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ABSTRACT

Modelling and Control of a Symmetric Flapping Wing

Vehicle: An Optimal Control Approach. (August 2008)

Justin Patrick Jackson, B.S., Texas A&M University at Galveston

Chair of Advisory Committee: Dr. Thomas Strganac

This thesis presents a method for designing a flapping wing stroke for a flapping

wing vehicle. A flapping wing vehicle is a vehicle such as a bird or an insect that

uses its wings for propulsion instead of a conventional propeller or a jet engine. The

intent of this research is to design a wing stroke that the wings can follow which will

maintain the vehicle at a desired longitudinal flight path angle and velocity. The

cost function is primarily a function of the flight path angle error, velocity error

and control rate. The objective maneuver is to achieve a flight condition similar to

the trim of a conventional fixed wing aircraft. Gliding configurations of the vehicle

are analyzed to better understand flight in minimal energy configurations as well as

the modes of the vehicle. A control law is also designed using Lyapunov’s direct

method that achieves stable tracking of the wing stroke. Results are presented that

demonstrate the ability of the method to design wing strokes that can maintain the

vehicle at various flight path angles and velocities. The results of this research show

that an optimal control problem can be posed such that the solution of the problem

results in a wing stroke that a flapping wing vehicle can use to achieve a desired

maneuver. The vehicle velocity is shown to be stable in controlled gliding flight and

flapping flight.
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CHAPTER I

INTRODUCTION

The flapping wing problem has received much attention in recent years. The wings

of these vehicles must provide lift to counteract gravity and thrust to counteract

drag. These vehicles have the potential to excel in areas of maneuverability and

silent flight which makes this prospect one of interest for operation in restricted

spaces and surveillance applications. There are many issues that must be dealt with

when attempting to characterize the dynamics of these vehicles because they are

complex multi-body systems. The aerodynamics of these vehicles is also difficult

to characterize. Phenomena such as wing leading edge vortices play an important

role in lift production [1]. The control of flapping wing vehicles is another difficult

problem. One question associated with controlling vehicles of this type is, how should

the wings be moved in order to achieve a desired maneuver? A method of designing

a flapping wing stroke for a flapping wing vehicle is presented here. The formulation

includes a new model for a vehicle with two wings. This method takes an optimal

control approach to designing the wing stroke. Perspectives on feedback control of

the vehicle in gliding flight and flapping flight are presented. A stability analysis of

the system in various flight configurations is also presented.

Researchers have investigated aspects of the flapping wing problem from various

points of view. The complex motions of flapping wings through a fluid have been

studied extensively [2, 3, 4, 5, 6, 7, 8, 9, 10]. The importance of the leading edge

This journal model is IEEE Transactions on Automatic Control.
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vortex on lift production in flapping wing systems has also been investigated [1, 11,

12, 13, 9]. Some researchers use vortex panel methods to model the complex flows

around flapping wings [10, 7, 4]. Here, a quasi-steady approach common to aircraft

flight dynamics is used [14, 15] in the interest of the efficiency of the optimization

routine. However, this quasi-steady aerodynamic model has limitations, these are

discussed in Chapter V.

The dynamics of flapping wing vehicles are complex. These are multi-body sys-

tems with constraints dictating the permissible motions of the system. Researchers

[2, 7, 16, 17, 18, 19, 20] have made simplifications in order to study specific aspects

of a system such as flight path control and wing stroke design and some have taken

a general approach to the development of the dynamic equations [20, 19, 17].

Inherent in controlling a flapping wing vehicle is the guidance and control of the

wings of the vehicle. The wings must achieve motions that effectively manipulate the

aerodynamics. The resulting aerodynamic forces will provide the lift and thrust that

the vehicle requires for maneuvering. The problem of optimization of the wings’

trajectories subject to the various constraints has also been studied [2, 3]. This

thesis discusses the optimal control problem of guiding the wings of the vehicle in

detail in Chapter VI. The tracking of a wing stroke has been addressed by others

[19, 20, 18, 17, 7] and is also addressed in detail in this thesis.

A general perspective on some current issues facing researchers and designers

of flapping wing vehicles is presented in [21]. Problems such as scaling issues arise

when considering radio communication and the maximum size of antenna. Other

more apparent topics such as stored energy, for which there is no immediate solution
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for the current lack of energy density in today’s batteries and an effective means of

propulsion for micro air vehicles are also mentioned. In [21], the flapping wing vehicle

is consider as a total system in terms of systems integration and production. The

production of the wings by a sterolithography process is proposed and the beating of

the wings is proposed to be powered by a reciprocating chemical muscle that directly

converts chemical energy to mechanical energy without combustion.

A comprehensive analysis of the bound leading edge vortex on a flapping wing

was presented in [9]. This analysis was performed with a CFD Navier-Stokes solver

and used periodic flapping kinematics that were functions of sines and cosines. In

[9], it was found that the bound vorticity resides primarily at the leading edge of the

wing. An extensive study [8] investigated scaling issues for MAVs, lift and thrust

characteristics for flapping wings, drag and required power for flapping wing flight

and flexible airfoil behavior at low Reynolds numbers. Sinusoidal wing kinematics are

discussed in [6], [8] and [10] that describe the orientation of a wing and the angle of

attack when considering a constant free stream velocity. In [6], the wing geometries of

many avian examples such as seagulls and owls where accurately described using the

camber, thickness and chord variation along the wing span. In [10], the 3D unsteady

aerodynamics of a pair of flapping wings in a constant free stream are studied. The

wings are modeled as rigid and the orientation kinematics of the wings are three

angles that vary sinusoidally. The aerodynamic model is a vortex panel model that

accounts for bound vorticity as well as the wake effects out to one flapping cycle of

the wings. The use of vortex panel methods as an effective means of representing

the aerodynamics in flapping wing systems has become fairly common.
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In [4], the optimal distribution of vorticity on a flapping wing is solved for

with respect to minimizing the power requirements of the wing stroke. A vortex

lattice method is used to position bound vortices along the span of the wing and

account for the wake up to one wing beat period aft of the vehicle. Three forms of

power are included in the calculation of total power, thrust power, induced power

and profile power. The thrust power and induced power are functions of the kinetic

energy deposited into the wake and the parasitic power is accounted for with a

drag coefficient. Comparisons of flapping frequency, flapping amplitude and non-

dimensional average power for various average lift and thrust coefficients are included

as well as a comparison to actual data taken from birds in flight, [22]. The kinematics

of the rigid wings in [4] are assumed to be a sinusoidal flapping motion.

An experimental setup for testing and validating the loads on insect-like flapping

wings has been used, [16]. In [16], an unsteady, aeroelastic analysis of insect flight

was performed. This formulation consists of a structural dynamics model with a

prescribed motion at the root of the wing and an unsteady aerodynamics model

including non-circulatory forces. The structural model is a two dimensional flexible

plate structure, the dynamic equations of which are solved using an assumed modes

method.

In [2], a double appendage, planar system, with two links for each appendage

similar to the legs of a frog was modeled. The vehicle was symmetric and was

constrained to have symmetric flapping motion. The equations of motion of the

vehicle were derived using a Lagrangian approach. The derivation of the equations

of motion cleverly included the fluid dynamics in a manner identical to the rigid
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body dynamics. The Lagrangian of motion for the fluid was represented in terms

of an added inertia on the appendages due to the fluid. The primary purpose of [2]

is similar to the work of this thesis and is to illustrate a method for designing an

optimal flapping stroke for a vehicle using flapping appendages for locomotion. In

[2], the flapping stroke is constrained to be periodic in shape or state space which

allows for a repeatable stroke. An optimization framework is used to design the

flapping stroke. The cost function is the total control effort used over the flapping

cycle divided by the distance traveled by the vehicle. In other words, the goal is to

minimize the effort to distance ratio. This problem has path equality and inequality

constraints imposed. The path equality constraints are the equations of motion of the

vehicle and the fluid. The inequality constraints are the boundaries of the admissible

shape space, these boundaries represent limits on the allowable configuration of the

vehicle.

The non-sinusoidal path optimization of a flapping airfoil has been studied [3].

In [3], the planar case of an airfoil flapping in an elliptical manner was studied

in an optimization framework. This model did not include rigid or flexible body

dynamics in the problem formulation. However the aerodynamics were included

through a Navier-Stokes solver, this method accurately modeled viscous effects, flow

separation effects and unsteady effects. The motion of the airfoil takes place in a

constant free stream. The optimization problem here is to maximize total thrust

force over the flapping cycle. The thrust force is defined to be opposite the direction

of the free stream velocity of the fluid. The optimization parameters describe the

two dimensional shape of the wing path over the stroke. The solution is constrained
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to behave periodically, thus the flapping stroke must be repeatable.

Considering that flapping wing vehicles represent a very complex problem in

sensor technology, multi-body and fluid dynamics, optimization and control, some

have elected to study the compilation of these systems as they effect the operation

of the entire vehicle [20, 17, 19]. In [19], the aerodynamics are modeled using 3D

potential flow theory. The dynamics are modeled in a general way through the use

of the Gibbs-Appel equations. The optimization problem of how to move the wings

is not discussed in [19], the wing stroke followed is that of the Hawkmoth, Manduca

Sexta. In [17], an optical sensor model similar to the ocelli of an insect eye is assumed.

Control of the vehicle is assumed to be through the wings as well as haltres on the

sides of the vehicle. These haltres are an oscillating rotational control mechanism

that is utilized by various flying insects. The control system uses a linearized output

feedback methodology for inertial position and vehicle orientation tracking. The work

of [20] studies an integrative model of insect flight control. Here, detailed rigid body

dynamics are used. The inertias of the vehicle are very accurately computed using a

3D solid computer model. The aerodynamic forces and moments are simplified using

a linear representation with non-dimensional coefficients. A visual object recognition

sensory system is assumed. Haltres are assumed as the orientation control mechanism

for the vehicle and tracking control is through the use of a proportional controller.

The preliminary development of a micromechanical flying insect or MFI is dis-

cussed in [18]. Here, a higher level perspective is taken. A first approximation to

the rigid body dynamics is used that neglects nonlinearities and coupling between

the degrees of freedom. The control architecture is considered to be multi-level in
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that there are levels from ’mission planner’ to ’trajectory planner’ to ’flight mode

controller’, the last and bottom level is the ’wing kinematics controller’. Mission

planner level tasks would be tasks such as ’find a trapped victim’ for the case of

search and rescue. Trajectory planner level tasks are tasks such as optimization

of a route to move from the vehicle’s current location to where the trapped victim

would be. The flight mode controller would be responsible for determining how the

kinematics of the vehicle should evolve in order to track the trajectory. The wing

kinematics controller is the system that would design and track the motions of the

wings so as best to track the vehicle kinematics from the flight mode controller. The

method used in this thesis is at the level of the ’flight mode controller’ and the ’wing

kinematics controller’. The kinematics of the wings in [18] are linear combinations

of sinusoids. The control strategy is a bang-bang technique that uses the sign of the

total error times the saturated control value.

This thesis is organized as such. First the model of the system is presented,

then the various reference frames and the kinematic description of the system are

discussed. The equations of motion are then developed using Newton/Euler methods

[23]. Next, the aerodynamic model used to calculate the aerodynamic loads on the

system is presented. In order to achieve a flight path angle near the desired value, the

flapping wing vehicle must move its wings in such a way as to effectively manipulate

the aerodynamic forces on its wings without violating path and end constraints. The

quality and effectiveness of this motion is measured with a cost function. This cost

function and the constraints associated with the problem are discussed. Following

this, the example chosen to test the method is discussed. The controller used to
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track the state histories from the optimization routine is the derived and its stability

is analyzed. Finally, the wing stroke generation, trajectory tracking, linearization

and stability results are presented and discussed.
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CHAPTER II

THE MODEL

This is a model of a vehicle with motion in the longitudinal plane only. No lateral

motion of the vehicle is considered, this means that the vehicle center of mass must

remain on a vertical plane and that the velocity vector of the vehicle must also

lie on the same plane, App. A. Often traditional stability and control analyses

consider the longitudinal and lateral-directional motions of aircraft separately. This

is done, not only to simplify the analyses, but also to obtain useful characteristics

of traditional flight modes associated with the longitudinal and lateral-directional

flight. Longitudinal flight is primarily concerned with the modes of the vehicle that

occur as a result of changes in the forward velocity, the angle of attack of the vehicle

and the pitch attitude of the vehicle, where as lateral-directional modes occur as a

result of the rolling, yawing and sideslip of the vehicle.

The translational motion of the system is described by the velocity vector of

the fuselage of the vehicle expressed along inertially fixed axes. The translational

dynamics of the fuselage center of mass were chosen because this is the point where

the wings are attached and while these dynamics are slightly more complicated than

the translational dynamics of the center of mass of the vehicle, the rotational dynamic

equations are greatly simplified when expressed in terms of the translation of the

fuselage center of mass. Because the vehicle fuselage is modeled as a point mass,

it contributes neither rotational inertia about its own mass center or aerodynamic

effects.
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The wings are modeled as rigid plates that rotate about a shoulder joint with

three rotational degrees of freedom, plunge, pitch and sweep. Because the vehicle

model is restricted to move longitudinally, the wings must move such that the vehi-

cle velocity remains parallel to the longitudinal plane. The motion of the wings is

symmetric with respect to the longitudinal plane. The concept for the type of sym-

metry used in this model was intuitive, however, the mathematical basis is presented

in Chapter III. Conceptually, this symmetry relationship is such that both wings

sweep forward together, both wings plunge vertically together and both wing pitch

in the same direction. Because the vehicle velocity has no vector component that

is perpendicular to the longitudinal plane, this state can be neglected provided that

the symmetry relationship used does in fact enforce this result. Another result of

enforcing that the system evolve symmetrically is that only the equations of motion

of one wing need be considered. If the motions of one wing are known, then by the

symmetry relationship, the motions of the other wing are also known. This results

in two equations of motion for the motion of the vehicle fuselage and three equations

of motion describing the evolution of the wing angular velocities. Three additional

equations are required to describe the evolution of the wing Euler Angle orientation.

