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ABSTRACT 

On Countermeasures of Worm Attacks over the Internet. 

(May 2008) 

Wei Yu, B.S., Nanjing University of Technology; 

M.S., Tongji University 

               Co-Chairs of Advisory Committee:    Dr. Wei Zhao 

Dr. Riccardo Bettati 

 

 

Worm attacks have always been considered dangerous threats to the Internet since they can 

infect a large number of computers and consequently cause large-scale service disruptions and 

damage. Thus, research on modeling worm attacks, and defenses against them, have become 

vital to the field of computer and network security. This dissertation intends to systematically 

study two classes of countermeasures against worm attacks, known as traffic-based 

countermeasure and non-traffic based countermeasure. Traffic-based countermeasures are those 

whose means are limited to monitoring, collecting, and analyzing the traffic generated by worm 

attacks. Non-traffic based countermeasures do not have such limitations.  

     For the traffic-based countermeasures, we first consider the worm attack that adopts feedback 

loop-control mechanisms which make its overall propagation traffic behavior similar to 

background non-worm traffic and circumvent the detection. We also develop a novel spectrum-

based scheme to achieve highly effective detection performance against such attacks. We then 

consider worm attacks that perform probing traffic in a stealthy manner to obtain the location 
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infrastructure of a defense system and introduce an information-theoretic based framework to 

obtain the limitations of such attacks and develop corresponding countermeasures. 

     For the non-traffic based countermeasures, we first consider new unseen worm attacks and 

develop the countermeasure based on mining the dynamic signature of worm programs’ run-time 

execution. We then consider a generic worm attack that dynamically changes its propagation 

patterns and develops integrated countermeasures based on the attacker’s contradicted 

objectives. Lastly, we consider the real-world system setting with multiple incoming worm 

attacks that collaborate by sharing the history of their interactions with the defender and develop 

a generic countermeasure based on establishing the defender’s reputation of toughness in its 

repeated interactions with multiple incoming attackers to optimize the long-term defense 

performance. 

     This dissertation research has broad impacts on Internet worm research since this work is 

fundamental, practical and extensible. Our developed framework can be used by researchers to 

understand key features of other forms of new worm attacks and develop countermeasures 

against them. 
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  CHAPTER I   

INTRODUCTION 

1. Worm Attacks Are Major Threats to the Internet 

Worm attacks have recently posed major threats to the Internet. For example, in July 2001, a 

worm called “Code-Red” infected more than 350,000 Microsoft servers running Internet 

information service (IIS). In less than 14 hours, this worm caused more than 1.2 billion dollars in 

economic damages [1]. In January 2003, another worm called “Slammer” infected nearly 75,000 

Microsoft SQL servers in less than 10 minutes and consequently caused large scale disruptions 

in production systems worldwide [2]. In March 2004, worms called “Witty” and “Sasser” 

infected many computers in a short time, rendering them unusable [3]. 

     Furthermore, a recent trend of worm attacks has emerged in the way used to launch 

subsequent attacks. For example, “Code-Red” worms launched the distributed denial-of-service 

(DDoS) attack against the White House’s website (www.whitehouse.gov) at the final stage of 

their propagation [1]. In February 2004, the “MyDoom” worm propagated rapidly to many 

computers that launched the DDoS attack against numerous websites, such as www.sco.com and 

www.microsoft.com, thereby preventing legitimate users from accessing them [4]. In addition to 

DDoS attacks, recent studies have shown that a large number of infected computers have been 

used to form the botnet as a black-market incentive for trading and/or renting infected computers 

to launch other attacks  [5, 6, 7, 8, 9]: (i) access confidential information that can be abused  

through large scale traffic sniffing, key logging, identity theft etc., (ii) distribute large scale 

unsolicited advertisement emails (as spam) or software (as adware), (iii) spread new malware by 

installing Trojan Horses or other backdoor software, and (iv) destroy data that has high monetary  
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value. 

2. Overview of Dissertation Research 

Due to the massive damage potentially caused by worm proliferation, research on modeling 

worm attacks, and defenses against them, have become vital to the field of computer and 

network security. This dissertation intends to systematically study two classes of 

countermeasures against worm attacks, known as traffic-based countermeasure and non-traffic 

based countermeasure. Traffic-based countermeasures are those that detect worm attacks by 

purely monitoring, collecting, and analyzing the traffic generated by worm attacks. Non-traffic 

based countermeasures are those that detect worm attacks without being limited to monitoring, 

collecting, and analyzing the traffic generated by worm attacks. After the attack is detected, 

subsequent schemes can be applied to mitigate the attack’s effectiveness. For example, patches 

can be released to fix the vulnerability, worm attack traffic can be throttled and filtered, and 

infected computers can be quarantined and recovered [10, 11, 12, 13, 14, 15]. 

2.a. Traffic-Based Countermeasures 

The first component of this dissertation research is to develop traffic-based countermeasures. In 

order to develop these types of countermeasures, we consider both simple and sophisticated 

attack models and consequently develop countermeasures based on two types of traffic generated 

by worm attacks. Specifically, for the simple model, a worm attack will generate propagation 

traffic (i.e., messages that intend to identify vulnerable computers) directly. For the sophisticated 

model, a worm attack will first attempt to generate probing messages in order to identify the 

location infrastracture of the defense system, thereby circumventing the detection. Based on 

propagation traffic and probing traffic, our traffic-based countermeasures consist of the 

following two components. 
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     1) Countermeasure Based on Propagation Traffic: Considering worm attacks which adopt the 

feedback loop-control mechanisms to manipulate the propagation traffic in order to make it 

similar to the background traffic and circumvent the detection, we develop a novel spectrum-

based scheme to defend against such attacks. Our design is based on the insight observation: 

while the worm propagation traffic and background traffic are barely distinguishable in the time 

domain, their distinction is clear in the frequency domain, due to the recurring manipulative 

nature of such worms. Our countermeasure scheme uses the Power Spectral Density (PSD) 

distribution of the propagation traffic rate and its corresponding Spectral Flatness Measure 

(SFM) to distinguish the worm propagation traffic from non-worm (background) traffic. Our 

evaluation data clearly demonstrate that our proposed scheme can effectively detect such worm 

attacks. 

     2) Countermeasure Based on Probing Traffic: Considering worm attacks which carry out 

probing traffic in a stealthy manner, e.g., launching low-rate of probing traffic encoded by 

Pseudo-Noise (PN) codes, we develop countermeasures against such attacks. Our analytical, 

simulation, and empirical data first demonstrate the feasibility of such low-rate probing attack in 

practice. To counteract such attacks, we then introduce an information-theoretical framework 

and map strategies for attacks to coding strategies for communication channels. We propose a 

countermeasure that monitors the traffic-rate change of an individual monitor in a time-series 

manner.  We show that the power constraints enforced by the countermeasure can significantly 

reduce the channel capacity of a system to a fairly low level that practically eliminates 

localization attacks on ITM systems. Our data validates our findings and shows the effectiveness 

of our developed countermeasures in terms of meaningless prolonged time for the attackers to 

launch such attacks. 
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2.b. Non-Traffic Based Countermeasures 

The second component of this dissertation research is to develop non-traffic based 

countermeasures, as supplementary approaches against worm attacks. In order to develop these 

types of countermeasures, it is critical to identify what types of non-traffic features must be 

related to the worm attack and understand their characteristics. Motivated by the fact that most 

existing research on this topic are either based on features of known worms or ones that can be 

easily manipulated, our work intends to develop countermeasures based on more robust features 

which are difficult to manipulate by worm attacks. To this end, based on worm uncontrollable 

features such as dynamic signature of worm program execution, attackers’ contradicted 

objectives and the defender’s reputation, our non-traffic based countermeasures consist of three 

parts, as follows: 

     1) Countermeasure Based on Dynamic Signature: Considering the new unseen worm attack, 

we propose a novel detection approach based on mining dynamic signatures of worm program 

run-time executions. Our approach allows for the capture of dynamic behavior of executables 

and provides accurate and efficient detection against both seen and new unseen worms. We 

execute a large number of real-world worms and benign executables and trace their system calls. 

Via mining signatures from a large amount of features extracted from the system call traces, we 

apply two classifier learning algorithms, known as Naive Bayes and Support Vector Machine 

(SVM). The learned classifiers are further used to carry out rapid worm detection with low 

overhead on the end-host. Our experimental results clearly demonstrate the effectiveness of our 

approach to detect worm attacks in terms of very high detection rate and low false positive rate. 

    2) Countermeasure Based on Contradicted Objectives: Taking into consideration that a worm 

attack becomes smarter and manipulates features used by countermeasures, we consider the fact 

that no matter how a worm attack changes strategies, one thing it cannot change is its objectives. 
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Based on this, we develop one novel non-traffic based countermeasure by testing an important 

non-traffic feature − contradicted objectives to defend against worm attacks. In particular, we 

develop the countermeasures against a general form of worms, referred to as self-adaptive 

worms that adapt their propagation patterns in order to reduce the probability of detection, and to 

eventually infect more computers. To develop proper countermeasures, we introduce a game-

theoretic formulation to model the interaction between the worm propagator and the defender. 

We show that an effective integration of multiple countermeasure schemes (e.g., worm detection 

and forensics analysis) is critical for defending against self-adaptive worms, which can force the 

worm attacker to choose the contradicted objectives. We propose different integration of 

countermeasure schemes for different kinds of self-adaptive worms, and evaluate their 

performance via real-world traffic data. 

     3) Countermeasure Based on Defender’s Reputation: Considering the real-world system 

settings with multiple incoming worm attackers that collaborate by sharing the history of their 

interactions with the defender, we propose a novel countermeasure based on establishing the 

defender’s reputation of toughness in its repeated interactions with multiple incoming attackers. 

Our studies show that while such iterative attacks may enable an attacker to learn from previous 

interactions, the defender can also take advantage of the iteration by sacrificing short-term 

performance in the initial few rounds to establish a “tough” reputation, in return for much higher 

payoff in the long-run by using the established reputation to force subsequent attackers to drop 

their attacks. Our extensive theoretical analysis and numerical results based on the study of 

worm detection shows that our reputation-aware scheme can significantly improve the 

performance of worm detection systems in terms of the tradeoff between detection rate and false 

positive rate. 
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3. Significance of Proposed Work 

Our work has broad impacts on Internet worm research. The significance of this dissertation 

research will be as follows. 

     1) Our Proposed Work Is Fundamental. We use analytical tools including game theory, 

pattern recognition, and information theory to carry out a thorough study on approaches of 

countermeasures. For example, using game theory, we systematically model the interactions 

between the attacker and defender and consequently derive analytical results. In particular, 

through the process, we see that an integration of multiple defensive schemes (e.g., detection and 

forensics analysis) is critical for defending against worms that manipulate their propagation 

traffic in a smart manner. Using information theory, we map the attacks that perform probing 

traffic to identify location infrastracture of defense system to coding schemes for communication 

channels, thereby developing countermeasures that enable control on the traffic-rate change of 

monitors and derive theoretical bounds on the amount of time required by attack regardless of 

the specific attacking strategies (i.e., coding schemes) taken by the attackers. 

     2) Our Proposed Work Is Practical. Our techniques developed for countermeasures are 

compatible with the existing Internet worm defense infrastructure and hence can be used for real-

world systems. In particular, since our work also uses a large number of real-world worm 

executables to carry out experiments, our proposed countermeasure for detecting the dynamic 

signature of worm program execution can be easily used by a real-world system. In addition, 

since our work uses traffic data provided by the Internet Threat Monitoring (ITM) system, a well 

deployed Internet worm defense system, our proposed countermeasures for detecting features of 

worm related traffic can be easily used by a real-world system.  

    3) Our Proposed Work Is Extensible. We develop a framework that allows us to study both 

traffic related features and non-traffic related features, thereby allowing us to develop 
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countermeasures against worm attacks. There are a number of possibilities for extending this 

research beyond this dissertation. In particular, since future worms can become more 

sophisticated and intelligent, our developed framework can be used by researchers to understand 

key features of other forms of new worm attacks and develop countermeasures against them. 

4. Organization of This Dissertation 

The rest of this dissertation is organized as follows: In Chapter II, we review the worm attacks 

and countermeasures. We first present our investigation on the traffic-based countermeasure in 

Chapters III and IV, then we discuss non-traffic based countermeasures in Chapters V and VI. 

Specifically, in Chapter III, we consider the worm attacks that use the feedback loop-control 

mechanisms to manipulate the propagation traffic rate and develop the countermeasure based on 

the feature of propagation traffic in spectrum-domain. In Chapter IV, we consider worm attacks 

that perform probing traffic in a stealthy manner, i.e., modulated by PN-code, to obtain the 

location infrastructure of the defense system and develop countermeasures based on monitoring 

the traffic-rate change of each monitor in a time-series manner. In Chapter V, we present the 

countermeasure based on dynamic signature of program execution which can effectively defend 

against new unseen worm attacks. In Chapter VI, we present the countermeasures based on 

attackers’ conflicted-objectives against worm attacks that can dynamically manipulate their 

patterns. In Chapter VII, we present the countermeasure based on incorporating the defender’s 

reputation that sacrifices its performance in the first few rounds to establish a reputation of 

toughness, in return for much higher payoff in the long run. Finally, we conclude this 

dissertation research with a brief summary in Chapter VIII. 
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CHAPTER II   

REVIEWS OF WORM ATTACKS AND COUNTERMEASURES 

In this chapter, we first briefly review the worm attacks, and then review countermeasures 

against worm attacks. 

1. Worm Attacks 

Generally speaking, the simple model of worm attack is described as follows: a worm 

demonstrates behavior similar to that of biological viruses, in terms of their self-propagating 

nature. Specifically, a worm attack usually begins when the worm attacker (or propagator) 

identifies vulnerable computers on the Internet, exploiting their vulnerabilities to obtain access to 

them, and then infecting (i.e., uploading the worm) them. Once a computer is infected, the attack 

becomes “automatic”: A worm from the infected computer will recursively identify other 

vulnerable computers and try to infect those as well. In this way, the worm propagates itself to 

other computers on the Internet. From this simple model, we see that a worm attack will generate 

propagation traffic (i.e., messages that intend to identify vulnerable computers). 

     Since worm attacks have always posed very dangerous threats to the Internet, much effort has 

gone into studying, analyzing, and modeling the propagation behavior of worm attacks. For 

example, Kephat et al. in [16, 17] conducted early work on modeling a computer virus based on 

the epidemiology model. Staniford et al. in [18] studied various worms and modeled their 

propagation. Chen et al. in [10] analyzed the propagation of worms based on a discrete time 

model. Zou et al. in [11] analyzed the propagation of a worm under dynamic quarantine defense. 

Moore et al. in [2] modeled and analyzed “Slammer” worm. Zou et al. in [19] modeled “Code-

Red” worm. Adversely, the worm attacks such as self-adaptive worms studied in this dissertation 

generalize worms that deliberately manipulate the propagation traffic and reduce the probability 
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of detection. The self-adaptive worms share some similarity in spirit with polymorphic worms 

that manipulate the byte stream of worm payload in order to reduce the probability of detection 

by payload signature-based detection [20]. All of these worms belong to the simple attack model 

that only generates propagation traffic (i.e., messages that intend to identify vulnerable 

computers). 

     With defensive systems in place nowadays, worms have correspondingly become more 

sophisticated than the simple example mentioned above. In particular, from the site of defense, 

Internet Threat Monitoring (ITM) systems have now been developed and deployed [21, 22], 

since CAIDA began to implement the network telescope to monitor Internet traffic in 2001 [23]. 

This kind of system is well adopted and similar to other existing worm detection systems such as 

the Cyber center for disease controller [18], Internet motion sensor [24], SANs ISC (Internet 

Storm Center) [25], Internet sink [21], network telescope [22], and CAIDA [26]. An ITM system 

usually consists of a number of monitors and a data center. Each monitor of an ITM system is 

responsible for monitoring traffic targeted to a range of IP addresses and periodically reports the 

collected traffic logs to the data center. The data center analyzes the traffic logs and posts 

summarized reports for alarming Internet worm attacks, which are usually publicly accessible. 

To better defeat this system via hiding itself, instead of launching the attack directly, the worm 

attacker uses probing messages to locate the monitors, bypassing them and reducing the 

probability of detection. Consequently, this kind of sophisticated worm not only propagates 

traffic, but it generates probing traffic as well. 

    For worms using the sophisticated attack model to better defeat defense systems via hiding 

itself, Bethencourt and Shinoda et al. in [27, 28] studied that ITM systems can be exploited by 

probing attack to locate monitors. Their techniques of locating monitors require a high volume 

probing traffic to be generated. This visible high traffic volume also increases the probability of 
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detection. Conversely, the low-rate probing attack studied in this dissertation focuses on the 

probing traffic in a stealthy manner, based on the Direct Sequence Spread Spectrum (DSSS) 

technique, utilizing a Pseudo-Noise (PN) code. This work is also closely related to other research 

efforts in network security. Kohno et al. in [29] presented a technique of sending messages to 

remotely fingerprint computers, exploiting small, microscope clock deviations in computers. 

2. Countermeasures 

In order to counteract worm attacks, there are two important steps that the defender needs to 

perform: worm detection and post-detection migration. Worm detection aims to identify worm 

propagation on the Internet. Once a worm is detected, the post-detection migration techniques 

can be deployed to slow down and even stop worm propagation. Some commonly adopted 

migration strategies include blocking/filtering propagation traffic and immunizing vulnerable 

computers (e.g., by releasing patches to the vulnerabilities) [10, 11, 12, 13, 14, 15]. In this 

dissertation, we focus on countermeasures based on worm detection as the first-line worm 

defense. As we mentioned in Chapter I, such countermeasures can be generally classified into 

two classes, known as the traffic-based countermeasure and non-traffic based countermeasure. In 

the following, we will overview the countermeasures related to these classes. 

2.a. Traffic-Based Countermeasure 

Recall that traffic-based countermeasures are those that detect worm attacks by monitoring, 

collecting, and analyzing the traffic generated by worm attacks. From the defense perspective, 

since the worm attack generates two types of traffic (propagation and probing traffic) as 

described previously, a defender may monitor, collect, and analyze these two types of traffic and 

hence detect worm attacks, via identifying traffic-related features. In order to develop these 
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kinds of countermeasures, it is critical to identify types of traffic generated by worm attacks and 

understand their characteristics.  

    Recall that a worm attack will generate propagation traffic (i.e., messages that intend to 

identify vulnerable computers). For the countermeasures based on features of propagation traffic, 

many detection schemes have been proposed [30, 31, 32, 33]. There are some schemes based on 

the observation that propagation traffic displays easily identifiable patterns, e.g., high volume, 

large variance, and exponentially increasing trends, etc. Generally, for these types of 

countermeasures, there are two types of schemes: threshold-based and trend-based detection. As 

examples of threshold-based detection, Venkataraman and Weaver et al. in [31] studied the 

scheme of using the mean value of traffic volume to determine the worm propagation. Wu et al. 

in [32] studied the scheme of using the variance of traffic volume to determine the worm 

propagation. As an example of trend-based detection, Zou et al. in [30] studied the scheme of 

using the exponential increase trend of traffic volume to determine the worm propagation. There 

are also other schemes that are based on destination distribution of propagation traffic. For 

example, Lakhina et al. in [33] studied the scheme of using traffic distribution (summarized by 

entropy) to classify various anomalies, including distribution of destination IP address to classify 

various anomalies. Lim et al. in [34, 35] also considered the header of destination IP addresses 

and adopted video and image processing based techniques, such as “scene change analysis” to 

reveal sudden changes in traffic anomalies. Conversely, in this dissertation, we investigate a new 

detection scheme that identifies the propagation traffic feature in the frequency domain and is 

able to detect worm attacks that adopt the feedback loop-control mechanism to manipulate their 

propagation traffiic and cause behavior similar to the background non-worm traffic. 

     Several studies of worm attacks and their countermeasures have also been carried out based 

on features of probing traffic. For example, Bethencourt and Shinoda et al. in [27, 28] studied an 
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attack scheme to locate the monitors of ITM systems. To the best of our knowledge, little work 

has been performed beyond very basic discussion in [27, 28]. In this dissertation, we will not 

only consider worm attacks that directly probe target networks, but we will also study those that 

perform probing in a stealthy manner and develop countermeasures against such attacks.  

2.b. Non-Traffic Based Countermeasure 

The traffic-based countermeasures are simple, efficient and easy to implement. Nevertheless, 

these detection schemes have limitations and cannot provide a complete solution for defending 

against worm attacks. On one hand, it is hard to use the traffic-based countermeasure to detect 

worms that spread via E-mail systems, instant messenger, or peer-to-peer applications, since 

their traffic is difficult for ITM systems to observe. On the other hand, worm attacks may have 

full control of traffic. Thus, traffic-based countermeasures must consequently adapt themselves 

in order to be effective.  

     As supplementary approaches against worm attacks, non-traffic based countermeasures are 

those that detect worm attacks without being limited to monitoring, collecting, and analyzing the 

traffic generated by worm attacks. In order to develop these kinds of countermeasures, it is 

critical to identify what types of non-traffic related features must be generated by worm attacks 

or effectively to worm attacks. Then we can have better understanding of their features and 

develop countermeasures. 

     For the non-traffic based countermeasures, many existing schemes have been proposed to 

detect the signature of worm executables [20, 36, 37, 38]. Specifically, there are some research 

efforts that focus on examining constant byte steams as signature in the worm program [20, 38, 

39, 40], such as the list of Dynamic Link Libraries (DLLs), functions and specific ASCII strings 

extracted from the executable headers. There is additional research focusing on program models. 
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For example, Feng et al. [40] proposed a formal analysis framework for pushdown automata 

(PDA) models. Based on this framework, they studied program analysis techniques, 

incorporating system calls or stack activities. Wagner et al. in [41] proposed an approach that 

analyzes program executables and generates a non-deterministic finite automaton (NDFA) or a 

non-deterministic pushdown automaton (NDPDA) from the global control-flow graph of the 

program. The automaton was then used to monitor the program execution on-line. Gao et al. in 

[42] presented an approach for detecting anomalous behavior of an executing process. The basic 

idea of their approach is that processes potentially running the same executable should behave 

similarly in response to a common input.  

     These approaches are capable of identifying non-traffic based features generated by worm 

attacks and can be used to detect worm attacks. However, if new unseen worms appear in the 

future and a worm becomes smarter to manipulate these features, the effectiveness of these 

schemes will be significantly reduced. In order to address this problem, the defender needs to 

focus on the comparatively invariant perspectives of worm attacks. Particularly, in this 

dissertation we consider the following three approaches. First, we will develop one novel non-

traffic countermeasure which aims to detect new unseen worms including “polymorphic” worms 

that have unseen signatures or change their signatures during propagation. Second, we note that 

no matter how a worm attacker changes its strategies, one thing it cannot change is its objectives. 

To this end, we develop one novel non-traffic based countermeasure by testing an important 

non-traffic feature − contradicted objectives of worm attacks. Third, we consider  real-world 

system settings with multiple incoming worm attackers that collaborate by sharing the history of 

their interactions with the defender and we propose a generic reputation-aware countermeasure 

scheme to improve the performance of worm detection by incorporating the defender’s 

reputation.  
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CHAPTER III  

COUNTERMEASURE BASED ON PROPAGATION TRAFFIC 

In the following two chapters, we will develop traffic-based countermeasures against different 

worm attacks. In this chapter, we focus on developing the countermeasure based on propagation 

traffic. 

1. Overview 

In this chapter, we consider a new class of worms referred to as camouflaging worm (C-Worm in 

short). The C-Worm has a self-propagating behavior similar to traditional worms, i.e., it intends 

to rapidly infect as many vulnerable computers as possible. However, the C-Worm is quite 

different from traditional worms in a way that it camouflages any noticeable trends of its 

propagation traffic over time. Specifically, the camouflage is achieved by manipulating the 

propagation traffic volume launched by worm infected computers. Such a manipulation of the 

propagation traffic volume prevents exhibition of any exponentially increasing trends or even 

crossing of thresholds that are tracked by existing traffic volume-based detection schemes [30, 

31, 32].  

     In order to detect such worm attacks, we comprehensively analyze C-Worm propagation 

traffic in both the time and frequency domains. We observe that although the C-Worm 

propagation traffic shows no noticeable trends in the time domain, it demonstrates a distinct 

pattern in the frequency domain. Specifically, there is an obvious concentration within a narrow 

range of frequencies. This concentration is inevitable since the C-Worm adapts to the dynamics 

of the Internet in a recurring manner for manipulating and controlling its overall propagation 

traffic volume. The above recurring manipulations involve steady increase followed by a 

decrease in the propagation traffic volume, such that the changes do not manifest as any trends in 
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the time domain or such that the propagation traffic volume does not cross thresholds that could 

reveal the C-Worm propagation.  

     In the following, we first introduce the C-Worm and then present the countermeasure based 

on the feature exposed in the spectrum domain of propagation traffic. 

2. C-Worm Propagation 

2.a. Overview 

For the C-Worm, the simplest way to manipulate propgation traffic volume is to randomly 

change the number of worm instances conducting port-scans. However, this method may not be 

able to circumvent the detection. The reason is that the overall propagation traffic volume still 

shows an increasing trend with the progress of worm propagation and as more and more 

computers are being infected, they, in turn, take part in scanning other computers. As a result, 

the C-Worm may introduce a feed-back loop control for regulating its propagation speed 

according to the propagation status. As we mentioned earlier, in order to effectively circumvent 

the detection, the propagation traffic for the C-Worm should be comparatively slow and variant 

enough to not show any notable increasing trends over time. Note that a very slow propagation 

of the C-Worm is also not desirable, since it delays rapid infection damage to the Internet. 

Hence, the C-Worm needs to adjust its propagation so that it is neither too fast to be easily 

detected, nor too slow to delay rapid damage on the Internet. 

     To regulate the C-Worm propagation traffic volume, we introduce a loop-control parameter 

called attack probability p(t) for each worm infected computer. p(t) is the probability that a C-

Worm instance participates in the worm propagation (i.e., scans and infects other computers) at 

time t. For the C-Worm, p(t) need not be a constant value and can be set as a time varying 

function. 
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     In order to achieve the camouflaging behavior, the C-Worm needs to obtain an appropriate 

p(t) to manipulate its propagation traffic. Specifically, the C-Worm will regulate its overall 

propagation traffic volume such that: (i) it is similar to non-worm scan traffic in terms of the 

traffic volume over time, (ii) its does not exhibit any notable trends such as an exponentially 

increasing pattern or any mono-increasing pattern even when the number of infected computers 

increases over time, and (iii) the average volume value of the overall traffic is sufficient to make 

the C-Worm propagate fast enough to cause rapid damage on the Internet. 

    We assume that a worm attacker intending to manipulate propagation traffic volume follows a 

random distribution with mean MC
*. This MC

* can be regulated in a random fashion during the 

worm propagation in order to camouflage the propagation of C-Worm. Correspondingly, the 

worm instances need to readjust their attack probability p(t) in order to ensure that the total 

number of worm instances that launch the scans is approximately MC
*.  

    To regulate MC
*, it is obvious that p(t) has to be decreased over time since M(t) keeps 

increasing during worm propagation. We can determine p(t) using a simple function as follows: 

p(t) = MC
*/M^(t), where M^(t) represents the estimation of M(t) at time t. From the above 

expression, we know that the C-Worm needs to obtain the value of M^(t) (as close to M(t) as 

possible) in order to generate an effective p(t). Here, we discuss one approach for the C-Worm to 

estimate M(t). The basic idea is as follows: A C-Worm could estimate the percentage of 

computers that have already been infected over the total number of IP addresses as well as M(t), 

through checking a propagation attempt as a new hit (i.e., hitting an uninfected vulnerable 

computer) or a duplicate hit (i.e., hitting an already infected vulnerable computer). This method 

requires each worm instance (i.e., infected computer) to be marked by a watermark which 

indicates that this computer has been infected. Thus, when a worm instance (for example, 

computer A) scans one infected computer (for example, computer B), then computer A will 
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detect such a watermark, thereby becoming aware that host B has been infected. Through 

validating such watermarks during the propagation, a C-Worm infected computer can estimate 

M(t). This method is similar to that used by the “self-stopping” worm discussed in [43]. There 

are other approaches to achieve this goal, such as incorporating the Peer-to-Peer techniques to 

disseminate information through secured IRC channels [44, 45]. 

2.b. Effectiveness 

We now demonstrate the effectiveness of C-Worm in evading worm detection through 

controlling p(t). In this context, we use two metrics to assess a detection scheme. One is the 

Detection Time (DT) and the other is the Maximal Infection Rate (MIR). These two metrics are 

used to measure the effectiveness of the worm attacks in the presence of worm defense systems. 

Detection time quantifies the detection speed of the detection scheme and maximal infection rate 

quantifies the damage caused by a worm before being detected. The purpose of any detection 

scheme is to rapidly minimize the damage caused by a worm. Hence, these two metrics can be 

used to quantify the effectiveness of any worm countermeasure. As the values increase, the 

worm attack performance improves and the detection performance worsens.  

