

ON COUNTERMEASURES OF WORM ATTACKS OVER THE INTERNET

A Dissertation

by

WEI YU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2008

Major Subject: Computer Engineering

ON COUNTERMEASURES OF WORM ATTACKS OVER THE INTERNET

A Dissertation

by

WEI YU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee: Wei Zhao
Riccardo Bettati

Committee Members:

Head of Department:

Narasimha Reddy
Jennifer Welch
Valerie E. Taylor

May 2008

Major Subject: Computer Engineering

 iii

ABSTRACT

On Countermeasures of Worm Attacks over the Internet.

(May 2008)

Wei Yu, B.S., Nanjing University of Technology;

M.S., Tongji University

 Co-Chairs of Advisory Committee: Dr. Wei Zhao

Dr. Riccardo Bettati

Worm attacks have always been considered dangerous threats to the Internet since they can

infect a large number of computers and consequently cause large-scale service disruptions and

damage. Thus, research on modeling worm attacks, and defenses against them, have become

vital to the field of computer and network security. This dissertation intends to systematically

study two classes of countermeasures against worm attacks, known as traffic-based

countermeasure and non-traffic based countermeasure. Traffic-based countermeasures are those

whose means are limited to monitoring, collecting, and analyzing the traffic generated by worm

attacks. Non-traffic based countermeasures do not have such limitations.

 For the traffic-based countermeasures, we first consider the worm attack that adopts feedback

loop-control mechanisms which make its overall propagation traffic behavior similar to

background non-worm traffic and circumvent the detection. We also develop a novel spectrum-

based scheme to achieve highly effective detection performance against such attacks. We then

consider worm attacks that perform probing traffic in a stealthy manner to obtain the location

 iv

infrastructure of a defense system and introduce an information-theoretic based framework to

obtain the limitations of such attacks and develop corresponding countermeasures.

 For the non-traffic based countermeasures, we first consider new unseen worm attacks and

develop the countermeasure based on mining the dynamic signature of worm programs’ run-time

execution. We then consider a generic worm attack that dynamically changes its propagation

patterns and develops integrated countermeasures based on the attacker’s contradicted

objectives. Lastly, we consider the real-world system setting with multiple incoming worm

attacks that collaborate by sharing the history of their interactions with the defender and develop

a generic countermeasure based on establishing the defender’s reputation of toughness in its

repeated interactions with multiple incoming attackers to optimize the long-term defense

performance.

 This dissertation research has broad impacts on Internet worm research since this work is

fundamental, practical and extensible. Our developed framework can be used by researchers to

understand key features of other forms of new worm attacks and develop countermeasures

against them.

 v

DEDICATION

To MY FAMILY.

 vi

ACKNOWLEDGMENTS

To reach this stage in my Ph.D. study and this point in my life, I am indebted to many great

people for their wisdom, support, and love.

 I would like to express my deep appreciation to my advisor, Dr. Wei Zhao. I am greatly

indebted to him for his constant inspiration, encouragement, and guidance throughout my Ph.D.

studies, which were essential to the completion of this dissertation. His broad vision has always

been the inspiration in my existing and future professional growth. I would like to thank my co-

advisor, Dr. Riccardo Bettati, for his sound technical advice and encouragement of my research.

I would like to thank Dr. A. L. Narasimha Reddy for his guidance as a member of my

dissertation committee. His insightful advice of my research work has inspired me to achieve

important results. Many thanks go to Dr. Jennifer Welch for providing great technical advice to

my research and serving on my advisory committee. I would like to thank Dr. Donald Friesen for

his kind advice relating to many academic issues.

 Many thanks also go to former and current graduate students in the Real-Time Systems

group. It was a great fortune for me to work with Dr. Dong Xuan and his Ph.D students who

have provided me with useful assistance during my research. I have benefited greatly from

working with Dr. Xinwen Fu and Dr. Nan Zhang over the past few years. I have also had many

helpful discussions with Dr. Yong Guan, Dr. Shengquan Wang, Dr. Shu Jiang, Dr. Chengzhi Li,

and Dr. Ye Zhu. I would like to express my appreciation to Ms. Elena Catelena, Ms. Larisa

Archer, and Ms. Valerie Ann Sorenson for their friendship and help during my Ph.D. studies. In

particular, I would like to thank Ms. Archer for her selfless help in polishing many of my

writings. I would like to express my appreciation to my Cisco colleagues, Mr. Man Loh, Dr.

 vii

Ping Ni, Mr. Tony Zhu, Mr. Ed Chen, Mr. Lee Ji, Mr. Dagang Wang, Mr. Thang Nguyen, Mr.

Clint Entrop, Mr. Chris Pearce and many others for their friendship and help.

 I am indebted to my parents, parents-in-law, my sister, and her husband, and their lovely son

for their unconditional love and support. I would like to take this opportunity to express my

greatest gratitude to my wife, Jian Wang, for her selfless love and support these years. It is this

family that has made me strong and courageous to be the person I am today.

 viii

TABLE OF CONTENTS

 Page

ABSTRACT ……….......………………………………………………………………………...iii

DEDICATION …………………………………………………………………………………..v

ACKNOWLEDGMENTS ……………………………………………………………….............vi

LIST OF FIGURES ...xi

LIST OF TABLES ……………………………………………………………………………..xiii

CHAPTER I INTRODUCTION ..1

1. Worm Attacks Are Major Threats to the Internet ...1
2. Overview of Dissertation Research...2

2.a. Traffic-Based Countermeasures ...2
2.b. Non-Traffic Based Countermeasures ...4

3. Significance of Proposed Work ..6
4. Organization of This Dissertation ...7

CHAPTER II REVIEWS OF WORM ATTACKS AND COUNTERMEASURES8

1. Worm Attacks ...8
2. Countermeasures...10

2.a. Traffic-Based Countermeasure...10
2.b. Non-Traffic Based Countermeasure...12

CHAPTER III COUNTERMEASURE BASED ON PROPAGATION TRAFFIC....................14

1. Overview...14
2. C-Worm Propagation ..15

2.a. Overview ..15
2.b. Effectiveness ..17
2.c. Discussion ..19

3. Detection of the C-Worm..21
3.a. Design Rationale ..21
3.b. Spectrum-Based Detection Scheme ...23
3.c. Analysis..26

4. Performance Evaluation..29
4.a. Evaluation Methodology ..29
4.b. Evaluation Results of Traffic Volume-Based Detection Schemes...........31
4.c. Evaluation Results of Traffic Distribution-Based Detection Schemes.....34

5. Summary ...36

 ix

 Page

CHAPTER IV COUNTERMEASURE BASED ON PROBING TRAFFIC37

1. Overview...37
2. Attack Model...38

2.a. lLOC Attack ...38
2.b. Attack Traffic Generation Stage ..42
2.c. Attack Traffic Decoding Stage...44
2.d. Attack Traffic Synchronization..46
2.e. Analysis..47

3. Performance Evaluation of lLOC Attacks ..51
3.a. Evaluation Methodology ..51
3.b. Evaluation Results..52

4. Countermeasure ..60
4.a. Information-Theoretical Based Framework ...61
4.b. Defense Against lLOC Attack..66
4.c. Discussion ..72

5. Performance Evaluation of Countermeasures...73
6. Summary ...77

CHAPTER V COUNTERMEASURE BASED ON WORM PROGRAM EXECUTION..........78

1. Overview...78
2. Background ...80

2.a. Program Analysis ...80
2.b. Data Mining ...80
2.c. Unseen Worms ...81

3. Detection via Mining Dynamic Signatures of Program Executions82
3.a. Framework..82
3.b. Dataset Collection ..86
3.c. Feature Extraction ..86
3.d. Classifier Learning and Worm Detection...90

4. Performance Evaluation..98
4.a. Evaluation Methodology ..98
4.b. Experiment Results ..100

5. Summary ...102

CHAPTER VI COUNTERMEASURE BASED ON CONTRADICTED OBJECTIVES104

1. Overview...104
2. Models...105

2.a. Worms ..106
2.b. Countermeasures..108

3. A Baseline System ..111
4. Game-theoretic Formulation ...113

 x

 Page

4.a. Game ..114
4.b. Strategies..115
4.c. Utility Functions...115

5. Defense Against Static Self-Adaptive Worms..116
5.a. Threshold-Based Scheme ...117
5.b. Threshold-Based and Trace-Back Schemes...118

6. Defense Against Dynamic Self-Adaptive Worms ..121
6.a. Threshold-Based and Trace-Back Schemes ...121
6.b. Spectrum-Based Scheme..124
6.c. Threshold-Based, Trace-Back, and Spectrum-Based Schemes..............126

7. Performance Evaluation..129
8. Extensions ...132
9. Summary ...134

CHAPTER VII COUNTERMEASURE BASED ON THE DEFENDER’S REPUTATION...136

1. Overview...136
2. Models...137

2.a. Parties ...137
2.b. Strategies..139
2.c. Objectives...140

3. Reputation in Game-Theoretic Formulation ...142
3.a. Game-Theoretic Formulation ...142
3.b. Reputation ..145
3.c. Classification of Games..147

4. Reputation-Aware Worm Detection: Case A..148
4.a. Algorithm A ...148
4.b. Theoretical Analysis...151
4.c. Extension..154

5. Reputation-Aware Worm Detection: Case B..155
5.a. Algorithm B..155
5.b. Theoretical Analysis...158

6. Performance Evaluation..160
7. Summary ...164

CHAPTER VIII CONCLUDING REMARKS ...165

REFERENCES ………..166

VITA ……………………………..175

 xi

LIST OF FIGURES

 Page

Figure III-1. Manipulation of Attack Target Distribution Entropy ..20

Figure III-2. PDF of SFM on C-Worm traffic..21

Figure III-3. PDF of SFM on Non-Worm Traffic ..22

Figure III-4. Maximal Infection Rate on PRS Worms ...32

Figure III-5. Detection Time on PRS Worms...34

Figure IV-1. Workflow of the lLOC Attack...39

Figure IV-2. PN-code and Encoded Attack Traffic..41

Figure IV-3. Attack Successful Rate (Port 135)...53

Figure IV-4. Attack Successful Rate vs. Code Length...55

Figure IV-5. Attack Successful Rate vs. Number of Parallel Attack Sessions...........................55

Figure IV-6. Defender Detection Rate vs. Number of Parallel Attack Sessions56

Figure IV-7. Experiment Setup ..57

Figure IV-8. Background Traffic vs. Traffic Mixed with lLOC Attack.....................................59

Figure IV-9. PSD for Background Traffic vs. Traffic Mixed with lLOC Attack.......................59

Figure IV-10. Channel Model for lLOC Attack ...62

Figure IV-11. The Binary Channel Model for PN-code Based Scheme69

Figure IV-12. Performance of Centralized Defense vs. lLOC Attack..74

Figure IV-13. Performance of Distributed Defense vs. lLOC Attack ..75

Figure V-1. Workflow of the Off-line Classifier Learning ..83

Figure V-2. Workflow of the On-line Worm Detection ...83

 xii

 Page

Figure V-3. Basic Idea of Kernel Function in SVM..95

Figure VI-1. Maximum Infection Rate for Static Self-Adaptive Worm...................................130

Figure VI-2. Maximum Infection Rate for Dynamic Self-Adaptive Worms130

Figure VI-3. Relationship Between Maximum Infection Rate and Maximum Tolerable False
Positive Rate..131

Figure VII-1. Multiple Round System Architecture..138

Figure VII-2. n × n Grid ..153

Figure VII-3. Probability of Attacker Launching Attack After Round n0161

Figure VII-4. Comparison between Algorithm A and Local Optimal Strategy
δ

0162

Figure VII-5. Comparison between Algorithm B and Local Optimal Strategy
δ

0163

 xiii

LIST OF TABLES

 Page

Table III-1. Maximal Infection Rate (MIR) for Existing Traffic Volume-Based Detection
Schemes...18

Table III-2. Detection Time (DT) for Existing Traffic Volume-Based Detection Schemes18

Table III-3. SFM Mean Value for Normal Non-Worm Scan Traffic ..25

Table III-4. Detection Results of Traffic Volume-Based Schemes against C-Worm................32

Table III-5. Detection Results for Target Distribution-Based Scheme against C-Worm..........35

Table IV-1. Defender Detection Rate PDD (Port 135)...54

Table V-3. Detection Results for the Naive Bayes-Based Detection100

Table V-4. Detection Results for the SVM-Based Detection...100

Table VI-1. Performance of Defensive Strategies...128

Table VII-1. Tradeoff between Detection Rate and False Positive Rate..................................161

 1

 CHAPTER I

INTRODUCTION

1. Worm Attacks Are Major Threats to the Internet

Worm attacks have recently posed major threats to the Internet. For example, in July 2001, a

worm called “Code-Red” infected more than 350,000 Microsoft servers running Internet

information service (IIS). In less than 14 hours, this worm caused more than 1.2 billion dollars in

economic damages [1]. In January 2003, another worm called “Slammer” infected nearly 75,000

Microsoft SQL servers in less than 10 minutes and consequently caused large scale disruptions

in production systems worldwide [2]. In March 2004, worms called “Witty” and “Sasser”

infected many computers in a short time, rendering them unusable [3].

 Furthermore, a recent trend of worm attacks has emerged in the way used to launch

subsequent attacks. For example, “Code-Red” worms launched the distributed denial-of-service

(DDoS) attack against the White House’s website (www.whitehouse.gov) at the final stage of

their propagation [1]. In February 2004, the “MyDoom” worm propagated rapidly to many

computers that launched the DDoS attack against numerous websites, such as www.sco.com and

www.microsoft.com, thereby preventing legitimate users from accessing them [4]. In addition to

DDoS attacks, recent studies have shown that a large number of infected computers have been

used to form the botnet as a black-market incentive for trading and/or renting infected computers

to launch other attacks [5, 6, 7, 8, 9]: (i) access confidential information that can be abused

through large scale traffic sniffing, key logging, identity theft etc., (ii) distribute large scale

unsolicited advertisement emails (as spam) or software (as adware), (iii) spread new malware by

installing Trojan Horses or other backdoor software, and (iv) destroy data that has high monetary

This dissertation follows the style and format of IEEE/ACM Transactions on Networking.

 2

value.

2. Overview of Dissertation Research

Due to the massive damage potentially caused by worm proliferation, research on modeling

worm attacks, and defenses against them, have become vital to the field of computer and

network security. This dissertation intends to systematically study two classes of

countermeasures against worm attacks, known as traffic-based countermeasure and non-traffic

based countermeasure. Traffic-based countermeasures are those that detect worm attacks by

purely monitoring, collecting, and analyzing the traffic generated by worm attacks. Non-traffic

based countermeasures are those that detect worm attacks without being limited to monitoring,

collecting, and analyzing the traffic generated by worm attacks. After the attack is detected,

subsequent schemes can be applied to mitigate the attack’s effectiveness. For example, patches

can be released to fix the vulnerability, worm attack traffic can be throttled and filtered, and

infected computers can be quarantined and recovered [10, 11, 12, 13, 14, 15].

2.a. Traffic-Based Countermeasures

The first component of this dissertation research is to develop traffic-based countermeasures. In

order to develop these types of countermeasures, we consider both simple and sophisticated

attack models and consequently develop countermeasures based on two types of traffic generated

by worm attacks. Specifically, for the simple model, a worm attack will generate propagation

traffic (i.e., messages that intend to identify vulnerable computers) directly. For the sophisticated

model, a worm attack will first attempt to generate probing messages in order to identify the

location infrastracture of the defense system, thereby circumventing the detection. Based on

propagation traffic and probing traffic, our traffic-based countermeasures consist of the

following two components.

 3

 1) Countermeasure Based on Propagation Traffic: Considering worm attacks which adopt the

feedback loop-control mechanisms to manipulate the propagation traffic in order to make it

similar to the background traffic and circumvent the detection, we develop a novel spectrum-

based scheme to defend against such attacks. Our design is based on the insight observation:

while the worm propagation traffic and background traffic are barely distinguishable in the time

domain, their distinction is clear in the frequency domain, due to the recurring manipulative

nature of such worms. Our countermeasure scheme uses the Power Spectral Density (PSD)

distribution of the propagation traffic rate and its corresponding Spectral Flatness Measure

(SFM) to distinguish the worm propagation traffic from non-worm (background) traffic. Our

evaluation data clearly demonstrate that our proposed scheme can effectively detect such worm

attacks.

 2) Countermeasure Based on Probing Traffic: Considering worm attacks which carry out

probing traffic in a stealthy manner, e.g., launching low-rate of probing traffic encoded by

Pseudo-Noise (PN) codes, we develop countermeasures against such attacks. Our analytical,

simulation, and empirical data first demonstrate the feasibility of such low-rate probing attack in

practice. To counteract such attacks, we then introduce an information-theoretical framework

and map strategies for attacks to coding strategies for communication channels. We propose a

countermeasure that monitors the traffic-rate change of an individual monitor in a time-series

manner. We show that the power constraints enforced by the countermeasure can significantly

reduce the channel capacity of a system to a fairly low level that practically eliminates

localization attacks on ITM systems. Our data validates our findings and shows the effectiveness

of our developed countermeasures in terms of meaningless prolonged time for the attackers to

launch such attacks.

 4

2.b. Non-Traffic Based Countermeasures

The second component of this dissertation research is to develop non-traffic based

countermeasures, as supplementary approaches against worm attacks. In order to develop these

types of countermeasures, it is critical to identify what types of non-traffic features must be

related to the worm attack and understand their characteristics. Motivated by the fact that most

existing research on this topic are either based on features of known worms or ones that can be

easily manipulated, our work intends to develop countermeasures based on more robust features

which are difficult to manipulate by worm attacks. To this end, based on worm uncontrollable

features such as dynamic signature of worm program execution, attackers’ contradicted

objectives and the defender’s reputation, our non-traffic based countermeasures consist of three

parts, as follows:

 1) Countermeasure Based on Dynamic Signature: Considering the new unseen worm attack,

we propose a novel detection approach based on mining dynamic signatures of worm program

run-time executions. Our approach allows for the capture of dynamic behavior of executables

and provides accurate and efficient detection against both seen and new unseen worms. We

execute a large number of real-world worms and benign executables and trace their system calls.

Via mining signatures from a large amount of features extracted from the system call traces, we

apply two classifier learning algorithms, known as Naive Bayes and Support Vector Machine

(SVM). The learned classifiers are further used to carry out rapid worm detection with low

overhead on the end-host. Our experimental results clearly demonstrate the effectiveness of our

approach to detect worm attacks in terms of very high detection rate and low false positive rate.

 2) Countermeasure Based on Contradicted Objectives: Taking into consideration that a worm

attack becomes smarter and manipulates features used by countermeasures, we consider the fact

that no matter how a worm attack changes strategies, one thing it cannot change is its objectives.

 5

Based on this, we develop one novel non-traffic based countermeasure by testing an important

non-traffic feature − contradicted objectives to defend against worm attacks. In particular, we

develop the countermeasures against a general form of worms, referred to as self-adaptive

worms that adapt their propagation patterns in order to reduce the probability of detection, and to

eventually infect more computers. To develop proper countermeasures, we introduce a game-

theoretic formulation to model the interaction between the worm propagator and the defender.

We show that an effective integration of multiple countermeasure schemes (e.g., worm detection

and forensics analysis) is critical for defending against self-adaptive worms, which can force the

worm attacker to choose the contradicted objectives. We propose different integration of

countermeasure schemes for different kinds of self-adaptive worms, and evaluate their

performance via real-world traffic data.

 3) Countermeasure Based on Defender’s Reputation: Considering the real-world system

settings with multiple incoming worm attackers that collaborate by sharing the history of their

interactions with the defender, we propose a novel countermeasure based on establishing the

defender’s reputation of toughness in its repeated interactions with multiple incoming attackers.

Our studies show that while such iterative attacks may enable an attacker to learn from previous

interactions, the defender can also take advantage of the iteration by sacrificing short-term

performance in the initial few rounds to establish a “tough” reputation, in return for much higher

payoff in the long-run by using the established reputation to force subsequent attackers to drop

their attacks. Our extensive theoretical analysis and numerical results based on the study of

worm detection shows that our reputation-aware scheme can significantly improve the

performance of worm detection systems in terms of the tradeoff between detection rate and false

positive rate.

 6

3. Significance of Proposed Work

Our work has broad impacts on Internet worm research. The significance of this dissertation

research will be as follows.

 1) Our Proposed Work Is Fundamental. We use analytical tools including game theory,

pattern recognition, and information theory to carry out a thorough study on approaches of

countermeasures. For example, using game theory, we systematically model the interactions

between the attacker and defender and consequently derive analytical results. In particular,

through the process, we see that an integration of multiple defensive schemes (e.g., detection and

forensics analysis) is critical for defending against worms that manipulate their propagation

traffic in a smart manner. Using information theory, we map the attacks that perform probing

traffic to identify location infrastracture of defense system to coding schemes for communication

channels, thereby developing countermeasures that enable control on the traffic-rate change of

monitors and derive theoretical bounds on the amount of time required by attack regardless of

the specific attacking strategies (i.e., coding schemes) taken by the attackers.

 2) Our Proposed Work Is Practical. Our techniques developed for countermeasures are

compatible with the existing Internet worm defense infrastructure and hence can be used for real-

world systems. In particular, since our work also uses a large number of real-world worm

executables to carry out experiments, our proposed countermeasure for detecting the dynamic

signature of worm program execution can be easily used by a real-world system. In addition,

since our work uses traffic data provided by the Internet Threat Monitoring (ITM) system, a well

deployed Internet worm defense system, our proposed countermeasures for detecting features of

worm related traffic can be easily used by a real-world system.

 3) Our Proposed Work Is Extensible. We develop a framework that allows us to study both

traffic related features and non-traffic related features, thereby allowing us to develop

 7

countermeasures against worm attacks. There are a number of possibilities for extending this

research beyond this dissertation. In particular, since future worms can become more

sophisticated and intelligent, our developed framework can be used by researchers to understand

key features of other forms of new worm attacks and develop countermeasures against them.

4. Organization of This Dissertation

The rest of this dissertation is organized as follows: In Chapter II, we review the worm attacks

and countermeasures. We first present our investigation on the traffic-based countermeasure in

Chapters III and IV, then we discuss non-traffic based countermeasures in Chapters V and VI.

Specifically, in Chapter III, we consider the worm attacks that use the feedback loop-control

mechanisms to manipulate the propagation traffic rate and develop the countermeasure based on

the feature of propagation traffic in spectrum-domain. In Chapter IV, we consider worm attacks

that perform probing traffic in a stealthy manner, i.e., modulated by PN-code, to obtain the

location infrastructure of the defense system and develop countermeasures based on monitoring

the traffic-rate change of each monitor in a time-series manner. In Chapter V, we present the

countermeasure based on dynamic signature of program execution which can effectively defend

against new unseen worm attacks. In Chapter VI, we present the countermeasures based on

attackers’ conflicted-objectives against worm attacks that can dynamically manipulate their

patterns. In Chapter VII, we present the countermeasure based on incorporating the defender’s

reputation that sacrifices its performance in the first few rounds to establish a reputation of

toughness, in return for much higher payoff in the long run. Finally, we conclude this

dissertation research with a brief summary in Chapter VIII.

 8

CHAPTER II

REVIEWS OF WORM ATTACKS AND COUNTERMEASURES

In this chapter, we first briefly review the worm attacks, and then review countermeasures

against worm attacks.

1. Worm Attacks

Generally speaking, the simple model of worm attack is described as follows: a worm

demonstrates behavior similar to that of biological viruses, in terms of their self-propagating

nature. Specifically, a worm attack usually begins when the worm attacker (or propagator)

identifies vulnerable computers on the Internet, exploiting their vulnerabilities to obtain access to

them, and then infecting (i.e., uploading the worm) them. Once a computer is infected, the attack

becomes “automatic”: A worm from the infected computer will recursively identify other

vulnerable computers and try to infect those as well. In this way, the worm propagates itself to

other computers on the Internet. From this simple model, we see that a worm attack will generate

propagation traffic (i.e., messages that intend to identify vulnerable computers).

 Since worm attacks have always posed very dangerous threats to the Internet, much effort has

gone into studying, analyzing, and modeling the propagation behavior of worm attacks. For

example, Kephat et al. in [16, 17] conducted early work on modeling a computer virus based on

the epidemiology model. Staniford et al. in [18] studied various worms and modeled their

propagation. Chen et al. in [10] analyzed the propagation of worms based on a discrete time

model. Zou et al. in [11] analyzed the propagation of a worm under dynamic quarantine defense.

Moore et al. in [2] modeled and analyzed “Slammer” worm. Zou et al. in [19] modeled “Code-

Red” worm. Adversely, the worm attacks such as self-adaptive worms studied in this dissertation

generalize worms that deliberately manipulate the propagation traffic and reduce the probability

 9

of detection. The self-adaptive worms share some similarity in spirit with polymorphic worms

that manipulate the byte stream of worm payload in order to reduce the probability of detection

by payload signature-based detection [20]. All of these worms belong to the simple attack model

that only generates propagation traffic (i.e., messages that intend to identify vulnerable

computers).

 With defensive systems in place nowadays, worms have correspondingly become more

sophisticated than the simple example mentioned above. In particular, from the site of defense,

Internet Threat Monitoring (ITM) systems have now been developed and deployed [21, 22],

since CAIDA began to implement the network telescope to monitor Internet traffic in 2001 [23].

This kind of system is well adopted and similar to other existing worm detection systems such as

the Cyber center for disease controller [18], Internet motion sensor [24], SANs ISC (Internet

Storm Center) [25], Internet sink [21], network telescope [22], and CAIDA [26]. An ITM system

usually consists of a number of monitors and a data center. Each monitor of an ITM system is

responsible for monitoring traffic targeted to a range of IP addresses and periodically reports the

collected traffic logs to the data center. The data center analyzes the traffic logs and posts

summarized reports for alarming Internet worm attacks, which are usually publicly accessible.

To better defeat this system via hiding itself, instead of launching the attack directly, the worm

attacker uses probing messages to locate the monitors, bypassing them and reducing the

probability of detection. Consequently, this kind of sophisticated worm not only propagates

traffic, but it generates probing traffic as well.

 For worms using the sophisticated attack model to better defeat defense systems via hiding

itself, Bethencourt and Shinoda et al. in [27, 28] studied that ITM systems can be exploited by

probing attack to locate monitors. Their techniques of locating monitors require a high volume

probing traffic to be generated. This visible high traffic volume also increases the probability of

 10

detection. Conversely, the low-rate probing attack studied in this dissertation focuses on the

probing traffic in a stealthy manner, based on the Direct Sequence Spread Spectrum (DSSS)

technique, utilizing a Pseudo-Noise (PN) code. This work is also closely related to other research

efforts in network security. Kohno et al. in [29] presented a technique of sending messages to

remotely fingerprint computers, exploiting small, microscope clock deviations in computers.

2. Countermeasures

In order to counteract worm attacks, there are two important steps that the defender needs to

perform: worm detection and post-detection migration. Worm detection aims to identify worm

propagation on the Internet. Once a worm is detected, the post-detection migration techniques

can be deployed to slow down and even stop worm propagation. Some commonly adopted

migration strategies include blocking/filtering propagation traffic and immunizing vulnerable

computers (e.g., by releasing patches to the vulnerabilities) [10, 11, 12, 13, 14, 15]. In this

dissertation, we focus on countermeasures based on worm detection as the first-line worm

defense. As we mentioned in Chapter I, such countermeasures can be generally classified into

two classes, known as the traffic-based countermeasure and non-traffic based countermeasure. In

the following, we will overview the countermeasures related to these classes.

2.a. Traffic-Based Countermeasure

Recall that traffic-based countermeasures are those that detect worm attacks by monitoring,

collecting, and analyzing the traffic generated by worm attacks. From the defense perspective,

since the worm attack generates two types of traffic (propagation and probing traffic) as

described previously, a defender may monitor, collect, and analyze these two types of traffic and

hence detect worm attacks, via identifying traffic-related features. In order to develop these

 11

kinds of countermeasures, it is critical to identify types of traffic generated by worm attacks and

understand their characteristics.

 Recall that a worm attack will generate propagation traffic (i.e., messages that intend to

identify vulnerable computers). For the countermeasures based on features of propagation traffic,

many detection schemes have been proposed [30, 31, 32, 33]. There are some schemes based on

the observation that propagation traffic displays easily identifiable patterns, e.g., high volume,

large variance, and exponentially increasing trends, etc. Generally, for these types of

countermeasures, there are two types of schemes: threshold-based and trend-based detection. As

examples of threshold-based detection, Venkataraman and Weaver et al. in [31] studied the

scheme of using the mean value of traffic volume to determine the worm propagation. Wu et al.

in [32] studied the scheme of using the variance of traffic volume to determine the worm

propagation. As an example of trend-based detection, Zou et al. in [30] studied the scheme of

using the exponential increase trend of traffic volume to determine the worm propagation. There

are also other schemes that are based on destination distribution of propagation traffic. For

example, Lakhina et al. in [33] studied the scheme of using traffic distribution (summarized by

entropy) to classify various anomalies, including distribution of destination IP address to classify

various anomalies. Lim et al. in [34, 35] also considered the header of destination IP addresses

and adopted video and image processing based techniques, such as “scene change analysis” to

reveal sudden changes in traffic anomalies. Conversely, in this dissertation, we investigate a new

detection scheme that identifies the propagation traffic feature in the frequency domain and is

able to detect worm attacks that adopt the feedback loop-control mechanism to manipulate their

propagation traffiic and cause behavior similar to the background non-worm traffic.

 Several studies of worm attacks and their countermeasures have also been carried out based

on features of probing traffic. For example, Bethencourt and Shinoda et al. in [27, 28] studied an

 12

attack scheme to locate the monitors of ITM systems. To the best of our knowledge, little work

has been performed beyond very basic discussion in [27, 28]. In this dissertation, we will not

only consider worm attacks that directly probe target networks, but we will also study those that

perform probing in a stealthy manner and develop countermeasures against such attacks.

2.b. Non-Traffic Based Countermeasure

The traffic-based countermeasures are simple, efficient and easy to implement. Nevertheless,

these detection schemes have limitations and cannot provide a complete solution for defending

against worm attacks. On one hand, it is hard to use the traffic-based countermeasure to detect

worms that spread via E-mail systems, instant messenger, or peer-to-peer applications, since

their traffic is difficult for ITM systems to observe. On the other hand, worm attacks may have

full control of traffic. Thus, traffic-based countermeasures must consequently adapt themselves

in order to be effective.

 As supplementary approaches against worm attacks, non-traffic based countermeasures are

those that detect worm attacks without being limited to monitoring, collecting, and analyzing the

traffic generated by worm attacks. In order to develop these kinds of countermeasures, it is

critical to identify what types of non-traffic related features must be generated by worm attacks

or effectively to worm attacks. Then we can have better understanding of their features and

develop countermeasures.

 For the non-traffic based countermeasures, many existing schemes have been proposed to

detect the signature of worm executables [20, 36, 37, 38]. Specifically, there are some research

efforts that focus on examining constant byte steams as signature in the worm program [20, 38,

39, 40], such as the list of Dynamic Link Libraries (DLLs), functions and specific ASCII strings

extracted from the executable headers. There is additional research focusing on program models.

 13

For example, Feng et al. [40] proposed a formal analysis framework for pushdown automata

(PDA) models. Based on this framework, they studied program analysis techniques,

incorporating system calls or stack activities. Wagner et al. in [41] proposed an approach that

analyzes program executables and generates a non-deterministic finite automaton (NDFA) or a

non-deterministic pushdown automaton (NDPDA) from the global control-flow graph of the

program. The automaton was then used to monitor the program execution on-line. Gao et al. in

[42] presented an approach for detecting anomalous behavior of an executing process. The basic

idea of their approach is that processes potentially running the same executable should behave

similarly in response to a common input.

 These approaches are capable of identifying non-traffic based features generated by worm

attacks and can be used to detect worm attacks. However, if new unseen worms appear in the

future and a worm becomes smarter to manipulate these features, the effectiveness of these

schemes will be significantly reduced. In order to address this problem, the defender needs to

focus on the comparatively invariant perspectives of worm attacks. Particularly, in this

dissertation we consider the following three approaches. First, we will develop one novel non-

traffic countermeasure which aims to detect new unseen worms including “polymorphic” worms

that have unseen signatures or change their signatures during propagation. Second, we note that

no matter how a worm attacker changes its strategies, one thing it cannot change is its objectives.

To this end, we develop one novel non-traffic based countermeasure by testing an important

non-traffic feature − contradicted objectives of worm attacks. Third, we consider real-world

system settings with multiple incoming worm attackers that collaborate by sharing the history of

their interactions with the defender and we propose a generic reputation-aware countermeasure

scheme to improve the performance of worm detection by incorporating the defender’s

reputation.

 14

CHAPTER III

COUNTERMEASURE BASED ON PROPAGATION TRAFFIC

In the following two chapters, we will develop traffic-based countermeasures against different

worm attacks. In this chapter, we focus on developing the countermeasure based on propagation

traffic.

1. Overview

In this chapter, we consider a new class of worms referred to as camouflaging worm (C-Worm in

short). The C-Worm has a self-propagating behavior similar to traditional worms, i.e., it intends

to rapidly infect as many vulnerable computers as possible. However, the C-Worm is quite

different from traditional worms in a way that it camouflages any noticeable trends of its

propagation traffic over time. Specifically, the camouflage is achieved by manipulating the

propagation traffic volume launched by worm infected computers. Such a manipulation of the

propagation traffic volume prevents exhibition of any exponentially increasing trends or even

crossing of thresholds that are tracked by existing traffic volume-based detection schemes [30,

31, 32].

