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ABSTRACT 

 

The Light Mutant Oscillator (LMO): A Novel Circadian Oscillator in Neurospora 

crassa. (August 2008) 

He Huang, B.Eng., Beijing University of Chemical Technology 

Chair of Advisory Committee: Dr. Deborah Bell-Pedersen 

 

Circadian clocks are present in most eukaryotes and some prokaryotes and control 

rhythms in behavior, physiology and gene expression. One well-characterized circadian 

clock is that of Neurospora crassa. In addition to the well-described N. crassa 

FRQ/WCC oscillator, several lines of evidence have implied the presence of other 

oscillators which may have important functions in the N. crassa circadian clock system. 

However, the molecular details are only known for the core FRQ/WCC oscillator. The 

light mutant oscillator (LMO) was identified by two mutations (LM-1 and LM-2) and 

shown to control developmental rhythms in constant light (LL), conditions in which the 

FRQ/WCC oscillator is not functional. The objective of this project was to determine 

whether the developmental rhythms driven by the LMO are circadian, whether the 

components of the LMO communicate with components of the FRQ/WCC oscillator, 

and to begin to define the molecular nature of the LMO.  

 

First, the conditions for growth of the LM-1 mutant strain that reveals the best circadian 

rhythm of development in LL were found. Second, the LMO was determined to display 
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the three properties required of a circadian oscillator. Third, the LMO was shown to 

function independently of the FRQ/WCC oscillator to control developmental rhythms in 

LL. However, evidence suggests that the FRQ/WCC oscillator and the LMO 

communicate with each other. Finally, using Cleaved Amplified Polymorphic Sequence 

(CAPS) markers, the LM-1 mutation was genetically mapped to the right arm of linkage 

group I within a 1069 kb region. Together, these results provide a start towards 

understanding of the complexity of oscillators that form a circadian clock in organisms. 
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NOMENCLATURE 

 

bd band 

CAMK-1                    calcium/calmodulin-dependent kinase-1 

CAPS                          cleaved amplified polymorphic sequence 

C-box                          clock-box 

ccg clock-controlled gene 

CDO                           choline deficiency oscillator 

CK casein kinase 

CT circadian time 

DAG                           diacylglycerol 

DD constant dark 

DNA                           deoxyribonucleic acid 

FFC                             FRQ/FRH complex 

FGSC                          Fungal Genetic Stock Center 

FLO                            FRQ-less oscillator 

FRH                            FRQ-interacting RNA helicase 

FRP                             free-running period 

frq                                frequency 

FWD-1                        F-box/WD-40 repeat-containing protein-1 

GFP                            green fluorescent protein 

kb                                kilobases 
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LD                               light/dark 

LL                               constant light 

LM                              light mutant 

LMO                           light mutant oscillator 

Ma                              Mauriceville 

mRNA                        messenger ribonucleic acid 

NHEJ                          non-homologous end-joining 

NRA                           nitrate reductase activity 

NRO                           nitrate reductase oscillator 

OR                              Oak Ridge 

ORF                           open reading frame 

PAS                            PER-ARNT-SIM 

PCR                            polymerase chain reaction 

qde-1                          quelling-defective-1 

RFP                             red fluorescent protein 

SCN                            suprachiasmatic nucleus  

TC-FLO                      temperature controlled – FLO 

UV                              ultraviolet light 

wc                               white collar 

WT                              wild type       
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1. INTRODUCTION 

 

1.1 Circadian Clocks 

Circadian clocks are endogenous molecular timekeepers consisting of one or more 

oscillators. These clocks are present in most eukaryotes and some prokaryotes (reviewed 

by Young and Kay, 2001). The clock imparts temporal organization on a variety of 

cellular processes, ranging from development in fungi, photosynthesis in plants, 

sleep/wake cycles in animals, to cognitive functions in humans (reviewed by Bell-

Pedersen et al., 2005). Circadian clocks allow organisms to anticipate and prepare for 

predictable daily rhythms in the environment that take place as a consequence of the 

earth’s rotation on its axis. Linking the internal timing mechanism to external cycles 

allows organisms to optimize their survival and reproductive success (reviewed by 

Dunlap et al., 2004). 

 

Because circadian clocks in humans control many aspects of physiology and gene 

expression, it is not surprising that disruptions of normal circadian rhythms are 

associated with disease. People who carry out shift work or who have a defective clock 

are at increased risk for depression, obesity, headaches, cardiovascular disease, epilepsy,  

cerebrovascular malfunction and cancer (Lei et al., 2006; reviewed by Turek et al., 
 
2001). However, the precise mechanisms for the link between the clock and disease are 
 
 
 
____________ 
This thesis follows the style of Cell. 
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not known. An understanding of circadian clock mechanisms and their underlying 

complexity may lead to novel treatments for disease and conditions linked to circadian 

pathologies.  

 

Circadian rhythms are defined by three key characteristics (reviewed by Dunlap et al., 

2004).   

 

(1) Circadian rhythms persist with an intrinsic free-running period (FRP) of roughly 24 

h, but not usually exactly equal to 24 h, when the organism is kept under constant 

conditions, such as constant light (LL) or constant dark (DD) and temperature. The 

FRP is dependent on a variety of factors, including organism species, developmental 

factors, ambient temperature, illumination and prior history.   

 

(2) Circadian rhythms can be entrained by external cues, including temperature or light, 

in a time-dependent fashion. One of the most common external inputs is the 

light/dark (LD) cycles generated by the rising and setting of the sun. Entrainment 

synchronizes the endogenous oscillators to local time, enabling organisms to 

anticipate and prepare for physical environmental changes and to organize their 

activities to the appropriate times of day.  

 

(3) Circadian rhythms are temperature-compensated, meaning the FRP of circadian 

rhythms are nearly unaffected across an extensive range of physiologically relevant 
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temperatures. The effect of temperature changes on the rate of biological processes is 

determined by their Q10 values (Pittendrigh, 1954). Q10 is a gauge of the temperature 

dependency of a process, and it is calculated as the ratio of the rate of a process at a 

higher temperature divided by the rate at a temperature 10 °C lower. If the Q10 value 

of a process is close to 1, then the rate is essentially temperature-independent. The 

Q10 values for most enzymatic reactions are 2 or 3, while the Q10 values for circadian 

rhythms range from 0.8 to 1.4, when calculated within the physiological range for 

the organisms (Sweeney and Hastings, 1960). For Neurospora crassa, the Q10 value 

for the developmental rhythm in DD is 1.03 (Sweeney et al., 1960). Temperature-

compensation is believed to be just one facet of the general compensation machinery 

in cells which maintains constant period length despite differences in parameters 

influencing metabolism, such as nutrition or temperature.  

 

1.2 The Molecular Basis of Circadian Clocks 

As illustrated in Figure 1, a simplified circadian clock system is composed of three main 

parts (reviewed by Bell-Pedersen et al., 2005). The input pathways transduce external 

cues to the clock for entrainment. One or more oscillators, the time pieces of the clock 

system, receive signals from the input pathways, create a program with the length of 

about 24 h, and in turn transfer phase information via the output pathways to temporally 

regulate molecular, biochemical, physiological and behavioral processes.      

 

As demonstrated in Figure 2, eukaryotic circadian oscillators consist of positive and 
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negative components that form auto-regulatory feedback circuits (reviewed by Harmer et 

al., 2001; Bell-Pedersen et al., 2005). In these loops, positive elements transcriptionally 

activate the “clock genes” which encode the negative elements. As a result, the 

concentrations of the negative elements increase. The negative elements repress the 

activities of the positive elements. This repression inhibits the transcription of genes 

encoding the negative elements. Phosphorylation-induced degradation of the negative 

elements reduces their concentrations, which results in the reactivation of positive 

elements and the start of a new cycle the next day. In eukaryotes, the negative elements 

also trigger the expression of one or more of the positive elements to generate 

interlocking positive and negative feedback loops, which are critical for maintaining the 

precision of the clock (reviewed by Liu and Bell-Pedersen, 2006). All of these events 

impose temporal delays within the central feedback circuit, such that the molecular cycle 

takes about 24 h to be finished. Components of the oscillators signal time of day 

information through output pathways to regulate rhythmic gene expression and overt 

rhythmicity. While great progress has been made in understanding the molecular basis of 

circadian rhythmicity, accumulating evidence suggests that a single oscillator is not 

sufficient to control all rhythmicity in organisms. For example, two rhythms that run 

simultaneously with different periods have been demonstrated in Gonyaulax and rat 

(Morse et al., 1994; Cambras et al., 2007), and residual rhythmicity has been observed in 

strains that are defective in core oscillator components (Loros and Feldman, 1986; 

Correa et al., 2003; de Paula et al., 2006; Stanewsky et al., 1998; Emery et al., 2000;  

Collins et al., 2005). In higher eukaryotes, some peripheral tissue-specific oscillators are 
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built differently from oscillators in the brain (Collins et al., 2005; Ivanchenko et al., 

2001; Krishnan et al., 2001; Hardin, 2003). Despite this evidence for the existence of 

multiple oscillators, the molecular details of these additional oscillators are not yet 

known.  

