
  

THE POTENTIAL ROLE OF WILDLIFE IN THE SPREAD AND CONTROL OF 

FOOT AND MOUTH DISEASE IN AN EXTENSIVE LIVESTOCK 

MANAGEMENT SYSTEM 

 

 

A Dissertation 

by 

LINDA HIGHFIELD  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

August 2008 

 

 

Major Subject: Biomedical Sciences 

 

 

 



  

THE POTENTIAL ROLE OF WILDLIFE IN THE SPREAD AND CONTROL OF 

FOOT AND MOUTH DISEASE IN AN EXTENSIVE LIVESTOCK 

MANAGEMENT SYSTEM 

 

A Dissertation 

by 

LINDA HIGHFIELD  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  Michael Ward 
Committee Members, Bo Norby 
 G. Gale Wagner 
 Shawn Laffan 
Head of Department, Evelyn Tiffany-Castiglioni 

 

August 2008 

 

Major Subject: Biomedical Sciences 



 iii

ABSTRACT 
 

The Potential Role of Wildlife in the Spread and Control of Foot and Mouth Disease in 

an Extensive Livestock Management System (August 2008) 

Linda Highfield, B.S., Arizona State University; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Michael Ward 

 

Foot and mouth disease (FMD) is a highly contagious viral infection that affects all 

Artiodactyls (cloven-hoofed) species. The United States has been free of FMD since 

1929, and the entire population of cloven-hoofed species is therefore susceptible to FMD 

virus infection. In the face of an outbreak, it is crucial that appropriate control measures 

be applied rapidly to control the disease. However, in most cases decisions on mitigation 

strategies must be made with little current or empirical data and in the context of 

political, economic and social pressures. Disease spread models can be used to evaluate 

the design of optimal control strategies, for policy formulation, for gap analysis and to 

develop and refine research agendas when disease is not present. This research project is 

designed to investigate the potential role of wildlife (deer) in the transmission and 

spread of FMD in an extensive livestock management system in southern Texas. The 

spread of FMD was simulated in white tailed deer populations using a Geographic 

Automata model. Past research has focused primarily on modeling the spread of FMD in 

livestock populations. There has been limited research into the potential role of wildlife 

in the spread and maintenance of FMD, specifically in the United States and using a 
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spatial modeling approach. The study area is a nine-county area located in southern 

Texas, bordering Mexico. It is a region of concern for the introduction of foreign animal 

diseases, particularly through the movement of wild and feral animal species. It is both a 

strategic location and is generally representative of the many similar eco-climatic 

regions throughout the world. It is an ideal model landscape to simulate FMD incursions. 

In this research project, the potential spread of FMD is simulated based on various 

spatial estimates of white tailed deer distribution, various estimates of critical model 

parameters (such as the latent and infectious periods), seasonal population variability 

and in the face of potential pre-emptive mitigation strategies. Significant differences in 

the predicted spread were found for each group of simulations. The decision-support 

system developed in the studies described in this dissertation provide decision-makers 

and those designing and implementing disease response and control policy with 

information on the potential spread of a foreign animal disease incursion with a likely 

wildlife reservoir. Use of such a decision-support system would enhance the disease 

incursion preparedness and response capacity of the United States. 
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CHAPTER I 

 
INTRODUCTION 

 

 

Foot and mouth disease (FMD) is a highly contagious viral infection that affects all 

Artiodactyla (cloven-hoofed) species, including cattle, deer and pigs. FMD is considered 

one of the most serious livestock diseases and is found in two-thirds of the Office 

International des Epizootes (OIE) member countries [74]. The FMD virus is an 

apthovirus within the family picornaviridae. There are seven known serotypes (A, O, C, 

South African Territories (SAT) 1, 2, and 3 and Asia 1 [61]), and there is no cross 

protection across serotypes [74]. Serotypes A, O, and C have been identified in Europe 

and South America. FMD is endemic in most of Africa and Asia and parts of South 

America. FMD is not endemic in Europe, Australia, New Zealand or North America; 

however sporadic outbreaks in Europe have occurred, mostly as a result of spread from 

the Middle East [74]. The United States has been free of FMD since 1929, and the entire 

population of cloven-hoofed animals (cattle, sheep, goats, swine and wildlife) is 

therefore susceptible to FMD virus infection. 

 

Replication of FMD virus is extremely rapid in the upper respiratory tract or lung. The 

resulting viraemia seeds the infection into the epithelium where secondary replication  
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results in vesicle formation and shedding of the virus [40, 81]. The incubation period 

may be as short as 2−3 days or as long as 14 days [32]. Infected animals may become 

infectious before exhibiting clinical signs [12]. The virus is excreted as a particulate for 

several days before the animal begins to recover [16]. The amount of virus excreted 

varies by species, with pigs excreting substantially larger amounts than cattle or sheep 

[80]. Pigs are also highly susceptible to oral infection and as such, can be classified as 

amplifier hosts (high susceptibility and high infectiousness). Cattle are considered 

indicator hosts because they have high susceptibility but lower infectiousness. Sheep are 

considered maintenance hosts because they often exhibit mild or inapparent clinical 

signs [2]. The virus may be transmitted via direct (movement, aerosols) and indirect 

(fomites and people) contact with infected animals. 

 

FMD virus has been observed to survive for long periods of time in favorable 

environmental conditions (neutral pH (~7), low temperatures (4oC), presence of organic 

matter). Environmental exposure (shared habitat) may be a concern for infection of 

susceptible livestock in certain areas. At 4oCelsius with neutral pH, it has been observed 

to take 18 weeks for 90% virus inactivation [73]. As an aerosol, FMD survives best 

when the relative humidity is above 70%; it will not survive below 55% relative 

humidity [73]. Following slaughter, FMD virus is inactivated within 48 hours provided 

the pH drops below 6.0 [16]. Freezing tissues containing the virus may ensure its 

survival for a period of years. The virus may also survive longer in lymph nodes and 

bone marrow [16].  
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FMD virus infection is characterized by vesicular lesions on the hooves (intradermal pad 

and coronary band) and mucosa of the mouth (tongue and soft palate). Vesicles typically 

contain clear or straw-colored liquid prior to rupture [16]. The lesions are readily 

identifiable in cattle and swine, but almost indistinguishable in sheep. The disease 

severity ranges from mild clinical signs or illness to death, in areas where the disease is 

not endemic. In endemic regions, the infection may be mild. Mortality in adult cattle is 

low (generally <5%), however it is much higher in younger cattle (up to 90%) [2]. After 

recovery, approximately 50% of cattle become carriers [73]. The duration of the carrier 

state varies by species: >3 years in cattle, 9 months in sheep, and four months in goats 

[2]. The role of carrier animals in the spread of FMD is unclear [73]. There is 

speculation that carrier animals have played a role in outbreaks [67, 9], however, no 

spread of disease from carriers to susceptible animals has been observed under 

controlled conditions [5, 67]. 

 

The United States has a number of susceptible wildlife species, including white tailed 

deer, mule deer, antelope, elk and feral pigs. The severity of the disease in Cervidae 

(deer) varies from inapparent or mild in some species to more severe in others [74]. Deer 

have been infected both naturally and experimentally [64, 31, 35, 74], and deer-to-deer, 

deer-to-cattle and cattle-to-deer transmission has been observed [82]. Experimentally 

infected white tailed deer exhibited intermediate disease severity compared with 

susceptible livestock species (such as cattle, sheep and goats) [64]. Several species of 
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deer are among the most commonly FMD-infected wildlife under field conditions, and 

deer are believed to play an important role in the epizootology of the disease [74].  

 

The United States has been free of FMD since 1929, following a number of outbreaks in 

California and Texas during the 1920’s. In 1924, an outbreak in California started in pigs 

(swill fed), spread to grazing cattle and subsequently infected deer across the central 

portion of the state. It required 2 years to eradicate the disease from the local deer 

population, and more than 22,000 deer were slaughtered [47, 64]. Approximately 10% of 

the slaughtered deer during the 1924 outbreak displayed typical signs of FMD infection 

[64]. 

 

FMD infection in wildlife has also been a concern in more recent FMD outbreaks. 

During the 2001 FMD outbreak in the U.K., it was feared that a number of the deer 

species in the country (red, roe, fallow) might become infected and potentially act as a 

reservoir for the disease [16, 85]. A similar concern was also expressed in the 

Netherlands during the 2001 FMD outbreak [27, 85]. However, evidence of infection in 

wild deer was not observed in either of these recent outbreaks, although there were 

reports of wildlife displaying signs of infection [27]. Extensive serosurveillance was 

conducted after the outbreak, but deer were not tested as part of the surveillance program 

[27]. Due to the nature of the cattle industry in Europe, a lack of contact between deer 

and livestock in these countries may have averted a disastrous situation from occurring 

[27]. 
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There are numerous areas of the United States where livestock are extensively grazed 

and the potential for interaction with susceptible wildlife species, such as white tailed 

deer, is high. Deer move through and forage in fields between farms and enter premises 

with animal feed and slurry [85]. In addition, supplemental feeding of white tailed deer 

for hunting purposes is a common practice in many areas of the U.S. [6]. Deer densities 

in parts of Texas are very high, and most deer inhabit private land [56]. As the result of 

extensive land use change, deer populations in Texas have formed metapopulations with 

high deer densities, increased contact between deer populations and potentially the risk 

of disease transmission to domestic livestock [56]. 

 

Epidemic models represent an important tool to aid decision-making and epidemic 

response to foreign animal disease incursions. In the face of an outbreak, it is crucial that 

appropriate control measures be applied rapidly to control the disease. However, in most 

cases decisions regarding mitigation strategies must be made with little current or 

empirical data and in the context of political, economic and social pressures. Disease 

spread models can give guidance on the probable extent and time span of an outbreak. 

They can also be used to evaluate the design of optimal control strategies, for policy 

formulation, for gap analysis and to develop and refine research agendas when disease is 

not present. 
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The conditions under which wild and feral animal species might become reservoirs of 

FMD virus, following an incursion into a country free of disease, are unknown. 

However, several factors – including population density and distribution, habitat 

requirements, social organization, age structure, home range, and barriers to dispersal – 

are likely to be important. The most recent outbreaks of FMD in the United States, 

which involved wild (deer) and feral (pigs) animal species, occurred in the 1920s. 

Because of the paucity of information and experience with FMD in reservoir species, 

simulation modeling is perhaps the only option for exploring the impact of an FMD 

virus incursion and therefore developing response plans and formulating policy [86]. 

 

Although spatial models using differential equations have been developed to describe the 

farm-to-farm spread of FMD virus [34, 49, 68, 7], these models have generally ignored 

the involvement of feral and wild animal species. Models of FMD virus spread that do 

involve these potential host species [19, 72] have not included the spatial component of 

spread. Artificial life models, such as Geographic Automata that explicitly incorporate 

spatial relationships, are an alternative modeling approach [21]. These models of 

physical systems treat space and time as discrete units and interactions occur between 

local neighbors [91]. Geographic Automata are generalizations of cellular automata that 

are not restricted to a regular lattice of cells (geographic locations) and can model 

complex spatial interactions. Each population interacts with neighboring populations 

based on a set of rules and states at earlier time steps. The repetitive application of 

transmission rules within this local neighborhood allows the replication of complex 
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spatial behavior such as occurs in disease outbreaks. Geographic Automata models can 

deal with complex initial conditions and geographical boundaries, are relatively simple 

to construct and understand, are more general than differential equations, do not depend 

on generalized probability distributions derived from observations or hypothetical data, 

and are computationally efficient. 

 

Following detection of an incursion of FMD virus in a country previously free of 

disease, the application of appropriate control measures is a decision that needs to be 

made rapidly yet with little current or empirical data. In addition, political, economic and 

property rights issues may also guide policy decisions regardless of what is deemed to be 

the most effective strategy to reduce the spread of FMD. Information from model 

outputs that provides guidance to the probable extent of an outbreak and its time span are 

invaluable for decision-makers implementing disease control measures in the face of 

external pressures. Nonetheless, such models need to be developed, validated and tested 

prior to emergency situations. Strong links between disease modelers, policy and 

decision-makers also need to exist a priori. Models can serve not only as response and 

decision-making tools but also as avenues to increase awareness and collaboration with 

stakeholders. 

 

This research project is designed to investigate the potential role of wildlife (deer) in the 

transmission and spread of FMD. The spread of FMD will be simulated in white tailed 

deer populations using a Geographic Automata (“SIRCA”) model. Past research has 
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focused primarily on modeling the spread of FMD in livestock populations. There has 

been limited research into the potential role of wildlife in the spread and maintenance of 

FMD, specifically in the United States and using a spatial modeling approach. The study 

area selected for this research project is a 9-county area located in southern Texas, 

bordering Mexico. It is a region of concern for the introduction of foreign animal 

diseases, particularly through the movement of wild and feral animal species. It is both a 

strategic location and is generally representative of the many similar eco-climatic 

regions throughout the world. It is an ideal model landscape to simulate FMD incursions. 

This study will combine the expertise of veterinarians, epidemiologists, geographers and 

pathobiologists through a collaborative partnership with the Foreign Animal and 

Zoonotic Disease Defense Center, generating information on the potential role of deer in 

the spread and maintenance of FMD and steps that might be taken to reduce this impact. 
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CHAPTER II 

 

REPRESENTATION OF ANIMAL DISTRIBUTIONS IN SPACE: HOW 

GEOSTATISTICAL ESTIMATES IMPACT SIMULATION MODELING OF FOOT 

AND MOUTH DISEASE SPREAD 

  

 

Modeling potential disease spread in wildlife populations is an important tool for 

predicting, responding to and recovering from a foreign animal disease incursion. To 

make spatial epidemic predictions, the target animal species of interest must be 

represented in space prior to modeling disease spread.  A series of simulation 

experiments were conducted to determine how estimates of the spatial distribution of 

white tailed deer impact the predicted magnitude and distribution of foot and mouth 

disease outbreaks. Outbreaks were simulated using a susceptible-infected-recovered 

geographic automata  (“Sirca”). The study region was a 9-county area of southern Texas. 

Methods used for estimating deer distributions included dasymetric mapping, kriging 

and remotely sensed image analysis. The magnitudes and distributions of predicted 

outbreaks were evaluated by the median number of deer infected and median area 

affected (km2), respectively. The estimation methods were further evaluated for similar 

predictive power by comparing model predicted outputs with Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA) clustering. There were significant differences 

in the estimated number of deer in the study region, based on the estimation procedure 
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used (range: 385,939- 768,493). There were also substantial differences in the predicted 

magnitude of the foot and mouth disease (FMD) outbreaks (range: 1,563−8,896) and the 

number of locations affected (range: 56−447 km2) for the different estimated animal 

distributions. UPGMA clustering predicted two main groups of distributions, and one 

outlier. We recommend that one distribution from each of these two cluster be used to 

model the range of possible outbreaks. Methods included in the first cluster (such as 

county-level disaggregation) could be used in conjunction with any of the methods in the 

second cluster, which included kriging, NDVI split by ecoregion, or disaggregation at 

the regional level, to represent the variability in the model predicted outbreak 

distributions. How animal populations are represented in space needs to be considered in 

all spatial disease spread models. 

 

1. Introduction 

 

The aim of this research was to evaluate the sensitivity of epidemic model predictions to 

estimated spatial distributions of wildlife species. This research provided critical insight 

into the impact that estimated spatial distributions have on modeling predictions. This is 

important because modeling predictions may be used to guide policy and evaluate 

mitigation strategies prior to an outbreak [86, 96]. Modeling may also be used during an 

outbreak to inform response strategies. There are many questions that may be asked by 

policy- and decision-makers either before or in the face of an outbreak [86]. Two 

possible questions ask the predicted average outbreak size and the “best” or “worst” case 
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scenario [86]. The former question relates to the mean or median predicted outbreak 

size, which is useful for investment decisions and ranking the importance of foreign 

animal disease outbreaks. The latter question addresses the minimum and maximum 

predicted outbreaks, information that can be used for potential resource allocation. 

Decision- and policy-makers may also be interested in specific values within the 

predicted distribution of outbreaks [86]. 

  

Since epidemic predictions are obtained via Monte Carlo simulations, the entire 

distribution of predicted outbreaks should be considered when making decisions, rather 

than focusing on central tendency or variability statistics [86]. Given these 

considerations, this chapter addresses the impact of 15 different geostatistical methods 

for estimating the spatial distribution of deer distribution on the predicted outbreak 

distribution of foot and mouth disease (FMD) in southern Texas. 

  

Foot and mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed 

animals, affecting all Artiodactyla species, including cattle, deer and feral hogs. It is 

considered one of the most serious diseases of livestock [74] and the economic 

devastation caused by FMD outbreaks can be vast, as evidenced by recent outbreaks [99, 

45]. The severity of the disease in deer varies from unapparent or mild symptoms in 

some species to more severe in others [74]. Deer have been infected both naturally and 

experimentally [64, 31, 35, 74], and deer-to-deer, deer-to-cattle and cattle-to-deer 

transmission has been observed [35]. Experimentally infected white tailed deer exhibited 
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intermediate disease severity compared with susceptible livestock species and 

approximately 10% of those infected in a 1924 outbreak in California displayed signs of 

FMD infection [64]. Several species of deer are among the most commonly FMD-

infected wildlife under field conditions, and they are believed to play an important role 

in the epizootology of FMD [74].  

 

The United States has been free of FMD since 1929, following a number of outbreaks in 

California and Texas in the 1920’s. In 1924, an outbreak in California started in pigs, 

spread to grazing cattle and subsequently infected deer across the central portion of the 

state. It took 2 years to eradicate the disease from the local deer population, with more 

than 22,000 deer slaughtered [47, 64]. 

 

During the 2001 FMD outbreak in the U.K., it was feared that a number of the deer 

species in the country might become infected and act as a reservoir for the disease [16, 

85]. A similar concern was also expressed in the Netherlands during the same time 

period [27, 85]. However, evidence of infected deer was not observed in either of these 

more recent outbreaks [27]. 

 

In areas of the United States where livestock are extensively grazed, the potential for 

interaction with susceptible wildlife reservoirs is high [96]. Deer move through and 

forage in fields between farms, and enter farms with animal feed and waste [85]. 

Additionally, supplemental feeding of white tailed deer for hunting purposes is common 



 

 

13

and may enhance deer-to-deer transmission [96]. Given the widespread distribution of 

wildlife species susceptible to FMD virus infection and the high potential for interaction 

with livestock, modeling the spread of the disease in wildlife populations is an important 

tool in our ability to predict, respond to and recover from foreign animal disease 

incursions.  

