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ABSTRACT

On Countermeasures of Worm Attacks over the Internet.
(May 2008)
Wei Yu, B.S., Nanjing University of Technology;
M.S., Tongji University

Co-Chairs of Advisory Committee: Dr. Wei Zhao
Dr. Riccardo Bettati

Worm attacks have always been considered dangerous thrests liotdrnet since they can
infect a large number of computers and consequently cause talgessrvice disruptions and
damage. Thus, research on modeling worm attacks, and defenses tgmmshave become
vital to the field of computer and network security. This afiggion intends to systematically
study two classes of countermeasures against worm att&cksyn as traffic-based
countermeasure and non-traffic based countermeasure. Traffit-t@asetermeasures are those
whose means are limited to monitoring, collecting, and analythiegraffic generated by worm
attacks. Non-traffic based countermeasures do not have such limitations.

For the traffic-based countermeasures, we first consideraime attack that adopts feedback
loop-control mechanisms which make its overall propagation trdf&bavior similar to
background non-worm traffic and circumvent the detection. We alsdogeaenovel spectrum-
based scheme to achieve highly effective detection peaface against such attacks. We then

consider worm attacks that perform probing traffic in a #tgahanner to obtain the location



infrastructure of a defense system and introduce an infam#ieoretic based framework to
obtain the limitations of such attacks and develop corresponding couasemes:

For the non-traffic based countermeasures, we first consideumssen worm attacks and
develop the countermeasure based on mining the dynamic signature of worm programe run
execution. We then consider a generic worm attack that dyndmotenges its propagation
patterns and develops integrated countermeasures based on atieratt contradicted
objectives. Lastly, we consider the real-world systemngetivith multiple incoming worm
attacks that collaborate by sharing the history of theirantems with the defender and develop
a generic countermeasure based on establishing the deferggrrtation of toughness in its
repeated interactions with multiple incoming attackers tdnmiope the long-term defense
performance.

This dissertation research has broad impacts on Internet resgarch since this work is
fundamental, practical and extensible. Our developed frameseoribe used by researchers to
understand key features of other forms of new worm attacksdewelop countermeasures

against them.
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CHAPTER |

INTRODUCTION

1. Worm Attacks Are Major Threats to the Internet

Worm attacks have recently posed major threats to the Ihtéfoeexample, in July 2001, a
worm called “Code-Red” infected more than 350,000 Microsoft seruamging Internet
information service (l1S). In less than 14 hours, this worm caused more thanitr2dsllars in
economic damages [1]. In January 2003, another worm called “Slarmfeated nearly 75,000
Microsoft SQL servers in less than 10 minutes and consequenthed large scale disruptions
in production systems worldwide [2]. In March 2004, worms calledttf¥Viand “Sasser”
infected many computers in a short time, rendering them unusable [3].

Furthermore, a recent trend of worm attacks has emergeldeinvdy used to launch
subsequent attacks. For example, “Code-Red” worms launched tifleutesl denial-of-service
(DDoS) attack against the White House's website (www.\libitee.gov) at the final stage of
their propagation [1]. In February 2004, the “MyDoom” worm propagatedlsapo many
computers that launched the DDoS attack against numerous wesstiess www.sco.com and
www.microsoft.com, thereby preventing legitimate users faoeessing them [4]. In addition to
DDoS attacks, recent studies have shown that a large nahbgected computers have been
used to form the botnet as a black-market incentive for traditddparenting infected computers
to launch other attacks [5, 6, 7, 8, 9]: (i) access confideinfiatmation that can be abused
through large scale traffic sniffing, key logging, identity thefit., (ii) distribute large scale
unsolicited advertisement emails (as spam) or softwaredimare), (iii) spread new malware by

installing Trojan Horses or other backdoor software, and (iv) destrayttithas high monetary

This dissertation follows the style and formatBEE/ACM Transactions on Networking



value.

2. Overview of Dissertation Research

Due to the massive damage potentially caused by worm prdbfgraesearch on modeling
worm attacks, and defenses against them, have become vitia tiheld of computer and
network security. This dissertation intends to systeméaticatudy two classes of
countermeasures against worm attacks, known as traffic-basetbrroeasure and non-traffic
based countermeasure. Traffic-based countermeasures aretithbsketect worm attacks by
purely monitoring, collecting, and analyzing the traffic generated/dnyn attacks. Non-traffic
based countermeasures are those that detect worm attale&stviaeing limited to monitoring,
collecting, and analyzing the traffic generated by worm attagiker the attack is detected,
subsequent schemes can be applied to mitigate the attafgcsvehess. For example, patches
can be released to fix the vulnerability, worm attack watBn be throttled and filtered, and

infected computers can be quarantined and recovered [10, 11, 12, 13, 14, 15].

2.a. Traffic-Based Countermeasures

The first component of this dissertation research is to dewatjz-based countermeasures. In
order to develop these types of countermeasures, we considerirhpte and sophisticated

attack models and consequently develop countermeasures based on two t@bies génerated

by worm attacks. Specifically, for the simple model, a wortacatwill generate propagation
traffic (i.e., messages that intend to identify vulnerable compudérectly. For the sophisticated
model, a worm attack will first attempt to generate probmessages in order to identify the
location infrastracture of the defense system, thereby cirentimg the detection. Based on
propagation traffic and probing traffic, our traffic-based countesmees consist of the

following two components.



1) Countermeasure Based on Propagation Tra€iensidering worm attacks which adopt the
feedback loop-control mechanisms to manipulate the propagatiort tirmfbrder to make it
similar to the background traffic and circumvent the detectiandewvelop a novel spectrum-
based scheme to defend against such attacks. Our design is babedirmight observation:
while the worm propagation traffic and background traffickaeely distinguishable in the time
domain, their distinction is clear in the frequency domain, due taetgring manipulative
nature of such worms. Our countermeasure scheme uses the Sosetral Density (PSD)
distribution of the propagation traffic rate and its correspondpgctral Flatness Measure
(SFM) to distinguish the worm propagation traffic from non-worm Kgemund) traffic. Our
evaluation data clearly demonstrate that our proposed schenedf@ctively detect such worm
attacks.

2) Countermeasure Based on Probing Trafftonsidering worm attacks which carry out
probing traffic in a stealthy manner, e.g., launching low-rate obipg traffic encoded by
Pseudo-Noise (PN) codes, we develop countermeasures againsttaoks. &ur analytical,
simulation, and empirical data first demonstrate the fedsgillisuch low-rate probing attack in
practice. To counteract such attacks, we then introduce amiation-theoretical framework
and map strategies for attacks to coding strategies fomaaination channels. We propose a
countermeasure that monitors the traffic-rate change of anidondlvmonitor in a time-series
manner. We show that the power constraints enforced by thecomeatsure can significantly
reduce the channel capacity of a system to a fairly lovel l¢hat practically eliminates
localization attacks on ITM systems. Our data validategindings and shows the effectiveness
of our developed countermeasures in terms of meaninglekmged time for the attackers to

launch such attacks.



2.b. Non-Traffic Based Countermeasures

The second component of this dissertation research is to develop afimn-trased
countermeasures, as supplementary approaches against woks. dttaiwder to develop these
types of countermeasures, it is critical to identify whgtes of non-traffic features must be
related to the worm attack and understand their characterididvated by the fact that most
existing research on this topic are either based on featutewwh worms or ones that can be
easily manipulated, our work intends to develop countermeasasesl on more robust features
which are difficult to manipulate by worm attacks. To this dsaked on worm uncontrollable
features such as dynamic signature of worm program executionkeasfacontradicted
objectives and the defender’s reputation, our non-traffic basattermeasures consist of three
parts, as follows:

1) Countermeasure Based on Dynamic SignatGmnsidering the new unseen worm attack,
we propose a novel detection approach based on mining dynamic sigmditwasn program
run-time executions. Our approach allows for the capture of dynaravioe of executables
and provides accurate and efficient detection against bothasebmew unseen worms. We
execute a large number of real-world worms and benign execaitaidetrace their system calls.
Via mining signatures from a large amount of features egidcom the system call traces, we
apply two classifier learning algorithms, known Maive Bayesand Support Vector Machine
(SVM). The learned classifiers are further used to cautyrapid worm detection with low
overhead on the end-host. Our experimental results clearly deneribraeffectiveness of our
approach to detect worm attacks in terms of very high detection rate afaldewositive rate.

2) Countermeasure Based on Contradicted Obijectizaking into consideration that a worm
attack becomes smarter and manipulates features used by caasiemes, we consider the fact

that no matter how a worm attack changes strategies, aggititiannot change is its objectives.



Based on this, we develop one novel non-traffic based countermégstasting an important
non-traffic feature- contradicted objectives to defend against worm attackpatticular, we
develop the countermeasures against a general form of wosfesied to as self-adaptive
worms that adapt their propagation patterns in order to reduce the fitplodilietection, and to
eventually infect more computers. To develop proper counternesasue introduce a game-
theoretic formulation to model the interaction between the wmepagator and the defender.
We show that an effective integration of multiple countermeascinemes (e.g., worm detection
and forensics analysis) is critical for defending agaielétaglaptive worms, which can force the
worm attacker to choose the contradicted objectives. We progliffeeent integration of
countermeasure schemes for different kinds of self-adaptivemsy and evaluate their
performance via real-world traffic data.

3) Countermeasure Based on Defender's Reputatmmsidering the real-world system
settings with multiple incoming worm attackers that collab®iby sharing the history of their
interactions with the defender, we propose a novel countermeasuck dragstablishing the
defender’s reputation of toughness in its repeated interactitimsnultiple incoming attackers.
Our studies show that while such iterative attacks may ersabhttacker to learn from previous
interactions, the defender can also take advantage of theomefati sacrificing short-term
performance in the initial few rounds to establish a “tough” tagfmn, in return for much higher
payoff in the long-run by using the established reputation to fubsequent attackers to drop
their attacks. Our extensive theoretical analysis and nuahemsults based on the study of
worm detection shows that our reputation-aware scheme canicsgtif improve the
performance of worm detection systems in terms of the trabebifeen detection rate and false

positive rate.



3. Significance of Proposed Work

Our work has broad impacts on Internet worm research. The sarué of this dissertation
research will be as follows.

1) Our Proposed Work Is FundamentdWe use analytical tools including game theory,
pattern recognition, and information theory to carry out a thorough studdpproaches of
countermeasures. For example, using game theory, we systelyaticalel the interactions
between the attacker and defender and consequently deriveicahalgsults. In particular,
through the process, we see that an integration of multiple dedestdiemes (e.g., detection and
forensics analysis) is critical for defending against woth@ manipulate their propagation
traffic in a smart manner. Using information theory, we mapattecks that perform probing
traffic to identify location infrastracture of defense systernoding schemes for communication
channels, thereby developing countermeasures that enable conth@ traffic-rate change of
monitors and derive theoretical bounds on the amount of time requiratidok regardless of
the specific attacking strategies (i.e., coding schemes) taken byaticeas.

2) Our Proposed Work Is PracticaDur techniques developed for countermeasures are
compatible with the existing Internet worm defense infrastructusihance can be used for real-
world systems. In particular, since our work also uses ge laumber of real-world worm
executables to carry out experiments, our proposed countermeasdegteicting the dynamic
signature of worm program execution can be easily used byl-aadd system. In addition,
since our work uses traffic data provided by the Internet Threaitdimg (ITM) system, a well
deployed Internet worm defense system, our proposed counternsefmsutetecting features of
worm related traffic can be easily used by a real-world system.

3) Our Proposed Work Is ExtensibM/e develop a framework that allows us to study both

traffic related features and non-traffic related featuresrellye allowing us to develop



countermeasures against worm attacks. There are a numbersifilpies for extending this
research beyond this dissertation. In particular, since futuransvatan become more
sophisticated and intelligent, our developed framework can be useddgrchers to understand

key features of other forms of new worm attacks and develop counteresgeagainst them.

4. Organization of This Dissertation

The rest of this dissertation is organized as follows: In @ndptwe review the worm attacks
and countermeasures. We first present our investigation onaffie-trased countermeasure in
Chapters Il and 1V, then we discuss non-traffic based counternesaisuChapters V and VI.
Specifically, in Chapter Ill, we consider the worm attadkat tuse the feedback loop-control
mechanisms to manipulate the propagation traffic rate and devel@ouintermeasure based on
the feature of propagation traffic in spectrum-domain. In Chagtewe consider worm attacks
that perform probing traffic in a stealthy manner, i.e., modulateéNMycode, to obtain the
location infrastructure of the defense system and develop cowasunes based on monitoring
the traffic-rate change of each monitor in a time-seriaanar. In Chapter V, we present the
countermeasure based on dynamic signature of program execution whiefiecsively defend
against new unseen worm attacks. In Chapter VI, we presenbtimeomeasures based on
attackers’ conflicted-objectives against worm attacks @ dynamically manipulate their
patterns. In Chapter VII, we present the countermeasure basedaoparating the defender’s
reputation that sacrifices its performance in the first feunds to establish a reputation of
toughness, in return for much higher payoff in the long run. Finally, weludnchis

dissertation research with a brief summary in Chapter VIII.



CHAPTER Il

REVIEWS OF WORM ATTACKS AND COUNTERMEASURES

In this chapter, we first briefly review the worm akscand then review countermeasures

against worm attacks.

1. Worm Attacks

Generally speaking, the simple model of worm attack is destrias follows: a worm
demonstrates behavior similar to that of biological virugederms of their self-propagating
nature. Specifically, a worm attack usually begins when the wattacker (or propagator)
identifies vulnerable computers on the Internet, exploiting their vulndiedilo obtain access to
them, and then infecting (i.e., uploading the worm) them. Once a conputicted, the attack
becomes “automatic”: A worm from the infected computer wiltursively identify other
vulnerable computers and try to infect those as well. Inwhig, the worm propagates itself to
other computers on the Internet. From this simple model, we see that a wormvilttgekerate
propagation traffic (i.e., messages that intend to identify vubtec@mputers).

Since worm attacks have always posed very dangerous thréwdriternet, much effort has
gone into studying, analyzing, and modeling the propagation behavioprofi attacks. For
example, Kephagt al in [16, 17] conducted early work on modeling a computer virus based on
the epidemiology model. Staniforet al in [18] studied various worms and modeled their
propagation. Cheet al in [10] analyzed the propagation of worms based on a discraete tim
model. Zouet al in [11] analyzed the propagation of a worm under dynamic quarantinesdefe
Mooreet al in [2] modeled and analyzed “Slammer” worm. Zgual in [19] modeled “Code-
Red” worm. Adversely, the worm attacks such as self-adaptivesvstudied in this dissertation

generalize worms that deliberately manipulate the propagadifiic tand reduce the probability



of detection. The self-adaptive worms share some simgilarispirit with polymorphic worms

that manipulate the byte stream of worm payload in order to rebdagerobability of detection

by payload signature-based detection [20]. All of these wortasigpeo the simple attack model
that only generates propagation traffic (i.e., messages themdinto identify vulnerable

computers).

With defensive systems in place nowadays, worms have correspgndaggme more
sophisticated than the simple example mentioned above. In partfcofarthe site of defense,
Internet Threat Monitoring (ITM) systems have now been develapeddeployed [21, 22],
since CAIDA began to implement the network telescope to mamitemet traffic in 2001 [23].
This kind of system is well adopted and similar to other iexjstrorm detection systems such as
the Cyber center for disease controller [18], Internet motamsa [24], SANs ISC (Internet
Storm Center) [25], Internet sink [21], network telescope [224 CAIDA [26]. An ITM system
usually consists of a number of monitors and a data center. EaGtonof an ITM system is
responsible for monitoring traffic targeted to a range cddBresses and periodically reports the
collected traffic logs to the data center. The data centdyzasathe traffic logs and posts
summarized reports for alarming Internet worm attacks, warehusually publicly accessible.
To better defeat this system via hiding itself, insteachont¢hing the attack directly, the worm
attacker uses probing messages to locate the monitors, bypdisesmgand reducing the
probability of detection. Consequently, this kind of sophisticated wmoionly propagates
traffic, but it generates probing traffic as well.

For worms using the sophisticated attack model to better déféarise systems via hiding
itself, Bethencourt and Shino@a al in [27, 28] studied that ITM systems can be exploited by
probing attack to locate monitors. Their techniques of locatiogitors require a high volume

probing traffic to be generated. This visible high trafiidivne also increases the probability of
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detection. Conversely, the low-rate probing attack studied indib&ertation focuses on the
probing traffic in a stealthy manner, based on the Direct Sequgpread Spectrum (DSSS)
technique, utilizing a Pseudo-Noise (PN) code. This work is also closelydébeother research
efforts in network security. Kohnet al. in [29] presented a technique of sending messages to

remotely fingerprint computers, exploiting small, microscope clock demitn computers.

2. Countermeasures

In order to counteract worm attacks, there are two importaps ghat the defender needs to
perform: worm detection and post-detection migration. Worm deteation to identify worm
propagation on the Internet. Once a worm is detected, the podialeteigration techniques
can be deployed to slow down and even stop worm propagation. Some commongdadopt
migration strategies include blocking/filtering propagaticaffic and immunizing vulnerable
computers (e.g., by releasing patches to the vulnerabilities) [10121113, 14, 15]. In this
dissertation, we focus on countermeasures based on worm detectibe fst-line worm
defense. As we mentioned in Chapter I, such countermeasures gendrally classified into
two classes, known as the traffic-based countermeasure and nonbma#fit countermeasure. In

the following, we will overview the countermeasures related to ttlasses.

2.a. Traffic-Based Countermeasure

Recall that traffic-based countermeasures are those that eaien attacks by monitoring,
collecting, and analyzing the traffic generated by worm astaekom the defense perspective,
since the worm attack generates two types of traffic (prdjpeg@and probing traffic) as
described previously, a defender may monitor, collect, and anhlgge two types of traffic and

hence detect worm attacks, via identifying traffic-relatedtures. In order to develop these
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kinds of countermeasures, it is critical to identify typegaffic generated by worm attacks and
understand their characteristics.

Recall that a worm attack will generate propagationidrdife., messages that intend to
identify vulnerable computers). For the countermeasures based on fedpngsagation traffic,
many detection schemes have been proposed [30, 31, 32, 33]. Themmargchemes based on
the observation that propagation traffic displays easily idabtdi patterns, e.g., high volume,
large variance, and exponentially increasing trends, etc. &bnefor these types of
countermeasures, there are two types of schemes: threshettarastrend-based detection. As
examples of threshold-based detection, Venkataraman and Wetagerin [31] studied the
scheme of using the mean value of traffic volume to determinedhm@ propagation. Wet al.
in [32] studied the scheme of using the variance ofitrafblume to determine the worm
propagation. As an example of trend-based detection,eZail in [30] studied the scheme of
using the exponential increase trend of traffic volume to daterthe worm propagation. There
are also other schemes that are based on destination distribéitpmopagation traffic. For
example, Lakhinat al in [33] studied the scheme of using traffic distribution (sumzedrby
entropy) to classify various anomalies, including distribution ofitsdn IP address to classify
various anomalies. Liret al in [34, 35] also considered the header of destination IP addresses
and adopted video and image processing based techniques, such aslaogeeanalysis” to
reveal sudden changes in traffic anomalies. Conversely, idifisisrtation, we investigate a new
detection scheme that identifies the propagation traffizifean the frequency domain and is
able to detect worm attacks that adopt the feedback loop-comtiianism to manipulate their
propagation traffiic and cause behavior similar to the background non-nadfitu

Several studies of worm attacks and their countermedsavesalso been carried out based

on features of probing traffic. For example, Bethencourt and Shataalain [27, 28] studied an
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attack scheme to locate the monitors of ITM systems. Todkeof our knowledge, little work
has been performed beyond very basic discussion in [27, 28]. In thestakiss, we will not
only consider worm attacks that directly probe target netsydnlt we will also study those that

perform probing in a stealthy manner and develop countermeasures agairstacks.

2.b. Non-Traffic Based Countermeasure

The traffic-based countermeasures are simple, efficient asyl te implement. Nevertheless,
these detection schemes have limitations and cannot provioleete solution for defending
against worm attacks. On one hand, it is hard to use the traféctmountermeasure to detect
worms that spread via E-mail systems, instant messeaggreer-to-peer applications, since
their traffic is difficult for ITM systems to observen@he other hand, worm attacks may have
full control of traffic. Thus, traffic-based countermeasuresttonsequently adapt themselves
in order to be effective.

As supplementary approaches against worm attacks, non-traffexl countermeasures are
those that detect worm attacks without being limited to mandgocollecting, and analyzing the
traffic generated by worm attacks. In order to develop theses lohcdtountermeasures, it is
critical to identify what types of non-traffic related feasimust be generated by worm attacks
or effectively to worm attacks. Then we can have better gtadeting of their features and
develop countermeasures.

For the non-traffic based countermeasures, many existing scheneebdesv proposed to
detect the signature of worm executables [20, 36, 37, 38]. Specifitadhe are some research
efforts that focus on examining constant byte steams as wignatthe worm program [20, 38,
39, 40], such as the list of Dynamic Link Libraries (DLLS), fimas and specific ASCII strings

extracted from the executable headers. There is additionatehdecusing on program models.
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For example, Fengt al [40] proposed a formal analysis framework for pushdown automa
(PDA) models. Based on this framework, they studied program sasalgchnigques,
incorporating system calls or stack activities. Waggteal in [41] proposed an approach that
analyzes program executables and generates a non-deterrfimigiautomaton (NDFA) or a
non-deterministic pushdown automaton (NDPDA) from the global conowl-firaph of the
program. The automaton was then used to monitor the program executina. @ddaoet al in
[42] presented an approach for detecting anomalous behavior oéeutiag process. The basic
idea of their approach is that processes potentially runningatme executable should behave
similarly in response to a common input.

These approaches are capable of identifying non-traffic basedeteaenerated by worm
attacks and can be used to detect worm attacks. Howévewiunseen worms appear in the
future and a worm becomes smarter to manipulate these featusesffectiveness of these
schemes will be significantly reduced. In order to addressptbislem, the defender needs to
focus on the comparatively invariant perspectives of worm lattaParticularly, in this
dissertation we consider the following three approaches. iestyill develop one novel non-
traffic countermeasure which aims to detect new unseen wanhsling “polymorphic” worms
that have unseen signatures or change their signatures duringgtimpafecond, we note that
no matter how a worm attacker changes its strategies, one thing it carmge this objectives.
To this end, we develop one novel non-traffic based counterneebgutesting an important
non-traffic feature- contradicted objectives of worm attacks. Third, we consideal-world
system settings with multiple incoming worm attackers toflaborate by sharing the history of
their interactions with the defender and we propose a gemgntation-aware countermeasure
scheme to improve the performance of worm detection by incdmpprahe defender’s

reputation.
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CHAPTER Il

COUNTERMEASURE BASED ON PROPAGATION TRAFFIC

In the following two chapters, we will develop traffic-based coumgasures against different
worm attacks. In this chapter, we focus on developing the courdisure based on propagation

traffic.

1. Overview

In this chapter, we consider a new class of worms referred to as canmguileagm (C-Worm in
short). The C-Worm has a self-propagating behavior similar ditioaal worms, i.e., it intends
to rapidly infect as many vulnerable computers as possible. Howtiae C-Worm is quite
different from traditional worms in a way that it camouflageny noticeable trends of its
propagation traffic over time. Specifically, the camouflageaéhieved by manipulating the
propagation traffic volume launched by worm infected computers. Suaaingulation of the
propagation traffic volume prevents exhibition of any exponentiallyeiasing trends or even
crossing of thresholds that are tracked by existing trafilume-based detection schemes [30,
31, 32].

In order to detect such worm attacks, we comprehensively analy¥erm propagation
traffic in both the time and frequency domains. We observé dhlthough the C-Worm
propagation traffic shows no noticeable trends in the time domadlgnibnstrates a distinct
pattern in the frequency domain. Specifically, there is an obwoneentration within a narrow
range of frequencies. This concentration is inevitable shme€tWorm adapts to the dynamics
of the Internet in a recurring manner for manipulating and clintyats overall propagation
traffic volume. The above recurring manipulations involve steamyease followed by a

decrease in the propagation traffic volume, such that the changes do not naaraf@gtrends in
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the time domain or such that the propagation traffic volume doegesx thresholds that could
reveal the C-Worm propagation.
In the following, we first introduce the C-Worm and then presentountermeasure based

on the feature exposed in the spectrum domain of propagation traffic.

2. C-Worm Propagation

2.a. Overview

For the C-Worm, the simplest way to manipulate propgationidratilume is to randomly
change the number of worm instances conducting port-scans. Howesenethod may not be
able to circumvent the detection. The reason is that the bpeoglagation traffic volume still
shows an increasing trend with the progress of worm propagatiorasndore and more
computers are being infected, they, in turn, take part in scaoiiireg computers. As a result,
the C-Worm may introduce a feed-back loop control for regulatisgpibpagation speed
according to the propagation status. As we mentioned earlierdé@n to effectively circumvent
the detection, the propagation traffic for the C-Worm should be conymyaglow and variant
enough to not show any notable increasing trends over time. Note Wleay slow propagation
of the C-Worm is also not desirable, since it delays rapfieciion damage to the Internet.
Hence, the C-Worm needs to adjust its propagation so thamnéitiser too fast to be easily
detected, nor too slow to delay rapid damage on the Internet.

To regulate the C-Worm propagation traffic volume, we introducem@control parameter
called attack probabilitp(t) for each worm infected computea(t) is the probability that a C-
Worm instance participates in the worm propagation (i.enssaad infects other computers) at
time t. For the C-Wormp(t) need not be a constant value and can be set as a tiniegvary

function.
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In order to achieve the camouflaging behavior, the C-Worm neeatstdin an appropriate
p(t) to manipulate its propagation traffic. Specifically, theMdrm will regulate its overall
propagation traffic volume such that: (i) it is similar to noorw scan traffic in terms of the
traffic volume over time, (ii) its does not exhibit any notatiends such as an exponentially
increasing pattern or any mono-increasing pattern even whemumhieer of infected computers
increases over time, and (iii) the average volume valuecobvbrall traffic is sufficient to make
the C-Worm propagate fast enough to cause rapid damage on the Internet.

We assume that a worm attacker intending to manipulate prtigatraffic volume follows a
random distribution with meaklc . ThisMc can be regulated in a random fashion during the
worm propagation in order to camouflage the propagation of C-Woaorre§pondingly, the
worm instances need to readjust their attack probalm(ilyin order to ensure that the total
number of worm instances that launch the scans is approxiriagely

To regulateMc’, it is obvious thatp(t) has to be decreased over time siitg) keeps
increasing during worm propagation. We can determ(tjeusing a simple function as follows:
p(t) = Mc /M'(t), where M'(t) represents the estimation bf(t) at timet. From the above
expression, we know that the C-Worm needs to obtain the valNe(Df(as close tdvi(t) as
possible) in order to generate an effecp(#. Here, we discuss one approach for the C-Worm to
estimateM(t). The basic idea is as follows: A C-Worm could estimate theeptage of
computers that have already been infected over the total numlieadtiresses as well BKt),
through checking a propagation attempt as a new hit (i.e., hitingnanfected vulnerable
computer) or a duplicate hit (i.e., hitting an already infectederable computer). This method
requires each worm instance (i.e., infected computer) to be masked watermark which
indicates that this computer has been infected. Thus, when a instamce (for example,

computer A) scans one infected computer (for example, computehd),computer A will
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detect such a watermark, thereby becoming aware that host Bekasinfected. Through
validating such watermarks during the propagation, a C-Worm infextsmputer can estimate
M(t). This method is similar to that used by the “self-stoppingtm discussed in [43]. There
are other approaches to achieve this goal, such as incorpotsagifger-to-Peer techniques to

disseminate information through secured IRC channels [44, 45].

2.b. Effectiveness

We now demonstrate the effectiveness of C-Worm in evading waetaction through
controlling p(t). In this context, we use two metrics to assess a detesttame. One is the
Detection TimgDT) and the other is thlaximal Infection RatéMIR). These two metrics are
used to measure the effectiveness of the worm attacks prékence of worm defense systems.
Detection time quantifies the detection speed of the detectimm®cand maximal infection rate
guantifies the damage caused by a worm before being detecteguifizse of any detection
scheme is to rapidly minimize the damage caused by a wéence, these two metrics can be
used to quantify the effectiveness of any worm countermeasuréheAgalues increase, the
worm attack performance improves and the detection performance worsens.

Given random selection M¢', we generate three C-Worm attacks (viz., C-Worm 1, C-Worm
2 and C-Worm 3) that are characterized by different selectiormean and variance magnitudes
for Mc . In our simulations, we assume that the scan rate of tradiponalrandom scan (PRS)
worm follows a normal distributio, = N(40, 40) (note that if the scan rate generated by above
distribution is less than 0 , we set the scan rate as Opl$@eset the total number of vulnerable
computers on the Internet as 360,000 which is the total number okithfeminputers in “Code-

Red” worm incident [1].