 

1.3 The Neurospora crassa Clock 

Studying the circadian clock system of the filamentous fungus N. crassa has uncovered 

many of the basic principles which underlie circadian rhythms, such as negative 

feedback and temperature and light entrainment (reviewed by Liu and Bell-Pedersen, 

2006, Heintzen and Liu, 2006, Liu 2003a and Loros and Dunlap, 2001).  

 

The clock in N. crassa controls an easily monitored circadian rhythm in asexual spore 

development (conidiation). This assay was particularly helpful for investigating the 

effects of mutations on clock function (reviewed by Loros and Dunlap, 2001). The 

conidiation rhythm in WT clock strains has a period of approximately 22 h at 25°C in 

DD. The circadian rhythm of conidiation is usually monitored using the race tube assay 

(Figure 3) (Sargent et al., 1966). In this assay, conidia are inoculated at one end of 30 to 

40 cm long cylindrical glass tubes that are bent upward at the ends to accommodate a 

solid growth medium. The race tubes are usually scanned to be documented as digital 

images which can be used later to generate plots representing the density of conidiation 

over the course of experiments. Typically, strains used for the analysis of the conidiation 

rhythm on race tubes contain the band (bd) mutation (recently determined to be a point 
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mutation in ras-1 [Belden et al., 2007]). The ras-1bd mutation clarifies the developmental 

rhythm on race tubes, and decreases the growth rate of strains, but does not alter the 

circadian clock. Monitoring rhythmic mRNA and protein accumulation is also routinely 

performed by culturing mycelia in shaking liquid medium and harvesting similar-age 

mycelia at different circadian times (CT) (Loros et al., 1989). CT is a formalism that is 

used to normalize biological time in strains or organisms with different FRPs to 24 

circadian h per cycle. By convention, CT 0 is dawn, and in diurnal animals CT 0 is the 

beginning of the activity phase. CT 12 represents dusk, and for nocturnal animals it 

designates the start of the activity phase (reviewed by Dunlap et al., 2004).  

 

Studies of the N. crassa clock are enhanced by the excellent genetics and biochemistry 

of the organism. The haploid genome of seven chromosomes has been sequenced to 

reveal a genome size of ~40 MB and ~10,000 genes (Borkovich et al. 2004). The use of 

mutations in the non-homologous end-joining (NHEJ) pathway permits near 100% 

recombination between two homologous DNA’s and efficient gene replacement 

(Ninomiya et al., 2004). These mutations have been used to generate a large scale gene 

knockout library (Colot et al., 2006), available through the Fungal Genetic Stock Center 

(FGSC) (McCluskey, 2003). 70-mer oligonucleotide microarrays representing each 

predicted open reading frame are also available through the FGSC (Kasuga et al., 2005). 

A recent development in N. crassa is the introduction of green fluorescent protein (GFP) 

(Freitag et al., 2004) and red fluorescent protein (RFP) (Freitag and Selker, 2006) 
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fusions to visualize proteins in living cells, as well as luciferase for monitoring gene 

activity, including rhythmic gene expression (Lewis et al., 2002; Gooch et al., 2008).     

 

The well-characterized FRQ/WCC oscillator was the first oscillator discovered in N. 

crassa and was long considered to be the only circadian oscillator regulating overt 

circadian rhythms (reviewed by Heintzen and Liu, 2006). Similar to all known 

eukaryotic oscillators, the FRQ/WCC oscillator is comprised of an auto-regulatory, 

transcriptional/translational, negative feedback loop. This loop involves the frequency 

(frq), white collar-1 (wc-1) and wc-2 genes and their protein products, and a FRQ-

interacting RNA helicase (FRH) (reviewed by Heintzen and Liu, 2006). In this feedback 

loop, FRQ/FRH complex (FFC) forms the negative limb of the oscillator, whereas WC-1 

and WC-2, two PER-ARNT-SIM (PAS) domain-containing transcription factors, are the 

positive elements (Figure 4) (Aronson et al., 1994b, Cheng et al., 2005; Crosthwaite et 

al., 1997).  

    

During late subjective night, in cultures grown in DD, WC-1, the main blue-light 

photoreceptor of N. crassa  (He et al., 2002; Froehlich et al., 2002; Lee et al., 2003), and 

WC-2 proteins dimerize through their PAS domains in the nucleus forming a dark WC 

complex (D-WCC). The D-WWC binds to the clock box (C box) in the frq promoter, to 

directly activate the transcription of the frq gene (Cheng et al., 2005; Froehlich et al., 

2003; He and Liu, 2005b). In the early subjective morning, frq mRNA levels peak, while 

levels of FRQ protein slowly increase and enter the nucleus. The peak in FRQ protein  
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accumulation occurs with about a 4 to 6 h lag from the peak in frq mRNA in the late 

subjective day (Aronson et al., 1994b; Garceau et al., 1997).     

     

After FRQ is synthesized, it self-dimerizes and forms the FFC with FRH in the nucleus, 

and then the FFC binds to D-WCC leading to the phosphorylation of WCC (Cheng et al., 

2005; Merrow et al., 1999). Once hyperphosphorylated, activity of the D-WCC is 

repressed such that it is unable to transcriptionally activate frq (Cheng et al., 2005; 

Froehlich et al., 2003). This repression leads to a decrease of frq mRNA levels beginning 

around mid-subjective day, reaching a trough around mid-subjective night. Repression 

also leads to a reduction of FRQ protein levels, forming the negative limb of the 

feedback loop.  

 

While FRQ is directing WCC phosphorylation, it is also being progressively 

phosphorylated over time by several kinases, including casein kinase I (CK-1a), CKII 

and calcium/calmodulin-dependent kinase (CAMK-1), and dephosphorylated by two 

phosphatases, PP1 and PP2A (Liu, 2005). After FRQ is fully phosphorylated, it 

physically interacts with FWD-1, an F-box/WD-40 repeat-containing protein and the 

substrate-recruiting subunit of an SCF-type ubiquitin ligase complex, which mediates the 

ubiquitination of FRQ and its degradation by the proteasome system (He et al., 2003). 

The loss of FRQ, in conjunction with dephosphorylation of the WCC by PP2A, releases 

the repression of D-WCC, allowing the cycle to restart (reviewed by Heintzen and Liu, 

2006).      
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In addition to repressing D-WCC activity, FRQ also functions in a positive feedback 

loop (Cheng et al., 2003b; Merrow et al., 2001), promoting the transcription of wc-2 and 

increasing the levels of WC-1 and WC-2 proteins post-transcriptionally (Lee et al., 2000; 

Schafmeier et al., 2006). This positive loop confers stability and robustness to the 

FRQ/WCC oscillator (Cheng et al., 2001). The mechanisms for this regulation are not 

clear; however, it was recently shown that phosphorylation of the PEST-2 region of 

cytoplasmic FRQ is required for its role in supporting WC-1 accumulation (Schafmeier 

et al., 2006). Therefore, FRQ functions in at least two roles in the positive and negative 

feedback loops, interlocking the repression of its own transcript with the up-regulation of 

the levels of the WC proteins. Progressive phosphorylation of FRQ seems to facilitate a 

change in FRQ from a nuclear repressor to a cytoplasmic activator of WC-1 protein 

accumulation (Brunner and Schafmeier, 2006). This process takes about 14 h; therefore, 

phosphorylation appears to be a major player in delaying the cycle. 

 

WC-1 and WC-2 also regulate each other to form an additional interacting feedback loop 

in the FRQ/WCC oscillator. WC-2 supports WC-1 protein accumulation by forming the 

D-WCC (Cheng et al., 2002). On the other hand, WC-1 negatively regulates the 

expression of wc-2 at the level of transcript abundance (Cheng et al., 2003a). This 

feedback regulation between wc-1 and wc-2 keeps D-WCC at optimal levels for its 

function in the both circadian rhythms and blue light sensing (reviewed by Heintzen and 

Liu, 2006).  
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1.4 Oscillator Complexity in the Neurospora crassa Clock System 

In addition to the well-described FRQ/WCC oscillator, several lines of evidence have 

implied the presence of FRQ-less oscillators (FLOs) which may have important 

functions in the N. crassa circadian clock system, such as a FRQ-less oscillator (FLO), 

temperature controlled-FLO (TC-FLO), choline deficiency oscillator (CDO), nitrate 

reductase oscillator (NRO), rhythms in diacyglycerol (DAG) levels and WC-dependent 

FLO (WC-FLO) (Table 1). However, molecular details are only known for the core 

FRQ/WCC oscillator. The data supporting additional oscillators have raised awareness 

and rekindled an appreciation for the early work by Collin Pittendrigh in flies suggesting 

multiple coupled oscillators form the clock (Pittendrigh, 1954). Multiple oscillators may 

add stability and robustness to the clock system (Cheng et al., 2001; Locke et al., 2006; 

Preitner et al., 2002), increase the flexibility of the system during entrainment, and allow 

different oscillators to control phase or functionally related outputs (Rand et al., 2006; de 

Paula et al., 2007).  