The states of the system are the inertial velocity of the fuselage, the angular velocity

of the right wing and the orientation of the right wing,

x =













Vp

ω1

θ1













. (2.1)
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The aerodynamics of the wings are assumed to be independent of each other.

The aerodynamic model is quasi-steady and 2D [14, 15]. This means that the lift

and drag forces include contributions from the instantaneous total velocity and the

rotation rate of the wing. The non-dimensional lift is computed from a combination of

a zero angle of attack term and a total angle of attack dependent term. The lift curve

slope is adjusted using a correction for finite span wings, [24]. The non-dimensional

drag on the wings is computed using a standard drag polar. This contains a parasitic

or profile drag contribution and an induced drag contribution that is a quadratic

function of the non-dimensional lift.

The derivative convention is as such, an over dot signifies the derivative of

a quantity in its own frame, not the inertial derivative of the quantity. A #d/dt

signifies the derivative of a quantity in the # frame. Brackets around a quantity,

[a]# signify that the quantity is expressed in the # frame.
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CHAPTER III

REFERENCE FRAMES

Three reference frames are used here. An inertially fixed frame and two wing-fixed

frames. When the wings are at the zero orientation, θ1 = θ2 = θ3 = 0 all reference

frames are parallel. These rotations are detailed in Figs. 1(a)-1(c). The inertial

and wing-fixed bases are referred to as, i, 1 and 2 respectively. While one can con-

sider a stability reference frame that describes planar motion in terms of a velocity

magnitude and a direction angle, in this case, a velocity and flight path angle, the for-

mulation used here considers only three reference frames. This will be demonstrated

as it was part of a previous formulation and offers a slightly different perspective on

longitudinal flight. Results will also be presented in this manner, using the velocity

and flight path information as it allows for easier and more intuitive analysis. Also

in this chapter, the direction cosine matrices and kinematic influence matrices that

are used are discussed.

A. Direction cosine matrices

The wing orientations are described using a 3-2-1 Euler angle sequence which is

explained in detail in [25]. The cosine matrices, C1i and C2i transform vectors ex-

pressed in the inertial frame to vectors expressed in the 1 and 2 frames respectively

[25]. These matrices are
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C1,2 =













cθ2cθ3 cθ2sθ3 −sθ2

sθ1sθ2cθ3 − cθ1sθ3 sθ1sθ2sθ3 + cθ1cθ3 sθ1cθ2

cθ1sθ2cθ3 + sθ1sθ3 cθ1sθ2sθ3 − sθ1cθ3 cθ1cθ2













(3.1)

In Eq. 3.1, the notation c = cos, s = sin, is used and θi refers to the Euler angles

of the 1 or 2 wing. Each wing has associated with it, a direction cosine matrix that

changes with the orientation of the wing and thus with time. The next section will

describe the motion and kinematics of the various reference frames.

B. Reference frame kinematics

(2)

i

i

w

w

1

1

3
3

θ

g

(a) Rotation about 2-axis

(1)

i

i

w

w

2

2

3
3

θ
g

(b) Rotation about 1-
axis

(3)
i

i
w

w

1

1

2
2

θ

(c) Rotation about 3-axis

Fig. 1. Reference frame visualization for wing 1.



14

This section describes the kinematics of the rotation of the various reference

frames. When all rotation angles are zero, the 1-frame, 2-frame and inertial frame

have parallel 1, 2 and 3 bases. The orientation of the 1-frame and 2-frame relative to

the inertial frame are described by two 3-2-1 Euler angle sets, θ1 and θ2 respectively.

Where θi(1), θi(2) and θi(3) are the rotations about the intermediate 1, 2 and 3

axes. Angular velocities are about wing-fixed axes. The wing orientations must

be symmetrical with respect to the inertial 1-3 plane. The symmetry relationship

imposed is as follows,

θ2 = [−θ1(1), θ1(2),−θ1(3)]T (3.2)

= [T ]θ1 (3.3)

where

[T ] =













−1 0 0

0 1 0

0 0 −1













Qualitatively, the symmetry relationship in Eq. 3.3 says that the wings plunge

up and down together, the wings pitch in the same direction and the wings sweep

forward and backward together. This is intuitive if these rotations are considered

separately. The symmetric plunging of the wings is commonly known as wing dihe-

dral for fixed wing aircraft. The symmetric pitch is known as the angle of attack of

the wings relative to the fuselage of the vehicle. Here, all rotations are relative to
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the inertial frame. The symmetric sweep of the wings is commonly known as wing

sweep. This symmetry relationship is standard for most fixed wing aircraft. Because

[T ] is constant,

θ̇2 = [T ]θ̇1. (3.4)

From [25], the kinematics for wing 1 and 2 are

ω1 = [B1(θ1)]θ̇1 (3.5)

θ̇1 = [A1(θ1)]ω1 (3.6)

ω2 = [B2(θ2)]θ̇2 (3.7)

θ̇2 = [A2(θ2)]ω2 (3.8)

The kinematic influence matrix A, is a function of only the second and third

rotations. The matrix A is a time varying transformation that maps the angular

velocities of a rotating rigid body (i.e. a wing) expressed in a frame fixed to that

body into the time rate of change of the parameters used to describe the orientation of

that body relative to another reference frame (i.e. the inertial frame). This mapping

is a function of only the rotations about the intermediate 2 and 1 axes and becomes

singular if the second orientation parameter, θ(2), goes to 90◦. Chapter VI explains

how this is dealt with in more detail. The expression for the kinematic influence

matrix A is
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A1,2 =
1

cθ(2)













cθ(2) sθ(2)sθ(1) sθ(2)cθ(1)

0 cθ(2)cθ(1) −cθ(2)sθ(1)

0 sθ(1) cθ(1)













(3.9)

We seek an expression for ω2 in terms of ω1. The symmetry relationship used to

map the angular velocities of the 1-frame into the angular velocities of the 2-frame

must not violate Eqs. 3.3, 3.6 and 3.8. First, assume that the angular velocity

symmetry relation,

ω2 = [T ]ω1 (3.10)

does not violate Eqs. 3.3, 3.6 and 3.8. This relationship states that the angular

velocity of wing 2 projected on the 1 and 3 axes of the 2-frame are opposite that of

wing 1 projected on the 1 and 3 axes of the 1-frame. It also says that the angular

velocity of wing 1 projected onto the 2 axis of the 1-frame is equal to the angular

velocity of wing 2 projected onto the 2 axis of the 2-frame.We will now proceed to

show that this is indeed true and that the symmetry relation in Eq. 3.10 is the

mapping between the angular velocities of the 1-frame and the 2-frame.

We begin by substituting the kinematics in Eq. 3.6 into the symmetry relation

in Eq. 3.4 to obtain,

A(θ2)ω2 = [T ]A(θ1)ω1 (3.11)



17

For the symmetry relation in Eq. 3.10 to hold, the following must be true,

A(θ2)[T ]ω1 = [T ]A(θ1)ω1. (3.12)

From this, it follows that

A([T ]θ1)[T ] = [T ]A(θ1) (3.13)

must also hold. If Eq. 3.13 is true, then it follows that Eq. 3.10 is the symmetry

relationship between the angular velocities of the first and second wing that abide

by Euler Angle symmetry specified in Eq. 3.3. Evaluating the left and right hand

sides of Eq. 3.13, we obtain,

A([T ]θ1)[T ] =
1

cθ1(2)













−cθ1(2) −sθ1(2)sθ1(1) −sθ1(2)cθ1(1)

0 cθ1(2)cθ1(1) −cθ1(2)sθ1(1)

0 −sθ1(1) −cθ1(1)













(3.14)

and

[T ]A(θ1) =
1

cθ1(2)













−cθ1(2) −sθ1(2)sθ1(1) −sθ1(2)cθ1(1)

0 cθ1(2)cθ1(1) −cθ1(2)sθ1(1)

0 −sθ1(1) −cθ1(1)













(3.15)

and these two terms are indeed equal, thus the relation in Eq. 3.13 holds and Eq.

3.10 is the symmetry relation describing the angular velocity kinematics of one wing
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in terms of the other. Again, because the transformation [T ] is time invariant, the

relationship between the angular velocity rates is identical to that of the Euler Angle

rates and is as follows,

ω̇2 = [T ]ω̇1. (3.16)
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CHAPTER IV

VEHICLE DYNAMICS

A. Translational equations of motion

Here, the longitudinal translational equations of motion for the system are developed.

First the development of the translational equations of motion will proceed using the

flight path velocity and flight path angle states to describe the translation of the

center of mass. The second development will describe the translation of the vehicle

fuselage, which is represented as a point mass, using inertial velocity states. The

second development is more general and is the one chosen to describe the translational

dynamics of the system. The rigid body equations of motion will be developed using

Newton-Euler momentum methods similar to [23].

1. Translation of mass center

V

mgc

CG

P

wing

γ

i

i
1

3

Fig. 2. System translation relative to inertial frame.

Fig. 2 illustrates the translation of the center of mass of the system. The
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stability frame offers a convenient frame to express the equations in as the 1-axis

of this frame is aligned with the velocity vector of the system center of mass by

definition. The resulting translational equations also end up to be quite convenient.

The translational momentum of the system in terms of the center of mass of the

system can be written as

[p]s = mV ŝ1 (4.1)

This is the total inertial momentum of the system as seen in the stability frame.

The inertial derivative of Eq. 4.1 is

[
id

dt
p]s = m

sd

dt
([V]s) +mγ̇ŝ2 × V ŝ1 (4.2)

Eq. 4.2 can be rewritten as

[
id

dt
p]s = mV̇ ŝ1 −mγ̇V ŝ3 (4.3)

where γ is the vehicle flight path angle. This development is only valid for vehicle

motion in the longitudinal plane as a result of the cross product of the rotation of

the stability frame relative to the inertial frame with the vehicle velocity vector. In

general, the rotation of the stability frame relative to the inertial frame is a function of

the flight path angle rate and the heading angle rate. For this case the heading angle

rate is zero because the vehicle is restricted to longitudinal motion. By Newton’s
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second law

[
id

dt
p]s = [

∑

F]s (4.4)

Because only longitudinal motion is permitted, there must be no forces in the

stability-2 direction. Using this and Eqs. 4.3 and 4.4, we have

V̇ =
1

m

∑

Fŝ1 (4.5)

γ̇ = −
1

mV

∑

Fŝ3 (4.6)

Eqs. 4.5 and 4.6 describe the translation of the vehicle CG in the longitudinal

plane. The forces in the stability 1 and 3 directions are sums of the aerodynamic

forces on the vehicle, from both wings, and the gravitational force. The next devel-

opment describes the translation of the fuselage and is not restricted to motion in

the longitudinal plane.

2. Translation of fuselage

Fig. 3 illustrates the translation of the fuselage of the vehicle relative to the inertial

frame. Recall that the mass center of the vehicle, in general, does not coincide with

the fuselage. The development again begins with translational momentum. The

translational momentum of the fuselage expressed in the inertial frame is
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wing

mgc

CG

P

γ

i
3

i
1

V p

Fig. 3. Fuselage translation relative to inertial frame.

[pp]i = mp[Vp]i (4.7)

Upon taking the inertial derivative of Eq. 4.7 and applying Newton’s second

law, the following is obtained

id

dt
(Pp) =

∑

Fp

= R1 + R2 +mpg

(4.8)

Notice that this formulation is much more general in that it considers a general

vehicle velocity that could have a component perpendicular to the longitudinal plane.

Also notice the lack of a cross product, this is because the velocity vector is expressed

in a frame that is not rotating relative to the inertial frame. The symmetry of

rotational motion for the system will be imposed later. The vectors R1 and R2

are the reaction forces exerted on the point mass by wings 1 and 2 respectively.
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These reactions plus the force of gravity are the only forces acting on the vehicle

fuselage. However, we desire that the translational equations of motion be in terms

of the states of the system, the velocity of the fuselage, the angular velocity and

angular orientation of the wings. To achieve this, the reactions must be determined

as functions of the motions of the wings and substituted into Eq. 4.8. We begin with

the translational momentum of wing 1.