Table llI-1. Maximal Infection Rate (MIR) for Existing Traffic VolurBased Detection

Schemes
Detection PRS worm | C-Worm1 | C-Worm 2 C-Worm 3
Schemes
Mean 4.8% 100% 100% 28%
VAR 5.0% 100% 100% 100%
TREND 3.1% 100% 100% 100%

Table 11I-2. Detection Time (DT) for Existing Traffic Volume-BaksDetection Schemes

Detection | PRSworm | C-Worm 1| C-Worm 2 C-Worm 3
Schemes
Mean 2290 Inf Inf 4803
VAR 2340 Inf Inf Inf
TREND 2134 Inf Inf Inf
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Table IlI-1 and Table 11I-2 show how the C-Worm is able to effectivelgatethe existing traffic

volume-based detection schemes. The data of these two tables shotet¢herdeesults of three

representative traffic volume-based detection schemes (denotd&AM [31], VAR [32], and

TREND [30]) on PRS worms and different C-Worms. For fairnesssetehe parameters for

these three detection schemes, so that all schemes cawxeastmilar low false positive rates,

i.e., less than 1%. Remark that the false positive rateeiprobability that a detection system

detects the existence of worm propagation when there is gctualloccurrence of worm



19

propagation. Although all three schemes are effective whikectiety PRS worm attacks, they
fail in detecting the C-Worm attacks. For example, all theraesecompletely fail to detect the
C-Worm 1 and 2. Only MEAN can detect the C-Worm 3, but only afteosresiderably large

detection time of 4803 minutes and an unimpressive maximal infection ratéof 28

2.c. Discussion

Although in this chapter we only demonstrate effectivene€s\&Worms against existing traffic
volume-based detection schemes, the design principle of C-Worm cextdreled to defeat
other newly developed detection schemes, such as destination dstribaged detection [33,
34, 35]. In the following, we discuss the preliminary idea.

Recall that the attack target distribution-based schemesdito analyze the distribution of
attack targets (the scanned destination IP addresses) iasdbtextion data to capture the
fundamental feature of worm propagation, i.e., continuously scanniiegediif targets, which is
not expected in non-worm scan traffic. However, our initial ingasittn shows that the worm
attacker is still able to defeat such a countermeaswmemanipulating the attack target
distribution. For example, the attacker may launch a portion oftsafiic bound for some IP
addresses monitored by ITM system. Recall that those dedli€ateldresses monitored by ITM
system can be obtained by launching probing attacks or via other means, which willide ist
Chapter IV.

Using port 135 reported by SANs ISC as an example, we analyzeatks and obtain the
traffic target distribution in a window lasting for 10 minsliéwing existing work [33], we use
entropy as the metrics to measure the attack targetodistni. Fig. IlI-1 shows the Probability
Density Function (PDF) of background traffic’'s entropy values. a¢e simulate the worm

propagation traffic which allocate a portion of scan trdfficind for IP addresses monitored by
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the ITM system, then we obtain the PDF of entropy value forbowed traffic including both
worm propagation and background traffic. From Fig. IllI-1, we know thahwine attacker uses
a portion of attack traffic to manipulate the target distributibie, entropy-based detection
scheme can be degraded significantly. For example, when tlokeattases 10% traffic to
manipulate the traffic’'s entropy value, the false positite cd entropy-based detection scheme
is 14%. When the attacker uses 30% traffic to manipulaterdffec’s entropy value, the false
positive rate becomes 40%. Hence, in order to preserve therrpanice, entropy-based
detection scheme needs to evolve correspondingly and integratetivir detection schemes.

We will perform a more detailed study of this aspect in our future work.
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Fig. IlI-1. Manipulation of Attack Target Distribution Entropy



3. Detection of the C-Worm

3.a. Design Rationale

21

In this section, we develop a novel spectrum-based detectiemectRecall that the C-Worm

goes undetected by detection schemes that try to determine timepnapagation volume only

in the time domain. Our detection scheme captures the distitietrpaf the C-Worm in the

frequency domain, and thereby has the potential of effectivelgctilg the C-Worm

propagation.
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Fig. lll-2. PDF of SFM on C-Worm Traffic

In order to identify the C-Worm propagation in the frequency domainsedhe distribution

of Power Spectral Densit{PSD) and its correspondil@pectral Flatness Measu(SFM) of the

propagation traffic. Particularly, PSD describes how the poivartime series is distributed in

the frequency domain. Mathematically, it is defined as Rbearier transformof the auto-

correlation of a time series. In our case, the time seriesspands to the changes in the number
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of worm instances that actively conduct the propagation over Tihee SFM of PSD is defined
as the ratio of geometric mean to arithmetic mean of thii@eats of PSD. The range of SFM

values is [0, 1] and a larger SFM value implies flatter PSD bligian and vice versa.
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Fig. 11I-3. PDF of SFM on Non-Worm Traffic

To illustrate SFM values of both the C-Worm propagation and alaron-worm scan traffic,
we plot the Probability Density Function (PDF) of SFM for bottWarm propagation and
normal non-worm scan traffic as shown in Fig. 11l-2 and Fig. llléspectively. Note that we
only show the data for port 8080 as an example, and other ports show sisgivadions. From
this figure, we know that the SFM value for normal non-woranscaffic is very large (e.g.,
SFM in [0.5, 0.6] has much higher density compared with other magnitddesC-Worm data
shown in Fig. 11l-2 is based on 800 C-Worm attacks generated byngaajtack parameters
defined in Section 2, such p§) andMc . From this figure, we know that the SFM value of the

C-Worm attacks is much smaller (e.g., SFM in [0.04, 0.1] has high gersibm the above two
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figures, we can observe that there is a clear demarcatige td SFM in (0.3, 0.38) between the
C-Worm propagation and normal non-worm scan traffic. As such, MW &n be used to
effectively detect the C-Worm propagation traffic.

The large SFM values of normal non-worm scan traffic caexpéained as follows. The
normal non-worm scan traffic does not tend to concentrate at aigufza frequency since its
random dynamics is not caused by any recurring phenomenon. The smalbfvakil can be
reasoned by the fact that the frequency of C-Worm propagatidic isafvithin a narrow-band.
Such concentration within a narrow range of frequencies is uleei since the C-Worm
adapts to the dynamics of the Internet in a recurring manner doipmating the overall
propagation traffic volume. In reality, the above recurring maatmiris involve steady increase

followed by a decrease in the propagation traffic volume.

3.b. Spectrum-Based Detection Scheme

We now present the details of our spectrum-based detection schieriter ® other detection
schemes [30, 32], we use a “destination count” as the number of the westmation IP
addresses targeted by launched scans during worm propagation. Tdamubosw the source
count data is obtained, we recall that an ITM system collegs from distributed monitors
across the Internet. With reports in a sampling windldwthe destination courX(t) is obtained
by counting the unique destination IP addresses in received logs.

To conduct spectrum analysis, we consider a sliding windgwin the worm detection
system.W; consists ofg continuous detection sampling windows and each sampling window
lastsW;. The detection sampling window is the unit time interval to sartip@ detection data

(e.g., the destination count). Hence, at timeithin a sliding windowW;, there areg samples
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denoted by X(i-g-1), X(i-g-2),..., X(i)), whereX(i-j-1) ( in (1,q)) is j-th destination count from
timei-j-1 toi-j.

In our spectrum-based detection scheme, the distribution of PSB amdrésponding SFM
are used to distinguish the C-Worm propagation traffic from thewasm scan traffic. In our
worm detection scheme, the detection data (e.g., destination coumtenther processed in
order to obtain its PSD and SFM. In the following, we detail how t8B Rnd SFM are
determined during the processing of the detection data.

1) Power Spectral Density (PSD)

To obtain the PSD distribution for worm detection data, we neednsfdran data from the
time domain into the frequency domain. To do so, we use a random9Xgges in [0, n] to
represent the worm detection data. AssunXtyyis the destination count in time periael] t] (t
in [1, n]), we define the auto-correlation &ft) by R«(L) = E [X(t)X(t+L)], whereRy(L) is the
correlation of worm detection data in an interlallf a recurring behavior exists, a Fourier
transform of the auto-correlation function Bf(L) can reveal such behavior. Thus, the PSD
function (also represented (f); wheref refers to frequency) of the scan traffic data is
determined using the Discrete Fourier Transform (DFT) sfaito-correlation function as

follows,
N-1 '
B(Ry (L), K) =Y (R (L)) &2, (11-5)
n=0
whereK=0, 1, ...,N-1. As the PSD inherently captures any recurring pattetherfrequency
domain, the PSD function shows a comparatively even distributionsezmwile spectrum range

for the normal non-worm scan traffic. Whereas, the PSD of C-Wwapagation traffic shows

spikes or noticeably higher concentrations at a certain range ofettteusp range.
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2) Spectral Flatness Measure (SFM)

We measure the flatness of PSD to distinguish the propagdedific of the C-Worm from
the normal non-worm scan traffic. To this end, we introduceSihectral Flathess Measure
(SFM). The SFM is defined as the ratio of the geometric mean to the aritimean of the PSD

coefficients [47, 48]. It can be expressed as,

e = M S
N 2 S)

whered(fy) is thek-th PSD coefficient for the PSD obtained from the results i¥bjlISFM is a

(111-6)

widely existing measure for discriminating frequencies inover applications such as voiced
frame detection in speech recognition [48, 49]. In general, smalesyaf SFM imply the
concentration of data at narrow frequency spectrum ranges.

Table 111-3 shows the mean value of SFM based on extensivessnafynon-worm traffic
data for some popular ports collected by SANs ISC. Overall, we note tha&dEhdigtribution of
non-worm scan traffic is relatively flat, thereby resultngelatively larger magnitudes of SFM
values. The above observation can be reasoned due to the fact thatnwmwalrm scan traffic
does not tend to concentrate at any particular frequency sime@dsm dynamics is not caused
by any repeating phenomenon. Differently, the C-Worm has unprevemairring behavior in
its propagation traffic; consequently its SFM values anaparatively smaller than the SFM

values of normal non-worm scan traffic.

Table 11I-3. SFM Mean Value for Normal Non-Worm Scan Traffic

Port |23 |25 |53 113 | 139 | 445 | 1025| 4672 | 6446 | 6881 | 8080 | 27015

SFM | 0.71| 0.71] 09§ 0.86 064 0.7 046 047 045 0.74 056 0.65
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3) Detection Decision Rule

We now describe the method of applying an appropriate detectiororaletect C-Worm
propagation. As the SFM value can be used to sensitively distinthésC-Worm propagation
and normal non-worm scan traffic, the worm detection is performedimparing the SFMith
a predefined threshold. If tt#FM value is smaller than a predefined threshold, then a C-Worm
propagation alert is generated. The value of the threshold uséé B/\Worm detection can be
set based on the knowledge of statistical distribution of 8&Mes that correspond to the non-
worm scan traffic. If we can obtain the distributioh SFM values for the C-Worm through
comprehensive simulations and even real-world profiled data iutheef the optimal threshold
can be obtained by applying the Bayes classification [50]. If theilnlition of SFM values for
the C-Worm is not available, based on the distribution of $S&Mes of the normal non-worm
scan traffic, we can set an appropriate value. For exampleathe can be determined by the
Chebyshev inequality [50] in order to obtain a reasonable false positiveraterfn detection.

In addition, our spectrum-based scheme is also generic fotingtthe PRS worms. This is
due to the fact that propagation traffic of PRS worms has aastlystrapid, exponential
increase. Thus, in the propagation traffic of PRS worms, the\R&[®s in the low frequency

range are much higher compared with other frequency ranges.

3.c. Analysis

We now present a formal analysis of SFM for the C-Worn.the observed traffic on the
countermeasure system Be = X; + Y;, whereX; is the random variable representing the C-
Worm propagation traffic (e.g., volume, source counter) in one sagngindow andy; is the
random variable representing the background scan traffic yelgme, source counter) in one

sampling window. We defing = X; — E[Xy], where EK{] is the mean value of; andY =Y -
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E[Y4], where EJ,] is the mean value of;. Thus, we haveZ = X + Y, whereX andY are
independent zero-mean random variables. We assumé& sheiectrum is within theW<f<W
range.

Based on the observations shown in Section 3.a, we approxingistgantyi(t) by white
Gaussian noise, which is widely used in modeling wide-band noiserimgnication systems.
Thus, Y can be approximately represented by a Gaussian white nolsezevia mean and a
variance ofs. Thus, in the total frequency band limited within the rand¥ = < W), the PSD
of Y is S(f) = o, which shows thaY has a constant power spectrum and each frequency has the
average power value

Considering the fact that C-Worm instances adopt the control m&chatrategy to
manipulate the overall propagation traffic volume, we explained a distinct trend can be
noticed in the spectrum domain, i.e., the trend being a contentrethin a narrow range of
frequencies on the propagation traffic of the C-Worm. Assuratthe frequency of C-Worm
propagation traffic counter is referred toragdenoted byf), wherek =1, ... mandm<Win
the total (narrow-band) frequency range. Without loss of generd{ty is approximately
represented by

2m
X(t) = a, cos@rf,t +6), (1-7)
k=1
whered is uniformly distributed in the interval [0xB and &, is uniformly distributed in the
interval [, I]. Based on the relationship among autocoraatinean and autoconvariance, we
haveRx(r ) = Cx(ty, tp) + E[X(t)]E[X(t2)], Wwherer = t,—t;, E[X(t1)] = E[X(t2)] = 0, andCx(t, t;) =
E[(X(ty)—EX(t))(X(t2)—E(X(t2))] is the autocovariance of a random procéds Thus, it is easy

to verify that



R, (1) = Zm:[a?kzcos(ZMkr)].

Thus, the PSD oX(t) can be represented by

k=m 2
ak

S, (1)= 2 15-8(f = £,)+ 251 + 1,)].

k=1

As X(t) andY(t) are independent random proceSgf] = o), we have
k=m a2 a2
S ()= D [Za(f = f,)+Z£5(F +f,)] +0.
= 4 4

Define R=a,4(f)/40. The SFM ofZ(t) can be represented by

S, (f) = UZW_ZmRU%‘T’] _ R%
L omor+ow-2m) M (R-1)+1
W W

We can rewrite&(f) in (111-11) as the function dR as
t
F(x)=—2>
t(x-1)+1

wherex=R t=mW< 1. As

tx"H(x-1)(t-1) -

F 0= D+

the functionS,(f) is a decreasing function Bf(= R) and it is observable that

_a,44(f)
o

R +1>>1
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(I11-8)

(I11-9)

(I11-10)

(I1-11)

(I11-12)

(I1-13)

(Ill-14)

(due to the Dirac’s function property)S(f) — 0. Thus, the SFM of C-Worm is close to 0.
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4. Performance Evaluation

In this section, we report our evaluation results that iktstthe effectiveness of our spectrum-
based detection scheme against both the C-Worm and the PRS ivazomparison with
existing representative volume-based detection schemes. Inoaddite also consider the
destination distribution-based detection schemes and evaluatpehieimmance against the C-

Worm.

4.a. Evaluation Methodology

1) Evaluation Metrics

In order to evaluate the performance of any given detection scigaest the C-Worm, we
use the following metrics. The first two metrics are Bretection TimgDT) and theMaximal
Infection RatgMIR) defined in Section 2. Recall that detection time fingd as the time taken
to successfully detect the worm attack from the moment tbemwpropagation starts. It
guantifies the detection speed of a detection scheme. Maxifealiom rate defines the ratio of
an infected computer number over the total number of vulnerable compptéssthe moment
when the worm propagation is detected. It quantifies the dacsaged by a worm before being
detected. The objective of any detection scheme is to minitiezelamage caused by a rapid
worm propagation. Hence, MIR and DT can be used to quantify the eéfeess of any worm
detection scheme. The higher the values, the more effettevavorm attack and the less
effective the detection. In addition, we use other two metatied theDetection RatéPp) and
False Positive RatéPr). Py is defined as the probability that a detection scheme caectgr
identify a worm attack. The: is defined as the probability that a detection schemeakeisty
identifies a nonexistent worm attack.

2) Evaluation Setup
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In our evaluations, we set the total number of vulnerable computers on the Int86&088
[1]. For the scan rat8 (number of scans per minute), we choose different scan ratedeicied
computers (worm instances). In our evaluation, the scan ratggeqtetermined and follow a
Gaussian distributioB = N(S,, ), whereS,, andS; are in [20, 64], similar to those used in [30].

We simulate the C-Worm attacks by varying the attackypeteas, such as control parameter
p(t) and the number of worm instances participating the Bkamlefined in Section 2. Thielc
follows the Gaussian distribution. Particularly, its mean mgloanly selected in (12000, 75000)
and standard deviation is randomly selected in (0.2, 100). We simuftgeerdt C-Worm
propagation traffic by varying these values. The detection saghmindow W; is set to 5
minutes and the detection sliding winddV is set to be incremental from 80 min to 800 min.
The incremental selection &f; from a comparatively small window to a large window can
adaptively reflect the worm scan traffic dynamics causetth®\C-Worm propagation at various
speeds. We choose the setting of the detection sampling windavstoolt enough in order to
provide enough sampling accuracy, as prescribed by Nyquist’'s sampling theorywalshoose
the detection sliding window to be long enough to capture adequateation for spectrum-
based analysis [48].

In practice, since detection systems analyze port-scai toldfided with the non-worm scan
traffic, we replay the real-world traces as non-worm scaffidr(as the background noise to
worm propagation traffic) in our simulations. In particular, weduseal-world trace (Shield logs
dataset) from 01/01/2005 to 01/15/2005 collected by a ITM system &ABd ISC. Note that
SANs ISC maintained by the SANs Institute have gained popubarigpng the Internet security
community in recent years. ISC collects firewall and Intrugietection system logs, which

indicate port-scan trends from approximately 2000 organizationsntbrdtor up to 1 million 1P
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addresses. We choose the scan traffic logs for port 8080 as rapleXar profiling the non-

worm scan traffic.

4.b. Evaluation Results of Traffic Volume-Based Detection Schemes

We evaluate our proposed spectrum-based detection scheme byingntpgrerformance with
three existing propagation traffic volume-based detection schemhesfirst scheme is the
volume mean-based (MEAN) detection scheme which uses thevaleanof propagation traffic
to detect worm propagation [31]; the second scheme is the treed-QBREND) detection
scheme which uses the increase trend of propagation waffime to detect worm propagation
[30]; and the third scheme is the victim number variance-b@s&R) detection scheme which
uses the variance of the propagation traffic volume to detect wormgartoga[32].

We define our spectrum-based detection scheme as SPEC. efirlihe training, we use
1000 worm attacks that include both the C-Worm (800 C-Worm attacksPRS worms (200
PRS worm attacks). For fairness, we set the detection pamniet our SPEC scheme and the
other three detection schemes, so that all detection sclastmese a similar false positive rate
(Pr) below 2%.

In the following, we first evaluate the performance of our specbased detection scheme
for C-Worms. Following this, we evaluate the performance of pectsum-based detection
scheme for PRS worms.

1) Detection of C-Worms

Table 11I-4 shows the detection results of different detectotiereaes against the C-Worm.
The results have been averaged over 500 C-Worm attacks. Feotalild, we can observe that
existing detection schemes are not able to effectively détec@4Vorm and their detection rate.

(Pp) values are significantly lower in comparison with our spea-based detection schemes
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(SPEC). For example, SPEC achieves the detection rate of 98éh, iz at least 3-4 times more
accurate than detection schemes such as VAR and MEANdhiatva detection rate values of
only 48% and 14%, respectively.

Our SPEC detection schemes also achieve good detectiofDiinperformance in addition
to the high detection rate values indicated above. In contrastetieetion time of existing
detection schemes have relatively larger values. As a aoerseg of the detection time values,
we can see that the C-Worm propagation is effectively contdogeSPEC as demonstrated by
the lower values of maximal infection rate (MIR) for theEEP Since the detection rate values
for the existing detection schemes are relatively smallaimbg low values of maximal

infection rate for those schemes are not as significant as those f6r SPE

Table IlI-4. Detection Results of Traffic Volume-Based Schegassa C-Worm

Schemes VAR TREND MEAN SPEC
Detection RateRp) 48% 0 14% 98%
Maximal Infection RateMIR) 14.4% 100% 7.5% 1.1%
Detection TimeDT) 2567 Inf 1838 1749

2) Detection Performance for PRS Worms

We evaluate the detection performance of different detectimmss for PRS worms. The
detection performance results have been averaged over 500 PR&uawks. We observe that
our SPEC schemes achieve 100% detection Rajewhile detecting traditional PRS worms in
comparison with existing worm detection schemes that have beeificsly designed for

detecting PRS worms.
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In view of emphasizing the performance of our SPEC scheme héthexisting worm
detection schemes, we plot the maximal infection rate (MIR)datekction time (DT) results in
Figs. llI-4 and llI-5 for different scan rates, respectivilfe can observe from these figures that
the maximal infection rate and detection time results of spectrum-based scheme are
comparable or even better than other existing worm detecti@mssh For example, when the
mean scan rate is 70/min, our SPEC scheme achieves a deteotiaof 1024 mins, which is
faster than that of VAR and MEAN schemes with values 1280amd 1161 min, respectively.
For the same mean scan rate of 70/min, SPEC achievesimahafection rate of 0.03, which
is comparable to TREND’s MIR value and is less than 50%eMIR value for the VAR and
MEAN detection schemes. The effectiveness of our spectruediszheme is based on the fact
that PRS worm propagation traffic shows a constantly rapid expahemtiease. Thus, SFM

values are relatively small due to PSD concentration aothdrequency range in the case of

PRS worms.
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4.c. Evaluation Results of Traffic Distribution-Based Detection Seise

In Section 4.b, we evaluate the detection performance of our propdseche along with other
three detection schemes. Each of these detection schemes teeltvegtraffic volume-based
detection category due to the fact that traffic volume is usdtkanain detection feature. As we
mentioned earlier, there are other schemes based on the dastidistribution of worm

propagation traffic [33, 34, 35]. Taking into consideration this cayegfodetection schemes, we
evaluate two additional schemes against the C-Worm. The diret is the entropy-based
detection scheme [33] which uses entropy to measure the tlafftmation distribution feature
raised by worm propagation. For this detection scheme, we red¢achal traffic data in each
sampling window and then calculate the entropy. The sliding dmieatindow is set to 10

(consists of 10 sample windows). If the average value oéttr@py within a sliding detection

window is larger than predefined threshold, which is deteminb@sed on the statistical profile
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of background traffic. Other measures, such as correlatiofiaiert, have also been showing
the effective capture of the destination distribution charattey raised by worm propagation.
The second scheme is an extension of the first one, incorpotiatingavelet analysis. Based on
the time-series of data (the entropy value in each samplingow), we carry out discreet
wavelet transform (DWT) and record the coefficients of eletvanalysis at different levels. In
our case, the anomaly detection is based on approximate corffioielevel 4 and 5, which
represent the signal anomaly in a low-frequency range. In our exgmrithe length of time-
series DWT is set to 50 and each data represents th@yertaiue in one sampling window.
The wave in our experiment uses tDaubechiesorthogonal wavelet. The parameters for

generating C-Worms is the same as those shown in Section 4.a.

Table 11I-5. Detection Results for Target Distribution-Based Sesemainst C-Worm

Schemes Entropy | Entropy with SPEC
Wavlet
Detection RateHp) 98% 99% 98%
Maximal Infection RateMIR) 0.8% 0.5% 1.1%
Detection TimeDT) 1649 1548 1749

Table 11I-5 shows the detection results of destination distoitiitased detection schemes in
comparison with our proposed scheme against the C-Worm. Frenalih, we can see that our
proposed scheme achieves comparable detection performance #gai@siVorm in terms of
detection rate, maximal infection rate, and detection time. Howeuerscheme is a somewhat
slower, resulting in worse detection time and maximal infectitin Wiéis is expected and can be

explained by the following two facts: First, our spectrum-basedseleavily relies on traffic
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volume. Second, the C-Worm studied in this chapter is mairffictk@lume-based. That is, the
C-Worm in this chapter only limits the manipulation of t@ffolume, aiming to defeat existing
traffic volume-based detection schemes. However, as shown irsati it is possible that a
worm attacker can adopt other strategies (e.g., manipluatioe efttdrck target distribution) and
further defeat destination distribution-based detection schemegxBkomple, the attacker may
launch a portion of scan traffic bound for some IP addresses monipidd/ system. Recall

that those dedicated IP addresses monitored by ITM systenbecabtained by launching

probing attacks or via other means, which will be studied in Chapter IV.

5. Summary

In this chapter, we studied the countermeasure based on propagsftiortdrdefend against a
specific class of worm called the C-Worm that has thaluitity to camouflage its propagation
traffic volume and such behavior as background traffic. Our analysis and evakfadiwed that,
although the C-Worm successfully camouflages its propagatiothéntime domain, its
camouflaging nature inevitably manifests as a distinct paittethe frequency domain. Based on
such observations, we developed a novel spectrum-based detection scheetect the C-
Worm. Specifically, our spectrum-based detection scheme used the Bpeetral Density
(PSD) distribution of the C-Worm propagation traffic volume &sdcorresponding Spectral
Flatness Measure (SFM) as the key detection feature foglisth the C-Worm propagation
traffic from the normal non-worm scan traffic. The evaluation ddwawed that our scheme
achieved superior detection performance against the C-Worrmoommparison with other

propagation traffic volume-based detection schemes.
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CHAPTER IV

COUNTERMEASURE BASED ON PROBING TRAFFIC

In this chapter, we focus on developing the countermeasure based on probing traffi

1. Overview

To order to defend against worm attacks, large-scalednatfinitoring across the Internet has
become necessary. Developing and deploying Internet threat nmomi{dfM) systems (or
motion sensor networks) is one of the major efforts in thisme&enerally, an ITM system
consists of a number of monitors and a data center. The monieorisaributed across the
Internet and can be deployed at hosts, routers, and firewall&astiec monitor is responsible for
monitoring and collecting traffic targeting to a range of dérasses within a sub-network. The
range of IP addresses covered by a monitor is also referras the location of the monitor.
Periodically, the monitors send traffic logs to the data ceantdrthe data center analyzes the
traffic logs and issues the worm attack warnings.

However, the integrity and functionality of ITM systems largely depend arottflentiality
of the IP addresses covered by their monitors, i.e., the locatianenitors. If the locations of
monitors are identified, the attacker can deliberately aNmde monitors and directly attack the
uncovered IP address space. It is a known fact that the numiseib-afetworks covered by
monitors is much smaller than the total number of sub-networkgiinternet [21, 22, 25]. In
other words, the IP address space covered by monitors represams samall portion of the
entire IP address space. Hence, bypassing IP address spacesd doyemonitors will
significantly degrade the accuracy of the traffic data ctdl® by the ITM system in reflecting
the real situation of attack traffic. Furthermore, the attackay also poison ITM systems by

manipulating the traffic towards and captured by disclosed menit@r example, the attacker
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can launch high-rate port-scan traffic to disclosed monitors aigth & large scale worm
propagation. In summary, the attacker can significantly comprortige ITM system
performance if he is able to disclose the locations of monitdssimportant to have a thorough
understanding of such attacks and design efficient countermeasuresno agdinst them.

In the following, we first investigate a category of shsal@ttacks called low-rate
LOCcalization (ILOC) attack, which can accurately and itslocalize the monitors in ITM
systems. We then develop countermeasures to defend agaihsatsacks. Notice that the
stealthy probing attack part in this Chapter is based on thaljeinek between Texas A&M
University and the Ohio State University. My work focused orblgra definition, literature

survey, mathematical analysis, and simulations.

2. Attack Model

In this section, we will discuss the ILOC attack in detaie Will first give an overview of the
ILOC attack, and then present the detailed procedures ohttaek, followed by additional

discussions and analytical results on its mechanisms.