 

To begin to identify components of the FLOs, we undertook a genetic screen for FRQ 

suppressors. About 8000 ultraviolet light (UV) mutagenized wc-2234W; bd; ∆frq mutant 

colonies were screened for developmental rhythms in LL. This strain lacks FRQ and has 

a nonfunctional WC-2 protein; thus, this strain was chosen for its complete absence of a 

functional FRQ/WCC oscillator. In WT strains in LL, FRQ protein accumulates to high 

levels all day long, and the overt rhythm in conidiation is abolished. A developmental 

rhythm is also not observed in ∆FRQ strains in LL (Crosthwaite, 1995). We identified  



 15

 



 16

two mutant strains which displayed developmental rhythm in bright LL (1200 lux) with 

a circadian period in the absence of a functional FRQ/WCC oscillator. These two mutant 

strains are named LM-1 (light mutant-1) and LM-2 (Figure 5). Based on these 

preliminary data, I have tested the hypothesis that the light mutant oscillator (LMO) is a 

circadian oscillator that can function independently of the FRQ/WCC oscillator. My 

results presented in the following sections support this hypothesis.    
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2. CONDITIONS FOR GROWTH OF THE LM-1 AND LM-2 MUTANT STRAINS 

THAT OPTIMIZE THE RHYTHM OF DEVELOPMENT IN LL 

 

2.1 Introduction 

To begin to identify components of the FLOs, our lab undertook a genetic screen for 

FRQ suppressors. About 8000 UV mutagenized wc-2234W; bd; ∆frq mutant colonies were 

screened for developmental rhythms in LL and for loss of rhythmicity in temperature 

cycles.  

 

Dr. Kyung Seo identified two mutant strains which displayed developmental rhythm in 

bright LL (1200 lux) with a circadian period in the absence of a functional FRQ/WCC 

oscillator. These two mutant strains are named LM-1 and LM-2 (Figure 5). While other 

N. crassa mutant strains have also been shown to display conidiation rhythmicity in LL, 

for instance, poky, lis-1, lis-2, lis-3, rib-1and rib-2 (Paietta, 1981 and Paietta, 1983), 

these strains differ significantly from LM-1 and LM-2, in that they have defective 

growth and their rhythmicity is restricted to dim light of less than 500 lux (Paietta, 1981 

and Paietta, 1983).  

 

However, both the LM-1 and LM-2 mutant strains that were isolated, stored and initially 

characterized by Dr. Seo were found to be difficult to work with. The rhythmic 

phenotypes were not always apparent and seemed to depend on media conditions. We 

suspected that the strains had other mutations, and/or that they were heterokaryons. 
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Therefore, my first goal was to re-isolate the LM-1 and LM-2 mutant strains following 

several backcrosses, and to determine the optimal growth conditions for observing 

developmental rhythms in the LM-1 and LM-2 mutant strains in LL. 

 

2.2 Materials and Methods 

Strains  

All strains used in this study are listed in Table 2. All strains carry the band (bd) 

mutation (unless indicated otherwise). The mating types of the strains are indicated as 

mat A or mat a.  

 

Culture conditions 

All vegetative cultures were maintained on Vogel’s minimal media (1X Vogel’s salts, 

2% glucose) and handled according to standard protocols (Vogel, 1956; Davis and 

Deserres, 1970). Strains containing the bacterial hygromycin resistance gene (hph) 

cassette, such as the strains with the frq10 or ∆wc-1 mutations were maintained on 

Vogel’s minimal media supplemented with 200 µg/ml hygromycin B. Sexual crosses 

were performed on Westergaard’s crossing agar plates containing synthetic crossing 

media (Westergaard and Mitchell, 1947) supplemented with 0.5% sucrose.   

 

Race tube assay  

Race tube assays were performed in environment-controlled chambers (Percival 

Scientific, Inc., Perry, IA). Light intensity was measured by dual range light meter 
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(VWR Scientific, Inc., Friendswood, TX).   

 

2.3 Results 

Remove any superfluous mutations in the LM-1 mutant strain by backcrossing 

To re-isolate the LM-1 mutant  strain, the mutant strain DBP 590 (lm1 mat A; bd; ∆wc-

1; which was stored by Dr. Kyung Seo and showed rhythmicity in LL at 25 °C), was 

backcrossed to the WT strain FGSC 1859 (mat a; bd), which was arrhythmic in LL 

(Figure 6). This cross is referred to as cross 526. In this backcross, 1:1 segregation of the 

LM-1 phenotype was observed. This segregation pattern is consistent with the LM-1 

mutation being the only mutation in this strain that affects the developmental rhythm in 

LL. Progeny from this cross were grown on race tubes in LL at 25 °C in Percival 

incubators. The growth front was then marked every 24 h. Periods of the rhythms (the 

time between two consecutive conidial bands, h) and growth rates (the average distance 

the growth front of the conidia moved within 24 h, cm/day) were calculated. From these 

experiments, two progeny, which showed the most robust and stable rhythmicity in LL 

at 25 °C, 526.36 (lm1 mat A; bd) and 526.25 (lm1 mat a; bd; ∆wc-1), were chosen for 

future analysis. Theses two strains were crossed to each other, referred to as cross 538 

(Figure 6). All of the progeny of cross 538 exhibited the same LM-1 phenotypes either 

as 526.36 (lm1 mat A; bd) or 526.25 (lm1 mat a; bd; ∆wc-1). Four progeny from the 

cross of 538, 538.19 (lm1 mat A; bd; ∆wc-1), 538.21 (lm1 mat a; bd; ∆wc-1), 538.22 

(lm1 mat a; bd) and 538.27 (lm1 mat A; bd), which exhibited the most robust and stable 

rhythmicity in LL at 25 °C were stored as strains of DBP 696, DBP 697, DBP 695 and  
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DBP 694, respectively (Figures 6 and 7).              

 

Phenotypes of these four stored strains were confirmed in independent blind tests by 

other lab colleagues. In addition, DBP 696 (lm1 mat A; bd; ∆wc-1) was crossed to DBP 

697 (lm1 mat a; bd; ∆wc-1) referred as cross 560 (Figure 6). DBP 695 (lm1 mat a; bd) 

was crossed to DBP 694 (lm1 mat A; bd) referred as cross 561. Ten progeny from these 

crosses were phenotypically tested, and all of them exhibited the same phenotypes as 

their parents and siblings, which indicates that any superfluous mutations in the LM-1 

mutant strain were removed.  

        

Remove any superfluous mutations in the LM-2 mutant strain by backcrossing 

To re-isolate the LM-2 mutant strain, the mutant strain KS 160 (lm2 mat A; bd), which 

was stored by Dr. Seo and showed rhythmicity in LL at 25 °C, was backcrossed to the 

WT strain of FGSC 1859 (mat a; bd) (Figure 6).  This cross is referred to as cross 552. 

In 20 progeny from the cross, 1:1 segregation of the LM-2 phenotype was observed, 

indicating that the LM-2 mutation in KS 160 is the only mutation in the strain that 

affects the period in LL. Progeny from the crosses were grown on race tubes in LL at 25 

°C in Percival incubators. Periods of the rhythms and growth rates were calculated. Two 

progeny from the cross, 552.3 (lm2 mat a; bd) and 552.4 (lm2 mat A; bd), which 

exhibited the most robust and stable rhythmicity in LL at 25 °C, were stored as strains of 

DBP 714 and DBP 715 (Figures 6 and 7).              
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Phenotypes of these two stored strains were confirmed in independent tests by other lab  

colleagues. In addition, DBP 714 (lm2 mat a; bd) was crossed to DBP 715 (lm2 mat A; 

bd) referred to as cross 562 (Figure 6). Ten progeny from this cross were tested on race 

tubes, and all of them exhibited the same phenotypes as their parents and siblings, which 

suggests that any superfluous mutations in the LM-2 mutant strain were removed.  

 

However, the LM-2 mutant strain was still found to be unstable. In subsequent crosses 

by Dr. Xiaoguang Liu in our lab, he observed that the phenotype of the LM-2 mutant 

strain is very dependent on moisture levels in race tube and temperature. Furthermore, 

the period is dependent on the presence or absence of WC-1. Due to these complexities, 

I have focused on charactering the LM-1 mutant strain and Dr. Liu is focusing on the 

LM-2 mutant strain.  