    Given random selection of MC
*, we generate three C-Worm attacks (viz., C-Worm 1, C-Worm 

2 and C-Worm 3) that are characterized by different selections of mean and variance magnitudes 

for MC
*. In our simulations, we assume that the scan rate of traditional pure random scan (PRS) 

worm follows a normal distribution Sn = N(40, 40) (note that if the scan rate generated by above 

distribution is less than 0 , we set the scan rate as 0). We also set the total number of vulnerable 

computers on the Internet as 360,000 which is the total number of infected computers in “Code-

Red” worm incident [1]. 
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    Table III-1. Maximal Infection Rate (MIR) for Existing Traffic Volume-Based Detection    

    Schemes 

Detection 

Schemes 

PRS worm C-Worm 1 C-Worm 2 C-Worm 3 

Mean 4.8% 100% 100% 28% 

VAR 5.0% 100% 100% 100% 

TREND 3.1% 100% 100% 100% 

 

 

   Table III-2. Detection Time (DT) for Existing Traffic Volume-Based Detection Schemes 

Detection 

Schemes 

PRS worm C-Worm 1 C-Worm 2 C-Worm 3 

Mean 2290 Inf Inf 4803 

VAR 2340 Inf Inf Inf 

TREND 2134 Inf Inf Inf 

 

          

 

Table III-1 and Table III-2 show how the C-Worm is able to effectively defeat the existing traffic 

volume-based detection schemes. The data of these two tables show the detection results of three 

representative traffic volume-based detection schemes (denoted by MEAN [31], VAR [32], and 

TREND [30]) on PRS worms and different C-Worms. For fairness, we set the parameters for 

these three detection schemes, so that all schemes can achieve similar low false positive rates, 

i.e., less than 1%. Remark that the false positive rate is the probability that a detection system 

detects the existence of worm propagation when there is actually no occurrence of worm 
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propagation. Although all three schemes are effective while detecting PRS worm attacks, they 

fail in detecting the C-Worm attacks. For example, all the schemes completely fail to detect the 

C-Worm 1 and 2. Only MEAN can detect the C-Worm 3, but only after a considerably large 

detection time of 4803 minutes and an unimpressive maximal infection rate of 28%. 

2.c. Discussion 

Although in this chapter we only demonstrate effectiveness of C-Worms against existing traffic 

volume-based detection schemes, the design principle of C-Worm can be extended to defeat 

other newly developed detection schemes, such as destination distribution-based detection [33, 

34, 35]. In the following, we discuss the preliminary idea.  

     Recall that the attack target distribution-based schemes intend to analyze the distribution of 

attack targets (the scanned destination IP addresses) as basic detection data to capture the 

fundamental feature of worm propagation, i.e., continuously scanning different targets, which is 

not expected in non-worm scan traffic. However, our initial investigation shows that the worm 

attacker is still able to defeat such a countermeasure via manipulating the attack target 

distribution. For example, the attacker may launch a portion of scan traffic bound for some IP 

addresses monitored by ITM system. Recall that those dedicated IP addresses monitored by ITM 

system can be obtained by launching probing attacks or via other means, which will be studied in 

Chapter IV. 

    Using port 135 reported by SANs ISC as an example, we analyze the traces and obtain the 

traffic target distribution in a window lasting for 10 mins. Following existing work [33], we use 

entropy as the metrics to measure the attack target distribution. Fig. III-1 shows the Probability 

Density Function (PDF) of background traffic’s entropy values. We also simulate the worm 

propagation traffic which allocate a portion of scan traffic bound for IP addresses monitored by 
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the ITM system, then we obtain the PDF of entropy value for combined traffic including both 

worm propagation and background traffic. From Fig. III-1, we know that when the attacker uses 

a portion of attack traffic to manipulate the target distribution, the entropy-based detection 

scheme can be degraded significantly. For example, when the attacker uses 10% traffic to 

manipulate the traffic’s entropy value, the false positive rate of entropy-based detection scheme 

is 14%. When the attacker uses 30% traffic to manipulate the traffic’s entropy value, the false 

positive rate becomes 40%. Hence, in order to preserve the performance, entropy-based 

detection scheme needs to evolve correspondingly and integrate with other detection schemes. 

We will perform a more detailed study of this aspect in our future work. 

 

                        

             Fig. III-1. Manipulation of Attack Target Distribution Entropy 
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3. Detection of the C-Worm 

3.a. Design Rationale 

In this section, we develop a novel spectrum-based detection scheme. Recall that the C-Worm 

goes undetected by detection schemes that try to determine the worm propagation volume only 

in the time domain. Our detection scheme captures the distinct pattern of the C-Worm in the 

frequency domain, and thereby has the potential of effectively detecting the C-Worm 

propagation. 

       

                                     Fig. III-2. PDF of SFM on C-Worm Traffic      

 

   In order to identify the C-Worm propagation in the frequency domain, we use the distribution 

of Power Spectral Density (PSD) and its corresponding Spectral Flatness Measure (SFM) of the 

propagation traffic. Particularly, PSD describes how the power of a time series is distributed in 

the frequency domain. Mathematically, it is defined as the Fourier transform of the auto-

correlation of a time series. In our case, the time series corresponds to the changes in the number 
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of worm instances that actively conduct the propagation over time. The SFM of PSD is defined 

as the ratio of geometric mean to arithmetic mean of the coefficients of PSD. The range of SFM 

values is [0, 1] and a larger SFM value implies flatter PSD distribution and vice versa.  

 

               

                                    Fig. III-3. PDF of SFM on Non-Worm Traffic 

 

   To illustrate SFM values of both the C-Worm propagation and normal non-worm scan traffic, 

we plot the Probability Density Function (PDF) of SFM for both C-Worm propagation and 

normal non-worm scan traffic as shown in Fig. III-2 and Fig. III-3, respectively. Note that we 

only show the data for port 8080 as an example, and other ports show similar observations. From 

this figure, we know that the SFM value for normal non-worm scan traffic is very large (e.g., 

SFM in [0.5, 0.6] has much higher density compared with other magnitudes). The C-Worm data 

shown in Fig. III-2 is based on 800 C-Worm attacks generated by varying attack parameters 

defined in Section 2, such as p(t) and MC
*. From this figure, we know that the SFM value of the 

C-Worm attacks is much smaller (e.g., SFM in [0.04, 0.1] has high density). From the above two 
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figures, we can observe that there is a clear demarcation range of SFM in (0.3, 0.38) between the 

C-Worm propagation and normal non-worm scan traffic. As such,  the SFM can be used to 

effectively detect the C-Worm propagation traffic. 

    The large SFM values of normal non-worm scan traffic can be explained as follows. The 

normal non-worm scan traffic does not tend to concentrate at any particular frequency since its 

random dynamics is not caused by any recurring phenomenon. The small value of SFM can be 

reasoned by the fact that the frequency of C-Worm propagation traffic is within a narrow-band. 

Such concentration within a narrow range of frequencies is unavoidable since the C-Worm 

adapts to the dynamics of the Internet in a recurring manner for manipulating the overall 

propagation traffic volume. In reality, the above recurring manipulations involve steady increase 

followed by a decrease in the propagation traffic volume. 

3.b. Spectrum-Based Detection Scheme 

We now present the details of our spectrum-based detection scheme. Similar to other detection 

schemes [30, 32], we use a “destination count” as the number of the unique destination IP 

addresses targeted by launched scans during worm propagation. To understand how the source 

count data is obtained, we recall that an ITM system collects logs from distributed monitors 

across the Internet. With reports in a sampling window Ws, the destination count X(t) is obtained 

by counting the unique destination IP addresses in received logs. 

     To conduct spectrum analysis, we consider a sliding window Wd in the worm detection 

system. Wd consists of q continuous detection sampling windows and each sampling window 

lasts Ws. The detection sampling window is the unit time interval to sample the detection data 

(e.g., the destination count). Hence, at time i, within a sliding window Wd, there are q samples 
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denoted by (X(i-q-1), X(i-q-2),…, X(i)), where X(i-j-1) (j in (1, q)) is j-th destination count from 

time i-j-1 to i-j.  

     In our spectrum-based detection scheme, the distribution of PSD and its corresponding SFM 

are used to distinguish the C-Worm propagation traffic from the non-worm scan traffic. In our 

worm detection scheme, the detection data (e.g., destination counter), is further processed in 

order to obtain its PSD and SFM. In the following, we detail how the PSD and SFM are 

determined during the processing of the detection data. 

1) Power Spectral Density (PSD) 

     To obtain the PSD distribution for worm detection data, we need to transform data from the 

time domain into the frequency domain. To do so, we use a random process X(t), t in [0, n] to 

represent the worm detection data. Assuming X(t) is the destination count in time period [t-1, t] (t 

in [1, n]), we define the auto-correlation of X(t) by RX(L) = E [X(t)X(t+L)], where RX(L) is the 

correlation of worm detection data in an interval L. If a recurring behavior exists, a Fourier 

transform of the auto-correlation function of RX(L) can reveal such behavior. Thus, the PSD 

function (also represented by SX(f); where f refers to frequency) of the scan traffic data is 

determined using the Discrete Fourier Transform (DFT) of its auto-correlation function as 

follows, 
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where K=0, 1, …, N-1. As the PSD inherently captures any recurring pattern in the frequency 

domain, the PSD function shows a comparatively even distribution across a wide spectrum range 

for the normal non-worm scan traffic. Whereas, the PSD of C-Worm propagation traffic shows 

spikes or noticeably higher concentrations at a certain range of the spectrum range.  
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2) Spectral Flatness Measure (SFM) 

     We measure the flatness of PSD to distinguish the propagation traffic of the C-Worm from 

the normal non-worm scan traffic. To this end, we introduce the Spectral Flatness Measure 

(SFM). The SFM is defined as the ratio of the geometric mean to the arithmetic mean of the PSD 

coefficients [47, 48]. It can be expressed as, 
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where S(fk) is the k-th PSD coefficient for the PSD obtained from the results in (III-5). SFM is a 

widely existing measure for discriminating frequencies in various applications such as voiced 

frame detection in speech recognition [48, 49]. In general, small values of SFM imply the 

concentration of data at narrow frequency spectrum ranges. 

    Table III-3 shows the mean value of SFM based on extensive analysis of non-worm traffic 

data for some popular ports collected by SANs ISC. Overall, we note that the PSD distribution of 

non-worm scan traffic is relatively flat, thereby resulting in relatively larger magnitudes of SFM 

values. The above observation can be reasoned due to the fact that normal non-worm scan traffic 

does not tend to concentrate at any particular frequency since its random dynamics is not caused 

by any repeating phenomenon. Differently, the C-Worm has unpreventable recurring behavior in 

its propagation traffic; consequently its SFM values are comparatively smaller than the SFM 

values of normal non-worm scan traffic. 

 

 Table III-3. SFM Mean Value for Normal Non-Worm Scan Traffic 

Port 23 25 53 113 139 445 1025 4672 6446 6881 8080 27015 

SFM 0.71 0.71 0.95 0.86 0.64 0.67 0.46 0.47 0.45 0.74 0.56 0.65 
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3) Detection Decision Rule 

     We now describe the method of applying an appropriate detection rule to detect C-Worm 

propagation. As the SFM value can be used to sensitively distinguish the C-Worm propagation 

and normal non-worm scan traffic, the worm detection is performed by comparing the SFM with 

a predefined threshold. If the SFM value is smaller than a predefined threshold, then a C-Worm 

propagation alert is generated. The value of the threshold used by the C-Worm detection can be 

set based on the knowledge of statistical distribution of SFM values that correspond to the non-

worm scan traffic. If we can obtain the distribution of SFM values for the C-Worm through 

comprehensive simulations and even real-world profiled data in the future, the optimal threshold 

can be obtained by applying the Bayes classification [50]. If the distribution of SFM values for 

the C-Worm is not available, based on the distribution of SFM values of the normal non-worm 

scan traffic, we can set an appropriate value. For example, the value can be determined by the 

Chebyshev inequality [50] in order to obtain a reasonable false positive rate for worm detection.         

     In addition, our spectrum-based scheme is also generic for detecting the PRS worms. This is 

due to the fact that propagation traffic of PRS worms has a constantly rapid, exponential 

increase. Thus, in the propagation traffic of PRS worms, the PSD values in the low frequency 

range are much higher compared with other frequency ranges.  

3.c. Analysis 

We now present a formal analysis of SFM for the C-Worm. Let the observed traffic on the 

countermeasure system be Z1 = X1 + Y1, where X1 is the random variable representing the C-

Worm propagation traffic (e.g., volume, source counter) in one sampling window and Y1 is the 

random variable representing the background scan traffic (e.g., volume, source counter) in one 

sampling window. We define X = X1 − E[X1], where E[X1] is the mean value of X1 and Y = Y − 
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E[Y1], where E[Y1] is the mean value of Y1. Thus, we have Z = X + Y, where X and Y are 

independent zero-mean random variables. We assume that Z’s spectrum is within the −W 
≤

 f 
≤

 W 

range. 

     Based on the observations shown in Section 3.a, we approximately represent Y1(t) by white 

Gaussian noise, which is widely used in modeling wide-band noise in communication systems. 

Thus, Y can be approximately represented by a Gaussian white noise with zero mean and a 

variance of σ. Thus, in the total frequency band limited within the range [−W 
≤

 f 
≤

 W], the PSD 

of Y is SY(f) = σ, which shows that Y has a constant power spectrum and each frequency has the 

average power value σ. 

    Considering the fact that C-Worm instances adopt the control mechanism strategy to 

manipulate the overall propagation traffic volume, we explained how a distinct trend can be 

noticed in the spectrum domain, i.e., the trend being a concentration within a narrow range of 

frequencies on the propagation traffic of the C-Worm. Assume that the frequency of C-Worm 

propagation traffic counter is referred to as m (denoted by fk), where k = 1, . . . , m and m < W in 

the total (narrow-band) frequency range. Without loss of generality, X(t) is approximately 

represented by  
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where θ is uniformly distributed in the interval [0, 2π]) and ak is uniformly distributed in the 

interval [−l, l]. Based on the relationship among autocorrelation, mean and autoconvariance, we 

have RX(τ ) = CX(t1, t2) + E[X(t1)]E[X(t2)], where τ = t2−t1, E[X(t1)] = E[X(t2)] = 0, and CX(t1, t2) = 

E[(X(t1)−E(X(t1))(X(t2)−E(X(t2))] is the autocovariance of a random process X(t). Thus, it is easy 

to verify that  
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Thus, the PSD of X(t) can be represented by  
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As X(t) and Y(t) are independent random process (SY(f) = σ), we have  

  ∑
=

=

+++−=
mk

k
k

k
k

k
X ff

a
ff

a
fS

1

22

.)](
4

)(
4

[)( σδδ              (III-10) 

Define R=akδ(fk)/4σ. The SFM of Z(t) can be represented by 
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We can rewrite SZ(f) in (III-11) as the function of R as  
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where x = R, t = m/W < 1. As  
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the function SZ(f) is a decreasing function of x (= R) and it is observable that  
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(due to the Dirac’s δ function property), SZ(f) → 0. Thus, the SFM of C-Worm is close to 0. 
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4. Performance Evaluation 

In this section, we report our evaluation results that illustrate the effectiveness of our spectrum-

based detection scheme against both the C-Worm and the PRS worm in comparison with 

existing representative volume-based detection schemes. In addition, we also consider the 

destination distribution-based detection schemes and evaluate their performance against the C-

Worm.   

4.a. Evaluation Methodology 

1) Evaluation Metrics 

     In order to evaluate the performance of any given detection scheme against the C-Worm, we 

use the following metrics. The first two metrics are the Detection Time (DT) and the Maximal 

Infection Rate (MIR) defined in Section 2. Recall that detection time is defined as the time taken 

to successfully detect the worm attack from the moment the worm propagation starts. It 

quantifies the detection speed of a detection scheme. Maximal infection rate defines the ratio of 

an infected computer number over the total number of vulnerable computers up to the moment 

when the worm propagation is detected. It quantifies the damage caused by a worm before being 

detected. The objective of any detection scheme is to minimize the damage caused by a rapid 

worm propagation. Hence, MIR and DT can be used to quantify the effectiveness of any worm 

detection scheme. The higher the values, the more effective the worm attack and the less 

effective the detection.  In addition, we use other two metrics called the Detection Rate (PD) and 

False Positive Rate (PF). PD is defined as the probability that a detection scheme can correctly 

identify a worm attack. The PF is defined as the probability that a detection scheme mistakenly 

identifies a nonexistent worm attack. 

2) Evaluation Setup 



  30 

     In our evaluations, we set the total number of vulnerable computers on the Internet as 360,000 

[1]. For the scan rate S (number of scans per minute), we choose different scan rates for infected 

computers (worm instances). In our evaluation, the scan rates are predetermined and follow a 

Gaussian distribution S = N(Sm, Sδ), where Sm and Sδ are in [20, 64], similar to those used in [30]. 

    We simulate the C-Worm attacks by varying the attack parameters, such as control parameter 

p(t) and the number of worm instances participating the scan MC
* defined in Section 2. The MC

* 

follows the Gaussian distribution. Particularly, its mean is randomly selected in (12000, 75000) 

and standard deviation is randomly selected in (0.2, 100). We simulate different C-Worm 

propagation traffic by varying these values. The detection sampling window Ws is set to 5 

minutes and the detection sliding window Wd is set to be incremental from 80 min to 800 min. 

The incremental selection of Ws from a comparatively small window to a large window can 

adaptively reflect the worm scan traffic dynamics caused by the C-Worm propagation at various 

speeds. We choose the setting of the detection sampling window to be short enough in order to 

provide enough sampling accuracy, as prescribed by Nyquist’s sampling theory. Also, we choose 

the detection sliding window to be long enough to capture adequate information for spectrum-

based analysis [48]. 

     In practice, since detection systems analyze port-scan traffic blended with the non-worm scan 

traffic, we replay the real-world traces as non-worm scan traffic (as the background noise to 

worm propagation traffic) in our simulations. In particular, we used real-world trace (Shield logs 

dataset) from 01/01/2005 to 01/15/2005 collected by a ITM system called SANs ISC. Note that 

SANs ISC maintained by the SANs Institute have gained popularity among the Internet security 

community in recent years. ISC collects firewall and Intrusion detection system logs, which 

indicate port-scan trends from approximately 2000 organizations that monitor up to 1 million IP 
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addresses. We choose the scan traffic logs for port 8080 as an example for profiling the non-

worm scan traffic. 

4.b. Evaluation Results of Traffic Volume-Based Detection Schemes 

We evaluate our proposed spectrum-based detection scheme by comparing its performance with 

three existing propagation traffic volume-based detection schemes. The first scheme is the 

volume mean-based (MEAN) detection scheme which uses the mean value of propagation traffic 

to detect worm propagation [31]; the second scheme is the trend-based (TREND) detection 

scheme which uses the increase trend of propagation traffic volume to detect worm propagation 

[30]; and the third scheme is the victim number variance-based (VAR) detection scheme which 

uses the variance of the propagation traffic volume to detect worm propagation [32]. 

     We define our spectrum-based detection scheme as SPEC. For the off-line training, we use 

1000 worm attacks that include both the C-Worm (800 C-Worm attacks) and PRS worms (200 

PRS worm attacks). For fairness, we set the detection parameters for our SPEC scheme and the 

other three detection schemes, so that all detection schemes achieve a similar false positive rate 

(PF ) below 2%.  

    In the following, we first evaluate the performance of our spectrum-based detection scheme 

for C-Worms. Following this, we evaluate the performance of our spectrum-based detection 

scheme for PRS worms. 

1) Detection of C-Worms 

    Table III-4 shows the detection results of different detection schemes against the C-Worm. 

The results have been averaged over 500 C-Worm attacks. From this table, we can observe that 

existing detection schemes are not able to effectively detect the C-Worm and their detection rate. 

(PD) values are significantly lower in comparison with our spectrum-based detection schemes 



  32 

(SPEC). For example, SPEC achieves the detection rate of 98%, which is at least 3-4 times more 

accurate than detection schemes such as VAR and MEAN that achieve detection rate values of 

only 48% and 14%, respectively. 

     Our SPEC detection schemes also achieve good detection time (DT) performance in addition 

to the high detection rate values indicated above. In contrast, the detection time of existing 

detection schemes have relatively larger values. As a consequence of the detection time values, 

we can see that the C-Worm propagation is effectively contained by SPEC as demonstrated by 

the lower values of maximal infection rate (MIR) for the SPEC. Since the detection rate values 

for the existing detection schemes are relatively small, obtaining low values of maximal 

infection rate for those schemes are not as significant as those for SPEC. 

 

             Table III-4. Detection Results of Traffic Volume-Based Schemes against C-Worm 

Schemes VAR TREND MEAN SPEC 

Detection Rate (PD) 48% 0 14% 98% 

Maximal Infection Rate (MIR) 14.4% 100% 7.5% 1.1% 

Detection Time (DT) 2567 Inf 1838 1749 

    

 

2) Detection Performance for PRS Worms 

     We evaluate the detection performance of different detection schemes for PRS worms. The 

detection performance results have been averaged over 500 PRS worm attacks. We observe that 

our SPEC schemes achieve 100% detection rate (PD) while detecting traditional PRS worms in 

comparison with existing worm detection schemes that have been specifically designed for 

detecting PRS worms. 
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     In view of emphasizing the performance of our SPEC scheme with the existing worm 

detection schemes, we plot the maximal infection rate (MIR) and detection time (DT) results in 

Figs. III-4 and III-5 for different scan rates, respectively. We can observe from these figures that 

the maximal infection rate and detection time results of our spectrum-based scheme are 

comparable or even better than other existing worm detection schemes. For example, when the 

mean scan rate is 70/min, our SPEC scheme achieves a detection time of 1024 mins, which is 

faster than that of VAR and MEAN schemes with values 1239 min and 1161 min, respectively. 

For the same mean scan rate of 70/min, SPEC achieves a maximal infection rate of 0.03, which 

is comparable to TREND’s MIR value and is less than 50% of the MIR value for the VAR and 

MEAN detection schemes. The effectiveness of our spectrum-based scheme is based on the fact 

that PRS worm propagation traffic shows a constantly rapid exponential increase. Thus, SFM 

values are relatively small due to PSD concentration at the low frequency range in the case of 

PRS worms. 

 

 

                                       Fig. III-4. Maximal Infection Rate on PRS Worms  
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                 Fig. III-5. Detection Time on PRS Worms  

 

4.c. Evaluation Results of Traffic Distribution-Based Detection Schemes 

In Section 4.b, we evaluate the detection performance of our proposed scheme along with other 

three detection schemes. Each of these detection schemes belong to the traffic volume-based 

detection category due to the fact that traffic volume is used as the main detection feature. As we 

mentioned earlier, there are other schemes based on the destination distribution of worm 

propagation traffic [33, 34, 35]. Taking into consideration this category of detection schemes, we 

evaluate two additional schemes against the C-Worm. The first one is the entropy-based 

detection scheme [33] which uses entropy to measure the traffic destination distribution feature 

raised by worm propagation. For this detection scheme, we record all scan traffic data in each 

sampling window and then calculate the entropy. The sliding detection window is set to 10 

(consists of 10 sample windows). If the average value of the entropy within a sliding detection 

window is larger than predefined threshold, which is determined based on the statistical profile 
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of background traffic. Other measures, such as correlation-coefficient, have also been showing 

the effective capture of the destination distribution characteristics raised by worm propagation. 

The second scheme is an extension of the first one, incorporating the wavelet analysis. Based on 

the time-series of data (the entropy value in each sampling window), we carry out discreet 

wavelet transform (DWT) and record the coefficients of wavelet analysis at different levels. In 

our case, the anomaly detection is based on approximate coefficients of level 4 and 5, which 

represent the signal anomaly in a low-frequency range. In our experiment, the length of time-

series DWT is set to 50  and each data represents the entropy value in one sampling window. 

The wave in our experiment uses the Daubechies orthogonal wavelet. The parameters for 

generating C-Worms is the same as those shown in Section 4.a. 

       

       Table III-5.  Detection Results for Target Distribution-Based Schemes against C-Worm 

             Schemes    Entropy Entropy with 

Wavlet 

     SPEC 

Detection Rate (PD)      98%         99%       98% 

Maximal Infection Rate (MIR)      0.8%        0.5%       1.1% 

Detection Time (DT)      1649        1548      1749 

 

 

    Table III-5 shows the detection results of destination distribution-based detection schemes in 

comparison with our proposed scheme against the C-Worm. From this table, we can see that our 

proposed scheme achieves comparable detection performance against the C-Worm in terms of 

detection rate, maximal infection rate, and detection time. However, our scheme is a somewhat  

slower, resulting in worse detection time and maximal infection rate. This is expected and can be 

explained by the following two facts: First, our spectrum-based scheme heavily relies on traffic 
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volume. Second, the C-Worm studied in this chapter is mainly traffic volume-based. That is, the 

C-Worm in this chapter only limits the manipulation of traffic volume, aiming to defeat existing 

traffic volume-based detection schemes. However, as shown in Section 2.c, it is possible that a 

worm attacker can adopt other strategies (e.g., manipluation of the attack target distribution) and 

further defeat destination distribution-based detection schemes. For example, the attacker may 

launch a portion of scan traffic bound for some IP addresses monitored by ITM system. Recall 

that those dedicated IP addresses monitored by ITM system can be obtained by launching 

probing attacks or via other means, which will be studied in Chapter IV. 

5. Summary 

In this chapter, we studied the countermeasure based on propagation traffic to defend against a 

specific class of worm called the C-Worm that has the capability to camouflage its propagation 

traffic volume and such behavior as background traffic. Our analysis and evaluation showed that, 

although the C-Worm successfully camouflages its propagation in the time domain, its 

camouflaging nature inevitably manifests as a distinct pattern in the frequency domain. Based on 

such observations, we developed a novel spectrum-based detection scheme to detect the C-

Worm. Specifically, our spectrum-based detection scheme used the Power Spectral Density 

(PSD) distribution of the C-Worm propagation traffic volume and its corresponding Spectral 

Flatness Measure (SFM) as the key detection feature to distinguish the C-Worm propagation 

traffic from the normal non-worm scan traffic. The evaluation data showed that our scheme 

achieved superior detection performance against the C-Worm in comparison with other 

propagation traffic volume-based detection schemes.  
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CHAPTER IV 

COUNTERMEASURE BASED ON PROBING TRAFFIC 

In this chapter, we focus on developing the countermeasure based on probing traffic. 

1. Overview 

To order to defend against worm attacks, large-scale traffic monitoring across the Internet has 

become necessary. Developing and deploying Internet threat monitoring (ITM) systems (or 

motion sensor networks) is one of the major efforts in this realm. Generally, an ITM system 

consists of a number of monitors and a data center. The monitors are distributed across the 

Internet and can be deployed at hosts, routers, and firewalls, etc. Each monitor is responsible for 

monitoring and collecting traffic targeting to a range of IP addresses within a sub-network. The 

range of IP addresses covered by a monitor is also referred to as the location of the monitor. 

Periodically, the monitors send traffic logs to the data center and the data center analyzes the 

traffic logs and issues the worm attack warnings. 

     However, the integrity and functionality of ITM systems largely depend on the confidentiality 

of the IP addresses covered by their monitors, i.e., the locations of monitors. If the locations of 

monitors are identified, the attacker can deliberately avoid these monitors and directly attack the 

uncovered IP address space. It is a known fact that the number of sub-networks covered by 

monitors is much smaller than the total number of sub-networks in the Internet [21, 22, 25]. In 

other words, the IP address space covered by monitors represents a very small portion of the 

entire IP address space. Hence, bypassing IP address spaces covered by monitors will 

significantly degrade the accuracy of the traffic data collected by the ITM system in reflecting 

the real situation of attack traffic. Furthermore, the attacker may also poison ITM systems by 

manipulating the traffic towards and captured by disclosed monitors. For example, the attacker 
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can launch high-rate port-scan traffic to disclosed monitors and feign a large scale worm 

propagation. In summary, the attacker can significantly compromise the ITM system 

performance if he is able to disclose the locations of monitors. It is important to have a thorough 

understanding of such attacks and design efficient countermeasures to defend against them.  

     In the following, we first investigate a category of stealthy attacks called low-rate 

LOCcalization (lLOC) attack, which can accurately and invisibly localize the monitors in ITM 

systems. We then develop countermeasures to defend against such attacks. Notice that the 

stealthy probing attack part in this Chapter is based on the joined work between Texas A&M 

University and the Ohio State University. My work focused on problem definition, literature 

survey, mathematical analysis, and simulations. 

2. Attack Model 

In this section, we will discuss the lLOC attack in detail. We will first give an overview of the 

lLOC attack, and then present the detailed procedures of the attack, followed by additional 

discussions and analytical results on its mechanisms. 

2.a. lLOC Attack 

1) Workflow 

     Fig. IV-1 shows the basic workflow of the lLOC attack. This figure also illustrates the basic 

idea of the ITM system and its threats. In the ITM system, the monitors deployed at various 

networks record their observed port-scan traffic and continuously update their traffic logs to the 

data center. The data center first summarizes the volume of port-scan traffic destinated towards 

(and reported by) all monitors, and then publishes the report data to the public in a timely 

fashion. 
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     As shown in Fig. IV-1 (a) and (b) respectively, the lLOC attack consists of the following two 

stages: 

     (a) Attack Traffic Generation: In this stage, as shown in Fig. IV-1 (a), the attacker first selects 

a code. Then, he encodes the attack traffic by embedding the selected code into the traffic. 

Lastly, the attacker launches the attack traffic towards a target network (e.g., network A in Fig. 

