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ABSTRACT 

 

Synthesis of Proportional-Integral-Derivative Controller from Empirical Data and 

Guaranteeing Performance Specifications.  (May 2008) 

Dongwon Lim, B.S., Hanyang University, Seoul, Korea 

Chair of Advisory Committee: Dr. Darbha Swaroop 

 

For a long time determining the stability issue of characteristic polynomials has played a 

very important role in Control System Engineering. This thesis addresses the traditional 

control issues such as stabilizing a system with any certain controller analyzing 

characteristic polynomial, yet a new perspective to solve them. Particularly, in this thesis, 

Proportional-Integral-Derivative (PID) controller is considered for a fixed structured 

controller. This research aims to attain controller gain set satisfying given performance 

specifications, not from the exact mathematical model, but from the empirical data of the 

system. Therefore, instead of a characteristic polynomial equation, a specially 

formulated characteristic rational function is investigated for the stability of the system 

in order to use only the frequency data of the plant. Because the performance satisfaction 

is highly focused on, the characteristic rational function for the investigation of the 

stability is mainly dealt with the complex coefficient polynomial case rather than real 

one through whole chapters, and the mathematical basis for the complex case is prepared.  

 For the performance specifications, phase margin is considered first since it is a 

very significant factor to examine the system’s nominal stability extent (nominal 
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performance). Second, satisfying H� norm constraints is handled to make a more robust 

closed loop feedback control system. Third, we assume undefined, but bounded outside 

noise, exists when estimating the system’s frequency data. While considering these 

uncertainties, a robust control system which meets a given phase margin performance, is 

attained finally (robust performance). 

 In this thesis, the way is explained how the entire PID controller gain sets 

satisfying the given performances mentioned in the above are obtained. The approach 

fully makes use of the calculating software e.g. MATLAB® in this research and is 

developed in a systematically and automatically computational aspect. The result of 

synthesizing PID controller is visualized through the graphic user interface of a 

computer.  
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CHAPTER I 

 

INTRODUCTION 

The synthesis of fixed structure controllers for a linear time invariant plant is an open 

problem with a wide variety of practical applications. Some of the widely used fixed 

structure controllers are the Proportional Integral Derivative (PID) controllers and the 

lead-lag controllers. The PID and lead-lag controllers are simple as well as effective and 

more than half of the industrial applications in use today utilize PID or modified PID 

control schemes [1]. Despite their wide applicability, the synthesis of PID controllers has 

not been rigorously solved until recently [2].  

The existing systematic methods for the synthesis of PID and fixed structure 

controllers, with a few notable exceptions, rely on the availability of a mathematical 

model of the plant. The most notable classical method and exception to synthesize a PID 

controller is Ziegler-Nichols [3]. A significant feature of this method is its reliance only 

on empirical data from the plant. It makes an assumption concerning the structure and 

provides a simple way to compute the proportional, integral and derivative gains from 

the empirical data. The method is not as effective when the assumed structure of the 

plant differs significantly from the actual structure. Another significant drawback of the 

Zeigler-Nichols method is that only one controller set is obtained. This may not satisfy 

other performance specifications that one may have for a given application. 

___________ 

The journal model is IEEE Transactions on Automatic Control. 
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Techniques for synthesizing the sets of stabilizing controllers directly from the 

empirical data of the plant have not been pursued vigorously until recently. The work of 

Bhattacharyya and Keel [4] deals with the synthesis of PID and first order controllers 

when the frequency response of the plant is known over the entire frequency range. The 

work of Malik et. al [5] synthesizes stabilizing controllers of fixed order based on 

empirical frequency response data at a finite set of frequencies and makes assumptions 

about the structure of the plant at higher frequencies. The work of Bhattacharyya and 

Keel [2], [4] also deals with synthesizing sets of PID and lead-lag controllers that 

guarantee a specified performance while this is not the case with the work of Malik et. al. 

Noise in sensing and measurement is accounted for in the synthesis of fixed order 

controllers considered by Malik et. al [5]. It is a very practical implementation, because 

the information from the plant such as the magnitude of frequency response may not be 

exact but coarse to use for an empirical data may be corrupted by noise. This thesis 

generalizes the work of Bhattacharyya and Keel [4] by accounting for noise in empirical 

frequency response data in the synthesis of PID and first order controllers. The method 

proposed here also requires some crude information about the plant such as the relative 

degree and non-minimum phase zero.  

The underlying assumption of the work is that the plant is stable but the 

performance of the plant is not satisfactory. This is a practical problem which can arise 

in a variety of situations. For example, any control apparatus bought from a vendor is 

usually stable and the performance may not be satisfactory. However, it is usually easy 

to acquire frequency response data for such an apparatus. In this situation, one faces the 



 3 

following dilemma – whether to obtain a mathematical model for the apparatus or 

whether to synthesize a controller directly from the acquired data. The latter is a 

reasonable option especially when the apparatus is given as a black box and when the 

response seems linear. It is for the latter situation that this thesis addresses. 

In particular, it is shown in this thesis how one can compute the sets of 

stabilizing controllers that guarantee a certain performance specification is met. The 

performance specifications considered in this work are phase margin and maximum 

complementary sensitivity function of the closed loop with/without consideration of the 

uncertain frequency measurement of the system.  

The developed algorithms have been implemented in MATLAB® and a graphical 

user interface is provided so that one can plot and verify the set of controllers 

guaranteeing the specified performance. 

 

A.   Objective 

This research aims to explore a new synthesizing PID and fixed structured controller 

gains and to verify its reasonableness with the commonly used simple but elaborated 

theory in order to 

• Guarantee the given performance specifications such as the phase margin and/or 

H� norm of the sensitivity transfer function for the linear time invariant system. 

• Determine the entire set given the frequency response of a continuous LTI 

system. 
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• Attain the robustness enhancement of the design for the system from the 

measured uncertain data. 

The basic idea of the above was introduced in [5]. The computation is implemented by 

MATLAB® simulation for the software is widely used in both the academic area and the 

industry. 

 

B.    Organization of Thesis 

In the following part of this thesis many topics will be covered. In Chapter II, earlier 

results are concerned with mathematical preliminaries such as the Hermite-Biehler 

theorem, the Mikhailov’s plot, as well as the concept of signature of a polynomial for the 

generalized Hermite-Biehler theorem. Since this research highly concentrates on the 

performance attainment, only a complex polynomial which is a more general case is 

handled in Chapter II. Chapters III and IV deal with synthesis of the set of PID 

controllers that achieve various performance specifications. In Chapter III, achieving the 

entire set for the given phase margin is introduced and specifically described. Chapter IV 

provides H� norm constraint specification, which is analogous to the one shown in 

Chapter III, and present relevant illustrative examples comparing the stabilizing set. 

Chapter V studies the robustness property to ensure the proper performance against the 

estimation error. This is also accomplished in a similar way to the method of Chapter III 

and IV; however, it employs a series of non-linear inequalities (so called Cone Program). 

Finally, the contributions of this thesis are summarized in Chapter VI and a few 

concluding remarks on possible directions for future research are discussed. 
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CHAPTER II 

 

MATHEMATICAL PRELIMINARIES 

 

A.   Introduction 

In this chapter, the mathematical preliminaries are briefly introduced for better 

understanding the whole later chapters. They have been already employed for PID 

controller synthesis [5], but they were real polynomial cases having different 

characteristics against the complex polynomial case. Because this research deals with 

performance specification which involves ej� in the characteristic polynomial, this 

chapter describes only the complex polynomial case – more general case rather than the 

real polynomial one. The real cases of Mikahilov’s Criterion and Hermite-Biehler 

Theorem are well introduced and developed in [2], [4], [5], which one may take a look at 

for the detail. This chapter is introducing some results for complex case from [5], 

utilizing these concepts and applying them to the complex cases for the Mikhailov’s 

criterion in section B and the Hermite-Biehler Theorem in section C. In section D, the 

Hermite-Biehler theorem is generalized for non-Hurwitz polynomial in complex case as 

well. This generalization plays very important role in this research to define the 

constraints for confining controller gain convex area, so it is referred and used for later 

whole chapters to get stabilizing controller set. Next, the algorithm for automatic sign 

assignment is introduced since this research aims to develop computer aided graphical 

tool getting PID gain set.  
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B.   Mikhailov’s Criterion 

A Hurwitz stable polynomial means that it has all the roots in the left half (LHP) of the 

complex plane. In order for the stability of a system, this Hurwitz condition is required 

mathematically. For a Hurwitz stable complex polynomial P(s), the Mikhailov’s 

criterion states that the polynomial P(s) is Hurwitz if and only if the frequency response 

plot (plot of P(j�)) starts on any specific quadrant and passes through exactly 2n 

quadrants in the counterclockwise direction as � increases from −� to �, where n is the 

degree of the polynomial [5]. 

 

Lemma II.1.   Let P(j�) = Pr(�) + jPi(�). Pr(�) and Pi(�) are polynomials with real 

coefficients. It is observed that Pr(�) and Pi(�) have same degree of n. The starting 

quadrant can be found as 

• If the leading coefficient of Pr(�) and Pi(�) are of the same sign, then 

Mikhailov’s plot starts in the first or third quadrant at � = −� 

• If the leading coefficient of Pr(�) and Pi(�) are of the different sign, then 

Mikhailov’s plot starts in the second or fourth quadrant at � = −� 

 

 In Fig. 1 Lemma II.1 is well illustrated for Hurwitz complex polynomial. 