 

Determine the optimal growth conditions for observing developmental rhythms in the 

LM-1 mutant strain in LL 

The newly isolated lm1 bd strains, DBP 694 and DBP 695, were tested on race tubes to 

determine the optimal growth conditions for revealing the highest amplitude and most 

consistent rhythm of development. Based on past experience, I changed the chemical 

composition of the race tube medium (Sargent, 1966) singly and in combination: 

Vogel’s salts (1X or 2X), glucose (0.1% or 0.3%), arginine (0.17% or 0.5%) and agar 

(1.5% or 2%). I also altered the volume of media in the race tube (11ml or 13ml), the 

moisture level of the race tubes when they were being inoculated (keeping them on 
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bench for 1 week after autoclaving or 4 weeks after autoclaving), the age of the LM-1 

mutant strain (1 week old or 4 weeks old), the light intensity these strains received in 

Percival incubators (500 lux or 1500 lux), and the temperature in the Percival incubators 

(15 °C, 19 °C, 25 °C or 30 °C). The optimal conditions for observing developmental 

rhythms in the LM-1 mutant strain in LL were found to be the following: (1) 1 week old 

race tube medium containing 1X Vogel’s salts, 0.1% glucose, 0.17% arginine and 1.5% 

agar, (2) 11ml medium in the race tube, (3) inoculation with a one week old culture of 

the LM-1 mutant strain, (4) incubation in Percival incubators at 25 °C with the light 

intensity of 1500 lux (data not shown).  

 

2.4 Discussion 

Remove any superfluous mutations in the LM-1 and LM-2 mutant strains by 

backcrossing 

In all the backcrosses performed in this process, 1:1 segregation of the LM-1 or LM-2 

phenotype with the rhythmic progeny showing equivalent period length was always 

observed. All of the progeny exhibited the same phenotypes with their parents and 

siblings for the crosses of the same genotypes with the exception of mating type; this 

result suggested that any superfluous mutations in both the LM-1 and LM-2 mutant 

strains were removed. The LM-1 and LM-2 mutations were identified in a ∆FRQ strain. 

The backcrosses were also used to obtain the LM-1 and LM-2 mutations in a FRQ+ 

strain. Importantly, the rhythm persisted in LL independent of whether or not FRQ was 

present in the strain.  
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Determine the optimal growth conditions for observing developmental rhythms in the 

LM-1 mutant strain in LL 

For changes in the chemical composition of the race tube medium with respect to 

conidiation rhythms, Vogel’s salts was better than 2X Vogel’s salts, 0.1% glucose was 

better than 0.3% glucose and 0.17% arginine was better than 0.5% arginine. Since the 

standard chemical composition of the race tube media is 1X Vogel’s salts, 0.3% glucose 

and 0.5% arginine (Sargent, 1966), these data indicated that the LM-1 mutant strain 

shows a strong rhythm when grow at a lower concentration of sugar (glucose) and 

nitrogen (arginine). WT strains were arrhythmic in these conditions. The amount of agar 

in the race tubes, the volume of media in the race tube and the time interval between 

autoclaving and inoculating race tubes collectively influenced the moisture level of the 

race tubes when they were inoculated. The age of the LM-1 mutant strain also affected 

the observed developmental rhythms significantly: a one week old strain performed 

much better than a 4 week old strain. The most critical growth condition for observing 

developmental rhythms for the LM-1 mutant strain was the light intensity it received in 

Percival incubators. Strong light of 1500 lux was produced strong rhythms than did dim 

light of 500 lux conditions in other N. crassa mutant strains have been shown to display 

conidiation rhythms in 500 lux LL (Paietta, 1981; Paietta, 1983). Moreover, the LM-1 

mutant strain was identified in bright LL (1200 lux). The temperature in the Percival 

incubators had the least effect on the observed LM-1 developmental rhythms. The 

growth conditions found to reveal the most robust rhythm for the LM-1 mutant strain 

were used for all subsequent experiments. 
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3. THE LMO IS A CIRCADIAN OSCILLATOR  

 

3.1 Introduction 

Circadian rhythms are defined by three main characteristics as described in Section 1 

(reviewed by Dunlap et al., 2004). Experiments were conducted to examine if the LMO 

uncovered by the LM-1 and LM-2 mutations meet the following criteria of a true 

circadian oscillator. 

 

(1) The developmental rhythms regulated by the LMO should persist with an intrinsic 

FRP of roughly 24 h, when the organism is kept under constant conditions, such as 

LL at 25 °C or DD at 25 °C. If the FRP is not close to 24 h, it should be entrained by 

24 h environmental cycles.    

 

(2) The developmental rhythms regulated by the LMO should be entrained by external 

cues, including temperature or light, in a time-dependent fashion.  

 

(3) The developmental rhythms regulated by the LMO should be temperature-

compensated, meaning the FRP is nearly constant across an extensive range of 

physiologically relevant temperatures.  
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3.2 Materials and Methods 

Strains, culture conditions and race tube assay  

All strains used in this study are listed in Table 3. All assays are the same as described in 

Section 2.  

 

PCR conditions to verify strains containing ∆frq  

PCR reaction mixture contained: 1 µl genomic DNA (50 ng/µl), 1 µl each primer (10 

µM), 8 µl dNTPs (2.5 mM) (Fisher Scientific, Houston, TX), 0.5 µl TaKaRa ExTaq 

polymerase (5 U/ µl , Fisher Scientific, Houston, TX) and 5 µl 10 X ExTaq buffer 

(Fisher Scientific, Houston, TX). These were assembled in a 50 µl total volume on ice. 

Thermal cycler programs were started and paused when the block temperature reached 

95 °C before PCR tubes were inserted. Samples were initially denatured for 3 minutes at 

95 °C, then treated with 30 cycles of 30 seconds denature at 95 °C, 30 seconds annealing 

at 60 °C, 2 minute extension at 72 °C, followed by 5 minutes final extension at 72 °C. 

The tubes were then stored at 4 °C. The null ∆frq mutant strain was produced by gene 

replacement with the bacterial hygromycin resistance gene (hph) (Aronson et al., 1994a). 

The forward primer of 5’GAAGCATACTATCGCCAGAC3’ anneals to the 5’ region of 

frq locus, and the reverse primer of 5’AGCACTCGTCCGAGGGCAAA3’ anneals to the 

hph gene insertion. The forward primer of 5’ATGACAAAAACA ACGCCATACA3’ 

and the reverse primer of 5’TTATTCCCAAGCAGACCCCA3’ to the invertase gene 

were used as a positive control for the PCR.  
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3.3 Results 

Cross the LM-1 mutant strain to FRQ/WCC oscillator mutant strains (∆wc-1, ∆frq and 

frq7) and isolate the double mutants 

To determine if the LMO can function to control rhythms independent of the FRQ/WCC 

oscillator, ∆wc-1, ∆frq and frq7were reintroduced into the LM-1 mutant strain.  

 

The ∆wc-1 mutant strain is arrhythmic in DD and LL and lacks all known light 

responses, including light entrainment of the circadian clock (Crosthwaite et al., 1995 

and 1997). WC-1 is the main blue-light photoreceptor in N. crassa that mediates light 

input to FRQ/WCC oscillator (He et al., 2002, Froehlich et al., 2002 and Lee et al., 

2003). DBP 696 (lm1 mat A; bd; ∆wc-1) and DBP 697 (lm1 mat a; bd; ∆wc-1) were 

described in section 2.3. The wc-1 deletion is currently being verified by PCR.           

 

To get ∆frq into the LM-1 mutant background, DBP 694 (lm1 mat A; bd) was crossed to 

DBP 287 (mat a; bd; ∆frq) referred to as cross 564. Two progeny 564.42 (lm1 mat A; 

bd; ∆frq) and 564.40 (lm1 mat a; bd; ∆frq) showed robust rhythmicity in LL which 

indicated that they contained the LM-1 mutant. The ∆frq strain conidiates arrhythmically 

under standard growth conditions in DD and LL (Aronson et al., 1994a). Both of the 

progeny 564.42 and 564.40 exhibited growth on media containing hygromycin 

indicating that they contained ∆frq. The frq deletion in these strains was also verified by 

PCR (Figure 8). 2 kb expected bands were obtained from all the strains tested using 

invertase primers as a positive control, indicating that PCR conditions were working.  
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Bands of the expected 1.5 kb size were obtained from the strains containing ∆frq, 

indicating that the null ∆frq mutant strain was produced by gene replacement hph. Thus, 

564.42 (lm1 mat A; bd; ∆frq) and 564.40 (lm1 mat a; bd; ∆frq) were stored as DBP 831 

and DBP 832. 

 

The frq7 mutation is a G to A point mutation, and results in a long period of 29 h in DD, 

but is arrhythmic in LL (reviewed by Loros and Dunlap, 2001).To obtain frq7 in the LM-

1 genetic background, DBP 694 (lm1 mat A; bd) was crossed to DBP 294 (mat a; bd; 

frq7) referred as cross 566. Two progeny 566.33 (lm1 mat A; bd; frq7) and 566.37 (lm1 

mat a; bd; frq7) showed robust and consistent rhythmicity in LL which indicated that 

they contained the LM-1 mutant. Both of the progeny 566.33 and 566.37 exhibited 31.1 

h rhythms in DD, whereas lm1 mat a; bd strains displayed a 22.8 h rhythm in DD 

(Figure 9). These data indicate that 566.33 and 566.37 contain frq7. Thus, 566.33 (lm1 

mat A; bd; frq7) and 566.37 (lm1 mat a; bd; frq7) were stored as DBP 833 and DBP 834. 