P1 = m1v1 (4.9)

The inertial velocity of the wing, v1, is a function of the velocity of the fuselage

and a velocity due to the rotation of the wing about point P.

v1 = Vp +
id

dt
(dc1) (4.10)

id

dt
(dc1) = ω1 × dc1 (4.11)

The development proceeds as previously by taking the inertial derivative of the

translational momentum of the wing and evoking Newton’s second law. The inertial

derivative of the translational momentum of the wing is

id

dt
(P1) = m1

(

id

dt
(Vp) +

id

dt
(ω1 × dc1)

)

(4.12)

id

dt
(ω1 × dc1) =

id

dt
(ω1) × dc1 + ω1 ×

id

dt
(dc1) (4.13)

To obtain a more convenient expression for the inertial momentum rate, we
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reorder the cross product in the
id
dt

(ω1) term and make use of the cross product

tensor representation [ω×], where pre-multiplication of a vector by [ω×] performs the

cross product operation of ω with the vector. The inertialal translation momentum

rate of the wing becomes

id

dt
(P1) = m1

(

id

dt
(Vp) − [d×

c1
]ω̇1 + [ω×

1 ][ω×

1 ]dc1

)

, (4.14)

where,

[ω×] =













0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0













. (4.15)

By Newton’s second law, we set the inertial time rate of change of the wing

translational momentum equal to the sum of the forces acting on the wing. This

includes, the reaction associated with that wing, but in the opposite direction of

that acting on the fuselage, the sum of all aerodynamic forces acting on the wing,

and the force of gravity. The following equation results

id

dt
(P1) =

∑

F1, (4.16)

= −R1 + FA1
+m1g. (4.17)

The reactions are solved for to obtain

R1 = −
id

dt
(P1) + FA1

+m1g. (4.18)
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An expression for the equations of motion in Eq. 4.8 in terms of the motion

of the two wings is sought. To obtain this, it is first realized that the translational

momentum rate equation for the second wing is identical to that of the first wing

save replacing the 1 subscripts with 2 subscripts. Eqs. 4.14 and 4.18 are substituted

into Eq. 4.8 to get

mp

id

dt
(Vp) = −m1

(

id

dt
(Vp) − [d×

c1
]ω̇1 + [ω×

1 ][ω×

1 ]dc1

)

−m2

(

id

dt
(Vp) − [d×

c2
]ω̇2 + [ω×

2 ][ω×

2 ]dc2

)

+ FA1
+ FA2

+m1g +m2g +mpg

(4.19)

Upon rearranging, what was desired is achieved.

m
id

dt
(Vp) −m1[d

×

c1
]ω̇1 −m2[d

×

c2
]ω̇2

+m1[ω
×

1 ][ω×

1 ]dc1 +m2[ω
×

2 ][ω×

2 ]dc2 =
∑

FA +mg

(4.20)

or

m
id

dt
(Vp) − (m1[d

×

c1
]ω̇1 +m2[d

×

c2
]ω̇2)

+ (m1[ω
×

1 ]2dc1 +m2[ω
×

2 ]2dc2) =
∑

FA +mg

(4.21)

Eq. 4.21 is the equation of motion for the fuselage. It contains the mass,

translational acceleration product as well as other terms that are readily recognizable.

The ω̇ terms are the tangential acceleration terms due to the rotational acceleration

of the wings. The [ω×]2 terms are the centripetal acceleration terms due to the
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angular velocity of the wings. And the total aerodynamic force on the vehicle and

the total gravitational force on the vehicle are on the right hand side. Notice that

unlike Eqs. 4.5 and 4.6, here it was not assumed that the system moves only in the

longitudinal plane where Eqs. 4.5 and 4.6 were developed assuming that the angular

velocity of the stability frame relative to the inertial frame is γ̇.

For the sake of completeness, the next development will detail the collapse of

Eq. 4.21 into the standard F = ma that is obtained when the translational equations

of motion are written with respect to the center of mass of the system. To begin

with, the acceleration of the fuselage is represented in terms of the acceleration of

the center of mass of the vehicle. The inertial position vector for the fuselage is

rp = rc + rpc (4.22)

where rpc is the position of the fuselage relative to the system center of mass. From

this, Eq. 4.22 is differentiated to obtain the expression for the inertial acceleration

of the point mass in terms of the acceleration of the system mass center and the

acceleration of the fuselage relative to the system mass center. Thus, we have

id2

dt2
(rp) =

id2

dt2
(rc) +

id2

dt2
(rpc) (4.23)

At this point, it is desired to have an expression for the acceleration of the

fuselage relative to the center of mass of the system, r̈pc. This is an inertial derivative.

By the definition of center of mass,

mprpc +m1(rpc + dc1) +m2(rpc + dc2) = 0. (4.24)
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Eq. 4.24 leads to,

(mp +m1 +m2)rpc +m1dc1 +m2dc2 = 0, (4.25)

from which comes,

rpc = −
1

m
(m1dc1 +m2dc2). (4.26)

The first derivative of rpc is

ṙpc = −
1

m
(m1ω1 × dc1 +m2ω2 × dc2) (4.27)

the second derivative of rpc is

r̈pc =
1

m
(m1[d

×

c1
]ω̇1 +m2[d

×

c2
]ω̇2)

−
1

m
(m1[ω

×

1 ]2dc1 +m2[ω
×

2 ]2dc2),

(4.28)

where the ω̇ cross products have be switched and the cross product tensor represen-

tation has been used. Notice the striking similarities between Eqs. 4.21 and 4.28.

Upon substituting Eq. 4.23 and 4.28 into the equation of motion in Eq. 4.21 we

recover the translational equation of motion for the center of mass of the system.

m
id

dt
(Vc) =

∑

FA +mg (4.29)
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B. Wing rotation equations

Each wing has a plunge, pitch and sweep degree of freedom. These are the rotations

about the wing-fixed 1, 2 and 3 axes respectively. Fig. 4 shows a tail view of

the aircraft and demonstrates the plunge wing deflection as well as the rotation

convention of the two wing fixed frames. Three rotational equations of motion and

three kinematic equations are needed to describe the evolution of a wing’s angular

velocities and orientation relative to the inertial frame.

wing CG

w
w

w

w

P

i

i

mgc

2

2
1

2
2

3
13

2

3

Fig. 4. Wing frames.

From [26], the relative angular momentum of the wing about the arbitrary point,

P, is

H1 = Ic1ω1 + dc1 × (m1

id

dt
(dc1)) (4.30)

The first term on the right hand side of Eq. 4.30 represents the rotational momentum

of the wing about its center of mass and the second term represents the moment of
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the relative translational momentum of the wing about point P. The inertial velocity

of the wing relative to point P can be seen in Eq. 4.11.

Also from [26], there is the inertial derivative of angular momentum for a rigid

body rotating about an arbitrary, inertially accelerating point. In general, this ex-

pression contains more than the external moments acting on the body.

id

dt
(H1)|p =

∑

L|p +m1

id

dt
(Vp) × dc1 (4.31)

The inertial time derivative of the body’s angular momentum is

id

dt
(H1) =

1d

dt
(H1) + ω1 × H1 (4.32)

Performing the differentiation of Eq. 4.30 yields,

id

dt
(H1) = I1ω̇1 +m1dc1 × ω̇1 × dc1

+ ω1 × I1ω1 +m1ω1 × dc1 × ω1 × dc1

(4.33)

Note that the over dots in Eq. 4.33 indicate a derivative in the 1-frame. Upon

rearranging the cross products in the second and fourth terms on the right hand side

of Eq. 4.33 and substituting the result into Eq. 4.31, the following is obtained,

(I1 −m1[d
×

c1
]2)ω̇ + [ω×

1 ](I1 −m1[d
×

c1
]2)ω +m1[d

×

c1
]
id

dt
(Vp) = u1 + MA1

(4.34)

This is the equation of motion for one wing. The development for the other

wing is identical. The three control moments on the wing along the wing-fixed axes
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are u1. The three control moments act at point P. The moments MA1
are the sum

of the aerodynamic moments on the wing in wing 1 axes. Notice the similarity of

Eq. 4.34 to Euler’s equations for the rotation of a rigid body. If the point P does

not accelerate inertially, these equations are reduced to the rotation of a rigid body

about a point other than its mass center. This result is similar to the parallel axis

theorem for planar rotations. Eqs. 4.21 and 4.34 are the acceleration level equations

governing the evolution of the flapping wing system. To be useful however, each set

of equations must be expressed in a single frame. Eq. 4.21 are expressed in inertial

axes and Eq. 4.34 are expressed in 1-frame axes.

C. State space representation of governing equations

Here we present the equations of motion as well as the kinematic equations in state

space form. This is the form that is used as the path equality constraints for the

trajectory optimization. Note that the control input appears affinely in Eq. 4.34.

We write the state space form of the equations of motion as

ẋ = F(x) + [G(x)]u, (4.35)

F = [M ]−1













∑

FA +mg −m1[ω
×

1 ]2dc1 −m2[([T ]ω1)
×]2dc2

MA1
− [ω×

1 ](I1 −m1[d
×

c1
]2)ω1

A(θ1)ω1













. (4.36)

The non-square control influence matrix is



31

[G] = [M ]−1













0

1

0













. (4.37)

The invertible acceleration coupling matrix [M ], contains the influence of the

vehicle fuselage acceleration on the angular momentum rate of wing 1 as well as the

influence of the angular momentum rates on the inertial velocity of the fuselage. [M ]

is,

[M ] =













m1 −(m1[d
×

c1
] +m2[d

×

c2
][T ]) 0

m1[d
×

c1
] (I1 −m1[d

×

c1
]2) 0

0 0 1













. (4.38)
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CHAPTER V

VEHICLE AERODYNAMICS

The aerodynamics of the vehicle are functions of the lift and drag forces on the wings.

The fuselage is modeled as a point mass and does not contribute to the aerodynamics

of the vehicle. All aerodynamic forces acting on a wing are assumed to act at the

mean geometric quarter chord, mgqc, of the wing [14]. The aerodynamic forces in-

clude lift and drag forces. The lift force is perpendicular to the instantaneous inertial

velocity of the wing and the drag force is parallel to the instantaneous velocity of

the wing. These forces are computed in the wing-fixed frame.

q

w

w

i

i
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mgqc

D

α

V

L

Fig. 5. Aerodynamic forces on a wing.

The forces on a wing are computed using the total inertial velocity of the wing

mgqc and as such, include the contributions to the velocity from the angular velocity

of the wing. This is a quasi-steady approach. It does not include contributions
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from shed vortices, accelerations or added mass, viscous effects, separation or stall,

or phase lag effects that occur with higher reduced frequencies. The formulation is

modular, a pre-existing aerodynamic model could be used fairly easily. The lift and

drag on a wing are defined as

L = QSCL, (5.1)

D = QSCD, (5.2)

Q =
1

2
ρvT

q vq. (5.3)

The quantity Q is the instantaneous dynamic pressure at the wing mean geo-

metric quarter chord and the vector vq is the inertial velocity of the mgqc and is

computed as

vq = Vp +
id

dt
(dq1

), (5.4)

id

dt
(dq1

) = ω1 × dq1
. (5.5)

The non-dimensional lift, CL, is composed of a zero angle of attack contribu-

tion and a dependence on the instantaneous effective angle of attack. The non-

dimensional drag is computed using a standard drag polar composed of a zero lift

contribution and an induced drag [14]. The non-dimensional lift and drag are defined

as
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CL = CL0
+ CLα

αeff , (5.6)

CD = CD0
+RC2

L, (5.7)

where the effective angle of attack, αeff and R are

αeff = arctan

(

vq(3)

vq(1)

)

, (5.8)

R =
1

πeAR
. (5.9)

Note that only flow parallel to the mean geometric chord is considered in the

angle of attack computation. Eqs. 5.1 and 5.2 present the scalar magnitudes of

the lift and drag vectors. The instantaneous vectors are computed in the wing-fixed

frame as

[L] = L[sinαeff , 0,− cosαeff ]
T , (5.10)

[D] = −D
[vq]

‖ vq ‖
. (5.11)

The aerodynamic moments on the wing are considered to be simply a function of

the lift and drag terms above. There is no consideration of non-circulatory terms in

the aerodynamics. Pure aerodynamic moments about the wing aerodynamic center

are also not included, it is assumed that the wing has zero camber and is symmetric

about the camber line [15]. The moments on the wing due to the aerodynamics are
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MA = [d×

q ]([L] + [D]). (5.12)
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CHAPTER VI

WING STROKE OPTIMIZATION

A. Optimal control problem

Here, the optimal control problem or OCP, is posed to design a wing stroke to

maintain the flight path and velocity for a flapping wing vehicle of the type discussed

in Chapter II. This section presents a cost function and constraints that help to

achieve this objective. The optimal control problem can be stated as such

min
x,u

J

subject to

ẋ = f(x,u) (6.1)

ψ(x0, xf , ẋ0, ẋf ) = 0 (6.2)

gmin ≤ g(x) ≤ gmax (6.3)

hmin ≤ h(x) ≤ hmax (6.4)

Where the function ψ(x0, xf , ẋ0, ẋf ) is a function of the initial and final states

of the system and their derivatives, and is responsible for causing the solution to

behave cyclically. The function g(x) are the nonlinear inequality, path constraints

that will later function to limit the angle of attack. The function h(x) are the linear

path constraints that will later function to limit the Euler angle orientation of the
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wings.

1. Performance index

The performance index used is a measure of the fuselage flight path angle deviation

from a desired flight path angle over the course of one stroke period, a measure of the

deviation of the flight path velocity from the desired, and a measure of the control

rate [27], or ’spikiness’ of the control input. This Lagrange type cost function is

J =

∫ t0+T

t0

(γ(t) − γr)
2 + β1(Vfp(t) − Vr)

2 + β2u̇(t)T u̇(t)dt, (6.5)

where,

γ = − arctan

(

V (3)

V (1)

)

, (6.6)

and

Vfp =
√

V(1)2 + V(3)2. (6.7)

The first term of the integrand penalizes the flight path angle error over the

period of the wing stroke. The second term penalizes the flight path velocity error

over the period of the wing stroke. The third term penalizes the control rate and is

responsible for smoothing out control effort peaks over the wing stroke. The scalar

constants β1 and β2 are weightings that are used to specify the relative importance

of the velocity tracking error and control rate in the cost function. This is a fixed

final time problem. The stroke period is pre-specified. The purpose of this flight
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path angle dependent performance index is to have the vehicle maintain a condition

as close to translational trim as possible. The constraints that assist in finding a

solution that meets this criteria are discussed in the following section.

2. Constraints

First, the system is constrained to behave in a periodic manner. This is done to

ensure that tracking the wing stroke repeatedly will result in trimming the vehicle.

Specifically, this means that the values of the states and their derivatives must be

equal at ti and ti + T . This constraint manifests as an end constraint, more specifi-

cally, a smoothness constraint on the states. The imposed smoothness of the solution

is of order 1. It is required that

x(ti) = x(tf ) (6.8)

ẋ(ti) = ẋ(tf ) (6.9)

Here, the i and f subscripts denote the values of the quantities at t = ti and

t = ti + T . Eq. 4.35 represent the path equality constraints governing the time

evolution of the system. The solution to the optimal control problem must not

violate the dynamics of the system.

