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ABSTRACT 
 
 
 
 

Effect of Instabilities in the Buoyancy-Driven Flow on the Bottom Oxygen: Applications 

to the Louisiana Shelf. (May 2008) 

Valeriya Kiselkova, B.S., Far Eastern State Technical University; 

M.S., Far Eastern State Technical University 

Chair of Advisory Committee: Dr. Steven F. DiMarco 
 
 
 
 

 A combination of in situ sampling and numerical modeling was used to 

investigate the effects of mesoscale (<50 km) circulation patterns and stratification on 

the evolution of hypoxia on the Louisiana Shelf. Temperature, salinity, and dissolved 

oxygen concentrations records reveal the presence of an alongshelf meander, which is 

manifested vertically and horizontally as a wave-like distribution of the properties in the 

water column. The observations suggest the meander is a ubiquitous characteristic of the 

shelf with alongshore spatial scale approximately 50 km and less, which is consistent 

with the locations of sandy shoals along the coast and the local deformation radius. 

Twelve numerical experiments using an idealized three-dimensional shelf 

circulation model were performed to evaluate the relative importance of the variable 

bottom topography and freshwater forcing on the development, evolution, and scales of 

the dynamic instabilities. The inclusion of the shoals into the bottom topography showed 

the development of the dynamic instabilities as the flow passed over the shoals and 

downstream. Introduction of fresh water onto the shelf resulted in greater salinity 

differences, and, as a consequence in the formation of the dynamically unstable salinity 

fronts along the plume edge. The combination of the freshwater forcing and shoaling 

topography produced competing and complex interactions. 

Six numerical experiments were analyzed in order to investigate the effect of 

dynamic instabilities on spatial and temporal patterns of dissolved oxygen 
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concentrations along the shelf. Although a linear relationship between Brunt-Väisälä 

frequency and dissolved oxygen deficit was expected, a nonlinear loop-like relationship 

was discovered that reflects the response of biochemical properties to the alongshelf 

variability of the density field. Comparison of the numerical modeling runs to 

observations of density and dissolved oxygen concentrations on the Louisiana Shelf 

reinforces the importance of physical processes such as topographic steering and/or 

freshwater forcing on the alongshore distribution of physical and biochemical properties. 

It suggests that the time scales of respiration (~3 days) and buoyancy transfer processes 

(~5-7 days), associated with the physical processes that are responsible for water column 

stability and ventilation, are similar to the time scales associated with the benthic 

respiration rates.  
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Hypoxia in the Northern Gulf of Mexico and other regions around the world 

Hypoxia in aquatic systems refers to the waters where dissolved oxygen 

concentration is below 1.4 ml·L-1 or 2 mg·L-1 [Rabalais et al., 2001; Rowe and 

Chapman, 2002]. Hypoxic (low oxygen) and anoxic (no oxygen) waters have existed 

throughout geologic time and presently occur in many of the ocean’s deeper 

environments, such as oxygen minimum layers, deep basins, and fjords [Kamykowski 

and Zentara, 1990; Diaz, 2001; Osterman et al., 2005]. The occurrence of hypoxia and 

anoxia in shallow, coastal and estuarine areas appears to be increasing, possibly 

accelerated by human activities [Diaz and Rosenberg, 1995; Diaz, 2001; Rabalais et al., 

2002b].  

As on land, oxygen is vital in the marine environment to sustain life in fish and 

invertebrates. Oxygen introduced into the water from the atmosphere and from 

phytoplankton, helps to maintain the respiration needs of all animals, including those 

that swim or move above the bottom and those that reside in sediments. When the 

oxygen consumption rate exceeds resupply, oxygen concentrations may decline below 

levels that sustain most animal life [Diaz, 2001]. When the oxygen level remains low 

for prolonged time periods, marine organisms suffer, and ecosystem is altered, resulting 

in the forced migration, decrease in food supply, increase in mortality, and reduction of 

biodiversity [Rabalais et al., 2001; Rabalais et al., 2002b]. Fish population studies by 

Wu et al. [2003] showed that chronic exposure to hypoxia in some aquatic environments 

cause a disruption in the endocrine system and reproductive impairment.  Hypoxia is a 

stressful condition in aquatic ecosystems, and can have disastrous effects [Diaz and 

Rosenberg, 1995; Diaz, 2001; Rabalais et al., 2002b]. 

______________________ 

This dissertation follows the style of Journal of Geophysical Research. 
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The second largest zone of oxygen-depleted waters in the world is found on the 

northern Gulf of Mexico continental shelf adjacent to the outflows of the Mississippi 

and Atchafalaya Rivers [Diaz, 2001; Rabalais et al., 2002a]. The combination of high 

freshwater discharge, wind mixing, regional circulation, and summer warming controls 

the strength of stratification that goes through a well-defined seasonal cycle. The 

physical structure of the water column and high nutrient load that enhance primary 

production lead to an annual formation of the hypoxic waters that is dominant from 

spring through late summer [Pokryfki and Randall, 1987; Rabalais et al., 2002b; Rowe 

and Chapman, 2002]. Paleoindicators in dated sediment cores indicate that hypoxic 

conditions likely began to appear around the turn of the last century  [Osterman et al., 

2005] and became more severe since the 1950s as the nitrate flux from the Mississippi 

River to the Gulf of Mexico tripled [Rabalais et al., 2002a]. Referred to as the “Dead 

Zone” in the press and literature, the areal extent of the severe oxygen deficiency has 

averaged over 15000 km2 annually since 1993, and reached a record size of 20700 km2 

in mid-summer 2001 [Rabalais et al., 2001]. 

Several studies examined the effect of hypoxia on living organisms in the 

northern Gulf of Mexico. During the summer of 1981 Gaston [1985] found hypoxia on 

the inner shelf south off Cameron, Louisiana, and that population of most macrobenthos 

species were significantly reduced. While mobile species may escape the low-oxygen 

waters, benthic species such as tube dwellers and some surface feeders are severely 

affected by hypoxic events [Gaston, 1985]. Rabalais and Harper [1992] described a 

decline in species abundance as water conditions changed from oxygenated in the 

spring to hypoxic in summer. Cruz-Kaegi and Rowe [1992] explained the low benthic 

macrofauna biomass to high sediment loading from the Mississippi River system and 

seasonal hypoxia. Harper et al. [1981] documented a decrease in species diversity and 

abundance over the Texas shelf associated with the 1979 summer hypoxia off Freeport, 

Texas. Zimmerman et al. [1995] examined shrimp catch per unit fishing effort over the 

Louisiana Shelf and found no relationship with percent of area that is hypoxic.  Most of 

the research investigating the effects of eutrophication and hypoxia in the Northern Gulf 
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of Mexico has emphasized the potential loss of marine flora and fauna in general. 

There is general agreement that two principal factors are required for the 

development and maintenance of coastal hypoxia on the Texas-Louisiana Shelf. First, 

the water column must be stratified so that the bottom layer is isolated from the surface 

layer and the diffusion of dissolved oxygen from surface to bottom is inhibited. Both 

salinity and temperature are important in influencing the strength of stratification in the 

Northern Gulf of Mexico [Rabalais et al., 1991; Wiseman et al., 1997]. Fresh waters 

derived from rivers and seasonally warmed surface waters are less dense than, and 

reside above, the saltier, cooler and more dense water masses near the bottom. 

Stratification on the Louisiana shelf goes through a seasonal cycle that generally 

exhibits maximum stratification during the summer and weakest stratification during the 

winter months [Wiseman et al., 1997; Rabalais et al., 2002b]. This cycle is due to the 

strength and phasing of river discharge, wind mixing, regional circulation and air-sea 

heat exchange processes.  

Typically, hypoxia occurs in waters shallower than 30 m along the Texas-

Louisiana Shelf between 89.5oW and 94oW [Rabalais et al., 1999], and found in the 

lower half or two-thirds of the water column, although in the western regions of the 

shelf, hypoxia can be confined to the lower 1-2 m. 

On the Texas Shelf occurrences of hypoxia are believed to be less frequent, 

shorter lived, and more limited in extent than those over the Louisiana shelf. Hypoxic 

event along the Texas coast was first documented in June and July of 1979 [Harper et 

al., 1981]. The hypoxia extended from Freeport, Texas, northeast to Sabine Pass in 10- 

to 33-m depth. On the inner shelf between Galveston Bay and Matagorda Bay, seasonal 

sampling (4 times per year) revealed scattered low-oxygen concentrations in July 1973 

[Oetking et al., 1974]. Data recently available seems to indicate that Texas hypoxia may 

be more persistent and frequent than previously held [DiMarco, pers. comm.]. 

The northwestern estuaries of the Gulf of Mexico are also known to experience 

episodic hypoxic conditions. Hypoxia has been documented in the southern part of 

Corpus Christi Bay, in Texas, every summer since 1998 [Ritter and Montagna, 1999]. 
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Hypoxia also has occurred in parts of Galveston Bay [Seiler et al., 1991] and other 

Texas estuaries such as in Matagorda Bay, Aransas Bay, and Laguna Madre [U.S. 

Environmental Protection Agency, 1999]. 

There are few documented occurrences of hypoxia over the northeastern Gulf 

shelf between the Mississippi River Delta and the west Florida shelf. Rabalais [1992] 

reported hypoxic waters off Mississippi Sound and Mobile Bay following high river 

discharge in 1991. Waller [1998] also reported hypoxia off the Mississippi Sound and 

Mobile Bay following the 1993 Mississippi River flood. Most reported occurrences in 

this region are in years of high river discharge. Brunner et al. [2006] analyzed the 

foraminiferal proxies of hypoxia collected in 1951-1956 in the Mississippi Bight. The 

results show apparent, recurrent low-oxygen to hypoxic bottom water on the inner shelf 

at hotspot locales seaward of the Mississippi-Alabama barrier islands and the eastern 

distributaries of the Balize delta.  

Estuaries and bays in the northeastern Gulf of Mexico also experience hypoxia. 

Schroeder [1977] reported hypoxic waters in Mobile Bay in 1973 following flooding by 

the Mobile River. It has been noted that migration of a high number of fish and 

invertebrates to the shore of the Mobile Bay is related to the occurrences of hypoxia 

[Martin et al., 1996]. Hypoxia has been recorded in Tampa, Sarasota, and Hillsborourgh 

Bays and Charlotte Harbor, Florida [Martin et al., 1996; Gray et al., 2002]. 

Many other regions around the world, similar to the Mississippi River Delta, i.e. 

near the mouths of the world’s major river systems have experienced hypoxic or anoxic 

conditions [Degens et al., 1991; Diaz and Rosenberg, 1995; Glausiusz, 2000; Joyce, 

2000; Diaz, 2001]. The Rhine River in the North Sea [Bennekom and Wetsteijn, 1990], 

the Pearl River [Yin et al., 2004] and Changjiang River [Wei et al., 2007] in China are 

notable examples. Gray et al., [2002] listed bays (Kiel, Germany; Viliane, France; 

Tokyo, Japan; Chesapeake, USA) and estuaries (Port Hacking, Australia; Pamlico, 

Pappahannock, and York River, USA) around the world with observed hypoxia or 

anoxia. 
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The reduction of the subpycnocline dissolved oxygen concentrations in many of 

these ecosystems has been attributed to an increase in nutrient loading. The increase in 

the nutrient loading has been linked to the growth of the human population and 

industrialization of these areas, development of the modern agriculture and related loss 

of inland wetlands [Earles, 2000]. Diaz [2001] compared the Louisiana Shelf to three 

other hypoxic regions – the Kattegat, the Black Sea, and the Baltic Sea. He found that 

the northwestern Gulf of Mexico is the only system in which there is no documented 

decline in fisheries. 

In many locations hypoxia results from the factors other than high nutrient 

loading. For example, in the Rappahannock and York Rivers estuaries, tidal mixing and 

close proximity to the hypoxic waters of Chesapeake Bay control the occurrence of 

hypoxia. Walsh [1998] and Stoddard and Welsh [1986] showed that hypoxic events in 

the York Bight were related to the unusual hydrographic and/or climatic conditions such 

as warm winter with large terrestrial runoff, a low frequency of spring storms, persistent 

southerly summer winds. They suggested that anoxic events might occur without any 

allochthonous input of organic carbon and that climatic conditions are extremely 

important in driving the event. 

Hypoxia occurs naturally in the world major upwelling areas [Demaison and 

Moore, 1980]. In these cases, the hypoxia is driven by mesoscale variability changes 

often depended on the wind field. In the Agulhas Bank, south of Africa, hypoxia 

develops without fresh water input from the few rivers along the southern coast of 

South Africa. Summer solar heating and limited water movement result in the 

establishment of a strong pycnocline that assists the development of hypoxia [Chapman 

and Shannon, 1987; Carter et al., 1987]. 

The lack of flushing of the deep basins of the Baltic Sea has been identified as a 

primary cause for the observed anoxic conditions [Conley et al., 2002]. The anoxia 

within the deep interior basins of Black Sea also is a result of the limited ventilation, 

however, the hypoxic conditions on the northwestern shelf of the Black Sea during the 
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summer-autumn months are mostly attributed to the intense phytoplankton blooms and 

organic matter generation and recycling [Oguz, 2006]. 

Hypoxia or anoxia occurrences result from a combination of multiple factors, 

including weather (e.g. frontal passages, winds, rainfall, temperature), oceanic 

conditions (e.g. stratified or mixed areas, areas with a sill or without, tidal mixing, 

currents, waves, upwelling), and anthropogenic forcing (e.g. sewage, agricultural and 

forestry runoff). Therefore, there is no simple model of oxygen depletion that can fit all 

forms of variability [Belabbassi, 2006]. 

 

1.2 Physical description of the Louisiana Shelf 

The region historically affected by seasonal hypoxia covers inner Louisiana 

Shelf west of the Mississippi delta and part of the Texas Shelf at the depth range 

between 5-60 m [Belabbassi, 2006; Rabalais et al., 2007]. The Texas-Louisiana Shelf 

belongs to the northern shelves of the Gulf of Mexico that are naturally divided into 

eastern and western regions by the Mississippi River Delta which protrudes seaward 

from the coast to a narrow shelf edge (Figure 1.1). The shelf width, as defined by the 

200-m isobath, is about 200 km at its widest point (near the Texas-Louisiana border) 

but narrows to about 90 km off the Rio Grande Delta (at the border between Mexico 

and Texas) and virtually disappears off the Mississippi Delta (near the Louisiana-

Mississippi border). The area encompassed by these boundaries is approximately 105 

km2 [Etter et al., 2004]. The Louisiana Shelf extends from the Mississippi Bight to the 

Texas border. 

