathways, as cumene is sufficient before the occurrence of runaway reaction. 

The onset temperature of CHP has only slight change below 40 wt%, but decreases 

obviously above 40 wt%. This is important for CHP condensation process, where CHP 

concentration varied within high concentration range (35-80 wt%). It will be effective to 

prevent runaway reaction by integrating this tendency into process control. 

 

This research confirmed that concentration is an important factor influencing runaway 

reaction, as suggested by previous researchers
9
. However, this effect is not uniformly 

distributed over the wide concentration range. The two patterns are divided in two 

ranges at the critical point of 40 wt%. This division of concentration range is supported 

by dominant decomposition reaction pathway postulated in this research. 
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CHAPTER VI  

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

Because of the hazardous properties and wide use of CHP in the chemical industry, there 

is an urgent need to evaluate its reactivity hazards and apply the results for the 

prevention of runaway reaction as well as in the design of protection equipment. 

However, through traditional method of calorimetry test, it is difficult to get a 

fundamental understanding of the runaway reaction mechanism and perform effective 

analysis of experimental result. In this research, a systematic approach was utilized to 

carry out the research at the microscopic level as well as the macroscopic level. By 

validating theoretical research using experimental data and by applying theoretical 

research results into experimental studies, it can be concluded that these two levels are 

linked and interconnected. 

 

In theoretical research, after the analysis of thermodynamic and kinetic stability on the 

proposed reaction mechanism, a dominant reaction pathway was postulated. The 

reaction pathway indicates that methane and acetophenone are the major decomposition 

products, which agrees with experimental results. The reaction equation also reveals that 

the rate of gas generation is equal to the rate of CHP consumption. It needs to be noticed 

that in proposed reaction pathway, the ratio between cumene and CHP is 2:1. Therefore, 

CHP will not completely follow the proposed reaction pathway if the cumene is 

insufficient.  This postulation can be used for industrial application, as well as provide a 

theoretical basis for experimental research. 
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In experimental research, the effect of CHP concentration was investigated 

systematically. The concentration of 40 wt% was proven to be a critical point for almost 

all important parameters of runaway reactions according to experimental results. For 

runaway reaction parameters such as maximum temperature, maximum temperature 

increase, maximum self-heat rate and maximum pressure rate, it was found that 

concentration factor is more effective in low concentration range (< 40%). But for 

parameters of maximum pressure, maximum pressure increase, the concentration is more 

effective in higher concentration range (> 40 wt%). This conclusion agrees with the 

stoichiometry of the dominant reaction pathway because the mole ratio between cumene 

and CHP in 40wt% solution is approximate 2: 1. So, in the CHP solution with 

concentration higher than 40 wt%, part of the CHP follows some unknown reaction 

pathways, which might be less exothermic and generate more gas.  

 

This result is important for safety issues of CHP. In processes with great variance of 

CHP concentration, the parameter of pressure for runaway reactions should be 

emphasized in high concentration range because of its considerable change over 

concentration. In low concentration range, more attention should be paid to temperature, 

self-heat rate and pressure rate, as these parameters change greatly over concentration. In 

addition, heat generation determined in high concentration range cannot be applied to 

other concentrations because of different reaction pathways involved in decomposition 

reaction. 
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Further work is needed to validate the proposed reaction pathway in a quantitative way. 

Calorimetry test using advanced calorimeter such as APTAC will be used to validate the 

stoichiometry of the postulated reaction pathway using non-condensable pressure. Also, 

theoretical calculations using more advanced quantum chemistry method like G2 will be 

utilized simultaneously to calculate the enthalpy change of recommended reaction 

pathway. The calculation result will be corrected by the term of heat of evaporation. This 

calibrated enthalpy change will be compared with empirical data to validate the 

dominant reaction pathway.  

 

As the involvement of other reaction pathways in decomposition reaction of CHP 

solution above the concentration of 40 wt%, it is necessary to identify these reaction 

pathways utilizing quantum chemistry method. The identification of the unknown 

reaction pathways will get a better understanding of the runaway reaction. It will also 

provide the basis for further experimental research as well as kinetic modeling. 

 

Compared to calorimeter test method, kinetic modeling is a relatively inexpensive tool to 

predict and simulate runaway reactions. However, until now, models built can only 

simulate the runaway reaction in a fixed concentration. Considering the fact that the 

parameter of concentration varies greatly in many processes, a model will be greatly 

valuable if it is able to simulate the runaway reaction in different concentrations.  
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Therefore, following the completion of theoretical research on the reaction mechanism, a 

kinetic model is planned to be built for the prediction of runaway reactions. 
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