The above equality constraints are enough to satisfy the equations of motion

and the periodic solution constraints. However, an aerodynamic model is used that

assumes a linear lift curve slope and does not account for the effects of separation,

departure or stall. To insure that the solution does not violate the bounds of the
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assumed aerodynamics, a nonlinear, inequality constraint is imposed.

αmin ≤ αeff ≤ αmax (6.10)

The effective angle of attack, αeff is a nonlinear function of the states, Eq.

5.8. The aerodynamics of an oscillating wing can also be heavily influenced by

the reduced frequency, k, of the oscillating wing, [15]. This is a non-dimensional

frequency of oscillation of the wing and is a function of the wing beat period, the

fluid velocity and the wing mean geometric chord. The reduced frequency effects

that occur can reduce the loads on the wing and influence the phasing between when

the loads occur and the motion that causes the loads [15]. Effects due to the reduced

frequency are not included.

One limitation of the Euler angle kinematics is the singularity of the kinematic

influence matrix, [A(θ)], when the second Euler angle, θ(2) approaches π/2. No at-

tempt is made to switch the kinematics as the orientation approaches the singularity.

Instead, upper and lower bounds on the Euler angles are imposed at every point of

the solution.

θmin ≤ θ ≤ θmax (6.11)

The orientation singularity is not the only concern associated with the Euler

angle kinematics. Limitations not only on the second rotation, pitch, but on all

three rotations are essential in order to obtain a physically significant solution. For

example, the wings’ sweep, θ(3), and plunge, θ(1), angles should not result in the

wings crossing each other. The magnitude of the wing plunge angles should not
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exceed π/2. In other words, the wings must remain on their respective sides of the

longitudinal plane.

B. NLP representation

The optimal control problem presented above is complex and rife with nonlinearity in

the kinematics, equations of motion and the angle of attack constraints. The problem

has upper and lower bounds on the wing orientations as well as end conditions that

link the initial and final solution values. For these reasons, this problem is converted

to a nonlinear programming problem or NLP, and solved numerically. The problem

is discretized to represent the problem as a set of finite parameter sequences where

the values of the trajectory at discrete points in time, along the stroke period, can

be determined that represent a near optimal solution.

Two methods have been used to convert this optimal control problem into an

NLP. The first was a standard collocation method that involves using a finite differ-

ence approximation to the derivative of the state variables to satisfy the equations of

motion at the midpoints between the nodes. The second, a Chebyshev pseudospec-

tral method that allows for the exact determination of the derivative of the states

and controls at the nodes corresponding to the extrema of the Nth-order Chebyshev

polynomial. The last method is the one currently being used for discretization of the

OCP.
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1. Classical collocation discretization

The classical collocation method was used as a preliminary means of obtaining a

solution. This method is the simplest method of discretizing continuous optimal

control problems, for this reason, it was chosen as a first cut at a solution. Con-

ceptually, this method uses the midpoint rule for discretization. A finite number

of points are chosen along the trajectory of each state and the constraints in the

inequalities, 6.10 and 6.11 are satisfied at these nodes. The dynamics are satisfied in

between nodes. In this method, the derivatives of the states are approximated using

the midpoint rule where the slope of the function at the midpoint between any two

nodes is assumed to be equal to the difference of the function values on either side of

the midpoint divided by the time step between the nodes. In this scheme, the stroke

period was divided into N − 1 evenly spaced segments, the endpoints of which were

the N nodes corresponding to the times of the discrete solution. The constraint in

Eq. 6.1 was satisfied as

xi+1 − xi

h
− f(xav,uav) = 0 (6.12)

where h is the time step, h = ti+1 − ti and xav and uav are the average values of the

state and control variables over the time step. The end constraints ψ(x0, xf , ẋ0, ẋf ) =

0 require that the derivative of the states also be equal at the beginning and end of

the stroke. Because collocation does not allow for exact determination of the state

and control derivatives at the nodes the end constraints were not satisfied in terms

of ψ(x0, xf , ẋ0, ẋf ) = 0, but by connecting the last and first nodes by a segment of

length h. The constraints in Eq. 6.1 were enforced across this segment in the form
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of Eq. 6.12 with node i+ 1 as node 1 and node i as node N . This can be viewed as

completing the cycle of the stroke.

This method was not used throughout the project for many reasons. In classical

collocation, many nodes are required to obtain a good solution which corresponds to

many optimization parameters to be solved for. Because of the uniform distribution

of the discretization nodes, this method is susceptible to the Runge phenomenon, or

the divergence of the solution at the end points of the domain. It is also of great

importance that the first derivative of the solution be known exactly at the nodes of

discretization for tracking purposes, this method does not allow for this. For these

reasons, a Chebyshev Pseudospectral Method is used for discretization of the OCP.

2. Chebyshev pseudospectral discretization

The Chebyshev Pseudospectral method as presented in [28], was used to convert the

OCP in Sec. A to an NLP. This method was chosen primarily because it allows for

exact determination of the state and control derivatives at the node points. This

solution method also requires less node points and the distribution of these node

points is such that the Runge phenomenon is prevented. These node points are

those corresponding to the extrema of the Nth-order Chebyshev polynomial and are

given analytically by

tk = cos(
πk

n
) k = 0, . . . , n (6.13)

The goal is to obtain a polynomial approximation of the solution in the following

form,
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xn(t) =
n

∑

j=0

xjφj(t), (6.14)

un(t) =
n

∑

j=0

ujφj(t), (6.15)

where φ(t) are the Lagrange interpolating polynomials of order n. From its interpo-

lating property, it can be shown [28] that

xn(tk) = xk, (6.16)

un(tk) = uk. (6.17)

From this, it can be shown that the derivative of the xk and uk can be represented

by a differentiation matrix times the state and control histories.

ẋn(tk) =
n

∑

j=0

Dkjxj, (6.18)

u̇n(tk) =
n

∑

j=0

Dkjuj, (6.19)

where D is (N × N) and N is the number of nodes, N = n + 1. The matrix

D is computed from [28]. The differentiation matrix is multiplied by the vector of

discrete values of each state variable to obtain the derivatives of those states at the

node points.
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3. Numerical computation

After the problem is discretized in time, a standard minization solver can be used

to solve for the state and control histories. The solver used here is the FMINCON

solver provided in the MATLAB optimization tool kit [29].

The FMINCON routine allows for linear and nonlinear path constraints as well

as explicit upper and lower bounds on all parameters. Here we use the ability to

enforce upper and lower bounds on the orientation of the wings. We use the nonlinear

constraint feature to enforce the eight state evolution equations at the nodes. The

nonlinear equality constraints are input in the following form

ceq = 0 (6.20)

where ceq is a vector that includes Eq. 6.1 satisfied at each node, as well as the

periodic solution constraints in Eqs. 6.8 and 6.9. The nonlinear inequality constraints

of Eqs. 6.3 or 6.10 are enforced similarly as

c = |αeff | − αeff (6.21)

≤ 0 (6.22)

where the vector c is of length N. The cost function in Eq. 6.5, is computed using

a simple trapezoidal method. The inputs into FMINCON are the cost function

evaluation routine, the constraint function evaluation routine, the upper and lower

bounds on the states and controls constituting the trajectory and the initial guess
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solution. The state and control history matrix is of the form

[x] =













ω′

1 θ′1 u′

1 V(1)1 V(3)1

...
...

...
...

...

ω′

N θ′N u′

N V(1)N V(3)N













(6.23)

where the prime denotes the transpose and the subscripts 1 and N denote the initial

and final values of the state or control.
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CHAPTER VII

AVIAN EXAMPLE

A. The Barn Swallow

A Barn Swallow was chosen as the example vehicle for demonstrating this method of

designing a flapping wing vehicle wing stroke. This bird was chosen in part because

of its size, it has a total wing span of 0.33m and a weight of approximately 0.20N.

Generally, the micro air vehicle class of vehicles is said to have a total wing span

of less than or equal six inches, half that of the Barn Swallow. However, this method

is intended to simplify the problem of designing a flapping wing stroke as much as

possible while still retaining most of the useful substance of the problem. That is, the

wing stroke optimization subject to vehicle and wing dynamics is retained. To this

end, an example vehicle was desired that would have fairly low aspect wings so as

not to invalidate the rigid wing assumption. However, the shorter the wings are, the

less accurate are the aerodynamic assumptions. Considering this tradeoff, and the

availability of the necessary data, the Barn Swallow seemed a reasonable choice. In

the future, it may be desirable to consider a bird with available in flight wind tunnel

data such as stroke period, stroke orientation history, power consumption data, etc..

From [30], preliminary values for many relevant quantities are found. Properties

such as vehicle weight, wing area, wing span, cruise and minimum decent velocities.

From these, the quantities finesse, or lift to drag ratio, wing aspect ratio, and non-

dimensional parasite drag coefficient are extracted. Other parameters, such as the

ratio of the wing mass to the fuselage mass, the wing moments of inertia, zero angle
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of attack non-dimensional lift and the Oswald efficiency of the wing were assumed.

These values are listed in Table I. It is desired to find an expression for parasite

drag. Approximately, for trim,

L

D
=

U

w
(7.1)

CL

CD

=
U

w
(7.2)

from [30]. Where a U denotes forward velocity and w denotes downward velocity.

We then enforce the L = mg trim constraint and plug in Eq. 5.1

CL =
mg

Q(2S)
(7.3)

Also from [30], a decent ratio is used and from Eq. 7.2, the finesse is F = 10.

Using the finesse in Eq. 7.2 and then substituting in Eqs. 7.3 and Eq. 5.7, the

following is obtained

CL

CD

= F (7.4)

CD =
CL

F
(7.5)

CD0
+RC2

L =
mg

FQ(2S)
(7.6)

CD0
=

mg

FQ(2S)
−R

(

mg

Q(2S)

)2

(7.7)

The physical parameters of the system (e.g. mass, wing area, etc.) are presented

in Table I.
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Table I. System parameters

Parameter Value Units

ρ 1.223 kg/m3

g 9.81 kg-m/s2

m 0.0204 kg

m1 0.05m kg

T 1
6

s

N 21 nodes

Wing geometry

mgc 0.07878 m

span (wing 1) 0.165 m

S 0.013 m2

AR 2.0942

Oswald-eff 0.8

Aerodynamic properties

CL0
0

CD0
0.0123

CLα
2.864 rad−1

R 0.189 rad−1

F
(

L
D

)

10
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The values of the inertia matrices of the wings (about the wing CG) are

[Ic1 ] = [Ic2 ] = 10−5













0.2314 0 0

0 0.0527 0

0 0 0.2842













kg − m2 (7.8)

The values of the vectors pointing from the fuselage to the wing 1 and 2 mass

centers in their respective frames are

dc1 = [0, 0.0825, 0]T m (7.9)

dc2 = [0,−0.0825, 0]T m (7.10)

And the values of the wing 1 and 2 mgc quarter chord vectors are

dq1
= [−0.0197, 0.0825, 0]T m (7.11)

dq2
= [−0.0197,−0.0825, 0]T m (7.12)

These vectors specify the location of the aerodynamic center of each wing in the

wing fixed frame. This is the point where the lift and drag are said to act and this is

the vector that is used in the cross product to determine the aerodynamic moment

on the wing.

These parameters are meant to approximate those associated with a common

Barn Swallow [30], an aerobatic bird with a wing area, mass and wing span approxi-

mately equal to that mentioned above. The velocity of Vr = 8m/s is the approximate
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cruise speed of this bird. The frequency of the stroke is chosen as 6Hz. This wing

beat frequency is chosen based on the advance ratio of the vehicle. The advance

ratio of a flapping wing vehicle in trimmed flight is defined as

RA =
‖ V ‖ T

2span
(7.13)

From data presented in [4], the advance ratio of small birds may vary between

RA = 1.61 and RA = 4.04. From this, the period of the wing stroke is chosen to be

T = 1/6s, which results in an advance ratio of about RA = 4.