The Gulf of Mexico is a semi-closed basin with broad and narrow continental 

shelves surrounding a deep abyss reaching ~3800 m and is connected to the world 

ocean through entrances at the Yucatan and Florida Straits. The circulation processes of 

the deep Gulf of Mexico combined with the local processes of wind forcing, river 

runoff, and other processes are responsible for the vertical and horizontal density 

structure, and distribution of freshwater and biochemical properties. 
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Figure 1.1. Map of the Northern Gulf of Mexico showing bathymetry and key geographic locations. The 10, 20, 30, 40, 50, 60, 
200 m isobaths are shown. 
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The physical dynamics, biochemical activity, and geomorphologic processes on 

the Louisiana Shelf are highly affected by the Mississippi-Atchafalaya River System 

discharge. The annual combined outflow of the Mississippi-Atchafalaya River system 

averages about 530 km3 of water and introduces 210 x 109 m3 of sediment [Milliman 

and Meade, 1983]. This discharge constitutes 55% of the total freshwater input to the 

Gulf of Mexico [Solis and Powell, 1999]. The Mississippi River enters the Louisiana 

Shelf through the bird-foot delta via three large passes and numerous smaller channels 

along a 40 km peninsula at about 89oW, 29oN. The mean annual discharge of the 

Mississippi River at Tarbert Landing, LA, is approximately 13,500 m3·s-1. The 

Atchafalaya River flow discharges through Atchafalaya Bay near Morgan City, LA at 

about 91.5oW, 29.3oN. Since 1976, the Atchafalaya River outflow has been constrained 

to 30% of the total Mississippi-Atchafalaya discharge, and combined with 50% of 

Mississippi River flow that goes west, introduces large amount of freshwater onto 

Louisiana Shelf. 

The freshwater volume exhibits an annual cycle that is dominated by the spring 

flood of Mississippi and Atchafalaya Rivers [Dinnel and Wiseman, 1986]. Maximum 

shelf freshwater volume occurs approximately one month after peak spring runoff; 

minimum freshwater volume occurs just prior the spring maximum. Etter et al. [2004] 

constructed monthly mean freshwater budgets for the Texas-Louisiana Shelf for the 

period May 1992 to November 1994 using the hydrographic data, supplemented by 

meteorological data. The freshwater flux divergence indicates a persistent divergence of 

fresh water over the area in agreement with the baseline climatology. Filling and 

flushing times are balanced by reducing the westward-directed fraction of the 

Mississippi River discharge to 47%, supporting the statement that approximately half of 

the long-term Mississippi River discharge is directed westward upon entering the Gulf 

of Mexico. 

The realistic modeling study of Mississippi-Atchafalaya River outflow dynamics 

shows two dynamically distinct plumes [Hetland and DiMarco, 2008]. The Mississippi 

River plume enters the shelf near the shelf edge, forms a recirculating gyre in Louisiana 
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Bight [Ichiye, 1962], and typically does not interact directly with topography. The 

Atchafalaya River plume is more diffuse, enters a broad shelf at the coast, and interacts 

with the shallow coastal topography. Both plumes are strongly affected by winds, and 

tend offshore during the mean summer upwelling winds. 

The quasi-annual low-frequency circulation over the Texas-Louisiana Shelf is 

primarily wind driven. For most of the year, the low frequency circulation on the shelf 

consists of an elongated cyclonic gyre, with westward flow near the coast and eastward 

flow near the shelf break about 200 m isobath [Cochrane and Kelly, 1986; Cho et al., 

1998; Nowlin et al., 2005]. The downwelling favorable non-summer (approximately 

September through June) winds drive the currents downcoast, toward Texas, 

transporting the freshwater away from Louisiana. A directional shift in the mean wind 

stress during the summer months (approximately June through September) from 

predominantly westward to north and northeast disrupts the gyre and results in a current 

reversal to eastward flow over the shelf starting in June [Nowlin et al., 1998; Wang et 

al., 1998]. Another shift in the prevailing wind direction back to the west allows for the 

re-establishment of the gyre in August-September.  

The circulation patterns of the outer shelf in the northern Gulf of Mexico are 

associated with motions of the Loop Current and its eddies [Nowlin et al., 2001; Sturges 

and Lugo-Fernandez, 2005]. The Loop Current interacts with the currents on the outer 

edge of the eastern continental shelf through the phenomenon of Loop Current Eddy 

formation and associated cyclones.  The eastern region near Mississippi Canyon shows 

the estimates of kinetic energy in the mesoscale band of the spectrum, corresponding to 

the mesoscale circulation features like eddies [Nowlin et al., 2005]. The offshore 

circulation features are episodic in nature due to the chaotic character of the Loop 

Current intrusions into the northern Gulf of Mexico and the separation of periods of the 

Loop Current eddies [Sturges and Leben, 2000; Leben, 2005]. 

The tides in the Gulf of Mexico are considered to be small compared to oceanic 

tides. DiMarco and Reid [1998] described the principal tidal current constituents from 

81 current meter measurements deployed on the Texas-Louisiana Shelf from 1992-
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1994. Tides in the region are predominantly diurnal. The dominant tidal constituents are 

found to be K1, O1, and M2. The largest tidal surface current of about 9 cm·s-1 was 

found at the northeast corner of the shallow shelf near the Atchafalaya Bay, and 

decreased to about 2 cm·s-1 at the shelf edge [DiMarco and Reid, 1998]. 

The inertial currents on the Texas-Louisiana Shelf are driven by the passages of 

atmospheric fronts, hurricanes and tropical storms [Nowlin et al., 1998; Nowlin et al., 

2005]. The amplitudes of inertial oscillations can reach 15 cm·s-1 for a weak front 

passage and are typically surface trapped above the pycnocline [Chen et al., 1996; 

DiMarco et al., 2000; Zhang et al., 2008 submitted]. The Texas-Louisiana Shelf is also 

influenced by a diurnal sea breeze due to differential heating and cooling of the land 

and ocean [Hsu, 1988]. The 30oN latitude of the shelf combined with the diurnal wind 

forcing results in a near-resonant response of the surface currents to the wind stress. The 

24-hour anticyclonic currents can reach 60 cm·s-1 and represent the largest non-storm 

induced high-frequency currents on the shelf [DiMarco et al., 2000]. These currents 

possibly can enhance shear mixing across the pycnocline and reduce stratification 

[Zhang et al., 2008 submitted]. 

The severity and frequency of storms and frontal passages increases during the 

nonsummer months [Nowlin et al., 1998]. The stratification of the water column is 

broken through the action of the surface gravity waves and shear mixing processes. In 

summer, scarce atmospheric fronts allow the shelf to remain stratified and inhibit 

downward mixing. Therefore, the seasonal pattern of storms propagation contributes to 

the summertime conditions favorable for the water column stratification on the 

Louisiana Shelf. The amplitude and period of surface gravity waves in the Gulf of 

Mexico are considerably smaller than those found in the open ocean or larger basins. 

The typical wave conditions over the inner Texas–Louisiana Shelf have mean 

significant wave heights of less than one meter with average periods of about six 

seconds [DiMarco et al., 1995]. Strong winds during the passage of hurricanes and 

tropical storms produce significant wave heights that mix the water column from the 

surface to the bottom.  
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In terms of sediment transport, the Texas-Louisiana Shelf is considered a storm-

dominated environment experiencing relatively low energy levels resulting from winds 

and wave processes except for the winter passages of cold fronts and the summer 

occurrence of hurricanes and tropical storms [Boyd and Penland, 1988]. The Holocene 

Mississippi River delta plain is located in southeast Louisiana and occupies ~400 km of 

the coastline in the Northern Gulf of Mexico [Williams et al., 2006]. There are only two 

active delta complexes within the delta plain, the Modern and the Atchafalaya. At the 

present time the Mississippi delta undergoes the transgressive phase of its evolution, the 

late stages of which are characterized by the barrier islands submergence and reworking 

as sandy shoals [Boyd and Penland, 1988]. Facies found on bathymetric highs of the 

Atchafalaya delta as shallow as 5 m water depth consist of highly consolidated relict 

sand and mud, and associated with subaqueous sand shoals formed in the early 

Holocene [Neill and Allison, 2005]. The modern Atchafalaya delta has at least two 

distinct topographic features along the coast, the Trinity Shoal and the Ship Shoal 

(Figure 1.2). 

 

1.3 Study motivation 

Because of the significant implications of the hypoxia on the marine ecosystem, 

fisheries, and public health, the problem has received an increased attention from the 

scientific community over the past 20 years. The occurrence of the hypoxia on the 

Louisiana shelf has been documented since 1973 [Harris et al., 1976; Ragan et al., 

1978; Pokryfki and Randall, 1987; Boesch and Rabalais, 1991; Rabalais et al., 2002b]. 

The extent of the hypoxic zone along the Texas-Louisiana coast varies from year to year 

(Figure 1.3). Most of these studies are based on the eutrophication paradigm which 

suggests that the widespread hypoxia on the Louisiana shelf is a product of extensive 

nutrient loading brought with the river runoff into the shelf, thus the limitation of the 

nutrients source would reduce the extent and intensity of hypoxia off Louisiana [Turner 

and Rabalais, 1994; Rabalais et al., 2002a]. 
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Figure 1.2. The bottom bathymetry of the Louisiana Shelf. Locations of 10, 20, and 50 
m isobaths are indicated. (Figure courtesy of M. K. Howard) 

 
 
 
To better our understanding of the hypoxic zone dynamics and to enhance the 

predictive capabilities, a number of modeling studies have been conducted [Rowe, 

2001; Justic et al., 2002; Scavia et al., 2003; Turner et al., 2005; Hetland and DiMarco, 

2008]. 

The hindcasts and predictions of the hypoxic areal extent are mostly based on 

the statistical relationship between freshwater flux to the shelf, nutrient loading, 

respiration, and primary productivity. Justic et al. [2002] use a vertical two-layer model, 

and do not account for horizontal variability of the water column. Scavia et al. [2003] 

propose a model that uses a westward drift of oxygen-depleted waters at depth from the 

river source of the freshwater and nutrient supply. Turner et al. [2005] implement a 

statistical relationship between freshwater discharge and near-shore nitrogen 

concentrations, and link it to the area of hypoxia. All these models support the 

hypothesis that riverine nutrient fluxes, via their influence on the net productivity of the 

upper water column, play a major role in controlling bottom water hypoxia.  
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Figure 1.3. Mid-summer areal extent of hypoxic waters in the Northern Gulf of Mexico 
between 1985 and 2006. (Data source: N. N. Rabalais, LUMCON) 

 
 
 
Hetland and DiMarco [2008] take a different approach. They apply simple, 

idealized models of biological respiration to a complex three-dimensional 

hydrodynamic model of coastal circulation. They showed that the formation of the 

hypoxia is primarily a vertical process, which is dependent on the local respiration and 

dispersed by vertical mixing, and different respiration processes tend to dominate in 

different geographical regions. The biological processes responsible for producing 

hypoxia change from east to west, with the shelf region south of Terrebonne Bay being 

the approximate dividing line between water column respiration predominantly causing 

hypoxia to the east and benthic respiration causing hypoxia to the west. 

Rowe [2001] uses a non-steady state, time-dependant numerical simulation 

model to compare biological and physical processes with shipboard measurements and 

continuous near-bottom records. He summarized biological processes that consume or 
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produce oxygen in a budget, and later uses that to quantify the degree to which 

consumption in deep waters and in sediments exceeds net production and thus the time 

it takes to reach hypoxic conditions following the spring onset of stratification. The 

simulations illustrate possible variations in oxygen concentrations on time scales of 

hours and months, which match much of the variability in the direct observations at 

time scales of days to weeks. 

Texas-Louisiana Shelf can be described as a region of freshwater influence 

(ROFI). The distinctive feature of all ROFI systems is the input of significant amounts 

of buoyancy as freshwater from river sources [Dagg et al., 2004; Geyer et al., 2004]. 

This input tends to drive a coastal-parallel flow, which without frictional effects is 

subject to baroclinic instability. These baroclinic instabilities induce large meanders and 

eddies in the flow that can be stabilized by the stirring introduced as the action of wind 

and waves, or tidal flow [Simpson, 1997]. 

Field measurements show evidence of large-amplitude, shelf-scale disturbances 

in the distribution of hydrographic properties across the Louisiana Shelf [DiMarco et 

al., 2007a, submitted]. These wave-like instabilities were also seen in satellite imagery 

(MODIS, SeaWifs) throughout the year (Figure 1.4), which leads to a conclusion that 

formation of the meander is common in this region. The position of the meander is 

consistent with the location of the shallow sandy shoals, which are remnant subaqueous 

deltaic features along the Louisiana Shelf. This meander also is seen in the vertical 

distribution of physical properties in the water column. Vertical displacements of 

isopycnals were as large as 10 m in 20 m total depth and an estimated along shelf 

wavelength of about 50 km. Observations indicate that dissolved oxygen concentrations 

are increased at the bottom where the break down in stratification occurs; as 

stratification weakens, it allows for vertical mixing to ventilate the lower layers of the 

water column [DiMarco et al., 2007a, submitted]. 

Belabbassi [2006] showed a significant correlation in summer between Brunt-

Väisälä frequency and near-bottom dissolved oxygen concentration on the Texas-

Louisiana Shelf, and found that hypoxia did not occur at Brunt-Väisälä frequencies less 
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than 40 cycles/hour. Her further investigations covered the entire northern Gulf of 

Mexico revealed that Brunt-Väisälä frequencies greater than 40 cycles·h-1 were rare 

outside of eastern Texas-Louisiana Shelf. This finding suggests that the absence of the 

strong stratification plays a part in the rare occurrences of hypoxia on these shelves. 

Hydrodynamic instabilities in the buoyancy-driven flow and other problems, 

related to this phenomenon, have been investigated by a number of scientists (Clarke 

and Brink, 1985; Barth, 1989; Haine and Marshall, 1997; Lentz and Helfrich, 2002; 

Wolfe and Cenedese, 2006). 

The baroclinic waves as a result of baroclinic instabilities are important agents 

of buoyancy transport through the ocean mixed layer [Haine and Marshall, 1997]. The 

intensity of the baroclinic response of the shelf waters is dependant on the stratification 

strength, slope of the continental shelf, and Coriolis parameter, and hence is a direct 

product of the hydrographic regime and topographic features of the shelf [Clarke and 

Brink, 1985]. The degree of stratification is usually defined in terms of stratification 

(Brunt-Väisälä) frequency. Brunt-Väisälä frequency is the natural frequency of 

oscillation of a water parcel displaced adiabatically from its rest position [Väisälä, 

1925; Brunt, 1927]. The higher the stratification the more water column resists vertical 

mixing. 

Orlanski [1969], and also Xue and Mellor [1992] have examined the role of 

bottom topography on the stability of baroclinic flow. They demonstrated that the 

topographic slope is a stabilizing factor, while the height of the topography is a 

destabilizing factor. Wolfe and Cenedese [2006] investigated the hypothesis that rapid 

changes in the bathymetric slope could induce instability and eddy formation by a 

buoyant coastal current. Laboratory experiments have shown that currents only form 

eddies over steep bathymetry, and that eddying currents were stabilized as they moved 

onto gently sloping topography. These results are consistent with theoretical studies by 

Lentz and Helfrich [2002]. The development of the wave-like disturbances has been 

also observed along the coastal upwelling fronts [Barth, 1989; Glenn et al., 2004]. 
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September 16, 2004 

 
October 25, 2005 

 
 

Figure 1.4. Ocean color from Aqua-1 MODIS on September 16, 2004 and October 25, 
2005. (Source: Nan Walker, ESL).  
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A theoretical and modeling study of alongshore variability of the coastal 

upwelling fronts suggests that these meanders are rather produced by hydrodynamic 

instability than alongshore topographic variations [Barth, 1989]. A comparison between 

the model predictions and observations from three different coastal upwelling regions 

showed a reasonable agreement suggesting that observed alongfront variability can be 

explained in terms of the instability. 