Consider following Example II.1. 
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Fig. 1.  Mikhailov's plot for Hurwitz complex polynomial 

 

� = −� 

� = � 

Real axis 

Imaginary 

odd polynomial, same sign of leading coeff. even polynomial, same sign of leading coeff. 

even polynomial, opposite sign of leading coeff. odd polynomial, opposite sign of leading coeff. 
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Example II.1. Consider the given complex Hurwitz polynomial P(s) 

 P(s) = (1 − j)s3 + (7 − j)s2 + (26 − 7j)s + 36  − 2j (2.1) 

and P(j�) can be decomposed into the real part and the imaginary part as 

P(j�) = Pr(�) + j Pi(�) 

 = (−�3 − 7�2 + 7� + 36) + j(−�3 + �2 + 26� − 2) (2.2) 

 As seen in Fig. 2, the Mikhailov’s plot of the given complex polynomial starts on 

1st quadrant and turns in the counterclockwise direction going through 2n  = 6 (n = 3) 

quadrants as � goes from −� to �. It is noted that the plot in the extreme frequency 

region has an inclination which depends on the each part of leading polynomial’s 

coefficient, 45° ( = �
�

�
�
�

�

−
−−

1
1

tan 1 ) here. Furthermore, it is observed that the net change in 

phase as � proceeds from −� to � is 3�. In general for a Hurwitz stable polynomial, this 

net change is n�, where n is the degree of the polynomial [6]. 

-600 -500 -400 -300 -200 -100 0 100 200
-200

-100

0

100

200

300

400

500

600

realrealreal

Imag

 

Fig. 2. Mikhailov's plot for Example II.1 
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C.   Hermite-Biehler Theorem for Complex Polynomilas 

We continue the discussion over the complex polynomial, P(s) as shown in the previous 

section. The Hermite-Biehler theorem gives a necessary and sufficient condition for a 

given polynomial to be stable. The theorem says that the polynomial P(s) is Hurwitz if 

and only if all roots Pr(�) and Pi(�) are real and interlace according to the following [5]: 

Lemma II.2.  

• If the leading coefficient of Pr(�) and Pi(�) are of the same sign, then 

          −� < �r1 <  �i1 <  �r2  <  �i2  <  … …  <  �rn  <  �in < � 

• If the leading coefficient of Pr(�) and Pi(�) are of the different sign, then 

          −� < �i1 <  �r1 <  �i2  <  �r2  <  … …  <  �in  <  �rn < � 

 The proof of the Hermite-Biehler Theorem for complex polynomials is an 

extension version of the real case, which can be found in [2]. Consider the following 

example. 

Example. II.2. Reconsider the same polynomial from example II.1. The roots of each 

decomposed polynomial can be found as 

   Pr(�) = −�3 − 7�2 + 7� + 36 

   Pi(�) = −�3 + �2 + 26� − 2 

   Pr(�)=0 : �r = −7.2824,   −2.0867,    2.3691 

 Pi(�)=0 : �i = −4.6651,    0.0767,    5.5884 (2.3) 

which shows the interlacing property of Hermite-Biehler theorem well in Fig. 3. Again, 

this property shows P(s) in Example. II.1 is indeed Hurwitz. 
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Fig. 3.  Interlacing property for a Hurwitz polynomial 

 

D.   Generalization of the Hermite-Biehler Theorem 

As shown in the previous section, the Hermite-Biehler theorem is valid for only 

polynomials which are Hurwitz. The Generalization of the Hermite-Biehler theorem is 

used for not necessarily Hurwitz polynomials. In this section the complex polynomial is 

also handled for applying Generalization of the theorem. 

 In [2] Bhattacharyya et. al. introduced the lemma of the generalization of the 

Hermite-Biehler theorem for real polynomials to show a relationship between the net 

accumulated phase of P(j�) and the difference between the numbers of roots of the 

Pi(�) 

Pr(�) 
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polynomials in LHP and RHP. The relationship for complex polynomials can be deemed 

in a similar way to that of real polynomials as following lemma: 

Lemma II.3.  For a given complex polynomial P(s) with no imaginary axis roots, let 

l(P) and r(P) denoted the number of left and right half zeros in the complex plane. Let 

θ∞
−∞∠∆  denote the total change in phase of P(j�) as � goes from −� to �. 

Then, 

 { }( ) ( )l P r Pθ π∞
−∞∠∆ = −  (2.4) 

 

Proof  In general it is noted that the roots in the left half of the complex plane (l(P)) 

contribute � while the roots on the right half of the complex plane (r(P)) contribute –� to 

the net change in phase. � 

Now, in order to examine the total phase change of P(j�), we need to decompose P(j�) 

into Pr(j�) and Pi(j�), where Pr and Pi are all real polynomials as 

 P(j�) = Pr(�) + jPi(�) (2.5) 

Let 

+1   if  x > 0 

     sgn[x] =     −1   if  x > 0 

0    if  x = 0 (2.6) 

The total phase change of P(j�), ( )P jω∞
−∞∠∆ , now can be calculated below, which 

result is very similar way to that derived by the work of Bhattacharyya et. al. [2]. 
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Theorem II.1. Let the distinct real roots of imaginary part of polynomial, Pi(�) = 0 

denote 

−� < �1 < �2 < … … < �l-1 < �l < � 

And assume that there is at least one more real roots of Pr(�), then signature of the 

polynomial l(P) − r(P) which means the difference of numbers between LHP roots and 

RHP roots and is symbolized as �, is given by 

 )(
1

)()()( ω
π

σ jPPrPlP ∞
∞−∆∠=−=  

         = [ ] )](sgn[2)](sgn[2)]((sgn[)(sgn
2
1

1)1( 3211 ωωωω rrri PPPPd +−+⋅− �  

 )])(sgn[)1()](sgn[)1(2 1
1

2
lr

l
lr

l PP ωω −
−

− −+−+��  (2.7) 

where d stands for the direction that the Mikailov’s plot rotates in the axis of the origin. 

When the plot rotates in counter-clockwise direction, d is 1, otherwise d is −1. It is also 

observed that when d is 1, the first root appearance in Lemma II.1 is holding, but when d 

is −1, it is opposite. 

Proof.  When � travels from −� to �, the roots in LHP contribute l(P)�� and the roots in 

RHP does r(P)��. Hence, the total phase change of P(j�) can be easily obtained by 

 { } πσπω )()()()( PPrPljP =−=∆∠ ∞
∞−  (2.8) 

The change in the phase of �(j�) from �k to �k+1 is given by: 

 [ ]{ })])(sgn[)]((sgn[)(sgn
2 1+− krkrki PPP ωωωπ �  (2.9) 

So the total phase change of P(j�) can be shown by 
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 )])(sgn[)]((sgn[
)(

{sgn
2

)1()( 21
1 ωω

ω
ωπαω rr

i PP
d

P
djP −��

	

�

�+−=∆∠ ∞
∞−  

 )])(sgn[)]((sgn[
)(

sgn 32
2 ωω

ω
ω

rr
i PP
d

P −��

	

�

�+  

 )])(sgn[)]((sgn[
)(

sgn 43
3 ωω

ω
ω

rr
i PP
d

P −��

	

�

�+  

 …   … 

 ))(1()])}(sgn[)]((sgn[
)(

sgn 1
1 απωω

ω
ω −−+−��

	

�

�+ −
− dPP

d
P

lrlr
li  (2.10) 

where � is the inclination angle that the Mikhailov’s plot converges when � � � or −�. 

It is noted that the angle, d(−1)� ( 0 < � < � ), inherently represents the phase change 

from � = −� to � = �1 in the above equation. When the phase change from −� to �1 is 

�, the phase change from �l to � is specified by d(−1)(� – �). 

 Since [ ])(sgn 1+kiP ω�  = − [ ])(sgn kiP ω� , the phase change in P(j�) from � = −� to � 

= � can be compressed by 

 

[ ] )](sgn[2)](sgn[2)]((sgn[)(sgn
2

)1()( 3211 ωωωωππω rrri PPPPdjP +−+−=∆∠ ∞
∞−

�  

 )])(sgn[)1()](sgn[)1(2 1
1

2
lr

l
lr

l PP ωω −
−

− −+−+�� . (2.11) 

Therefore, we relate (2.8) and (2.11), then obtain 

[ ] )](sgn[)1()](sgn[2)]((sgn[)(sgn
2
1

)1())(( 1
211 lr

l
rri PPPPdjP ωωωωωσ −−−+−= ��  (2.12) 

which is, indeed, identical to (2.7). � 

Consider the following example 
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Example II.3. 

P(s) = (4.4496 + 0.3092 j)s5 +  (2.4708 − 1.7198 j)s4 +  (−3.4447 − 3.6099 j)s3 +  

(−0.5903 − 3.5781 j)s2 +  (0.1032 − 1.9176 j)s +  (−0.8766 − 0.2178 j)  (2.13) 

 As seen from the obtained roots, there are 2 roots in LHP and 3 roots in RHP. It 

is noted that the Mikahilov’s plot passes through only 4 quadrants in Figs. 4 and 5, and it 

should go through 10 (2�5=10) quadrants, if it were Hurwitz. And the interlacing 

property is not met in Fig. 6, which is magnified in Fig. 7, hence it is confirmed that the 

polynomial in this example is not Hurwitz by the Hermite-Biehler theorem. 

  Pr(�) = −3092s5 + 24708s4 − 36099s3 + 5903s2 +19176s − 8766 

  Pi(�) = 44496s5 −17198s4 + 34447s3 + 35781s2 + 1032s − 2178 

Pr(�)=0: real(�r) =  −0.7057, 0.5956, 6.1746. 

 Pi(�)=0: real(�i) = −0.4348, −0.3817, 0.2139. (2.14) 

By Theorem II.1, 

[ ]( ))](sgn[)](sgn[2)](sgn[)(sgn
2
1

1)(
1

)()( 3211 ωωωωω
π rrri PPPPjPPrPl +−+−=∆∠=− ∞

∞−
�

                  1)1121(1
2
1

1 −=−+−⋅−−⋅⋅+−=  (d = −1) (2.15) 

Indeed, the roots for this non-Hurwitz complex polynomial are 

 roots = 1.0619 + 0.6392j, 

 0.0732 − 0.6585j, 

 −0.9231 + 0.1154j, 

 −0.8378 + 0.0270j, 

 0.1000 + 0.3000j (2.16) 
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which gives l(P) − r(P) = 2 − 3 = −1 
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Fig. 4.  Mikhailov's plot 
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Fig. 5.  Magnified Mikhailo'v plot of Fig.3. 
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Fig. 6.  Decomposition into real and imaginary part 
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Fig. 7.  Magnification of Fig. 6. 
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E.   Algorithm for Automatic Sign Assignment 

In this section, the algorithm for giving all the possible sign sets is studied when there 

exist more real roots than the least required roots that will be discussed in Chapter III 

and used in following chapters. The algorithm is to be developed for systematical 

computation when l is arbitrary number of roots and more than r (required number of 

roots by the generalized Hermite-Biehler theorem). 