 In order to detect such worm attacks, we comprehensively analyze C-Worm propagation

traffic in both the time and frequency domains. We observe that although the C-Worm

propagation traffic shows no noticeable trends in the time domain, it demonstrates a distinct

pattern in the frequency domain. Specifically, there is an obvious concentration within a narrow

range of frequencies. This concentration is inevitable since the C-Worm adapts to the dynamics

of the Internet in a recurring manner for manipulating and controlling its overall propagation

traffic volume. The above recurring manipulations involve steady increase followed by a

decrease in the propagation traffic volume, such that the changes do not manifest as any trends in

 15

the time domain or such that the propagation traffic volume does not cross thresholds that could

reveal the C-Worm propagation.

 In the following, we first introduce the C-Worm and then present the countermeasure based

on the feature exposed in the spectrum domain of propagation traffic.

2. C-Worm Propagation

2.a. Overview

For the C-Worm, the simplest way to manipulate propgation traffic volume is to randomly

change the number of worm instances conducting port-scans. However, this method may not be

able to circumvent the detection. The reason is that the overall propagation traffic volume still

shows an increasing trend with the progress of worm propagation and as more and more

computers are being infected, they, in turn, take part in scanning other computers. As a result,

the C-Worm may introduce a feed-back loop control for regulating its propagation speed

according to the propagation status. As we mentioned earlier, in order to effectively circumvent

the detection, the propagation traffic for the C-Worm should be comparatively slow and variant

enough to not show any notable increasing trends over time. Note that a very slow propagation

of the C-Worm is also not desirable, since it delays rapid infection damage to the Internet.

Hence, the C-Worm needs to adjust its propagation so that it is neither too fast to be easily

detected, nor too slow to delay rapid damage on the Internet.

 To regulate the C-Worm propagation traffic volume, we introduce a loop-control parameter

called attack probability p(t) for each worm infected computer. p(t) is the probability that a C-

Worm instance participates in the worm propagation (i.e., scans and infects other computers) at

time t. For the C-Worm, p(t) need not be a constant value and can be set as a time varying

function.

 16

 In order to achieve the camouflaging behavior, the C-Worm needs to obtain an appropriate

p(t) to manipulate its propagation traffic. Specifically, the C-Worm will regulate its overall

propagation traffic volume such that: (i) it is similar to non-worm scan traffic in terms of the

traffic volume over time, (ii) its does not exhibit any notable trends such as an exponentially

increasing pattern or any mono-increasing pattern even when the number of infected computers

increases over time, and (iii) the average volume value of the overall traffic is sufficient to make

the C-Worm propagate fast enough to cause rapid damage on the Internet.

 We assume that a worm attacker intending to manipulate propagation traffic volume follows a

random distribution with mean MC
*. This MC

* can be regulated in a random fashion during the

worm propagation in order to camouflage the propagation of C-Worm. Correspondingly, the

worm instances need to readjust their attack probability p(t) in order to ensure that the total

number of worm instances that launch the scans is approximately MC
*.

 To regulate MC
*, it is obvious that p(t) has to be decreased over time since M(t) keeps

increasing during worm propagation. We can determine p(t) using a simple function as follows:

p(t) = MC
*/M^(t), where M^(t) represents the estimation of M(t) at time t. From the above

expression, we know that the C-Worm needs to obtain the value of M^(t) (as close to M(t) as

possible) in order to generate an effective p(t). Here, we discuss one approach for the C-Worm to

estimate M(t). The basic idea is as follows: A C-Worm could estimate the percentage of

computers that have already been infected over the total number of IP addresses as well as M(t),

through checking a propagation attempt as a new hit (i.e., hitting an uninfected vulnerable

computer) or a duplicate hit (i.e., hitting an already infected vulnerable computer). This method

requires each worm instance (i.e., infected computer) to be marked by a watermark which

indicates that this computer has been infected. Thus, when a worm instance (for example,

computer A) scans one infected computer (for example, computer B), then computer A will

 17

detect such a watermark, thereby becoming aware that host B has been infected. Through

validating such watermarks during the propagation, a C-Worm infected computer can estimate

M(t). This method is similar to that used by the “self-stopping” worm discussed in [43]. There

are other approaches to achieve this goal, such as incorporating the Peer-to-Peer techniques to

disseminate information through secured IRC channels [44, 45].

2.b. Effectiveness

We now demonstrate the effectiveness of C-Worm in evading worm detection through

controlling p(t). In this context, we use two metrics to assess a detection scheme. One is the

Detection Time (DT) and the other is the Maximal Infection Rate (MIR). These two metrics are

used to measure the effectiveness of the worm attacks in the presence of worm defense systems.

Detection time quantifies the detection speed of the detection scheme and maximal infection rate

quantifies the damage caused by a worm before being detected. The purpose of any detection

scheme is to rapidly minimize the damage caused by a worm. Hence, these two metrics can be

used to quantify the effectiveness of any worm countermeasure. As the values increase, the

worm attack performance improves and the detection performance worsens.

 Given random selection of MC
*, we generate three C-Worm attacks (viz., C-Worm 1, C-Worm

2 and C-Worm 3) that are characterized by different selections of mean and variance magnitudes

for MC
*. In our simulations, we assume that the scan rate of traditional pure random scan (PRS)

worm follows a normal distribution Sn = N(40, 40) (note that if the scan rate generated by above

distribution is less than 0 , we set the scan rate as 0). We also set the total number of vulnerable

computers on the Internet as 360,000 which is the total number of infected computers in “Code-

Red” worm incident [1].

 18

 Table III-1. Maximal Infection Rate (MIR) for Existing Traffic Volume-Based Detection

 Schemes

Detection

Schemes

PRS worm C-Worm 1 C-Worm 2 C-Worm 3

Mean 4.8% 100% 100% 28%

VAR 5.0% 100% 100% 100%

TREND 3.1% 100% 100% 100%

 Table III-2. Detection Time (DT) for Existing Traffic Volume-Based Detection Schemes

Detection

Schemes

PRS worm C-Worm 1 C-Worm 2 C-Worm 3

Mean 2290 Inf Inf 4803

VAR 2340 Inf Inf Inf

TREND 2134 Inf Inf Inf

Table III-1 and Table III-2 show how the C-Worm is able to effectively defeat the existing traffic

volume-based detection schemes. The data of these two tables show the detection results of three

representative traffic volume-based detection schemes (denoted by MEAN [31], VAR [32], and

TREND [30]) on PRS worms and different C-Worms. For fairness, we set the parameters for

these three detection schemes, so that all schemes can achieve similar low false positive rates,

i.e., less than 1%. Remark that the false positive rate is the probability that a detection system

detects the existence of worm propagation when there is actually no occurrence of worm

 19

propagation. Although all three schemes are effective while detecting PRS worm attacks, they

fail in detecting the C-Worm attacks. For example, all the schemes completely fail to detect the

C-Worm 1 and 2. Only MEAN can detect the C-Worm 3, but only after a considerably large

detection time of 4803 minutes and an unimpressive maximal infection rate of 28%.

2.c. Discussion

Although in this chapter we only demonstrate effectiveness of C-Worms against existing traffic

volume-based detection schemes, the design principle of C-Worm can be extended to defeat

other newly developed detection schemes, such as destination distribution-based detection [33,

34, 35]. In the following, we discuss the preliminary idea.

 Recall that the attack target distribution-based schemes intend to analyze the distribution of

attack targets (the scanned destination IP addresses) as basic detection data to capture the

fundamental feature of worm propagation, i.e., continuously scanning different targets, which is

not expected in non-worm scan traffic. However, our initial investigation shows that the worm

attacker is still able to defeat such a countermeasure via manipulating the attack target

distribution. For example, the attacker may launch a portion of scan traffic bound for some IP

addresses monitored by ITM system. Recall that those dedicated IP addresses monitored by ITM

system can be obtained by launching probing attacks or via other means, which will be studied in

Chapter IV.

 Using port 135 reported by SANs ISC as an example, we analyze the traces and obtain the

traffic target distribution in a window lasting for 10 mins. Following existing work [33], we use

entropy as the metrics to measure the attack target distribution. Fig. III-1 shows the Probability

Density Function (PDF) of background traffic’s entropy values. We also simulate the worm

propagation traffic which allocate a portion of scan traffic bound for IP addresses monitored by

 20

the ITM system, then we obtain the PDF of entropy value for combined traffic including both

worm propagation and background traffic. From Fig. III-1, we know that when the attacker uses

a portion of attack traffic to manipulate the target distribution, the entropy-based detection

scheme can be degraded significantly. For example, when the attacker uses 10% traffic to

manipulate the traffic’s entropy value, the false positive rate of entropy-based detection scheme

is 14%. When the attacker uses 30% traffic to manipulate the traffic’s entropy value, the false

positive rate becomes 40%. Hence, in order to preserve the performance, entropy-based

detection scheme needs to evolve correspondingly and integrate with other detection schemes.

We will perform a more detailed study of this aspect in our future work.

 Fig. III-1. Manipulation of Attack Target Distribution Entropy

 21

3. Detection of the C-Worm

3.a. Design Rationale

In this section, we develop a novel spectrum-based detection scheme. Recall that the C-Worm

goes undetected by detection schemes that try to determine the worm propagation volume only

in the time domain. Our detection scheme captures the distinct pattern of the C-Worm in the

frequency domain, and thereby has the potential of effectively detecting the C-Worm

propagation.

 Fig. III-2. PDF of SFM on C-Worm Traffic

 In order to identify the C-Worm propagation in the frequency domain, we use the distribution

of Power Spectral Density (PSD) and its corresponding Spectral Flatness Measure (SFM) of the

propagation traffic. Particularly, PSD describes how the power of a time series is distributed in

the frequency domain. Mathematically, it is defined as the Fourier transform of the auto-

correlation of a time series. In our case, the time series corresponds to the changes in the number

 22

of worm instances that actively conduct the propagation over time. The SFM of PSD is defined

as the ratio of geometric mean to arithmetic mean of the coefficients of PSD. The range of SFM

values is [0, 1] and a larger SFM value implies flatter PSD distribution and vice versa.

 Fig. III-3. PDF of SFM on Non-Worm Traffic

 To illustrate SFM values of both the C-Worm propagation and normal non-worm scan traffic,

we plot the Probability Density Function (PDF) of SFM for both C-Worm propagation and

normal non-worm scan traffic as shown in Fig. III-2 and Fig. III-3, respectively. Note that we

only show the data for port 8080 as an example, and other ports show similar observations. From

this figure, we know that the SFM value for normal non-worm scan traffic is very large (e.g.,

SFM in [0.5, 0.6] has much higher density compared with other magnitudes). The C-Worm data

shown in Fig. III-2 is based on 800 C-Worm attacks generated by varying attack parameters

defined in Section 2, such as p(t) and MC
*. From this figure, we know that the SFM value of the

C-Worm attacks is much smaller (e.g., SFM in [0.04, 0.1] has high density). From the above two

 23

figures, we can observe that there is a clear demarcation range of SFM in (0.3, 0.38) between the

C-Worm propagation and normal non-worm scan traffic. As such, the SFM can be used to

effectively detect the C-Worm propagation traffic.

 The large SFM values of normal non-worm scan traffic can be explained as follows. The

normal non-worm scan traffic does not tend to concentrate at any particular frequency since its

random dynamics is not caused by any recurring phenomenon. The small value of SFM can be

reasoned by the fact that the frequency of C-Worm propagation traffic is within a narrow-band.

Such concentration within a narrow range of frequencies is unavoidable since the C-Worm

adapts to the dynamics of the Internet in a recurring manner for manipulating the overall

propagation traffic volume. In reality, the above recurring manipulations involve steady increase

followed by a decrease in the propagation traffic volume.

3.b. Spectrum-Based Detection Scheme

We now present the details of our spectrum-based detection scheme. Similar to other detection

schemes [30, 32], we use a “destination count” as the number of the unique destination IP

addresses targeted by launched scans during worm propagation. To understand how the source

count data is obtained, we recall that an ITM system collects logs from distributed monitors

across the Internet. With reports in a sampling window Ws, the destination count X(t) is obtained

by counting the unique destination IP addresses in received logs.

 To conduct spectrum analysis, we consider a sliding window Wd in the worm detection

system. Wd consists of q continuous detection sampling windows and each sampling window

lasts Ws. The detection sampling window is the unit time interval to sample the detection data

(e.g., the destination count). Hence, at time i, within a sliding window Wd, there are q samples

 24

denoted by (X(i-q-1), X(i-q-2),…, X(i)), where X(i-j-1) (j in (1, q)) is j-th destination count from

time i-j-1 to i-j.

 In our spectrum-based detection scheme, the distribution of PSD and its corresponding SFM

are used to distinguish the C-Worm propagation traffic from the non-worm scan traffic. In our

worm detection scheme, the detection data (e.g., destination counter), is further processed in

order to obtain its PSD and SFM. In the following, we detail how the PSD and SFM are

determined during the processing of the detection data.

1) Power Spectral Density (PSD)

 To obtain the PSD distribution for worm detection data, we need to transform data from the

time domain into the frequency domain. To do so, we use a random process X(t), t in [0, n] to

represent the worm detection data. Assuming X(t) is the destination count in time period [t-1, t] (t

in [1, n]), we define the auto-correlation of X(t) by RX(L) = E [X(t)X(t+L)], where RX(L) is the

correlation of worm detection data in an interval L. If a recurring behavior exists, a Fourier

transform of the auto-correlation function of RX(L) can reveal such behavior. Thus, the PSD

function (also represented by SX(f); where f refers to frequency) of the scan traffic data is

determined using the Discrete Fourier Transform (DFT) of its auto-correlation function as

follows,

∑
−

=

−⋅=
1

0

/2 ,))(()),((
N

n

Nknj
XX eLRKLR πϕ (III-5)

where K=0, 1, …, N-1. As the PSD inherently captures any recurring pattern in the frequency

domain, the PSD function shows a comparatively even distribution across a wide spectrum range

for the normal non-worm scan traffic. Whereas, the PSD of C-Worm propagation traffic shows

spikes or noticeably higher concentrations at a certain range of the spectrum range.

 25

2) Spectral Flatness Measure (SFM)

 We measure the flatness of PSD to distinguish the propagation traffic of the C-Worm from

the normal non-worm scan traffic. To this end, we introduce the Spectral Flatness Measure

(SFM). The SFM is defined as the ratio of the geometric mean to the arithmetic mean of the PSD

coefficients [47, 48]. It can be expressed as,

,
)(

1
)]([

1

1

1

∑ =

=∏=
N

K k

N
k

N
k

fS
N

fS
SFM (III-6)

where S(fk) is the k-th PSD coefficient for the PSD obtained from the results in (III-5). SFM is a

widely existing measure for discriminating frequencies in various applications such as voiced

frame detection in speech recognition [48, 49]. In general, small values of SFM imply the

concentration of data at narrow frequency spectrum ranges.

 Table III-3 shows the mean value of SFM based on extensive analysis of non-worm traffic

data for some popular ports collected by SANs ISC. Overall, we note that the PSD distribution of

non-worm scan traffic is relatively flat, thereby resulting in relatively larger magnitudes of SFM

values. The above observation can be reasoned due to the fact that normal non-worm scan traffic

does not tend to concentrate at any particular frequency since its random dynamics is not caused

by any repeating phenomenon. Differently, the C-Worm has unpreventable recurring behavior in

its propagation traffic; consequently its SFM values are comparatively smaller than the SFM

values of normal non-worm scan traffic.

 Table III-3. SFM Mean Value for Normal Non-Worm Scan Traffic

Port 23 25 53 113 139 445 1025 4672 6446 6881 8080 27015

SFM 0.71 0.71 0.95 0.86 0.64 0.67 0.46 0.47 0.45 0.74 0.56 0.65

 26

3) Detection Decision Rule

 We now describe the method of applying an appropriate detection rule to detect C-Worm

propagation. As the SFM value can be used to sensitively distinguish the C-Worm propagation

and normal non-worm scan traffic, the worm detection is performed by comparing the SFM with

a predefined threshold. If the SFM value is smaller than a predefined threshold, then a C-Worm

propagation alert is generated. The value of the threshold used by the C-Worm detection can be

set based on the knowledge of statistical distribution of SFM values that correspond to the non-

worm scan traffic. If we can obtain the distribution of SFM values for the C-Worm through

comprehensive simulations and even real-world profiled data in the future, the optimal threshold

can be obtained by applying the Bayes classification [50]. If the distribution of SFM values for

the C-Worm is not available, based on the distribution of SFM values of the normal non-worm

scan traffic, we can set an appropriate value. For example, the value can be determined by the

Chebyshev inequality [50] in order to obtain a reasonable false positive rate for worm detection.

 In addition, our spectrum-based scheme is also generic for detecting the PRS worms. This is

due to the fact that propagation traffic of PRS worms has a constantly rapid, exponential

increase. Thus, in the propagation traffic of PRS worms, the PSD values in the low frequency

range are much higher compared with other frequency ranges.

3.c. Analysis

We now present a formal analysis of SFM for the C-Worm. Let the observed traffic on the

countermeasure system be Z1 = X1 + Y1, where X1 is the random variable representing the C-

Worm propagation traffic (e.g., volume, source counter) in one sampling window and Y1 is the

random variable representing the background scan traffic (e.g., volume, source counter) in one

sampling window. We define X = X1 − E[X1], where E[X1] is the mean value of X1 and Y = Y −

 27

E[Y1], where E[Y1] is the mean value of Y1. Thus, we have Z = X + Y, where X and Y are

independent zero-mean random variables. We assume that Z’s spectrum is within the −W
≤

 f
≤

 W

range.

 Based on the observations shown in Section 3.a, we approximately represent Y1(t) by white

Gaussian noise, which is widely used in modeling wide-band noise in communication systems.

Thus, Y can be approximately represented by a Gaussian white noise with zero mean and a

variance of σ. Thus, in the total frequency band limited within the range [−W
≤

 f
≤

 W], the PSD

of Y is SY(f) = σ, which shows that Y has a constant power spectrum and each frequency has the

average power value σ.

 Considering the fact that C-Worm instances adopt the control mechanism strategy to

manipulate the overall propagation traffic volume, we explained how a distinct trend can be

noticed in the spectrum domain, i.e., the trend being a concentration within a narrow range of

frequencies on the propagation traffic of the C-Worm. Assume that the frequency of C-Worm

propagation traffic counter is referred to as m (denoted by fk), where k = 1, . . . , m and m < W in

the total (narrow-band) frequency range. Without loss of generality, X(t) is approximately

represented by

∑
=

+=
m

k
kk tfatX

2

1

),2cos()(θπ (III-7)

where θ is uniformly distributed in the interval [0, 2π]) and ak is uniformly distributed in the

interval [−l, l]. Based on the relationship among autocorrelation, mean and autoconvariance, we

have RX(τ) = CX(t1, t2) + E[X(t1)]E[X(t2)], where τ = t2−t1, E[X(t1)] = E[X(t2)] = 0, and CX(t1, t2) =

E[(X(t1)−E(X(t1))(X(t2)−E(X(t2))] is the autocovariance of a random process X(t). Thus, it is easy

to verify that

 28

 ∑
=

=
m

k
k

k
X f

a
R

1

2

)].2cos(
2

[)(τπτ (III-8)

Thus, the PSD of X(t) can be represented by

 ∑
=

=

++−=
mk

k
k

k
k

k
X ff

a
ff

a
fS

1

22

)].(
4

)(
4

[)(δδ (III-9)

As X(t) and Y(t) are independent random process (SY(f) = σ), we have

 ∑
=

=

+++−=
mk

k
k

k
k

k
X ff

a
ff

a
fS

1

22

.)](
4

)(
4

[)(σδδ (III-10)

Define R=akδ(fk)/4σ. The SFM of Z(t) can be represented by

 .
1)1()]22(2[

2
1

)(
2

2
22

+−
=

−+
=

−

R
W

m
R

mWRm
W

R
fS

W

m

W

m
mW

Z

σσ

σσ
 (III-11)

We can rewrite SZ(f) in (III-11) as the function of R as

 ,
1)1(

)(
+−

=
xt

x
xF

t

 (III-12)

where x = R, t = m/W < 1. As

 ,0
]1)1([

)1)(1(
)('

2

1

<
+−

−−=
−

xt

txtx
xF

t

 (III-13)

the function SZ(f) is a decreasing function of x (= R) and it is observable that

 ,11
)(4 >>+=

σ
δ fa

R k (III-14)

(due to the Dirac’s δ function property), SZ(f) → 0. Thus, the SFM of C-Worm is close to 0.

 29

4. Performance Evaluation

In this section, we report our evaluation results that illustrate the effectiveness of our spectrum-

based detection scheme against both the C-Worm and the PRS worm in comparison with

existing representative volume-based detection schemes. In addition, we also consider the

destination distribution-based detection schemes and evaluate their performance against the C-

Worm.

4.a. Evaluation Methodology

1) Evaluation Metrics

 In order to evaluate the performance of any given detection scheme against the C-Worm, we

use the following metrics. The first two metrics are the Detection Time (DT) and the Maximal

Infection Rate (MIR) defined in Section 2. Recall that detection time is defined as the time taken

to successfully detect the worm attack from the moment the worm propagation starts. It

quantifies the detection speed of a detection scheme. Maximal infection rate defines the ratio of

an infected computer number over the total number of vulnerable computers up to the moment

when the worm propagation is detected. It quantifies the damage caused by a worm before being

detected. The objective of any detection scheme is to minimize the damage caused by a rapid

worm propagation. Hence, MIR and DT can be used to quantify the effectiveness of any worm

detection scheme. The higher the values, the more effective the worm attack and the less

effective the detection. In addition, we use other two metrics called the Detection Rate (PD) and

False Positive Rate (PF). PD is defined as the probability that a detection scheme can correctly

identify a worm attack. The PF is defined as the probability that a detection scheme mistakenly

identifies a nonexistent worm attack.

2) Evaluation Setup

 30

 In our evaluations, we set the total number of vulnerable computers on the Internet as 360,000

[1]. For the scan rate S (number of scans per minute), we choose different scan rates for infected

computers (worm instances). In our evaluation, the scan rates are predetermined and follow a

Gaussian distribution S = N(Sm, Sδ), where Sm and Sδ are in [20, 64], similar to those used in [30].

 We simulate the C-Worm attacks by varying the attack parameters, such as control parameter

p(t) and the number of worm instances participating the scan MC
* defined in Section 2. The MC

*

follows the Gaussian distribution. Particularly, its mean is randomly selected in (12000, 75000)

and standard deviation is randomly selected in (0.2, 100). We simulate different C-Worm

propagation traffic by varying these values. The detection sampling window Ws is set to 5

minutes and the detection sliding window Wd is set to be incremental from 80 min to 800 min.

The incremental selection of Ws from a comparatively small window to a large window can

adaptively reflect the worm scan traffic dynamics caused by the C-Worm propagation at various

speeds. We choose the setting of the detection sampling window to be short enough in order to

provide enough sampling accuracy, as prescribed by Nyquist’s sampling theory. Also, we choose

the detection sliding window to be long enough to capture adequate information for spectrum-

based analysis [48].

 In practice, since detection systems analyze port-scan traffic blended with the non-worm scan

traffic, we replay the real-world traces as non-worm scan traffic (as the background noise to

worm propagation traffic) in our simulations. In particular, we used real-world trace (Shield logs

dataset) from 01/01/2005 to 01/15/2005 collected by a ITM system called SANs ISC. Note that

SANs ISC maintained by the SANs Institute have gained popularity among the Internet security

community in recent years. ISC collects firewall and Intrusion detection system logs, which

indicate port-scan trends from approximately 2000 organizations that monitor up to 1 million IP

 31

addresses. We choose the scan traffic logs for port 8080 as an example for profiling the non-

worm scan traffic.

4.b. Evaluation Results of Traffic Volume-Based Detection Schemes

We evaluate our proposed spectrum-based detection scheme by comparing its performance with

three existing propagation traffic volume-based detection schemes. The first scheme is the

volume mean-based (MEAN) detection scheme which uses the mean value of propagation traffic

to detect worm propagation [31]; the second scheme is the trend-based (TREND) detection

scheme which uses the increase trend of propagation traffic volume to detect worm propagation

[30]; and the third scheme is the victim number variance-based (VAR) detection scheme which

uses the variance of the propagation traffic volume to detect worm propagation [32].

 We define our spectrum-based detection scheme as SPEC. For the off-line training, we use

1000 worm attacks that include both the C-Worm (800 C-Worm attacks) and PRS worms (200

PRS worm attacks). For fairness, we set the detection parameters for our SPEC scheme and the

other three detection schemes, so that all detection schemes achieve a similar false positive rate

(PF) below 2%.

 In the following, we first evaluate the performance of our spectrum-based detection scheme

for C-Worms. Following this, we evaluate the performance of our spectrum-based detection

scheme for PRS worms.

1) Detection of C-Worms

 Table III-4 shows the detection results of different detection schemes against the C-Worm.

The results have been averaged over 500 C-Worm attacks. From this table, we can observe that

existing detection schemes are not able to effectively detect the C-Worm and their detection rate.

(PD) values are significantly lower in comparison with our spectrum-based detection schemes

 32

(SPEC). For example, SPEC achieves the detection rate of 98%, which is at least 3-4 times more

accurate than detection schemes such as VAR and MEAN that achieve detection rate values of

only 48% and 14%, respectively.

 Our SPEC detection schemes also achieve good detection time (DT) performance in addition

to the high detection rate values indicated above. In contrast, the detection time of existing

detection schemes have relatively larger values. As a consequence of the detection time values,

we can see that the C-Worm propagation is effectively contained by SPEC as demonstrated by

the lower values of maximal infection rate (MIR) for the SPEC. Since the detection rate values

for the existing detection schemes are relatively small, obtaining low values of maximal

infection rate for those schemes are not as significant as those for SPEC.

 Table III-4. Detection Results of Traffic Volume-Based Schemes against C-Worm

Schemes VAR TREND MEAN SPEC

Detection Rate (PD) 48% 0 14% 98%

Maximal Infection Rate (MIR) 14.4% 100% 7.5% 1.1%

Detection Time (DT) 2567 Inf 1838 1749

2) Detection Performance for PRS Worms

 We evaluate the detection performance of different detection schemes for PRS worms. The

detection performance results have been averaged over 500 PRS worm attacks. We observe that

our SPEC schemes achieve 100% detection rate (PD) while detecting traditional PRS worms in

comparison with existing worm detection schemes that have been specifically designed for

detecting PRS worms.

 33

 In view of emphasizing the performance of our SPEC scheme with the existing worm

detection schemes, we plot the maximal infection rate (MIR) and detection time (DT) results in

Figs. III-4 and III-5 for different scan rates, respectively. We can observe from these figures that

the maximal infection rate and detection time results of our spectrum-based scheme are

comparable or even better than other existing worm detection schemes. For example, when the

mean scan rate is 70/min, our SPEC scheme achieves a detection time of 1024 mins, which is

faster than that of VAR and MEAN schemes with values 1239 min and 1161 min, respectively.

For the same mean scan rate of 70/min, SPEC achieves a maximal infection rate of 0.03, which

is comparable to TREND’s MIR value and is less than 50% of the MIR value for the VAR and

MEAN detection schemes. The effectiveness of our spectrum-based scheme is based on the fact

that PRS worm propagation traffic shows a constantly rapid exponential increase. Thus, SFM

values are relatively small due to PSD concentration at the low frequency range in the case of

PRS worms.

 Fig. III-4. Maximal Infection Rate on PRS Worms

 34

 Fig. III-5. Detection Time on PRS Worms

4.c. Evaluation Results of Traffic Distribution-Based Detection Schemes

In Section 4.b, we evaluate the detection performance of our proposed scheme along with other

three detection schemes. Each of these detection schemes belong to the traffic volume-based

detection category due to the fact that traffic volume is used as the main detection feature. As we

mentioned earlier, there are other schemes based on the destination distribution of worm

propagation traffic [33, 34, 35]. Taking into consideration this category of detection schemes, we

evaluate two additional schemes against the C-Worm. The first one is the entropy-based

detection scheme [33] which uses entropy to measure the traffic destination distribution feature

raised by worm propagation. For this detection scheme, we record all scan traffic data in each

sampling window and then calculate the entropy. The sliding detection window is set to 10

(consists of 10 sample windows). If the average value of the entropy within a sliding detection

window is larger than predefined threshold, which is determined based on the statistical profile

 35

of background traffic. Other measures, such as correlation-coefficient, have also been showing

the effective capture of the destination distribution characteristics raised by worm propagation.

The second scheme is an extension of the first one, incorporating the wavelet analysis. Based on

the time-series of data (the entropy value in each sampling window), we carry out discreet

wavelet transform (DWT) and record the coefficients of wavelet analysis at different levels. In

our case, the anomaly detection is based on approximate coefficients of level 4 and 5, which

represent the signal anomaly in a low-frequency range. In our experiment, the length of time-

series DWT is set to 50 and each data represents the entropy value in one sampling window.

The wave in our experiment uses the Daubechies orthogonal wavelet. The parameters for

generating C-Worms is the same as those shown in Section 4.a.

 Table III-5. Detection Results for Target Distribution-Based Schemes against C-Worm

 Schemes Entropy Entropy with

Wavlet

 SPEC

Detection Rate (PD) 98% 99% 98%

Maximal Infection Rate (MIR) 0.8% 0.5% 1.1%

Detection Time (DT) 1649 1548 1749

 Table III-5 shows the detection results of destination distribution-based detection schemes in

comparison with our proposed scheme against the C-Worm. From this table, we can see that our

proposed scheme achieves comparable detection performance against the C-Worm in terms of

detection rate, maximal infection rate, and detection time. However, our scheme is a somewhat

slower, resulting in worse detection time and maximal infection rate. This is expected and can be

explained by the following two facts: First, our spectrum-based scheme heavily relies on traffic

 36

volume. Second, the C-Worm studied in this chapter is mainly traffic volume-based. That is, the

C-Worm in this chapter only limits the manipulation of traffic volume, aiming to defeat existing

traffic volume-based detection schemes. However, as shown in Section 2.c, it is possible that a

worm attacker can adopt other strategies (e.g., manipluation of the attack target distribution) and

further defeat destination distribution-based detection schemes. For example, the attacker may

launch a portion of scan traffic bound for some IP addresses monitored by ITM system. Recall

that those dedicated IP addresses monitored by ITM system can be obtained by launching

probing attacks or via other means, which will be studied in Chapter IV.

5. Summary

In this chapter, we studied the countermeasure based on propagation traffic to defend against a

specific class of worm called the C-Worm that has the capability to camouflage its propagation

traffic volume and such behavior as background traffic. Our analysis and evaluation showed that,

although the C-Worm successfully camouflages its propagation in the time domain, its

camouflaging nature inevitably manifests as a distinct pattern in the frequency domain. Based on

such observations, we developed a novel spectrum-based detection scheme to detect the C-

Worm. Specifically, our spectrum-based detection scheme used the Power Spectral Density

(PSD) distribution of the C-Worm propagation traffic volume and its corresponding Spectral

Flatness Measure (SFM) as the key detection feature to distinguish the C-Worm propagation

traffic from the normal non-worm scan traffic. The evaluation data showed that our scheme

achieved superior detection performance against the C-Worm in comparison with other

propagation traffic volume-based detection schemes.

 37

CHAPTER IV

COUNTERMEASURE BASED ON PROBING TRAFFIC

In this chapter, we focus on developing the countermeasure based on probing traffic.

1. Overview

To order to defend against worm attacks, large-scale traffic monitoring across the Internet has

become necessary. Developing and deploying Internet threat monitoring (ITM) systems (or

motion sensor networks) is one of the major efforts in this realm. Generally, an ITM system

consists of a number of monitors and a data center. The monitors are distributed across the

Internet and can be deployed at hosts, routers, and firewalls, etc. Each monitor is responsible for

monitoring and collecting traffic targeting to a range of IP addresses within a sub-network. The

range of IP addresses covered by a monitor is also referred to as the location of the monitor.

Periodically, the monitors send traffic logs to the data center and the data center analyzes the

traffic logs and issues the worm attack warnings.

 However, the integrity and functionality of ITM systems largely depend on the confidentiality

of the IP addresses covered by their monitors, i.e., the locations of monitors. If the locations of

monitors are identified, the attacker can deliberately avoid these monitors and directly attack the

uncovered IP address space. It is a known fact that the number of sub-networks covered by

monitors is much smaller than the total number of sub-networks in the Internet [21, 22, 25]. In

other words, the IP address space covered by monitors represents a very small portion of the

entire IP address space. Hence, bypassing IP address spaces covered by monitors will

significantly degrade the accuracy of the traffic data collected by the ITM system in reflecting

the real situation of attack traffic. Furthermore, the attacker may also poison ITM systems by

manipulating the traffic towards and captured by disclosed monitors. For example, the attacker

 38

can launch high-rate port-scan traffic to disclosed monitors and feign a large scale worm

propagation. In summary, the attacker can significantly compromise the ITM system

performance if he is able to disclose the locations of monitors. It is important to have a thorough

understanding of such attacks and design efficient countermeasures to defend against them.

 In the following, we first investigate a category of stealthy attacks called low-rate

LOCcalization (lLOC) attack, which can accurately and invisibly localize the monitors in ITM

systems. We then develop countermeasures to defend against such attacks. Notice that the

stealthy probing attack part in this Chapter is based on the joined work between Texas A&M

University and the Ohio State University. My work focused on problem definition, literature

survey, mathematical analysis, and simulations.

2. Attack Model

In this section, we will discuss the lLOC attack in detail. We will first give an overview of the

lLOC attack, and then present the detailed procedures of the attack, followed by additional

discussions and analytical results on its mechanisms.