Glenn et al. [2004] tested the hypothesis that hypoxia on the New Jersey inner 

shelf is more related to the coastal upwelling rather than nutrient load from the rivers. 

Their idealized numerical model, initialized with typical midsummer density profile and 

constant upwelling wind, showed the development of a broad coastal jet meandering 

along the coast, that formed downstream at each topographic high. The model 

simulations suggested that topographic variations redistribute the upwelled water 

unevenly along the coast, and enhanced the biochemical impacts at the specific 

locations. 

 

1.4 Study objectives 

The primary objective of this study is to investigate how local topographic 

conditions and physical water column processes contribute to the occurrence and 

distribution of low dissolved oxygen concentrations in coastal ecosystems particularly 

that of the Louisiana shelf. This study is focused on the influence of buoyancy driven 

instabilities on the bottom dissolved oxygen concentrations along the shelf. The goal is 

to find a linkage between the transfer of buoyancy through the water column along and 

across the shelf and dissolved oxygen concentrations at the bottom. To achieve this goal 

the following objectives, divided into observational and modeling components, will be 

completed: 

Observational Component 

- Describe and analyze the hydrographic data collected in the region of study; 
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- Obtain a quantitative relationship between stratification (Brunt-Väisälä) 

frequency, which is taken to represent the stability of water column, and dissolved 

oxygen concentrations along the coast; 

Modeling Component 

- Evaluate the relative importance of the freshwater discharge and shelf 

topographic features on the development of dynamic instabilities along the shelf; 

- Examine the effect of instabilities on the dissipation of the bottom hypoxic 

waters; 

- Investigate the influence of shoaling topography on the sustainment of the 

hypoxic waters on the shelf.  

The overall purpose of the proposed research is to better our understanding of 

how physical processes can affect biochemical processes in coastal ecosystems. The 

consequences of hypoxia lead to the long-lasting negative effects on the environment 

and economy. It is expected that this study will contribute to the present debate whether 

the reduction of the nutrients alone as a management strategy will lessen the occurrence 

of hypoxia on the Louisiana Shelf. The use of an idealized numerical circulation model 

will simplify the overall complex coastal system, and help to separate the processes 

responsible for the generation of dynamic instabilities. The inclusion of the simple 

chemical tracer into the model will allow to determine how the local physical processes 

affect the distribution of the chemical and biological properties of the water. It is also 

hoped that the outcome of this study will be sufficiently compelling to other researchers 

interested in similar problems in different regions of the world, for example Changjiang 

Estuary (Yangtze River). 

 

1.5 Organization 

Chapter II presents the overview of the data and research methods used in this 

study. The general description of the MCH data sets, numerical model, and numerical 

experiment setup is provided. 
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Chapter III covers the results from the MCH observations by season and region. 

First, the detailed description of the temperature, salinity, and dissolved oxygen 

concentrations is given. Next, the effect of local stratification on the occurrence of low 

oxygen bottom waters is investigated.   

Chapter IV discusses the results from numerical modeling. The relative 

importance of the freshwater discharge and bottom topography on the development of 

dynamic instabilities is examined. Also the influence of shoaling topography and 

dynamic instabilities on distribution of the hypoxic waters is investigated. 

Chapter V summarizes results presented in Chapters III and IV and provides the 

conclusions. 
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CHAPTER II 

 

DATA AND RESEARCH METHODS 

 

As indicated by the research objectives, a combination of in situ sampling and 

numerical modeling is used to investigate the effects of mesoscale circulation patterns 

and stratification on the evolution of hypoxia on the shelf. The field observations of 

hydrographic properties sampled during the program specifically designed to address 

the occurrence of hypoxia on the Louisiana Shelf, are used for the description of the 

hypoxic environment in the region, data analysis, and qualitative verification of the 

numerical model. The purpose of the numerical experiment is to isolate the impact of 

the shelf topography and freshwater input on the development of the dynamic 

instabilities along the coast, and also to demonstrate the influence of the shoaling 

bottom profile on the longevity of hypoxic conditions. 

 

2.1 Description of the MCH data sets 

The principal data sets used are from research cruises sponsored by the National 

Oceanic and Atmospheric Administration (NOAA) and conducted by Texas A&M 

University as part of the program “Mechanisms Controlling Hypoxia on the Louisiana 

Shelf” (MCH). The MCH program was conducted along the eastern Texas-Louisiana 

Shelf from September 2003 through August 2005. In this study, the data from the seven 

cruises from April 2004 through August 2005 is used. The start and end dates of the 

cruises are given in Table 2.1. The timing of the cruises was planned according to the 

temporal scales of hypoxia, including periods typical for the onset, duration, and 

dissipation of the hypoxic conditions on the shelf. 

The sampling plan was initially based on a hypothesis proposed by Rowe and 

Chapman [2002], stating that different biological processes are in control of hypoxia in 

the different physical regimes. They introduced the idea of three zones around the 

Mississippi (and Atchafalaya) River mouth (Figure 2.1). The first (brown) zone, nearest 



 

 

21 

21 

to the river mouth, is controlled by the deposition of sedimentary material, light- and 

production-limited. The second (green) zone is the region occurs immediately offshore-

alongshore from zone 1. In this zone, the light penetration is increased, and dissolved 

nitrate and silicate concentrations are high, as is photosynthesis. The third (blue) zone, 

which mostly affected by the volume of water delivered by the rivers, is one where 

stratification plays the most important role. The euphotic zone is nitrogen limited, and 

production is thought to be controlled by regenerated nitrogen. 

 
 
 
Table 2.1. Cruise identifiers and their corresponding dates. 

 
Cruise ID Start date End date 

M1 2 April 2004 8 April 2004 

M2 26 June 2004 1 July 2004 

M3 19 August 2004 26 August 2004 

M4 22 March 2005 29 March 2005 

M5 18 May 2005 25 May 2005 

M6 6 July 2005 12 July 2005 

M7 17 August 2005 24 August 2005 

 
 
 
The cruise tracks for M1-M6 cruises were similar and designed to obtain 

measurements from the three regions of the shelf: close to the Mississippi River Delta 

(zone A), near the C6 monitoring station location operated by LUMCON and south of 

Terrebonne Bay (zone B), off Atchafalaya Bay, LA (zone C). The basic station plan is 

shown in Figure 2.2. 

 

 

 



 

 

22 

22 

 
Figure 2.1. A paradigm describing the controls on hypoxia in the three regions. (From 
Rowe and Chapman, 2002). 
 
 
 

 
Figure 2.2. Stations plan for 2004-2005 NOAA-MCH Cruises (M1-M6). Shown are 
CTD/bottle stations (black dots), mooring location (red stars), and boxcore stations 
(blue circles). Bathymetric lines are drawn for 10, 20, 30, 40, 50, 200, and 500 m. 
(Figure courtesy of Steven F. DiMarco) 
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The cruises during 2005 were significantly impacted by weather and required 

adaptive sampling strategies while at sea. During M4 a strong squall forced the 

abandonment of several stations towards the end of the cruise. During M6, the treat of 

Hurricane Dennis forced the station sampling to be altered and the addition of 30 

stations in the western study region, named zone D (downstream open shelf between 

Texas border and Atchafalaya Bay). This alteration influenced the stations plan for the 

M7 cruise, as those stations were revisited. The actual CTD/bottle stations for each 

cruise are shown in Figure 2.3. 

 
 
 

M1 (April 2004) 

 
Figure 2.3. Actual CTD/bottle stations (black dots) for 2004-2005 NOAA-MCH cruises 
(M1-M7). Bathymetric lines are drawn for 10, 20, 30, 40, 50, 200, and 500 m. 
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M2 (June/July 2004) 

 
M3 (August 2004) 

 
Figure 2.3. Continued. 
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M4 (March 2005) 

 
M5 (May 2005) 

 
Figure 2.3. Continued. 
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M6 (July 2005) 

 
M7 (August 2005) 

 
Figure 2.3. Continued. 

 

 

 

 

 

 

 



 

 

27 

27 

The data collection, represented by a wide range of measurements, includes 

records of: salinity, temperature, dissolved oxygen concentrations, nutrients contents in 

the water, current velocities, benthic respiration rates, chlorophyll, dissolved carbon 

concentrations and more. The observations of salinity, temperature, pressure, and 

dissolved oxygen concentrations across and along the shelf were used in this study. A 

brief description of the data used is given below. For detailed information on the 

sampling methods refer to report by DiMarco [2007a]. 

The data used in this study also include continuous vertical profiles of: salinity, 

temperature, dissolved oxygen concentration, and pressure recorded at all stations with 

the CTD (Model: Sea-Bird SBE-911-Plus) casts. The vertical separation distance of 

data on these profiles after processing raw records is 0.5 m. Discrete bottle samples 

were taken using a 12-bottle rosette. Vertical resolution of the bottles is typically 5 m. A 

1.5-1 bottle was attached to the CTD frame to ensure the collection of water samples 

within 0.5 m of the bottom. Flow-through sensors provided two-minute measurements 

of 3-m salinity, temperature, and chlorophyll. This translates into 1-3 km spatial 

resolution while underway. A small rosette (nicknamed Pogo) equipped with four 

Nisken Bottles and self contained CTD and transmissometer was used to take samples 

within 0.5 m of the bottom. Nisken bottle samples of dissolved oxygen were analyzed at 

sea with Winkler titration method; a salinometer system was mostly run at sea; some of 

the salinity samples were frozen and analyzed on shore in the lab. A shipboard 150-kHz 

ADCP was used on all cruises to provide estimates of current velocity along the ship 

track. The summary for the data collection used in this study is summarized in Table 

2.2. 
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Table 2.2. Data type and number of stations for each MCH cruise in 2004-2005. 
 

Data type M1 M2 M3 M4 M5 M6 M7 

CTD cast 61 60 64 105 105 76 127 

Pogo cast 61 60 71 94 67 80 108 

Nisken Bottles 392 368 364 398 469 365 576 

ADCP Yes Yes Yes Yes Yes Yes Yes 

Thermosalinography Yes Yes Yes Yes Yes Yes Yes 

 
 
 
2.2 Numerical modeling 

A free-surface, hydrostatic, primitive-equation regional ocean model (ROMS) 

was used in this study to model mesoscale flow over a subaqueous delta. ROMS is an 

updated and expanded version of the S-coordinate Rutgers University Model (SCRUM) 

described by Song and Haidvogel [1994]. ROMS is widely used by a rapidly growing 

user community for applications from the basin to coastal and estuarine scales 

[Haidvogel et al. 2000; Marchesiello et al. 2001; Peliz et al., 2003; DiLorenzo, 2003, 

Dinniman et al., 2003; Wilkin et al., 2005]. ROMS solves the primitive equations using 

finite-difference approximations on orthogonal curvilinear coordinates in the horizontal 

and a stretched, terrain-following coordinate in vertical planes. Model computational 

algorithms are described in detail by Shchepetkin and McWilliams [1998, 2003, 2005]. 

For computational economy, the hydrostatic primitive equations for momentum are 

solved using a split-explicit time-stepping scheme. This scheme requires special 

treatment and coupling between barotropic (fast) and baroclinic (slow) modes. A finite 

number of barotropic time steps, within each baroclinic step, are carried out to evolve 

the free-surface and vertically integrated momentum equations. In order to avoid the 

errors associated with the aliasing of frequencies resolved by the barotropic steps but 

unresolved by the baroclinic step, the barotropic fields are time-averaged before they 

replace those values obtained with a longer baroclinic step. A cosine-shape time filter, 

centered at the new time level, is used for the averaging of the barotropic fields 
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[Shchepetkin and McWilliams, 2005]. Careful formulation of the time-stepping 

algorithm allows both exact conservation and constancy preservation for tracers, while 

achieving enhanced stability and accuracy in coastal applications where the free surface 

displacement is a significant fraction of the total water depth [Shchepetkin and 

McWilliams, 2005]. In the vertical, the primitive equations are discretized over variable 

topography using stretched terrain-following coordinates [Song and Haidvogel, 1994]. 

The stretched coordinates allow increased resolution in the surface and/or bottom 

boundary layers. 

 

2.2.1 Model description 

The Regional Ocean Modeling System (ROMS) is configured to use third-order 

upstream horizontal advection of tracers, conservative parabolic splines to calculate 

vertical gradients, and generic length-scale mixing turbulence closure with horizontal 

smoothing of buoyancy/shear. The surface and bottom temperature and salinity fluxes 

are solved analytically. 

The model is initialized with a horizontal salinity gradient and uniform 

temperature, and is forced with a spatially uniform weak idealized onshore/offshore 

wind (~1 m·s-1). The simulations were run for 45 days. The fixed parameter values used 

in the simulations are summarized in Table 2.3. 

The currents extracted from the hydrodynamic simulations are used to advect a 

tracer representing the dissolved oxygen deficit in the water column, initialized to be 

zero (the water column is fully saturated) everywhere. The no-gradient east and west 

boundary conditions are nudged toward zero, where the model is pushed gently toward 

desired boundary conditions in such a way that noise is minimized. This usually 

consists of adding a time-dependent nudging coefficient to the model equation [Kalnay, 

2006].  
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Oxygen consumption is parameterized using the simple benthic respiration 

biological model. The functional form is: 

! 

DO t( ) = DO t( ) + dt
"
# 1.0 $DO t( )( ),    (2.1) 

where DO(t) is the oxygen deficit at the given time step; dt is time step in seconds; τ is 

respiration time scale in seconds. 

 
 
 
Table 2.3. Listing of the fixed parameters used for the simulations. 
 

Fixed Parameters Units Value 

Gravity m·s-2 9.8 

Coriolis Parameter s-1 6.6E-5 

Temperature oC 25 

Barotropic Time Step s 300 

Baroclinic Time Step s 9000 

Mean Density kg·m-3 1025 

Averaging frequency timesteps 72 

Quadratic bottom drug coefficient  3.0E-3 

Respiration time scale days 3 

 
 
 
The negative values correspond to the deficit of the dissolved oxygen or 

undersaturation of the waters. The dissolved oxygen values at the surface are 

constrained to be zero (fully saturated) at all time steps. The oxygen advection model 

assumes no other sources of the dissolved oxygen into the system. 

 

2.2.2 Numerical experiment setup 

A set of twelve numerical experiments was performed to investigate the 

influence of the freshwater discharge and shelf topographic features on the development 

of dynamic instabilities on the shelf. 
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The numerical simulations are conducted in an idealized coastal domain 

represented as a rectangular box, 384 km long in the east-west direction, and 96 km 

long on the north-south direction. The domain is bounded by a coastline on the northern 

and southern sides and the open ocean on eastern and western edges. The grid 

resolution of the domain is 3 km in the x-direction (east-west), and 1 km in the y-

direction (north-south). Ten vertical levels result in ~0.1 m vertical resolution at the 

coast, where the minimum depth is set to 1 m, and ~10 m resolution offshore in the 

deepest regions of the domain.  

Each experiment is drawn from the 2x2x3 matrix of combinations made from 

two bottom profiles, two values of the continental shelf slope, and three values of the 

freshwater discharge. The variable parameter values used in the experiments are 

summarized in the Table 2.4. 