 For the background, it is noted that 

 
)!(!

!
! rnr

n
r
P

C rn
rn −

==  (2.17) 

The generalized Hermite-Biehler theorem can be shown as 

 )1(2)1()1(222 1
1

2
321 −=−+−++− −

−
− riiiii l

l
l

l
� , ik = 1 or �1 (2.18) 

 

Proposition II.1. The number of sets S can be determined by 

 when l – r is even, 

either i1 and il should be +1 or i1 and il should be −1, thus 

 S = 
�
�

�
�
�

� −−
2

2 rl
Q

l C +
��
�

�
��
�

� −�
�

�
�
�

� −−
1

2

2 rl
Q

l C  (2.19) 

 when l – r is odd 

either i1 and il be +1 and –1 or –1 and +1, thus 

 S = 2�
�
�

�
�
�

� −−
2

2 rl
Q

l C  (2.20) 

where �
�

�
�
�

� −
2

rl
Q  stands for the quota of 

2
rl −

. 
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Proof.   Let p(ik) and q(ik) denote 

p(ik) = l
l ii 1

1 )1( −−+ (k = 1, l), 

q(ik) = 1
2

32 )1(222 −
−−++− l

l iii � , (k = 2, 3, ���� � � l�1) 

 First, we need to compare the parities in each side of (2.18) and make them 

matched. When l−r is even, both l and r have same parity. Because r−1’s parity becomes 

different from r and q(ik)/2 is always same parity to that of l, p(ik) should contribute 2 by 

that the first and last term ought to be added to match the parities in equation (2.13) 

divided 2. On the other hand, when l−r is odd, l and r have always different parity. 

Similarly, because r−1’s parity is changed from that of r, so p(ik) should be 0 so that 

q(ik)/2 should be remained as same parity to that of l. Thus, when l−r is odd, the first and 

last term should be subtracted to match the parities likewise. 

 Second, it is necessary to remove redundant number of roots. We only need to 

consider q(ik) at this step and determine how many redundancies should be. The total 

number of terms in q(ik) is l−2 and if we select n number of terms as a result of −1, then 

2n number of terms are to be subtracted. The redundancies can be calculated by 

 when l−r is even, rlrl −=−−+− )1(12  (2.21) 

 when l−r is odd, 1)1(2 −−=−−− rlrl  (2.22) 

 Therefore, there are possibilities that −1 term in q(ik) can be chosen as many as 

�
�

�
�
�

� −
2

rl
Q  among l−2 number of terms.  � 
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Example II.4. 

a. Suppose l = 4 and r = 2, then the possibilities can be determined by 

 
1

2
2424

2
2424

−�
�

�
�
�

� −−
�
�

�
�
�

� −− +
QQ

CC  = 3120212 =+=+ CC . (2.23) 

 2)12(222 4321 =−=−+− iiii  (2.24) 

   F* = { i1, i2, i3, i4 } = { 1, −1, −1, −1} 

 = { 1, 1, −1, −1} 

 = { −1, −1, 1, 1} (2.25) 

b. l = 6 and r = 3, then the possibilities can be found by 1222 24

2
3626 =⋅=⋅
�
�

�
�
�

� −− CC
Q

. (2.26) 

 4)13(22222 654321 =−=−+−+− iiiiii  (2.27) 

   F* = [{ i1, i2, i3, i4, i5, i6 }] = [ { 1, 1, −1, −1, 1, 1 }, 

  { 1, 1, 1, 1, 1, 1 }, 

  { 1, 1, 1, −1, −1, 1 }, 

  { 1, −1, −1, 1, 1, 1 }, 

  { 1, −1, −1, −1, −1, 1 }, 

  { 1, −1, 1, 1, −1, 1 }, 

  { −1, 1, −1, −1, 1, −1 }, 

  { −1, 1, 1, 1, 1, −1 }, 

  { −1, 1, 1, −1, −1, −1 }, 

  { −1, −1, −1, 1, 1, −1 }, 

  { −1, −1, −1, −1, −1, −1 }, 

  { −1, −1, 1, 1, −1, −1 } ] (2.28) 
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 Next, an algorithm for making systematic Combination function (nCr) is 

introduced. In this research, we need a Combination function making every possible 

combinations automatically with given r choosing number in the n +1/−1 pool. Consider 

the case that r piece of −1s are selected among n tuples, which is expressed by nCr as 

shown below. 

   nCr = { −1, −1, … ,−1, +1, … , +1, +1 } 

 

      �  

 { +1, … , +1, +1, −1, −1, … ,−1 } (2.29) 

 The basic idea implemented in this algorithm is a counter’s working logic that at 

each event a bit is added from LSB (the least significant bit) to MSB (the most 

significant bit). 

  { −1, −1, … ,−1, +1, … , +1, +1 } is corresponding to its address 

 [ 0 0 0  … 0 0 ] (2.30) 

   LSB          MSB 

� Step 1. Generate −1’s address as many as the number of −1 

� Step 2. Start adding 1 from LSB at each step 

� Step 3. Find any count to be n − r or whether the sum of all is to be n − r. 

 If so, then initialize all the lower digits behind it and add 1 to upper digit 

� Step 4. Finish it when MSB becomes n − r, otherwise go to step 2. 

 In step 1, the address tells where each −1 is located in any combination. LSB 

stands for right-most one and MSB left-most one in combination. Address value means 

r 

n 

r 
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the number of +1 in front of any −1. For instance, the combination, { −1, +1, −1, +1, 

−1 }, is corresponding to the address, [ 0 1 1]. 

 In step 2, at each sequence add 1 at LSB of the address. This is analogous to that 

of a digital counter. 

 In step 3, compare each step’s status with the condition that any count digit is 

equivalent to n − r or the sum of all digits is n − r. If that condition is met, digit value is 

carried into higher level to MSB and initialized lower level digits until LSB. 

 In step 4, refer MSB and if it becomes n − r, then the program is terminated. 

Otherwise, go to step 2 and repeat all the procedure. 

Example II.5. Find corresponding address to each combination of sign for 5C3. 

 Combination : Address 

 5C3   =  { −1, −1, −1, 1, 1 } : [ 0 0 0 ] 

 { −1, −1, 1, −1, 1 } : [ 1 0 0 ] 

 { −1, −1, 1, 1, −1 } : [ 2 0 0 ] 

 { −1, 1, −1, −1, 1 } : [ 0 1 0 ] 

 { −1, 1, −1, 1, −1 } : [ 1 1 0 ] 

 { −1, 1, 1, −1, −1 } : [ 0 2 0 ] 

 { 1, −1, −1, −1, 1 } : [ 0 0 1 ] 

 { 1, −1, −1, 1, −1 } : [ 1 0 1 ] 

 { 1, −1, 1, −1, −1 } : [ 0 1 1 ] 

 { 1, 1, −1, −1, −1 } : [ 0 0 2 ]  (2.31) 
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CHAPTER III 

 

FIXED STRUCTURE CONTROLLER SYNTHESIS FOR PHASE MARGIN 

PROPERTY 

 

A.   Introduction 

Since the controller should be reliant in the real world system through any unpredictable 

events, the gain margin and phase margin take very important part in the control 

synthesis theory to examine how much stable the system is [7]. In this chapter, the phase 

margin is only taken into consideration for this objective, since it has a more meaningful 

study reason rather than the gain margin which can be achieved by small effort. The 

phase margin case is more difficult than the gain margin one, because the former is 

involved in complex polynomial analysis in order to get the sign signature for the 

stability of the system. On the other hand, the latter has a real polynomial, which is just 

the same case with stabilizing synthesis theory without considering performances. In [8], 

[9] the performance evaluation including phase margin has been achieved, however, the 

calculation went through iteration of several testing points with given limited Kd, Ki 

stabilizing area from fixed Kp gain value, which requires far more computational time 

than using the algorithm proposed here. Furthermore, the result from iteration can not be 

exact for complete controller set satisfying given performance criteria, because only a 

few points were tested from repetition of evaluating performance specifications. The 

main purpose of this chapter is to develop algorithm for assessing given performance 
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factors in section B. Applying this algorithm, in section C, the satisfying performance 

sets are determined not from an accurate analytical model of the plant but from an 

empirical data of the plant in terms of its frequency response and physical considerations. 

 

B.   Theory and Algorithm 

This section introduces a theory for synthesizing a rational, proper stabilizing PID 

controller C(s) satisfying given phase margin, such that the polynomial Dc(s) of degree 2 

and the polynomial Nc(s) of degree 2 are shown by (3.1). 

 2

2

)(
)(

)(
Tss

sKsKK

sD
sN

sC dpi

c

c

+
++

==  (3.1) 

 The coefficient T is a very small positive number such as 10-4 and is put to enable 

the controller C(s) to be handled as a proper rational transfer function. Let K be the 

vector of controller coefficients: 

 K = [  Ki   Kp   Kd  ]T (3.2) 

 The determination of the vector K - controller coefficients - is equivalent to that 

of the stabilizing controller C(s). The main objective is to guarantee a phase margin of � 

for a SISO plant, the following criterion [5] is used in this chapter so as to be Hurwitz. 

Lemma III.1 [5]. 

 ( ) ( ) ( ) ( ) ( )j
P C P Cs D s D s e N s N sθ∆ = +  (3.3) 

where a transfer function 
)(

)(
)(

sD

sN
sH

p

p
p =  is stabilized by a fixed order controller, 

( )
( )

( )
C

C

N s
C s

D s
=  for every ),( φφθ −∈ . 
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 Furthermore, as mentioned earlier, we make use of only empirical data in terms 

of its frequency response from the plant. Hence, the above criterion (3.3) must be revised 

into the rational function, �(s), as shown below. 

