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ABSTRACT 
 

Osteopontin-mediated Neutrophilic Infiltration and Higher Liver Injury in a Female 

Rodent Alcoholic Steatohepatitis Model. 

 (May 2008) 

Atrayee Banerjee, B.S, University of Calcutta; 

M.S., University of Calcutta 

Chair of Advisory Committee: Dr. Shashi K. Ramaiah 

 

 Females are known to be more susceptible to alcoholic liver disease (ALD), but 

the precise mechanism behind this increased susceptibility is not well understood. The 

objective of this study was to identify the molecular mechanism behind the increased 

susceptibility of females to alcoholic steatohepatitis (ASH). Female rats in ASH model 

were found to have significantly higher neutrophilic infiltration in the liver as compared 

to the males. Osteopontin (OPN), a member of the SIBLING family of proteins was also 

found to be induced in females. Neutralizing OPN antibody experiments provided 

further evidence that OPN acts as a chemokine in attracting neutrophils into the liver 

making females more susceptible to ASH.  

Since neutrophil transmigration in the liver is mediated by intergins, the 

mechanism for OPN-mediated neutrophil infiltration was tested. Females in ASH had 

significantly higher expression of α4β1 and α9β1 integrins, and animals treated with 

neutralizing OPN antibody had significantly lower expression of these integrins, wherein 
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hepatic neutrophilic infiltration was also decreased by 50% compared to the untreated 

group. Immunoprecipitation experiments suggested the binding of OPN to α4β1 and α9β1 

integrins. OPN-mediated neutrophilic infiltration was further confirmed using Boyden 

chamber assays. Antibodies directed against α4, β1 integrins and SLAYGLR sequence 

was also found to significantly inhibit neutrophilic migration in vitro, suggesting that 

higher hepatic neutrophil chemokinesis in the female ASH appears to be mediated 

through both α4β1 and α9β1 integrin signaling.  

In addition, higher liver injury and higher expression of OPN in females were 

also found to be regulated by estrogen in a biphasic pattern; ovariectomy resulted in 

significantly increased liver injury compared to intact rats. Depending on dose, estradiol 

supplementation in the ovariectomized rats fed ethanol resulted in both a protective and 

damaging effect on liver. 

Besides OPN, several other oxidative stress related proteins like Ferritin H 

Chain, ER60, HSP60, Peroxiredoxin 6 were identified by proteomics approach. Females 

in ASH were found to have differentially regulated levels of these proteins as compared 

to their male counterparts, highlighting the potential novel mechanisms associated with 

higher liver injury noted in our female rat ASH model.  
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CHAPTER I 
 

INTRODUCTION* 
 
 

Alcoholic liver disease (ALD) is a major public health problem in the United 

States, accounting for more than 150,000 deaths and costing about $116 billion per year 

(Tsukomoto, 2007). According to the World Health Report (2002), of the ten leading risk 

factors that serve as major burden of disease in developed countries, alcohol is ranked as 

the third most important risk factor, whereas it is the top most risk factor in the 

developing countries. In recent years, a three-fold increase in ALD has been reported 

worldwide (Mandayam et al., 2004). Epidemiological evidence points to the greater 

susceptibility of females to ALD than males (Nanji et al., 2001; 2002; Gallucci et al., 

2004). At any given level of alcohol consumption, women have a higher likelihood of 

developing cirrhosis than males (Fig 1). Studies have shown that females consuming 

lower concentration of alcohol than males produce similar pathological symptoms as 

males (Ashley et al., 1977; Loft et al., 1987; Schenker 1997). However, the precise 

mechanism behind the higher susceptibility of females to ALD is not well understood.   

                                                 
This dissertation follows the style of Toxicology and Applied Pharmacology. 

 
* Reprinted with permission from “Higher neutrophil infiltration mediated by osteopontin as a likely 
contributing factor to the increased susceptibility of females to alcoholic liver disease” by Banerjee et al., 
2006, Journal of Pathology, 208: 473-485, © 2006 by Wiley Interscience. 
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Fig. 1. Relative risk of alcohol consumption & incidence of cirrhosis of the liver in men  and women. 
(Adapted from Mann et al., Am J Drug Alcohol Abuse, 2001). 

 
 
 
Mechanisms of higher female susceptibility to ALD  

Several theories that have been proposed to explain the higher susceptibility of 

females to ALD include differences in ethanol (EtOH) pharmacokinetics (Julkunen et 

al., 1985; Frezza et al., 1990; Chrostek et al., 2003), endotoxin (Kono et al., 2000, Yin et 

al., 2000) and cytokines (Colantoni et al., 2003; Gallucci et al., 2004). 

Role of EtOH pharmacokinetics and metabolism  

When consuming an equal amount of alcohol intake, women are reported to have 

higher blood alcohol level than males (Jones and Jones 1976). Higher bioavailability of 

alcohol in females (Baraona et al., 2001) have also been associated with the differences 

in alcohol metabolism between gender. In general, alcohol metabolism takes place in the 

liver, where EtOH is oxidized to acetaldehyde by the enzyme alcohol dehydrogenase 

(ADH). The acetaldehyde formed is further oxidized to acetate by acetaldehyde 

dehydrogenase (ALDH). ADH is believed to be the rate-limiting enzyme in the 
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metabolism of EtOH. Studies have shown that females have lower levels of the enzyme 

alcohol dehydrogenase (ADH) as compared to their male counterparts (Frezza et al., 

1990; Seitz et al., 1993; Pozzato et al., 1995). In the liver, ADH consists of five different 

classes (Edenberg et al., 1994) of which, ADH I and II are known to play an important 

role in EtOH metabolism (Chrostek et al., 2003). It was found that ADH is 

dimorphically expressed with higher activity in males as compared to females (Frezza et 

al., 1990; Seitz et al., 1993; Pozzato et al., 1995).  Lower ADH in females results in 

higher bioavailability of EtOH and higher alcohol concentration in the blood. Alcohol 

levels are also influenced by the elimination rate of EtOH in the liver. Females have a 

higher elimination rate as compared to males. Higher elimination rate results in higher 

concentration of toxic products like acetaldehyde in the liver leading to higher injury 

(Kwo et al., 1998). In addition to this, gender difference has also been reported to be due 

to impaired hepatic lipid-metabolism resulting in accumulation of potentially toxic fatty 

acids (Shevchuk et al., 1991).  Alcohol feeding has been reported to inhibit the 

mitochondrial β oxidation of fatty acid and increase their microsomal esterification and 

ω oxidation (Ma et al., 1993). Dicarboxylic acid a product of ω oxidation is known to 

regulate the hepatic disposition of nonesterified fatty acids. Chronic alcohol 

administration has been found to increase ω oxidation more effectively in males than in 

female rats (Ma et al., 1993), resulting in higher accumulation of deleterious 

monocarboxylic fatty acids in females as compared to males. Further studies by Ma et 

al., (1999) have reported similar gender differences in humans, where females have 
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lower excretion of dicarboxylic acid than males indicating higher accumulation of fatty 

acids or steatosis in females (Iimuro et al., 1997). 

Role of endotoxin and cytokines 

 In living organisms, the gut wall provides a protective barrier against the release 

of large amounts of gram-negative bacteria and endotoxin into the systemic circulation. 

However, in alcoholics, ethanol exposure damages the intestinal villi, allowing the 

endotoxin to escape into the blood, where it is removed by both circulating and fixed 

mononuclear phagocytes or Kupffer cells (Fig 2). Kupffer cells have been implicated in 

higher liver injury in ALD, and studies have shown that depletion or inactivation of 

Kupffer cells diminished hepatic steatosis, inflammation and necrosis in alcholic 

steatohepatitis (ASH) (Adachi et al., 1994; Iimuro et al., 1996). Kupffer cells have also 

been shown to produce cytokines like TNF-α causing more liver injury in ALD (Iimuro 

et al, 1997). Studies by Iimuro et al., (1997) and Nanji et al., (2001) have shown that 

female rats fed EtOH have higher level of endotoxin in plasma than their male 

counterparts. Because estrogen receptors exist in the intestinal epithelium, estrogen has 

also been reported to affect the permeability of the gut leading to higher endotoxin levels 

in females (Kono et al., 2000, Yin et al., 2000). From the gut, the blood empties directly 

into the portal vein, where Kupffer cells are primarily responsible for endotoxin 

clearance (Wisse, 1977). In addition to Kupffer cells, endotoxin clearance can also take 

place by other receptors like CD14 (Gegner et al., 1995). CD14 is a glycoprotein 

receptor involved in macrophage activation (Schumann et al., 1990). This receptor 

mediates uptake of endotoxin by cells that do not express membrane bound CD 14 
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(Pugin et al., 1993), like Toll-like receptor 4 (TLR4) on the macrophage and 

Lipopolysaccharide-binding protein (LBP) in the serum (Thurman et al., 1998).  Studies 

by Kono et al., (2000) have shown that alcohol treated females have higher levels of 

CD14 and LBP as compared to the males. The increase in expression of 

lipopolysaccharide receptor CD14 on Kupffer cells leads to production of reactive 

oxygen species (ROS) in liver, leading to NF-κB activation. This causes increased 

proinflammatory cytokine production leading to higher liver injury in females (Fig 2). 

  

 

 

 

Fig. 2. Schematic representation of endotoxin mediated alcoholic liver injury. Alcohol consumption 
increases the gut permeability resulting in increase in blood endotoxin levels. This leads to higher 
levels of lipopolysaccharide receptor on Kupffer cells. The LPS or endotoxin binds to the LPS 
binding protein and the CD14 receptor on the Kupffer cells. In the activated Kupffer cells NF-κB 
activation takes place leading to increased production of proinflammatory cytokines, which leads to 
higher inflammation and  liver injury (Adapted from Kono et al., 2000).    
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Lower levels of cytokine IL-6 has also been reported to play a role in higher 

susceptibility of females to ALD. Ethanol-fed males are reported to have higher levels of 

IL-6 as compared to the females, which protect the liver from EtOH induced apoptosis 

(Colantoni et al., 2003). IL-6 has been reported to function as an antiapoptotic factor in 

the liver by helping maintain an adequate level of FLIP (FLICE [Fas-associated death-

domain-like IL-β converting enzyme] inhibitory protein) and downstream antiapoptotic 

factors (Kovalovich et al., 2001). Lower expression of IL-6 in females is also reported to 

cause lower hepatocyte regeneration and higher liver injury. Further studies by Gallucci 

et al., (2004), have reported that significantly higher circulating levels of IL-6Rα leads 

to increased severity of inflammation and damage observed in female EtOH-consuming 

rats. In addition to the role of cytokines and chemokines, higher lipid peroxidation 

leading to the production of higher reactive oxygen species (ROS) has also been known 

to play a role in higher liver injury in females (Nanji et al., 2002).  

Alcoholic liver disease - pathological stages  

To investigate the mechanistic and molecular basis for alcohol-mediated liver 

damage, different pathological stages have been investigated. EtOH consumption in 

humans is characterized by four distinct pathological stages ranging from fatty liver or 

steatosis, to steatohepatitis, fibrosis and cirrhosis (Lieber and DeCarli, 1982; MacSween 

and Burt, 1986; Diehl, 2002; Maher, 2002, Nanji, 2002; Ramaiah et al., 2004). Steatosis 

and steatohepatitis represents the early phase of ALD. In the rodent models of ALD, 

pathological alterations such as steatosis, oncotic necrosis, hepatocellular neutrophilic 

infiltration has been observed similar to that seen in early phase of human ALD 
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(MacSween and Burt, 1986; Diehl, 2002); however, several other histopathological 

changes noted in human alcoholics as Mallory bodies are rarely seen in these 

experimental animal models.   

Alcoholic steatosis (AS)  

Alcoholic steatosis, the initial stage of ALD is characterized by extensive fat 

accumulation in the liver along with mild to moderate liver injury (Galambos, 1972; 

Macsween and Burt, 1986; Maher, 2002). It is a common occurrence in alcoholics, with 

reported incidences ranging form 10% to 90%. Metabolic disturbances such as decreased 

fatty acid oxidation, increased triglyceride synthesis, reduced fat export and mobilization 

of extra hepatic fat stores are thought to be few of the reasons for accumulation of fat in 

the liver (Lieber, 1993; Maher 2002; Zhao et al., 2002). Fatty acid oxidation and 

synthesis are controlled by two major regulatory molecules, the peroxisome 

proliferators-activated receptor α (PPARα) and the steroid response element-binding 

protein-1 (SREBP-1) respectively. PPARα is reported to control transcription of many 

genes involved in free fatty acid (FFA) transport and oxidation. PPARα knock out 

animals develop fatty liver (Costet et al., 1998), when fed high fat diet, and are 

particularly sensitive to the development of steatohepatitis when fed on a methionine-

choline deficient diet (Ip et al., 2003). In addition to PPARα, SREBP-1 is also known to 

play a role in the development of alcoholic fatty liver. Studies on transgenic mice over-

expressing the mature form of SREBPs (Shimano et al., 1996) suggest that SREBP-1 

regulates genes involved in hepatic triglyceride synthesis. Livers from mice over-

expressing SREBP-1a or 1c have massive accumulation of cholesteryl esters and 
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triglycerides. In alcoholics, the effect of EtOH on lipid metabolism has been reported to 

result from inhibition of PPARα and stimulation of SREBP-1, resulting in remodeling of 

the liver towards a fat storing, rather then fat oxidizing organ (Crabb et al., 2004).  

The infiltration of fat in the liver has been reported to be both macrovesicular 

(one large fat droplet per hepatocyte and lateral displacement of the nucleus) and 

microvesicular (several small droplets per hepatocyte). Although steatosis was largely 

considered benign, recent investigations have revealed that AS leaves the hepatocytes 

highly sensitive to injury (Teli et al., 1995; Galli et al., 2001; Bathgate and Simpson, 

2002; Baykov et al., 2003; Fisher et al., 2003;), suggesting that the more fat in the liver, 

the higher susceptibility to severe damage (Day and James, 1998). Some of the 

mechanisms behind such increased susceptibility to steatotic liver has been reported to 

be cellular changes due to metamorphosis (Teli et al., 1995; Bathgate and Simpson, 

2002), increased oxidative stress (Yang et al., 1997; Colell et al., 1998; Baykov et al., 

2003), decreased regenerative ability (Apte et al., 2004), and decreased expression of 

peroxisome proliferators-activated receptors (Everett et al., 2000; Galli et al., 2001; 

Fischer et al., 2003).  

Alcoholic steatohepatitis (ASH) 

 ASH, the second stage of the disease, is the rate-limiting step in the course of 

ALD and is characterized by steatosis accompanied by neutrophil infiltration, liver 

injury and hepatic necrosis. ASH seldom (<10% cases) reverts to normal hepatic 

histology, even when the precipitating condition is removed (French, 2002), and a 

substantial population of the patients is reported to develop hepatic fibrosis and cirrhosis 
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with the passage of time (Fig 3). In ASH, the presence of fat seems to be a prerequisite 

for the development of inflammation, possibly because a fatty liver seems to be more 

vulnerable to various factors that trigger inflammation (Day and James, 1998). Various 

mechanisms of ASH have been studied, including increased ROS/RNS production 

(Reinke et al., 1987; Lieber, 1990; Arteel, 2003), nutritional deficit in carbohydrates 

(Korourian et al., 1999), enhanced proinflammatory cytokine and chemokine levels 

(Wheeler et al., 2001; Hoek and Pastrino, 2002), and highly circulating levels of 

bacterial endotoxin or lipopolysaccharide (LPS) in patients with ASH (Enomoto et al., 

1999; Uesugi et al., 2001; Hoek and Pastrino, 2002; Arteel, 2003). Irrespective of the 

mechanisms of ASH, one of the most common findings is the presence of neutrophils in 

the hepatic parenchyma.  

 
 
 

 

Fig. 3. Schematic representation of the progression of ALD. Consumption of EtOH produces hepatic 
pathology ranging from steatosis to steatohepatitis, fibrosis and cirrhosis. Steatohepatitis is reported 
to be the rate-limiting step in the progression of ALD (Adapted from Ramaiah et al., 2004) 
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Alcoholic fibrosis and cirrhosis  

Fibrosis is considered the first irreversible step in ALD progressing severe 

fibrotic changes and eventually cirrhosis (MacSween and Burt, 1986; Teli et al., 1995). 

The fibrotic process is characterized by proliferation of hepatic stellate cells and their 

transformation into myofibroblasts. Cirrhosis the final stage of ALD is marked by the 

formation of scars and nodules in the liver (Fig 3). The scar tissue replaces the normal 

tissue, disrupting blood flow through the liver (Anand, 1999), resulting in liver failure 

and death. 

Metabolism of alcohol  

The liver is the main organ responsible for metabolizing the ingested alcohol; 

however, alcohol is also metabolized in extrahepatic tissues like brain (Zakhari et al, 

2006). In general, the alcohol metabolism takes place mainly by the oxidative pathways 

involving the enzymes alcohol dehydrogenase (ADH), cytochrome P450 2E1 (CYP 2E1) 

and catalases. All of these enzymes produce acetaldehyde as their by-products (Fig 4). 

Acetaldehyde is finally oxidized to acetate which metabolizes into water and 

carbon dioxide. However, the reaction by which acetaldehyde which is oxidized to 

acetate by aldehyde dehydrogenases (ALDHs) is extremely slow, and results in increase 

in acetaldehyde accumulation in the liver, leading to toxicity. Acetaldehyde forms 

adducts with proteins and small molecules at reactive residues (e.g. cysteines). Chemical 

alteration of these molecules can change or interfere with normal biological processes 

and can directly be toxic to the cell (Fig 5). Such modified biological molecules may 

also stimulate the immune response and cause autoimmune-like diseases. 
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Fig. 4. Oxidative pathways of alcohol metabolism. The enzymes ADH, CYP2E1, and catalase all 
contribute to oxidative metabolism of alcohol. ADH, converts EtOH to acetaldehyde. In this 
reaction, NAD+, an intermediate carrier of electrons is reduced by two electrons to form NADH. 
Catalase requires hydrogen peroxide (H2O2) to oxidize EtOH. CYP2E1, also metabolizes EtOH to 
acetaldehyde at elevated EtOH concentrations. Acetaldehyde is metabolized mainly by ALDH2 to 
form acetate and NADH. ROS: reactive oxygen species (Adapted from Zakhari et al., 2006).  
 
 
 

 

Fig. 5. Representative scheme showing the by-products of EtOH metabolism. EtOH metabolism 
takes place with the help of two major enzymes, alcohol dehydrogenase and CYP2E1. Both these 
enzymes convert EtOH to acetaldehyde. In addition to producing acetaldehyde, CYP2E1 also 
produces oxygen and hydroxyl radicals as by-products. Acetaldehyde and oxygen and hydroxyl 
radicals further react to produce various adducts, which reacts with proteins and interferes with the 
biological function of these molecules leading to hepatic injury (Adapted from Zakhari et al., 2006). 
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Several oxidized modified proteins like hybrid adduct of malondialdehyde and 

acetaldehyde unique to alcohol exposure have been reported in both animal and human 

models of ALD (see Fig 5, Klassen et al., 1995; Niemela, 2001, Thiele et al., 2001).  

In addition to acetaldehyde and ADH, the isoenzyme CYP2E1 has also been 

known to be a major player in ALD. Studies by Bardag-Gorce and coworkers (2000) 

have shown that this enzyme is a major source of reactive oxygen species and 

contributes significantly to oxidative stress in ALD. Further studies have also shown that 

inhibitors of CYP2E1 partially block hepatic pathology caused by EtOH in experimental 

animal models (Bardag-Gorce et al., 2000).  

The metabolism of EtOH has been reported to form cytotoxic by-products and 

also alter the cellular redox state. The oxidation of EtOH to acetaldehyde and acetate, 

utilizes NAD+ as the electron acceptor, shifting the NADH: NAD+ ratio to a more 

reduced state. This shift in the pyridine nucleotide redox state has been shown to impair 

normal carbohydrate and lipid metabolism, which has multiple effects, including 

decreased supply of ATP to the cells (Lieber, 2000). The increased reduced state of 

pyridine nucleotides have been reported to be responsible for the accumulation of lipids 

leading to progression of ALD (Day and James, 1998). 

Animal models to study ALD  

The use of animal models has contributed significantly to greater understanding 

of the progression of ALD. Although significant variations in these models have been 

reported, each model have been found to emphasize some aspect of our understanding of 

the pathogenesis of ALD (Table 1). Well-established models to investigate ALD include. 
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Table 1   
Different models used to study alcoholic liver disease, their advantages, disadvantages and 
references. 
 