2.a. ILOC Attack

1) Workflow

Fig. IV-1shows the basic workflow of the ILOC attack. This figure dlsstrates the basic
idea of the ITM system and its threats. In the ITM systida, monitors deployed at various
networks record their observed port-scan traffic and continuompsigite their traffic logs to the
data center. The data center first summarizes the vabfipert-scan traffic destinated towards
(and reported by) all monitors, and then publishes the report ddtee tpublic in a timely

fashion.
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As shown in Fig. IV-1a) and (b) respectively, the ILO#ltack consists of the following two
stages:

(a)Attack Traffic Generationin this stage, as shown in Fig. IVA), the attacker first selects
a code. Then, he encodes the attack trafficeimpeddingthe selected code into the traffic.
Lastly, the attacker launches the attack traffic towartisrget network (e.g., network A in Fig.
IV-1 (a)). We denote such aambedded codgatternin the attack traffic as thattack markof

the ILOCattack, and denote the attack traffic encodeattask mark traffic
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ML : Attack Traffic
g
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(a) attack stage 1: attack traffic generation (b) attackzstagack traffic decoding

Fig. IV-1. Workflow of the ILO@ttack

(b)Attack Traffic Decodingtn this stage, as shown in Fig. IV-1 (b), the attacker ugtries
the data center for the traffic report data. Such report danaist of both attack traffic and
background traffic. After obtaining the report data, the attairles to recognize the attack mark
(i.e., the code embedded in the IL@@ack traffic) by decoding the report data. If the attack

mark is recognized, the report data must include the attadic,trahich means the target
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network is deployed with monitors and the monitors are sendirfic traports to the ITM data
center.
2) Code-Based Attack

The ILOC attack adopts a code-based approach to generate the atffitk Coding
techniques have been widely implemented in secured communicati@xaiomple Morse code
is one such example. Without knowledge of Morse code, the reeaind find it impossible to
interpret the carried information [51].

In the ILOCattack, we use theseudo-noise cod®N-code) based attack approach, which has
three advantages. First, the code is embedded in traffic and camreetly recognized by the
attacker even under the interference from background traffeyrimg accuracy of the attack.
Second, the code (of sufficient length) itself provides enouiglagy. That is, the code is only
known by the attacker, thereby, only the code pattern embedded ok &tdfic can be
recognized by the attacker. Furthermore, the code is ablerjoicrmation. A longer code is
more immune to interference, and requires comparatively loweattack traffic as the carrier,
which is harder to be detected. All these characteristipstbeachieve the objectives of attack
accuracy and invisibility.

The ILOC attack can not only attackne target network to determine the deployment of
monitors inone network at one time, but it can also attawkltiple networks simultaneously.
Intuitively, one simple way to achieve this parallel attecko launch port-scan/attack traffic
towards multiple target networks simultaneously, by scannigifferent port number for each
different target network. For example, if the data centerighdd traffic reports of 1000
(TCP/UDP) ports, then the attacker can launch attacks dewii00 networks simultaneously,
attacking each network with a different port number. Sintschttraffic on different ports are

summarized separately at the data center, the attacker still caatseal thus decode its traffic
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towards different targets. Hence, the attacker can kecatonitors in multiple networks
simultaneously and accurately. However, can the attacker funtpeove the attack efficiency?
Assuming that the data center still only publishes reportd080 ports, can the attacker
fingerprint 10,000 target networks simultaneously, for example, ttackéng 10 different
networks usinghe sameort number? Using a high-rate of port-scan traffic cannaeeelthis,
because it is indiscernible whether a spike in the traeéfiort is caused by traffic logs from one
network or the other 9 networks. In order to achieve this go#fiancode-based attack, the
selected code and corresponding encoded attack traffic towaitiglennetworks for the same
port should not interfere with each other (i.e., each of thembeadecodedhdividually and
accuratelyby the attacker, although they are integrated/summarized traffie report from the
ITM data center). The PN-code selected in the ILlad@ck has this feature, giving it the unique
capacity to carry out parallel attack sessions towards pteultarget networks usindpe same
port. The details of the PN-code selection will be discusseterfdilowing sections. In the

following, we will give the details of attack stages illustrateéig. IV-1.

PN-code = [+1, -1, +1, -1, +1]

+1 +1
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Fig. IV-2. PN-code and Encoded Attack Traffic



42

2.b. Attack Traffic Generation Stage

In this attack stage, the attacker: (i) selects the cad-codein our case; (i) encodes the
attack traffic using the selected PN-code; and (iii) launches tloeled@ttack traffic towards the
target network. For the third step, the attacker can coordindege number of compromised
bots to launch the traffic [7]. However, this is not the foalighis chapter. In the following, we
will present detailed discussion of the first and second stepgctesly.
1) Code Selection

To evade detection by others, the attack traffic shouldrbasito the background traffic.
From a large set of real-world background traffic tracesimétiafrom SANs ISC [25, 52], we
conclude that the background traffic shows random patterns in both time and frequenaysdomai
The attack objectives of both accuracy and invisibility, andatiacker’'s desire for parallel
attacks require that: (i) the encoded attack traffic shoglddoin with background traffic, i.e., be
random in both the time and frequency domains, (ii) the code embeddee attack traffic
should be easily recognizable to the attacker himself, apdh@icode should support parallel
attacks.

To meet the above requirements, we choose the PN-code to ereatadh traffic. The
PN-code in the ILOGittack is a sequence of -1 or +1 with the following featur@s 38, 55].
The PN-code is random and “balanced”. The -1 andar€el randomly distributed and the
occurrence frequenciex -1 and +1 are nearly equal. This feature contributes to goatrape
density properties (i.e., equalbpreading the energy over the whole frequency-band). It makes
the attack traffic appear as noise and blend in with backgrounid traffoth time and frequency
domains.

The PN-code has a high correlation to itself and a low coorelgt others (such as random

noise), where theorrelation is a mathematical tool for finding repeatinggoa# in a signal
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[55]. This feature makes it feasibfer the attacker to accurately recognize attack traffic
(encoded by the PN-code) from the traffic report @atn under the interference of background
traffic.

The PN-code has a low cross-correlation value among different PN-codedasiidme lower
this cross-correlatiorthe less interference among multiple attack sessions in patadek. This
feature makes it feasibfer the attacker to conduct parallel localization attaok&tds multiple
target networks on the same port.

The Walsh-Hadamard code and M-sequence code [53, 54] are two popularf §pesode.
The Walsh-Hadamard code has some limitations. Since its fregigpreads into only a limited
number of discrete frequency components, which is different from bagkdgrtraffic, it will
compromise the invisibility of the attack traffic if usedtime ILOC attack. In addition, the
Walsh-Hadamard code also strongly depends on global synchronizatiom ¢6tfje contrary,
M-sequence code does not have these shortcomings, so we adopt M-seqdeada the ILOC
attack. We use thieedback shift registdo repeatedly generate the M-sequence PN-code due to
its popularity and ease of implementation [53, 56]. In particular, a feedbackegjistier consists
of two parts. One is an ordinary shift register consisting of abeurof flip-flops (two state
memory states). The other is a feedback module to form a multi-loop fé&ddbexc
2) Attack Traffic Encoding

During the attack traffic encoding process, each bit in tleeted PN-code is mapped to a
unit time periodls, denoted as mark bit duration. The entire duration of launched trafecrgef
to as traffic launch session)Tg., whereL is the length of the PN-code. The encoding is carried
out according to the following rules: each bit in the PN-code rt@mjpsmark bit durationT);
when the PN-code bit is +1, port-scan traffic with a high rate, tddres mark traffic rate, is

generated in the corresponding mark bit duration; when the code-bjtno port-scan traffic is
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generated in the corresponding mark bit duration. Thus, the attaokbeds the attack traffic
with a special pattern, i.e., the original PN-code.

Recall that, after this encoding process, the PN-code pattern embetidffit is denoted as
attack mark. If we use =<¢s, G, ..., G > In {—1,+1}L to represent the PN-code and yse
=<ni1 1i2 ..., i > tO represent the attack traffic, then we haye u/2-¢ci; + /2 ( = 1,..., L).
Fig. IV-2 shows an example of the PN-code and the corresponding tatiffitkencoded with

the PN-code.

2.c. Attack Traffic Decoding Stage

In this stage, the attacker takes the following two step3he attacker queries the data center
for the traffic report data, which consists of both attaakitr and background traffic. (i) From
the report data, the attacker attempts to recognize the embaidaleld mark. The existence of
the attack mark determines the deployment of monitors in taekatiirgeted network. As the
guery of traffic report data is relatively straightforwandre we only detail the second step, i.e.,
attack mark recognition, as follows.

In the report data queried from the data center, the attack gaffoded with the attack mark
is mixed with background traffic. It is critical for theQC attack to accurately recognize the
attack mark from the traffic report data. To address thoblpm, we develop the correlation-
based scheme. This scheme is motivated by the fact that tiabRéN-code (used to encode
attack traffic) and its corresponding attack mark (embeduléki traffic report data) are highly
correlated; in fact, they are actually the same.

The attack mark in the traffic report data is éhgbedded forrof the original PN-code. The
attack mark is similar to its original PN-code, although ltlaekground traffic may introduce

interference and distortion into the attack mark. We adoptdih@ning correlation degree to
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measure their similarity. Mathematically, the correlation degrdefined as the inner product of
two vectors. For two vector¥=<X;, X, ... X> and Y=<Yy, Y,,..., Y > of lengthL, the
correlation degree of vectot andY is (X, Y) = X o Y = Z,"X;-Y/L, wherel{(.) represents the
operator for the inner product of two vectors. Based on atbefirition, we havd (X, X) = I(Y,
Y)=1, if X, Yin {-1,+1}".

We use two vectorgi=<7i1, 7iz, ..., 7i.> andw=<wi1, iy, ..., @i > to represent attack
traffic (embedded with attack mark) and background traffic, ctsedy. Weshiftthe above two
vectors by subtracting the mean value from the original dataltingsin two new vectors,
7=<n'in, N2 - qi> ande’' =< w’i, @i, ... , @’ >. We still use a vectar =< ¢4, G, ...

, G > in {~1,+1}" to represent the PN-code. Thus, the correlation degree betveePiNtbode
and the (shifted) attack traffic can be obtained. Similarly,can also obtain the correlation
degree between the PN-code and the (shifted) background traffitoasstol

According to the rules of encoding attack traffic in Section 243=1y/2-ci+ p/2 andE(y;)=
wl2. Thus,n’= n — Hnij)= w/2-G. Hence, the correlation degree between the original PN-code
and the (shifted) probe mark embedded attack traffi¢(c, n'i) = w21(c, c) = wl2.
Furthermore, we can also derive the correlation degree hetiveePN-code and the (shifted)
background traffic, i.e./{c, w’j). Since the PN-code has low correlation with the (shifted)

background traffic, the mean of such correlation degree can be derived by
: 1 L
Er (¢, w))] =EE[Z;(W'1,HJ)] =0. (IV-1)
J:

If the standard deviation of the background traffic rate,ighe variance of such correlation

degree is
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Var[l (c,,w;)] = E[T (c;,w;) —0]*]

L af (IV-2)
—L—E[Z(W /) ]——EZ -

Thus, the average correlation degree between the PN-code arkifted)(background traffic is
I(c,o;) = o/LY% Based on the above discussion, the attacker can set apjerogttiatk
parameters (e.g., PN-code lendthand mark traffic rate) to make correlation degreg/2)
between the PN-code and the attack mark traffic that is awmgér than the correlation degree
(6/L") between the PN-code and the background traffic. As such, tekext can accurately
distinguish the attack mark traffic from the background traffic.

In the practice of attack mark recognition, vedtds used to represent the queried report
data, and vector; is used to represent tisaiftedreport data (by subtractirig(4;;) from ;). The
attacker uses the correlation degree betweeand his PN-code;, i.e., I1(c, Xi), to determine
the existence of PN-code in the report datd (tf, 1)) is larger than a thresholf, which is
referred to agnark decoding thresholdhen the attacker determines that the report contains
attack traffic as well as the PN-codeand determines that the target network is deployed with
monitors. The accuracy of this correlation-degree-based PN-eocdgnition is analyzed and

demonstrated in Section 2.e.

2.d. Attack Traffic Synchronization

In order to accurately and effectively recognize the kttaark (PN-code) from the report data,
we need to find the segment of the report data containing treo@&(i.e., we need to fulfill the
synchronization between the port-scan traffic report datatenBl-code). For this purpose, we
introduce an iterative sliding window-based scheme. The basidsdedet the attacker obtain
enough report data with small granularity. Then, a sliding windesatively moves forward to

capture a segment of the report data. For each segment, ledhapporrelation-based scheme
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discussed in Section 2.c to recognize whether or not the amtadkexists. The details of this
synchronization is presented as follows.

The attacker first sends a sequence of queries to the déda aed each query requests a
portion of report data which lasts for a given unit time, knasnquery duratioy. To
guarantee good synchronization and capture of each bit in the PNIgogieuld be smaller
than the mark bit duratiof. Also, the attacker needs to send enough queries and ensure that the
gueried report data contains the whole attack mark and attadktraffic, which is lengthTs.
With the report data, the attacker iteratively conducts i@eletion test on the report data, using a
sliding window. For example, in theth round, the attacker seledtss the starting time for the
sliding window. In {(+1)-th round, the attacker moves the sliding window one Jtggdqrward,
thus the start time of the sliding window becortiesT,, and so on. In thieth round, a sequence
of data (length oL) is obtained in the sliding window. The first data point ingbguence is the
traffic data in time duratiort;[ t; +T4, the second data point in the sequence is the traffic mata i
time duration {+Ts, t;+2Tg, and so on. With these data, the attacker conducts the attakk m
recognition procedure discussed in Section 3. The attackeateethe attack mark recognition
after each time he moves forward the sliding window, untilatiheck mark is recognized from
the report data in the current sliding window, or the sliding winthaw gone through all the

report data.

2.e. Analysis

In this section, we first present our analysis of the ingpa¢ different attack parameters on

attack accuracy. We then discuss how to determine attack parameters.
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1) Attack Accuracy Analysis
In order to measure attack accuracy, we introduce the folldwmgnetrics. The first one is

attack successful ratepPwhich is the probability that an attacker correctly recogmithe fact
that a selected target netwaskdeployed with monitors. The highxp is, the higher the attack
accuracy. The second metricagack false positive ratB,r, which is the probability that the
attacker mistakenly declares a target network as guieyasiwith monitors. The loweP,g, the
higher the attack accuracy is. In order to ensure attackbititys the obvious method is tose
the low traffic rateu. Recall thatT, is the mark decoding threshojd,is the mark traffic rate,
vector/; represents the queried report data, and veégGtoepresents thehiftedreport data (by
subtractingE(Zi;) from ). Assume that randomariablesw’;, ... , oL (i.e., the shifted
background traffic) are independently, identically distributedd)i and follow a Gaussian
random distribution with standard deviatiey then we have the following theorem for the
attackaccuracy of the ILOGttack.

Theorem IV-1. In the ILOCattack, the attack successful rRig is

Pw =1-PI[F(A,c)<T, |[(A =1 +a)] = \/_j(y,ﬂ)fe dy.

V2o,
(IV-3)

The attack false positive rd@gr is

Py = PIIM(4,) ST 0 = )] =1-—= [ ey, (IV-4)
2oy

Proof:
i) Derivation of attack successful r&g,.

According to the definition d®,p, we have

Py =1-Prl(A,¢) ST, [(A4 = +w)]. (IV-5)
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Consider thak(c, 7:)= u/21(ci, G)= u/2, the Equation (IV-5) can be rewritten by
P =1= P (A,¢) < T, =211(4 = )] (Iv-6)

Based on the mean and variance of correlation degree deterimit@mttion 3,Pap is

represented by

JU ot oo
—_— e’ dx. V-7
N2, I‘“ (V-1

Lety’=x’L/20,%, then we have

PAD =1-

Hy T
AL T ) \20 2 1 (= 2
P : \/703( Y= X _y d :1—— Y d . -
AD /—0_ J. /— y P J.(/Zj-Ta)ﬁe y (IV-8)

V2o,

i) Derivation of attack false positive ralar

We know thaf(c, 1) = 1, ° ¢, wherel; = ' when no ILOCattack traffic exists. Assuming

that/(c;, 2 ;) follows a Gaussian distributid¥(0, 0,’/L) (discussed in Section 3), we have
|:>AF - Pr[r(/L ) |) T I(/‘ - CL) )] (|V-9)

ThusPar can be presented by

\/_ ZJ:L
Py = *a I e“?x dx. (IV-10)

Lettingy?=x°L/25,%, then we have

JL V2o,
eYdy=1- e¥'d IV-11
\/— o, J‘Trf \/E y= \/—_[ T.AL y. ( )

Par =

Remarks:We make a few observations based on the theorem presented abstyehd-iattack

successful rat@ue increases and the attack false positive Patedecreases with increasing PN-
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code lengthL. That is, higher attack accuracy increases whencreases. Second, with the
increasing mark traffic raig, attack accuracy also increases.
2) Determination of Attack Parameters

(a) Determination qf, T, and L The attacker can determine the values of attack parameter
based on the above analysis. First, the attacker can detenmim&ik traffic rate based on the
statistical knowledge for the background traffic. Givenththe attacker can further determine
the mark decoding thresholfi, and PN-code length. Note that the values of other attack
parameters such as the standard deviation of background &affam be determined through
analyzing historical background traffic data published by the data center GiM system.

(b) Mark recognition threshold, TGiven the mark traffic rate (determined previously) and
desired attack false positive raBar, the attacker can further determine the mark decoding
thresholdT, by resolving Equation (IV-9) in Theorem IV-1.

(c) Length of PN-code: IGiven the mark traffic rate, mark decoding threshold,, and
desired attack successful rég,, the attacker can further determine the length of PN-tdae
resolving (IV-3) in Theorem IV-1.

(d) Determination of JTo determine the mark bit duratidi, the attacker needs to estimate
the possible delay from the moment the attack traffic is first regpday monitors, to the moment
when such attack traffic is published by the data center. To thakeOC attack effective, the
mark bit duration needs to be at least as large as such delaywiS¢héhne traffic in different bit
durations (each lagt) may be published at the same moment from the data ceitergmand
thereby rendering them inseparable.

Several possible methods can be used to obtain such delay trdorrB@me ITM systems
may publish such information on their websites. The attacker nsay actively conduct

experiments on ITM systems and measure such delay. For exahglattacker may deploy
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monitors in his controlled (small) network and connect thenhaotargeted ITM system. The
attacker can simply use such monitors to report logs embeddedpetialspatterns (e.g., PN-
code) and keep querying the data center until the embeddécl patterns are recognized. After
repeating the above process several times, the attacbleido obtain the statistics profile of
delay information, and then determine the mark bit durafionNVe use this method in our

implementation of the ILO@ttack, which is presented in the next section.

3. Performance Evaluation of ILOC Attacks

3.a. Evaluation Methodology

In our evaluation, we use the real-world port-scan traces flNs3SC (Internet Storm Center)
including the detail logs from 01/01/2005 to 01/15/2005 [25, 52]. The tracdsruserr study
contain over 80 million records and the overall data volume excee@88We use these real-
world traces as the background traffic. We merge recordsnoiated ILOC attack traffic into
these traces and replay the merged data to emulate thedtt@® traffic. We evaluate different
attack scenarios by varying attack parameters. Here, e stiow the data on port 135;
experiments on other ports result in similar observations.

We explore both attack accuracy and invisibility to evalatteeck performance. For attack
accuracy, we use two metrics: one is #timck successful rate,f and the other is thattack
false positive rate R, which are defined in Section 5. For attack invisibility, we tige
metrics: one is thdefender detection ratepp and the other isefender false positive rate,®
For the countermeasure, we only use a representative andcgalgenithm which has no
specific requirement on detection systems. More comprehensive moeaseires will be studied
in Section 4. This simple threshold-based detection algorithmidelyvadopted by many

systems [2, 18, 25, 31]. In this algorithm, if the traffic rateyu@ in a given time duration) is
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larger than a pre-determined thresh@ld(referred to as thdefender detection threshgldhe
defender issues threat alerts and initiates reactions [B6h & detection threshold is usually
obtained through statistical analysis of the background tr&ffite that the thresholll; must be
carefully chosen for anomaly detection: it must maintaith high detection rate (i.e., the
probability that an ongoing attack is detected) and low falsgiy@sate (i.e., the probability
that an alarm is triggered when no attack is occurring).

We evaluate the ILO@ttack in comparison with two other baseline attack schemedir$ihe
one is the localization attack that launches a significdmgllg-rate of port-scan traffic to target
networks as introduced in [27, 28]. We denote this attackvatuane-based attack he second
baseline scheme embeds the attack traffic with a unigqugidncy pattern. In this attack, the
attack traffic rate changes periodically. Then, the attaekpects the report data from the data
center to show such a unique frequency pattern if the selected teetwork is deployed with
monitors. We denote this attack scheme &sguency-based attackor fairness, we adjust the
detection thresholds in all schemes so that reasoatihtek false positive rate,Panddefender
false positive rate i (below 1%)are achieved. For the ILO@ttack, we generate different
attack traffic based on variant PN-code lerigtfi.e., 15, 30, 45). The default PN-code length is
set to 30. To better quantify the attack traffic rate forlltl¥C attack and other attack schemes,
we use the normalized attack traffic r&ewhich is defined aB = u/oy for ILOC attack, where
ox Is the standard variation of background traffic rate. Theuttef@lue of T, = 0.1T,. In all
simulation figures, the attack traffic rate (x-axis) is ldaspon this normalized attack traffic rate

defined above.

3.b. Evaluation Results

In this section, we will present the evaluation results.
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(a) Attack AccuracyTo compare the attack accuracy of the IL&@ck with that of volume
and frequency-based attack schemes, we plot the attack sucsesi, under different attack
traffic rates (i.e.P in [0.01, 3]) as shown in Fig. IV-3. From this figure, we obsehat both
ILOC and frequency-based attacks consistently achieve a muuér litjack successful rabgp
than the volume-based scheme. This differend&jns more significant when the attack traffic
rate is lower, which can be explained as follows. For theCllsdbheme, the PN-code-based
encoding/decoding makes the recognition of attack marks robushtéderence of the
background traffic. For the frequency-based scheme, the invaeguieficy in the attack traffic
is also robust to the interference of the background traffxth Bf them can distinguish their
attack traffic accurately even when the attack trafdite r(i.e.,P) is small. Nevertheless, the
volume-based scheme relies on the high rate of attack t(affic largeP), and thus, is very

sensitive to the interference of the background traffic.
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Fig. IV-3. Attack Successful Rate (Port 135)
(b) Attack InvisibilityTo compare the attack invisibility performance of the IL&tack with

the other two attack schemes, we show the defender detectidghgaia port 135 in Table IV-
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1. This table shows the attacker-achieved defender detediitenPgp, given different
localization successful ratd3,, (90%, 95%, and 98%). Recall that the defender sets the
detection threshold to make the defender false positivépateelow 1%. In the table, “(Time)”
and “(Freq)” mean that the defender adoptstime-domainand frequency-domairanalytical
techniques to detect attacks. It is observed that our Ie@@me consistently achieves much
lower defender detection rafé,p than other two schemes, which means the I|L&tack
achieves the best attack invisibility performance. As exgdethe defender can easily detect the
frequency-based attack by frequency-domain analytical technigtiesrasis a unique frequency

pattern in its attack traffic.

Table IV-1. Defender Detection Rate;RPort 135)

PAs ILOC ILOC Volume- Frequency- | Frequency-
(Time) (Freq) based attacl based attack based attack
(time) (freq) (time)
90% 2.5% 2.2% 90% 90% 2.9%
95% 2.8% 2.4% 95% 95% 3.1%
98% 3.1% 2.8% 98% 98% 3.3%

(c) Impact of the Length of PN-codeo investigate the impact of the PN-code length on the
performance of the ILOC attack, we plot the attack sucdesg®P,p for PN-code of different
lengths (15, 30, 45) in Fig. IV-4. In the legend, ILQGX) means that the PN-code lengthx.is
Data in this figure are also collected for various attaaKic rates. This figure shows that the

attack successful rafe,p increases with larger PN-code length. This is because arldtig-
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code can more significantly reduce the interference impact frambackground traffic on

recognizing the attack mark, thereby achieving higher attack accuracy.
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Fig. IV-4. Attack Successful Rate vs. Code Length
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(d) Impact of the Number of Parallel Localization Attacks: evaluate the impact of the
number of parallel localization capability on attack accuracyshesv the attack successful rate
Pap for a different number of parallel attack sessions on the same port in FHgli\the legend,
ILOC(N = X) means that there areparallel attack sessions. This figure shows that ingeym
attack successful rate,p, the ILOC attack scheme is not sensitive to the number aflgar
attack sessions. The attack successful Rage only slightly decreases with the increasing
number of parallel attack sessions. This is because the tiaffitifferent attack sessions are
encoded by PN-codes, which are low cross-correlated to eachastligscribed in Section 2,
and thereby experience little interference. Fig. IV-6 showsntipadt of the number of parallel
attack sessions on attack invisibility. It can be observedthigaincreasing number of parallel
attack sessions results in a slight increase of defatetection ratePpp. Therefore, parallel
localization capability can improve the attack efficieneighout significantly compromising

both accuracy and invisibility.
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The ILOC attack achieves invisibility by using the PN-cadeich contributes to a longer
period during which the attack can be carried out. Nevertheless)lgb capability can
significantly improve the attack efficiency. For exampld;sleonsider the case in which a
system consisting of 1200 networks is attacked. Using one portplin@erbased attack needs
1200 unit time to perform the attack task. Single ILOC attaith wode length of 15 needs
1200x15 = 18000 unit time and achieves higher accuracy and iliyisibo fulfill the same
localization attack task, parallel ILOC with 8 attack s8®ss and the same code length can
achieve similarly high accuracy and invisibility performanaed the total time is only

1200%15/8 = 2250 unit time, which is comparable to that of a volume-based attack.

E]

¥ Data center

Internet

Fig. IV-7. Experiment Setup

3) Implementation and Validation
To validate the feasibility of ILOGh real-world, we introduce our implementation of the

ILOC attack and report the validation results of our IL&€@ck design and experiments against
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a real-world ITM system. We implement an ILCAftack prototype based on the design in
Section 2. This prototype works against any ITM system Wiéhdata center having a web-
based user interface. Particularly, there are five indepéradel important components in our
ILOC implementationData Center QueristBackground Traffic AnalyzePN-code Generator
Attack TrafficGeneratorandAttack Mark Decoder
In particular,Data Center Querists a component that interacts with the data center of the

targeted ITM system. Its main tasks consist of sending queri¢he data center for port-scan
traffic report and retrieving the response (i.e., the repanh the data center. The inputs to this
component are the URL, or IP address, of the data center apdrtheumber of the port-scan
traffic needed to perform the query. From the traffic repor,d@dckground Traffic Analyzer
can obtain the statistics profile of background traffic and déermitack parameters for other
componentsPN-codeGeneratoris a component that generates and stores the PN-code. The PN-
code length is determined according to the attacker’s objedive background traffic profile as
described in Section 2.Attack Traffic Generators a component that generates attack traffic
based on the PN-code and background statistics profile. In thiBNfwde encoded traffic is
generated in the way discussed in Section 2.b. Inputs to this compoadhe dP addresses’
range of target network, port number and transportation proto&# @ UDP).Attack Mark
Decoderis a component that obtains the port-scan report data thizatghCenter Queristand
decides whether the attack mark exists in the way discus&=tiion 2.c. The PN-code used in
the decoding process is the same as the one used in enatidotgtraffic and stored in th&N-
code Generator

These components may be integrated into one program running on one nidehiagack

can also be carried out in more flexible ways if the tasktkefbove components are performed
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by processes on different machines. Our IL@Gtotype is implemented using Microsoft MFC

and Matlab on Windows XP operating system.
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In order to validate our ILO@nplementation, we deployed it to identify a set of monitors
that are associated with a real-world ITM system. Fig. IMfeBtrates our experimental setup.
For the purpose of this research, we requested information abatiofts of a set of monitors in
the ITM system. We were provided with the identities of twavoet sets A and B. There are
some monitors deployed within network set A and there is no manitoetwork set B. All
monitors in network set A monitor a set of IP addressesenud the port-scan logs. Then we
(the attacker) execute the ILQfftack to decide whether monitors exist in network setdh\sat
B, respectively.

In our experiment, we use a PN-code of length 15. The mark bitotuigset for 1 hour and
the query duration is 20 minutes. With the queried report data, weocaattly determine that
all networks in set A are deployed with monitors and networks ereBnot deployed with
monitors. Fig. V-8 shows the traffic rate in time-domain. F\g9l shows the traffic rate in
frequency-domain in terms dfower Spectrum DensitfPSD. The PSD describes how the
power of a time series data is distributed in frequency-dorivathematically, it is equal to the
Fourier transform of the auto-correlation of time series data [Bijm these two figures, we
observe that it is hard for others, without knowing the cortéfN-code, to detect the ILOC
attack, since the overall traffic with the ILC#tack is very similar to the traffic without the
ILOC attack traffic embedded. That is, such experiments demonsiedtthe ILOCattack can

accurately and invisibly localize the monitors of ITM systems, intjmec

4. Countermeasure

In this section, we propose an information-theoretical based frarkew explore fundamental

limitations of ILOC attack strategies and develop corredpm countermeasures. We first
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present the framework and then introduce the capacity denvétr measuring the system

performance.