2.a. lLOC Attack

1) Workflow

 Fig. IV-1 shows the basic workflow of the lLOC attack. This figure also illustrates the basic

idea of the ITM system and its threats. In the ITM system, the monitors deployed at various

networks record their observed port-scan traffic and continuously update their traffic logs to the

data center. The data center first summarizes the volume of port-scan traffic destinated towards

(and reported by) all monitors, and then publishes the report data to the public in a timely

fashion.

 39

 As shown in Fig. IV-1 (a) and (b) respectively, the lLOC attack consists of the following two

stages:

 (a) Attack Traffic Generation: In this stage, as shown in Fig. IV-1 (a), the attacker first selects

a code. Then, he encodes the attack traffic by embedding the selected code into the traffic.

Lastly, the attacker launches the attack traffic towards a target network (e.g., network A in Fig.

IV-1 (a)). We denote such an embedded code pattern in the attack traffic as the attack mark of

the lLOC attack, and denote the attack traffic encoded as attack mark traffic.

1. Select code
2. Encode attack

traffic

monitors

Data center

monitors

Network A
Network B

Internet

3. Launch
Attack Traffic

Attacker

Network C

 +

MONITORS’ LOG
UPDATE

: Background Traffic

: Attack Traffic

1. Select code
2. Encode attack

traffic

monitors

Data center

monitors

Network A
Network B

Internet

3. Launch
Attack Traffic

Attacker

Network C

 +

MONITORS’ LOG
UPDATE

: Background Traffic

: Attack Traffic

1. Select code (a.1)
2. Encode attack (a.2)

traffic
7. Recognize probe
mark (a.5)

monitors

Data center

monitors

Network A
Network B

Internet

3. Launch Attack
Traffic (a.3)

5. Query (a.4)

6. Data center sends back
query Response data

Attacker

Network C

+

 +

MONITORS’ LOG
UPDATE

 (a) attack stage 1: attack traffic generation (b) attack stage 2: attack traffic decoding

 Fig. IV-1. Workflow of the lLOC Attack

 (b) Attack Traffic Decoding: In this stage, as shown in Fig. IV-1 (b), the attacker first queries

the data center for the traffic report data. Such report data consist of both attack traffic and

background traffic. After obtaining the report data, the attacker tries to recognize the attack mark

(i.e., the code embedded in the lLOC attack traffic) by decoding the report data. If the attack

mark is recognized, the report data must include the attack traffic, which means the target

 40

network is deployed with monitors and the monitors are sending traffic reports to the ITM data

center.

2) Code-Based Attack

 The lLOC attack adopts a code-based approach to generate the attack traffic. Coding

techniques have been widely implemented in secured communication; for example, Morse code

is one such example. Without knowledge of Morse code, the receiver would find it impossible to

interpret the carried information [51].

 In the lLOC attack, we use the pseudo-noise code (PN-code) based attack approach, which has

three advantages. First, the code is embedded in traffic and can be correctly recognized by the

attacker even under the interference from background traffic, ensuring accuracy of the attack.

Second, the code (of sufficient length) itself provides enough privacy. That is, the code is only

known by the attacker, thereby, only the code pattern embedded in attack traffic can be

recognized by the attacker. Furthermore, the code is able to carry information. A longer code is

more immune to interference, and requires comparatively lower-rate attack traffic as the carrier,

which is harder to be detected. All these characteristics help to achieve the objectives of attack

accuracy and invisibility.

 The lLOC attack can not only attack one target network to determine the deployment of

monitors in one network at one time, but it can also attack multiple networks simultaneously.

Intuitively, one simple way to achieve this parallel attack is to launch port-scan/attack traffic

towards multiple target networks simultaneously, by scanning a different port number for each

different target network. For example, if the data center publishes traffic reports of 1000

(TCP/UDP) ports, then the attacker can launch attacks towards 1000 networks simultaneously,

attacking each network with a different port number. Since attack traffic on different ports are

summarized separately at the data center, the attacker still can separate and thus decode its traffic

 41

towards different targets. Hence, the attacker can localize monitors in multiple networks

simultaneously and accurately. However, can the attacker further improve the attack efficiency?

Assuming that the data center still only publishes reports of 1000 ports, can the attacker

fingerprint 10,000 target networks simultaneously, for example, by attacking 10 different

networks using the same port number? Using a high-rate of port-scan traffic cannot achieve this,

because it is indiscernible whether a spike in the traffic report is caused by traffic logs from one

network or the other 9 networks. In order to achieve this goal in the code-based attack, the

selected code and corresponding encoded attack traffic towards multiple networks for the same

port should not interfere with each other (i.e., each of them can be decoded individually and

accurately by the attacker, although they are integrated/summarized in the traffic report from the

ITM data center). The PN-code selected in the lLOC attack has this feature, giving it the unique

capacity to carry out parallel attack sessions towards multiple target networks using the same

port. The details of the PN-code selection will be discussed in the following sections. In the

following, we will give the details of attack stages illustrated in Fig. IV-1.

 Fig. IV-2. PN-code and Encoded Attack Traffic

 42

2.b. Attack Traffic Generation Stage

In this attack stage, the attacker: (i) selects the code, a PN-code in our case; (ii) encodes the

attack traffic using the selected PN-code; and (iii) launches the encoded attack traffic towards the

target network. For the third step, the attacker can coordinate a large number of compromised

bots to launch the traffic [7]. However, this is not the focus of this chapter. In the following, we

will present detailed discussion of the first and second steps, respectively.

1) Code Selection

 To evade detection by others, the attack traffic should be similar to the background traffic.

From a large set of real-world background traffic traces obtained from SANs ISC [25, 52], we

conclude that the background traffic shows random patterns in both time and frequency domains.

The attack objectives of both accuracy and invisibility, and an attacker’s desire for parallel

attacks require that: (i) the encoded attack traffic should blend in with background traffic, i.e., be

random in both the time and frequency domains, (ii) the code embedded in the attack traffic

should be easily recognizable to the attacker himself, and (iii) the code should support parallel

attacks.

 To meet the above requirements, we choose the PN-code to encode the attack traffic. The

PN-code in the lLOC attack is a sequence of -1 or +1 with the following features [53, 54, 55].

The PN-code is random and “balanced”. The -1 and +1 are randomly distributed and the

occurrence frequencies of -1 and +1 are nearly equal. This feature contributes to good spectral

density properties (i.e., equally spreading the energy over the whole frequency-band). It makes

the attack traffic appear as noise and blend in with background traffic in both time and frequency

domains.

 The PN-code has a high correlation to itself and a low correlation to others (such as random

noise), where the correlation is a mathematical tool for finding repeating patterns in a signal

 43

[55]. This feature makes it feasible for the attacker to accurately recognize attack traffic

(encoded by the PN-code) from the traffic report data even under the interference of background

traffic.

 The PN-code has a low cross-correlation value among different PN-code instances. The lower

this cross-correlation, the less interference among multiple attack sessions in parallel attack. This

feature makes it feasible for the attacker to conduct parallel localization attacks towards multiple

target networks on the same port.

 The Walsh-Hadamard code and M-sequence code [53, 54] are two popular types of PN-code.

The Walsh-Hadamard code has some limitations. Since its frequency spreads into only a limited

number of discrete frequency components, which is different from background traffic, it will

compromise the invisibility of the attack traffic if used in the lLOC attack. In addition, the

Walsh-Hadamard code also strongly depends on global synchronization [54]. To the contrary,

M-sequence code does not have these shortcomings, so we adopt M-sequence codes in the lLOC

attack. We use the feedback shift register to repeatedly generate the M-sequence PN-code due to

its popularity and ease of implementation [53, 56]. In particular, a feedback shift register consists

of two parts. One is an ordinary shift register consisting of a number of flip-flops (two state

memory states). The other is a feedback module to form a multi-loop feedback logic.

2) Attack Traffic Encoding

 During the attack traffic encoding process, each bit in the selected PN-code is mapped to a

unit time period Ts, denoted as mark bit duration. The entire duration of launched traffic (referred

to as traffic launch session) is TsL, where L is the length of the PN-code. The encoding is carried

out according to the following rules: each bit in the PN-code maps to a mark bit duration (Ts);

when the PN-code bit is +1, port-scan traffic with a high rate, denoted as mark traffic rate �, is

generated in the corresponding mark bit duration; when the code bit is -1, no port-scan traffic is

 44

generated in the corresponding mark bit duration. Thus, the attacker embeds the attack traffic

with a special pattern, i.e., the original PN-code.

 Recall that, after this encoding process, the PN-code pattern embedded in traffic is denoted as

attack mark. If we use ci =< ci,1, ci,2, …, ci,L > in {−1,+1}L to represent the PN-code and use ηi

=<ηi,1, ηi,2, …, ηi,L> to represent the attack traffic, then we have ηi,j= �/2�ci,j + �/2 (j = 1,…, L).

Fig. IV-2 shows an example of the PN-code and the corresponding attack traffic encoded with

the PN-code.

2.c. Attack Traffic Decoding Stage

In this stage, the attacker takes the following two steps: (i) The attacker queries the data center

for the traffic report data, which consists of both attack traffic and background traffic. (ii) From

the report data, the attacker attempts to recognize the embedded attack mark. The existence of

the attack mark determines the deployment of monitors in the attack targeted network. As the

query of traffic report data is relatively straightforward, here we only detail the second step, i.e.,

attack mark recognition, as follows.

 In the report data queried from the data center, the attack traffic encoded with the attack mark

is mixed with background traffic. It is critical for the lLOC attack to accurately recognize the

attack mark from the traffic report data. To address this problem, we develop the correlation-

based scheme. This scheme is motivated by the fact that the original PN-code (used to encode

attack traffic) and its corresponding attack mark (embedded in the traffic report data) are highly

correlated; in fact, they are actually the same.

 The attack mark in the traffic report data is the embedded form of the original PN-code. The

attack mark is similar to its original PN-code, although the background traffic may introduce

interference and distortion into the attack mark. We adopt the following correlation degree to

 45

measure their similarity. Mathematically, the correlation degree is defined as the inner product of

two vectors. For two vectors X=<X1, X2, … ,XL> and Y=<Y1, Y2,…, YL> of length L, the

correlation degree of vector X and Y is Г(X, Y) = X ◦ Y = Σ1
LXi·Yi/L, where Г(.) represents the

operator for the inner product of two vectors. Based on above definition, we have Г(X, X) = Г(Y,

Y)=1, if X, Y in {-1,+1}L.

 We use two vectors, ηi=< ηi,1, ηi,2, …, ηi,L> and ωi=< ωi,1, ωi,2, …, ωi,L> to represent attack

traffic (embedded with attack mark) and background traffic, respectively. We shift the above two

vectors by subtracting the mean value from the original data, resulting in two new vectors, η’ i=< η’ i,1, η’ i,2, …, η’ i,L> and ω’ i=< ω’ i,1, ω’ i,2, … , ω’ i,L> . We still use a vector ci =< c i,1, ci,2, …

, ci,L > in {−1,+1}L to represent the PN-code. Thus, the correlation degree between the PN-code

and the (shifted) attack traffic can be obtained. Similarly, we can also obtain the correlation

degree between the PN-code and the (shifted) background traffic as follows.

 According to the rules of encoding attack traffic in Section 2.3.1, ηi= �/2�ci+ �/2 and E(ηi,j)= �/2. Thus, ηi’= η – E(ηi,j)= �/2·ci. Hence, the correlation degree between the original PN-code

and the (shifted) probe mark embedded attack traffic is Г(ci, η’ i) = �/2·Г(ci, ci) = �/2.

Furthermore, we can also derive the correlation degree between the PN-code and the (shifted)

background traffic, i.e., Г(ci, ω’ i). Since the PN-code has low correlation with the (shifted)

background traffic, the mean of such correlation degree can be derived by

∑
=

≈⋅=Γ
L

j
jijiii cwE

L
wcE

1
,,

' .0)]'([
1

)],([(IV-1)

If the standard deviation of the background traffic rate is σx, the variance of such correlation

degree is

 46

.])'([
1

])'([
1

]]0),([)],([
2

1

2
,2

1

2
,,2

2''

L
wE

L
cwE

L

wcEwcVar

x
L

j
ji

L

j
jiji

iiii

σ
==⋅=

−Γ=Γ

∑∑
==

 (IV-2)

Thus, the average correlation degree between the PN-code and the (shifted) background traffic is Г(ci,ωi
’) = σx/L

1/2. Based on the above discussion, the attacker can set appropriate attack

parameters (e.g., PN-code length L and mark traffic rate �) to make correlation degree (�/2)

between the PN-code and the attack mark traffic that is much larger than the correlation degree

(σx/L
1/2) between the PN-code and the background traffic. As such, the attacker can accurately

distinguish the attack mark traffic from the background traffic.

 In the practice of attack mark recognition, vector
λ

i is used to represent the queried report

data, and vector
λ ’

i is used to represent the shifted report data (by subtracting E(
λ

i,j) from
λ

i). The

attacker uses the correlation degree between
λ ’

i and his PN-code ci, i.e., Г(ci, λ ’
i), to determine

the existence of PN-code in the report data. If Г(ci, λ ’
i) is larger than a threshold Ta, which is

referred to as mark decoding threshold, then the attacker determines that the report contains

attack traffic as well as the PN-code ci, and determines that the target network is deployed with

monitors. The accuracy of this correlation-degree-based PN-code recognition is analyzed and

demonstrated in Section 2.e.

2.d. Attack Traffic Synchronization

In order to accurately and effectively recognize the attack mark (PN-code) from the report data,

we need to find the segment of the report data containing the PN-code (i.e., we need to fulfill the

synchronization between the port-scan traffic report data and the PN-code). For this purpose, we

introduce an iterative sliding window-based scheme. The basic idea is to let the attacker obtain

enough report data with small granularity. Then, a sliding window iteratively moves forward to

capture a segment of the report data. For each segment, we apply the correlation-based scheme

 47

discussed in Section 2.c to recognize whether or not the attack mark exists. The details of this

synchronization is presented as follows.

 The attacker first sends a sequence of queries to the data center and each query requests a

portion of report data which lasts for a given unit time, known as query duration Tq. To

guarantee good synchronization and capture of each bit in the PN-code, Tq should be smaller

than the mark bit duration Ts. Also, the attacker needs to send enough queries and ensure that the

queried report data contains the whole attack mark and attack mark traffic, which is length �Ts.

With the report data, the attacker iteratively conducts a correlation test on the report data, using a

sliding window. For example, in the i-th round, the attacker selects ti as the starting time for the

sliding window. In (i+1)-th round, the attacker moves the sliding window one step (Tq) forward,

thus the start time of the sliding window becomes ti + Tq, and so on. In the i-th round, a sequence

of data (length of L) is obtained in the sliding window. The first data point in the sequence is the

traffic data in time duration [ti, ti +Ts], the second data point in the sequence is the traffic data in

time duration [ti+Ts, ti+2Ts], and so on. With these data, the attacker conducts the attack mark

recognition procedure discussed in Section 3. The attacker repeats the attack mark recognition

after each time he moves forward the sliding window, until the attack mark is recognized from

the report data in the current sliding window, or the sliding window has gone through all the

report data.

2.e. Analysis

In this section, we first present our analysis of the impacts of different attack parameters on

attack accuracy. We then discuss how to determine attack parameters.

 48

1) Attack Accuracy Analysis

 In order to measure attack accuracy, we introduce the following two metrics. The first one is

attack successful rate PD, which is the probability that an attacker correctly recognizes the fact

that a selected target network is deployed with monitors. The higher PAD is, the higher the attack

accuracy. The second metric is attack false positive rate PAF, which is the probability that the

attacker mistakenly declares a target network as one deployed with monitors. The lower PAF, the

higher the attack accuracy is. In order to ensure attack invisibility, the obvious method is to use

the low traffic rate �. Recall that Ta is the mark decoding threshold, � is the mark traffic rate,

vector
λ

i represents the queried report data, and vector λ 'i represents the shifted report data (by

subtracting E(
λ

i,j) from
λ

i). Assume that random variables ω ′i,1, … , ω ′i,L (i.e., the shifted

background traffic) are independently, identically distributed (i.i.d) and follow a Gaussian

random distribution with standard deviation σx, then we have the following theorem for the

attack accuracy of the lLOC attack.

 Theorem IV-1. In the lLOC attack, the attack successful rate PAD is

 .
1

1)](|),(Pr[1
2

)2/(
'''' 2

dyeTcP
X

a LT
y

iiiaiiAD ∫
∞

−
−−=+=≤Γ−=

σ
µ

π
ωηλλ

(IV-3)

 The attack false positive rate PAF is

 .
1

1)](|),(Pr[
2

''' 2

dyeTcP
X

a LT
y

iiaiiAF ∫
∞ −−==≤Γ=

σπ
ωλλ (IV-4)

 Proof:

 i) Derivation of attack successful rate PAD.

 According to the definition of PAD, we have

)].(|),(Pr[1 ''''
iiiaiiAD TcP ωηλλ +=≤Γ−= (IV-5)

 49

 Consider that Г(ci, η’
i)= �/2Г(ci, ci)= �/2, the Equation (IV-5) can be rewritten by

)].(|
2

),(Pr[1 '''
iiaiiAD TcP ωλµλ =−≤Γ−= (IV-6)

 Based on the mean and variance of correlation degree determined in Section 3, PAD is

represented by

 ∫
−

∞−

−

−= 2 2 .
2

1
2

2
µ

σ

σπ
a

X
T

Lx

X

AD dxe
L

P (IV-7)

 Let y2=x2L/2σx
2, then we have

 ∫ ∫
−

∞−

∞

−

−− −=−= x

a

X

a

LT

LT

yyX

X

AD dyedye
L

L
P σ

µ

σ

µπ
σ

σπ
2

)
2

(

2

)
2

(
.

1
1

2

2
1

22

 (IV-8)

ii) Derivation of attack false positive rate PAF

 We know that Г(ci,
λ ’

i) =
λ ’

I ◦ ci, where
λ ’

i = ω ′i when no lLOC attack traffic exists. Assuming

that Г(ci,
λ ’

i) follows a Gaussian distribution N(0, σx
2/L) (discussed in Section 3), we have

)].(|),(Pr['''
iiaiiAF TcP ωλλ =≥Γ= (IV-9)

 Thus, PAF can be presented by

 ∫
∞

−

−=
a

X

T

Lx

X

AF dxe
L

P .
2

1
2

2

2σ

σπ
 (IV-10)

 Letting y2=x2L/2σx
2, then we have
∫ ∫

∞ ∞ −− −==
x

a

X

aLT LT
yyX

X

AF dyedye
L

L
P

σ σπ
σ

σπ 2 2

.
1

1
2

2

22

 (IV-11)

Remarks: We make a few observations based on the theorem presented above. First, the attack

successful rate PAF increases and the attack false positive rate PAF decreases with increasing PN-

 50

code length L. That is, higher attack accuracy increases when L increases. Second, with the

increasing mark traffic rate �, attack accuracy also increases.

2) Determination of Attack Parameters

 (a) Determination of �, Ta and L: The attacker can determine the values of attack parameters

based on the above analysis. First, the attacker can determine the mark traffic rate � based on the

statistical knowledge for the background traffic. Given the �, the attacker can further determine

the mark decoding threshold Ta and PN-code length L. Note that the values of other attack

parameters such as the standard deviation of background traffic σx can be determined through

analyzing historical background traffic data published by the data center of the ITM system.

 (b) Mark recognition threshold Ta: Given the mark traffic rate � (determined previously) and

desired attack false positive rate PAF, the attacker can further determine the mark decoding

threshold Ta by resolving Equation (IV-9) in Theorem IV-1.

 (c) Length of PN-code L: Given the mark traffic rate �, mark decoding threshold Ta, and

desired attack successful rate PAD, the attacker can further determine the length of PN-code L by

resolving (IV-3) in Theorem IV-1.

 (d) Determination of Ts: To determine the mark bit duration Ts, the attacker needs to estimate

the possible delay from the moment the attack traffic is first reported by monitors, to the moment

when such attack traffic is published by the data center. To make the lLOC attack effective, the

mark bit duration needs to be at least as large as such delay. Otherwise, the traffic in different bit

durations (each last Ts) may be published at the same moment from the data center, mixing and

thereby rendering them inseparable.

 Several possible methods can be used to obtain such delay information. Some ITM systems

may publish such information on their websites. The attacker may also actively conduct

experiments on ITM systems and measure such delay. For example, the attacker may deploy

 51

monitors in his controlled (small) network and connect them to the targeted ITM system. The

attacker can simply use such monitors to report logs embedded with special patterns (e.g., PN-

code) and keep querying the data center until the embedded traffic patterns are recognized. After

repeating the above process several times, the attacker is able to obtain the statistics profile of

delay information, and then determine the mark bit duration Ts. We use this method in our

implementation of the lLOC attack, which is presented in the next section.

3. Performance Evaluation of lLOC Attacks

3.a. Evaluation Methodology

In our evaluation, we use the real-world port-scan traces from SANs ISC (Internet Storm Center)

including the detail logs from 01/01/2005 to 01/15/2005 [25, 52]. The traces used in our study

contain over 80 million records and the overall data volume exceeds 80 GB. We use these real-

world traces as the background traffic. We merge records of simulated lLOC attack traffic into

these traces and replay the merged data to emulate the lLOC attack traffic. We evaluate different

attack scenarios by varying attack parameters. Here, we only show the data on port 135;

experiments on other ports result in similar observations.

 We explore both attack accuracy and invisibility to evaluate attack performance. For attack

accuracy, we use two metrics: one is the attack successful rate PAD and the other is the attack

false positive rate PAF, which are defined in Section 5. For attack invisibility, we use two

metrics: one is the defender detection rate PDD and the other is defender false positive rate PDF.

For the countermeasure, we only use a representative and generic algorithm which has no

specific requirement on detection systems. More comprehensive countermeasures will be studied

in Section 4. This simple threshold-based detection algorithm is widely adopted by many

systems [2, 18, 25, 31]. In this algorithm, if the traffic rate (volume in a given time duration) is

 52

larger than a pre-determined threshold Td (referred to as the defender detection threshold), the

defender issues threat alerts and initiates reactions [25]. Such a detection threshold is usually

obtained through statistical analysis of the background traffic. Note that the threshold Td must be

carefully chosen for anomaly detection: it must maintain both high detection rate (i.e., the

probability that an ongoing attack is detected) and low false positive rate (i.e., the probability

that an alarm is triggered when no attack is occurring).

 We evaluate the lLOC attack in comparison with two other baseline attack schemes. The first

one is the localization attack that launches a significantly high-rate of port-scan traffic to target

networks as introduced in [27, 28]. We denote this attack as a volume-based attack. The second

baseline scheme embeds the attack traffic with a unique frequency pattern. In this attack, the

attack traffic rate changes periodically. Then, the attacker expects the report data from the data

center to show such a unique frequency pattern if the selected target network is deployed with

monitors. We denote this attack scheme as a frequency-based attack. For fairness, we adjust the

detection thresholds in all schemes so that reasonable attack false positive rate PAF and defender

false positive rate PDF (below 1%) are achieved. For the lLOC attack, we generate different

attack traffic based on variant PN-code length L (i.e., 15, 30, 45). The default PN-code length is

set to 30. To better quantify the attack traffic rate for the lLOC attack and other attack schemes,

we use the normalized attack traffic rate P, which is defined as P = �/σx for lLOC attack, where σx is the standard variation of background traffic rate. The default value of Tq = 0.1Ts. In all

simulation figures, the attack traffic rate (x-axis) is based upon this normalized attack traffic rate

defined above.

3.b. Evaluation Results

In this section, we will present the evaluation results.

 53

 (a) Attack Accuracy: To compare the attack accuracy of the lLOC attack with that of volume

and frequency-based attack schemes, we plot the attack successful rate PAD under different attack

traffic rates (i.e., P in [0.01, 3]) as shown in Fig. IV-3. From this figure, we observe that both

lLOC and frequency-based attacks consistently achieve a much higher attack successful rate PAD

than the volume-based scheme. This difference in PAD is more significant when the attack traffic

rate is lower, which can be explained as follows. For the lLOC scheme, the PN-code-based

encoding/decoding makes the recognition of attack marks robust to interference of the

background traffic. For the frequency-based scheme, the invariant frequency in the attack traffic

is also robust to the interference of the background traffic. Both of them can distinguish their

attack traffic accurately even when the attack traffic rate (i.e., P) is small. Nevertheless, the

volume-based scheme relies on the high rate of attack traffic (i.e., large P), and thus, is very

sensitive to the interference of the background traffic.

 Fig. IV-3. Attack Successful Rate (Port 135)

 (b) Attack Invisibility: To compare the attack invisibility performance of the lLOC attack with

the other two attack schemes, we show the defender detection rate PDD on port 135 in Table IV-

 54

1. This table shows the attacker-achieved defender detection rate PDD, given different

localization successful rates PAD (90%, 95%, and 98%). Recall that the defender sets the

detection threshold to make the defender false positive rate PDF below 1%. In the table, “(Time)”

and “(Freq)” mean that the defender adopts the time-domain and frequency-domain analytical

techniques to detect attacks. It is observed that our lLOC scheme consistently achieves much

lower defender detection rate PDD than other two schemes, which means the lLOC attack

achieves the best attack invisibility performance. As expected, the defender can easily detect the

frequency-based attack by frequency-domain analytical technique, as there is a unique frequency

pattern in its attack traffic.

 Table IV-1. Defender Detection Rate PDD (Port 135)

PAD lLOC

(Time)

lLOC

(Freq)

Volume-

based attack

(time)

Frequency-

based attack

(freq)

Frequency-

based attack

(time)

90% 2.5% 2.2% 90% 90% 2.9%

95% 2.8% 2.4% 95% 95% 3.1%

98% 3.1% 2.8% 98% 98% 3.3%

 (c) Impact of the Length of PN-code: To investigate the impact of the PN-code length on the

performance of the lLOC attack, we plot the attack successful rate PAD for PN-code of different

lengths (15, 30, 45) in Fig. IV-4. In the legend, lLOC(L = x) means that the PN-code length is x.

Data in this figure are also collected for various attack traffic rates. This figure shows that the

attack successful rate PAD increases with larger PN-code length. This is because a longer PN-

 55

code can more significantly reduce the interference impact from the background traffic on

recognizing the attack mark, thereby achieving higher attack accuracy.

 Fig. IV-4. Attack Successful Rate vs. Code Length

 Fig. IV-5. Attack Successful Rate vs. Number of Parallel Attack Sessions

 56

 Fig. IV-6. Defender Detection Rate vs. Number of Parallel Attack Sessions

 (d) Impact of the Number of Parallel Localization Attacks: To evaluate the impact of the

number of parallel localization capability on attack accuracy, we show the attack successful rate

PAD for a different number of parallel attack sessions on the same port in Fig. IV-5. In the legend,

lLOC(N = x) means that there are x parallel attack sessions. This figure shows that in terms of

attack successful rate PAD, the lLOC attack scheme is not sensitive to the number of parallel

attack sessions. The attack successful rate PAD only slightly decreases with the increasing

number of parallel attack sessions. This is because the traffic for different attack sessions are

encoded by PN-codes, which are low cross-correlated to each other as described in Section 2,

and thereby experience little interference. Fig. IV-6 shows the impact of the number of parallel

attack sessions on attack invisibility. It can be observed that the increasing number of parallel

attack sessions results in a slight increase of defender detection rate PDD. Therefore, parallel

localization capability can improve the attack efficiency without significantly compromising

both accuracy and invisibility.

 57

 The lLOC attack achieves invisibility by using the PN-code, which contributes to a longer

period during which the attack can be carried out. Nevertheless, parallel capability can

significantly improve the attack efficiency. For example, let’s consider the case in which a

system consisting of 1200 networks is attacked. Using one port, the volume-based attack needs

1200 unit time to perform the attack task. Single lLOC attack with code length of 15 needs

1200×15 = 18000 unit time and achieves higher accuracy and invisibility. To fulfill the same

localization attack task, parallel lLOC with 8 attack sessions and the same code length can

achieve similarly high accuracy and invisibility performance and the total time is only

1200×15/8 = 2250 unit time, which is comparable to that of a volume-based attack.

 Fig. IV-7. Experiment Setup

3) Implementation and Validation

 To validate the feasibility of lLOC in real-world, we introduce our implementation of the

lLOC attack and report the validation results of our lLOC attack design and experiments against

 58

a real-world ITM system. We implement an lLOC attack prototype based on the design in

Section 2. This prototype works against any ITM system with the data center having a web-

based user interface. Particularly, there are five independent and important components in our

lLOC implementation, Data Center Querist, Background Traffic Analyzer, PN-code Generator,

Attack Traffic Generator and Attack Mark Decoder.

 In particular, Data Center Querist is a component that interacts with the data center of the

targeted ITM system. Its main tasks consist of sending queries to the data center for port-scan

traffic report and retrieving the response (i.e., the report) from the data center. The inputs to this

component are the URL, or IP address, of the data center and the port number of the port-scan

traffic needed to perform the query. From the traffic report data, Background Traffic Analyzer

can obtain the statistics profile of background traffic and determine attack parameters for other

components. PN-code Generator is a component that generates and stores the PN-code. The PN-

code length is determined according to the attacker’s objectives and background traffic profile as

described in Section 2.e. Attack Traffic Generator is a component that generates attack traffic

based on the PN-code and background statistics profile. In this, the PN-code encoded traffic is

generated in the way discussed in Section 2.b. Inputs to this component are the IP addresses’

range of target network, port number and transportation protocol (TCP or UDP). Attack Mark

Decoder is a component that obtains the port-scan report data through Data Center Querist, and

decides whether the attack mark exists in the way discussed in Section 2.c. The PN-code used in

the decoding process is the same as the one used in encoding attack traffic and stored in the PN-

code Generator.

 These components may be integrated into one program running on one machine. The attack

can also be carried out in more flexible ways if the tasks of the above components are performed

 59

by processes on different machines. Our lLOC prototype is implemented using Microsoft MFC

and Matlab on Windows XP operating system.

 Fig. IV-8. Background Traffic vs. Traffic Mixed with lLOC Attack

 Fig. IV-9. PSD for Background Traffic vs. Traffic Mixed with lLOC Attack

 60

 In order to validate our lLOC implementation, we deployed it to identify a set of monitors

that are associated with a real-world ITM system. Fig. IV-7 illustrates our experimental setup.

For the purpose of this research, we requested information about locations of a set of monitors in

the ITM system. We were provided with the identities of two network sets A and B. There are

some monitors deployed within network set A and there is no monitor in network set B. All

monitors in network set A monitor a set of IP addresses and record the port-scan logs. Then we

(the attacker) execute the lLOC attack to decide whether monitors exist in network set A and set

B, respectively.

 In our experiment, we use a PN-code of length 15. The mark bit duration is set for 1 hour and

the query duration is 20 minutes. With the queried report data, we can correctly determine that

all networks in set A are deployed with monitors and networks in B are not deployed with

monitors. Fig. IV-8 shows the traffic rate in time-domain. Fig. IV-9 shows the traffic rate in

frequency-domain in terms of Power Spectrum Density (PSD). The PSD describes how the

power of a time series data is distributed in frequency-domain. Mathematically, it is equal to the

Fourier transform of the auto-correlation of time series data [57]. From these two figures, we

observe that it is hard for others, without knowing the content of PN-code, to detect the lLOC

attack, since the overall traffic with the lLOC attack is very similar to the traffic without the

lLOC attack traffic embedded. That is, such experiments demonstrate that the lLOC attack can

accurately and invisibly localize the monitors of ITM systems, in practice.

4. Countermeasure

In this section, we propose an information-theoretical based framework to explore fundamental

limitations of lLOC attack strategies and develop corresponding countermeasures. We first

 61

present the framework and then introduce the capacity derivation for measuring the system

performance.

4.a. Information-Theoretical Based Framework

1) Channel Model

 As shown in Fig. IV-1, an attacker launches the encoded attack traffic addressed to a target

network. In order to correctly decode the embedded signal, the attacker needs to design a

decoding scheme to recover his embedded signal from the background noise, which is

introduced by traffic reports from other monitors not belonging to the target network. Based on

the operations of localization attacks and ITM system, we can formalize the system by a channel

model for digital signal transmission. In this model, the attacker (as a transmitter) generates and

sends the attack signal over a noisy side channel and the attacker (as a receiver) recognizes the

signal. Notice that the side channel is caused by the normal operation of ITM systems that

collects data from monitors and publishes the report as shown in Fig. IV-1.

 Fig. IV-10 shows the generalized channel model for the system. In particular, a source

message x = 1 is mapped to a sequence of channel signal through the encoder. This procedure is

similar to the attack stage 1 shown in Fig. IV-1.a. The output of encoder tx is transmitted through

the channel and blended with noise w, introduced by other monitors. From the channel output

sequence rx = tx + w, the attacker (as a receiver) attempts to recover the transmitted message x by

decoding rx by output y. If y ≈ x, the attacker successfully recognizes the source message x. This

procedure is similar to the attack stage 2 shown in Fig. IV-1.b. By doing so, the attacker

successfully determines whether the target network is deployed with monitors or not by

following rules: If y ≈ 1, the target network is deployed with monitors. Otherwise, the target

network is not deployed with monitors.