Model Advantage Disadvantage References 

Lieber DeCarli Diet 
model 

Rats consume EtOH in 
a balanced diet 
containing water and all 
sufficient nutrients. 
No surgery needed, 
relatively easy to 
implement. 

No fibrotic changes 
observed in rats, after 
9months of feeding the 
ad-libitum diet. 
 

Lieber ,1963. 
Lieber and DeCarli, 
1970a, 1982, 1986, 
1989. 
 

Intragastric EtOH 
feeding models: a) 
Tsukomoto and French 
model (b) Total 
Enteral Nutrition 
(TEN). 

Increased circulating 
EtOH levels attainable.   

Surgical manipulation, 
significant animal 
husbandry and higher 
cost associated as 
compared to Lieber 
DeCarli model. 

Tsukomoto et al., 
1985a,b. 
French et al., 1988. 
Badger et al., 1993. 
Kamimura et al., 1992. 
Yin et al., 1999. 
Kono et al., 2001a,b. 

LPS sensitization 
model 

Possible to achieve liver 
pathology especially 
neutrophil infiltration as 
observed in enteral 
feeding model and 
human patients. 

Variations observed in 
animals. 

Enomoto et al., 1999. 
Tamai et al., 2002. 
Apte et al., 2003. 

 
 

 

chronic feeding model of Lieber and DeCarli (1982), the Tsukomoto and French enteral 

model (Tsukomoto and French 1985 a,b), the total enteral nutrition (TEN) model for 

dietary manipulations (Badger et al., 1993) and the rat model based on LPS sensitization 

(Enomoto et al., 1999). 

Oral liquid diets  

Lieber-DeCarli diets: Unlike humans, rats have an aversion to drinking alcohol. 

The incorporation of EtOH in a specialized liquid diet forces rats to consume EtOH in a 

balanced liquid diet that contains water and all sufficient nutrients. Control animals are 

pair fed an equicaloric amount of diet with EtOH replaced by carbohydrates (Lieber and 
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DeCarli, 1989). The improved formula consisted of casein (18% of calories), 

supplemented with methionine and cysteine, a mixture of dextrin and maltose (11% and 

47% calories for EtOH and control diets), and fat (35% of calories: olive oil, corn oil, 

sunflower oil). All essential vitamins, mineral and fiber are reported to be present in this 

diet (Lieber and DeCarli1986, 1989). This liquid diet popularly known as Lieber DeCarli 

diet has been extensively used in rodent models of ALD. Daily intake of Lieber DeCarli-

EtOH diet resulted in fatty liver and six fold increase in hepatic triglycerides (Lieber and 

DeCarli, 1970). However, even after 9 months of feeding the Lieber DeCarli-EtOH diet, 

these rodents have rarely been reported to have fibrotic changes in the liver (Leo and 

Lieber, 1983). In addition, this diet also has other limitations. Despite partially 

overcoming their dislike of EtOH-containing diet, rodents on EtOH diet still consume 

less than control animals on carbohydrate diet. To address this issue, control animals are 

pair-fed isocaloric diet as the EtOH group (Lieber and DeCarli, 1989). However, there is 

still an inherent concern in comparing pair-fed rodents that typically consume their daily 

caloric allowance in a short period of time, as compared to EtOH-fed rodents that 

consume the same amount of calories over the course of a day (Ramaiah et al., 2004).  

Intragastric EtOH feeding models  

 Both the Tsukomoto and French enteral model (Tsukomoto et al., 1985a) and the 

total enteral nutrition (TEN, Badger et al., 1993) model feeds the rodents EtOH-liquid 

diet through a permanent indwelling intragastric catheter. The animals in these models 

are monitored regularly for the blood EtOH levels, depending on which the composition 

and the EtOH level of the diet is titrated. As in the oral feeding model, controls are 
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infused with isocaloric amounts of EtOH-free diet with carbohydrates replacing EtOH. 

In these models, about 30-50% of the rats develop macro and micrvesicular steatosis, 

focal necrosis and mononuclear inflammation (Tsukomoto et al., 1985; French et al., 

2005). Early perivenous fibrosis have been reported to develop in 3-6months provided a 

high-fat diet with 42-49% of total energy as EtOH is infused (Kamimura et al., 1992). 

These animals achieve an increased circulating level of EtOH (∼500 mg/dl) as compared 

to the liquid diet, where ∼100 mg/dl is rarely achieved. Although there are distinct 

advantages of enteral alcohol feeding like increased pathology, disadvantages of these 

models include the need for surgical manipulations, significant animal husbandry, and 

the relative cost of the model compared to ad libitum feeding (Ramaiah et al., 2004).  

Simple nonsurgical LPS sensitization model 

The simple, nonsurgical LPS sensitization model makes it possible to achieve 

liver pathology (steatosis, inflammation and necrosis) that resembles alterations that 

occur in the enteral feeding model (Tsukomoto et al., 1985a,b). This modified Lieber 

DeCarli diet has been known to enhance hepatic neutrophil infiltration resulting from 

enhanced endotoxin levels (Enomoto et al., 1999; Tamai et al., 2002; Apte et al., 2005).  

Mechanisms of hepatic neutrophil transmigration  

Neutrophil infiltration is one of the major concerns in a large number of 

inflammatory liver diseases like ischemia-reperfusion injury (Jaeschke et al., 1990; 

Ramaiah and Jaeschke, 2007),  endotoxemia  (Jaeschke et al., 1991; Rose et al., 2006,  
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Fig. 6. Simplified schematic representation of the mechanism of neutrophil transmigration in the 
liver. This is a multi-step process involving rolling, adhesion and transmigration of neutrophils into 
the hepatic parenchyma. Rolling and adhesion takes place with the help of selectins, whereas 
adhesion and transmigration is mediated with the help of integrins. Up-regulation or activation of 
the integrins aids in adhesion and transmigration of neutrophils.  
 
 
 

2007), and alcoholic liver disease (Ziol et al., 2001; Ramaiah et al., 2004; Apte et al., 

2005). For neutrophil-mediated injury to occur and progress, neutrophils have to 

transmigrate into the hepatic parenchyma from the sinusoids of the liver. Transmigration 

of neutrophil (Fig 6) involves a sequence of events that includes neutrophil 

activation/accumulation within the hepatic vasculature, neutrophil 

transmigration/extravasation and attachment of neutrophils to hepatocytes leading to cell 

injury and death. 

Neutrophils accumulate within hepatic sinusoids and post sinusoidal venules in 

response to systemic or local exposure to a variety of proinflammatory mediators such as 

tumor necrotic factor-α (TNF-α), CXC chemokines (IL-8, MIP-2), cytokine-induced 
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neutrophil chemoattractant -1 (CINC-1), activated complement factors (C5a), and 

platelet activating factor (PAF) (Table 2, Bautista and Spitzer 1992; Witthaut et al., 1994; 

Essani et al., 1995; Bajt et al., 2001). The accumulated neutrophils are at least partially 

activated (primed) as indicated by the up-regulation of Mac-1 (αmβ2/αLβ2 ) a member of 

the β2 integrin family of adhesion molecules and by shedding of L-selectin and by their 

capacity to generate more reactive oxygen species in response to stimuli (Bautista et al., 

1990; Bautista and Spitzer 1992; Jaeschke et al., 1993; Spitzer et al., 1994; Witthaut et 

al., 1994; Bajt et al., 2001). The adhesion of neutrophils in the post sinusoidal venules is 

initiated by the rapid expression of P-selectin on venular endothelial cells, which leads to 

selectin-dependent rolling of the neutrophils followed by the integrin/ICAM-1 dependent 

firm adhesion to endothelium (Jaeschke 1997; Wong et.al., 1997; Essani et.al., 1998). 

However, because of absence of rolling in the sinusoids in the liver, L-selectin is not 

known to play a role in sequestration and migration in the liver (Lawson et al., 1998).   

Neutrophil transmigration, a prerequisite for hepatic cytotoxicity is facilitated by 

β2 integrins, which are up-regulated and or activated from a constitutive low-affinity 

state to a high-affinity state on the neutrophil surface (Jaeschke and Hasegawa 2006). 

This high affinity conversion of neutrophils enables them to firmly adhere to the 

sinusoidal endothelium by binding to endothelial ICAM-1 and to eventually extravasate 

if a chemotactic signal is received from within the parenchyma. Chemotactic signals 

include CXC chemokines (IL-8, MIP-2, KC and CINC-1), which are potent 

chemoattractants  for  neutrophils  and  are  produced  by  hepatocytes,  sinusoidal  
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Table 2 
Members of proinflammatory cytokines, chemokines, adhesion molecules and other potential 
candidates implicated in the pathogenesis of neutrophilic alcoholic steatohepatitis. (Adapted from 
Ramaiah and Jaeschke, 2007) 
 
 Species studied References 
Proinflammatory cytokines 
TNF-α, IL-18, IL-18 binding 
protein, PAF 

Rat, mice and humans Afford et al., 1998; Bautista 
2002; Spahr et al., 2004  

Chemokines CXC (IL-8, CINC, 
KC), CC (RANTES, MIP-1, 
MCP-1) 

Rat, mice and humans Afford et al., 1998; Bautista 
2000; 2002; Jaeschke 2002 

Adhesion molecules CD-18, 
ICAM-1 

Rats and mice  Bautista 2002; Kono et al., 2001 

Apoptosis Humans Ziol et al., 2001 
Microcirculatory disturbance 
eNOS, leukostasis 

Rats Karaa et al., 2005; Horie et al., 
2000 

 
 
 

endothelium, bile ductules, and Kupffer and stellate cells (Maher et al., 1997; Bajt et al., 

2001; Okaya and Lentsch 2003). 

Similar to neutrophil adhesion to sinusoidal endothelium during the phase of 

neutrophil transmigration, neutrophils use β2 integrins to adhere to ICAM-1 on 

hepatocytes (Jaeschke and Hasegawa 2006). Engagement of β2 integrins initiates a long-

lasting oxidant stress through NADPH oxidase via generation of superoxide radicals 

(Jaeschke 2003; Gujral et al., 2004). In addition, myeloperoxidase released from 

neutrophils can generate hypochlorous acid resulting in the formation of chloroamines 

(Bilzer and Lauterburg 1991), which are potent oxidants and chlorinating agents. 

Similarly neutrophilic elastase can induce formation of neutrophils- and monocyte-

chemoattractant chemokines in Kupffer cells (Yamaguchi et al., 2000) which can 

facilitate neutrophil transmigration. Thus, neutrophils serine proteases can process 

cytokines and chemokines, resulting in an exaggerated inflammatory response and 
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increased neutrophils cytotoxicity in the liver. In addition to these indirect effects, 

neutrophils-derived proteases may directly contribute to cell injury (Ho et al., 1996). 

 Although β2 (LFA-1:αmβ2; Mac-1:αLβ2) integrins have been shown to be 

important for the adhesion and migration of neutrophils within the liver, it is still 

difficult to differentiate the specific roles of LFA-1 and Mac-1 in mediating chemotaxis 

in the peritoneum (Ding et al., 1999). Studies in mice deficient in LFA-1, Mac-1 and CD 

18 (lacking both LFA-1 and Mac-1) have shown that neutrophils deficient in LFA-1 

exhibited the same adhesion to fibrinogen as the wild type neutrophils, but adhesion to 

the substrate was absent in neutrophils deficient in Mac-1, indicating that LFA-1 is not 

required for Mac-1 on activated neutrophils to function as an adhesion molecule to its 

ligands (Ding et al., 1999). Further studies by Entman et al. (1992), and Nagendra et al. 

(1997), have shown that Mac-1 plays an important role in the adhesion of neutrophils to 

parenchymal cells in cardiac myocytes and hepatocytes. The marked difference in 

neutrophil extravasation observed in mice deficient in LFA-1 and Mac-1 in response to 

TNF-α demonstrates the unique role of these molecules in neutrophil extravasation; 

LFA-1 appears to be more important in neutrophil adhesion, while Mac-1 appears to be 

important in events occurring after transendothelial migration, including regulating 

adhesive interactions of the neutrophils as it moves through the interstitial space (Ding et 

al., 1999). 

Surprisingly, majority of the literature on hepatic neutrophil transmigration is 

focused mostly on β2 integrins. Although α4β1 and α9β1 have been reported to be 

expressed by PMN (Kubes et al., 1995; Shang et al., 1999) in the blood, there is no data 
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available on the role of β1 integrins in the liver. Non-β2 integrins such as αvβ3, α4β1, 

α5β1 are responsible for binding extra cellular matrix proteins and forming the adhesive 

traction forces for neutrophil migration (Gonzalez et al., 2007) In addition to the β2 

integrins, essential roles of α4β1 (VLA4) has also been implicated in the multi-step 

adhesion and migration of neutrophils in the vascular endothelial cells and in patients 

with sepsis syndrome (Ulyanova et al., 2007; Ibbotson et al., 2001). This α4β1 integrin 

has been known to be involved in all three steps of the neutrophil trafficking cascade 

(Kitayama et al., 1997; Chan et al., 2001). Expression of α4 intergins have been reported 

to be constitutive in all leukocytes except human neutrophils, where it is inducible 

(Johnson et al., 2001). Studies have reported that an initial priming event followed by 

multiple pro-inflammatory molecules is required for α4 integrin expression and α4- 

integrin-dependent neutrophils binding to its ligands like VCAM-1 (Johnson et al, 2001). 

An increase in α4β1 on neutrophils following transmigration has also been reported in 

cardiac myocytes (Reinhardt et al., 1997). Further studies by Ulyanova et al., (2007), 

have shown that recruitment of neutrophils in the inflamed peritoneum, requires the 

presence of both α4 and β2 integrins. However, the interchangeable usage of the α4β1 and 

β2 integrins by neutrophils may be tissue specific, which is mediated by variations in 

chemokine secretion and expression of adhesion molecules in local inflammatory milieu 

(Ulyanova et al., 2007).  

Osteopontin - structure and function 

OPN an acidic member of the small integrin-binding ligand N–linked glycoprotein 

(SIBLING) family of proteins is involved in cell-to-cell and cell-to-matrix 
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communication (Fisher et al., 2001). This protein, a monomer of 264-301 amino acids, 

with a molecular mass ranging form 44-80kDa, undergoes extensive post translational 

modifications like phosphorylatin, glycosylation and cleavage. OPN coded by a single 

gene (4q21-q25 in human) contains a hydrophobic leader sequence characteristic of a 

secreted protein that can bind to a variety of cell surface integrins (Denhardt et al., 

2001a,b). The major intergin binding sites observed on OPN include the RGD-cell 

binding domain and the SVVYGLR domain in human (Fig 7, SLAYGLR domain in rat 

and mice). The RGD-cell binding domain, similar to that present in many extra cellular 

matrix (ECM) proteins is reported to bind to αvβ3, αvβ1, α5β1, α8β1 and αvβ5 integrins 

(Diao et al., 2004; Smith and Giachelli, 1998; Yokosaki et al., 1999, 2005). In addition 

to that, SVVYGLR, the second integrin binding site is reported to bind to α9β1 and α4β1 

integrins (Moore et al., 1991; Tezuka et al., 1992; Johnson et al., 1999).  Majority of the 

integrins appear to bind to the N-terminal thrombin cleaved fragment of OPN containing 

both the RGD and the SVVYGLR domain (Fig 7). The SVVYGLR domain is cryptic 

and the integrins bind to this domain only when OPN is cleaved at the thrombin cleavage 

site exposing the cryptic domain (Green et al., 2001). The thrombin cleavage motif 

immediately adjacent to SVVYGLR domain has a conserved sequence RSK, present in 

most species suggesting the requirement of OPN cleavage for some of its physiological 

functions (Denhardt et al., 2001a, b). The thrombin cleavage of OPN releases the 

SVVYGLR receptor-domain responsible to carry out distinct signaling functions. The 

SVVYGLR site is unusual as it lacks a critical acidic residue present in other binding 

motifs for integrins α9/β1 and α4/β1. The negatively charged aspartic acid and glutamic 
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acid are considered to be critical acidic residues in OPN important in integrin binding 

ligands. It is thought that thrombin cleavage of Arginine 168 in OPN reveals a 

carboxylic group, enabling the SVVYGLR motif to engage these intergins. Thus the free 

C-terminus of SVVYGLR provides an acidic group required for its interaction with 

α9/β1 and α4/β1 (Green et al, 2001). 

 
 
 

 

 
Fig. 7. Schematic representation of the structure of Osteopontin (OPN) protein. OPN undergoes 
extensive post translational modifications especially phosphorylation. Several binding sequence of 
OPN includes the RGD, SVVYGLR and the CD44. Additional motifs include the thrombin cleavage 
and transglutaminase binding site. The RGD-cell binding domain is reported to bind to αvβ3, αvβ1, 
α5β1, α8β1 and αvβ5 integrins, and the SVVYGLR sequence is reported to bind to α9β1 and α4β1 
intergins (adapted from Ramaiah and Rittling, 2007). 
 
 
 

In addition to the polymerization, OPN function is highly dependent on post-

translational modification (PTM), such as phosphorylation and glycosylation (Sodek et 

al., 2000; Qin et al., 2004). The nature of PTMs of OPN is highly tissue- and cell 
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specific reflecting the diverse function of this protein in different physiological systems. 

Normal rat kidney cells have been reported to secrete both phosphorylated and non-

phosphorylated variants of OPN (Singh et al., 1990). The regulatory roles of OPN in 

pathological mineralization are highly dependent on the phosphorylation status of OPN 

(Shiraga et al., 1992; Wada et al.., 1999). Dephosphorylation of OPN hinders its ability 

to inhibit hydroxyapatite formation (Boskey et al., 1993), and phosphorylation is 

necessary for its inhibition of calcium oxalate crystallization in the urine (Hoyer et al., 

2001) and calcification of vascular smooth muscle cells (Jono et al., 2000). 

Phosphorylation of OPN has also been shown to be essential for osteoclast attachment, 

and TRAP (tartarate-resistant acid phosphatase) dephosphorylation of bovine OPN 

resulted in a partially dephosphorylated protein that could no longer promote RGD-

dependent osteoclast attachment (Ek-Rylander et al., 1994). The interaction of OPN and 

macrophages is also influenced by the phosphorylation state of this protein. The β3-

integrin receptor on the macrophage has been reported to bind to the N-terminal of OPN, 

and secrete IL-12 only if the OPN fragement is phosphorylated (Ashkar et al., 2000). 

Likewise, phosphorylation is also required for OPN-mediated spreading and activation 

of macrophages (Weber et al., 2002). OPN has also been shown to promote trophoblastic 

cell migration in a process that is dependent on the level of phosphorylation of the 

protein (Al-Shami et al., 2005).  

Although OPN protein is encoded by a single copy gene, a number of different 

isoforms of this protein exist mainly due to the different forms of PTM. The only OPN 

isoforms that have been characterized with regard to the PTM are those of bovine and 
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human milk, rat bone and murine ras-transformed fibroblast (FbOPN) and differentiating 

osteoblast (ObOPN). Bovine milk OPN contains 27 phosphoseryl residues and one 

phosphothreonine residue (Sorensen et al., 1995). Up to 34 phosphoserines and two 

phosphothreonines residue (Sorensen et al., 1995) were identified in the human 

counterpart (Christensen et al., 2005). Studies of OPN purified from rat bone, revealed 

up to 29 potential phosphorylation sites (Keykhosravani et al., 2005). In addition, OPN 

produced by FbOPN and ObOPN contains an average of 4 and 21 phosphate groups 

respectively (Christensen et al, 2007). Phosphorylation sites are predominantly located at 

serines in the recognition motifs of the golgi kinase/ mammary gland casein kinase 

(Lasa-Benito et al., 1996; Lasa et al., 1997) and or casein kinase II (Lasa-Benito et al., 

1996; Meggio and Pinna, 2003). In addition to phosphorylation, the characterized OPN 

isoforms all contain glycosylations. Bovine and human milk OPNs contain 3 and 5 O-

glycosylated residues, rat bone OPN have 4, whereas FbOPN and ObOPN 5 and 1 

respectively (Sorensen et al., 1995; Christensen et al., 2005; Keykhosravani et al., 2005; 

Christensen et al., 2007). 

Contribution of OPN to hepatic inflammation and toxicity 

 Due to the varied structure, OPN is involved in a variety of pathophysiological 

conditions like cell binding, spreading, migration and tumor metastasis (Rittling and 

Denhardt, 1999; Denhardt et al., 2001a,b). OPN is also known to play an important role 

in a variety of inflammatory diseases like glomerular nephritis (Giachelli and Steitz, 

2000; O’Regan and Berman, 2000; Denhardt et al., 2001a,b), inflammation during CCl4 
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induced hepatotoxicity (Kawashima et al., 1999), puromycin-induced toxicity (Denhardt 

et al., 2001a,b) and in non-alcoholic steatohepatitis (Sahai et al., 2004).  