IV-1 (a)). We denote such an embedded code pattern in the attack traffic as the attack mark of 

the lLOC attack, and denote the attack traffic encoded as attack mark traffic. 
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       (a) attack stage 1: attack traffic generation         (b) attack stage 2: attack traffic decoding 

           Fig. IV-1. Workflow of the lLOC Attack 

 

     (b) Attack Traffic Decoding: In this stage, as shown in Fig. IV-1 (b), the attacker first queries 

the data center for the traffic report data. Such report data consist of both attack traffic and 

background traffic. After obtaining the report data, the attacker tries to recognize the attack mark 

(i.e., the code embedded in the lLOC attack traffic) by decoding the report data. If the attack 

mark is recognized, the report data must include the attack traffic, which means the target 
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network is deployed with monitors and the monitors are sending traffic reports to the ITM data 

center. 

2) Code-Based Attack 

    The lLOC attack adopts a code-based approach to generate the attack traffic. Coding 

techniques have been widely implemented in secured communication; for example, Morse code 

is one such example. Without knowledge of Morse code, the receiver would find it impossible to 

interpret the carried information [51]. 

    In the lLOC attack, we use the pseudo-noise code (PN-code) based attack approach, which has 

three advantages. First, the code is embedded in traffic and can be correctly recognized by the 

attacker even under the interference from background traffic, ensuring accuracy of the attack. 

Second, the code (of sufficient length) itself provides enough privacy. That is, the code is only 

known by the attacker, thereby, only the code pattern embedded in attack traffic can be 

recognized by the attacker. Furthermore, the code is able to carry information. A longer code is 

more immune to interference, and requires comparatively lower-rate attack traffic as the carrier, 

which is harder to be detected. All these characteristics help to achieve the objectives of attack 

accuracy and invisibility. 

     The lLOC attack can not only attack one target network to determine the deployment of 

monitors in one network at one time, but it can also attack multiple networks simultaneously. 

Intuitively, one simple way to achieve this parallel attack is to launch port-scan/attack traffic 

towards multiple target networks simultaneously, by scanning a different port number for each 

different target network. For example, if the data center publishes traffic reports of 1000 

(TCP/UDP) ports, then the attacker can launch attacks towards 1000 networks simultaneously, 

attacking each network with a different port number. Since attack traffic on different ports are 

summarized separately at the data center, the attacker still can separate and thus decode its traffic 
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towards different targets. Hence, the attacker can localize monitors in multiple networks 

simultaneously and accurately. However, can the attacker further improve the attack efficiency? 

Assuming that the data center still only publishes reports of 1000 ports, can the attacker 

fingerprint 10,000 target networks simultaneously, for example, by attacking 10 different 

networks using the same port number? Using a high-rate of port-scan traffic cannot achieve this, 

because it is indiscernible whether a spike in the traffic report is caused by traffic logs from one 

network or the other 9 networks. In order to achieve this goal in the code-based attack, the 

selected code and corresponding encoded attack traffic towards multiple networks for the same 

port should not interfere with each other (i.e., each of them can be decoded individually and 

accurately by the attacker, although they are integrated/summarized in the traffic report from the 

ITM data center). The PN-code selected in the lLOC attack has this feature, giving it the unique 

capacity to carry out parallel attack sessions towards multiple target networks using the same 

port. The details of the PN-code selection will be discussed in the following sections. In the 

following, we will give the details of attack stages illustrated in Fig. IV-1. 

 

 

 

 

 

             

                                            

        

 

            Fig. IV-2. PN-code and Encoded Attack Traffic 
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2.b. Attack Traffic Generation Stage 

In this attack stage, the attacker: (i) selects the code, a PN-code in our case; (ii) encodes the 

attack traffic using the selected PN-code; and (iii) launches the encoded attack traffic towards the  

target network. For the third step, the attacker can coordinate a large number of compromised 

bots to launch the traffic [7]. However, this is not the focus of this chapter. In the following, we 

will present detailed discussion of the first and second steps, respectively. 

1) Code Selection 

    To evade detection by others, the attack traffic should be similar to the background traffic. 

From a large set of real-world background traffic traces obtained from SANs ISC [25, 52], we 

conclude that the background traffic shows random patterns in both time and frequency domains. 

The attack objectives of both accuracy and invisibility, and an attacker’s desire for parallel 

attacks require that: (i) the encoded attack traffic should blend in with background traffic, i.e., be 

random in both the time and frequency domains, (ii) the code embedded in the attack traffic 

should be easily recognizable to the attacker himself, and (iii) the code should support parallel 

attacks. 

      To meet the above requirements, we choose the PN-code to encode the attack traffic. The 

PN-code in the lLOC attack is a sequence of -1 or +1 with the following features [53, 54, 55].  

The PN-code is random and “balanced”. The -1 and +1 are randomly distributed and the 

occurrence frequencies of -1 and +1 are nearly equal. This feature contributes to good spectral 

density properties (i.e., equally spreading the energy over the whole frequency-band). It makes 

the attack traffic appear as noise and blend in with background traffic in both time and frequency 

domains. 

     The PN-code has a high correlation to itself and a low correlation to others (such as random 

noise), where the correlation is a mathematical tool for finding repeating patterns in a signal 
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[55]. This feature makes it feasible for the attacker to accurately recognize attack traffic 

(encoded by the PN-code) from the traffic report data even under the interference of background 

traffic. 

     The PN-code has a low cross-correlation value among different PN-code instances. The lower 

this cross-correlation, the less interference among multiple attack sessions in parallel attack. This 

feature makes it feasible for the attacker to conduct parallel localization attacks towards multiple 

target networks on the same port. 

     The Walsh-Hadamard code and M-sequence code [53, 54] are two popular types of PN-code. 

The Walsh-Hadamard code has some limitations. Since its frequency spreads into only a limited 

number of discrete frequency components, which is different from background traffic, it will 

compromise the invisibility of the attack traffic if used in the lLOC attack. In addition, the 

Walsh-Hadamard code also strongly depends on global synchronization [54]. To the contrary, 

M-sequence code does not have these shortcomings, so we adopt M-sequence codes in the lLOC 

attack. We use the feedback shift register to repeatedly generate the M-sequence PN-code due to 

its popularity and ease of implementation [53, 56]. In particular, a feedback shift register consists 

of two parts. One is an ordinary shift register consisting of a number of flip-flops (two state 

memory states). The other is a feedback module to form a multi-loop feedback logic. 

2) Attack Traffic Encoding 

     During the attack traffic encoding process, each bit in the selected PN-code is mapped to a 

unit time period Ts, denoted as mark bit duration. The entire duration of launched traffic (referred 

to as traffic launch session) is TsL, where L is the length of the PN-code. The encoding is carried 

out according to the following rules: each bit in the PN-code maps to a mark bit duration (Ts); 

when the PN-code bit is +1, port-scan traffic with a high rate, denoted as mark traffic rate �, is 

generated in the corresponding mark bit duration; when the code bit is -1, no port-scan traffic is 
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generated in the corresponding mark bit duration. Thus, the attacker embeds the attack traffic 

with a special pattern, i.e., the original PN-code. 

     Recall that, after this encoding process, the PN-code pattern embedded in traffic is denoted as 

attack mark. If we use ci =< ci,1, ci,2, …, ci,L > in {−1,+1}L to represent the PN-code and use ηi 

=<ηi,1, ηi,2, …, ηi,L> to represent the attack traffic, then we have ηi,j= �/2�ci,j + �/2 (j = 1,…, L). 

Fig. IV-2 shows an example of the PN-code and the corresponding attack traffic encoded with 

the PN-code. 

2.c. Attack Traffic Decoding Stage 

In this stage, the attacker takes the following two steps: (i) The attacker queries the data center 

for the traffic report data, which consists of both attack traffic and background traffic. (ii) From 

the report data, the attacker attempts to recognize the embedded attack mark. The existence of 

the attack mark determines the deployment of monitors in the attack targeted network. As the 

query of traffic report data is relatively straightforward, here we only detail the second step, i.e., 

attack mark recognition, as follows. 

     In the report data queried from the data center, the attack traffic encoded with the attack mark 

is mixed with background traffic. It is critical for the lLOC attack to accurately recognize the 

attack mark from the traffic report data. To address this problem, we develop the correlation-

based scheme. This scheme is motivated by the fact that the original PN-code (used to encode 

attack traffic) and its corresponding attack mark (embedded in the traffic report data) are highly 

correlated; in fact, they are actually the same.  

     The attack mark in the traffic report data is the embedded form of the original PN-code. The 

attack mark is similar to its original PN-code, although the background traffic may introduce 

interference and distortion into the attack mark. We adopt the following correlation degree to 
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measure their similarity. Mathematically, the correlation degree is defined as the inner product of 

two vectors. For two vectors X=<X1, X2, … ,XL> and Y=<Y1, Y2,…, YL> of length L, the 

correlation degree of vector X and Y is Г(X, Y) = X ◦ Y = Σ1
LXi·Yi/L, where Г(.) represents the 

operator for the inner product of two vectors. Based on above definition, we have Г(X, X) = Г(Y, 

Y)=1, if X, Y in {-1,+1}L. 

     We use two vectors, ηi=< ηi,1, ηi,2, …, ηi,L>  and ωi=< ωi,1, ωi,2, …, ωi,L>  to represent attack 

traffic (embedded with attack mark) and background traffic, respectively. We shift the above two 

vectors by subtracting the mean value from the original data, resulting in two new vectors, η’ i=< η’ i,1, η’ i,2, …, η’ i,L>  and ω’ i=< ω’ i,1, ω’ i,2, … , ω’ i,L> . We still use a vector ci =< c i,1, ci,2, … 

, ci,L > in {−1,+1}L to represent the PN-code. Thus, the correlation degree between the PN-code 

and the (shifted) attack traffic can be obtained. Similarly, we can also obtain the correlation 

degree between the PN-code and the (shifted) background traffic as follows. 

     According to the rules of encoding attack traffic in Section 2.3.1, ηi= �/2�ci+ �/2 and E(ηi,j)= �/2. Thus, ηi’= η – E(ηi,j)= �/2·ci. Hence, the correlation degree between the original PN-code 

and the (shifted) probe mark embedded attack traffic is Г(ci, η’ i) = �/2·Г(ci, ci) = �/2. 

Furthermore, we can also derive the correlation degree between the PN-code and the (shifted) 

background traffic, i.e., Г(ci, ω’ i). Since the PN-code has low correlation with the (shifted) 

background traffic, the mean of such correlation degree can be derived by 
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If the standard deviation of the background traffic rate is σx, the variance of such correlation 

degree is 
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Thus, the average correlation degree between the PN-code and the (shifted) background traffic is Г(ci,ωi
’) = σx/L

1/2. Based on the above discussion, the attacker can set appropriate attack 

parameters (e.g., PN-code length L and mark traffic rate �) to make correlation degree (�/2) 

between the PN-code and the attack mark traffic that is much larger than the correlation degree 

(σx/L
1/2) between the PN-code and the background traffic. As such, the attacker can accurately 

distinguish the attack mark traffic from the background traffic. 

      In the practice of attack mark recognition, vector 
λ

i is used to represent the queried report 

data, and vector 
λ ’

i is used to represent the shifted report data (by subtracting E(
λ

i,j) from 
λ

i). The 

attacker uses the correlation degree between 
λ ’

i and his PN-code ci, i.e., Г(ci, λ ’
i), to determine 

the existence of PN-code in the report data. If Г(ci, λ ’
i) is larger than a threshold Ta, which is 

referred to as mark decoding threshold, then the attacker determines that the report contains 

attack traffic as well as the PN-code ci, and determines that the target network is deployed with 

monitors. The accuracy of this correlation-degree-based PN-code recognition is analyzed and 

demonstrated in Section 2.e. 

2.d. Attack Traffic Synchronization 

In order to accurately and effectively recognize the attack mark (PN-code) from the report data, 

we need to find the segment of the report data containing the PN-code (i.e., we need to fulfill the 

synchronization between the port-scan traffic report data and the PN-code). For this purpose, we 

introduce an iterative sliding window-based scheme. The basic idea is to let the attacker obtain 

enough report data with small granularity. Then, a sliding window iteratively moves forward to 

capture a segment of the report data. For each segment, we apply the correlation-based scheme 
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discussed in Section 2.c to recognize whether or not the attack mark exists. The details of this 

synchronization is presented as follows. 

     The attacker first sends a sequence of queries to the data center and each query requests a 

portion of report data which lasts for a given unit time, known as query duration Tq. To 

guarantee good synchronization and capture of each bit in the PN-code, Tq should be smaller 

than the mark bit duration Ts. Also, the attacker needs to send enough queries and ensure that the 

queried report data contains the whole attack mark and attack mark traffic, which is length �Ts. 

With the report data, the attacker iteratively conducts a correlation test on the report data, using a 

sliding window. For example, in the i-th round, the attacker selects ti as the starting time for the 

sliding window. In (i+1)-th round, the attacker moves the sliding window one step (Tq) forward, 

thus the start time of the sliding window becomes ti + Tq, and so on. In the i-th round, a sequence 

of data (length of L) is obtained in the sliding window. The first data point in the sequence is the 

traffic data in time duration [ti, ti +Ts], the second data point in the sequence is the traffic data in 

time duration [ti+Ts, ti+2Ts], and so on. With these data, the attacker conducts the attack mark 

recognition procedure discussed in Section 3. The attacker repeats the attack mark recognition 

after each time he moves forward the sliding window, until the attack mark is recognized from 

the report data in the current sliding window, or the sliding window has gone through all the 

report data. 

2.e. Analysis 

In this section, we first present our analysis of the impacts of different attack parameters on 

attack accuracy. We then discuss how to determine attack parameters. 
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1) Attack Accuracy Analysis 

     In order to measure attack accuracy, we introduce the following two metrics. The first one is 

attack successful rate PD, which is the probability that an attacker correctly recognizes the fact 

that a selected target network is deployed with monitors. The higher PAD is, the higher the attack 

accuracy. The second metric is attack false positive rate PAF, which is the probability that the 

attacker mistakenly declares a target network as one deployed with monitors. The lower PAF, the 

higher the attack accuracy is. In order to ensure attack invisibility, the obvious method is to use 

the low traffic rate �. Recall that Ta is the mark decoding threshold, � is the mark traffic rate, 

vector 
λ

i represents the queried report data, and vector λ 'i represents the shifted report data (by 

subtracting E(
λ

i,j) from 
λ

i). Assume that random variables ω ′i,1, … , ω ′i,L (i.e., the shifted 

background traffic) are independently, identically distributed (i.i.d) and follow a Gaussian 

random distribution with standard deviation σx, then we have the following theorem for the 

attack accuracy of the lLOC attack. 

    Theorem IV-1. In the lLOC attack, the attack successful rate PAD is 
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    The attack false positive rate PAF is 
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    Proof: 

    i) Derivation of attack successful rate PAD. 

    According to the definition of PAD, we have    

             )].(|),(Pr[1 ''''
iiiaiiAD TcP ωηλλ +=≤Γ−=      (IV-5) 
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    Consider that Г(ci, η’
i)=  �/2Г(ci, ci)=  �/2, the Equation (IV-5) can be rewritten by 

)].(|
2

),(Pr[1 '''
iiaiiAD TcP ωλµλ =−≤Γ−=     (IV-6) 

     Based on the mean and variance of correlation degree determined in Section 3, PAD is 

represented by 
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     Let y2=x2L/2σx
2, then we have 
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ii) Derivation of attack false positive rate PAF 

    We know that Г(ci, 
λ ’

i) =  
λ ’

I ◦ ci, where 
λ ’

i = ω ′i when no lLOC attack traffic exists. Assuming 

that Г(ci, 
λ ’

i) follows a Gaussian distribution N(0, σx
2/L) (discussed in Section 3), we have 

)].(|),(Pr[ '''
iiaiiAF TcP ωλλ =≥Γ=      (IV-9) 

     Thus, PAF can be presented by 
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      Letting y2=x2L/2σx
2, then we have 
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Remarks: We make a few observations based on the theorem presented above. First, the attack 

successful rate PAF increases and the attack false positive rate PAF decreases with increasing PN-
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code length L. That is, higher attack accuracy increases when L increases. Second, with the 

increasing mark traffic rate �, attack accuracy also increases. 

2) Determination of Attack Parameters  

     (a) Determination of �, Ta and L: The attacker can determine the values of attack parameters 

based on the above analysis. First, the attacker can determine the mark traffic rate � based on the 

statistical knowledge for the background traffic. Given the �, the attacker can further determine 

the mark decoding threshold Ta and PN-code length L. Note that the values of other attack 

parameters such as the standard deviation of background traffic σx can be determined through 

analyzing historical background traffic data published by the data center of the ITM system. 

     (b) Mark recognition threshold Ta: Given the mark traffic rate � (determined previously) and 

desired attack false positive rate PAF, the attacker can further determine the mark decoding 

threshold Ta by resolving Equation (IV-9) in Theorem IV-1. 

     (c) Length of PN-code L: Given the mark traffic rate �, mark decoding threshold Ta, and 

desired attack successful rate PAD, the attacker can further determine the length of PN-code L by 

resolving (IV-3) in Theorem IV-1. 

     (d) Determination of Ts: To determine the mark bit duration Ts, the attacker needs to estimate 

the possible delay from the moment the attack traffic is first reported by monitors, to the moment 

when such attack traffic is published by the data center. To make the lLOC attack effective, the 

mark bit duration needs to be at least as large as such delay. Otherwise, the traffic in different bit 

durations (each last Ts) may be published at the same moment from the data center, mixing and 

thereby rendering them inseparable. 

     Several possible methods can be used to obtain such delay information. Some ITM systems 

may publish such information on their websites. The attacker may also actively conduct 

experiments on ITM systems and measure such delay. For example, the attacker may deploy 
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monitors in his controlled (small) network and connect them to the targeted ITM system. The 

attacker can simply use such monitors to report logs embedded with special patterns (e.g., PN-

code) and keep querying the data center until the embedded traffic patterns are recognized. After 

repeating the above process several times, the attacker is able to obtain the statistics profile of 

delay information, and then determine the mark bit duration Ts. We use this method in our 

implementation of the lLOC attack, which is presented in the next section. 

3. Performance Evaluation of lLOC Attacks 

3.a. Evaluation Methodology 

In our evaluation, we use the real-world port-scan traces from SANs ISC (Internet Storm Center) 

including the detail logs from 01/01/2005 to 01/15/2005 [25, 52]. The traces used in our study 

contain over 80 million records and the overall data volume exceeds 80 GB. We use these real-

world traces as the background traffic. We merge records of simulated lLOC attack traffic into 

these traces and replay the merged data to emulate the lLOC attack traffic. We evaluate different 

attack scenarios by varying attack parameters. Here, we only show the data on port 135; 

experiments on other ports result in similar observations. 

     We explore both attack accuracy and invisibility to evaluate attack performance. For attack 

accuracy, we use two metrics: one is the attack successful rate PAD and the other is the attack 

false positive rate PAF, which are defined in Section 5. For attack invisibility, we use two 

metrics: one is the defender detection rate PDD and the other is defender false positive rate PDF. 

For the countermeasure, we only use a representative and generic algorithm which has no 

specific requirement on detection systems. More comprehensive countermeasures will be studied 

in Section 4. This simple threshold-based detection algorithm is widely adopted by many 

systems [2, 18, 25, 31]. In this algorithm, if the traffic rate (volume in a given time duration) is 
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larger than a pre-determined threshold Td (referred to as the defender detection threshold), the 

defender issues threat alerts and initiates reactions [25]. Such a detection threshold is usually 

obtained through statistical analysis of the background traffic. Note that the threshold Td must be 

carefully chosen for anomaly detection: it must maintain both high detection rate (i.e., the 

probability that an ongoing attack is detected) and low false positive rate (i.e., the probability 

that an alarm is triggered when no attack is occurring). 

     We evaluate the lLOC attack in comparison with two other baseline attack schemes. The first 

one is the localization attack that launches a significantly high-rate of port-scan traffic to target 

networks as introduced in [27, 28]. We denote this attack as a volume-based attack. The second 

baseline scheme embeds the attack traffic with a unique frequency pattern. In this attack, the 

attack traffic rate changes periodically. Then, the attacker expects the report data from the data 

center to show such a unique frequency pattern if the selected target network is deployed with 

monitors. We denote this attack scheme as a frequency-based attack. For fairness, we adjust the 

detection thresholds in all schemes so that reasonable attack false positive rate PAF and defender 

false positive rate PDF (below 1%) are achieved. For the lLOC attack, we generate different 

attack traffic based on variant PN-code length L (i.e., 15, 30, 45). The default PN-code length is 

set to 30. To better quantify the attack traffic rate for the lLOC attack and other attack schemes, 

we use the normalized attack traffic rate P, which is defined as P = �/σx for lLOC attack, where σx is the standard variation of background traffic rate. The default value of Tq = 0.1Ts. In all 

simulation figures, the attack traffic rate (x-axis) is based upon this normalized attack traffic rate 

defined above. 

3.b. Evaluation Results 

In this section, we will present the evaluation results. 
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    (a) Attack Accuracy: To compare the attack accuracy of the lLOC attack with that of volume 

and frequency-based attack schemes, we plot the attack successful rate PAD under different attack 

traffic rates (i.e., P in [0.01, 3]) as shown in Fig. IV-3. From this figure, we observe that both 

lLOC and frequency-based attacks consistently achieve a much higher attack successful rate PAD 

than the volume-based scheme. This difference in PAD is more significant when the attack traffic 

rate is lower, which can be explained as follows. For the lLOC scheme, the PN-code-based 

encoding/decoding makes the recognition of attack marks robust to interference of the 

background traffic. For the frequency-based scheme, the invariant frequency in the attack traffic 

is also robust to the interference of the background traffic. Both of them can distinguish their 

attack traffic accurately even when the attack traffic rate (i.e., P) is small. Nevertheless, the 

volume-based scheme relies on the high rate of attack traffic (i.e., large P), and thus, is very 

sensitive to the interference of the background traffic. 

   

               Fig. IV-3. Attack Successful Rate (Port 135) 

     (b) Attack Invisibility: To compare the attack invisibility performance of the lLOC attack with 

the other two attack schemes, we show the defender detection rate PDD on port 135 in Table IV-
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1. This table shows the attacker-achieved defender detection rate PDD, given different 

localization successful rates PAD (90%, 95%, and 98%). Recall that the defender sets the 

detection threshold to make the defender false positive rate PDF below 1%. In the table, “(Time)” 

and “(Freq)” mean that the defender adopts the time-domain and frequency-domain analytical 

techniques to detect attacks. It is observed that our lLOC scheme consistently achieves much 

lower defender detection rate PDD than other two schemes, which means the lLOC attack 

achieves the best attack invisibility performance. As expected, the defender can easily detect the 

frequency-based attack by frequency-domain analytical technique, as there is a unique frequency 

pattern in its attack traffic. 

 

            Table IV-1. Defender Detection Rate PDD (Port 135) 

PAD lLOC 

(Time) 

lLOC 

(Freq) 

Volume-

based attack 

(time) 

Frequency-

based attack 

(freq) 

Frequency-

based attack 

(time) 

90% 2.5% 2.2% 90% 90% 2.9% 

95% 2.8% 2.4% 95% 95% 3.1% 

98% 3.1% 2.8% 98% 98% 3.3% 

   

 

    (c) Impact of the Length of PN-code: To investigate the impact of the PN-code length on the 

performance of the lLOC attack, we plot the attack successful rate PAD for PN-code of different 

lengths (15, 30, 45) in Fig. IV-4. In the legend, lLOC(L = x) means that the PN-code length is x. 

Data in this figure are also collected for various attack traffic rates. This figure shows that the 

attack successful rate PAD increases with larger PN-code length. This is because a longer PN-
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code can more significantly reduce the interference impact from the background traffic on 

recognizing the attack mark, thereby achieving higher attack accuracy. 

                 

                  Fig. IV-4. Attack Successful Rate vs. Code Length 

 

                 

                        Fig. IV-5. Attack Successful Rate vs. Number of Parallel Attack Sessions 
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                   Fig. IV-6. Defender Detection Rate vs. Number of Parallel Attack Sessions 

 

     (d) Impact of the Number of Parallel Localization Attacks: To evaluate the impact of the 

number of parallel localization capability on attack accuracy, we show the attack successful rate 

PAD for a different number of parallel attack sessions on the same port in Fig. IV-5. In the legend, 

lLOC(N = x) means that there are x parallel attack sessions. This figure shows that in terms of 

attack successful rate PAD, the lLOC attack scheme is not sensitive to the number of parallel 

attack sessions. The attack successful rate PAD only slightly decreases with the increasing 

number of parallel attack sessions. This is because the traffic for different attack sessions are 

encoded by PN-codes, which are low cross-correlated to each other as described in Section 2, 

and thereby experience little interference. Fig. IV-6 shows the impact of the number of parallel 

attack sessions on attack invisibility. It can be observed that the increasing number of parallel 

attack sessions results in a slight increase of defender detection rate PDD. Therefore, parallel 

localization capability can improve the attack efficiency without significantly compromising 

both accuracy and invisibility. 
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     The lLOC attack achieves invisibility by using the PN-code, which contributes to a longer 

period during which the attack can be carried out. Nevertheless, parallel capability can 

significantly improve the attack efficiency. For example, let’s consider the case in which a 

system consisting of 1200 networks is attacked. Using one port, the volume-based attack needs 

1200 unit time to perform the attack task. Single lLOC attack with code length of 15 needs 

1200×15 = 18000 unit time and achieves higher accuracy and invisibility. To fulfill the same 

localization attack task, parallel lLOC with 8 attack sessions and the same code length can 

achieve similarly high accuracy and invisibility performance and the total time is only 

1200×15/8 = 2250 unit time, which is comparable to that of a volume-based attack. 

 

              

      Fig. IV-7. Experiment Setup 

 

3) Implementation and Validation 

    To validate the feasibility of lLOC in real-world, we introduce our implementation of the 

lLOC attack and report the validation results of our lLOC attack design and experiments against 
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a real-world ITM system. We implement an lLOC attack prototype based on the design in 

Section 2. This prototype works against any ITM system with the data center having a web-

based user interface. Particularly, there are five independent and important components in our 

lLOC implementation, Data Center Querist, Background Traffic Analyzer, PN-code Generator, 

Attack Traffic Generator and Attack Mark Decoder. 

    In particular, Data Center Querist is a component that interacts with the data center of the 

targeted ITM system. Its main tasks consist of sending queries to the data center for port-scan 

traffic report and retrieving the response (i.e., the report) from the data center. The inputs to this 

component are the URL, or IP address, of the data center and the port number of the port-scan 

traffic needed to perform the query. From the traffic report data, Background Traffic Analyzer 

can obtain the statistics profile of background traffic and determine attack parameters for other 

components. PN-code Generator is a component that generates and stores the PN-code. The PN-

code length is determined according to the attacker’s objectives and background traffic profile as 

described in Section 2.e. Attack Traffic Generator is a component that generates attack traffic 

based on the PN-code and background statistics profile. In this, the PN-code encoded traffic is 

generated in the way discussed in Section 2.b. Inputs to this component are the IP addresses’ 

range of target network, port number and transportation protocol (TCP or UDP). Attack Mark 

Decoder is a component that obtains the port-scan report data through Data Center Querist, and 

decides whether the attack mark exists in the way discussed in Section 2.c. The PN-code used in 

the decoding process is the same as the one used in encoding attack traffic and stored in the PN-

code Generator. 

      These components may be integrated into one program running on one machine. The attack 

can also be carried out in more flexible ways if the tasks of the above components are performed 
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by processes on different machines. Our lLOC prototype is implemented using Microsoft MFC 

and Matlab on Windows XP operating system. 

 

                                

             Fig. IV-8. Background Traffic vs. Traffic Mixed with lLOC Attack 

 

                              

                   Fig. IV-9. PSD for Background Traffic vs. Traffic Mixed with lLOC Attack 
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     In order to validate our lLOC implementation, we deployed it to identify a set of monitors 

that are associated with a real-world ITM system. Fig. IV-7 illustrates our experimental setup. 

For the purpose of this research, we requested information about locations of a set of monitors in 

the ITM system. We were provided with the identities of two network sets A and B. There are 

some monitors deployed within network set A and there is no monitor in network set B. All 

monitors in network set A monitor a set of IP addresses and record the port-scan logs. Then we 

(the attacker) execute the lLOC attack to decide whether monitors exist in network set A and set 

B, respectively. 

    In our experiment, we use a PN-code of length 15. The mark bit duration is set for 1 hour and 

the query duration is 20 minutes. With the queried report data, we can correctly determine that 

all networks in set A are deployed with monitors and networks in B are not deployed with 

monitors. Fig. IV-8 shows the traffic rate in time-domain. Fig. IV-9 shows the traffic rate in 

frequency-domain in terms of Power Spectrum Density (PSD). The PSD describes how the 

power of a time series data is distributed in frequency-domain. Mathematically, it is equal to the 

Fourier transform of the auto-correlation of time series data [57]. From these two figures, we 

observe that it is hard for others, without knowing the content of PN-code, to detect the lLOC 

attack, since the overall traffic with the lLOC attack is very similar to the traffic without the 

lLOC attack traffic embedded. That is, such experiments demonstrate that the lLOC attack can 

accurately and invisibly localize the monitors of ITM systems, in practice. 