For further proof that these strains contain the frq7 allele, I will sequence the frq alleles 

in these strains.  

 

Assay the developmental rhythm of the mutant strains in LL  

The LM-1 strains, and control strains were examined (Figure 10) by race tube assay 

under the standard growth conditions defined in section 2.3. in LL at 25 °C. In LL at 25 

°C, DBP 580 (mat A; bd; ∆wc-1), DBP 287 (mat a; bd; ∆frq), and DBP 339 (mat A; bd; 

frq7) strains were arrhythmic (Figure 10), while strains carrying the LM-1 mutation in 
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these genetic backgrounds exhibited circadian rhythmicity. DBP 694 (lm1 mat A; bd) 

had a period of 17.1h ± 1.3 (n=194), DBP 696 (lm1 mat A; bd; ∆wc-1) had a period of 

25.1 h ± 0.8 (n=191), DBP 831 (lm1 mat A; bd; ∆frq) had a period of 25.0 h ± 2.0 

(n=81), and DBP 833 (lm1 mat A; bd; frq7) had a period of 13.6 h ± 0.7 (n=172). 

However, the rhythm of DBP 833 was less robust. 

 

Assay the developmental rhythm in the mutant strains in DD  

FGSC 1858 (mat A; bd), DBP 694 (lm1 mat A; bd), DBP 580 (mat A; bd; ∆wc-1), DBP 

696 (lm1 mat A; bd; ∆wc-1), DBP 287 (mat a; bd; ∆frq), DBP 831 (lm1 mat A; bd; 

∆frq), DBP 339 (mat A; bd; frq7) and DBP 833 (lm1 mat A; bd; frq7) were tested by race 

tube assay under the standard growth conditions defined in Section 2 in DD at 25 °C, 

conditions in which the FRQ/WCC oscillator is active in WT strains. Periods and growth 

rates of these strains were calculated. In DD at 25 °C, FGSC 1858 (mat A; bd) WT strain 

showed a period of 22.0 h ± 0.2 (n=70) (Figure 10), DBP 694 (lm1 mat A; bd) showed a 

period of 22.8 h ± 0.3 (n=91). DBP 580 (mat A; bd; ∆wc-1) and DBP 287 (mat a; bd; 

∆frq) strains were arrhythmic (Figure 10) in DD, while strains containing the LM-1 

mutation in these genetic backgrounds exhibited circadian rhythmicity: DBP 696 (lm1 

mat A; bd; ∆wc-1) had a period of 21.9 h ± 1.3 (n=41), DBP 831 (lm1 mat A; bd; ∆frq) 

had a similar period of 21.7 h ± 1.7 (n=34). DBP 339 (mat A; bd; frq7) exhibited a period 

of 28.8 h ± 0.1 (n=26), while DBP 833 (lm1 mat A; bd; frq7) exhibted a period of 31.1 h 

± 0.2 (n=35). 
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The LM-1 mutant strains maintain a circadian FRP in constant conditions 

While still rhythmic, the amplitude of the LM-1 rhythm in strains that lack a functional 

FRQ/WCC oscillator was not as robust as FRQ+ or WC-1+ strains. Our results are 

consistent with previous studies showing that bd; ∆frq and bd; ∆wc-1 strains are 

arrhythmic under these conditions (Aronson et al., 1994a and Lee et al., 2003). Together, 

these data demonstrate that the LM-1 mutant strain oscillator persists in DD and LL, 

independent of a functional FRQ/WCC oscillator.     

 

The developmental rhythm of the LM-1 mutant strains can be entrained by LD cycles  

To determine if the developmental rhythm regulated by the LMO can be entrained, the 

LM-1 mutant strains were placed in various LD cycles. The strains were first grown on 

race tubes in LL at 25 °C for 24 h, after which, the growth front was marked and the 

culture was transferred to different LD cycles in Percival incubators. The growth front 

was then marked every time the lights were turned off. FGSC 1858 (mat A; bd), DBP 

694 (lm1 mat A; bd), DBP 580 (mat A; bd; ∆wc-1), DBP 696 (lm1 mat A; bd; ∆wc-1), 

DBP 287 (mat a; bd; ∆frq), DBP 831 (lm1 mat A; bd; ∆frq) were placed in light (1500 

lux, 12 h) :  dark (12 h) cycles at 25 °C (LD12, Figure 11) and light (1500 lux, 14 h) :  

dark (14 h) cycles at 25 °C (LD14, Figure 12).  

 

Similar to previous results (Aronson et al., 1994a and Lee et al., 2003), DBP 580 (mat A;  

bd; ∆wc-1) and DBP 287 (mat a; bd; ∆frq) did not show developmental rhythms in 

LD12 at 25 °C (Figure 11) or LD14 at 25 °C (Figure 12). However, the LM-1 mutant 
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strain in WT, ∆wc-1 and ∆frq backgrounds displayed developmental rhythms with 

periods of that equaled the LD cycle. These results demonstrate that the LMO can be 

entrained by LD cycles, independent of a functional FRQ/WCC oscillator. 

 

The developmental rhythm of the LM-1 mutants can be entrained by temperature cycles  

To determine if the developmental rhythm regulated by the LMO can be entrained by 

temperature cycles, the LM-1 mutant strains were placed in temperature cycles. The 

strains were first grown on race tubes in LL at 25 °C for 24 h, after which, the growth 

front was marked and the culture was transferred to 22 °C (12 h) :  27 °C (12 h) cycles in 

Percival incubator. The growth front was then marked every time the temperature 

decreased. FGSC 1858 (mat A; bd), DBP 694 (lm1 mat A; bd), DBP 580 (mat A; bd; 

∆wc-1), DBP 696 (lm1 mat A; bd; ∆wc-1), DBP 287 (mat a; bd; ∆frq), DBP 831 (lm1 

mat A; bd; ∆frq) were placed in 22 °C (12 h) :  27 °C (12 h) cycles in both LL (Figure 

13) and DD (Figure 14).  

 

Different from the effects on LD cycles and consistent with previous results 

(Crosthwaite et al., 1995; Merrow et al., 1999), DBP 580 (mat A; bd; ∆wc-1) and DBP 

287 (mat a; bd; ∆frq) have a 24 h developmental rhythm in temperature cycles. These 

indicate that the circadian clock in N. crassa in the condition of a nonfunctional 

FRQ/WCC oscillator can be entrained by temperature cycles, but not LD cycles. The 

LM-1 mutant strain in WT, ∆wc-1 and ∆frq backgrounds also exhibited periods of 24 h  
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in these cycles in both LL and DD conditions. All of these strains conidiate in the cold 

(22 °C) portion of the cycle in LL and DD.  

 

The same strains were placed in 16 °C (12 h) :  32 °C (12 h) cycles in both LL and DD 

(data not shown). The LM-1 mutant strain in WT, ∆wc-1 and ∆frq backgrounds also 

exhibited periods of around 24 h and conidiated in the cold (16 °C) partion of the cycle.     

 

The developmental rhythm of the LM-1 mutants is temperature-compensated 

To determine if the LMO drives rhythms that are unaffected by temperature in the  

physiological range, DBP 694 (lm1 mat A; bd), DBP 580 (mat A; bd; ∆wc-1), DBP 696 

(lm1 mat A; bd; ∆wc-1), DBP 287 (mat a; bd; ∆frq), DBP 831 (lm1 mat A; bd; ∆frq) 

were examined at 15 °C, 17 °C, 19 °C, 21 °C, 23 °C, 25 °C and 27 °C for developmental 

rhythms in LL to determine if the developmental rhythm is temperature-compensated 

(Figure 15).  

 

The Q10 for DBP 694 (lm1 mat A; bd) is 1.04, for DBP 696 (lm1 mat A; bd; ∆wc-1) is 

0.93, and for DBP 831 (lm1 mat A; bd; ∆frq) is 1.00.  The Q10 values for the 

developmental rhythm in LL of these mutant strains were close to 1 indicating that the 

rhythms were essentially temperature- independent.  
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3.4 Discussion 

The LMO is a circadian oscillator  

One of the hypotheses tested in this section is that the LMO uncovered by the LM-1 

mutation is a circadian oscillator. To support this hypothesis, the three main 

characteristics that define circadian oscillators, including an intrinsic FRP of roughly 24 

h when the organism is kept under constant conditions, entrainment by light and 

temperature, and temperature-compensation were examined (reviewed by Dunlap et al., 

2004).  