B. Gliding flight

Gliding flight is an important mode of flight for many flapping wing vehicles. Gliding

is the least expensive way for an air vehicle to travel in that it represents flight without

the thrust force. Because there is no thrust force, the only force that counteracts the

resistance of drag is gravity. The gliding mode of flight also represents trim for the

dynamic system,

ẋ = 0 (7.14)

Trim is a very important concept in aircraft stability and control. In this sec-

tion, the gliding mode of this type of flapping wing vehicle is investigated, stability

characteristics are presented in Chapter IX.
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1. Gliding state

When considering the glide trajectory of the vehicle in Chapter IV, the development

begins with













V̇p

ω̇

θ̇













= 0 (7.15)

From the kinematics in Eq. 3.6 and the trim definition in Eq. 7.15, the angular

velocity of the wings for this trim state will equal zero. The trim velocity of the

vehicle and the trim orientation of the wings will have to be solved for to find a

trim state. When Eq. 7.15 is substituted into Eqs. 4.21 and 4.34, the following is

obtained,

∑

FA +mg = 0 (7.16)

u1 + MA1
= 0 (7.17)

This is the familiar static force and moment balance. It says that the aerody-

namic forces in the upward direction, the vehicle lift, must be equal and opposite

the weight of the vehicle and that, for trim, the control moments are equal and op-

posite the applied aerodynamic moments on the wing. However, Eqs. 7.16 and 7.17

represent the total force balance on the vehicle and the moment balance on a single

wing. For trim to be satisfied, the sum of all moments about the center of mass of

the entire vehicle must be equal to zero. This yields the additional constraint
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∑

MCG = 0, (7.18)

where

∑

MCG = rac × FA (7.19)

and

rac =
1

2
(dq1

+ dq2
) −

1

m
(m1dc1 +m2dc2) (7.20)

The quantity rac, is the vector from the center of mass to the total aerodynamic

center of the aircraft. The aerodynamic center of the aircraft is found from averaging

the aerodynamic centers of the wings. Solving for a trim state can be done by posing

an optimization problem of minimizing the scalar product of the total moments on

the vehicle CG subject to the constraints in Eqs. 7.16 and 7.17. This problem is

stated as such,

min
ρ
J

subject to the constraints of Eqs. 7.16 and 7.17, where the scalar cost function in

this case is

J = [MCG]T [MCG], (7.21)

and the parameter vector of the optimization is
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ρ = [γ, θ1, θ2, u1, u2, u3]
T , (7.22)

or

ρ = [γ, θ2, θ3, u1, u2, u3]
T . (7.23)

Whether θ1 or θ3 is chosen as an optimization variable represents choosing either

the wing sweep angle or the wing plunge angle to be fixed and the other two to be

solved for in driving the sum of moments on the system to zero. For this optimization,

there are five constraint equations and six optimization variables, this allows for

the satisfaction of the constraints while simultaneously minimizing the cost. If the

number of optimization variables were equal to the number of constraint equations,

the problem would be equally constrained and there would be exactly one solution to

the problem. In gliding flight the ratio between descent velocity and forward airspeed

equals the ratio between the vehicle drag and the weight of the vehicle [30],

Vfp sin(γ)

Vfp cos(γ)
=
D cos(γ)

W
. (7.24)

After substituting the lift equal to weight constraint of trim,

Vfp sin(γ)

Vfp cos(γ)
=
D cos(γ)

L cos(γ)
, (7.25)

which leads to,

tan(γ) =
D

L
. (7.26)
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If it is assumed that γ is small,

γ =
D

L
. (7.27)

The convention used here is that a positive γ rotation is upward, thus

γ = −D
L

= −
1

F
. (7.28)

For this simple case of zero sweep and zero plunge, the equilibrium pitch attitude

of the wings is a linear combination of the flight path angle and the angle of attack.

To find the trim angle of attack, the known lift to drag ratio of the vehicle and the

lift equal to weight constraint of trim are used. This begins with the equation for

lift,

L = Q(2S)CL, (7.29)

where the dynamic pressure is a function of the vehicle velocity, Q = 1/2ρV 2
fp. The

αeff in Eq. 5.6 is only a function of the forward velocity of the vehicle in gliding

flight and is solved for next. Substituting Eq. 5.6 into Eq. 7.29, the following is

obtained,

L = Q(2S)(CL0
+ CLα

αtr), (7.30)

mg = Q(2S)(CL0
+ CLα

αtr), (7.31)

rearranging,
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αtr =
mg

2QSCLα

−
CL0

CLα

. (7.32)

From Eqs. 7.28 and 7.32, the trim flight path angle and trim angle of attack

of the vehicle, and with the plunge and sweep angles equal zero, the angle of attack

can be found from the relationship,

α = θ(2) − γ, (7.33)

where θ(2) is the pitch attitude. From this, the expression for the trim pitch attitude

of the wing, for the zero sweep, zero plunge case is,

θtr(2) = αtr + γtr. (7.34)

The trim value of the inertial velocity of the vehicle is found from Eq. 7.28

and the chosen flight path velocity. The trim value of the wing orientation is known

from Eq. 7.34. The aerodynamic moments on the wing are be solved for using

Eqs. 5.6-5.12 and the trim values of the states. And from Eq. 7.17, the equilibrium

values of the controls are found. While this approximation gets fairly close to the

solution to the nonlinear algebraic trim equations 7.16, 7.17, this solution does not

satisfy the constraint that the moments on the system be zero. It is desirable to

use the afore mentioned optimization scheme to solve for a trim that satisfies the

constraints of Eqs. 7.16 and 7.17 while achieving zero moments on the system. The

Matlab function ’FMINCON’ [29], is used to numerically solve the trim optimization

problem, accepting the above solution as an initial guess.
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2. Linearization about trim

The linearization of the model of the system about a trim state is discussed here.

Ultimately, the inertial velocity of the vehicle is to be controlled. It will be useful to

get a sense of the stability of the velocity states when the orientation of the wings is

used as the control instead of the control moments. For this analysis, the states for

the new system are chosen as

x =







V(1)

V(3)






, (7.35)

and the controls, instead of the applied moments at the root of the wing, are the

Euler Angles of the individual wing,

u = θ. (7.36)

Choosing the wing orientation as the control for the system is analogous to

choosing the elevator on an airplane as the longitudinal control. This setup assumes

that the orientation of the wing is commanded instantaneously. To analyze the

stability of the resulting system, the translational equations of motion must be in

the form,

ẋ = [A]x + [B]u. (7.37)

Eq. 4.21 are the full translational equations of motion for the fuselage of the

vehicle. Eq. 4.21 represents a set of three nonlinear equations. The first and third of

these equations describe the longitudinal motion of the vehicle fuselage. The second
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one is a constraint on the velocity perpendicular to the longitudinal plane and equals

zero for all time. This is satisfied by the symmetry relationship in Eq. 3.3. Only

the first and third of Eq. 4.21 will be used. Finding the linearized equations Eq.

7.37 begins with providing a point to linearize about. While an equilibrium point of

the nonlinear system is often a desirable point to ascertain stability characteristics

about, linearizing about a trajectory that the nonlinear system is to track could also

be desirable. The Simulink function ’linmod’ is used to linearize the translational

dynamics and obtain [A] and [B] in Eq. 7.37. The inputs to this function are the

equations of motion and the values of the states and controls that the system is to

be linearized about, the equilibrium point.



58

CHAPTER VIII

CONTROLLER DESIGN

This chapter discusses the design of a controller that is used to track gliding and

flapping reference trajectories. The controller is designed using a dynamic inversion

scheme [31]. Dynamic inversion is a technique that incorporates the knowledge of

model kinematics and dynamics in order to achieve asymptotic tracking for dynam-

ical systems. This controller allows the cancellation of the nonlinear dynamics of

the problem and replacement with a stable, linear dynamics that are guaranteed to

converge to the desired reference trajectory. The stability of the controller is proved

using a Lyapunov stability analysis [31].

A. Tracking controller

This system is under-actuated, the number of controls is less that the number of

degrees of freedom. The only controls in the system are the actuators at the root of

the wings that apply the control moments u. Because only the motions of one wing

are considered, their are three independent controls. However, there are five acceler-

ation level equations of motion and five degrees of freedom. These five equations are

coupled at the acceleration level. This coupling is handled through substitution of

the translational dynamics into the rotational dynamics which eliminates the fuse-

lage acceleration from the rotational dynamics. The rotational dynamics are then

considered to be controlled independently with knowledge of the instantaneous trans-

lational states. This results in a square, invertible control influence matrix allowing
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for an easier control design task. The stability of the closed loop system is proved

using a Lyapunov function, this is an energy-like function that is a function of the

states of the system, or in this case, the error between the tracking states and the

reference to be tracked. This function must be positive semi-definite and radially

unbounded for all values of the error and its derivative must be negative for all values

of the errors. Intuitively, this means that the error energy of the system must always

decrease unless at zero. It is shown that the controller ensures the existence of such

a function.

1. Error dynamics

One of the benefits of this type of controller is that the dynamics of the system are

replaced with the dynamics desired by the control designer. It is often desirable to

choose stable linear tracking error dynamics for the controller to enforce. This will

ensure that the system state trajectories converge to the desired reference trajecto-

ries. The desired error dynamics that are used here are linear functions of the Euler

angle errors and rates and are

ë + Cė +Ke = 0. (8.1)

The matrices C and K are symmetric, positive definite gain matrices that are

used to tailor the error dynamics. The error dynamics in Eq. 8.1 are asymptotically

stable and if imposed, will cause the attitude error, e, to decay to zero. The attitude

error, e, is defined as
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e = θ − θr. (8.2)

This attitude error does not represent the relative attitude of the reference frame

to the 1-frame, however, when e goes to zero, the body frame and the 1-frame have

the same orientation relative to the inertial frame. From Eq. 3.6, we have the

kinematics of the 1-frame,

θ̇ = f(θ, ω), (8.3)

= A(θ)ω, (8.4)

upon differentiating,

θ̈ =
δf

δθ
θ̇ +

δf

δω
ω̇. (8.5)

Because the intent here is to track only the wing attitude and the associated

rates, the equation of motion of the wing must have only acceleration level kinematics

of the wing and not contain the vehicle translational acceleration. To this end, the

translational acceleration equation of the vehicle is substituted into the rotational

equation of motion of the wing to obtain the wing 1 equation of motion in the

following structure,

ω̇ = g(θ, ω,Vp) + [h(θ)]u. (8.6)

Substituting Eq. 8.6 into Eq. 8.5,
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θ̈ =
δf

δθ
θ̇ +

δf

δω
g(θ, ω,Vp) +

δf

δω
[h(θ)]u. (8.7)

Eq. 8.7 is then substituted into Eq. 8.1 to eliminate θ̈ from the error dynamics.

This is done so that the acceleration level attitude kinematics do not have to be

feedback to the controller. The new error dynamics are

δf

δθ
θ̇ +

δf

δω
g(θ, ω,Vp) +

δf

δω
[h(θ)]u − θ̈r + Cė +Ke = 0. (8.8)

The function (δf/δω)[h(θ)] must be invertable in order to solve Eq. 8.8 for the

control input. The control input is

u = −

[

δf

δω
[h(θ)]

]

−1 (

δf

δθ
θ̇ +

δf

δω
g(θ, ω,Vp) +

δf

δω
− θ̈r + Cė +Ke

)

. (8.9)

This controller will achieve asymptotic tracking for the system. The proof of

the asymptotic stability of the controller follows.

2. Lyapunov stability analysis of controller

Lyapunov’s theorem for global stability states that if there exists a scalar function

VL of the states x, with continuous first order derivatives such that

VL(x) is positive definite,

V̇L(x) is negative definite,

VL(x) → ∞ as ‖ x ‖→ ∞,

then the equilibrium point at the origin is globally asymptotically stable [32]. Qual-
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itatively, this can be compared to the energy of the system. Consider a simple

spring-mass-damper system, the energy of the system is always positive except when

the position and velocity are zero. With the damper in place the system energy is

monotonically decreasing. While the energy equation of a system does not always

provide a suitable Lyapunov function, the principle is the same.

The Lyapunov function used is

VL(e, ė) =
1

2
ėT ė +

1

2
eTKe. (8.10)

This is a positive semi-definite function of the orientation error and orientation

error rate. It is zero only when both are zero. This can be considered to be the error

energy of the rotational part of the system. The derivative of this Lyapunov function

is

V̇L = ėT ë + ėTKe (8.11)

To show that V̇L is negative definite, the error dynamics from Eq. 8.1, that are

enforced by the control law are substituted into Eq. 8.11. The following is obtained,

V̇L = ėT (−Cė −Ke +Ke) (8.12)

= −ėTCė (8.13)

Eq. 8.13 is clearly negative for all ė greater than zero. However, because V̇L

is only negative semi-definite, another method must be used to prove asymptotic

stability. If the next odd derivative of VL,
...
V L < 0,∀e 6= 0 on a set, S{ė = 0, e = <},
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then the system is asymptotically stable [33].

V̈L = −2ëTCė. (8.14)

The third derivative of VL is

...
V L = −2

...
e TCė − 2ëTCë, (8.15)

= −2
...
e TCė − 2(−Cė −Ke)TC(−Cė −Ke). (8.16)

Upon defining
...
V L on the set S, the following is obtained,

...
V L = −2eTKTCKe (8.17)

The matrix KTCK is positive definite, thus
...
V L < 0,∀e 6= 0 on S.

However, this is not a Lyapunov function for the system. It is only a function of

the wing orientation and orientation rate errors. Thus, this analysis only guarantees

asymptotic tracking for the angular orientation and orientation rates. From the

orientation kinematics in Eq. 3.6, if θ → θr and θ̇ → θ̇r then ω → ωr. This control

strategy guarantees asymptotic tracking for the Euler Angles, angular velocities and

angular velocity rates. From the dynamics in Eq. 8.6, if the rotational kinematics

converge to the reference values, because Eq. 8.6 is also a function of the velocity

states, the translational velocities must also converge to values consistent with Eq.

8.6. For nonlinear systems in general, there can be more than one equilibrium point,

but for this analysis, it is assumed that the system operates sufficiently close to the

equilibrium that corresponds to the reference velocities generated by the wing stroke
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optimization. This convergence is seen in simulation.

3. The controller

The above controller is a nonlinear dynamic inversion controller that cancels out

the nonlinear dynamics of the physical system and replaces the undesired dynamics

with the dynamics in Eq. 8.1. However, the controller in Eq. 8.9 requires complete

knowledge of the system dynamics, Eqs. 4.21 and 4.34 which, in practice are not

known precisely. This controller also has no mechanism for coping with actuator

saturation of any kind. In practice, all actuators have limits on the control effort that

can be exerted and the rate at which that control effort can be changed. Along with

these traits, real actuators have internal dynamics associated with their operation.