OPN as a mediator hepatic natural killer T (NKT) cell and neutrophil infiltration 

Concavalin A (Con A) mediated hepatitis is a classic example of inflammatory 

liver disease where in increased neutrophils and lymphocyte (NKT and T-cell) 

infiltration occurs followed by hepatic necrosis (Fujii et al., 2005; Zhu et al., 2007). The 

mechanistic link between OPN and NKT cells was recently tested in a Con A-induced 

hepatitis mouse model (Diao et al., 2004), where OPN-KO mice has significantly lower 

liver injury as compared to the wild type controls. NKT cells the major T-cell phenotype 

in the controls during the development of ConA-induced hepatic injury was found to 

significantly decrease in the OPN-deficient mice. In addition to the full-length OPN, the 

thrombin cleaved OPN (cOPN) was also present in the liver of the wild type mice. By in 

vitro migration assays, infiltrating leukocytes purified form the liver after ConA 

injection was found to migrate more efficiently towards the thrombin cOPN than the 

full-length form. Neutrophils were the predominant leukocyte population that responded 

to the cOPN. In summary, in this model after ConA-induced activation, NKT cells 

secreted OPN which is cleaved by thrombin in the liver. The interaction of cOPN with 

its receptors further activate NKT cells which produces MIP-2 a chemotactic factor for 

neutrophils. The cOPN also reacts with the α4 and α9 integrins on neutrophils, so that 

they become activated and contributes to additional liver injury (Diao et al., 2004). 
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OPN and non alcoholic fatty liver disease  

Non alcoholic fatty liver disease (NAFLD) form a spectrum of disease from 

simple accumulation of fat to cirrhosis and end stage liver disease (Angulo, 2002; Diehl, 

2002; Sahai et al., 2004). Recent studies by Sahai et al., (2004) have pointed out the role 

of OPN in an experimental dietary rodent model of NAFLD. Upregulation of OPN 

mRNA was noted in the early periods of treatment, when little or no pathological lesions 

were observed. Further in this study, the OPN-KO mice have significantly decreased 

liver injury and fibrosis when compared to their wild type counterparts indicating the 

role of OPN in the pathogenesis of NAFLD.  

OPN as a mediator of the hepatic macrophage infiltration  

OPN has been known to be a potent chemotactic factor for macrophages 

(Ramaiah and Rittling, 2007). This protein has been reported to bind to macrophages, 

and injection of OPN into mice resulted in inflammatory infiltrate rich in macrophages 

(Singh et al., 1990). Additional studies with neutralizing antibody to OPN have shown to 

reduce the macrophage accumulation by 60% (Giachelli et al., 1998), providing strong 

evidence that OPN regulates the chemotactic response of macrophages. Further studies 

have reported that activated macrophages themselves produce abundant OPN. This 

protein has also been reported to be associated with macrophage differentiation. It was 

identified as one of the genes most highly up regulated during differentiation of 

monocytes to macrophages (Krause et al., 1996). In RAW264.7 cells, down regulation of 

OPN expression with siRNA resulted in reduced expression of markers of macrophage 
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differentiation, suggesting that endogenous OPN expression supports the differentiated 

phenotype in these cells (Nystrom et al., 2007).  

In the liver, carbon tetrachloride (CCl4) has been reported to cause significant 

liver damage accompanied by increased macrophage infiltration in the tissue 

(Kawashima et al., 1999). OPN expression is strongly up regulated in the livers of CCl4 

treated rats, with peak expression 2 days after CCl4 administration. Expression of OPN 

was highest in Kupffer cells, macrophages and hepatic stellate cells, suggesting that 

OPN is expressed in the macrophages and related cells at the site of hepatic injury and 

that the protein contributes to the host response to infection or injury. Since OPN 

stimulated cell migration, it may act as a chemotactic factor in the recruitment of 

macrophages to sites of liver injury (Kawashima et al., 1999). 

Mechanisms for OPN transcriptional gene activation 

Despite the many recognized functions of OPN, the mechanism by which OPN 

gene is up regulated in inflammation and other diseases in not well understood. This 

protein is known to be regulated by a variety of hormones (estrogen, progesterone, 

Vitamin D3), cytokines and growth factors (Noda et al., 1988; Craig and Denhardt, 

1991; Prince and Butler, 1997). Several inflammatory mediators and growth factors like 

interlukin-1 (IL-1), tumor necrosis factor alpha (TNF-α) and platelet growth factor 

(PDGF) are also known to stimulate OPN transcription via activation of protein kinase C 

(Denhardt and Noda, 1998).  Increased OPN expression at sites of infection have also 

been reported to be due to release of PDGF and IL-1, that activates transcription factors 

like Fos and Jun, which are capable of up regulating OPN transcription. Studies by 
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Bonnelye et al., (1997), discovered that steroidogenic factor-resposive elements (SFREs) 

in the OPN promoter are targets for the estrogen-related orphan receptor ERR-1 in 

osteoblast cells, where ERR-1 controls ossification.  In addition to this, studies by Guo et 

al., (2001), have shown that OPN transcription and promoter activity are significantly up 

regulated in response to NO in  a system of endotoxin –stimulated murine macrophages, 

where OPN functions as a negative feedback regulatory system to down-regulate NO 

synthesis.  Further, in the same model of RAW 264.7 murine macrophages and COS-1 

cells, a transcriptional regulatory mechanism involving members of heterogenous 

nuclear ribonucleoproteins have been shown to be involved in expression of OPN (Gao 

et al., 2005). The heterogenous nuclear ribonucleoproteins (hnRNP) A/B and U, 

functions as antagonistic transcription factors for OPN expression in LPS-stimulated NO 

synthesis. In the presence of NO, hnRNP-A/B dissociated from the OPN promoter site 

with subsequent depression of OPN promoter activity, followed by binding of hnRNP-U 

to the same site to further augment the promoter activation. 

In addition to this, transcription of OPN gene is regulated by the transactivation of cis-

acting elements in the OPN gene promoter, like Activated protein-1 (AP-1), estrogen 

receptors (ERs) and estrogen, Vitamin D receptor (VDR) and Upstream stimulatory 

factor (USF).  

Activated protein-1 (AP-1) is a dimeric complex that contains a heterogeneous 

combination of proteins from the JUN, FOS activating transcription factor families 

(Eferl et al., 2003). Recently, an AP-1 cis-regulating site was characterized at -76 on the 

rat OPN promoter (El-Tanani et al., 2004). Studies by Das et al., (2004), reported that 
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OPN stimulates AP-1 transcriptional activity through phosphorylation of EGFR by 

inducing c-Src kinase activity in breast cancer cells. OPN stimulates c-Fos expression, 

AP-1-DNA binding and AP-1 transactivation through the αvβ3 integrin/c-Src/ERK 

pathway. Thus AP-1 not only stimulates synthesis of OPN, but also stimulates its own 

synthesis in a positive feed back loop.  

OPN expression has also been reported to be enhanced by estrogen (El-Tanani et 

al., 2001), and this function is postulated to be mediated by ERα and ERRα. Although 

an estrogen–response element is not present in the OPN promoter, there are seven 

steroid factor-response element (SFRE)-like sequences in this region (El-Tanani et al., 

2001), that have been shown to bind ERα and ERRα, and transactivate the OPN gene. 

Vitamin D receptor (VDR) a phosphoprotein member of the nuclear receptor 

superfamily of ligand- dependent transcription factors is known to induce OPN gene 

expression by binding to Vitamin D-responsive elements (VDREs). Studies by 

Chatterjee (2001), has shown that 1,25-dihydroxyvitamin D3 can  regulate OPN not only 

at the transcriptional level by VDR, but also modulate OPN’s phosphorylation state 

independent of VDR.  

Upstream stimulatory factor (USF), a basic helix-loop-helix-containing 

transcription factor has been shown to target a CCTCATGAC sequence in the mouse 

OPN promoter (-80 to -72nt) in rat aortic vascular smooth muscle cells (Bidder et al., 

2002). It has been shown that USF-1 binds to a consensus E-box-response element 

(CAGGTG, -101 to -96nt) in the OPN promoter (Malyankar et al., 1999). 
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Objective of the study 

The overall objective of this study was to understand the mechanism behind 

increased susceptibility of females to alcoholic liver disease (ALD). We hypothesize that 

increased hepatobiliary osteopontin (OPN) expression is the likely reason for higher 

neutrophilic infiltration and liver injury in female alcoholics. We anticipate increased 

hepatobiliary OPN secretion in females causes higher neutrophils to emigrate into 

hepatic parenchyma. Furthermore, it is expected that OPN mediates hepatic neutrophil 

infiltration via multi-integrin signaling. Understanding the role of induced OPN in the 

female alcoholic liver disease model to recruit neutrophils may contribute to the 

development of novel therapeutic strategies for treating human alcoholic liver disease 

patients.  
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CHAPTER II 
 

MATERIALS AND METHODS* 

 
 

Chemicals 

All chemicals were obtained from Sigma Chemical Co. (St. Louis, MO) unless 

otherwise mentioned and were of the highest analytical grade. Glycine, 30% 

acrylamide:bis acrylamide solution, tris, tween-20, sodium dodecyl sulfate, laemelli 

buffer, β-mercaptoethanol and other materials related to Western blotting such as filter 

paper, nitrocellulose membranes were obtained from BioRad (Hercules, CA). The 

antibodies and primers used in this study and their vendors have been mentioned in the 

tables on p.41 and p.45. All the chemicals used for RT-PCR were obtained from Ambion 

(Austin, TX), and the primers used were obtained from IDT-DNA (Coralville, IA).  

Animals and treatment 

A model of alcoholic steatosis and steatohepatitis was developed based on previous 

reports (Enomoto et al., 1999; Deaciuc et al., 2002; Apte et al., 2005). Male and female 

Sprague-Dawley (SD) rats (220-250gms, purchased from Harlan, Houston, TX, US) and 

C57BL6 mice (19-22gms, Jackson laboratories, Barharbour, Maine, USA) were housed 

individually in cages in a temperature controlled animal facility with a 12hr light-dark 

cycle. The animals were utilized after 1-week equilibration period.  
                                                 
* Reprinted with permission from “Higher neutrophil infiltration mediated by osteopontin as a likely 
contributing factor to the increased susceptibility of females to alcoholic liver disease” by Banerjee et al., 
2006, Journal of Pathology, 208: 473-485, © 2006 by Wiley Interscience. 
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Development of the alcoholic steatohepatitis (ASH) model  

Weight matched male and female SD rats (n=32 each) and C57BL6 mice (n=20 

each) were fed EtOH containing Lieber DeCarli liquid diet (Bio-Serv, Frenchtown, NJ, 

#F1697SP) for 6 weeks. An additional control group with isocaloric maltose-dextrin diet 

was also employed. Animals were first acclimatized to the EtOH diet for a period of 1 

week. Since mice are more sensitive to alcohol diet as compared to rats, different 

methods of acclimatization was followed. In case of the rats, for the first day they 

received plain liquid diet, after which the rats in the EtOH-treated group received liquid 

diet containing 2% and 4% (w/v) of EtOH, for 2 days each. The 4% alcohol diet was 

then continued further for 6 weeks. However in case of the mice, they received plain 

liquid diet for the first 2 days, after which they were fed 1%, 2% and 3% diet for 3 days 

each. The 3% diet was then continued further for 6 weeks. The energy distribution of the 

control and the EtOH Liber DeCarli diet is given in Table 3.  

 
 
 

Table 3  
Energy distribution of Lieber De Carli diet (Control and EtOH). *Fat consisted of a mixture of olive 
oil, corn oil and sunflower oil. 
 

 Control Diet EtOH Diet 

Protein 18% 18% 

Fat* 35% 35% 

Carbohydrate 47% 11.5% 

EtOH - 35.5% 
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Table 4 
Ingredients for making Lieber DeCarli liquid diets (control and ethanol). *Bio-Serv, Frenchtown, 
NJ 
 

 Ingredients 

Control diet 1 bag diet* + 3560ml water + 360gms maltose dextrin 

Experimental diet 1 bag diet* + 3560ml water + 268ml of 95% Ethanol 

 
 
 
The liquid diet was prepared according to the manufacturer’s protocol (Table 4). The 

food consumption was recorded daily for all the animals in both the groups. Calories 

consumed by each rat were measured daily. The control animals were pair-fed based on 

the food consumption of the EtOH-fed group. 

After 6 weeks, the male and the female rats in the control and EtOH group were 

further divided into four groups, control, control+LPS, EtOH, EtOH+LPS. At the end of 

six weeks, rats form the control+LPS and EtOH+LPS groups were injected with a single 

injection of LPS or Lipopolysaccharise (Escherchia coli 0111:B4, 10mg/kg i.p in saline 

in rats, Sigma, St. Louis, MO). The animals in the control and EtOH group were injected 

with an equal volume of saline injection. The animals were then sacrificed 2 and 12 hrs 

after the LPS or saline injection by CO2 asphyxiation. However, since mice are more 

sensitive, EtOH feeding alone for 6 weeks caused alcoholic steatohepatitis, and so mice 

were further not injected with LPS. All animals were provided humane care in 

compliance with the institutional guidelines (ULAAC; University Laboratory Animal 

Care Committee) of Texas A&M University. 
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Surgical technique- ovariectomy  

 Female Sprague-Dawley rats were anesthetized with ketamine (87mg/kg body 

weight) and xylazine (13mg/kg body weight) and bilateral ovariectomies were 

performed using a dorsal midline incision inferior to the palpated rib cage and kidneys 

(Jezerski and Sohrabji, 2000), and ovaries and surrounding tissues were removed. In 

some of the animals, a 60-day time release 17-β estradiol pellets (0.18, 0.36, 0.72 and 

1.7mg, Innovative Research, FL) were inserted subcutaneously prior to closing the 

incision.  

Assessment of estrous cycle  

 The estrous cycle patterns of animals were determined before and after feeding 

of EtOH, by daily observation of vaginal smears. Briefly, vaginal samples were taken in 

the morning, in between 9.00 to 11.00am, using a small wet cotton swab. The vaginal 

samples were then smeared on a glass slide and stained with Diff-Quik stain. The 

different stages of the estrous cycle were determined by microscopic visualization of the 

vaginal cell types as follows: (a) Proestrus: marked by the presence of clusters of round 

nucleated epithelial cells. (b) Estrus: keratinized cornified cells. (c) Metestrus: presence 

of non-cornified epithelial cells with a few leukocytes. (d) Diestrus: Predominance of 

leukocytes and few round epithelial cells (Long and Evans, 1922; Goldman et al., 2007). 

Sample collection and processing 

 Blood was collected in heparinized tubes, from the dorsal aorta. Twenty micro 

liters of this blood was separated in gas chromatography vials (VWR, Bristol, CT) and 

submitted for estimation of blood alcohol content (BAC; Department of Human 
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Anatomy and Medical Neurobiology at the Texas A&M Health Sciences Center, College 

Station, TX). Liver transaminase activities were estimated from a fraction of heparinized 

plasma (about 0.5ml), and the remaining plasma was snap frozen in liquid N2 and stored 

at –80°C. Livers were harvested, weighed and divided into two parts. Slices of the large 

and median lobes were fixed in 10% neutral buffered formalin, while remaining liver 

tissue was snap frozen in liquid N2 and stored at –70°C for further analysis.  

Evaluation of the liver injury 

 Liver injury was estimated by plasma transaminase activities (alanine 

aminotransferase; ALT and aspartate aminotransferase; AST) and corroborated by 

histopathology of H&E-stained liver sections. Plasma ALT and AST activities were 

analyzed on Vitros Chemistry Analyzer (Ortho-Clinical Diagnostics, Raritian, NJ). For 

histopathology, 4µM-thick paraffin-embedded liver sections were cut and stained with 

H&E for bright –field microscopy. Liver sections were evaluated for steatosis, hepatic 

cellular infiltration, oncotic necrosis and apoptosis. Hepatic steatosis was scored using a 

system developed for the intragastric infusion model of ALD (Nanji et al., 1989) as 

follows: steatosis (the percentage of hepatocytes containing fat) <25%, 1+; <50%, 2+; 

<75%, 3+; >75%, 4+.  

 Assessment of steatohepatitis 

 Histochemical detection of neutrophils was performed on paraffin-embedded 

liver sections. The H&E staining was employed to identify the neutrophils based on the 

segmented morphology of the nucleus followed by quantification with Napththol AS-D 

Chloroacetate Esterase Staining (Sigma Diagnostics, St. Louis, MO, USA). 
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Assay reagents and working standards provided in the kit were prepared 

according to the manufacturer’s protocol. Briefly, deparaffinized slides were incubated 

in the substrate solution (40ml warm distilled water, 1ml sodium nitrate, 1ml fast blue 

violet LB, 5ml of trizma 6.3 buffer concentrate, 1ml naphthol AS-D) for 30mins in a 

37°C water bath. The slides were kept in dark during the incubation period, after which, 

they were washed in distilled water and counterstained with hematoxylin for 45secs, 

followed by rinsing in tap water for 4 times. The slides were then dipped 3 times in 70%, 

100% alcohol and xylene. The dehydrated sections were then mounted in cytoseal and 

examined.  

To quantitate the degree of neutrophilic inflammation (inflammation score), the 

number of neutrophils per five high power fields (40X) was counted. The neutrophilic 

foci (defined as an aggregate of ≥ 4 neutrophils) were quantitated per five-40X field.   

Estimation of plasma levels of endotoxin, GRO/CINC-1, and IL-6 by ELISA 

 Endotoxin, GRO/CINC-1 and IL-6 levels were estimated in the plasma of 

Control, EtOH, Control+LPS and EtOH+LPS treated groups both in male and female 

rats, using rat specific Endotoxin (BioWhitakar, Walkersville, MD, USA), GRO/CINC-1 

(Assay designs, Ann Arbor, MI, USA) and IL-6 kit (R&D Systems, Minneapolis, MN, 

USA) according to the manufactures protocol as described below. Plasma was collected 

from the rats as mentioned in the sample collection and processing section.  

Endotoxin assay 

Plasma endotoxin levels were measured using Limulus Amebocyte Lysate (LAL) 

Endpoint Assay Kit (BioWhitakar, Walkersville, MD, USA). Pyrogen-free procedures 



 

 

37

were employed throughout the assay. All plasma samples were brought to room 

temperature prior to the assay. The plasma samples were diluted in the ratio of 1:10 with 

LAL reagent water and heated in a 70°C water bath for 5 mins. A pyrogen-free 96 well 

plate was preheated at 37°C in which the standards and plasma samples were incubated 

with LAL for 10mins, followed by substrate solution for 6 mins. The reaction was 

stopped by adding 25% acetic acid solution. The absorbance was read at 410nm using a 

microplate reader (Benchmark Plus, Bio-Rad, Hercules, CA), preheated at 37°C.  

GRO-CINC-1 Elisa 

Assay reagents and working standards provided in the kit were prepared according to 

the manufacturer’s protocol. Briefly, to each well of the 96 well plate (GRO-CINC-1 

immobilized in a microtiter plate), 100µl of standard or plasma was added, and the plate 

was covered with an adhesive strip and incubated at 37°C for 1 hour. After incubation, 

the wells were washed with 400µl of wash solution for 10 times, and 100µl of labeled 

antibody was added to each well. The plate was then again covered with an adhesive 

strip and incubated at 37°C for 30mins. After incubation, the wells were washed with 

400µl of wash solution for 12 times, and 100µl of substrate solution was added to each 

well, and incubated for 30mins at room temperature in dark. 100µl of stop solution was 

added to each well, and the optical density was determined at 450nm in a microplate 

reader (Benchmark Plus, Bio-Rad, Hercules, CA) and the concentration of GRO-CINC-1 

was read using the standard graph generated from the known concentration of GRO-

CINC-1. 
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IL-6 Elisa  

Assay reagents and working standards provided in the kit were prepared according to 

the manufacturer’s protocol. Briefly, 50 µl of standards and plasma were added to each 

well of the 96 well plate previously coated with anti-IL-6 capture antibody. The plate 

was then covered by an adhesive strip and incubated for 2 hrs at room temperature. After 

incubation, the strip was removed, contents of the plate was aspirated and washed thrice 

with wash buffer. To each well 100µl of Streptavidin-HRP conjugate was added, and 

incubated for another 2 hrs at room temperature. After incubation, the strip was 

removed, and the contents of the plate was aspirated and washed thrice with wash buffer. 