4. Countermeasure 

In this section, we propose an information-theoretical based framework to explore fundamental 

limitations of lLOC attack strategies and develop corresponding countermeasures. We first 
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present the framework and then introduce the capacity derivation for measuring the system 

performance. 

4.a. Information-Theoretical Based Framework 

1) Channel Model 

     As shown in Fig. IV-1, an attacker launches the encoded attack traffic addressed to a target 

network. In order to correctly decode the embedded signal, the attacker needs to design a 

decoding scheme to recover his embedded signal from the background noise, which is 

introduced by traffic reports from other monitors not belonging to the target network. Based on 

the operations of localization attacks and ITM system, we can formalize the system by a channel 

model for digital signal transmission. In this model, the attacker (as a transmitter) generates and 

sends the attack signal over a noisy side channel and the attacker (as a receiver) recognizes the 

signal. Notice that the side channel is caused by the normal operation of ITM systems that 

collects data from monitors and publishes the report as shown in Fig. IV-1. 

     Fig. IV-10 shows the generalized channel model for the system. In particular, a source 

message x = 1 is mapped to a sequence of channel signal through the encoder. This procedure is 

similar to the attack stage 1 shown in Fig. IV-1.a. The output of encoder tx is transmitted through 

the channel and blended with noise w, introduced by other monitors. From the channel output 

sequence rx = tx + w, the attacker (as a receiver) attempts to recover the transmitted message x by 

decoding rx by output y. If y ≈ x, the attacker successfully recognizes the source message x. This 

procedure is similar to the attack stage 2 shown in Fig. IV-1.b. By doing so, the attacker 

successfully determines whether the target network is deployed with monitors or not by 

following rules: If y ≈ 1, the target network is deployed with monitors. Otherwise, the target 

network is not deployed with monitors. 



  62 

     Now, let’s use the generalized lLOC attacks discussed in Section 2 as an example to illustrate 

the model, reflecting the attack as follows. First, at the transmitter, the attacker generates the 

source message x = 1 for a given network Mj. After the encoding procedure, the adversary selects 

an n-bit code ct (n 
≥

 1) and generates a port-scan traffic tx = fE(x, ct, �’ ) = �’x ct to the network 

Mj, where fE is denoted as the encoding function and �’  is mark amplitude to control the intensity 

of attack traffic. If the targeted network is deployed with monitors, the tx will be transmitted 

through the normal operation of ITM system along with the noise w. We assume that the mean 

and variance of w is � and σ, respectively. Second, at the receiver, the received signal is rx = tx + 

w. As the decoder procedure, it tries to decode the source message x based on the same code ct 

and apply the following decision rule: If rx�ct = �’c t�ct + w�ct 
≥

 tR, then x = 1 and the network Mj 

is deployed with monitors. Otherwise, x = 0 and the network Mj is not deployed with monitors. 

Here, tR is the decoding threshold. In order to learn how to determine the tR, please refer to 

section 3. 

 

                  

                                      Fig. IV-10. Channel Model for lLOC Attack 

 

    In Fig. IV-10, to detect the attack, the defender will observe the output traffic rx of channel. 

Recall that the defender generalizes the benign party who maintains the ITM system to identify 

Internet widespread attacks. Particularly, based on data stored in the data center, the defender 

tries to detect the anomaly in the traffic and take the mitigation. 
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2) Capacity 

    The capacity of the channel defined by Shannon provides a theoretical upper-bound for 

measuring the signal transmission capability over a noisy channel [58]. By definition, capacity is 

the amount of discrete information that can be reliably transmitted over a channel. This landmark 

work has been the foundation for communication system design, which aims to design various 

coding mechanisms to achieve the theoretical bound by various means to increase the resistance 

of digital signal transmission to the noise. Generally, channel coding in communication systems 

consists of mapping the source message into a channel input signal denoted as the encoder and 

the inverse mapping the channel output signal into a source message denoted as a decoder in 

such a way that the overall effect of channel noise on the system is minimized. 

     In the model described in Fig. IV.10, we denote the attack signal tx =< tx1, tx2, …, txn > as the 

transmitted signal over the channel. To measure the amplitude of the transmitted signal, we 

define its transmission power as 

  .
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s                    (IV-12) 

     Without loss of generality, we denote the noise w =<w1, w2, …, wn> (n 
≥

1) with zero-mean 

and variance of σ. Assuming that both the signal and noise are a Gaussian white noise (WGN) 

process, the capacity of such a Gaussian channel is derived by, 

).1log(
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1

σ
s

C +=                  (IV.13) 

Since the capacity C measures the degree of successful signal transmission over the channel, the 

higher value of capacity denotes the better localization attack effects. From (IV-11), we know 

that, given the noise variance σ, a larger transmission power s will achieve a higher capacity of 

attack signal transmission. 
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     As we mentioned, the capacity C in [0, 1] measures the theoretical bound for reliable signal 

transmission. Given any transmission error rate ε > 0, for any large n-bits attack signal and a 

minimal length length of l ( 
≥

 n) for C 
≥

 n/l, there exists a encoding/decoding scheme, such that 

maximal probability of error is less than ε; that is, it is always possible to transmit the signal with 

arbitrarily small error, if C 
≥

 n/l.  

     For the localization attack, the time for transmitting 1-bit attack signal is denoted as chip 

duration tc. For n-bit attack signal for identifying a monitor, the minimal code length for reliable 

channel transmission is n/C and the minimal time for n-bit transmitted signal is ntc/C. 

     Based on the information-theoretical based framework presented above, we now introduce 

some strategies for the attacker and defender. 

     (a) Attacker: Recall that for the threat model described in Section 2, the attacker intends to 

accurately and secretly identify monitors by launching port-scan attack traffic embedded with an 

attack signal. Based on the model described in Section 4.a.2, we know that an attacker should 

achieve a high capacity C for the accuracy of attack and also sustain a low transmission power s 

for the secrecy of attack. However, from (IV-13), we know that lower transmission power s will 

actually cause a smaller capacity. In order to address this issue, we consider that the attacker 

takes strategies to spread the transmission power of attack signal. The attack strategy used in 

Section 3 is actually one that spreads signal power into the temporal domain. In particular, 

regarding the temporal domain power spreading, the attack signal can be formed as a time-series 

traffic. As such, the signal power in each time-duration is comparatively low for preserving 

attack secrecy, while summarization of signal power in all time durations can be highly 

preserved for attack accuracy.  

     In summary, since the scheme proposed in [27, 28] uses an 1-bit attack signal addressed to a 

single monitor, we refer to this scheme as non-time-series attack, which does not spread the 
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transmission power of a signal in either the temporal or spacial domain. Since the code-based 

scheme proposed in the previous section generates a multiple-bit attack signal addressed to a 

single monitor, we refer to this scheme as a general attack strategy, namely the time-series 

attack, which spreads the transmission power of a signal into the temporal domain.  

    (b) Defender: To defend against localization attacks, the defender should develop 

countermeasures to detect attacks based on limitations of attack schemes. Based on the 

information-theoretical framework, the defender should develop schemes to effectively decrease 

the capacity. Based on (IV-13), there are two ways to decrease the capacity. One is to increase 

the power of noise σ. The other is to decrease the transmission power s of attack signal. 

However, adding noise will jeopardize the accuracy of data reported by the ITM system and 

degrade the usability of ITM systems. In this chapter, we will focus on developing the 

countermeasures that detect traffic anomaly based on the limitations of attack schemes and are 

able to significantly decrease the effectiveness of attacks. 

      To address the two attack strategies mentioned earlier (e.g., the non-time-series attack and 

time-series attack), we consider the following two countermeasure schemes for the defender: (1) 

Centralized defense. In this scheme, the defender will carry out anomaly detection on the 

centralized data center based upon the summarized traffic from all monitors in the ITM system. 

If the overall traffic rate (e.g., volume in a given time duration) is larger than a pre-determined 

threshold, the defender will issue alarms. This scheme is commonly used by existing ITM 

systems to defend against worm propagation and DoS attacks [25]. We will show that this 

countermeasure scheme is effective against the non-time-series attack in Section 5. (2) 

Distributed defense. In this scheme, each monitor will autonomously carry out defense 

distributedly. Each monitor will be responsible for detecting the anomaly based upon its local 

statistical traffic profile. If the traffic rate (e.g., volume in a given time duration) on a monitor is 
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larger than a pre-determined threshold for that monitor, the monitor will issue alarms. We will 

show that this countermeasure scheme is effective against the time-series attack in Section 5.        

     In the following sections, we will use our information-theoretical framework to investigate 

the performance of systems with the different attack and countermeasure schemes discussed 

above.  

4.b. Defense Against lLOC Attack 

In this section, we first show the centralized defense becomes ineffective against lLOC attack. 

We then introduce a new countermeasure scheme, called advance defense, and show that it is 

effective against the lLOC attack. 

1) Effectiveness of Centralized Defense 

     We now derive the transmission power constraint of attack signal limited by centralized 

defense. Recall that we consider the attacker that adopts time-series attack that uses n-bit attack 

signal addressed to a single monitor Mj. For the centralized defense, the defender observes the 

aggregated traffic rate and compares it with a pre-known hypothesis on the distribution of 

background noise traffic. For the transmission power of an attack signal for the system with 

centralized defense, we present the following theorem. 

    Theorem IV-2. When the defender uses mean aggregated traffic volume of a time-series data 

for attack detection, in order to maintain a detection rate lower than 
β

, the signal power s of the 

attacker must satisfy 
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     Proof: Suppose that the attack signal generated by an attacker at time i is � i’ . As such, the 

distribution of traffic rate under attack (i.e., the combined rate of attack signal and background 

noise traffic) at round i is normal distribution with mean �  + � i’and variance σ. 

      Suppose that the observed traffic rate for time i is fM(i). As we can see, the observed mean 

traffic rate for time period [1, n] is 
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     Suppose that fM(n) is the upper bound on p- and p’-confidence interval of the background 

noise traffic distribution and the under-attack traffic volume distribution, respectively. According 

to Bayesian theorem, if the defender issues an alarm based on fM(n), the probability of a false 

alarm is 
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     Note that the attacker needs to limit the detection rate under 
β

. In order to do so, the attacker 

must ensure that no alarm will be issued when fM(n) is less than or equal to the 
β
-quantile of the 

under-attack traffic volume distribution. That is, 
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Where �n
’* = (�1

’+ …+ �n
’)/n is the mean of attacker’s signal from time 1 to n. 

    In order to prevent the defender from issuing an alarm, the attacker must ensure that for all 

fM(n) that satisfies (IV-18), there is 

  .)}(|Pr{ δ>nfattackno M                (IV-19) 

Note that 

  ,
)2/1)(1(

)2/1)(1(
)}(|Pr{

00

0

βppp

pp
nfattackno M +−−

−−=             (IV-20) 



  68 

where 
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Thus, in order to have Pr{no attack| fM(n)}>
δ
 for all fM(n) that satisfy (IV-18), there must be 
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     Recall that s is the power of attack signal. Due to (IV-22), with some mathematical 

manipulation, we can derive a power constraint as follows: 
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2) Derivation of Capacity: Given the upper bound of transmission power in (IV-14), the capacity 

of the system becomes 
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     Based on this, we derive the minimal code length for basic time-series attack as follows: 
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     We now illustrate the results with practical examples. In particular, we set the parameters as 

follows: for the Gaussian distribution, when s = 0.44σ, the localization accuracy rate becomes 

57.97% and the capacity is C = 0.06. Thus, the adversary is able to launch at least n=15 length of 

attack signal for both a secret and accurate attack. As a result, we know that the centralized 

defense scheme by itself is no longer effective against the basic time-series attack. 

3) Case Study: PN-Code-Based lLOC Attack 

    The capacity we derive above is the theoretical bound without the detailed forms of coding 

and decoding scheme. Now, we conduct a case study on the code scheme investigated in Section 
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3. In this scheme, it adopts the simple correlation-based coding and decoding scheme. In the 

following, we will start with a binary channel model for this attack scheme and then present the 

error rate of signal transmission followed by a derivation of suboptimal capacity and 

observations. 

 

                      

Fig. IV-11. The Binary Channel Model for PN-code Based Scheme 

 

    (a) Binary Channel Model. The binary channel model for PN-code-based scheme is shown in 

Fig. IV-11. Here, we represent the input of channel as a binary random variable x, where x = 1 

represents that the targeted network is deployed with monitors, and x = 0 represents that the 

targeted network is not deployed with monitors. Pr(x = 1) and Pr(x = 0) are the prior probabilities 

of a network deployed with monitors or without monitors, respectively. The outputs of channel 

as the localization results are modeled as a random variable y, where y = 1 indicates that the 

targeted network has monitor, and y = 0 indicates that the targeted network has no monitor. An 

event has a probability Pr(y = 0|x = 1) is considered as false-negative rate denoted as (PAN = 1 - 

PAD) and the probability Pr(y = 1|x = 0) is considered as false-positive rate denoted as PAF. 

Remark that PAD and PAF  can be derived based on (IV-3) and (IV-4), respectively. 

  x 
1-PBAN B 

Pr(x=1) 1 

    y 

Pr(x=0) 0 

1 

0 

PBAN B 

PBAFB 

  1-PBAFB 



  70 

     (b) Derivation of Capacity. Given the derived PAN and PAF, we can obtain the capacity for the 

code-based attack scheme. According to the definition of I(x; y), we can derive the mutual 

information I(x; y) of x and y by 
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where Pr(x = 1) = a and Pr(x = 0) = 1 − a. 

     With the I(x; y), the suboptimal capacity can be derived by C = I(x; y) − H(x), where H(x) can 

be derived by  

∑ ∈
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4) Distributed Defense 

    We now consider the distributed defense. We will first derive the transmission power of the 

attack signal under this defense, and then derive the capacity of the system, followed by some 

observations. 

     (a) Transmission Power of Attack Signal: In the distributed defense, the defender carries out 

anomaly detection based on traffic of an individual monitor. If the traffic rate on a monitor is 

larger than the predetermined threshold (determined by statistical analysis of traffic from the 

monitor), the defender will raise threat alarms. Considering the attacker adopts the time-series 

attack, the transmission power of attack signal can be derived based on following theorem: 

      Theorem IV-3: When the defender uses the mean traffic rate on an individual monitor to 

carry out anomaly detection, in order to maintain a detection rate lower than 
β

, the transmission 

power s of attack signal must satisfy 
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where m is the total number of monitors in the ITM system, �2(δ, β, n) is same as that defined in 

Theorem IV-2. 

     Proof: Recall that there are m monitors in the system and the aggregated background noise 

traffic is σ. Since the traffic from different monitors are independent, the traffic for individual 

monitor can be approximately represented by σ/m. Recalling that the defender based on the 

distributed defense will monitor traffic anomaly on the traffic from the individual monitor, the 

transmission power in (IV-28) can be derived by similar procedures in the proof of Theorem IV-

2. 

    (b) Capacity Analysis: Given the transmission power of the attack signal derived in (IV-28) of 

Theorem IV-3, we now derive the capacity of the system where the defender uses the distributed 

defense and the attacker uses the time-series attack. The capacity of such system becomes   ).
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     Given the capacity, the minimal code length becomes 
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     We now illustrate the results with practical examples. In particular, we set the system 

parameters as follows: for the Gaussian distribution, when m=1000 and δ=0.02, 
β

=0.02, n=40, 

we can achieve capacity C=0.02. Thus, the adversary has to use a minimal 40/C=2000 length of 

signal to achieve accurate monitor localization while avoiding detection. However, such a long 

code length makes the attack scheme no longer feasible in practice. As we can see, when the 

defender adopts the distributed defense, the attack can no longer be effective.  
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4.c. Discussion 

We have developed a unified information-theoretical based framework to model and analyze the 

localization attacks and countermeasures. There are a number of possibilities for extending this 

work. The detailed discussion follows:  

    1) Proactive Countermeasures: The countermeasure proposed in this study mainly focuses on 

detection. Nevertheless, other proactive countermeasures can be used. For example, limiting the 

information access rate on ITM systems is one way to counter attack. Recall that in the 

localization attack, the attacker has to launch a significant amount of queries to the data center of 

ITM systems in order to accurately recognize the marked attack traffic. The data center may 

throttle the query request rate via enforcing human/system interaction for the query, thereby 

eliminating the automatic query in the localization attack. Since this countermeasure increases 

the quantization error of the attack signal, it decreases the channel capacity of the localization 

attack. Perturbing the information is another way to counter the attack. Specifically, we may 

perturb the published report data by adding some random noise and even randomizing the data 

publishing delay. Since this approach increases the power of noise, the capacity of localization 

attack can also be decreased. 

    2) Spectrum-Domain Attack Schemes: Our study mainly focuses on the traffic analysis 

approaches in the time domain. For example, in the time-series attack, attack traffic encoding 

and decoding are based on the time domain; for the countermeasures, traffic anomaly analysis is 

also based on traffic on the time-domain. Nevertheless, this has not been true in practice. The 

attacker may manipulate its attack traffic in the frequency-domain. In one case, the attacker may 

modulate the attack traffic with a specific feature frequency. Thus, the attacker expects the report 

data from the data center to show high power density in the specific frequency if the targeted 

network is deployed with monitors. In another case, the attacker may use frequency-hop spread-
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spectrum (FHSS) technique via embedding the DSSS code in the power-spectrum density of 

scan traffic. For both cases, our analytical methodology is still valid and can be applied via 

conducting analysis on the power spectrum density (PSD) of traffic. We will conduct more in-

depth studies in our on-going and future work. 

    3) Apply to Other Systems: We focus on analyzing the localization attacks and 

countermeasures for a specific application. Nevertheless, our developed methodology is general 

and can be extended to other applications such as DSSS-based flow marking for invisible 

traceback, and timing delay watermarking against anonymous communication systems [59]. 

Since these applications correspond with different problem domains, we need to investigate the 

system specific information impact on the capacity, such as how accurately a flow can be 

marked via flow interference, how much noise for flow marking can be introduced by mix 

network mechanisms (i.e., flow split, merge, batching etc). We leave the detail study for our on-

going and future work. 

5. Performance Evaluation of Countermeasures 

In this section, we present the numerical and simulation results of systems with localization 

attacks and countermeasures investigated in early sections. In particular, we obtain the numerical 

data of the capacity based on two cases: (i) the theoretical bound without considering any 

specific coding/decoding schemes, and (ii) one practical implementation of the correlation-based 

decoding scheme presented in Section 3. For the theoretical bound, we use minimal code length l 

to measure the performance of the system with localization attacks and countermeasures. The 

minimal code length is defined as the minimal length of code that the attacker has to use for the 

reliable transmission of attack signal. For the practical implementation, we use the code-based 
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attack as a specific implementation, which uses the simple correlation-based scheme discussed in 

Section 3. 

      For the practical implementation of the correlation-based upon specific coding/decoding 

schemes, we simulate the countermeasure performance. For the background traffic, we use the 

real-world port-scan traces from SANs ISC (Internet Storm Center) including the detail logs 

from 01/01/2005 to 01/15/2005 [25, 52]. We merge records of simulated lLOC attack traffic into 

these traces and replay the merged data to emulate the lLOC attack traffic. Based on the traffic 

profile, we determine the background traffic statistic profile and threshold values for the 

defender. We evaluate different scenarios by varying the attacker and defender parameters. Here, 

we only show the data on port 135; experiments on other ports result in similar observations. 

 

                        

                       Fig. IV-12. Performance of Centralized Defense vs. lLOC Attack 

 

      To obtain the minimal code length for C-Probe attacks, the basic idea is illustrated as 

follows: given a high detection rate ( > 99% ) and low false positive rate ( < 1% ), we run the 
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simulation and find the minimal code length for a given SNR in ([0.1, 1.2]). We evaluate the 

performance of both the centralized defense and distributed defense against the code-based time-

series attack. For the centralized defense, the SNR is the ratio of probing traffic rate over overall 

aggregated traffic rate on the data center. For the distributed defense, the SNR is the ratio of 

probing traffic rate over the traffic rate on a single monitor. The default number of monitors is 

1000 and all other parameter such as 
δ
 and β are same as ones in Section 4.b and 4.c. 

 

                             

                           Fig. IV-13. Performance of Distributed Defense vs. lLOC Attack 

 

     Specifically, we generate different attack traffic modulated by different lengths of codes 

under different amplitudes of attack signal, e.g., signal-to-noise ratio (SNR), which can be 

observed by the defender. For example, for the centralized defense, the SNR is defined as the 

ratio of the transmission power of attack signal power over the variance of aggregated 

background noise traffic collected by ITM system. For the distributed defense, the SNR is 

defined as the ratio of the transmission power of the attack signal on the individual monitor and 
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the variance of the background traffic on the individual monitor. We obtain the localization false 

negative rate and false positive rate and obtain the capacity of system based on the method 

described in Section 3. For the code-based scheme, given a high capacity value as threshold (i.e., ≥
 0.99), we repeatedly execute the above procedures until we identify a code length that meets 

the requirement of large channel capacity, i.e., close to 1. 

     Fig. IV-12 shows the results of minimal code length vs. the SNR for the system where the 

attacker uses the time-series attack and the defender uses the the centralized defense. We have a 

few observations. First, given the reasonably small SNR (e.g, 0.2) to make the attack high 

invisible to the defender, the attacker is still able to use a much short length of code (e.g., l = 15 

for correlation-based coding scheme) to accurately identify the monitors. It validates our 

findings that centralized defense is not effective against the time-series attack. Second, as 

expected, there are some performance gaps between the correlation-based coding scheme and 

theoretical bound. For example, when the SNR = 0.2, the correlation-based coding scheme needs 

to use at least length of 15 to accurately identify the monitors, while the theoretical bound 

indicates that code length of 9 will be enough. We believe that by incorporating other channel 

coding schemes such as Turbo code, we can make the performance gap smaller (close to the 

theoretical bound). We leave this investigation to our future work. 

     Fig. IV-13 illustrates the results of the minimal code length vs. SNR for the system where the 

attacker uses the the time-series attack and the defender uses the distributed defense. We have a 

few observations. First, given the reasonably small SNR (e.g, 0.2) to make the attack high 

invisible to the defender, the attacker must use a much longer length of code (e.g., l = 11000 for 

the correlation-based coding scheme and l = 4500 for the theoretical bound) to accurately 

identify the monitors. This validates our finding that the distributed defense is effective against 
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the time-series attack. Similarly, there are some performance gaps between the simple 

correlation-based coding scheme and theoretical bound due to the same reason illustrated earlier. 

6. Summary 

In this chapter, we studied the countermeasure-based on probing traffic. In particular, we 

investigated a new class of attacks, i.e., the low-rate lLOCalization (lLOC) attack to stealthily 

identify the monitors of ITM system. Its effectiveness was demonstrated via theoretical analysis, 

simulations and experiments with an implemented prototype. To defend against lLOC attack, we 

introduced an information-theoretical framework. Based on it, we derived the limitation of attack 

strategies and proposed the countermeasure that monitors the traffic-rate change of an individual 

monitor. We showed that the power constraints enforced by the countermeasure can significantly 

reduce the channel capacity of the system to a fairly low level that practically eliminates existing 

localization attacks in ITM systems. Our evaluation results effectively validated our findings. 

Our study is critical for securing and improving ITM systems. 
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CHAPTER V 

COUNTERMEASURE BASED ON WORM PROGRAM EXECUTION 

In the following three chapters, we will develop non-traffic based countermeasures. In this 

chapter, we focus on developing countermeasures based on dynamic signatures of worm 

program execution. 

1. Overview 

Many non-traffic based countermeasures have focused on static properties of worm executables 

[38, 39]. Specifically, in these countermeasures, the static properties such as the list of Dynamic 

Link Libraries (DLL) to be called, functions and specific ASCII strings extracted from the 

executable headers, hexadecimal sequences extracted from the executable bodies, and other 

static properties are used to distinguish malicious and benign executables. However, using these 

static properties without execution of the program might not accurately distinguish them.  

     It has been shown that many existing detection systems based on static properties cannot 

effectively detect new unseen worms which either have brand new signatures or have 

deliberately changed signatures during propagation [60, 61]. For example, MetaPHOR [62] and 

Zmist [63]) worms intensively metamorphose to hide themselves from detection. Recent studies 

also show that existing commercial anti-worm detection systems fail to detect brand new worms 

and can also be easily circumvented by worms that use simple mutation techniques [64, 65]. 

    There are two reasons that explain why the static properties are not effective. First, two 

different executables (e.g. one worm and one benign) can have same static properties, e.g., they 

can call the same set of DLLs and even call the same set of functions. Second, these static 

properties can be changed by the worm writers through different ways, such as inserting dummy 
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functions that will not truly call during the execution in the worm executable, inserting benign 

looking strings, and by using code mutation tools [61, 62, 67, 68]. 

    Hence, the static properties, or how they look, are not the keys to distinguish worm and benign 

executables. Instead, we believe the keys are what they do, i.e., their run-time behaviors or 

dynamic properties. Therefore, in this chapter we adopt dynamic program analysis to profile the 

run-time behavior of executables for efficiently and accurately detecting new unseen worm 

executables. To this end, there are three challenges to be addressed. First, we have to execute a 

large number of malicious worms, which might cause damage to our experiment host and 

network systems. Second, given the large number of executables, manually executing and 

analyzing them are not feasible in practice. Hence, we need to find an efficient way to 

automatically capture the run-time behavior from their execution. Third, from the execution of a 

large set of various worm and benign executables, we need to find some constant and 

fundamental behavior differences between the worms and the benign executables, in order to 

accurately determine whether an unseen executable is a worm or benign one. 

     To address these issues, we propose an effective worm detection approach based on mining 

system call traces of a large amount of real-world worms and benign executables. Our goal is to 

use a large volume of existing worms to capture their common dynamic signatures and then use 

them to detect new unseen worms. In the following, we first introduce the background and basic 

workflow of our approach. We then present the design detail of our approach including the 

dataset collection, detection feature extraction and classification, followed by the experiment 

results and conclusion. Notice that the work in this Chapter is based on the joined work between 

Texas A&M University and the Ohio State University. My work focused on the SVM data 

mining algorithm design, framework, and literature survey. 
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2. Background 

In this section, we give an overview of the program analysis, data mining techniques and new 

unseen worms. 

2.a. Program Analysis 

While static program analysis requires source code of the executable, dynamic program analysis 

does not, but it must be performed by executing the programs [68, 69]. Most dynamic program 

analysis methods, such as debugging, simulation, binary instrumentation, execution tracing, 

stack status tracking, etc. are primarily used for software engineering and compiler optimization 

purposes. Recently, there has been increased attention of detecting vulnerabilities and security 

holes via using dynamic program analysis. However, existing dynamic analysis approaches are 

only suitable for analysis of individual executables with expertise such as debugging, or for 

specific attacks [70, 71]. However, in our case, we need an appropriate dynamic program 

analysis method to investigate the run-time signatures of worm and benign executables for the 

purpose of worm detection. The method we adopt here is to trace system calls during program 

execution, which is one type of light-weighted execution tracing. In particular, we trace the 

operating system calls invoked by the executables during their execution. This method can be 

used to automatically record interesting information during the execution to further investigate 

dynamic behavior of executables in worm detection. 

2.b. Data Mining 

Data mining refers to the process of extracting “knowledge,” or meaningful and useful 

information from large volumes of data [72, 73]. It achieves this by analyzing data from different 

perspectives to find inherent hidden patterns, models, relationships or any other information that 
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can be applied to new dataset. It includes algorithms for classification, clustering, association 

rule mining, pattern recognition, regression, and prediction, among others. 

     Data mining algorithms and tools are widely adopted in a range of application fields. In 

security research, many data mining technologies are adopted to conduct intrusion detection. In 

our work, we use the classification algorithm to obtain the difference between worm and benign 

program executions in order to provide accurate worm detection against both seen and un-seen 

worms. 

     There have been numerous research efforts on how to apply data mining techniques for 

security research [74, 75, 76, 77, 79]. For example, Lee et at. in [74] formulated the machine 

learning scheme on system call sequences of normal and anomaly execution on the Unix 

sendmail program. Lee et al. in [75] described a data mining framework for adaptively building 

intrusion detection models. The main tenet of their work is to utilize auditing programs (e.g., 

network logs of telnet sessions, shell command log) to extract an extensive set of features that 

describe each network connection or host session, and apply data mining techniques to learn 

rules that capture the behavior of intrusions and normal activities. Martin et al. in [76] proposed 

an approach via learning statistical pattern of outgoing emails from local hosts. Kolter et al. in 

[38] applied data mining techniques to extract byte sequences directly from program 

executables, converted these sequences into n-grams, and constructed the classifier. Julisch et al. 

in [78] proposed an approach to learn historical alarms generated by intrusion detection systems. 

2.c. Unseen Worms 

Although numerous efforts have been made to detect worms, the new unseen worms, including 

evolved forms of existing worms, can have new signatures to circumvent these existing worm 

detections. As we mentioned earlier, many worm detection systems use signatures of seen 
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worms to determine whether an encountered executable is worm or not. Obviously, these 

systems fail to detect brand  new worms with new signatures and polymorphic worms that 

deliberately change their binary presentation or signature during propagation.  