4 .a. Information-Theoretical Based Framework

1) Channel Model

As shown in Fig. IV-1, an attacker launches the encoded atdfik &rddressed to a target
network. In order to correctly decode the embedded signal, thekeattaeeds to design a
decoding scheme to recover his embedded signal from the backgrowse wdiich is
introduced by traffic reports from other monitors not belongindnéotarget network. Based on
the operations of localization attacks and ITM system, wdaramalize the system by a channel
model for digital signal transmission. In this model, the atta(d® a transmitter) generates and
sends the attack signal over a noisy side channel and thecattaska receiver) recognizes the
signal. Notice that the side channel is caused by the normaitigpenf ITM systems that
collects data from monitors and publishes the report as shown in Fig. IV-1.

Fig. IV-10 shows the generalized channel model for the system.rtioufs, a source
message = 1 is mapped to a sequence of channel signal through the endudgeracedure is
similar to the attack stage 1 shown in Fig. IV-1.a. The output of entaddransmitted through
the channel and blended with noisgintroduced by other monitors. From the channel output
sequence, =t, + w, the attacker (as a receiver) attempts to recover thentitted messageby
decodingr, by outputy. If y = x, the attacker successfully recognizes the source messabes
procedure is similar to the attack stage 2 shown in Fig. IV-Iybdd@ng so, the attacker
successfully determines whether the target network is deglayith monitors or not by
following rules: Ify = 1, the target network is deployed with monitors. Otherwiseetget

network is not deployed with monitors.
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Now, let's use the generalized ILOC attacks discusseddiio8 2 as an example to illustrate
the model, reflecting the attack as follows. First, at taasmitter, the attacker generates the
source message= 1 for a given network/;. After the encoding procedure, the adversary selects
ann-bit codec; (n > 1) and generates a port-scan traffic fz(X, ¢, ¢') = w'x ¢ to the network
M;, wherefe is denoted as the encoding function ahts mark amplitude to control the intensity
of attack traffic. If the targeted network is deployed witbnitors, thet, will be transmitted
through the normal operation of ITM system along with the neisé/e assume that the mean
and variance oiv is u andag, respectively. Second, at the receiver, the received sgnaf i, +
w. As the decoder procedure, it tries to decode the sourcagexsbased on the same code ¢
and apply the following decision rule:rfc; = y'cyC; + W-¢; > tg, thenx = 1 and the network;
is deployed with monitors. Otherwise= 0 and the network; is not deployed with monitors.

Here, tr is the decoding threshold. In order to learn how to determinézthpease refer to

section 3.
& I Message
Message —» Encoder | Channel Decoder| g
N $ Y
Transmitter Noise Receiver

Fig. IV-10. Channel Model for ILOC Attack

In Fig. IV-10, to detect the attack, the defender will observetitygut trafficr, of channel.
Recall that the defender generalizes the benign party whaames the ITM system to identify
Internet widespread attacks. Particularly, based on data siothd data center, the defender

tries to detect the anomaly in the traffic and take the mitigation.
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2) Capacity

The capacity of the channel defined by Shannon provides a thdougtmer-bound for
measuring the signal transmission capability over a noisy chgg8jeBy definition, capacity is
the amount of discrete information that can be reliably transmitted obemael. This landmark
work has been the foundation for communication system design, winsht@idesign various
coding mechanisms to achieve the theoretical bound by various toeciansease the resistance
of digital signal transmission to the noise. Generally, charodhg in communication systems
consists of mapping the source message into a channel igpat denoted as the encoder and
the inverse mapping the channel output signal into a source mes=agfed as a decoder in
such a way that the overall effect of channel noise on the systemimsineid.

In the model described in Fig. V.10, we denote the attack gigralty,, tyo, ..., txn > as the
transmitted signal over the channel. To measure the anglatidhe transmitted signal, we

define its transmission power as

1 n
s= —thi. (IV-12)
ni=

Without loss of generality, we denote the naeise<wi, Wy, ..., Wy> (N >1) with zero-mean
and variance of. Assuming that both the signal and noise are a Gaussian wiste (WG N)

process, the capacity of such a Gaussian channel is derived by,
1 S
C==log(1+—). (IV.13)
2 o

Since the capacit¢ measures the degree of successful signal transmissiotheverannel, the
higher value of capacity denotes the better localizatioclattffects. From (IV-11), we know
that, given the noise varianege a larger transmission powswill achieve a higher capacity of

attack signal transmission.
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As we mentioned, the capacflyin [0, 1] measures the theoretical bound for reliable signal
transmission. Given any transmission error eate O, for any largen-bits attack signal and a
minimal length length off ( > n) for C> n/l, there exists a encoding/decoding scheme, such that
maximal probability of error is less thanthat is, it is always possible to transmit the signal with
arbitrarily small error, ifC > n/l.

For the localization attack, the time for transmitting ldbiack signal is denoted as chip
durationt.. Forn-bit attack signal for identifying a monitor, the minimal cdelegth for reliable
channel transmission iBC and the minimal time fan-bit transmitted signal ist/C.

Based on the information-theoretical based framework presented, at@wnow introduce
some strategies for the attacker and defender.

(a) Attacker Recall that for the threat model described in Section 2attiaeker intends to
accurately and secretly identify monitors by launching pom-sttack traffic embedded with an
attack signal. Based on the model described in Section 4.a.2, wettkaban attacker should
achieve a high capacity for the accuracy of attack and also sustain a low trasgmipowers
for the secrecy of attack. However, from (IV-13), we know tbeelr transmission power s will
actually cause a smaller capacity. In order to addresssig,i we consider that the attacker
takes strategies to spread the transmission power of afgiedd. The attack strategy used in
Section 3 is actually one that spreads signal power into the tdngmorein. In particular,
regarding the temporal domain power spreading, the attack si@mdle formed as a time-series
traffic. As such, the signal power in each time-durationogaratively low for preserving
attack secrecy, while summarization of signal power intiale durations can be highly
preserved for attack accuracy.

In summary, since the scheme proposed in [27, 28] uses an ldhtsigizal addressed to a

single monitor, we refer to this scheme as non-time-seriaskatwhich does not spread the
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transmission power of a signal in either the temporal or dpdeiaain. Since the code-based
scheme proposed in the previous section generates a multipléabk signal addressed to a
single monitor, we refer to this scheme as a general agtaategy, namely the time-series
attack, which spreads the transmission power of a signal into the temporain.

(b) Defender To defend against localization attacks, the defender shouldlogeve
countermeasures to detect attacks based on limitations ok athemes. Based on the
information-theoretical framework, the defender should developnseb to effectively decrease
the capacity. Based on (IV-13), there are two ways to decthasmpacity. One is to increase
the power of noises. The other is to decrease the transmission pawvef attack signal.
However, adding noise will jeopardize the accuracy of data texpday the ITM system and
degrade the usability of ITM systems. In this chapter, we fetus on developing the
countermeasures that detect traffic anomaly based on the ilbmstadf attack schemes and are
able to significantly decrease the effectiveness of attacks.

To address the two attack strategies mentioned earliertfe.qon-time-series attack and
time-series attack), we consider the following two countestmeaschemes for the defender: (1)
Centralized defenseln this scheme, the defender will carry out anomaly detectiothen
centralized data center based upon the summarized traffic fronomitors in the ITM system.

If the overall traffic rate (e.g., volume in a given time diorg is larger than a pre-determined
threshold, the defender will issue alarms. This scheme isnooiy used by existing ITM
systems to defend against worm propagation and DoS attacks [25jviNVshow that this
countermeasure scheme is effective against the non-finessattack in Section 5. (2)
Distributed defenseln this scheme, each monitor will autonomously carry out defense
distributedly. Each monitor will be responsible for detectimg anomaly based upon its local

statistical traffic profile. If the traffic rate (e.g.olame in a given time duration) on a monitor is
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larger than a pre-determined threshold for that monitor, the maomilloissue alarms. We will
show that this countermeasure scheme is effective against thestiree attack in Section 5.

In the following sections, we will use our information-theorétinmework to investigate
the performance of systems with the different attack and coneésure schemes discussed

above.

4.b. Defense Against ILOC Attack

In this section, we first show theentralized defensleecomes ineffective against ILOC attack.
We then introduce a new countermeasure scheme, ealiehce defensand show that it is
effective against the ILOC attack.
1) Effectiveness of Centralized Defense

We now derive the transmission power constraint of attack sligmi&ééd by centralized
defense. Recall that we consider the attacker that adosséries attack that usesit attack
signal addressed to a single monit@r For the centralized defense, the defender observes the
aggregated traffic rate and compares it with a pre-known hgpist on the distribution of
background noise traffic. For the transmission power of an atigokldor the system with
centralized defense, we present the following theorem.

Theorem IV-2. When the defender uses mean aggregated traffic volume oé&d¢ines data
for attack detection, in order to maintain a detectionlmater thang, the signal powes of the

attacker must satisfy

s<o’Q,(B,a,n), (IV.14)

where

R 7 (1=~ py)*

QZ a,N) = 2 2
B = 50 py)in

(IV.15)
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Proof: Suppose that the attack signal generated by an attackereatis x;'. As such, the
distribution of traffic rate under attack (i.e., the combined otattack signal and background
noise traffic) at roundis normal distribution with meain+ 4’ and variance.

Suppose that the observed traffic rate for finsefy(i). As we can see, the observed mean

traffic rate for time period [17] is

K
f,, (n) :%Z f(i). (IV-16)

Suppose thdi,(n) is the upper tl)E)lund op- and p’-confidence interval of the background

noise traffic distribution and the under-attack traffic volume distmlntiespectively. According

to Bayesian theorem, if the defender issues an alarm bask@nnnthe probability of a false

alarm is

A-p)1-p/2)
o (1= P'/2) + (1= p)(1- P /2)

Note that the attacker needs to limit the detection ratery. In order to do so, the attacker

Pr(noattack) =

(IV-17)

must ensure that no alarm will be issued whgn) is less than or equal to tffequantile of the

under-attack traffic volume distribution. That is,

fu(n) s (u+ )+ Jabjél_ A, (IV-18)

Whereu, = (u1 + ...+ un)/n is the mean of attacker’s signal from time hto

In order to prevent the defender from issuing an alarm, the attacker musttéas for all
fu(n) that satisfies (IV-18), there is
Pr{noattack | f,, (n)} > . (IV-19)

Note that

1-py)1-p/2)
(l_ po)(l_ p/2) + poﬂ’

Pr{noattack | f,, (n)} = (IV-20)
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where

1-P :1_cp(*/ﬁ'“n +®dT1-p) < ﬁ—me‘“‘ﬁ)z’z. (IV-21)
Jro

2 Jo

Thus, in order to have Pr{no atta€(n)}> 6 for all fy(n) that satisfy (IV-18), there must be

g @-py2r2 |77 BL-0-p,) ]
Hn =€ \Fnﬁ(l—a)(l—po)' (V-22)

Recall thats is the power of attack signal. Due to (IV-22), with some mattieal

manipulation, we can derive a power constraint as follows:

<< e B2 (1- 8 - p,)*
© (1-9)°@-po)’Vn

(IV-23)

2) Derivation of Capacity: Given the upper bound of transmission power ibd)iMhe capacity

of the system becomes
1
C =2 log(1+Q,(3, 5.1)). (1V-24)

Based on this, we derive the minimal code length for basic time-sitaiels as follows:

B 2n

n
2 C  log(1+Q,(3,58.n)

(IV-25)

We now illustrate the results with practical examples. Iticodarr, we set the parameters as
follows: for the Gaussian distribution, wher= 0.44, the localization accuracy rate becomes
57.97% and the capacity@= 0.06. Thus, the adversary is able to launch at hed$t length of
attack signal for both a secret and accurate attack. Asut,rwe know that the centralized
defense scheme by itself is no longer effective against the asiséries attack.

3) Case Study: PN-Code-Based ILOC Attack
The capacity we derive above is the theoretical bound witheudetailed forms of coding

and decoding scheme. Now, we conduct a case study on the code stvestigated in Section
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3. In this scheme, it adopts the simple correlation-based codingemudiing scheme. In the
following, we will start with a binary channel model for thtsack scheme and then present the
error rate of signal transmission followed by a derivation saboptimal capacity and

observations.

1-Pan
= > 1
Pr(x=1 Pan

Pr(X=O)@ 1-Pyr V@

Fig. IV-11. The Binary Channel Model for PN-code Based Scheme

(a) Binary Channel Modelhe binary channel model for PN-code-based scheme is shown in
Fig. IV-11. Here, we represent the input of channel as a biaadom variable, wherex = 1
represents that the targeted network is deployed with monéodsg = O represents that the
targeted network is not deployed with monitorsxPr(l) and Pi{ = 0) are the prior probabilities
of a network deployed with monitors or without monitors, respectividig. outputs of channel
as the localization results are modeled as a random agiablherey = 1 indicates that the
targeted network has monitor, apg O indicates that the targeted network has no monitor. An
event has a probability BrE& Ok = 1) is considered as false-negative rate denoteBas (L -

Pap) and the probability Py(= 1k = 0) is considered as false-positive rate denote®,as

Remark thaPap andPar can be derived based on (IV-3) and (IV-4), respectively.



70

(b) Derivation of CapacityGiven the derived®,y andP,r, we can obtain the capacity for the
code-based attack scheme. According to the definitioh(Xpfy), we can derive the mutual

informationl(x; y) of x andy by

1-P P
1-a)(1- P, )log——*—+aP, log—~"—+
A-a)d-Py)log 5 o5 AR 0950 )

PAF _ (1_ PAN)
Pry=1) +ta(l-Pyy) Iog—Pr(y ey

(IV-26)
(1-a) Par log

where Prg=1) =aand Prk=0)=1 —-a.
With the I§; y), the suboptimal capacity can be derivedby I(x; y) — H(X), whereH(x) can

be derived by

H(x)= _ZXD(O,l) Pr(x) log(Pr(x)). (IV.27)

4) Distributed Defense

We now consider the distributed defense. We will first detfie transmission power of the
attack signal under this defense, and then derive the tap#dthe system, followed by some
observations.

(a) Transmission Power of Attack Signai the distributed defense, the defender carries out
anomaly detection based on traffic of an individual monitor. Iftth#fic rate on a monitor is
larger than the predetermined threshold (determined by staltisthalysis of traffic from the
monitor), the defender will raise threat alarms. Consideringattaeker adopts the time-series
attack, the transmission power of attack signal can be derived baselbainfptheorem:

Theorem 1V-3: When the defender uses the mean traffic rate on an indivicomitor to
carry out anomaly detection, in order to maintain a detecéitanlower thar, the transmission

powers of attack signal must satisfy
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s< %92(5, 4.n), (IV.28)

wheremi is the total number of monitors in the ITM systé&p(d, £, n) is same as that defined in
Theorem IV-2.

Proof: Recall that there an@ monitors in the system and the aggregated background noise
traffic is o. Since the traffic from different monitors are independentjrédféc for individual
monitor can be approximately representedstiym. Recalling that the defender based on the
distributed defense will monitor traffic anomaly on the traffmm the individual monitor, the
transmission power in (IV-28) can be derived by similar proceslin the proof of Theorem IV-

2.

(b) Capacity AnalysisGiven the transmission power of the attack signal derived v2@Mof

Theorem IV-3, we now derive the capacity of the system wherddfender uses the distributed

defense and the attacker uses the time-series attack. The capauiti sf/stem becomes

C= %Iog(1+ 0—52) < %Iog(1+ W). (IV.29)
Given the capacity, the minimal code length becomes
=1 2n : (IV.30)
C logs 22@A1),
m

We now illustrate the results with practical examples. Iigodar, we set the system
parameters as follows: for the Gaussian distribution, wireb000 and=0.02,4=0.02,n=40,
we can achieve capaci§=0.02. Thus, the adversary has to use a minim&=#y00 length of
signal to achieve accurate monitor localization while avoidieigction. However, such a long
code length makes the attack scheme no longer feasible incpraks we can see, when the

defender adopts the distributed defense, the attack can no longerdeeff
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4 .c. Discussion

We have developed a unified information-theoretical baseceframk to model and analyze the
localization attacks and countermeasures. There are a nofmpessibilities for extending this
work. The detailed discussion follows:

1) Proactive Countermeasureéhe countermeasure proposed in this study mainly focuses on
detection. Nevertheless, other proactive countermeasures cesedhe-or example, limiting the
information access rate on ITM systems is one way to couwitack. Recall that in the
localization attack, the attacker has to launch a signifisantiat of queries to the data center of
ITM systems in order to accurately recognize the markextlatraffic. The data center may
throttle the query request rate via enforcing human/systemaatien for the query, thereby
eliminating the automatic query in the localization attackc&ithis countermeasure increases
the quantization error of the attack signal, it decretis@shannel capacity of the localization
attack. Perturbing the information is another way to counteatfaek. Specifically, we may
perturb the published report data by adding some random noise and evenizangdthe data
publishing delay. Since this approach increases the power of tieeseapacity of localization
attack can also be decreased.

2) Spectrum-Domain Attack Schem&ur study mainly focuses on the traffic analysis
approaches in the time domain. For example, in the time-setéek,aattack traffic encoding
and decoding are based on the time domain; for the countermeasaffiesanomaly analysis is
also based on traffic on the time-domain. Nevertheless, thiadidseen true in practice. The
attacker may manipulate its attack traffic in the fi@ry-domain. In one case, the attacker may
modulate the attack traffic with a specific feature frequency. Thus,tdukert expects the report
data from the data center to show high power density in the ispietjuency if the targeted

network is deployed with monitors. In another case, the attackeuseafrequency-hop spread-
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spectrum (FHSS) technique via embedding the DSSS code in the-gmyetrum density of

scan traffic. For both cases, our analytical methodology is siidl \and can be applied via
conducting analysis on the power spectrum density (PSD) of tréfigcwill conduct more in-

depth studies in our on-going and future work.

3) Apply to Other SystemsWe focus on analyzing the localization attacks and
countermeasures for a specific application. Nevertheless, veloged methodology is general
and can be extended to other applications such as DSSS-based dtimgnfor invisible
traceback, and timing delay watermarking against anonymous cogatiani systems [59].
Since these applications correspond with different problem aemae need to investigate the
system specific information impact on the capacity, such as dunurately a flow can be
marked via flow interference, how much noise for flow marking banintroduced by mix
network mechanisms (i.e., flow split, merge, batching etc). \AAeeléhe detail study for our on-

going and future work.

5. Performance Evaluation of Countermeasures

In this section, we present the numerical and simulation resulkystems with localization
attacks and countermeasures investigated in early sectiqregtibular, we obtain the numerical
data of the capacity based on two cases: (i) the theoretical atimlit considering any
specific coding/decoding schemes, and (ii) one practical impletien of the correlation-based
decoding scheme presented in Section 3. For the theoretical bound, we use minimalgtbde le
to measure the performance of the system with localizatitacks and countermeasures. The
minimal code length is defined as the minimal length of codetlipaattacker has to use for the

reliable transmission of attack signal. For the praciicglementation, we use the code-based
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attack as a specific implementation, which uses the simple correlaged-beheme discussed in
Section 3.

For the practical implementation of the correlation-based uponfispemiing/decoding
schemes, we simulate the countermeasure performance. Forckgedoad traffic, we use the
real-world port-scan traces from SANs ISC (Internet Stormté€e including the detail logs
from 01/01/2005 to 01/15/2005 [25, 52]. We merge records of simulated ILQR at#fic into
these traces and replay the merged data to emulate the k2K @maffic. Based on the traffic
profile, we determine the background traffic statistic profiled threshold values for the
defender. We evaluate different scenarios by varying thekatr and defender parameters. Here,

we only show the data on port 135; experiments on other ports result in siosavations.
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Fig. IV-12. Performance of Centralized Defense vs. ILOC Attack

To obtain the minimal code length for C-Probe attacks, the kesicis illustrated as

follows: given a high detection rate ( > 99% ) and low falseatipesrate ( < 1% ), we run the
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simulation and find the minimal code length for a given SNR in ([0.4]). We evaluate the
performance of both the centralized defense and distributed defgamst the code-based time-
series attack. For the centralized defense, the SNR iatibeof probing traffic rate over overall
aggregated traffic rate on the data center. For thellistd defense, the SNR is the ratio of
probing traffic rate over the traffic rate on a single monitdre default number of monitors is

1000 and all other parameter sucld andp are same as ones in Section 4.b and 4.c.
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Fig. IV-13. Performance of Distributed Defense vs. ILOC Attack

Specifically, we generate different attack traffic moddlavg different lengths of codes
under different amplitudes of attack signal, e.g., signal-to-n@te (SNR), which can be
observed by the defender. For example, for the centralizedsdefthe SNR is defined as the
ratio of the transmission power of attack signal power dher variance of aggregated
background noise traffic collected by ITM system. For the Oistieid defense, the SNR is

defined as the ratio of the transmission power of the attgaklsbn the individual monitor and
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the variance of the background traffic on the individual monte.obtain the localization false

negative rate and false positive rate and obtain the capafcgystem based on the method
described in Section 3. For the code-based scheme, given a highyceglaeitas threshold (i.e.,

> 0.99), we repeatedly execute the above procedures until we ydermifde length that meets
the requirement of large channel capacity, i.e., close to 1.

Fig. IV-12 shows the results of minimal code length vs. the fiKNEhe system where the
attacker uses the time-series attack and the defendehaste tcentralized defense. We have a
few observations. First, given the reasonably small SNR (&2) to make the attack high
invisible to the defender, the attacker is still able ®aisnuch short length of code (elg-, 15
for correlation-based coding scheme) to accurately identify ntbaitors. It validates our
findings that centralized defense is not effective agdimsttime-series attack. Second, as
expected, there are some performance gaps between thetoriedsed coding scheme and
theoretical bound. For example, when the SNR = 0.2, the correlased-bading scheme needs
to use at least length of 15 to accurately identify the moniteinile the theoretical bound
indicates that code length of 9 will be enough. We believe thatdoyporating other channel
coding schemes such as Turbo code, we can make the perfornagnsengler (close to the
theoretical bound). We leave this investigation to our future work.

Fig. IV-13 illustrates the results of the minimal code lengt SNR for the system where the
attacker uses the the time-series attack and the defeselethe distributed defense. We have a
few observations. First, given the reasonably small SNR (%) to make the attack high
invisible to the defender, the attacker must use a much Iéemggth of code (e.gl,= 11000 for
the correlation-based coding scheme &nd 4500 for the theoretical bound) to accurately

identify the monitors. This validates our finding that theritisted defense is effective against
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the time-series attack. Similarly, there are some pedboe gaps between the simple

correlation-based coding scheme and theoretical bound due to the same nestsatedlearlier.

6. Summary

In this chapter, we studied the countermeasure-based on probifig trafparticular, we
investigated a new class of attacks, i.e., the low-rateChl@ation (ILOC) attack to stealthily
identify the monitors of ITM system. Its effectiveness wamonstrated via theoretical analysis,
simulations and experiments with an implemented prototype. To dafamaist ILOC attack, we
introduced an information-theoretical framework. Based on it, we derived titatiom of attack
strategies and proposed the countermeasure that monitors ficerétaf change of an individual
monitor. We showed that the power constraints enforced by the courgermean significantly
reduce the channel capacity of the system to a fairly éoel ithat practically eliminates existing
localization attacks in ITM systems. Our evaluation reseftsctively validated our findings.

Our study is critical for securing and improving ITM systems.
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CHAPTER V

COUNTERMEASURE BASED ON WORM PROGRAM EXECUTION

In the following three chapters, we will develop non-traffeséd countermeasures. In this
chapter, we focus on developing countermeasures based on dyngmaturgis of worm

program execution.

1. Overview

Many non-traffic based countermeasures have focused on statictig®pémorm executables
[38, 39]. Specifically, in these countermeasures, the statiegiep such as the list of Dynamic
Link Libraries (DLL) to be called, functions and specific ASGtrings extracted from the
executable headers, hexadecimal sequences extracted fromethéable bodies, and other
static properties are used to distinguish malicious and benigntekéxs. However, using these
static properties without execution of the program might not accuragtiggiiish them.

It has been shown that many existing detection systems basediomprsiaerties cannot
effectively detect new unseen worms which either havendoraew signatures or have
deliberately changed signatures during propagation [60, 61]. For exadvieteePHOR [62] and
Zmist [63]) worms intensively metamorphose to hide themséditoes detection. Recent studies
also show that existing commercial anti-worm detection sysfail to detect brand new worms
and can also be easily circumvented by worms that use simple mutation tecFévq 6E&s.

There are two reasons that explain why the static propamgesot effective. First, two
different executables (e.g. one worm and one benign) can have tsaim@reperties, e.g., they
can call the same set of DLLs and even call the samefdenctions. Second, these static

properties can be changed by the worm writers through differerst, wagh as inserting dummy
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functions that will not truly call during the execution in tlwerm executable, inserting benign
looking strings, and by using code mutation tools [61, 62, 67, 68].

Hence, the static properties, or how they look, are not the keys to distinguistamabenign
executables. Instead, we believe the keys are what they ddhéie.run-time behaviors or
dynamic properties. Therefore, in this chapter we adopt dynamogram analysis to profile the
run-time behavior of executables for efficiently and adelyadetecting new unseen worm
executables. To this end, there are three challenges to besssttrEirst, we have to execute a
large number of malicious worms, which might cause damage texperiment host and
network systems. Second, given the large number of executablasallpaexecuting and
analyzing them are not feasible in practice. Hence, we neefthd an efficient way to
automatically capture the run-time behavior from their executiomd,Tihom the execution of a
large set of various worm and benign executables, we need to dimd sonstant and
fundamental behavior differences between the worms and the bexegntables, in order to
accurately determine whether an unseen executable is a worm or benign one.

To address these issues, we propose an effective worm atetggtiroach based on mining
system call traces of a large amount of real-world wormsbani@jn executables. Our goal is to
use a large volume of existing worms to capture their commomugrsagnatures and then use
them to detect new unseen worms. In the following, we firebdioice the background and basic
workflow of our approach. We then present the design detail ofapproach including the
dataset collection, detection feature extraction and clestsifiic followed by the experiment
results and conclusion. Notice that the work in this Chapteassd on the joined work between
Texas A&M University and the Ohio State University. Mynk focused on the SVM data

mining algorithm design, framework, and literature survey.
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2. Background

In this section, we give an overview of the program analgsita mining techniques and new

unseen worms.

2.a. Program Analysis

While static program analysis requires source code ofxbeutable, dynamic program analysis
does not, but it must be performed by executing the programs [68, 69].dyinamic program
analysis methods, such as debugging, simulation, binary instruroantaiiecution tracing,
stack status tracking, etc. are primarily used for softwaggneering and compiler optimization
purposes. Recently, there has been increased attention of detettiegbilities and security
holes via using dynamic program analysis. However, existing dgramalysis approaches are
only suitable for analysis of individual executables with etxpersuch as debugging, or for
specific attacks [70, 71]. However, in our case, we need an amieomlynamic program
analysis method to investigate the run-time signatures ahveord benign executables for the
purpose of worm detection. The method we adopt here is to tratmmsygalls during program
execution, which is one type of light-weighted execution tracing. tticpkar, we trace the
operating system calls invoked by the executables during theiutéo® This method can be
used to automatically record interesting information during Reewdion to further investigate

dynamic behavior of executables in worm detection.

2.b. Data Mining

Data mining refers to the process of extracting “knowledge,”maaningful and useful
information from large volumes of data [72, 73]. It achieves this by analyzingrdatalifferent

perspectives to find inherent hidden patterns, models, relatiormhgugy other information that
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can be applied to new dataset. It includes algorithms fasifilzation, clustering, association
rule mining, pattern recognition, regression, and prediction, among others.

Data mining algorithms and tools are widely adopted in a rangeptitaion fields. In
security research, many data mining technologies are adopteddoat intrusion detection. In
our work, we use the classification algorithm to obtain the eiffee between worm and benign
program executions in order to provide accurate worm detectionsagpmth seen and un-seen
worms.

There have been numerous research efforts on how to apply idéttg techniques for
security research [74, 75, 76, 77, 79]. For example,dte® in [74] formulated the machine
learning scheme on system call sequences of normal and anomaiytiexean the Unix
sendmail program. Leet al in [75] described a data mining framework for adaptively building
intrusion detection models. The main tenet of their work igtilze auditing programs (e.g.,
network logs of telnet sessions, shell command log) to extragktensive set of features that
describe each network connection or host session, and apply et teichniques to learn
rules that capture the behavior of intrusions and normal aesvitlartinet al in [76] proposed
an approach via learning statistical pattern of outgoingilerfrom local hosts. Kolteet al in
[38] applied data mining techniques to extract byte sequencestlgirfrom program
executables, converted these sequences into n-grams, and ¢edstraclassifier. Julisatt al

in [78] proposed an approach to learn historical alarms generated by inttegchon systems.