The topographic features used to represent the shelf are: continental shelf slope 

and bottom bathymetry. The submarine delta off Atchafalaya River (Figure 1.2) is 

represented by two idealized topographies: sloping bottom, and sloping bottom with 

three distinct shoals spaced by 50 km in the north-south direction (Figure 2.4). The 

continental slope magnitude, S, is varied in order to represent two cases of the shelf: 

with the gradual slope, and with the steep slope. 

The freshwater discharge, Q, is varied to produce three different river runoff 

regimes: drought, moderate discharge, and flooding. The amount of the freshwater 

introduced onto the shelf affects the strength of the stratification, and is used to evaluate 

the importance of density gradients on the hydrodynamic instabilities. The freshwater 

plume enters the domain over 10 grid cells in the x-direction, which is equivalent to 30 

km. The amount of the freshwater entering the domain in the vertical direction 

decreases exponentially with depth. 
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Table 2.4. Listing of the variable parameters used for the twelve experiments. 
 

Freshwater Discharge, Q 

Slope, S Bottom None 

 

Moderate 

7500 m3·s-1 

Large 

15000 m3·s-1 

No shoals a e g Steep 

0.0007 Shoals c i k 

No shoals b f h Gradual 

0.0005 Shoals d j l 

 
 

 
S =0.0007 

 
S =0.0007 

 
Figure 2.4. Two-dimensional representation of the idealized domain showing bottom 
topography: sloping bottom (upper panel) and sloping bottom with shoals (lower panel). 
Depth contours are labeled. 
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S =0.0005 

 
S =0.0005 

 
 
Figure 2.4. Continued. 
 
 
 

The east-west periodic boundary conditions are applied for the experiments with 

no shoals bottom topography and no freshwater discharge. In all other cases, the 

radiation conditions are used for the three-dimensional velocities, a Flather [1976] 

condition is used for the two-dimensional velocities, a Chapman [1985] condition is 

used for the free surface, and the clamped condition is used for the tracers on the eastern 

edge. For the western edge, the gradient conditions are used for the three-dimensional 

velocities, a Flather [1976] condition is used for the two-dimensional velocities, a 

Chapman [1985] condition is used for the free surface, and the clamped condition is 

used for the tracers. 
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CHAPTER III 

 

EFFECT OF STRATIFICATION ON THE BOTTOM OXYGEN 

CONCENTRATIONS 

 

Local conditions and processes that are responsible for coastal hypoxia reflect the 

complex interaction of one or more regional physical and biochemical processes, such as 

air-sea interactions, vertical mixing, advection, diffusion, respiration, photosynthesis, 

remineralization, denitrification, and nitrification. Unraveling the relative contribution of 

each process requires extensive data collection of property values related to those 

processes. This requires a good understanding of the density structure of the water 

column and the processes that can alter that structure. The investigation of the 

alongshore structure of density can reveal much about the character of physical 

processes that occur in the coastal ocean. Fortunately, MCH cruises routinely performed 

station lines along the 20 m isobath. I will focus the discussion on the property 

distributions found along these lines. 

Layering of the water column, commonly known as stratification, is a local 

condition that acts to limit vertical mixing. Change in the heating and/or freshening of 

surface waters result in a change of the density structure and formation of the layers. On 

the Louisiana Shelf, vertical mixing between the upper surface and the lower layer 

depends directly on the regional wind and indirectly on solar heating and freshening of 

surface waters by river runoff. 

Surface waters are normally near saturated values of dissolved oxygen 

concentrations mainly balanced through air-sea exchange and photosynthesis inputs. At 

the air-sea interface, oxygen concentrations are affected by parameters such as: wind 

speed, air and sea temperatures, salinity, surface films, wave action, and bubble injection 

rates [Millero, 2005]. The well-oxygenated surface waters are vertically mixed through 

the surface layer as a result of winds but may be influenced by other processes such as 

horizontal advection, internal wave breaking, and current shear. The waters in the lower 
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layer are usually less saturated with oxygen because those waters are not in direct 

contact with the atmosphere and local biochemical processes remove oxygen faster than 

the replenishment needed to maintain saturation (ventilation rate). The lower layer of the 

water column receives dissolved oxygen mainly through vertical diapycnal mixing. 

When there is a sufficient amount of light and nutrients in the lower layer, phytoplankton 

can add oxygen locally through the process of photosynthesis.  

Other local physical processes associated with advection, mixing, downwelling, 

and upwelling, import and export dissolved oxygen in both layers [Wiseman et al., 1997; 

DiMarco et al., 2007a, submitted]. The processes associated with these water 

movements may offset the results of the local biological processes and redistribute the 

dissolved oxygen over the region.  

In this chapter, I discuss the relationship of the density structure with the 

dissolved oxygen concentrations in the water column from observations taken on the 

MCH cruises in 2004 and 2005. First, I give a description of the spatial distribution of 

the temperature and salinity the Louisiana Shelf with a focus on their importance to the 

alongshore variability of the water column stratification. Then, I describe the distribution 

of dissolved oxygen concentrations on the shelf. Finally, I examine the effect of local 

vertical stratification on the occurrences of hypoxic waters. 

 

3.1 Temperature and salinity distributions on the Louisiana Shelf 

The horizontal and vertical structure and distribution of density on the Louisiana 

Shelf is controlled by several physical processes, including river freshwater discharge, 

solar heating, and wind mixing. The density of seawater is determined by temperature, 

salinity, and pressure. Therefore, by understanding the distribution of these physical 

properties in the water column and along the coast I plan to establish a link between the 

density structure and locations of low-oxygen waters. 

The water column temperature and salinity sections along the 20 m isobath on 

MCH spring and summer cruises in 2004 and 2005 are shown in Figures 3.1-3.2. 
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The temperature records demonstrate the general characteristic seasonal trend of 

spring and summer warming. In early spring (Figures 3.1), the temperature distribution 

is mostly uniform throughout the water column and along the coast. The temperature 

difference between the surface values (2 m below the surface) and values at the bottom 

(0.5 m above the bottom) is ~2oC in the early spring cruises M1 and M4. As the seasonal 

heating progresses, significant vertical temperature variations can be seen during the late 

spring and early summer cruises M2 and M5. The difference in temperature between 

surface and bottom layers reaches ~8oC during M5 cruise. 

 
 
 

M1 (April 2004) 

 
Figure 3.1. Water column temperature profiles from continuous CTD (Model: Sea-Bird 
SBE-911-Plus) casts with vertical intervals of 0.5 m along the 20 m isobath on MCH 
cruises (M1-M7) in 2004-2005. 
 

 

 

 

 

 

 

 



 

 

37 

37 

M2 (June/July 2004) 

 
M3 (August 2004) 

 
M4 (March 2004) 

 
Figure 3.1. Continued. 
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M5 (May 2005) 

 
M6 (July 2005) 

 
M7 (August 2005) 

 
Figure 3.1. Continued. 
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The absence of the strong vertical mixing due to the general weakening of the 

winds during the summer months also contribute to the development of a pronounced 

thermocline. As summer continues, the water column exhibits a nearly uniform 

distribution throughout the water column and along the shelf. In general, the spring 

temperatures are ~4oC at the bottom and ~8oC at the surface cooler than those in late 

summer when the sea surface temperatures usually reach their annual maximum. 

Therefore, temperature is thought to have a stronger affect on controlling density 

structure in spring and almost no affect in summer. 

The water column salinity records along the Louisiana Shelf (Figure 3.2) show 

distinctive signatures of two plumes: the Mississippi River plume and Atchafalaya River 

plume. The plumes, defined as large bodies of less saline than ambient water, can be 

clearly seen in salinity profiles in cruises M1-M2, and M4-M5. During M3 and M6-M7 

cruises, the plume signatures are less pronounced due to the decrease in the Mississippi-

Atchafalaya River system discharge and intensification of the wind mixing.  

 
 
 

M1 (April 2004) 

 
Figure 3.2. Water column salinity profiles from continuous CTD (Model: Sea-Bird 
SBE-911-Plus) casts with vertical intervals of 0.5 m along the 20 m isobath on MCH 
cruises (M1-M7) in 2004-2005. 
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M2 (June/July 2004) 

 
M3 (August 2004) 

 
M4 (March 2005) 

 
Figure 3.2. Continued. 
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M5 (May 2005) 

 
M6 (July 2005) 

 
M7 (August 2005) 

 
Figure 3.2. Continued. 
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The size and spatial spread of the plumes greatly varies seasonally and 

interannually, and can be related to the river discharge. The Mississippi-Atchafalaya 

River System discharges the majority of the fresh water onto the Louisiana Shelf [Solis 

and Powell, 1999]. Plots of the annual discharge for the Mississippi-Atchafalaya River 

System in 2004 and 2005 are shown in Figure 3.3. The Mississippi and Atchafalaya 

discharge records have a high coherence due to the reasons stated in the introduction 

(Chapter I). A simple comparison of the time series of Mississippi-Atchafalaya River 

outflow from 2004 and 2005 reveals that discharge during the period from January to 

April in 2005 was greater than in 2004, and as a result, larger bodies of the less saline 

than ambient oceanic water are present in the salinity sections along the shelf in 2005. 

Another prominent feature found in each of the water column temperature and salinity 

sections is the wave-like disturbance along the Louisiana Shelf. The feature is less 

noticeable in the temperature records, but is pronounced in the salinity structure. The 

amplitude of disturbance varies from 1 m up to 10 m in total 20 m depth with the 

approximate wavelength around 50 km. The origin of this feature can be attributed to the 

processes associated with buoyancy transfer in the water column. Fresh waters from 

Mississippi-Atchafalaya System enter the shelf and trigger development of the 

instabilities due to the density difference of river plume and ambient oceanic waters 

[Simpson, 1996]. Another possible cause for the formation of instabilities along the shelf 

is the deviation in the flow controlled by topography [Orlanski, 1969; Xue and Mellor, 

1992; Wolfe and Cenedese, 2005]. The posterior development of meanders, as deviations 

of the water property front along the coast, can be set by depth variations. Sandy shoals 

along the Louisiana shelf off Atchafalaya River Delta pose an abrupt change in the water 

depth from 10 m up to 5 m (Figure 1.2). Dynamic instabilities produced by the density 

differences and topographic steering may interact with one another, resulting in a highly 

irregular wave-like distribution of the water properties along and across the shelf.  
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Figure 3.3. The Mississippi River discharge at Tarbert Landing, MS, and Atchafalaya 
River discharge at Simmesport, LA, in 2004 (top) and 2005 (bottom). (Data source: US 
Army Corps of Engineers) 
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The horizontal distributions of river-derived low-salinity water over the 

Louisiana Shelf by cruise are shown in Figure 3.4. 

 
 
 

M1 (April 2004) 

 
M2 (June/July 2004) 

 
Figure 3.4. Near-surface salinity (3 m below surface) from Nisken bottles on MCH 
cruises (M1-M7) in 2004-2005. Dots represent station locations.  
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M3 (August 2004) 

 
M4 (March 2005) 

 
M5 (May 2005) 

 
Figure 3.4. Continued.  
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M6 (July 2005) 

 
M7 (August 2005) 

 
Figure 3.4. Continued.  
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 The wind-driven annual pattern of low-frequency circulation over the Texas-

Louisiana shelf directly affects the local stratification. In spring during cruises M1 and 

M4, the downcoast currents (Figure 3.5) driven by downwelling favorable winds (upper 

panels of Figure 3.6) advect low-salinity water along the near shore areas of the 

Louisiana Shelf. As a result, during those cruises, the salinity gradient over the 

Louisiana Shelf is directed offshore with the lowest salinity waters inshore and the 

highest salinity waters offshore. In summer, the circulation conditions are different from 

those in spring as prevailing winds acquire an upcoast component [Nowlin et al., 1998]. 

Therefore, water discharged from the Mississippi-Atchafalaya River System typically 

pools in the region rather than being transported out of the area by downcoast flow 

[Nowlin et al., 2005]. Prevailing winds were upwelling favorable (lower panels of Figure 

3.6) and allowed for the spread of the low-salinity water over much of the inner shelf 

during cruses M2 and M5 (Figure 3.4).  

 Although infrequent during the summer months, atmospheric storms and 

hurricanes bring strong winds that can break down the stratification on the shelf and 

promote the ventilation of the water column. Tropical Storm Matthew on 12 of August 

2004 (several days before the M3 cruise) passed through the eastern edge of the shelf 

bringing significant winds (~10 m·s-1) and surface waves. This condition combined with 

generally low river discharge and downwelling advection of water masses during the 

summer months led to the relatively weaker salinity gradient over the Louisiana Shelf as 

observed during the M3 cruise. A similar pattern is seen in the surface salinity during the 

M7 cruise in 2005. Swells generated by the Hurricane Dennis during M6 cruise most 

likely contributed to the vertical mixing of the water column and the breakdown of the 

vertical stratification. 
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Figure 3.5. Current velocity at 14 m depth from shipboard 150-kHz ADCP on MCH cruise M1 in 2004.
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M1 (April 2004) 

 
M2 (June/July 2004) 

 
Figure 3.6. Wind speed and direction from station 42035 located at 29°13'54"N 
94°24'48"W during MCH cruises in 2004-2005. (Data source: National Data Buoy 
Center). 
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M4 (March 2005) 

 
M5 (May 2005) 

 
Figure 3.6. Continued. 
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In general, the high river discharge in the end of winter and/or early spring 

corresponds with the high freshwater content on the shelf, causing strong horizontal and 

vertical salinity gradients on the shelf. The mean halocline depth varies seasonally being 

closer to the surface at ~5-10 m depth in spring due to the peak freshwater discharge. In 

late summer as river discharge decreases, winds also dramatically decrease leading to a 

deeper mixed layer depth of 13-17 m. 

A T/S diagram comparing temperature and salinity for all MCH cruises shows a 

noticeable separation by season (Figure 3.7).  The summer cruises exhibit the greater 

temperature differences due to the substantial solar heating. The salinity differences are 

significant for the all cruises being greater in the spring and early summer as a result of 

spring flooding. The temperature and salinity records provide evidence that salinity has a 

greater effect than temperature on the density structure along the Louisiana Shelf. Most 

of the density stratification is due to the vertical salinity gradient, however the 

stratification is enhanced by seasonal thermocline during the early summer cruises. 

 

3.2 Dissolved oxygen concentrations on the Louisiana Shelf 

The annual cycle in the development of hypoxia on the Louisiana Shelf usually 

described as follows [Rabalais et al., 1999].  During winter and early spring months, 

hypoxic waters are usually not found on the shelf in the water depths range of 10-60 m. 

The Mississippi-Atchafalaya River System carries large amounts of fresh water, 

sediments, dissolved and particulate materials onto the shelf, especially during peak 

spring discharge. The nutrients delivered with the river runoff support the primary 

production across the Texas-Louisiana Shelf [Lohrenz et al., 1994]. Often a 

phytoplankton bloom becomes a large source of fixed carbon for decomposition by 

aerobic bacteria [Rabalais et. al., 1999]. The process of decomposition removes 

dissolved oxygen from the water column, causing the development of hypoxia during the 

spring and summer months. The concurrent effect of the weak upwelling-favorable 

winds during this time of the year and freshwater discharge produces the intense 

stratification and promotes the development of bottom hypoxia on the shelf. Very often, 
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the severe weather conditions alter the distribution of hypoxic waters along the Texas-

Louisiana shelf. The passages of tropical storms and hurricanes, starting usually in July, 

disrupt the stratification of the water column and oxygenate the bottom layers. Seasonal 

reversal of winds to downwelling-favorable in the late summer also contributes to the 

weakening of stratification and the ventilation of hypoxic bottom waters. Strong mixing 

events, decline in the river discharge and decomposition of organic matter lead to 

dissipation of hypoxia in the fall, and the virtual absence of hypoxia during the winter 

[Rabalais et al., 2007].  