 

To model the spread of FMD in a wildlife population, such as white tailed deer, an 

estimate of the species spatial distribution is crucial. A variety of spatial estimation 

methods have been used for modeling the density and distribution of wildlife species, 

including dasymetric mapping, regression-based approaches, and remotely sensed data. 

 

Dasymetric mapping, also known as surface based demographic data representation, 

redistributes the population from a aggregate level into either a vector or raster map 

using ancillary data such as land use or remotely sensed images [65]. Dasymetric 

mapping provides a means of visually representing a statistical distribution in a 

Geographic Information System (GIS) using aggregate data [17]. This mapping 

procedure eliminates the artificial structure of political or arbitrary boundaries that are 

often placed on aggregate data thereby allowing for representation of a more realistic 

distribution of the data [17, 54].  

 

Regression approaches that have been used to describe the density and distribution of 

wildlife species vary widely and include ordinary least squares, logistic, Poisson, 



 

 

14

geographically weighted regression and kriging. Kriging predicts values at unsampled 

locations using the autocorrelation structure in the measured observations and the values 

of nearby observations, taking into account both distance and geometry [11, 77].  

 

Use of remote sensing in epidemiology is based on the development of a logical 

sequence linking remotely sensed measures of radiation to measures of a disease and its 

corresponding vector or host [15]. Perhaps the most commonly used type of remotely 

sensed data is the Normalized Difference Vegetation Index (NDVI). NDVI data is 

available from the United States Geological Survey (USGS) Advanced Very High 

Resolution Radiometer (AVHRR) database. AVHRR data are collected by the National 

Oceanic and Atmospheric Administration's (NOAA) polar earth-orbiting satellites, 

which collect data in the visible, near-infrared, and thermal infrared regions of the 

electromagnetic spectrum. NDVI is associated with photosynthetically active radiation 

[52]. 

 

Epidemics have traditionally been modeled using differential equations (DE) [1, 24, 84]. 

However, DE models do not directly address the local character of disease spread and 

cannot handle complex boundary conditions [84]. Geographic Automata (GA) are 

sequence models, capable of handling non-tessellated data (points). Geographic 

automata provide an alternative approach to DE based epidemic models. These models 

treat time and space as discrete and interactions are localized [84].  They have been 

applied to a wide range of disease spread problems [1, 8, 23, 30, 43, 78, 95]. 
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Susceptible-infected-recovered models are often built into GA to examine the spatial and 

temporal spread of epidemics [8, 29, 30, 43, 53, 78, 84]. However, this approach has 

rarely been used to model infectious diseases in wildlife reservoirs. Importantly, the 

impact of the methods used to derive the spatial reservoirs distribution on 

epidemiological modeling predictions has, to the authors’ knowledge, not been 

evaluated.  

 

The objectives of this study were: 1) To apply 15 commonly used spatial methods to 

estimate white tailed deer distributions in southern Texas; 2) Describe the predicted 

FMD outbreak distribution that might be observed, given the various geostatistical 

estimation methods used; and 3) Compare the predicted FMD outbreak distributions for 

each of the geostatistical methods used. 

 

2. Materials and Methods 
 

2.1. Study site 

The study site (approximately 24,000 km2) is an area of southern Texas, bordering 

Mexico, consisting of nine counties and two Ecoregions (Figures 1 and 2). The Edwards 

Plateau (EP) in the north and the South Texas Brush (ST) in the south, split the study 

region approximately in half (Figure 2). Seasonal variation in the overall study region is 

characterized by hot, dry summers and mild, moist winters. 
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The EP Ecoregion encompasses the upper half of the study region (Figure 2). The EP is 

predominately rangeland, characterized by a mix of browse, forbs and grass. The major 

species include live oak, mesquite, acacia, and prickly pear mixed with areas of grass 

[88]. The EP is home to the state’s largest white tailed deer concentration and the 

population often exceeds carrying capacity in this area. Population density in this 

Ecoregion is higher than any other part of the state with an estimated 100 deer per 405 

hectares [88]. However, drought is common and it periodically has long term affects on 

wildlife populations and habitat resources.  

 

The ST Ecoregion comprises the Southernmost region of Central Texas (bordering 

Mexico) and encompasses the southern half of the study region (Figure 2). The ST 

Ecoregion is considered a brush community characterized by mesquite, blackbrush, 

brasil, and other thorny plants [88]. White tailed deer hunting has increased in this 

region and the vegetation in this area is actively managed to support hunting [88]. 

Population density for white tailed deer in this Ecoregion is considered moderate with an 

estimated 29 deer per 405 hectares [88].  

 

2.2. Data source 

Data on the number of deer per reporting unit and per county were obtained from the 

Texas Parks and Wildlife Department (TPWD) [56]. The distribution of deer was 

estimated using geostatistical methods. All spatial processing was done using ArcGIS 
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9.0 (ESRI, Redlands, CA) and all surfaces were estimated on a square lattice with a 1 

km2 resolution. 

 

2.2.1. Disaggregation based on county numbers (DC) 

County-level deer populations were disaggregated based on suitable landuse and 

estimated carrying capacity within each land use category. Land use categories were 

derived from the 1992 National Land Cover Dataset (NLCD). The NLCD grid was 

clipped to the study site and reclassified into suitable categories as follows: forest (land 

use classes 41, 42 and 43), shrub (classes 50 and 51) and grassland (class 71). The 

proportion of each land use category in the study area is shown in Table 1. Estimated 

carrying capacity was derived from expert opinion and yielded values of 0.3 for forest, 

0.3 for shrub and 0.1 for grassland for this region. The number of pixels per land use 

category was multiplied by the carrying capacity as a weighting factor. The number of 

deer per county was proportionally distributed within land use category based on the 

weighting factor for each category. The resulting fractional counts of deer at 30 meter 

resolution were aggregated to a 1 km2 integer grid. 

 

2.2.2. Focal smoothing (FS1-FS3) 

To eliminate demarcation lines that appeared in the DC method, this data was smoothed 

using the mean value of cells within a rectangular window around each cell (a focal 

mean). Three window sizes were used: 10 km2 (FS1), 20 km2 (FS2) and 30 km2 (FS3). 
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2.2.3. Disaggregation based on region (DR) 

The number of deer per county was summed to the regional level (9 county total) and 

disaggregated as described for the DC method, but without regard for county boundaries 

so that demarcation lines that appeared in the DC method were eliminated. 

 

2.2.4. Disaggregation based on reporting unit (DRU) 

Counts of deer per reporting unit were disaggregated using the DC method, except the 

disaggregation was done at the reporting unit scale rather than county scale.  

 

2.2.5. Kriging and deer redistribution based on land cover (K1-K4) 

The estimated counts for each county were divided by the total area in the county, to 

derive average densities per km2. The centroids were calculated for each county and the 

appropriate density value was joined to the centroid to prepare the data for kriging. An 

ordinary kriging model (K1) was used to create a raster surface of deer density.  

 

The kriged surface was subsequently used to redistribute densities of deer based on land 

cover type using the NLCD data. The land cover data was reclassified to the following 

multipliers:  shrublands were classified as 1.2, forests were classified as 1.0, and 

grasslands were classified as 0.8; all other land cover categories (including cropland, 

residential, and water) were classified as 0. The reclassified land cover raster was 

multiplied by the kriged surface. This resulted in a raster of deer density that was 

proportionally distributed within shrubland, forest, and grassland land covers (K2). 
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The redistribution of deer density resulted in areas of higher or lower density than that 

reported for ecoregions by TPWD. A correction factor was computed for each ecoregion 

using the ratio of the zonal sum of deer density for each ecoregion obtained from the 

raster described above to the deer density for each ecoregion (K3) reported by TPWD. 

Finally, to reduce the smoothness of the surface generated by kriging, the estimated deer 

from kriging were re-distributed based on the proportion of suitable land use within each 

county (K4).  

 

2.2.6. Disaggregation to farm-boundary (DFB) 

County-level deer population estimates (DC) were summed to farm boundaries and a 

centroid for each farm was used to represent the deer population. Farm boundaries were 

provided by the United States Department of Agriculture (USDA) Farm Services 

Agency (FSA) of Texas. 

 

2.2.7. Linear scaling based on NDVI (LS1-LS4) 

Maximum monthly composite NDVI values for the months of April (LS1) and 

December (LS2) 2004 were used to linearly scale deer density in the range 0−30 for each 

1 km2 pixel. April and December were selected because they represent the highest and 

lowest monthly precipitation, respectively. The estimated densities were summed and 

compared to the count of deer provided by TPWD. The initial scaling resulted in an 

overestimate in the number of deer in some areas and an underestimate in others. The 
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study site was subsequently split by ecoregion and NDVI was used to linearly scale 

density in the range 0−45 deer per km2 in the Edwards Plateau and 0−15 deer per km2 in 

the South Texas Brush ecoregions for both April (LS3) and December (LS4). 

 

2.2.8. Epidemic simulation model 

The same modeling scenario was used for all model comparisons: one cell was selected 

as infected to initiate the simulation and this cell was used as the starting point for all 

simulations. For every simulation of the model, each cell centroid was allowed to 

interact with other cells within a 2000 meter neighborhood. The model was simulated for 

a time period representing 100 days and 100 model runs were simulated for each dataset, 

yielding a total of 10,000 iterations. The median number of deer infected and median 

area affected (km2) were used to characterize each set of simulations at the 100th model 

day.  

 

The population density, distribution, and habitat requirements of deer within the study 

area were explicitly incorporated in the model. We assumed the home ranges of deer in 

the study area were within a distance of 2 km and no interactions took place beyond this 

distance. The interaction probabilities between locations were weighted using a kernel 

defined by the inverse of the distance from the cell centroid, with the value being a 

fraction of a pre-specified bandwidth (1000m). The weights were reduced when 

neighbors were further away than the pre-specified bandwidth, and increased when they 

were closer. 
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In the model (“SIRCA”), deer could pass through four disease states: from susceptible to 

latent, from latent to infectious, from infectious to immune and finally back to 

susceptible. Parameter values for the latent, infectious and immune periods were based 

on the literature, predominantly laboratory based studies of FMD infection in deer [31, 

35, 64, 96]. These transitions partially determined the dissemination rate of FMD 

between cells [33]. The first transition depended on contact rates between susceptible 

and infected deer cells in the previous time step. Homogenous mixing was assumed to 

take place within but not between cells. 

 

The probability of interaction between neighboring locations also depended on the 

density of susceptible deer in the two locations, calculated as the product of their 

probabilities. Locations with more than a maximum threshold of deer were assigned a 

probability of 1.0. The remaining locations were linearly scaled into the interval 0 to 1 

by dividing each location’s density by the maximum threshold value [96]. To 

incorporate stochasticity into the model, interactions between a susceptible location and 

an infectious neighbor occurred when a random number from a pseudo-random number 

generator (PRNG) using the Mersenne Twister mtl19937 algorithm [60, 94] was below 

the assigned probability threshold for that pair of locations [96].  

 

Once a cell was infectious the second, third, and fourth transitions in the model 

depended on the length of the latent, infectious and immune periods as assigned in the 
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model parameterization [31, 35, 64, 96]. The specific values were assigned randomly 

within the corresponding parameter ranges using a uniform distribution. The baseline 

model parameter values are summarized in Appendix A. 

 

The geographic automata model framework is particularly suited to modeling foreign 

animal diseases in wild animal populations. Geographic variations are explicitly 

modeled in a simple manner and individual-level animal census data is not required, as 

long as an approximate statistical distribution is available [44]. In addition, the model 

does not require complex mathematical equations, but instead relies on local 

relationships between cells [44]. The assumption of local spread is a reasonable 

assumption for white tailed deer populations: in the absence of disturbance, deer are 

unlikely to move outside their local home range [96]. 

 

2.3. Data analysis  

The results of the model simulations were analyzed using agglomerative clustering to 

identify groups of geostatistical methods that produce similar results at the 100th model 

day. This was done using the agnes algorithm within the Cluster package in R [46, 76].  
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The similarity matrix used in the clustering analysis was developed by calculating the 

difference between each pair of geostatistical methods as the square root of the average 

squared difference between each pair of model runs:   
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Where n is the number of model runs (100 in this case), m1i is the ith value for 

methodology 1, and m1j is the jth value for methodology 2.  Spatial risk maps of 

epidemic progression were generated using the number of times each unique location 

was infected across all simulations. 

 

3. Results 

 

3.1 Predicted distribution and density of deer for each individual method 

Each of the estimation methods were compared with respect to the predicted number of 

deer per county as provided by TPWD. The number of deer in the study region predicted 

from each estimation method is summarized in Table 2. Estimates ranged from 385,939 

to 768,493. In addition, the geostatistical methods resulted in different spatial 

representations of the distribution of deer in the study region. Examples of some of the 

distributions and the corresponding spatial risk maps are shown in Figures 3 and 4 and 5, 

respectively. Summary statistics for the predicted number of deer infected and area 

affected for each of the estimation methods (10,000 iterations each) is shown in Table 3.  

A graphic depiction of the median number of deer infected and the median area affected 



 

 

24

by method is shown in Figure 6. Boxplots of the predicted outbreak distribution for each 

method are shown in Figure 7.  

 

3.2. Cluster analysis 

The clustering algorithm for the predicted distribution of deer infected identified two 

distinct clusters of methods, and one outlier (Figure 7). The first cluster included the DC 

and DFB methods, both of which were methods constrained within county boundaries. 

The second cluster included all other methods except LS1: the difference between this 

and other methods is apparent in Figure 3.  

 

4. Discussion 

 

Substantial differences in the estimated number of deer in the study region based on the 

geostatistical estimation procedure used were found: the total deer population ranged 

from 385,939 to 768,493. Substantial differences were also observed in the median 

predicted magnitude of the outbreak, which ranged from 1,563 to 8,896 deer infected. 

This variability in the predicted median outbreak size, as a result of using different 

geostatistical methods to describe the population at-risk, supports the argument that 

reporting only summary statistics from simulation models can be misleading. It is 

important that an attempt be made to consider the entire predicted outbreak distribution 

when summarizing modeling results, especially if these results are to be presented to 

policy-makers or to be used by decision-makers in the face of an outbreak.  
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Species predicted spatial distributions should be compared to known data, where 

available, and consideration should be given to how well the spatial estimate matches the 

species distribution reported from reputable data sources. Reports available from TPWD 

for this study region (for example, DC and DR, Fig. 3) indicate that the highest density 

of deer is found in the northern half of the study region [56]. Some of the spatial 

estimation methods better reflected this distribution than others. This is highlighted in 

Figure 3, where the predicted deer distribution for three of the methods is shown. DC 

predicts the highest density in the uppermost 3 counties, but fails to extend far enough 

south. DR appears to best represent the known density of deer in the study region, with 

the highest density in the northern half of the study region. LS1 is clearly inconsistent 

with the deer estimate from TPWD, showing the highest density in the southwest portion 

of this region. Even though some of the spatial distributions do not accurately reflect the 

TPWD estimate, using these geostatistical methods still resulted in similar estimates of 

the total disease outbreak impact. Thus, the choice of geostatistical method for 

representing animal species distribution is probably secondary to the objectives of the 

study. If the aim is to estimate the overall impact of an FMD disease outbreak, results 

from this study suggest that the choice of geostatistical method is not critical. However, 

from the perspective of spatial analysis and predicting the likely spatial distribution of 

infected areas, the choice of geostatistical method becomes more important. 
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Study results indicate that the simpler methods for predicting white tailed deer density 

and distribution form one cluster, and the more complex methods form a second cluster 

(Figure 7). For these two clusters of methods, the mean predicted median outbreak size 

and median area affected were 1,599 deer and 110 km2 and 4,578 deer and 263 km2, 

respectively. Thus, broadly these two clusters resulted in a 2− to 3−fold difference in 

predicted outbreak size and distribution, indicating that the estimation methodology used 

to distribute deer has a significant impact on model predictions. Specifically in the 

present study, two representations of the population are necessary to capture the 

variability in the predicted outbreak size and distribution. The values in the dendrogram 

(Figure 7) are measures of the variation in the number of predicted infected locations. 

Cluster 2 values span a range of approximately 140. This characterizes the variability 

that one might expect in model predictions, depending on the method used to 

characterize the spatial distribution of an animal species of interest. Certain methods are 

closer together than others; for example K1, K2, K4, LS2 and LS4 are separated by a 

distance of only 70. The distance cut point used for cluster identification is somewhat 

arbitrary. For example, cluster 2 could be further subdivided if the variation of 140 is 

considered too large. This would result in the DRU method − a method that produced a 

distribution that was inconsistent with the TPWD report of deer distribution (highest 

densities in the southern portion of the study region) − being an outlier. 

 

The underlying assumptions of the various geostatistical estimation methods should be 

considered, in addition to how well they predict the known data. Dasymetric mapping 
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assumes that the data (wildlife density and distribution over the landscape) has an 

underlying spatial pattern which can be characterized using ancillary data, such as 

habitat and carrying capacity. This assumption is reasonable for wildlife data. 

Dasymetric mapping methods (such as DC, DFB and DRU) that were applied within a 

political (county) or ecological (reporting unit) boundary further assumed that these 

ancillary attributes were captured within the bounds placed on the data. For these 

methods, it was assumed that habitat and carrying capacity attributes were adequately 

captured at the sub-county or reporting unit level. This assumption may not be entirely 

valid. We know that wildlife, especially white tailed deer, view and select habitat at the 

patch level and that patch dynamics do not necessarily follow political boundaries, that 

is, a suitable patch could easily cross county boundaries leading to an inaccurate 

estimate of the density or distribution.  

 

Based on the deer distribution data available from TPWD, the reporting unit scale 

appears too coarse to adequately model deer distribution using the ancillary attributes of 

habitat and carrying capacity. In addition, methods that were forced to distribute within 

county boundaries lead to demarcation lines (horizontal bands) along these boundaries in 

the resulting spatial estimate of the species distribution. Although we know these 

boundaries are not realistic, they often represent the source of the only census data 

available. 
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Kriging has an underlying assumption of spatially continuous data. Wildlife distributions 

are typically not considered continuous and therefore kriging may not be the most 

appropriate method to use. Estimation methods that depended on remotely sensed 

imagery (LS1 – LS4) assume there is a relationship between NDVI values and deer 

density and distribution. NDVI measures vegetative greenness, and it was assumed that 

there is a linear relationship between deer density and NDVI value. However, this 

assumption has not been validated. The distribution derived from NDVI did not always 

adequately characterize the known deer distribution. For example, the outbreak 

distribution produced by the LS1 method (Figure 7) was an outlier in the cluster analysis. 