To each well 100µl of substrate solution was then added and again incubated for 30mins 

at room temperature in dark. 100µl of stop solution was then added to each well, and the 

optical density was determined at 450nm on microplate reader (Benchmark Plus, Bio-

Rad, Hercules, CA) and the concentration of IL-6 (pg/ml of plasma) was determined 

based on the standard graph generated from the known concentrations of recombinant 

IL-6. 

Para-nitrophenol hydroxylase assay 

 Hydroxylation of p-nitrophenol (pNP) to p-nitrocatechol by microsomal CYP2E1 

was used as a marker to CYP2E1 enzyme activity in the pNP assay. 0.5mg of 

microsomal protein was used to measure CYP2E1 activity. Briefly, the samples were 

incubated with pNP, pNP assay buffer (100mM Kpi, 0.1mM EDTA, 1mM Ascorbic 

acid, pH 6.8) and NADPH in a water bath for 30mins. Perchloric acid (0.5ml of 0.5M) 

was added to each tube to stop the reaction. This mixture was incubated at room 
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temperature for 1hr, followed by centrifugation to precipitate the proteins. 100µl of the 

supernatant collected was pipetted in a 96-well plate followed by the addition of 14µl of 

NaOH. The optical density was determined at 546nm on a microplate reader 

(Benchmark Plus, Bio-Rad, Hercules, CA), and the activity of CYP2E1 was determined 

using the following formula:  

                               A.U. × 10,493.18 = ……… pmol/mg/min. 

     Where A.U.= (OD of the sample- OD of the negative control of the same sample).  

Western blot analysis 

Preparation of microsomes  

100mg of frozen liver sections were homogenized (1:5w/v) in a buffer containing 

ice-cold Tris-acetate (pH 7.4) and 1.15% KCl. The homogenate was centrifuged at 

10,000g for 30mins at 4°C. The supernatant was collected and further centrifuged at 

100,000g for 60mins at 4°C. The microsomal pellets recovered were suspended in assay 

buffer (100mM KPi, 0.1mM EDTA, 1mM Ascorbic acid, pH 6.8), manually 

homogenized, quick-frozen and stored at -70°C. Protein concentration was estimated 

using a Bio-Rad protein assay kit (Bio-Rad, Hercules, CA). 

Preparation of the tissue lysates 

The liver samples were pulverized under liquid nitrogen, and transferred to 

centrifuge tubes. To 100 mg of this pulverized tissue, 5volumes of 1X homogenization 

buffer (1% Triton-X-100, 150mM NaCl, 10mM Tris (pH 7.4), 1mM EDTA, 1mM 

EGTA, 2mM NaVanadate, 0.2mM Phenylmethylsulfonylfluoride (PMSF), 1mM 

HEPES, 1µg/ml Leupeptin, 1µg/m Aprotinin) was added. The mixture was then 
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homogenized for 30-45 secs at 4°C in a Ultra-Turrax 25 homogenizer (IKA, 

Wilmington, NC), and the tissue lysate obtained was used for protein estimation. The 

protein concentration was estimated using a Bio-Rad protein assay kit (Bio-Rad, 

Hercules, CA).  

Western blot procedures 

The protein samples were solubilized in the reduced sample buffer (950µl of 

Laemelli Buffer, 50µl of Mercaptoethanol, Biorad-Hercules, CA), and were incubated at 

100°C for 2 mins. Equal amount (50µg of protein) was loaded per lane (first lane used 

for dual colored molecular marker), and separated on 12% SDS-PAGE at 120 V for 1-

1.5 hrs in 1x running buffer [25 mmol/L Tris-base, 192 mmol/L glycine, and 0.1% SDS 

(pH 8.3)], and transferred to nitrocellulose membrane (0.2µm, BioRad, Hercules, CA), 

350 V for 1hr 20min at 4°C in 1x transfer buffer (48 mmol/L Tris-HCl, 39 mmol/L 

glycine, 0.025% SDS and methanol). The nitrocellulose membrane was blocked in TBS-

Tween with 6% non-fat dry milk with gentle shaking for 3hrs (room temperature) 

followed by incubation overnight (4°C) in primary antibody (dissolved in TBS-Tween 

with 2% non- fat dry milk). (The list of primary and secondary antibodies used for 

Western blotting including the concentrations and time of incubation is provided in 

Table 5).After incubation with the primary antibody, the membranes were washed in 

TBS-T 3X 10 mins each at room temperature, and then incubated for 1hr with respective 

secondary antibodies (1:10,000 dissolved in TBS-T with 2% non-fat dry milk). The list 

of respective secondary antibodies used for different proteins is also given in Table 5.  
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Table 5 
 List of primary and secondary antibodies employed for Western blot. 
 
Western blot 

of 
Primary antibody 

(vendor) 
Concentration 

of primary 
antibody  

Secondary antibody 
(vendor) 

Comments 

CYP2E1 Goat polyclonal 
(458511, Gentest, 
Woburn, MA) 

1:1000 HRP-linked anti-goat 
(Sigma, St. Louis, MO) 

10% gel  

OPN Rabbit Polyclonal (ab 
8448, Abcam, 
Cambridge, MA) 

1:1000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

12% gel  

OPN  
(mouse 
specific) 

Mouse monoclonal 
(sc 21742, Santa 
Cruz Biotechnology, 
Santa Cruz, CA) 

1:1000 HRP-linked anti mouse 
(Santa Cruz 
Biotechnology, Santa 
Cruz, CA)  

12% gel  

OPN  
(N-terminal) 

Mouse monoclonal  
(Gifted by Dr. David 
Denhardt, Rutgers 
University) 

1 µg/ml HRP-linked anti mouse 
(Santa Cruz 
Biotechnology, Santa 
Cruz, CA)  

12% gel  

Alpha 4 
intergin 

Rabbit Polyclonal 
(AB 1924, Chemicon 
Int., Temecula, CA) 

1:2000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

8% gel used for SDS-
PAGE, non-reduced 
sample buffer used for 
protein Solubilization 

Alpha 9 
integrin 

Rabbit Polyclonal  
(Gifted by Dr.Dean 
Shephard, University 
of California) 

1:1000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

8% gel used for SDS-
PAGE, non-reduced 
sample buffer used for 
protein Solubilization 

Beta 1 
integrin 

Rabbit Polyclonal 
(AB 1952, Chemicon 
Int., Temecula, CA) 

1:2000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

8% gel used for SDS-
PAGE, non-reduced 
sample buffer used for 
protein Solubilization 

Ferritin H Rabbit Polyclonal (ab 
16875, Abcam, 
Cambridge, MA) 

1:1000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

12% gel  

HSP 60 Rabbit Polyclonal (ab 
53109, Abcam, 
Cambridge, MA) 

1:1000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

12% gel  

ER 60 Rabbit Polyclonal  
(Gifted by Dr.Reiko 
Urade, Kyoto 
University, Japan)  

1:1000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

12% gel  

PrX 6 Rabbit Polyclonal  
(Gifted by Dr.Aaron 
Fisher, University of 
Pennsylvania)  

1:2000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

15% gel  

GAPDH Rabbit polyclonal  
(sc 20357, Santa 
Cruz Biotechnology, 
Santa Cruz, CA) 

1:1000 HRP-linked anti-rabbit 
(Sigma, St. Louis, MO) 

12% gel  
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After incubation with the secondary antibody, the membranes were washed again in 

TBS-T, 3X 15 mins each at room temperature. Protein visualization was done using 

Pierce SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL). The 

membranes were incubated with equal volume of Part A and B of the chemiluminescent 

substrate for about 2mins, and then exposed to films in a photographic dark room. The 

films were developed on Konica machine. (Konica Medical Imaging,Wayne, NJ). The 

densitometric analysis was performed using Image J software (NIH). 

Immunohistochemical analysis of OPN in the liver 

 Hepatic OPN expression was studied by immunohistochemical analysis 

conducted on 4µm thick formalin fixed, paraffin embedded liver sections. 

Deparaffinized slides were quenched in 30% hydrogen peroxide for 10mins in order to 

quench endogenous peroxidase, and then rinsed in distilled water 3X for 2 mins each, 

followed by antigen retrieval using citrate buffer (10mM sodium citrate solution), after 

which the slides were immersed in PBS. Henceforth all the steps were performed in a 

humidity chamber. 

The samples were blocked by using horse serum in the ratio of 1:10 for about 1hr 

30mins, followed by overnight incubation with primary antibody (01-20002, mouse 

monoclonal, American Research Products, dilution 1:200). The slides were then rinsed 

with PBS and incubated with secondary antibody (biotinylated rat adsorbed anti mouse 

antibody, Vector Laboratories, Burligame, CA) for 30mins in the ratio of 1:500 followed 

by streptavidin (Vectastain Elite ABC Kit, Vector Laboratories, Burligame, CA) for 30 

mins. After incubation with the secondary antibody, the slides were again washed with 
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PBS and exposed to chromogen (Diaminobenzidine reagent, Vector Laboratories, 

Burligame, CA) for about 1-2mins. This reaction converts the DAB to an insoluble 

brown product, thus allowing for the visualization of the primary antibody antigen 

complex. The sections were counterstained with Gill’s hematoxylin. OPN expression 

was identified by the brown-colored cytoplasmic staining.  

Immunohistochemical analysis of Ferritin Heavy chain (Ferritin H) in the liver 

 Hepatic Ferritin H chain expression was studied by immunohistochemical 

analysis conducted on 4µM thick paraffin-embedded liver sections. Briefly, 

deparaffinized unstained liver sections were treated with 3% solution of H2O2 in order to 

quench the endogenous peroxidase activity. Sections were then incubated with 10% 

horse serum in PBS to block nonspecific binding sites. A Rabbit polyclonal Ferritin H 

antibody (ab 16875, Abcam Inc, Cambridge, MA) was employed as a primary antibody. 

Sections were then treated with a biotinylated anti-rabbit secondary antibody followed 

by streptavidin (Vector Laboratories, Burligame, CA). The color was developed by 

exposing the peroxidase to diaminobenzidine reagent (Vector Laboratories, Burligame, 

CA), which forms the brown reaction product. The sections were counterstained with 

Gill’s hematoxylin. Ferritin H chain expression was identified by the brown-colored 

cytoplasmic staining.  

Assessment of mRNA from liver samples 

RNA extraction 

RNA was extracted from rat liver and biliary epithelial cells using RNeasy 

midikit (Qiagen, Valencia, CA), according to the manufacture’s protocol. All the 
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apparatus used were washed using RNase ZAP (Ambion, Foster city, CA) to ensure 

removal of RNase contamination. Briefly, samples were (frozen liver samples were 

ground in sterilized mortal-pestle) homogenized in 4ml of mixture of RLT +β-

Mercaptoethanol buffer (10µl of β-Mercaptoethanol/ 1ml of RLT buffer) and the lysates 

were then centrifuged for 10mins at 3000-5000 x g at 4°C. The supernatent obtained was 

mixed with an equal volume of 70% EtOH and transferred to RNeasy column, and 

centrifuged at 3000-5000 x g for 5 mins 4°C. The column was thereby washed with 

RW1, and RPE buffer, and the RNA was eluted with 150µl of RNase-free water. The 

samples were stored at 20°C till further use. 

Determination of purity and total RNA yield 

 To determine the concentration of RNA, 1µl of the sample was diluted with 

199µl of DEPC-treated water (200-fold dilution). The absorbance of each sample was 

read at 260nm using DEPC water as reference.  

The concentration of RNA was determined by using following formula. 

[RNA] = (A260)(40 µg/ml)D 

where: [RNA]= total RNA concentration, A260 = absorption at 260nm, 40 = factor for 

RNA concentration, and, D = dilution factor. 

Real Time RT-PCR 

After extraction of the total RNA, Real Time PCR was carried out using the 

SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA) and Titanium 

One-Step RT-PCR kit (BD Biosciences Clontech, Palo Alto, CA). The reaction mixture 

was prepared by combining the SYBR Green Master mix, RNase inhibitor, Reverse 
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transcriptase, specific forward and reverse primer, and Nuclease free water (Table 6), in 

a MicroAmp Optical 96-Well Plates (Applied Biosystems, Foster City, CA).  

 
 
 
Table 6 
 The volume and concentrations of individual components used for 1 step real time PCR. 
 

Components Volume 
(µl) 

Final 
concentration 

2X SYBR Green 
OCR Master Mix 

6.25 1X 

RNase inhibitor 0.5  

Reverse transcriptase 0.125  

Forward Primer 0.375 1µM 

Reverse Primer 0.375 1µM 

Template  X 100ng 

Nuclease free water Y - 

Final reaction volume 25  

 
 
 
Table 7 
List of primers used for RT-PCR. 
 
Name of the 

gene 
Forward primer Reverse primer 

OPN  

(rat specific) 

CCT CCC GCA TGA AGA G TCA GAC GCT GGG CAA CTG 

OPN  

(mouse specific) 

TGC ACC CAG ATC CTA TAG CC CTC CAT CGT CAT CAT CAT CG 

α -4 integrin TGA CCT CGT CTT ACG CTG TG CTG ACC AGA GTT CAG GA 

α -9 integrin GGA GAC TCA GCA GGA ACT GG GGT GTC TGG GAT GAG ATG CT 

β -1 integrin GGA GTC AAT GGG ACA GGA GA TGC CAT GGC TTT GAC AAT TA 

β-actin CCG TGA AAA GAT GAC CCA GAT C CAC AGC CTG GAT GGC TAC GT 
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The software Primer Express (Applied Biosystems, Foster City, CA) was used to 

design the primers. The primers (Table 7) were commercially obtained from Integrated 

DNA Technologies, Inc. (Coralville, IA). One step Real-time PCR was conducted in a 

Gene Amp 5700 Sequence Detection system (Applied Biosystems) using a total volume 

of 25µl containing 100ng of the RNA. The optimal assay conditions were: initial 

activation of AmpliTaq Gold at 95°C for 10min, followed by 40 cycles of denaturation 

at 95°C for 15secs and annealing and extension at 60°C for 1min. To control for DNA 

contamination of the RNA extracts, a no-RT reaction was run for each extract. 

Expression of the OPN gene relative to the housekeeping gene (beta-actin) was 

determined by ∆ CT= CT (OPN) – CT (Beta-actin), and the Fold Expression was determined 

to be (2)∆ CT, where the threshold cycle (CT) is defined as the cycle at which the 

fluorescence was significantly higher than the average standard deviation of the earlier 

cycles and the sequence detection application began to detect the increase in signal 

associated with an exponential growth of the PCR product (Khare et al., 2004). 

In-situ hybridization analysis 

 Osteopontin mRNA expression in liver sections were localized by in-situ 

hybridization as previously described by Johnson et al., 1999. Briefly, liver sections 

were deparafinized in xylene and rehydrated to water through graded series of alcohol. 

The tissue sections were then fixed in 4% paraformaldehyde in PBS and then digested 

with proteinase K (20µg/ml) in a PK digestion buffer (50mM Tris, 5mM EDTA, pH: 8) 

for 8 mins at 37°C. The sections were then refixed for 5 mins in 4% paraformaldehyde , 

rinsed 2X for 5 mins each in PBS, and dehydrated through a series of alcohol and dried 
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at room temperature for 30mins. The refixed sections were then hybridized with 

radiolabelled antisense or sense Porcine OPN cRNA probes generated by in vitro 

transcription with [α-35S], Uridine tri-phosphate (PerkinElmer Life Sciences, Wellesley, 

MA). The radiolabelled cRNA probes (5x106 cpm/slide) were denatured in 75µl 

hybridization buffer [50% formamide, 0.3M NaCl, 20mM Tris-HCl (pH 8), 5mM EDTA 

(pH 8), single strength Denhardt’s solution, 10% dextran sulfate, 0.5mg/ml yeast RNA, 

100mM dithiothreitol (DTT)] at 70°C for 10mins. The slides were coversliped with the 

hybridization solution, and incubated in a humidified chamber containing 50% 

formamide/5-strength SSC (single-strength SSC is 0.15Msodium chloride, 0.015M 

sodium citrate) overnight at 55°C. The following day, the coverslips were floated off the 

slides by placement in 5-strenght SSC/10mM β-Mercaptoethanol for 30mins at 55°C. 

The sections were then washed in (a) 50% formamide, double-strength SSC, and 50mM 

β-Mercaptoethanol for 20mins at 65°C. (b) single-strength TEN [0.05M NaCl, 10mM 

Tris (pH 8), 5M EDTA] for 10mins at room temperature, (c) 3X single-strength TEN for 

10mins at 37°C, and then digested with DNase free RNase (10µg/ml) in single-strength 

TEN for 30mins at 37°C, to remove any nonspecifically bound probe and washed as 

follows (a) single-strength TEN for 10mins at 37°C (b) 50% formamide, double-strength 

SSC, 50mM β-Mercaptoethanol for 20mins at 65°C (c) double-strength SSC for 15mins 

at room temperature (d) 0.1 strength SSC for 12 mins at room temperature, (e) 70% ethyl 

alcohol, ethyl hydroxide containing ammonium acetate for 1 min at room temperature (f) 
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95% EtOH containing 0.03M ammonium acetate for 1 min at room temperature (g) 2X 

in 100% EtOH and (h) 3X in single-strength TEN for 10mins at 37°C. 

Liquid film emulsion autoradiography was performed using Kodak NTB-2 liquid 

photographic emulsion. The slides were stored at 4°C for 5 days, developed in Kodak d-

19 developer, counterstained with Harris’ modified Hematoxylin in acetic acid (Fisher, 

farilawn, NJ), dehydrated through a graded series of alcohol to xylene, coversliped and 

evaluated by both brightfield and darkfield microscopy with a Zeiss Photomicroscope III 

(carl Zeiss Inc., Thornwood, NY). 

Analysis of neutrophil activation by OPN in vitro using FACS Calibur flow 

cytometer 

A FACS Calibur flow cytometer was employed to assess OPN-mediated 

neutrophil activation in vitro. Freshly drawn heparinized blood was divided into 250µl 

aliquots in separate glass tubes and was kept on ice unless otherwise stated. Duplicate 

tubes of blood were designated to control and experimental groups. Blood from each of 

these groups were incubated with saline, recombinant OPN (rOPN, AF808, R&D 

Systems, Minneapolis, MN, USA), and cOPN (rOPN incubated with thrombin for 

30mins in a 37°C waterbath), and stained with fluorescein-conjugated HIS 48 (BD 

Biosciences, San Jose, CA, USA) and R-phycoerythrin- conjugated CD11b (Serotec Inc, 

Raleigh, NC, USA). Up regulation of CD-11 b indicates activation of neutrophils in the 

liver (Lawson et al., 1998). Following incubation, the neutrophils were treated with RBS 

lysis buffer and resuspended in 300µl PBS. The cells were then analyzed on a FACS 

Calibur (Becton Dickinson Immunocytometry Systems, San Jose, CA) flow cytometer. 
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Data analysis including spectral compensation was performed using FlowJo (Treestar, 

Inc, Ashland, OR, USA). A neutrophil gate was established based on side scatter and 

positive HIS48 staining, and the median fluorescence channel was determined for 

CD11b staining. 

OPN-mediated neutrophil chemotactic response in an experimental rat peritoneal 

model 

Sprague-Dawley (SD) rats (220-250g), purchased from Harlan, Houston, TX, 

USA, were housed individually in cages in a temperature controlled animal facility with 

a 12hr light-dark cycle. Rats were utilized after a 1-week equilibration period. Male and 

female rats were divided into control, zymosan, OPN and cleaved OPN (cOPN) (n=4 in 

each group) treated groups. All animals were injected intraperitoneally in this 

experiment. The treatment and doses for the animals are listed in Table 8.All solutions 

used in this experiment were irradiated under UV to ensure sterility. The rats were 

sacrificed at 4-hrs post-treatment. After sacrifice, the rats were injected with 5ml of ice-

cold sterile PBS containing 20U/ml of heparin. The abdomen was massaged for 2mins 

and then via midline incision, free fluid was recovered from the peritoneal cavity. This 

fluid was centrifuged at 1000g for 5mins at 4°C to separate fluid and cellular 

components. Supernatants were removed and evaluated for the number of leukocytes 

using a Abbott Cell-dyn 3700 hematology analyzer (Abbott Labs, Abbott Park, IL) and 

confirmed by Beckman T543 cell counter (Beckman Coulter Inc., Brea, CA). Cytospins 

of the  peritoneal  cell  were  prepared  by  centrifugation  at  500g  for  5mins  and these  

 



 

 

50

Table 8 
Treatment and doses employed in an in vivo rat peritonitis model. 
 