 
( )

( ) ( )
( ) ( )

P

P P

N s
s s

D s D s
δ −= ∆

−
 (3.4) 

If 	(s) has coefficients that are affine in the controller coefficients, then the rational 

function, �(s), is also affine in the controller coefficients [5]. In order to proceed 

applying the mathematical preliminaries shown in Chapter II to this rational function, 

�(s), we have to assume the followings about the plant: 

� The transfer function 
)(

)(
)(

sD

sN
sH

p

p
p =  of the plant is stable, rational and strictly 

proper, which means the degree  n of Dp(s) is greater than the degree m of Np(s) 

for some coprime polynomials, Np(s) and Dp(s). 

� The plant does not have any pole and zero on the imaginary axis, i.e., Np(j�)  	 0, 

Dp(j�) 	 0, for � ∈ (−�,�). 

 The root counting and phase unwrapping of Hurwitz real polynomials is 

employed for generalization of non-Hurwitz complex polynomials, as shown already in 

Chapter II, to yield sets of controllers systematically in the parameter space. Again, the 

polynomial we are considering is complex due to the exponential term, je θ  which is 

aggravating the stability as much as the given phase margin. As far as the total phase 

accumulation of �(j�) is examined as � varies from �� to +�, the generalized 

Hermite-Biehler theorem can still stand as shown in Theorem III.1. The reason why we 
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have to examine the phase change from �� to +� is that the complex polynomial’s real 

part roots are not to be symmetry with respect to imaginary axis generally. Now, the 

generalized Hermite-Biehler theorem in Theorem II.1 is applied to Lemma III.1 for 

deriving entire phase margin gain sets, leading the following Theorem III.1. 

Theorem III.1.   Consider characteristic rational function; 

 
( )

( ) ( )
( ) ( )

P

P P

N s
s s

D s D s
δ −= ∆

−
, for � ∈ (0,

2
π

) (3.5) 

Let the real roots �k of �i(s) be 

�k = −� < �1 < �2 < �3 


 


 < �l-1 < �l < � 

Let the sign of �r(s) at these frequencies denote correspondingly i1, i2, i3, 


 


, il-1, il. 

Then, 	(s) is Hurwitz if and only if 

 })1()1(222{
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li iiiii
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�=−++− �
ω
ωδ

 (3.6) 

In (3.6), n is the degree of the denominator of the plant, m is the degree of the numerator 

of the plant, r is the degree of the compensator which is 2 and u is the non-minimum 

phase zero of the plant. 

Proof. Note that the degree of the polynomial 	(s)Np(−s) is n + r + m. Since the 

denominator of �(s) does not contribute any angle change, we need to consider the 

numerator only, 	(s)Np(−s).  The number of roots of Np(s) in LHP is equivalent to m − u. 

Similarly, the number of roots of Np(s) in RHP is u. Thus, the number of roots of Np(−s) 

in LHP is u and the number in RHP is m – u. Hence, the signature of 	(s)Np(−s)  can be 

easily obtained by 
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( ( ) ( )) ( ) ( )

2
ps N s n r u m u

n m r u

σ ∆ − = + + − −

= − + +
 (3.7) 

Let the sign of 
( )id

d
δ ω

ω
 at � = �k symbolize Ik. The change in the phase of �(j�) from �k 

to �k+1 is given by: 1( )
2k k kI i i
π

+− . Since Ik+1 = −Ik, the phase change in �(j�) from � = 

−� to � = � can be expressed as: 

 { } )(
2

)()1()()())(( 1
2

32211 αππαωδ −+−−++−−−+=∆ −
−∞

∞− li
l iiiiiiI �  (3.8) 

 The angle, � ( 0 < � < � ), represents the phase change from � = −� to � = �1 in 

the above equation. When the phase change from −� to �1 is �, the phase change from 

�l to � is specified by � – �. It is observed in the following section that the degree of 

both �r(j�) and �i(j�) should be same, because Hp(−j�) is evenly distributed to the real 

part and the imaginary part of decomposed rational function respectively by je θ term. 

Thus, the asymptotic angle for � � −� or � � is determined by the leading 

coefficients of �r(j�) and �i(j�), simultaneously.  

 Therefore, from the above, the signature equation (3.7) and the total phase 

change of �(j�) (3.8) are related by 

 { } )(
2

)()1()()()2( 1
2

32211 αππαπ −+−−++−−−+=++− −
−

li
l iiiiiiIurmn �  (3.9) 

Since I1 = sgn 1( )id
d

δ ω
ω

� 	

 �
� �

 and Ik = (−1)k−1 I1 from the interlacing property of the rational 

function, the change in the phase of �(j�) as � changes from −� to � is: 



 27 

 { }1 2 3

1

1
1

( ) 1
( 2 ) sgn 2 2 2( 1) ( 1) 1

2
l li

l l

d
n m r u i i i i i

d ω ω

δ ω
ω

−
−

=

� �� 	− + + = − + + − + − +� �
 �� �� �� �
� (3.10) 

which is identical to (3.6). Note that the accumulation of phase of 	(j�)Np(−j�) is 

equivalent to that of �(j�) as ( 2 )
2

n m r u
π− + +  if and only if 	(s) is Hurwitz. � 

 It is noted that we do not have to know the exact n and m. The relative degree n − 

m can be inferred from the plant transfer function’s frequency responses at sufficiently 

high frequencies. The number of non-minimum phase zeros, u of the plant also can be 

found, in some cases, from total phase change of frequency response data. 

 

C.   Determination of Controller Parameter Set 

This section describes how the signature condition is utilized to attain the controller gain 

set for the given performance specifications. First of all, we need to analyze the 

characteristic rational function, �(s), into separated form by real part and imaginary part. 

A derivation of the equation is now presented as follows. 

 Consider a plant Hp(s) with the transfer function and the controller C(s) again 
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, where T > 0 is very small number. (3.12) 

The modified characteristic rational function, �(s), can be shown by 
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 Thus to ensure that the characteristic equation of the closed loop system, 	(s) is 

Hurwitz, the signature of �(s) is as follows and can be easily realized by the Theorem 

III.1 in the previous section as 

 ( ( , , , )) 2i p ds K K K n m r uσ δ = − + +  (3.14) 

 Therefore the gain stabilization problem has been reduced to a root counting 

problem for the equation �(s) where it is desired to have n + r + u roots on the left half 

of the complex plane and m − u roots on the right half of the complex plane. In order to 

analyze the phase movement, substitute s = j� and decompose into real and imaginary 

parts of �(j�) into �r(�) and �i(�) by 
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 Let ( ) ( ) ( )p pr piH j H jHω ω ω− = + , where both ( )prH ω  and ( )piH ω  become real 

rational functions. Because we know Nc(j�) and Dc(j�) exactly, then 
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 (3.16) 

Let new functions U(�) and V(�) represent 
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ω θ ω θ
ω θ ω θ
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 (3.17) 

then the above equation can be reduced into 
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And the real part of characteristic rational function, �r(�) in (3.18), can be restated as of 

following; 
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Let l × 2 matrix A(�) and l vector b(�) denote 

 [ ]1)()( 22
ωωω −= jHA p  

 ))()()()(()( ωωωωωω pipr HVHUb −−=  (3.20) 

 By the theorem III.1, we can systemically arrange the series of signs, {i1, i2, i3, ��� 

���, il-1, il} to satisfy the signature condition shown in (3.14) from (3.18) along with linear 

program arranged by such as (3.24) and (3.25). As shown (3.18), the signature can be 

calculated from given plant’s empirical frequency data only, and then the set of feasible 

strings are attained by (3.19). Let F* denote the set of feasible sign strings, Ft any 

possible string set and T all the possible string sets then, 
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 F* = { t ∈ T | ∀
(Ft) = m − n + r + 2u } (3.22) 
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 The set of controllers in [ Ki Kp Kd ]T is determined for a given plant with rational 

transfer function if and only if the following conditions hold: 

• F* is not an empty set that is at least one feasible string exist. 

• There exist at least one more string Ft = {i1, i2, i3, 


  


, il-1, il} ∈ F* and values 

of Ki and Kd such that for all k = 1, 2, 3, ���  ���, l  

 N(−j�k) 	 0 and ik 
 �r(�) > 0 (3.23) 

, thus when ik = 1,  
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, for k = 1, 2, 3, ���  ���, l  (3.24) 

and when ik = −1,  
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, for k = 1, 2, 3, ���  ���, l  (3.25) 

Also if there exist a set of values in Ki, Kd values for a fixed Kp is the unions of 

all Ki, Kd values satisfying (3.24) or (3.25). 

A detailed proof for the above theorem can be found in [2]. 

 Based on previous work, we seek an algorithm which systematically search 

entire controller set that can be divided into two parts: one is the case that a specific 

fixed Kp gain is given and the other is that a finite interest range of Kp is entered by the 

user. The inputs are (i) plant data, (ii) desired minimum phase margin and (iii) Kp value 

for the first situation or (iii) Kp range and desired partition in Kp range for the other. The 

controller’s structure is fixed and given. One can get whole controller sets satisfying 

performance specifications in an illustrative way with the algorithm as follows: 
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� Step 1: Input plant data and required minimum phase margin 

� Step 2: From given plant data, by (3.18) determine �r(�) and �i(�) with respect 

to each � frequency. 

� Step 3: For various Kp values, seek every possible number of real roots of �i(�) 

� Step 4: Get input of a specific desired Kp value or Kp range and its partition for 

3D image of entire controller sets. 

� Step 5: By (3.22) find every possible sign string set utilizing Chapter II, Section 

E and from (3.24) and (3.25) construct linear programs (LPs) with respect to 

each sign string. All convex sets from each LPs by each sign string are to be 

added into the union set. 

� Step 6: Verify the result. 

Consider the following examples in next section. 