 
 
 

 
Figure 3.7. Temperature versus salinity from continuous CTD (Model: Sea-Bird SBE-
911-Plus) casts with vertical intervals of 0.5 m at all stations on all MCH cruises in 
2004-2005. Contours represent potential density (sigma-theta, kg·m-3). 
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The horizontal distribution of near-bottom dissolved oxygen concentration over 

the Louisiana Shelf and vertical distribution of dissolved oxygen concentration in the 

water column along the 20 m isobath on MCH cruises (M1-M7) are shown in Figure 3.8 

and Figure 3.9. 

 
 

 
M1 (April 2004) 

 
M2 (June/July 2004) 

 
Figure 3.8. Near-bottom (~0.5 m above bottom) dissolved oxygen concentration from 
Nisken bottles on MCH cruises (M1-M7) in 2004-2005. Dots represent station locations. 
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M3 (August 2004) 

 
M4 (March 2005) 

 
M5 (May 2005) 

 
Figure 3.8. Continued. 
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M6 (July 2005) 

 
M7 (August 2005) 

 
Figure 3.8. Continued. 
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M1 (April 2004) 

 
M2 (June/July 2004) 

 
Figure 3.9. Water column dissolved oxygen concentration profiles from Nisken bottles 
along the 20 m isobath on MCH cruises (M1-M7) in 2004-2005. 
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M3 (August 2004) 

 
M4 (March 2005) 

 
M5 (May 2005) 

 
Figure 3.9. Continued. 
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M6 (July 2005) 

 
M7 (August 2005) 

 
Figure 3.9. Continued. 

 
 
 

The sequence of dissolved oxygen concentrations observed on MCH cruises, 

illustrate that 2004 was largely typical in the development and evolution of hypoxic 

conditions. During the M1 cruise, the bottom waters were only slightly depleted at all 

stations. Near-bottom dissolved oxygen concentrations (Figure 3.8) ranged from 3.5-5.5 

ml·L-1, which are below saturation values but well above hypoxic values (i.e., less than 

1.4 ml·L-1). During M2 cruise, upwelling-favorable winds and high river discharge 

allowed for the development of a highly stratified water column over much of the inner 
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shelf (Figure 3.1), resulting in the hypoxic near-bottom dissolved oxygen concentrations 

at most of the stations in 10-15 m of total water depth. During the M3 cruise, low near-

bottom dissolved oxygen concentration water has moved offshore to 15-30 m of total 

water depth, particularly south of Atchafalaya River. Near-bottom waters at inshore 

stations (10-15 m of total water depth) were no longer hypoxic. The overall spatial 

distribution of the near-bottom dissolved oxygen shows that bottom hypoxia has broken 

into a series of patches along the shelf.  

The vertical distribution of dissolved oxygen concentrations (Figure 3.9) also 

exhibits a wave-like structure compatible to those in temperature and salinity records 

described above. The estimated wavelength of this feature is ~50 km along the shelf and 

amplitude (peak to trough) is ~ 5 m is the 20 m of total water depth. The similarity of 

spatial scales seen in the salinity, temperature, and dissolved oxygen distributions along 

the shelf, suggests that the feature is most likely a characteristic of the water movements 

associated with physical processes on the shelf rather than biochemical processes. 

Slightly different conditions were encountered during the early spring cruise in 

2005. Near-bottom dissolved oxygen concentrations (Figure 3.8) ranged from 1.0-4.0 

ml·L-1. The high Mississippi-Atchafalaya River system discharge in January and 

February was most likely to cause the overall low near-bottom oxygen over the shelf 

with the few inshore hypoxic stations off the Atchafalaya Bay. Similar hypoxic 

conditions were observed during the M5 cruise. Due to the previously described severe 

weather conditions during the M6 cruise, the sampling plan was altered and covered 

mostly the western region of the Louisiana Shelf near the Texas and Louisiana border. 

The hypoxic near-bottom waters were found west of Atchafalaya Bay at inshore and 

offshore stations. During the M7 cruise the hypoxic waters were found at inshore (10-15 

m of total depth) and offshore (15-30 m of total depth) stations.  The near-bottom 

dissolved oxygen concentrations pattern in August 2005 demonstrates the similar wave-

like structure to those in August 2004. The wave is also seen in the vertical section along 

the 20 m isobath (Figure 3.9). The estimated wavelength of the meander is ~50 km along 

shelf and amplitudes vary from ~2 m to ~7 m in the 20 m of total water depth. 
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3.3 Brunt-Väisälä frequency versus apparent oxygen utilization 

As mentioned previously, the term stratification refers to the strength of the 

vertical density gradient. The Brunt-Väisälä frequency, N, is often used to define the 

degree of stratification. Large values of N correspond to strong vertical density gradient. 

In this study, the Brunt-Väisälä frequency was calculated over 0.5 m depth 

intervals for each hydrographic station on MCH cruises. The method used for computing 

is given in Millard et al. [1990]: 
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Ta is the absolute temperature, 

! 

T
a

= T + 273.15 (Kelvin), 

Cp is the specific heat. 

Figure 3.10 shows vertical profiles of Brunt-Väisälä frequency along the 20 m 

isobath on MCH cruises. All cruises exhibit strongly stratified water column along the 

shelf. Stratification is generally higher during the spring (cruises M1, M4, and M5) and 

early summer (cruise M2). There is a noticeable patchiness in the Brunt-Väisälä 

frequency distribution along the shelf. The highest values of Brunt-Väisälä frequency 

appear immediately under the river plumes in the upper layer of the water column. Main 

pycnocline depth varies seasonally being closer to the surface at ~5-10 m during the M1, 
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M2, M4, and M5 cruises, and ~14-16 m during M3, M6, and M7 cruises. There are also 

regional differences in the Brunt-Väisälä frequency distribution along the shelf. During 

the M2 cruise, as the distance from the freshwater source increases, the stratification 

weakens due to diffusion, resulting in lower values of the Brunt-Väisälä frequency and 

greater pycnocline depths. 

 
 
 

M1 (April 2004) 

 
M2 (June/July 2004) 

 
Figure 3.10. Brunt-Väisälä frequency profiles calculated using Eqn. 3.1 along the 20m 
isobath on MCH cruises (M1-M7) in 2004-2005. Salinity is shown as contours. 
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M3 (August 2004) 

 
M4 (March 2005) 

 
M5 (May 2005) 

 
Figure 3.10. Continued. 
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M6 (July 2005) 

 
M7 (August 2005) 

 
Figure 3.10. Continued. 

 
 
 

Belabbassi [2006] showed that low-oxygen and hypoxic waters in the Northern 

Gulf of Mexico were found only in waters with Brunt-Väisälä maxima greater than 40 

cycles per hour. Bottom dissolved oxygen versus maximum Brunt-Väisälä frequency at 

all stations on MCH cruses is shown in Figure 3.11. Inspection revealed that hypoxic 

conditions were not present in waters with Brunt-Väisälä frequency less than 40 cycles 

per hour. The deviations from a linear relationship where bottom dissolved oxygen 

concentrations decrease with increasing Brunt-Väisälä frequency are most likely 
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attributed to the strong current shear events, which increase mixing. Although, this is 

speculation because current profiles were not measured on these cruises. 

To further investigate the effect of vertical stratification on the occurrences of 

low-oxygen and hypoxic waters, the maximum value of the Brunt-Väisälä frequency 

was compared with the bottom apparent oxygen utilization value at each station. The 

hypothesis is that a highly stratified water column facilities the formation of hypoxic 

waters by limiting the vertical mixing that can supply oxygen in the sub-pycnocline 

layer. 

 
 
 

 
Figure 3.11. Bottom dissolved oxygen concentration versus maximum Brunt-Väisälä 
frequency at all stations on all MCH cruises in 2004-2005. The threshold of 1.4 ml·L-1 
for hypoxia, and 40 cycles per hour are shown with horizontal and vertical red lines, 
respectively. 
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Apparent oxygen utilization (AOU) is the difference between the saturated value 

of dissolved oxygen and the measured value. AOU is defined by Millero [2005]: 

! 

AOU =O
2

sat
"O

2

obs,     (3.2) 

where 

! 

O
2

sat  is the saturated value of dissolved oxygen concentration, 

! 

O
2

obs is the measured dissolved oxygen concentration. 

The saturated value is the concentration of dissolved oxygen in equilibrium with 

the atmosphere, but corrected to its value at the salinity, temperature, and pressure where 

the measurement was taken. The saturation value is computed at the potential 

temperature of water and one atm total pressure using the following expression based on 

the data of Murray and Riley [1969]: 

! 

ln O2

sat( ) = "173.4292 + 249.6339 /(T /100) +

+143.3482• ln T /100( ) " 21.8492• T /100( ) +

+S • "0.033096 + T /100( ) • 0.014259 " 0.0017• T /100( )( )( )

,  (3.3) 

where T is the water temperature (Kelvin), S is the water salinity. 

The constants used in the Eqn. 3.3 produce units of ml·L-1. 
The AOU of a water sample represents the sum of the biological activity that the 

sample has experienced since it was last in equilibrium with the atmosphere. The 

apparent oxygen utilization is a measure of how much oxygen has been taken up by in 

the water column by biochemical processes. 

Figures 3.12-3.17 show bottom AOU values versus maximum Brunt-Väisälä 

frequency at all stations on MCH cruises. Figures 3.12-3.16 have three panels each, 

representing different zones, that were defined geographically: close to the Mississippi 

River Delta (zone A), near the C6 monitoring station location operated by LUMCON 

and south of Terrebonne Bay (zone B), off Atchafalaya Bay, LA (zone C). 

Zones D (downstream open shelf between Texas border and Atchafalaya Bay) 

was introduced during the cruise M6 and revisited during the cruise M7. Data collected 

in zone D on those two cruises was combined with the data from zone C for analysis. 
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Figure 3.12. Apparent oxygen utilization vs. Brunt-Väisälä frequency for each zone at 
all stations on M1 cruise. 
 

 
Figure 3.13. Apparent oxygen utilization vs. Brunt-Väisälä frequency for each zone at 
all stations on M2 cruise. 
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Figure 3.14. Apparent oxygen utilization vs. Brunt-Väisälä frequency for each zone at 
all stations on M3 cruise. 
 

 
Figure 3.15. Apparent oxygen utilization vs. Brunt-Väisälä frequency for each zone at 
all stations on M4 cruise. 
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Figure 3.16. Apparent oxygen utilization vs. Brunt-Väisälä frequency for each zone at 
all stations on M5 cruise. 
 

 
Figure 3.17. Apparent oxygen utilization vs. Brunt-Väisälä frequency for each zone at 
all stations on M6 and M7 cruises. 
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The inspection of Figures 3.12-3.17 showed that the water column was well 

stratified during the cruises M1-M7. There were only a few stations on cruises M1, M3, 

M5 and M7 with maximum Brunt-Väisälä frequency less than 40 cycles per hour. The 

large values of Brunt-Väisälä frequency, above 100 cycles per hour were found on every 

cruise in different zones. Apparent oxygen utilization also exhibits great variability 

between the zones and cruises. Saturated values of bottom AOU ~0.0 ml·L-1 and lower 

were found on cruises M1 and M5. The large values of bottom AOU, corresponding to 

the high oxygen uptake, were found on all cruises except M1 (Figure 3.12). Basic 

statistics for bottom AOU and maximum Brunt-Väisälä frequency is presented in Table 

3.1.  

 
 

 
Table 3.1. Basic statistics for the bottom apparent oxygen utilization and maximum 
Brunt-Väisälä frequency on MCH cruses M1-M7 in 2004-2005. 

 

Cruise Zone Min AOU 
(ml·L-1) 

Max AOU 
(ml·L-1) 

Min BVF 
(cycles·h-1) 

Max BVF 
(cycles·h-1) 

Correlation, 
R 

Significant 
at 95% 

confidence 
A 0.7 2.9 76.0 157.1 0.10 NO 
B 0.06 2.34 15.7 67.7 0.37 NO M1 
C -0.71 2.36 17.9 182.3 0.68 YES 
A 2.41 4.53 58.4 196.4 0.14 NO 
B 1.81 4.43 42.3 125.7 0.67 YES M2 
C 0.92 4.44 47.9 132.7 0.63 YES 
A 2.97 4.38 52.2 108.0 0.05 NO 
B 1.81 4.06 48.4 96.0 -0.14 NO M3 
C 1.54 4.62 1.69 102.7 0.45 YES 
A 1.43 4.67 79.7 139.7 0.11 NO 
B 1.65 4.67 52.4 124.8 0.26 NO M4 
C 0.85 4.9 44.6 193.9 0.65 YES 
A 1.99 4.85 111.6 164.3 -0.16 NO 
B 1.53 4.96 61.6 168.6 -0.09 NO M5 
C -0.1 4.75 25.4 146.9 0.47 YES 

M6 C&D 0.53 4.51 15.74 115.8 0.54 YES 
B 1.08 4.45 54.6 140.8 0.59 YES M7 

C&D 0.94 4.52 21.4 117.6 0.56 YES 
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Apparent oxygen utilization and Brunt-Väisälä frequency are not well correlated 

in zone A on cruises M1-M5 (left panels of Figures 3.12-3.16). Estimated correlation 

coefficients are small and not significant at the 95% confidence level. Zone B shows a 

better correlation between the two parameters, however, only on cruises M2 (middle 

panel of Figure 3.12) and M7 (middle panel of Figure 3.17) those values are significant 

at 95% of confidence level. Correlations between the bottom AOU and maximum Brunt-

Väisälä frequency are larger in zone C on all cruises.  Cruises M1 (right panel of Figure 

3.12), M2 (right panel of Figure 3.13), and M4 (right panel of Figure 3.15) show that 

~40% of the variance in bottom AOU in zone C can be explained by variations in 

maximum Brunt-Väisälä frequency. This value is ~30% on cruises M6 (left panel of 

Figure 3.17) and M7 (right panel of Figure 3.17), and ~20% on cruises M3 (right panel 

of Figure 3.14) and M5 (right panel of Figure 3.16). 

During MCH cruises the occurrences of low-oxygen and hypoxic waters, 

represented as waters with high AOU values, were related to the local vertical 

stratification mostly in zone C and D. These results of analysis support the Rowe and 

Chapman [2002] idea, discussed in Chapter II, that different processes control the 

dissolved oxygen level in different physical regimes. However, delineation of the 

regions, based on the distance from the source of freshwater and nutrients, is not entirely 

valid as those zones can be variable in space and time. In general, the bottom AOU 

increases with the increase in Brunt-Väisälä frequency and vice versa. This mechanism 

is well illustrated by the wave-like disturbances seen in the vertical distributions of 

salinity and dissolved oxygen concentrations along the shelf (Figures 3.1 and 3.8). 