    Now we will offer further discussion on polymorphic techniques [63, 80, 81]. Worms have 

been showing the trend to utilize these techniques for long time [61]. In particular, the 

technologies for mutate worm code have been publicly available even as open source toolkits or 

libraries [82, 83, 84]. Attackers can easily use them to make their worms polymorphic and hard 

to be detect by the worm detection system based on known signature. In addtion, utilizating 

automatic encryption and decryption further makes the polymorphism of worms more feasible 

and efficient. The worm detection proposed in this chapter aims to address the threat by using 

the dynamic properties of executable instead of static signature to capture worm executables. 

Since we do not use the binary presentation as the feature to distinguish worms from benign 

executables, the mutation techniques used by the polymorphic worms have no impact on our 

countermeasure scheme. As shown in the later portion of this chapter, our countermeasure based 

on dynamic program analysis is effective to unseen worms, including brand new worms and 

mutated polymorphic worms. 

3. Detection via Mining Dynamic Signatures of Program Executions 

3.a. Framework 

1) Overview 

     Recall that the focus of this chapter is to use a large number of real-world worm executables 

and subsequently develop a countermeasure to detect new unseen worms. Now, we introduce the 

framework of our system for conducting dynamic program analysis, which intends to detect 

worm executables based on mining system call traces of a large amount of real-world worm and 
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benign executables. In general, this mining process is referred to as the off-line classifier 

learning process. Its purpose is to learn (or train) a generic classifier which can be used to 

distinguish worm executables from benign ones based on system call traces. Then, we use the 

learned classifier with appropriate classification algorithms to determine whether unknown 

executables belong to the worm class or the benign class with high accuracy. This process is 

referred to as the on-line worm detection process. The basic workflow is illustrated in Fig. V-1 

and Fig. V-2, and explained in the following. 

 

        

          Fig. V-1. Workflow of the Off-line Classifier Learning 

 

                         

                      Fig. V-2. Workflow of the On-line Worm Detection 

 

2) Off-line Classifier Learning 

     We now introduce the detailed procedures of off-line classifier learning as shown in Fig. V-1.  
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     (a) Data Source Preparation: Before we start to conduct dynamic program analysis and 

profile the behavior of worm and benign executables, we need to collect a large number of such 

executables as the data source. This set of executables is labeled into two classes: worm 

executables and benign executables. The worms are obtained from the Web site VX Heavens 

(http://vx.netlux.org). 

     (b) Collection Dataset – Dynamic Properties of Executables: With the prepared data source, 

we now discuss how to collect the dataset, referred to as dynamic properties of executables. 

Recall that in order to accurately distinguish worm executables from benign ones, we need to 

collect data that can capture the fundamental behavior differences between them – the dynamic 

properties. One feasible and efficient method we choose is to execute the executables and trace 

the run-time system call sequences during their execution. However, executing worms might 

damage the host operating systems or even the driven of computer hardware. In order to solve 

this problem in our experiments, we set up virtual machines as our experimental test-bed. Then 

we launch each executable in our data source and record its system call trace during the 

execution on the virtual machine. The collection of the system call traces for each executable in 

our data source is referred to as a dataset. We split the dataset into two parts: the training set and 

the test set. With the training set, we will apply classification learning algorithms to learn the 

classifier. The concrete format and content of the classifier is determined by the adopted learning 

algorithms. With the test set, we will further evaluate the accuracy of the learned classifier on 

classification of new and unidentified executables. 

    (c) Feature Extraction: With the collection dataset consisting of system call trace of different 

executables, we extract all the system call sequence segments with a certain length. These 

segments are referred as n-gram, where the n is the length of the sequence, i.e., the number of 

system calls in one segment. These n-grams can represent the relative independent and 
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meaningful action taken during the program execution, or program block in the executables. We 

intend to use these n-grams to capture the behaviors of common worms and benign executables. 

Hence, these n-grams are the features for classifying worms and benign executables and each 

distinct n-gram represents a specific feature in our classification. 

     (d) Classifier Learning: From the features we extract from the training dataset, we need to 

learn a classifier that can distinguish between worms and benign executables. When we select 

the classification algorithm, we must consider both the accuracy of the learned classifier and the 

interpretability of the classifier. Some classifiers are easy to interpret and the classification (i.e., 

decision rule of worm detection) can be easily extracted from the classifier [38]. Then, the worm 

writers can use the rules to change the worm behavior and consequently evade detection, similar 

to the self-mutating worms that change themselves to defeat signature-based detection [62]. 

Thus, we need classifiers with very low interpretability. In our case, we consider two algorithms, 

Naive Bayes-based algorithm and Support Vector Machine (SVM) algorithm, and evaluate their 

performance. While Naive Bayes-based algorithm is simple and efficient in classifier learning, 

SVM is more accurate. More importantly, SVM learns a black-box classifier, which is hard for 

worm writers to interpret. 

3) On-line Worm Detection 

     Having the learned classifier in the off-line process, we now describe how to use it to carry 

out on-line worm detection. In this process, we intend to automatically detect a new and unseen 

executable. 

     In particular, we follow the same procedure as in the off-line process, in which system call 

traces of an unknown executable are recorded and classification features (e.g., system call 

sequence segments with certain lengths) are extracted during its execution. Then, the 
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classification algorithm with the learned classifier is applied to classify the new executable, i.e., 

whether it belongs to the worm class or benign one. 

    In fact, the aforementioned worm detection actually depends on the accuracy of the classifier. 

In order to evaluate it, we use it to classify the executables in the test set. Since we know the 

class label of these executables, we can simply compare the classification results from the 

learned classifier with the pre-known labels. As such, the accuracy of our classifier can be 

measured. 

     In the following sections, we will present the major steps listed above, e.g., dataset collection, 

feature extraction, classifier learning, and on-line worm detection in detail, followed by 

experiment results. 

3.b. Dataset Collection 

In this section, we present the details on how we obtain the dataset, i.e., the dynamic program 

properties of executables in the form of system call traces. 

1) Worm Execution with Virtual Machine 

      In order to obtain the run-time behaviors of worm and benign executables, we need to 

execute the benign executables as well as worms. As we mentioned earlier, since execution of 

worms might damage the operating system and even the driver code of host hardware, we set up 

virtual machines (VMs) [84] as the testbed. The VM we choose is VMware [85]. 

     Even with VMs, two difficulties can still arise during data collection because of the worm 

execution. First, since worms can crash the operating system (OS) in the VM, then we might 

have to repeatedly re-install the OS. In order to avoid these tedious re-installations, we first 

install all necessary software for our experiments and store all of our worm executables on the 

VM, and then save the image file for that VM. Whenever the VM OS crashes, we can clone the 
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identical VM from the image file to continue our experiment. Second, it is difficult to obtain the 

system call traces from the VM after it crashes. In order to solve this problem, we set the 

physical machine, on which a VM is installed, as the network neighbor of the VM through the 

virtual network. Thus, during the execution of worms, the VM automatically outputs the system 

call trace to the physical machine. Although the physical machine can be attacked by the worms 

on the VM because of this virtual network, the physical machine is well protected by the 

dedicated host-based firewall and updated anti-virus software with very restricted access 

controls.  

2) System Call Trace 

     Recall that we choose dynamic properties of executables to capture the executables’ behavior 

and more accurately distinguish worms from benign executables more accurately. There are 

multiple dynamic program analysis methods [68, 69] that can be used to investigate the dynamic 

properties of executables. 

     The most popular methods are debugging and simulation. However, they have to be used 

manually with expertise to study the execution (behavior) of programs. In our case, they are not 

suitable for automatic analysis without humans’ intervention. However, execution tracing is a 

good method for automatic analysis, which can automatically record run-time behavior of 

executables. Also, it is easy to analyze the trace using automatic analysis algorithms. 

     There are different ways to carry out execution tracing. In our case, we choose to trace system 

calls of worm and benign executables and use the trace as the source of classification (worm 

detection). The reasons for doing so is straightforward. Tracing all Microsoft Windows 

Application Programming Interface (API) functions can capture more details about the run-time 

behavior of executables. However, it increases OS resources consumption and interference with 

the execution of other programs, compared with tracing only system calls. The reason is that, the 
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number of system calls, 311 for all the Windows version together [86], and 293 for Linux 2.6 

kernel [87], is significantly less than the number of APIs, over 76,000 for Windows version 

before Windows Vista [88], over 1000 for Linux [89]. Hence, we choose to trace only system 

calls and hence build a lightweight run-time worm detection. 

3.c. Feature Extraction 

Features are key elements for any anomaly detection or classification. In this section, we 

describe our method to extract and process the features that are used to learn the classifier and 

carry out worm detection. 

1) N-gram from System Call Trace 

     System call traces of executables are the system call sequences (time series) of the execution, 

which contains the temporal information of program execution and thus the dynamic behavior 

information of the executables. In our system, we need to extract appropriate features that can 

capture common or similar temporal information hidden in the system call sequences of all 

worm executables, which is different from the temporal information hidden in the system call 

sequences by all benign executables. 

    The n-gram is a well-accepted and frequently adopted temporal feature in various areas of 

statistical natural language processing and genetic sequence analysis [90, 91]. It also fits our 

temporal analysis requirement. An n-gram is a subsequence of n items from a given sequence. 

For example, if a system call sequence is {NtReplyWaitReceivePortEx, NtOpenKey, 

NtReadVirtualMemory, NtCreateEvent, NtQuerySystemInformation}, then the 3-grams from this 

sequence are {NtReplyWaitReceivePortEx, NtOpenKey, NtReadVirtualMemory}, { NtOpenKey, 

NtReadVirtualMemory, NtCreateEvent}, and {NtReadVirtualMemory, NtCreateEvent, 

NtQuerySystemInformation}. 
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     We use n-grams as the features in our system for the following reasons. Imagine the 

difference between one line of source code and one block of source code in a program. One line 

of code provides little meaningful information of a program, but one block of code usually 

represents a meaningful and self-contained small task in a program, which is the logical unit of 

programming. For a similar reason, one system call only provides very limited information about 

the behavior of an executable, whereas a segment of system calls might represent a meaningful 

and self-contained action taken during the program execution. Worm and benign executables 

have different behaviors, and this can be represented as the difference between their source code 

blocks, or the segments (i.e., n-grams) of their system calls. Hence, we use these system call 

segments, or the n-grams, as the features to classify worm and benign executables, which are 

shown to be very effective through our experiments, as described in Section 4. 

2) Length of N-gram 

     One natural question is what length of n-gram is best for classifying worms from benign 

executables. On one hand, in order to capture the dynamic behavior of program execuation, n 

should be greater than 1. Otherwise, the extracted 1-gram list is actually the list of system calls 

invoked by the executables. This special case is the same as the method used by static program 

analysis to detect worms, which has no dynamic run-time information of executables. 

     On the other hand, n should not be very large for the following two reasons. First, if n is too 

large, it is very unlikely to find common or similar n-grams among different worm executables. 

In one extreme case, when n becomes very large, the n-grams are no longer small tasks. Instead, 

they become the entire execution of the executables. Because different worms cannot have the 

exact same sequence of system call invocations (otherwise they are the same worm), the 

classifier learning algorithms will fail to identify a common feature (i.e., the same system call 

invocations) among them, neither can the classifier learning algorithm to define a class that can 
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cover all the worms. In this case, the classification will not work. Second, if n is too large, the 

number of possible distinct n-grams, (311n for MS Windows since Windows has 311 system 

calls, 293n for Linux since Linux has 293 system calls) will be too large to be analyzed in 

practice. We will investigate the impact of n-gram length on worm detection in our experiments 

and report the results in Section 4. 

3.d. Classifier Learning and Worm Detection 

In this section, we present the details of the last step in the off-line classifier learning process 

(i.e., how to apply the classifier learning algorithm to learn the classifier after extracting the 

features). In particular, we use two classification algorithms: the Naive Bayes algorithm, which is 

a simple but popular learning algorithm, and the Support Vector Machine (SVM) algorithm, 

which is more powerful but more computationally expensive. We also present how to conduct 

on-line worm detection with each of the algorithms in detail. 

1) Naive Bayes-based Classification and Worm Detection 

     The Naive Bayes classifier (also known as the Simple Bayes classifier) is a simple 

probabilistic classifier based on applying Bayes’ theorem [74, 93]. In spite of its naive design, 

the Naive Bayes classifier may perform better than more sophisticated classifiers in some cases, 

and it can be trained very efficiently with a labeled training dataset. Nevertheless, in order to use 

the Naive Bayes classifier, one has to make the assumption that the features used in the 

classification occur independently. 

      In our case, we use the Naive Bayes classifier to calculate the likelihood that an executable is 

a worm executable (i.e., in worm class) and the likelihood that it is a benign one (i.e., in benign 

class). Then, the detection decision can be made, e.g. the executable belongs to the class having 

a larger likelihood. 
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     (a) Off-line Classifier Learning 

     We represent each executable by an m-dimensional feature vector, X = (x1, x2,. . ., xm), where 

m is the number of distinct n-grams in the dataset, xi (i=0, ���, m-1) is the i-th distinct n-gram xi = 

1 if xi appears in the executable’s system call trace, xi = 0 otherwise. We have two classes, worm 

class Cw and benign class Cb. Given the feature vector, X, of an unknown executable, we need to 

predict the class to which X belongs. The prediction is made as follows. First, we calculate the 

likelihood that the executable belongs to different classes. Second, we make the decision based 

on the value of likelihood, e.g., the executable belongs to the class which has a larger likelihood 

for the given executable. 

    Actually, the off-line “classifier” learning process of the Naive Bayes algorithm is the 

preparation for the calculation of the above two likelihoods. Particularly, this preparation is the 

calculation of some statistical probabilities based on the training data. These probabilities are the 

posterior probability of each n-gram, say, xi, conditioned on each class, Cw and Cb. Hence, the 

off-line “classifier” learning process in our Naive Bayes classification is actually the calculation 

of P(xi|Cj), i = 1, … ,m, and j = w or b based on the training dataset. Remark that in some 

implementations, the classifier learning based on the Naive Bayes algorithm may conduct extra 

process, such as selection of features, cross-validation, but they are not the core procedures for 

the Naive Bayes algorithm. 

    (b) On-line Worm Detection 

    During the on-line worm detection, for each unknown executable, the feature vector X for that 

executable is built first. Then, we predict the class which X belongs based on a higher posterior 

probability, conditioned on X. That is, the Naive Bayes classifier assigns an unknown sample X 

to the class Cj if and only if 

                         .,    or    ,     )  |( )|( | kjbwkjXCPXCP kj ≠=>  (V-1) 
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    Based on Bayes theorem, P(Cj |X) can be calculated by 
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     In order to predict the class of X, we will calculate P(X|Cj)P(Cj) for j = m or b and 

consequently compare P(Cw|X) and P(Cb|X). Now we present how to calculate P(X|Cj)P(Cj). 

First, if the class prior probabilities P(Cw) and P(Cb) are not known, then it is commonly 

assumed that the classes are equally likely, that is P(Cw) = P(Cb). Otherwise, P(Cj) can be 

estimated by the proportion of class Cj in the dataset. Second, for P(X|Cj), as we assume the 

features are independent, P(X|Cj) can be calculated by 
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where P(xi|Cj) can be calculated during the off-line classifier learning process. 

    (c) Discussion 

    The Naive Bayes classifier is effective and efficient in many applications. The theoretical time 

complexity for learning a Naive Bayes classifier is O(Nd), where N is the number of training 

examples and d is the dimensionality of the feature vectors. The complexity of classification for 

an unknown example (an unknown executable in our case) is only O(d). 

    However, the Naive Bayes classifier has two limitations in our case. First, the classifier 

learned by Naive Bayes-based method can be used by the worm writer to make the worm 

detections less effective for new worms. The Bayes Naive classifier in our approach is actually a 

set of probabilities in which the n-grams appear in each class. Worm writer can directly use these 

information to make new worms similar to benign executables by either using or avoiding 

certain n-grams (system call sequences). Second, high accuracy of the Naive Bayes classifier is 

based on the assumption that the features are independent to each other. However, the n-grams in 
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the system call trace of an executable might not be independent in reality. In order to address 

these problems of Naive Bayes classifier, we will use the Support Vector Machine (SVM) in our 

worm detection as described in the following subsection. 

      

2) Support Vector Machines-based Classification and Worm Detection 

     The Support Vector Machine (SVM) is a type of learning machine based on statistical 

learning theories [94, 95, 96]. The SVM-based classification includes two processes. One is 

classifier learning and the other is the classification. The classifier learning is to learn a 

classifier/model, using the training dataset. Then the learned classifier is used to 

determine/predict the class label of instances that are not contained in the training dataset. The 

SVM is a sophisticated and accurate classification algorithm. Although it is computationally 

expensive, its trained classifier is difficult to interpret. These silent features match our 

requirements for accurate worm detection and interpretation difficulty for worm writers. 

     (a) Off-line Classifier Learning 

     A typical SVM classifier learning problem is to label (classify) N training data {x1, . . . , xN} 

to a positive or negative class, xi ∈  Rd (i = 1,… ,N), where d is the dimensionality of the 

samples. Remark that the SVM algorithm can be extended to classification for more than two 

classes, but the two classes are the typical and basic cases. Our problem belongs to the 

classification of two classes. Thus, the classification result is {(x1, y1), … , (xN, yN)}, yi ∈  

{−1,+1} . In our case, xi is the feature vector built for the i-th executable in our dataset. That is, xi 

= {x i,1, . . . , xi,d}, where d is the number of distinct n-grams, xi,j (j = 1, . . . , d) is the j-th n-gram, 

xi,j=1 if xi,j appears in the ith executable’s system call trace, xi,j = 0 otherwise. yi = +1 means that 

xi belongs to worm class, yi = +1 means that xi belongs to benign executable class. As we have a 

large number of features (n-gram), the dimensionality of the Euclidean space in our classification 
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problem is very large (upper bounded by 311n depending on n-gram length). There are two cases 

for the SVM classifier learning problems; (i) the samples in the two classes are linearly 

separable; (ii) the samples in the two classes are not linearly separable. But case 2 holds for most 

real-world problems. In the SVM, in order to achieve an optimal classifier, the non-linear 

solvable problem in case (2) needs to be transformed to be a linear solvable problem in case (1) 

first. Then, the optimal classifier can be learned through linear optimization [93, 94]. In the 

following, we first present the algorithm for the simple case (case (1)), followed by the algorithm 

for case (2). 

     (i) Case 1: Classes are linearly separable 

     If the two classes are linearly separable, then we can find a hyperplane to separate the 

examples in two classes as shown on the right side of Fig. V-3. Examples that belong to different 

classes should be located on different sides of the hyperplane. The intent of the classifier 

learning is to obtain a hyperplane which can maximally separate the two classes. 

     Mathematically, if the two classes are linearly separable, then we can find a hyperplane w�x + 

b = 0 with a vector w and an intercept b, that satisfies the following constraints: 

                   ,1for     y       1 i +=+≥+⋅ bxw i     (V-4) 

               ,1for     y       1 i −=−≤−⋅ bxw i     (V-5) 

or, equivalently 

            .              01)( ibxwy ii ∀≤−−⋅     (V-6) 

      Examples in the training set that satisfy the above equality are referred as support vectors. 

The support vectors define two hyperplanes, one going through the support vectors of the 

positive class and the other going through the support vectors of the negative class. The distance 

between these two hyperplanes defines a margin and this margin is maximized when the norm of 

the vector w (║w║) is minimized. When this margin is maximized, the hyperplane w�x+b = 0 
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separates the two classes maximally, which in fact is the optimal classifier in SVM algorithm. 

The dual form of Formula (V-6) reveals that the above optimization actually maximizes the 

following function, 
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subject to the constraint that αi 
≥
 0. The SVM algorithm can achieve the optimal classifier by 

finding out αi 
≥
 0 for each training sample xi to maximize W(α). 

    (ii) Case 2: Classes are not linearly separable 

     In the above case, the optimization can be achieved for classes that are linearly separable. 

However, the real-world classification problems usually cannot be solved by the linear 

optimization algorithm. This case is illustrated as the left side of Fig. V-3, in which, there is no 

linear hyperplane (e.g., in this case, it is a straight line in 2-dimensional space) that can separate 

the examples in two classes (here shown with different colors). In other words, the classifier 

needed must be a curve, which is difficult to optimize. 

 

 

   Fig. V-3. Basic Idea of Kernel Function in SVM 
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    The SVM provides a solution to this problem by transforming the original feature space into 

some other, potentially high dimensional, Euclidean space. Then, the mapped examples in the 

training set can be linearly separable in the new space as demonstrated by the right side of Fig. 

V-3. This space transformation can be implemented by a kernel function, 

),()(),( jiji xxxxK Φ⋅Φ=       (V-8)    
where Ф(xi) is the mapping from the original feature space to the new Euclidean space. We 

would only need to use K(.) in the classifier training process with Equation (V-7), and would 

never need to explicitly know what Ф is. The SVM kernel function can be either linear or non-

linear. Common non-linear kernel functions include Polynomial, Radial Basis Function (RBF), 

and Sigmoid among others. 

    (b) On-line Worm Detection 

    The on-line worm detection is the classification of new executables, using the SVM 

classification algorithm along with the optimal SVM classifier learned during the previously-

discussed off-line learning process. 

     For an unknown executable (a worm or benign executable), its feature vector must be built 

first. The method is the same as the process aforementioned on the executables in the training 

set. That is, the system call trace during the execution is recorded, then the n-grams with certain 

value of n is extracted. After that, the feature vector, xk, of this executable is formed from its 

trace, using the same method as in the off-line classifier learning process. 

     Recall that during the classifier learning process, the optimal hyperplane is found. Then, for a 

new example xk shown as the small circle in Fig. V-3, the on-line classification is to checks on 

which side of the optimal hyperplane xk is. Mathematically, the classification is conducted 

through signing a class to the executable by 

  ),()( bxwsignxC kk −⋅=       (V-9) 
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    If C(xk) is positive, we predict the executable is a worm. Otherwise, we predict it as benign. 

    (c) Complexity of SVM 

    The classifier learning process of SVM is relatively time consuming because of the large 

volume of training set, high dimension of our feature space, complexity of classifier calculation 

and optimization. No matter what kernel function is used, if N is  the number of training 

examples, Ns is the number of support vectors, and d is the dimension of the original feature 

vectors for the training examples, then the complexity upper bound of SVM classifier learning is 

O(Ns
3 + Ns

2N + NsdN). However, the SVM classification process for each new executable is fast 

and involves only limited calculations. Its complexity is O(MNs), where M is the complexity of 

the kernel function operation. For Radio Basis Function kernels, M is O(d). 

     (d) Black-Box Characteristics of the SVM Classifier 

     The classifier learned by the SVM can be easily used to carry out worm detection. However, 

the SVM classifier is difficult to interpret. The SVM classifier learning algorithm generates 

black-box models (classifiers) in the sense that they do not have the ability to explain in an 

understandable form [97, 98, 99]. Thus, from the SVM classifier, it is hard to extract decision 

rules comprehensible in the original problem domain, especially for the non-linear SVM, due to 

the feature space transformation introduced by kernel functions. 

    The above characteristic of SVM is a well-known limitation for the applications in which one 

needs to know the decision rules which can be mapped back to the physical entities in the 

original problem domain. However, this characteristic can help us prevent the worm writers from 

interpreting and learning from the classifier. We want to prevent the worm writers from 
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obtaining the signature of their worms or any benign executable. Otherwise, the worm writer can 

hide new worms accordingly as benign executables. 

    Besides the optimization algorithm used in SVM, the learning classifier also depends on the 

definition of input feature space, the selection of kernel function, the parameters of the kernel 

function, etc., which are unknown to worm writers. The worm writer does not know the 

following: the value of n of the n-gram used in the classifier, the mapping between n-grams and 

feature indices in the feature vector, the definition of the kernel function, the parameters of the 

kernel function,  and the space transformation introduced by kernel function. 

     Hence, even if the worm writer knows that we use SVM and are able to get the classifier, it is 

hard for him to interpret the classifier to discovery the decision rule we used to distinguish 

between worms and benign executables. Thus, it is hard for him to change the worm behavior 

accordingly to evade our detection. Furthermore, we can protect the classification by 

mechanisms, such as encryption. 

4. Performance Evaluation 

In this section, we first present the experimental setup and metrics. Then we report on the results 

of our experiments. 

4.a. Evaluation Methodology 

In our experiments, we use 722 benign executables and 1589 worms in Microsoft Windows or 

DOS Portable Executable (PE) format as the data source, although our approach works for worm 

detection on other operating systems as well. We use this data source to obtain the generic worm 

classifier and further evaluate the trained classifier to detect worms. This set of executables are 

labeled into two classes: worms and benign executables. The set of worms obtained from the 

Web site VX Heavens (http://vx.netlux.org) have email worms, peer-to-peer (P2P) worms, 
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Instance Message (IM) worms, Internet Relay Chat (IRC) worms, and other non-classified 

worms. The benign executables in our experiments include Microsoft software, commercial 

software from other companies or free open source software. This diversity of executables 

enables us to obtain classifiers comprehensively that capture the behaviors of both different 

types of worms and benign executables. We use 80% of each class (worm and benign) as the 

training set to obtain the classifiers. We use the remaining 20% as the test set to evaluate 

accuracy of the classifiers, i.e., the performance of our detection approach. 

     We install MS Windows Professional 2000 with service pack 4 on our virtual machines. On 

these virtual machines, we launch each executable in our executable collection and use strace for 

Windows NT [99] to trace their system calls for 10 seconds. Recall that we trace the executables 

in the data set for longer time, then use a slide window to capture certain length trace for the 

classifier training. We found that using 10 second trace is enough to provide high detection 

accuracy. From the trace file of each executable, we extract the system call name sequences in 

the time order. Then we obtain the segment of system calls (i.e., the n-grams), given different 

value of n for each executable. After that, we build the vector inputs for the classification 

learning algorithms.  

     Recall that the classification in our worm detection problem is in a high dimensional space. 

There are a large number of dimensions/features which cannot be handled or handled efficiently 

by many data mining tools. The data mining tools we choose are Naive Bayes classification tools 

from University of Magdeburg in Germany [100] and svm light [101]. Both of the tools we 

selected are implemented in C language, and perform efficiently, especially for a high dimension 

classification problem. When we apply SVM algorithm with svm light, we choose Gaussian 

Radial Basis Function (Gaussian RBF), which has been proven to one of the effective kernels 

[73]. The distribution of features follows Gaussian distribution. Gaussian RBF is in the form of 
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which means (V-8) needs to be replaced by (V-11) in the classifier learning process and on-line 

worm detection process. The value of r is optimized through experiments and comparison. 

     In order to evaluate the performance of our classification for new worm detection, we can use 

two metrics, Detection rate (PD) and false positive rate (PF). In particular, the detection rate is 

defined as the probability that a worm is correctly classified. The false positive rate is defined as 

a benign executable classified mistakenly as a worm. 

 

              Table V-1. Detection Results for the Naive Bayes-Based Detection 

n-gram length (n) 1 2 3 4 5 6 

Detection Rate (PD) 69.8% 81.4% 85.0% 90.9% 93.6% 96.4% 

False Positive Rate (PF) 33.2% 18.6% 11.5% 8.89% 6.67% 6.67% 

 

 

                                Table V-2. Detection Results for the SVM-Based Detection 

n-gram length (n) 1 2 3 4 5 6 

Detection Rate (PD) 89.7% 96.0% 97.73% 99.5% 99.5% 99.5% 

False Positive Rate (PF) 33.3% 18.75% 7.14% 4.44% 2.22% 2.22% 

   

4.b. Experiment Results 

In this subsection, we report on the performance of our worm detection approaches. The results 

of Naive Bayes and SVM-based worm detections in terms of Detection Rate and False Positive 

Rate under different n-gram length (n) are shown in Table V-1 and V-2, respectively. 
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     (a) Effectiveness of Our Approaches 

     We conclude that our approaches of using both the Naive Bayes and SVM algorithms can 

correlate detect worm at a high detection rate and low false positive rate when the length of n-

gram is of a reasonable value. For example, when the length of n-gram is 5, the detection based 

on the SVM algorithm achieves 99.5% detection rate and 2.22% false positive rate and the 

detection based on the Naive Bayes algorithm achieves 96.4% detection rate and 6.67% false 

positive rate, respectively. 

     From these tables, we also conclude that SVM-based detection performs better than Naive 

Bayes-based detection in terms of both detection rate and false positive rate. There are two 

reasons for this. First, the Naive Bayes classification assumes that features are independent, 

which might not be always true in real practice. Second, for the Naive Bayes-based 

classification, the calculation of the likelihood for classifying a new executable is based on the 

vectors of the training set executables in the feature space. Then, it predicts the class of the new 

executable simply based on the comparison of the likelihood. Differently, the SVM attempts to 

optimize the classifier (hyperplane) through finding the hyperplane that can maximally separate 

the two classes in the training set. 

    (b) Impacts of N-gram Length 

    Another important observation is the length of n-gram, i.e., the value of n, impacts the 

detection performance. When n increases from 1 to 4, the performance keeps increasing. When n 

further increases, the performance does not increase, or it only increases very little. The reason 

can be explained as follows. First, when n = 1, each n-gram only contains one system call and 

thus contains no dynamic system call sequence and executable’s behavior information. Actually, 

this special case is the static program analysis, which only investigates the list of system calls 

used by the executables. Second, when n is larger, the n-grams contain a larger length of system 
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call sequence and thus obtain more dynamic behavior of the traced executables. Hence, the 

detection performance is better. This also demonstrates that our dynamic program analysis 

approach outperforms the traditional static program analysis-based approaches. From the 

previous observation on the length of n-gram, we conclude that certain length of n-gram is 

effective enough for worm detection. This length (value of n) can be learned through 

experiments: when the increase of n brings little detection performance gain, that n value is good 

enough and can be used in practice. This method is actually used for other n-gram-based data 

mining applications [91, 92]. Furthermore, for the efficiency of worm detection, the n value 

should not be very long, as we discuss in Section 3. 