 

D.   Illustrative Examples 

Example III.1. This example is based on Example 4.1 of [2]. Assume that we have no 

exact mathematical plant model but have only frequency data from the plant shown in 

Figs. 8 and 9. We will carry out the theory and algorithm introduced in this chapter. 
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Fig. 9.  Nyquist plot of the plant's frequency response 

 

Find the entire PID controller sets to satisfy the phase margin which is more than at least 

30°.  Select T as 10−4. 
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 The high frequency slope of the Bode magnitude plot is −80 − (−40) = 

−2�20db/decade and thus n − m = 2. The total change of phase is −540 degrees and so 

 { }
2

)))(())(((2)(
2

6
ππ

sNrsDrmn pp −−−−=−  (3.26) 

And since the plant is stable, r(Dp(s)) = 0, giving r(Np(s)) = 2. By Theorem III.1, the 

required signature for stability can now be determined as 
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where ik(k = 1, 2, 3, … …, l) is the root of  �i(�). It is observed that at least 8 roots in the 

imaginary part of �(j�) are required to yield feasible controller gains. Repeat the rational 

function �r(�) and �i(�) 

)()()( 22

piprdipr HVHUKKH ⋅−⋅+−= ωωωδ  

piprppi HUHVKH ⋅+⋅+=
2

)(ωδ  

)()()( ωωδωδωδ ir j+=  (3.28) 

 As shown in (3.28), it is obvious that Kp is independent variable to determine the 

roots of �i(�), thus it should be chosen such that �i(�) has more than 7 roots over 

�=(−�,�) since there is additional root 0 in the imaginary part. In order to analyze how 

many roots �i(�) would get, let a new rational function, f(�) denote as 

 2)()(
p

pipr
p

H

HUHV
Kf

⋅+⋅
−== ωω  (3.29) 

which is derived from piprpp HUHVKH ⋅+⋅+=
2

0  
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Fig. 10.  Plot of f(�) with respect to the frequency 
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Fig. 11.  Magnification of Fig. 10 

 

As shown in Figs. 10 and 11 of f(�), Kp should be determined (−8.1218, 4.2871). 

Choose Kp as 3, then the real roots of �i(�) shown in Fig. 12 can be found as 

 �k  = (−17348, −6.1137, −1.3051, −0.6905, 0, 1.1206, 2.0628, 11.839) (3.30) 
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, which is leading to the string set as i1 − 2i2 + 2i3 − 2i4 + 2i5 − 2i6 + 2i7 − i8 = 14. This 

permits only one feasible set F* of 

 F* = { i1, i2, i3, i4, i5, i6, i7, i8 } = { 1, −1, 1, −1, 1, −1, 1, −1 } (3.31) 

-10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

It has another root at
very low frequency

 

Fig. 12.  �i(�) plot to examine its real roots 

 

Thus, we have the following linear programming for the performance of phase margin 

30°: 

−3.3227�10−7 Kd  + 1.104�10−15 Ki   >   −0.011542 

−2.9408 Kd  + 0.078678 Ki   <   17.088 

−8.8664 Kd  + 5.2056 Ki   >   −21.708 

−1.5719 Kd  + 3.2968 Ki   <   10.514 

Ki   >   0 
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−7.2052 Kd  + 5.738 Ki   <   18.666 

−7.4487 Kd  + 1.7505 Ki   >   −25.05 

−0.77056 Kd  + 0.0054975 Ki   <   8.776 (3.32) 

 

Fig. 13 shows the complete gain sets of PID controller for Kp = 3, which is the union set 

satisfying every constraints shown in (3.32). 
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Fig. 13.  Entire Kd, Ki controller set satisfying PM > 30° 

 

The tested point is specified as * in Fig. 13, which makes a verification whether it 

satisfies the control system’s performance specification – phase margin in Fig. 14. 

* 

Kd 

Ki 



 37 

 

-200

0

200

M
ag

ni
tu

de
 (

dB
)

10
-2

10
0

10
2

10
4

10
6

-360

0

360

P
ha

se
 (

de
g)

Bode Diagram
Gm = 0.812 dB (at 1.56 rad/sec) ,  Pm = 31.2 deg (at 0.68 rad/sec)

Frequency  (rad/sec)

0 50 100 150
-1

0

1

2
Step Response

Time (sec)

A
m

pl
itu

de

 

Fig. 14.  Bode diagram and step response of the system by the selected controller 

 

 By sweeping over Kp range which ensures the feasible controller gain set, here 

(−8.1218, 4.2871), we determine the entire set of PID gains to guarantee the given phase 

margin shown in Fig. 15.
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Fig. 15.  Entire PID controller set for Example III.1 

  

 One can wonder this is stabilizing set or just satisfying phase margin. In order to 

guarantee both criteria, we need to intersect two subsets each other. This is shown in the 

next example III.2. 

 

Example III.2. Consider the same plant in Example III.1. At this example, choose Kp = 

4.2. Then, the real roots of �i(�) can be found as 

 �k  = (−17348, − 6.2084, − 1.0571, − 0.8985, 0, 1.2918, 1.8508, 11.935) (3.33) 
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which is leading to the string set as i1 − 2i2 + 2i3 − 2i4 + 2i5 − 2i6 + 2i7 − i8 = 14. This 

is also permits only one feasible set F* of 

 F* = { i1, i2, i3, i4, i5, i6, i7, i8 } = { 1, −1, 1, −1, 1, −1, 1, −1 } (3.34) 

Thus, we have the following linear programming for the performance of phase margin 

30°: 

−3.3227�10−7 Kd  + 1.104�10−15 Ki   >   −0.011542 

− 2.8617 Kd  + 0.074245Ki   < 16.806 

− 6.2929Kd  + 5.6317Ki   >   − 2.034 

− 3.8597Kd  + 4.7811Ki   < 7.7747 

Ki   >   0 

− 8.8035 Kd  + 5.2756Ki   < 7.815 

− 8.0129Kd  + 2.3391Ki   >   − 21.695 

− 0.75761Kd  + 0.0053189Ki   <  8.7 (3.35) 

 

 From (3.32) we have red and blue area for the given 30° phase margin. In Fig. 16, 

the yellow region represents the stability area, i.e. when phase margin � is set to 0. We 

can achieve both phase margin and stability in the blue area that two regions intersect. 

Fig. 16 illustrates the result of this example. 
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Fig. 16.  Stabilizing and performance subset 

 

Example III.3.  From the given exact plant, show the entire controller gain set for 

satisfying minimum phase margin respect to various numbers of phase margin. Consider 

the plant Hp(s) 

 
sss

sH P 56
1

)( 23 ++
=  (3.36) 

Set Kp range as (0, 80) and get the Kd, Ki phase margin subset respect to each discrete 10 

number of Kp (Kp = 0, 8.89, 17.78, 26.67, 35.56, 44.44, 53.33, 62.22, 71.11, 80). 

By Theorem III.1, 

 8)1023(2)12(2 =−++=−++− urmn  (3.37) 

Kd 

Ki 



 41 

 8))1()1(222)]((sgn[ 1
1

2
321 =−+−++− −

−
−

l
l

l
l

i iiiii �� ωδ  (3.38) 

It is obvious that we need at least 5 real roots of ��i(�) to secure at least one set of 

feasible controller gain set. It is noted that the admissible Kp range makes a change 

respect to various phase margin condition referring to Fig. 17. For instance when phase 

margin is given by 45°, the acceptable Kp spans from 0 to 37.37. It is concluded that 

smaller phase margin is, smaller the gain set becomes and it is shown in Figs. 18, 19, 20. 
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Fig. 17.  f(�) plot for determining admissible Kp range 
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Fig. 18.  Entire PID controller sets for PM = 22.5° 
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Fig. 19.  Entire PID controller sets for PM = 30° 
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Fig. 20.  Entire PID controller sets for PM = 45° 
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CHAPTER IV 

 

FIXED STRUCTURE CONTROLLER SYNTHESIS FOR 

H�  NORM CONSTRAINT 

 

A.   Introduction 

H� control theory was extensively studied by Doyle, Glover et. al. [10] for robust 

stability and performance control in 1980’s. It was developed originally by Zames(1981), 

although an earlier use of H� optimization in an engineering context can be found in 

Helton(1976). In [11] the standard H� optimal control problem is well described as to 

find all stabilizing controllers K which minimize 

 )))(,((max),( ωσ
ω

jKPFKPF ll =
∞

 (4.1) 

Ho [12] criticized the existing mature H� control method by its inevitable higher order 

controller being comparable to that of the plant as well as the intense computational 

burden and its intractability or conservatism to get only limited controller sets. In [13] 

Tantaris et. al. also pointed out same side effect of the Youla-Jabr-Bongiorno-

Kucera(YJBK) characterization of all stabilizing controllers for a given plant. By noting 

that most of industry controllers are either PI(or PID) or simple first-order lead/lag 

compensators, Ho [12] proposed a fixed structured PID controller synthesis method 

which is a systematic way to seize entire controller gain sets. Borrowing the main H� 

idea, he developed a parametric approach to take advantage of nowadays’ highly 

developed computers. We would like to proceed with our discussion over the 
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determining controller from the plant’s frequency response without knowing the transfer 

function itself. However, in [12] we can not find the equation for the frequency response, 

instead we continue the decomposition of Kp gain against Ki and Kd gains in this chapter 

following which is similar to that of Chapter III. Indeed, the example result in the later 

part of this chapter shows the coincidence with that of [12], for we are using the same 

literature with it.  

 

B.   Background Theory 

We need to start first with the following lemma, which will be modified relevantly with 

this research such as the previous Chapter. 

Lemma IV.1 [14]. Let 
)(
)(

)(
sD
sN

sF
F

F=  be a stable and proper rational function, where 

NF(s) and DF(s) are polynomials with deg[DF(s)] = �. Then 1)( <
∞

sF  if and only if 

 (1) αα dn < ; 

 (2) DF(s) + ej�NF(s) is Hurwitz for all � in [0, 2�), 

where n� and d� are the leading coefficients of NF(s) and DF(s), respectively. 

 Let the weighting function W(s) = Wn(s)/Wd(s), where Wn(s) and Wd(s) are 

coprime polynomials; moreover, Wd(s) is Hurwitz [12].  

 

 In [15], various performance specifications could be made by using the H �  norm 

of weighted versions of the transfer functions like the one shown in (4.2). This is leading 

Lemma IV.1 to Lemma IV.2 as of following. 
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Lemma IV.2 Consider the same transfer function Hp(s) and PID controller C(s) in 

section B, Chapter III. The sensitivity function S(s) of Hp(s) is expressed by 

 
)()()()(

)()(

))()(1(
1

)(
sNsNsDsD

sDsD

sHsC
sS

pcpc

pc

p +
=

+
=  (4.2) 

Then γ<
∞

)()( sSsW  if and only if the revised closed loop characteristic equation 	(s),  

	(s) = Wn(s)Dc(s)Dp(s) + �e−j�Wd(s) [Nc(s)Np(s) + Dc(s)Dp(s)], is Hurwitz for all � in [0, 

2�). 