Strong stratification caps the bottom water layer restricting the supply of dissolved 

oxygen down to the bottom from the surface layer. As stratification weakens due to the 

vertical mixing it allows for injecting the well-oxygenated waters from the surface into 

the bottom layer.  

Temperature, salinity, and dissolved oxygen concentrations records, collected on 

MCH cruises, demonstrated that meander seen in horizontal sections along the shelf, is a 

persistent characteristic of the Louisiana shelf. Other data such satellite imagery (Figure 



 

 

71 

71 

1.4) also support this observation. This meander also manifests in the vertical sections 

along the shelf as wave-like disturbances of the water properties. The origin of the 

meander and its influence on the distribution of dissolved oxygen concentrations along 

the shelf is investigated in the next chapter.  
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CHAPTER IV 

 

NUMERICAL MODEL SIMULATIONS 

 

The examination of various data, collected on MCH cruises, in Chapter III 

showed that the alongshore distribution of water properties on Louisiana shelf is affected 

by propagation of the dynamic instabilities. These instabilities disturb the water column 

and result in the wave-like structure of the physical and biochemical parameters. The 

Regional Ocean Modeling System (ROMS) was configured to perform a series of 

numerical experiments in an idealized coastal domain in order to investigate the nature 

of instabilities observed on the Louisiana shelf. Idealized numerical simulations simplify 

the overall complex coastal system, and help to separate the processes such topographic 

steering and freshwater discharge, that may be responsible for the generation of dynamic 

instabilities. The inclusion of a chemical tracer, representing dissolved oxygen 

concentration, into the model allows to investigate how the local physical processes can 

affect the distribution of the chemical and biological properties of the water. 

In this chapter, I describe the series of numerical experiments produced for this 

dissertation. The objectives of the experiments are: 1) to understand the influence of the 

freshwater discharge and bottom topography on the development of dynamic 

instabilities, and 2) to investigate the effect of dynamic instabilities and shoaling 

topography on the distribution of dissolved oxygen concentrations in the water column. 

The results of numerical experiments will be compared against the MCH data sets in 

later chapter. 

The model was run for a time period of 45 days. Output fields of salinity, 

density, dissolved oxygen deficit, and other parameters were saved for further analysis. 

The nomenclature used to describe and identify the numerical experiments is as 

follows. Two bottom topographies will be discussed: cases with no shoals will be called 

“smooth”, and cases with shoals will be called “bumpy”. The terms “steep-sloped” and 

“gradually-sloped” describe the relative value of continental shelf slope, 0.0007 and 
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0.0005 respectively. Those cases with the freshwater forcing of 7500 m3·s-1 are 

designated as “moderate discharge” while those with 15000 m3·s-1 will be designated as 

“large discharge”. Each experimental case can be conveniently identified from its unique 

descriptor word combination, e.g., the smooth steep-sloped with large discharge case, 

the bumpy gradually-sloped with moderate discharge case, etc. This convention is 

applied to all twelve numerical experiment cases shown in Table 2.4. 

 

4.1 Salinity distribution across and along the shelf 

A standard set of figures showing the temporal evolution of the salinity is 

presented for each of the twelve experiments. Each individual figure contains a sequence 

of several panels that are ordered in time, from left to right and top to bottom. In every 

panel, the flow enters from the right and exits on the left of the figures. The salinity 

fields are represented in contour plots. 

 

a. The smooth gradually-sloped no freshwater forcing case: the Control Case 

The control case is presented by a combination of smooth gradually-sloped 

bottom topography and no freshwater forcing (see Table 2.4 for details). Horizontal 

fields of surface and bottom salinity at several time steps are shown in Figure 4.1. 

Vertical sections of salinity at similar times along the 15 m isobath are shown in Figure 

4.2. 

The eight panels in Figure 4.1 show surface and bottom salinity for time steps 1, 

14, 28, and 56 which correspond to the initial conditions, 3.5, 7, and 14 days of 

simulations. 

A simple visual observation reveals that salinity field undergoes only the minor 

changes during this run. The horizontal salinity front exhibited only slight 

onshore/offshore movements in response to the wind forcing. Salinity gradient changes 

very little with distance offshore. Six panels in Figure 4.2 show the vertical water 

column salinity distribution along the shelf at 15 m depth. The alongshore sections of 

salinity demonstrate slight weakening of vertical gradient, possibly due to the wind 
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forcing, energy transfer and mixing. No instabilities were developed throughout the 

simulation time period. 

 
 
 

  

  

  

  

 
Figure 4.1. Surface and bottom salinity for smooth gradually-sloped no freshwater 
forcing case a. t units are equal to 1=6 hours. 
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Figure 4.2. Salinity along the 15 m isobath for smooth gradually-sloped no freshwater 
forcing case a. t units are equal to 1=6 hours. 

 
 
 

b. The smooth steep-sloped no freshwater forcing case 

In this experiment the continental shelf slope was changed to a steeper value of 

0.0007. Horizontal fields of surface and bottom salinity at several time steps are shown 

in Figure 4.3. Vertical sections of salinity at similar times along the 20 m isobath are 

shown in Figure 4.4. 

Both horizontal and vertical salinity profiles look very similar to those of the 

Control Case seen in a above. 
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Figure 4.3. Surface and bottom salinity for smooth steep-sloped no freshwater forcing 
case b. t units are equal to 1=6 hours. 
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Figure 4.4. Salinity along the 20 m isobath for smooth steep-sloped no freshwater 
forcing case b. t units are equal to 1=6 hours. 
 
 
 
c. The bumpy gradually-sloped no freshwater forcing case 

In this experiment, topographic features were introduced into the model domain. 

The features were represented as three distinct shoals. The shoals were constructed as 

Gaussian bumps of half-width of 5 km and extended upward into the water column to a 

maximum of 5 m. The centers of the shoals were positioned 50 km apart alongshore, and 

10 km from the coast. Horizontal fields of surface and bottom salinity at several time 

steps are shown in Figure 4.5. Vertical sections of salinity at the same times along the 15 

m isobath are shown in Figure 4.6. 
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Figure 4.5. Surface and bottom salinity for bumpy gradually-sloped no freshwater 
forcing case c. t units are equal to 1=6 hours. 
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Figure 4.6. Salinity along the 15 m isobath for bumpy gradually-sloped no freshwater 
forcing case c. t units are equal to 1=6 hours. 

 
 
 
The eight panels in Figure 4.5 show surface and bottom salinity for time steps 14, 

28, 40 and 56 which correspond to 3.5, 7, 10, and 14 days of simulation time period. The 

development of an alongshelf meander can be seen in the surface salinity contours where 

the flow passes over the shoals. As the experiment progresses in time the meander’s 

shape become more irregular in response to the wind mixing and topographic steering. 

The meander in the horizontal distribution of bottom salinity appears to be more 

confined to the shoals profile, as the wind mixing does not affect the bottom layer 

because of frictional effects. 

As seen in vertical sections the wave is also present in the water column along 

the shelf (Figure 4.6). The estimated wavelength is ~50 km which is consistent with the 

alongshore spacing of the shoals. Vertical sections show a gradual increase in the 

amplitude of the wave from the beginning of the experiment to 10 days. After 10th day it 

stays quasi-steady and vertical amplitude (peak to trough) is ~3 m in the 15 m of the 

total water depth. 
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The results of this experiments show that introduction of a rough topography into 

the model domain can produce dynamic instabilities in the along and cross shelf salinity 

fields. 

 

d. The bumpy steep-sloped no freshwater forcing case 

For this experiment, a steeper continental shelf slope of 0.0007 was used to 

initialize the model. Horizontal fields of surface and bottom salinity at several time steps 

are shown in Figure 4.7. Vertical sections of salinity at the same times along the 20 m 

isobath are shown in Figure 4.8. 

The development of the dynamic instabilities, seen in the horizontal and vertical 

salinity profiles, is very similar to that in the Case c, described above. The main 

difference is the vertical range of the wave amplitude. The amplitude reaches ~6 m in the 

20 m of total water depth after two weeks of simulation. 

This case shows that an increase of the continental shelf slope value leads to the 

stronger instability amplitudes. 
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Figure 4.7. Surface and bottom salinity for bumpy steep-sloped no freshwater forcing 
case d. t units are equal to 1=6 hours. 
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Figure 4.8. Salinity along the 20 m isobath for bumpy steep-sloped no freshwater 
forcing case d. t units are equal to 1=6 hours. 
 
 
 
e. The smooth gradually-sloped with moderate discharge case 

This case consists of initializing the model with smooth gradually-sloped 

topography and introducing a constant but moderate freshwater discharge into the 

domain (see Table 2.4 for details). Horizontal fields of surface and bottom salinity at 

several time steps are shown in Figure 4.9. Vertical sections of salinity at the same times 

along the 15 m isobath are shown in Figure 4.10. 

Upon entering the domain, the freshwater plume stretches downcoast along the 

shelf following the main direction of the flow to the left. The newly introduced 

freshwater intensifies the salinity gradient across the shelf, forming a density front which 

when combined with the wind mixing results in the formation of the instabilities on the 

outer edge of the plume. Though weaker, the plume signature also can be seen in the 

bottom salinity plots. Unlike the surface, there is only a minor interaction between the 
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plume and initial salinity front at the bottom. Salinity contours near the bottom show 

only slight perturbations in the horizontal structure. 

 
 

 

  

  

  

  

 
Figure 4.9. Surface and bottom salinity for smooth gradually-sloped with moderate 
discharge case e. t units are equal to 1=6 hours. 
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Figure 4.10. Salinity along the 15 m isobath for smooth gradually-sloped with moderate 
discharge case e. t units are equal to 1=6 hours. 

 
 
 
Vertical distribution of salinity along the shelf shows the wave development as 

well. However, wavelength and amplitude of the wave are quite variable, and have a 

range of 30 -100 km along the coast and 1- 4 m in the 15 m of total depth. 

Inclusion of the freshwater discharge increases the density gradient, and is 

sufficient to produce instabilities. The meander shows strong temporal variability. 

 

f. The smooth steep-sloped with moderate discharge case 

Use of a steeper value for the continental shelf slope (see Table 2.4 for details) in 

this experiment brings a noticeable change in the spatial scales of instabilities. 

Horizontal fields of surface and bottom salinity at several time steps are shown in Figure 

4.11. Vertical sections of salinity at the same times along the 20 m isobath are shown in 

Figure 4.12. 

The meander is more pronounced in both horizontal and vertical sections of the 

shelf. The estimated wavelength of the feature is ~50 km along the shelf; the amplitude 
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varies from 3-5 m in the 20 m of the total water depth. The meander is also apparent in 

the salinity contours near the bottom after 10 days of model run. 

 
 
 

  

  

  

  

 
Figure 4.11. Surface and bottom salinity for smooth steep-sloped with moderate 
discharge case f. t units are equal 1=6 hours. 
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Figure 4.12. Salinity along the 20 m isobath for smooth steep-sloped with moderate 
discharge case f. t units are equal 1=6 hours. 
 
 
 

An increase of the continental shelf slope value leads to the stronger instability 

amplitudes and more persistent meander.  

 

g. The smooth gradually-sloped with large discharge case 

This case consists of initializing with the smooth gradually-sloped topography 

and introducing a constant but large freshwater discharge (see Table 2.4 for details).  

Horizontal fields of surface and bottom salinity at several time steps are shown in Figure 

4.13. Vertical sections of salinity at the same times along the 15 m isobath are shown in 

Figure 4.14. 
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Figure 4.13. Surface and bottom salinity for smooth gradually-sloped with large 
discharge case g. t units are equal 1=6 hours. 
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Figure 4.14. Salinity along the 15 m isobath for smooth gradually-sloped with large 
discharge case g. t units are equal 1=6 hours. 

 
 
 
The amount of the freshwater produces stronger gradient for the salinity front but 

does not appear to affect the spatial or temporal scales of the instabilities seen in Case e. 

Note that the area of interest for this experiment is located close to the discharge point;, 

and instabilities might vary further downstream away from the source. The results of the 

experiment are very similar to that with the moderate freshwater discharge (Case e). 

There is a presence of instabilities, as it is seen in the surface salinity contours, on the 

outer edge of the plume. However, salinity contours at the bottom show only a slight 

evidence of those. 

This experiments demonstrates that freshwater discharge rate does not affect 

instabilities near the injection point. 

 

h. The smooth steep-sloped with large discharge case 

This experiment is the same as Case f except here freshwater discharge is 

increased to 15000 m3·s-1. Horizontal fields of surface and bottom salinity at several time 
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steps are shown in Figure 4.15. Vertical sections of salinity at the same times along the 

20 m isobath are shown in Figure 4.16. 

 
 

 

  

  

  

  

 
Figure 4.15. Surface and bottom salinity for smooth steep-sloped with large discharge 
case h. t units are equal 1=6 hours. 
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Figure 4.16. Salinity along the 20 m isobath for smooth steep-sloped with large 
discharge case h. t units are equal 1=6 hours. 

 
 
 
Surface salinity contours show the temporal sequence of the interaction between 

the plume and initial salinity front, resulting in the formation of dynamic instabilities on 

the interface. The spatial scale of horizontal meander is ~50 km along the coast. The 

evolution of the meander can be also seen in the vertical section along the shelf. After 

two weeks of the model run, the amplitude of the wave reaches its maximum at ~6 m in 

the 20 m of the total water depth. As seen for the gradually-sloped cases, the increase in 

the freshwater forcing does not impact the spatial or temporal scales of observed 

instabilities. 

As shown in this experiment, doubling the freshwater discharge does not impact 

the structure of instability. 
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i. The bumpy gradually-sloped with moderate discharge case 

This experiment consists of initializing with the gradually-sloped bottom 

topography with shoals and introducing a constant but moderate freshwater discharge 

(see Table 2.4 for details). Horizontal fields of surface and bottom salinity at several 

time steps are displayed in Figure 4.17. Vertical sections of salinity at the same times 

along the 15 m isobath are shown in Figure 4.18. 

The eight panels of Figure 4.17 show the temporal sequence of instability 

development. There are two forcings for the formation of the meander: topographic 

steering caused by the shoals and an increase in the salinity gradient due to the 

freshwater input. At t=14 (3.5 days) the meander caused by flow propagating over the 

shoals is separate from the disturbances on the outer edge of the plume caused by 

salinity differences. Surface salinity contours at t=28 (7 days) show some evidence of 

interaction of the two forcings, and after the t=40 (10) days of simulation the 

superposition of instabilities caused by these sources is clearly seen. The meander 

apparent in the salinity fields near the bottom, however, appears to be due to the shoaling 

topography. The plume is trapped behind the shoals and does not contribute to the 

meander variability in the bottom layer. 

Vertical cross-sections reflect a dual nature of instabilities as well. Salinity 

contours look more irregular at t=40 (10 days) and t=56 (14 days) in comparison with 

those at t=28 (7 days). 

The outcome of this experiment is that inclusion of the two different forcings 

such shoaling topography and freshwater discharge results in superposition of the states. 
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Figure 4.17. Surface and bottom salinity for bumpy gradually-sloped with moderate 
discharge case i. t units are equal 1=6 hours. 
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Figure 4.18. Salinity along the 15 m isobath for bumpy gradually-sloped with moderate 
discharge case i. t units are equal 1=6 hours. 