5. Summary 

In this chapter, we studied the countermeasure based on the dynamic signature of worm 

executables. Specifically, we proposed a new worm detection approach based on mining the 

dynamic execution of programs. Our approach is capable of capturing the dynamic behavior of 

executables and providing efficient and accurate detection against both seen and unseen worms. 

Using a large number of real-world worm and benign executables, we ran executables on virtual 

machines and recorded run-time system call traces of these executables. We then applied two 

data mining classification algorithms to learn about classifiers off-line, which are subsequently 

used to carry out on-line worm detection. Our data clearly showed the effectiveness of our 

proposed approach in detection worms in terms of both very high detection rate and low false 

positive rate. 

      Our proposed approach has the following advantages. It is practical with low overhead 

during both classifier learning and run-time detection. Our approach does not rely on 

investigation for individual executable; rather, it examines the common dynamic properties of 
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executables. Therefore, it can automatically detect brand new worms and other unseen worms 

such as polymorphic worms. Furthermore, our approach attempts to build a black-box classifier 

which makes it difficult for the worm writers to interpret our detection. 
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CHAPTER VI 

 COUNTERMEASURE BASED ON CONTRADICTED OBJECTIVES 

In this chapter, we focus on developing the countermeasure based on contradicted objectives to 

defend against worm attacks that change their patterns to circumvent the detection. 

1. Overview 

Generally speaking, a worm attacker (or propagator) has two objectives: One is to infect as many 

computers as possible. The other is to avoid being detected and punished by the defensive 

system. After infecting a number of computers without being detected, the worm attacker can 

remotely control the infected computers and use them as stepping stones to launch additional 

attacks [3, 4, 5, 6, 7, 8, 9, 10]. Recent studies show the existence of a black-market for 

trading/renting compromised computers (as “bots”) for future attacks [9, 10], providing further 

economic incentives for worm attacks.  

     Unfortunately, most existing countermeasures make a tacit assumption that worms always 

propagate at the highest possible speed. Nonetheless, some newly developed worms contradict 

this assumption by intentionally reducing their propagation speed to detection. For example, the 

“Atak” worm [102] and the “self-stopping” worm [42] circumvent detection by hibernating (i.e., 

stop propagating) periodically. If a worm can successfully avoid (or delay) detection, it may 

eventually infect more computers, resulting in more damage to the Internet. 

     In order to address threats from these new kinds of worms, we formulate a new class of 

worms, called self-adaptive worms, in this chapter. These worms adapt their propagation 

schemes to defensive countermeasures, aiming to avoid or delay detection, and ultimately 

infecting more computers. We propose and evaluate countermeasures against self-adaptive 

worms. Specifically, we partition self-adaptive worms into two classes. Static self-adaptive 
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worms are those that intelligently select a propagation speed at the time of attack launch but 

nevertheless maintain a constant speed during the attack session. For a dynamic self-adaptive 

worm, its propagation speed may vary during the attack session. Remark that the camouflaging 

worm studied in Chapter III is a special case of dynamic self-adaptive worm by adopting 

feedback loop-control to manipulate a traffic pattern. 

    To develop proper countermeasures, we introduce a game-theoretic formulation to model the 

interaction between the worm propagator and the defender. We show that an effective integration 

of multiple countermeasure schemes (e.g., worm detection and forensics analysis) is critical for 

defending against self-adaptive worms by enforcing the worm attack to choose between the 

objectives.  

    In the following, we will first present models for worms and defensive schemes. We then 

introduce a baseline system where a static self-adaptive worm freely propagates without 

defensive countermeasures and introduce a game-theoretic formulation of the system to model 

the interaction between self-adaptive worms and countermeasures. Based on the game-theoretic 

formulation, we then present our countermeasures against static and dynamic self-adaptive 

worms. 

2. Models 

In this section, we present models for worms and defensive schemes. In particular, we start with 

the propagation model for traditional worms and then formally define a propagation model for 

self-adaptive worms. After that, we present our models for defensive countermeasures. 
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2.a. Worms 

1) Traditional Worms 

    Let us first consider traditional worms investigated in previous work [2]. Generally speaking, 

a traditional worm behaves similar to biological viruses in terms of its greedy self-propagating 

nature. Worm propagation on the Internet is an iterative process that usually starts with a 

computer, known as the worm propagator. The worm propagator conducts a network 

propagation scan to identify vulnerable computers on the Internet, and then infects these 

computers by remotely exploiting the vulnerabilities to obtain access privileges. Once a 

computer is infected by the worm, the computer will then recursively start propagating the worm 

to other computers on the Internet. 

    In order for a worm to propagate itself on the Internet, it must be capable of identifying 

computers with certain vulnerabilities. Given the complex topology of vulnerable computers on 

the Internet, such identification can be hardly optimal in practice. A commonly used 

identification strategy is Pure Random Scan (PRS) [1, 2, 10, 16], in which each worm-infected 

computer randomly scans IP addresses to identify vulnerable computers. To improve the 

performance of the PRS approach, work has been done, which enables worm to carry a hit-list, 

containing certain addresses of pre-known vulnerable computers [18]. Note that the length of the 

hit-list is limited by the size of the worm. Thus, this approach may not be able to support the 

wide propagation of a worm. For the sake of simplicity, we only consider the PRS propagation 

mechanism in this chapter. 

     Most previous studies [1, 2, 10, 16] make a tacit maximum speed assumption on worm 

propagation: A worm-infected computer always scans the network with the maximum possible 

speed. Formally, let S be the maximum number of scans that an infected computer can perform 

in a unit of time. Let p(t) be the percentage of S that a worm actually scans at time t. That is, the 
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number of scans that an infected computer actually performs at time t is p(t)�S. We refer to p(t) 

as the propagation growth rate at time t. Due to the maximum speed assumption, the traditional 

worms have p(t) = 1 for all t. 

 

2) Self-Adaptive Worms 

    With defensive systems in place nowadays, worms have consequently evolved and become 

more sophisticated than the traditional worms mentioned above. In particular, some worms 

deliberately reduce their propagation speed to avoid detection [46, 102]. In this chapter, we 

propose to deal with these new, smarter worms. Specifically, we remove the maximum speed 

assumption, and consider self-adaptive worms that manipulate their propagation growth rate in 

order to avoid or delay detection. Formally, a self-adaptive worm is a generalization of 

traditional worms with p(t) ≤ 1. 

     In an ideal situation, when p(t) is very small (i.e., p(t) ≈ 0), a self-adaptive worm may 

propagate forever without being detected. In practice, however, it only makes sense for a worm 

to propagate for a finite amount of time. Thus, we make a finite propagation assumption that a 

worm will only propagate for a finite (yet very long) amount of time tE. This finite propagation 

assumption is reasonable in practice because the vulnerable computers will eventually be fixed 

and the worm will be detected. Based on the finite propagation assumption, the objective of 

worm on propagation becomes to infect as many computers as possible by time tE. 

 

Algorithm VI.1 Propagation of self-adaptive worms 

Require: Maximum scan rate S, Propagation growth rate p(t), and finite time tE 

1: for all t = 0 to tE do 

2: Current time is t 
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3: Determine the propagation growth rate p(t); 

4: Launch p(t)·S scans to selected targets (e.g., via PRS) in this unit of time; 

5: end for 

 

    Algorithm VI.1 shows the pseudo-code of a self-adaptive worm. As we can see, a self-

adaptive worm can either use a constant p(t) for the duration of worm propagation, or 

deliberately change p(t) over time during the propagation. We consider both cases in this 

chapter. In particular, we call the self-adaptive worms with constant p(t) as static self-adaptive 

worms. If a self-adaptive worm has p(t) changed over time t, we call it dynamic self-adaptive 

worms. For static self-adaptive worms, we use p to denote the constant value of p(t).  

     Note that each kind of worm has its own advantages and disadvantages. Static self-adaptive 

worms are easy to implement while the dynamic ones require each infected computer to compute 

the amount of time elapsed since the start of propagation and determine p(t) correspondingly. 

Nonetheless, dynamic self-adaptive worms may outperform the static ones in terms of infecting 

computers and avoiding detection. The “Atak” worm [102] and the “self-stopping” worm [43] 

are special cases of dynamic self-adaptive worms, as their propagation growth rates are changing 

between 0 and 1 over time. 

2.b. Countermeasures 

Various countermeasure schemes have been proposed to defend against worm attacks. We 

consider two types of defensive schemes in this chapter: One is the worm detection scheme, 

which focuses on the detection of propagating worms on the Internet. Once a propagating worm 

is detected, many actions can be taken to stop or slow down worm propagation: For example, 
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patches can be released to fix the vulnerability; worm scan traffic can be throttled and filtered; 

and infected computers can be identified and quarantined [10]. 

     The other type of scheme we consider is trace-back, which aims to identify the origin of 

worm propagation, such that appropriate legal steps can be taken to punish the worm propagator. 

As we will show in the chapter, if successfully deployed, this scheme can prevent worm 

propagators from launching attacks. 

     There has been much work on specific algorithms of detection and trace-back schemes. 

Please note that we do not intend to study the performance of these algorithms in this chapter. 

Rather, our objective is to analyze the effectiveness of the entire classes of detection and trace-

back schemes. For this purpose, we will introduce models for detection and trace-back schemes. 

These models are representative of many algorithms that have been developed but still simple 

enough to enable our quantitative analysis. We will also propose a framework that integrates 

detection and trace-back schemes. 

1) Detection Schemes 

      A typical defense system with detection scheme usually is based on the ITM system which 

consists of a number of monitors and a data center. Each monitor is responsible for monitoring 

suspicious traffic (e.g., scan to unoccupied IP addresses or ports) targeted to a range of IP 

addresses and reporting the collected traffic logs to the data center periodically. The data center 

issues alerts of worm propagation by analyzing the characteristics of traffic recorded in the logs. 

In this chapter, we consider a simple detection mechanism of using average traffic volume in the 

threshold-based scheme [31]. With this scheme, the data center issues an alert if and only if the 

average volume of traffic collected in a given time period is larger than a pre-determined 

threshold TR. Note that the threshold TR must be carefully chosen for the detection scheme to be 

effective: In particular, it must minimize both false negative rate (i.e., the probability that an 
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ongoing worm attack is not reported) and false positive rate (i.e., the probability that an alarm is 

triggered when no worm is propagating). The proper selection of TR will be further discussed in 

Section 3. 

2) Trace-back Schemes 

     A trace-back scheme typically works as follows: (some of the) routers in the system monitor 

all traffic transmitted through the routers and record traffic logs in some network storage servers. 

When a “trace-back” order is given, the recorded information is analyzed to determine the origin 

of worm propagation [104, 105]. In order to successfully identify the worm propagator, the 

system must be capable of monitoring and recording traffic for a substantial amount of time. In 

particular, we use tB to denote the maximum length of time interval during which all traffic 

information can be recorded in the storage servers. 

     Trace-back schemes cannot be precise in many real systems. Usually, the trace-back scheme 

reports a set of “suspects”, rather than one computer, that could be the origin of the worm 

propagation. Then, law enforcement needs to take other means to investigate the suspects and 

capture the original worm propagator. To be effective, the set of suspects cannot be too large. 

Thus, we assume that in order to identify the worm propagator, it is required (by law 

enforcement) that the size of suspects set is no more than m (m 
≥
 1). 

3) Integration of Threshold-Based and Trace-Back Schemes 

     We now introduce a defensive framework to integrate the threshold-based and trace-back 

schemes. The framework consists of a control center processing reports from numerous monitors 

as well as forensic support (storage) servers which are distributed across the Internet. Once the 

control center detects a propagating worm, it issues an order to initiate the trace-back process by 

collecting network traces from the forensic support servers. We assume that multiple sub-

networks collaborate with each other by sharing the stored forensic data to jointly locate the 
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worm propagator through post-mortem analysis [106]. This defense framework will be further 

extended and discussed in Section 3 to integrate the new spectrum-based scheme we will 

propose in the chapter. 

     The proposed defense framework can be deployed using existing commercial products. For 

example, the sinkhole feature of Cisco’s Private Internet Exchange (PIX) Firewall can be readily 

used by the distributed monitors to collect anomaly traffic such as illegal scans to IP addresses 

not occupied by real computers or other devices; Cisco’s Netflow tool can be used to analyze 

traffic logs for forensic analysis; and Cisco’s Security Management Solution (SIMS) or Arbor 

Network’s Peakflow can be deployed on the control center [107, 108] to process the collected 

anomaly traffic. 

3. A Baseline System 

In this section, we analyze a baseline system in which a static self-adaptive worm freely 

propagates until time tE = ∞ without any defensive countermeasure. This analysis forms the 

basis for us to analyze much more complicated systems, in which the worm may be dynamic 

self-adaptive, the maximum propagation time tE is limited, and various defense schemes are 

deployed. 

     Let f(t) be the number of infected computers in the baseline system at time t. Without loss of 

generality, we assume that the following initial condition holds: 

.1)0( =f        (VI-1) 

    We are interested in the relationship between f(t) and other system parameters. To derive this 

relationship, we take an approach similar to the analysis of traditional worms with the simple 

epidemic model [45]. First, we have 

   ),,()()( ttXtfttf ∆+=∆+      (VI-2) 
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where X(t, 
�

t) is the number of computers infected during time internal (t, t+ 
�

t]. X(t, 
�

t) can be 

estimated as follows: 

        X(t, 
�

t) = (Number of worm scans in (t, t + 
�

t]) · (Success rate of each scan).  (VI-3) 

    Note that when 
�

t→0, the number of scans made during (t, t + 
�

t] is equal to S�p�f(t). Let V be 

the total number of IP addresses and N be the total number of vulnerable computers. At time t, 

the number of computers that are vulnerable to infection is N−f(t). Then, the success rate of a 

scan is (N − f(t)/V). Due to Formula (VI.3), we have 
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Substituting Formula (VI.4) into (VI.2), with some mathematical manipulation, we have 
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where 
β
 = S/V is called pair-wise propagation rate [46]. 

    As we can see, (VI-5) is a differential equation of f(t) in terms of system parameters S, V, N, 

and p. With the initial condition f(0) = 1, the equation can be easily solved using Laplace 

transform [109]. The solution is as follows:   .
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      (VI-6) 
Based on (VI-6), we would like to make the following remarks: 

− f(t) is an increasing function of t. Also, f(t) increases when 
β

, N, or p increases. 

− When t is sufficiently small such that epNt << N, we have 

.)( tNpetf ⋅⋅⋅= β         (VI-7) 

     That is, when a worm is in its initial propagation phase, the number of infected computers 

increases exponentially over time t. 

− On the other hand, when t is sufficiently large, 
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.)( Ntf =         (VI-8) 

This indicates that when no defense system exists, eventually all vulnerable computers will be 

infected. 

− Except for a new parameter “p”, our result in (VI-5) is identical to the result in [10]. We 

nevertheless present the derivation process in this chapter to help our readers understand the 

physical meaning of the equation and its solution. 

− Consider the extension of our baseline system to include the detection scheme. Let tD be the 

time of detection. Then, (VI-6) will correctly represent the number of infected computers as long 

as t ≤ tD. 

− While we derive f(t) for static self-adaptive worms, the derivation can be useful for the 

dynamic ones as well. From the derivation process, if we replace p by p(t) in (VI-4), the 

differential equation (VI-5) still holds. That is, (VI-5) can be used to describe dynamic self-

adaptive worms as well. Unfortunately, the solution process used in (VI-6) requires that p be 

constant, and thus cannot be directly applied to dynamic self-adaptive worms. 

4. Game-theoretic Formulation 

We now consider the case in which both parties, the worm propagator and the defender, appear 

in the system. In this case, the number of infected computers will depend not only on the strategy 

of worm propagation (e.g., propagation growth rate p(t)), but on the defensive strategy and the 

interaction between the two parties as well. In particular, since one party may adapt to the 

strategy change of another party, the outcome of worm propagation is determined by the stable 

state where neither party can benefit by changing its strategy unilaterally. This state is referred to 

as the Nash equilibrium of the game between the worm propagator and the defender [109]. Our 

focus in the following section is to analyze the optimal strategies that constitute the Nash 
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equilibrium, when different combinations of self-adaptive worm and defensive schemes are 

present in the system. In order to do so, we first formulate the game model, and then present the 

strategy sets and utility functions of the two parties. The game-theoretic formulation introduced 

in this section will form the basis for the specific analysis of systems with static and dynamic 

self-adaptive worms in the next two sections. 

4.a. Game 

We formulate the system as a two-player uncooperative game. The worm propagator and the 

defender are the two players in the game. Each player Pi (i∈{1, 2}) has a strategy set Si and a 

utility function ui : S1 × S2 → 
Ŕ

 which we will introduce in the latter part of this section. The 

game is uncooperative in that the two players are in opposition and are unlikely to make any 

binding agreement when choosing their strategies [109]. As in many security studies, we make a 

conservative assumption that the worm propagator has full knowledge of the strategy taken by 

the defender. Nonetheless, the defender has no knowledge about the worm propagator’s strategy. 

     We assume that both players are rational, in that each player Pi always chooses the strategy 

that maximizes its utility function ui. The Nash equilibrium is a combination of strategies {s1, s2} 

(s1 ∈  S1, s2 ∈S2), such that ∀ s′1 ∈  S1, s′2 ∈  S2, 

u1(s1, s2) 
≥

 u1(s′1, s′2),        (VI-9) 

and 

u2(s1, s2) 
≥
 u2(s′1, s′2).                               (VI-10) 

As we can see, the Nash equilibrium represents a stable state because when equilibrium is 

reached, no player has an incentive to deviate from the chosen strategy (i.e., s1 or s2) unilaterally. 

Thus, we can evaluate the outcome of worm propagation based on the Nash equilibrium of the 

game. 
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4.b. Strategies 

We now consider the strategy sets of the two parties. The strategy of the worm propagator is to 

determine the propagation growth rate p. Recall that as we mentioned in Section 1, the worm 

propagator can choose to either use a constant propagation growth rate p or to vary p over time t. 

Formally, the strategy set Ss
A of a static self-adaptive worm contains all possible values of p in 

[0, 1]. The strategy set Sd
A of a dynamic self-adaptive worm contains all possible functions p(·) 

that map time t in [0, tE] to a real number in [0, 1]. 

     The strategy of the defender is to determine the parameters for countermeasures. Recall that 

as we mentioned in Section 2, we consider two kinds of countermeasures: threshold-based (i.e., 

worm detection) and trace-back (i.e., forensic analysis). Thus, the parameters include TR for the 

threshold-based scheme, and tB and m for the forensics analysis scheme. Since the trace-back 

parameters are determined by capacity of the defensive system and the trace-back algorithm 

[104, 107], we assume that the defender cannot change tB or m. Thus, in our system model, the 

strategy of the defender is to determine the detection threshold TR. Formally, the strategy set SD 

of the defender contains all possible values of TR 
≥
 0. 

4.c. Utility Functions 

The utility function ui(sA, sD) measures the benefit (or loss when ui < 0) gained by Player Pi 

when a set of strategies sA, sD are chosen by the two players respectively. The utility function 

depends on the objectives of Pi. The worm propagator has two objectives. One is to maximize 

the number of infected computers. The other is to avoid being traced back and punished for its 

malicious actions. Although different worm propagators may have different priorities for these 

two objectives, it is commonly believed that most worm propagators on the Internet consider the 
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penalty of being traced back to be substantially more than the benefits gained from worm 

propagation [104, 105]. Thus, for the sake of simplicity, we assume that a worm propagator will  

suffer infinite loss if the probability of being traced back is more than 50%, but it will suffer no 

loss from forensic analysis otherwise. In Section 7, we will extend our results to the more 

general case in which loss of worm propagator from forensic analysis is a function of the success 

probability of trace-back. 

     Formally, the utility function of the worm propagator, denoted by uA, is as follows: 
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where sA and sD are the strategies of the worm propagator and the defender, respectively, and tD 

is the time when the worm is detected. 

     The defender also has two objectives. One is to minimize the number of infected computers. 

The other is to minimize the false positive rate, which is the probability that an alarm is falsely 

triggered when there is no worm propagation on the Internet. In our system model, we assume 

that the false positive rate Λ must be lower than a pre-determined threshold δ. 
     Formally, the utility function of the defender, denoted by uD, is as follows: 
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     In the following two sections, we will derive the Nash equilibrium of the game based on the 

strategy sets and the utility function of the two players. 

5. Defense Against Static Self-Adaptive Worms 

In this section, we consider a system with only traditional worms (p = 1) and static self-adaptive 

worms (constant p in [0, 1)). We first show that the threshold-based scheme, by itself, is 
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ineffective against static self-adaptive worms. After that, we demonstrate that an integration of 

the threshold-based and trace-back schemes can effectively defend against static self-adaptive 

worms. 

5.a. Threshold-Based Scheme 

We now show that if the defender only uses the threshold-based scheme, the game will reach 

Nash equilibrium in the state where the worm propagator cannot be detected before time tE, and 

is capable of compromising a large number of computers. 

    Theorem VI-1. When the worm propagator propagates a static self-adaptive worm in the 

system and the defender uses threshold-based scheme only, the Nash equilibrium of the game is: 

The defender chooses TR = TR
0 where TR

0 is the maximum value to satisfy Λ ≤ δ. The worm 

propagtor chooses p = pE such that f(tE)�pE = TR
0. 

     Proof: We show the correctness of the specified Nash equilibrium by proving that no player 

can benefit by changing its strategy unilaterally. Apparently, the defender cannot benefit by 

either increasing or decreasing TR unilaterally because doing so will either keep the same uD or 

reduce it to −∞.    

     For the worm propagator, the current utility function is uA = f(tE). Suppose that it changes the 

propagation growth rate to p1. Let the new function of the number of infected computers be f1(·). 

When p1 > pE, the worm will be detected at time t1 < tE where f1(t1)�p1 = TR
0 . Since p1 > pE, we 

have f1(t1) < f(tE). Thus, the worm cannot benefit by changing to p1 unilaterally. When p1 < pE, 

the number of infected computers at the time of detection is at most f1(tE) < f(tE) = uA. Thus, the 

worm cannot benefit by changing to p1 unilaterally either. 

     We now illustrate the results of the theorem with practical examples. In particular, we set the 

system parameters as follows: N = 350,000 (the number of computers infected by the “Code-
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Red” worm) [1], V = 4 × 109 (i.e., the number of IP addresses in IPv4), S = 358 scans/second (the 

estimated value for “Code-Red” worm [1], δ = 3%, and tE = 5 days. Based on the system settings 

[52], we compute TR
0= 60,000 scans/minute. Due to the theorem, the optimal strategy for the 

worm propagator is to set p = 0.15. As such, the number of infected computers after tE (5 days) is 

71,400, or 20.4% of total vulnerable computers. This is a significant number that can cause 

substantial damage (a real-world worm that infected about 70,000 computers, the Slammer 

worm, resulted in about one billion dollars damage [2]. Thus, the threshold-based scheme by 

itself is ineffective against static self-adaptive worms. 

     As we can see from the theorem, when the threshold-based scheme is the only available 

defensive measure, the worm propagator can always reduce p to delay the detection until tE. 

Thus, in order to defend against static self-adaptive worms, we have to introduce a 

countermeasure that prevents the worm propagator from reducing p to pE. This motivates us to 

integrate the threshold-based scheme with the trace-back scheme. As we will show below, the 

trace-back scheme prevents the worm propagator from doing so because with a low propagation 

growth rate p, the worm propagator increases the chance of being traced back after detection. 

5.b. Threshold-Based and Trace-Back Schemes 

We now show that integration of the threshold-based and trace-back schemes can effectively 

defend against worm propagation. In particular, we have the following theorem. Recall that TR
0 

is the maximum value to satisfy Λ ≤ δ and pE satisfies f(tE)�pE = TR
0. 

     Theorem VI-2. When the worm propagator propagates a static self-adaptive worm in the 

system and the defender uses an integration of the threshold-based and trace-back schemes, the 

Nash equilibrium of the game is as follows: 

      − When 
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the worm propagator chooses not to propagate the worm (i.e., p = 0). The defender chooses TR = 

TR
0. 

      − Otherwise, the worm propagator chooses p = pE. The defender chooses TR = TR
0. 

     Proof: We prove the theorem by showing that no player can benefit by unilaterally changing 

its strategy. We first consider the case where tB 
≥
 tE(1 − logm/logTR

0). Apparently, the defender 

already reaches the maximum possible uD = 0 and cannot benefit by changing its strategy. For 

the worm propagator, suppose that it changes the propagation strategy to p = p1 > 0. Consider 

f(tD − tB), the number of infected computers at time tD − tB. Let fE(t) be the function of the number 

of infected computers when p = pE. We have 
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Since tB/tE 
≥
 (1 − logm/ logTR

0), with some mathematical manipulation, we have 

.)()( mttfttf BEEBD ≤−<−                  (VI-15) 

As such, if the worm propagator changes its strategy to p > 0, the defender can always use the 

forensic analysis scheme to trace-back to the worm propagator with probability of at least 50%. 

That is, uA will become −∞. Thus, if tB 
≥
 tE(1 − logm/logTR

0), the worm propagator will not 

change its strategy unilaterally. 

     When tB < tE(1 − logm/logTR
0), the game is exactly the same as the one discussed in Theorem 

VI-1, and thus follows the same Nash equilibrium. 

      As we can see from the theorem, there are two possible outcomes of worm propagation: 
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Outcome 1. If the trace-back interval tB is longer than the threshold tE(1 − logm/logTR
0), the 

threats posed by the trace-back scheme will force the worm propagator to not propagate the 

worm at all. 

Outcome 2. If the trace-back interval is lower than the threshold, however, the worm will 

propagate in the same way as we discussed in Section 2, and infect a large number of computers 

before being detected. 

     We now analyze which outcome is likely to occur in practice based on practical examples. In 

particular, we would like to demonstrate that the derived lower bound on tB in Outcome 1 is 

reasonable in many systems: We use the same system setting as the one specified in Section 5.a. 

In addition, we set m = 0.002·N. Due to the theorem, no worm infection will occur if the trace-

back interval tB is more than 1.81 days. We argue that this is a reasonable trace-back interval for 

practical systems: Based on the real-world estimation of trace-back cost [103], the cost of 

realizing a trace-back interval of 1.81 days is approximately $216,000 per Internet service 

provider (ISP). Compared with the maintenance cost of ISP, the cost of trace-back is fairly 

moderate and acceptable in practice. Thus, an integration of the threshold-based and trace-back 

schemes can effectively defend again static self-adaptive worms as well as traditional worms. 

     The basic idea of the theorem can be stated as follows: With both the threshold-based and 

trace-back schemes in place, if the worm propagator chooses a larger p, it will be detected 

earlier, and the number of infected computers at time tD−tB will be smaller. If the worm 

propagator chooses a smaller p to delay the detection until tE, the worm will propagate slower 

and the number of infected computers at time tE−tB will still be very small. If the trace-back 

interval tB exceeds a threshold such that f(tD−tB) 
≤

 m in both cases, then the worm propagator will 

be forced not to propagate the worm because, otherwise, it will always be traced back and 

receive uA = −∞. 
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6. Defense Against Dynamic Self-Adaptive Worms 

In this section, we consider a system with a dynamic self-adaptive worm, which changes its 

propagation growth rate p(t) over time t to better adapt to the countermeasures. We first show 

that the integration of threshold-based and trace-back schemes are no longer effective against 

dynamic self-adaptive worms. After that, we introduce a new defensive scheme, called the 

spectrum-based scheme. We demonstrate that an integration of all three schemes can effectively 

defend against dynamic self-adaptive worms. 

6.a. Threshold-Based and Trace-Back Schemes 

We now show that the integration of threshold-based and trace-back schemes is ineffective 

against dynamic self-adaptive worms. In particular, we have the following theorem. 

     Theorem VI-3. When the worm propagator propagates a dynamic self-adaptive worm in the 

system and the defender uses an integration of threshold-based and trace-back schemes, the Nash 

equilibrium of the game is as follows: 

      − When tB 
≥

 tE − log(m)/(N�β) ≈ tE, the worm propagator chooses not to propagate the worm 

(i.e., p(t) ≡ 0). The defender chooses TR = TR
0. 

      − Otherwise, the worm propagator chooses p(t) = min(1, TR
0/f(t)) for every t in [0, tE]. The 

defender chooses TR = TR
0. 

     Proof: We first consider the case where tB 
≥
 tE− logm/(N�β). In this case, the proof of Nash 

equilibrium is similar to that of Theorem VI-2. Thus, we only demonstrate why the lower bound 

on tB changes to tE− logm/(N·
β

) ≈ tE. Consider the case where the worm propagator adopts a 

strategy as follows: 

     (i) First, the worm propagator uses p(t) = min(1, TR
0/f(t)) to infect m computers as soon as    

possible, say at time tA (i.e., f(tA) = m). 
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     (ii) After that, the worm propagator chooses p(t) = 0. 