Group Treatment Dose 

Control PBS 200µl 

Positive control Zymosan 5mg in 200µl PBS 

Experimental 1 OPN 100µg of OPN in 200µl of PBS 

Experimental 2 cOPN 100µg of cOPN in 200µl of PBS 

 
 
 
cytospins were stained using Diff-Quik and the differential counts were determined by 

light microscopy. 

Neutralizing OPN antibody experiment  

The ability of OPN to mediate higher hepatic neutrophil chemotactic response 

was tested in the LPS-induced hepatitis model. Weight matched male and female SD rats 

were divided into control (n=6 each) and experimental groups (n=6 each). The control 

male and female group was further divided into PBS (n=3 each) and LPS groups (n=3 

each). LPS alone group resulted in significant hepatic neutrophil infiltration 24 hrs post 

LPS injection (E. Coli 0111:B4, 20 mg/kg, ip in saline). The experimental male and 

female group was also further divided into neutralizing OPN antibody (nOPN, AF808, 

R&D Systems, Minneapolis, MN) alone (n=3 each) and nOPN+LPS (n=3 each) groups. 

The dose of the nOPN antibody (200µg/kg body weight) employed was based on the in 

vitro study (28), and was administered in two doses 6 hrs apart before administration of 

LPS. The rats were sacrificed 24hrs post LPS injection by CO2 asphyxiation and 

neutrophils per ten high power fields were evaluated to test the role of nOPN to inhibit 
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hepatic neutrophil infiltration. In addition, hepatic necrosis was also evaluated on H&E 

stained liver sections in the different treatment groups. 

Immunoprecipitation  

Total liver homogenates were centrifuged for 15 min at 40,000 x g and the 

supernatant was used for the experiment. The supernatant was collected and protein 

concentrations was estimated using a Bio-Rad protein assay kit (Bio-Rad, Hercules, 

CA), by Bradford method. For immunoprecipitation, 1-5mg of protein was incubated 

with 10 µg of OPN antibody (ab 8448, Abcam Inc, Cambridge, MA) overnight with 

rocking at 4°C. The antibody protein mixture was then incubated with 20µl of Protein 

A/G plus beads (Santa Cruz sc-2003) and incubated for 3 hrs with rocking at 4°C, after 

which the beads were pelleted. For washing, the beads were centrifuged at 400xg for 

3mins, supernatant was removed and 1 ml of ice-cold PBS was added and rocked for 

10 mins per wash. The wash was repeated 3X. The bound proteins were then eluted with 

equal volume of sample buffer and resolved on 8% SDS-PAGE. Proteins were 

transferred and blotted for α4, α9, and β1 integrins. 

Expression and purification of recombinant native and mutated N-terminal 

osteopontin fragments  

Recombinant osteopontin fragment constructs, pGEX6P2-hnOPNc-RGD, and 

pGEX6P2-hnOPNc-RAA were a generous gift from Y.Yokosaki, Hiroshima University, 

Hiroshima, Japan (Yokosaki et al., 1999).  Competent DH5α cells were transformed with 

pGEX6P2-hnOPNc-RGD or pGEX6P2-hnOPNc-RAA, and grown on LB plate 

containing ampicillin (100µg/ml).  Individual colonies were inoculated in 150ml 
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LB/Amp (100 µg/ml) liquid media and cultures were grown at 37°C until OD600 

reached 0.3-0.5. Then, isopropyl-1-thio--D-galactopyranoside (IPTG) was added to a 

final concentration of 100µM and cultures were grown for 4-6 hrs.  Cells were collected 

and lysed by French Press Cell Disruptor (Thermo Electron Corp., MA).  Glutathione S-

transferase (GST) fusion proteins were purified from cell lysates with glutathion-agarose 

resin (Clontech, CA), and then cleaved from GST with PreScission protease (Amersham 

Biosciences, NJ) according to the manufacturer’s protocol. Purity of the product was 

confirmed by 12% SDS-polyacrylamide gel electrophoresis followed by Coomasie blue 

staining.   

Neutrophil isolation from blood  

Neutrophils were isolated from fresh rat blood. Briefly, 3.5 ml of heparinized 

blood was layered on 3ml of Mono Poly resolving media (Bio-Med, Solon, OH), and 

centrifuged at 300xg for 30mins at room temperature. The layer below the plasma-media 

interface was collected. The cells were washed 3X and resuspended in PBS. The purity 

of the cells was assessed by microscope, and the viability was assessed by trypan blue 

staining. 

Boyden chamber assay  

In vitro migration assay was performed using a 6-well Transwell tissue culture 

plate (Costar, Corning, NY) with polycarbonate filters (0.8µm). Freshly isolated rat 

neutrophils were incubated at 37°C with different blocking antibodies [anti-β1, α4 and 

M5 (raised against the SLAYGLR sequence of OPN protein)] at a concentration of 100 

µg/ml unless otherwise mentioned. The neutrophils in the control group were incubated 
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with saline. These cells were then placed in the upper chamber of the well, and the lower 

chambers had different concentrations of chemoattractants like OPN, cleaved OPN 

(cOPN), RGD mutated N-terminal of OPN, IL-8 and saline in HBSS (Hyclone, Logan, 

UT ). After incubation at 37°C for 2 hrs, the polycarbonate filters were stained with Diff-

Quik stain, and the cell numbers were quantified under a microscope.  

2-D gel electrophoresis  

Preparation of protein extracts for 2-D gel electrophoresis 

Frozen liver tissue samples (0.1mg) were homogenized using 3ml of 2M-

thiourea/7M-urea buffer (2M thiourea, 7Murea, 4%CHAPS, 50mM DTT, 0.5% 

ampholytes (Bio-RAD, Hercules, CA), and 1 tablet of mini protease inhibitor (total 

volume of 10ml), as previously described before (16,17). Briefly, frozen livers were 

powerdered with liquid nitrogen and homogenized using a Ultra-Turrax 25 homogenizer 

(IKA, Wilmington, NC). Following homogenization, 300µl of 10X nuclease was added 

to the homogenate and vortexed occasionally for 10mins, after which they were 

centrifuged at 13,000xg for 15mins. The resulting supernatant was further used as the 

homogenate. The protein concentration of the homogenates was measured by Bradford 

assay with BSA as the standard (18).  BioRad readyprep 2-D kit (Bio-RAD, Hercules, 

CA) was further used to clean up the homogenate according to the manufactures 

protocol. The protein concentration in the cleaned homogenates was again measured by 

Bradford assay. All samples were stored at -20°C until further use. 
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2-D methodology  

  2-DE was carried out for all male and female treated rats as well as the 

corresponding control groups. To assure 2-DE reproducibility and to prevent variations 

occurring due to the technique, all 2-DE gels were carried out under exactly similar 

conditions with 3 liver samples from each group and 2 experimental replicates. With 3 

control and 3 treated animals in each group, a total of 48 gels were run altogether for the 

entire study (Table 9). 2-D gel electrophoresis was carried out using the Protean IEF cell 

(Bio-RAD, Hercules, CA) and mini electrophoresis system (Bio-Rad, Hercules, CA). 20 

µg of cleaned protein were mixed with rehydration buffer (9.5M urea, 2% CHAPS, 

18mM DTT, 0.5% Ampholytes, 1 tablet of mini protease inhibitor in a total 10ml 

volume and trace amount of Bromophenol blue), and loaded onto first dimension IPG 

strips (Bio-RAD, Hercules, CA; 7cm, pH 4-7). The IPG strips (Bio-RAD, Hercules, CA) 

were rehydrated with the samples overnight. The strips were then focused in a three-step 

procedure for 20,000 Volt-hour (15min at 250V; 2h with voltage ramping linearly to 

4000V; finally to 20,000 V-h), and frozen at -80° C until further use. 

 
 
 
Table 9 
Table showing number of samples and replicate groups used for running 2-D gel electropheresis in 
male and females alcoholic steatosis and steatohepatitis model. 
 

Male Female 
Groups 

Samples Replicates Total Sample Replicates Total 

Control 3 2 6 3 2 6 

EtOH 3 2 6 3 2 6 

Control+LPS 3 2 6 3 2 6 

EtOH+LPS 3 2 6 3 2 6 
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Prior to second dimension SDS-PAGE, the frozen strips were equilibrated for 

15min in DTT buffer (50mM Tris-Hcl, 6M Urea, 30% Glycerol, 2% SDS, 1%DTT, few 

grains of bromophenol blue), followed by another 15min incubation in iodoacetamide 

buffer (50mM Tris-Hcl, 6M Urea, 30% Glycerol, 2% SDS, 2.5% iodoacetamide, few 

grains of bromophenol blue) in a shaker. For 2-D separation, the IPG strips were 

positioned on 10% polyacrylamide gels, and the proteins were separated at 125V, room 

temperature. 

In-gel protein visualization by silver staining 

After SDS-Page, the gels were washed in ultrapure water and fixed in 30% 

ethanol and 10% acetic acid solution for 30mins. Prior to staining, the gels were again 

washed in ethanol and water for 10mins each respectively. Then the gels were sensitized 

2 times for 1 mins each and stained in silver snap stain (Pierce, Rockford, IL) for 

30mins. The gels were developed in the developer working solution till the spots were 

visible, after which, the gels were washed in ultrapure water twice for 1min. The 

reaction was finally stopped using 5% acetic acid for 10mins. To eliminate the concerns 

associated with silver staining, some of the replicate gels were also stained with SYPRO 

Ruby, as per the manufacturer’s protocol (Bio-Rad, Hercules, CA).  

Image analysis  

Digitized images of the silver stained gels were analyzed using the PD quest 

advanced 2-D analysis software (Bio-Rad, Hercules, CA). The image analysis software 

was used for spot detection, quantification and analysis according to the manufacturer’s 

instructions. Briefly, the basic analysis scheme consisted of five steps: detection of spots, 
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identification of landmark proteins, aligning and matching of spots in gels, quantification 

of matches spots and manual inspection of the spots to verify the accuracy of matching. 

Any errors in the spot matching procedure were manually corrected prior to the final 

data analysis. The spot volume was used as the analysis parameter for quantifying 

protein expression.  

Spot excision and in-gel digestion 

After identification of spots of interest, 80µg of protein samples were run on 

17cm IPG strips, and 10% SDS-PAGE, to scale-up and enhance accurate identification 

as described previously in the methodology section. The gels were then stained with 

Commassie blue (Bio-RAD, Hercules, CA), as per the manufacturers protocol and 

excised. Protein spots were excised from Commassie blue stained 2nd dimension gels, 

which were run at the same time as the silver stained gels, using different set of 

apparatus. After running the 7 and 17cms gels, PD quest software was employed to 

match and align the proteins in both the gels. This software was also employed to pick 

the spots that are altered in both males and females. The excised gel plugs were 

approximately 2 mm in diameter and ranged from 0.75 mm to 1.0 mm in thickness.  

Digestion was performed similar to standard protocols (17).  Briefly, the method 

consisted of a series of washing and dehydrating steps using 25-mM ABC (ammonium 

bicarbonate) and ACN (acitonitrile), respectively. The next step was reduction via DTT 

(Di Thiothreitol) at 60˚C for 30 min followed by alkylation with IAA (iodoacetamide) 

for 45 min at room temperature. The gel spots then underwent another series of 

washing/dehydrating steps prior to digestion with trypsin at 37˚C for 4 hrs.  



 

 

57

Preparation for MALDI-MS 

The MALDI matrix consists of 5 mg/ml CHCA (α-cynao-4- hydroxy cinnamic 

acid, a matrix solution) prepared in 50:50 ACN:ddH20 containing 10-mM AP and 0.1 % 

TFA (trifluoroacetic acid). The ProMS (a sample preparation equipment that does both 

desalting and concentration of peptides for MS, Genomic Solutions, Ann Arbor, MI) 

required 10 mL solutions of both 70% ACN and 0.1% FA (formic acid), for cleaning up 

the samples with ziptips. A clean MALDI target was placed on the target holder in a 

certain position. In our case, we employed Applied Biosystems (Foster City, CA) 192 

well MALDI targets with the A1 positioned in the front left hand corner. The robot was 

then setup to process the user-defined samples that correspond to the samples ran on the 

ProGest (Genomic Solutions, Ann Arbor, MI). The ProMS used a procedure similar to 

those used for manual ziptipping. The ProMS method (for automated spotting) used two 

10 µL sample loadings followed by washing steps and elution with the MALDI matrix 

described above. The location of the MALDI spots on the target was chosen prior to 

starting the program. Upon completion of the program the MALDI target was ready for 

MS analysis.  

Protein identification by MALDI-MS and MALDI-MS/MS  

All MALDI-MS experiments were performed using a 4700 Proteomics Analyzer 

(Applied Biosystems, Foster City, CA). The MS data for the MALDI plates were 

acquired using the reflectron detector in positive mode (700-4500 Da, 1900 Da focus 

mass) using 800 laser shots (40 shots per sub-spectrum) with internal calibration. 

Collision induced dissociation tandem MS spectra were acquired using air at the medium 
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pressure setting as the collision gas with 1 kV of collision energy. All MS and MS/MS 

data were searched against the Swiss-Prot protein sequence database using the GPS 

Explorer (Applied Biosystems, Foster City, CA) software.  

Statistics  

Group comparisons were performed using independent t-test. A one-way analysis 

of variance was used to determine statistical significance that might exist between more 

than two distributions or sample groups. Statistical analyses were made using SPSS 10.0 

software (SPSS Inc., Chicago, IL). Statistical significance was set at p < 0.05. 
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CHAPTER III 
 

RESULTS* 

 
 

Rat alcoholic steatohepatitis model 

Male and female rats fed EtOH for 6 weeks had significant fat accumulation in 

the liver. EtOH administered for 6 weeks followed by LPS injection resulted in fat 

accumulation along with multi-focal neutrophilic infiltration and oncotic necrosis (ASH) 

both in the males and the females. The pathology noted in the ASH model was mostly 

similar to that seen in human cases of ASH, with the exception of the Mallory bodies.  

The body weight gain of rats both in the control and the EtOH–fed group were not 

different indicating no nutritional differences between the rats in the ASH and the 

control groups. No significant differences in the body weight between the male and the 

 
 
 

Table 10 
Comparison of the body weight of control and EtOH –fed male and female rats. * weights are 
indicated in grams. 

 
Groups Male* Female* 

Control 302±7 262± 4 

EtOH 294±15 274± 18 

                                                 
* Reprinted with permission from “Higher neutrophil infiltration mediated by osteopontin as a likely 
contributing factor to the increased susceptibility of females to alcoholic liver disease” by Banerjee et al., 
2006, Journal of Pathology, 208: 473-485, © 2006 by Wiley Interscience. 
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female animals in the ASH group were also observed (Table 10). There was also no 

difference in the average blood alcohol content in the male (83.65 ± 16.75mg/dl) and 

female (81.73 ± 11.29mg/dl) EtOH-fed rats 

Liver injury as assessed by serum transaminase levels and hepatic pathology 

Liver injury was assessed by the serum transaminase (ALT and AST) levels. Both 

in the male and the females, no or little increase in transaminase levels was observed 

following EtOH-alone treatment. However, a significant increase in plasma transaminase 

activity was noted in the females in the EtOH-treated rats following LPS challenge (Fig 

8A,B).The female rats had >25-fold higher plasma transaminase activity than males 

indicating extensive hepatocellular injury. The H&E stained liver sections confirmed the 

findings of the plasma transaminase activity, with minimal or no injury in the EtOH-

alone treated group both in the male and females (Fig 9), and extensive multi-focal 

coagulative necrosis with neutrophilic infiltration in the ASH group in females (Fig 9H). 

No distinct lobular pattern of injury was observed in both the sexes. The increase in 

plasma transaminase activity in control rats treated with LPS was minimal and 

histological sections corroborated the transaminase findings. Scoring of H&E-stained 

liver sections from EtOH-alone group suggested extensive steatosis (Fig 9C,D) in both 

male and female rats. However, steatosis in females was about 1.5-fold greater as 

compared to the males (Table 11).  
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EtOH - + - + 
LPS - - + + 

      

EtOH  -  + - + 
LPS  -  -  + + 

 
 
Fig. 8. ALT (A) and AST(B) activities in plasma of male and female rats fed either control or EtOH-
containing Lieber DeCarli diet followed by a single dose of LPS injection * Values significantly 
different from the controls. ! Values significantly different from the male counterparts. Data are 
expressed as mean ± SE, p ≤ 0.05. 
 

 

A
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Fig. 9. Representative photomicrographs of H&E sections of male and female rats fed either control 
or an EtOH-containing Lieber De-Carli liquid diet for 6 weeks. The male and female rats in the 
ASH groups were also fed either control or an EtOH-containing Lieber DeCarli liquid diet for 6 
weeks, followed by a single dose of LPS, and sacrificed 12h post-LPS injection.   
 
 
 

Hepatic neutrophil infiltration 

Neutrophilic infiltration in the male and female rats in the ASH model was 

confirmed by immunohistochemical chloroacetate esterase staining. LPS alone treated 

rats experienced mild neutrophilic infiltration in both males and females. Significantly 

higher neutrophilic inflammation (≥ 2-fold) (Fig 10A, B) was observed in the females in 

ASH group compared to their male counterparts 12 hrs post LPS injection. Neutrophilic 
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infiltration and necrotic foci was noted as early as 2 hrs (Fig 10A,B) following LPS 

challenge in the ethanol treated female rats, but no necrotic foci was noted in the 

ethanol-treated male rat at this time point. The necrotic foci and neutrophilic infiltration 

was noted in both male and female ethanol treated rats at 12 hrs following LPS 

challenge. However, the neutrophilic infiltration and necrotic foci in females was 2-fold 

greater than their male counterparts (Table 11). 

 
 
 
Table 11 
Steatosis and neutrophilic inflammation in male and female rats in the alcoholic steatohepatitis 
model. *Values significantly different from the controls, p<0.05. ! Values significantly different from the male 
counterparts, p< 0.05. Hepatic steatosis: <25%, 1+; <50%, 2+; <75%, 3+; >75%, 4+. Inflammation 
score: the number of neutrophils per five high power fields (40X) was counted. The neutrophilic foci 
(defined as an aggregate of ≥ 4 neutrophils) were quantitated per five-40X field (Ctrl.; Control, L; 
Lipopolysaccharide, E; Ethanol).   
 

 Male ( mean ± SE, n=4) Female ( mean ± SE, n=4) 

 Ctrl. C+L EtOH E+L Ctrl. C+L EtOH E+L 

Steatosis 1±0.19 1±0.3 3.5±0.83 3.5±0.79 1±0.2 1±0.19 4.9±0.7* 4.9±0.84* 

Inflammation 1±0.16 1.5±0.49 0.5±0..01 3±0.32 1±0.2 2±0.35 1±0.1 6±0.59! 
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EtOH - - - + + + 
LPS - + + - + + 
Hour 0 2 12 0 2 12 

 

 

Fig. 10. Neutrophil infiltration in the liver in alcoholic stetaohepatitis. (A) Kinetics of neutrophil 
infiltration in the liver of male and female rats fed either control or an EtOH-containing Lieber 
DeCarli diet and sacrificed at 2 and 12 h time points following LPS (L) injection, as described 
before. * Values significantly different from the male counterparts. Data are expressed as mean ± 
SE, p ≤ 0.05. (B) Representative photomicrographs of chloroacetate esterase-stained liver sections of 
male and female rats fed an EtOH-containing Lieber DeCarli diet for 6 weeks, followed by a single 
injection of LPS, and sacrificed at 2 and 12h post-LPS injection. Arrows indicate neutrophil 
infiltration.  
 

 

B 
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Endotoxin levels 

 Endotoxin levels were detected in the plasma of control, control+LPS, EtOH and 

EtOH+LPS treated rats using standard limulus amebocyte lysate endpoint assay. EtOH 

treatment alone did not increase circulating levels of endotoxin, both in the male and 

female rats. However, increased endotoxin levels were noted in control and EtOH-fed 

rats after LPS challenge. There was no significant difference in the levels of plasma 

endotoxin between control+LPS and EtOH+LPS treated rats (Fig 11).  No significant 

difference in plasma endotoxin level was observed in the male and female rats post LPS 

challenge in the ASH group.  