2.c. Unseen Worms

Although numerous efforts have been made to detect worms, the neswm un@ens, including
evolved forms of existing worms, can have new signatures toncuent these existing worm

detections. As we mentioned earlier, many worm detection sydatemssignatures ofeen
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worms to determine whether an encountered executable is worm .00bwibusly, these
systems fail to detect brand new worms with new signatanes polymorphic worms that
deliberately change their binary presentation or signature during prigpagat

Now we will offer further discussion on polymorphic techniqié&ss 80, 81]. Worms have
been showing the trend to utilize these techniques for long time [®lparticular, the
technologies for mutate worm code have been publicly available & open source toolkits or
libraries [82, 83, 84]. Attackers can easily use them to rtfade worms polymorphic and hard
to be detect by the worm detection system based on known signat@adtion, utilizating
automatic encryption and decryption further makes the polymorphisnomhsvmore feasible
and efficient. The worm detection proposed in this chapter aimddi@ss the threat by using
the dynamic properties of executable instead of static sign&tucapture worm executables.
Since we do not use the binary presentation as the featurstittgdish worms from benign
executables, the mutation techniques used by the polymorphic wormsdangact on our
countermeasure scheme. As shown in the later portion of thisschapt countermeasure based
on dynamic program analysis is effective to unseen worms, includengd new worms and

mutated polymorphic worms.

3. Detection via Mining Dynamic Signatures of Program Executions

3.a. Framework

1) Overview

Recall that the focus of this chapter is to use a large murhbeal-world worm executables
and subsequently develop a countermeasure to detect new unseen vaavmseNhtroduce the
framework of our system for conducting dynamic program analygig;h intends to detect

worm executables based on mining system call traces afjedanount of real-world worm and
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benign executables. In general, this mining process is referred theaff-line classifier
learning process Its purpose is tdearn (or train) a generic classifier which can be used to
distinguish worm executables from benign ones based on systermaca$i.tThen, we use the
learned classifier with appropriate classification algorithms to determine whetirdmown
executables belong to the worm class or the benign clakshigih accuracy. This process is
referred to as then-line worm detection procesthe basic workflow is illustrated in Fig. V-1

and Fig. V-2, and explained in the following.

(1) Collect (2) Collect data-set | (3) Extract (4) Learn theg
executables as| | by tracing system | feature from | classifier
data source calls system call tracq

Fig. V-1. Workflow of the Off-line Classifier Learning

(1)Trace systen (2) Extract (3) Classify the

-

y
y

call of a newl |featurefromits | | executable  witH

executable data system call tracq learned classifier

Fig. V-2. Workflow of the On-line Worm Detection

2) Off-line Classifier Learning

We now introduce the detailed procedures of off-line classifigritepas shown in Fig. V-1.
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(a) Data Source PreparationBefore we start to conduct dynamic program analysis and
profile the behavior of worm and benign executables, we meedllect a large number of such
executables as the data source. This set of executablabeied into two classes: worm
executables and benign executables. The worms are obtained fraffethsiteVX Heavens
(http://vx.netlux.org).

(b) Collection Dataset- Dynamic Properties of Executabléalith the prepared data source,
we now discuss how to collect the dataset, referred to as dymaoperties of executables.
Recall that in order to accurately distinguish worm execudalibtem benign ones, we need to
collect data that can capture the fundamental behavior difiesdretween them — the dynamic
properties. One feasible and efficient method we choose is totextne executables and trace
the run-time system call sequences during their execution. Howexecuting worms might
damage the host operating systems or even the driven of computeratearin order to solve
this problem in our experiments, we set up virtual machines asxperimental test-bed. Then
we launch each executable in our data source and recorgistemscall trace during the
execution on the virtual machine. The collection of the systaitraces for each executable in
our data source is referred to adadaset We split the dataset into two parts: thening setand
the test set With the training set, we will apply classification leizxg algorithms to learn the
classifier. The concrete format and content of the classsfigetermined by the adopted learning
algorithms. With the test set, we will further evaluate tbeusacy of the learned classifier on
classification of new and unidentified executables.

(c) Feature ExtractionWith the collection dataset consisting of system call todadifferent
executables, we extract all the system call sequergmeses with a certain length. These
segments are referred agram, where tha is the length of the sequence, i.e., the number of

system calls in one segment. Thesgrams can represent the relative independent and
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meaningfulactiontaken during the program execution poogram blockin the executables. We
intend to use thesegrams to capture the behaviors of common worms and benign dxesuta
Hence, these-grams are the features for classifying worms and benigrutat#es and each
distinctn-gram represents a specific feature in our classification.

(d) Classifier Learning:From the features we extract from the training dataset, weé e
learn a classifier that can distinguish between worms andrbemigcutables. When we select
the classification algorithm, we must consider both the acgwhthe learned classifier and the
interpretability of the classifier. Some classifiers @asy to interpret and the classification (i.e.,
decision ruleof worm detection) can be easily extracted from the clas§®&r Then, the worm
writers can use theilesto change the worm behavior and consequently evade detectionr simila
to the self-mutating worms that change themselves to dsigadture-based detection [62].
Thus, we need classifiers with very low interpretabilityolm case, we consider two algorithms,
Naive Bayedased algorithm an8upport Vector Machin€SVM) algorithm, and evaluate their
performance. While Naive Bayes-based algorithm is simple #Hiotept in classifier learning,
SVM is more accurate. More importantly, SVM learnslack-boxclassifier, which is hard for
worm writers to interpret.

3) On-line Worm Detection

Having the learned classifier in the off-line process, we deseribe how to use it to carry
out on-line worm detection. In this process, we intend to autoafigtoetect a new and unseen
executable.

In particular, we follow the same procedure as in the offdioeess, in which system call
traces of an unknown executable are recorded and classifidaatures (e.g., system call

sequence segments with certain lengths) are extracted ditsingxecution. Then, the
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classification algorithm with the learned classifieapplied to classify the new executable, i.e.,
whether it belongs to the worm class or benign one.

In fact, the aforementioned worm detection actually depends on tma@cof the classifier.
In order to evaluate it, we use it to classify the execesaln thetest set Since we know the
class label of these executables, we can simply compareldaksification results from the
learned classifier with the pre-known labels. As such, theracg of our classifier can be
measured.

In the following sections, we will present the major stispsd above, e.g., dataset collection,
feature extraction, classifier learning, and on-line worm detecin detail, followed by

experiment results.

3.b. Dataset Collection

In this section, we present the details on how we obtain theetlatas, the dynamic program
properties of executables in the form of system call traces.
1) Worm Execution with Virtual Machine

In order to obtain the run-time behaviors of worm and benign exeesialve need to
execute the benign executables as well as worms. As we mehganir, since execution of
worms might damage the operating system and even the driveofthdst hardware, we set up
virtual machines (VMs) [84] as the testbed. The VM we choogdliware[85].

Even with VMs, two difficulties can still arise during datdlection because of the worm
execution. First, since worms can crash the operatingnsy&S) in the VM, then we might
have to repeatedly re-install the OS. In order to avoid treddieus re-installations, we first
install all necessary software for our experiments and sibid our worm executables on the

VM, and then save the image file for that VM. Whenever tMe @S crashes, we can clone the
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identical VM from the image file to continue our experimé&wecond, it is difficult to obtain the
system call traces from the VM after it crashes. In otdesolve this problem, we set the
physical machineon which a VM is installed, as the network neighbor of the VM thrabgh
virtual network. Thus, during the execution of worms, the VM autaalfti outputs the system
call trace to the physical machine. Although the physical madainée attacked by the worms
on the VM because of this virtual network, the physical maciineell protected by the
dedicated host-based firewall and updated anti-virus software \eith restricted access
controls.

2) System Call Trace

Recall that we choose dynamic properties of executableptoreghe executables’ behavior
and more accurately distinguish worms from benign executables avourately. There are
multiple dynamic program analysis methods [68, 69] that can be aisaeestigate the dynamic
properties of executables.

The most popular methods are debugging and simulation. However, thetoHavaused
manually with expertise to study the execution (behavior) of pnogrén our case, they are not
suitable for automatic analysis without humans’ intervention. éd@w execution tracing is a
good method for automatic analysis, which can automaticallgrdeoun-time behavior of
executables. Also, it is easy to analyze the trace using automalysia algorithms.

There are different ways to carry out execution tracing. In our case, we thtese system
calls of worm and benign executables and use the trace asutee of classification (worm
detection). The reasons for doing so is straightforward. TracihgVigrosoft Windows
Application Programming Interface (API) functions can capture rdetails about the run-time
behavior of executables. However, it increases OS resouwnsarption and interference with

the execution of other programs, compared with tracing only systksn the reason is that, the
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number of system calls, 311 for all the Windows version toge8&r 4nd 293 for Linux 2.6
kernel [87], is significantly less than the number of APIs,rok&000 for Windows version
before Windows Vista [88], over 1000 for Linux [89]. Hence, we choodeate only system
calls and hence build a lightweight run-time worm detection.

3.c. Feature Extraction

Features are key elements for any anomaly detection orficassn. In this section, we
describe our method to extract and process the features ¢haseadt to learn the classifier and
carry out worm detection.

1) N-gram from System Call Trace

System call traces of executables are the systemserpliences (time series) of the execution,
which contains the temporal information of program execution amsl tthe dynamic behavior
information of the executables. In our system, we need to expgacopriate features that can
capture common or similar temporal information hidden in the systimsequences of all
worm executables, which is different from the temporal infeionahidden in the system call
sequences by all benign executables.

Then-gram is a well-accepted and frequently adopted temporalréeat various areas of
statistical natural language processing and genetic sequengsiaaf@d, 91]. It also fits our
temporal analysis requirement. Argram is a subsequence roftems from a given sequence.
For example, if a system call sequence iNtReplyWaitReceivePortEx, NtOpenKey,
NtReadVirtualMemory, NtCreateEvent, NtQuerySystemInfornjatioen the 3-grams from this
sequence areNtReplyWaitReceivePortEx, NtOpenKey, NtReadVirtualMeméiytOpenKey,
NtReadVirtualMemory, NtCreateEvgnt and {NtReadVirtualMemory, NtCreateEvent,

NtQuerySystemInformatipn
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We usen-grams as the features in our system for the followiragams. Imagine the
difference between one line of source code andbtoek of source code in a program. One line
of code provides little meaningful information of a program, but bloek of code usually
represents a meaningful and self-contained small task in aapmpghich is the logical unit of
programming. For a similar reason, one system call only provatgdimited information about
the behavior of an executable, whereas a segment of systenmagtlt represent a meaningful
and self-contained action taken during the program execution. Worrbeamigh executables
have different behaviors, and this can be represented agftherdie between their source code
blocks, or the segments (i.e-grams) of their system calls. Hence, we use thesensysié
segments, or the-grams, as the features to classify worm and benign execytalieh are
shown to be very effective through our experiments, as described in Section 4.

2) Length of N-gram

One natural question is what length refjram is best for classifying worms from benign
executables. On one hand, in order to capture the dynamic behavia@godrprexecuatiom
should be greater than 1. Otherwise, the extracted 1-gram distually the list of system calls
invoked by the executables. This special case is the sarhe asthod used by static program
analysis to detect worms, which has no dynamic run-time information of ellesuta

On the other hand, should not be very large for the following two reasons. Firstjsftoo
large, it is very unlikely to find common or similargrams among different worm executables.
In one extreme case, wharbecomes very large, tleegrams are no longer small tasks. Instead,
they become the entire execution of the executables. Becateerdifivorms cannot have the
exact same sequence of system call invocations (otherwiseatlkeyhe same worm), the
classifier learning algorithms will fail to identify ammon feature (i.e., the same system call

invocations) among them, neither can the classifier learnimgitlgn to define a class that can
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cover all the worms. In this case, the classification willwotk. Second, ifh is too large, the
number of possible distinet-grams, (31 for MS Windows since Windows has 311 system
calls, 293 for Linux since Linux has 293 system calls) will be too latgebe analyzed in
practice. We will investigate the impactmfiram length on worm detection in our experiments

and report the results in Section 4.

3.d. Classifier Learning and Worm Detection

In this section, we present the details of the last stepeiroff-line classifier learning process
(i.e., how to apply the classifier learning algorithm to lethm® classifier after extracting the
features). In particular, we use two classification algorithms\#iee Bayeslgorithm, which is
a simple but popular learning algorithm, and Swpport Vector Machine (SVMigorithm,
which is more powerful but more computationally expensive. We akssept how to conduct
on-line worm detection with each of the algorithms in detail.
1) Naive Bayes-based Classification and Worm Detection

The Naive Bayes classifier (also known as the Simple Bayassifier) is a simple
probabilistic classifier based on applying Bayes’ theorem $34, In spite of its naive design,
the Naive Bayes classifier may perform better than magohisticated classifiers in some cases,
and it can be trained very efficiently with a labeled tragnilataset. Nevertheless, in order to use
the Naive Bayes classifier, one has to make the assumptiorththdeatures used in the
classification occur independently.

In our case, we use the Naive Bayes classifier to cadbkatikelihood that an executable is
a worm executable (i.e., in worm class) and the likelihood thsitai benign one (i.e., in benign
class). Then, the detection decision can be made, e.g. the elebtalfaings to the class having

a larger likelihood.
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(a) Off-line Classifier Learning

We represent each executable byrnesimensional feature vectoX = (X, X%,. - -, %), Where
mis the number of distinet-grams in the dataseg, (i=0, ‘--, m-1)is thei-th distinctn-gramx; =
1if x, appears in the executable’s system call trace 0 otherwise. We have two classes, worm
classC, and benign clas§,. Given the feature vectax, of an unknown executable, we need to
predict the class to whick belongs. The prediction is made as follows. First, we catctifet
likelihood that the executable belongs to different classes. Sewenthiake the decision based
on the value of likelihood, e.g., the executable belongs to thevetasls has a larger likelihood
for the given executable.

Actually, the off-line “classifier” learning process of theil Bayes algorithm is the
preparation for the calculation of the above two likelihoods. ®datily, this preparation is the
calculation of some statistical probabilities based on tli@rntadata. These probabilities are the
posterior probability of each-gram, sayx, conditioned on each class, andC,. Hence, the
off-line “classifier” learning process in our Naive Bayéassification is actually the calculation
of P(x|C), i =1, ... ,mandj = w or b based on the training dataset. Remark that in some
implementations, the classifier learning based on the Naayed®algorithm may conduct extra
process, such as selection of features, cross-validation, lyuartaenot the core procedures for
the Naive Bayes algorithm.

(b) On-line Worm Detection

During the on-line worm detection, for each unknown executablédhee vectoX for that
executable is built first. Then, we predict the class wiidielongs based on a higher posterior
probability, conditioned oiX. That is, the Naive Bayes classifier assigns an unknown eatnpl

to the clas<; if and only if

P(C,|X)>P(Cy | X) j.k=w or b,j#k (V-1)
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Based on Bayes theoreR(G |X) can be calculated by

P(XIC))P(C))

P(C, 1X) =0

(V-2)

In order to predict the class & we will calculateP(X|G)P(C) for j = m or b and
consequently compare(C,|X) and P(C,[X). Now we present how to calculal®X|CG)P(C)).
First, if the class prior probabilitieB(C,) and P(C,) are not known, then it is commonly
assumed that the classes are equally likely, th&(@) = P(C,). Otherwise,P(C)) can be
estimated by the proportion of cla€sin the dataset. Second, fB(X|C), as we assume the

features are independeR(X|C) can be calculated by
P(X|C;)= |_| P(X; |C)), (V-3)
1=1

whereP(x|C;) can be calculated during the off-line classifier learning process.

(c) Discussion

The Naive Bayes classifier is effective and efficiemhany applications. The theoretical time
complexity for learning a Naive Bayes classifietGENd), whereN is the number of training
examples and is the dimensionality of the feature vectors. The complefiglassification for
an unknown example (an unknown executable in our case) i©¢aily

However, the Naive Bayes classifier has two limitation®un case. First, the classifier
learned by Naive Bayes-based method can be used by the waen tarmake the worm
detections less effective for new worms. The Bayes Naasasifier in our approach is actually a
set of probabilities in which thegrams appear in each class. Worm writer can directly use these
information to make new worms similar to benign executablesither using or avoiding
certainn-grams (system call sequences). Second, high accurdlg dfaive Bayes classifier is

based on the assumption that the features are independent to each otheer Hberegrams in
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the system call trace of an executable might not be indepeimdeslity. In order to address
these problems of Naive Bayes classifier, we will useSthygport Vector Machine (SVM) in our

worm detection as described in the following subsection.

2) Support Vector Machines-based Classification and Worm Detection

The Support Vector Machine (SVM) is a type of learning nmechiased on statistical
learning theories [94, 95, 96]. The SVM-based classification includesptocesses. One is
classifier learning and the other is the classificatiohe Tlassifier learning is to learn a
classifier/model, using the training dataset. Then the learriedsifter is used to
determine/predict the class label of instances that areamdhined in the training dataset. The
SVM is a sophisticated and accurate classification algorithithough it is computationally
expensive, its trained classifier is difficult to interprdthese silent features match our
requirements for accurate worm detection and interpretation dijficunr worm writers.

(a) Off-line Classifier Learning

A typical SVM classifier learning problem is to labdhésify) N training data %i, . . . , X}
to a positive or negative clasg, ! Ry (i = 1,... ,N) whered is the dimensionality of the
samples. Remark that the SVM algorithm can be extended tofickssn for more than two
classes, but the two classes are the typical and basis. dase problem belongs to the
classification of two classes. Thus, the classification lrésu{(x, y1), ... , Ot W} ¥ U
{-1,+1}. In our casex is the feature vector built for theh executable in our dataset. Thatxs,
={Xi1, - - ., Xa}, whered is the number of distinetgramsx; (j = 1, . . ., d)is thej-th n-gram,
x;;=1 if x;; appears in the ith executable’s system call trace, 0 otherwisey;, = +1 means that
X belongs to worm clasyg, = +1 means that; belongs to benign executable class. As we have a

large number of features-gram), the dimensionality of the Euclidean space in our classification
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problem is very large (upper bounded3iindepending om-gram length). There are two cases
for the SVM classifier learning problems; (i) the sampiesthe two classes are linearly
separable; (ii) the samples in the two classes are matrlinseparable. But case 2 holds for most
real-world problems. In the SVM, in order to achieve an optimassifier, the non-linear
solvable problem in case (2) needs to be transformed to beaadilgable problem in case (1)
first. Then, the optimal classifier can be learned througradimgtimization [93, 94]. In the
following, we first present the algorithm for the simple case (cB3eféllowed by the algorithm
for case (2).

(i) Case 1: Classes are linearly separable

If the two classes are linearly separable, then we cadnafihyperplane to separate the
examples in two classes as shown on the right side of Fig. V-3. Examples that beliffegent
classes should be located on different sides of the hyperplaneinfEBm¢ of the classifier
learning is to obtain a hyperplane which can maximally separate the sge<la

Mathematically, if the two classes are linearly separti#e, we can find a hyperplamex +

b = O with a vectow and an intercegd, that satisfies the following constraints:
wik +b>+1 for y =+1, (V-4)
wkk -b<-1 for vy =-1 (V-5)
or, equivalently
y, (W —b)-1<0 i (V-6)
Examples in the training set that satisfy the above equadityeferred as support vectors.
The support vectors define two hyperplanes, one going through the supptots of the
positive class and the other going through the support vectors ofgaeveeclass. The distance

between these two hyperplanes defines a margin and this mangixiimized when the norm of

the vectorw (||w||) is minimized. When this margin is maximized, the hyperplaxeb = 0
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separates the two classes maximally, which in fact is thimalptlassifier in SVM algorithm.
The dual form of Formula (V-6) reveals that the above optimizaactually maximizes the

following function,
N 1 N N
W(a)=;ai -i;;laia,»(xi X)) Y. Y;, (V-7)

subject to the constraint that> 0. The SVM algorithm can achieve the optimal classifier by
finding oute; > O for each training sampbg to maximizeW(x).

(i) Case 2: Classes are not linearly separable

In the above case, the optimization can be achieved for clhsdemre linearly separable.
However, the real-world classification problems usually carmetsolved by the linear
optimization algorithm. This case is illustrated as thedigle of Fig. V-3, in which, there is no
linear hyperplane (e.g., in this case, it is a straightifir&dimensional space) that can separate

the examples in two classes (here shown with different colorg)thler words, the classifier

needed must be a curve, which is difficult to optimize.
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Fig. V-3. Basic Idea of Kernel Function in SVM
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The SVM provides a solution to this problem by transformiirgariginal feature space into
some other, potentially high dimensional, Euclidean space. Themapped examples in the
training set can be linearly separable in the new spacdemonstrated by the right side of Fig.

V-3. This space transformation can be implementedksrrzel function
K(X, %)) = ®(x) [P(X;), (V-8)

where @(x) is the mapping from the original feature space to the nevidéao space. We
would only need to usK(.) in the classifier training process with Equation (V-7), and doul
never need to explicitly know wha? is. The SVM kernel function can be either linear or non-
linear. Common non-linear kernel functions include Polynomial, R&#als Function (RBF),
and Sigmoid among others.

(b) On-line Worm Detection

The on-line worm detection is the classification of new embbées, using the SVM
classification algorithm along with the optimal SVM classiflearned during the previously-
discussed off-line learning process.

For an unknown executable (a worm or benign executable), itsefeatctior must be built
first. The method is the same as the process aforementioned exethdables in the training
set. That is, the system call trace during the executiordsded, then the-grams with certain
value ofn is extracted. After that, the feature vectqr,of this executable is formed from its
trace, using the same method as in the off-line classifier learningsproce

Recall that during the classifier learning process, thenaptiyperplane is found. Then, for a
new exampley shown as the small circle in Fig. V-3, the on-line clasgificais to checks on
which side of the optimal hyperplang is. Mathematically, the classification is conducted

through signing a class to the executable by

C(x,) = sign(wlx, —b), (V-9)
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where
W= ayX. (V-10)
i=1

If C(%) is positive, we predict the executable is a worm. Otherwise, we pitegichenign.

(c) Complexity of SVM

The classifier learning process of SVM is relativetyieticonsuming because of the large
volume of training set, high dimension of our feature space, complaxdassifier calculation
and optimization. No matter what kernel function is used\ iis the number of training
examplesN; is the number of support vectors, ads the dimension of the original feature
vectors for the training examples, then the complexity upper boundMfcgssifier learning is
O(NS + NN + NdN). However, the SVM classification process for each new exaeutafast
and involves only limited calculations. Its complexityQgMN), whereM is the complexity of
the kernel function operation. For Radio Basis Function kerkteis O(d).

(d) Black-Box Characteristics of the SVM Classifier

The classifier learned by the SVM can be easily used typ @ar worm detection. However,
the SVM classifier is difficult to interpret. The SVMassifier learning algorithm generates
black-box models (classifiers) in the sense that they do not thavability to explain in an
understandable form [97, 98, 99]. Thus, from the SVM classifier, itrd foaextract decision
rules comprehensible in the original problem domain, especalithé non-linear SVM, due to
the feature space transformation introduced by kernel functions.

The above characteristic of SVM is a well-known limitationthe applications in which one
needs to know the decision rules which can be mapped back to thiegbtgntities in the
original problem domain. However, this characteristic can help us prevenotirewviters from

interpreting and learning from the classifier. We want to prevhe worm writers from
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obtaining the signature of their worms or any benign executable viddbethe worm writer can
hide new worms accordingly as benign executables.

Besides the optimization algorithm used in SVM, the learniassifler also depends on the
definition of input feature space, the selection of kernel fanctihe parameters of the kernel
function, etc., which are unknown to worm writers. The worm writersdoet know the
following: the value oh of then-gram used in the classifier, the mapping betwegrams and
feature indices in the feature vector, the definition of thieéd function, the parameters of the
kernel function, and the space transformation introduced by kerneldiancti

Hence, even if the worm writer knows that we use SVM andoded@get the classifier, it is
hard for him to interpret the classifier to discovery theisi@e rule we used to distinguish
between worms and benign executables. Thus, it is hard for himatme the worm behavior
accordingly to evade our detection. Furthermore, we can protectclassification by

mechanisms, such as encryption.

4. Performance Evaluation

In this section, we first present the experimental setup &tdcs: Then we report on the results

of our experiments.

4.a. Evaluation Methodology

In our experiments, we use 722 benign executables and 1589 worms in Migvirsddwvs or
DOS Portable Executable (PE) format as the data solitoeugh our approach works for worm
detection on other operating systems as well. We use thisalatze to obtain the generic worm
classifier and further evaluate the trained classiGealdtect worms. This set of executables are
labeled into two classes: worms and benign executables. Tidé w®rms obtained from the

Web site VX Heavens(http://vx.netlux.orl) have email worms, peer-to-peer (P2P) worms,
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Instance Message (IM) worms, Internet Relay Chat (IRC) wpramd other non-classified
worms. The benign executables in our experiments include Micresiifivare, commercial
software from other companies or free open source software. Nassith of executables
enables us to obtain classifiers comprehensively that eafiter behaviors of both different
types of worms and benign executables. We use 80% of eachwtass énd benign) as the
training set to obtain the classifiers. We use the remaid0¥% as the test set to evaluate
accuracy of the classifiers, i.e., the performance of our detectiornaappro

We install MS Windows Professional 2000 with service pack 4 onidualvmachines. On
these virtual machines, we launch each executable in ountakée collection and ustrace for
Windows NT99] to trace their system calls for 10 seconds. Recall thdtace the executables
in the data set for longer time, then use a slide window taieapertain length trace for the
classifier training. We found that using 10 second trace is enaughovide high detection
accuracy. From the trace file of each executable, we exhadystem call name sequences in
the time order. Then we obtain the segment of system calstfien-grams), given different
value ofn for each executable. After that, we build the vector inputsthe classification
learning algorithms.

Recall that the classification in our worm detection prolikein a high dimensional space.
There are a large number of dimensions/features which cannot dechantiandled efficiently
by many data mining tools. The data mining tools we choose are Naive Bagégalam tools
from University of Magdeburg in Germany [100] asdm light[101]. Both of the tools we
selected are implemented in C language, and perform effigiesggcially for a high dimension
classification problem. When we apply SVM algorithm wsym light we choose Gaussian
Radial Basis Function (Gaussian RBF), which has been proven tof dhe effective kernels

[73]. The distribution of features follows Gaussian distribution. Gaussi&i&iB the form of
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2
—eri—xj H

K(x,x;)=e , (V-11)
which means (V-8) needs to be replaced by (V-11) in the cladgifiming process and on-line
worm detection process. The valua af optimized through experiments and comparison.

In order to evaluate the performance of our classification fowwwm detection, we can use
two metrics,Detection rate(Pp) andfalse positive rat€Pg). In particular, the detection rate is
defined as the probability that a worm is correctly cfaeski The false positive rate is defined as

a benign executable classified mistakenly as a worm.

Table V-1. Detection Results for the Naive Bayes-Based Datect

n-gram lengthr) 1 2 3 4 5 6

Detection RateHp) 69.8%| 81.4%| 85.0% | 90.9%| 93.6% | 96.4%

False Positive Ratéf) | 33.2%| 18.6%| 11.5%| 8.89%| 6.67% | 6.67%

Table V-2. Detection Results for the SVM-Based Detection

n-gram lengthrg) 1 2 3 4 5 6

Detection RateRp) 89.7%| 96.0% | 97.73% 99.5%| 99.5%| 99.5%

False Positive Ratd’f) | 33.3%| 18.75%| 7.14% | 4.44% 2.22%| 2.22%

4.b. Experiment Results

In this subsection, we report on the performance of our worm detesgproaches. The results
of Naive Bayes and SVM-based worm detections in terni3etdéction RatendFalse Positive

Rateunder differenh-gram length 1) are shown in Table V-1 and V-2, respectively.
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(a) Effectiveness of Our Approaches

We conclude that our approaches of using both the Naive Bayes/dh@l§orithms can
correlate detect worm at a high detection rate and low faisiive rate when the length of
gram is of a reasonable value. For example, when the lengtgrain is 5, the detection based
on the SVM algorithm achieves 99.5% detection rate and 2.22% palsitive rate and the
detection based on the Naive Bayes algorithm achieves 96.4%ialeteate and 6.67% false
positive rate, respectively.

From these tables, we also conclude that SVM-based deteetionms better than Naive
Bayes-based detection in terms of both detection rate and fagevepoate. There are two
reasons for this. First, the Naive Bayes classificati®urass that features are independent,
which might not be always true in real practice. Second, for Nbhé&ve Bayes-based
classification, the calculation of the likelihood for classifyia new executable is based on the
vectors of the training set executables in the feature sphea, it predicts the class of the new
executable simply based on the comparison of the likelihood. Diffgy¢he SVM attempts to
optimize the classifier (hyperplane) through finding the hyperpllasmiecan maximally separate
the two classes in the training set.