Actuator dynamics are not considered in this analysis. The controller in Eq. 8.9 is

restated here for convenience.

u = −

[

δf

δω
[h(θ, ω)]

]

−1 (

δf

δθ
θ̇ +

δf

δω
g(θ, ω) +

δf

δω
− θ̈r + Cė +Ke

)

. (8.18)

The partial derivatives, δf/δθ and δf/δω, of the vector function f are the partial

derivatives of Eq. 3.6 and are,

δf

δθ
=

[

δf

δθ1

,
δf

δθ2

,
δf

δθ3

]

, (8.19)

where the subscripts 1, 2, 3 denote the 1, 2 and 3 rotations of the 1-frame and
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δf

δθ1

=
1

cθ2













0 sθ2cθ1 −sθsθ1

0 −cθ2sθ1 −cθ2cθ1

0 cθ1 −sθ1













, (8.20)

δf

δθ2

= −
1

cθ2













1

cθ2













cθ2 sθ2sθ1 sθ2cθ1

0 cθ2cθ1 −cθ2sθ1

0 sθ1 cθ1













−













−sθ2 cθ2sθ1 cθ2cθ1

0 −sθ2cθ1 sθ2sθ1

0 0 0

























ω,

(8.21)

δf

δθ3

= 0, (8.22)

and the partial derivative of f with respect to the angular velocity of the wing is

δf

δω
= [A(θ)]. (8.23)

The vector and matrix functions g(θ, ω,Vp) and [h(θ)] in Eq. 8.6 are nonlinear

functions of the states and include the velocity states. The substitution performed to

obtain these functions is as follows, the two vector equations of motion are restated

here for convenience.

m
id

dt
(Vp) − (m1[d

×

c1
]ω̇1 +m2[d

×

c2
]ω̇2)

+ (m1[ω
×

1 ]2dc1 +m2[ω
×

2 ]2dc2) =
∑

FA +mg

(8.24)

and
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(I1 −m1[d
×

c1
]2)ω̇1 + [ω×

1 ](I1 −m1[d
×

c1
]2)ω1 +m1[d

×

c1
]
id

dt
(Vp) = u1 + MA1

(8.25)

are the equations governing the evolution of the fuselage velocity and wing angular

velocity respectively. The expression for the angular velocity rate that is independent

of the velocity rate is sought here. In preparation for substitution, Eq. 8.24 is

rearranged as

id

dt
(Vp) =

1

m
(
∑

FA +mg + (m1[d
×

c1
]ω̇1 +m2[d

×

c2
]ω̇2)

− (m1[ω
×

1 ]2dc1 +m2[ω
×

2 ]2dc2)).

(8.26)

With this and through the use of the symmetry relationship in Eq. 3.16, the

following form of Eq. 8.25 is obtained.

[I1 −m1[d
×

c1
]2+

m1m1

m
[d×

c1
][d×

c1
] +

m1m2

m
[d×

c1
][d×

c2
][T ]]ω̇1 = u1 + MA1

− [ω×

1 ](I1 −m1[d
×

c1
]2)ω1

−
m1

m
[d×

c1
](
∑

FA +mg −m1[ω
×

1 ]2dc1 −m2[ω
×

2 ]2dc2).

(8.27)

From Eq. 8.27, it is apparent that g(θ, ω,Vp) and [h(θ)] in Eq. 8.6 are

g(θ, ω,Vp) =[I1 −m1[d
×

c1
]2 +

m1m1

m
[d×

c1
][d×

c1
] +

m1m2

m
[d×

c1
][d×

c2
][T ]]−1

(MA1
− [ω×

1 ](I1 −m1[d
×

c1
]2)ω1

−
m1

m
[d×

c1
](
∑

FA +mg −m1[ω
×

1 ]2dc1 −m2[ω
×

2 ]2dc2))

(8.28)
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and

[h(θ)] = [I1 −m1[d
×

c1
]2 +

m1m1

m
[d×

c1
][d×

c1
] +

m1m2

m
[d×

c1
][d×

c2
][T ]]−1 (8.29)

Recall that the error between the actual velocity and the velocity that cor-

responds to the optimized wing stroke is not included in the error dynamics or the

Lyapunov function and thus there is no stability guarantee associated with the trans-

lational velocity states. The velocity states are however, coupled to the other states

and thus effect the equilibrium of the system.

B. Reference trajectory generation

The solution to the discretized optimal control problem yields, for each state and

control, a sequence of discrete values corresponding to predetermined time points

along the period of the wing stroke. In order for the control to track the trajectory,

the state trajectories must be continuous. A piecewise continuity can be obtained

using polynomial fits between the optimized data points. The control law in Eq.

8.18 will track the reference orientations generated by the optimization routine. An

expression is desired that, when given the values of the states and controls and

the state and control rates at discrete times, will yield the values of the states and

controls and their respective derivatives for a desired time in between.

The following notation will denote node i as the node at the discrete time point

immediately preceding the current time and node i + 1 as the node corresponding

to the time immediately following the current time point along the period of the
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stroke. A ∆ti will denote the current time, or time at which the states and controls

are desired along the interval between node i and node i+ 1. Here, ∆t = 0 at node

i and ∆t = ∆tf at node i+ 1, at the end of the interval. From the kinematics,

θ̇i = [Ai(θi)]ωi (8.30)

θ̇i+1 = [Ai+1(θi+1)]ωi+1 (8.31)

and from the optimization, the discrete trajectory is

[xtraj] =













V′

p1
ω′

1 θ′1
...

...
...

V′

pN
ω′

N θ′N













(8.32)

[utraj] =













u′

1

...

u′

N













(8.33)

The derivatives of the states and controls are given, as in Eqs. 6.18 and 6.19,

by

ẋtraj = [D]xtraj, (8.34)

u̇traj = [D]utraj. (8.35)

A third order spline fit is used. The procedure for this type of interpolation

will be discussed in the general context of a single scalar parameter, however, this
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is readily extended to use with vectors. Here, the known values at the end points of

the interpolation interval are the values of the function and its derivative. These are

denoted as qi, q̇i, qi+1, q̇i+1. The polynomial fit is of the form

q(∆t) = a+ b∆t+ c∆t2 + d∆t3. (8.36)

Using the end conditions of the parameter value and the derivative,

q(∆ti) = qi = ai + bi∆ti + ci∆t
2
i + di∆t

3
i , (8.37)

q(∆ti+1) = qi+1 = ai + bi∆ti+1 + ci∆t
2
i+1 + di∆t

3
i+1, (8.38)

q̇(∆ti) = q̇i = bi + 2ci∆ti + 3di∆t
2
i , (8.39)

q̇(∆ti+1) = q̇i+1 = bi + 2ci∆ti+1 + 3di∆t
2
i+1. (8.40)

These equations can be cast in matrix form as



















1 ∆ti ∆t2i ∆t3i

1 ∆ti+1 ∆t2i+1 ∆ti+1

0 1 2∆ti 3∆t2i+1,

0 1 2∆ti+1 3∆t2i+1





































ai

bi

ci

di



















=



















q(∆ti)

q(∆ti+1)

q̇(∆ti)

q̇(∆ti+1)



















. (8.41)

The polynomial coefficients a, b, c and d are
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ai

bi

ci

di



















=



















1 ∆ti ∆t2i ∆t3i

1 ∆ti+1 ∆t2i+1 ∆ti+1

0 1 2∆ti 3∆t2i+1

0 1 2∆ti+1 3∆t2i+1



















−1 

















q(∆ti)

q(∆ti+1)

q̇(∆ti)

q̇(∆ti+1)



















. (8.42)

Once the coefficients corresponding to each reference state are determined, the

interpolated value of all of the states and their rates can be found. These reference

values are used in the tracking controller.
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CHAPTER IX

DISCUSSION OF RESULTS

This chapter presents the results from wing stroke generation, linearization results in

gliding flight, wing stroke tracking using the dynamic inversion controller, and trans-

lational stability analysis in flapping flight. Cases are presented that demonstrate

the versatility of the stroke generation method, the gliding stability configurations of

the vehicle and the convergent properties of the controller. The linearization results

show the stability of the velocity states in gliding flight when the orientation of the

wings is used as the control effecter. The translational stability analysis in flapping

flight is a qualitative analysis of the stability of the velocity states in flapping flight.

A. Trajectory generation results

This section presents the results of the wing stroke generation method for three

cases. The three cases are designed to demonstrate the ability of the method to

design wing strokes that correspond to various longitudinal trim conditions. The

first case is for a reference flight path velocity and angle of 8m/s and 0◦ respectively.

This flight condition represents steady level flight at the cruise velocity of the vehicle

[30]. In the second case, the reference flight path velocity and angle are 8m/s and

3◦ respectively, which corresponds to climbing flight at the cruise velocity. And the

third case is for a reference flight path velocity and angle of 6m/s and 0◦, this is

a steady level flight condition with a velocity below the cruise velocity. Table II

organizes some of the more pertinent results of the three optimizations. The major
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Table II. Trajectory generation summary

Quantity Case 1 Case 2 Case 3

Vr, m/s 8 8 6

γr,
◦ 0 3 0

β1 1 1 1

β2 0.001 0.001 0.001

Max mgqc velocity, m/s 8.62 8.97 6.73

Min mgqc velocity, m/s 7.57 7.75 5.66

Average lift, N 0.2001 0.2001 0.2001

Reduced frequency, kmax 0.192 0.188 0.258

Advance ratio 4.02 4.13 3.03

parameters that determine the result of the optimization within the constraints are

the reference flight path velocity (Vr) and angle (γr) and the relative weighting of

the flight path angle error, flight path velocity error (β1) and the control rate (β2)

in the cost function.

1. Case 1

Fig. 6 shows an inertial view of the wing orientation history. Consider the vehicle

translating toward the right hand side of the figure. The curve ABC, in Fig. 6

represents the path of a point on the wing mean geometric chord at the leading

edge of the wing. The intersecting lines represent the mgc over the stroke period.

While this view is 2D, the motion of the mgc is 3D, however, this figure helps to
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visualize the Euler angle orientation of the wing and get an inertial sense of the

trajectory. The circle in Fig. 6 represents the fuselage and the wing mgc is plotted

relative to the vehicle fuselage. This view is from the right wingtip looking down

the wing. Fig. 6 is a view in a reference frame that does not rotate, but translates

relative to the inertial frame. The point ’A’ in Fig. 6 indicates the point where

the maximum inertial velocity of the mean geometric quarter chord occurs. The

point ’B’ in Fig. 6 indicates the point where the minimum inertial velocity of the

mean geometric quarter chord occurs. The point ’C’ indicates the start and finish

of the stroke. From Table II, the reduced frequencies are within the range where

the phasing between the motion of the wings and the resulting aerodynamic loads

becomes important [15]. However, these effects are not included here.

  fuselage

  A

  C
  B

Fig. 6. Case 1. Wing stroke, inertial view from wing tip. This is the history of the

wing mean geometric chord over the stroke period. Stroke is in clockwise

direction.

Figs. 7(a)-7(c) present the fuselage flight path velocity, Vfp, flight path angle,
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γ, and wing effective angle of attack, αeff , time histories. Recall that the objective

is to minimize the areas under the velocity, flight path angle and control rate curves

with respect to the reference values. It is seen that the velocity and flight path angle

stay fairly close to the their respective reference values as intended by the choice of

cost function. The periodic nature of the vehicle motion can also be seen. Note that

the angle of attack stays well within the bounds of |αeff | ≤ 20◦. It is noted that the

flight path angle and velocity both decrease at the start of the stroke. This is counter

intuitive because fixed-wing aircraft flying at trim will generally trade velocity for an

increase in flight path angle and altitude. Here however, the lift force, decreases at

the start of the stroke and at the same time, there is a net drag, on the vehicle that

result in the decrease of velocity and flight path angle. Because the lift and gravity

forces primarily influence the flight path angle rate and gravity is dominant at the

start of the stroke, the flight path angle decreases. The vehicle still experiences a

parasite drag that causes the velocity to decrease as well.

Figs. 8(a)-8(c) show angular velocities, Euler angle kinematics and control tra-

jectories corresponding to the above stroke. Note that all of the Euler angles stay

well away from 90◦ and any kinematic singularities. Also from Fig. 8(b), it can be

seen that the θ1 Euler angle, or plunge history, is the one that most closely resembles

a single sinusoid.

Figs. 9(a)-9(b) present the time histories of the total aerodynamic force on the

vehicle in the inertial 1 and 3 directions respectively. Recall that gravity acts in the

positive 3-direction. It can be seen that the force in the 3-direction closely follows

the effective angle of attack in Fig. 7(c) as the lift is largely a function of αeff .
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Fig. 7. Case 1. Velocity, flight path angle and effective angle of attack time histories.
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Fig. 8. Case 1. Angular velocity, orientation and control time histories.
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Fig. 9. Case 1. Total aerodynamic forces on the vehicle in the inertial frame. The

forces in the 1-direction represent the balance of thrust and drag.
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2. Case 2

The wing stroke generated for case 2 corresponds to a γr = 3◦ and a Vr = 8m/s. It

is shown here that the method can be used to design wing strokes that will maintain

the vehicle at a near trim flight path angle other than 0◦. A positive flight path angle

is chosen because it represents climbing flight.

  fuselage

  A

  B
  C

Fig. 10. Case 2. Wing stroke, inertial view from wing tip. This is the history of the

wing mean geometric chord over the stroke period.

Notice the orientation of the wing relative to the fuselage for Case 2, Fig. 10.

The leading edge of the wing transcribes a larger loop and is forward of the fuselage

for more of the stroke. The velocity and flight path angle in Figs. 11(a) and 11(b)

stay fairly close to their respective reference values.

The kinematics in Figs. 12(a) and 12(b) show a noticeable difference from those

of Case 1. The sweep angle of the wings is not positive through the entire stroke.

This can also be seen in Fig. 10 where the fuselage is farther behind the wing stroke
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than in Fig. 6.

Figs. 13(a) and 13(b) show the aerodynamic forces on the vehicle for Case 2.

The average of these force correspond to trim for the vehicle.
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Fig. 11. Case 2. Velocity, flight path angle and effective angle of attack time histories.



80

0 0.05 0.1 0.15 0.2
−3000

−2000

−1000

0

1000

2000

A
ng

ul
ar

 v
el

oc
iti

es
, d

eg
/s

Time, s

 

 

1−axis
2−axis
3−axis

(a) Angular velocities

0 0.05 0.1 0.15 0.2
−60

−40

−20

0

20

40

60

Time, s
E

ul
er

 A
ng

le
s,

 d
eg

.
 