 62

 Now, let’s use the generalized lLOC attacks discussed in Section 2 as an example to illustrate

the model, reflecting the attack as follows. First, at the transmitter, the attacker generates the

source message x = 1 for a given network Mj. After the encoding procedure, the adversary selects

an n-bit code ct (n
≥

 1) and generates a port-scan traffic tx = fE(x, ct, �’) = �’x ct to the network

Mj, where fE is denoted as the encoding function and �’ is mark amplitude to control the intensity

of attack traffic. If the targeted network is deployed with monitors, the tx will be transmitted

through the normal operation of ITM system along with the noise w. We assume that the mean

and variance of w is � and σ, respectively. Second, at the receiver, the received signal is rx = tx +

w. As the decoder procedure, it tries to decode the source message x based on the same code ct

and apply the following decision rule: If rx�ct = �’c t�ct + w�ct
≥

 tR, then x = 1 and the network Mj

is deployed with monitors. Otherwise, x = 0 and the network Mj is not deployed with monitors.

Here, tR is the decoding threshold. In order to learn how to determine the tR, please refer to

section 3.

 Fig. IV-10. Channel Model for lLOC Attack

 In Fig. IV-10, to detect the attack, the defender will observe the output traffic rx of channel.

Recall that the defender generalizes the benign party who maintains the ITM system to identify

Internet widespread attacks. Particularly, based on data stored in the data center, the defender

tries to detect the anomaly in the traffic and take the mitigation.

Message

x

Noise

 Encoder
tBxB

 Channel
r BxB

 Decoder Message

y

Transmitter Receiver

 63

2) Capacity

 The capacity of the channel defined by Shannon provides a theoretical upper-bound for

measuring the signal transmission capability over a noisy channel [58]. By definition, capacity is

the amount of discrete information that can be reliably transmitted over a channel. This landmark

work has been the foundation for communication system design, which aims to design various

coding mechanisms to achieve the theoretical bound by various means to increase the resistance

of digital signal transmission to the noise. Generally, channel coding in communication systems

consists of mapping the source message into a channel input signal denoted as the encoder and

the inverse mapping the channel output signal into a source message denoted as a decoder in

such a way that the overall effect of channel noise on the system is minimized.

 In the model described in Fig. IV.10, we denote the attack signal tx =< tx1, tx2, …, txn > as the

transmitted signal over the channel. To measure the amplitude of the transmitted signal, we

define its transmission power as

 .
1

1

2∑
=

=
n

i
xit

n
s (IV-12)

 Without loss of generality, we denote the noise w =<w1, w2, …, wn> (n
≥

1) with zero-mean

and variance of σ. Assuming that both the signal and noise are a Gaussian white noise (WGN)

process, the capacity of such a Gaussian channel is derived by,

).1log(
2

1

σ
s

C += (IV.13)

Since the capacity C measures the degree of successful signal transmission over the channel, the

higher value of capacity denotes the better localization attack effects. From (IV-11), we know

that, given the noise variance σ, a larger transmission power s will achieve a higher capacity of

attack signal transmission.

 64

 As we mentioned, the capacity C in [0, 1] measures the theoretical bound for reliable signal

transmission. Given any transmission error rate ε > 0, for any large n-bits attack signal and a

minimal length length of l (
≥

 n) for C
≥

 n/l, there exists a encoding/decoding scheme, such that

maximal probability of error is less than ε; that is, it is always possible to transmit the signal with

arbitrarily small error, if C
≥

 n/l.

 For the localization attack, the time for transmitting 1-bit attack signal is denoted as chip

duration tc. For n-bit attack signal for identifying a monitor, the minimal code length for reliable

channel transmission is n/C and the minimal time for n-bit transmitted signal is ntc/C.

 Based on the information-theoretical based framework presented above, we now introduce

some strategies for the attacker and defender.

 (a) Attacker: Recall that for the threat model described in Section 2, the attacker intends to

accurately and secretly identify monitors by launching port-scan attack traffic embedded with an

attack signal. Based on the model described in Section 4.a.2, we know that an attacker should

achieve a high capacity C for the accuracy of attack and also sustain a low transmission power s

for the secrecy of attack. However, from (IV-13), we know that lower transmission power s will

actually cause a smaller capacity. In order to address this issue, we consider that the attacker

takes strategies to spread the transmission power of attack signal. The attack strategy used in

Section 3 is actually one that spreads signal power into the temporal domain. In particular,

regarding the temporal domain power spreading, the attack signal can be formed as a time-series

traffic. As such, the signal power in each time-duration is comparatively low for preserving

attack secrecy, while summarization of signal power in all time durations can be highly

preserved for attack accuracy.

 In summary, since the scheme proposed in [27, 28] uses an 1-bit attack signal addressed to a

single monitor, we refer to this scheme as non-time-series attack, which does not spread the

 65

transmission power of a signal in either the temporal or spacial domain. Since the code-based

scheme proposed in the previous section generates a multiple-bit attack signal addressed to a

single monitor, we refer to this scheme as a general attack strategy, namely the time-series

attack, which spreads the transmission power of a signal into the temporal domain.

 (b) Defender: To defend against localization attacks, the defender should develop

countermeasures to detect attacks based on limitations of attack schemes. Based on the

information-theoretical framework, the defender should develop schemes to effectively decrease

the capacity. Based on (IV-13), there are two ways to decrease the capacity. One is to increase

the power of noise σ. The other is to decrease the transmission power s of attack signal.

However, adding noise will jeopardize the accuracy of data reported by the ITM system and

degrade the usability of ITM systems. In this chapter, we will focus on developing the

countermeasures that detect traffic anomaly based on the limitations of attack schemes and are

able to significantly decrease the effectiveness of attacks.

 To address the two attack strategies mentioned earlier (e.g., the non-time-series attack and

time-series attack), we consider the following two countermeasure schemes for the defender: (1)

Centralized defense. In this scheme, the defender will carry out anomaly detection on the

centralized data center based upon the summarized traffic from all monitors in the ITM system.

If the overall traffic rate (e.g., volume in a given time duration) is larger than a pre-determined

threshold, the defender will issue alarms. This scheme is commonly used by existing ITM

systems to defend against worm propagation and DoS attacks [25]. We will show that this

countermeasure scheme is effective against the non-time-series attack in Section 5. (2)

Distributed defense. In this scheme, each monitor will autonomously carry out defense

distributedly. Each monitor will be responsible for detecting the anomaly based upon its local

statistical traffic profile. If the traffic rate (e.g., volume in a given time duration) on a monitor is

 66

larger than a pre-determined threshold for that monitor, the monitor will issue alarms. We will

show that this countermeasure scheme is effective against the time-series attack in Section 5.

 In the following sections, we will use our information-theoretical framework to investigate

the performance of systems with the different attack and countermeasure schemes discussed

above.

4.b. Defense Against lLOC Attack

In this section, we first show the centralized defense becomes ineffective against lLOC attack.

We then introduce a new countermeasure scheme, called advance defense, and show that it is

effective against the lLOC attack.

1) Effectiveness of Centralized Defense

 We now derive the transmission power constraint of attack signal limited by centralized

defense. Recall that we consider the attacker that adopts time-series attack that uses n-bit attack

signal addressed to a single monitor Mj. For the centralized defense, the defender observes the

aggregated traffic rate and compares it with a pre-known hypothesis on the distribution of

background noise traffic. For the transmission power of an attack signal for the system with

centralized defense, we present the following theorem.

 Theorem IV-2. When the defender uses mean aggregated traffic volume of a time-series data

for attack detection, in order to maintain a detection rate lower than
β

, the signal power s of the

attacker must satisfy

),,,(2
2 ns αβσ Ω≤ (IV.14)

where

np

pe
n

2
0

2

2
0

2)1(

2
)1()1(

)1(
),,(

2

−−
−−=Ω

−

δ
δβπαβ

β

 (IV.15)

 67

 Proof: Suppose that the attack signal generated by an attacker at time i is � i’ . As such, the

distribution of traffic rate under attack (i.e., the combined rate of attack signal and background

noise traffic) at round i is normal distribution with mean � + � i’and variance σ.

 Suppose that the observed traffic rate for time i is fM(i). As we can see, the observed mean

traffic rate for time period [1, n] is

 ∑
=

=
k

i
M if

n
nf

1

).(
1

)((IV-16)

 Suppose that fM(n) is the upper bound on p- and p’-confidence interval of the background

noise traffic distribution and the under-attack traffic volume distribution, respectively. According

to Bayesian theorem, if the defender issues an alarm based on fM(n), the probability of a false

alarm is

 .
)2/1)(1()2/'1(

)2/1)(1(
)Pr(

00

0

pppp

pp
attackno

−−+−
−−= (IV-17)

 Note that the attacker needs to limit the detection rate under
β

. In order to do so, the attacker

must ensure that no alarm will be issued when fM(n) is less than or equal to the
β
-quantile of the

under-attack traffic volume distribution. That is,

 .
)1(

)()(
1

'*

n
nf nM

βσµµ −Φ++≤
−

 (IV-18)

Where �n
’* = (�1

’+ …+ �n
’)/n is the mean of attacker’s signal from time 1 to n.

 In order to prevent the defender from issuing an alarm, the attacker must ensure that for all

fM(n) that satisfies (IV-18), there is

 .)}(|Pr{ δ>nfattackno M (IV-19)

Note that

 ,
)2/1)(1(

)2/1)(1(
)}(|Pr{

00

0

βppp

pp
nfattackno M +−−

−−= (IV-20)

 68

where

 .)1((1
2

1 2/)1(
'*

1
'*

2β

σπ
µββ

σ
µ −−− −≤−Φ+Φ−=− e

nnp nn (IV-21)

Thus, in order to have Pr{no attack| fM(n)}>
δ
 for all fM(n) that satisfy (IV-18), there must be

 .
)1)(1(

)1(

0

02/)1('* 2

p

p

n
en −−

−−≤ −

δ
δβσπµ β

 (IV-22)

 Recall that s is the power of attack signal. Due to (IV-22), with some mathematical

manipulation, we can derive a power constraint as follows:

.
)1()1(

)1(
2

0
2

2
0

2)1(2

np

pe
s

−−
−−≤

−

δ
δβπσ β

 (IV-23)

2) Derivation of Capacity: Given the upper bound of transmission power in (IV-14), the capacity

of the system becomes

)).,,(1log(
2

1
2 nC βδΩ+= (IV-24)

 Based on this, we derive the minimal code length for basic time-series attack as follows:

 .
)),,(1log(

2

2 n

n

C

n
l

βδΩ+
=≥ (IV-25)

 We now illustrate the results with practical examples. In particular, we set the parameters as

follows: for the Gaussian distribution, when s = 0.44σ, the localization accuracy rate becomes

57.97% and the capacity is C = 0.06. Thus, the adversary is able to launch at least n=15 length of

attack signal for both a secret and accurate attack. As a result, we know that the centralized

defense scheme by itself is no longer effective against the basic time-series attack.

3) Case Study: PN-Code-Based lLOC Attack

 The capacity we derive above is the theoretical bound without the detailed forms of coding

and decoding scheme. Now, we conduct a case study on the code scheme investigated in Section

 69

3. In this scheme, it adopts the simple correlation-based coding and decoding scheme. In the

following, we will start with a binary channel model for this attack scheme and then present the

error rate of signal transmission followed by a derivation of suboptimal capacity and

observations.

Fig. IV-11. The Binary Channel Model for PN-code Based Scheme

 (a) Binary Channel Model. The binary channel model for PN-code-based scheme is shown in

Fig. IV-11. Here, we represent the input of channel as a binary random variable x, where x = 1

represents that the targeted network is deployed with monitors, and x = 0 represents that the

targeted network is not deployed with monitors. Pr(x = 1) and Pr(x = 0) are the prior probabilities

of a network deployed with monitors or without monitors, respectively. The outputs of channel

as the localization results are modeled as a random variable y, where y = 1 indicates that the

targeted network has monitor, and y = 0 indicates that the targeted network has no monitor. An

event has a probability Pr(y = 0|x = 1) is considered as false-negative rate denoted as (PAN = 1 -

PAD) and the probability Pr(y = 1|x = 0) is considered as false-positive rate denoted as PAF.

Remark that PAD and PAF can be derived based on (IV-3) and (IV-4), respectively.

 x
1-PBAN B

Pr(x=1) 1

 y

Pr(x=0) 0

1

0

PBAN B

PBAFB

 1-PBAFB

 70

 (b) Derivation of Capacity. Given the derived PAN and PAF, we can obtain the capacity for the

code-based attack scheme. According to the definition of I(x; y), we can derive the mutual

information I(x; y) of x and y by

,
)1Pr(

)1(
log)1(

)1Pr(
log)1(

)0Pr(
log

)0Pr(

1
log)1)(1(

=
−−+

=
−

+
=

+
=

−−−

y

P
Pa

y

P
Pa

y

P
aP

y

P
Pa

AN
AN

AF
AF

AN
n

AF
AF

 (IV-26)

where Pr(x = 1) = a and Pr(x = 0) = 1 − a.

 With the I(x; y), the suboptimal capacity can be derived by C = I(x; y) − H(x), where H(x) can

be derived by

∑ ∈
−=

)1,0(
)).log(Pr()Pr()(

x
xxxH (IV.27)

4) Distributed Defense

 We now consider the distributed defense. We will first derive the transmission power of the

attack signal under this defense, and then derive the capacity of the system, followed by some

observations.

 (a) Transmission Power of Attack Signal: In the distributed defense, the defender carries out

anomaly detection based on traffic of an individual monitor. If the traffic rate on a monitor is

larger than the predetermined threshold (determined by statistical analysis of traffic from the

monitor), the defender will raise threat alarms. Considering the attacker adopts the time-series

attack, the transmission power of attack signal can be derived based on following theorem:

 Theorem IV-3: When the defender uses the mean traffic rate on an individual monitor to

carry out anomaly detection, in order to maintain a detection rate lower than
β

, the transmission

power s of attack signal must satisfy

 71

),,,(2 n
m

s βδσ Ω≤ (IV.28)

where m is the total number of monitors in the ITM system, �2(δ, β, n) is same as that defined in

Theorem IV-2.

 Proof: Recall that there are m monitors in the system and the aggregated background noise

traffic is σ. Since the traffic from different monitors are independent, the traffic for individual

monitor can be approximately represented by σ/m. Recalling that the defender based on the

distributed defense will monitor traffic anomaly on the traffic from the individual monitor, the

transmission power in (IV-28) can be derived by similar procedures in the proof of Theorem IV-

2.

 (b) Capacity Analysis: Given the transmission power of the attack signal derived in (IV-28) of

Theorem IV-3, we now derive the capacity of the system where the defender uses the distributed

defense and the attacker uses the time-series attack. The capacity of such system becomes).
),,(

1log(
2

1
)1log(

2

1 2
2 m

ns
C

βδ
σ

Ω+≤+= (IV.29)
 Given the capacity, the minimal code length becomes

.
)

),,(
1log(

2

2

m

n
n

C

n
l βδΩ+

== (IV.30)

 We now illustrate the results with practical examples. In particular, we set the system

parameters as follows: for the Gaussian distribution, when m=1000 and δ=0.02,
β

=0.02, n=40,

we can achieve capacity C=0.02. Thus, the adversary has to use a minimal 40/C=2000 length of

signal to achieve accurate monitor localization while avoiding detection. However, such a long

code length makes the attack scheme no longer feasible in practice. As we can see, when the

defender adopts the distributed defense, the attack can no longer be effective.

 72

4.c. Discussion

We have developed a unified information-theoretical based framework to model and analyze the

localization attacks and countermeasures. There are a number of possibilities for extending this

work. The detailed discussion follows:

 1) Proactive Countermeasures: The countermeasure proposed in this study mainly focuses on

detection. Nevertheless, other proactive countermeasures can be used. For example, limiting the

information access rate on ITM systems is one way to counter attack. Recall that in the

localization attack, the attacker has to launch a significant amount of queries to the data center of

ITM systems in order to accurately recognize the marked attack traffic. The data center may

throttle the query request rate via enforcing human/system interaction for the query, thereby

eliminating the automatic query in the localization attack. Since this countermeasure increases

the quantization error of the attack signal, it decreases the channel capacity of the localization

attack. Perturbing the information is another way to counter the attack. Specifically, we may

perturb the published report data by adding some random noise and even randomizing the data

publishing delay. Since this approach increases the power of noise, the capacity of localization

attack can also be decreased.

 2) Spectrum-Domain Attack Schemes: Our study mainly focuses on the traffic analysis

approaches in the time domain. For example, in the time-series attack, attack traffic encoding

and decoding are based on the time domain; for the countermeasures, traffic anomaly analysis is

also based on traffic on the time-domain. Nevertheless, this has not been true in practice. The

attacker may manipulate its attack traffic in the frequency-domain. In one case, the attacker may

modulate the attack traffic with a specific feature frequency. Thus, the attacker expects the report

data from the data center to show high power density in the specific frequency if the targeted

network is deployed with monitors. In another case, the attacker may use frequency-hop spread-

 73

spectrum (FHSS) technique via embedding the DSSS code in the power-spectrum density of

scan traffic. For both cases, our analytical methodology is still valid and can be applied via

conducting analysis on the power spectrum density (PSD) of traffic. We will conduct more in-

depth studies in our on-going and future work.

 3) Apply to Other Systems: We focus on analyzing the localization attacks and

countermeasures for a specific application. Nevertheless, our developed methodology is general

and can be extended to other applications such as DSSS-based flow marking for invisible

traceback, and timing delay watermarking against anonymous communication systems [59].

Since these applications correspond with different problem domains, we need to investigate the

system specific information impact on the capacity, such as how accurately a flow can be

marked via flow interference, how much noise for flow marking can be introduced by mix

network mechanisms (i.e., flow split, merge, batching etc). We leave the detail study for our on-

going and future work.

5. Performance Evaluation of Countermeasures

In this section, we present the numerical and simulation results of systems with localization

attacks and countermeasures investigated in early sections. In particular, we obtain the numerical

data of the capacity based on two cases: (i) the theoretical bound without considering any

specific coding/decoding schemes, and (ii) one practical implementation of the correlation-based

decoding scheme presented in Section 3. For the theoretical bound, we use minimal code length l

to measure the performance of the system with localization attacks and countermeasures. The

minimal code length is defined as the minimal length of code that the attacker has to use for the

reliable transmission of attack signal. For the practical implementation, we use the code-based

 74

attack as a specific implementation, which uses the simple correlation-based scheme discussed in

Section 3.

 For the practical implementation of the correlation-based upon specific coding/decoding

schemes, we simulate the countermeasure performance. For the background traffic, we use the

real-world port-scan traces from SANs ISC (Internet Storm Center) including the detail logs

from 01/01/2005 to 01/15/2005 [25, 52]. We merge records of simulated lLOC attack traffic into

these traces and replay the merged data to emulate the lLOC attack traffic. Based on the traffic

profile, we determine the background traffic statistic profile and threshold values for the

defender. We evaluate different scenarios by varying the attacker and defender parameters. Here,

we only show the data on port 135; experiments on other ports result in similar observations.

 Fig. IV-12. Performance of Centralized Defense vs. lLOC Attack

 To obtain the minimal code length for C-Probe attacks, the basic idea is illustrated as

follows: given a high detection rate (> 99%) and low false positive rate (< 1%), we run the

 75

simulation and find the minimal code length for a given SNR in ([0.1, 1.2]). We evaluate the

performance of both the centralized defense and distributed defense against the code-based time-

series attack. For the centralized defense, the SNR is the ratio of probing traffic rate over overall

aggregated traffic rate on the data center. For the distributed defense, the SNR is the ratio of

probing traffic rate over the traffic rate on a single monitor. The default number of monitors is

1000 and all other parameter such as
δ
 and β are same as ones in Section 4.b and 4.c.

 Fig. IV-13. Performance of Distributed Defense vs. lLOC Attack

 Specifically, we generate different attack traffic modulated by different lengths of codes

under different amplitudes of attack signal, e.g., signal-to-noise ratio (SNR), which can be

observed by the defender. For example, for the centralized defense, the SNR is defined as the

ratio of the transmission power of attack signal power over the variance of aggregated

background noise traffic collected by ITM system. For the distributed defense, the SNR is

defined as the ratio of the transmission power of the attack signal on the individual monitor and

 76

the variance of the background traffic on the individual monitor. We obtain the localization false

negative rate and false positive rate and obtain the capacity of system based on the method

described in Section 3. For the code-based scheme, given a high capacity value as threshold (i.e., ≥
 0.99), we repeatedly execute the above procedures until we identify a code length that meets

the requirement of large channel capacity, i.e., close to 1.

 Fig. IV-12 shows the results of minimal code length vs. the SNR for the system where the

attacker uses the time-series attack and the defender uses the the centralized defense. We have a

few observations. First, given the reasonably small SNR (e.g, 0.2) to make the attack high

invisible to the defender, the attacker is still able to use a much short length of code (e.g., l = 15

for correlation-based coding scheme) to accurately identify the monitors. It validates our

findings that centralized defense is not effective against the time-series attack. Second, as

expected, there are some performance gaps between the correlation-based coding scheme and

theoretical bound. For example, when the SNR = 0.2, the correlation-based coding scheme needs

to use at least length of 15 to accurately identify the monitors, while the theoretical bound

indicates that code length of 9 will be enough. We believe that by incorporating other channel

coding schemes such as Turbo code, we can make the performance gap smaller (close to the

theoretical bound). We leave this investigation to our future work.

 Fig. IV-13 illustrates the results of the minimal code length vs. SNR for the system where the

attacker uses the the time-series attack and the defender uses the distributed defense. We have a

few observations. First, given the reasonably small SNR (e.g, 0.2) to make the attack high

invisible to the defender, the attacker must use a much longer length of code (e.g., l = 11000 for

the correlation-based coding scheme and l = 4500 for the theoretical bound) to accurately

identify the monitors. This validates our finding that the distributed defense is effective against

 77

the time-series attack. Similarly, there are some performance gaps between the simple

correlation-based coding scheme and theoretical bound due to the same reason illustrated earlier.

6. Summary

In this chapter, we studied the countermeasure-based on probing traffic. In particular, we

investigated a new class of attacks, i.e., the low-rate lLOCalization (lLOC) attack to stealthily

identify the monitors of ITM system. Its effectiveness was demonstrated via theoretical analysis,

simulations and experiments with an implemented prototype. To defend against lLOC attack, we

introduced an information-theoretical framework. Based on it, we derived the limitation of attack

strategies and proposed the countermeasure that monitors the traffic-rate change of an individual

monitor. We showed that the power constraints enforced by the countermeasure can significantly

reduce the channel capacity of the system to a fairly low level that practically eliminates existing

localization attacks in ITM systems. Our evaluation results effectively validated our findings.

Our study is critical for securing and improving ITM systems.

 78

CHAPTER V

COUNTERMEASURE BASED ON WORM PROGRAM EXECUTION

In the following three chapters, we will develop non-traffic based countermeasures. In this

chapter, we focus on developing countermeasures based on dynamic signatures of worm

program execution.

1. Overview

Many non-traffic based countermeasures have focused on static properties of worm executables

[38, 39]. Specifically, in these countermeasures, the static properties such as the list of Dynamic

Link Libraries (DLL) to be called, functions and specific ASCII strings extracted from the

executable headers, hexadecimal sequences extracted from the executable bodies, and other

static properties are used to distinguish malicious and benign executables. However, using these

static properties without execution of the program might not accurately distinguish them.

 It has been shown that many existing detection systems based on static properties cannot

effectively detect new unseen worms which either have brand new signatures or have

deliberately changed signatures during propagation [60, 61]. For example, MetaPHOR [62] and

Zmist [63]) worms intensively metamorphose to hide themselves from detection. Recent studies

also show that existing commercial anti-worm detection systems fail to detect brand new worms

and can also be easily circumvented by worms that use simple mutation techniques [64, 65].

 There are two reasons that explain why the static properties are not effective. First, two

different executables (e.g. one worm and one benign) can have same static properties, e.g., they

can call the same set of DLLs and even call the same set of functions. Second, these static

properties can be changed by the worm writers through different ways, such as inserting dummy

 79

functions that will not truly call during the execution in the worm executable, inserting benign

looking strings, and by using code mutation tools [61, 62, 67, 68].

 Hence, the static properties, or how they look, are not the keys to distinguish worm and benign

executables. Instead, we believe the keys are what they do, i.e., their run-time behaviors or

dynamic properties. Therefore, in this chapter we adopt dynamic program analysis to profile the

run-time behavior of executables for efficiently and accurately detecting new unseen worm

executables. To this end, there are three challenges to be addressed. First, we have to execute a

large number of malicious worms, which might cause damage to our experiment host and

network systems. Second, given the large number of executables, manually executing and

analyzing them are not feasible in practice. Hence, we need to find an efficient way to

automatically capture the run-time behavior from their execution. Third, from the execution of a

large set of various worm and benign executables, we need to find some constant and

fundamental behavior differences between the worms and the benign executables, in order to

accurately determine whether an unseen executable is a worm or benign one.

 To address these issues, we propose an effective worm detection approach based on mining

system call traces of a large amount of real-world worms and benign executables. Our goal is to

use a large volume of existing worms to capture their common dynamic signatures and then use

them to detect new unseen worms. In the following, we first introduce the background and basic

workflow of our approach. We then present the design detail of our approach including the

dataset collection, detection feature extraction and classification, followed by the experiment

results and conclusion. Notice that the work in this Chapter is based on the joined work between

Texas A&M University and the Ohio State University. My work focused on the SVM data

mining algorithm design, framework, and literature survey.

 80

2. Background

In this section, we give an overview of the program analysis, data mining techniques and new

unseen worms.

2.a. Program Analysis

While static program analysis requires source code of the executable, dynamic program analysis

does not, but it must be performed by executing the programs [68, 69]. Most dynamic program

analysis methods, such as debugging, simulation, binary instrumentation, execution tracing,

stack status tracking, etc. are primarily used for software engineering and compiler optimization

purposes. Recently, there has been increased attention of detecting vulnerabilities and security

holes via using dynamic program analysis. However, existing dynamic analysis approaches are

only suitable for analysis of individual executables with expertise such as debugging, or for

specific attacks [70, 71]. However, in our case, we need an appropriate dynamic program

analysis method to investigate the run-time signatures of worm and benign executables for the

purpose of worm detection. The method we adopt here is to trace system calls during program

execution, which is one type of light-weighted execution tracing. In particular, we trace the

operating system calls invoked by the executables during their execution. This method can be

used to automatically record interesting information during the execution to further investigate

dynamic behavior of executables in worm detection.

2.b. Data Mining

Data mining refers to the process of extracting “knowledge,” or meaningful and useful

information from large volumes of data [72, 73]. It achieves this by analyzing data from different

perspectives to find inherent hidden patterns, models, relationships or any other information that

 81

can be applied to new dataset. It includes algorithms for classification, clustering, association

rule mining, pattern recognition, regression, and prediction, among others.

 Data mining algorithms and tools are widely adopted in a range of application fields. In

security research, many data mining technologies are adopted to conduct intrusion detection. In

our work, we use the classification algorithm to obtain the difference between worm and benign

program executions in order to provide accurate worm detection against both seen and un-seen

worms.

 There have been numerous research efforts on how to apply data mining techniques for

security research [74, 75, 76, 77, 79]. For example, Lee et at. in [74] formulated the machine

learning scheme on system call sequences of normal and anomaly execution on the Unix

sendmail program. Lee et al. in [75] described a data mining framework for adaptively building

intrusion detection models. The main tenet of their work is to utilize auditing programs (e.g.,

network logs of telnet sessions, shell command log) to extract an extensive set of features that

describe each network connection or host session, and apply data mining techniques to learn

rules that capture the behavior of intrusions and normal activities. Martin et al. in [76] proposed

an approach via learning statistical pattern of outgoing emails from local hosts. Kolter et al. in

[38] applied data mining techniques to extract byte sequences directly from program

executables, converted these sequences into n-grams, and constructed the classifier. Julisch et al.

in [78] proposed an approach to learn historical alarms generated by intrusion detection systems.

2.c. Unseen Worms

Although numerous efforts have been made to detect worms, the new unseen worms, including

evolved forms of existing worms, can have new signatures to circumvent these existing worm

detections. As we mentioned earlier, many worm detection systems use signatures of seen

 82

worms to determine whether an encountered executable is worm or not. Obviously, these

systems fail to detect brand new worms with new signatures and polymorphic worms that

deliberately change their binary presentation or signature during propagation.

 Now we will offer further discussion on polymorphic techniques [63, 80, 81]. Worms have

been showing the trend to utilize these techniques for long time [61]. In particular, the

technologies for mutate worm code have been publicly available even as open source toolkits or

libraries [82, 83, 84]. Attackers can easily use them to make their worms polymorphic and hard

to be detect by the worm detection system based on known signature. In addtion, utilizating

automatic encryption and decryption further makes the polymorphism of worms more feasible

and efficient. The worm detection proposed in this chapter aims to address the threat by using

the dynamic properties of executable instead of static signature to capture worm executables.

Since we do not use the binary presentation as the feature to distinguish worms from benign

executables, the mutation techniques used by the polymorphic worms have no impact on our

countermeasure scheme. As shown in the later portion of this chapter, our countermeasure based

on dynamic program analysis is effective to unseen worms, including brand new worms and

mutated polymorphic worms.

3. Detection via Mining Dynamic Signatures of Program Executions

3.a. Framework

1) Overview

 Recall that the focus of this chapter is to use a large number of real-world worm executables

and subsequently develop a countermeasure to detect new unseen worms. Now, we introduce the

framework of our system for conducting dynamic program analysis, which intends to detect

worm executables based on mining system call traces of a large amount of real-world worm and

 83

benign executables. In general, this mining process is referred to as the off-line classifier

learning process. Its purpose is to learn (or train) a generic classifier which can be used to

distinguish worm executables from benign ones based on system call traces. Then, we use the

learned classifier with appropriate classification algorithms to determine whether unknown

executables belong to the worm class or the benign class with high accuracy. This process is

referred to as the on-line worm detection process. The basic workflow is illustrated in Fig. V-1

and Fig. V-2, and explained in the following.

 Fig. V-1. Workflow of the Off-line Classifier Learning

 Fig. V-2. Workflow of the On-line Worm Detection

2) Off-line Classifier Learning

 We now introduce the detailed procedures of off-line classifier learning as shown in Fig. V-1.

(1)Trace system

call of a new

executable data

(2) Extract

feature from its

system call trace

(3) Classify the

executable with

learned classifier

(1) Collect

executables as

data source

(2) Collect data-set

by tracing system

calls

(3) Extract

feature from

system call trace

(4) Learn the

classifier

 84

 (a) Data Source Preparation: Before we start to conduct dynamic program analysis and

profile the behavior of worm and benign executables, we need to collect a large number of such

executables as the data source. This set of executables is labeled into two classes: worm

executables and benign executables. The worms are obtained from the Web site VX Heavens

(http://vx.netlux.org).

 (b) Collection Dataset – Dynamic Properties of Executables: With the prepared data source,

we now discuss how to collect the dataset, referred to as dynamic properties of executables.

Recall that in order to accurately distinguish worm executables from benign ones, we need to

collect data that can capture the fundamental behavior differences between them – the dynamic

properties. One feasible and efficient method we choose is to execute the executables and trace

the run-time system call sequences during their execution. However, executing worms might

damage the host operating systems or even the driven of computer hardware. In order to solve

this problem in our experiments, we set up virtual machines as our experimental test-bed. Then

we launch each executable in our data source and record its system call trace during the

execution on the virtual machine. The collection of the system call traces for each executable in

our data source is referred to as a dataset. We split the dataset into two parts: the training set and

the test set. With the training set, we will apply classification learning algorithms to learn the

classifier. The concrete format and content of the classifier is determined by the adopted learning

algorithms. With the test set, we will further evaluate the accuracy of the learned classifier on

classification of new and unidentified executables.

 (c) Feature Extraction: With the collection dataset consisting of system call trace of different

executables, we extract all the system call sequence segments with a certain length. These

segments are referred as n-gram, where the n is the length of the sequence, i.e., the number of

system calls in one segment. These n-grams can represent the relative independent and

 85

meaningful action taken during the program execution, or program block in the executables. We

intend to use these n-grams to capture the behaviors of common worms and benign executables.

Hence, these n-grams are the features for classifying worms and benign executables and each

distinct n-gram represents a specific feature in our classification.

 (d) Classifier Learning: From the features we extract from the training dataset, we need to

learn a classifier that can distinguish between worms and benign executables. When we select

the classification algorithm, we must consider both the accuracy of the learned classifier and the

interpretability of the classifier. Some classifiers are easy to interpret and the classification (i.e.,

decision rule of worm detection) can be easily extracted from the classifier [38]. Then, the worm

writers can use the rules to change the worm behavior and consequently evade detection, similar

to the self-mutating worms that change themselves to defeat signature-based detection [62].

Thus, we need classifiers with very low interpretability. In our case, we consider two algorithms,

Naive Bayes-based algorithm and Support Vector Machine (SVM) algorithm, and evaluate their

performance. While Naive Bayes-based algorithm is simple and efficient in classifier learning,

SVM is more accurate. More importantly, SVM learns a black-box classifier, which is hard for

worm writers to interpret.

3) On-line Worm Detection

 Having the learned classifier in the off-line process, we now describe how to use it to carry

out on-line worm detection. In this process, we intend to automatically detect a new and unseen

executable.

 In particular, we follow the same procedure as in the off-line process, in which system call

traces of an unknown executable are recorded and classification features (e.g., system call

sequence segments with certain lengths) are extracted during its execution. Then, the

 86

classification algorithm with the learned classifier is applied to classify the new executable, i.e.,

whether it belongs to the worm class or benign one.

 In fact, the aforementioned worm detection actually depends on the accuracy of the classifier.

In order to evaluate it, we use it to classify the executables in the test set. Since we know the

class label of these executables, we can simply compare the classification results from the

learned classifier with the pre-known labels. As such, the accuracy of our classifier can be

measured.