(b) Impacts of N-gram Length

Another important observation is the length regram, i.e., the value ofi, impacts the
detection performance. Wherincreases from 1 to 4, the performance keeps increasing. ihen
further increases, the performance does not increase, or itnanbases very little. The reason
can be explained as follows. First, wher 1, eachn-gram only contains one system call and
thus contains no dynamic system call sequence and executaliaisdoenformation. Actually,
this special case is the static program analysis, whichiowhstigates the list of system calls

used by the executables. Second, wheénlarger, ther-grams contain a larger length of system
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call sequence and thus obtain more dynamic behavior of thel tea@eutables. Hence, the
detection performance is better. This also demonstratesotinatlynamic program analysis
approach outperforms the traditional static program anabgsied approaches. From the
previous observation on the length mfyram, we conclude that certaiength of n-gram is
effective enough for worm detection. This length (value npfcan be learned through
experiments: when the increasendfrings little detection performance gain, thatalue is good
enough and can be used in practice. This method is actually usethéon-gram-based data
mining applications [91, 92]. Furthermore, for the efficiency of matetection, then value

should not be very long, as we discuss in Section 3.

5. Summary

In this chapter, we studied the countermeasure based on the dysigmature of worm
executables. Specifically, we proposed a new worm detecgiproach based on mining the
dynamic execution of programs. Our approach is capable of captiee dynamic behavior of
executables and providing efficient and accurate detectiansadeth seen and unseen worms.
Using a large number of real-world worm and benign executabéesamvexecutables on virtual
machines and recorded run-time system call traces of tlxesetables. We then applied two
data mining classification algorithms to learn about classiféf-line, which are subsequently
used to carry out on-line worm detection. Our data clearly showeéffietiveness of our
proposed approach in detection worms in terms of both very high detestitoand low false
positive rate.

Our proposed approach has the following advantages. It is pragiicalow overhead
during both classifier learning and run-time detection. Our appradmes not rely on

investigation for individual executable; rather, it examinescthramon dynamic properties of
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executables. Therefore, it can automatically detect brand remsvand other unseen worms
such as polymorphic worms. Furthermore, our approach attempts to llidkabox classifier

which makes it difficult for the worm writers to interpret our detatti
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CHAPTER VI

COUNTERMEASURE BASED ON CONTRADICTED OBJECTIVES

In this chapter, we focus on developing the countermeasure basedtmdicted objectives to

defend against worm attacks that change their patterns to circumeeatgtection.

1. Overview

Generally speaking, a worm attacker (or propagator) has two obgedine is to infect as many
computers as possible. The other is to avoid being detected anthquuing the defensive
system. After infecting a number of computers without beingctirte the worm attacker can
remotely control the infected computers and use them as stegpimgs to launch additional
attacks [3, 4, 5, 6, 7, 8, 9, 10]. Recent studies show the existenceblatkamarket for
trading/renting compromised computers (as “bots”) for futurckst [9, 10], providing further
economic incentives for worm attacks.

Unfortunately, most existing countermeasures make a tacit pissnrthat worms always
propagate at the highest possible speed. Nonetheless, some nesiypele worms contradict
this assumption by intentionally reducing their propagation spedetéation. For example, the
“Atak” worm [102] and the “self-stopping” worm [42] circumvent detea by hibernating (i.e.,
stop propagating) periodically. If a worm can successfullydayor delay) detection, it may
eventually infect more computers, resulting in more damage to the Internet.

In order to address threats from these new kinds of worm$ormmeillate a new class of
worms, called self-adaptive worms, in this chapter. These svadapt their propagation
schemes to defensive countermeasures, aiming to avoid or ddkgtiate and ultimately
infecting more computers. We propose and evaluate countermeagaiest self-adaptive

worms. Specifically, we partition self-adaptive worms inta telassesStatic self-adaptive
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wormsare those that intelligently select a propagation speeldeatirhe of attack launch but
nevertheless maintain a constant speed during the attac&nsdssr adynamic self-adaptive
worm, its propagation speed may vary during the attack session. Rdrattkécamouflaging
worm studied in Chapter lll is a special case of dynamic adistive worm by adopting
feedback loop-control to manipulate a traffic pattern.

To develop proper countermeasures, we introduce a game-theomstitation to model the
interaction between the worm propagator and the defender. We show that avedfieagration
of multiple countermeasure schemes (e.g., worm detection angitsremalysis) is critical for
defending against self-adaptive worms by enforcing the wotatkato choose between the
objectives.

In the following, we will first present models for worms andedsive schemes. We then
introduce a baseline system where a static self-adaptive vii@aly propagates without
defensive countermeasures and introduce a game-theoratigldtion of the system to model
the interaction between self-adaptive worms and countermeag&ased on the game-theoretic
formulation, we then present our countermeasures against atatidynamic self-adaptive

worms.

2. Models

In this section, we present models for worms and defensivensshén particular, we start with
the propagation model for traditional worms and then formallyndedi propagation model for

self-adaptive worms. After that, we present our models for defensive noeataures.
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2.a. Worms

1) Traditional Worms

Let us first consider traditional worms investigated invimmes work [2]. Generally speaking,
a traditional worm behaves similar to biological viruses imseof its greedy self-propagating
nature. Worm propagation on the Internet is an iterative prdbtessusually starts with a
computer, known as the worm propagator. The worm propagator conducts arknetw
propagation scan to identify vulnerable computers on the Internetthemd infects these
computers by remotely exploiting the vulnerabilities to obtainesgcprivileges. Once a
computer is infected by the worm, the computer will then recursstaly propagating the worm
to other computers on the Internet.

In order for a worm to propagate itself on the Internet, it mustapable of identifying
computers with certain vulnerabilities. Given the complex topotdigvulnerable computers on
the Internet, such identification can be hardly optimal in timac A commonly used
identification strategy is Pure Random Scan (PRS) [1, 2, 10,r@&jhich each worm-infected
computer randomly scans IP addresses to identify vulnerable compiite improve the
performance of the PRS approach, work has been done, which enabtesowaarry ahit-list,
containing certain addresses of pre-known vulnerable computerdNdi®] that the length of the
hit-list is limited by the size of the worm. Thus, this apptoaay not be able to support the
wide propagation of a worm. For the sake of simplicity, we onlyidenshe PRS propagation
mechanism in this chapter.

Most previous studies [1, 2, 10, 16] make a taw@iimum speed assumption worm
propagation: A worm-infected computer always scans the netwdhktla@ maximum possible
speed. Formally, 1B be the maximum number of scans that an infected computer camperfo

in a unit of time. Lep(t) be the percentage 8fthat a worm actually scans at titnd hat is, the
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number of scans that an infected computer actually perfortirmat is p(t)-S. We refer top(t)
as the propagation growth rate at tim®ue to the maximum speed assumption, the traditional

worms havep(t) = 1 for allt.

2) Self-Adaptive Worms

With defensive systems in place nowadays, worms have consgogwoitled and become
more sophisticated than the traditional worms mentioned above. licupsrt some worms
deliberately reduce their propagation speed to avoid detection [2§, IhOthis chapter, we
propose to deal with these new, smarter worms. Specificallyemeve the maximum speed
assumption, and consider self-adaptive worms that manipulatepthpmgation growth rate in
order to avoid or delay detection. Formally, a self-adaptive wisna generalization of
traditional worms withp(t) < 1.

In an ideal situation, whep(t) is very small (i.e.p(t) = 0), a self-adaptive worm may
propagate forever without being detected. In practice, howewalyitmakes sense for a worm
to propagate for a finite amount of time. Thus, we make a findpagation assumption that a
worm will only propagate for a finite (yet very long) amouwoftime tz. This finite propagation
assumption is reasonable in practice because the vulneralpeitessnwill eventually be fixed
and the worm will be detected. Based on the finite propagation pgenmthe objective of

worm on propagation becomes to infect as many computers as possible tay time

Algorithm VI.1 Propagation of self-adaptive worms
Require: Maximum scan rat&, Propagation growth rafgt), and finite timeg
1:forallt=0to  do

2: Currenttimeist
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3: Determine the propagation growth rate p(t);
4: Launch p(t)-S scans to selected targets (e.g., via PRS) in this unit of time;

5: end for

Algorithm VI.1 shows the pseudo-code of a self-adaptive worm. Asamesee, a self-
adaptive worm can either use a constp(t) for the duration of worm propagation, or
deliberately change(t) over time during the propagation. We consider both cases sn thi
chapter. In particular, we call the self-adaptive worms with taninp(t) as staticself-adaptive
worms If a self-adaptive worm hggt) changed over timg we call itdynamic self-adaptive
worms For static self-adaptive worms, we yst® denote the constant valuepgt).

Note that each kind of worm has its own advantages and disadgar@tajec self-adaptive
worms are easy to implement while the dynamic ones require each infected cdmpatapute
the amount of time elapsed since the start of propagation and det@(thicorrespondingly.
Nonetheless, dynamic self-adaptive worms may outperform the stegs in terms of infecting
computers and avoiding detection. The “Atak” worm [102] and tled-%opping” worm [43]
are special cases of dynamic self-adaptive worms, as theagation growth rates are changing

between 0 and 1 over time.

2.b. Countermeasures

Various countermeasure schemes have been proposed to defend agaimshttacks. We
consider two types of defensive schemes in this chapter: Cthe vgorm detectiorscheme,
which focuses on the detection of propagating worms on the InternetaQmopagating worm

is detected, many actions can be taken to stop or slow down propagation: For example,
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patches can be released to fix the vulnerability; worm scéfic tcan be throttled and filtered;
and infected computers can be identified and quarantined [10].

The other type of scheme we considetrase-back which aims to identify the origin of
worm propagation, such that appropriate legal steps can be tgkanigh the worm propagator.
As we will show in the chapter, if successfully deployed, tluseme can prevent worm
propagators from launching attacks.

There has been much work on specific algorithms of detection aredbtiek schemes.
Please note that we do not intend to study the performance efdtlyEsithms in this chapter.
Rather, our objective is to analyze the effectiveness oénliee classes of detection and trace-
back schemes. For this purpose, we will introduce models fortaeteand trace-back schemes.
These models are representative of many algorithms thatheere developed but still simple
enough to enable our quantitative analysis. We will also propdsemework that integrates
detection and trace-back schemes.

1) Detection Schemes

A typical defense system with detection scheme usually isib@s¢he ITM system which
consists of a number of monitors and a data center. Each monié@pinsible for monitoring
suspicious traffic (e.g., scan to unoccupied IP addresses or fdsjed to a range of IP
addresses and reporting the collected traffic logs to thecdatar periodically. The data center
issues alerts of worm propagation by analyzing the chaistaterof traffic recorded in the logs.
In this chapter, we consider a simple detection mechanismmyf agerage traffic volume in the
threshold-based schenfigl]. With this scheme, the data center issues an akmdionly if the
average volume of traffic collected in a given time periodaiger than a pre-determined
thresholdTr. Note that the thresholtk must be carefully chosen for the detection scheme to be

effective: In particular, it must minimize both false negatrate (i.e., the probability that an
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ongoing worm attack is not reported) and false positive ratetfieeprobability that an alarm is
triggered when no worm is propagating). The proper selectidp will be further discussed in
Section 3.

2) Trace-back Schemes

A trace-back scheme typically works as follows: (someénej touters in the system monitor
all traffic transmitted through the routers and record tradfis lin some network storage servers.
When a “trace-back” order is given, the recorded informationasyaed to determine the origin
of worm propagation [104, 105]. In order to successfully identify wloem propagator, the
system must be capable of monitoring and recording traffic fubatantial amount of time. In
particular, we uség to denote the maximum length of time interval during whidhtraffic
information can be recorded in the storage servers.

Trace-back schemes cannot be precise in many real systarally like trace-back scheme
reports a set of “suspects”, rather than one computer, that coulte barigin of the worm
propagation. Then, law enforcement needs to take other means tagatectiie suspects and
capture the original worm propagator. To be effective, #teoEsuspects cannot be too large.
Thus, we assume that in order to identify the worm propagatds iequired (by law
enforcement) that the size of suspects set is no morarifrare 1).

3) Integration of Threshold-Based and Trace-Back Schemes

We now introduce a defensive framework to integrate theshbid-based and trace-back
schemes. The framework consists of a control center procesgioigs from numerous monitors
as well as forensic support (storage) servers which amgbdited across the Internet. Once the
control center detects a propagating worm, it iSssues an orgetidte the trace-back process by
collecting network traces from the forensic support serwats. assume that multiple sub-

networks collaborate with each other by sharing the storedsioreata to jointly locate the
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worm propagator through post-mortem analysis [106]. This defeaseWork will be further
extended and discussed in Section 3 to integrate the new spectedndmeme we will
propose in the chapter.

The proposed defense framework can be deployed using existimgeotiad products. For
example, thesinkholefeature of Cisco’s Private Internet Exchange (PI1X) Faiésan be readily
used by the distributed monitors to collectomaly traffic such as illegal scans to IP addresses
not occupied by real computers or other devices; Cisco’s Netfioivxcan be used to analyze
traffic logs for forensic analysis; and Cisco’'s Secukitgnagement Solution (SIMS)r Arbor
Network’s Peakflow can be deployed on the control center [107,thO8Jocess the collected

anomalytraffic.

3. A Baseline System

In this section, we analyze a baseline system in which & stelf-adaptive worm freely
propagates until timé: = oo without any defensive countermeasure. This analysis forms the
basis for us to analyze much more complicatgstems, in which the worm may be dynamic
self-adaptive, the maximum propagation titaeis limited, andvarious defense schemes are
deployed.

Letf(t) be the number of infected computers in the baseline systemest Without loss of
generality, we assume that the following initial condition holds:

f(0) =1 (VI-1)

We are interested in the relationship betwigrand other system parameters. To derive this
relationship, we take an approach similar to the analysisaditibnal worms with the simple
epidemic model [45]. First, we have

f(t+At) = f(t)+ X (t,Ab), (VI-2)
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whereX(t, 4t) is the number of computers infected during time intemna&t (4t]. X(t, 4t) can be
estimated as follows:

X(t, 4t) = (Number of worm scans i, ¢ + 4t]) - (Success rate of each scan). (VI-3)
Note that wherdt—0, the number of scans made durihg ¢ 4t] is equal taSp-f(t). LetV be
the total number of IP addresses &hbe the total number of vulnerable computers. At time
the number of computers that are vulnerable to infectidw-igt). Then, the success rate of a

scan is — f(t)/V). Due to Formula (VI.3), we have
X (t,At) = SCp CF (t)N_Tf(t). (VI-4)

Substituting Formula (V1.4) into (VI.2), with some mathematical manipriatve have

A < pim L2V ZH0 < por o cpen - 1) (VI-5)

dt At-0
wheref = S/Vis called pair-wise propagation rate [46].
As we can see, (VI-5) is a differential equatiorf(ffin terms of system paramete3sV, N,
and p. With the initial conditionf(0) = 1, the equation can be easily solved usimagplace

transform [109]. The solution is as follows:

NN N e

fO= G, o1~ PPN (VI-6)
Based on (VI-6), we would like to make the following remarks:
- f(t) is an increasing function ofAlso, f(t) increases whefi, N, or p increases.
— Whent is sufficiently small such tha™ << N, we have

f(t) = PN, (VI-7)

That is, when a worm is in its initial propagation phasenthmeber of infected computers
increases exponentially over tirhe

— On the other hand, whems sufficiently large,
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f(t)=N. (VI-8)
This indicates that when no defense system exists, eventlallylreerable computers will be
infected.
— Except for a new parametep”; our result in (VI-5) is identical to the result in [10Ne
nevertheless present the derivation process in this chaptelg our readers understand the
physical meaning of the equation and its solution.
— Consider the extension of our baseline system to include thetidetscheme. Let, be the
time of detection. Then, (VI-6) will correctly represent the hanof infected computers as long
ast <ftp.
— While we derivef(t) for static self-adaptive worms, the derivation can be udefuthe
dynamic ones as well. From the derivation process, if we regaog p(t) in (VI-4), the
differential equation (VI-5) still holds. That is, (VI-5) can beed to describe dynamic self-

adaptive worms as well. Unfortunately, the solution process us@d-B) requires thap be

constant, and thus cannot be directly applied to dynamic self-adaptive.worms

4. Game-theoretic Formulation

We now consider the case in which both parties, the worm propagatdne defender, appear

in the system. In this case, the number of infected computers will depend nohdhby strategy

of worm propagation (e.g., propagation growth g, but on the defensive strategy and the
interaction between the two parties as well. In particulacesone party may adapt to the
strategy change of another party, the outcome of worm propagatieteisnined by the stable
state where neither party can benefit by changing its gyrateilaterally. This state is referred to

as theNash equilibriumof the game between the worm propagator and the defender [109]. Our

focus in the following section is to analyze the optimahtsgies that constitute the Nash
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equilibrium, when different combinations of self-adaptive worm andrdfe schemes are
present in the system. In order to do so, we first formulatedime gnodel, and then present the
strategy sets and utility functions of the two parties. Theegdamoretic formulation introduced
in this section will form the basis for the specific as@yof systems with static and dynamic

self-adaptive worms in the next two sections.

4.a. Game

We formulate the system as a two-player uncooperative géngeworm propagator and the
defender are the two players in the game. Each pRy@r/{1, 2}) has a strategy s& and a
utility function u; : S x S, — R which we will introduce in the latter part of this sectioheT
game is uncooperative in that the two players are in oppositionranghbkely to make any
binding agreement when choosing their strategies [109]. As ity security studies, we make a
conservative assumption that the worm propagator has full knowtddpe strategy taken by
the defender. Nonetheless, the defender has no knowledge about the worm propagétgys st
We assume that both players are rational, in that each Blaglvays chooses the strategy

that maximizes its utility function;. The Nash equilibrium is a combination of strateges<$}
(ssU's, s US), suchthatds, U 'S, s, U'S,

Us(S1, S2) > (S, S%), (VI-9)
and

Uz(S1, $) = (S, S). (VI-10)
As we can see, the Nash equilibrium represents a stabée ktause when equilibrium is
reached, no player has an incentive to deviate from the chosenystiaeg ors,) unilaterally.
Thus, we can evaluate the outcome of worm propagation based on thedu#grium of the

game.
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4.b. Strategies

We now consider the strategy sets of the two parties. Thegstraf the worm propagator is to
determine the propagation growth rateRecall that as we mentioned in Section 1, the worm
propagator can choose to either use a constant propagation grovtlorabevaryp over timet.
Formally, the strategy s&, of a static self-adaptive worm contains all possible vadiigsin

[0, 1]. The strategy s&¥'s of a dynamic self-adaptive worm contains all possible funci¢ns
that map time in [0, &] to a real number in [0, 1].

The strategy of the defender is to determine the parametersuntermeasures. Recall that
as we mentioned in Section 2, we consider two kinds of countermgaiueshold-based (i.e.,
worm detection) and trace-back (i.e., forensic analysis). Thegparameters includi for the
threshold-based scheme, agdandm for the forensics analysis scheme. Since the trace-back
parameters are determined by capacity of the defensiversystd the trace-back algorithm
[104, 107], we assume that the defender cannot charagen. Thus, in our system model, the
strategy of the defender is to determine the detection threShofbrmally, the strategy s&

of the defender contains all possible value$ot 0.

4.c. Utility Functions

The utility functionu(sa, $) measures the benefit (or loss whgnx 0) gained by PlayeP,
when a set of strategias, S5 are chosen by the two players respectively. The utilitytfomc
depends on the objectives Bf The worm propagator has two objectives. One is to maximize
the number of infected computers. The other is to avoid beinglttzek and punished for its
malicious actions. Although different worm propagators may lifferent priorities for these

two objectives, it is commonly believed that most worm propagatorthe Internet consider the
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penalty of being traced back to be substantially more than thefitsegained from worm
propagation [104, 105]. Thus, for the sake of simplicity, we assume that a worrggioopaill
suffer infinite loss if the probability of being traced backnigre than 50%, but it will suffer no
loss from forensic analysis otherwise. In Section 7, we wilered our results to the more
general case in which loss of worm propagator from forensigsiaas a function of the success
probability of trace-back.

Formally, the utility function of the worm propagator, denoted,bis as follows:

— 00, If tracebackwith probabilityof morethan50%;
f(ty), otherwise

Ua(Sa:Sp) = {
(VI-11)
wheres, andsy are the strategies of the worm propagator and the defeadpectively, andh
is the time when the worm is detected.

The defender also has two objectives. One is to minimize thieemwhinfected computers.
The other is to minimize thialse positive ratewhich is the probability that an alarm is falsely
triggered when there is no worm propagation on the Internet. Inystens model, we assume
that the false positive ratemust be lower than a pre-determined threshold

Formally, the utility function of the defender, denoted fyisias follows:

-0, N\>0;

_ (VI-12)
f(t,), otherwise

Up (Sas Sp) :{

In the following two sections, we will derive the Nash equilibrinfnthe game based on the

strategy sets and the utility function of the two players.

5. Defense Against Static Self-Adaptive Worms

In this section, we consider a system with only traditiorainwg © = 1) and static self-adaptive

worms (constanp in [0, 1)). We first show that the threshold-based scheme, skif, iis
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ineffective against static self-adaptive worms. After, thaat demonstrate that an integration of
the threshold-based and trace-back schemes can effectivelyddafainst static self-adaptive

worms.

5.a. Threshold-Based Scheme

We now show that if the defender only uses the threshold-lsa$eine, the game will reach
Nash equilibrium in the state where the worm propagator canri#tbeted before timg, and
is capable of compromising a large number of computers.

Theorem VI-1. When the worm propagator propagates a static self-adaptva W the
system and the defender uses threshold-based scheme only, thejbilgstiuen of the game is:
The defender choos@& = Tg’ whereTr is the maximum value to satisfy < . The worm
propagtor choosgs = pe such thaf(ts)-pe = Tr".

Proof: We show the correctness of the specified Nash equilibriuprdying that no player
can benefit by changing its strategy unilaterally. Apparetity, defender cannot benefit by
either increasing or decreasifg unilaterally because doing so will either keep the sagner
reduce it to-.

For the worm propagator, the current utility functiooxs f(tg). Suppose that it changes the
propagation growth rate @m. Let the new function of the number of infected computerfs(bhe
Whenp; > pg, the worm will be detected at tinte< te wherefy(ty)p; = T . Sincep; > pg, we
havefy(ty) < f(te). Thus, the worm cannot benefit by changingtanilaterally. Wherp; < pg,
the number of infected computers at the time of detectionn®stf;(te) < f(te) = ua. Thus, the
worm cannot benefit by changingpgounilaterally either.

We now illustrate the results of the theorem with practixamples. In particular, we set the

system parameters as follows:= 350,000 (the number of computers infected by the “Code-
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Red” worm) [1],V = 4 x 10 (i.e., the number of IP addresses in IP&5,358 scans/second (the
estimated value for “Code-Red” worm [8]= 3%, andg = 5 days. Based on the system settings
[52], we computeT’= 60,000 scans/minute. Due to the theorem, the optimal strateglyefor t
worm propagator is to spt= 0.15. As such, the number of infected computers &ftérdays) is
71,400, or 20.4% of total vulnerable computers. This is a significant mutimbiecan cause
substantial damage (a real-world worm that infected abo@0@0¢omputers, the Slammer
worm, resulted in about one billion dollars damage [2]. Thus, thehbiegbased scheme by
itself is ineffective against static self-adaptive worms.

As we can see from the theorem, when the threshold-based schémeeonly available
defensive measure, the worm propagator can always redtwealelay the detection unti.
Thus, in order to defend against static self-adaptive worms, hawge to introduce a
countermeasure that prevents the worm propagator from reduéige. This motivates us to
integrate the threshold-based scheme with the trace-bheknsc As we will show below, the
trace-back scheme prevents the worm propagator from doing so bedtiuadow propagation

growth ratep, the worm propagator increases the chance of being traced back aftdodete

5.b. Threshold-Based and Trace-Back Schemes

We now show that integration of the threshold-based and trace-bheias can effectively
defend against worm propagation. In particular, we have the follpthieorem. Recall thai’
is the maximum value to satisfiy< § andpe satisfiesf(te)-pe = TR

Theorem VI-2. When the worm propagator propagates a static self-adaptive imothe
system and the defender uses an integration of the thresholddrasédce-back schemes, the
Nash equilibrium of the game is as follows:

- When
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1 log m[N )=t (1- logm

t,=2t. (1- —
5 21 logTS ~N-m logT?

), (VI-13)

the worm propagator chooses not to propagate the wornp(s€)). The defender choosés=
TR

- Otherwise, the worm propagator chogsespe. The defender choos@g = Tg..

Proof: We prove the theorem by showing that no player can benefit by wailatehanging
its strategy. We first consider the case whgeetg(1 — logm/logTg). Apparently, the defender
already reaches the maximum possille= 0 and cannot benefit by changing its strategy. For
the worm propagator, suppose that it changes the propagati@ygtrap = p; > 0. Consider
f(tp — tg), the number of infected computers at tige tg. Letfe(t) be the function of the number

of infected computers whgn= pe. We have

ts
N (eﬁqu Ntg )1_€
: .

f(tD _tB) < fE(tE _tB) = (VI-14)
1--B
(elﬂ:leNtE) te + N
Sincetg/te > (1 — logm/ log®), with some mathematical manipulation, we have
f(t, —tg) < fe(te —tz;)<m. (VI-15)

As such, if the worm propagator changes its strategy>d), the defender can always use the
forensic analysis scheme to trace-back to the worm propag#toprobability of at least 50%.
That is,u, will become =o. Thus, iftg > tz(1 — logmAogTg’), the worm propagator will not
change its strategy unilaterally.

Whentg < tg(1 - logmAogTg), the game is exactly the same as the one discussed ireftheor
VI-1, and thus follows the same Nash equilibrium.

As we can see from the theorem, there are two possible outcomes of worm fmopagat



120

Outcome 1If the trace-back intervak is longer than the threshotg(1 - logmAogTg?), the
threats posed by the trace-back scheme will force the worm @topag not propagate the
worm at all.

Outcome 2 If the trace-back interval is lower than the threshold, hewethe worm will
propagate in the same way as we discussed in Section 2, aridhitdege number of computers
before being detected.

We now analyze which outcome is likely to occur in practicecbasepractical examples. In
particular, we would like to demonstrate that the derived Idveeind ontg in Outcome 1lis
reasonable in many systems: We use the same systamg settihe one specified in Section 5.a.
In addition, we sein = 0.002-N Due to the theorem, no worm infection will occur if the trace-
back intervakg is more tharl.81days. We argue that this is a reasonable trace-backahferv
practical systems: Based on the real-world estimation oé-4vack cost [103], the cost of
realizing a trace-back interval of 1.81 days is approxima$216,000 per Internet service
provider (ISP). Compared with the maintenance cost of ISP, dseat trace-back is fairly
moderate and acceptable in practice. Thus, an integratioe tfirgshold-based and trace-back
schemes can effectively defend again static self-adaptive worwellegs traditional worms.

The basic idea of the theorem can be stated as follows:batiththe threshold-based and
trace-back schemes in place, if the worm propagator chootgeap, it will be detected
earlier, and the number of infected computers at tignds will be smaller. If the worm
propagator chooses a smalteto delay the detection untit, the worm will propagate slower
and the number of infected computers at timdg will still be very small. If the trace-back
intervaltg exceeds a threshold such ti{eg—tg) < min both cases, then the worm propagator will
be forced not to propagate the worm because, otherwise, it lwdlys be traced back and

receiveu, = —oo.
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6. Defense Against Dynamic Self-Adaptive Worms

In this section, we consider a system with a dynamic selfsadaporm, which changes its
propagation growth ratp(t) over timet to better adapt to the countermeasures. We first show
that the integration of threshold-based and trace-back schemas #ager effective against
dynamic self-adaptive worms. After that, we introduce a nefendeve scheme, called the
spectrum-based schemi&e demonstrate that an integration of all three schearesftectively

defend against dynamic self-adaptive worms.

6.a. Threshold-Based and Trace-Back Schemes

We now show that the integration of threshold-based and liecie-schemes is ineffective
against dynamic self-adaptive worms. In particular, we have the falipiveorem.

Theorem VI-3. When the worm propagator propagates a dynamic self-adaptive waha i
system and the defender uses an integration of threshold-based and tracédraek sihe Nash
equilibrium of the game is as follows:

- Whentg > te — log(m)/(N-f) = tg, the worm propagator chooses not to propagate the worm
(i.e.,p(t) = 0). The defender choos&s= T .

- Otherwise, the worm propagator chog¥@s= min(1, Tg/f(t)) for everyt in [0, t]. The
defender choosek = Tg".