 
 
 
 

 

EtOH - + _       + 
LPS - - +       + 

 
Fig. 11. Endotoxin level in plasma of male and female rats fed either control or EtOH-containing 
Lieber DeCarli diet followed by a single dose of LPS injection. * Values are significantly different 
from the male counterparts. Data are expressed as mean ± SE, p ≤ 0.05. 
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GRO/CINC-1 & IL-6 levels in plasma 

 To understand the mechanistic basis of higher hepatic neutrophil infiltration in 

females, GRO-CINC-1 and IL-6 levels were detected in the plasma of both male and 

female rats in the ASH model, using a standard endpoint assay. Ethanol treatment alone 

did not increase circulating level of GRO-CINC-1 and IL-6. However, significant 

increase in both GRO-CINC-1 and IL-6 level were noted in both male and female rats 

treated with EtOH+LPS (Fig 12A,B). An increase in GRO-CINC-1 and IL-6 level was 

also noted following LPS treatment alone. No significant difference in both GRO-CINC-

1 and IL-6 levels were observed in the males and the females post LPS challenge in the 

ASH group. 

 
 
 

     

 
EtOH - + - + 
LPS - - + + 

 
Fig. 12. GRO/CINC-1 (A) and IL-6 (B) levels in plasma of male and female rats fed either control or 
EtOH-containing Lieber DeCarli diet followed by a single dose of LPS injection. * Values are 
significantly different from the control. ! Values are significantly different from the male 
counterparts. Data are expressed as mean ± SE, p ≤ 0.05. 
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CYP2E1 expression and activity 

 Significant induction in the expression of CYP2E1 apoprotein was observed in 

EtOH treated male and female rats, as compared to the controls (Fig13A), indicating that 

ingestion of EtOH leads to higher expression of CYP2E1 apoprotein. However, no 

difference was observed in the induction of CYP2E1 between the ethanol treated male  

 
 
 

 

      

Fig. 13. Hepatic microsomal CYP2E1 protein and activity in rats fed either control or EtOH-
containing Lieber DeCarli diet for a period of six weeks. CYP2E1 protein expression was detected 
by Western blot analysis (A) and CYP2E1 activity (B) was quantified by p-nitrophenol 
hydroxylation activity. *Values are significantly different from female control. Data are expressed 
as mean ± SE, p ≤0.05. 
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and the female rats. Measurement of hepatic CYP2E1 microsomal activity, by p-

nitrophenol hydroxylation assay indicated that males both in the control and ethanol 

treated group, have higher activity as compared to their female counterparts (Fig13B).  

OPN protein expression following EtOH alone treatment 

 EtOH ingestion resulted in induction of OPN both in the male and female rats, 

although statistically not significant (Fig 14A,B). However, OPN was significantly 

higher the female rats compared to controls (Fig 14B).  

 
 
 

 

Fig. 14. Osteopontin protein expression in alcoholic steatosis. OPN protein were detected by 
Western blot (A) and quantified by densitometric analysis (B). The values are normalized with 
GAPDH, employed as an internal control for Western blot to ensure equal loading of protein. * 
Values are significantly different from the controls. Data are expressed as mean ± SE, p ≤ 0.05. 
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OPN protein expression following EtOH+LPS treatment 

.EtOH+LPS (ASH group) treatment caused a statistically significant induction 

(~2-fold) of cleaved OPN in female rats compared to males (Fig 15A,B).  

 
 
 

 

EtOH - - - - + + + + 
LPS + + + + + + + + 

 

 
 

 

EtOH - + - + 
LPS + + + + 

Fig. 15. Osteopontin protein expression in alcoholic steatohepatitis. (A)Representative Western 
blotting showing OPN expression in male and female rats in control+LPS and EtOH+LPS treated 
group. OPN and cOPN were detected by Western blot and quantified by densitometric analysis (B). 
The values were normalized with GAPDH, employed as an internal control for Western blot to 
ensure equal loading of protein. ! Values are significantly different form the male rats in the EtOH 
group. Data are expressed as mean ± SE, p ≤ 0.05.  
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The uncleaved OPN levels were significantly higher both in the males and the female 

rats, although statistically not significant. Induction of hepatic OPN levels was 

confirmed by immunohistochemistry (Fig 16). The OPN expression was predominantly 

localized to the biliary epithelial cells and some inflammatory cells in the hepatic 

parenchyma.   

 
 
 

 

Fig. 16. Representative photomicrograph of liver sections stained for OPN in male and female rats 
fed EtOH-containing Lieber DeCarli doet for a period of six weeks. The dark brown stain indicates 
OPN staining.  
 
 
 

Female
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OPN mRNA expression in ASH 

 Real time RT-PCR results showed that EtOH+LPS treated male and female rats 

had significantly higher expression of OPN mRNA as compared to the controls+LPS 

treated groups. However, the females in the EtOH+LPS treated group had about ∼ 40-

fold higher expression of OPN mRNA as compared to their male counterparts (Fig 17). 

 
 
 

    

EtOH -     + 
LPS +     + 

 
 
Fig. 17. Real time PCR analysis of OPN mRNA in liver of rats fed either control or EtOH-
containing Lieber DeCarli diet for a period of six weeks, followed by a single injection of LPS. The 
values have been normalized with β-actin, the house keeping gene. * Values significantly different 
from the controls. ! Values significantly different from the males. Data are expressed as mean ± SE, 
p ≤ 0.05. 
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Localization of OPN mRNA by in-situ hybridization 

In-situ hybridization was carried out to determine the precise hepatic source of 

the OPN mRNA expression during ASH. OPN mRNA was predominantly localized in 

the biliary epithelium. No or minimal signal of OPN mRNA was detected in the control 

and control+LPS treated groups both in the males and the females. However, the animals 

in the ASH group had significant induction of OPN expression as compared to the 

controls. OPN mRNA localization was was significantly higher in the females in the 

ASH group as compared to their male counterparts (Fig 18B). The higher expression of 

OPN mRNA in the females in ASH correlated with the Real time RT-PCR data. 

Application of a RNA sense probe for OPN showed no signal (Fig 18A), thus 

confirming the selectivity of the anti-sense OPN probe.  
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Fig. 18. In-situ hybridization analysis of OPN mRNA in the liver of male and female rats. 
Corresponding bright and dark field images in different groups are shown. (A) A section hybridized 
with radiolabelled cRNA probe served as the negative control. (B) Control+LPS and EtOH+LPS 
male and female sections. BE: Biliary epithelium. 
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Gender difference in OPN-mediated neutrophils chemotactic responses in a rat 

peritonitis model 

A rat zymosan-induced peritonitis model (Yao et al., 2003) was modified to 

assess the relationship between neutrophils infiltration and OPN expression in an ASH 

model. Zymosan injection intraperitoneally is known to significantly enhance peritoneal 

neutrophil accumulation resulting in peritonitis which was confirmed by our studies 

(Fig. 19A). OPN-treated male and female rats showed significant increase of total WBC 

(>2-fold) and neutrophils (>50-fold) in the peritoneal fluid, and was comparable to that 

of the zymosan treated animals. Higher neutrophil infiltration was also noted in the 

cOPN treated animals (Fig 19B). However, when the OPN and cOPN chemotactic 

response was compared between males and females, there was no gender differences in 

the total WBC and neutrophil numbers noted in this model. 
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Fig. 19. Peritonitis experiment in a rat model. Representative photomicrograph of Diff-Quik R 
stained (A) peritoneal fluid, showing WBC and neutrophils in control, zymosan , OPN and cOPN 
treated animals. SD rats were sacrificed 4 hrs post injection and peritoneal fluid was collected and 
(B) quantified as mentioned in the materials and methods section Arrows indicate neutrophils in the 
peritoneal fluid. 
 
 
 

OPN neutralizing antibody experiment 

nOPN antibody intervention experiments were carried out in LPS-hepatitis rat 

model to confirm further the contributing role of OPN in higher neutrophils infiltration 

in females during ASH. Both male and female LPS-treated group had significant hepatic 
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neutrophilic infiltration compared to the control (Fig 20). nOPN administration prior to 

LPS injection resulted in an approximately 50% reduction in hepatic neutrophil 

infiltration compared with the LPS-alone group, in both males and females. nOPN-alone 

injection did not result in increased neutrophils in the liver parenchyma. Higher hepatic 

neutrophil infiltration correlate significantly with hepatic necrosis, and administration of 

nOPN prior to LPS injection reduced multi-focal hepatic necrosis remarkably in both 

male and female rats.  

 
 
 

 

LPS - + - + 

nOPN - - + + 
 
Fig. 20. Enumeration of hepatic neutrophils following nOPN administration in the LPS hepatitis 
model. The number of neutrophils per 10 high power fields (hpf) was measured in chloroacetate 
esterase-stained liver sections of male and female rats treated with either PBS, LPS+PBS, nOPN or 
nOPN+LPS. * Values significantly different from the controls. ! Values are significantly different 
from the nOPN+LPS-treated group. Data are expressed as mean ± SE, p ≤ 0.05. 
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Analysis of neutrophil activation (expression of β2 integrin) by OPN in vitro  

Activation of neutrophils by OPN was analyzed based on the upregulation of 

CD11b by flow cytometry. Neutrophils incubated with OPN and cOPN in vitro showed 

a significant increase in CD11b integrins compared to the controls, indicating that 

activation of neutrophils by OPN take place via CD11b or Mac1 (Fig 21). 

 
 
 

                 

Fig. 21. Flow cytometric analysis of CD11b expression. Neutrophils were incubated in vitro with 
OPN and cOPN, and then labeled with HIS 48 and CD 11b antibodies. * Values significantly 
different from the controls. Data are expressed as mean ± SE, p ≤ 0.05 
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Role of osteopontin in neutrophil mediated-integrin signaling 

 
Effect of EtOH+LPS feeding on α4, α9, and β1 integrin protein expression  

Previously we have shown that EtOH+LPS feeding increases hepatic neutrophil 

infiltration and liver injury in females. Also, both intact and thrombin cleaved OPN 

induction appear to correlate with hepatic neutrophil infiltration and liver injury. 

Interestingly, cleavage of OPN exposes the SLAYGLR sequence, which promotes the 

adherence and migration of cells exposing α4β1, and α9β1 integrin (Green et al., 2001). In 

this study, EtOH+LPS treatment caused significant induction of α4 and β1 integrins in 

the females as compared to their male counterparts (Fig 22A, B). Although the 

expression of α9 integrin appeared to be higher in females in this group, it was not 

statistically significant compred to the males (Fig 22A, B). The females in the 

EtOH+LPS group had significant induction of α4, α9 and β1 integrin as compared to 

their controls.  
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EtOH - - - - + + + + 
LPS + + + + + + + + 

 

        

EtOH - - + + 
LPS + + + + 

 
 
Fig. 22. Representative Western blots showing α4, α9 and β1 integrin protein expression in rats fed 
either control or EtOH-containing Lieber-DeCarli liquid diet for six weeks followed by a single dose 
of LPS. α4, α9 and β1 was detected by Western blot (A) and quantified by densitometric analysis (B). 
* Values significantly different from the controls. ! Values are significantly different from the male 
rats in the EtOH+LPS group. Data are expressed as mean ± SE, p ≤ 0.05. 
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Effect of EtOH+LPS feeding on α4, α9, and β1 integrin mRNA expression  

Real-time RT-PCR showed a significant increase in α4 and α9 mRNA in the 

females in EtOH+LPS treated group as compared to the males (Fig 23A,B).  

 
 
 

               

EtOH - - + + 
 LPS + + + + 
 

            

EtOH - - + + 
 LPS + + + + 

Fig. 23. Real time PCR analysis of α4 (A), α9 (B), β1 (C) mRNA in the liver of rats fed either control 
or EtOH containing Lieber-DeCarli diet for a period of six weeks, followed by a single dose of LPS. 
The values have been normalized with β actin, the housekeeping gene. * Values significantly 
different from the controls. ! Values are significantly different from the male rats in the EtOH+LPS 
group. Data are expressed as mean ± SE, p ≤ 0.05. 
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Although females in the ASH group had increase in the mRNA expression of β1 

integrin as compared to the males, this was not significantly different (Fig 23C).  When 

the females in the ASH group were compared to its control, there was significantly 

higher mRNA expression of α4 and α9 integrins (Fig 23A,B).   

Immunoprecipitation to assess binding of OPN to integrins  

Since OPN promoted the adherence of cells expressing α4β1 and α9β1 integrins, 

we wanted to test if OPN is binding to these integrins. Total liver homogenates 

immunoprecipitated with OPN antibody were found to coimmunoprecipitate α4, α9 and 

β1 integrins both in the male and females, suggesting that OPN binds to these integrins in 

our ASH model (Fig 24). IgG was used as a negative control for these experiments. 

 
 
 

 
 
Fig. 24. Immunoprecipitation assay to detect the binding of OPN to α4β1 and α9β1 integrin in 
EtOH+LPS treated male and female rat. The cell lysates were immunoprecipitated with rabbit OPN 
antibody, and separated by SDS-PAGE and detected with anti α4, α9 and β1 antibodies as described 
in the materials and the methods section.  
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Effect of neutralizing OPN antibody on α4, α9, and β1 integrin protein expression   

In order to assess the specificity of OPN interaction with these integrins, α4, α9 

and β1 integrin expression was evaluated in a nOPN antibody intervention experiment, in 

a rat model of LPS medited hepatitis. 

 
 
 

 
LPS + + + + +   + + + 

nOPN - - - - +  + + + 

 
 
LPS + + + +  + + 

nOPN - + - +  - + 
Fig. 25. Representative Western blotting showing α4, α9 and β1 integrin protein expression in rats 
injected with either LPS or nOPN+LPS. α4, α9 and β1 integrins was detected by Western blot (A) 
and quantified by densitometric analysis (B). * Values significantly different form the controls. ! 
Values are significantly different from the male rats in the EtOH+LPS treated group. Data are 
expressed as mean ± SE, p ≤ 0.05. 
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LPS mediated hepatitis model was employed since LPS alone induces higher 

expression of these integrins. Compared to the LPS treated animals, the nOPN antibody 

treated male and female rats showed down regulation of protein expression of α4, α9, and 

β1 integrins (Fig 25A,B).   

Role of  OPN and α4, α9 and β1 integrins on neutrophil migration  

To determine whether OPN functions in the migration of neutrophils, studies of 

chemotaxis were performed in modified Boyden chambers. Addition of IL-8 (a well-

known chemoattractant for neutrophils), to the lower side of the chamber resulted in 

chemotaxis of freshly isolated neutrophils. Addition of recombinant full length OPN was 

found to attract about 3-fold higher neutrophils at both the (50ng/ml and 500ng/ml) 

doses as compared to the controls. Compared to full-length OPN, cOPN was found to 

attract more neutrophils (Fig 26). Both the N-terminal fragment and the mutated N-

terminal fragment (mutated RGD sequence) appeared to be similar in their ability to 

attract neutrophils (4-fold compared to controls) suggesting that the RGD sequence of 

OPN was playing a minimal role in attracting neutrophils in this model. To further assess 

if cOPN is mediating its neutrophil chemotaxis effects through α4, α9 and β1 integrins, 

studies were performed using antibodies with specificity towards different integrins and 

SLAYGLR sequence of OPN. Antibodies directed against α4 integrins inhibited cOPN-

mediated neutrophil migration by more than 4-fold, whereas those directed against β1 

integrins were found to be more potent and inhibited neutrophil migration by more than 

8-fold.  More interestingly, the antibody M5 directed against SLAYGLR peptide 

(Yamamoto et al., 2003), also inhibited (>5-fold) the migration of neutrophils (Fig 27). 
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The M5 antibody is reported to inhibit the interaction between the OPN cryptic epitope 

with its receptors α4β1and α9β1 integrins (Diao et al., 2004). 

 
 
 

             

OPN  (ng/ml) 0 50 500 0 0 0 
N-terminal, cOPN 

(ng/ml) 0 0 0 50 0 0 

N-terminal, cOPN 
(mutated RGD  ng/ml) 0 0 0 0 50 0 

IL-8 (ng/ml) 0 0 0 0 0 50 
IgG (ng/ml) 50 0 0 0 0 0 

 
Fig. 26. Boyden chamber experiment to test migration of neutrophils toward OPN and c-OPN.  
Neutrophils isolated from blood was incubated with different concentration of OPN, cOPN (N-
terminal) and cOPN with mutated RGD sequence as mentioned in the materials and methods 
section. Migrated cells were stained with Diff-Quik stain, and quantitated. * Values significantly 
different from the controls. Migration assays were also performed in the presence of various 
antibodies to assess the role of α4, β1 and SLAYGLR sequence in migration of neutrophils towards 
OPN. Migrated cells were stained with Diff-Quik stain and quantitated. * Values are significantly 
different from the OPN group.   
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OPN  (ng/ml) 0 50 50 50 50 50 
anti-Alpha 4 (µg/ml) 0 0 100 0 0 0 
anti-Beta 1 (µg/ml) 0 0 0 100 0 0 

M5 (µg/ml) 0 0 0 0 10 100 
IgG (µg/ml) 0 100 0 0 0 0 

 
Fig. 27. Boyden chamber experiment to assess the role of α4, β1 and SLAYGLR sequence in 
migration of neutrophils towards OPN. Migrated cells were stained with Diff-Quik stain and 
quantitated. * Values are significantly different from the OPN group.   
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Influence of estrogen on osteopontin and hepatic neutrophil infiltration in females 

Role of alcohol in influencing estrous cycle  

Consistent with Long and Evans (1922), estrous cycle in normal rats in this study 

were found to be 4 days long for about 88% of the animals studied. The remaining 

animals were either 5 day cyclers or they cycled irregularly. Only animals cycling for 4 

days were fed EtOH in Lieber DeCarli diet for six weeks. After the initiation of EtOH-

feeding, the animals were found to have prolonged diestrus cycle marked by the 

predominance of leukocytes and nucleated epithelial cells in the vaginal smear, 

indicating that EtOH was interfering with the estrous cycle in these rats (Fig 28 A, B). 

Role of estrogen in alcohol-mediated liver pathology 

Both the intact and the ovariectomized females had little or no increase in plasma 

transaminase (ALT) activity following EtOH alone treatment. A significant increase in 

plasma transaminase activity was noted in both the intact and ovariectomized group 

following EtOH+LPS treatment as compared to the respective controls (Fig 29A).  

 
 

 

 

Fig. 28. Schematic representation of the different stages of the estrous cycle of the representative rat 
before (A) and after (B) ethanol treatment. M: Metestrus; D: Diestrus; P: Proestrus; E: Estrus. 
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EtOH - + - + 
LPS - - + + 

 

            

Fig. 29. Liver injury in normal and ovariectomized rats. ALT (A) activities in plasma of normal and 
ovariectomized female rats fed either control or EtOH-containing Lieber DeCarli diet followed by a 
single dose of LPS injection and sacrificed 12 hours thereafter, as described in the materials and 
methods section.  * Values significantly different from the controls. ! Values are significantly 
different from the male counterparts. Data are expressed as mean ± SE, p ≤ 0.05. (B) Representative 
photomicrographs of  H&E stained liver sections of  normal and ovariectomized female rats fed 
EtOH-containing Lieber-DeCarli diet for 6 weeks, followed by a single dose of LPS and sacrificed 
12hrs post LPS injection. Arrows indicate neutrophil infiltration. (E: Ethanol, L: 
Lipopolysaccharide; O: Ovariectomy). 

 
 
 
When the live rinjury was compared, the ovariectomized females in EtOH+LPS 

treated group had about 1.5 fold higher plasma transaminase activity as compared to the 
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intact female in the same group indicating higher hepatocellular injury. H&E stained 

liver sections confirmed the findings of the plasma transaminase activity showing 

increased multifocal necrosis and neutrophilic infiltration in the ovariectomized 

EtOH+LPS treated animals as compared to the normal EtOH+LPS treated animals (Fig 

29 B). 

To assess the effect of estradiol on hepatic injury, plasma transaminase activity 

was also evaluated in ovariectomized+ E2 implanted rats fed EtOH+LPS. Compared to 

the ovariectomized group, all the animals in the estrogen implanted group had significant 

decrease in plasma transaminase activity. However, a somewhat biphasic response to 

ASH was observed in the ovariectomized+E2 implanted rats. Low doses of E2 (0.18g, 

0.36mg) resulted in significant down-regulation of plasma transaminase activity, 

however with the highest E2 employed dose (1.7mg), the degree of protection appear to 

decrease based on elevation of plasma transaminase activity (Fig 30 A). Animals treated 

with 0.36mg dose of E2 seemed to have the least liver injury in these groups. The 

plasma transaminase activity was further confirmed with H&E stained liver sections, 

where minimum or no neutrophilic infiltration and multi-focal coagulative necrosis was 

observed in animals treated with 0.36mg estrogen (Fig 30 B). In animals treated with 

0.72mg and 1.7mg E2, an increase in neutrophilic infiltration and multi-focal necrosis 

was observed. 
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EtOH + + + + + 
LPS + + + + + 

Ovariectomized + + + + + 
Estrogen (E2, mg) 0 0.18 0.36 0.72 1.7 

                

                                

Fig. 30.Effect of estrogen on liver injury. ALT (A) activities in plasma of ovariectomized and 
ovariectomized + estrogen implanted female rats fed either control or EtOH-containing Lieber 
DeCarli diet followed by a single dose of LPS injection and sacrificed 12 hours thereafter, as 
described in the materials and methods section. * Values are significantly different from the 
controls. Data are expressed as mean ± SE, p ≤ 0.05. (B) Representative photomicrographs of H&E 
stained liver sections of ovariectomized+estrogen implanted female rats fed EtOH-containing 
Lieber-DeCarli diet for 6 weeks, followed by a single dose of LPS and sacrificed 12hrs post LPS 
injection.  
 