 In the following sections, we will present the major steps listed above, e.g., dataset collection,

feature extraction, classifier learning, and on-line worm detection in detail, followed by

experiment results.

3.b. Dataset Collection

In this section, we present the details on how we obtain the dataset, i.e., the dynamic program

properties of executables in the form of system call traces.

1) Worm Execution with Virtual Machine

 In order to obtain the run-time behaviors of worm and benign executables, we need to

execute the benign executables as well as worms. As we mentioned earlier, since execution of

worms might damage the operating system and even the driver code of host hardware, we set up

virtual machines (VMs) [84] as the testbed. The VM we choose is VMware [85].

 Even with VMs, two difficulties can still arise during data collection because of the worm

execution. First, since worms can crash the operating system (OS) in the VM, then we might

have to repeatedly re-install the OS. In order to avoid these tedious re-installations, we first

install all necessary software for our experiments and store all of our worm executables on the

VM, and then save the image file for that VM. Whenever the VM OS crashes, we can clone the

 87

identical VM from the image file to continue our experiment. Second, it is difficult to obtain the

system call traces from the VM after it crashes. In order to solve this problem, we set the

physical machine, on which a VM is installed, as the network neighbor of the VM through the

virtual network. Thus, during the execution of worms, the VM automatically outputs the system

call trace to the physical machine. Although the physical machine can be attacked by the worms

on the VM because of this virtual network, the physical machine is well protected by the

dedicated host-based firewall and updated anti-virus software with very restricted access

controls.

2) System Call Trace

 Recall that we choose dynamic properties of executables to capture the executables’ behavior

and more accurately distinguish worms from benign executables more accurately. There are

multiple dynamic program analysis methods [68, 69] that can be used to investigate the dynamic

properties of executables.

 The most popular methods are debugging and simulation. However, they have to be used

manually with expertise to study the execution (behavior) of programs. In our case, they are not

suitable for automatic analysis without humans’ intervention. However, execution tracing is a

good method for automatic analysis, which can automatically record run-time behavior of

executables. Also, it is easy to analyze the trace using automatic analysis algorithms.

 There are different ways to carry out execution tracing. In our case, we choose to trace system

calls of worm and benign executables and use the trace as the source of classification (worm

detection). The reasons for doing so is straightforward. Tracing all Microsoft Windows

Application Programming Interface (API) functions can capture more details about the run-time

behavior of executables. However, it increases OS resources consumption and interference with

the execution of other programs, compared with tracing only system calls. The reason is that, the

 88

number of system calls, 311 for all the Windows version together [86], and 293 for Linux 2.6

kernel [87], is significantly less than the number of APIs, over 76,000 for Windows version

before Windows Vista [88], over 1000 for Linux [89]. Hence, we choose to trace only system

calls and hence build a lightweight run-time worm detection.

3.c. Feature Extraction

Features are key elements for any anomaly detection or classification. In this section, we

describe our method to extract and process the features that are used to learn the classifier and

carry out worm detection.

1) N-gram from System Call Trace

 System call traces of executables are the system call sequences (time series) of the execution,

which contains the temporal information of program execution and thus the dynamic behavior

information of the executables. In our system, we need to extract appropriate features that can

capture common or similar temporal information hidden in the system call sequences of all

worm executables, which is different from the temporal information hidden in the system call

sequences by all benign executables.

 The n-gram is a well-accepted and frequently adopted temporal feature in various areas of

statistical natural language processing and genetic sequence analysis [90, 91]. It also fits our

temporal analysis requirement. An n-gram is a subsequence of n items from a given sequence.

For example, if a system call sequence is {NtReplyWaitReceivePortEx, NtOpenKey,

NtReadVirtualMemory, NtCreateEvent, NtQuerySystemInformation}, then the 3-grams from this

sequence are {NtReplyWaitReceivePortEx, NtOpenKey, NtReadVirtualMemory}, { NtOpenKey,

NtReadVirtualMemory, NtCreateEvent}, and {NtReadVirtualMemory, NtCreateEvent,

NtQuerySystemInformation}.

 89

 We use n-grams as the features in our system for the following reasons. Imagine the

difference between one line of source code and one block of source code in a program. One line

of code provides little meaningful information of a program, but one block of code usually

represents a meaningful and self-contained small task in a program, which is the logical unit of

programming. For a similar reason, one system call only provides very limited information about

the behavior of an executable, whereas a segment of system calls might represent a meaningful

and self-contained action taken during the program execution. Worm and benign executables

have different behaviors, and this can be represented as the difference between their source code

blocks, or the segments (i.e., n-grams) of their system calls. Hence, we use these system call

segments, or the n-grams, as the features to classify worm and benign executables, which are

shown to be very effective through our experiments, as described in Section 4.

2) Length of N-gram

 One natural question is what length of n-gram is best for classifying worms from benign

executables. On one hand, in order to capture the dynamic behavior of program execuation, n

should be greater than 1. Otherwise, the extracted 1-gram list is actually the list of system calls

invoked by the executables. This special case is the same as the method used by static program

analysis to detect worms, which has no dynamic run-time information of executables.

 On the other hand, n should not be very large for the following two reasons. First, if n is too

large, it is very unlikely to find common or similar n-grams among different worm executables.

In one extreme case, when n becomes very large, the n-grams are no longer small tasks. Instead,

they become the entire execution of the executables. Because different worms cannot have the

exact same sequence of system call invocations (otherwise they are the same worm), the

classifier learning algorithms will fail to identify a common feature (i.e., the same system call

invocations) among them, neither can the classifier learning algorithm to define a class that can

 90

cover all the worms. In this case, the classification will not work. Second, if n is too large, the

number of possible distinct n-grams, (311n for MS Windows since Windows has 311 system

calls, 293n for Linux since Linux has 293 system calls) will be too large to be analyzed in

practice. We will investigate the impact of n-gram length on worm detection in our experiments

and report the results in Section 4.

3.d. Classifier Learning and Worm Detection

In this section, we present the details of the last step in the off-line classifier learning process

(i.e., how to apply the classifier learning algorithm to learn the classifier after extracting the

features). In particular, we use two classification algorithms: the Naive Bayes algorithm, which is

a simple but popular learning algorithm, and the Support Vector Machine (SVM) algorithm,

which is more powerful but more computationally expensive. We also present how to conduct

on-line worm detection with each of the algorithms in detail.

1) Naive Bayes-based Classification and Worm Detection

 The Naive Bayes classifier (also known as the Simple Bayes classifier) is a simple

probabilistic classifier based on applying Bayes’ theorem [74, 93]. In spite of its naive design,

the Naive Bayes classifier may perform better than more sophisticated classifiers in some cases,

and it can be trained very efficiently with a labeled training dataset. Nevertheless, in order to use

the Naive Bayes classifier, one has to make the assumption that the features used in the

classification occur independently.

 In our case, we use the Naive Bayes classifier to calculate the likelihood that an executable is

a worm executable (i.e., in worm class) and the likelihood that it is a benign one (i.e., in benign

class). Then, the detection decision can be made, e.g. the executable belongs to the class having

a larger likelihood.

 91

 (a) Off-line Classifier Learning

 We represent each executable by an m-dimensional feature vector, X = (x1, x2,. . ., xm), where

m is the number of distinct n-grams in the dataset, xi (i=0, ���, m-1) is the i-th distinct n-gram xi =

1 if xi appears in the executable’s system call trace, xi = 0 otherwise. We have two classes, worm

class Cw and benign class Cb. Given the feature vector, X, of an unknown executable, we need to

predict the class to which X belongs. The prediction is made as follows. First, we calculate the

likelihood that the executable belongs to different classes. Second, we make the decision based

on the value of likelihood, e.g., the executable belongs to the class which has a larger likelihood

for the given executable.

 Actually, the off-line “classifier” learning process of the Naive Bayes algorithm is the

preparation for the calculation of the above two likelihoods. Particularly, this preparation is the

calculation of some statistical probabilities based on the training data. These probabilities are the

posterior probability of each n-gram, say, xi, conditioned on each class, Cw and Cb. Hence, the

off-line “classifier” learning process in our Naive Bayes classification is actually the calculation

of P(xi|Cj), i = 1, … ,m, and j = w or b based on the training dataset. Remark that in some

implementations, the classifier learning based on the Naive Bayes algorithm may conduct extra

process, such as selection of features, cross-validation, but they are not the core procedures for

the Naive Bayes algorithm.

 (b) On-line Worm Detection

 During the on-line worm detection, for each unknown executable, the feature vector X for that

executable is built first. Then, we predict the class which X belongs based on a higher posterior

probability, conditioned on X. That is, the Naive Bayes classifier assigns an unknown sample X

to the class Cj if and only if

 ., or ,) |()|(| kjbwkjXCPXCP kj ≠=> (V-1)

 92

 Based on Bayes theorem, P(Cj |X) can be calculated by

 .
)(

)()|(
)|(

XP

CPCXP
XCP jj

j = (V-2)
 In order to predict the class of X, we will calculate P(X|Cj)P(Cj) for j = m or b and

consequently compare P(Cw|X) and P(Cb|X). Now we present how to calculate P(X|Cj)P(Cj).

First, if the class prior probabilities P(Cw) and P(Cb) are not known, then it is commonly

assumed that the classes are equally likely, that is P(Cw) = P(Cb). Otherwise, P(Cj) can be

estimated by the proportion of class Cj in the dataset. Second, for P(X|Cj), as we assume the

features are independent, P(X|Cj) can be calculated by

,)|()|(
1

∏
=

=
m

i
jij CXPCXP (V-3)

where P(xi|Cj) can be calculated during the off-line classifier learning process.

 (c) Discussion

 The Naive Bayes classifier is effective and efficient in many applications. The theoretical time

complexity for learning a Naive Bayes classifier is O(Nd), where N is the number of training

examples and d is the dimensionality of the feature vectors. The complexity of classification for

an unknown example (an unknown executable in our case) is only O(d).

 However, the Naive Bayes classifier has two limitations in our case. First, the classifier

learned by Naive Bayes-based method can be used by the worm writer to make the worm

detections less effective for new worms. The Bayes Naive classifier in our approach is actually a

set of probabilities in which the n-grams appear in each class. Worm writer can directly use these

information to make new worms similar to benign executables by either using or avoiding

certain n-grams (system call sequences). Second, high accuracy of the Naive Bayes classifier is

based on the assumption that the features are independent to each other. However, the n-grams in

 93

the system call trace of an executable might not be independent in reality. In order to address

these problems of Naive Bayes classifier, we will use the Support Vector Machine (SVM) in our

worm detection as described in the following subsection.

2) Support Vector Machines-based Classification and Worm Detection

 The Support Vector Machine (SVM) is a type of learning machine based on statistical

learning theories [94, 95, 96]. The SVM-based classification includes two processes. One is

classifier learning and the other is the classification. The classifier learning is to learn a

classifier/model, using the training dataset. Then the learned classifier is used to

determine/predict the class label of instances that are not contained in the training dataset. The

SVM is a sophisticated and accurate classification algorithm. Although it is computationally

expensive, its trained classifier is difficult to interpret. These silent features match our

requirements for accurate worm detection and interpretation difficulty for worm writers.

 (a) Off-line Classifier Learning

 A typical SVM classifier learning problem is to label (classify) N training data {x1, . . . , xN}

to a positive or negative class, xi ∈ Rd (i = 1,… ,N), where d is the dimensionality of the

samples. Remark that the SVM algorithm can be extended to classification for more than two

classes, but the two classes are the typical and basic cases. Our problem belongs to the

classification of two classes. Thus, the classification result is {(x1, y1), … , (xN, yN)}, yi ∈

{−1,+1} . In our case, xi is the feature vector built for the i-th executable in our dataset. That is, xi

= {x i,1, . . . , xi,d}, where d is the number of distinct n-grams, xi,j (j = 1, . . . , d) is the j-th n-gram,

xi,j=1 if xi,j appears in the ith executable’s system call trace, xi,j = 0 otherwise. yi = +1 means that

xi belongs to worm class, yi = +1 means that xi belongs to benign executable class. As we have a

large number of features (n-gram), the dimensionality of the Euclidean space in our classification

 94

problem is very large (upper bounded by 311n depending on n-gram length). There are two cases

for the SVM classifier learning problems; (i) the samples in the two classes are linearly

separable; (ii) the samples in the two classes are not linearly separable. But case 2 holds for most

real-world problems. In the SVM, in order to achieve an optimal classifier, the non-linear

solvable problem in case (2) needs to be transformed to be a linear solvable problem in case (1)

first. Then, the optimal classifier can be learned through linear optimization [93, 94]. In the

following, we first present the algorithm for the simple case (case (1)), followed by the algorithm

for case (2).

 (i) Case 1: Classes are linearly separable

 If the two classes are linearly separable, then we can find a hyperplane to separate the

examples in two classes as shown on the right side of Fig. V-3. Examples that belong to different

classes should be located on different sides of the hyperplane. The intent of the classifier

learning is to obtain a hyperplane which can maximally separate the two classes.

 Mathematically, if the two classes are linearly separable, then we can find a hyperplane w�x +

b = 0 with a vector w and an intercept b, that satisfies the following constraints:

 ,1for y 1 i +=+≥+⋅ bxw i (V-4)

 ,1for y 1 i −=−≤−⋅ bxw i (V-5)

or, equivalently

 . 01)(ibxwy ii ∀≤−−⋅ (V-6)

 Examples in the training set that satisfy the above equality are referred as support vectors.

The support vectors define two hyperplanes, one going through the support vectors of the

positive class and the other going through the support vectors of the negative class. The distance

between these two hyperplanes defines a margin and this margin is maximized when the norm of

the vector w (║w║) is minimized. When this margin is maximized, the hyperplane w�x+b = 0

 95

separates the two classes maximally, which in fact is the optimal classifier in SVM algorithm.

The dual form of Formula (V-6) reveals that the above optimization actually maximizes the

following function,

 ,)(
1
1

-)(ji
1i 1j1

yyXXW ji

N N

ji

N

i
i ⋅= ∑∑∑

= ==

αααα (V-7)

subject to the constraint that αi
≥
 0. The SVM algorithm can achieve the optimal classifier by

finding out αi
≥
 0 for each training sample xi to maximize W(α).

 (ii) Case 2: Classes are not linearly separable

 In the above case, the optimization can be achieved for classes that are linearly separable.

However, the real-world classification problems usually cannot be solved by the linear

optimization algorithm. This case is illustrated as the left side of Fig. V-3, in which, there is no

linear hyperplane (e.g., in this case, it is a straight line in 2-dimensional space) that can separate

the examples in two classes (here shown with different colors). In other words, the classifier

needed must be a curve, which is difficult to optimize.

 Fig. V-3. Basic Idea of Kernel Function in SVM

new feature 1

feature mapping

feature 1

feature 2 new feature 2

 96

 The SVM provides a solution to this problem by transforming the original feature space into

some other, potentially high dimensional, Euclidean space. Then, the mapped examples in the

training set can be linearly separable in the new space as demonstrated by the right side of Fig.

V-3. This space transformation can be implemented by a kernel function,

),()(),(jiji xxxxK Φ⋅Φ= (V-8)
where Ф(xi) is the mapping from the original feature space to the new Euclidean space. We

would only need to use K(.) in the classifier training process with Equation (V-7), and would

never need to explicitly know what Ф is. The SVM kernel function can be either linear or non-

linear. Common non-linear kernel functions include Polynomial, Radial Basis Function (RBF),

and Sigmoid among others.

 (b) On-line Worm Detection

 The on-line worm detection is the classification of new executables, using the SVM

classification algorithm along with the optimal SVM classifier learned during the previously-

discussed off-line learning process.

 For an unknown executable (a worm or benign executable), its feature vector must be built

first. The method is the same as the process aforementioned on the executables in the training

set. That is, the system call trace during the execution is recorded, then the n-grams with certain

value of n is extracted. After that, the feature vector, xk, of this executable is formed from its

trace, using the same method as in the off-line classifier learning process.

 Recall that during the classifier learning process, the optimal hyperplane is found. Then, for a

new example xk shown as the small circle in Fig. V-3, the on-line classification is to checks on

which side of the optimal hyperplane xk is. Mathematically, the classification is conducted

through signing a class to the executable by

),()(bxwsignxC kk −⋅= (V-9)

 97

where

 .
1
∑

=

=
n

i
iii xyw α (V-10)

 If C(xk) is positive, we predict the executable is a worm. Otherwise, we predict it as benign.

 (c) Complexity of SVM

 The classifier learning process of SVM is relatively time consuming because of the large

volume of training set, high dimension of our feature space, complexity of classifier calculation

and optimization. No matter what kernel function is used, if N is the number of training

examples, Ns is the number of support vectors, and d is the dimension of the original feature

vectors for the training examples, then the complexity upper bound of SVM classifier learning is

O(Ns
3 + Ns

2N + NsdN). However, the SVM classification process for each new executable is fast

and involves only limited calculations. Its complexity is O(MNs), where M is the complexity of

the kernel function operation. For Radio Basis Function kernels, M is O(d).

 (d) Black-Box Characteristics of the SVM Classifier

 The classifier learned by the SVM can be easily used to carry out worm detection. However,

the SVM classifier is difficult to interpret. The SVM classifier learning algorithm generates

black-box models (classifiers) in the sense that they do not have the ability to explain in an

understandable form [97, 98, 99]. Thus, from the SVM classifier, it is hard to extract decision

rules comprehensible in the original problem domain, especially for the non-linear SVM, due to

the feature space transformation introduced by kernel functions.

 The above characteristic of SVM is a well-known limitation for the applications in which one

needs to know the decision rules which can be mapped back to the physical entities in the

original problem domain. However, this characteristic can help us prevent the worm writers from

interpreting and learning from the classifier. We want to prevent the worm writers from

 98

obtaining the signature of their worms or any benign executable. Otherwise, the worm writer can

hide new worms accordingly as benign executables.

 Besides the optimization algorithm used in SVM, the learning classifier also depends on the

definition of input feature space, the selection of kernel function, the parameters of the kernel

function, etc., which are unknown to worm writers. The worm writer does not know the

following: the value of n of the n-gram used in the classifier, the mapping between n-grams and

feature indices in the feature vector, the definition of the kernel function, the parameters of the

kernel function, and the space transformation introduced by kernel function.

 Hence, even if the worm writer knows that we use SVM and are able to get the classifier, it is

hard for him to interpret the classifier to discovery the decision rule we used to distinguish

between worms and benign executables. Thus, it is hard for him to change the worm behavior

accordingly to evade our detection. Furthermore, we can protect the classification by

mechanisms, such as encryption.

4. Performance Evaluation

In this section, we first present the experimental setup and metrics. Then we report on the results

of our experiments.

4.a. Evaluation Methodology

In our experiments, we use 722 benign executables and 1589 worms in Microsoft Windows or

DOS Portable Executable (PE) format as the data source, although our approach works for worm

detection on other operating systems as well. We use this data source to obtain the generic worm

classifier and further evaluate the trained classifier to detect worms. This set of executables are

labeled into two classes: worms and benign executables. The set of worms obtained from the

Web site VX Heavens (http://vx.netlux.org) have email worms, peer-to-peer (P2P) worms,

 99

Instance Message (IM) worms, Internet Relay Chat (IRC) worms, and other non-classified

worms. The benign executables in our experiments include Microsoft software, commercial

software from other companies or free open source software. This diversity of executables

enables us to obtain classifiers comprehensively that capture the behaviors of both different

types of worms and benign executables. We use 80% of each class (worm and benign) as the

training set to obtain the classifiers. We use the remaining 20% as the test set to evaluate

accuracy of the classifiers, i.e., the performance of our detection approach.

 We install MS Windows Professional 2000 with service pack 4 on our virtual machines. On

these virtual machines, we launch each executable in our executable collection and use strace for

Windows NT [99] to trace their system calls for 10 seconds. Recall that we trace the executables

in the data set for longer time, then use a slide window to capture certain length trace for the

classifier training. We found that using 10 second trace is enough to provide high detection

accuracy. From the trace file of each executable, we extract the system call name sequences in

the time order. Then we obtain the segment of system calls (i.e., the n-grams), given different

value of n for each executable. After that, we build the vector inputs for the classification

learning algorithms.

 Recall that the classification in our worm detection problem is in a high dimensional space.

There are a large number of dimensions/features which cannot be handled or handled efficiently

by many data mining tools. The data mining tools we choose are Naive Bayes classification tools

from University of Magdeburg in Germany [100] and svm light [101]. Both of the tools we

selected are implemented in C language, and perform efficiently, especially for a high dimension

classification problem. When we apply SVM algorithm with svm light, we choose Gaussian

Radial Basis Function (Gaussian RBF), which has been proven to one of the effective kernels

[73]. The distribution of features follows Gaussian distribution. Gaussian RBF is in the form of

 100

,),(
2

ji xxr

ji exxK
−−= (V-11)

which means (V-8) needs to be replaced by (V-11) in the classifier learning process and on-line

worm detection process. The value of r is optimized through experiments and comparison.

 In order to evaluate the performance of our classification for new worm detection, we can use

two metrics, Detection rate (PD) and false positive rate (PF). In particular, the detection rate is

defined as the probability that a worm is correctly classified. The false positive rate is defined as

a benign executable classified mistakenly as a worm.

 Table V-1. Detection Results for the Naive Bayes-Based Detection

n-gram length (n) 1 2 3 4 5 6

Detection Rate (PD) 69.8% 81.4% 85.0% 90.9% 93.6% 96.4%

False Positive Rate (PF) 33.2% 18.6% 11.5% 8.89% 6.67% 6.67%

 Table V-2. Detection Results for the SVM-Based Detection

n-gram length (n) 1 2 3 4 5 6

Detection Rate (PD) 89.7% 96.0% 97.73% 99.5% 99.5% 99.5%

False Positive Rate (PF) 33.3% 18.75% 7.14% 4.44% 2.22% 2.22%

4.b. Experiment Results

In this subsection, we report on the performance of our worm detection approaches. The results

of Naive Bayes and SVM-based worm detections in terms of Detection Rate and False Positive

Rate under different n-gram length (n) are shown in Table V-1 and V-2, respectively.

 101

 (a) Effectiveness of Our Approaches

 We conclude that our approaches of using both the Naive Bayes and SVM algorithms can

correlate detect worm at a high detection rate and low false positive rate when the length of n-

gram is of a reasonable value. For example, when the length of n-gram is 5, the detection based

on the SVM algorithm achieves 99.5% detection rate and 2.22% false positive rate and the

detection based on the Naive Bayes algorithm achieves 96.4% detection rate and 6.67% false

positive rate, respectively.

 From these tables, we also conclude that SVM-based detection performs better than Naive

Bayes-based detection in terms of both detection rate and false positive rate. There are two

reasons for this. First, the Naive Bayes classification assumes that features are independent,

which might not be always true in real practice. Second, for the Naive Bayes-based

classification, the calculation of the likelihood for classifying a new executable is based on the

vectors of the training set executables in the feature space. Then, it predicts the class of the new

executable simply based on the comparison of the likelihood. Differently, the SVM attempts to

optimize the classifier (hyperplane) through finding the hyperplane that can maximally separate

the two classes in the training set.

 (b) Impacts of N-gram Length

 Another important observation is the length of n-gram, i.e., the value of n, impacts the

detection performance. When n increases from 1 to 4, the performance keeps increasing. When n

further increases, the performance does not increase, or it only increases very little. The reason

can be explained as follows. First, when n = 1, each n-gram only contains one system call and

thus contains no dynamic system call sequence and executable’s behavior information. Actually,

this special case is the static program analysis, which only investigates the list of system calls

used by the executables. Second, when n is larger, the n-grams contain a larger length of system

 102

call sequence and thus obtain more dynamic behavior of the traced executables. Hence, the

detection performance is better. This also demonstrates that our dynamic program analysis

approach outperforms the traditional static program analysis-based approaches. From the

previous observation on the length of n-gram, we conclude that certain length of n-gram is

effective enough for worm detection. This length (value of n) can be learned through

experiments: when the increase of n brings little detection performance gain, that n value is good

enough and can be used in practice. This method is actually used for other n-gram-based data

mining applications [91, 92]. Furthermore, for the efficiency of worm detection, the n value

should not be very long, as we discuss in Section 3.

5. Summary

In this chapter, we studied the countermeasure based on the dynamic signature of worm

executables. Specifically, we proposed a new worm detection approach based on mining the

dynamic execution of programs. Our approach is capable of capturing the dynamic behavior of

executables and providing efficient and accurate detection against both seen and unseen worms.

Using a large number of real-world worm and benign executables, we ran executables on virtual

machines and recorded run-time system call traces of these executables. We then applied two

data mining classification algorithms to learn about classifiers off-line, which are subsequently

used to carry out on-line worm detection. Our data clearly showed the effectiveness of our

proposed approach in detection worms in terms of both very high detection rate and low false

positive rate.

 Our proposed approach has the following advantages. It is practical with low overhead

during both classifier learning and run-time detection. Our approach does not rely on

investigation for individual executable; rather, it examines the common dynamic properties of

 103

executables. Therefore, it can automatically detect brand new worms and other unseen worms

such as polymorphic worms. Furthermore, our approach attempts to build a black-box classifier

which makes it difficult for the worm writers to interpret our detection.

 104

CHAPTER VI

 COUNTERMEASURE BASED ON CONTRADICTED OBJECTIVES

In this chapter, we focus on developing the countermeasure based on contradicted objectives to

defend against worm attacks that change their patterns to circumvent the detection.

1. Overview

Generally speaking, a worm attacker (or propagator) has two objectives: One is to infect as many

computers as possible. The other is to avoid being detected and punished by the defensive

system. After infecting a number of computers without being detected, the worm attacker can

remotely control the infected computers and use them as stepping stones to launch additional

attacks [3, 4, 5, 6, 7, 8, 9, 10]. Recent studies show the existence of a black-market for

trading/renting compromised computers (as “bots”) for future attacks [9, 10], providing further

economic incentives for worm attacks.

 Unfortunately, most existing countermeasures make a tacit assumption that worms always

propagate at the highest possible speed. Nonetheless, some newly developed worms contradict

this assumption by intentionally reducing their propagation speed to detection. For example, the

“Atak” worm [102] and the “self-stopping” worm [42] circumvent detection by hibernating (i.e.,

stop propagating) periodically. If a worm can successfully avoid (or delay) detection, it may

eventually infect more computers, resulting in more damage to the Internet.

 In order to address threats from these new kinds of worms, we formulate a new class of

worms, called self-adaptive worms, in this chapter. These worms adapt their propagation

schemes to defensive countermeasures, aiming to avoid or delay detection, and ultimately

infecting more computers. We propose and evaluate countermeasures against self-adaptive

worms. Specifically, we partition self-adaptive worms into two classes. Static self-adaptive

 105

worms are those that intelligently select a propagation speed at the time of attack launch but

nevertheless maintain a constant speed during the attack session. For a dynamic self-adaptive

worm, its propagation speed may vary during the attack session. Remark that the camouflaging

worm studied in Chapter III is a special case of dynamic self-adaptive worm by adopting

feedback loop-control to manipulate a traffic pattern.

 To develop proper countermeasures, we introduce a game-theoretic formulation to model the

interaction between the worm propagator and the defender. We show that an effective integration

of multiple countermeasure schemes (e.g., worm detection and forensics analysis) is critical for

defending against self-adaptive worms by enforcing the worm attack to choose between the

objectives.

 In the following, we will first present models for worms and defensive schemes. We then

introduce a baseline system where a static self-adaptive worm freely propagates without

defensive countermeasures and introduce a game-theoretic formulation of the system to model

the interaction between self-adaptive worms and countermeasures. Based on the game-theoretic

formulation, we then present our countermeasures against static and dynamic self-adaptive

worms.

2. Models

In this section, we present models for worms and defensive schemes. In particular, we start with

the propagation model for traditional worms and then formally define a propagation model for

self-adaptive worms. After that, we present our models for defensive countermeasures.

 106

2.a. Worms

1) Traditional Worms

 Let us first consider traditional worms investigated in previous work [2]. Generally speaking,

a traditional worm behaves similar to biological viruses in terms of its greedy self-propagating

nature. Worm propagation on the Internet is an iterative process that usually starts with a

computer, known as the worm propagator. The worm propagator conducts a network

propagation scan to identify vulnerable computers on the Internet, and then infects these

computers by remotely exploiting the vulnerabilities to obtain access privileges. Once a

computer is infected by the worm, the computer will then recursively start propagating the worm

to other computers on the Internet.

 In order for a worm to propagate itself on the Internet, it must be capable of identifying

computers with certain vulnerabilities. Given the complex topology of vulnerable computers on

the Internet, such identification can be hardly optimal in practice. A commonly used

identification strategy is Pure Random Scan (PRS) [1, 2, 10, 16], in which each worm-infected

computer randomly scans IP addresses to identify vulnerable computers. To improve the

performance of the PRS approach, work has been done, which enables worm to carry a hit-list,

containing certain addresses of pre-known vulnerable computers [18]. Note that the length of the

hit-list is limited by the size of the worm. Thus, this approach may not be able to support the

wide propagation of a worm. For the sake of simplicity, we only consider the PRS propagation

mechanism in this chapter.

 Most previous studies [1, 2, 10, 16] make a tacit maximum speed assumption on worm

propagation: A worm-infected computer always scans the network with the maximum possible

speed. Formally, let S be the maximum number of scans that an infected computer can perform

in a unit of time. Let p(t) be the percentage of S that a worm actually scans at time t. That is, the

 107

number of scans that an infected computer actually performs at time t is p(t)�S. We refer to p(t)

as the propagation growth rate at time t. Due to the maximum speed assumption, the traditional

worms have p(t) = 1 for all t.

2) Self-Adaptive Worms

 With defensive systems in place nowadays, worms have consequently evolved and become

more sophisticated than the traditional worms mentioned above. In particular, some worms

deliberately reduce their propagation speed to avoid detection [46, 102]. In this chapter, we

propose to deal with these new, smarter worms. Specifically, we remove the maximum speed

assumption, and consider self-adaptive worms that manipulate their propagation growth rate in

order to avoid or delay detection. Formally, a self-adaptive worm is a generalization of

traditional worms with p(t) ≤ 1.

 In an ideal situation, when p(t) is very small (i.e., p(t) ≈ 0), a self-adaptive worm may

propagate forever without being detected. In practice, however, it only makes sense for a worm

to propagate for a finite amount of time. Thus, we make a finite propagation assumption that a

worm will only propagate for a finite (yet very long) amount of time tE. This finite propagation

assumption is reasonable in practice because the vulnerable computers will eventually be fixed

and the worm will be detected. Based on the finite propagation assumption, the objective of

worm on propagation becomes to infect as many computers as possible by time tE.

Algorithm VI.1 Propagation of self-adaptive worms

Require: Maximum scan rate S, Propagation growth rate p(t), and finite time tE

1: for all t = 0 to tE do

2: Current time is t

 108

3: Determine the propagation growth rate p(t);

4: Launch p(t)·S scans to selected targets (e.g., via PRS) in this unit of time;

5: end for

 Algorithm VI.1 shows the pseudo-code of a self-adaptive worm. As we can see, a self-

adaptive worm can either use a constant p(t) for the duration of worm propagation, or

deliberately change p(t) over time during the propagation. We consider both cases in this

chapter. In particular, we call the self-adaptive worms with constant p(t) as static self-adaptive

worms. If a self-adaptive worm has p(t) changed over time t, we call it dynamic self-adaptive

worms. For static self-adaptive worms, we use p to denote the constant value of p(t).

 Note that each kind of worm has its own advantages and disadvantages. Static self-adaptive

worms are easy to implement while the dynamic ones require each infected computer to compute

the amount of time elapsed since the start of propagation and determine p(t) correspondingly.

Nonetheless, dynamic self-adaptive worms may outperform the static ones in terms of infecting

computers and avoiding detection. The “Atak” worm [102] and the “self-stopping” worm [43]

are special cases of dynamic self-adaptive worms, as their propagation growth rates are changing

between 0 and 1 over time.

2.b. Countermeasures

Various countermeasure schemes have been proposed to defend against worm attacks. We

consider two types of defensive schemes in this chapter: One is the worm detection scheme,

which focuses on the detection of propagating worms on the Internet. Once a propagating worm

is detected, many actions can be taken to stop or slow down worm propagation: For example,

 109

patches can be released to fix the vulnerability; worm scan traffic can be throttled and filtered;

and infected computers can be identified and quarantined [10].

 The other type of scheme we consider is trace-back, which aims to identify the origin of

worm propagation, such that appropriate legal steps can be taken to punish the worm propagator.

As we will show in the chapter, if successfully deployed, this scheme can prevent worm

propagators from launching attacks.

 There has been much work on specific algorithms of detection and trace-back schemes.

Please note that we do not intend to study the performance of these algorithms in this chapter.

Rather, our objective is to analyze the effectiveness of the entire classes of detection and trace-

back schemes. For this purpose, we will introduce models for detection and trace-back schemes.

These models are representative of many algorithms that have been developed but still simple

enough to enable our quantitative analysis. We will also propose a framework that integrates

detection and trace-back schemes.

1) Detection Schemes

 A typical defense system with detection scheme usually is based on the ITM system which

consists of a number of monitors and a data center. Each monitor is responsible for monitoring

suspicious traffic (e.g., scan to unoccupied IP addresses or ports) targeted to a range of IP

addresses and reporting the collected traffic logs to the data center periodically. The data center

issues alerts of worm propagation by analyzing the characteristics of traffic recorded in the logs.