Proof: We first consider the case whege> t=—logm/(N-5). In this case, the proof of Nash
equilibrium is similar to that of Theorem VI-2. Thus, we odgmonstrate why the lower bound
on t changes tdg—logm/N) = te. Consider the case where the worm propagator adopts a
strategy as follows:

(i) First, the worm propagator usg@) = min(1, Tg/f(t)) to infectm computers as soon as

possible, say at timg (i.e.,f(ty) = m).
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(i) After that, the worm propagator choogés = 0.
As we can see, sinega << N, the worm will not be detected befote Thus, the worm
propagator cannot be traced back as lonty &ste — tg. As such, in order to force the worm

propagator not to propagate the worm, there muftgde tg) < mfor the above strategy. That is,

N @ﬁm(tE‘tB)

With some mathematical manipulation, we have

1 N[m~t _logm _

., >t lo = —_— .
Inom e

B='E " BN (VI-17)
Thus, a necessary condition to force the worm propagator nobpagate the worm it >
te— (logm)/(N-f) = te.

We now consider the case whiye te — logm/{N-p). In particular, we prove the correctness
of the Nash equilibrium specified in the theorem by showing thaplager can benefit by
unilaterally changing its strategy. As we have shown in Thedré®y the defender cannot
benefit by deviating fronTg = Tg". For the worm propagator, suppose that it uses a different
propagation growth rate functigm(t). In order for the worm propagator to benefit from the
strategy change, there must existin [0, t] such thatpy(t;) > p(t) = min(d, TYi(t)).
Nevertheless, the worm will then be detected at timdue to the threshold-based scheme,
resulting in a reduceda. Thus, no player can benefit by changing its strategy urdltdrom
the equilibrium specified in the theorem.

As we can see from the theorem, the threats posed by thbdcseheme are significantly
weakened when the worm is dynamically self-adaptive. As sucpp8®ble outcomes of worm
propagation become:

Outcome 1When the trace-back interval exceeds a very large thregheldgm/(N-f) ~ tg, the

worm propagator will be forced not to propagate the worm.
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Outcome 2When the trace-back interval is lower than the threshold, hoywieeworm will
propagate to more computers than what a static self-adaptive @aorimfect in a system with
the threshold-based scheme only.

We now analyze which outcome is likely to occur in practice baisgutactical examples. In
particular, we demonstrate that the derived lower bound on trakerecvalts in Outcome lis
unachievable in many practical systems: Based on our systtingsused in Sections 5.a and
5.b, no worm propagation will occur if and only if the trace-backrva is more than 4.8 days
(i.e., tz = 4.8 days). Based on the estimate of trace-back cost [103], intordéminate worm
propagation, the cost of the trace-back scheme would be at least $2,430,000 phicls R, two
high for the maintenance cost of an ISP in practice. Thus, the lmwerd ontg derived in the
theorem is unachievable in practice. As such, an integratidieothreshold-based and trace-
back schemes cannot effectively defend again dynamic self-adaptiwes wor

A critical observation from Theorem VI-3 is that in order tieatively defend against
dynamic self-adaptive worms, the defender has to prevent the fkmmmrapidly propagating
itself at the initial stage of worm propagation (i.e., befarevheref(ta) = m). Otherwise, the
worm will quickly propagate to m computers befagreand then carefully choog#t) for t > ta
to delay the detection untis+tg, which makes the trace-back scheme useless. Since the
threshold-based scheme is ineffective against self-adaptis@saby itself, the defender cannot
eliminate worm propagation. This observation motivates us to proffes spectrum-based
scheme, which prevents a worm from using high propagation growthatréte initial stage of

propagation.
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6.b. Spectrum-Based Scheme

In the following, we introduce a spectrum-based detection schemestrict the propagation
growth rate of a worm at the initial stage of propagation. Nod¢ if a worm adopts a high
propagation growth rate (e.ga(t) = 1) at the beginning of propagation, the worm-scan traffic
will exhibit a significant pattern (i.e., trend of exponentiarease) when compared with the
network background traffic. The objective of spectrum-based dmteddito extract such a
pattern (as signal) from the normal network traffic (as@piThe idea of using spectrum-based
approaches to identify signal from noise has been widely useteiriterature of signal
processing [57], and has been shown to be capable of differentiggival §om noise even
when the signal-to-noise ratio is low.

The objective of spectrum-based detection is to identify the (approxiexatm)ential growth
of worm scan traffic from background traffic, which can be comstil@as white noise. In order
to do so, we usdiscreteFourier transformation [57] to analyze the frequencies contained in the
sampled time-series data of scan traffic volume, which ifeatedl by the control center
mentioned in Section VI.2.c. If there is no worm propagation on the retie background
traffic volume, as white noise, should have equal (expectedhgtiiee on all frequency
components (i.e., from low to high frequency). If a worm is propagatiowever, there will be
a strong low-frequency component in the frequency domain, because obritieuous and
exponential growth of worm-generated traffic volume (which cacobsidered as having a very
large period). Thus, the spectrum-based scheme detects wornggiropeby identifying low-
frequency components with high power spectrum.

Formally, letr(t) be the traffic volume collected at timeAt time t,, the control center has
collected a time-series data set0), r(1), . . . ,r(tg)}. We transform the time-series data to the

frequency domain using tltscrete Fouriertransform [57] as follows: for all integer
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)= r(mye v, V118)
n=0

wheres(k) are the transformed frequency component corresponding to @ekitfty + 1), andi
is the imaginary unit. If(t) is consisted of white noise only, the expected complex modulus of
s(K) (i.e., §(K)|) should be the same for &lin [0, t)]. Nonetheless, when a worm is propagating,
the expecteds(k)| for lower frequencies (i.e., lard@ will be larger than higher frequencies.
Thus, in order to detect worm propagation, we need to measutéfénences betwees(k)| for
difference frequency ranges.

In particular, we use a widely adopted measure in pattern reoagralled Spectral Flatness
Measure (SFM) [49], which is defined as the ratio betweengtwmmetric mean and the

arithmetic mean of s(k).

ST
—— > s(k)

t, +1i=

(VI-19)

Generally speaking, the smaller SFM is, the more differémace is betweegk) at different
frequency ranges [49], and thus the more likely it is thabamais propagating on the network.
As such, our spectrum-based detection scheme issues an aletheh@&lue of SFM is smaller
than or equal to a pre-determined thresfigidNote that the greatdi, is, the more false alarms
will be generated by the spectrum-based approach. Thus, the defarsiespecify the value of
Tw (along withTg for the threshold-based scheme) based on the maximum toledablaltam
rated.

Since the value of SFM decreases when the worm propagapds aduigher growth rate for
a longer period of time, we assume, for the sake of simplitiat at timeto, SFM < Ty, if and

only if the worm usep(t) > py for a (cumulated) period longer thant, time slots fu, ym in [0,
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1]). The values opy andyy depend on the defender-specified thresfgldThe largefTy, is, the
smallerpy andyy will be.

Note that this spectrum-based scheme can be easily integititalemthreshold-based and
trace-back schemes in the framework proposed in Section VI.2.tloyter, the control center
will perform both the threshold-based and spectrum-based sclhes®s on collected data, and
issues an alert if either scheme generates an alarar. ddtecting a propagating worm, it issues

an order to initiate the trace-back process.

6.c. Threshold-Based, Trace-Back, and Spectrum-Based Schemes

We now show that an integration of the threshold-based, trate-laad spectrum-based
schemes can effectively defend against the propagation of dyrsaifradaptive worms. In
particular, we prove that if the trace-back intetydb longer than a (reasonable) threshold, the
game will reach Nash equilibrium in the case where the wiwopagator will be forced not to
propagate any (static or dynamic) self-adaptive worm. Notewithtthe introduction of the
spectrum-based scheme, the strategy set of the defender inttiedgetermination of not only
the volume thresholdx but also the SFM thresholdy. The strategy set of the worm propagator
remains the same. As we mentioned in Section VI.2, the falsevposite4 now depends on
bothTg andTy.

LetT,° be the maximum threshold for the false positive rate tohgatis 6 whenTr = . Let
pv’ andyy® be the corresponding valuesmf andyy whenTy, = Ty°. Suppose thét, (t) is the
number of infected computers at tirh@&vhen no defender exists in the system, and the worm

propagator uses

. o
o(t) = {L with probabilityr,, ; (VI-20)

p°,  with probabilityl-r0.

for alltin [0, tg]. We have the following theorem.
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Theorem VI-4. When the worm propagator propagates a dynamic self-adaptive inwahe
system and the defender uses an integration of the threshold-traseehack, and spectrum-
based schemes, the Nash equilibrium of the game is as follows:

- Wherf\(te—tg) < m, the worm propagator chooses not to propagate the wornp(f)es,
0). The defender choos&g= « andTy = T’

- Otherwise, the worm propagator chooses

o(t) = {min(LTR/ f (1)), with probabilityr. ; (VI-21)

min(p,,,Te/ f(t)),  with probabilityl-r..

The defender chooses the integratiomadind Ty, that i) minimized(tp) when the worm uses
the above strategy, and ii) satisfies o.

Proof: We first consider the case whef(te—tg) < m. Apparently, the defender already
reaches the maximum possible= 0 and cannot benefit by changing its strategy. For the worm
propagator, suppose that it changes the propagation growth rate fungti@ih tcet the changed
function of the number of infected computersfiff. Due to the definition of spectrum-based
scheme ané,(t), there must b&(t) < f\’(t) for allt in [0, tg]. Thus,

f(te —ty) < fo(te —t;)<m (VI-22)
That is, the worm propagator will be traced back with probalufitgt least 50%, resulting um
= —o. As such, the worm propagator cannot benefit by changing its strategy unilaterally

We now consider the case whif¥t=—tg) > m. Note that in order to avoid being detected by
the threshold-based scheme, the worm propagator must maitiain Tr/f(t). Based on our
previous discussion, it is easy to verify that the worm prapagannot benefit by changing its
strategy unilaterally. For the defender, if it changes eilfzeor Ty, there will be only two

possible outcomes: i) an increadéd), and/or ii)4 > ¢. Either way, the defender will have a
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decreased utility functionu,. Thus, the defender cannot benefit by changing its strategy
unilaterally.

Due to the theorem, with the integration of all three scheima® are two possible outcomes
of worm propagation:
Outcome 1Whentg is greater than the derived threshold (i.e., satisfi¥$ — ts) < m), the
trace-back and spectrum-based schemes will force the worm ptopamt to propagate the
worm.
Outcome 2Whentg does not satisfy the condition, the trace-back scheme poses atotohttee
worm propagator. In this case, it is the threshold-based andspduised schemes that force

the worm propagator to redupé) to a reasonable level as specified in the theorem.

Table VI-1 Performance of Defensive Strategies

S Si*+S StS+S;
Traditional worm Effective Effective | Effective
Static self-adaptive worm EffectieEffective
Dynamic self-adaptive worm Effective

Si: Threshold-based scheme; $race-back schemezSpectrum-based scheme

We now analyze which outcome is likely to occur in practicecbasepractical examples. In
particular, we demonstrate that the derived threshold onabe-brack intervak in Outcome 1
is reasonable in many practical systems: We use the sgstem setting as the one used in
Sections 6.a and 6.b. Based on the simulation results, thB&&=i§2,000,p\’= 0.22 andy,’=

0.5. Due to the theorem, the worm propagator will not propagate the astong ass > 1.8
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days. As we mentioned in Section 2, this trace-back intervahisonable in practice. Thus, the
integration of all three schemes can effectively deferainay dynamic self-adaptive worms in

the system, as shown in Table VI-1.

7. Performance Evaluation

In this section, we present the simulation results of systems withastatdynamic self-adaptive
worms. In particular, we conduct the simulation on a combination biwaéd background scan
traffic and simulated worm generated traffic.

For the background scan traffic, we use the real-world QSloigé dataset provided by the
SANs Internet storm center (ISC) [25]. The dataset contains than 80 million scan records,
with a size of over 80 GB. All scan records are capturéddssn January 1, 2005 and January
15, 2005. Each record includes the source IP address, destination éBsadidstination port
number, and time stamp of a monitored scan.

With the real-world scan traces serving as the backgrountt tra add simulated worm
generated traffic as follows: We use the same systéingas the one specified in Section 5:
The number of vulnerable computers on the Internet is 350,000. The totaemwin IP
addresses is 4.3x10The scan rate of worm propagation is 358 scans/minute. The maximum
false positive rate is 2%. The maximum propagation timg is 5 days. We conduct the
simulation based on various trace-back parameters, mith 0.002N or 0.005N and the
maximum trace-back intervil ranging from 1,400 to 7,000 minutes.

We measure the performance of our countermeasures by theummiafection rate when
the worm propagator chooses the optimal strategy of propagatiothgrate as specified in the

Nash equilibrium. Recall that the maximum infection rate is defined as ib@t#he number of
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infected computers to the total number of vulnerable computers at the mehmmnthe worm is

detected, or at timig, whichever comes first.
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Fig. VI-1. Maximum Infection Rate for Static Self-Adaptive Worm
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Fig. VI-2. Maximum Infection Rate for Dynamic Self-Adaptive Worms
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We present the simulation results of our countermeasures iorsstbidaptive and dynamic
self-adaptive worms, respectively. For static self-adaptivems, we measure the performance
of an integration of the threshold-based and trace-back schévieealso compare the results
with previous approaches that use threshold-based scheme dnlyH8Isimulation results are
shown in Fig. VI-1. As we can see from this figure, when the tradetbtarvalte is longer than
1.45 days whem = 0.005N or 1.81 days whem = 0.002N, the worm propagator will be forced
to not propagate the worm. As we discussed in Section 5, augehldack interval is reasonable
in practice. Thus, an integration of the threshold-based andtsateschemes can defend
against static self-adaptive worms effectively. On the dthad, if only threshold-based scheme
is available, the number of infected computers is more 71400 (20.4% of all vulnerable

computers). As we can see, the threshold-based scheme canndtitdefifragainst static self-

adaptive worms effectively.
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Fig. VI-3. Relationship Between Maximum Infection Rate and MaxifRal®e Positive Rate
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For static self-adaptive worms, we measure the performanana integration of all three,
threshold-based, traceback, and spectrum-based, schemes. The simegatitsnare shown in
Fig. VI-2. As we can see from this figure, when the trace-liatekval tz is longer than 1.36
days wherm = 0.005N or 1.81 days whem = 0.002N, the worm propagator will be forced to
not propagate the worm. As we discussed in Section 5, suctbtrekenterval is reasonable in
practice. Thus, an integration of all three schemes can g#bctiefend against dynamic self-
adaptive worms.

In Fig. VI-3, we also investigate the relationship betwbermaximum infection rate and the
maximum tolerable false positive ratavhen the trace-back interval is not enough to eliminate
worm propagation. As we can see from the figure, the more fialsesathe system can tolerate,
the less that computers can be infected by dynamic self-adaptiss. In particular, the
maximum tolerable false positive rate increases fromd® and the maximum information

rate decreases from 23% to 11% of all vulnerable computers.

8. Extensions

We now discuss how to generalize the utility function of the wepropagator which we
proposed in Section 3. Note that in Section 3, we assumed that the propagator either
receives infinite penalty from trace back (i@, = —o whenf(tp — tg) > m), or none at all (when
f(to — tg) > m). In practice, however, different worm propagators may diftgresvaluate the

risk of being traced back. Some risk-averse worm propagatorsto propagating the worm
when the probability of being traced back is 10%, while otlmay choose to propagate
regardless of whether or not they will be traced back. hegyeneralize the utility function of
a worm propagator to a continuous function, in order to model the thhegs worm

propagators with different risk aversion levels.
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In particular, leh(x) be the loss of the worm propagator if the defender cae-tback toc
infected computers at the earliest trace-back time max(©.ts). Apparently,h(x) should be
monotonically decreasing witk, as a largex makes it more difficult to identify the worm
propagator. Letr > 0 be a preferential parameter pre-determined by the wormgatopaThe

generalized objective of a worm propagator is to maximize
U, = f(ty) —ah(f maxOt, —tg))). (VI1-23)
As we can see, our utility function defined in Section 3 is aiapease of this generalized

version wherh is defined as follows:

0, if X<m;
h(x) = _ (VI-24)
0, otherwise
Given the generalized utility function, Theorem VI-3 and Theorésh dan be restated as
follows:
Theorem VI-5. When the worm propagator propagates a static self-adaptwa in the
system and the defender uses an integration of the thresholdarasédce-back schemes, the

Nash equilibrium of the game is as follows:

- When

N(em’E INtg )l—q
(eﬂEIbE Nt )1_q +N

a [h( > pTs, (VI-25)

the worm propagator chooses not to propagate the wornp(d). The defender choosés =
TR

- Otherwise, the worm propagator chogsespe. The defender choos@&g = Tg..
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Theorem VI-6. When the worm propagator propagates a dynamic self-adaptive waha i
system and the defender uses an integration of the threshold-traseehack, and spectrum-
based schemes, the Nash equilibrium of the game is as follows:

- If there exist¥)y andTg such that 13-h(f(t-tg)) > peTr, and 2) the false positive rate< 4,
then the worm propagator chooses not to propagate the wormp(i)es, 0). The defender
chooses the correspondifigandTy.

— Otherwise, the worm propagator chooses

o(t) = m?n(LTR/ f (1)), With probabili.t.y (S (VI-26)
min(p,, T/ f(t)),  with probabilityl-r,,.

The defender chooses the integratiopand Ty that 1) minimized(tp) when the worm
uses the above strategy, and 2) satisfies).

The basic idea of proving the above two theorems is similar to the proofareih¥|-2 and
Theorem VI-3. The optimal strategy for the worm propagator iseiect the maximum
propagation growth rate or p(t) that delays the detection timetto The condition for a static
self-adaptive worm to stop the propagation is to make utilitytimmcdefined in (VI-23) less

than 0.

9. Summary

In this chapter, we studied the countermeasure based on conttadijsetives of worm attacks.
In particular, we considered a general form of worms calldeadaptive worms, which adapt
their propagation patterns to avoid detection. Based on the ddgreetiml on the propagation
growth rate, we classified self-adaptive worms into two gdneategories: static self-adaptive
worms and dynamic ones. We demonstrated that existing worm datesthemes are

insufficient to counteract self-adaptive worms. Based onmaegaeoretic formulation of the
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interaction between the worm propagator and the defender, we shbakedn effective
integration of multiple defensive schemes is critical foredding against self-adaptive worms,
which can force the worm attacker to choose the contradictedtiobgecTo this end, we
considered three schemes: threshold-based scheme, tracedbarke, and spectrum-based
scheme. We showed that the combination of the first two scheamelse used to defend against
static self-adaptive worms, while the combination of all theeleemes can effectively defend

against dynamic self-adaptive worms.
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CHAPTER VI

COUNTERMEASURE BASED ON THE DEFENDER’S REPUTATION

In this chapter, we focus on developing the countermeasure batesldefender’s reputation to

defend against worm attacks.

1. Overview

The real-world worm defense systems usually face constantsthrean multiple emerging
worm attackers. The war between the worm attacker and defeadebe treated as a never-
ending process with iterative interactions between the two sbiesside tries to adapt itself in
order to defeat the other. Studies in previous chapters show that agentedttacker can evolve
itself and degrade the performance of detection systems. FoplexamChapter VI, we show
that worm attackers may adaptively manipulate their propagatdiic pattern or payload to
avoid detection and to infect more computers.

In this chapter, we consider real-world system settingh witlltiple incoming worm
attackers that collaborate by sharing the history of thearactions with the defender. We
propose a novel countermeasure approach to actually improve tlenmmer€e of detection
system over time by establishing the defender's reputationowghness in its repeated
interactions with multiple incoming worm attackers. Our studleswv that while such iterative
attacks may enable an attacker to learn from the previammtibns, the defender can also take
advantage of the iteration by sacrificing short-term performancthe initial few rounds to
establish a “tough” reputation, in return for much higher payothe long-run by using the
established reputation to force subsequent worm attackers to drop s att

We first formalize the problem as a repeated game betwee long-term player (defender)

and multiple short-term players (attackers). With the modekpéated games, we define the
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defender’s reputation as the attackers’ estimation ofdhghhess of the defender. Then, we
classify the repeated games into two categories based ohewltie¢ attackers have complete
information about the defender’s objectives. For each categerprepose a generic reputation-
aware scheme to optimize the long-term performance of wormgkefgy/stems by establishing
the defender’s reputation in the initial rounds of interactions. r€putation-aware schemes are
transparent to the underlying detection algorithms, and thus cabealssed with various other
network security applications.

In the following, we first present our system models, introdugame-theoretic formulation
of the repeated interactions between the defender and the waokesas, as well as the concept
of a defender’s reputation of toughness, and classify the relpgatees into two cases based on
the completeness of information in the games. We then propaseeputation-aware worm
detection schemes for these two types of games, respgctnel present theoretical analysis of
their performances, followed by numerical evaluation of oappsed schemes and conclusion.
Notice that this Chapter is based on the joined work betweeasT&&M University and the
University of Texas at Arlington. My work focused on the problem definitigorahms design,

worm detection evaluation, and literature survey

2. Models

In this section, we introduce our system models. We first defiegparticipating parties, and
then present the strategies and objectives of the parties.

2.a. Parties

Let there be one defendBrandn worm attackerg\,, . . . ,A, in the system. For the sake of

simplicity, we assume that each attacker launches no moreotieanattack to the system. By
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using worm detection mechanisms, the defender may detect an attack butowgnatate false

alarms, thus damaging system functionalities.

Tradeoff pirameter d;

Anomaly Detection

Round 1 Round 2 o Roundn  1ime

Fig. VII-1. Multiple Round System Architecture

As in real-world systems where each attacker may lauscttéck at a different time, we
consider the attacks to be iteratively carried out in a groupdefpendent processes. Without
loss of generality, we assume that these processes angezkén a serializable manner. Thus,
we considem rounds of interactions, each of which takes place betweedefeader and one
attacker. In particular, we assume that attagkér in [1, n]) interacts with (i.e., either launches
an attack or chooses not to attack) the defender at Rolimdl launches an attack, the attack is
either detected or missed by anomaly detection by the beginning of Reund

In practice, different attackers have their own intedastanay share information, such as
the outcomes of previous attacks. As such, we assume the attackiee independent but
cooperative. They are independent in the sense that each a##nketo maximize its own
payoff (see the objective functions in Section 3.c. for detail®yTare cooperative in the sense

that all attackers share their information about the systestuding the results of all previous
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attacks. Again, we will briefly discuss in Section 5.c ¢ixéension of our results to cases where
certain attackers are fully cooperative in that they vesrla single entity to maximize their joint
benefits.

Fig. VII-1 describes the basic architecture of the systeheren attackers sequentially
interact with the defender. The definition of tradeoff paramétdor the defender will be

introduced in the next subsection.

2.b. Strategies

The strategy of each attackdr is to determine whether to launch an attack at Raurid
particular, such a decision may be made based upon observations on duionebetween the
defender and the preceding attackers (Ag.throughA_;). The strategy of defendd® is to
determine a proper tradeoff between the detection rate andlsieeafarm rate. We assume that
the defender uses a tradeoff paramétar [0, 1] to control such tradeoff in RoundThe higher
o0; is, the less false alarms are issued. Nonetheless, theddefeso has smaller probability to
detect an attack launched Ay Without loss of generality, we assume that the probabilitarior
attack to be detected at Rounts 1 —J; (otherwise we can always normaliZeto satisfy this
assumption). As such, wheih = 0, all targeted attacks will be detected while the maxim
tolerable amount of false alarms will be issued. When 1, no false alarm will be issued while
no attack will be detected. The defenBemay determing; based on observations on preceding
interactions in Rounds 1 te- 1.

The tradeoff parametér models a wide variety of tradeoff control mechanisms in real-world
applications. For examplé, can be considered as threshold on a feature (e.qg., traffic #a@um
other properties) modeled in normal system profile and monitoreldebgefender, such that the

defender issues an alert whenever the observed feature etoedldeshold. This is a primary
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method to control the tradeoff in research and practices [816&n also be considered as an
output of distributed anomaly detection algorithms, such aprtiEability of anomaly predicted
by Bayesian detection [111].

The combination of strategies for the defender and an attackenigete the outcome of their
interaction, which may be one of the following possibilities: x&ttlaunched and detected, ii)
attack launched and not detected, iii) attack not launched. Suchnegcare observed and
recorded by both the defender and all the attackers. Note thautt@me does not indicate
whether a false alarm is triggered. The reason is that a®st practical systems, we assume
that the attackers cannot observe the activation of false alarms.

It is noteworthy that the strategies of preceding attacler., attack/no attack) can be
inferred from the observed outcomes, and are, therefore, public.Hetesst, the strategy of the
defender (i.e., the value &) is not directly observed by the attackers, especiallynveimeattack
is not launched in RounidAs such, the attackers can only infer the defender’s stratespd on

the outcomes of preceding attacks.

2.c. Objectives

The objective of each attack&ris to launch an undetected attack at Rourfebrmally, the

objective ofA is to maximize its utility functionia(i), which is defined as follows:

0, if attacknotlaunched
u,(i) =<1  launchedandundetected (VII-1)
- B.,launchedanddetected

where S5 is a predetermined preference parameter for the attaclerasaume thgty, > O
because, otherwise, an attacker will always choose to laitsméitack. We believe that this
assumption resembles the scenarios of many real-world appiEatvhere an attacker may

prefer not launching an attack that will always be deteetbith may lead to punishment of the
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attacker, as demonstrated by recent events [103, 104]). When liff¢t&ckers have different
values offfs, we assumg, to be the minimum possible value.

The defended has two objectives: i) to detect all attacks, and ii)revent false alarms from
being issued. Formally, let

if attackat Roundiisundetecte
IA(i):{]C; ' Hndisu d (VII-2)

otherwise

Note that due to our definition &f, 1a(i) = ¢; if an attack is launched at Round

Since the number of false alarms only depends on the valgielef () in [0, 1] be a
monotonically decreasing function that measures the number ef disms at Round The
greateri(d) is, the more (or more probability of) false alarms anmeegated in Round Without
loss of generality, we assume that the number of false sigemerated at Rounideaches the
maximum tolerable threshold wheég(s) = 1. Whenl(s;)) = 0, no false alarm is generated at
Roundi.

Formally, the objective of defend®ris to maximize its utility functionip defined over thae

rounds as follows:
Uy =Y U () = =X Bole (8)+ A= B )10, viI3)

whereup(i) is the payoff of the defender at Roun@ndpp in [0, 1] is the preference parameter
for the defender which measures its preference between dpeteatit and false alarm rate. The
greaterfp is, the more concerns the defender has on false alarmmraiarticular, a defender
with fp = 1 does not care about the detection of attacks while a @efeith 5o = O does not

care about the loss from false alarms.
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3. Reputation in Game-Theoretic Formulation

In this section, we will introduce the concept of reputatiorepeated interactions. In particular,
we will first present a game-theoretic framework whichnfolates the repeated interactions
between a defender and multiple incoming attackers. With taelof repeated games, we
define the defender’s reputation based on the attackers’ estimation céférempce parameter of
the defender. Then, we classify the repeated games into tegodas based on whether the

attackers have complete information about the defender’s objectives.

3.a. Game-Theoretic Formulation

As we mentioned in Section 2, the defender faces attacks riramaoming attackers in an
iterative fashion. Thus, we formulate the system as a non-coepenabund repeated game
between one long-time player, the defender, ragldort-term players, the attackers. The game is
non-cooperative [108] because there are no coalitions or cortetetsen the defender and the
attackers enforced through outside parties. Each round of the fodowes the Stackelberg
leadership model [108] with the defender being the leader andtéokeat being the follower.
This is because, in real-world anomaly detection systemgjefemder always moves first by
determining its detection tradeoff parameiebefore an attacker launches the attack. Note that
the defender knowsx antethat the follower observes the existence of anomaly detectien. T
objectives of the players and the set of their possible stragiefined in Section 2.

Based on the game-theoretic formulation, we have the following theore the Nash
equilibrium of the game when there is only one round of interactionn(rel) and the defender
knows/fp as pre-knowledge. Remark that Nash equilibrium represetgs sthere neither party

can benefit by deviating from the protocol unilaterally.
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Theorem VII-1. When there is only one round of interaction and the attacker kfigwas
pre-knowledge, the Nash equilibrium is formed by an attackingegirahat launches an attack

if and only if there existg in (Ba /(1 +S4), 1], such that

Po > ; : (VII-4)
25+|F(1+AﬂA)_IF(5)
and a defensive strategy sets
argmax(uy (9)), if (VII —4)holds
%(Fo) = A otherwise (Vi)
1+ B,
whereu,"(0) is the defender’s payoff if an attack is launched:
U5(9) = =fp I (8) = (1= ;) [B. (VII-6)

Proof: Recall that as we mentioned in the game-theoretic formulatoh, reund follows the
Stackelberg leadership model where the attacker is thewfmilthat responds to the leader's
(i.e., defender’s) strategy. Thus, we first prove that for given defensive strategy in the

theorem, the attacking strategy is optimal. Note that when (VII-4) holds, itingst be

_ A Ba
O (By) = argmax; u;(9) zm, (VII-7)

due to the monotonically increasing property=0f). As such, the expected utility of the attacker
A is ua(i) = do(Bp) — (1 —0o(Bp)):Sa> 0. Since the attacker’s utility by not launching an attack
0, the specified strategy of launching an attack is optihilarly, we can prove that when
(VII-4) does not hold, there is(i) < 0 whenA launches its attack. Thus, for the given defensive
strategy, the attacking strategy specified in the theorem is optimal.