How this method might be applied requires further investigation.  

 

Demarcation lines in the data are an artifact of the artificial (administrative and political) 

boundary that is placed on the data (county or reporting unit). Dasymetric mapping 

methods create a statistical deer distribution designed to remove the effect of artificial 

boundaries [17, 54, 75]. However, when these methods are used within a boundary the 

resulting distribution tends to suffer from demarcation at that boundary. Methods that do 

not explicitly include boundaries in the estimation procedure (DR, K1, LS2) did not 

suffer from demarcation in the resulting estimated distribution. Because we are 

interested in modeling disease spread in a multi-county region, a clear demarcation line 

(for example, high density to zero or extremely low density across a single 1 km2 pixel) 

presents a problem for epidemic modeling. Given that geographic automata models 

operate at the local level, the distribution and density of surrounding cells is very 
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important in determining whether and how the disease will spread. An ideal method is 

one that results in both realistic and suitable spatial animal distributions for spatial 

modeling of disease spread.  

 

The results of this study demonstrate that to eliminate demarcation in the spatial 

distribution data at the level of aggregation available it is necessary to use a regionalized 

interpolation method (kriging) or a method involving individual pixel level data (NDVI). 

However, these methods that smooth population distributions result in much larger 

estimates of the magnitude of the outbreak and the spatial distribution of infection 

(Figure 4). The actual estimate of the overall population density appears to play little, if 

any, role in the resulting magnitude of the predicted outbreak. The distribution and, more 

specifically, the smoothness and spatial continuity of the distribution appear to have a 

major role in the predicted outbreak size (Figure 4). This is highlighted in Figures 4, 6, 7 

and Table 3. The group with low spatial continuity: DC, FS1 – FS3, DR, DRU, DFB and 

LS4 all have zeros in their distributions where outbreaks failed to occur. Their fifth 

percentiles (Table 3) are all zero, indicating that outbreaks did not occur in at least 5% of 

the model runs. All of the surfaces with low spatial continuity had zeros in their fifth 

percentiles for 98 of the 100 runs indicating that in only 2 of the 100 runs did an 

outbreak start. The group with high spatial continuity: K1 – K4 and LS1 – LS3 all have 

much higher values for their fifth percentiles indicating that an epidemic always 

occurred for these surfaces. This result is to be expected given the spatial formulation of 

the model. The more continuity in the spatial distribution, the greater the opportunity for 
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interactions between locations and therefore more interactions will occur even when 

there are lower interaction probabilities. 

 

The need to use spatially-explicit models to simulate the spread of FMD has been 

recognized [33, 45], and spatial heterogeneity has been identified as possibly the greatest 

challenge to realistically representing FMD spread through a landscape [22]. In addition 

to capturing the spatial heterogeneity of the population across the landscape, wildlife 

distributions need to be seasonally-dynamic, since these species are particularly affected 

by variations in climate and natural resources. Such temporal dependency may have a 

significant impact on the spread of disease within wildlife populations, and further, into 

domesticated animal populations of interest [21]. Temporal dependency should be 

incorporated in future studies of disease spread in potential wildlife reservoirs. While we 

have included some level of temporal dependency with the NDVI surfaces, a more 

detailed analysis is necessary in the future. 

 

The model used in this study has been used previously to investigate wildlife-domestic 

species interactions between feral pigs and cattle [21, 96] and between wild deer and 

cattle [96]. In the current study, our focus was on the potential spread of FMD in wild 

deer populations. We made the simplifying assumption that because of relatively low 

grazing densities in this extensively management livestock system, cattle do not 

contribute greatly to disease spread. Also, we focused on the initial stages of disease 

spread (≤100 days); assuming a minor role for domestic livestock during this initial 
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phase of an outbreak is likely to be valid. The duration of resistance to FMD virus 

reinfection was assumed to be 90–180 days. Although this assumption may be 

unrealistically low, it probably had little impact on study results because of our focus on 

the initial stages of disease spread.  

 

The model predictions are likely to be sensitive to temporal fluctuations in the 

population densities (for example, seasonal or annual population trends, particularly if 

these fluctuations occur differentially across geographical areas of the study region. 

Thus, study results should be viewed as the average effect of different representations of 

animal densities. More research is needed to determine if the methods of representing 

animal densities, or temporal fluctuation of those densities, are more important in 

determining the outcome of a disease incursion such as FMD. Care should be exercised 

when using the same epidemiological parameters on different spatial landscapes. This is 

even more problematic because epidemiologic parameters are estimated from a disease 

outbreak that occurs within a given spatial landscape. Given that FMD has not occurred 

in the U.S. since 1929, it is virtually impossible to estimate the epidemiologic 

parameters, should FMD virus be introduced into the deer population. However, the 

model system does incorporate uncertainty by using parameter ranges [96]. Regarding 

the role of spatial heterogeneity on parameter estimation, we feel that the model is robust 

even in the absence of detailed parameter estimates. Spatial heterogeneity has been 

implicitly included in the model by the use of density to adjust disease transmission. 

Furthermore, by using landscape variability (key habitat features) in the distribution 
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methodologies and density to control interaction in the simulation model, we have 

incorporated heterogeneity of transmission via a “self-adjusting” model that varies 

across the landscape. We have captured variation in both the distribution of susceptible 

hosts and contact rates over the landscape: this is the primary underlying cause of the 

differences between model results. 
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CHAPTER III  

 

CRITICAL PARAMETERS FOR MODELING THE SPREAD OF 

FOOT AND MOUTH DISEASE IN WHITE TAILED DEER POPULATIONS 

 

 

Modeling potential disease spread in wildlife populations is important for predicting, 

responding to and recovering from a foreign animal disease incursion. To make 

epidemic predictions using a simulation model, a number of important (and often 

unknown) parameters must be estimated. A series of simulation experiments were 

conducted to determine how estimates of the latent and infectious period, number of 

neighbors (contacts) and population size impact the predicted magnitude and distribution 

of foot and mouth disease (FMD) outbreaks in white tailed deer in southern Texas. 

Outbreaks were simulated using a previously developed and applied susceptible-

infected-recovered geographic automata model. The study region was a 9-county area 

(24,000 km2) of southern Texas. The magnitudes and distributions of the predicted 

outbreaks were evaluated by comparing the median number of deer infected and the 

median area affected (km2), respectively, and with spatial risk maps of epidemic 

progression. There were substantial differences in the estimated predicted number of 

deer and locations infected, based on the model parameters used (range: 3,779-119,879 

deer infected and 227-6,526 locations affected). There were also substantial differences 

in the spatial risk of infection based on the model parameters used. The predicted spread 
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of FMD was found to be most sensitive to the latent period and the number of neighbors, 

based on >10% change from the baseline scenario predicted median number of deer 

infected and number of locations affected. How these parameters are estimated is likely 

to be critical in studies on the impact of FMD spread in situations in which wildlife 

reservoirs might potentially exist. 

 

1. Introduction 

 

The aim of this research is to evaluate the sensitivity of epidemic model predictions to 

disease spread parameters estimated in wildlife species. Specifically this chapter 

evaluates the effect of the latent and infectious periods, the number of neighbors 

(contacts) and local-level population density on model predicted size and distribution of 

foot and mouth disease (FMD) outbreaks in white tailed deer. This research provides 

critical insight into the impact that these estimated parameters have on modeling 

predictions. It is important because model predictions may be used to guide policy and 

evaluate mitigation strategies prior to an outbreak [86, 96]. In addition, modeling may be 

used during an outbreak to inform response strategies, particularly disease mitigation 

strategies in wildlife populations. To assess these issues, this paper addresses the impact 

of various estimates of important disease parameters on the predicted outbreak 

distribution of FMD in white tailed deer in southern Texas. 
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FMD is a highly contagious viral disease of cloven-hoofed animals, affecting both 

domestic and wild Artiodactyla species, including deer. Deer have been infected both 

naturally and experimentally [31, 35, 64, 74], and deer-to-deer and deer-to-cattle 

transmission has been observed [35]. Experimentally infected white tailed deer exhibited 

intermediate disease severity compared with susceptible livestock species (such as cattle, 

sheep and goats) and approximately 10% of those infected in a 1924 outbreak in 

California displayed typical signs of FMD infection [64]. The United States has been 

free of FMD since the 1929 outbreak.  

 

During the 2001 FMD outbreak in the United Kingdom, it was feared that a number of 

the deer species in the country (red, fallow) might become infected and potentially act as 

a reservoir for the disease [16, 85]. A similar concern was also expressed in the 

Netherlands during the 2001 FMD outbreak [27, 85]. However, evidence of infection in 

deer was not observed in either of these more recent outbreaks [27].  

 

In areas of the United States where livestock are extensively grazed, the potential for 

interaction and contact with susceptible wildlife species, such as white tailed deer, is 

high [96]. Deer traverse and forage in fields between farms, and enter premises 

containing animal feed and slurry [85]. Additionally, supplemental feeding of white 

tailed deer for hunting purposes is common, potentially leading to increased contact 

[96]. Given the widespread distribution of wildlife species susceptible to FMD virus 

infection and the potential for interaction with livestock, modeling the spread of the 
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disease in wildlife populations is an important resource in our ability to predict, respond 

to and recover from a foreign animal disease incursion.  

 

To model the spread of FMD in a wildlife population, such as white tailed deer, estimate 

of a range of disease and spatial parameters is critical. The distribution of the species of 

interest must be estimated spatially prior to parameterizing a disease spread model and 

simulating disease spread [37]. Once the population distribution has been described, 

disease parameters such as the latent and infectious periods must be estimated prior to 

modeling disease spread. In addition, the number and type of contacts both within and 

between species must be estimated. Unfortunately, the values of these parameters in 

wildlife are usually unknown. Laboratory studies have been used to estimate the period 

of latent infection and the length of the infectiousness of various species [31, 35, 64, 74]. 

While these parameters are the “best” estimates available, they may not accurately 

capture the dynamics of the disease in the field. Given the uncertainty surrounding the 

parameter values, probability distributions are often used to model the parameters for 

disease spread. These distributions might be based on little information, such as 

informed “guesses” of the likely minimum and maximum parameter values. Sensitivity 

analysis can be used to identify parameters to which the model is particularly sensitive 

and for which better data should be sought. 

 

Epidemics have historically been modeled using differential equations [1, 24, 84]. 

However, differential equation models do not directly address the local character of 
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disease spread or complex boundary conditions [84]. Geographic Automata (GA), 

generalizations of cellular automata models, are capable of handling non-tessellated data 

(points). Both cellular and geographic automata provide an alternative to differential 

equation based epidemic spread models. They treat time as discrete and interactions as 

localized [84] and have been applied to a wide range of disease spread problems [1, 8, 

23, 30, 43, 78, 95]. Susceptible-infected-recovered models have been built into 

Geographic Automata to examine the spatial and temporal propagation of epidemics [8, 

29, 30, 43, 53, 78, 84]. However, this approach has rarely been used to model the spread 

of infectious diseases in wildlife populations. The influence of spatial estimation 

techniques on the predicted spread of FMD in white tailed deer using a geographic 

automata model has been explored [37]. However, the effect of estimated disease related 

parameters on model predicted spread of FMD in white tailed deer populations has not 

been evaluated.  

 

The objectives of this study were: 1) To apply a range of values to critical disease 

parameters in the geographic automata model; 2) Describe the predicted FMD outbreak 

distribution that might be observed, given the various estimates used; and 3) Compare 

the predicted FMD outbreak distributions for each of the parameters varied.  
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2. Materials and Methods 

 

2.1. Study site 

The study site, a nine county area of southern Texas bordering Mexico (Figure 1), has 

been previously described [37, 96]. It consists of two Ecoregions, the Edwards Plateau 

(EP) in the north and the South Texas Brush (ST) in the south. Seasonal variation in the 

overall study region is characterized by hot, dry summers and mild, moist winters, with 

average annual rainfall ranging between 750 and 1200 mm. The EP Ecoregion is 

predominately rangeland and is home to the highest concentration of deer in Texas, with 

an estimated 100 deer per 405 hectares [88]. 

 

The ST Ecoregion is considered a brush community. White tailed deer hunting has 

increased in this Ecoregion and the vegetation is actively managed to support hunting 

[88]. Population densities of white tailed deer in this Ecoregion are considered moderate 

with an estimated 29 deer per 405 hectares [88].  

 

2.2. Data source 

The estimated distribution of deer used to represent the deer population for the baseline 

scenario was previously derived and is described in Chapter 1 of this dissertation [37]. 

Deer densities were represented as points (centroids) for all modeling scenarios.  
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2.2.1. Baseline scenario in the epidemic simulation model 

The same model initiation procedure was used for all model comparisons: one location 

was selected as infected to initiate the simulation and this cell was used as the starting 

point for all simulations. The identical spatial location was used for the latent and 

infectious periods and number of neighbors. This location corresponds to the index 

location used in a previous study of the sensitivity of the model to spatial estimates of 

deer distribution [37]. A different spatial location for the index infection was used to 

evaluate the impact of both global and local population density. This selected location 

corresponds to the index location for seasonal spread of disease and policy and 

mitigation shown in Chapters IV and V of this dissertation. The change in index location 

for global and local population density was motivated by the need to incorporate both a 

high density and low density index herd for comparison purposes. For every simulation 

of the model, each location was allowed to interact with other points within a 2000 meter 

neighborhood. The model was simulated for a time period representing 100 days and 

100 model runs were simulated for each dataset, yielding a total of 10,000 iterations. The 

median number of deer infected and median area affected (km2) were used to 

characterize each set of simulations at the 100th model day.  

 

The population density, distribution, and habitat requirements of deer within the study 

area were explicitly incorporated in the model. As a baseline, we assumed the home 

ranges of deer in the study area were within a distance of 2 km and no interactions took 

place beyond this distance. The interaction probabilities between locations were 
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weighted using a kernel defined by the inverse of the distance from the cell centroid, 

with the value being a fraction of a pre-specified bandwidth (1000m). The weights were 

reduced when neighbors were further away than the pre-specified bandwidth, and 

increased when they were closer. 

 

In the model, deer could pass through four disease states: from susceptible to latent, 

from latent to infectious, from infectious to immune and finally back to susceptible. 

Baseline parameter values for the latent, infectious and immune periods were based on 

the literature, predominantly laboratory-based studies of FMD infection in deer [31, 35, 

64, 74]. These transitions partially determined the dissemination rate of FMD between 

locations [33]. The first transition depended on contact rates between susceptible and 

infected deer locations in the previous time step. Homogenous mixing was assumed to 

take place within but not between locations. 

 

The probability of interaction between neighboring locations also depended on the 

density of susceptible deer in the two locations, calculated as the product of their 

probabilities. Locations with more than a maximum threshold of deer were assigned a 

probability of 1.0. The remaining locations were linearly scaled into the interval 0 to 1 

by dividing each location’s density by the maximum threshold value [96]. To 

incorporate stochasticity into the model, interactions between a susceptible location and 

an infectious neighbor occurred when a random number from a pseudo-random number 
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generator (PRNG), specifically the Mersenne Twister mt19937 algorithm [60, 94] was 

below the assigned probability threshold for that pair of locations [96].  

 

Once a cell transitioned to infectious the second, third, and fourth transitions in the 

model depended on the length of the latent, infectious and immune periods as assigned 

in the model parameterization [31, 35, 64, 74]. The specific values were assigned 

randomly within the corresponding parameter ranges using a uniform distribution. The 

baseline model parameter values are summarized in Appendix A. 

 

The geographic automata model framework is particularly suited to modeling foreign 

animal diseases in wild animal populations. Geographic variations are explicitly 

modeled in a simple manner and individual-level animal census data is not required, as 

long as an approximate statistical distribution is available [44]. In addition, the model 

does not require complex mathematical equations, but instead relies on local 

relationships between cells [44]. The assumption of local spread is a reasonable 

assumption for white tailed deer populations: in the absence of disturbance, deer are 

unlikely to move outside their local home range [96]. 

 

2.2.2. Population density scenarios 

The density of deer at each spatial location (centroid) was increased and decreased by 

10% respectively, resulting in two additional datasets which were simulated using the 

baseline model parameters specified above.  
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2.2.3. Latent period 

The latent period uniform probability distribution was varied using three sets of 

parameter ranges: 1−5 days, 3−5 days (baseline) and 5−10 days. The actual latent period 

for each location (centroid) was randomly sampled from a uniform distribution using the 

above ranges. 

 

2.2.4. Infectious period 

The infectious period uniform probability distribution was varied using three sets of 

parameter ranges: 1−14 days, 3−14 days (baseline) and 14−28 days. The actual 

infectious period for each location (centroid) was randomly sampled from a uniform 

distribution using the above ranges. 

 

2.2.5. Neighbors 

The number of neighbors that a given infected location (centroid) was allowed to interact 

with at each time step was varied to represent 1st through 3rd order neighborhoods for 

each infectious location. A 1000 meter neighborhood utilizing the 4 nearest neighbors, a 

2000 meter neighborhood (baseline) representing 12 nearest neighbors and a 3000 meter 

neighborhood representing 28 nearest neighbors were used to simulate spread over a 

varying landscape area. 
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2.2.6. Reduced population density within a local neighborhood 

The impact of local population density reduction was evaluated by reducing the density 

of locations (centroids) within a 10 kilometer distance from each of two selected 

initiation points (high density and low density). Within the 10 kilometer neighborhood 

from each index location, densities were reduced by 10% to 50% in 10% increments, 

yielding 10 additional datasets for model comparison.  

 

2.3. Data analysis  

The predicted spread of FMD was characterized for each set of parameters using the 

median number of deer infected and the median land area affected, together with 5th and 

95th percentiles, interquartile range (IQR) and skewness and kurtosis. Sensitivity of the 

model to the parameter ranges was assessed by calculating a percent change from 

baseline. In addition, the predicted spatial distribution of disease spread was evaluated 

using spatial risk maps. Spatial risk maps were created by calculating the probability of 

infection across 100 iterations of the geographic automata model for each spatial 

location affected.  