In this chapter, we consider a simple detection mechanism of using average traffic volume in the

threshold-based scheme [31]. With this scheme, the data center issues an alert if and only if the

average volume of traffic collected in a given time period is larger than a pre-determined

threshold TR. Note that the threshold TR must be carefully chosen for the detection scheme to be

effective: In particular, it must minimize both false negative rate (i.e., the probability that an

 110

ongoing worm attack is not reported) and false positive rate (i.e., the probability that an alarm is

triggered when no worm is propagating). The proper selection of TR will be further discussed in

Section 3.

2) Trace-back Schemes

 A trace-back scheme typically works as follows: (some of the) routers in the system monitor

all traffic transmitted through the routers and record traffic logs in some network storage servers.

When a “trace-back” order is given, the recorded information is analyzed to determine the origin

of worm propagation [104, 105]. In order to successfully identify the worm propagator, the

system must be capable of monitoring and recording traffic for a substantial amount of time. In

particular, we use tB to denote the maximum length of time interval during which all traffic

information can be recorded in the storage servers.

 Trace-back schemes cannot be precise in many real systems. Usually, the trace-back scheme

reports a set of “suspects”, rather than one computer, that could be the origin of the worm

propagation. Then, law enforcement needs to take other means to investigate the suspects and

capture the original worm propagator. To be effective, the set of suspects cannot be too large.

Thus, we assume that in order to identify the worm propagator, it is required (by law

enforcement) that the size of suspects set is no more than m (m
≥
 1).

3) Integration of Threshold-Based and Trace-Back Schemes

 We now introduce a defensive framework to integrate the threshold-based and trace-back

schemes. The framework consists of a control center processing reports from numerous monitors

as well as forensic support (storage) servers which are distributed across the Internet. Once the

control center detects a propagating worm, it issues an order to initiate the trace-back process by

collecting network traces from the forensic support servers. We assume that multiple sub-

networks collaborate with each other by sharing the stored forensic data to jointly locate the

 111

worm propagator through post-mortem analysis [106]. This defense framework will be further

extended and discussed in Section 3 to integrate the new spectrum-based scheme we will

propose in the chapter.

 The proposed defense framework can be deployed using existing commercial products. For

example, the sinkhole feature of Cisco’s Private Internet Exchange (PIX) Firewall can be readily

used by the distributed monitors to collect anomaly traffic such as illegal scans to IP addresses

not occupied by real computers or other devices; Cisco’s Netflow tool can be used to analyze

traffic logs for forensic analysis; and Cisco’s Security Management Solution (SIMS) or Arbor

Network’s Peakflow can be deployed on the control center [107, 108] to process the collected

anomaly traffic.

3. A Baseline System

In this section, we analyze a baseline system in which a static self-adaptive worm freely

propagates until time tE = ∞ without any defensive countermeasure. This analysis forms the

basis for us to analyze much more complicated systems, in which the worm may be dynamic

self-adaptive, the maximum propagation time tE is limited, and various defense schemes are

deployed.

 Let f(t) be the number of infected computers in the baseline system at time t. Without loss of

generality, we assume that the following initial condition holds:

.1)0(=f (VI-1)

 We are interested in the relationship between f(t) and other system parameters. To derive this

relationship, we take an approach similar to the analysis of traditional worms with the simple

epidemic model [45]. First, we have

),,()()(ttXtfttf ∆+=∆+ (VI-2)

 112

where X(t,
�

t) is the number of computers infected during time internal (t, t+
�

t]. X(t,
�

t) can be

estimated as follows:

 X(t,
�

t) = (Number of worm scans in (t, t +
�

t]) · (Success rate of each scan). (VI-3)

 Note that when
�

t→0, the number of scans made during (t, t +
�

t] is equal to S�p�f(t). Let V be

the total number of IP addresses and N be the total number of vulnerable computers. At time t,

the number of computers that are vulnerable to infection is N−f(t). Then, the success rate of a

scan is (N − f(t)/V). Due to Formula (VI.3), we have

 .
)(

)(),(
V

tfN
tfpSttX

−⋅⋅=∆ (VI-4)

Substituting Formula (VI.4) into (VI.2), with some mathematical manipulation, we have

)),(()(
)()(

lim
)(

0
tfNptf

t

tfttf

dt

tdf
t

−⋅⋅⋅=
∆

−∆+=
→∆

β (VI-5)

where
β
 = S/V is called pair-wise propagation rate [46].

 As we can see, (VI-5) is a differential equation of f(t) in terms of system parameters S, V, N,

and p. With the initial condition f(0) = 1, the equation can be easily solved using Laplace

transform [109]. The solution is as follows: .
1

)(
Ne

eN

Ne

eN
tf

tNp

tNp

tNp

tNp

+
⋅≈

−+
⋅= ⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

β

β

β

β

 (VI-6)
Based on (VI-6), we would like to make the following remarks:

− f(t) is an increasing function of t. Also, f(t) increases when
β

, N, or p increases.

− When t is sufficiently small such that epNt << N, we have

.)(tNpetf ⋅⋅⋅= β (VI-7)

 That is, when a worm is in its initial propagation phase, the number of infected computers

increases exponentially over time t.

− On the other hand, when t is sufficiently large,

 113

.)(Ntf = (VI-8)

This indicates that when no defense system exists, eventually all vulnerable computers will be

infected.

− Except for a new parameter “p”, our result in (VI-5) is identical to the result in [10]. We

nevertheless present the derivation process in this chapter to help our readers understand the

physical meaning of the equation and its solution.

− Consider the extension of our baseline system to include the detection scheme. Let tD be the

time of detection. Then, (VI-6) will correctly represent the number of infected computers as long

as t ≤ tD.

− While we derive f(t) for static self-adaptive worms, the derivation can be useful for the

dynamic ones as well. From the derivation process, if we replace p by p(t) in (VI-4), the

differential equation (VI-5) still holds. That is, (VI-5) can be used to describe dynamic self-

adaptive worms as well. Unfortunately, the solution process used in (VI-6) requires that p be

constant, and thus cannot be directly applied to dynamic self-adaptive worms.

4. Game-theoretic Formulation

We now consider the case in which both parties, the worm propagator and the defender, appear

in the system. In this case, the number of infected computers will depend not only on the strategy

of worm propagation (e.g., propagation growth rate p(t)), but on the defensive strategy and the

interaction between the two parties as well. In particular, since one party may adapt to the

strategy change of another party, the outcome of worm propagation is determined by the stable

state where neither party can benefit by changing its strategy unilaterally. This state is referred to

as the Nash equilibrium of the game between the worm propagator and the defender [109]. Our

focus in the following section is to analyze the optimal strategies that constitute the Nash

 114

equilibrium, when different combinations of self-adaptive worm and defensive schemes are

present in the system. In order to do so, we first formulate the game model, and then present the

strategy sets and utility functions of the two parties. The game-theoretic formulation introduced

in this section will form the basis for the specific analysis of systems with static and dynamic

self-adaptive worms in the next two sections.

4.a. Game

We formulate the system as a two-player uncooperative game. The worm propagator and the

defender are the two players in the game. Each player Pi (i∈{1, 2}) has a strategy set Si and a

utility function ui : S1 × S2 →
Ŕ

 which we will introduce in the latter part of this section. The

game is uncooperative in that the two players are in opposition and are unlikely to make any

binding agreement when choosing their strategies [109]. As in many security studies, we make a

conservative assumption that the worm propagator has full knowledge of the strategy taken by

the defender. Nonetheless, the defender has no knowledge about the worm propagator’s strategy.

 We assume that both players are rational, in that each player Pi always chooses the strategy

that maximizes its utility function ui. The Nash equilibrium is a combination of strategies {s1, s2}

(s1 ∈ S1, s2 ∈S2), such that ∀ s′1 ∈ S1, s′2 ∈ S2,

u1(s1, s2)
≥

 u1(s′1, s′2), (VI-9)

and

u2(s1, s2)
≥
 u2(s′1, s′2). (VI-10)

As we can see, the Nash equilibrium represents a stable state because when equilibrium is

reached, no player has an incentive to deviate from the chosen strategy (i.e., s1 or s2) unilaterally.

Thus, we can evaluate the outcome of worm propagation based on the Nash equilibrium of the

game.

 115

4.b. Strategies

We now consider the strategy sets of the two parties. The strategy of the worm propagator is to

determine the propagation growth rate p. Recall that as we mentioned in Section 1, the worm

propagator can choose to either use a constant propagation growth rate p or to vary p over time t.

Formally, the strategy set Ss
A of a static self-adaptive worm contains all possible values of p in

[0, 1]. The strategy set Sd
A of a dynamic self-adaptive worm contains all possible functions p(·)

that map time t in [0, tE] to a real number in [0, 1].

 The strategy of the defender is to determine the parameters for countermeasures. Recall that

as we mentioned in Section 2, we consider two kinds of countermeasures: threshold-based (i.e.,

worm detection) and trace-back (i.e., forensic analysis). Thus, the parameters include TR for the

threshold-based scheme, and tB and m for the forensics analysis scheme. Since the trace-back

parameters are determined by capacity of the defensive system and the trace-back algorithm

[104, 107], we assume that the defender cannot change tB or m. Thus, in our system model, the

strategy of the defender is to determine the detection threshold TR. Formally, the strategy set SD

of the defender contains all possible values of TR
≥
 0.

4.c. Utility Functions

The utility function ui(sA, sD) measures the benefit (or loss when ui < 0) gained by Player Pi

when a set of strategies sA, sD are chosen by the two players respectively. The utility function

depends on the objectives of Pi. The worm propagator has two objectives. One is to maximize

the number of infected computers. The other is to avoid being traced back and punished for its

malicious actions. Although different worm propagators may have different priorities for these

two objectives, it is commonly believed that most worm propagators on the Internet consider the

 116

penalty of being traced back to be substantially more than the benefits gained from worm

propagation [104, 105]. Thus, for the sake of simplicity, we assume that a worm propagator will

suffer infinite loss if the probability of being traced back is more than 50%, but it will suffer no

loss from forensic analysis otherwise. In Section 7, we will extend our results to the more

general case in which loss of worm propagator from forensic analysis is a function of the success

probability of trace-back.

 Formally, the utility function of the worm propagator, denoted by uA, is as follows:



 ∞−

=
.),(

%;50,
),(

otherwisetf

thanmoreofyprobabilitwithbacktraceIf
ssu

D
DAA

 (VI-11)

where sA and sD are the strategies of the worm propagator and the defender, respectively, and tD

is the time when the worm is detected.

 The defender also has two objectives. One is to minimize the number of infected computers.

The other is to minimize the false positive rate, which is the probability that an alarm is falsely

triggered when there is no worm propagation on the Internet. In our system model, we assume

that the false positive rate Λ must be lower than a pre-determined threshold δ.
 Formally, the utility function of the defender, denoted by uD, is as follows:



 >Λ∞−

=
.),(

;,
),(

otherwisetf
ssu

D
DAD

δ
 (VI-12)

 In the following two sections, we will derive the Nash equilibrium of the game based on the

strategy sets and the utility function of the two players.

5. Defense Against Static Self-Adaptive Worms

In this section, we consider a system with only traditional worms (p = 1) and static self-adaptive

worms (constant p in [0, 1)). We first show that the threshold-based scheme, by itself, is

 117

ineffective against static self-adaptive worms. After that, we demonstrate that an integration of

the threshold-based and trace-back schemes can effectively defend against static self-adaptive

worms.

5.a. Threshold-Based Scheme

We now show that if the defender only uses the threshold-based scheme, the game will reach

Nash equilibrium in the state where the worm propagator cannot be detected before time tE, and

is capable of compromising a large number of computers.

 Theorem VI-1. When the worm propagator propagates a static self-adaptive worm in the

system and the defender uses threshold-based scheme only, the Nash equilibrium of the game is:

The defender chooses TR = TR
0 where TR

0 is the maximum value to satisfy Λ ≤ δ. The worm

propagtor chooses p = pE such that f(tE)�pE = TR
0.

 Proof: We show the correctness of the specified Nash equilibrium by proving that no player

can benefit by changing its strategy unilaterally. Apparently, the defender cannot benefit by

either increasing or decreasing TR unilaterally because doing so will either keep the same uD or

reduce it to −∞.

 For the worm propagator, the current utility function is uA = f(tE). Suppose that it changes the

propagation growth rate to p1. Let the new function of the number of infected computers be f1(·).

When p1 > pE, the worm will be detected at time t1 < tE where f1(t1)�p1 = TR
0 . Since p1 > pE, we

have f1(t1) < f(tE). Thus, the worm cannot benefit by changing to p1 unilaterally. When p1 < pE,

the number of infected computers at the time of detection is at most f1(tE) < f(tE) = uA. Thus, the

worm cannot benefit by changing to p1 unilaterally either.

 We now illustrate the results of the theorem with practical examples. In particular, we set the

system parameters as follows: N = 350,000 (the number of computers infected by the “Code-

 118

Red” worm) [1], V = 4 × 109 (i.e., the number of IP addresses in IPv4), S = 358 scans/second (the

estimated value for “Code-Red” worm [1], δ = 3%, and tE = 5 days. Based on the system settings

[52], we compute TR
0= 60,000 scans/minute. Due to the theorem, the optimal strategy for the

worm propagator is to set p = 0.15. As such, the number of infected computers after tE (5 days) is

71,400, or 20.4% of total vulnerable computers. This is a significant number that can cause

substantial damage (a real-world worm that infected about 70,000 computers, the Slammer

worm, resulted in about one billion dollars damage [2]. Thus, the threshold-based scheme by

itself is ineffective against static self-adaptive worms.

 As we can see from the theorem, when the threshold-based scheme is the only available

defensive measure, the worm propagator can always reduce p to delay the detection until tE.

Thus, in order to defend against static self-adaptive worms, we have to introduce a

countermeasure that prevents the worm propagator from reducing p to pE. This motivates us to

integrate the threshold-based scheme with the trace-back scheme. As we will show below, the

trace-back scheme prevents the worm propagator from doing so because with a low propagation

growth rate p, the worm propagator increases the chance of being traced back after detection.

5.b. Threshold-Based and Trace-Back Schemes

We now show that integration of the threshold-based and trace-back schemes can effectively

defend against worm propagation. In particular, we have the following theorem. Recall that TR
0

is the maximum value to satisfy Λ ≤ δ and pE satisfies f(tE)�pE = TR
0.

 Theorem VI-2. When the worm propagator propagates a static self-adaptive worm in the

system and the defender uses an integration of the threshold-based and trace-back schemes, the

Nash equilibrium of the game is as follows:

 − When

 119

),
log

log
1()log

log

1
1(

00
R

E
R

EB T

m
t

mN

Nm

T
tt −≈

−
⋅−≥ (VI-13)

the worm propagator chooses not to propagate the worm (i.e., p = 0). The defender chooses TR =

TR
0.

 − Otherwise, the worm propagator chooses p = pE. The defender chooses TR = TR
0.

 Proof: We prove the theorem by showing that no player can benefit by unilaterally changing

its strategy. We first consider the case where tB
≥
 tE(1 − logm/logTR

0). Apparently, the defender

already reaches the maximum possible uD = 0 and cannot benefit by changing its strategy. For

the worm propagator, suppose that it changes the propagation strategy to p = p1 > 0. Consider

f(tD − tB), the number of infected computers at time tD − tB. Let fE(t) be the function of the number

of infected computers when p = pE. We have

 .

)(

)(
)()(

1

1

Ne

eN
ttfttf

E

B

EE

E

B

EE

t

t

Ntp

t

t

Ntp

BEEBD

+
=−<−

−
⋅

−
⋅

β

β

 (VI-14)

Since tB/tE
≥
 (1 − logm/ logTR

0), with some mathematical manipulation, we have

.)()(mttfttf BEEBD ≤−<− (VI-15)

As such, if the worm propagator changes its strategy to p > 0, the defender can always use the

forensic analysis scheme to trace-back to the worm propagator with probability of at least 50%.

That is, uA will become −∞. Thus, if tB
≥
 tE(1 − logm/logTR

0), the worm propagator will not

change its strategy unilaterally.

 When tB < tE(1 − logm/logTR
0), the game is exactly the same as the one discussed in Theorem

VI-1, and thus follows the same Nash equilibrium.

 As we can see from the theorem, there are two possible outcomes of worm propagation:

 120

Outcome 1. If the trace-back interval tB is longer than the threshold tE(1 − logm/logTR
0), the

threats posed by the trace-back scheme will force the worm propagator to not propagate the

worm at all.

Outcome 2. If the trace-back interval is lower than the threshold, however, the worm will

propagate in the same way as we discussed in Section 2, and infect a large number of computers

before being detected.

 We now analyze which outcome is likely to occur in practice based on practical examples. In

particular, we would like to demonstrate that the derived lower bound on tB in Outcome 1 is

reasonable in many systems: We use the same system setting as the one specified in Section 5.a.

In addition, we set m = 0.002·N. Due to the theorem, no worm infection will occur if the trace-

back interval tB is more than 1.81 days. We argue that this is a reasonable trace-back interval for

practical systems: Based on the real-world estimation of trace-back cost [103], the cost of

realizing a trace-back interval of 1.81 days is approximately $216,000 per Internet service

provider (ISP). Compared with the maintenance cost of ISP, the cost of trace-back is fairly

moderate and acceptable in practice. Thus, an integration of the threshold-based and trace-back

schemes can effectively defend again static self-adaptive worms as well as traditional worms.

 The basic idea of the theorem can be stated as follows: With both the threshold-based and

trace-back schemes in place, if the worm propagator chooses a larger p, it will be detected

earlier, and the number of infected computers at time tD−tB will be smaller. If the worm

propagator chooses a smaller p to delay the detection until tE, the worm will propagate slower

and the number of infected computers at time tE−tB will still be very small. If the trace-back

interval tB exceeds a threshold such that f(tD−tB)
≤

 m in both cases, then the worm propagator will

be forced not to propagate the worm because, otherwise, it will always be traced back and

receive uA = −∞.

 121

6. Defense Against Dynamic Self-Adaptive Worms

In this section, we consider a system with a dynamic self-adaptive worm, which changes its

propagation growth rate p(t) over time t to better adapt to the countermeasures. We first show

that the integration of threshold-based and trace-back schemes are no longer effective against

dynamic self-adaptive worms. After that, we introduce a new defensive scheme, called the

spectrum-based scheme. We demonstrate that an integration of all three schemes can effectively

defend against dynamic self-adaptive worms.

6.a. Threshold-Based and Trace-Back Schemes

We now show that the integration of threshold-based and trace-back schemes is ineffective

against dynamic self-adaptive worms. In particular, we have the following theorem.

 Theorem VI-3. When the worm propagator propagates a dynamic self-adaptive worm in the

system and the defender uses an integration of threshold-based and trace-back schemes, the Nash

equilibrium of the game is as follows:

 − When tB
≥

 tE − log(m)/(N�β) ≈ tE, the worm propagator chooses not to propagate the worm

(i.e., p(t) ≡ 0). The defender chooses TR = TR
0.

 − Otherwise, the worm propagator chooses p(t) = min(1, TR
0/f(t)) for every t in [0, tE]. The

defender chooses TR = TR
0.

 Proof: We first consider the case where tB
≥
 tE− logm/(N�β). In this case, the proof of Nash

equilibrium is similar to that of Theorem VI-2. Thus, we only demonstrate why the lower bound

on tB changes to tE− logm/(N·
β

) ≈ tE. Consider the case where the worm propagator adopts a

strategy as follows:

 (i) First, the worm propagator uses p(t) = min(1, TR
0/f(t)) to infect m computers as soon as

possible, say at time tA (i.e., f(tA) = m).

 122

 (ii) After that, the worm propagator chooses p(t) = 0.

 As we can see, since m << N, the worm will not be detected before tA. Thus, the worm

propagator cannot be traced back as long as tA < tE − tB. As such, in order to force the worm

propagator not to propagate the worm, there must be f(tE − tB)
≤

 m for the above strategy. That is,

 .
)(

)(

m
Ne

eN
BE

BE

ttN

ttN

≤
+

⋅
−⋅

−⋅

β

β

 (VI-16)

 With some mathematical manipulation, we have

 .
log

log
1

EEEB t
N

m
t

mN

mN

N
tt =

⋅
−≈

−
⋅

⋅
−≥

ββ
 (VI-17)

Thus, a necessary condition to force the worm propagator not to propagate the worm is tB
≥

tE−(logm)/(N�β) ≈ tE.

 We now consider the case where tB < tE − logm/(N�β). In particular, we prove the correctness

of the Nash equilibrium specified in the theorem by showing that no player can benefit by

unilaterally changing its strategy. As we have shown in Theorem VI-2, the defender cannot

benefit by deviating from TR = TR
0. For the worm propagator, suppose that it uses a different

propagation growth rate function p1(t). In order for the worm propagator to benefit from the

strategy change, there must exist t1 in [0, tE] such that p1(t1) > p(t1) = min(1, TR
0/f(t)).

Nevertheless, the worm will then be detected at time t1 due to the threshold-based scheme,

resulting in a reduced uA. Thus, no player can benefit by changing its strategy unilaterally from

the equilibrium specified in the theorem.

 As we can see from the theorem, the threats posed by the trace-back scheme are significantly

weakened when the worm is dynamically self-adaptive. As such, the possible outcomes of worm

propagation become:

Outcome 1. When the trace-back interval exceeds a very large threshold tE − logm/(N�β) ≈ tE, the

worm propagator will be forced not to propagate the worm.

 123

Outcome 2. When the trace-back interval is lower than the threshold, however, the worm will

propagate to more computers than what a static self-adaptive worm can infect in a system with

the threshold-based scheme only.

 We now analyze which outcome is likely to occur in practice based on practical examples. In

particular, we demonstrate that the derived lower bound on trace-back interval tB in Outcome 1 is

unachievable in many practical systems: Based on our system setting used in Sections 5.a and

5.b, no worm propagation will occur if and only if the trace-back interval is more than 4.8 days

(i.e., tB
≈ 4.8 days). Based on the estimate of trace-back cost [103], in order to eliminate worm

propagation, the cost of the trace-back scheme would be at least $2,430,000 per ISP, which is too

high for the maintenance cost of an ISP in practice. Thus, the lower bound on tB derived in the

theorem is unachievable in practice. As such, an integration of the threshold-based and trace-

back schemes cannot effectively defend again dynamic self-adaptive worms.

 A critical observation from Theorem VI-3 is that in order to effectively defend against

dynamic self-adaptive worms, the defender has to prevent the worm from rapidly propagating

itself at the initial stage of worm propagation (i.e., before tA where f(tA) = m). Otherwise, the

worm will quickly propagate to m computers before tA, and then carefully choose p(t) for t > tA

to delay the detection until tA+tB, which makes the trace-back scheme useless. Since the

threshold-based scheme is ineffective against self-adaptive worms by itself, the defender cannot

eliminate worm propagation. This observation motivates us to propose the spectrum-based

scheme, which prevents a worm from using high propagation growth rate at the initial stage of

propagation.

 124

6.b. Spectrum-Based Scheme

In the following, we introduce a spectrum-based detection scheme to restrict the propagation

growth rate of a worm at the initial stage of propagation. Note that if a worm adopts a high

propagation growth rate (e.g., p(t) = 1) at the beginning of propagation, the worm-scan traffic

will exhibit a significant pattern (i.e., trend of exponential increase) when compared with the

network background traffic. The objective of spectrum-based detection is to extract such a

pattern (as signal) from the normal network traffic (as noise). The idea of using spectrum-based

approaches to identify signal from noise has been widely used in the literature of signal

processing [57], and has been shown to be capable of differentiating signal from noise even

when the signal-to-noise ratio is low.

 The objective of spectrum-based detection is to identify the (approximate) exponential growth

of worm scan traffic from background traffic, which can be considered as white noise. In order

to do so, we use discrete Fourier transformation [57] to analyze the frequencies contained in the

sampled time-series data of scan traffic volume, which is collected by the control center

mentioned in Section VI.2.c. If there is no worm propagation on the network, the background

traffic volume, as white noise, should have equal (expected) strengths on all frequency

components (i.e., from low to high frequency). If a worm is propagating, however, there will be

a strong low-frequency component in the frequency domain, because of the continuous and

exponential growth of worm-generated traffic volume (which can be considered as having a very

large period). Thus, the spectrum-based scheme detects worm propagation by identifying low-

frequency components with high power spectrum.

 Formally, let r(t) be the traffic volume collected at time t. At time t0, the control center has

collected a time-series data set {r(0), r(1), . . . , r(t0)}. We transform the time-series data to the

frequency domain using the discrete Fourier transform [57] as follows: for all integer

 125

 ,)()(
0

0

0

1

2

∑
=

+
−

⋅=
t

n

kn
t

i

enrks
π

 (VI-18)

where s(k) are the transformed frequency component corresponding to period 2πk/(t0 + 1), and i

is the imaginary unit. If r(t) is consisted of white noise only, the expected complex modulus of

s(k) (i.e., |s(k)|) should be the same for all k in [0, t0]. Nonetheless, when a worm is propagating,

the expected |s(k)| for lower frequencies (i.e., large k) will be larger than higher frequencies.

Thus, in order to detect worm propagation, we need to measure the differences between |s(k)| for

difference frequency ranges.

 In particular, we use a widely adopted measure in pattern recognition called Spectral Flatness

Measure (SFM) [49], which is defined as the ratio between the geometric mean and the

arithmetic mean of s(k).

 .

)(
1

1

)]([
0

00

00

1

1

0

∑
=

+
=

+

∏= t

k

tt
k

ks
t

ks
SFM (VI-19)

 Generally speaking, the smaller SFM is, the more difference there is between s(k) at different

frequency ranges [49], and thus the more likely it is that a worm is propagating on the network.

As such, our spectrum-based detection scheme issues an alert when the value of SFM is smaller

than or equal to a pre-determined threshold TM. Note that the greater TM is, the more false alarms

will be generated by the spectrum-based approach. Thus, the defender must specify the value of

TM (along with TR for the threshold-based scheme) based on the maximum tolerable false alarm

rate δ.
 Since the value of SFM decreases when the worm propagator adopts a higher growth rate for

a longer period of time, we assume, for the sake of simplicity, that at time t0, SFM ≤ TM if and

only if the worm uses p(t) > pM for a (cumulated) period longer than γM�t0 time slots (pM, γM in [0,

 126

1]). The values of pM and γM depend on the defender-specified threshold TM. The larger TM is, the

smaller pM and γM will be.

 Note that this spectrum-based scheme can be easily integrated with the threshold-based and

trace-back schemes in the framework proposed in Section VI.2. In particular, the control center

will perform both the threshold-based and spectrum-based schemes based on collected data, and

issues an alert if either scheme generates an alarm. After detecting a propagating worm, it issues

an order to initiate the trace-back process.

6.c. Threshold-Based, Trace-Back, and Spectrum-Based Schemes

We now show that an integration of the threshold-based, trace-back, and spectrum-based

schemes can effectively defend against the propagation of dynamic self-adaptive worms. In

particular, we prove that if the trace-back interval tB is longer than a (reasonable) threshold, the

game will reach Nash equilibrium in the case where the worm propagator will be forced not to

propagate any (static or dynamic) self-adaptive worm. Note that with the introduction of the

spectrum-based scheme, the strategy set of the defender includes the determination of not only

the volume threshold TR but also the SFM threshold TM. The strategy set of the worm propagator

remains the same. As we mentioned in Section VI.2, the false positive rate Λ now depends on

both TR and TM.

 Let TM
0 be the maximum threshold for the false positive rate to satisfy Λ ≤ δ when TR = ∞. Let

pM
0 and γM

0 be the corresponding values of pM and γM when TM = TM
0. Suppose that fM

0(t) is the

number of infected computers at time t when no defender exists in the system, and the worm

propagator uses







−
=

.1,

;,1
)(

00

0

MM

M

ryprobabilitwithp

ryprobabilitwith
tp (VI-20)

for all t in [0, tE]. We have the following theorem.

 127

 Theorem VI-4. When the worm propagator propagates a dynamic self-adaptive worm in the

system and the defender uses an integration of the threshold-based, trace-back, and spectrum-

based schemes, the Nash equilibrium of the game is as follows:

 − When fM
0(tE−tB)

≤
 m, the worm propagator chooses not to propagate the worm (i.e., p(t) ≡

0). The defender chooses TR = ∞ and TM = TM
0.

 − Otherwise, the worm propagator chooses







−
=

.1)),(/,min(

;)),(/,1min(
)(

0

0

MRM

MR

ryprobabilitwithtfTp

ryprobabilitwithtfT
tp (VI-21)

 The defender chooses the integration of TR and TM that i) minimizes f(tD) when the worm uses

the above strategy, and ii) satisfies Λ ≤ δ.
 Proof: We first consider the case where fM

0(tE−tB)
≤

 m. Apparently, the defender already

reaches the maximum possible uD = 0 and cannot benefit by changing its strategy. For the worm

propagator, suppose that it changes the propagation growth rate function to p1(t). Let the changed

function of the number of infected computers be f1(t). Due to the definition of spectrum-based

scheme and fM
0(t), there must be f1(t)

≤
 fM

0(t) for all t in [0, tE]. Thus,

 .)()(0
1 mttfttf BEMBE ≤−≤− (VI-22)

That is, the worm propagator will be traced back with probability of at least 50%, resulting in uA

= −∞. As such, the worm propagator cannot benefit by changing its strategy unilaterally.

 We now consider the case where fM
0(tE−tB) > m. Note that in order to avoid being detected by

the threshold-based scheme, the worm propagator must maintain p(t)
≤

 TR/f(t). Based on our

previous discussion, it is easy to verify that the worm propagator cannot benefit by changing its

strategy unilaterally. For the defender, if it changes either TR or TM, there will be only two

possible outcomes: i) an increased f(tD), and/or ii) Λ > δ. Either way, the defender will have a

 128

decreased utility function uD. Thus, the defender cannot benefit by changing its strategy

unilaterally.

 Due to the theorem, with the integration of all three schemes, there are two possible outcomes

of worm propagation:

Outcome 1. When tB is greater than the derived threshold (i.e., satisfies fM
0(tE − tB)

≤
 m), the

trace-back and spectrum-based schemes will force the worm propagator not to propagate the

worm.

Outcome 2. When tB does not satisfy the condition, the trace-back scheme poses no threat to the

worm propagator. In this case, it is the threshold-based and spectrum-based schemes that force

the worm propagator to reduce p(t) to a reasonable level as specified in the theorem.

Table VI-1 Performance of Defensive Strategies

 S1 S1+S2 S1+S2+S3

Traditional worm Effective Effective Effective

Static self-adaptive worm Effective Effective

Dynamic self-adaptive worm Effective

 S1: Threshold-based scheme; S2: Trace-back scheme; S3: Spectrum-based scheme

 We now analyze which outcome is likely to occur in practice based on practical examples. In

particular, we demonstrate that the derived threshold on the trace-back interval tB in Outcome 1

is reasonable in many practical systems: We use the same system setting as the one used in

Sections 6.a and 6.b. Based on the simulation results, there is TM
0= 72,000, pM

0= 0.22 and γM
0=

0.5. Due to the theorem, the worm propagator will not propagate the worm as long as tB
≥

 1.8

 129

days. As we mentioned in Section 2, this trace-back interval is reasonable in practice. Thus, the

integration of all three schemes can effectively defend against dynamic self-adaptive worms in

the system, as shown in Table VI-1.

7. Performance Evaluation

In this section, we present the simulation results of systems with static and dynamic self-adaptive

worms. In particular, we conduct the simulation on a combination of real-world background scan

traffic and simulated worm generated traffic.

 For the background scan traffic, we use the real-world DShield logs dataset provided by the

SANs Internet storm center (ISC) [25]. The dataset contains more than 80 million scan records,

with a size of over 80 GB. All scan records are captured between January 1, 2005 and January

15, 2005. Each record includes the source IP address, destination IP address, destination port

number, and time stamp of a monitored scan.

 With the real-world scan traces serving as the background traffic, we add simulated worm

generated traffic as follows: We use the same system setting as the one specified in Section 5:

The number of vulnerable computers on the Internet is 350,000. The total number of IP

addresses is 4.3x109. The scan rate of worm propagation is 358 scans/minute. The maximum

false positive rate is 2%. The maximum propagation time is tE = 5 days. We conduct the

simulation based on various trace-back parameters, with m = 0.002�N or 0.005�N and the

maximum trace-back interval tE ranging from 1,400 to 7,000 minutes.

 We measure the performance of our countermeasures by the maximum infection rate when

the worm propagator chooses the optimal strategy of propagation growth rate as specified in the

Nash equilibrium. Recall that the maximum infection rate is defined as the ratio of the number of

 130

infected computers to the total number of vulnerable computers at the moment when the worm is

detected, or at time tE, whichever comes first.

 Fig. VI-1. Maximum Infection Rate for Static Self-Adaptive Worm

 Fig. VI-2. Maximum Infection Rate for Dynamic Self-Adaptive Worms

 131

 We present the simulation results of our countermeasures on static self-adaptive and dynamic

self-adaptive worms, respectively. For static self-adaptive worms, we measure the performance

of an integration of the threshold-based and trace-back schemes. We also compare the results

with previous approaches that use threshold-based scheme only [31]. The simulation results are

shown in Fig. VI-1. As we can see from this figure, when the trace-back interval tE is longer than

1.45 days when m = 0.005�N or 1.81 days when m = 0.002�N, the worm propagator will be forced

to not propagate the worm. As we discussed in Section 5, such trace-back interval is reasonable

in practice. Thus, an integration of the threshold-based and trace-back schemes can defend

against static self-adaptive worms effectively. On the other hand, if only threshold-based scheme

is available, the number of infected computers is more than 71,400 (20.4% of all vulnerable

computers). As we can see, the threshold-based scheme cannot defend itself against static self-

adaptive worms effectively.