A

B 

ALT (U/L) 

, OVX ,OVX 

,OVX , OVX 



 

 

90

Relation between hepatobiliary osteopontin expression and estrogen in ASH 

A decrease (∼2 fold) in the level of OPN protein was observed in the 

ovariectomized animals treated with EtOH+LPS+E2 (0.18mg, 0.36mg, 0.72mg) as 

compared to the EtOH+LPS alone treated group. However, the animals treated with 

1.7mg dose of estrogen experienced >2.5-fold higher expression of OPN protein as 

compared to the EtOH+LPS alone treated group (Fig 31A,B). Similar pattern of 

induction of hepatic OPN protein was also confirmed by immunohistochemistry (Fig 

32), where animals treated with 0.18mg and 0.36mg dose of E2 had little expression of 

OPN, with maximal expression at the highest dose of E2 employed in this study. 
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EtOH + + + + + 
LPS + + + + + 

Estrogen (E2, mg) 0 0.18 0.36 0.72 1.7 
Ovariectomized + + + + + 

 

 

EtOH + + + + + 
LPS + + + + + 

Ovariectomy + + + + + 
Estrogen (E2, mg) 0 0.18 0.36 0.72 1.7 

 
Fig. 31. OPN protein expression in ovariectomized rats. Representative Western blotting (A) 
showing OPN expression in ovariectomized female rats fed EtOH-containing Lieber-DeCarli diet 
for 6 weeks as mentioned in the materials and methods section. OPN was detected by Western blot 
and quantified by densitometric analysis (B). The values were normalized with GAPDH, employed 
as an internal control for Western blot to ensure equal loading of protein. * Values are significantly 
different from the controls. Data are expressed as mean ± SE, p ≤ 0.05. (C) 
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Fig. 32. Representative photomicrograph of liver sections stained for OPN in ovariectomized female 
rats fed EtOH-containing Lieber-DeCarli diet. The dark brown stain indicates OPN staining. 
Arrows indicate biliary epithelial cells stained positive for OPN. 
 
 
 
Localization and expression of OPN mRNA by in-situ hybridization  

In-situ hybridization was carried out to determine the hepatic source of OPN 

expression in ovariectomized EtOH+LPS treated animals. Consistent with the protein 

expression data, EtOH+LPS treated animals had higher OPN mRNA signal as compared 

to the EtOH+LPS+E2 (0.18mg, 0.36mg) treated ovariectomized groups (Fig 33A). 

However, a biphasic response of OPN was observed in this model. As compared to the 

low doses of E2 (0.18g, 0.36mg), significantly higher OPN mRNA signal was observed 

in the animals treated with the increasing doses (0.72mg and 1.7mg) of estrogen (Fig 33 

B). Least OPN mRNA signal was observed in the animals treated with 0.36mg dose of 

E2. The localization of OPN was mostly within biliairy epithelium and hepatocytes. 

 



 

 

93

 

 

 

 

Fig. 33. In-situ hybridization analysis of OPN mRNA in the liver of female ovariectomized rats fed 
EtOH-Containing Lieber DeCarli diet followed by a single dose of LPS injection. Corresponding 
bright and dark field images in different groups are shown. (A) Liver section of ovariectomized 
female rat (B) liver sections of ovariectomized female rats with different doses of estrogen implants. 
(E2: estradiol) 
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Proteomics approach to study differential protein expression between male and 

females in alcoholic steatohepatitis 

Identification of OPN protein by 2-D gel proteomics  

2-D gels were performed to identify OPN protein in this model. Fig 34 shows 

representative 2-D gels and Western blots of OPN protein identified in this model. 2 

different protein spots were identified by OPN antibody at about 60-68 kDa region. In 

addition to this, another spot was also identified at about 25-40 kDa region., 

corresponding to the cleaved OPN.  

 
 
 

 

Fig. 34. 2-D gel analysis of osteopontin protein from liver of female rats. Following 2-D 
electrophoresis and transfer to nitrocellulose membrane, the proteins were detected using an anti-
osteopontin antibody. The left panel shows the total protein by silver staining, while the right panel 
shows the osteopontin and its cleaved fragement on the replicate sample of the same 2-D gel. 
 
 
 
Differential protein expression, identification and optimization 

2D gels were performed from the respective control and ASH groups both in the 

male and female rats. Fig 35 shows representative 2-D gels with proteins from male and 
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female rats in the control and ASH group. On these gels, approximately 250-300 spots 

were detected by the software between 10-70kDa. Of these, the spots that were 

statistically different in expression when compared between males and females in 

control+LPS and ASH group, were identified based on the established criteria outlined 

in experimental procedures.  

 
 
 

 

Fig. 35. Representative cropped 2D gel image of liver protein in male (A) and female (B) rat in 
alcoholic steatohepatitis group. The first-dimensional separation was performed using 7cm 
immobilized pH 4-7 gradient strips, followed by SDS-PAGE with 10% polyacrylamide gels in 
second dimension. The staining of the proteins were carried out using silver stain. 
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Differentially expressed protein identification in males in the ASH group 

To identify the proteins deregulated in males in the ASH group, 2D gels of rat 

liver both in the control+LPS and EtOH+LPS treated male were analyzed. Analysis of 

the resulting images showed 28 protein spots to be statistically different between the two 

groups. Of these, 9 protein spots were found to be up-regulated and 19 protein spots 

down regulated. By mass spectrometry, 9 of the up regulated and 10 of the down 

regulated protein spots were identified both form the control and the experimental group. 

The spots identified are listed in Table 12. 

Differentially expressed proteins in females in the ASH group  

 To identify the proteins deregulated in females in the ASH group, 2D gels of rat 

liver both in the control+LPS and EtOH+LPS treated female were analyzed. Analysis of 

the resulting images showed 30 protein spots to be statistically different between the two 

groups. Of these, 18 spots were found to be up regulated and 12 spots down regulated. 

Mass Spectrometry analysis identified 13 up regulated and 8 of the down-regulated 

spots. The spots identified are listed in Table 12. 
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Table 12 
Differentially altered proteins between males and females in a rat alcoholic steatohepatitis model. 

 

SSP Swiss-Prot 
AN* 

Protein MS/MS seq Protein 
score 

Female 
(E+L/C+L) 

Male 
(E+L/C+L) 

Ratio 

 
Metabolism related proteins 
 
1308 P19112 Fructose-1,6 

bisphosphate 
DALQPGR, FVLEEGR 853 2.08 3.7 0.55 

3202 P46953 3-hydroxyanthranilate 
3,4-dioxygenase 

VPHSPQR, 
SVVVEENR 

763 0.5 1.72 0.29 

5401 P11960 2-oxoisoverate 
dehydrogenase alpha 
subunit 

ILYESQR, 
IGHHSTSDDSSAYR 

65 18.78 2.71 6.93 

5805 P31210 3-oxo-5-beta-steroid 4-
dehydrogenase 

GLVVIPK, 
TAIDEGYR 

189 0.19 0.04 4.4 

6305 P15650 Acyl CoA 
dehydrogenase, long 
chain specific 

LETPSAK, KLTDIGIR 623 0.21 4.36 0.05 

7206 P15651 Acyl CoA 
dehydrogenase 

AAMLKDNK, 
HAFGAPLTK 

262 5.76 1.44 4 

7207 P23457 3-alpha hydroxysteroid 
dehydrogenase 

GVVPLIR, 
HAFGAPLTK 

467 1.12 0.39 2.88 

9105 P10860 Glutamate 
dehydrogenase 1 

ELEDFK, GASIVEDK 532 0.27 1.08 0.25 

 
Oxidative stress related proteins 
 
3002 XP_235823 Ferritin heavy chain SKPPEKK, KNLQLLK 669 2.9 - 2.9 
3401 Rf/NP_071

565.1 
HSP 60 GIIDPTK, KGVITVK 139 2.51 0.62 4.01 

4003 Gb/AAA40
996.1 

Cu-Zn Superoxide 
dismutase 

GGNEESTK, 
TMVVHEK 

591 2.32 1.23 1.88 

4806 P11598 ER 60 GSNYWR, IVAYTEK 1470 3.48 0.89 3.91 
5008 O35244 Peroxiredoxin 6 GMPVTAR, ELPSGKK 1070 0.41 0.1 3.91 
7610 P04762 Catalase VANYQR, GIPDGHR 931 2.47 0.32 7.5 
 
Other proteins 
 
2002 P31044 Phosphotidykethanolam

ine binding protein 
(PEBP) 

FANFIEK, LEEETRK 388 2.36 - 2.36 

3104 P67779 Prohibitin VFESIGK, ARFVVEK 1070 0.31 0.32 0.98 
4101 Q63797 Protease activator com 

plex subunit 1 
IVVLLQR, 
VHPEAQAK 

302 0.47 0.3 1.53 

1403 Q63279 Keratin type I 
cytoskeletal 19 

TIEDLR, IVLQIDNAR 79 37.53 22.88 1.64 

3403 P04639 Apolipoprotein A-1 
precursor (Apo-A1) 

ENLAQR, VNADALR 264 2 - 2 

3506 P21807 Peripherin FANFIEK, KLHEEELR 65 3.7 0.98 3.82 
7102 P04764 Alpha enolase EIFDSR, YNQILR 929 0.45 0.36 1.23 
8001 Rf/XP_235

823.2 
Translokin SKPPEKK, KNLQLLK 21 2.77 1.03 2.68 

 
 
                                                 
* Rat liver proteins differentially regulated in alcoholic steatohepatitis analyzed by MALDI-MS. 
Accession numbers were extracted from the Swiss-Prot database. 
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Comparison of the differentially expressed proteins between males and females in the 

ASH group  

In order to identify the differentially expressed proteins and explain the basis for 

higher susceptibility of females to ASH, 2D gels of rat liver both in the male and female 

EtOH+LPS treated groups were analyzed. Analysis of the resulting images showed 40 

proteins to be statistically different between the two groups (Fig 36). Of these, 31spots 

were upregulated and 9 spots were downregulated in females as compared to the males 

in ASH group. By mass spectrometry, 17 of the upregulated and 5 of the downregulated 

spots were identified. In addition, Apolipoprotein 1, identified, was significantly 

deregulated only in the females, but not in the males of the ASH group. The spots 

identified are listed in Table 12. In addition to the several metabolism-related proteins, 

oxidative stress related proteins like HSP 60, ER60, Ferritin, Catalase, Peroxiredoxin 6, 

Cu-Zn dismutase were found to be upregulated in the females in the ASH group as 

compared their male counterparts.  
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Fig. 36. 2D master gel indicating proteins identified as potential inflammatory markers in alcoholic 
steatohepatitis. Analysis revealed several proteins to be highly altered in females in alcoholic 
steatohepatitis as compared to their male counterparts. A total of 22 proteins were identified using 
the MALDI-TOF. 
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EtOH - - - - + +   + + 
LPS + + + + + +   + + 

Fig. 37. Representative Western blot showing Ferritin H chain, HSP60, ER60 and PrX6 protein 
expression in male and female rats fed either control or EtOH-containing Lieber DeCarli diet 
followed by a single dose of LPS injection. (GAPDH was employed as an internal control, to ensure 
equal loading of protein.) 
 
 
 

   

Fig. 38. Representative photomicrographs of Ferritin stained sections of male and female rats fed 
either control or EtOH-containing Lieber-DeCarli diet for 6 weeks. The brown stains indicate 
ferritin H chain staining. 
 

 



 

 

101

Detection of selected oxidative stress proteins by immunoblotting  

Since oxidative stress is implicated to play a major role in the pathogenesis of 

higher liver injury during ALD, changes in the expression of selected oxidative stress-

related proteins were further characterized by Western blot. As indicated by Western 

blots, Ferritin H chain protein was upregulated in the females in the ASH group, as 

compared to the controls and their male counterparts (Fig 37). Ferritin H chain was 

localized in the hepatocytes as well as in some inflammatory cells in the females in the 

ASH group (Fig 38). Chaperone proteins like HSP 60 and ER60 was also found to be 

significantly deregulated in the females in the ASH group. Females had > 2-fold higher 

expression of HSP60 as compared to the controls and their male counterparts (Fig 34). 

Although the chaperone protein ER60 was not significantly different between the males 

and females in ASH group, there was significant up regulation of this protein in females 

when compared to the controls (Fig 34). In addition to this, Peroxiredoxin 6 the 

antioxidant enzyme, was found to be significantly downregulated in the EtOH+LPS 

group, as compared to the control+LPS group both in the males as well as the females 

(Fig 34).  
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Development of the mouse alcoholic steatohepatitis model 

 Mouse ASH model was developed to test the effects of OPN in the OPN-/- mice. 

Pilot studies with the mice study indicated that LPS is not necessary to produce the 

neutrophilic pathology that we observed in rats. 

Male and female mice fed EtOH for 6 weeks experienced significant fat 

accumulation and multi-focal neutrophilic infiltration. The pathology noted in the mice 

ASH model, was mostly similar to that seen in our rat model of ASH.  

 The body weight gain of the control and the EtOH-fed group were not different 

indicating no nutritional differences between the mice in the ASH and the control 

groups. However, the females in the ASH group had lower body weight as compared to 

the males, but they were not significantly different.  

Liver injury as assessed by serum transaminase activity and hepatic pathology  

Liver injury was assessed by ALT levels. Both males and females in the ASH 

group experienced significant increase in ALT levels as compared to the controls. 

However, the female mice in ASH had significantly higher (∼ 2-fold) ALT values than 

males, indicating higher liver injury (Fig 39A). The findings of the plasma transaminase 

activity was further confirmed by the H&E stained liver sections. Both the male and the 

females in the ASH group experienced extensive steatosis, neutrophilic infiltration as 

compared to the controls (Fig 39B).  
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EtOH - + 
 
 

 

Fig. 39. Liver injury in mice alcoholic steatohepatitis model. (A) ALT activities in plasma of male 
and female mice fed either control or EtOH-containing Lieber DeCarli diet for six weeks as 
described in the materials and methods section. *Values significantly different from the controls. ! 
Values are significantly different from the male counterparts. Data are expressed as mean ± SE, p ≤ 
0.05. (B) Representative photomicrographs of H&E stained sections of male and female mice fed 
either control or EtOH-containing Lieber-DeCarli diet for 6 weeks. The marked area indicates 
neutrophilic foci formation indicating inflammation. 

A 

B
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 Scoring of the H&E stained liver sections suggested extensive steatosis in both 

the males and females in the ASH group. However, steatosis in females was about 1.3-

fold greater than that of the males (Fig 40A). In addition, the females in ASH 

experienced both micro and macrovesicular steatosis, whereas, in case of males, diffuse 

infiltration of microvesicular fat droplets were observed throughout the parenchyma. In 

addition, random sinusoidal congestion was also observed in this model. Steatosis noted 

in this model, was periportal in nature, with the sparing of the centrilobular region.      

Hepatic neutrophil infiltration in mice ASH model  

Both the males and the females in the ASH group experienced significantly 

higher neutrophilic infiltration as compared to their respective controls (Fig 40B). 

However, the females in the ASH group had about 1.6-fold higher neutrophilic 

infiltration as compared to the males. In addition to the neutrophilic foci, females in the 

ASH group had neutrophils scattered all over the hepatic parenchyma, which was not 

noted in males (Fig 39).   
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EtOH -  + 
 

 

EtOH -   + 
Fig. 40. Quantitiation of (A) steatosis and (B) neutrophils as an index of inflammation in the livers of 
mice fed either control or EtOH-containing Lieber-DeCarli diet for 6 weeks.* Values significantly 
different from the controls. ! Values are significantly different from the male counterparts. Data are 
expressed as mean ± SE, p ≤ 0.05. 
 
 
 
OPN protein expression in ASH group  

A significant induction in the level of OPN protein was observed in the male and 

female mice in ASH group as compared to the controls (Fig 41 A,B). The females in the 

ASH group had higher expression of OPN protein as compared to the males, although 

A 

B 
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statistically not significant. Induction of OPN protein levels were confirmed by 

immunohistochemistry (Fig 42). OPN expression was predominantly localized in the 

hepatocytes. However, in the case of females in ASH, neutrophilic infiltrates were also 

found to be positive for OPN protein (Fig 42). In addition, neutrophils isolated from the 

animals in ASH group were found to produce OPN protein (Fig 43), contributing to the 

increased OPN. 

 

EtOH - - - - + + + + 

 

EtOH - + 
 

Fig. 41. Osteopontin protein expression in mice alcoholic steatohepatitis model. Representative 
Western blotting (A) showing OPN expression in male and female mice fed either control or EtOH-
containing Lieber-DeCarli diet for 6 weeks. OPN was detected by Western blot and quantified by 
densitometric analysis (B). The values were normalized with GAPDH, employed as an internal 
control for Western blot to ensure equal loading of protein. * Values are significantly different from 
the controls. Data are expressed as mean ± SE, p ≤ 0.05. 

A 

B 
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Fig. 42. Representative photomicrograph of liver sections stained for OPN in male and female mice 
fed alcoholic steatohepatitis model. The dark brown stain indicates OPN staining. 
 
 
 

 

EtOH - + 
Fig. 43. Representative Western blotting showing OPN isolated from neutrophils in mice fed EtOH-
containing Lieber-DeCarli diet for 6 weeks  
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OPN mRNA expression in ASH group 

Real-time PCR results showed that EtOH treated animals had significantly higher 

expression of OPN mRNA as compared to their respective controls (Fig 44). However, 

EtOH treated females showed >1.6-fold higher expression of OPN mRNA as compared 

to their male counterparts.  

 
 
 

 

EtOH - + 
Fig. 44. Osteopontin mRNA expression in mice alcoholic steatohepatitis model. Real time PCR 
analysis of OPN mRNA in liver of mice fed either control or EtOH-containing Lieber-DeCarli diet 
for a period of 6 weeks as described in the materials and the methods section. The values have been 
normalized with β-actin- the house keeping gene. *Values significantly different from the controls. ! 
Values are significantly different from the male counterparts. Data are expressed as mean ± SE, p ≤ 
0.05. 
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CHAPTER IV 
 

DISCUSSION, SUMMARY AND CONCLUSIONS* 

 
 

Females are susceptible to ALD 

Alcoholic liver disease is responsible for approximately 150,000 deaths per year 

in US alone (Tsukomoto, 2007), and its medical and social costs are estimated to exceed 

$116 billion annually. Epidemiological studies suggest higher female susceptibility to 

ALD. Although there are a variety of different medical interventions practiced to treat 

ALD patients, none of them have been successful. Therefore it is of immense importance 

to understand the molecular basis behind ASH so that the progression to fibrosis and 

cirrhosis can be prevented. This is especially important in female alcoholics where the 

progression and severity of ALD is much higher than males. 

The simplified experimental rat models of AS and ASH are based on the 

previous investigations (Enomoto et al., 1999; de la Hall et al., 2001; Murohisa et al., 

2002; Tamai et al., 2002) utilizing the interaction of chronic EtOH consumption 

combined with a single LPS exposure. In our model, we were able to demonstrate the 

complete spectrum of pathology associated with ASH including steatosis, neutrophilic 

inflammation, hepatocyte oncotic necrosis and apoptosis. This simple model of alcoholic 

steatosis and steatohepatitis is highly reproducible and perfectly mimic the human ALD, 

                                                 
* Reprinted with permission from “Higher neutrophil infiltration mediated by osteopontin as a likely 
contributing factor to the increased susceptibility of females to alcoholic liver disease” by Banerjee et al., 
2006, Journal of Pathology, 208: 473-485, © 2006 by Wiley Interscience. 
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and allows for detailed mechanistic investigations into higher neutrophilic infiltration 

and higher liver injury in female alcoholics.  