 

3. Results 

 

3.1 Predicted distribution and density of deer for each parameter 

Summary statistics for the predicted number of deer infected and land area affected for 

each of the estimated parameters (10000 iterations each) are shown in Tables 4 through 
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15. Spatial risk maps for each of the estimated parameters are shown in Figures 9 

through 16. The model was found to be sensitive to a >10% change compared to the 

baseline scenario predicted number of deer infected and locations infected for the 

parameter ranges used for the latent and infectious periods, the number of neighbors 

(contacts) and the population density both at a global and local level. Variation in the 

latent period affected the model predicted spread of FMD (Table 4 and 5). A higher 

range of sampled values (5−10 days) resulted in a 90% decrease in the median predicted 

spread (3779 infected deer) compared to the baseline latent period (3−5 days) parameter 

(38537 infected deer). A 89% decrease in the median number of infected locations was 

also observed for the higher latent period range versus baseline (227 versus 1985, 

respectively). A lower range of sampled values (1−5 days) resulted in a 106% increase in 

the median predicted spread (79242 infected deer) versus baseline. A 108% increase in 

the number of infected locations (4123) was observed. The spatial pattern of infection 

was also sensitive to the latent period range (Figure 9). A shorter latent period resulted in 

a slightly larger core area of spread versus baseline (>50% risk) but in a small proportion 

of model runs (<20%) there was a much larger area of spread. A long latent period 

resulted in a much smaller spatial distribution of infection in all risk categories (10 – 

100%; Figure 9).  

 

Variation in the infectious period also affected the median model predicted spread of 

FMD for the lower range of sampled values, compared to the baseline (Table 6 and 7). 

However, no difference was observed between the higher range of sampled values and 



 

 

45

the baseline (Table 6 and 7). A lower range of sampled values (1−14 days) resulted in a 

66% reduction in both the median predicted spread of FMD (13063 versus 38537 deer 

infected, respectively) and the predicted number of infected locations (679 versus 1985, 

respectively), compared to baseline. A higher range of sampled values (14−28 days) 

resulted in a <10% difference in the median predicted spread based on either number of 

deer infected (36829 versus 38537, respectively) or number of infected locations (2114 

versus 1985 locations infected, respectively), compared to the baseline infectious period 

parameter. The spatial pattern of infection was also sensitive to the infectious period 

range (Figure 10). A short infectious period substantially reduced the spatial risk of 

infection for all risk categories (10−100% risk; Figure 10), whilst a long infectious 

period resulted in a slight increase in the risk of infection for the core area (>50%) 

compared to the baseline infectious period, particularly in the southern portion of the 

affected area.  

 

Variation in the number of neighbors (contacts) affected the model predicted spread of 

FMD (Table 8 and 9). A higher number of neighbors (28) resulted in a 211%  increase in 

the median predicted spread of FMD (119873 infected deer) compared to the baseline 

number of 12 neighbors (38537 infected deer) and in a 229%  increase in the number of 

infected locations (6526) versus baseline (1985). A lower number of neighbors (4) 

resulted in a 91% decrease in the median model predicted spread (3606 infected deer) 

and a 90% decrease in the number of infected locations (205), versus baseline.  

 



 

 

46

Variation in the global population density significantly affected the model predicted 

spread of FMD (Table 10 and 11). An increase of 10% of the overall population density 

resulted in a 27% increase in the median predicted spread (48773 deer infected) versus 

baseline (38537 deer infected). A 15% increase was observed in the number of infected 

locations (2228) versus baseline (1985). A global population decrease of 10% resulted in 

a 24% decrease in the median predicted spread of FMD (29177 infected deer) compared 

to the baseline population density. A 17% decrease was observed for the number of 

infected locations (1650) versus baseline. The spatial pattern of infection was also 

sensitive to the global population density (Figure 12). A reduced global population 

density resulted in a smaller core area of infection (>50% risk), compared to the 

baseline, whilst an increased global population density resulted in a larger core area of 

infection. 

 

Variation in the local population density (within 10km proximity to the index case) also 

affected the model predicted spread, compared to the baseline scenario (Table 12 

through 15). A decreasing local population density, varied from 10−50% reduction 

within 10 kilometers of the high density index case, resulted in decreased median 

predicted spread and number of infected locations for most scenarios (Table 12 and 13 ). 

A 10% decrease in local population density resulted in almost no difference in the 

predicted median number of deer infected (52674) or locations affected (2505) versus 

baseline (56092) locations. A 20% reduction in local population density resulted in an 

11% decrease in the median predicted number of deer infected (50082) and a 9% 
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reduction in the number of infected locations (2413), compared to baseline. A 30% 

reduction in local population density resulted in a 18% decrease in the median predicted 

number of deer infected (45926) and an 15% reduction in the number of infected 

locations (2223), compared to baseline. A 40% reduction in local population density 

resulted in a 31% reduction in the median predicted number of deer infected (38901) and 

a 27% reduction in the number of infected locations (1934), compared to baseline. A 

50% reduction in the local population density resulted in a 51% decrease in the median 

predicted number of deer infected (27424) and a 46% decrease in the number of infected 

locations (1435), compared to baseline. For all scenarios, disease spread was observed in 

100% of the simulations (Table 12 and 13). The spatial pattern of infection was also 

sensitive to the local population density (Figure 13 and 14). An increasing reduction in 

the core area of infection (>50% risk) is shown for all risk categories (10-100%) of 

reduced local density along with corresponding increases in the low probability 

categories.  

 

A decreasing local population density, varied from 10−50% reduction within 10 

kilometers of the low density index case, resulted in decreased median predicted spread 

and number of infected locations for all scenarios (Table 14 and 15). A 10% reduction in 

local population density resulted in a 32% decrease in the median predicted number of 

deer infected (4315) versus baseline (6357), and a 30% reduction in the median number 

of infected locations (413) versus baseline (590). A 20% reduction in the local 

population density resulted in a >99% decrease in the median predicted number of deer 
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infected (10) and in the median number of locations infected (2), versus baseline. A 30% 

reduction in local population density resulted in a >99% decrease in the median 

predicted number of deer infected (8) and a >99% decrease in the number of locations 

infected (2). A 40 and 50% reduction in local population density resulted in equal 

reductions in the predicted median number of deer infected and location infected. Both 

scenarios resulted in nearly a 100% decrease in the predicted median number of deer 

infected (3) and the predicted number of locations infected (1), versus baseline. For all 

scenarios, disease spread was observed in all simulations (Table 14 and 15). The 40 and 

50% reduction scenarios resulted in right skewed distributions, indicating that the level 

of disease spread for these scenarios was low for almost all runs with a few larger 

outbreaks. However, even the “large” outbreaks for these distributions were smaller than 

those observed for the baseline (65 and 878 infected deer respectively, versus 11362 for 

the baseline). This is also shown in the spatial pattern of spread (Figure 15 and 16). The 

core area of infection (>50% risk) is almost completely absent after a 20% reduction in 

the local population density. The overall spatial risk of infection is also drastically 

reduced as the local population density decreases. For the 50% reduction in local 

population density, the risk of infection for almost all spatial locations is reduced to less 

than 20%. 
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4. Discussion 

 

We found that the model is sensitive to the parameters examined: latent period, 

infectious period, number of neighbors, and global and local population density. A short 

latent period produced a >100% increase in the model predicted spread for both the 

number of deer infected and locations infected. A long latent period resulted in 90% 

decrease in the predicted median number of deer infected and a 89% decrease in the 

median predicted number of locations infected. A short latent period resulted in 

increased disease spread due to the interaction between the short period of latency (1 – 5 

days) and a fairly long period of infectiousness (3 – 14 days). These parameters 

increased the probability of interaction between susceptible and infectious locations in 

the model. Fundamentally, the short latent period allowed for a faster progression of the 

infection over space. This interaction between a short latent period and a longer 

infectious period has been previously shown to increase disease spread using a cellular 

automata model [21]. Conversely, a long latent period resulted in what appears to be a 

“burn out” effect. By the time each location transitioned to infected (after 5 – 10 days), 

most of its neighbors were already latently infected due to contact with a shared source 

of infection (with an infectious period of 3 – 14 days). Essentially, there was an 

interaction between a long latent period (almost equal to the length of the infectious 

period) and the neighborhood structure of the data. When all locations were at 1km 

resolution the contact neighborhoods were very similar for all infectious cells, allowing 

for very few locations that were available to infect as each location makes its transition 
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from latent to infectious. A short infectious period reduced both the model predicted 

median number of deer infected and the number of location infected by 66%. A long 

infectious period had almost no effect on the model predicted spread (<10% percent 

change from baseline). The spatial risk of infection was also sensitive to a short 

infectious period. A short infectious period resulted in a different spatial pattern of 

infection risk than either the baseline or longer infection periods. This indicates that with 

a short infectious period the disease does not have the ability to progress over a very 

large spatial area: the lower range of the infectious period (1−2 days) effectively stops 

the spread of infection, compared with the baseline (minimum 3 day infectious period).  

 

The model is also sensitive to the number of neighbors (contacts). A higher number of 

neighbors resulted in a 211% increase in the median predicted spread of FMD and a 

229% increase in the predicted number of infected locations, compared to the baseline 

number of neighbors (12). A lower number of neighbors resulted in a 90% decrease in 

the median model predicted number of deer infected and in the predicted number of 

infected locations. This result is consistent with previous sensitivity analyses using this 

model [90], and it makes biological sense because as the number of susceptibles that 

come into contact with infected locations increases, it is expected that disease spread 

will also increase. 

 

The model of disease spread in white tailed deer appears to be more sensitive to the 

assumed length of the latent period than the assumed length of the infectious period. 
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This impact of the latent period assumed has been shown in previous sensitivity analyses 

of the SIRCA model [21]. A short latent period allows the disease to spread more 

quickly through the population by increasing the probability of interaction between 

infectious and susceptible locations. Other studies have found that an increased 

infectious period leads to increased disease spread, however the parameter ranges used 

and the species modeled are different than those in the present study [21]. It is possible 

that in areas where deer densities are high (such as in the Northern portion of the study 

area), all of the susceptible neighbors have been infected by the 14th day of the 

infectious period. Thus, increasing the period of infectiousness to 28 days has little 

impact on disease spread. This indicates that there might be a threshold value for the 

period of infectiousness, given the specific population density and size of the 

neighborhood for each location (assuming the length of the infectious period is shorter 

than the immune period). The effect of the infectious period and the possibility of a 

threshold value require further study. In this study, each location could contact up to the 

12 nearest neighbors within a distance of 2km in the baseline scenario. If the size of the 

neighborhood were increased together with the infectious period, the results would likely 

show increased spread. Whether such an increase is additive or multiplicative needs to 

be investigated in future research. In addition, future research should examine this effect 

for a lower density region such as the southern region of the study area.  

 

The model appears to be sensitive to both the global and local population density. Shifts 

in the global population density of 10% (increase and decrease) at each spatial location 
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resulted in a ~25% increase or decrease in the median predicted number of deer and a 

~15% increase or decrease in the predicted number of locations infected, respectively. In 

both cases, the predicted number of deer and locations infected was sensitive to 

population density. This result is not surprising given the formulation of the model. 

Density is used to adjust the probability of contact between locations; so as the density 

increases or decreases, the likelihood of contact between locations is adjusted 

accordingly. The effect of the change in density at the local level appears to have a 

greater effect in lower densities areas (in the current study, simulated incursions in the 

northern versus southern region of the study area; Figures 13-16). This is likely due to 

the fact that in very high deer density areas there is also a high level of spatial contiguity; 

therefore a reduction in the density does not have the same impact as it does in lower 

density areas. The assumed biological relationship between density and contact needs to 

be better characterized in wildlife species that might act as reservoirs of FMD disease. 

 

The sensitivity of the model to local population density was investigated for both a high 

and low density index location. For a high density index location, the population had to 

be reduced substantially more than for the low density index location to achieve similar 

levels of reduced spread of disease. Decreasing local population densities from 10 to 

50% yielded a decrease in the predicted median number of deer infected of 6%, 11%, 

18%, 31% and 51%, respectively, and a decrease in the predicted number of infected 

locations of 5%, 9%, 15%, 27% and 46%, respectively. While the area of the core spatial 

spread (>50% risk) was reduced for each level of local density reduction, the overall 
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distribution of spatial risk was relatively constant. This indicates that, in some situations, 

the spatial spread of disease would not be greatly different even with a 50% reduction in 

the local population density.  

 

For the low density index location, the model is sensitive to the change in the density. 

Decreasing local population densities from 10 to 50% yielded a decrease in the median 

number of deer infected of 32% for a 10% decrease in density and a >99% decrease in 

the median number of deer infected for all population reductions >10%. A decrease in 

the predicted number of infected locations of 30% was observed for a 10% decrease in 

density, while a >99% decrease was observed for 20-50% density reductions. The spatial 

pattern of disease spread was also substantially reduced as local population density was 

decreased. The core area of infection (>50% risk) was almost completely absent after a 

20% decrease in the local population density. This finding has potentially important 

policy implications: in areas of lower density white tailed deer populations, local 

population density reduction could be an effective strategy to reduce disease spread 

either prior to or during an outbreak. Future research considering local population 

density reduction as a potential mitigation strategy to prevent disease spread in white 

tailed deer should be considered.  

 

The model used in this study has been used previously to investigate wildlife-domestic 

species interactions between feral pigs and cattle [21, 96], between wild deer and cattle 

[96] and to evaluate the impact of spatial estimates of deer distribution [37]. In this 
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current study, our focus was on the potential spread of FMD in wild deer populations. As 

in the previous study [37], the simplifying assumption was made that cattle do not 

contribute greatly to disease spread because of relatively low grazing densities in this 

extensively management livestock system. Also, the study focused on the initial stages 

of disease spread (≤100 days). Therefore, assuming a minor role for domestic livestock 

during this initial phase of an outbreak is likely to be valid. The duration of resistance to 

FMD virus reinfection was assumed to be 90–180 days. Although this assumption may 

be unrealistically low, it probably had little impact on study results because of the focus 

on the initial stages of disease spread. Caution should be exercised when using the same 

epidemiological parameters on different spatial landscapes. This is even more 

problematic when epidemiologic parameters are estimated from a disease outbreak that 

occurs within a given spatial landscape. Given that FMD has not occurred in the U.S. 

since 1929, it is virtually impossible to estimate valid epidemiologic parameters, should 

FMD virus be introduced into the deer population. However, the model system does 

incorporate uncertainty by using parameter ranges [96]. The model is robust even in the 

absence of detailed spatial heterogeneity parameter estimates: spatial heterogeneity has 

been implicitly included in the model by the use of density to adjust disease 

transmission. Furthermore, by using landscape variability via key habitat features in the 

distribution methodologies and density to control interaction in the simulation model, 

heterogeneity of transmission has been incorporated via a “self-adjusting” model that 

varies across the landscape. Variation in both the distribution of susceptible hosts and 
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contact rates over the landscape has been captured: this is the primary underlying cause 

of the differences between model results. 

 

This is the first study to define the range and distribution of estimates of outbreak 

magnitude generated by various estimates of critical model parameters (both aspatial and 

spatial) for FMD spread in white tailed deer.  
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CHAPTER IV 

 

THE IMPACT OF SEASONAL VARIABILITY IN SOUTHERN TEXAS WHITE 

TAILED DEER POPULATIONS ON THE PREDICTED SPREAD OF FOOT AND 

MOUTH DISEASE 

 

 

Modeling potential disease spread in wildlife populations is important for predicting, 

responding to and recovering from a foreign animal disease incursion. Wildlife species 

are heavily influenced by their environment, and seasonal fluctuations in population 

distributions might impact disease spread and therefore epidemic control. We conducted 

a series of simulation experiments to determine how seasonal estimates of the spatial 

distribution of white tailed deer impact the predicted magnitude and distribution of 

potential foot and mouth disease outbreaks in south Texas. Outbreaks were simulated 

using a susceptible-infected-recovered geographic automata model (“SIRCA”). The 

study region was a nine county area (24,000 km2) of southern Texas, comprising 2 

distinct Ecoregions. Seasonal deer distributions were estimated using spatial 

autoregressive lag models and a previously developed baseline deer distribution as the 

dependent variable and an averaged normalized difference vegetative index value as the 

independent variable for each season. The magnitude of the predicted outbreaks for each 

of the 4 seasons and 2 Ecoregions were evaluated by comparing the median number of 

deer infected and median number of spatial locations infected, respectively. A non-
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parametric Kruskal-Wallis test was used to test for differences in predicted epidemic 

spread in the 8 treatment groups (Ecoregion and season). Miller’s multiple comparison 

procedure was used to determine groupings in the predicted epidemic spread. Substantial 

differences were observed in the median predicted magnitude of the FMD outbreak both 

by season and Ecoregion: the number of deer predicted to be infected ranged from 7,792 

to 19,493. Results suggest that the outcome of an FMD incursion in a population of 

wildlife, such as white tailed deer in south Texas, might depend on both where and 

during which time of year the incursion occurs. 

 

1. Introduction 

 

The aim of this research is to incorporate the effect of seasonal variability of deer 

distributions, using the normalized difference vegetation index (NDVI) as a measure of 

forage availability, into predictions of the potential spread of foot and mouth disease 

(FMD) virus in deer populations in southern Texas. Specifically, this chapter aims to 

generate an estimate of the density and distribution of deer for each of four seasons in 

two Ecoregions, and subsequently, to model the potential seasonal spread of FMD in the 

white tailed deer population within the study area. Seasonal and temporal distribution of 

species has been identified as one of the critical factors limiting realistic modeling of 

infectious disease spread [96]. This research will provide insights into the impact that the 

estimated seasonal spatial distribution of populations has on modeling predictions and 

hence, potential implications for FMD response and mitigation strategies and policy. 
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There are an estimated 395,000 white tailed deer in south Texas, an area comprising of 

approximately 24,500 square km and 9 counties (Figure 1). White tailed deer represent 

an important financial resource to a substantial number of ranchers in south Texas [14], 

and the deer population is actively managed for hunting and recreation purposes [14, 

89]. Population management for optimum carrying capacity is important for maintaining 

herd levels and nutritional status [97]. Deer in the study region are primarily browsers 

(consuming leaves and twigs from shrubs and trees) during the fall [79]. Grasses and 

forbs have been found to be important dietary components during the spring [28, 62, 50]. 

Deer will only consume grass when it is tender and green (young), as deer can not digest 

mature grass [79]. Forb production in the study region is highly dependent on rainfall 

and season; forbs tend to be unpalatable to deer during late summer and late winter [79]. 

Given this shift in dietary habits, deer distributions are expected to vary by season, 

specifically based on rainfall and forage availability.  