 Fig. VI-3. Relationship Between Maximum Infection Rate and Maximum False Positive Rate

 132

 For static self-adaptive worms, we measure the performance of an integration of all three,

threshold-based, traceback, and spectrum-based, schemes. The simulation results are shown in

Fig. VI-2. As we can see from this figure, when the trace-back interval tB is longer than 1.36

days when m = 0.005�N or 1.81 days when m = 0.002�N, the worm propagator will be forced to

not propagate the worm. As we discussed in Section 5, such trace-back interval is reasonable in

practice. Thus, an integration of all three schemes can effectively defend against dynamic self-

adaptive worms.

 In Fig. VI-3, we also investigate the relationship between the maximum infection rate and the

maximum tolerable false positive rate δ when the trace-back interval is not enough to eliminate

worm propagation. As we can see from the figure, the more false alarms the system can tolerate,

the less that computers can be infected by dynamic self-adaptive worms. In particular, the

maximum tolerable false positive rate increases from 1% to 8% and the maximum information

rate decreases from 23% to 11% of all vulnerable computers.

8. Extensions

We now discuss how to generalize the utility function of the worm propagator which we

proposed in Section 3. Note that in Section 3, we assumed that the worm propagator either

receives infinite penalty from trace back (i.e., uA = −∞ when f(tD − tB) > m), or none at all (when

f(tD − tB) > m). In practice, however, different worm propagators may differently evaluate the

risk of being traced back. Some risk-averse worm propagators may stop propagating the worm

when the probability of being traced back is 10%, while others may choose to propagate

regardless of whether or not they will be traced back. Thus, we generalize the utility function of

a worm propagator to a continuous function, in order to model the threats from worm

propagators with different risk aversion levels.

 133

 In particular, let h(x) be the loss of the worm propagator if the defender can trace-back to x

infected computers at the earliest trace-back time max(0, tD − tB). Apparently, h(x) should be

monotonically decreasing with x, as a larger x makes it more difficult to identify the worm

propagator. Let α > 0 be a preferential parameter pre-determined by the worm propagator. The

generalized objective of a worm propagator is to maximize

))).,0max(()(BDDA ttfhtfU −⋅−= α (VI-23)

As we can see, our utility function defined in Section 3 is a special case of this generalized

version when h is defined as follows:



 ≤∞

=
.,0

;,
)(

otherwise

mxif
xh (VI-24)

 Given the generalized utility function, Theorem VI-3 and Theorem VI-1 can be restated as

follows:

 Theorem VI-5. When the worm propagator propagates a static self-adaptive worm in the

system and the defender uses an integration of the threshold-based and trace-back schemes, the

Nash equilibrium of the game is as follows:

 − When

 ,
)(

)(
(0

1

1

REqNtp

qNtp

Tp
Ne

eN
h

EE

EE

>
+

⋅ −⋅⋅

−⋅⋅

β

β

α (VI-25)

the worm propagator chooses not to propagate the worm (i.e., p = 0). The defender chooses TR =

TR
0.

 − Otherwise, the worm propagator chooses p = pE. The defender chooses TR = TR
0.

 134

 Theorem VI-6. When the worm propagator propagates a dynamic self-adaptive worm in the

system and the defender uses an integration of the threshold-based, trace-back, and spectrum-

based schemes, the Nash equilibrium of the game is as follows:

 − If there exists TM and TR such that 1) α�h(f(t−tB)) > pETR, and 2) the false positive rate Λ < δ,
then the worm propagator chooses not to propagate the worm (i.e., p(t) ≡ 0). The defender

chooses the corresponding TR and TM.

 − Otherwise, the worm propagator chooses





−
=

.1)),(/,min(

;)),(/,1min(
)(

MRM

MR

ryprobabilitwithtfTp

ryprobabilitwithtfT
tp (VI-26)

 The defender chooses the integration of TR and TM that 1) minimizes f(tD) when the worm

uses the above strategy, and 2) satisfies Λ
≤

 δ.
 The basic idea of proving the above two theorems is similar to the proof of Theorem VI-2 and

Theorem VI-3. The optimal strategy for the worm propagator is to select the maximum

propagation growth rate p or p(t) that delays the detection time to tE. The condition for a static

self-adaptive worm to stop the propagation is to make utility function, defined in (VI-23) less

than 0.

9. Summary

In this chapter, we studied the countermeasure based on contradicted objectives of worm attacks.

In particular, we considered a general form of worms called self-adaptive worms, which adapt

their propagation patterns to avoid detection. Based on the degree of control on the propagation

growth rate, we classified self-adaptive worms into two general categories: static self-adaptive

worms and dynamic ones. We demonstrated that existing worm detection schemes are

insufficient to counteract self-adaptive worms. Based on a game-theoretic formulation of the

 135

interaction between the worm propagator and the defender, we showed that an effective

integration of multiple defensive schemes is critical for defending against self-adaptive worms,

which can force the worm attacker to choose the contradicted objectives. To this end, we

considered three schemes: threshold-based scheme, trace-back scheme, and spectrum-based

scheme. We showed that the combination of the first two schemes can be used to defend against

static self-adaptive worms, while the combination of all three schemes can effectively defend

against dynamic self-adaptive worms.

 136

CHAPTER VII

COUNTERMEASURE BASED ON THE DEFENDER’S REPUTATION

In this chapter, we focus on developing the countermeasure based on the defender’s reputation to

defend against worm attacks.

1. Overview

The real-world worm defense systems usually face constant threats from multiple emerging

worm attackers. The war between the worm attacker and defender can be treated as a never-

ending process with iterative interactions between the two sides. One side tries to adapt itself in

order to defeat the other. Studies in previous chapters show that an intelligent attacker can evolve

itself and degrade the performance of detection systems. For example, in Chapter VI, we show

that worm attackers may adaptively manipulate their propagation traffic pattern or payload to

avoid detection and to infect more computers.

 In this chapter, we consider real-world system settings with multiple incoming worm

attackers that collaborate by sharing the history of their interactions with the defender. We

propose a novel countermeasure approach to actually improve the performance of detection

system over time by establishing the defender’s reputation of toughness in its repeated

interactions with multiple incoming worm attackers. Our studies show that while such iterative

attacks may enable an attacker to learn from the previous interactions, the defender can also take

advantage of the iteration by sacrificing short-term performance in the initial few rounds to

establish a “tough” reputation, in return for much higher payoff in the long-run by using the

established reputation to force subsequent worm attackers to drop their attacks.

 We first formalize the problem as a repeated game between one long-term player (defender)

and multiple short-term players (attackers). With the model of repeated games, we define the

 137

defender’s reputation as the attackers’ estimation of the toughness of the defender. Then, we

classify the repeated games into two categories based on whether the attackers have complete

information about the defender’s objectives. For each category, we propose a generic reputation-

aware scheme to optimize the long-term performance of worm defense systems by establishing

the defender’s reputation in the initial rounds of interactions. Our reputation-aware schemes are

transparent to the underlying detection algorithms, and thus can also be used with various other

network security applications.

 In the following, we first present our system models, introduce a game-theoretic formulation

of the repeated interactions between the defender and the worm attackers, as well as the concept

of a defender’s reputation of toughness, and classify the repeated games into two cases based on

the completeness of information in the games. We then propose two reputation-aware worm

detection schemes for these two types of games, respectively, and present theoretical analysis of

their performances, followed by numerical evaluation of our proposed schemes and conclusion.

Notice that this Chapter is based on the joined work between Texas A&M University and the

University of Texas at Arlington. My work focused on the problem definition, algorithms design,

worm detection evaluation, and literature survey.

2. Models

In this section, we introduce our system models. We first define the participating parties, and

then present the strategies and objectives of the parties.

2.a. Parties

Let there be one defender D and n worm attackers A1, . . . , An in the system. For the sake of

simplicity, we assume that each attacker launches no more than one attack to the system. By

 138

using worm detection mechanisms, the defender may detect an attack but may also generate false

alarms, thus damaging system functionalities.

 Fig. VII-1. Multiple Round System Architecture

 As in real-world systems where each attacker may launch its attack at a different time, we

consider the attacks to be iteratively carried out in a group of independent processes. Without

loss of generality, we assume that these processes are executed in a serializable manner. Thus,

we consider n rounds of interactions, each of which takes place between the defender and one

attacker. In particular, we assume that attacker Ai (i in [1, n]) interacts with (i.e., either launches

an attack or chooses not to attack) the defender at Round i. If Ai launches an attack, the attack is

either detected or missed by anomaly detection by the beginning of Round i + 1.

 In practice, different attackers have their own interests but may share information, such as

the outcomes of previous attacks. As such, we assume the attackers to be independent but

cooperative. They are independent in the sense that each attacker aims to maximize its own

payoff (see the objective functions in Section 3.c. for details). They are cooperative in the sense

that all attackers share their information about the system, including the results of all previous

 139

attacks. Again, we will briefly discuss in Section 5.c the extension of our results to cases where

certain attackers are fully cooperative in that they work as a single entity to maximize their joint

benefits.

 Fig. VII-1 describes the basic architecture of the system, where n attackers sequentially

interact with the defender. The definition of tradeoff parameter δi for the defender will be

introduced in the next subsection.

2.b. Strategies

The strategy of each attacker Ai is to determine whether to launch an attack at Round i. In

particular, such a decision may be made based upon observations on the interactions between the

defender and the preceding attackers (i.e., A1 through Ai−1). The strategy of defender D is to

determine a proper tradeoff between the detection rate and the false alarm rate. We assume that

the defender uses a tradeoff parameter δi in [0, 1] to control such tradeoff in Round i. The higher δi is, the less false alarms are issued. Nonetheless, the defender also has smaller probability to

detect an attack launched by Ai. Without loss of generality, we assume that the probability for an

attack to be detected at Round i is 1 − δi (otherwise we can always normalize δi to satisfy this

assumption). As such, when δi = 0, all targeted attacks will be detected while the maximum

tolerable amount of false alarms will be issued. When δi = 1, no false alarm will be issued while

no attack will be detected. The defender D may determine δi based on observations on preceding

interactions in Rounds 1 to i − 1.

 The tradeoff parameter δi models a wide variety of tradeoff control mechanisms in real-world

applications. For example, δi can be considered as threshold on a feature (e.g., traffic volume or

other properties) modeled in normal system profile and monitored by the defender, such that the

defender issues an alert whenever the observed feature exceeds the threshold. This is a primary

 140

method to control the tradeoff in research and practices [110]. δi can also be considered as an

output of distributed anomaly detection algorithms, such as the probability of anomaly predicted

by Bayesian detection [111].

 The combination of strategies for the defender and an attacker determines the outcome of their

interaction, which may be one of the following possibilities: i) attack launched and detected, ii)

attack launched and not detected, iii) attack not launched. Such outcomes are observed and

recorded by both the defender and all the attackers. Note that the outcome does not indicate

whether a false alarm is triggered. The reason is that as in most practical systems, we assume

that the attackers cannot observe the activation of false alarms.

 It is noteworthy that the strategies of preceding attackers (i.e., attack/no attack) can be

inferred from the observed outcomes, and are, therefore, public. Nonetheless, the strategy of the

defender (i.e., the value of δi) is not directly observed by the attackers, especially when an attack

is not launched in Round i. As such, the attackers can only infer the defender’s strategy based on

the outcomes of preceding attacks.

2.c. Objectives

 The objective of each attacker Ai is to launch an undetected attack at Round i. Formally, the

objective of Ai is to maximize its utility function uA(i), which is defined as follows:









−
=

.det,

;det,1

;,0

)(

ectedandlaunched

ectedunandlaunched

launchednotattackif

iu

A

A

β
 (VII-1)

where
β

A is a predetermined preference parameter for the attacker. We assume that
β

A > 0

because, otherwise, an attacker will always choose to launch its attack. We believe that this

assumption resembles the scenarios of many real-world applications where an attacker may

prefer not launching an attack that will always be detected (which may lead to punishment of the

 141

attacker, as demonstrated by recent events [103, 104]). When different attackers have different

values of
β

A, we assume
β

A to be the minimum possible value.

 The defender D has two objectives: i) to detect all attacks, and ii) to prevent false alarms from

being issued. Formally, let





=
.,0

;det,1
)(

otherwise

ectedunisiRoundatattackif
il A (VII-2)

Note that due to our definition of δi, lA(i) = δi if an attack is launched at Round i.

 Since the number of false alarms only depends on the value of δi, let lF(δi) in [0, 1] be a

monotonically decreasing function that measures the number of false alarms at Round i. The

greater lF(δi) is, the more (or more probability of) false alarms are generated in Round i. Without

loss of generality, we assume that the number of false alarms generated at Round i reaches the

maximum tolerable threshold when lF(δi) = 1. When lF(δi) = 0, no false alarm is generated at

Round i.

 Formally, the objective of defender D is to maximize its utility function uD defined over the n

rounds as follows:

 ,)()1()()(
1 1
∑ ∑

= =

−+−==
n

i

n

i
ADiFDDD illiuu βδβ (VII-3)

where uD(i) is the payoff of the defender at Round i, and
β

D in [0, 1] is the preference parameter

for the defender which measures its preference between detection rate and false alarm rate. The

greater
β

D is, the more concerns the defender has on false alarm rate. In particular, a defender

with
β

D = 1 does not care about the detection of attacks while a defender with
β

D = 0 does not

care about the loss from false alarms.

 142

3. Reputation in Game-Theoretic Formulation

In this section, we will introduce the concept of reputation in repeated interactions. In particular,

we will first present a game-theoretic framework which formulates the repeated interactions

between a defender and multiple incoming attackers. With the model of repeated games, we

define the defender’s reputation based on the attackers’ estimation of the preference parameter of

the defender. Then, we classify the repeated games into two categories based on whether the

attackers have complete information about the defender’s objectives.

3.a. Game-Theoretic Formulation

As we mentioned in Section 2, the defender faces attacks from n incoming attackers in an

iterative fashion. Thus, we formulate the system as a non-cooperative n-round repeated game

between one long-time player, the defender, and n short-term players, the attackers. The game is

non-cooperative [108] because there are no coalitions or contracts between the defender and the

attackers enforced through outside parties. Each round of the game follows the Stackelberg

leadership model [108] with the defender being the leader and the attacker being the follower.

This is because, in real-world anomaly detection systems, the defender always moves first by

determining its detection tradeoff parameter δi before an attacker launches the attack. Note that

the defender knows ex ante that the follower observes the existence of anomaly detection. The

objectives of the players and the set of their possible strategies are defined in Section 2.

 Based on the game-theoretic formulation, we have the following theorem on the Nash

equilibrium of the game when there is only one round of interaction (i.e., n = 1) and the defender

knows
β

D as pre-knowledge. Remark that Nash equilibrium represents states where neither party

can benefit by deviating from the protocol unilaterally.

 143

 Theorem VII -1. When there is only one round of interaction and the attacker knows
β

D as

pre-knowledge, the Nash equilibrium is formed by an attacking strategy that launches an attack

if and only if there exists δ in (
β

A /(1 +
β

A), 1], such that

 .
)()

1
(2 δ

β
βδ

δβ
F

A

A
F

D

ll −
+

+
> (VII-4)

and a defensive strategy sets









+

−
=

;,
1

;)4()),(max(arg

)(0 otherwise

holdsVIIifu

A

A

A
D

D

β
β

δ
βδ (VII-5)

where uA
D(δ) is the defender’s payoff if an attack is launched:

 .)1()()(δβδβδ ⋅−−⋅−= DFD
A
D lu (VII-6)

 Proof: Recall that as we mentioned in the game-theoretic formulation, each round follows the

Stackelberg leadership model where the attacker is the follower that responds to the leader’s

(i.e., defender’s) strategy. Thus, we first prove that for the given defensive strategy in the

theorem, the attacking strategy is optimal. Note that when (VII-4) holds, there must be

 ,
1

)(maxarg)(0
A

AA
DD u

β
βδβδ δ +

≥= (VII-7)

due to the monotonically increasing property of lF(.). As such, the expected utility of the attacker

Ai is uA(i) = δ0(
β

D) − (1 − δ0(
β

D))�βA
≥

 0. Since the attacker’s utility by not launching an attack is

0, the specified strategy of launching an attack is optimal. Similarly, we can prove that when

(VII-4) does not hold, there is uA(i)
≤

 0 when Ai launches its attack. Thus, for the given defensive

strategy, the attacking strategy specified in the theorem is optimal.

 We now prove that the defensive strategy in the theorem is optimal. We consider two cases

respectively: When (VI-4) does not hold, the utility of the defender at the round is:

 144

).
1

(
A

A
FDD lu

β
ββ
+

−= (VII-8)

If the defender can benefit by changing the tradeoff parameter to δ ′, there must be δ ′ > δ ′0(βD) = β
A/(1+

β
A) because lF(.) is monotonically increasing. Nonetheless, since the attacker is the

follower, it will then respond by launching the attack, as its expected payoff from an attack will

become greater than 0. Note that when the attacker launches its attack, the maximum possible

payoff for the defender is maxδuD
A(δ), which is smaller than uD in (VII-8) when (VII-4) does not

hold. Thus, the defender cannot benefit by deviating from δ0(
β

D).

 When (VII-4) holds, the defender cannot benefit by changing its tradeoff parameter if the

attacker launches its attack. In order to force the attacker not to launch its attack, the defender

must choose δ′ ≤
β

A/(1 +
β

A). Nonetheless, doing so will not benefit the defender because

)).(()
1

()'(0 D
A
D

A

A
FDFD ull βδ

β
ββδβ ≤
+

−≤− (VII-9)

Thus, the defensive strategy specified in the theorem is also optimal.

 The defensive strategy δ0(
β

D) in the theorem represents a local optimal strategy when the

payoff of only one round is considered. It also represents the optimal defensive strategy if the

defender does not evolve its strategy over time in repeated interactions.

 From this theorem, we have following observations. When
β

D = 1, the defender will always

choose δi = 1 to minimize false alarm rate and make uD(1) = 0. When
β

D = 0, however, the

defender will choose δi = 0 to detect all attacks. In turn, when the attackers know the value of
β

D,

they will choose to launch every attack when
β

D = 1, but not to launch any attack when
β

D = 0,

because the expected gain from an launched attack is always less than 0 when δi = 0. As we can

see from (VII-4), the strategy of the attacker depends on the knowledge (or estimation) of
β

D.

 145

This motivates us to propose a scheme where the defender manipulates the attackers’ estimation

of
β

D in order to control their attack strategies.

3.b. Reputation

From an attacker’s perspective, a defender with lower (or greater)
β

D is “tougher” (or “softer”).

We speculate that while an attacker may launch an attack to a soft defender, it may choose not to

do so when the defender is tougher. Thus, we define the reputation of a defender as an attacker’s

estimation on the defender’s preference parameter
β

D. Formally, we have the following

definition.

 Definition 1. The reputation of the defender at the beginning of Round i, rD(i), is defined as

the posterior expected value of
β

D based on the outcomes of Rounds 1 to i − 1:

 ∫ −=
1

0
.)1,...,1|()(dxiRoundsofoutcomesxxpirD (VII-10)

where p(.) is the posterior probability density function of
β

D based on the outcomes of Rounds 1

to i − 1.

 We now prove the above speculation by showing the influence of the defender’s reputation

on the attackers’ strategies. In particular, we consider a simple defensive strategy to choose

between δi = 0 or 1 based on
β

D (this simplified setting will be important for the analysis of our

proposed schemes). In this case, we have the following theorem.

 Theorem VII -2. When the defender chooses δi in {0, 1}, an attacker Ai will not launch attack

if

 .
1

)(
+

≤
A

A
D ir

β
β

 (VII-11)

 Proof: We will prove that when (VI-11) holds, the attacking strategy of not launching attack

and a defensive strategy of setting

 146



 −

=
;,1

;1,0

D

D
i ofyprobabilitwith

ofyprobabilitwith

β
β

δ (VII-12)

forms Nash equilibrium of the game. It is noteworthy that since the defender can observe the

outcome of every previous interaction, the value of rD(i) is known to the defender.

 Since each round follows the Stackelberg leadership model with the attacker being the

follower, similar to the proof of Theorem VII-1, we first prove that for the given defensive

strategy, the attacking strategy of not launching attack is optimal. With the defensive strategy,

from the perspective of attacker Ai, the expected probability of its attack being detected is 1 −

rD(i). Thus, when Ai launches the attack, its expected utility function is

)).(1()(1))((iririuExp DADA −⋅−⋅= β (VII-13)

 When an adversary Ai chooses not to launch its attack, the expected utility of Ai is 0. As we

can see, Exp(uA(i))
≤

 0 if and only if rD(i)
≤

β

A/(
β

A +1). Thus, when (VI-11) holds, the attacker

cannot receive any benefit by unilaterally changing its strategy to launch its attack. Thus, for the

given defensive strategy, the attacking strategy of not launching attack is optimal.

 We now prove that the defender cannot benefit by unilaterally changing its strategy either.

When the defender chooses the strategy in (VI-12), its utility function is

).1()(DDD iu ββ −⋅−= (VII-14)

Suppose that a defender can increase its utility function by changing δi to δ ′. Note that since the

attacker will not launch its attack when δi =
β

D, there must be δ ′ >
β

D. Nonetheless, the attacker

(as the follower) will respond by choosing to launch its attack because its expected payoff will

be greater than 0. In this case, the utility function of the defender satisfies

).()1(')1()1()(' iuiu DDDDDD =−⋅−<⋅−−−⋅−= ββδβδβ (VII-15)

 147

As such, the defender cannot benefit by unilaterally changing its strategy either. Thus, the

attacking strategy of not launching attack and the defensive strategy in (VI-12) form Nash

equilibrium of the game. That is, no attacker will launch the attack when (VI-11) holds.

 The Theorem VII-2 confirms our speculation that a tougher reputation (i.e., smaller rD(i))

may prevent certain attackers from launching attacks. Thus, the basic idea of our reputation-

aware anomaly detection schemes presented in the next two sections is to reduce rD(i) by

manipulating defensive strategies in the initial rounds of interactions, in return for much higher

payoff in the long-run.

3.c. Classification of Games

Since we aim to reduce rD(i) which is the attackers’ estimation of
β

D, the attacker’s pre-

knowledge about
β

D is critical to the effectiveness of reputation-aware anomaly detection. Thus,

before introducing reputation-aware schemes, we first classify the repeated games into two

categories based on the attackers’ pre-knowledge about
β

D:

• Case A: In this case, the attackers do not know the exact value of
β

D (before Round 1),

and can only estimate the value based on i) a prior distribution of
β

D, and ii) observed

interactions. Since the attackers do not know the utility function of the defender (which

depends on
β

D) as pre-knowledge, the games between the defender and the attackers

contain incomplete information.

• Case B: In this case, the attackers know the exact value of
β

D as pre-knowledge. As

such, the games between the defender and the attackers contain complete information.

 In the following two sections, we will introduce reputation-aware anomaly detection schemes

for the above two cases.

 148

4. Reputation-Aware Worm Detection: Case A

In this section, we will introduce our reputation-aware worm detection scheme for Case A,

where the defender’s preference parameter
β

D is unknown to the attackers. We will first present

the detection algorithm, and then analyze its performance theoretically. Numerical evaluation of

the algorithm will be presented in Section 6.

4.a. Algorithm A

In Case A, the attackers have no pre-knowledge about
β

D. An attacker can only estimate rD(i)

based on the outcomes of previous interactions as well as the prior distribution of
β

D. Thus, our

basic idea is for a soft defender to simulate the behavior of a tougher one in the initial rounds of

interactions, in order to reduce rD(i) and to build a tough reputation.

Algorithm VII.A: for Case A

1: STATUS ← UNESTABLISHED.

2: for each Round i do

3: if STATUS = ESTABLISHED then

4: δi
←1 if

β
D =

β
0; δi
← 0 if

β
D = 0.

5: else if STATUS = EXPIRED then

6: δi
← δ0(

β
D).

7: else if
β

D =
β

0 then

8: δi
← 0 with probability of p

β
A/(p

β
B − p + 1) otherwise.

9: else if
β

D = 0 then

10: δi
← 1 with probability of p

β
A/(p

β
B − p + 1), 0 otherwise.

11: end if

 149

12: Set δi as the tradeoff parameter for Round i.

13: Wait until an attack succeeds or is detected.

14: if STATUS = UNESTABLISHED and R(i) > i/2 then

15: STATUS ← ESTABLISHED.

16: else if STATUS = UNESTABLISHED and i
≥
 n0 then

17: STATUS ← EXPIRED.

18: end if

19: end for

 For the sake of simplicity, we assume
β

D to be either 0 (i.e., extremely tough) with

probability of p or
β

0 > 0 (i.e., relatively soft) otherwise. Since an extremely tough defender with β
D = 0 always chooses δi = 0, we only need to consider the cases where p < 1/(1+

β
A) because

otherwise no attacker will launch attack due to Theorem VII-2.

 Algorithm VII.A depicts our reputation-aware anomaly detection scheme for Case A. In the

algorithm, R(i) is the number of detected attacks in Rounds 1 to i, n0 is a pre-determined

parameter on the number of rounds the defender intends to use to build its reputation, and δ0(
β

D)

is the local optimum derived in Theorem VII-1. To help better understand the algorithm, we call

a defender tough if
β

D = 0 and as soft if
β

D =
β

0.

 At the initial rounds (when STATUS = UNESTABLISHED), a soft defender chooses δi = 0

with probability of p
β

A/(p
β

A −p+1) while a tough one does so with probability of 1−p/(p
β

A−p+1).

Once more than half of the previously launched attacks are detected (i.e., R(i) > i/2), the

reputation of toughness is considered to be established (i.e., STATUS = ESTABLISHED). Then,

a tough defender always chooses δi = 0 while a soft one chooses δi = 1. Note that once STATUS

becomes ESTABLISHED, it is never set to other values. If the reputation is not established by

 150

the end of Round n0 (i.e., STATUS = EXPIRED), the defender returns to its local optimum δ0(
β

D).

 As we can see from Algorithm VII.A, our reputation-aware scheme considers the anomaly

detection algorithm as a black box with input of δi. Thus, our scheme is transparent to the

underlying anomaly detection algorithms and can be used in various anomaly detection

applications.

 We now briefly explain the reputation-building mechanism in Algorithm VII.A: When

STATUS = UNESTABLISHED, the strategy for a soft defender is tougher than its local optimal

strategy δ0(
β

D), while the strategy of a tough one is softer than its local optimum. Such deviation

(from local optimum) is designed to reduce rD(i) when the defender is soft and to thereby allow a

soft defender to establish a reputation of toughness. As a result, we have the following theorem:

 Theorem VII -3. When STATUS = ESTABLISHED at Round i,

 .
1

)(
A

A
D ir

β
β
+

= (VII-16)

 Proof: Suppose that STATUS = ESTABLISHED at the beginning of Round i while

STATUS = UNESTABLISHED at the beginning of Round i − 1. Due to Algorithm A, there

must be at least [i/2] detected attacks in Rounds 1 to i − 1. Suppose that the number of detected

attacks is d (d
≥

 [i/2]) and

 .
1+−

=
pp

p
p

A

A
R β

β
 (VII-17)

We have

 151

.
11

)1()1(

)1(

)1()1(

)1(

)1()1()1(

)1()1(
)(

0

0

0

11

1
0

A

A

A

A

A

A

RR

R

di
R

d
R

di
R

d
R

di
R

d
R

D

pppp

pp

pppp

pp

pppPpp

ppp
ir

β
β

β
ββ

β
ββ

β

β

+
≤

+
≤

−+−
−=

−+−
−≤

−−+−
−−= −−−−

−−

 (VII-18)

 Note that due to Theorem VI-2, no attacker will launch its attack when rD(i) satisfies (VII-

16). Without further observable interaction, rD(i) will remain the same after Round i. Thus, (VII-

16) holds whenever STATUS = ESTABLISHED at Round i.

 Due to Theorem VII-2 and VII-3, after STATUS = ESTABLISHED, no subsequent attacker

will launch attacks to the system.

 As we can see, when STATUS = ESTABLISHED, a soft defender will not issue any false

alarm and will also not present any undetected attack. Thus, the expected utility of a defender is

0 for all subsequent rounds, higher than the utility of local optimum when
β

D =
β

0. Thus, by

sacrificing the utility when STATUS = UNESTABLISHED in some initial rounds for building

reputation, the defender can obtain payback in later rounds due to the established reputation.

4.b. Theoretical Analysis

As we mentioned above, a key property of Algorithm A is that no attacker will launch attack

when STATUS = ESTABLISHED. Thus, we first derive the probability for STATUS =

ESTABLISHED at the end of Round n0.

 Theorem VII -4. Given
β

D =
β

0, when n0 is sufficiently large, the probability that STATUS =

ESTABLISHED after Round n0 is at least
β

pA/(1 − p).

 152

 Proof: Due to Algorithm A, STATUS is either ESTABLISHED or EXPIRED after Round n0.

Let f(n0) be the probability that STATUS = EXPIRED after Round n0. Note that STATUS =

EXPIRED if and only if there exists i < n0, R(i)
≤

 i/2.

 We now derive f(n0) by transforming the problem to the monotonic path counting problem in

combinatorics. Consider a grid with n × n square cells in Fig. VII-2. We start with the lower left

corner at Round 1. If an attack is detected (i.e., δi = 0), we move one step right along an edge of

the grid. If an attack is not detected (i.e., δi = 1), we move one step up. As we can see, if R(i)
≤

i/2 holds for all i < n0, then the path never crosses the diagonal of the grid. Thus, in order to

derive the probability of STATUS = EXPIRED, we need to count the number of paths that

satisfy the condition. Without loss of generality, we assume that n0 is even. Note that when n0 is

odd, then f(n0) = f(n0 + 1). At the end of Round n0, the finishing point of the path can be (n0, 0),

(n0 −1, 1), . . ., (n0/2, n0/2). Note that when x, y
≥

 1 and x
≥

 y, the number of monotonic paths

from (0, 0) to (x, y) which never crosses the diagonal is

 .
1

),(








−
+

−






 +
=

y

yx

y

yx
yxg (VII-19)

Since the number of monotonic path from (0, 0) to (n0, 0) is 1, let g(n0, 0) = 1. Suppose that

 .
1+−

=
pp

p
p

A

A
R β

β
 (VII-20)

The probability that STATUS = EXPIRED after Round n0 is

∑∑

∑

=

−

=

−

=

−










−
−−








−=

−−=

2/0

0

2/0

0

2/0

0

0

0

0

0

0
00

.
1

)1()1(

),()1()(

n

y

yn
R

y
R

n

y

yn
R

y
R

n

y

yn
R

y
R

y

n
pp

y

n
pp

yyngppnf

 (VII-21)

 Note that the first component of (VII-21) is the cumulative probability from y = 0 to y = n0/2

for a binomial distribution with mean n0pR and variance n0pR(1−pR). When n0 is sufficiently

 153

large, such binomial distribution can be approximated by a normal distribution with the same

mean and variance. Thus, we have

 .
1

21
))

)1(8

)21(
(1(

)1(2

21
)(

2
0

0
R

R

R

R

p

p

pp

pn
erf

p

p
nf

−
−≤

−
−+

−
−= (VII-22)

where erf(.) is the Gaussian error function. That is, the probability for STATUS =

ESTABLISHED after Round n0 is at least 1 − f(n0) = p
β

A/(1 − p).

 As we can see from the theorem, when n0 is sufficiently large, there is a fairly large

probability for STATUS to be ESTABLISHED, such that no subsequent attacker will launch

attacks while no false alarms will be issued by a soft defender. For example, when p = 1/3 and
β

A

= 1, the probability of no launched attack after Round n0 is at least 1/2 when n0 → ∞. In fact, as

we will show in Section 6, the probability of no launched attack increases quickly with n0.

 Fig. VII-2. n × n Grid

 Based on the theorem, we have the following corollary on the utility function of the

defender.

 Corollary VII -1. If n0 is sufficiently large, when Algorithm A is used, the expected payoff

of a soft defender satisfies

 154

).(max
1

1
lim δβ

δ

A
D

AD

n
u

p

pp

n

u

−
−−≥

∞→
 (VII-23)

 Proof: Due to Theorem VII-2, VII-3, and VII-4, when n0 is sufficiently large, the

probability that STATUS = EXPIRED after Round n0 is at most (1−p−p
β

A)/(1−p). Note that

when STATUS = ESTABLISHED, the expected payoff of a soft defender is 0 because no

attacks will be launched while no false alarm will be triggered (due to δi = 1). When STATUS =

EXPIRED, the expected payoff of a soft defender is maxδuA
D(δ). Thus, the expected payoff of a

soft defender satisfies

).(max
1

1
lim δβ

δ

A
D

AD

n
u

p

pp

n

u

−
−−≥

∞→
 (VII-28)

when n0 is sufficiently large.

4.c. Extension

We now briefly discuss the extension of Algorithm VII.A to a wider variety of system settings,

where an attacker may launch multiple attacks, and multiple fully cooperative attackers may

commit to their joint (rather than individual benefits). Note that these two cases are essentially

the same as we can always model attacks from fully cooperative attackers as multiple attacks

launched by a single attacker.

 For these system settings, the only change required for Algorithm VII.A is to assign the same δi for all attacks launched by the same attacker. By doing so, an attacker cannot obtain a better

estimation of
β

D by launching multiple attacks because the outcomes for all of its subsequent

attacks are exactly the same as the outcome of its first attack.

 As we can see, as long as each attacker can only launch finite number of attacks, Theorem

VII-4 and Corollary VII-1 always hold, with the only exception being that the required n0 may

be larger due to the number of (essentially) duplicate attackers launched by an attacker.