 

Lemma IV.3. Consider the same transfer function Hp(s) and PID controller C(s) in 

Lemma IV.2. The complementary sensitivity function T(s) of S(s) is expressed by 

 
)()()()(

)()(
)(

sNsNsDsD

sNsN
sT

pcpc

pc

+
=  (4.3) 

Then γ<
∞

)()( sTsW  if and only if the revised closed loop characteristic equation 	(s),  

	(s) = Wn(s)Nc(s)Np(s) + �e−j�Wd(s) [Nc(s)Np(s) + Dc(s)Dp(s)], is Hurwitz for all � in [0, 

2�). 

 

 For the sensitivity function H� constraint specification can be achieved by same 

manner of the complementary sensitivity case, we take a close examine of Lemma IV.3 

and employ it to set the position casting synthesis H� PID controllers into the 

simultaneous polynomial stabilizing problem. 
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C.   Expansion of Characteristic Equation for PID Controllers and Algorithm 

In this section, regarding to Lemma IV.3, we now expand the modified characteristic 

equation in the same manner appeared in Chapter III in order to make use of the 

generalized Hermite-Biehler theorem only for using empirical data. 

 Reconsider the complex characteristic polynomial given in Lemma IV.3. 

 	(s) = Wn(s)Nc(s)Np(s) + �e−j�Wd(s) [Nc(s)Np(s) + Dc(s)Dp(s)] (4.4) 

 Now we need to reorganize a new rational complex function �(s) as �(j�) = �r(�) 

+ j�i(�) to utilize the plant’s empirical data in terms of frequency response and 

interlacing property from the decomposition of the characteristic function. 

 Let Hp(−j�) = Hpr(�) + jHpi(�) 

))(()sin(cos)()()( 22

piprdpd
j

nc jHHTjWjjHWeWNj +−−++= − ωωθθγωγωδ θ  (4.5) 

Define U(�) = sin� − T �cos�, 

 V(�) = cos� + T �sin�, 

Lr(�) + jLi(�) = Wn(j�) + �e−j�Wd(j�), 

Mr(�) + jMi(�) = �Wd(j�) (U(�)+jV(�))(Lr(�) − jLi(�)) (4.6) 

Moreover, �(j�) needs additional multiplier (Lr − jLi) for the division of PID controller 

set, K=[Kd Kp Ki]T. Let denote this new rational function as �*(j�), then 

�*(j�) = �(j�) (Lr − jLi) 

 =(Kd + jKp� − Ki�
2)(Lr

2 + Li
2)|Hp|2 + ��Wd(U + jV) (Lr − jLi)(Hpr + jHpi) 

 ={(Kd − Ki�
2) (Lr

2 + Li
2)|Hp|2 + �(MrHpr − MiHpi)} 

 + j�{Kp(Lr
2 + Li

2)|Hp|2 + MrHpi + MiHpr} 

 = �r
*(�) + j��i

*(�) (4.7) 
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And the real part of characteristic rational function, �r
*(�) in (4.7), can be restated as of 

following; 

 �r
*(�) = {(Kd − Ki�

2) (Lr
2 + Li

2)|Hp|2 + �(MrHpr − MiHpi)} 

 
22 2 2( ) 1 ( )d

r i p r pr i pi
i

K
L L H M H M H

K
ω ω� 	

� 	= + − + −
 �� �
� �

 (4.8) 

Let l × 2 matrix, A(�) and l vector, b(�) denote 

 
22 2 2( ) ( ) 1

( ) ( )
r i p

r pr i pi

A L L H

b M H M H

ω ω

ω ω

� 	= + −� �

= −
 (4.9) 

 Again, we can systemically arrange the series of signs for i1, i2, i3, 


 


, il-1, il to 

satisfy the signature condition like Chapter III. The signature can be calculated given 

plant’s empirical frequency data as shown earlier, then the set of feasible strings are 

attained and let F* denote the set of feasible strings, then 

 F* = { t ∈ T | ∀
(Ft) = m − n + r + 2u } (3.22) 

The set of controllers in [ Ki Kp Kd ]T is determined for a given plant with rational 

transfer function if and only if the following conditions hold: 

• F* is not an empty set that is at least one feasible string exist. 

• There exist at least one more string Ft = {i1, i2, i3, 


  


, il-1, il} ∈ F* and values 

of Ki and Kd such that for all k = 1, 2, 3, ���  ���, l  

 N(−j�k) 	 0 and ik 
 �r(�) > 0 (3.23) 

Also if there exist a set of values in Ki, Kd values for a fixed Kp is the unions of 

all Ki, Kd values satisfying ik 
 �r(�) > 0. 

Likewise, linear programming is also organized by (4.9) as 
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when ik = 1,  

 ( ) ( )d
k k

i

K
A b

K
ω ω� 	

>
 �
� �

, for k = 1, 2, 3, ���  ���, l (4.10) 

and when ik = −1,  

 ( ) ( )d
k k

i

K
A b

K
ω ω� 	

<
 �
� �

, for k = 1, 2, 3, ���  ���, l (4.11) 

 The algorithm which systematically search entire controller set is very similar to 

the one shown in Chapter III. We can specify a fixed Kp gain or a finite interest range of 

Kp for this objective. The inputs are (i) plant data, (ii) desired H� constraint and (iii) Kp 

value or (iii) Kp range and desired partition in Kp range for the other. The controller’s 

structure and the weight function are fixed and given. One can get whole controller sets 

satisfying performance specifications in an illustrative way with the algorithm as 

follows: 

� Step 1: Input plant data and required minimum H� constraint 

� Step 2: From given plant data, by (4.7) determine �r
*(�) and �i

* (�) with respect 

to each � frequency. 

� Step 3: For various Kp values, seek every possible number of real roots of �i
* (�) 

� Step 4: Get input of a specific desired Kp value or Kp range and its partition for 

3D image of entire controller sets. Set � as a particular value. 

� Step 5: By (3.22) find every possible sign string set utilizing Chapter II, Section 

E and from (4.10) and (4.11) construct linear programs (LPs) with respect to 
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each sign string. All convex sets from each LPs by each sign string are to be 

added into the union set, P*. 

� Step 6: Varying � from 0 until 2�(−) and repeat step 4, and 5. At each loop, 

alternate � and intersect the convex set with the result set, P = P � P* 

� Step 7: Verify the result P. 

Consider the following examples in next section. 

 

D.   Illustrative Examples 

Example IV.1.  Consider the plant frequency data in Figs. 21 and 22. Find the entire 

PID controller sets to satisfy the H� constraint which is less than 2.  Set T is 10−4 in the 

controller and the weight function W(s) is 1. 
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Fig. 21.  Bode plot of the Example IV.1 plant 
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Fig. 22. Nyquist plot of the Example IV.1 plant 

 

 The high frequency slope of the Bode magnitude plot is −280 − (−180) = 

−5�20db/decade and thus n − m = 5. The total change of phase is −810° and so 

 { }
2

)))(())(((2)(
2

9
ππ

sNrsDrmn pp −−−−=−  (4.12) 

And since the plant is stable, r(Dp(s)) = 0, giving r(Np(s)) = 2. By Theorem III.1, the 

required signature for stability can now be determined as 
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where ik(k = 1, 2, 3, … …, l) is the root of  �i(�). It is observed that at least 11 roots in 

the imaginary part of �*(j�) are required to yield feasible controller gains. Repeat the 

rational function �r
*(�) and �i

*(�) 

 �r
*(�)

22 2 2( ) 1 ( )d
r i p r pr i pi

i

K
L L H M H M H

K
ω ω� 	

� 	= + − + −
 �� �
� �

 (4.14) 



 52 

 �i
*(�) = Kp(Lr

2 + Li
2)|Hp|2 + MrHpi + MiHpr (4.15) 

 It should be chosen such that �i
*(�) has more than 10 roots over � = (−�,�) 

since there is inherent root 0 in the imaginary part. In order to analyze how many roots 

�i
*(�) would get, let a new rational function, f(�) denote as 

 222 )(
)()(

pir

pripir
p

HLL

HMHM
Kf

+

+
−== ωω  (4.16) 

 f(�) is illustrated in Fig. 23 to show admissible Kp range taken by 12 discrete � 

value as ( 0, 32.722°, 65.444°, 98.166°, 130.89°, 163.61°, 196.33°, 229.05°, 261.78°, 

294.5°, 327.22°, 359.9° ). 
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When � = 0, by (4.15) we obtain the real roots of �i
*(�) as of followings: 

 �i = −360.63, −3.7217, −2.1734, −0.99172, −0.79533, 

 0, 0.79533, 0.99172, 2.1734, 3.7217, 360.63 (4.17) 

 1
)(

sgn
1

*

−=�
�

	


�

�

=ωωω
ωδ

d
d i  (4.18) 

(4.17) and (4.18) lead to determining string set by 

 { } 202222222221 1110987654321 =+−+−+−+−+−⋅− iiiiiiiiiii  (4.19) 

which permits only one feasible set F* of 

 F* = { i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11 } 

 = { −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1 } (4.20) 

Then, by (4.20), (4.6) and (4.14) we construct Linear programs (4.10) and (4.11): 

 −5.0324e−015 Kd  + 3.8694e−020 Ki  < 1.4197e−005 

 −8.4017 Kd  + 0.60656 Ki  > −557.76 

 −31.375 Kd  + 6.6418 Ki  < 483.63 

 −2.0139 Kd  + 2.0476 Ki   > −245.66 

 −4.79 Kd  + 7.5725 Ki   < 117.75 

  144 Ki   > 0 

 −4.79 Kd  + 7.5725 Ki   < 117.75 

 −2.0139 Kd  + 2.0476 Ki  > −245.66 

 −31.375 Kd  + 6.6418 Ki   < 483.63 

 −8.4017 Kd  + 0.60656 Ki   > −557.76 

 −5.0324e−015 Kd  + 3.8694e−020 Ki   < 1.4197e−005 (4.18) 
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From section C, the admissible gain set exist if and only if the following conditions 

stand: 

1. �(s) = Nc(s)Np(s) + Dc(s)Dp(s) is Hurwitz; 

2. 	(s) = Wn(s)Nc(s)Np(s) + �e−j�Wd(s) [Nc(s)Np(s) + Dc(s)Dp(s)] 

 is Hurwitz for all � ∈ [0,2�); 

3. |W(�)T(�)| = |n�/d�| = 0 < 1, for the order of T(s)’s denominator is always 

 higher than T(s)’s numerator when the plant is strictly proper 

function(n−m=5). 