 

The developmental rhythms observed in the LM-1 mutant strains persist with an intrinsic 

FRP of roughly 24 h when the organism is kept under constant conditions. In addition, 

the LM-1 mutant strains are entrained by different LD cycles, are within the circadian 

range (LD12) and the other within a longer 28 h period (LD14). I am currently checking 

if the developmental rhythms regulated by the LMO can be entrained by one LD12 

and/or DL12 cycles and then be released in DD and LL (bright light of 1500 lux and dim 

light of 500 lux). The LM-1 mutant strains are also entrained by different temperature 

cycles in LL and DD conditions. I am also testing if the developmental rhythms 

regulated by the LMO can be entrained by one 22 °C (12 h) :  27 °C (12 h) and/or 27 °C 

(12 h) :  22 °C (12 h) cycles and then be released in DD and LL. These results indicate 

that the rhythms observed in the LM-1 mutant strains can be entrained by external cues 

in a time-dependent fashion. Lastly, the Q10 of the LM-1 mutant strain was close to 1, 

indicating that the rhythms were essentially temperature- independent. By assaying the 
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three key characteristics of circadian rhythms, the LMO, was determined to be a 

circadian oscillator that can function independent of the FRQ/WCC oscillator to regulate  

circadian rhythms in development.  

 

There are now extensive lines of physiological evidence for the existence of FLOs in N. 

crassa (Table 1). However, the three properties that define a circadian oscillator are not 

met or not determined for most of these FLOs. For example, the CDO, rhythm is not 

circadian. The period of the CDO rhythm ranges from 33 to more than 120 h, depending 

on the genetic background (Lakin-Thomas, 1996). The CDO rhythm can be entrained by 

light to periods near its FRP, but not within the circadian range. The developmental 

rhythm is not temperature-compensated, but it is pH-compensated (Lakin-Thomas, 1998; 

Ruoff and Slewa, 2002). For the NRO, the temperature-compensation and entrainment 

characteristics are unknown (Christensen et al., 2004).  

 

A separate light input pathway to the LMO exists 

The LM-1 mutation strain can restore light entrainment to a ∆frq or a ∆wc-1 strain 

(Figure 11 and 12). Because wc-1 is the blue light receptor required for resetting of the 

FRQ/WCC oscillator by light (He et al., 2002; Froehlich et al., 2002; Lee et al., 2003), 

our demonstration of light responses of the LMO in the absence of wc-1 supports the 

idea that a separate light input pathway to the LMO exists (Figure 16). Furthermore, 

light entrainment in a ∆wc-1 mutant strain indicates that a different photoreceptor is 

involved in light signaling to the LMO.  
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VIVID (VVD) is a candidate photoreceptor which may be involved in light signaling to  

the LMO. VVD is a small PAS/LOV domain-containing protein which is most similar to 

the PAS/LOV domain of WC-1 (Heintzen et al., 2001). VVD functions as blue light 

photoreceptor in N. crassa. WC-1 is required for the expression of VVD (Cheng et al., 

2003a, Schwerdtfeger and Linden, 2001 and Shrode et al., 2001). The VVD feedback 

loop mutes light responses in N. crassa and regulates light resetting and 

photoentrainment of the circadian clock (Heintzen et al., 2001 and Schwerdtfeger and 

Linden, 2003). A number of potential light signaling proteins with similarities to 

phytochromes (PHY-1 and PHY-2), cryptochrome (CRY), opsin (NOP-1), or LOV 

domain-containing protein (PHOT) have also been found through mining the N. crassa 

genome sequence (Froehlich et al., 2005). Thus, other blue and red light signaling 

pathways exist in N. crassa, and they may be involved in light signaling to the LMO.  

The role of the candidate photoreceptors in entrainment of the LMO can first be 

narrowed down by examining light entrainment using light of only the blue and red 

wavelength. Different light filters will be added to the white light bulbs which were used 

in these studies before to assay for light entrainment to distinguish these possibilities. 

Once we establish the type of photoreceptors used by the LMO, the photoreceptor can be 

identified using available knock-outs of the genes. These knock-out mutant strains need 

to be crossed to the lm1 ∆wc-1 mutant strain to generate triple mutants to be assayed for 

light entrainment. The triple mutant(s) who shows the loss of entrainment will indicates 

that these potential light signaling proteins might be involved in the light signaling 

pathway.  
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The LMO can function independent of the FRQ/WCC oscillator to control developmental 

rhythms in LL 

In LL at 25 °C, DBP 580 (mat A; bd; ∆wc-1), DBP 287 (mat a; bd; ∆frq), and DBP 339 

(mat A; bd; frq7) strains were arrhythmic (Figure 10), while strains carrying the LM-1 

mutation in these genetic backgrounds exhibited circadian rhythmicity. This implies that 

the circadian rhythmicities of the LM-1 mutant strains in LL do not require components 

of the well-characterized FRQ/WCC oscillator. These results support the idea that the 

LMO responsible for the developmental rhythms can function independent of the 

FRQ/WCC oscillator (Figure 16). The existence of the FRQ/WCC oscillator and the 

LMO may enhance the ability of the circadian clock system in N. crassa stability and 

robustness, and flexibility to the environmental changes.    

 

The FRQ/WCC oscillator and the LMO communicate with each other 

While our data demonstrate that the LMO can function independent of the FRQ/WCC 

oscillator to control developmental rhythms in LL, several lines of evidence suggest that 

the FRQ/WCC oscillator and the LMO communicate with or influence each other. 

 

First, if the FRQ/WCC oscillator and the LMO communicate with or influence each 

other, then the periods of the LM-1 mutant in the WT, ∆wc-1, ∆frq or frq7 background 

should be different. If they do not communicate with or influence each other, then the 

periods in these backgrounds should be the same. My results in LL show the period of 

the LM-1 mutant is 17.1 h, whereas in the ∆wc-1 or ∆frq background, the period is  
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lengthened to about 25 h supporting the idea that the two oscillators communicate 

(Figure 10 and Table 4). Moreover, in a strain with increased FRQ stability (lm1 A; bd; 

frq7) (Aronson et al., 1994), the period is decreased to 13.6 h (Figure 10 and Table 4). 

This result is particularly interesting, and suggests that a slower FRQ/WCC oscillator 

correlates with a faster LMO. It would be very interesting to determine if a short period 

frq mutant, such as frq1, which has a 16.5 h period (Aronson et al., 1994) lengthens the 

LMO. Furthermore, in DD the period length of the LM-1 mutant strain is independent of  

the presence of FRQ or WC-1, suggesting that the LMO dominates period determination 

in DD. 

 

In addition, if the FRQ/WCC oscillator and the LMO communicate with or influence 

each other, then the periods of the LM-1 mutant in LL, conditions in which the 

FRQ/WCC oscillator is normally not functional, and in DD, conditions in which the 

FRQ/WCC oscillator is normally functional, should be different. While if they do not 

communicate with or influence each other, then the periods in LL and DD should be the 

same. Our results show the period of LM-1 in LL is 17.1 h, whereas in DD the period is 

22.8 h (Figure 10 and 10) further supporting a connection between the LMO and 

FRQ/WCC oscillator. The robustness of the rhythm in DD also correlates with the 

presence and absence of a FRQ/WCC oscillator, further suggesting linkage between the 

two oscillators. Replicate experiments are currently in progress to allow statistical 

analysis of the data. 
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Preliminary data indicate that both the LM-1 and LM-2 mutations are recessive (Seo, 

personal communication), indicating that the products of the LM-1 and LM-2 genes are 

not themselves part of the LMO. These data, along with our genetic analysis of the 

mutants suggest that the LM-1 and LM-2 gene products function to repress the LMO as 

negative regulators (Figure 16). We do not know if the LM-1 and LM-2 gene products 

function on the same LMO, or even within the same pathway. In addition, we do not 

know if the FRQ/WCC oscillator can function when the LMO is inactivated, or if the 

LMO feeds back to the FRQ/WCC oscillator to influence its activity. Answers to these 

and other questions will await the identification of the LMO components and cloning of 

the LM-1 and LM-2 genes.  
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4. GENETIC MAPPING OF THE LM-1 MUTATION USING CLEAVED 

AMPLIFIED POLYMORPHIC SEQUENCE (CAPS) MARKERS 

 

4.1 Introduction 

To understand the role of the LM-1 mutation in the function of the LMO and the clock, 

the LM-1 mutation needs to be mapped and the corresponding gene cloned. 

 

In N. crassa, mapping of mutations typically employs co-segregation of phenotypic (e.g. 

auxotropic) markers (Perkins, 1990). Several crosses are required to gain adequate 

resolution to identify the affected gene by candidate gene prediction (Kotierk and Smith, 

2004). Compared to using phenotypic markers, molecular markers are much more 

numerous and relatively easy to screen (Jenkins, 2003). Molecular markers can result in 

denser genetic map with greater accuracy from a single cross. 