 
 

 
j. The bumpy steep-sloped with moderate discharge case 

A steeper shelf slope is used in this experiment than Case i (see Table 2.4 for 

details). Horizontal fields of surface and bottom salinity at several time steps are 

displayed in Figure 4.19. Vertical sections of salinity at the same times along the 20 m 

isobath are shown in Figure 4.20. 

The mechanism of alongshore meander development is same as it is described in 

the Case i. The distinct feature of this case is that a steeper slope allows for the plume to 

propagate further offshore, which results in the interference of the plume with 

instabilities caused by shoals near the bottom and downcoast. This is especially evident 

on the two lower panels of Figure 4.19. 

Vertical distribution of salinity shows the wave-like disturbances along the shelf 

and throughout the water column. The estimated wavelength is ~50 km with the wave 

amplitude up to ~6 m in the 20 m of the total water depth. 
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A steeper continental shelf slope leads to the stronger interaction between 

instabilities produced by two forcings, and generally leads to the larger amplitudes of 

instability. 

 
 
 

  

  

  

  

 
Figure 4.19. Surface and bottom salinity for bumpy steep-sloped with moderate 
discharge case j. t units are equal 1=6 hours. 
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Figure 4.20. Salinity along the 20 m isobath for bumpy steep-sloped with moderate 
discharge case j. t units are equal 1=6 hours. 

 
 
 

k. The bumpy gradually-sloped with large discharge case 

This experiment is the same as the Case i but with the large freshwater discharge 

(see Table 2.4 for details). Horizontal fields of surface and bottom salinity at several 

time steps are shown in Figure 4.21. Vertical sections of salinity at the same times along 

the 15 m isobath are shown in Figure 4.22. 
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Figure 4.21. Surface and bottom salinity for bumpy gradually-sloped with large 
discharge case k. t units are equal 1=6 hours. 
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Figure 4.22. Salinity along the 15 m isobath for bumpy gradually-sloped with large 
discharge case k. t units are equal 1=6 hours. 

 
 
 
As it was noted before, the change in the freshwater forcing does not appear to 

affect the formation of the instabilities and their spatial scales. The results of this 

experiment are comparable to those in Case i. The larger volumes of freshwater cause 

the bigger salinity differences in the bottom layer, and yet, there is a little interaction 

between the plume and meander produced by flow over the shoaling topography. Large 

volumes of less saline water are present in the vertical along shelf section, but have no 

effect on the spatial scales of instabilities as those are very much alike as in Case i with 

the moderate freshwater discharge. 

As noted above in Case h, doubling of the freshwater discharge does not affect 

the structure of instability near the injection point. 

 

l. The bumpy steep-sloped with large discharge case 

This case consists of initializing with the steep-sloped shoaling topography and 

introducing a large freshwater discharge (see Table 2.4 for details). Horizontal fields of 
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surface and bottom salinity at several time steps are shown in Figure 4.23. Vertical 

sections of salinity at the same times along the 20 m isobath are shown in Figure 4.24. 

 
 
 

  

  

  

  

 
Figure 4.23. Surface and bottom salinity for bumpy steep-sloped with large discharge 
case l. t units are equal 1=6 hours. 
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Figure 4.24. Salinity along the 20 m isobath for bumpy steep-sloped with large 
discharge case l. t units are equal 1=6 hours. 
 
 
 
  Similarly, to the cases with more gentle continental shelf slope (Cases i and k), 

the change in the freshwater forcing has a minor effect on the formation and evolution of 

instabilities along the shelf. The results of this experiment are very similar to the 

outcome of the case with the same topography configuration and moderate freshwater 

discharge (Case j). However, as it was mentioned above, the steeper slope contributes to 

the greater offshore spread of the plume. 

As noted above in Case h, doubling of the freshwater discharge does not affect 

the structure of instability near the injection point. 
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4.2 Relative importance of bottom topography and freshwater forcing on the 

development of dynamic instabilities along the shelf 

Twelve numerical experiments were performed in order to evaluate a relative 

importance of the variable bottom topography and freshwater forcing on the 

development, evolution, and scales of the dynamic instabilities. 

No instabilities developed along and across the spatial extent of the model 

domain in the absence of the freshwater forcing for the cases with smooth topography 

(Cases a and b). Those two cases differ from each other in a used value of the 

continental shelf slope. Both values of slope used in this study in combination with other 

chosen parameters (initial salinity gradient, wind) demonstrated their insufficiency to 

support the formation of the instabilities.  

The inclusion of the shoals into the bottom topography showed the development 

of the dynamic instabilities as the flow passed over the shoals and downstream (Cases c 

and d). The disturbances were present in the horizontal and vertical structure of the water 

property, e.g. salinity. Vertical cross-section along the shelf revealed the wave-like 

disturbances throughout the water column. The horizontal meander initiated by the 

shoals underwent further deformation due to the wind mixing, although weak (~1 m·s-1). 

As the influence of the wind mixing diminished with the depth, the shape of meander 

closely resembled the shape and sizing of the shoals. A variation of continental shelf 

slope for these cases resulted in a change of the wave amplitudes in the vertical 

distribution with being larger for the steeper value of slope. The estimated wavelength of 

the meander is ~50 km along the shelf, which is consistent with the spacing of the 

shoals. 

Introduction of the fresh water onto shelf resulted in the greater salinity 

differences, and as the consequence in the formation of the unstable salinity fronts along 

the plume edge. Freshwater forcing (moderate and large) used in the experiments (Cases 

e-h), alone was sufficient to originate the instabilities. The spatial scales of the meander 

were variable with the wavelength of ~30-100 km along the shelf and wave amplitude of 
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1-6 m in the water column. The range depends more on the steepness of the shelf slope 

than on the volume and rate of the fresh water injected onto the shelf. 

Combination of the freshwater forcing and shoaling topography (Cases i-l) 

showed the interaction between instabilities produced by different mechanisms: 

topographic steering due to the shoals and buoyancy transfer due to the density gradient. 

A close inspection of salinity contours near the bottom revealed that more gentle shelf 

slope causes plume to be trapped inshore behind the shoals. A change in the shelf slope 

to steeper value allowed for plume to move further offshore and interfere with the 

meander produced by irregularities in the topography. The estimated wavelength of the 

meander was ~50 km along the shelf with the wave amplitude varied ~1-6 m in the water 

column. 

Variation in the freshwater discharge magnitude does not appear to alter the 

development, sustainment, and scales of instabilities for any of the studied cases (e-l). 

 

4.3 Dissolved oxygen deficit distribution along the shelf 

To evaluate the influence of instabilities, which are produced by freshwater 

forcing and topographic steering, on the distribution of dissolved oxygen at the bottom, 

six cases out of twelve described above were chosen.  The rationale for the selected 

cases (c-f and i-j) follows from the conclusions discussed above. The cases with shoaling 

topography and freshwater discharge correspond closest to the conditions found on the 

shelf and present the most interest for the further analysis. Currents extracted from the 

numerical experiments were used to advect the tracer representing the dissolved oxygen 

deficit. Dissolved oxygen is removed from the water column according to Eqn. 2.1. Note 

that the purpose of the numerical experiments is to understand the spatial distribution of 

the tracer rather than produce real values of the water property.  

A standard set of figures showing the temporal evolution of the dissolved oxygen 

is presented for each of the six experiments. Each individual figure contains a sequence 

of several panels that are ordered in time, from left to right and top to bottom. In every 
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panel, the flow enters from the right and exits on the left of the figures. The salinity 

fields are represented in plots as contours. 

 

c. The bumpy gradually-sloped no freshwater forcing case 

This numerical experiment setup consists of the variable topography with the 

gradual continental shelf slope (see Table 2.4 for details). Vertical sections of dissolved 

oxygen deficit along the 15 m isobath at several times are displayed in Figure 4.25. 

The six panels in Figure 4.25 show water column distribution of dissolved 

oxygen deficit for time steps 14, 28, 56, 70, 94, and 120 which correspond to the 3.5, 7, 

14, 17.5, 23.5, and 30 days of simulations. Panels were chosen from animations of the 

model runs and best represent the processes described. 

Distribution of dissolved oxygen deficit exhibits strong temporal and spatial 

variability in response to the development of instabilities. It is clearly seen, at t=14 (3.5 

days), that a band of dissolved oxygen deficit at the bottom has broken into patches 

along the shelf. Locations of gaps in the dissolved oxygen deficit field correspond to the 

appearance of a vertical variability outlined by salinity contours. As the simulation 

progresses in time, the wave-like structure of the distribution of the dissolved oxygen in 

the water column is apparent. The wavelength and amplitude of the feature are highly 

variable throughout the run and are ~25-50 km alongshore and ~2-6 m in the total of 15 

m water depth. The panel showing the results of experiment at t=28 (7 days) illustrates 

that the peaks and troughs in oxygen deficit distribution coincide with the peaks and 

troughs in salinity pattern. The same panel also shows areas of the high oxygen deficit, 

originated at the bottom, are being detached from the bottom band and carried 

downstream and upward by the currents. The further inspection of the oxygen deficit 

distributions at t=56 (14 days) and t=70 (17.5 days) reveals that larger areas with high 

oxygen deficit tend to appear in the regions with stronger density gradients, i.e. 

downstream. However, the peaks and troughs of oxygen deficit distribution are no 

longer in phase with the wave seen in salinity contours.  This is possibly due to the 

difference in the respiration and instability transfer time scales. As the currents produced 
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by instability weaken, as seen at t=120 (30 days), the oxygen deficit in the lower water 

column increases as there is no source for its replenishment. 

 
 
 

  

  

  

 
Figure 4.25. Dissolved oxygen deficit and salinity contours along the 15 m isobath for 
bumpy gradually-sloped no freshwater forcing case c. t units are equal 1=6 hours. 
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Vertical distribution of the dissolved oxygen deficit retains a wave-like structure 

throughout the simulation time with its peaks and troughs concurred with salinity pattern 

at the beginning of the run. Large areas of the high dissolved oxygen deficit emerge in 

the strongly stratified regions. Vertical mixing as a result of instabilities in the buoyancy 

driven flow induces the bottom band of high oxygen deficit to break into patches and 

dissipate. 

 

d. The bumpy steep-sloped no freshwater forcing case 

A steeper value for the continental shelf slope is used in this experiment (see 

Table 2.4 for details). Vertical sections of dissolved oxygen deficit along the 20 m 

isobath at several times are shown in Figure 4.26. 

The six panels in Figure 4.26 show water column distribution of dissolved 

oxygen deficit for the same time steps as in Case c, described above. 

The mechanism responsible for the distribution of the dissolved oxygen deficit in 

the water column along the shelf is the similar to that found in Case c. However, a 

steeper topography leads to the stronger amplitudes of instabilities and less temporal 

variability. The persistence of the wave throughout the simulation up to t=120 (30 days) 

actively contributes to the movement downstream and/or upward, and dissipation of 

patches with the high oxygen deficit. As a result of this action, the areas with the high 

oxygen deficit are much smaller than those in Case c. 

Steep topography allows for the rapid flushing of the system and dispersion of 

low-oxygen waters. 
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Figure 4.26. Dissolved oxygen deficit and salinity contours along the 20 m isobath for 
bumpy steep-sloped no freshwater water forcing case d. t units are equal 1=6 hours. 

 
 

 

e. The smooth gradually-sloped with moderate discharge case 

This numerical experiment consists of initializing the model with the smooth 

gradually-sloped topography and introducing a constant but moderate freshwater 

discharge into the model (see Table 2.4 for details). Vertical sections of dissolved 

oxygen deficit along the 15 m isobath at several times are shown in Figure 4.27. 

 



 

 

106 

106 

  

  

  

 
Figure 4.27. Dissolved oxygen deficit and salinity contours along the 15 m isobath for 
smooth gradually-sloped with moderate discharge case e. t units are equal 1=6 hours. 

 
 

 
As described in Section 4.1, instabilities in this experiment develop due to the 

salinity differences introduced by the spread of river plume offshore. As seen in the 

upper left panel at t=14 (3.5 days) the absence of instabilities allows for the 

establishment of a continuous band of waters with dissolved oxygen deficit along the 

shelf.  At t=28 (7 days) the response of the dissolved oxygen structure to the water 

column disturbances is seen. At all other time steps, the dissolved oxygen deficit 

distribution is highly variable and reflects the wave-like structure produced by 
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instability. The vertical displacements of dissolved oxygen deficit reach up to ~9 m in 

the 15 m total water depth. Areas with the high oxygen deficit tend to grow spatially 

under the strongly stratified regions, i.e. downstream under the river plume. These areas 

are seen in the panels showing t=56 (14 days) and t=70 (17.5 days). A close inspection 

of the wave, seen in the dissolved oxygen deficit distribution, and the wave in salinity 

field, reveals a phase shift as simulation progresses in time. 

The absence of topographic steering delays the break down and dissipation of 

high oxygen deficit areas as instabilities only develop with the offshore spread of plume. 

High oxygen deficit areas tend to form under the river plume where the strong 

stratification occurs. 

 

f. The smooth steep-sloped with moderate discharge case 

A steeper value for the continental shelf slope is used in this experiment (see 

Table 2.4 for details). Vertical sections of dissolved oxygen deficit along the 20 m 

isobath at several times are shown in Figure 4.28. 

The results of this experiment are similar to those in Case d. The main difference 

is that the steeper shelf slope leads to the larger amplitudes of instabilities and hence 

more intensive ventilation of the water column. 

 

i. The bumpy gradually-sloped with moderate discharge case 

This experiment consists of initializing with the bumpy gradually-sloped 

topography configuration and introducing a constant but moderate freshwater discharge 

into the model (see Table 2.4 for details). Vertical sections of dissolved oxygen deficit 

along the 15 m isobath at several times are shown in Figure 4.29. 
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Figure 4.28. Dissolved oxygen deficit and salinity contours along the 20 m isobath for 
smooth steep-sloped with moderate discharge case f. t units are equal 1=6 hours. 
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Figure 4.29. Dissolved oxygen deficit and salinity contours along the 15 m isobath for 
bumpy gradually-sloped with moderate discharge case i. t units are equal 1=6 hours. 

 
 
 
Similarly to the other cases with shoaling topography, the distribution of 

dissolved oxygen deficit in this experiment exhibits a wave-like behavior right from the 

beginning of the simulation. The process of formation and dissipation of the high oxygen 

deficit areas is similar to those as described in cases with gradual continental shelf slope 

c and e.  
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j. The bumpy steep-sloped with moderate discharge case 

This experiment is the same as Case i except here a steeper value of the 

continental shelf slope in used. Vertical sections of dissolved oxygen deficit along the 20 

m isobath at several times are shown in Figure 4.30. 

 
 

 

  

  

  

 
Figure 4.30. Dissolved oxygen deficit and salinity contours along the 20 m isobath for 
bumpy steep-sloped with moderate discharge case j. t units are equal 1=6 hours. 
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The outcome of the experiment is similar to the Case d. However, the inclusion 

of the freshwater discharge into the model increases stratification, which intensifies the 

dissolved oxygen deficit under the plume. The comparison with Case i show that an 

increase of the continental shelf slope results in more ventilation of the water column 

and therefore contributes to the dissipation of low-oxygen waters. 