 

The NDVI is one of a number of vegetative indices derived from remotely sensed 

imagery. It is calculated from measured brightness values based on the absorption, 

transmittance and reflectance of energy by vegetation in the red and near-infrared 

portions of the electromagnetic spectrum [18, 58, 41]. The NDVI value is calculated 

from the near infrared (NIR) and visible red wavelength values as: (NIR – red) / (NIR + 

red) [39]. NDVI is associated with photosynthetically active radiation, and is the most 

commonly used index used to estimate vegetative growth [52].  
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NDVI data are collected by the National Oceanic and Atmospheric Administration 

Advanced Very High Resolution Radiometer  (NOAA AVHRR) satellite at a spatial 

resolution of 1km and are available in a number of formats from the United States 

Geological Survey (USGS), National Mapping Division’s Earth Resources Observation 

and Science (EROS) Data Center, including weekly and bi-weekly composites for the 

U.S. and 10 day global composites [82]. NDVI data have moderate spatial resolution 

(1km) but have high temporal resolution as the entire globe is imaged twice a day [82]. 

Bi-weekly maximum NDVI composites are created by using the maximum observed 

value for each composite period to reduce cloud contamination [25]. NDVI images are 

registered to the Lambert Equal Area Azimuthal map projection to ensure spatial 

accuracy to within 1 pixel (1km2) [82]. The NDVI has been used in numerous studies on 

the classification of land use and temporal vegetation variability (onset, peak, 

senescence) [38, 57, 82, 92, 93]. The USGS has also conducted vegetation assessments 

using NDVI to monitor seasonal growth patterns in rangelands, forests and agricultural 

areas [26]. The NDVI has furthermore been used in studies of vegetation response to 

precipitation [20, 55, 98, 42]. 

 

A few studies have examined the relationship between the NDVI and stocking rate of 

livestock in the U.S. [70, 39]. A study by Showers et al. [83] conducted in north central 

Texas (Central Rolling Red Plains Major Land Resource Area) examined the 

relationship between NDVI value and diet quality of white tailed deer. It was found that 
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the NDVI, when used within season, was highly correlated with dietary measurements of 

deer for winter and spring (R2>0.7). The correlation between the NDVI and deer dietary 

measurements during summer was weak (R2=0.25). It is important to note that the 

authors only evaluated the NDVI in 3 seasons, using the following classifications: 

Winter (January – March), Spring (April – June) and Summer (July – September). Data 

for October through December were not evaluated. Marshall et al. [59] studied habitat 

use by mule deer in the desert southwest and evaluated the NDVI as a predictor for deer 

distribution. These authors found that the NDVI was significantly (P<0.05) associated 

with deer distribution in 3 of 4 seasons. No significant association was found in winter, 

and this was attributed to uniformly high quality forage availability at that time of year. 

 

The need to use spatially-explicit simulation models for FMD has been recognized [33, 

45] and spatial heterogeneity has been identified as perhaps the greatest challenge to 

representing FMD spread across the landscape [22]. Wildlife species are particularly 

affected by variations in climate and natural resources [96, 37]. To capture spatial 

heterogeneity across the landscape, wildlife distributions should therefore be seasonally-

dynamic. Such temporal dependency may play an important role in the spread of disease 

within wildlife populations, and further, into domesticated animal populations [21]. The 

model used in this study has been previously described [21, 37, 96] and has been used in 

these previous studies to investigate wildlife-domestic species interactions between feral 

pigs and cattle [21, 96] and between wild deer and cattle [96] and within wild deer [37].  

 



 

 

61

The objectives of this study were: 1) To incorporate seasonal fluctuations into the 

predicted distribution of deer in the study region by using bi-weekly composite NDVI 

values as a measure of forage availability in a regression model and 2) Describe the 

predicted FMD outbreak distribution that might be observed, given the seasonal 

variation in the deer population distribution, using a geographic automata model. 

 

2. Materials and Methods 

 

2.1. Study site 

The study site, a 9 county area of southern Texas bordering Mexico (Figure 1), has been 

previously described [37, 96]. It consists of two Ecoregions, the Edwards Plateau (EP) in 

the north and the South Texas Brush (ST) in the south, which split the study region 

approximately in half (Figure 2). Seasonal variation in the overall study region is 

characterized by hot, dry summers and mild, moist winters, with average annual rainfall 

ranges between 750 and 1200 mm. Drought is common and periodically has effects on 

habitat resources and the wildlife population. The EP is home to the state’s largest white 

tailed deer concentration and the population density in this Ecoregion is higher than in 

any other part of the state, with an estimated 100 deer per 405 hectares [88]. The ST 

Ecoregion is actively managed to support hunting for white tailed deer and population 

densities deer in this Ecoregion is considered moderate, with an estimated 29 deer per 

405 hectares [88].  
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2.2 Data source 

Bi-weekly composite NDVI images for 2006 (n=26) at 1 kilometer resolution were 

obtained for the study region from the USGS EROS Data Center. The baseline predicted 

distribution of deer in the study region was derived through Dasymetric mapping at the 

regional level as described by Highfield et al [37]. 

 

2.3 Preparation of seasonal deer distributions 

A seasonal average NDVI coverage was derived and used to represent each of four 

seasons (winter, spring, summer and fall) for white tailed deer distributions. Seasonal-

specific NDVI coverages were developed as follows. The 26 bi-weekly composite NDVI 

images were converted to rasters and projected for the study area. These 26 images were 

subsequently categorized into 4 seasons (December to February [winter], March to May 

[spring], June to August [summer] and September to November [fall]) and an average 

NDVI value at the pixel level for each of the seasons was calculated. Pixels in suitable 

habitats (as described in detail by Highfield et al. [36]) were extracted using a 

geographic information system (ArcGIS 9.1, ESRI Inc., Redlands CA). Briefly, pixels in 

shrub, forest and grass land use categories were extracted from the 1992 National Land 

Cover Dataset (NLCD) as suitable habitats and were used for creating seasonal 

distributions.  

 

As a baseline, the white tailed deer population was assumed to be at equilibrium 

(number of births equal to number of deaths). The baseline predicted deer distribution 



 

 

63

for this study, described in detail by Highfield et al. [37], was derived using 

disaggregation based on region (DR). Briefly, county-level deer populations were 

summed to a regional level and disaggregated based on suitable land use and estimated 

carrying capacity within each land use category derived from expert opinion [37]. 

Forest, shrub and grassland land use categories were extracted from the NLCD dataset. 

Estimated carrying capacity derived from expert opinion yielded values of 0.3 for forest 

and shrub and 0.1 for grassland for the study region. Based on the proportion of pixels 

within each land use category and the weight derived from expert opinion, the number of 

deer was proportionally distributed within each land use category. The resulting 

fractional counts of deer at a resolution of 30 meters were subsequently aggregated to a 1 

km2 integer grid [37]. 

  

To model the seasonal shift in the distribution of deer, a regression model was used. Two 

separate bivariate regression models, using NDVI as the independent variable and 

previously estimated deer density as the dependent variable, were estimated [3] and 

further diagnosed to quantify and correct for spatial dependence in the data. Prior to 

developing regression models the outcome (deer density) and predictor (NDVI) data 

were evaluated for a linear relationship using a correlation coefficient (Stata 10, Stata 

Corp., College Station, TX). Then an ordinary least squares (OLS) regression model was 

fit to the data for each season. The OLS residuals for each season were evaluated for the 

presence of significant (P<0.05) spatial autocorrelation using a global Moran's I statistic 
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[3]. Significant spatial autocorrelation violates the assumption of independent 

observations and can bias standard errors, increasing the likelihood of Type I errors. 

 

Additional spatial diagnostics of the OLS models (robust Lagrange multipliers [LM]) 

were performed for each model if spatial autocorrelation was observed [3]. The inclusion 

of a spatial lag or spatial error term into an OLS regression equation can produce 

inconsistent results due to unaccounted for spatial autocorrelation and is considered 

inappropriate [4, 71]. Therefore, a spatial autoregressive model (spatial lag or error) 

using maximum likelihood estimation was selected when indicated by the LM tests. In 

cases where both the spatial lag and spatial error models were significant (P<0.05), 

based on the LM tests, both models were evaluated and the model producing the lowest 

log likelihood and highest pseudo R2 statistic was selected. The selection of a lag 

distance for spatial autoregressive models can often be subjective. For this study, an 

assumed home range (2 km) for deer [13] was used to generate the weights matrix for 

the autoregressive lag models. Rho (ρ) is the coefficient of the spatial lag term (shown in 

Table V) and shows the spatial dependence inherent in the data by measuring the 

average influence on observations by their neighboring observations. The selected 

spatial autoregressive models for each season were evaluated for goodness of fit using a 

pseudo-R2 statistic prior to simulating the FMD spread model. The residuals of the 

spatial autoregressive models were also graphically evaluated for normality. The 

predicted number of deer per pixel for each season was subsequently used as the data set 

in the simulation model.  
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2.4 Simulation model 

The potential spread of FMD, by season and Ecoregion, within the deer population was 

simulated using a geographic automata model (“SIRCA”) that has been previously 

described [21, 37, 96]. In the model deer could pass through four disease states: 

susceptible, latent, infected and immune. The probability of FMD virus transmission 

from one location to another was calculated as the product of the relative deer densities 

of the two locations, modified by the distance by which they were separated. Interactions 

were restricted to within a 2 km maximum neighborhood distance and up to a maximum 

of 8 neighbors [37, 96]. Locations containing more deer than a pre-specified maximum 

threshold value were assigned a probability of 1.0. The remaining locations were linearly 

scaled into the interval 0 to 1 by dividing each location’s density by the maximum 

threshold value [37, 96].  

 

To incorporate chance into the model, interactions between an infectious location and a 

susceptible neighbor occurred when a value from a pseudo-random number generator 

was below their joint probability threshold [37, 96]. Once a location was infectious the 

second, third, and fourth transitions in the model depend on the specified length of the 

latent, infectious and immune periods [37]. The specific values for each location were 

assigned randomly within the corresponding parameter ranges from a uniform 

distribution. As in previous studies, homogenous mixing was assumed to take place 

within but not between cells [37, 96].  
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The same baseline modeling scenario was used for all model comparisons: five cells 

(pixels) per Ecoregion (n=2) were randomly selected (SPSS 14.0, SPSS Inc., Chicago, 

IL) and selected as infected to initiate the simulation within each season (n=4). For every 

simulation of the model, each cell was allowed to interact with other cells within a 2 

kilometer neighborhood (based on cell centroids) representing the home range of deer 

within the study area. The model was simulated for a time period representing 90 days to 

avoid overlap between seasons and 100 model runs were simulated for each dataset, 

yielding a total of 9,000 iterations for each season. 

 

2.5 Data analysis 

Descriptive statistics were calculated for each of the seasonal predicted distributions and 

the predicted spread of FMD in the population. The median number of deer infected and 

median area affected (km2) were used to characterize each set of simulations at the 90th 

model day. The predicted number of deer infected and the predicted number of infected 

locations (cells) for each model simulation (n=100) of each season (n=4) and Ecoregion 

(n=2) was evaluated for normality for further analysis. Due to extreme violations of 

normality, even after data transformations, a non-parametric Kruskal-Wallis (K-W) test 

was used to test for differences in predicted epidemic spread in the 8 treatments 

(Ecoregion and season). Miller’s multiple comparison procedure was used to identify 

groupings in the predicted epidemic spread.  
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3. Results 

 

Descriptive statistics for each seasonal deer distribution are shown in Table 16. A 

significant (P<0.001) linear relationship (correlation coefficients, 0.67, 0.6, 0.55, 0.59 

for winter, spring, summer and fall, respectively) between deer density and NDVI was 

observed for all seasons. Significant (P<0.001) positive spatial autocorrelation was 

observed in the OLS regression residuals in each of the four seasons; Moran’s I for 

winter, spring, summer and fall were 0.66, 0.71, 0.72, and 0.72, respectively. For all 

seasons, a spatial autoregressive lag model was preferred over a spatial autoregressive 

error model, based on log likelihood values. Characteristics of these fitted spatial 

autoregressive lag models are summarized in Table 17. Rho was >0.9 for all seasons, 

indicating that observations were heavily influenced by the surrounding values. 

Residuals from the spatial autoregressive lag model for each season visually appeared 

normally distributed. The spatial distributions predicted using the autoregressive lag 

models for each season are shown in Figure 17. Areas of high density deer distribution 

were more common in the winter season, although extensive areas of high deer density 

were predicted in the north-eastern parts of the study area in all seasons. 

 

The predicted spread of FMD for each season and Ecoregion is summarized in Table 18 

and shown graphically in Figures 18 through 21. Boxplots of the predicted spread of 

FMD for each season and Ecoregion are shown in Figure 22. There were always 

significantly higher numbers of infected deer in the EP Ecoregion, versus the ST 
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Ecoregion (Table 18). There were significant differences in epidemic spread by 

Ecoregion and season (Kruskal-Wallis chi-squared = 726.139, df = 7, p-value < 0.0001). 

The Miller’s multiple comparison test indicated that within the EP Ecoregion, the 

highest number of infected locations (cells) occurred in winter, with the lowest in the 

spring and summer (tied by Miller’s). The highest number of infected deer occurred in 

winter with the lowest in the summer. Within the ST Ecoregion, the highest number of 

infected locations (cells) and deer occurred in the fall and summer (tied by Miller’s test), 

with the lowest in the winter. 

 

4. Discussion 

 

Substantial differences were observed in the median predicted magnitude of the FMD 

outbreak both by season and Ecoregion: the number of deer predicted to be infected 

ranged from 7,792 to 19,493. These differences can be explained by changes in modeled 

deer distribution within the study region, since all other parameters were held constant 

within this simulation study. Results suggest that the outcome of an FMD incursion in a 

population of wildlife, such as white tailed deer in south Texas, might depend on both 

where and during which time of year the incursion occurs. 

 

The spatial autoregressive lag models using NDVI to predict deer distribution by season 

fitted the data well, as measured by the pseudo R2 statistic (>0.8 for all seasons). We did 

not find substantial differences in the overall estimated number of deer in the study 
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region based on the spatial autoregressive lag model predicted distributions of deer 

(Table 16). However, the predicted spatial arrangement and continuity of the population 

varied substantially by season (Figure 17). Thus, the difference in predicted FMD spread 

within these populations is attributed to the spatial patterns present in the animal 

population – not the overall size of the population. 

 

A significantly (P<0.05) higher number of predicted FMD infected deer and spatial 

locations (cells) were observed in the EP versus ST Ecoregion, regardless of season. 

Within Ecoregion, significant (P<0.05) differences in the predicted number of deer 

infected and number of spatial locations (cells) infected was observed by season. Winter 

in the EP Ecoregion resulted in both the highest number of infected deer and locations 

(cells), whereas summer and fall resulted in the highest number of infected deer and 

locations (cells) in the ST Ecoregion. These results further support previous work [37] 

which showed that the spatial continuity of a population plays a major role in the 

predicted outbreak size. As previously reported, this result is not surprising given that 

the SIRCA model is a local-based spatial disease spread model [37]. The more 

continuity in the spatial distribution, the better the opportunity for interactions between 

locations and therefore more interactions occur, even when there are lower interaction 

probabilities [37]. Thus, our observations are consistent with epidemic theory and the 

importance of spatial heterogeneity [45, 48]. 
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The model used in this study has been used previously to investigate wildlife-domestic 

species interactions between feral pigs and cattle [21, 96], between wild deer and cattle 

[96] and to evaluate the impact of spatial estimation methodologies on model predicted 

spread of FMD in deer [37]. In the current study, the focus was on extending previous 

work to incorporate seasonal variability in white tailed deer population and to 

subsequently predict how the spread of FMD may vary in the study region by season. As 

in a previous study [37], it was assumed that due to low grazing densities of cattle in this 

extensively managed livestock system, cattle populations did not contribute greatly to 

disease spread. This study focused on the initial stages of disease spread (≤90 days) in 

order to assess seasonal variability [37]. It was assumed that the average home range of 

deer (2 km) was adequate for creating spatial weights for the spatial autoregressive lag 

models. Given that deer show high fidelity to their home range, this assumption is likely 

to be valid [51]. However the spatial scale of the influence of the surrounding population 

on seasonal deer distribution is unknown. Future work should incorporate varied spatial 

weights and assess how this variation might impact model predictions of deer 

distribution.  

 

Behavior of wildlife species, such as deer, will also vary by season and should be 

included in future work focusing on the spread of FMD in wildlife populations over 

time. For example, the rut (breeding season) in white tailed deer in the study area 

typically occurs in the EP Ecoregion between October and December and in the ST 

Ecoregion in December [87]. During this time of the year, bucks are more likely to move 
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around their environment and cover larger distances than normal [87]. This could 

contribute substantially to increased spread of FMD due to a greater numbers of 

interactions with other potentially susceptible deer. Juvenile males will also disperse 

from their female groups and an increase in the number of single males in the population 

may need to be modeled [63]. In addition, a stable population (no birth or death) was 

assumed for this study. Future studies should incorporate changes in the population due 

to births and deaths, especially given that this area is intensively managed for hunting 

and recreation.  

 

An assumption was also made that the same spatial relationship for predicting deer 

distribution (in the autoregressive lag models) was valid over the entire study area (both 

Ecoregions). Ecoregions are broad ecological zones comprised of similar soils, 

topography, land use and vegetation (habitat). Given the substantial differences in the 

spatial distribution of deer in the 2 Ecoregions in the study area, it is likely that variation 

in the spatial relationship may exist between Ecoregions. Future work should examine 

the application of regression models specific to Ecoregion, to determine if there is 

variation. There are likely differences in the spatial distribution of deer by Ecoregion and 

there is utility in modeling separate regression models by Ecoregion. However, the 

usefulness of Ecoregion as a predictor for estimating deer distribution might be limited, 

since habitat variability is captured at a finer resolution by using land use data. Using 

Ecoregions as a marker for modeling deer behavior is also limited because regions are a 

very large scale measurement of the environment and have no associated attribute data. 
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While it might be useful to model deer behavior with a larger number of finer resolution 

ecological zones, it becomes exceedingly complex as data requirements increase, a 

greater number of variables have to be estimated and information on behavior within a 

particular ecological area has to be derived from expert opinion. This greatly adds to 

uncertainty in the resulting estimates.  