     

Polymorphisms, usually single-base differences, exist between the N. crassa laboratory 

standard Oak Ridge WT strain and an exotic Mauriceville WT strain (Metzenberg, 

1984). Some of these polymorphisms will form or destroy a restriction endonuclease site 

relative to the Oak Ridge background. Polymorphisms that alter restriction enzyme 

recognition sites form the basis of PCR-based Cleaved Amplified Polymorphic 

Sequence (CAPS) markers. The CAPS markers correspond to a defined genomic region 

and contain a polymorphic restriction enzyme recognition site. This enables 

differentiation of the parent of origin. CAPS markers have been identified that are 
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distributed throughout the N. crassa genome (Jin et al., 2006). The intervals between 

CAPS markers have been examined to ensure complete coverage of the whole genome, 

and they are placed to enable interpolation of linkage data. Using a CAPS mapping 

approach, an Oak Ridge strain carrying the desired mutation is crossed to the 

Mauriceville strain and a modified bulked co-segregation analysis is performed using 

CAPS markers which differentiate polymorphic differences that exist between the two 

parental backgrounds.  

 

Bulked segregant analysis is also employed in this approach to improve the efficiency of 

genetic mapping of monogenic traits (Michelmore et al., 1991). Two pooled DNA 

samples are prepared from individual progeny of a segregating population according to 

the trait of interest. Each bulk, or pool, contains progeny which have the same genotypes 

at the region linked to a particular trait of interest or genomic region, but contain random 

genotypes at all unlinked regions. Hence, the two bulks are genetically dissimilar in the 

selected region, but are randomized at all the other areas. CAPS markers positioned near 

the area of interest will be in linkage disequilibrium and markers located further away 

will display a level of disequilibrium proportional to their distance. At long distances on 

the same chromosome, CAPS markers will exhibit as much as 50% recombination, 

indistinguishable from unlinked loci (Jin et al., 2006). This approach was used to map 

the LM-1 mutation. 
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4.2 Materials and Methods 

Strains, culture conditions and race tube assay  

All strains used in this study are listed in Table 5. All assays are the same as described in 

Section 2.  

  

Genomic DNA isolation from mycelia 

Mycelia were collected from 1 ml cultures after growing at 30 °C for 2 days (Jin et al., 

2007). Mycelial pads were rinsed with water and vacuum filtered until just damp, and 

then transferred to 1.5 ml microcentrifuge tubes, frozen with liquid nitrogen. Mycelia 

were ground to a fine powder with a pestle and a motar. To each ground sample, 10 ml 

Extraction Buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA and 1% SDS) and 50 µl 

RNase A (10 mg/ml in Tris-HCl, pH 8.0 and 50% glycerol) were added, mixed 

vigorously and the tubes incubated at 37 °C for 20 minutes. 50 µl Proteinase K (20 

mg/ml in 20 mM Tris-HCl, pH 7.5 and 50% glycerol) was then added, mixed well and 

the tubes incubated at 65 °C for 45 minutes. After the 45 minutes incubation, 10 ml 

phenol/chloroform was added, mixed thoroughly and centrifuged for 10 minutes at 3,000 

rpm. The aqueous phase was collected and another 10 ml phenol/chloroform was added 

to the supernatants. The samples were mixed thoroughly and the tubes were centrifuged 

for 10 minute at 3,000 rpm again. The aqueous phase was isolated and an equal volume 

of isopropanol was added to the supernatants to precipitate genomic DNA. The DNA 

pellets were washed once with 70% ethanol. The air-dried DNA pellets were 

resuspended with 200 µl TE Buffer, pH 8.0, and 2 µl RNase A.  
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CAPS marker design  

In addition to the CAPS markers described (Jin et al., 2007), additional markers for the 

right arm of linkage group I were designed to permit even higher resolution mapping on 

chromosome I (Table 6). The sequence differences between Oak Ridge WT strain and 

Mauriceville WT strain were searched through the N. crassa genome database (http:// 

www.broad.mit.edu/annotation/ genome/neurospora /Home.html). Non-identical 

restriction enzyme sites existing near the different base pairs were used to generate these 

CAPS markers. Additional CAPS markers designed by Dr. Jennifer Loros were used to 

further narrow down the mapped region (Table 6).  

 

PCR conditions, enzyme digestion and gel electrophoresis 

A single PCR amplification scheme was used for all of the CAPS primer markers (Jin et 

al., 2007): 50 ng genomic DNA, 0.5 µM each pair of primers, 0.25 mM dNTPs (Fisher 

Scientific, Houston, TX), 1 U TaKaRa ExTaq polymerase (Fisher Scientific, Houston, 

TX) and 1 X ExTaq buffer (Fisher Scientific, Houston, TX) were assembled in a 20 µl 

total volume on ice. Thermal cycler programs were started and paused when the block 

temperature reached 95 °C before PCR tubes were inserted. Samples were initially 

denatured for 3 minutes at 95 °C, then treated with 26 cycles of 15 seconds denature at 

95 °C, 15 seconds annealing at 60 °C, 1 minute extension at 72 °C, followed by 5 

minutes final extension at 72 °C then stored at 4 °C (Jin et al., 2007). Restriction 

enzymes are from New England Biolabs (Beverly, MA). The intensity of bands on gels 

was measured by Image J software (Bethesda, MD).  
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4.3 Results 

The LM-1 mutant maps to the right arm of chromosome I  

To identify the location of the LM-1 mutation in the N. crassa genome, DBP 695 (lm1 

mat a; bd) in the Oak Ridge background was crossed to DBP 751 (mat A; bd-HygR) in 

the Mauriceville background (Jin et al., 2006 and Beasley et al., 2006) (Figure 17). Forty 

progeny with the LM-1 mutant phenotype (rhythmic on race tubes in LL at 25 °C in the 

Percival incubator) and 40 individual progeny with a WT phenotype (arrhythmic on race 

tubes in LL at 25 °C in the Percival incubator) were isolated. Genomic DNA was 

extracted from the mycelia of each individual progeny and pooled. A single PCR 

amplification method was performed for the set of PCR-based molecular CAPS markers 

and then cleaved using the appropriate restriction enzymes (Jin et al., 2006). The pool of 

the LM-1 mutant and the pool of WT were mixed at a 1:1 ratio as the controls (Figure 

18). The parents of DBP 695 (lm1 mat a; bd) in Oak Ridge background and DBP 751 

(mat A; bd-HygR) in Mauriceville background were also used as controls to compare the 

band intensities, no DNA controls were also used for each CAPS marker (Figure 18).  

 

From the gel electrophoresis after restriction enzyme digestion, tight linkages of LM-1 to 

CAPS markers of 1-110 and 1-150 were observed (Figure 18). CAPS markers 1-85, 1-

184 and 1-185 showed intermediate linkage to the LM-1 mutation, while all the other 

CAPS markers showed no linkage to the LM-1 mutation (data not shown). The 

intensities of bands on the gels were measured by Image J software. The bands of the 

LM-1 mutant on the gel using CAPS marker of 1-59 exhibited 22% Mauriceville  
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background. 7% Mauriceville background was exhibited for CAPS marker of 1-85, 3% 

for 1-110, 1% for 1-150, 5% for 1-184 and 11% for 1-185.    

 

A map of all CAPS markers tested on linkage group I, along with the corresponding 

recombination frequencies for selected progeny with the LM-1 mutant phenotype are 

shown in Figure 19. This approach tested individual progeny with the LM-1 mutant 

phenotype. The use of individual progeny allows examination of the recombination 

break points to further pinpoint the location of the LM-1 mutation. Once the linkage to 

CAPS markers 1-110 and 1-150 was identified, additional CAPS markers were 

identified to narrow down the location of the LM-1 mutation. Tight linkages of LM-1 to 

CAPS markers of 1-140, 1-144 and 1-146 all with recombination frequencies of 3%, 

similar to 1-150 (Figure 19). While 1-59, 1-75, 1-85, 1-110, 1-115, 1-130, 1-184 and 1-

185 showed intermediate of linkage to the LM-1 mutation. Individual progeny that 

showed recombination break points on the right arm of linkage group I were examined 

in more detail. Analysis of the individual progeny from the cross with respect to 

recombination break points, suggested that LM-1, present in the Oak Ridge background 

lies between CAPS markers 1-150 and 1-184.  

 

4.4 Discussion 

The LM-1 mutant maps to the right arm of chromosome I  

Two piece of evidence suggested that the LM-1 mutant maps near the region between 

the CAPS markers of 1-150 and 1-184. 
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First, from the pooled DNA group test (Figure 18), the intensity of bands of the LM-1 

mutant on the gel using CAPS marker 1-150 shows only 1% Mauriceville background 

which indicates tight linkage of LM-1 to CAPS marker 1-150. For other CAPS markers 

on linkage group I, increasing intensities of bands of the LM-1 mutant showing 

Mauriceville background are observed, indicating intermediate, or no, linkage of LM-1 

to those CAPS marker.  