 155

5. Reputation-Aware Worm Detection: Case B

In this section, we will introduce our reputation-aware worm detection scheme for Case B, where

the preference parameter
β

D is known by the attackers as pre-knowledge. We will first present

the detection algorithm, and then analyze its performance theoretically. Numerical evaluation of

the algorithm will be presented in Section 6.

5.a. Algorithm B

Algorithm VII.B : for Case B

1: if
β

D does not satisfy (VII-4) then

2: use the local optimal strategy in Theorem VII-1 and exit;

3: else

4: Randomly choose
β

D based on (VII-29).

5: STATUS ← UNESTABLISHED.

6: end if

7: for each Round i do

8: if STATUS = ESTABLISHED then

9: δi
← 0 if

β
R = 0, δi

← 1 if
β

R = 1.

10: else if STATUS = EXPIRED then

11: δi
← δ0(

β
D).

12: else if
β

D = 1 then

13: δi
← 0 with probability of pR, δi

← 1 otherwise.

14: else if
β

D = 0 then

15: δi
← 1 with probability of pR, δi

← 0 otherwise.

 156

16: end if

17: Set δi as the tradeoff parameter for Round i.

18: Wait until an attack succeeds or is detected.

19: if STATUS = UNESTABLISHED and R(i) > i/2 then

20: STATUS ← ESTABLISHED.

21: else if STATUS = UNESTABLISHED and i
≥
 n0 then

22: STATUS ← EXPIRED.

23: end if

24: end for

 In Case B, the attackers knows the exact value of
β

D as preknowledge. Due to Theorem VII-

1, an attacker will only attack a defender with preference parameter satisfying (VII-4). Thus, we

only need to consider these defenders in this section.

 Algorithm VII.B depicts our reputation-aware anomaly detection scheme for Case B. For the

sake of simplicity, we assume that a defender may only choose between δi = 0 and 1, but may

mix the two choices with certain probability distribution. In the algorithm, R(i), n0, and δ0(
β

D)

have the same meaning as in Algorithm VII.A,
β

R is chosen randomly based on the following

distribution:





 −

=
;,1

;1,0

D

D

R
yprobabilitwith

yprobabilitwith

β

β
β (VII-29)

and

 .
1)1)(1(

)1(

+−−
−

=
DA

DA
Rp

ββ
ββ

 (VII-30)

 157

 In order for the defender to establish a reputation of toughness, in Algorithm B, we first

introduce uncertainty to the defender’s toughness by a random parameter
β

R. According to the

algorithm, unless STATUS = EXPIRED, the defender chooses its strategy based on
β

R instead of

its real preference parameter
β

D. This requires the attackers to estimate
β

R in order to respond to

the defensive strategy, and opens spaces for the defender to establish its reputation.

 Specifically, to help better understand the algorithm, we refer a defender as “tough” if the

random parameter
β

R = 0 and as soft if
β

R = 1. Note that Algorithm B is essentially similar to

Algorithm A with
β

R replacing
β

D. At the initial rounds (when STATUS = UNESTABLISHED),

a soft defender chooses δi = 0 with probability of pR while a tough one does so with probability

of 1 − pR. Once more than half of the previously launched attacks are detected (i.e., R(i) > i/2),

the reputation is considered to be established (i.e., STATUS = ESTABLISHED). Then, a tough

defender always chooses δi = 0 while a soft one chooses δi = 1. If the reputation is not

established by the end of Round n0 (STATUS = EXPIRED), the defender’s strategy returns to

its local optimum δ0(
β

D).

 Suppose that rR(i) is defined in analogy to rD(i) as the attackers’ estimation of
β

R. Similar to

Algorithm A, the basic idea of Algorithm B is to establish reputation of toughness (i.e., reduce β
R) by deviating from the local optimal strategy. We have the following theorem for Algorithm

B:

 Theorem IV-5. When STATUS = ESTABLISHED at Round i,

 .
1

)(
A

A
R ir

β
β
+

= (VII-31)

 Proof: Suppose that STATUS = ESTABLISHED at the beginning of Round i while

STATUS = UNESTABLISHED at the beginning of Round i − 1. Due to Algorithm B, there

 158

must be at least [i/2] detected attacks in Rounds 1 to i − 1. Suppose that the number of detected

attacks is d (d
≥

 [i/2]) and

 .
1

)(
+−

=
pp

p
ip

A

A
R β

β
 (VII-32)

We have

.
1

)1()1(

)1(

)1)(1(

)1()1)(1(

)1(
)(

11

1

A

A

DADDD

DAD

RDRD

RD

di
R

d
RD

di
R

d
RD

di
R

d
RD

D

pp

p

pppp

pp
ir

β
β

βββββ
βββ

ββ
β

ββ
β

+
≤

−+−
−

=

+−−
≤

−+−−
−

=
−−−−

−−

 (VII-33)

 Note that due to Theorem VII-3, no attacker will launch its attack when rD(i) satisfies (VII-

16). Without further observable interaction, rD(i) will remain the same after Round i. Thus, (VII-

16) holds whenever STATUS = ESTABLISHED at Round i. Due to Theorem VII-2 and VII.5,

after STATUS = ESTABLISHED, no subsequent attacker will launch attack to the system.

 Note that a soft defender obtains payback once the reputation is established. As we can see, if

STATUS = ESTABLISHED at Round i, the expected utility of a defender is

).1()0Pr()(DDRDD iu ββββ −−==⋅−= (VII-34)

 For a defender of concern in Case B (i.e., satisfies (VII-4)), this is always greater than the

expected utility (
β

D − 1) from the one-round local optimum δ0(
β

D).

5.b. Theoretical Analysis

Similar to the analysis of Algorithm A, we first derive the probability for STATUS =

ESTABLISHED at Round n0:

 159

 Theorem VII -6. When n0 is sufficiently large, the probability that STATUS =

ESTABLISHED after Round n0 is at least

./)1(DDA βββ − (VII-35)

 Proof: In analogy the proof of Theorem VII-4, we can prove that the probability that

STATUS = EXPIRED after Round n0 is

 .
1

21
)(0

R

R

p

p
nf

−
−≤ (VII-36)

 Note that for Algorithm B,

 .
1)1)(1(

)1(

+−−
−

=
DA

DA
Rp

ββ
ββ

 (VII-37)

 Thus, the probability that STATUS = ESTABLISHED after Round n0 satisfies

 .
)1(

1
)(1 0

D

DA

R

R

p

p
nf

β
ββ −

=
−

≥− (VII-38)

 As we can see from the theorem, there is a fairly large probability for STATUS to be

ESTABLISHED, which prevents the forthcoming attacker from launching attacks. For example,

when
β

A = 1 and
β

D = 2/3, the probability of no launched attack after Round n0 is at least 22.4%.

Based on the theorem, we have the following corollary.

 Corollary VII-2. If n0 is sufficiently large and
β

D satisfies (VII-4), when Algorithm B is

used, the expected payoff of the defender satisfies

),21(
)1(

lim 2/3
0 DD

D

DAD

n
u

n

u ββ
β

ββ
+−

−
+≥

∞→
 (VII-39)

where u0 is the utility function of a defender taking local optimal strategy with δi = δ0(
β

D).

 Proof: When STATUS = ESTABLISHED after Round n0, the expected utility of the

defender is

 160

 .)1())((DDD iuExp ββ−−= (VII-40)

When STATUS = EXPIRED, the expected utility of the defender is

 .10 −= Du β (VII-41)

Since the probability that STATUS = ESTABLISHED after Round n0 is at least

 ,/)1(DDA βββ − (VII-42)

when n0 is sufficiently large, the expected payoff of the defender satisfies

),21(
)1(

lim 2/3
0 DD

D

DAD

n
u

n

u ββ
β

ββ
+−

−
+≥

∞→
 (VII-43)

 Similar to the extension in Section 4.c, we can also extend Algorithm VII.B to the system

settings with attackers launching multiple attacks or fully cooperative attackers. Theorem VII-6

and Corollary VII-2 still hold for these scenarios, with the only exception being that a larger n0

may be required due to the duplicate attacks launched by an attacker.

6. Performance Evaluation

In this section, we show the derived optimal strategies for the defender and the attackers in the

game. The numerical results actually demonstrate the detection rate and false positive rate in a

state consisting of the optimal strategies, and thus can be used to demonstrate the real

performance of systems using our reputation-aware schemes.

 In particular, we compute the numerical results of Algorithms VII.A and VII.B based on a

real-world case study of applying our reputation-aware scheme to an existing worm detection

approach [31] which detects anomaly of scan traffic generated in worm propagation by issuing

an alert when the rate of observed scan traffic exceeds a threshold computed from the

 161

background traffic. Note that with a lower threshold, a worm is more likely to be detected, but a

higher false positive rate will also be generated, leading to a tradeoff between detection rate and

false positive rate. Again, we would like to remark that in this chapter, we are not promoting any

specific anomaly detection algorithm. Instead, we use the case study to show that the

incorporation of a defender’s reputation can enable defensive schemes that achieve better

tradeoff between detection rate and false positive rate.

Table VII-1. Tradeoff between Detection Rate and Fase Positive Rate

Threshold Ratio (r) 1.2 1.5 1.8 2.1 2.4 2.7 3

Detection Rate 0.86 0.72 0.58 0.44 0.29 0.15 0.01

False Positive Rate 0.98 0.93 0.67 0.38 0.27 0.14 0.1

 Fig. VII-3. Probability of Attacker Launching Attack After Round n0

 162

 In order to determine the numerical values of lF(.), we use a real-world log of traffic data, the

DShield logs provided by SANs ISC as background traffic [25]. It includes records of scan

recorded between January 1, 2005 and January 15, 2005. We use data on port 80 as an example.

According to the background traffic recorded by the DShield traffic logs, the mean and variance

of the number of scan packets recorded per minute is m = 31 and σ2 = 92.97, respectively. We

consider a pure-random-scan worm targeting a population of 350,000 vulnerable hosts on the

Internet with 100 scans per minute. We define the detection rate as the probability that a worm is

detected within 600 minutes after the start of its propagation. With detection threshold (on

observed scan traffic) being m+r �σ, where r in [1, 4] is the threshold ratio, we compute the

tradeoff between detection rate and false alarm rate, some examples of which are shown in Table

VII-1. Note that the values are normalized to [0, 1].

 Fig. VII-4. Comparison between Algorithm A and Local Optimal Strategy δ0

 163

 Fig. VII-5. Comparison between Algorithm B and Local Optimal Strategy δ0

 Based on the data, Fig. VII-3 shows the probability that an attacker Ai with i > n0 launches its

attack when Algorithm A is used. We demonstrated the cases where n0 ranges from 1 to 50, the

defender’s
β

D satisfies Pr{
β

D = 0} = p = 0.2, and the attacker’s preference parameter
β

A in {1, 2,

3, 4}. As we can see, the probability of attack decreases rapidly while n0 increases. In particular,

when
β

A = 4, the probability that an attacker launches an attack after 50 rounds is less than

11.3%.

 We also evaluate the performance of Algorithm A based on the false alarm rate required to

force all attackers after Round n0 not to launch their attacks. Fig. VII-4 shows the false alarm

rates for Algorithm VII.A and the local (one-round) optimal strategy δ0 when n0 = 50, p = 0.2,

and the attacker’s preference parameter
β

A ranges from 1 to 9. As we can see, our reputation-

aware scheme in Algorithm A significantly reduces the number of generated false alarms. In

particular, when
β

A = 9, the false alarm rate of Algorithm A is only 18.3% of the local optimal

defensive strategy δ0.

 164

 For systems where the defender’s preference parameter is already known by the attackers,

when Algorithm VII.B is used, the loss of the defender (from missed attacks and false alarms) is

shown in Fig. VII-5. We set
β

A = 2 and n0 = 50. We compare the loss with the local optimal

defensive strategy δ0. As shown in the figure, our reputation-aware scheme reduces the loss of

defender, especially when
β

D is small. When
β

D is large, the defender has no concern about

detection rate, making the reputation of toughness less useful. Thus, the performance of

Algorithm B converges to that of the local optimum when
β

D → 1.

7. Summary

In this chapter, we proposed the countermeasure based on establishing the defender’s reputation

of toughness to improve the performance of worm detection. We considered real-world system

settings with multiple incoming worm attackers that collaborate by sharing the history of their

interactions. We formalized such systems through a game-theoretic formulation for the repeated

interactions between the defender and multiple worm attackers. Based on the formulation, we

proposed generic algorithms to improve the performance of worm detection system by

incorporating the defender’s reputation. We further classified the repeated games into two

categories based on whether the attackers have complete information about the defender’s

objectives. We presented the basic ideas, detailed algorithms, and theoretical analysis of

reputation-aware anomaly detection approaches for the two categories. We demonstrated the

effectiveness of our scheme by numerical studies on the study of worm detection. Our data

validates our findings and indicate that incorporating reputation can significantly improve the

performance of anomaly detection systems. As part of our future work, we are applying this

framework to investigate the defender’s reputation and game theory analysis on other security

applications and systems.

 165

CHAPTER VIII

 CONCLUDING REMARKS

In this dissertation, we have systematically studied countermeasures against worm attacks,

namely traffic-based and non-traffic based countermeasures. For traffic-based countermeasures,

we propose our approaches and develop countermeasures by identifying some key features of

worm propagation and probing attack traffic. For non-traffic based countermeasures, we propose

approaches that robustly capture dynamic signatures of worm program execution, test a feature

of contradicted objectives, and incorporate a defender’s ability to defend against worm attacks.

 This dissertation develops a framework that allows us to study both traffic related features

and non-traffic related features and, hence, to develop countermeasures against worm attacks.

The problems addressed in the proposed research are important, both theoretically and

practically. Particularly, the developed results lay the theoretical foundation for countermeasures

of worm attacks and help us to understand problem and solution space. The techniques

developed for countermeasures are practical and hence can be applied to real-world systems.

 166

 REFERENCES

[1] D. Moore, C. Shannon, and J. Brown, “Code-red: a case study on the spread and victims of
an internet worm,” in Proc. of the 2nd Internet Measurement Workshop (IMW), Marseille,
France, Nov. 2002.

[2] D. Moore, V. Paxson, and S. Savage, “Inside the slammer worm,” IEEE Magazine of
Security and Privacy, vol. 1, no. 4, pp. 33-39, 2003.

[3] CERT, CERT/CC advisories, [Online]. Available: http://www.cert.org/advisories/.
Accessed on March 2005.

[4] W32/MyDoom.B Virus, [Online]. Available: http://www.us-cert.gov/cas/techalerts/TA04-
028A.html. Accessed on March 2004.

[5] The Honeynet Project and Research Alliance, Know your enemy: Tracking botnets,
Online]. Available: http://www.honeynet.org/papers/bots/. Accessed on January 2005.

[6] P. R. Roberts, Zotob Arrest Breaks Credit Card Fraud Ring, [Online]. Available:
http://www.eweek.com/article2/0,1895,1854162,00.asp. Accessed on March 2004.

[7] R. Naraine, Botnet Hunters Search for Command and Control Servers, [Online].
Available: http://www.eweek.com/article2/0,1759,1829347,00.asp. Accessed on March
2004.

[8] W32.Sircam.Worm@mm, [Online]. Available: http://www.symantec.com/avcenter/
venc/data/w32.sircam.worm@mm.html. Accessed on March 2004.

[9] Worm.ExploreZip, [Online]. Available: http://www.symantec.com/avcenter/venc/
data/worm.explore.zip.html. Accessed on March 2004.

[10] Z. S. Chen, L.X. Gao, and K. Kwiat, “Modeling the spread of active worms,” in Proc. of
the IEEE Conference on Computer Communications (INFOCOM), San Francisco, CA,
Mar. 2003.

[11] C. C. Zou, W. Gong, and D. Towsley, “Worm propagation modeling and analysis under
dynamic quarantine defense,” in Proc. of the 1st ACM CCS Workshop on Rapid Malcode
(WORM), Washington DC, Oct. 2003.

[12] S. Staniford, “Containment of scanning worms in enterprise networks,” Journal of
Computer Security, vol. 3, no. 5, pp. 321-355, Mar. 2001.

[13] J. Twucrpss and M. M. Williamson, “Implementing and testing a virus throttling,” in Proc.
of the 12th USENIX Security Symposium (SECURITY), Washington, DC, Aug. 2003.

[14] S. G. Chen and Y. Tang, “Slowing down internet worms,” in Proc. of the 24th
International Conference on Distributed Computing Systems (ICDCS), Tokyo, Japan, Mar.
2004.

 167

[15] Trend Micro, [Online]. [Online] Available: http://www.trendmicro.com. Accessed on
March 2004.

[16] J. O. Kephard and S. R. White, “Directed-graph epidemiological models of computer
virus,” in Proc. of 1991 Computer Society Symposium on Research in Security and
Privacy (S&P), Oakland, CA, May 1991.

[17] J. O. Kephart and S. R. White, “Measuring and modeling computer virus prevalence,” in
Proc. of the 14th IEEE Symposium on Security and Privacy (S&P), Oakland, CA, May
1993.

[18] S. Staniford, V. Paxson, and N. Weaver, “How to own the Internet in your spare time,” in
Proc. of the 11th USENIX Security Symposium (SECURITY), San Francisco, CA, Aug.
2002.

[19] C. C. Zou, W. Gong, and D. Towsley, “Code-red worm propagation modeling and
analysis,” in Proc. of the 9th ACM Conference on Computer and Communication Security
(CCS), Alexandria, VA, Nov. 2002.

[20] R. Perdisci, O. Kolesnikov, P. Fogla, M. Sharif, and W. Lee, “Polymorphic blending
attacks,” in Proc. of the 15th USENIX Security Symposium (SECURITY), Vancouver, B.C.,
Aug. 2006.

[21] V. Yegneswaran, P. Barford, and D. Plonka, “On the design and utility of internet sinks for
network abuse monitoring,” in Proc. of Symposium on Recent Advances in Intrusion
Detection (RAID), Pittsburgh, PA, Sept. 2003.

[22] D. Moore, “Network telescopes: Observing small or distant security events,” in Invited
Presentation at the 11th USENIX Security Symposium (SECURITY), San Francisco, CA,
Aug. 2002.

[23] CAIDA, Dynamic Graphs of the Nimda Worm, [Online]. Available:
http://www.caida.org/dynamic/analysis/security/nimda. Accessed on May 2004.

[24] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The Internet motion sensor:
A distributed blackhole monitoring system,” in Proc. of the 12th IEEE Network and
Distributed Systems Security Symposium (NDSS), San Diego, CA, Feb. 2005.

[25] SANS, Internet Storm Center, [Online]. Available: http://isc.sans.org/. Accessed on
January 2006.

[26] CAIDA, Telescope Analysis, [Online]. Available: http://www.caida.org/analysis/security/
telescope. Accessed on January 2006.

[27] J. Bethencourt, J. Frankin, and M. Vernon, “Mapping internet sensors with probe response
attacks,” in Proc. of the 14th USNIX Security Symposium (SECURITY), Baltimore, MD,
Jul.-Aug. 2005.

 168

[28] Y. Shinoda, K. Ikai, and M. Itoh, “Vulnerabilities of passive internet threat monitors,” in
Proc. of the 14th USNIX Security Symposium (SECURITY), Baltimore, MD, Jul.-Aug.
2005.

[29] T. Kohno, A. Broido, and K.C. Clafy, “Remote physical device fingerprinting,” IEEE
Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp 93-108, Apr.-Jun.
2005.

[30] C. Zou, W. B. Gong, D. Towsley, and L. X. Gao, “Monitoring and early detection for
internet worms,” in Proc. of the 10th ACM Conference on Computer and Communication
Security (CCS), Washington DC, Oct. 2003.

[31] S. Venkataraman, D. Song, P. Gibbons, and A. Blum, “New streaming algorithms for
superspreader detection,” in Proc. of the 12th IEEE Network and Distributed Systems
Security Symposium (NDSS), San Diego, CA, Feb. 2005.

[32] J. Wu, S. Vangala, and L. X. Gao, “An effective architecture and algorithm for detecting
worms with various scan techniques,” in Proc. of the 11th IEEE Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2004.

[33] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic feature
distribution,” in Proc. of ACM SIGCOMM, Philadelphia, PA, Aug. 2005.

[34] S. S Kim and A. L. N. Reddy, “Image-based anomaly detection technique: Algorithm,
implementation and effectiveness,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 10, pp. 1942-1954, Oct. 2006.

[35] S. S. Kim, A. L. N. Reddy, and M. Vannucci, “Detecting traffic anomalies through
aggregate analysis of packet header data”, in Proceedings of Networking’04, Lecture Notes
in Computer Science (LNCS), Athens, Greece, May 2004.

[36] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm fingerprinting,” in
Proc. of the ACM/USENIX Symposium on Operating System Design and Implementation
(OSDI), San Francisco, Dec. 2004.

[37] H. Kim and B. Karp, “Autograph: toward automated, distributed worm signature
detection,” in Proc. of the 13th USENIX Security Symposium (SECURITY), San Diego,
CA, Aug. 2004.

[38] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables in the wild,” in
Proc. of the 10th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), Seattle, WA, Aug. 2004.

[39] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining methods for detection of
new malicious executables,” in Proc. of IEEE Symposium on Security and Privacy (S&P),
Oakland, CA, May 2001.

 169

[40] H. H Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller, “Formalizing
sensitivity in static analysis for intrusion detection,” in Proc. of IEEE Symposium on
Security and Privacy (S&P), Oakland, CA, May 2004.

[41] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in Proc. of IEEE
Symposium on Security and Privacy (S&P), Oakland, CA, May 2001.

[42] D. Gao, M. Reiter, and Dawn Song, “Behavioral distance for intrusion detection,” in Proc.
of Symposium on Recent Advance in Intrusion Detection (RAID), Seattle, WA, Sep. 1999.

[43] G. M. Voelker J. Ma and S. Savage, “Self-stopping worms,” in Proc. of the ACM
Workshop on Rapid Malcode (WORM), Washington D.C, Nov. 2005.

[44] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon, “Peer-to-peer botnets:
Overview and case study,” in Proc. of USENIX Workshop on Hot Topics in Understanding
Botnets (HotBots), Cambridge, MA, Apr. 2007.

[45] P. Wang, S. SParka, and C. Zou, “An advanced hybrid peer-to-peer botnet,” in Proc. of
USENIX Workshop on Hot Topics in Understanding Botnets (HotBots), Cambridge, MA,
Apr. 2007.

[46] D. J. Daley and J. Gani, Epidemic Modeling: An Introduction, Cambridge University
Press, 1999.

[47] S. Soundararajan and D. L. Wang, “A schema-based model for phonemic restoration,”
Tech. Report, OSU-CISRC-1/04-TR03, Department of Computer Science and Engineering,
The Ohio State University, Jan. 2004.

[48] N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice Hall, 1984.

[49] R. E. Yantorno, K. R. Krishnamachari, J. M. Lovekin, D. S. Benincasa, and S. J. Wenndt,
“The spectral autocorrelation peak valley ratio (sapvr) - a usable speech measure employed
as a co-channel detection system,” in Proc. of IEEE International Workshop on Intelligent
Signal Processing (WISP), Budapest, Hungary, May 2001.

[50] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Second Edition, Elsevier
Science, 2003.

[51] L. Y. Chuang, C. H. Yang, C. H. Yang, and S. L Lin,
“An interactive training system for morse code users,” in Proc. of Internet and Multimedia
Systems and Applications, Honolulu, Hawai, Aug. 2002.

[52] Dshield, Distributed Intrusion Detection System, [Online]. Available:
http://www.dshield.org/. Accessed on January 2006.

[53] R. K. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spead-spectrum
communication - tutorial,” IEEE Transaction on Communication, vol. 30, no.5, pp. 8550-
8584, Mar. 1982.

 170

[54] E. J. Crusellers, M. Soriano, and J. L. Melus, “Spreading codes generator for wireless
cdma network,” International Journal of Wireless Personal Communications, vol. 7, no. 1,
pp 135-142, Jan. 1998.

[55] R. Dixon, Spread Spectrum Systems, 2nd Edition, John Wiley & Sons, 1984.

[56] Nova Engineering, Linear Feedback Register Shift, [Online]. Available: http://www.sss-
mag.com/pdf /lfsr.pdf. Accessed on January 2005.

[57] R. L. Allen and D. W. Mills, Signal Analysis: Time, Frequency, Scale, and Structure,
Wiley and Sons, 2004.

[58] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University
of Illinois Press, 1949.

[59] X. Y. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack on low-latency
anonymous communication systems,” in Proc. of the 2007 IEEE Symposium on Security
and Privacy (S&P), Oakland, CA, May 2007.

[60] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif,
“Misleading Worm Signature Generators Using Deliberate Noise Injection”,
In Proc. of the 2006 IEEE Symposium on Security and Privacy, Oakland, CA, May 2006

[61] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating malware using control
flow graph matching,” in Proc. of the Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), Berlin, Germany, Jul. 2006.

[62] MetaPHOR, [Online]. Available: http://securityresponse.symantec.com/avcenter/venc/
data/w32.simile.html. Accessed on January 2006.

[63] P. Ferrie and P. SzÄor. Zmist, Zmist opportunities, Virus Bullettin, [Online]. Available:
http://www.virusbtn.com. Accessed on January 2007.

[64] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious patterns,”
in Proc. of the 12th USENIX Security Symposium (SECURITY), Washington, DC, Aug.
2003.

[65] M. Christodorescu and S. Jha, “Testing malware detectors,” in Proc. of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Boston,
MA, Jul. 2004.

[66] M. Ciubotariu, Netsky: a conflict starter?, Virus Bullettin, [Online]. Available:
http://www.virusbtn.com, 2004.

[67] J. Gordon, “Lessons from virus developers: The beagle worm history through april 24,”
[Online]. Available: http://www.securityfocus.com/guest/24228. Accessed on January
2004.

 171

[68] M. Ernst, “Static and dynamic analysis: Synergy and duality,” in Proc. of ICSE Workshop
on Dynamic Analysis, Portland, OR, May 2003.

[69] S. Li, A Survey on Tools for Binary Code Analysis, Department of Computer Science,
Stony Brook University, [Online]. Available: http://www.cs.sunysb.edu/
lshengyi/papers/rpe/RPE.htm, 2004.

[70] H. H. Feng, O. M. Kolesnikov, P.Fogla, W. Lee, and W. Gong, “Anomaly detection using
call stack information,” in Proc. of IEEE Symposium on Security and Privacy (S&P),
Oakland, CA, May 2003.

[71] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “Lift: A low-overhead practical
information flow tracking system for detecting security attacks,” in Proc. of IEEE/ACM
Annual Symposium on Micro-Architecture (MICRO), Orlando, FL, Dec. 2006.

[72] M. H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall, First
edition, 2002.

[73] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, Second edition, 2006.

[74] W. Lee, S. Stolfo, and Phil Chan, “Learning patterns from unix process execution traces
for intrusion detection,” in Proc. of AAAI Workshop: AI Approaches to Fraud Detection
and Risk Management, Menlo Park, CA, Jun. 2003.

[75] W. Lee, S. J. Stolfo, and W. Mok, “A data mining framework for building intrusion
detection models,” in Proc. of the 1999 IEEE Symposium on Security and Privacy (S&P),
Oakland, CA, May 1999.

[76] S. Martin, A. Sewani, B. Nelson, K. Chen, and A. Joseph, “Analyzing behavioral features
for email classification,” in Proc. of the 2rd International Conference on Email and Anti-
Span (CEAS), Mountain View, CA, Aug. 2003.

[77] S. Yang, J. P. Song, H. Rajamani, T. W. Cho, Y. Zhang, and R. Mooney, “Fast and
effective worm fingerprinting via machine learning,” in Proc. of the 3rd IEEE
International Conference on Autonomic Computing (ICAC), Dublin, Ireland, Jun. 2006.

[78] K. Julisch and M. Dacier, “Mining intrusion detection alarms for actionable knowledge,”
in Proc. of the 8th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), Edmonton, Alberta, Jul. 2002.

[79] C. Nachenberg, “Computer virus-antivirus coevolution”, Communication of the ACM, vol.
40, pp 31-40, Jan. 1997.

[80] P. Szor and P. Ferrie, “Hunting for metamorphic," in Proc. of Virus Bulletin Conference,
Mountain View, CA, Sep. 2001.

 172

[81] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk, Polymorphic shellcode engine
using spectrum analysis, [Online]. Available: http://www.phrack.org/. Accessed on March
2003.

[82] Ktwo, Admmutate v0.8.4: Shellcode mutation engine, [Online]. Available:
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz. Accessed on March 2001.

[83] M. Sedalo, Jempiscodes: Polymorphic shellcode generator, [Online]. Available:
http://securitylab.ru/. Accessed on May 2003.

[84] VMWare Inc., [Online]. Available: http://www.vmware.com/virtual-machine. Accessed on
March 2007.

[85] Microsoft, Microsoft Virtual PC, [Online]. Available: http://www.microsoft.com/
windows/ virtualpc/default.mspx. Accessed on March 2007.

[86] Metasploit LLC, Windows System Call Table, [Online]. Available:
http://www.metasploit.com/users /opcode/syscalls.html. Accessed on March 2007.

[87] Operating System Inside, Linux System Call Table, [Online]. Available:
http://osinside.net/syscall/system call table.htm, 2006. Accessed on March 2007.

[88] P. Thurrott, Windows "Longhorn" FAQ, [Online]. Available:
http://www.winsupersite.com/faq /longhorn.asp. Accessed on March 2007.

[89] GNU Project, Linux Function and Macro Index, [Online]. Available:
http://www.gnu.org/software/libc/manual/htmlnode/Function-Index.html#Function-Index.
Accessed on March 2007.

[90] K. F. Lee and S. Mahajan, Automatic Speech Recognition: The Development of the
SPHINX System, Springer, 1988.

[91] Z. Su, Q. Yang, Y. Lu, and H. Zhang, “Whatnext: A prediction system for web requests
using n-gram sequence models,” in Proc. of the 1st International Conf. on Web
Information Systems and Engineering Conference, Hong Kong, P.R. China, Jun. 2000.

[92] R. Duda and P. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons,
New York, 1973.

[93] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[94] V. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York, 1998.

[95] C. Burges, “A tutorial on support vector machines for pattern recognition,” Journal of
Data Mining and Knowledge Discovery, vol. 2, no. 3, pp. 121-167, Mar. 1998.

[96] H. Nunez, C. Angulo, and A. Catala, “Rule extraction from support vector machines,” in
Proc. of European Symposium on Artificial Neural Networks, Bruges, Belgium, Aug.
2002.

 173

[97] N. Barakat and J. Diederich, “Eclectic rule-extraction from support vector machines,”
Journal of Computational Intelligence, vol. 1, no. 5, pp. 59-62, Apr. 2005.

[98] G. Fung, S. Sandilya, and R. Rao, “Rule extraction from linear support vector machines,”
in Proc. of the 11th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), Chicago, IL, Aug. 2005.

[99] BindView Corporation, Strace for NT, [Online]. Available: http://www.bindview.com/
Services/RAZOR/Utilities/Windows/stracereadme.cfm. Accessed on March 2007.

[100] B. Christian, Full and Naive Bayes Classifiers, [Online]. Available:
http://fuzzy.cs.unimagdeburg.de/ borgelt/doc/bayes/bayes.html. Accessed on March 2007.

[101] T. Joachims, Advances in Kernel Methods: Support Vector Machines, MIT Press,
Cambridge, MA, 1998.

[102] Zdnet, Smart worm lies low to evade detection, [Online]. Available:
http://news.zdnet.co.uk /internet/security/0,39020375,39160285,00.htm. Accessed on
January 2004.

[103] V. Sekar, Y. Xie, D. Maltz, M. Reiter, and H. Zhang, “Toward a framework for internet
forensic analysis,” in Proc. of the 3rd Workshop on Hot Topics in Networks (HotNets-III),
San Diego, CA, Nov. 2004.

[104] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm origin identification
using random moonwalks,” in Proc. of the IEEE Symposium on Security and Privacy
(S&P), Oakland, CA, May 2005.

[105] Y. Xie, V. Sekar, M. Reiter, and H. Zhang, “Forensic analysis for epidemic attacks in
federated networks,” in Proc. of 14th IEEE International Conference on Network
Protocols (ICNP), Santa Barbara, CA, November 2006.

[106] Cisco, Worm mitigation technical details, [Online]. Available: http://www.cisco.com/
web/about/security/intelligence/worm-mitigation-whitepaper.html. Accessed on March
2004.

[107] Arbor Networks, The Peakflow Platform, Associated Press for Fox News, [Online].
Available: http://www.arbornetworks.com. Accessed on March 2007.

[108] J. Farlow, J. E. Hall, J. M. McDill, and B. H. West, Differential Equations and Linear
Algebra, Prentice Hall, Inc., 1999.

[109] M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 1994.

[110] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion detection systems,”
Computer Networks, vol. 31, no. 8, pp. 805–822, Sep. 1999.

 174

[111] S. Axelsson, “The base-rate fallacy and its implications for the difficulty of intrusion
detection,” in Proc. of the 6th ACM Computer and Communications Security Conference
(CCS), Singapore, Nov. 1999.

 175

VITA

Wei Yu received a B.S. degree in Electrical Engineering from Nanjing University of

Technology, China, in 1992, an M.S. degree in Electrical Engineering at Tongji University,

China, in 1995. He began his doctoral studies in computer science at Texas A&M University in

1999 and received a Ph.D. degree in 2008. His research interests are in the areas of networking

and distributed systems with a primary focus on security and privacy, information assurance,

computer forensics, and system reliability. Wei Yu may be reached at 4608 Dalroack Dr., Plano,

TX 75024, USA. His email address is weyu@cisco.com.