Distribution of the dissolved oxygen deficit along the shelf is influenced by 

instabilities introduced by topographic steering and freshwater forcing. The dissolved 

oxygen deficit intensifies in the regions under the river plume in response to the increase 

in stratification. A steeper value of the shelf slope increases the amplitudes of the wave 

in the vertical section along the shelf, and thus, promotes ventilation of the water 

column. 

 

4.4 Influence of instabilities on the distribution of dissolved oxygen deficit along the 

shelf 

Six numerical experiments were analyzed in order to investigate the effect of 

dynamic instabilities on spatial and temporal patterns of dissolved oxygen 

concentrations along the shelf. 

The development of dynamic instabilities due to topographic steering or/and 

freshwater forcing provides a distinct mechanism for the movement and dissipation of 

waters with high dissolved oxygen deficit. The peaks and troughs in the vertical 

distribution of the dissolved oxygen along the shelf are in phase with the structure of 

wave seen in salinity field in the beginner stages of simulations (up to 7-14 days). 

However, this agreement is disrupted as experiments progress in time and superposition 

of disturbances caused by two different forcings occurs. 

Inclusion of shoaling topography into the model domain introduces disturbances 

near the bottom that are immediately reflected in the oxygen deficit distribution (Cases 

c-d and i-j).  In the absence of shoals (Cases e-f), dynamic instabilities depend on the 

offshore spread of the river plume and take up to 7 days of simulation to reach the 
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bottom layer and affect the distribution of dissolved oxygen at the bottom along 15 m 

and 20 m isobath. 

Large areas of the high oxygen deficit tend to appear in the strongly stratified 

regions downstream. 

The variation of steepness of the continental shelf slope to larger values (Cases d, 

f, and j) results in an increase in the vertical range of instability amplitudes. In turn, 

larger amplitudes allow for more thorough ventilation of the water column, and therefore 

contribute to the faster dissipation of waters with the high dissolved oxygen deficit.  

In Chapter V, I will relate the conclusions drawn from the numerical experiments 

to observations of density and dissolved oxygen concentrations from the Louisiana 

Shelf. 
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CHAPTER V 

 

DISCUSSION AND CONCLUSIONS 

 

In this chapter, I compare and discuss the results of the numerical experiments 

and relate them to observations of density and dissolved oxygen concentrations collected 

on MCH cruises in 2004 and 2005. The purpose here is to identify the processes that 

affect the distribution of the water properties along the Louisiana Shelf, refine 

interpretation of the model results discussed in Chapter IV, and to outline future work. I 

also provide summary and conclusions of the research presented in Chapters III and IV. 

 

5.1 Comparison of numerical experiments and observational results 

The initial and boundary conditions, used in numerical experiment, Case j, 

correspond closest to the observed conditions found on the Louisiana Shelf. Therefore, 

Case j was selected as the best candidate run for the comparison with observational data. 

The downstream (after the injection point of the freshwater and location of shoals) 

region of the model domain is thought to be analogous to the region offshore off 

Atchafalaya Bay, LA and the open shelf region between the Texas-Louisiana border and 

Atchafalaya Bay. 

A visual comparison of the horizontal salinity fields produced by numerical 

simulation (Figure 4.17) to observations of surface salinity on the Louisiana Shelf 

(Figure 3.3) shows that there are similarities in property distributions along and across 

the shelf.  Both show complex structure of the density field with approximately 50 km 

alongshelf wavelength. The horizontal meander produced in the numerical model output 

is a response to the topographic steering and freshwater discharge, and suggests that the 

same processes control the spatial structure of the meander observed on the Louisiana 

Shelf during multiple cruises. The similarities of modeled (Figure 4.18) and observed 

(Figure 3.2) vertical sections of salinity along the coast provide the further support for 

this conclusion. Both, the vertical distribution of the dissolved oxygen deficit derived 
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from numerical simulations (Figure 4.30) and dissolved oxygen concentrations measured 

on MCH cruses (Figure 3.9), exhibit a wave-like structure in response to the buoyancy 

transfer with roughly 10 m vertical excursions and 50 km along shelf wavelength. The 

omnipresence of this feature throughout the modeling runs and on all cruises indicates 

that this is a ubiquitous characteristic of the Louisiana Shelf. 

 To compare the effects of stratification on bottom dissolved oxygen 

concentrations, the Brunt-Väisälä frequency along the 20 m isobath was calculated from 

model salinity and temperature fields at several time steps using Eqn. 3.1.  

Bottom values of dissolved oxygen deficit versus maximum Brunt-Väisälä 

frequency at several time steps are shown on Figures 5.1. Data points are color-coded by 

the distances along the shelf with red/yellow dots being upstream (before the injection 

point of the freshwater and location of shoals) and blue/purple downstream (after the 

injection point of the freshwater and location of shoals). 

The dissolved oxygen deficit distribution derived from the model shows large 

variability over the time that is associated with advection and enhanced mixing 

processes. At the beginning of the simulation (t=28; 7 days), the freshwater plume is 

confined to the coast near the injection point and has not had time to spread offshore to 

the 20 m isobath. Thus, stratification and, therefore, Brunt-Väisälä frequency tend to be 

low ~35-40 cycles per hour, reflecting the values set by the initial salinity gradient.  A 

closer inspection of the distribution in Figure 5.1(a) reveals that data points can be 

divided into two groups. The first group is a narrow vertical strip with a range of the 

dissolved oxygen deficit at the Brunt-Väisälä frequency equal to ~30-35 cycles per hour, 

i.e., corresponding most closely to the initial stratification values of the model.  This 

group (red/yellow dots) represents the water column in the upstream region (distances > 

200 km) and can be neglected in further comparison since this region is not greatly 

influenced by variable topography and/or freshwater discharge. Data points (blue/purple 

dots), representing the downstream region (distances < 200 km), exhibit a similar range 

of the dissolved oxygen deficit with increasing stratification, which is associated with 

the development of instabilities at the bottom as the flow passes over the shoals.  
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a) 

 
b) 

 
c) 

 
d) 

 
Figure 5.1. Maximum Brunt-Väisälä frequency versus bottom dissolved oxygen deficit 
for the bumpy steep-sloped with moderate discharge case j with the respiration time 
scale of 3 days. t units are equal 1=6 hours. 

 
 
 
As the simulation progresses in time, the separation of the data into two 

distinctive groups becomes more clear, as seen in Figure 5.1(b-d). Although, the 

distribution of the data points indicate a general increase in bottom oxygen deficit with 

increasing Brunt-Väisälä frequency, the relationship is not linear, and manifests as loop-

like features associated with the phasing of the of the physical and biological processes. 
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As Brunt-Väisälä frequency increases, strong pycnocline caps the bottom water layer 

restricting the supply of dissolved oxygen down to the bottom from the surface layer, as 

a result the dissolved oxygen deficit increases as well. As stratification weakens due to 

the vertical mixing, it allows for injecting the well-oxygenated waters from the surface 

downward into the bottom layer, where a decrease in the dissolved oxygen deficit is 

seen. The similarities in the time scales of the respiration parameterization (3 days) and 

buoyancy transfer processes (3-7 days) maintain the shift in the wave phase and the 

complexity of the patterns throughout the runs as both processes need approximately the 

same period of time to reach steady state. 

Figures 5.2 and 5.3 illustrate how different respiration time scales produce 

different spatial and temporal patterns. A shorter time scale, i.e., 0.5 days (Figure 5.2) 

results in the rapid development of the dissolved oxygen deficit at the bottom along the 

shelf. Very few points in the downstream region have dissolved oxygen deficit values 

less than 0.6 The temporal response of the system to ventilate the lower layers is slower 

than the time to form the areas of high dissolved oxygen deficit. Hence, low-oxygen 

waters cover most of the shelf despite of the strong current events that move and 

contribute to the dissipation of those areas. A longer time scale (Figure 5.3) results in the 

opposite trend as the waters are minimally depleted throughout the run, i.e., few 

dissolved oxygen deficit values are greater than 0.5. Since ventilation rates set by 

physical processes are faster than the respiration scales the lower layers tend to remain 

well oxygenated. Variability of the dissolved oxygen deficit derived from the model with 

the respiration time scale of 3 days (Figure 5.1) resembles closest the distribution of the 

dissolved oxygen concentrations observed on MCH cruises. I expect that any changes to 

the structure and timing of stratification and water column stability can lead to 

significant changes to the character and structure of the lower layer (near bottom) 

dissolved oxygen deficit. 
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a) 

 
b) 

 
c) 

 
d) 

 
Figure 5.2. Maximum Brunt-Väisälä frequency versus bottom dissolved oxygen deficit 
for the bumpy steep-sloped with moderate discharge case j with the respiration time 
scale of 0.5 days. t units are equal 1=6 hours. 
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a) 

 
b) 

 
c) 

 
d) 

 
Figure 5.3. Maximum Brunt-Väisälä frequency versus bottom dissolved oxygen deficit 
for the bumpy steep-sloped with moderate discharge case j with the respiration time 
scale of 7 days. t units are equal 1=6 hours. 
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5.2 Summary and conclusions 

MCH data sets were used to describe and analyze the alongshore distribution of 

the physical and biochemical water properties on the Louisiana Shelf. Temperature, 

salinity, and dissolved oxygen concentrations records, collected on MCH cruises, 

revealed the presence of meander, seen in horizontal sections along the shelf. The 

alongshelf meander is also manifested vertically as a wave-like distribution of the 

properties in the water column. This meander appears to be a ubiquitous characteristic of 

the Louisiana Shelf with spatial scale approximately 50 km and less along the shelf, 

which is consistent with the locations of sandy shoals along the coast and the local 

deformation radius. 

I have shown, that during MCH cruises the occurrences of low-oxygen and 

hypoxic waters, represented as waters with high AOU values, were related to the local 

vertical stratification mainly in zones C (off Atchafalaya Bay, LA) and D (shelf between 

Atchafalaya Bay, LA and Texas border). In general, the bottom AOU increases with the 

increase in Brunt-Väisälä frequency and vice versa. This mechanism is well illustrated 

by the wave seen in the vertical distributions of salinity and dissolved oxygen 

concentrations along the shelf. Strong stratification caps the bottom water layer 

restricting the ventilation of dissolved oxygen from the surface layer down to the 

bottom. As stratification weakens due to the vertical mixing processes it allows for the 

injection of the well-oxygenated waters from the surface into the bottom layer. Hypoxic 

conditions were not present in waters with Brunt-Väisälä frequency less than 40 cycles 

per hour. Although, this explanation implies a linear relationship between AOU and 

Brunt-Väisälä frequency, the observational data show considerable variability, especially 

in the region in the vicinity of zones C and D. 

The origin of the meander and its influence on the distribution of dissolved 

oxygen concentrations along the shelf was investigated using numerical modeling. 

Twelve numerical experiments were performed to evaluate the relative importance of the 

variable bottom topography and freshwater forcing on the development, evolution, and 

scales of the dynamic instabilities. 
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For the cases with smooth topography, no instabilities developed along and 

across the spatial extent of the model domain in the absence of the freshwater forcing. 

Those two cases differ from each other in a used value of the continental shelf slope. 

Both values of slope used in this study in combination with other chosen parameters 

(initial salinity gradient, wind) demonstrated their insufficiency to support the formation 

of the instabilities.  

The inclusion of the shoals into the bottom topography showed the development 

of the dynamic instabilities as the flow passed over the shoals and downstream. Vertical 

cross-sections along the shelf revealed wave-like disturbances throughout the water 

column. Introduction of the fresh water onto shelf resulted in greater salinity differences, 

and, as a consequence in the formation of the unstable salinity fronts along the plume 

edge. Freshwater forcing (moderate and large) used in the experiments, alone was 

sufficient to originate the instabilities. The combination of the freshwater forcing and 

shoaling topography showed the interaction between instabilities produced by different 

mechanisms: topographic steering due to the shoals and buoyancy transfer due to the 

density gradient. 

Varying the continental shelf slope resulted in a change of the vertical wave 

amplitudes with larger amplitudes for the steeper slopes. Inspection of salinity contours 

near bottom revealed that a more gentle shelf slope causes the plume to be trapped 

inshore behind the shoals. A change in the shelf slope to a steeper value allowed for the 

plume to move further offshore and interfere with the topographically induced meander. 

Varying the magnitude of freshwater discharge does not appear to alter the development, 

sustainment, and scales of instabilities near the injection point for any of the studied 

cases. 

Six numerical experiments were analyzed in order to investigate the effect of 

dynamic instabilities on spatial and temporal patterns of dissolved oxygen 

concentrations along the shelf. 

Inclusion of shoaling topography into the model domain introduces disturbances 

near the bottom that are immediately reflected in the oxygen deficit distribution.  In the 
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absence of shoals, dynamic instabilities depend on the offshore spread of the river 

plume. The development of dynamic instabilities due to topographic steering or/and 

freshwater forcing provides a unique mechanism for the movement and dissipation of 

waters with high dissolved oxygen deficit. The peaks and troughs in the vertical 

distribution of the dissolved oxygen along the shelf are in phase with the peaks and 

troughs of the wave seen in the density structure in the beginner stages of simulations. 

However, this agreement is disrupted as the numerical experiments progress in time and 

a superposition of disturbances caused by two different forcings occurs. A loop-like 

relationship between Brunt-Väisälä frequency and dissolved oxygen deficit reflects the 

response of biochemical properties to the changes in density field. The time scales of the 

respiration parameterization (~3 days) and buoyancy transfer processes (~5-7 days) 

contribute to the shift in phasing and the complexity of the patterns seen at later times. 

The variation of steepness of the continental shelf slope to larger values results in 

an increase in the vertical range of instability amplitudes. In turn, larger amplitudes 

allow for more thorough ventilation of the water column, and thus affect the bottom 

dissolved oxygen concentrations.  

Comparison of results of the numerical modeling runs to observations of density 

and dissolved oxygen concentrations on the Louisiana Shelf supports the idea that 

physical processes such as topographic steering and/or freshwater forcing influence the 

alongshore distribution of physical and biochemical properties on the Louisiana Shelf. 

Indeed, it suggests that the time scales, associated with the physical processes that are 

responsible for water column stability and ventilation, are similar to the time scales 

associated with the benthic respiration rates. Further, the model represents the 

mechanisms affecting the location and dissipation of low-oxygen waters in the regions 

analogous to zones C and D of the Louisiana Shelf by reproducing the characteristic 

features of variability of water properties along the shelf. 

Although, this study shows how physical processes can affect biochemical 

processes on the Louisiana Shelf, further investigations can be carried out in order to 

advance and broaden our understanding of the system. Suggestions for future work, 
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intended to continue this study, include expanded observational and numerical 

components: 

Observational component 

- An addition of the prolonged time series observations at several stations 

along the shelf; 

- Acquisition of current profiles with sufficient vertical resolution to measure 

shear; 

Modeling component 

- Modification of the benthic respiration function, and inclusion of the water 

column respiration and photosynthesis; 

- Analysis of the time series derived from the model simulations with moored 

time series of temperature, salinity, and dissolved oxygen concentrations 

from the shelf. 
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