    As we can see, since m << N, the worm will not be detected before tA. Thus, the worm 

propagator cannot be traced back as long as tA < tE − tB. As such, in order to force the worm 

propagator not to propagate the worm, there must be f(tE − tB) 
≤

 m for the above strategy. That is, 

   .
)(

)(

m
Ne

eN
BE

BE

ttN

ttN

≤
+

⋅
−⋅

−⋅

β

β

                (VI-16) 

    With some mathematical manipulation, we have 
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Thus, a necessary condition to force the worm propagator not to propagate the worm is tB 
≥
 

tE−(logm)/(N�β) ≈ tE. 

    We now consider the case where tB < tE − logm/(N�β). In particular, we prove the correctness 

of the Nash equilibrium specified in the theorem by showing that no player can benefit by 

unilaterally changing its strategy. As we have shown in Theorem VI-2, the defender cannot 

benefit by deviating from TR = TR
0. For the worm propagator, suppose that it uses a different 

propagation growth rate function p1(t). In order for the worm propagator to benefit from the 

strategy change, there must exist t1 in [0, tE] such that p1(t1) > p(t1) = min(1, TR
0/f(t)). 

Nevertheless, the worm will then be detected at time t1 due to the threshold-based scheme, 

resulting in a reduced uA. Thus, no player can benefit by changing its strategy unilaterally from 

the equilibrium specified in the theorem. 

     As we can see from the theorem, the threats posed by the trace-back scheme are significantly 

weakened when the worm is dynamically self-adaptive. As such, the possible outcomes of worm 

propagation become: 

Outcome 1. When the trace-back interval exceeds a very large threshold tE − logm/(N�β) ≈ tE, the 

worm propagator will be forced not to propagate the worm. 
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Outcome 2. When the trace-back interval is lower than the threshold, however, the worm will 

propagate to more computers than what a static self-adaptive worm can infect in a system with 

the threshold-based scheme only. 

    We now analyze which outcome is likely to occur in practice based on practical examples. In 

particular, we demonstrate that the derived lower bound on trace-back interval tB in Outcome 1 is 

unachievable in many practical systems: Based on our system setting used in Sections 5.a and 

5.b, no worm propagation will occur if and only if the trace-back interval is more than 4.8 days 

(i.e., tB 
≈ 4.8 days). Based on the estimate of trace-back cost [103], in order to eliminate worm 

propagation, the cost of the trace-back scheme would be at least $2,430,000 per ISP, which is too 

high for the maintenance cost of an ISP in practice. Thus, the lower bound on tB derived in the 

theorem is unachievable in practice. As such, an integration of the threshold-based and trace-

back schemes cannot effectively defend again dynamic self-adaptive worms. 

      A critical observation from Theorem VI-3 is that in order to effectively defend against 

dynamic self-adaptive worms, the defender has to prevent the worm from rapidly propagating 

itself at the initial stage of worm propagation (i.e., before tA where f(tA) = m). Otherwise, the 

worm will quickly propagate to m computers before tA, and then carefully choose p(t) for t > tA 

to delay the detection until tA+tB, which makes the trace-back scheme useless. Since the 

threshold-based scheme is ineffective against self-adaptive worms by itself, the defender cannot 

eliminate worm propagation. This observation motivates us to propose the spectrum-based 

scheme, which prevents a worm from using high propagation growth rate at the initial stage of 

propagation. 

 

 



  124 

6.b. Spectrum-Based Scheme 

In the following, we introduce a spectrum-based detection scheme to restrict the propagation 

growth rate of a worm at the initial stage of propagation. Note that if a worm adopts a high 

propagation growth rate (e.g., p(t) = 1) at the beginning of propagation, the worm-scan traffic 

will exhibit a significant pattern (i.e., trend of exponential increase) when compared with the 

network background traffic. The objective of spectrum-based detection is to extract such a 

pattern (as signal) from the normal network traffic (as noise). The idea of using spectrum-based 

approaches to identify signal from noise has been widely used in the literature of signal 

processing [57], and has been shown to be capable of differentiating signal from noise even 

when the signal-to-noise ratio is low. 

     The objective of spectrum-based detection is to identify the (approximate) exponential growth 

of worm scan traffic from background traffic, which can be considered as white noise. In order 

to do so, we use discrete Fourier transformation [57] to analyze the frequencies contained in the 

sampled time-series data of scan traffic volume, which is collected by the control center 

mentioned in Section VI.2.c. If there is no worm propagation on the network, the background 

traffic volume, as white noise, should have equal (expected) strengths on all frequency 

components (i.e., from low to high frequency). If a worm is propagating, however, there will be 

a strong low-frequency component in the frequency domain, because of the continuous and 

exponential growth of worm-generated traffic volume (which can be considered as having a very 

large period). Thus, the spectrum-based scheme detects worm propagation by identifying low-

frequency components with high power spectrum. 

     Formally, let r(t) be the traffic volume collected at time t. At time t0, the control center has 

collected a time-series data set {r(0), r(1), . . . , r(t0)}. We transform the time-series data to the 

frequency domain using the discrete Fourier transform [57] as follows: for all integer  
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where s(k) are the transformed frequency component corresponding to period 2πk/(t0 + 1), and i 

is the imaginary unit. If r(t) is consisted of white noise only, the expected complex modulus of 

s(k) (i.e., |s(k)|) should be the same for all k in [0, t0]. Nonetheless, when a worm is propagating, 

the expected |s(k)| for lower frequencies (i.e., large k) will be larger than higher frequencies. 

Thus, in order to detect worm propagation, we need to measure the differences between |s(k)| for 

difference frequency ranges. 

     In particular, we use a widely adopted measure in pattern recognition called Spectral Flatness 

Measure (SFM) [49], which is defined as the ratio between the geometric mean and the 

arithmetic mean of s(k). 
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     Generally speaking, the smaller SFM is, the more difference there is between s(k) at different 

frequency ranges [49], and thus the more likely it is that a worm is propagating on the network. 

As such, our spectrum-based detection scheme issues an alert when the value of SFM is smaller 

than or equal to a pre-determined threshold TM. Note that the greater TM is, the more false alarms 

will be generated by the spectrum-based approach. Thus, the defender must specify the value of 

TM (along with TR for the threshold-based scheme) based on the maximum tolerable false alarm 

rate δ. 
     Since the value of SFM decreases when the worm propagator adopts a higher growth rate for 

a longer period of time, we assume, for the sake of simplicity, that at time t0, SFM ≤ TM if and 

only if the worm uses p(t) > pM for a (cumulated) period longer than γM�t0 time slots (pM, γM in [0, 
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1]). The values of pM and γM depend on the defender-specified threshold TM. The larger TM is, the 

smaller pM and γM will be. 

     Note that this spectrum-based scheme can be easily integrated with the threshold-based and 

trace-back schemes in the framework proposed in Section VI.2. In particular, the control center 

will perform both the threshold-based and spectrum-based schemes based on collected data, and 

issues an alert if either scheme generates an alarm. After detecting a propagating worm, it issues 

an order to initiate the trace-back process. 

6.c. Threshold-Based, Trace-Back, and Spectrum-Based Schemes 

We now show that an integration of the threshold-based, trace-back, and spectrum-based 

schemes can effectively defend against the propagation of dynamic self-adaptive worms. In 

particular, we prove that if the trace-back interval tB is longer than a (reasonable) threshold, the 

game will reach Nash equilibrium in the case where the worm propagator will be forced not to 

propagate any (static or dynamic) self-adaptive worm. Note that with the introduction of the 

spectrum-based scheme, the strategy set of the defender includes the determination of not only 

the volume threshold TR but also the SFM threshold TM. The strategy set of the worm propagator 

remains the same. As we mentioned in Section VI.2, the false positive rate Λ now depends on 

both TR and TM. 

    Let TM
0 be the maximum threshold for the false positive rate to satisfy Λ ≤ δ when TR = ∞. Let 

pM
0 and γM

0 be the corresponding values of pM and γM when TM = TM
0. Suppose that fM

0(t) is the 

number of infected computers at time t when no defender exists in the system, and the worm 

propagator uses 
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for all t in [0, tE]. We have the following theorem. 
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     Theorem VI-4. When the worm propagator propagates a dynamic self-adaptive worm in the 

system and the defender uses an integration of the threshold-based, trace-back, and spectrum-

based schemes, the Nash equilibrium of the game is as follows: 

      − When fM
0(tE−tB) 

≤
 m, the worm propagator chooses not to propagate the worm (i.e., p(t) ≡ 

0). The defender chooses TR = ∞ and TM = TM
0. 

      − Otherwise, the worm propagator chooses  

 






−
=

.1)),(/,min(

;)),(/,1min(
)(

0

0

MRM

MR

ryprobabilitwithtfTp

ryprobabilitwithtfT
tp   (VI-21) 

     The defender chooses the integration of TR and TM that i) minimizes f(tD) when the worm uses 

the above strategy, and ii) satisfies Λ ≤ δ. 
     Proof: We first consider the case where fM

0(tE−tB) 
≤

 m. Apparently, the defender already 

reaches the maximum possible uD = 0 and cannot benefit by changing its strategy. For the worm 

propagator, suppose that it changes the propagation growth rate function to p1(t). Let the changed 

function of the number of infected computers be f1(t). Due to the definition of spectrum-based 

scheme and fM
0(t), there must be f1(t) 

≤
 fM

0(t) for all t in [0, tE]. Thus, 

  .)()( 0
1 mttfttf BEMBE ≤−≤−                  (VI-22) 

That is, the worm propagator will be traced back with probability of at least 50%, resulting in uA 

= −∞. As such, the worm propagator cannot benefit by changing its strategy unilaterally. 

     We now consider the case where fM
0(tE−tB) > m. Note that in order to avoid being detected by 

the threshold-based scheme, the worm propagator must maintain p(t) 
≤

 TR/f(t). Based on our 

previous discussion, it is easy to verify that the worm propagator cannot benefit by changing its 

strategy unilaterally. For the defender, if it changes either TR or TM, there will be only two 

possible outcomes: i) an increased f(tD), and/or ii) Λ > δ. Either way, the defender will have a 
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decreased utility function uD. Thus, the defender cannot benefit by changing its strategy 

unilaterally. 

    Due to the theorem, with the integration of all three schemes, there are two possible outcomes 

of worm propagation: 

Outcome 1. When tB is greater than the derived threshold (i.e., satisfies fM
0(tE − tB) 

≤
 m), the 

trace-back and spectrum-based schemes will force the worm propagator not to propagate the 

worm. 

Outcome 2. When tB does not satisfy the condition, the trace-back scheme poses no threat to the 

worm propagator. In this case, it is the threshold-based and spectrum-based schemes that force 

the worm propagator to reduce p(t) to a reasonable level as specified in the theorem. 

 

Table VI-1 Performance of Defensive Strategies 

 S1 S1+S2 S1+S2+S3 

Traditional worm Effective Effective Effective 

Static self-adaptive worm  Effective Effective 

Dynamic self-adaptive worm   Effective 

 

        S1: Threshold-based scheme; S2: Trace-back scheme; S3: Spectrum-based scheme 

 

     We now analyze which outcome is likely to occur in practice based on practical examples. In 

particular, we demonstrate that the derived threshold on the trace-back interval tB in Outcome 1 

is reasonable in many practical systems: We use the same system setting as the one used in 

Sections 6.a and 6.b. Based on the simulation results, there is TM
0= 72,000, pM

0= 0.22 and γM
0= 

0.5. Due to the theorem, the worm propagator will not propagate the worm as long as tB 
≥

 1.8 
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days. As we mentioned in Section 2, this trace-back interval is reasonable in practice. Thus, the 

integration of all three schemes can effectively defend against dynamic self-adaptive worms in 

the system, as shown in Table VI-1.       

7. Performance Evaluation 

In this section, we present the simulation results of systems with static and dynamic self-adaptive 

worms. In particular, we conduct the simulation on a combination of real-world background scan 

traffic and simulated worm generated traffic. 

      For the background scan traffic, we use the real-world DShield logs dataset provided by the 

SANs Internet storm center (ISC) [25]. The dataset contains more than 80 million scan records, 

with a size of over 80 GB. All scan records are captured between January 1, 2005 and January 

15, 2005. Each record includes the source IP address, destination IP address, destination port 

number, and time stamp of a monitored scan. 

    With the real-world scan traces serving as the background traffic, we add simulated worm 

generated traffic as follows: We use the same system setting as the one specified in Section 5: 

The number of vulnerable computers on the Internet is 350,000. The total number of IP 

addresses is 4.3x109. The scan rate of worm propagation is 358 scans/minute. The maximum 

false positive rate is 2%. The maximum propagation time is tE = 5 days. We conduct the 

simulation based on various trace-back parameters, with m = 0.002�N or 0.005�N and the 

maximum trace-back interval tE ranging from 1,400 to 7,000 minutes. 

     We measure the performance of our countermeasures by the maximum infection rate when 

the worm propagator chooses the optimal strategy of propagation growth rate as specified in the 

Nash equilibrium. Recall that the maximum infection rate is defined as the ratio of the number of 
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infected computers to the total number of vulnerable computers at the moment when the worm is 

detected, or at time tE, whichever comes first. 

                             

                          Fig. VI-1. Maximum Infection Rate for Static Self-Adaptive Worm  

 

                                

 

                           Fig. VI-2. Maximum Infection Rate for Dynamic Self-Adaptive Worms 
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     We present the simulation results of our countermeasures on static self-adaptive and dynamic 

self-adaptive worms, respectively. For static self-adaptive worms, we measure the performance 

of an integration of the threshold-based and trace-back schemes. We also compare the results 

with previous approaches that use threshold-based scheme only [31]. The simulation results are 

shown in Fig. VI-1. As we can see from this figure, when the trace-back interval tE is longer than 

1.45 days when m = 0.005�N or 1.81 days when m = 0.002�N, the worm propagator will be forced 

to not propagate the worm. As we discussed in Section 5, such trace-back interval is reasonable 

in practice. Thus, an integration of the threshold-based and trace-back schemes can defend 

against static self-adaptive worms effectively. On the other hand, if only threshold-based scheme 

is available, the number of infected computers is more than 71,400 (20.4% of all vulnerable 

computers). As we can see, the threshold-based scheme cannot defend itself against static self-

adaptive worms effectively. 

 

                           

 

      Fig. VI-3. Relationship Between Maximum Infection Rate and Maximum False Positive Rate 
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    For static self-adaptive worms, we measure the performance of an integration of all three, 

threshold-based, traceback, and spectrum-based, schemes. The simulation results are shown in 

Fig. VI-2. As we can see from this figure, when the trace-back interval tB is longer than 1.36 

days when m = 0.005�N or 1.81 days when m = 0.002�N, the worm propagator will be forced to 

not propagate the worm. As we discussed in Section 5, such trace-back interval is reasonable in 

practice. Thus, an integration of all three schemes can effectively defend against dynamic self-

adaptive worms. 

     In Fig. VI-3, we also investigate the relationship between the maximum infection rate and the 

maximum tolerable false positive rate δ when the trace-back interval is not enough to eliminate 

worm propagation. As we can see from the figure, the more false alarms the system can tolerate, 

the less that computers can be infected by dynamic self-adaptive worms. In particular, the 

maximum tolerable false positive rate increases from 1% to 8% and the maximum information 

rate decreases from 23% to 11% of all vulnerable computers. 

8. Extensions 

We now discuss how to generalize the utility function of the worm propagator which we 

proposed in Section 3. Note that in Section 3, we assumed that the worm propagator either 

receives infinite penalty from trace back (i.e., uA = −∞ when f(tD − tB) > m), or none at all (when 

f(tD − tB) > m). In practice, however, different worm propagators may differently evaluate the 

risk of being traced back. Some risk-averse worm propagators may stop propagating the worm 

when the probability of being traced back is 10%, while others may choose to propagate 

regardless of whether or not they will be traced back. Thus, we generalize the utility function of 

a worm propagator to a continuous function, in order to model the threats from worm 

propagators with different risk aversion levels. 
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    In particular, let h(x) be the loss of the worm propagator if the defender can trace-back to x 

infected computers at the earliest trace-back time max(0, tD − tB). Apparently, h(x) should be 

monotonically decreasing with x, as a larger x makes it more difficult to identify the worm 

propagator. Let α > 0 be a preferential parameter pre-determined by the worm propagator. The 

generalized objective of a worm propagator is to maximize 

  ))).,0max(()( BDDA ttfhtfU −⋅−= α                (VI-23) 

As we can see, our utility function defined in Section 3 is a special case of this generalized 

version when h is defined as follows: 
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     Given the generalized utility function, Theorem VI-3 and Theorem VI-1 can be restated as 

follows: 

    Theorem VI-5. When the worm propagator propagates a static self-adaptive worm in the 

system and the defender uses an integration of the threshold-based and trace-back schemes, the 

Nash equilibrium of the game is as follows: 

      − When 
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the worm propagator chooses not to propagate the worm (i.e., p = 0). The defender chooses TR = 

TR
0. 

      − Otherwise, the worm propagator chooses p = pE. The defender chooses TR = TR
0. 
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     Theorem VI-6. When the worm propagator propagates a dynamic self-adaptive worm in the 

system and the defender uses an integration of the threshold-based, trace-back, and spectrum-

based schemes, the Nash equilibrium of the game is as follows: 

     − If there exists TM and TR such that 1) α�h(f(t−tB)) > pETR, and 2) the false positive rate Λ < δ, 
then the worm propagator chooses not to propagate the worm (i.e., p(t) ≡ 0). The defender 

chooses the corresponding TR and TM. 

     − Otherwise, the worm propagator chooses  
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      The defender chooses the integration of TR and TM that 1) minimizes f(tD) when the worm 

uses the above strategy, and 2) satisfies Λ 
≤

 δ. 
     The basic idea of proving the above two theorems is similar to the proof of Theorem VI-2 and 

Theorem VI-3. The optimal strategy for the worm propagator is to select the maximum 

propagation growth rate p or p(t) that delays the detection time to tE. The condition for a static 

self-adaptive worm to stop the propagation is to make utility function, defined in (VI-23) less 

than 0. 

9. Summary 

In this chapter, we studied the countermeasure based on contradicted objectives of worm attacks. 

In particular, we considered a general form of worms called self-adaptive worms, which adapt 

their propagation patterns to avoid detection. Based on the degree of control on the propagation 

growth rate, we classified self-adaptive worms into two general categories: static self-adaptive 

worms and dynamic ones. We demonstrated that existing worm detection schemes are 

insufficient to counteract self-adaptive worms. Based on a game-theoretic formulation of the 



  135 

interaction between the worm propagator and the defender, we showed that an effective 

integration of multiple defensive schemes is critical for defending against self-adaptive worms, 

which can force the worm attacker to choose the contradicted objectives. To this end, we 

considered three schemes: threshold-based scheme, trace-back scheme, and spectrum-based 

scheme. We showed that the combination of the first two schemes can be used to defend against 

static self-adaptive worms, while the combination of all three schemes can effectively defend 

against dynamic self-adaptive worms. 
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CHAPTER VII  

COUNTERMEASURE BASED ON THE DEFENDER’S REPUTATION  

In this chapter, we focus on developing the countermeasure based on the defender’s reputation to 

defend against worm attacks.  

1. Overview 

The real-world worm defense systems usually face constant threats from multiple emerging 

worm attackers. The war between the worm attacker and defender can be treated as a never-

ending process with iterative interactions between the two sides. One side tries to adapt itself in 

order to defeat the other. Studies in previous chapters show that an intelligent attacker can evolve 

itself and degrade the performance of detection systems. For example, in Chapter VI, we show 

that worm attackers may adaptively manipulate their propagation traffic pattern or payload to 

avoid detection and to infect more computers.   

     In this chapter, we consider real-world system settings with multiple incoming worm 

attackers that collaborate by sharing the history of their interactions with the defender. We 

propose a novel countermeasure approach to actually improve the performance of detection 

system over time by establishing the defender’s reputation of toughness in its repeated 

interactions with multiple incoming worm attackers. Our studies show that while such iterative 

attacks may enable an attacker to learn from the previous interactions, the defender can also take 

advantage of the iteration by sacrificing short-term performance in the initial few rounds to 

establish a “tough” reputation, in return for much higher payoff in the long-run by using the 

established reputation to force subsequent worm attackers to drop their attacks. 

     We first formalize the problem as a repeated game between one long-term player (defender) 

and multiple short-term players (attackers). With the model of repeated games, we define the 
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defender’s reputation as the attackers’ estimation of the toughness of the defender. Then, we 

classify the repeated games into two categories based on whether the attackers have complete 

information about the defender’s objectives. For each category, we propose a generic reputation-

aware scheme to optimize the long-term performance of worm defense systems by establishing 

the defender’s reputation in the initial rounds of interactions. Our reputation-aware schemes are 

transparent to the underlying detection algorithms, and thus can also be used with various other 

network security applications. 

     In the following, we first present our system models, introduce a game-theoretic formulation 

of the repeated interactions between the defender and the worm attackers, as well as the concept 

of a defender’s reputation of toughness, and classify the repeated games into two cases based on 

the completeness of information in the games. We then propose two reputation-aware worm 

detection schemes for these two types of games, respectively, and present theoretical analysis of 

their performances, followed by numerical evaluation of our proposed schemes and conclusion. 

Notice that this Chapter is based on the joined work between Texas A&M University and the 

University of Texas at Arlington. My work focused on the problem definition, algorithms design, 

worm detection evaluation, and literature survey. 

2. Models 

In this section, we introduce our system models. We first define the participating parties, and 

then present the strategies and objectives of the parties. 

2.a. Parties 

Let there be one defender D and n worm attackers A1, . . . , An in the system. For the sake of 

simplicity, we assume that each attacker launches no more than one attack to the system. By 
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using worm detection mechanisms, the defender may detect an attack but may also generate false 

alarms, thus damaging system functionalities.  

 

                            

 

          Fig. VII-1. Multiple Round System Architecture 

 

     As in real-world systems where each attacker may launch its attack at a different time, we 

consider the attacks to be iteratively carried out in a group of independent processes. Without 

loss of generality, we assume that these processes are executed in a serializable manner. Thus, 

we consider n rounds of interactions, each of which takes place between the defender and one 

attacker. In particular, we assume that attacker Ai (i in [1, n]) interacts with (i.e., either launches 

an attack or chooses not to attack) the defender at Round i. If Ai launches an attack, the attack is 

either detected or missed by anomaly detection by the beginning of Round i + 1. 

      In practice, different attackers have their own interests but may share information, such as 

the outcomes of previous attacks. As such, we assume the attackers to be independent but 

cooperative. They are independent in the sense that each attacker aims to maximize its own 

payoff (see the objective functions in Section 3.c. for details). They are cooperative in the sense 

that all attackers share their information about the system, including the results of all previous 
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attacks. Again, we will briefly discuss in Section 5.c the extension of our results to cases where 

certain attackers are fully cooperative in that they work as a single entity to maximize their joint 

benefits. 

     Fig. VII-1 describes the basic architecture of the system, where n attackers sequentially 

interact with the defender. The definition of tradeoff parameter δi for the defender will be 

introduced in the next subsection. 

2.b. Strategies 

The strategy of each attacker Ai is to determine whether to launch an attack at Round i. In 

particular, such a decision may be made based upon observations on the interactions between the 

defender and the preceding attackers (i.e., A1 through Ai−1). The strategy of defender D is to 

determine a proper tradeoff between the detection rate and the false alarm rate. We assume that 

the defender uses a tradeoff parameter δi in [0, 1] to control such tradeoff in Round i. The higher δi is, the less false alarms are issued. Nonetheless, the defender also has smaller probability to 

detect an attack launched by Ai. Without loss of generality, we assume that the probability for an 

attack to be detected at Round i is 1 − δi (otherwise we can always normalize δi to satisfy this 

assumption). As such, when δi = 0, all targeted attacks will be detected while the maximum 

tolerable amount of false alarms will be issued. When δi  = 1, no false alarm will be issued while 

no attack will be detected. The defender D may determine δi based on observations on preceding 

interactions in Rounds 1 to i − 1.  

     The tradeoff parameter δi  models a wide variety of tradeoff control mechanisms in real-world 

applications. For example, δi can be considered as threshold on a feature (e.g., traffic volume or 

other properties) modeled in normal system profile and monitored by the defender, such that the 

defender issues an alert whenever the observed feature exceeds the threshold. This is a primary 
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method to control the tradeoff in research and practices [110]. δi can also be considered as an 

output of distributed anomaly detection algorithms, such as the probability of anomaly predicted 

by Bayesian detection [111]. 

    The combination of strategies for the defender and an attacker determines the outcome of their 

interaction, which may be one of the following possibilities: i) attack launched and detected, ii) 

attack launched and not detected, iii) attack not launched. Such outcomes are observed and 

recorded by both the defender and all the attackers. Note that the outcome does not indicate 

whether a false alarm is triggered. The reason is that as in most practical systems, we assume 

that the attackers cannot observe the activation of false alarms. 

      It is noteworthy that the strategies of preceding attackers (i.e., attack/no attack) can be 

inferred from the observed outcomes, and are, therefore, public. Nonetheless, the strategy of the 

defender (i.e., the value of δi) is not directly observed by the attackers, especially when an attack 

is not launched in Round i. As such, the attackers can only infer the defender’s strategy based on 

the outcomes of preceding attacks. 

2.c. Objectives 

    The objective of each attacker Ai is to launch an undetected attack at Round i. Formally, the 

objective of Ai is to maximize its utility function uA(i), which is defined as follows: 
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where 
β

A is a predetermined preference parameter for the attacker. We assume that 
β

A  > 0 

because, otherwise, an attacker will always choose to launch its attack. We believe that this 

assumption resembles the scenarios of many real-world applications where an attacker may 

prefer not launching an attack that will always be detected (which may lead to punishment of the 



  141 

attacker, as demonstrated by recent events [103, 104]). When different attackers have different 

values of 
β

A, we assume 
β

A to be the minimum possible value. 

    The defender D has two objectives: i) to detect all attacks, and ii) to prevent false alarms from 

being issued. Formally, let 

 




=
.,0

;det,1
)(

otherwise

ectedunisiRoundatattackif
il A  (VII-2) 

Note that due to our definition of δi, lA(i) = δi if an attack is launched at Round i. 

    Since the number of false alarms only depends on the value of δi, let lF(δi) in [0, 1] be a 

monotonically decreasing function that measures the number of false alarms at Round i. The 

greater lF(δi) is, the more (or more probability of) false alarms are generated in Round i. Without 

loss of generality, we assume that the number of false alarms generated at Round i reaches the 

maximum tolerable threshold when lF(δi) = 1. When lF(δi) = 0, no false alarm is generated at 

Round i.  

      Formally, the objective of defender D is to maximize its utility function uD defined over the n 

rounds as follows: 
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where uD(i) is the payoff of the defender at Round i, and 
β

D in [0, 1] is the preference parameter 

for the defender which measures its preference between detection rate and false alarm rate. The 

greater 
β

D is, the more concerns the defender has on false alarm rate. In particular, a defender 

with 
β

D = 1 does not care about the detection of attacks while a defender with 
β

D = 0 does not 

care about the loss from false alarms. 
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3. Reputation in Game-Theoretic Formulation 

In this section, we will introduce the concept of reputation in repeated interactions. In particular, 

we will first present a game-theoretic framework which formulates the repeated interactions 

between a defender and multiple incoming attackers. With the model of repeated games, we 

define the defender’s reputation based on the attackers’ estimation of the preference parameter of 

the defender. Then, we classify the repeated games into two categories based on whether the 

attackers have complete information about the defender’s objectives. 

3.a. Game-Theoretic Formulation 

As we mentioned in Section 2, the defender faces attacks from n incoming attackers in an 

iterative fashion. Thus, we formulate the system as a non-cooperative n-round repeated game 

between one long-time player, the defender, and n short-term players, the attackers. The game is 

non-cooperative [108] because there are no coalitions or contracts between the defender and the 

attackers enforced through outside parties. Each round of the game follows the Stackelberg 

leadership model [108] with the defender being the leader and the attacker being the follower. 

This is because, in real-world anomaly detection systems, the defender always moves first by 

determining its detection tradeoff parameter δi before an attacker launches the attack. Note that 

the defender knows ex ante that the follower observes the existence of anomaly detection. The 

objectives of the players and the set of their possible strategies are defined in Section 2. 

    Based on the game-theoretic formulation, we have the following theorem on the Nash 

equilibrium of the game when there is only one round of interaction (i.e., n = 1) and the defender 

knows 
β

D as pre-knowledge. Remark that Nash equilibrium represents states where neither party 

can benefit by deviating from the protocol unilaterally. 
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    Theorem VII -1. When there is only one round of interaction and the attacker knows 
β

D as 

pre-knowledge, the Nash equilibrium is formed by an attacking strategy that launches an attack 

if and only if there exists δ in (
β

A /(1 + 
β

A), 1], such that 
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and a defensive strategy sets 
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where uA
D(δ) is the defender’s payoff if an attack is launched: 
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     Proof: Recall that as we mentioned in the game-theoretic formulation, each round follows the 

Stackelberg leadership model where the attacker is the follower that responds to the leader’s 

(i.e., defender’s) strategy. Thus, we first prove that for the given defensive strategy in the 

theorem, the attacking strategy is optimal. Note that when (VII-4) holds, there must be 
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due to the monotonically increasing property of lF(.). As such, the expected utility of the attacker 

Ai is uA(i) = δ0(
β

D) − (1 − δ0(
β

D))�βA 
≥

 0. Since the attacker’s utility by not launching an attack is 

0, the specified strategy of launching an attack is optimal. Similarly, we can prove that when 

(VII-4) does not hold, there is uA(i) 
≤

 0 when Ai launches its attack. Thus, for the given defensive 

strategy, the attacking strategy specified in the theorem is optimal. 