 

1−axis
2−axis
3−axis

(b) Euler angle orientation

0 0.05 0.1 0.15 0.2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time, s

C
on

tr
ol

s,
 N

m

 

 

1−axis
2−axis
3−axis

(c) Controls

Fig. 12. Case 2. Angular velocity, orientation and control time histories.
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Fig. 13. Case 2. Total aerodynamic forces on the vehicle in the inertial frame.
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3. Case 3

The wing stroke generated for Case 3 corresponds to a γr = 0◦ and a Vr = 6m/s. It

is shown here that the method can be used to design wing strokes that will maintain

the vehicle at a near trim velocity other than 8m/s. A velocity slower than the cruise

velocity of the Barn Swallow is chosen because it falls closer to the minimum of the

calculated power curve for the corresponding fixed wing vehicle. Fig. 14 shows the

wing stroke for Case 3.

  fuselage

  A

  C  B

Fig. 14. Case 3. Wing stroke, inertial view from wing tip. This is the history of the

wing mean geometric chord over the stroke period.

Figs. 15(a)-15(c) show the velocity and flight path angle of the vehicle and the

angle of attack of the wings for Case 3. Notice the higher angles of attack. Figs.

16(a)-16(c) are the angular velocities, orientation and control histories for Case 3.

Figs. 17(a) and 17(b) show the aerodynamic force histories for Case 3.



83

0 0.05 0.1 0.15 0.2

5.85

5.9

5.95

6

6.05

6.1

F
us

el
ag

e 
ve

lo
ci

ty
, m

/s

Time, s

(a) Flight path velocity

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2

3

F
lig

ht
 p

at
h 

an
gl

e,
 d

eg
.

Time, s

(b) Flight path angle

0 0.05 0.1 0.15 0.2
−5

0

5

10

15

20

A
O

A
, d

eg

Time, s

(c) Angle of attack

Fig. 15. Case 3. Velocity, flight path angle and effective angle of attack time histories.
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Fig. 16. Case 3. Angular velocity, orientation and control time histories.
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Fig. 17. Case 3. Total aerodynamic forces on the vehicle in the inertial frame.
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4. Application of the optimized control

As a step taken to validate the optimization routine used to optimize the wing

stroke of the flapping wing vehicle, the control obtained from the optimization that

corresponds to the optimized state histories was applied in an open loop manner to

the simulated system. Figs. 18, 19, 20 and 21 show the velocity, control, Euler angle

and angular velocity histories for the application of the optimized control. In Figs.

18,20 and 21, the states begin to slowly diverge as the optimized control is applied.

This divergence of the states from the optimized states occurs because the solution

from the optimization comes from an approximation that lies on a subspace of the

space that contains the actual optimal solution.

The simulation is run for 2 seconds, which is enough to see the divergence of the

velocity, flight path angle, Fig. 18, and Euler angle, Fig. 20, states. The divergence

is not as noticable in the angular velocities, Fig. 21, and the controls, Fig. 19 are the

controls from the optimization. At the start of the simulation, the states follow very

well because the control needed to maintain the states on the trajectory are very

close to the reference controls. As the states begin to diverge, the control needed to

bring the states back to the trajectory do not correspond to the optimized control

histories.
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Fig. 18. Velocity and flight path angle histories for applying the control from the

optimization. Control is repeatedly applied for 12 wing beats. Plots are for

the example in Case 1.
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Fig. 19. Applied controls from optimization. Control is repeatedly applied for 12 wing

beats. Plots are for the example in Case 1.
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Fig. 20. Euler angle orientation time histories for applying the control from the opti-

mization. Control is repeatedly applied for 12 wing beats. Plots are for the

example in Case 1.
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Fig. 21. Angular velocity time histories for applying the control from the optimization.

Control is repeatedly applied for 12 wing beats. Plots are for the example in

Case 1.
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B. Linearization and gliding stability results

The eigenvalues of the linearized system from Chapter VII are presented here. The

eigenvalues of the system linearized about various trim configurations are examined.

Three trim configurations are used here. For all, the plunge angle is fixed and the

sweep angle is varied to obtain a static configuration. The first is with a plunge angle

of 0◦, the second and third cases are with the plunge angle fixed at −10◦ and −30◦

respectively. With the plunge angle fixed, the corresponding sweep and pitch angles

are solved for using the optimization technique from Chapter VII. These configu-

rations are detailed in Table III. These configurations were chosen to demonstrate

the change in the sweep angle corresponding to a trimmed configuration for various

positive dihedral angles. It is seen that when the dihedral increases, the trim sweep

angle of the wings is farther backward, this is because the moment from the drag

of the wings is greater. With the larger moment arm, the moment created from the

drag of the wings is better able to counteract the opposite moment from the lift

force. Table IV contains the resulting flight path angles, angles of attack and lift

to drag ratios for each of the gliding configurations. The eigenvalues of the system

tell the local stability of the system near the trim condition. Eigenvalues and time

constants for the three configurations are presented in Table V. Recall that the trim

configuration is determined by fixing the velocity magnitude and either the plunge

or sweep angle of the wings and solving an optimization problem that minimizes the

total pitching moment on the vehicle while satisfying the constraints in Eqs. 7.16

and 7.17. The values of the flight path angle, sweep or plunge angle, pitch angle and

the three control moments result from the solution.
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Table III. Gliding configurations

Orientation angle Case 1 Case 2 Case 3

plunge, θ(1), ◦ 0 -10 -30

pitch, θ(2), ◦ -2 -4.488 -8.509

sweep, θ(3), ◦ -14.849 -14.292 -12.272

Table IV. Gliding α’s and γ’s

Case 1 Case 2 Case 3

V , m/s 8 8 8

γ, ◦ -5.719 -5.81 -6.546

α, ◦ 3.916 4 4.613

L/D 9.985 9.828 8.715

Table V. Eigenvalues and time constants

Associated state

Eigenvalues Case 1 Case 2 Case 3

V -0.07 -0.071 -0.079

γ -5.019 -4.719 -3.380

Time constant, s

V 14.279 14.085 12.698

γ 0.2 0.212 0.296
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Fig. 22 shows the velocity and flight path angle time histories in gliding flight

for Case 2. The velocity states behave in an open loop manner while the Euler

angle orientations of the wings do not change with time, they are fixed at values

corresponding to the gliding trim of the vehicle, the angular velocities of the wings

are zero for all time. The simulation in Fig. 22 demonstrates the slow convergence

of the flight path velocity and the relatively fast convergence of the flight path angle

mode. The slow convergence of the flight path velocity mode is consistent with

conventional aircraft and is associated with the long period Phugoid mode [14].

Because the wing orientation is inertially fixed, the change in angle of attack is

exclusively a function of the flight path angle. For conventional aircraft, the mode

associated with changes in angle of attack is the Short Period mode referred to as

such because it is generally a high frequency oscillatory mode which also has very

high damping. The Short Period mode is generally associated with a change in angle

of attack and pitch attitude, [14], for this case the angle of attack and flight path

angle are the participants, App. A. This fast convergence of the flight path angle

can be seen in Fig. 22.

In Chapter VII a simplification was made that allowed the extraction of the sta-

bility characteristics associated with the velocity and flight path angle states. This

simplification involved reformulating the system in terms of two states, the two in-

ertial velocities, and three controls, the orientation of the wings. Recall that this

simplification assumes that the orientations of the wings can be controlled instan-

taneously. For gliding flight, this is reasonable as small perturbations about the

equilibrium are considered. Eqs. 7.37, 7.35 and 7.36 are the the linear system and
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Fig. 22. V and γ time histories for wing orientation fixed in gliding position. Initial

γ = 0. Trim γ = −5.81◦
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the associated states and controls for the system considered here. For Case 2 above,

the linearized system matrices, [A] and [B] are

[A] =







−0.0538 0.4623

−0.1738 −4.737






, (9.1)

[B] =







4.926 −17.211 3.588

4.745 −37.745 7.593






. (9.2)

The controllability matrix for the two state system in Eq. 7.37 is

[Cn] = [B,AB] (9.3)

= 102







0.0493 −0.1721 0.0359 0.0193 −0.1652 0.0332

0.0474 −0.3775 0.0759 −0.2333 1.8178 −0.3659






.(9.4)

This controllability matrix is full rank, as such, the system in Eq. 7.37 is con-

trollable.
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C. Trajectory tracking results

Results are presented here from tracking simulations of the example flapping wing

vehicle. Three cases are presented here. The first case is with no initial tracking

error, the initial state of the system lies on the trajectory being tracked which is a

flapping trajectory. The second begins in a gliding configuration and transitions to a

flapping trajectory. The third case begins with the states lying on the flapping tra-

jectory and transitions to gliding flight. Gliding and flapping are used because they

represent two important means of longitudinal flight. The gliding regime represents

the rest configuration of the vehicle, or configuration in which the controls due no

work because the angular velocities are zero. In this configuration, the vehicle can

relinquish altitude and maintain velocity. If a flapping wing vehicle is to perform

missions of various types, it would be wise to consider using gliding flight wherever

possible in mission design. The flapping regime represents powered flight and is the

only means by which the vehicle can maintain a flight path angle greater than that

corresponding to the highest gliding flight path angle. Considering these two basic

flight conditions, one is naturally led to the question of, how does the vehicle behave

when transitioning from gliding to flapping flight and from flapping to gliding flight?

The trajectory tracking results presented here will focus largely on an analysis of

this question.

1. No initial tracking error

Figs. 23 and 24 present the flight path velocity, flight path angle and control time

histories for a flapping wing stroke corresponding to a Vr = 8m/s and a γr = 0◦.
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Notice that the velocity and flight path angle stay very near the the reference velocity

and flight path angle. The curves for the controls, Fig. 24, also kiss the reference

curves. Figs. 25 and 26 are the plots of the Euler angle and angular velocity histories

of the wings as they track the reference. It is evident here that the states track the

reference very well.
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Fig. 23. Velocity and flight path angle histories for tracking a flapping stroke with no

initial condition error.
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Fig. 24. Control time histories for tracking a flapping stroke with no initial error.
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Fig. 25. Euler angle orientation time histories for tracking a flapping stroke with no

initial error.
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Fig. 26. Angular velocity time histories for tracking a flapping stroke with no initial

error.
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2. Initial gliding to flapping

Figs. 27 and 28 show the velocity and flight path angle histories where the initial

conditions correspond to a gliding condition, but the wings are made to track a

flapping stroke that corresponds to a Vr = 8m/s and a γr = 0◦. The vehicle begins

with a negative flight path angle that becomes more negative as the stroke proceeds

and rises shortly into the stroke. At the same time the velocity dips slightly, but

rises fairly quickly and gradually begins to settle down to the reference value. Notice

that the actual control inputs begin to catch up to the control inputs corresponding

to the optimal wing stroke inside of two wing beats. The flight path angle begins to

closely follow the curve for the given wing stroke fairly quickly, but the velocity takes

much longer to reach the equilibrium. This is consistent with the results of Sec. B

where it was seen that the flight path angle mode has a very short time constant

and converges very quickly as compared to the flight path velocity mode that has a

much longer time constant and slower convergence.

Figs. 29 and 30 are plots of the Euler angle and angular velocity time histories

over one second. The fast convergence of these states is clear from the plots. The

good performance of the controller is due to the canceling of the system dynamics

by the controller.

Fig. 31 presents the velocity and flight path angle errors. Fig. 32 presents the

Euler angle error kinematics and the associated rates. The convergence behaviors

can be seen more clearly from the velocity and flight path angle error plots. The

velocity error approaches zero very slowly while the flight path angle error decreases

very quickly, but still exhibits a longer settling time. The Euler angle errors and their
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rates demonstrate fast convergence and can be seen to follow the reference closely

after about 1.5 wing beats. Notice the small jitters in the plot of Euler angle error

rate, this phenomenon is not completely understood. It beats at a frequency close

to the wing beat frequency and tends to be about three orders of magnitude smaller

than the reference signal and is noticeable when the controller reaches steady state

tracking.
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Fig. 27. Velocity and flight path angle time histories for tracking a flapping stroke

stroke starting at an initial gliding configuration.
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Fig. 28. Control time histories for tracking a flapping stroke starting at an initial

gliding configuration.
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Fig. 29. Euler angle orientation time histories for tracking a flapping stroke starting

at an initial gliding configuration.
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Fig. 30. Angular velocity time histories for tracking a flapping stroke starting at an

initial gliding configuration.
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Fig. 31. Velocity and flight path angle errors for tracking a flapping stroke starting

at an initial gliding configuration.
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Fig. 32. Orientation error kinematics for tracking a flapping stroke starting at an

initial gliding configuration.
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3. Initial flapping to gliding

Figs. 33 and 34 show the behavior of the velocity, flight path angle and control

inputs for a simulation that begins with the wings in a flapping configuration but the

system is made to track a gliding configuration. In Fig. 33, the velocity immediately

decreases away from the equilibrium as the flight path angle increases, also away from

its equilibrium due to the initial configuration of the system. Again, the velocity

mode shows slow convergence and the flight path angle mode converges quickly.

Notice the slight offset of the flight path angle from the reference toward the end of

the simulation. This is likely due to the relative values of the controller gains.

Figs. 35 and 36 demonstrate the velocity and flight path errors and the orien-

tation error rates and orientation errors respectively. The Euler angles and angular

velocities for the flapping configuration to gliding configuration case are seen in Figs.