 

The NDVI as a measure of forage availability and the relationship to deer distribution 

has been evaluated in previous studies [59, 83]. For this study, a single year of NDVI 

data was used and bi-weekly measurements were grouped into a seasonal average to 

predict deer distribution. As documented in previous studies [59, 83], a traditional 

seasonal (winter, spring, summer, fall) breakdown was assumed to be appropriate. More 

detailed analysis of methods of grouping NDVI data for predicting deer distribution is 

warranted, as a traditional season approach may not adequately capture seasonal 

variability in the relationship between vegetative greenness and forage availability. It 

was further assumed that one year of NDVI data was adequate to model seasonal 

variability. This assumption is valid if the interest in modeling deer distribution is 

focused on the most recent year; however, longer term trends may also be of interest to 

modelers and policy decision-makers. Future work on a short time series might provide a 

better understanding of the broad patterns of NDVI over time in the study area.  

 

Based on a review of the literature, this is probably the first study to incorporate seasonal 

variability in wildlife distributions and to define the potential magnitude of an FMD 
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outbreak by season. High levels of seasonal variability in the model predicted spread of 

FMD were found. Future work focusing on improved methods of analysis of NDVI data, 

spatial regression models and incorporating behavioral traits are needed to yield 

additional insights into the potential spread of foreign animal diseases in wildlife 

populations. 
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CHAPTER V 

 

THE IMPACT OF POLICY MANDATED MITIGATION STRATEGIES ON THE 

PREDICTED SPREAD OF FOOT AND MOUTH DISEASE IN WHITE TAILED 

DEER IN SOUTH TEXAS 

 

 

Modeling the potential spread of disease in wildlife populations is an important tool for 

predicting, responding to and recovering from a foreign animal disease incursion. The 

potential role of policy mandated mitigation strategies on the spread of foot and mouth 

disease (FMD) in wildlife populations has not been evaluated. We conducted a series of 

simulation experiments to determine how pre-emptive mitigation strategies applied to 

white tailed deer populations might impact the predicted magnitude and distribution of 

foot and mouth disease outbreaks in south Texas. Outbreaks were simulated using a 

susceptible-infected-recovered geographic automata model (“SIRCA”). The study region 

was a 9-county area (24,000 km2) of southern Texas, comprising 2 distinct Ecoregions. 

A previously derived seasonal deer distribution was used to represent the time of year 

with the highest and lowest spatial continuity in the 2 Ecoregions, respectively. The 

magnitude of the predicted outbreaks for each mitigation and Ecoregion were evaluated 

by comparing the median number of deer infected and median number of spatial 

locations infected, respectively, across 4 mitigations and 2 Ecoregions. A non-parametric 

Kruskal-Wallis test was used to test for differences in predicted epidemic spread in the 8 
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treatments (Ecoregion and mitigation). Miller’s multiple comparison procedure was used 

to look for groupings in the predicted epidemic spread. Substantial differences were 

observed in the median predicted magnitude of the FMD outbreak both by mitigation 

and Ecoregion: the number of deer predicted to be infected ranged from 1,054 to 4,858. 

Results suggest that the outcome of an FMD incursion in a population of wildlife, such 

as white tailed deer in south Texas, might depend on both where the incursion occurs 

and the type of pre-emptive mitigation strategy applied, if any. 

 

1. Introduction 

 

The aim of this research is 1) To review the existing foot and mouth disease FMD 

response policies for wildlife and, 2) To investigate, using a simulation model, the 

potential impact of various mitigation strategies on the predicted spread of FMD in white 

tailed deer in south Texas. This chapter will provide critical insight into the current 

response policy for FMD incursions in wildlife populations in the United States and 

allow for a quantitative evaluation of the potential spread of FMD in white tailed deer, 

given the effect of various mitigation strategies. 

 

The Office International des Epizootes (OIE, World Animal Health Organization) is the 

international governing body which sets rules for international trading and assigns 

trading status to countries with respect to importation and exportation of animals and 

animal products. The OIE is responsible for certifying freedom from disease for FMD. If 
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FMD were to be detected in a country (such as the United States) currently certified as 

free from the disease, the OIE would remove the country’s trade eligibility for a period 

of not less than 6 months following the date of successful disease eradication. If the 

United States were to vaccinate to control the disease, the OIE would not reinstate the 

trade status until at least 12 months after the last vaccinated animal was slaughtered [90]. 

Under the current regulations, there is no distinction made between vaccinated livestock 

and vaccinated wildlife [90]. 

 

The United States Department of Agriculture (USDA), Animal and Plant Health and 

Inspection Service (APHIS) is the government agency responsible for responding to and 

controlling foreign animal disease incursions in the U.S. The response policies for 

foreign animal disease incursions are published in the National Animal Health 

Emergency Management System Guidelines (NAHEMS) [69]. The following section of 

this chapter summarizes the NAHEMS guidelines. 

 

Within the APHIS, the Wildlife Section is responsible for handling foreign animal 

disease incursions that involve a wildlife species. The Wildlife Section includes a 

Wildlife Coordinator, Wildlife Officers, a State Wildlife Liaison and necessarily field 

personnel such as wildlife biologists. Field personnel are selected, at the discretion of the 

wildlife officer, either from federal or state wildlife related agencies. Field personnel are 

expected to supply all necessary field equipment until the federal government is able to 

provide additional resources (if necessary). The current guidelines establish infected and 
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surveillance zones around infected livestock premises, and establish the size of the 

infected and surveillance zones to be 10km and 20km, respectively. In the initial 

assessment of the outbreak, the risk of wildlife (all free-ranging native, feral and exotic 

animals) involvement will be assessed as follows: wildlife species present in the area, 

susceptibility and infectiousness of the species, level of exposure to domestic animals 

and the disease agent.  

 

If a risk of wildlife involvement is suspected, surveillance of wildlife in the area 

surrounding infection is mandated. Both active and passive surveillance methods will be 

used. In the case of FMD, active surveillance will entail lethal collection of samples 

from surrounding ruminants (deer) and feral hogs for diagnostic testing, carcass searches 

and road-kill investigation. Passive surveillance will include morbidity and mortality 

surveillance based on reports received by the Wildlife Section. If wildlife were identified 

as a risk factor for disease spread or persistence, local reduction of the density of the 

population in the infected zone would be conducted. In addition, efforts to reduce 

contact between wildlife and domestic species may be used. Options would include the 

creation of barriers including: a depopulation buffer, a vaccination buffer, fencing, 

habitat alteration and hazing. Long term surveillance would be required to ensure that 

the disease has been eradicated. While FMD has not been present in the United States 

since 1929 [47], other diseases which also have a wildlife component are found in the 

U.S. and may provide insight into potential mitigation strategies.  
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One example of a disease with a wildlife component in recent management history is 

bovine tuberculosis (TB) in Michigan. Bovine TB was first found in a single white tailed 

deer in northeastern Michigan in 1975 [36]. Believed to be an isolated case, it was not 

until 1994 that another infected deer was found and surveillance began. Currently the 

disease prevalence in the deer population in the infected area is approximately 3% [36]. 

Cattle in proximity to the deer were tested in 1995 and found negative, indicating that 

the infection was maintained within the deer population [36]. It is believed that the deer 

in the area were initially infected by cattle. Due to management practices (such as 

supplemental feeding), the disease has since been maintained in the white tailed deer 

population [36]. In recent years, on average 2.2 cattle herds per year have been infected 

from contact with white tailed deer [36]. Analysis of available data has found a 

significant positive relationship between supplemental feeding of white tailed deer, deer 

density and the prevalence of the disease. Correlations of 0.7 were observed for both 

supplemental feeding and deer density individually. Regression analysis indicated that 

both factors accounted for 55% of the variation in the prevalence within the infected area 

[36].  

 

Another example of a disease with a wildlife component is brucellosis. The primary 

mitigation strategy for brucellosis is to reduce contact between wildlife and livestock in 

the Yellowstone National Park (YNP) [66]. To achieve this goal, a Northern and 

Western boundary has been established around YNP. Each of the boundary areas has 

three management/surveillance zones, where various mitigation strategies are applied. 
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Hazing is used to discourage bison from leaving YNP, and any that do not respond are 

captured and tested for brucellosis. Seropositive animals are sent to slaughter; the first 

100 that test negative are released, with the remaining going to slaughter. Pregnant Bison 

that test negative are permitted to leave only after cattle have been removed (fall and 

winter). If cattle are kept on private lands during the fall and winter, a buffer zone (Bison 

free) is maintained until after the cattle are removed. Cattle in the area surrounding YNP 

are required to be vaccinated.  

 

Additional issues that may influence disease eradication and control include carcass 

disposal and hunting. Carcass disposal for wildlife follows similar regulations to that in 

domestic species. Carcasses may be disposed of onsite or transported to a central 

location within the infected or surveillance zone designated for disposal. Hunting 

activities would be banned within the infected and surveillance zones; however, hunting 

might be banned at a larger regional scale, depending on the situation. 

 

The last outbreak of FMD in the United States involving wildlife occurred in California 

in 1929 [47]. Depopulation was the selected method of disease control and more than 

22,000 deer were slaughtered over a 2 year period to eradicate the disease [47]. If the 

disease were to occur in the United States today, the role of wildlife in the potential 

spread and maintenance of the disease is unknown. There are an estimated 406,000 

white tailed deer in the study area, an area comprising of approximately 24,500 square 

km and 9 counties in south Texas (Figure 1). White tailed deer represent an important 
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financial resource to a substantial number of ranchers in south Texas [14], and the deer 

population is actively managed for hunting and recreation purposes [14, 89]. White 

tailed deer hunting has a large economic impact in the area [14, 89]. This encourages 

many ranchers to supply supplemental feed and manage their properties to promote the 

presence of white tailed deer, in addition to cattle [14, 89, 97]. Given the length of time 

since FMD last occurred in the United States and the unknown role that wildlife might 

play in an outbreak in an extensive livestock management system such as south Texas, 

disease modeling provides an important tool for evaluating the potential impact of the 

disease and mitigation strategies prior to an actual outbreak. Modeling may also be used 

during an outbreak to inform response strategies, particularly for wildlife populations. 

Modeling predictions may also be used to guide policy prior to an outbreak. 

 

The objectives of this study were:  1) To characterize the current response policy for 

FMD in wildlife populations in the United States; 2) Describe the predicted FMD 

outbreak that might be observed within a white tailed deer population, using the 

geographic automata model; and 3) Evaluate the impact of various pre-emptive 

mitigation strategies and their effectiveness for controlling predicted FMD spread within 

a white tailed deer population. 
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2. Materials and Methods 

 

2.1. Study site 

The study site, a 9-county area of southern Texas bordering Mexico (Figure 1), has been 

previously described [37, 96]. It consists of two Ecoregions, the Edwards Plateau (EP) in 

the north and the South Texas Brush (ST) in the south (Figure 2). Seasonal variation in 

the overall study region is characterized by hot, dry summers and mild, moist winters, 

with average annual rainfall ranging between 750 and 1200 mm. The EP Ecoregion is 

predominately rangeland and is home to the highest concentration of deer in Texas. The 

ST Ecoregion is considered a brush community and is home to a moderate density of 

white tailed deer. White tailed deer hunting has increased in this Ecoregion and the 

vegetation is actively managed to support hunting [88].  

 

2.2 Data source 

Estimated distributions of deer in the study region during the winter season (Chapter III 

of this dissertation) were used to represent the deer population. Winter was selected 

because it is the season with the highest (EP Ecoregion) and lowest (ST Ecoregion) 

spatial contiguity in the predicted distribution of deer. Using winter therefore allows for 

a “worst” and “best” case representation of the potential spread of FMD in the 

population. Winter deer distributions was derived using a spatial autoregressive lag 

model and the Normalized Vegetation Difference Index (NDVI) to predict the seasonal 

shift in deer distribution in the study region (Chapter IV of this dissertation). 
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2.3 Simulation model 

The spread of FMD in the white tailed deer population in the study region was examined 

using a geographic automata model (“SIRCA”) previously described [21, 37, 96]. In the 

model, deer can pass through four disease states: susceptible, latent, infected and 

immune. The probability of FMD virus transmission from one location to another was 

calculated as the product of the relative densities of the two locations, modified by the 

distance by which they were separated. Interactions were restricted to within a 2 km 

maximum neighborhood distance and up to a maximum of 8 neighbors [37, 96]. 

Locations containing more deer than a pre-specified maximum threshold value were 

assigned a probability of disease transmission of 1.0. The remaining locations were 

linearly scaled into the interval 0 to 1 by dividing each location’s density by the 

maximum threshold value [37, 96]. 

 

To incorporate chance into the model, interactions between an infectious location and a 

susceptible neighbor occurred when a value from a pseudo-random number generator 

was below their joint probability threshold [37, 96]. Once a location was infectious the 

second, third, and fourth transitions in the model depend on the specified length of the 

latent, infectious and immune periods [96]. The specific values for each location were 

assigned randomly within the corresponding parameter ranges from a uniform 

distribution. As in previous studies, homogenous mixing was assumed to take place 

within but not between cells [37, 96]. 
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Three pre-emptive mitigation strategies were evaluated for each of the two Ecoregions 

(EP and ST). In addition, a baseline scenario was simulated, in which no mitigation 

strategies were applied. Thus, a total of eight scenarios were simulated. All spatial 

processing of the pre-emptive mitigation strategies was done using a geographic 

information system (ArcGIS 9.1, ESRI Inc., Redlands CA). All mitigation strategies 

were applied prior to simulating the spread of FMD in the Geographic Automata 

(“Sirca”) model. 

 

The first mitigation strategy evaluated was a pre-emptive targeted cull. Deer locations 

with a density of 20 or more were identified and targeted for depopulation. These 

locations were removed from the input dataset by setting the density to zero prior to 

simulating an FMD virus incursion in the study region. 

 

The second mitigation strategy evaluated was a cull of deer at locations selected at 

random. This strategy might represent the impact of allowing hunters to remove deer 

from the study area. Ten percent of the overall population was randomly selected by 

choosing 3,059 locations within the study region (SPSS 14, Chicago, IL). These 

locations were then culled (density set to zero) to evaluate the impact of an overall pre-

emptive cull of the population. Locations with a higher density of deer were given 

preference for depopulation, assuming that hunters would be more likely to have 

“success” in these higher density areas. Locations with >15 deer comprised 70% of the 

3,059 locations selected for culling. 
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The third mitigation strategy evaluated was a targeted depopulation buffer (DB). Deer 

locations that were within a 1 km distance of cattle herds, that contained a population of 

50 or more head, were depopulated to create a buffer surrounding at-risk cattle herds. 

Cattle premise locations were obtained from the U.S. Department of Agriculture, Farm 

Services Agency (FSA).  

 

For each scenario within the 3 mitigation strategies, as well as the baseline scenario, 1 

cell was randomly selected within each of the two Ecoregions. Prior to simulation, each 

of these locations was set to infected status to initiate the model. Thus, 1 initiation site 

was selected for the 4 mitigations (baseline, targeted cull, random cull, depopulation 

buffer) within each Ecoregion. For every simulation of the model, each cell within the 

study region was allowed to interact with other cells within a 2 kilometer neighborhood 

(based on cell centroids), representing the assumed home range of deer within the study 

region. For each of the scenarios, the model was simulated for a time period representing 

100 days and 100 model runs were simulated for each, yielding a total of 10,000 

iterations for each of the 8 scenarios simulated. 

 

2.4 Data analysis 

Descriptive statistics were calculated for the predicted number of deer in the study 

region (pre- and post-mitigation) and the predicted spread of FMD in the population for 

the baseline (no mitigation applied) and each of the 3 pre-emptive mitigation strategies. 
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The median number of deer infected and median area affected (km2) were used to 

characterize each set of simulations at the 100th model day. The predicted number of 

deer infected and the predicted number of infected locations (cells) for each model 

simulation (n=100) of each mitigation (n=4) and Ecoregion (n=2) was evaluated for 

normality for further analysis. Due to extreme violations of normality, even after data 

transformations, a non-parametric Kruskal-Wallis (K-W) test was used to test for 

differences in predicted epidemic spread in the 8 treatments (Ecoregion x Mitigation). 

Miller’s multiple comparison procedure was used to identify groupings in the predicted 

epidemic spread. 

 

3. Results 

 

Descriptive statistics for each mitigation strategy are shown in Table 19. The mitigation 

strategies resulted in large differences in the predicted population size (range 178,373 – 

406,667) and spatial contiguity of the population (Figure 23). The predicted spread of 

FMD for each Ecoregion and mitigation strategy is summarized in Table 20 and shown 

in Figures 24 through 27. There were significantly higher numbers of infected deer 

predicted in the EP Ecoregion versus the ST Ecoregion for all mitigations except the 

targeted depopulation strategy (Table 20). There were significant differences in epidemic 

spread by Ecoregion and mitigation strategy (Kruskal-Wallis chi-squared = 698.018, df 

= 7, p-value < 0.0001). The Miller’s multiple comparison test indicated that within the 

EP Ecoregion, the highest number of infected locations (area, km2) occurred with no 
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mitigation (baseline scenario), and the lowest number of infected locations occurred with 

the depopulation buffer mitigation strategy. The second lowest number of infected 

locations resulted from the targeted depopulation strategy, whereas random depopulation 

was ranked third. The highest total number of infected deer occurred with both the 

baseline (no mitigation applied) and random depopulation strategies, whereas the 

depopulation buffer (DB) strategy resulted in the lowest total number of infected deer. 

Targeted depopulation resulted in the second lowest total number of deer infected. 

Within the ST Ecoregion, the highest number of infected locations (area, km2) were 

observed with both the baseline and targeted depopulation mitigation strategies (tied by 

Miller’s test). The depopulation buffer (DB) mitigation strategy produced the lowest 

number of infected locations. Random depopulation resulted in the second lowest 

number of infected locations. The highest total number of infected deer in the ST 

Ecoregion was observed with the baseline, targeted and random depopulation 

mitigations (tied by Miller’s test). Only the depopulation buffer (DB) mitigation strategy 

resulted in a lower total number of infected deer.  

 

 

4. Discussion 

 

Substantial differences were observed in the median predicted magnitude of the FMD 

outbreak both by Ecoregion and mitigation: the number of deer predicted to be infected 

ranged from 1,054 to 4,858. These differences can be explained by differences in the 
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mitigation strategies simulated within the study region, via the effect on deer 

distributions. Results suggest that the outcome of an FMD incursion in a population of 

wildlife, such as white tailed deer in south Texas, might depend on both where the 

incursion occurs (the type of landscape, represented by Ecoregion in this study), and the 

type of mitigation strategy (targeted cull, random cull and depopulation buffer simulated 

in this study) that might be applied. 