 In this example, increase � value and repeat the same procedure to get similar 

LPs like (4.18). Iteration is carried out for every discrete � = 0, 32.722°, 65.444°, 

98.166°, 130.89°, 163.61°, 196.33°, 229.05°, 261.78°, 294.5°, 327.22°, 359.9°. After 

intersecting every obtained convex controller set from the iteration, we finally come into 

the entire controller gain set which contents 

 2
)()()()(

)()(
)( =<

+
∞

γ
sNsNsDsD

sNsN
sW

pcpc

pc  (4.19) 

where W(s) = 1 in this example. In Fig. 24, the iterated sets and intersection are shown 

fixing Kp = 70. 
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Fig. 24.  Kd, Ki gain set for 12 discrete � values in [0,2�) and their intersect area in blue 

 

 Fig. 25 explains that nominal stability controller set in red becomes smaller to H� 

robust PID controller set, which means more conservative design. Not to mention, the 

blue area in Fig. 25 is identical to the one in Fig. 24. 
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Fig. 25.  Kd, Ki gain set for H� constraint, 
 = 2, when Kp = 70 

 

Example IV.2. Reconsider the example in [12] and assume we have only frequency 

empirical data of the plant shown in Figs. 26 and 27. As [12], we determine the 

admissible PID controller gain values for which ||W(s)T(s)||� < 
 = 1, where T(s) is the 

complementary sensitivity function. Later the result when 
 = 2 is also shown for the 

comparison. The weight function W(s) is chosen as a high pass transfer function: 

 
1
1.0

)(
+

+=
s

s
sW  (4.20) 
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Fig. 26.  Bode plot of the plant 
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Fig. 27.  Nyquist plot of the plant 
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 Same procedure is carried out like Example IV.2 in order to obtain robust PID 

controller gain sets. Using root locus ideas [16], a necessary condition for the existence 

of stabilizing (Ki, Kd) values is that Kp ∈ (−1.8, −0.2). Select Kp as −0.5 in this example, 

then it is discovered that the stability convex set in red has been got smaller into blue 

area for the H� constraint (= 1) in Fig. 28. If we choose 
 = 2, less restraint requirement, 

then the blue H� constraint area in Fig. 28 is growing as shown in Fig. 29. 
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Fig. 28.  Entire Ki, Kd gain for H� constraint, � = 1 
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Fig. 29. Entire Ki, Kd gain for H� constraint, � = 2 

 

 In Fig. 30 the 3D admissible gain set of (Kd, Kp, Ki) values is obtained using the 

above theory, by sweeping over distinct Kp  ∈ (−0.55 −0.2) and indeed, it is confirmed to 

be  identical to [12]. 
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Fig. 30.  Entire PID controller gain sets for H� constraint, � = 1 
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CHAPTER V 

 

ROBUST PID CONTROLLER SYNTHESIS FROM EMPIRICAL DATA 

 

A.   Introduction 

Robust control which deals uncertain plants – systems with unknown dynamics and/or 

disturbance signals, using fixed controllers has been a significant issue for decades. 

Hundreds and thousands of papers handle robust control problems and numerous 

techniques have been proposed. Robust stability of stable feedback systems for uncertain 

time-invariant plants is classified in a big portion among robust control issues. It can be 

divided into three sections: 1. Kharitonov and polynomial approaches, 2. Lyapunov and 

matrix approaches and 3. Transfer function approaches [17]. 

 First, “Kharitonov theorem” [18] provides a necessary and sufficient condition 

for the stability of a polynomial whose coefficients vary independently in given bounded 

intervals. This theorem has given motivation to make use for robust control, yet, for 

instance, in [19] H. Chapellat et. al. consider coefficient space to calculate the radius of 

the largest stability ball, using the characteristic polynomial.  They focus on two cases: 

first in coefficient space with respect to perturbations in the coefficients of the 

characteristic polynomial, and then for a control system containing perturbed parameters 

in the transfer function description of the plant. Another class is Lyapunov and matrix 

approaches that handle robustness analysis and design for linear uncertain systems 

represented by state-space description. Accordingly, the uncertainty is assumed to arise 
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in the form of perturbations in the matrices of the state-space models, so this category is 

left out in this chapter. The last class is transfer function approaches: structured and 

unstructured perturbations that are modeled in the frequency domain. In [9] S. Mitra 

extends [4] to robust stability by applying interval coefficients [20], however, it requires 

additional computations and we want to continue using the same algorithm introduced in 

Chapter III and IV with holding consideration of phase margin performance. 

 Thus, in this chapter, we enhance Chapter III, the nominal performance – phase 

margin – to the robust performance stage. We try a frequency domain approach, that is, 

we consider the unknown bounded noise when measuring the plant’s frequency response. 

With this structured uncertainties, we take robust linear programming [21] into account 

and develop a series of conditions, which is called “Cone Programming” instead of 

linear programming, since they are resulted in the form of non-linear inequalities. Using 

this programming, we are able to exploit the same algorithm in Chapter III, and the same 

procedure is carried out to get the entire controller gain sets satisfying robust 

performance criterion. The convex controller set is illustrated graphically by using 

Yalmip in Matlab and this result is compared to nominal performance convex sets. 

 

B.    Determining Robust PID Controller Set 

Again, we only need to consider the series of constraints – LPs in Chapter III and IV. 

And the rest of literature is alike. Start with the linear programming (3.24) and (3.25) 

recalled here as 
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When ik = 1,  

 ( ) ( )d
k k

i

K
A b

K
ω ω� 	

>
 �
� �

, for k = 1, 2, 3, ���  ���, l  (3.24) 

When ik = −1,  

 ( ) ( )d
k k

i

K
A b

K
ω ω� 	

<
 �
� �

, for k = 1, 2, 3, ���  ���, l  (3.25) 

where  A(�) is an l by 2 matrix and b(�) an l vector as shown below 

 [ ]1)()( 22
ωωω −= jHA p  

 ))()()()(()( ωωωωωω pipr HVHUb −−=  (3.20) 

and 

 )()()( ωωω jHjHH ppipr −=+  

 
( ) (sin cos )
( ) (cos sin )

U T

V T

ω θ ω θ
ω θ ω θ

= −
= +

 (3.17) 

In [21] robust linear programming is introduced as of following and it leads to Lemma 

V.1 for this research: 

minimize cTx 

subject to ai
Tx 
 bi for all ai ∈ �i, i = 1, … , m, where 

 ai ∈ �i = { ãi + Piu |  ||u||2 
 1 } (5.1) 

The robust constraint, ai
Tx 
 bi for all ai ∈ �i, can be expressed as 

 ãi
Tx  + ||Pi

Tx||2 
 bi (5.2) 

because sup{ ai
Tx | ai ∈ �i } = ãi

Tx  + sup{uTPi
Tx |  ||u||2 
 1} 

 = ãi
Tx  +  ||Pi

Tx||2  
 bi (5.3) 



 64 

Lemma V.1  When ψεδβ ≤≤
22

, , ℜ∈δ , ℜ∈ψ , nℜ∈α , nℜ∈β , nx ℜ∈ , ℜ∈γ , 

ℜ∈ε , the system of uncertain given linear inequality, 

 εγβα +≤+ xx TT  (5.4) 

should hold for every 
 and �, if and only if 

 ψγδα −≤+
2

xxT  (5.5) 

Proof.  The proof is very straightforward. It considers the worst case when the lesser 

side has the greatest value and the more side has the smallest value, such that the given 

condition should be always true, if and only if the worst case is satisfied. Moreover, the 

absolute value of inner product should be the greatest when two vectors are coinciding 

with each other such as xxxxT αθααα ≤=⋅= cos , where � is the angle between 

vector � and vector x. So the given criterion becomes
222

xxxT δββ ≤≤ .   � 

 

 Now, recalled linear inequalities (3.24) and (3.25) are extended to a system of 

uncertain linear inequalities in (5.6). 

 { } { }εωβω +>+ )()( kkk
TT

kkk biKKAi  (5.6) 

For the robust performance satisfactory, we employ Lemma V.1 into (5.6) in a same 

fashion to get robust programming. 