     We now prove that the defensive strategy in the theorem is optimal. We consider two cases 

respectively: When (VI-4) does not hold, the utility of the defender at the round is: 
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If the defender can benefit by changing the tradeoff parameter to δ ′, there must be δ ′ > δ ′0(βD) = β
A/(1+ 

β
A) because lF(.) is monotonically increasing. Nonetheless, since the attacker is the 

follower, it will then respond by launching the attack, as its expected payoff from an attack will 

become greater than 0. Note that when the attacker launches its attack, the maximum possible 

payoff for the defender is maxδuD
A(δ), which is smaller than uD in (VII-8) when (VII-4) does not 

hold. Thus, the defender cannot benefit by deviating from δ0(
β

D). 

    When (VII-4) holds, the defender cannot benefit by changing its tradeoff parameter if the 

attacker launches its attack. In order to force the attacker not to launch its attack, the defender 

must choose δ′ ≤ 
β

A/(1 + 
β

A). Nonetheless, doing so will not benefit the defender because 
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Thus, the defensive strategy specified in the theorem is also optimal. 

 

     The defensive strategy δ0(
β

D) in the theorem represents a local optimal strategy when the 

payoff of only one round is considered. It also represents the optimal defensive strategy if the 

defender does not evolve its strategy over time in repeated interactions. 

      From this theorem, we have following observations. When 
β

D = 1, the defender will always 

choose δi = 1 to minimize false alarm rate and make uD(1) = 0. When 
β

D = 0, however, the 

defender will choose δi = 0 to detect all attacks. In turn, when the attackers know the value of 
β

D, 

they will choose to launch every attack when 
β

D = 1, but not to launch any attack when 
β

D = 0, 

because the expected gain from an launched attack is always less than 0 when δi = 0. As we can 

see from (VII-4), the strategy of the attacker depends on the knowledge (or estimation) of 
β

D. 
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This motivates us to propose a scheme where the defender manipulates the attackers’ estimation 

of 
β

D in order to control their attack strategies. 

3.b. Reputation 

From an attacker’s perspective, a defender with lower (or greater) 
β

D is “tougher” (or “softer”). 

We speculate that while an attacker may launch an attack to a soft defender, it may choose not to 

do so when the defender is tougher. Thus, we define the reputation of a defender as an attacker’s 

estimation on the defender’s preference parameter 
β

D. Formally, we have the following 

definition. 

     Definition 1. The reputation of the defender at the beginning of Round i, rD(i), is defined as 

the posterior expected value of  
β

D based on the outcomes of Rounds 1 to i − 1: 
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where p(.) is the posterior probability density function of 
β

D based on the outcomes of Rounds 1 

to i − 1. 

     We now prove the above speculation by showing the influence of the defender’s reputation 

on the attackers’ strategies. In particular, we consider a simple defensive strategy to choose 

between δi = 0 or 1 based on 
β

D (this simplified setting will be important for the analysis of our 

proposed schemes). In this case, we have the following theorem. 

      Theorem VII -2. When the defender chooses δi in {0, 1}, an attacker Ai will not launch attack 

if 
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      Proof: We will prove that when (VI-11) holds, the attacking strategy of not launching attack 

and a defensive strategy of setting 
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forms Nash equilibrium of the game. It is noteworthy that since the defender can observe the 

outcome of every previous interaction, the value of rD(i) is known to the defender. 

     Since each round follows the Stackelberg leadership model with the attacker being the 

follower, similar to the proof of Theorem VII-1, we first prove that for the given defensive 

strategy, the attacking strategy of not launching attack is optimal. With the defensive strategy, 

from the perspective of attacker Ai, the expected probability of its attack being detected is 1 − 

rD(i). Thus, when Ai launches the attack, its expected utility function is 

  )).(1()(1))(( iririuExp DADA −⋅−⋅= β               (VII-13) 

     When an adversary Ai chooses not to launch its attack, the expected utility of Ai is 0. As we 

can see, Exp(uA(i)) 
≤

 0 if and only if rD(i) 
≤

 
β

A/(
β

A +1). Thus, when (VI-11) holds, the attacker 

cannot receive any benefit by unilaterally changing its strategy to launch its attack. Thus, for the 

given defensive strategy, the attacking strategy of not launching attack is optimal. 

     We now prove that the defender cannot benefit by unilaterally changing its strategy either. 

When the defender chooses the strategy in (VI-12), its utility function is  

  ).1()( DDD iu ββ −⋅−=                 (VII-14) 

Suppose that a defender can increase its utility function by changing δi to δ ′. Note that since the 

attacker will not launch its attack when δi = 
β

D, there must be δ ′ > 
β

D. Nonetheless, the attacker 

(as the follower) will respond by choosing to launch its attack because its expected payoff will 

be greater than 0. In this case, the utility function of the defender satisfies 

 ).()1(')1()1()(' iuiu DDDDDD =−⋅−<⋅−−−⋅−= ββδβδβ              (VII-15) 
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As such, the defender cannot benefit by unilaterally changing its strategy either. Thus, the 

attacking strategy of not launching attack and the defensive strategy in (VI-12) form Nash 

equilibrium of the game. That is, no attacker will launch the attack when (VI-11) holds. 

      The Theorem VII-2 confirms our speculation that a tougher reputation (i.e., smaller rD(i)) 

may prevent certain attackers from launching attacks. Thus, the basic idea of our reputation-

aware anomaly detection schemes presented in the next two sections is to reduce rD(i) by 

manipulating defensive strategies in the initial rounds of interactions, in return for much higher 

payoff in the long-run. 

3.c. Classification of Games 

Since we aim to reduce rD(i) which is the attackers’ estimation of 
β

D, the attacker’s pre-

knowledge about 
β

D is critical to the effectiveness of reputation-aware anomaly detection. Thus, 

before introducing reputation-aware schemes, we first classify the repeated games into two 

categories based on the attackers’ pre-knowledge about 
β

D: 

• Case A: In this case, the attackers do not know the exact value of 
β

D (before Round 1), 

and can only estimate the value based on i) a prior distribution of 
β

D, and ii) observed 

interactions. Since the attackers do not know the utility function of the defender (which 

depends on 
β

D) as pre-knowledge, the games between the defender and the attackers 

contain incomplete information. 

• Case B: In this case, the attackers know the exact value of 
β

D as pre-knowledge. As 

such, the games between the defender and the attackers contain complete information. 

     In the following two sections, we will introduce reputation-aware anomaly detection schemes 

for the above two cases. 

 



  148 

4. Reputation-Aware Worm Detection: Case A 

In this section, we will introduce our reputation-aware worm detection scheme for Case A, 

where the defender’s preference parameter 
β

D is unknown to the attackers. We will first present 

the detection algorithm, and then analyze its performance theoretically. Numerical evaluation of 

the algorithm will be presented in Section 6. 

4.a. Algorithm A 

In Case A, the attackers have no pre-knowledge about 
β

D. An attacker can only estimate rD(i) 

based on the outcomes of previous interactions as well as the prior distribution of 
β

D. Thus, our 

basic idea is for a soft defender to simulate the behavior of a tougher one in the initial rounds of 

interactions, in order to reduce rD(i) and to build a tough reputation. 

 

Algorithm VII.A:  for Case A 

1: STATUS ← UNESTABLISHED. 

2: for each Round i do 

3:      if STATUS = ESTABLISHED then 

4:           δi 
←1 if 

β
D = 

β
0; δi 
← 0 if 

β
D = 0. 

5:      else if STATUS = EXPIRED then 

6:   δi 
← δ0(

β
D). 

7:      else if 
β

D = 
β

0 then 

8:   δi 
← 0 with probability of p

β
A/(p

β
B − p + 1) otherwise. 

9:      else if 
β

D = 0 then 

10:   δi 
← 1 with probability of p

β
A/(p

β
B − p + 1), 0 otherwise. 

11:    end if 
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12:    Set δi as the tradeoff parameter for Round i. 

13:    Wait until an attack succeeds or is detected. 

14:    if STATUS = UNESTABLISHED and R(i) > i/2 then 

15:         STATUS ← ESTABLISHED. 

16:    else if STATUS = UNESTABLISHED and i 
≥
 n0 then 

17:         STATUS ← EXPIRED. 

18:    end if 

19: end for 

 

      For the sake of simplicity, we assume 
β

D to be either 0 (i.e., extremely tough) with 

probability of p or 
β

0 > 0 (i.e., relatively soft) otherwise. Since an extremely tough defender with β
D = 0 always chooses δi = 0, we only need to consider the cases where p < 1/(1+

β
A) because 

otherwise no attacker will launch attack due to Theorem VII-2. 

     Algorithm VII.A depicts our reputation-aware anomaly detection scheme for Case A. In the 

algorithm, R(i) is the number of detected attacks in Rounds 1 to i, n0 is a pre-determined 

parameter on the number of rounds the defender intends to use to build its reputation, and δ0(
β

D) 

is the local optimum derived in Theorem VII-1. To help better understand the algorithm, we call 

a defender tough if 
β

D = 0 and as soft if 
β

D = 
β

0.  

     At the initial rounds (when STATUS = UNESTABLISHED), a soft defender chooses δi = 0 

with probability of p
β

A/(p
β

A −p+1) while a tough one does so with probability of 1−p/(p 
β

A−p+1). 

Once more than half of the previously launched attacks are detected (i.e., R(i) > i/2), the 

reputation of toughness is considered to be established (i.e., STATUS = ESTABLISHED). Then, 

a tough defender always chooses δi = 0 while a soft one chooses δi = 1. Note that once STATUS 

becomes ESTABLISHED, it is never set to other values. If the reputation is not established by 
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the end of Round n0 (i.e., STATUS = EXPIRED), the defender returns to its local optimum δ0(
β

D).     

     As we can see from Algorithm VII.A, our reputation-aware scheme considers the anomaly 

detection algorithm as a black box with input of δi. Thus, our scheme is transparent to the 

underlying anomaly detection algorithms and can be used in various anomaly detection 

applications. 

     We now briefly explain the reputation-building mechanism in Algorithm VII.A: When 

STATUS = UNESTABLISHED, the strategy for a soft defender is tougher than its local optimal 

strategy δ0(
β

D), while the strategy of a tough one is softer than its local optimum. Such deviation 

(from local optimum) is designed to reduce rD(i) when the defender is soft and to thereby allow a 

soft defender to establish a reputation of toughness. As a result, we have the following theorem: 

      Theorem VII -3. When STATUS = ESTABLISHED at Round i, 
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       Proof: Suppose that STATUS = ESTABLISHED at the beginning of Round i while 

STATUS = UNESTABLISHED at the beginning of Round i − 1. Due to Algorithm A, there 

must be at least [i/2] detected attacks in Rounds 1 to i − 1. Suppose that the number of detected 

attacks is d (d 
≥

 [i/2]) and 
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We have 
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      Note that due to Theorem VI-2, no attacker will launch its attack when rD(i) satisfies (VII-

16). Without further observable interaction, rD(i) will remain the same after Round i. Thus, (VII-

16) holds whenever STATUS = ESTABLISHED at Round i. 

      Due to Theorem VII-2 and VII-3, after STATUS = ESTABLISHED, no subsequent attacker 

will launch attacks to the system. 

      As we can see, when STATUS = ESTABLISHED, a soft defender will not issue any false 

alarm and will also not present any undetected attack. Thus, the expected utility of a defender is 

0 for all subsequent rounds, higher than the utility of local optimum when 
β

D = 
β

0. Thus, by 

sacrificing the utility when STATUS = UNESTABLISHED in some initial rounds for building 

reputation, the defender can obtain payback in later rounds due to the established reputation. 

4.b. Theoretical Analysis  

As we mentioned above, a key property of Algorithm A is that no attacker will launch attack 

when STATUS = ESTABLISHED. Thus, we first derive the probability for STATUS = 

ESTABLISHED at the end of Round n0. 

     Theorem VII -4. Given 
β

D = 
β

0, when n0 is sufficiently large, the probability that STATUS = 

ESTABLISHED after Round n0 is at least 
β

pA/(1 − p). 
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     Proof: Due to Algorithm A, STATUS is either ESTABLISHED or EXPIRED after Round n0. 

Let f(n0) be the probability that STATUS = EXPIRED after Round n0. Note that STATUS = 

EXPIRED if and only if there exists i < n0, R(i) 
≤

 i/2. 

    We now derive f(n0) by transforming the problem to the monotonic path counting problem in 

combinatorics. Consider a grid with n × n square cells in Fig. VII-2. We start with the lower left 

corner at Round 1. If an attack is detected (i.e., δi = 0), we move one step right along an edge of 

the grid. If an attack is not detected (i.e., δi = 1), we move one step up. As we can see, if R(i) 
≤

 

i/2 holds for all i < n0, then the path never crosses the diagonal of the grid. Thus, in order to 

derive the probability of STATUS = EXPIRED, we need to count the number of paths that 

satisfy the condition. Without loss of generality, we assume that n0 is even. Note that when n0 is 

odd, then f(n0) = f(n0 + 1). At the end of Round n0, the finishing point of the path can be (n0, 0), 

(n0 −1, 1), . . ., (n0/2, n0/2). Note that when x, y 
≥

 1 and x 
≥

 y, the number of monotonic paths 

from (0, 0) to (x, y) which never crosses the diagonal is 
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Since the number of monotonic path from (0, 0) to (n0, 0) is 1, let g(n0, 0) = 1. Suppose that 
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The probability that STATUS = EXPIRED after Round n0 is 
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     Note that the first component of (VII-21) is the cumulative probability from y = 0 to y = n0/2 

for a binomial distribution with mean n0pR and variance n0pR(1−pR). When n0 is sufficiently 
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large, such binomial distribution can be approximated by a normal distribution with the same 

mean and variance. Thus, we have 
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where erf(.) is the Gaussian error function. That is, the probability for STATUS = 

ESTABLISHED after Round n0 is at least 1 − f(n0) = p
β

A/(1 − p). 

     As we can see from the theorem, when n0 is sufficiently large, there is a fairly large 

probability for STATUS to be ESTABLISHED, such that no subsequent attacker will launch 

attacks while no false alarms will be issued by a soft defender. For example, when p = 1/3 and 
β

A 

= 1, the probability of no launched attack after Round n0 is at least 1/2 when n0 → ∞. In fact, as 

we will show in Section 6, the probability of no launched attack increases quickly with n0. 

 

 

                   Fig. VII-2. n × n Grid 

 

        Based on the theorem, we have the following corollary on the utility function of the 

defender. 

      Corollary VII -1. If n0 is sufficiently large, when Algorithm A is used, the expected payoff 

of a soft defender satisfies  
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        Proof: Due to Theorem VII-2, VII-3, and VII-4, when n0 is sufficiently large, the 

probability that STATUS = EXPIRED after Round n0 is at most (1−p−p
β

A)/(1−p). Note that 

when STATUS = ESTABLISHED, the expected payoff of a soft defender is 0 because no 

attacks will be launched while no false alarm will be triggered (due to δi = 1). When STATUS = 

EXPIRED, the expected payoff of a soft defender is maxδuA
D(δ). Thus, the expected payoff of a 

soft defender satisfies 
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when n0 is sufficiently large. 

4.c. Extension 

We now briefly discuss the extension of Algorithm VII.A to a wider variety of system settings, 

where an attacker may launch multiple attacks, and multiple fully cooperative attackers may 

commit to their joint (rather than individual benefits). Note that these two cases are essentially 

the same as we can always model attacks from fully cooperative attackers as multiple attacks 

launched by a single attacker. 

     For these system settings, the only change required for Algorithm VII.A is to assign the same δi for all attacks launched by the same attacker. By doing so, an attacker cannot obtain a better 

estimation of 
β

D by launching multiple attacks because the outcomes for all of its subsequent 

attacks are exactly the same as the outcome of its first attack. 

     As we can see, as long as each attacker can only launch finite number of attacks, Theorem 

VII-4 and Corollary VII-1 always hold, with the only exception being that the required n0 may 

be larger due to the number of (essentially) duplicate attackers launched by an attacker. 
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5. Reputation-Aware Worm Detection: Case B 

In this section, we will introduce our reputation-aware worm detection scheme for Case B, where 

the preference parameter 
β

D is known by the attackers as pre-knowledge. We will first present 

the detection algorithm, and then analyze its performance theoretically. Numerical evaluation of 

the algorithm will be presented in Section 6. 

5.a. Algorithm B 

 

Algorithm VII.B : for Case B 

1: if 
β

D does not satisfy (VII-4) then 

2:      use the local optimal strategy in Theorem VII-1 and exit; 

3: else 

4:      Randomly choose 
β

D based on (VII-29). 

5:      STATUS ← UNESTABLISHED. 

6: end if 

7: for each Round i do 

8:       if STATUS = ESTABLISHED then 

9:            δi 
← 0 if 

β
R = 0, δi 

← 1 if 
β

R = 1. 

10:     else if STATUS = EXPIRED then 

11:          δi 
← δ0(

β
D). 

12:     else if 
β

D = 1 then 

13:          δi 
← 0 with probability of pR, δi 

← 1 otherwise. 

14:     else if 
β

D = 0 then 

15:    δi 
← 1 with probability of pR, δi 

← 0 otherwise. 
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16:     end if 

17: Set δi as the tradeoff parameter for Round i. 

18: Wait until an attack succeeds or is detected. 

19:      if STATUS = UNESTABLISHED and R(i) > i/2 then 

20:            STATUS ← ESTABLISHED. 

21:      else if STATUS = UNESTABLISHED and i 
≥
 n0 then 

22:            STATUS ← EXPIRED. 

23:      end if 

24: end for 

 
 

       In Case B, the attackers knows the exact value of 
β

D as preknowledge. Due to Theorem VII-

1, an attacker will only attack a defender with preference parameter satisfying (VII-4). Thus, we 

only need to consider these defenders in this section. 

       Algorithm VII.B depicts our reputation-aware anomaly detection scheme for Case B. For the 

sake of simplicity, we assume that a defender may only choose between δi = 0 and 1, but may 

mix the two choices with certain probability distribution. In the algorithm, R(i), n0, and δ0(
β

D) 

have the same meaning as in Algorithm VII.A, 
β

R is chosen randomly based on the following 

distribution: 
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     In order for the defender to establish a reputation of toughness, in Algorithm B, we first 

introduce uncertainty to the defender’s toughness by a random parameter 
β

R. According to the 

algorithm, unless STATUS = EXPIRED, the defender chooses its strategy based on 
β

R instead of 

its real preference parameter 
β

D. This requires the attackers to estimate 
β

R in order to respond to 

the defensive strategy, and opens spaces for the defender to establish its reputation. 

     Specifically, to help better understand the algorithm, we refer a defender as “tough” if the 

random parameter 
β

R = 0 and as soft if 
β

R = 1. Note that Algorithm B is essentially similar to 

Algorithm A with 
β

R replacing 
β

D. At the initial rounds (when STATUS = UNESTABLISHED), 

a soft defender chooses δi = 0 with probability of pR while a tough one does so with probability 

of 1 − pR. Once more than half of the previously launched attacks are detected (i.e., R(i) > i/2), 

the reputation is considered to be established (i.e., STATUS = ESTABLISHED). Then, a tough 

defender always chooses δi = 0 while a soft one chooses δi = 1. If the reputation is not 

established by the end of Round n0 (STATUS = EXPIRED), the defender’s strategy returns to 

its local optimum δ0(
β

D). 

     Suppose that rR(i) is defined in analogy to rD(i) as the attackers’ estimation of 
β

R. Similar to 

Algorithm A, the basic idea of Algorithm B is to establish reputation of toughness (i.e., reduce β
R) by deviating from the local optimal strategy. We have the following theorem for Algorithm 

B: 

      Theorem IV-5. When STATUS = ESTABLISHED at Round i, 
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      Proof: Suppose that STATUS = ESTABLISHED at the beginning of Round i while 

STATUS = UNESTABLISHED at the beginning of Round i − 1. Due to Algorithm B, there 
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must be at least [i/2] detected attacks in Rounds 1 to i − 1. Suppose that the number of detected 

attacks is d (d 
≥

 [i/2]) and 
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We have 
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     Note that due to Theorem VII-3, no attacker will launch its attack when rD(i) satisfies (VII-

16). Without further observable interaction, rD(i)  will remain the same after Round i. Thus, (VII-

16) holds whenever STATUS = ESTABLISHED at Round i. Due to Theorem VII-2 and VII.5, 

after STATUS = ESTABLISHED, no subsequent attacker will launch attack to the system. 

      Note that a soft defender obtains payback once the reputation is established. As we can see, if 

STATUS = ESTABLISHED at Round i, the expected utility of a defender is 

).1()0Pr()( DDRDD iu ββββ −−==⋅−=               (VII-34) 

      For a defender of concern in Case B (i.e., satisfies (VII-4)), this is always greater than the 

expected utility (
β

D − 1) from the one-round local optimum δ0(
β

D). 

5.b. Theoretical Analysis 

Similar to the analysis of Algorithm A, we first derive the probability for STATUS = 

ESTABLISHED at Round n0:  
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     Theorem VII -6. When n0 is sufficiently large, the probability that STATUS = 

ESTABLISHED after Round n0 is at least  

./)1( DDA βββ −                   (VII-35) 

    Proof: In analogy the proof of Theorem VII-4, we can prove that the probability that 

STATUS = EXPIRED after Round n0 is 
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     Note that for Algorithm B, 
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     Thus, the probability that STATUS = ESTABLISHED after Round n0 satisfies 
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     As we can see from the theorem, there is a fairly large probability for STATUS to be 

ESTABLISHED, which prevents the forthcoming attacker from launching attacks. For example, 

when 
β

A = 1 and 
β

D = 2/3, the probability of no launched attack after Round n0 is at least 22.4%. 

Based on the theorem, we have the following corollary. 

     Corollary VII-2.  If n0 is sufficiently large and 
β

D satisfies (VII-4), when Algorithm B is 

used, the expected payoff of the defender satisfies 
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where u0 is the utility function of a defender taking local optimal strategy with δi = δ0(
β

D). 

        Proof: When STATUS = ESTABLISHED after Round n0, the expected utility of the 

defender is 
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  .)1())(( DDD iuExp ββ−−=                 (VII-40) 

When STATUS = EXPIRED, the expected utility of the defender is 

  .10 −= Du β                   (VII-41) 

Since the probability that STATUS = ESTABLISHED after Round n0 is at least  

  ,/)1( DDA βββ −                 (VII-42) 

when n0 is sufficiently large, the expected payoff of the defender satisfies 
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      Similar to the extension in Section 4.c, we can also extend Algorithm VII.B to the system 

settings with attackers launching multiple attacks or fully cooperative attackers. Theorem VII-6 

and Corollary VII-2 still hold for these scenarios, with the only exception being that a larger n0 

may be required due to the duplicate attacks launched by an attacker. 

6. Performance Evaluation 

In this section, we show the derived optimal strategies for the defender and the attackers in the 

game. The numerical results actually demonstrate the detection rate and false positive rate in a 

state consisting of the optimal strategies, and thus can be used to demonstrate the real 

performance of systems using our reputation-aware schemes. 

    In particular, we compute the numerical results of Algorithms VII.A and VII.B based on a 

real-world case study of applying our reputation-aware scheme to an existing worm detection 

approach [31] which detects anomaly of scan traffic generated in worm propagation by issuing 

an alert when the rate of observed scan traffic exceeds a threshold computed from the 
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background traffic. Note that with a lower threshold, a worm is more likely to be detected, but a 

higher false positive rate will also be generated, leading to a tradeoff between detection rate and 

false positive rate. Again, we would like to remark that in this chapter, we are not promoting any 

specific anomaly detection algorithm. Instead, we use the case study to show that the 

incorporation of a defender’s reputation can enable defensive schemes that achieve better 

tradeoff between detection rate and false positive rate. 

 

Table VII-1. Tradeoff between Detection Rate and Fase Positive Rate 

Threshold Ratio (r) 1.2 1.5 1.8 2.1 2.4 2.7 3 

Detection Rate 0.86 0.72 0.58 0.44 0.29 0.15 0.01 

False Positive Rate 0.98 0.93 0.67 0.38 0.27 0.14 0.1 

                         

    

  

                              Fig. VII-3. Probability of Attacker Launching Attack After Round n0 
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     In order to determine the numerical values of lF(.), we use a real-world log of traffic data, the 

DShield logs provided by SANs ISC as background traffic [25]. It includes records of scan 

recorded between January 1, 2005 and January 15, 2005. We use data on port 80 as an example. 

According to the background traffic recorded by the DShield traffic logs, the mean and variance 

of the number of scan packets recorded per minute is m = 31 and σ2 = 92.97, respectively. We 

consider a pure-random-scan worm targeting a population of 350,000 vulnerable hosts on the 

Internet with 100 scans per minute. We define the detection rate as the probability that a worm is 

detected within 600 minutes after the start of its propagation. With detection threshold (on 

observed scan traffic) being m+r �σ, where r in [1, 4] is the threshold ratio, we compute the 

tradeoff between detection rate and false alarm rate, some examples of which are shown in Table 

VII-1. Note that the values are normalized to [0, 1]. 

 

         

  Fig. VII-4. Comparison between Algorithm A and Local Optimal Strategy δ0 
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                 Fig. VII-5. Comparison between Algorithm B and Local Optimal Strategy δ0 
 

 

    Based on the data, Fig. VII-3 shows the probability that an attacker Ai with i > n0 launches its 

attack when Algorithm A is used. We demonstrated the cases where n0 ranges from 1 to 50, the 

defender’s 
β

D satisfies Pr{ 
β

D = 0} = p = 0.2, and the attacker’s preference parameter 
β

A in {1, 2, 

3, 4}. As we can see, the probability of attack decreases rapidly while n0 increases. In particular, 

when 
β

A = 4, the probability that an attacker launches an attack after 50 rounds is less than 

11.3%.  

     We also evaluate the performance of Algorithm A based on the false alarm rate required to 

force all attackers after Round n0 not to launch their attacks. Fig. VII-4 shows the false alarm 

rates for Algorithm VII.A and the local (one-round) optimal strategy δ0 when n0 = 50, p = 0.2, 

and the attacker’s preference parameter 
β

A ranges from 1 to 9. As we can see, our reputation-

aware scheme in Algorithm A significantly reduces the number of generated false alarms. In 

particular, when 
β

A = 9, the false alarm rate of Algorithm A is only 18.3% of the local optimal 

defensive strategy δ0. 
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     For systems where the defender’s preference parameter is already known by the attackers, 

when Algorithm VII.B is used, the loss of the defender (from missed attacks and false alarms) is 

shown in Fig. VII-5. We set 
β

A = 2 and n0 = 50. We compare the loss with the local optimal 

defensive strategy δ0. As shown in the figure, our reputation-aware scheme reduces the loss of 

defender, especially when 
β

D is small. When 
β

D is large, the defender has no concern about 

detection rate, making the reputation of toughness less useful. Thus, the performance of 

Algorithm B converges to that of the local optimum when 
β

D → 1. 

7. Summary 

In this chapter, we proposed the countermeasure based on establishing the defender’s reputation 

of toughness to improve the performance of worm detection. We considered real-world system 

settings with multiple incoming worm attackers that collaborate by sharing the history of their 

interactions. We formalized such systems through a game-theoretic formulation for the repeated 

interactions between the defender and multiple worm attackers. Based on the formulation, we 

proposed generic algorithms to improve the performance of worm detection system by 

incorporating the defender’s reputation. We further classified the repeated games into two 

categories based on whether the attackers have complete information about the defender’s 

objectives. We presented the basic ideas, detailed algorithms, and theoretical analysis of 

reputation-aware anomaly detection approaches for the two categories. We demonstrated the 

effectiveness of our scheme by numerical studies on the study of worm detection. Our data 

validates our findings and indicate that incorporating reputation can significantly improve the 

performance of anomaly detection systems. As part of our future work, we are applying this 

framework to investigate the defender’s reputation and game theory analysis on other security 

applications and systems. 
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CHAPTER VIII 

 CONCLUDING REMARKS 

In this dissertation, we have systematically studied countermeasures against worm attacks, 

namely traffic-based and non-traffic based countermeasures. For traffic-based countermeasures, 

we propose our approaches and develop countermeasures by identifying some key features of 

worm propagation and probing attack traffic. For non-traffic based countermeasures, we propose 

approaches that robustly capture dynamic signatures of worm program execution, test a feature 

of contradicted objectives, and incorporate a defender’s ability to defend against worm attacks. 

     This dissertation develops a framework that allows us to study both traffic related features 

and non-traffic related features and, hence, to develop countermeasures against worm attacks. 

The problems addressed in the proposed research are important, both theoretically and 

practically. Particularly, the developed results lay the theoretical foundation for countermeasures 

of worm attacks and help us to understand problem and solution space. The techniques 

developed for countermeasures are practical and hence can be applied to real-world systems. 
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