 

Second, from the individual test using progeny with the LM-1 mutant phenotype (Figure 

19), only 3% of these progeny exhibited Mauriceville background when the CAPS 

marker 1-140, 1-144, 1-146 and 1-150 were used, which indicate strong linkage. Other 

CAPS markers used for this test showed increasing percentages of recombination 

between LM-1 and the CAPS marker, indicating reduced linkage. Furthermore, 

recombination break points in individual progeny pinpoint the location of LM-1 between 

CAPS markers of 1-150 and 1-184, which spans 1069 kb. Additional CAPS markers are 

being designed to narrow down the genetic region between these two markers.  
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5. SUMMARY AND CONCLUSIONS 

 

The LMO was unmasked by two recessive mutations (LM-1 and LM-2) in which 

developmental rhythms were found to persist in strains that lack FRQ or WC-1 in LL, 

conditions in which the FRQ/WCC oscillator is not functional. The objectives of this 

project were to determine if the developmental rhythms driven by the LMO are 

circadian, if components of the LMO communicate with the FRQ/WCC oscillator, and 

to define the molecular nature of the LMO first by cloning the LM-1 and LM-2 genes.  

 

Our results demonstrated that the LMO displayed the three properties that define a 

circadian oscillator, including an intrinsic FRP of roughly 24 h when the organism is 

kept under constant conditions, entrainment by light and temperature, and temperature-

compensation.  

 

Consistent with previous data, ∆wc-1 and ∆frq strains do not exhibit developmental 

rhythms in LD cycles (Aronson et al., 1994a and Lee et al., 2003); however, the LM-1 

mutant strain in WT, ∆wc-1 and ∆frq backgrounds is entrained by light (Figures 11 and 

12). Since WC-1 is a blue-light photoreceptor required for resetting of the FRQ/WCC 

oscillator by light (He et al., 2002; Froehlich et al., 2002; Lee et al., 2003), the light 

entrainment of the LMO in the absence of wc-1 supports the hypothesis of a separate 

light input pathway to the LMO. Moreover, because WC-1 encodes a blue-light 

photoreceptor, light entrainment in a ∆wc-1 mutant strain indicated a distinct 
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photoreceptor was involved in light signaling pathway to the LMO. VVD, a blue-light 

receptor regulating light responses and photoentrainment of the clock in N. crassa., is a 

candidate photoreceptor which may be involved. Other blue (cryptochrome) and red 

(phytochromes) light signaling pathways, which exist in N. crassa, may also be involved 

in light signaling to the LMO (Froehlich et al., 2005). The role of the candidate 

photoreceptors in entrainment of the LMO can first be narrowed down by examining 

light entrainment using light of only the blue and red wavelength. Once we establish the 

type of photoreceptors used by the LMO, the photoreceptor can be identified using 

available knock-outs of the genes. 

 

Interestingly, while the LMO can function independent of the FRQ/WCC oscillator to 

control developmental rhythms in LL, mutations that affect the FRQ/WCC oscillator 

affect the period of the LMO rhythm in LL. These data suggest that the FRQ/WCC 

oscillator and the LMO communicate with each other (Figure 16). How this 

communication occurs is unknown. However, we predict that the FRQ/WCC oscillator 

and the LMO are not connected through the product of the gene specified by the LM-1 

mutation from two pieces of evidence. First, in LL where the FRQ/WCC oscillator is not 

functional, DBP694 (lm1 A; bd) shows developmental rhythm period of 17.1±1.3 h, 

while DBP833 (lm1 A; bd; frq7) exhibits a reduced period of 13.6±0.7 h (Table 4 and 

Figure 10). Preliminary data indicate that the LM-1 mutation is recessive suggesting loss 

of activity (Seo, personal communication). Thus, the product of the LM-1 gene is likely 

not involved in the LMO itself or in the communication between the LMO and the 
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FRQ/WCC oscillator since the absence of the FRQ/WCC oscillator can influence the 

period of the rhythm. Similar in DD, where the FRQ/WCC oscillator is functional, 

DBP694 (lm1 A; bd) shows developmental rhythm period of 22.8±0.3 h, while DBP833 

(lm1 A; bd; frq7) exhibits a long period of 31.1±0.2 h (Table 4 and Figure 10). As in LL, 

the period lengthening of the developmental rhythm occurs in the absence of the LM-1 

gene product. Interestingly in WT strains in LL, the developmental rhythm is lost. This 

suggests that in LL both the FRQ/WCC oscillator and the LMO are not functional. These 

data suggest that light increases the activity of the LM-1 gene product. Both the 

FRQ/WCC oscillator and the LMO may involve in the development pathway. However, 

it is also possible that the FRQ/WCC oscillator sends information to the LMO which in 

turn regulate the developmental rhythm.   

 

Using CAPS markers, the LM-1 mutation was genetically mapped to the right arm of 

linkage group I near the region between CAPS markers 1-150 and 1-184, which spans 

1069 kb. Additional CAPS markers are being designed to further narrow down the 

genetic region. Cosmids which cover the mapped genomic regions where the linked 

CAPS markers exist are currently being used to test for complementation of the LM-1 

mutant phenotype (arrhythmicity in LL). To identify the genes specified by the LM-1 

mutation, candidate genes will be cloned individually and introduced into the 

appropriate LM-1 mutant strain to test for complementation. Once the gene specified by 

the LM-1 mutation is identified, the LM-1 lesion will be sequenced in the LM-1 mutant 

strain.    
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To identify components in the LMO, genetic suppressor screens will be performed. This 

screen will target components in the LMO through identifying bypass suppressors which 

abolish or alter the LM-1 rhythms in LL at 25 °C. Mutations in genes which alter the 

rhythms in LM-1 strain in LL that also lack a functional FRQ/WCC oscillator will be 

predicted to identify components in the LMO. In order to identify bypass suppressors, 

strains which overexpress quelling-defective-1 (qde-1), which is a rate-limiting factor in 

post-transcriptional gene silencing in N. crassa will be utilized (Forrest et al., 2004). lm1 

frq9, ∆qde-1 mutant strain will be transformed with a plasmid that overexpresses QDE-1; 

over-expression of QDE-1 leads to almost 100% gene silencing when two copies of a 

gene are present in cells (Fulci and Macino, 2007). In order to eliminate any silencing of 

qde-1 expressed from the plasmid, the ∆qde-1 allele is used. To select hygromycin-

resistant cDNA transformants, the frq9 allele, which is a point mutation and null allele of 

frq will be used (rather than frq10, which is hygR) (Aronson et al., 1994a). The phenotype 

of lm1 frq9 strain is identical to lm1 ∆frq strain (Seo, personal communication). This 

strain will be transformed with a N. crassa expression cDNA library available from the 

FGSC which confers resistance to hygromycin and screened for arrhythmic hygromycin-

resistant strains in LL. Each transformant should be silenced with respect to expression 

of both the cDNA it carries and its corresponding genetic allele. Through this method, 

we hope to identify the silenced candidate gene in a transformant which has the desired 

phenotype by retrieving the transforming plasmid. We are currently testing this system 

using cloned genes that when deleted give observable growth phenotype. A back-up 
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approach to identify components in the LMO is to use the yeast two-hybrid assay, or 

immunoprecipitation assay, with LM-1 to identify components of the cell which interact 

with the LM-1 protein. 

 

Once suppressors of the LM-1 phenotype are identified, a knock-out mutation of the 

candidate genes will be generated using homologous gene replacement both in the LM-1 

mutant and WT strains. This will allow us to determine if knock-out of the LMO affects 

circadian rhythmicity in an otherwise WT strain, and will provide a test of the model for 

coupling between the LMO and the FRQ/WCC oscillator (Figure 16).   

 

Circadian clocks are composed of multiple oscillators in diverse organisms, such as 

cyanobacteria, fungi, algae, plants, flies, birds and man (reviewed by Bell-Pedersen et 

al., 2005). The prevailing perception in vertebrates has been that the circadian clocks 

represent cellular processes in brains receive and process external light signals and direct 

overt rhythmicity in otherwise passive recipient peripheral tissues. The suprachiasmatic 

nucleus (SCN) of the hypothalamus in mammals has been revealed to be a circadian 

pacemaker, which is an oscillator that drives rhythmic outputs and/or entrains another 

oscillator, and can be entrained by light. Therefore, only SCN neurons were initially 

considered of containing autonomous oscillators which exhibit rhythms in clock genes. 

However, this view has changed significantly in the past couple of years due to the 

discovery of autonomous oscillators in tissues and organs which are not connected with 

neuronal structures. Rhythmicities in the core clock gene expression have been observed 
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in retina, heart, lungs, kidneys, liver, and even in immortalized cell lines in culture 

(Shearman et al., 1997; Yamazaki et al., 2000; Zylka et al., 1998). Thus, peripheral 

tissues also have inherent circadian properties and that regulate tissue-specific outputs in 

mammals. The results of the LMO, a novel circadian oscillator in N. crassa, obtained 

from this work also provide understanding of the complexity of oscillators in organisms.  

 

Together, the results from my studies suggested a model where the circadian clock 

system in N. crassa is composed of multiple circadian oscillators. In certain genetic 

background, we have shown that the LMO can function independently to control the 

developmental rhythms. However, these circadian oscillators communicate with each 

other to coordinately control overt rhythms in N. crassa. These results lead to a better 

understanding of the complexity of oscillators that form a circadian clock in organisms.  
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