 

Proposition V.1  Assume the unknown parameters should be bounded as of following; 

 
ℜ∈<

<

kkk

k

ψδψε

δβ

,,

,

2

2  (5.7) 
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where ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ εωβω ,)(,,,)( 222
kkkk bKA . By lemma V.1, the uncertain 

linear inequalities (5.6) should hold for every 
 and �, if and only if 

When ik = 1,  

 kkkk
T

kk bKKA ψωδω +>− )()(
2

, for k = 1, 2, 3, ���  ���, l 

When ik = −1, 

 kkkk
T

kk bKKA ψωδω −<+ )()(
2

, for k = 1, 2, 3, ���  ���, l (5.8) 

And then, the solution set K by (5.7) and/or (5.8) satisfies (5.6) for every 
 and �.  � 

 

 Seeing (5.7), the need arises that we have information of upper and lower bound 

� and � to solve robust programming (5.8). Even if a lot of strategies clarifying the 

bound limits of uncertainties can be demised to approach to the exact answer, we assume 

simply the estimation aberration lies within 10% like Figs. 31 and 32. Let |�p(j�o)| be 

the exact plant’s frequency data and |Hp(j�o)| be the measured value of the plant, then 

 |�p(j�o) − Hp(j�o)|  < 0.1| Hp(j�o)| (5.9) 

 | Hp(j�o)| = �| �p(j�o)|, 0.9 �  � � 1.1 (5.10) 

 | Hp(j�o)|2 = �2| �p(j�o)|2, 0.81 �  �2 � 1.21 (5.11) 

where �o is specified frequency. Because Ak(�o) is related with |Hp(j�o)|2 and bk(�o) is 

also with | Hp(j�o)| as defined in (3.20), it is very reasonable that we set 

  �k = 0.2||Ak(�)||2 

 �k = 0.1||bk||2 (5.12) 
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Fig. 31.  Bode diagram with upper bound and lower bound of uncertainties 
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Fig. 32. Nyquist plot with uncertainties’ boundaries 
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Proposition V.2  From proposition V.1 and by the presumed error scope (5.12), the 

equations (5.8) are expressed in a different way of look by 

 When ik = 1,  

 kk
T

k
T

k bbKAKA 1.0)(2.0)(
22

+>− ωω , for k = 1, 2, 3, ���  ���, l (5.12) 

 When ik = −1, 

 kk
T

k
T

k bbKAKA 1.0)(2.0)(
22

−<+ ωω , for k = 1, 2, 3, ���  ���, l (5.12) 

where [ ]Tid KKK = . � 

 (5.12) and (5.13) construct non-linear inequalities for the convex set of robust 

performance PID controller gains. It is noted that they are switched to be used for this 

robust performance instead of LPs in (3.24) and (3.25) but the rest of systematic 

calculation way is remained as identical. Consider the examples in the following section. 

 

C.   Examples 

Example V.1. Consider the given plant’s frequency response shown in Figs. 33 and 34. 

Find nominal stability, nominal performance and robust performance for the minimum 

phase margin = 30°. Assume the estimation error is bounded within 10%. 

 By similar calculation to (3.26), we obtain plant’s order difference, n − m = 5 

and the non-minimum phase zero, u = 2. By Theorem III.1, the required signature 

condition is determined as 

{ } 111
2
1

)1()1(222
)(

sgn)),(( 1
1
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=
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�

�

�

�
�

�

�
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�
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=
l

l
l

li iiiii
d

d
Ks �

ωωω
ωδδσ  (5.14) 
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where ik(k = 1, 2, 3, … …, l) is the root of  �i(�). 
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Fig. 33.  Bode diagram of the plant 
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Fig. 34.  Nyquist diagram of the plant 
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 It is obvious that at least 11 roots in the imaginary part of �(j�) are required to 

yield feasible controller gains. By (3.29), the admissible Kp range is determined as 

[−22.352, 116.85] as shown in Fig. 35. Select Kp = 70, then the real roots of �i(�) are 

shown as of followings: 

 � = −24.694, −3.1565, −1.7535, −0.95446, −0.65391, 0 

 0.78367, 1.0532, 2.1965, 4.7585, 5803.4 (rad/sec) (5.15) 
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Fig. 35. f(�) for illustrating admissible Kp range 

 

(5.14) is specified by the obtained roots and sign value of derivative of �i(�) at �1 = −1. 

Now we get the signature condition from (5.14) 

 −1( i1 − 2i2 + 2i3 − 2i4 + 2i5 − 2i6 + 2i7 − 2i8 + 2i9 − 2i10 + i11 ) = 20 (5.16) 

(5.15) leads only one feasible set F* of 

F* = { i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11 } = { −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1 } (5.17) 

admissible Kp  
range 
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Finally we can construct cone programming by (5.12) and (5.13) as shown below: 

 −1.1e−005 Kd  +1.8e−008 Ki  + 2.2e−006 22
id KK +  <   1.1  −  0.1 

      −17.552 Kd  +1.7616 Ki − 3.528 22
id KK +    >   −1266.4  +  126.64 

      −41.323 Kd  +13.439 Ki + 8.6907 22
id KK +     <   1187.9   −   118.79 

      −2.4637 Kd  +2.7044 Ki − 0.73167 22
id KK +    >   −462.3   +   46.23 

      −8.3736 Kd  +19.583 Ki  +4.2596 22
id KK +       <  184.03   −   18.403 

  160 Ki  −32 22
id KK +  >   0 

      −5.5753 Kd  +9.0782 Ki  +2.1307 22
id KK +      <   556.35  −  55.635 

         −2.74 Kd  +2.4703 Ki  −0.73783 22
id KK +    >   −490.75  +  49.075 

      −34.484 Kd  +7.1476 Ki  +7.0434 22
id KK +     <   1496.9   −   149.69 

       −2.4614       +0.10871 Ki  −0.49277 22
id KK +     >   −494.81   +   49.481 

  −1.2e−024   +3.7e−032 Ki + 2.5e−025 22
id KK +  <    3.7e−010 (5.18) 

 The outcome of the cone programming (5.18) for this example is illustrated in 

Fig. 36. It is observed that robust performance gain set in black dot area becomes more 

conservative than nominal performance gain range in sky blue. Note that the yellow 

zone – nominal stability - envelope both nominal and robust range, however, it is not 

always of the same happening as mentioned in Example III.2. 

 At the red point, Kd = 50 and Ki = 16.25, the compensator is verified by the 

margin of open loop system and step response of closed feedback system comparing 
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with uncompensated one as shown in Figs. 37 and 38. Now we can confirm the obtained 

gain set has reasonable frequency and time response performance. The uncompensated 

system can not follow the reference step input, on the other hand, the compensated 

system contents required minimum phase margin, which is 30° and also it is stabilized to 

the step input with no error at steady state in fairly good time. 

 The other points in robust performance region work well similarly to those of 

tested point, thus even if there exists estimation inaccuracy, one can have a great number 

of alternatives to choose the controller for any objective. 

-20 -10 0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Kd

K
i

Nominal stability

Nominal performance

Robust
performance

 

Fig. 36.  Entire robust performance PID gain set for Kp = 70 
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Fig. 38.  Comparison of each step response 
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Example V.2. The same plant shown in example III.1 is treated for the robust 

performance to be achieved when it is considered that the estimation of the plant can not 

be precise. The comparison between nominal performance and robust performance is 

commented and shown by the graph. From Example III.1, Kp = 3, the roots of �i(�) have 

been given by 

 �k  = (−17348, −6.1137, −1.3051, −0.6905, 0, 1.1206, 2.0628, 11.839) (5.19) 

A(�) and B(�) have been obtained already earlier as 
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 A series of nonlinear inequalities (Cone Programming) can be given by 
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 −3.3227�10−7Kd + 1.104�10−15Ki �6.6454�10−8
� 22

id KK +    > −0.011542 + 0.0011542 

 −2.9408Kd + 0.078678Ki + 0.58837� 22
id KK +   < 17.088 � 1.7088 

 −8.8664Kd + 5.2056Ki �2.0563� 22
id KK +    > −21.708 + 2.1708 

 −1.5719Kd + 3.2968Ki + 0.73048� 22
id KK +    < 10.514 � 1.0514 

 1.3841Ki �0.27682� 22
id KK +    > 0 

 −7.2052Kd + 5.738Ki + 1.8422� 22
id KK +    < 18.666 � 1.8666 

 −7.4487Kd + 1.7505Ki �1.5303� 22
id KK +    > −25.05 + 2.505 

 −0.77056Kd + 0.0054975Ki + 0.15412� 22
id KK +    < 8.776 � 0.8776 (5.22) 

 The result of (5.22) can be shown in Fig. 39 in the same manner of Example V.1. 

The entire Kd, Ki set region of Kp = 3 for robust performance is displayed in red and 

nominal performance with stability is in blue and nominal stabilizing set is given in 

yellow. 
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Fig. 39. Entire robust performance PID gain set for Kp = 3 



 76 

CHAPTER VI 

 

CONCLUSION AND FUTURE WORK 

 

A.   Summary 

In the previous chapters the open problem of the PID controller synthesis has been taken 

into consideration. The main objective is to procure the entire controller gain sets of PID 

such as [Kd Kp Ki]T satisfying the given performance specification. The achievement can 

be appreciated as an advanced step bearing in mind that this thesis deals with complex 

rational function case, which is more general than real case. In order to drive the 

research into the end, the mathematical background for the complex case is presented, 

modified and developed for the objective of this thesis. The Hermite-Biehler theorem for 

real Hurwitz polynomial is extended to a complex non-Hurwitz polynomial and its 

characteristics are proposed, analyzed and arranged for being taken to systematic 

computational approach, which is called a noble feature of this thesis algorithm. Besides, 

automatic sign assignment logic is developed for the methodical computation that is also 

an important objective of this thesis. The algorithm and basic idea for contending phase 

margin property is introduced. By this computation, the controller gains can be easily 

selected not knowing the plant itself. Furthermore, in case that the controller with 

specific gains does not work, the user can effortlessly take alternative from graphical 

user interface of the entire gain sets. Similarly, H� constraint specification can be 

obtained with the phase margin performance case. The results are shown as more 
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conservative gain sets graphically as well. It can be said very fairly that one may not be 

able to estimate plant’s exact frequency data. Thus, the robust performance property is 

studied so as to obtain much more absolutely stable and reliable system. Not to mention, 

the robust performance is also intended for the systematic calculation by a computer and 

implemented graphically. It is concluded that it depends on the plant’s frequency 

magnitude, because from its assumption when the estimation value is large, the noise 

value can be amplified. 

 

B.   Future Work 

In electrical engineering, discrete time cases are studied in depth for various aspects [9]. 

This thesis’ algorithm can be applied to discrete time system and one can exploit this to 

enhance the Graphic User Interface (GUI) in [9]. This thesis only considered Single 

Input Single Output system (SISO system). In [5] Multi Input Single Output and Single 

Input Multi Output systems have been handled, however, it is needed to extend this 

research to Multi Input Multi Output system. In some reason, the fixed structured higher 

order controller arise the needs that we can approach in a similar way with this thesis. 

Even though the robust performance is shown in the later part of this thesis, various 

kinds of the developed robustness should be obtained such as an absolute stability 

problem. It is evident there exists a lot mathematical theorems and propositions which 

we can take advantage of for the Control System field. 
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