Several theories proposed to explain the higher susceptibility of females to alcoholic 

liver disease include differences in metabolism, pharmacokinetics (Lieber 2000; Baraona 

et al., 2001), endotoxemia (Kono et al., 2000) and cytokines and chemokines (Roll et al., 

1986; Gallucci et al., 2004).  

Of the three main enzymatic pathways involved in hepatic EtOH metabolism 

(alcohol dehydrogenase, CYP2E1 and peroxisomal catalase), CYP2E1-mediated 

metabolism plays a major pathogenic role during sustained exposure to EtOH (Roberts 

et al., 1995; McGehee et al., 1997; Lieber, 2000; Oneta et al., 2002). The significant 

induction of hepatic CYP2E1 in the EtOH treated rats in our ASH model, corroborates 

with the previous studies (Lieber, 2000). However, the level of CYP2E1 induction was 

similar between male and female rats ruling out CYP2E1 as a major player in the 

differential liver injury, noted in males and females. In addition, there was no significant 

difference noted in the body weight and blood alcohol levels of the male and female rats 

administered EtOH, suggesting that pharmacokinetics is a less-likely factor in the gender 

difference observed in our model of ASH.  

Endotoxemia is another major mechanism implicated to cause higher liver injury 

in the females (Rivera et al., 1998; Kono et al., 2000). A study by Kono et al., (2000) 

have shown that higher female susceptibility is due to increased level of endotoxin in 

females which was attributed to possible enhanced estrogen mediated endotoxin 

absorption from the gut during EtOH exposure. However, in our model, there was no 
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significant difference noted between the genders in the ASH group. Based on this it can 

be interpreted that endotoxin is not a major candidate for higher liver injury in female 

rats, noted in our ASH model. Clearly, we were able to reproduce a rodent model of 

ALD for mechanistic investigation. 

Osteopontin as a mediator of hepatic neutrophil infiltration 

In pursuit of the reason for higher liver injury in females, histopathologic 

evaluation of liver sections in the ASH model revealed an excellent correlation between 

earlier and higher neutrophilic infiltration and observed higher liver injury in females.  

Based on these findings, the mechanistic basis for higher hepatic neutrophil infiltration 

in females was further investigated in this study. A recent study from our laboratory 

showed the involvement of osteopontin (OPN) in hepatic neutrophil infiltration (Apte et 

al., 2005). OPN – a novel extracellular matrix protein is known to play a role in several 

inflammatory diseases like glomerular nephritis (O’Reagan and Burman, 2000), non-

alcoholic steatohepatitis (Sahai et al., 2004), ischemic injury and CCl4 mediated liver 

injury (Kawashima et al., 1999). OPN is also a known chemoattractant for macrophages 

both in vivo and in vitro (Denhardt et al., 2001a,b). OPN has a RGD sequence and a 

thrombin cleavage site which play a role in inflammatory diseases (Denhardt et al., 

2001a,b). Cleaved OPN (cOPN) with its exposed SLAYGLR (or SVVYGLR) sequence 

is known to have higher chemotactic potential than the native form of OPN (Giachelli et 

al., 1998; Apte et al., 2005), and is known to attract more lymphocytes and neutrophils 

(Giachelli et al., 1998; Yokosaki et al., 1999; Denhardt et al., 2001a,b). Based on these 

we evaluated the OPN and cOPN between males and females in the ASH model. 
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Excellent correlation between increase in OPN (both uncleaved and cleaved OPN) and 

higher neutrophilic infiltration in the females was noted in the ASH model, suggesting 

the role of OPN in the higher neutrophil infiltration in the liver. 

To further test the role of OPN in attracting higher neutrophils in females, a 

cause and effect study was designed in a rodent peritonitis model (Yao et al., 2003; Apte 

et al., 2005). This model was employed to test if (1) OPN attracts neutrophils and if it 

does, (2) whether female rats have higher chemotactic response to OPN than males. 

Based on the results, OPN demonstrated a significant neutrophil chemotactic response in 

this model. However, there was no gender difference noted in OPN-mediated neutrophil 

chemotaxis. This discrepancy can be attributed to the differences in the mechanism of 

neutrophil transmigration between hepatic vasculature and the peritoneum, although not 

tested in the current study. In the mouse peritoneum, Leukotrine B4 receptor has been 

shown to modulate neutrophil migration, but not in the liver and the lung (Scott et al., 

2004). Studies by Dangerfield et al., (2005) have shown that neutrophil migration into 

the peritoneum is induced by IL-1β and not TNF-α. In addition, the amount and type of 

serum and hepatic proinflammmatory cytokines and chemokines may be different in the 

peritonitis versus the ASH model. For example, in ALD, TNF-α has been indicated as 

an important cytokine playing a crucial role in inflammation (Kono et al., 2000).  

In addition, a neutralizing OPN antibody experiment was carried out in a LPS 

mediated hepatitis model to further confirm the role of OPN in neutrophil infiltration. 

Studies by Rose et al., (2006, 2007), have shown that LPS or endotoxin causes 

neutrophil infiltration into the liver in a rat model of hepatitis. Based on this, in the 
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present study, nOPN antibody treated animals had significant lower neutrophilic 

infiltration in the liver indicating that OPN was acting as a chemokine for neutrophils.   

Other mechanisms involved in higher hepatic neutrophil infiltration include 

proinflammatory cytokines (Gallucci et al., 2004) and chemokines (Roll et al., 1986). 

Inflammatory cytokines are known to promote neutrophil activation, accumulation and 

chemotaxis in a wide range of inflammatory diseases (Rajaratnam et al., 1994).  The 

proinflammatory cytokine IL-6 and the chemokine IL-8 have been known to play a 

significant role in neutrophil chemotaxis during ALD (Jayatilleke and Shaw, 1997; 

Gallucci et al., 2004). However, in the present study, gender difference was not noted in 

either IL-6 or IL-8 suggesting that they are less likely contributing to the higher 

neutrophilic infiltration in the female rats. Together these data suggest that higher OPN 

expression is the reason for higher neutrophilic transmigration into the hepatic 

parenchyma leading to higher liver injury in females in the ASH model. 

Involvement of β1 and β2 integrins in OPN-mediated neutrophil chemotaxis  

Since OPN attracts higher neutrophils, our next question was to address the 

mechanistic basis of OPN-mediated hepatic neutrophil infiltration. Of the several steps 

in hepatic neutrophil migration, neutrophil activation is the first important step 

(Jaeschke, 1997), and shedding of CD62L (L-selectin) and up-regulation of β2 integrins 

is usually an indicator of neutrophil activation (Jaeschke et al., 1998). However, in the 

sinusoids of the liver, L-selectin is not known to play a role in neutrophil activation 

(Lawson et al., 2000). Instead of the adhesion molecule like L-selectin, determining 

factors like cell swelling of sinusoidal lining cell, active vasoconstriction and reduced 
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membrane flexibility of the neutrophils, traps neutrophils in the sinusoids. Based on this, 

neutrophil activation was assessed by flow cytometry by incubating neutrophils with 

varying concentration of OPN and cOPN in vitro, and the results indicated that OPN was 

activating neutrophils via Mac-1 or β2 integrins.   

In addition to activation, hepatic neutrophil infiltration typically involves 

neutrophil transmigration. However the mechanism by which subsequent neutrophils 

extravasation such as detachment from sites of initial adhesion and ensuing migration 

across the extracellular matrix takes place are not well understood. The current study 

suggests that in the rodent model system of ALD employed, α4β1 and α9β1 integrins are 

likely playing important roles. Both of these integrins could be contributing to migration 

across endothelial cells where they are encountered with OPN. The M5 antibody that 

recognizes SLAYGLR sequence and inhibits binding to α4β1 and α9β1 integrins, 

inhibited neutrophil transmigration. Our findings are in concordance with a recent study 

showing cOPN to have more affinity towards α4β1 and α9β1 integrins on neutrophils 

(Diao et al., 2004). The essential roles of α4β1 intergin has also been implicated in the 

multi-step adhesion and migration of neutrophils in the vascular endothelial cells and in 

patients with sepsis syndrome (Ibbotson et al., 2001; Ulyanova et al., 2007). Also, an 

increase in α4β1 on neutrophils following transmigration has also been reported in 

cardiac myocytes (Reinhardt et al., 1997). Furthermore, studies by Ulyanova and co 

workers (2007), have shown that recruitment of neutrophils in the inflamed peritoneum, 

requires the presence of both α4 and β2 integrins. It can be argued that in addition to β1 

integrins, β2 integrins and its associated adhesion molecules are also involved in higher 
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hepatic neutrophil transmigration. In addition to the role of β2 integrins, based on our 

data we also believe that OPN mediated neutrophil infiltration is mediated by α4β1 and 

α9β1 intergins. Unlike the β2 integrins, the α4β1 and α9β1 intergins are expressed at low 

levels, although their expression is increased during persistence inflammation (Bayless 

et al., 1998). It is possible that a combination of β2 integrins and non-β2 integrins, 

notably α4β1 and α9β1 function together for neutrophil chemotaxis. This is in agreement 

with a study by Henderson and co workers (2001), which showed that α4-integrin and 

LFA-1 have overlapping roles in post capillary venules for neutrophil transmigration. In 

addition to this, recently we have observed that neutrophils isolated from mice model of 

ALD also to be a source of OPN. In this context, it is important to recognize that in 

addition to extracellular OPN mediating its neutrophil-migration effect through α4β1 and 

α9β1 intergins, the role of intracellular OPN within neutrophils cannot be ignored. Infact, 

study by Sodek and coworkers (Sodek et al., 2000) suggests that there is an intracellular 

OPN that is thought to regulate the formation of cell processes and cell motility.   

In summary, higher liver injury and hepatic neutrophilic infiltration in females in 

ASH was due to higher expression of OPN and cOPN. OPN was found to act as a 

chemokine in attracting neutrophils into the liver making females more susceptible to 

alcohol mediated liver injury. In addition, OPN has also been identified as a biologically 

relevant ligand for α4β1 and α9β1 integrins in the ALD model and the increased 

expression of these two integrins may be possibly responsible for OPN-mediated hepatic 

neutrophil transmigration (Fig 45). Based on our studies, biliary epithelium and 
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hepatocytes are the major source of extracellular OPN which upon thrombin cleavage 

results in the generation of cOPN exposing the SLAYGLR epitope of OPN to interact 

with α4β1 and α9β1 integrin on neutrophils.  

 
 
 

 

 
Fig. 45. Scheme to explain the mechanism of involvement of OPN in higher liver injury in females in 
alcoholic liver disease. In ASH, OPN secreted from the biliary epithelial cells and hepatocytes 
undergoes thrombin cleavage exposing the cryptic SLAYGLR sequence, where they bind to α4β1 
and α9β1 integrins on neutrophils. Binding between SLAYGLR and these integrins lead to 
neutrophil adhesion and migration contributing to neutrophil mediated liver damage. In addition to 
secreted OPN, neutrophils may also be contributing to the production of OPN whose intracellular 
function is not clearly established.  
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The OPN-SLAYGLR interaction with α4β1 and α9β1 results in adhesion and 

migration of neutrophils within the liver leading to hepatic damage (Fig 45). In addition, 

neutrophils also have the ability to produce OPN and the intracellular form of OPN 

which can potentially bind to these integrins on neutrophils resulting in neutrophil 

migration.  

Potential therapeutic strategies to inhibit OPN in alcoholic liver disease  

Based on the proposed role of OPN in higher neutrophil-mediated liver injury in 

females, different therapeutic interventions (Fig 46) for decreasing OPN expression at 

the level of mRNA, protein and recptor signaling in the liver is a potential option to treat 

patients with alcoholic liver disease, so that the progression to fibrosis and cirrhosis can 

be prevented. In addition, other inflammatory liver diseases with similar pathological 

progression as ALD can also be potentially treated. 
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Fig. 46. Potential therapeutic strategies to target OPN and inhibit its inflammatory activities in 
alcoholic liver disease. There are numerous levels/targets at which potential therapeutics strategies 
can be directed against OPN, including (A) at the transcriptional level, (B) at the level of the protein, 
or (C) at the level of receptor-ligand interactions and receptor-mediated signaling.  (Adapted from 
Tuck et al., 2007) 
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Application of proteomics to detect unique proteins in female susceptibility to ALD  

Due of the distinct advantages of proteomics to detect global expression of 

proteins, the detected histopathologic difference noted between genders in ASH was 

compared with the differential protein expression. Following protein identification based 

on the spots and MALDI/MS data, these differentially expressed proteins were 

categorized according to their biological functions. It was found that proteins related to 

metabolism of amino acids, carbohydrates, fatty acids, lipids and oxidative stress 

response were mainly altered in their expression. Accordingly, the proteins were 

categorized as those belonging to (a) metabolism (b) oxidative stress and (c) 

miscellaneous proteins relevant to the pathogenesis of ALD are discussed below.  

 (a) Metabolism related proteins  

 Administration of EtOH+LPS induced changes in the expression of proteins 

regulating fatty acid synthesis in both males and females (Lieber, 2000; Nanji et al., 

2002; Crabb et al., 2004). However, alterations in the level of these proteins are well 

correlated with the findings of steatosis that results from the perturbation of the β-

oxidation pathway (Reddy and Hasimoto, 2001). Proteins like 2-oxoisoverate 

dehydrogenase and Acyl CoA dehydrogenase are known to contribute to the β-oxidation 

pathway of the lipids (Lieber, 2005). Dysregulation of these proteins in the present study 

suggests higher triglyceride accumulation leading to higher steatosis or fatty liver, and is 

consistent with higher steatosis noted in the female livers in our model. Several studies 

have investigated the mechanism underlying steatosis following alcohol ingestion. 

Studies by Crabb et al., (2004) have suggested the role of PPAR- α in fat accumulation 
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in the liver and reported that ethanol feeding decreases the level of retinoid X receptor 

alpha (RXRα) as well as the ability of PPARα/RXR in liver nuclear extracts to bind to 

its consensus sequence, resulting in decreased levels of mRNAs for several PPARα 

regulated genes like Acyl CoA dehydrogenase long chain (Crabb et al., 2004).  Lower 

levels of Acyl CoA dehydrogenase long chain in females in the current study as 

compared to the males indicates higher fat accumulation and consequent higher 

oxidative injury in females.  

(b) Oxidative stress related proteins  

 Oxidative stress is known to play an important role in the pathogenesis of ALD 

(Di Luzio, 1966; Shaw et al., 1981).  Infact, there are studies that report oxidative stress 

to be the reason for higher liver injury in female alcoholics (Kono et al., 2000; Colantoni 

et al., 2000). Oxidative stress is induced either by the increased production of toxic 

radicals or by decreased endogenous antioxidants (Colantoni et al., 2000). In our study, 

various oxidative stress related proteins like ER 60, Ferritin Heavy chain, HSP 60, 

Catalase and Cu-Zn dismutase were found to upregulated in females in ASH as 

compared to their male counterparts. It was also evident in this study that the antioxidant 

enzyme PRX6, was less downregulated in females as compared to the males in ASH. A 

few of these proteins were analyzed and will be discussed. 

Peroxiredoxin 6: Peroxiredoxins belong to a superfamily of nonheme and nonselenium 

peroxidases containing two conserved cysteines participating in intramolecular 

disulphide/sulfhydryl redox cycling with thioredoxin resulting in the reduction of 

hydrogen peroxide (Manevich et al., 2004). However, 1-cys peroxiredoxin or 
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Peroxiredoxin VI (Prx VI) has a single conserved cysteine and does not use thioredoxin 

as reductant. Although Prx VI has been reported to be protective against cellular 

membrane damage acting as an anti- oxidant, recent studies by Kim et al., (2006), have 

reported markedly increased levels of oxidized PrxVI in alcohol exposed mouse livers 

and ethanol-sensitive hepatoma cells as compared to the corresponding controls. 

Furthermore, these studies demonstrate increased oxidation or modification of proteins 

leading to enzymatic inactivation thus likely predisposing the tissue for irreversible 

damage in the presence of additional stress (Kim et al., 2006). Although we have not 

measured the inactive oxidative form of PrxVI, it can be postulated that higher liver 

injury in females ASH group in our studies, could be attributed due to the presence of 

higher Peroxiredoxin VI as compared to their male counterparts. The higher PrX VI in 

females ASH in our model, likely points to the presence of the higher inactivated protein 

in this group. Future studies aimed at determining Prx VI inactivation will likely confirm 

this hypothesis. 

 HSP60: Oxidative stress results in the synthesis of a group of highly conserved protein 

called heat shock proteins (HSPs). The 60kDa HSP is one of the molecular chaperone 

proteins localized in the mitochondria that participates in the folding of newly 

synthesized proteins, unfolding and aggregation (Habich et al., 2002). In addition, they 

also play a role during transportation and degradation of proteins (Becker and Craig, 

1994; Ellis and vander Vies, 2001; Fink, 2001). Needless to say, HSP60 is also 

expressed in response to oxidative stress. Increased expression of HSP60 has also been 

reported in various inflammatory diseases like rheumatoid arthritis, insulitis and 
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atherosclerosis (Holoshitz et al., 1986; Brudzynski et al., 1992; Xu et al., 1993).  While 

the precise mechanism for higher expression of HSP60 in females is not tested, the 

upregulation of HSP60 in this study points to the adaptive mechanism due to higher liver 

injury in females. This is consistent with the previous report that increase in oxidative 

stress resulted in higher synthesis of HSP’s (Tacchini et al., 1995).  

Ferritin heavy chain: Ferritin is a ubiquitous and highly conserved cytosolic iron-

binding protein. The cytosolic form consists of 2 subunits, termed heavy (H) and light 

(L) chain (Harrison and Arosio, 1996). Although Ferritin-L is predominantly present in 

the liver, it is readily modified in many inflammatory and infectious conditions and in 

response to environmental stress (Torti and Torti, 2002). In the literature, Ferritin-H has 

been reported to be regulated by various cytokines. The proinflammatory cytokines 

TNF-α and Interleukin (IL)-1α, have been known to induce Ferritin-H suggesting that 

inflammatory pathways and stress can impact ferritin regulation (Torti et al., 1988; Wei 

et al., 1990).  Since females have been reported to have higher expression of TNF-α 

during ALD, higher expression of Ferritin-H in females in ASH correlates with higher 

inflammation and more severe ALD noted compared to the males. This is also supported 

by the fact that the females in the control+LPS group had significant higher expression 

of Ferritin-H as compared to the males. The mechanism by which Ferritin-H leads to 

higher liver injury in females is unknown and worthy of additional investigation.  

ER60: The ER60 is an endoplasmic reticulum-resident multifunctional protein with both 

cysteine protease activity and disulphide bond folding activity (Piec et al., 2005). To 

confer protection against stress, cells use quality control mechanisms to detect, refold 
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and eventually eliminate abnormal proteins. It has been suggested that ER60 may be a 

component of the proteolytic machinery for the degradation of misfolded proteins (Otsu 

et al., 1995). Although there is no significant difference between males and females in 

the ASH group, additional temporal studies are required to confirm this finding. Based 

on the significant induction of this protein in female ASH group as compared to controls, 

additional time points may be needed to achieve significance. So higher expression of 

ER60 in females in the ASH group in our model, as compared to the controls suggests 

that in females, degradative pathways are significantly impaired and this may contribute 

to significant stress and higher liver injury in the females noted in ASH group. 

(c) Others  

In addition to the metabolism and oxidative stress related proteins, few other 

proteins like Cytokeratin (CK) 19 and translokin was found to be significantly 

upregulated in the females in ASH. Cytokeratins are normal constituents of epithelial 

cell cytoskeleton (Omary et al., 2002) and serum CK levels are often used as biomarkers 

for epithelial malignancies (Barak et al., 2004). In addition to this, serum CK levels have 

also been found to increase in other non-malignant diseases like alcoholic liver disease 

(Gonzalez-Quintela et al., 2006), especially in ASH. Normally, adult hepatocytes 

express only CK-8 and CK-18 (VanEyken, 2000; Omary et al., 2002). However in ASH, 

Mallory bodies formed by the rearrangement of CK-8 and CK-18 also contains newly 

synthesized CK-19 as inclusions (Pei et al., 2004). Upregulation of CK-19 in our female 

ASH model not only points to the severity of ASH in this group, but also indicates the 

potential of using CK-19 as a biomarker for ASH. 
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In summary, the current proteomics study has identified a potential set of 

proteins that correlates with the liver pathology and highlights certain mechanisms 

associated with the mechanism of higher liver injury noted in our female rat ASH model. 

The proteomics study in this project identified additional protein that can be potentially 

investigated to identify differential female susceptibility to ALD. 
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