 

In both Ecoregions studied, the depopulation buffer (BD) mitigation strategy produced 

the lowest number of both infected locations (area infected, or the size of the “infected 

zone”) and the total number of deer infected. This mitigation drastically reduced both the 

overall population size and spatial contiguity (Table 19, Figures 23 through 27), which 

explains the smaller outbreaks that were observed. Previous research has shown that 

spatial contiguity has an important role in the resulting predicted spread of FMD in the 

Geographic Automata (“SIRCA”) model [37].  

 

In this study, we used a 1 km depopulation buffer surrounding “at risk” livestock herds 

because our interest was in simulating disease spread and mitigation strategies in the 

white tailed deer population only. However, the current regulations state only that a 

“local reduction” of wildlife in the infected zone (10 km surrounding each infected 

livestock herd) would be used. There is no mention of pre-emptive mitigation 

approaches in the current regulations. They are also unclear regarding how the local 

reduction policy would be implemented. It is unknown if a 10 km buffer around each 
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infected livestock herd would be necessary or the most efficient approach for controlling 

the spread of the disease. Future studies simulating infected livestock locations with 

depopulation of surrounding wildlife could give policy decision-makers insight into the 

most effective buffer size and the risks and benefits of pre-emptive versus post disease 

detection mitigation strategies for areas involving high densities of wildlife. 

 

The effects of the other mitigation strategies simulated were not consistent across the 

two Ecoregions studied. In the EP Ecoregion, the targeted cull mitigation produced the 

second lowest number of both locations and deer infected. Given the high density of deer 

in the EP Ecoregion, it is not surprising that targeted depopulation of high density cells 

(>20 deer) resulted in significantly reduced spread of FMD.  

 

Random depopulation, used to simulate the effect of hunters removing deer, had little 

impact on the predicted spread of FMD through deer populations in either of the 

Ecoregions. In the EP Ecoregion, random depopulation was equivalent to the baseline 

(no mitigation) strategy. In the ST Ecoregion, random depopulation reduced the number 

of locations infected, but not the number of deer infected. These findings indicate that 

more than 10% of the overall population would need to be removed in order to have a 

substantial impact on reducing the likely spread of FMD. To estimate the actual 

proportion of the population that would need to be removed, additional studies should 

incorporate a sensitivity analysis approach and a range of culling percentages. However, 

even removing 10% of the population is likely to be logistically difficult and costly. 
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The only mitigation strategy that reduced the number of deer infected in the ST 

Ecoregion was the depopulation buffer (DB). The differences observed in mitigation 

strategy by Ecoregion indicate that different mitigation strategies might be preferred, 

depending on the composition of the deer population at-risk for infection. Thus, the 

policy for responding to an FMD virus incursion that involves an uncontrolled animal 

population, such as white tailed deer in southern Texas, needs to be tailored to the 

ecological region of concern. For example, it is unlikely that one, simple policy would 

be successful in all regions of the United States, or even within Texas. 

 

The Geographic Automata (“SIRCA”) model has been used previously to investigate 

wildlife-domestic species interactions between feral pigs and cattle [21, 96], between 

wild deer and cattle [96], to evaluate the impact of spatial estimation methodologies on 

model predicted spread of FMD in deer [37] and to evaluate differences in predicted 

spread of FMD in deer by season [Chapter III of this dissertation]. In the current study, 

the focus was on extending previous work to incorporate pre-emptive mitigation 

strategies that might be considered to minimize the risk of white tailed deer becoming 

reservoirs of FMD virus infection, should an incursion occur. This study does not 

directly address the situation of dealing with an outbreak of FMD in white tailed deer, 

once it has already begun. Although one or more of the strategies simulated might play a 

role in such a situation, additional strategies might need to be considered. The use of 

buffers to contain FMD in wild animal populations has been successful elsewhere [10], 
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and research on the use of buffers in south Texas in the case of an FMD virus incursion 

should be considered. 

 

As in our previous studies [37], we made the assumption that due to low grazing 

densities of cattle in this extensively managed livestock system, cattle populations did 

not contribute greatly to disease spread. This assumption could be tested by extending 

the model to include such dynamics. We also focused on the initial stages of disease 

spread (≤100 days) in order to assess the effectiveness of the mitigation strategies [21, 

96]. It is likely that if FMD was not controlled after a period of 100 days, disease 

eradication in the short term may no longer be the goal. In such circumstances, a more 

complex model might be needed to investigate the best way of responding to the disease. 

 

While some of the pre-emptive mitigation strategies simulated in this study reduced the 

predicted spread of FMD in white tailed deer in the study region, there may be political 

and practical issues with these approaches. Deer are an important financial and 

recreational resource in the study area, and many other regions of the U.S. [14, 89]. 

Widespread public opposition to pre-emptive depopulation may be a political barrier to 

implementing these strategies. Further, the resources required to depopulate the wildlife 

population would likely reduce available resources for responding to FMD virus 

infection in livestock populations in the study region, if it occurred. Given resource 

constraints, it may not be practical to implement all of the simulated strategies, 

especially those requiring depopulation of large numbers of deer. Future studies 
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incorporating the potential role of barriers, such as deer proof fencing, are necessary to 

gain further insight into potential mitigation strategies and their effect on the predicted 

spread of FMD in wildlife. Deer proof fencing may offer the same benefits in reducing 

disease spread as the depopulation buffer, by reducing the ability for deer to come into 

contact with each other and livestock, but offer the added benefit of not requiring 

substantial depopulation of the deer population. In addition, if deer are at-risk of 

becoming a potential reservoir for the disease or if it is impractical or impossible to 

completely eradicate the disease in wildlife, it may be possible to create FMD endemic 

zones using a barrier approach similar to the approach used in Kruger National Park in 

South Africa [10]. It might be possible to also incorporate landscape features, such as 

rivers, mountains, or major roads, to increase the effectiveness of a buffer zone. 

However, planning prior to the incursion of a foreign animal disease is needed, so that 

policies can be in place and an appropriate buffer can be identified in a timely manner. 

Further research in this area is warranted. 

 

This is the first study to define the potential magnitude of an FMD outbreak in a wildlife 

population, incorporating potential mitigation strategies. High levels of variability in the 

model predicted spread of FMD based on the mitigation strategy employed were found. 

Future work, focusing on the potential role of additional mitigation strategies, such as 

barriers, are needed to yield additional insights into the potential spread and mitigation 

of foreign animal diseases in wildlife populations. 



 

 

92

CHAPTER VI 

 

CONCLUSION 

 

 

FMD is a highly contagious, transboundary disease of cloven-hoof animals and has long 

been considered the most dangerous foreign animal disease that might be inadvertently 

introduced into the United States [22]. FMD control strategies, mostly directed at 

livestock, seek to minimize the economic costs associated with loss of trade. The 

potential role of wildlife species, which may serve as disease reservoirs, has been largely 

overlooked. The presence of non-domesticated reservoir animal species is a serious 

barrier to effective control of FMD outbreaks [74, 85]. 

 

The United States has been free of FMD since 1929, following a number of outbreaks in 

California and Texas during the 1920’s. The 1924 Californian outbreak involved deer 

which were exposed via contact from cattle [47]. Since the disease has not been present 

in this country for such a lengthy period of time, the entire population of cloven-hoofed 

animals in the United States is susceptible to infection. This includes livestock and 

wildlife species. Epidemic models represent an important tool to aid decision-making 

and epidemic response to foreign animal disease incursions. In the face of an outbreak, it 

is crucial that appropriate control measures be applied rapidly to control the disease. 

However, in most cases decisions regarding mitigation strategies must be made with 
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little current or empirical data and in the context of political, economic and social 

pressures. Disease spread models can give guidance on the probable extent and time 

span of an outbreak. They can also be used to evaluate the design of optimal control 

strategies, for policy formulation, for gap analysis and to develop and refine research 

agendas when disease is not present. However, for disease spread models to be used to 

their full potential it is critical that links between modelers and policy decision-makers 

exist a priori. 

 

The conditions under which wild and feral animal species might become reservoirs of 

FMD virus, following an incursion into a country free of disease, are unknown. 

However, several factors – including population density and distribution, habitat 

requirements, social organization, age structure, home range, and barriers to dispersal – 

are likely to be important. This has been shown with bovine tuberculosis in Michigan, 

where deer density was found to be significantly correlated with increased prevalence of 

disease [36]. Because of the paucity of information and experience with FMD in 

reservoir species, simulation modeling is perhaps the only option for exploring the 

impact of an FMD virus incursion and therefore developing response plans and 

formulating policy [86]. With that in mind, this research project evaluated the potential 

role of wildlife, specifically white tailed deer, in the spread of FMD in an extensive 

livestock management system in Texas.  
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In the second chapter of this dissertation, the potential effects of geostatistical methods 

for estimating white tailed deer distributions were evaluated. Substantial differences in 

the estimated number of deer in the study region, based on the geostatistical estimation 

procedure used, were found: the total deer population ranged from 385,939 to 768,493. 

 

Substantial differences were also observed in the median predicted magnitude of the 

outbreak, which ranged from 1,563 to 8,896 deer infected. This variability in the 

predicted median outbreak size, as a result of using different geostatistical methods to 

describe the population at-risk, supports the argument that reporting only summary 

statistics from simulation models can be misleading. It is important that an attempt be 

made to consider the entire predicted outbreak distribution when summarizing modeling 

results, especially if these results are to be presented to policy-makers or to be used by 

decision-makers in the face of an outbreak. Thus, the choice of geostatistical method for 

representing animal species distribution is probably secondary to the objectives of the 

study. If the aim is to estimate the overall impact of an FMD disease outbreak, results 

from this study suggest that the choice of geostatistical method is not critical. However, 

from the perspective of spatial analysis and predicting the likely spatial distribution of 

infected areas, the choice of geostatistical method becomes more important. 

 

In the third chapter of this dissertation, the potential effects of critical model parameters 

on predicted FMD spread in wildlife reservoirs was evaluated. Substantial differences in 

the estimated number of deer infected and number of locations infected for various 



 

 

95

parameter values were found: the total number of deer infected ranged from 3,772 to 

119,873, while the total number of locations infected ranged from 227 to 6,526. 

 

This variability in the predicted median outbreak size, as a result of using different 

parameter values, indicates that the model is sensitive to the input data. In particular, the 

model appears to be most sensitive to the length of the latent period and the number of 

neighbors (contacts), compared to a baseline scenario. It is important that an attempt be 

made to obtain the best available data when developing a disease spread model. Whilst 

every effort has been made in this dissertation to incorporate the best available estimates 

for a range of disease spread parameters, these parameters still have associated 

uncertainties and it is therefore important to understand how such uncertainty impacts 

model predictions.  

 

The need to use spatially-explicit models to simulate the spread of FMD has been 

recognized [33 45], and incorporating spatial heterogeneity has been identified as 

possibly the greatest challenge to realistically representing FMD spread through a 

landscape [22]. In addition to capturing the spatial heterogeneity of the population across 

the landscape, wildlife distributions need to be seasonally-dynamic, since these species 

are particularly affected by variations in climate and natural resources. 

 

In the fourth chapter, the potential role of seasonal variability in white tailed deer 

populations on the model predicted spread of FMD was evaluated. Substantial 



 

 

96

differences were observed in the median predicted magnitude of the FMD outbreak both 

by season and Ecoregion: the number of deer predicted to be infected ranged from 7,792 

to 19,493. These differences can be explained by changes in modeled deer distribution 

within the study region, since all other parameters were held constant within this 

simulation study. Results suggest that the outcome of an FMD incursion in a population 

of wildlife, such as white tailed deer in south Texas, might depend on both where and 

during which time of the year the incursion occurs. Within Ecoregion, significant 

differences in the predicted number of deer infected and number of spatial locations 

(cells) infected was observed by season. This is consistent with previous research [21] 

which found differences in the model predicted spread of FMD by season in feral hogs 

in Australia. 

 

In the fifth chapter, the role of potential mitigation strategies on the model predicted 

spread of FMD was evaluated. Substantial differences were observed in the median 

predicted magnitude of the FMD outbreak both by Ecoregion and mitigation: the number 

of deer predicted to be infected ranged from 1,054 to 4,858. These differences can be 

explained by differences in the mitigation strategies simulated within the study region, 

via the effect on deer distributions. Results suggest that the outcome of an FMD 

incursion in a population of wildlife, such as white tailed deer in south Texas, might 

depend on both where the incursion occurs (the type of landscape, represented by 

Ecoregion in this study), and the type of mitigation strategy (targeted cull, random cull 

and depopulation buffer simulated in this study) that might be applied.  
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In both Ecoregions studied, the depopulation buffer (BD) mitigation strategy resulted in 

the lowest number of both infected locations (area infected, or the size of the “infected 

zone”) and the total number of deer infected. This mitigation drastically reduced both the 

overall population size and spatial contiguity (Table VII, Figures II and III), which 

explains the smaller outbreaks that were observed.  

 

While some of the pre-emptive mitigation strategies simulated in this study reduced the 

predicted spread of FMD in white tailed deer in the study region, there may be political 

and practical issues associated with these approaches. Deer are an important financial 

and recreational resource in the study area, and many other regions of the United States 

[14, 89]. Widespread public opposition to pre-emptive depopulation may be a political 

barrier to implementing these strategies. Furthermore, the resources required to 

depopulate the wildlife population would likely reduce available resources for 

responding to FMD virus infection in livestock populations in the study region, if it 

occurred. Given resource constraints, it may not be practical to implement all of the 

strategies simulated, especially those requiring depopulation of large numbers of deer.  

 

This research project has allowed for an initial assessment of the potential spread of 

FMD in wildlife populations. However, more research is needed. Better estimates of 

critical model parameters are needed, and future research focused on collecting data that 

allows estimation of these parameters is required. Future work on the role of seasonal 

variability in model predicted spread should incorporate varied spatial weights and 
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assess how this variation might impact model predictions of deer distribution. Behavior 

of wildlife species, such as deer, will also vary by season and should be included in 

future work focusing on the spread of FMD in wildlife populations over time. For 

example, the rut (breeding season) in white tailed deer in the study area typically occurs 

in the EP Ecoregion between October and December and in the ST Ecoregion in 

December [87]. During this time of the year, bucks are more likely to move around in 

their environment and cover larger distances than normal [87]. This behavioral 

phenomenon could contribute substantially to increased spread of FMD because of 

increased numbers of contacts with other potentially susceptible deer. Juvenile males 

will also disperse from their female groups and an increase in the number of single males 

in the population may need to be modeled [63].  

 

Future work focusing on improved methods of analysis of NDVI data, spatial regression 

models and incorporating behavioral traits are needed to yield additional insights into the 

potential spread of foreign animal diseases in wildlife populations. Future studies 

incorporating the potential role of barriers, such as deer-proof fencing, are also necessary 

to gain additional insight into potential mitigation strategies and their effect on the 

predicted spread of FMD in wildlife. Deer-proof fencing may offer the same benefits in 

reducing disease spread as the depopulation buffer, by reducing the ability for deer to 

come into contact with each other and livestock, but offer the added benefit of not 

requiring a substantial depopulation of the deer population. In addition, if deer are at-risk 

of becoming a potential reservoir for the disease, or if it is impractical or impossible to 
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completely eradicate the disease in wildlife, it may be possible to create FMD endemic 

zones using a barrier approach similar to the approach used in Kruger National Park in 

South Africa [10]. It might be possible to also incorporate landscape features, such as 

rivers, mountains, or major roads, to increase the effectiveness of a buffer zone. 

However, planning prior to the incursion of a foreign animal disease is needed, so that 

policies can be in place and an appropriate buffer can be identified in a timely manner. 

Future work, focusing on the potential role of additional mitigation strategies, such as 

barriers, are needed to yield additional insights into the potential spread and mitigation 

of foreign animal diseases in wildlife populations. 

 

Texas is the largest cattle production state in the United States and offers the unique 

opportunity to develop, validate and model the potential impact of foreign animal 

diseases, such as FMD, in the U.S. agricultural industry. This study allowed the 

opportunity for an assessment of the impact of disease in one of the most critical 

locations of cattle production in the country. In general, models developed in Texas to 

predict areas at-risk of FMD from wildlife reservoirs should be applicable to other 

similar cattle producing areas of the United States where wildlife reservoirs are present. 

The decision-support system developed in the studies described in this dissertation 

provide decision-makers and those designing and implementing disease response and 

control policy with information on the potential spread of a foreign animal disease 

incursion with a likely wildlife reservoir. Use of such a decision-support system would 

enhance the disease incursion preparedness and response capacity of the United States. 
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APPENDIX A  

MODEL PARAMETERS 

 

 

Parameter Value 

Latency, days (min, max) 3 − 5 

Duration of infectiousness, days (min, max)  3 − 14 

Duration of resistance to re-infection, days (min, max) 90 − 180 

Maximum number of neighboring cells with which each 

infected cell can interact 

8 

Maximum distance of neighboring cells within which each 

infected cell can interact (meters) 

2000 

Density scaling parameters (min, max)  0 − 30 
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APPENDIX B 

FIGURES 

 

 

Figure 1.  South Texas study region.  
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Figure 2. South Texas study region (detailed). 