37 and 38. Here, both sets of kinematics promptly converge to the equilibrium

configuration with minimal overshoot in the Euler angles.
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Fig. 33. Velocity and flight path angle time histories for tracking a gliding configura-

tion starting at an initial flapping orientation.
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Fig. 34. Control time histories for tracking a gliding configuration starting at an initial

flapping orientation.
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Fig. 35. Velocity and flight path angle errors for tracking a gliding configuration start-

ing at an initial flapping orientation.
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Fig. 36. Orientation error kinematics for tracking a gliding configuration starting at

an initial flapping orientation.
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Fig. 37. Euler angle orientation time histories for tracking a gliding configuration

starting at an initial flapping orientation.
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Fig. 38. Angular velocity time histories for tracking a gliding configuration starting

at an initial flapping orientation.
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D. Translational stability in flapping flight

Tracking results from simulations with initial perturbations in velocity and flight

path angle are discussed here. The velocity and flight path angle errors do not

influence the controller, because of this, these states are only guaranteed to satisfy

the equations of motion and because the system is nonlinear, these states could

potentially settle at values that satisfy the equations of motion but do not lie on the

reference trajectory. The purpose of this section is to get an idea of how these states

behave when they are perturbed and tracking states are not. For example, if the

vehicle is subjected to a wind gust.

1. Velocity perturbation

Fig. 39 shows the response of the velocity and flight path angle of the vehicle when

the velocity is initialized at 10% above the starting velocity for a flapping wing

stroke of Vr = 8m/s and γr = 0◦. The simulation is run for six seconds to better

demonstrate the behavior. The velocity and flight path angle converge toward the

trajectory and seek the nearest equilibrium, in this case, the one corresponding to

the wing stroke being used.

This trim seeking behavior can be seen better in Fig. 40 where the velocity and

flight path angle errors relative to the reference are plotted. In Fig. 40, the convergent

behavior of the velocity is clear. The flight path angle error however shows very

different behavior from the analysis in Sec. B. Here, the flight path angle error is

seen to oscillate, where as for gliding flight, the error converged monotonically. Notice

that the flight path angle error does not converge noticeably quicker as compared to
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the velocity error for this case.
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Fig. 39. Velocity and flight path angle histories for tracking a flapping stroke with

initial velocity error
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2. Flight path angle perturbation

The velocity and flight path angle responses to a perturbation in the system flight

path angle are presented in Fig. 41 for a flapping wing stroke of Vr = 8m/s and

γr = 0◦. The behavior of the system in this case is quite different from the case

of initial velocity perturbation. Here the flight path angle quickly returns to the

equilibrium where the velocity is slightly perturbed with the change in flight path

angle and slowly resumes following the reference values.

Fig. 42 demonstrates the rapid return of the flight path angle to the equilibrium

in a less ambiguous way. This shows a convergent behavior very similar to that in

Sec. B. The jitters once again appear in the errors and are similar to those found in

Fig. 32.
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E. Discussion of assumptions

This work contains many assumptions intended to bring tractability to the problem.

Assumptions were made in all areas including the vehicle dynamics, aerodynamics,

optimization and tracking control. These assumptions allowed for the effective study

of the flapping wing problem without becoming lost in the many directions that this

work could follow. The purpose of this research was to gain an insight into how one

can design a wing stroke for a given flapping wing vehicle that when implemented

will achieve a useful result for the vehicle as defined by the cost function, Chapter

VI.

Major assumptions associated with the dynamic model of the vehicle include the

rigid body assumption of the wing dynamics and the point mass fuselage assumption.

In reality, flapping wing vehicles have both fuselage rotational dynamics and flexible

wing dynamics. Because of the point mass fuselage assumption, the fuselage of the

vehicle is not able to offer any kind of stabilizing effect that might otherwise be

present. The flexibility in the wings of aircraft effect the angle of attack of the

wings and whether the deformation of the wings is passive or actively controlled,

this inherent flexibility can have significant influence on the stability of the system.

The fuselage of the vehicle was assumed to have no aerodynamic effects and

it was assumed that the aerodynamics of each of the wings was independent. In

reality, the fuselage of the vehicle would have significant aerodynamic contribution.

The angle of attack of the vehicle fuselage could be controlled to achieve useful

maneuvering characteristics for the vehicle such as velocity and flight path angle

tracking.
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The aerodynamic model used here is one of the simplest aerodynamic models

available. This aerodynamic model does not incorporate the effects of higher reduced

frequencies, viscosity or flow separation. In reality, all such effects influence a flap-

ping wing vehicle the size of a bird or an insect. As seen in Table II, the reduced

frequencies are within the range where the phase difference between the motion of

the wings and the aerodynamic loads becomes significant. Small flapping wing ve-

hicles fly in a regime of low Reynolds numbers, order of 10, 000, where quasi-steady

assumptions break down. Only cruise flight for a fairly large flapping wing vehicle

was considered here. In flight conditions such as hovering or other high angle of

attack transient maneuvers, separation can occur, this is likely to have significant

effect on the aerodynamics of the vehicle, but high angle of attack maneuvers and

separation are not considered here.
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CHAPTER X

CONCLUSIONS

This thesis has presented a method for designing a wing stroke for a flapping wing

vehicle. A vehicle model was chosen so as to retain the useful substance of the

flapping problem and still allow for wing and fuselage dynamics. Because longitudinal

flight was the primary interest of this thesis, a symmetry constraint was imposed

to ensure that the wings moved in a symmetric manner. Euler angle kinematics

were used to describe the orientation of the wings relative to an inertial frame. The

vehicle dynamics were described by five equations of motion, two for the translational

velocity rate of the vehicle fuselage and three for the angular velocity rate of the

wings. Because the fuselage was modeled as a point mass, there were no associated

aerodynamic effects, the only aerodynamic forces were due to the wings of the vehicle.

These aerodynamics were characterized by lift and drag forces on the wings that were

functions of the instantaneous total angle of attack of the wings [14].

The purpose of this research has been to show that a flapping wing stroke for

a vehicle that produces thrust by flapping its wings can be designed solving a well

posed optimization problem that minimizes an appropriate cost function and has

proper constraints. The cost function was a function of the parameters defining the

desired maneuver, in this case the velocity and flight path angle of the vehicle. The

optimal control problem was discretized using a Chebyshev Pseudospectral method,

[28], and solved using the NLP solver FMINCON, [29]. The example chosen for

demonstration of the method was a Barn Swallow. Gliding configurations of the
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vehicle were solved for and the vehicle dynamics were numerically linearized about

a specific gliding configuration [29].

A nonlinear controller was designed in Chapter VIII to track the wing strokes

generated in Chapter VI. This controller was designed using a Dynamic Inversion

methodology, [31], which ensured that the controller eliminated the nonlinear dy-

namics of the system and enforced a stable linear dynamics. The stability of the

controller was proved using a Lyapunov method. The controller only guaranteed

convergence of the orientation and the associated rates to the reference orientation

and rates and did not guarantee convergence of the vehicle velocity states to the

corresponding reference. Because the velocity states of the system must satisfy the

dynamics of the system at the reference condition, the velocity states converge to a

corresponding equilibrium; it was shown in simulation that this equilibrium corre-

sponds to the reference trajectory.

An optimal control problem can be posed such that its solution results in a wing

stroke that the wings of a flapping wing vehicle can track in order to achieve a desired

maneuver. This formulation is modular and can accommodate other aerodynamic

models and the dynamics of different vehicles. The gliding and flapping wing dy-

namics of the system that were demonstrated here show good agreement with known

stability and control characteristics of conventional aircraft. The method presented

in this thesis demonstrates a novel way to analyze the flapping wing problem from

a total dynamical system point of view. This technique is able to account for the

dynamics of the whole system and is built around achieving a useful result for the

whole vehicle instead of maximizing the thrust or lift of the wings over the course of



125

a flapping stroke.

Through linearization about a number of trim configurations, it was seen that

gliding flight is stable in many vehicle configurations. Different gliding configurations

also correspond to different flight path angles for a given velocity and thus, offer a

family of configurations that can be used to maneuver in gliding flight.

Nonlinear tracking control laws can be used to track these wing strokes and

accomplish the desired maneuver. However, these control laws require precise knowl-

edge of the system dynamics and aerodynamics which are not generally known in

practice. This control law does help demonstrate the open loop stability of the veloc-

ity and flight path angle states when perturbed from the equilibrium corresponding

to the particular wing stroke. The tracking law used helps demonstrate the stability

of the system in transition from gliding to flapping flight as well as flapping to gliding

flight. The control magnitudes also remain fairly close to those from the optimization

values for the cases with initial state error.

It has been seen that the wings of a flapping wing vehicle generate lift and drag

in much the same way that a fixed wing aircraft does. However, the wings of a

flapping wing vehicle also must generate thrust to propel the vehicle forward and

balance the drag force in trimmed flight. What is interesting is that the mechanism

that produces the drag that apposes the vehicle translation is the same mechanism

that generates the thrust to propel the vehicle forward. This is not seen in fixed

wing flight.

There are many paths that the future of this work could follow. One of the

more obvious paths being the extension of the aerodynamic model to quantify the
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unsteady effects of the wing aerodynamics. For example, a vortex panel method is

a common way to model the aerodynamics of flapping wings,[10, 7, 4], because it

allows for the inclusion of wing tip effects as well as accounting for the influence

of the vehicle wake. Neither of which are accounted for in the above formulation.

Because the leading edge vortex that forms on the wing is known to be an important

mechanism of lift production, [1, 11, 12, 13, 9], it would be appropriate to use a vortex

panel method in the aerodynamic model so as to capture the interaction between

the vehicle dynamics and this leading edge vortex.

Another path would be to include the vehicle dynamics and aerodynamics of

the fuselage of the vehicle. The fuselages of most flapping wing vehicles found in

nature are large and heavy as compared to the wings of the vehicle, because of

this, the associated rotational dynamics and aerodynamics of the fuselage will have

significant influence on the dynamics of the system. Another natural extension to

this work would be to include lateral directional motion in the formulation. The

cost function would be changed accordingly to ensure the wing stroke resulted in

a desired heading angle as well as flight path angle; however, the dynamics of this

system become much more complicated.
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APPENDIX A

SOME BASICS OF FLIGHT MECHANICS

This discussion pertains to a standard longitudinal analysis of conventional fixed

wing, powered aircraft.

Longitudinal motions are the up and down, forwards and backwards, and

pitching motions of the vehicle. Longitudinal maneuvering considers the vehicle to

be translating parallel to a vertical plane and is only concerned with translational

velocity components of the vehicle that lie in this vertical plane and the angular

velocity component that is perpendicular to this plane, or pitch rate. Thus, there

are three degrees of freedom for a longitudinally maneuvering, fixed-wing aircraft.

Lateral-directional motions are the side to side, rolling and yawing motions

of the vehicle. Lateral-directional maneuvering considers the vehicle to be trans-

lating parallel to a horizontal plane and is concerned with the sideways velocity of

the vehicle. The angular velocities considered in lateral-directional maneuvering are

the roll and yaw rates, or the angular velocity about an axis pointing through the

nose of the aircraft and the angular velocity about an axis pointing in the downward

direction, perpendicular to the aircraft. This leaves three degrees of freedom for a

lateral-directionally maneuvering, fixed-wing aircraft.

An aircraft has a total of six degrees of freedom. For small amplitude maneu-

vers, it is prudent to assume the decoupling of the longitudinal and lateral-directional
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motions. This thesis only considers the longitudinal motion of a flapping wing system.

Trimmed flight for a conventional aircraft, is defined as

[V̇] = 0, (A.1)

[ω̇] = 0 (A.2)

That is, the translational velocity and the angular velocity of the vehicle as

expressed in a body fixed frame must be constant. For a conventional aircraft, this

leaves three useful flight conditions. These flight conditions are ’Steady Rectilinear

Flight’, ’Steady Level Turn’, and ’Steady Symmetrical Pull-up’. The first case is the

flight condition applied in this research and is defined by and constant flight path

velocity and a constant flight path angle and is a purely longitudinal flight condition.

The second involves a constant altitude turn that forms a circular path and is purely

lateral directional. The third is a vertical loop and forms a circle on the longitudinal

plane, this is purely a longitudinal maneuver.

The Phugoid mode is an oscillatory flight mode that occurs at a near constant

angle of attack. The Phugoid oscillation is primarily due to a change in velocity.

The period of this mode can be on the order of 30 seconds for large aircraft and

the amplitude can be several hundred meters in altitude. The eigenvalues associated

with this mode tend to be relatively small and the associated damping is generally

low, resulting in a very slow decay of the oscillation.
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The Short Period mode is an oscillatory flight mode that occurs at a near

constant velocity. The Short Period oscillation is due primarily to a change in angle of

attack. The period of this mode is usually on the order of a few seconds. This mode

demonstrates a quick pitching motion as apposed to the slower ’rollercoaster like’

motion of the Phugoid mode. The Short Period eigenvalues often show comparatively

high damping, thus, this mode decays fairly quickly.
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APPENDIX B

NOMENCLATURE

[T ] Symmetry mapping between the rotational kinematics of wings 1 and 2

αeff Total angle of attack of wing

γ Vehicle flight path angle

ω Angular velocity vector

θ Euler angle orientation of wing

u Wing control moment vector

e Euler angle orientation error

V Vehicle velocity in inertial frame

ρ Air density

AR Aspect ratio

CD Non-dimentional drag

CL Non-dimentional Lift
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CD0
Zero lift non-dimentional drag

CL0
Zero angle of attack non-dimensional lift

CLα
Non-dimentional lift curve slope

dq Wing frame mgqc vector

dc Wing frame CG vector

e Oswald efficiency factor

g Acceleration of gravity

Ic Principle axis inertias of wing

m Mass of vehicle

m1 Mass of wing 1

m2 Mass of wing 2

mgc Mean geometric chord

mgqc Mean geometric quarter chord point

R Scaling of second order effect of lift on drag

S Single wing planform area

T Stroke period

VL Lyapunov function
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Vfp Velocity in stability axis system
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