 

 

114

 

 
 
Figure 3.  Example surfaces (DC, DR and LS1) from geostatistical estimates of deer 
distribution and density. 
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Figure 4. Epidemic progression (DC and DR). 
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Figure 5. Epidemic progression (LS1). 
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Figure 6. Median number of deer infected and median area affected in km2 by 
estimation methodology. 
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Figure 7. Boxplots of the predicted outbreak distribution for each estimation 
methodology. 
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Figure 8. Resulting clusters predicted by hierarchical agglomerative clustering 
algorithm for the distribution of deer infected. 
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Figure 9. Risk of infection for each spatial location affected for each parameter range 
for the latent period.  
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Figure 10. Risk of infection for each spatial location affected for each parameter range 
for the infectious period. 
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Figure 11. Risk of infection for each spatial location affected for each parameter range 
for the number of neighbors. 
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Figure 12. Risk of infection for each spatial location affected for each parameter range 
for global population density. 
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Figure 13. Risk of infection for each spatial location affected for local population 
density reduction (baseline, 10 percent and 20 percent) within 10 kilometers of a high 
density index case. 
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Figure 14. Risk of infection for each spatial location affected for local population 
density reduction (30 percent, 40 percent and 50 percent) within 10 kilometers of a high 
density index case. 
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Figure 15. Risk of infection for each spatial location affected for local population 
density reduction (baseline, 10 percent and 20 percent) within 10 kilometers of a low 
density index case. 
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Figure 16. Risk of infection for each spatial location affected for local population 
density reduction (30 percent, 40 percent and 50 percent) within 10 kilometers of a low 
density index case. 
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Figure 17. Predicted deer distribution from spatial autoregressive lag models for each 
season in south Texas. 
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Figure 18. Predicted FMD epidemic progression in the Edwards Plateau Ecoregion of 
south Texas, for Winter and Spring seasons.  
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Figure 19. Predicted FMD epidemic progression in the Edwards Plateau Ecoregion of 
south Texas, for Summer and Fall seasons. 
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Figure 20. Predicted FMD epidemic progression in the South Texas Brush Ecoregion of 
south Texas, for Winter and Spring seasons. 
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Figure 21. Predicted FMD epidemic progression in the South Texas Brush Ecoregion of 
south Texas, for Summer and Fall seasons.  
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Figure 22. Boxplots of predicted FMD epidemics by season and Ecoregion, infected 
locations (herds) and infected deer (animals), south Texas. 
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Figure 23. Predicted white tailed deer distributions after application of pre-emptive 
mitigation strategies (targeted cull, randon cull, depopulation buffer) in an 8-county 
region of south Texas. 
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Figure 24. Predicted FMD epidemic progression in white tailed deer populations within 
the Edwards Plateau Ecoregion of an 8-county region of south Texas, by mitigation 
strategies (baseline, targeted cull). 
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Figure 25. Predicted FMD epidemic progression in white tailed deer populations within 
the Edwards Plateau Ecoregion of an 8-county region of south Texas, by mitigation 
strategies (random, depopulation buffer). 
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Figure 26. Predicted FMD epidemic progression in white tailed deer populations within 
the South Texas Brush Ecoregion of an 8-county region of south Texas, by mitigation 
strategies (baseline, targeted cull). 
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Figure 27. Predicted FMD epidemic progression in white tailed deer populations within 
the South Texas Brush Ecoregion of an 8-county region of south Texas, by mitigation 
strategies (random, depopulation buffer). 
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APPENDIX C 

TABLES 

 

 
Table 1. Count and percentage of suitable pixels per land use category. 

Land Use Category Count Percentage 

Forest 7692254 0.27 

Shrub 16774976 0.14 

Grassland 4049744 0.59 

Total 28516974 100 
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Table 2. Predicted number of deer by estimation methodology as compared to Texas 
Parks and Wildlife Department provided county estimate.  
 

 Number of deer 

Method Estimated TPWD (n=427,292) 
% estimated 

DC 412,770 97 

FS1 395,281 93 

FS2 395,828 93 

FS3 396,269 93 

DR 410,624 96 

DRU  768, 493 179 

K1  403, 027 94 

K2 439,169 103 

K3 536,042 125 

K4 385,939 90 

DFB 385,939 90 

LS1 491,566 115 

LS2 415,426 97 

LS3 470,428 110 

LS4 464,680 109 
 



 

 

  141

Table 3.  Predicted size of an outbreak of foot and mouth disease in a population of deer in southern Texas for each estimation method. Results shown 
are from 100 simulations of the geographic automata model for each deer surface. 
 

 Number of deer  Area (km2) 

Method Median IQR 5%, 95% Skewness Kurtosis  Median IQR 5%, 95% Skewness Kurtosis 

DC 1626 1830 0, 2051 -0.847 
 

-1.095 
  

164 182 0, 205 -0.849 -1.095 

FS1 1661 263 0, 1935 -2.59 6.438  191 27 0, 219 -0.2711 -6.907 

FS2 1563 439 0, 1931 -1.512 1.011  185 45 0, 226 -1.601 -1.165 

FS3 1839 344 0, 2155 -2.198 4.4  205 30 0, 229 -2.505 5.538 

DR 4510 429 0, 4991 -3.065 
 

8.415 
 

 253 25 0, 281 -3.072 8.426 

DRU  5829 
 

724 
 

0, 6570 -1.59 
 

0.719 
 

 295 31 0, 326 -1.61 0.745 

K1  3978 297 
 

3515, 4373 -5.265 
 

32.385 
 

 278 20 248, 302 -5.574 34.95 

K2 5798 
 

492 
 

5110, 6331 -0.678 
 

1.625 
 

 259 17 234, 286 -0.098 0.792 

K3 3791 
 

689 
 

3028, 4416 -2.894 
 

17.993 
 

 226 33 188, 255 -3.938 27.66 

K4 5752 
 

562 
 

5225, 6351 0.059 
 

-0.773 
 

 289 17 266, 311 -0.16 -0.09 

DFB 1572 
 

1899 
 

0, 2340 -0.436 
 

-1.329 
 

 56 63 0, 76 -0.551 -1.399 

LS1 8896 
 

374 
 

8493, 9381 -0.075 
 

0.173 
 

 447 19 427, 471 -0.088 0.198 

LS2 5190 
 

349 4762, 5443 -0.227 
 

-0.39 
 

 335 21 303, 353 -0.317 0.026 

LS3 7304 
 

589 
 

6639, 8039 -0.267 
 

1.088 
 

 326 27 291, 354 -0.047 1.107 

LS4 6149 
 

1231 
 

0, 7080 -1.773 
 

1.701 
 

 255 38 0, 294 -1.862 1.922 
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Table 4.  Predicted number of deer infected from an outbreak of foot and mouth disease 
in a population of deer in southern Texas for each latent period modeled as a uniform 
probability distribution. Results shown are from 100 simulations of the geographic 
automata model using the baseline deer surface. 
 

 Number of deer  

Latent period  
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

1 – 5 days 79242 105.63% 11729 5, 91424 -2.99 11.51 

3 – 5 days 38537 NA 2781 34785, 41829 -0.431 4.53 

5 – 10 days 3779 -90.19% 4658 5, 5480 -0.432 -1.804 

Parameters and results in bold are from the baseline scenario 
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Table 5.  Predicted number of locations infected from an outbreak of foot and mouth 
disease in a population of deer in southern Texas for each latent period modeled as a 
uniform probability distribution. Results shown are from 100 simulations of the 
geographic automata model using the baseline deer surface. 
 

 Area (km2)  

Latent 

period  
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis

1 – 5 days 4123 107.71% 576 1, 4755 -3.01 11.6 

3 – 5 days 1985 NA 139 1787, 2158 -0.499 4.45 

5 – 10 days 227 -88.56% 281 1, 326 -0.505 -1.77 

Parameters and results in bold are from the baseline scenario 
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Table 6. Predicted number of deer infected from an outbreak of foot and mouth disease 
in a population of deer in southern Texas for each infectious period modeled as a 
uniform probability distribution. Results shown are from 100 simulations of the 
geographic automata model using the baseline deer surface. 
 

 Number of deer  

Infectious 

period  
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis

1 – 14 days 13063 -66.10% 16636 5, 20129 -0.358 -1.45 

3 – 14 days 38537 NA 2781 34785, 41829 -0.431 4.53 

14 – 28 days 36829 -4.43% 2542 32658, 40605 -0.191 3.578 

Parameters and results in bold are from the baseline scenario 
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Table 7. Predicted number of locations infected from an outbreak of foot and mouth 
disease in a population of deer in southern Texas for each infectious period modeled as a 
uniform probability distribution. Results shown are from 100 simulations of the 
geographic automata model using the baseline deer surface. 
 

 Area (km2)  

Infectious 

period  
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

1 – 14 days 679 -65.79% 849 1, 1002 -0.395 -1.432 

3 – 14 days 1985 NA 139 1787, 2158 -0.499 4.45 

14 – 28 days 2114 6.50% 117 1903, 2345 0.276 3.523 

Parameters and results in bold are from the baseline scenario 
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Table 8. Predicted number of deer infected from an outbreak of foot and mouth disease 
in a population of deer in southern Texas for each number of neighbors. Results shown 
are from 100 simulations of the geographic automata model using the baseline deer 
surface. 
 

 Number of deer  

Neighbors Median 
% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

4 3606 -90.64% 1447 16, 7063 -0.169 3.07 

12 38537 NA 2781 34785, 41829 -0.431 4.53 

28 119873 211.06% 3327 115106, -0.126 3.07 

Parameters and results in bold are from the baseline scenario 
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Table 9. Predicted number of locations infected from an outbreak of foot and mouth 
disease in a population of deer in southern Texas for each number of neighbors. Results 
shown are from 100 simulations of the geographic automata model using the baseline 
deer surface. 
 

 Area (km2)  

Neighbors Median 
% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

4 205 -89.67% 77 1, 379 -0.329 3.07 

12 1985 NA 139 1787, 2158 -0.499 4.45 

28 6526 228.77% 249 6165, 6823 -0.393 3.23 

Parameters and results in bold are from the baseline scenario 
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Table 10. Predicted number of deer infected from an outbreak of foot and mouth disease 
in a population of deer in southern Texas for each estimated population density surface. 
Results shown are from 100 simulations of the geographic automata model for each deer 
surface. 
 

 Number of deer  

Population 

density 
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

Baseline  38537 NA 2781 34785, 41829 -0.431 4.53 

Increase 48773 26.56% 3696 44118, 53278 -0.223 2.87 

Decrease 29177 -24.29% 3091 25011, 33672 0.599 3.42 

Parameters and results in bold are from the baseline scenario 
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Table 11. Predicted number of locations from an outbreak of foot and mouth disease in a 
population of deer in southern Texas for each estimated population density surface. 
Results shown are from 100 simulations of the geographic automata model for each deer 
surface. 
 

 Number of deer  

Population 

density 
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

Baseline  1985 NA 139 1787, 2158 -0.499 4.45 

Increase 2288 15.26% 163 2084, 2522 -0.103 2.79 

Decrease 1650 -16.88% 166 1417, 1900 -0.923 3.72 

Parameters and results in bold are from the baseline scenario 
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Table 12. Predicted number of deer infected from an outbreak of foot and mouth disease 
in a population of deer in southern Texas for each locally reduced (within a 10km 
neighborhood) estimated population density surface initiated from a high density index 
location. Results shown are from 100 simulations of the geographic automata model for 
each deer surface. 
 

 Number of deer  

Population 

density 
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

Baseline  56092 NA 2664 52248, 58606 -0.308 2.87 

-10% 52674 -6.09% 3086 48996, 57044 0.027 3.22 

- 20% 50082 -10.71% 3662 38583, 54262 -4.067 19.242 

- 30% 45926 -18.12% 6059 12, 52771 -2.756 9.814 

- 40% 38901 -30.65% 8369 25245, 47225 -2.375 10.292 

- 50% 27424 -51.11% 10727 9, 41833 -0.952 3.295 
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Table 13. Predicted number of locations infected from an outbreak of foot and mouth 
disease in a population of deer in southern Texas for each locally reduced (within a 
10km neighborhood) estimated population density surface initiated from a high density 
index location. Results shown are from 100 simulations of the geographic automata 
model for each deer surface. 
 

 Number of deer  

Population 

density 
Median 

% change,  

baseline 
IQR 5%, 95% Skewness Kurtosis 

Baseline  2641 NA 132 2460, 2784 -0.308 2.77 

- 10% 2505 -5.15% 151 2325, 2714 -0.024 3.11 

- 20% 2413 -8.63% 185 1867, 2611 -4.062 19.228 

- 30% 2233 -15.45% 274 1, 2570 -2.793 9.979 

- 40% 1934 -26.77% 382 1316, 2317 -2.606 11.453 

- 50% 1435 -45.66% 500 1, 2091 -1.119 3.523 
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Table 14. Predicted number of deer infected from an outbreak of foot and mouth disease 
in a population of deer in southern Texas for each locally reduced (within a 10km 
neighborhood) estimated population density surface initiated from a low density index 
location. Results shown are from 100 simulations of the geographic automata model for 
each deer surface. 
 

 Number of deer  

Population 

density 
Median 

% change,  

baseline 
IQR 

5%, 

95% 
Skewness Kurtosis 

Baseline  6357 NA 8679 5, 11362 -0.069 1.619 

- 10% 4315 -32.12% 7042 5, 9697 0.241 1.663 

- 20% 10 -99.84% 2850 4, 5626 1.20 2.88 

- 30% 8 -99.87% 44 4, 5623 2.202 6.736 

- 40% 3 -99.95% 5 3, 878 6.508 48.916 

- 50% 3 -99.95% 7 3, 65 6.757 50.628 
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Table 15. Predicted number of locations infected from an outbreak of foot and mouth 
disease in a population of deer in southern Texas for each locally reduced (within a 
10km neighborhood) estimated population density surface initiated from a low density 
index location. Results shown are from 100 simulations of the geographic automata 
model for each deer surface. 
 

 Number of deer  

Population 

density 
Median 

% change,  

baseline 
IQR

5%, 

95% 
Skewness Kurtosis 

Baseline  590 NA 815 1, 1048 -1.068 1.581 

- 10% 413 -30.00% 661 1, 895 0.185 1.592 

- 20% 2 -99.66% 294 1, 529 1.177 2.836 

- 30% 2 -99.66% 9 1, 545 2.153 6.495 

- 40% 1 -99.83% 1 1, 90 6.527 49.499 

- 50% 1 -99.83% 2 1, 16 6.565 48.081 
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Table 16. Descriptive statistics for white tailed deer distributions predicted in south 
Texas, using information from the normalized difference vegetation index. 
 

Variable Observed Mean Std. Dev. Minimum Maximum Skewness Kurtosis 

Baseline 30592 13 8 0 36 0.35 1.94 

Winter 30592 13 6 1 28 0.61 2.28 

Spring 30592 13 5 3 29 0.75 2.94 

Summer 30592 13 4 5 27 0.54 2.92 

Fall 30592 13 5 0 27 0.39 2.67 
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Table 17. Characteristics of spatial autoregressive lag models fitted to seasonal white tailed deer distributions in south Texas, derived 
using the normalized difference vegetation index.  
 

Model Parameters Constant NDVI Rho 

Winter  
 

 Coefficient -1.41 6.06 0.918 

 Std. error 0.028 0.096 0.003 

 z-value -14.67 21.08 284.7 

 probability <0.001 <0.001 <0.001 

 Pseudo R2  = 0.837 

Spring   

 Coefficient -1.2 5.2 0.932 

 Std. error 0.105 0.305 0.003 

 z-value -11.36 17.04 313.3 

 probability <0.001 <0.001 <0.001 

 Pseudo R2  = 0.838 

Summer   

 Coefficient -0.88 4.17 0.938 

 Std. error -1.02 0.28 0.003 

 z-value -8.64 14.7 331.7 

 probability <0.001 <0.001 <0.001 

 Pseudo R2  = 0.838 

Fall   

 Coefficient -1.33 4.91 0.932 

 Std. error 0.11 0.29 0.003 

 z-value -11.76 17.0 313.6 

 probability <0.001 <0.001 <0.001 

 Pseudo R2  = 0.838 

n = 30,592; DF = 30,589 
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Table 18. Predicted size of an outbreak of foot and mouth disease in a population of white tailed deer in southern Texas for 
each season by Ecoregion (Edwards Plateau [EP] and South Texas Brush [ST]). Results shown are from 100 simulations of 
the geographic automata model (Sirca) for each seasonal deer surface. 
 

 Deer  Area (km2) 

Season/Ecoregion Median IQR 5%, 95% Skewness Kurtosis  Median IQR 5%, 95% Skewness Kurtosis 

Winter/EP  Plateau 101385 2868 98011, 104971 -0.19 -0.20  6416 154 6253, 6584 -1.9 9.3 

Spring/EP 90913 2885 86699, 94147 -2.28 10.5  6050 139 5854, 6242 -3.3 16.3 

Summer/EP 87792 2082 84955, 90341 -1.14 4.6  6058 131 5903, 6199 -3.4 22.5 

Fall/EP 92323 2314 89212, 95410 -.92 2.07  6198 142 6019, 6360 -3.1 12.9 

Winter/ST Plateau 40211 1819 36040, 41996 -2.9 13.9  4336 186 3890, 4541 -2.9 13.6 

Spring/ST 50372 1330 43506, 52122 -2.9 
 

10.1 
  4766 

117 4009, 4946 -2.8 7.9 

Summer/ST 54385 1753 52155, 56472 -4.7 29.8  4922 161 4752, 5122 -4.2 23.6 

Fall/ST 53389 1546 51363, 54638 -3.01 11.7  4969 132 4786, 5077 -2.2 7.5 
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Table 19.  Descriptive statistics for white tailed deer distributions predicted in an 8-county region of south Texas, and for 
distributions following application of 3 pre-emptive mitigation strategies. 
 

   Deer, per km2 

Strategy 
Regional estimated 

deer population 
Mean SD Minimum Maximum Skewness Kurtosis 

Baseline 406, 667 13 6 1 28 0.61 2.28 

Targeted cull 289, 469 10 6 0 19 -0.25 2.45 

Random cull 386, 202 13 6 0 28 0.29 2.62 

Depopulation 
buffer 

178, 373 6 8 0 28 1.03 2.85 
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Table 20. Predicted size of an outbreak of foot and mouth disease in a population of white tailed deer in an 8-county region of 
southern Texas for each of 4 mitigation strategies by Ecoregion (Edwards Plateau [EP] and South Texas Brush [ST]). Results 
shown are from 100 simulations of the geographic automata model (Sirca) for each mitigated deer surface. 
 

 Deer  Area (km2) 

Mitigation/Ecoregion Median IQR 5%, 95% Skewness Kurtosis  Median IQR 5%, 95% Skewness Kurtosis 

Baseline/EP 27000 1770 23927, 28781 -0.67 -0.19  1538 86 1385, 1623 -0.69 0.31 

Baseline/ST 11863 829 10696, 12966 -0.51 0.98  1344 95 1211, 1472 -0.56 1.01 

Targeted/EP  Plateau 15406 484 14780, 15855 -9.07 84.8  969 27 933, 994 -9.2 86.2 

Targeted/ST 11889 756 10687, 12665 -5.6 34.3  1345 87 1208, 1437 -5.6 33.6 

Random/EP 24443 1290 22806, 25975 -0.69 1.17  1402 65 1324, 1476 -0.81 1.48 

Random/ST 11293 727 10152, 12007 -6.9 59.2  1272 80 1146, 1361 -6.8 57.6 

DB*/EP Plateau 12955 1088 11386, 14059 -4.6 22.3  795 55 713, 853 -4.8 23.7 

DB*/ST 8226 360 7582, 8697 -5.1 
 

25.1 
  938 44 860, 998 -4.9 24.7 

* Depopulation buffer 
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