We now prove that the defensive strategy in the theorem madpiiVe consider two cases

respectively: When (VI-4) does not hold, the utility of the defenddreatdund is:
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B ). (VII-8)

Up = =Bple (1+,3

If the defender can benefit by changing the tradeoff pararntetérthere must bé' > 6'o(fp) =
Pal(1+ pa) becausdg(.) is monotonically increasing. Nonetheless, since the attask#re
follower, it will then respond by launching the attack, asxtseeted payoff from an attack will
become greater than 0. Note that when the attacker launcladtadk, the maximum possible
payoff for the defender is max"(d), which is smaller thanp in (V11-8) when (VII-4) does not
hold. Thus, the defender cannot benefit by deviating tigifi»).

When (VII-4) holds, the defender cannot benefit by changingatedff parameter if the
attacker launches its attack. In order to force the latacot to launch its attack, the defender

must choosé’ < /(1 + ). Nonetheless, doing so will not benefit the defender because

Ba

1+ B

_ﬁDlF(J)S_ﬁDlF( )SUEA)(O_O(,BD))- (VII-9)

Thus, the defensive strategy specified in the theorem is also bptima

The defensive strateg@y(fp) in the theorem represents a local optimal strategy when t
payoff of only one round is considered. It also represents the optifiesisdes strategy if the
defender does not evolve its strategy over time in repeatedciinesa

From this theorem, we have following observations. Wien 1, the defender will always
choosed; = 1 to minimize false alarm rate and makgl) = 0. Wheng, = 0, however, the
defender will choosé; = 0 to detect all attacks. In turn, when the attackers knowatle vffp,
they will choose to launch every attack whiggn= 1, but not to launch any attack whgn= 0,
because the expected gain from an launched attack is alvgayhdm 0 when;, = 0. As we can

see from (VII-4), the strategy of the attacker depends okribeledge (or estimation) gfp.
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This motivates us to propose a scheme where the defender masiphtaattackers’ estimation

of fp in order to control their attack strategies.

3.b. Reputation

From an attacker’'s perspective, a defender with lower (@temeg, is “tougher” (or “softer”).
We speculate that while an attacker may launch an atiaxlsoft defender, it may choose not to
do so when the defender is tougher. Thus, we define the reputatiatefeinaer as an attacker's
estimation on the defender's preference paramgter Formally, we have the following
definition.

Definition 1 The reputation of the defender at the beginning of Roungi), is defined as

the posterior expected value g based on the outcomes of Rounds il-td.:
1
rp(i) = J'Oxp(x |outcomesf Roundq,...,i —1)dx (VII-10)

wherep(.) is the posterior probability density function/f based on the outcomes of Rounds 1
toi — 1.

We now prove the above speculation by showing the influende afefender’s reputation
on the attackers’ strategies. In particular, we considsimple defensive strategy to choose
betweery; = 0 or 1 based of, (this simplified setting will be important for the analysfsour
proposed schemes). In this case, we have the following theorem.

Theorem VII-2. When the defender choosgsn {0, 1}, an attackeA will not launch attack

ro (i) s A, (VII-11)

Proof: We will prove that when (VI-11) holds, the attacking strategyot launching attack

and a defensive strategy of setting
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0, with probabilityof 1- 3, ;
5= { P tyof 1~ 4, (VII-12)

' 11, with probabilityof 5,;
forms Nash equilibrium of the game. It is noteworthy that stheedefender can observe the
outcome of every previous interaction, the values@) is known to the defender.

Since each round follows the Stackelberg leadership model kétrattacker being the
follower, similar to the proof of Theorem VII-1, we first protleat for the given defensive
strategy, the attacking strategy of not launching attack isnaptWith the defensive strategy,
from the perspective of attackay, the expected probability of its attack being detected is 1 -

ro(i). Thus, wherA launches the attack, its expected utility function is

Expu,(i)) =10, (1) - B, WL -1y (1)) (VII-13)
When an adversa#; chooses not to launch its attack, the expected utili &f 0. As we
can see, Expi(i)) < 0 if and only ifrp(i) < fa/(fa +1). Thus, when (VI-11) holds, the attacker
cannot receive any benefit by unilaterally changing itdesisato launch its attack. Thus, for the
given defensive strategy, the attacking strategy of not launching ettaptimal.
We now prove that the defender cannot benefit by unilaterally ctmpitgistrategy either.

When the defender chooses the strategy in (VI-12), its utility function is

Uy (1) = =, L= ). (VII-14)
Suppose that a defender can increase its utility function by chafigmg’. Note that since the
attacker will not launch its attack whén= fp, there must bé’ > . Nonetheless, the attacker
(as the follower) will respond by choosing to launch its attaclums its expected payoff will

be greater than 0. In this case, the utility function of the defendelesatisf

Up (i) ==5p -0) — (A=) 0'< =5, L= Bp) = Up (1). (VII-15)



147

As such, the defender cannot benefit by unilaterally changingrategy either. Thus, the
attacking strategy of not launching attack and the defensirategy in (VI-12) form Nash
equilibrium of the game. That is, no attacker will launch the attack whetil] holds.

The Theorem VII-2 confirms our speculation that a tougher tggputé.e., smallerp(i))
may prevent certain attackers from launching attacks. Thudyasie idea of our reputation-
aware anomaly detection schemes presented in the next twonseidito reducep(i) by
manipulating defensive strategies in the initial rounds @raations, in return for much higher

payoff in the long-run.

3.c. Classification of Games

Since we aim to reduces(i) which is the attackers’ estimation gf, the attacker’'s pre-
knowledge abouyfy, is critical to the effectiveness of reputation-aware anomedgction. Thus,
before introducing reputation-aware schemes, we first tfatis¢ repeated games into two
categories based on the attackers’ pre-knowledge About
» Case A: In this case, the attackers do not know the exast w§p, (before Round 1),
and can only estimate the value based on i) a prior distributigp, @nd ii) observed
interactions. Since the attackers do not know the utility functidheodefender (which
depends omfp) as pre-knowledge, the games between the defender and therattac
contain incomplete information.
» Case B: In this case, the attackers know the exact valyg a$ pre-knowledge. As
such, the games between the defender and the attackers contain corfuphasgion.
In the following two sections, we will introduce reputation-avearemaly detection schemes

for the above two cases.
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4. Reputation-Aware Worm Detection: Case A

In this section, we will introduce our reputation-aware wornec&in scheme for Case A,
where the defender’s preference paramgies unknown to the attackers. We will first present
the detection algorithm, and then analyze its performance thedisetNumerical evaluation of

the algorithm will be presented in Section 6.

4.a. Algorithm A

In Case A, the attackers have no pre-knowledge afyouhn attacker can only estimatg(i)
based on the outcomes of previous interactions as well gsithalistribution offp. Thus, our
basic idea is for a soft defender to simulate the behaviartafigher one in the initial rounds of

interactions, in order to reducg(i) and to build a tough reputation.

Algorithm VIILA: for Case A

1: STATUS— UNESTABLISHED.

2: for each Round i do

3: if STATUS = ESTABLISHED then

4: 5 —1if fp = Bo; & — 0if pp = 0.

5: else if STATUS = EXPIRED then

6: 0i < 0o(fp)-

7. elseiffp = o then

8: o; < 0 with probability of ga/(pfs— p + 1) otherwise.
9: else iffp = 0 then

10: o; < 1 with probability of ga/(pfs — p + 1), O otherwise.

11: endif
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12: Sebt; as the tradeoff parameter for Round i.

13: Wait until an attack succeeds or is detected.

14: if STATUS = UNESTABLISHED and R(i) > i/2 then
15: STATUS- ESTABLISHED.

16: else if STATUS = UNESTABLISHED andn, then
17: STATUS- EXPIRED.

18: endif

19: end for

For the sake of simplicity, we assuifie to be either 0 (i.e., extremely tough) with
probability ofp or S, > 0 (i.e., relatively soft) otherwise. Since an extremelgh defender with
So = 0 always choose$ = 0, we only need to consider the cases wperel/(145,) because
otherwise no attacker will launch attack due to Theorem VII-2.

Algorithm VII.A depicts our reputation-aware anomaly detectionrsetfer Case A. In the
algorithm, R(i) is the number of detected attacks in Rounds 1, tg is a pre-determined
parameter on the number of rounds the defender intends to us&tasorgputation, ando(5p)
is the local optimum derived in Theorem VII-1. To help better tstdad the algorithm, we call
a defender tough ffp = 0 and as soft i = fo.

At the initial rounds (when STATUS = UNESTABLISHED), dtstefender choose$ = 0
with probability ofpfa/(pfa—p+1) while a tough one does so with probability opAp fa—p+1).
Once more than half of the previously launched attacks are etéot., R(i) > i/2), the
reputation of toughness is considered to be established (i.e., STATUSABEISHED). Then,
a tough defender always choogges 0 while a soft one choosés= 1. Note that once STATUS

becomes ESTABLISHED, it is never set to other valueddfreputation is not established by
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the end of Roundh, (i.e., STATUS = EXPIRED), the defender returns to its lagaimum
do(Bo)-

As we can see from Algorithm VIILA, our reputation-aware scheonsiders the anomaly
detection algorithm as a black box with input daf Thus, our scheme is transparent to the
underlying anomaly detection algorithms and can be used in variousaly detection
applications.

We now briefly explain the reputation-building mechanism in Afigori VILLA: When
STATUS = UNESTABLISHED, the strategy for a soft defendeiougher than its local optimal
strategydo(fp), while the strategy of a tough one is softer than its lopainum. Such deviation
(from local optimum) is designed to redugéi) when the defender is soft and to thereby allow a
soft defender to establish a reputation of toughness. As a result, we hfolothiag theorem:

Theorem VII-3. When STATUS = ESTABLISHED at Round

Bs
1+ B,

Proof: Suppose that STATUS = ESTABLISHED at the beginning of Rourvdhile

i (i) = (VII-16)

STATUS = UNESTABLISHED at the beginning of Round 1. Due to Algorithm A, there
must be at least/R] detected attacks in Rounds lite 1. Suppose that the number of detected

attacks igd (d> [i/2]) and

PBA

PYRrYL (VII-17)

Pr =

We have
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ﬂo(l_ p) pg (1_ pR)i_l_d
P(L-pg)* Py + (- p)prd—pr) ™
By (L= p) P

- p(l_ pR) + (1_ p) Pr
__ 5QA-p)pB,

pPA-p)+@A-p)pBa
S ﬁOIBA S IBA .

1+8, 1+pB,

rp (i) =

(VII-18)

Note that due to Theorem VI-2, no attacker will launch its attdenrp(i) satisfies (VII-
16). Without further observable interactiop(i) will remain the same after RoundThus, (VII-
16) holds whenever STATUS = ESTABLISHED at Round

Due to Theorem VII-2 and VII-3, after STATUS = ESTABLISHED,subsequent attacker
will launch attacks to the system.

As we can see, when STATUS = ESTABLISHED, a soft defendlenot issue any false
alarm and will also not present any undetected attack. Theigxpected utility of a defender is
0 for all subsequent rounds, higher than the utility of localmph whenpgp, = f. Thus, by
sacrificing the utility when STATUS = UNESTABLISHED isome initial rounds for building

reputation, the defender can obtain payback in later rounds due to the lestiatdjzutation.

4.b. Theoretical Analysis

As we mentioned above, a key property of Algorithm A is thaattacker will launch attack
when STATUS = ESTABLISHED. Thus, we first derive the probgbifior STATUS =
ESTABLISHED at the end of Round.

Theorem VII-4. Givenpp = ffo, when g is sufficiently large, the probability that STATUS =

ESTABLISHED after Round, is at leasppa/(1 —p).
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Proof: Due to Algorithm A, STATUS is either ESTABLISHED or EXPIRED after Ronnd
Let f(ng) be the probability that STATUS = EXPIRED after Rourd Note that STATUS =
EXPIRED if and only if there exisis< ny, R(i) <i/2.

We now derivd(ng) by transforming the problem to the monotonic path counting problem in
combinatorics. Consider a grid withx n square cells in Fig. VII-2. We start with the lower left
corner at Round 1. If an attack is detected @ e=,0), we move one step right along an edge of
the grid. If an attack is not detected (ic&.= 1), we move one step up. As we can sel(i)f<
i/2 holds for alli < ny, then the path never crosses the diagonal of the grid. Thus, intorder
derive the probability of STATUS = EXPIRED, we need to coimet number of paths that
satisfy the condition. Without loss of generality, we assumenth& even. Note that when nO is
odd, therf(nyg) =f(ng + 1). At the end of Rouni, the finishing point of the path can b, (0),

(no -1, 1), . . ., /2, Nny/2). Note that wher, y > 1 andx >y, the number of monotonic paths

from (0, 0) to X, y) which never crosses the diagonal is

+ +
g(x,y) = (X y] —(X y} (VII-19)
y y-1
Since the number of monotonic path from (0, Onp @) is 1, letg(ny, 0) = 1. Suppose that
0, = PPa (VII-20)
PBA—P+1

The probability that STATUS = EXPIRED after Roumgis

Nos2

f(ny) = z Pr-pr) 7 a(n, -y, Y)

y=0 (VII-21)
= Z P (- pR)”°'y(n°j—nof p (- pR)”°‘y(n° j
y=0 y y=0 y_l

Note that the first component of (VII-21) is the cumulativeébability fromy = 0 toy = ny/2

for a binomial distribution with meangpg and variancengpr(1—pr). Whenng is sufficiently
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large, such binomial distribution can be approximated by a normabdign with the same

mean and variance. Thus, we have

_ 1-2pg n, (1-2p)* 1-2pg
f(n,) = ——"R_(L+erf < . VIl-22
( ) 2(1_ pR)( ( 8p(1_ p) )) 1- Pr ( )

where erf(.) is the Gaussian error function. That is, the prilyafor STATUS =
ESTABLISHED after Round, is at least 1 #(ng) = psa/(1 —p).

As we can see from the theorem, whenis sufficiently large, there is a fairly large
probability for STATUS to be ESTABLISHED, such that no subsegaé&acker will launch
attacks while no false alarms will be issued by a soft defender. Fopkxamnenp = 1/3 angia
= 1, the probability of no launched attack after Rooyi at least 1/2 whemy — . In fact, as

we will show in Section 6, the probability of no launched attack increasadyqwiith n,.

.................

_____________________________

Undetected
S -

Fig. VII-2n x n Grid

Based on the theorem, we have the following corollary on thty dtihction of the
defender.
Corollary VII -1. If ng is sufficiently large, when Algorithm A is used, the expegayoff

of a soft defender satisfies
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jim Yo > 1P PBa 1 vit(9). (VII-23)
n-o N 1- p J

Proof: Due to Theorem VII-2, VII-3, and VII-4, when, is sufficiently large, the
probability that STATUS = EXPIRED after Roumd is at most (1p—pfa)/(1-p). Note that
when STATUS = ESTABLISHED, the expected payoff of a soft defeigld€r because no
attacks will be launched while no false alarm will be teiggl (due t@; = 1). When STATUS =
EXPIRED, the expected payoff of a soft defender is;m&). Thus, the expected payoff of a
soft defender satisfies

lim Yo > 1-p=phs maxu’ (J). (VII-28)
noo N 1- p )

whenn is sufficiently large.

4 .c. Extension

We now briefly discuss the extension of Algorithm VII.A tevaler variety of system settings,
where an attacker may launch multiple attacks, and mulighe cooperative attackers may
commit to their joint (rather than individual benefits). Notet th@se two cases are essentially
the same as we can always model attacks from fully cooperatiiackers as multiple attacks
launched by a single attacker.

For these system settings, the only change required for Algovittbwnis to assign the same
o; for all attacks launched by the same attacker. By doingrsaftacker cannot obtain a better
estimation offp by launching multiple attacks because the outcomes faf @ subsequent
attacks are exactly the same as the outcome of its first attack

As we can see, as long as each attacker can only lautemfimber of attacks, Theorem
VII-4 and Corollary VII-1 always hold, with the only exception bethgt the required, may

be larger due to the number of (essentially) duplicate attackers launchedtigcker.
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5. Reputation-Aware Worm Detection: Case B

In this section, we will introduce our reputation-aware worm detection scloer@ase B, where
the preference parametgs is known by the attackers as pre-knowledge. We will fires@nt
the detection algorithm, and then analyze its performance thedisetNumerical evaluation of

the algorithm will be presented in Section 6.

5.a. Algorithm B

Algorithm VII.B : for Case B

1: if fp does not satisfy (VII-4) then

2:  use the local optimal strategy in Theorem VII-1 and exit;
3: else

4:  Randomly choogk based on (VII-29).

5: STATUS— UNESTABLISHED.

6: end if

7: for each Round i do

8: if STATUS = ESTABLISHED then

o: g — 0iffr=0,0 — 1iffr=1.

10: else if STATUS = EXPIRED then

11: 8 — 6o(Bp).

12: elseifip = 1 then

13: o0; — 0 with probability of g, 6, < 1 otherwise.
14: else iffp = 0 then

15: 0; — 1 with probability of g, 6; < 0 otherwise.
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16: endif

17: Set; as the tradeoff parameter for Round i.

18: Wait until an attack succeeds or is detected.

19: if STATUS = UNESTABLISHED and R(i) > i/2 then
20: STATUS- ESTABLISHED.

21: else if STATUS = UNESTABLISHED amdhj then

22: STATUS- EXPIRED.
23: end if
24: end for

In Case B, the attackers knows the exact valgg a$ preknowledge. Due to Theorem VII-
1, an attacker will only attack a defender with preferencanpeater satisfying (V1l-4). Thus, we
only need to consider these defenders in this section.

Algorithm VII.B depicts our reputation-aware anomaly detection schen@ager B. For the
sake of simplicity, we assume that a defender may only chmseeens; = O and 1, but may
mix the two choices with certain probability distribution. In #igorithm, R(i), no, anddo(fp)

have the same meaning as in Algorithm VII/,is chosen randomly based on the following

distribution:
5 {o, with probability1- /By ; ViI-29)
1, with probability/A, ;
and
o = PalVBy) (VI1-30)

C(Ba-DA-+B) +1
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In order for the defender to establish a reputation of toughimegdgorithm B, we first
introduce uncertainty to the defender’s toughness by a random pargmeiccording to the
algorithm, unless STATUS = EXPIRED, the defender chooses itegfrbased ofir instead of
its real preference paramejgy. This requires the attackers to estim@tén order to respond to
the defensive strategy, and opens spaces for the defender to edbdightation.

Specifically, to help better understand the algorithm, we retfender as “tough” if the
random parametgiz = 0 and as soft ifr = 1. Note that Algorithm B is essentially similar to
Algorithm A with fr replacingfp. At the initial rounds (when STATUS = UNESTABLISHED),
a soft defender choosés= 0 with probability ofpz while a tough one does so with probability
of 1 —pr. Once more than half of the previously launched attacks aretetktg.e.,R(i) >i/2),
the reputation is considered to be established (i.e., STATUSTABISSHED). Then, a tough
defender always choose% = 0 while a soft one chooses = 1. If the reputation is not
established by the end of Round n0 (STATUS = EXPIRED), the deferaietegy returns to
its local optimunvy(fp).

Suppose thak(i) is defined in analogy toy(i) as the attackers’ estimation &f. Similar to
Algorithm A, the basic idea of Algorithm B is to establish raegion of toughness (i.e., reduce
Pr) by deviating from the local optimal strategy. We have thieviing theorem for Algorithm
B:

Theorem IV-5. When STATUS = ESTABLISHED at Round

re(i) = % (VII-31)

Proof: Suppose that STATUS = ESTABLISHED at the beginning of Roundhilew

STATUS = UNESTABLISHED at the beginning of Round 1. Due to Algorithm B, there
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must be at least/R] detected attacks in Rounds lite 1. Suppose that the number of detected

attacks igd (d> [i/2]) and

Pr(1) =pﬂ#@;+1- (VII-32)
We have
r (|) — \/ﬂ_ng (1_ pR)i_l_d

(-Bo)(A~ Pr)* P +/B5 PE (L pg) ™
. JBs Pr
A-/B5 )1~ pr) ++/ B, Ps (VII-33)
- \/E A(l_\/lB_D)
W=~ Bo WBs +Bo B (1=B5)
< P
1+,

Note that due to Theorem VII-3, no attacker will launch tescltwhenrp(i) satisfies (VII-

16). Without further observable interactiop(i) will remain the same after Roundrl'hus, (VII-
16) holds whenever STATUS = ESTABLISHED at Roun@®ue to Theorem VII-2 and VII.5,
after STATUS = ESTABLISHED, no subsequent attacker will launclelattathe system.

Note that a soft defender obtains payback once the reputation isshethblis we can see, if

STATUS = ESTABLISHED at Round the expected utility of a defender is
Uy () ==8, Pr(Bg =0) ==L, 1-/5p)- (VII-34)
For a defender of concern in Case B (i.e., satisfies (VIItdip is always greater than the
expected utility fo — 1) from the one-round local optimuis(p).

5.b. Theoretical Analysis

Similar to the analysis of Algorithm A, we first derivlet probability for STATUS =

ESTABLISHED at Rounahy:
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Theorem VII-6. When nq is sufficiently large, the probability that STATUS

ESTABLISHED after Roundh,is at least

ﬁA (1_\/ IBD )/\/ ﬁD ' (VII1-35)
Proof: In analogy the proof of Theorem VII-4, we can prove that the pilitlyathat

STATUS = EXPIRED after Rouna, is

1-2py

f(n,) < (VII-36)

Pr

Note that for Algorithm B,

:BA(l_\/ :BD)
= ] VII-37
P (ﬂA_l)(l_\/ﬂD)"'l ( :

Thus, the probability that STATUS = ESTABLISHED after Roosndatisfies

1- f(no)zl_p':) = ﬂA(%/_ﬁ_\/E). (VII-38)

As we can see from the theorem, there is a fairly largbapility for STATUS to be

ESTABLISHED, which prevents the forthcoming attacker from laing attacks. For example,
whenga = 1 andfp = 2/3, the probability of no launched attack after Rooyid at least 22.4%.
Based on the theorem, we have the following corollary.

Corollary VII-2. If ng is sufficiently large anghy satisfies (VII-4), when Algorithm B is

used, the expected payoff of the defender satisfies

lim 2o > Uy +M(1—2,8D + B39, (VII-39)
new JBo

whereu is the utility function of a defender taking local optimal strategy withd(fp).
Proof: When STATUS = ESTABLISHED after Rouna), the expected utility of the

defender is
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Exp(u, (1)) =~~~/ 55 ) Bo- (VI1-40)
When STATUS = EXPIRED, the expected utility of the defender is
U, =B -1 (VII-41)

Since the probability that STATUS = ESTABLISHED after Roupds at least

B Q=) Bo (VII-42)

whenn is sufficiently large, the expected payoff of the defender satisfies

lim 2o > Uy +L\/'B—D)(1—2ﬁD + B39, (VII-43)
new JBo

Similar to the extension in Section 4.c, we can also ext&gatithm VII.B to the system
settings with attackers launching multiple attacks or fotlgperative attackers. Theorem VII-6
and Corollary VII-2 still hold for these scenarios, with théya@xception being that a largeg

may be required due to the duplicate attacks launched by an attacker.

6. Performance Evaluation

In this section, we show the derived optimal strategieshiidefender and the attackers in the
game. The numerical results actually demonstrate the detaetie and false positive rate in a
state consisting of the optimal strategies, and thus cansed to demonstrate the real
performance of systems using our reputation-aware schemes.

In particular, we compute the numerical results of AlgoritMiisA and VII.B based on a
real-world case study of applying our reputation-aware schema &xisting worm detection
approach [31] which detects anomaly of scan traffic generatedrim propagation by issuing

an alert when the rate of observed scan traffic exceedseahtid computed from the
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background traffic. Note that with a lower threshold, a wormase likely to be detected, but a
higher false positive rate will also be generated, leairaytradeoff between detection rate and
false positive rate. Again, we would like to remark that in ¢hispter, we are not promoting any
specific anomaly detection algorithm. Instead, we use the sasly to show that the
incorporation of a defender’'s reputation can enable defensivemss that achieve better

tradeoff between detection rate and false positive rate.

Table VII-1. Tradeoff between Detection Rate and Fase Positive Rate

Threshold Ratior( 12 |15 |18 |21 |24 |27 |3
Detection Rate 0.86 0.72 058 044 0/29 0.15 @0.01
False Positive Rate 0.98 0.93 067 0138 Q.27 0.14 0.1

Algorithm 1, p=04

Probability of Attack After ry Rounds

0 10 20 30 40 50
Number of Rounds (nU)

Fig. VII-3. Probability of Attacker Launching Attack After Raynd
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In order to determine the numerical valuek@f, we use a real-world log of traffic data, the
DShield logs provided by SANs ISC as background traffic [25]ndtudes records of scan
recorded between January 1, 2005 and January 15, 2005. We use data ongart 8gaanple.
According to the background traffic recorded by the DShieldi¢radfs, the mean and variance
of the number of scan packets recorded per minute=s31 ands® = 92.97, respectively. We
consider a pure-random-scan worm targeting a population of 350,000 Wlgnkosts on the
Internet with 100 scans per minute. We define the detection rétte asobability that a worm is
detected within 600 minutes after the start of its propagaWdith detection threshold (on
observed scan traffic) being+r-o, wherer in [1, 4] is the threshold ratio, we compute the
tradeoff between detection rate and false alarm rateg sgamples of which are shown in Table

VII-1. Note that the values are normalized to [0, 1].

Algorithm 1, p = 0.4, Arbitrary B, € (1/2, 1)

N - #—- Single-Stage Optimum
AN : —6— Algorithm 1

o
-
T

False Alarm Rate (Z; |(3,)h)
(=]
w

<
&)

o
.

(=)

N

[43]

o

[4:]

o :
w :
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(4]
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[4,]

Fig. VII-4. Comparison between Algorithm A and Local Optimal Strabggy
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Algorithm 2, B, = 2

. o
o o
- [

.

Payoff of the Defender (uy)
o
o

0.2 :
, 4 —#=- Single-Stage Strategy
P ; —&— Algorithm 2
/ :
-0.25 i i I I
0.75 08 0.85 09 0.95 1
Pp

Fig. VII-5. Comparison between Algorithm B and Local Optimal Stragegy

Based on the data, Fig. VII-3 shows the probability that an attAclaéth i > ng launches its
attack when Algorithm A is used. We demonstrated the cases njemeges from 1 to 50, the
defender'ssp satisfies Pr{fp = 0} = p = 0.2, and the attacker’s preference paramgter {1, 2,

3, 4}. As we can see, the probability of attack decreases rapidlg n, increases. In particular,
when fa = 4, the probability that an attacker launches an attaek &€ rounds is less than
11.3%.

We also evaluate the performance of Algorithm A based on lHe darm rate required to
force all attackers after Roumg not to launch their attacks. Fig. VII-4 shows the false alarm
rates for Algorithm VII.A and the local (one-round) optimal gggto, whenng = 50,p = 0.2,
and the attacker’'s preference paramgieranges from 1 to 9. As we can see, our reputation-
aware scheme in Algorithm A significantly reduces the nunafegenerated false alarms. In
particular, wherg, = 9, the false alarm rate of Algorithm A is only 18.3%la# local optimal

defensive strateg.
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For systems where the defender’s preference parameteeddyaknown by the attackers,
when Algorithm VII.B is used, the loss of the defender (fromsedsattacks and false alarms) is
shown in Fig. VII-5. We sefi, = 2 andn, = 50. We compare the loss with the local optimal
defensive strategy,. As shown in the figure, our reputation-aware scheme reducdssthef
defender, especially whefy is small. Whengp is large, the defender has no concern about
detection rate, making the reputation of toughness less usdfuk, The performance of

Algorithm B converges to that of the local optimum wiggr— 1.

7. Summary

In this chapter, we proposed the countermeasure based on estallishiefender’s reputation
of toughness to improve the performance of worm detection. We casical-world system

settings with multiple incoming worm attackers that coltake by sharing the history of their
interactions. We formalized such systems through a game-tleefnetiulation for the repeated
interactions between the defender and multiple worm attadRased on the formulation, we
proposed generic algorithms to improve the performance of wornctidetesystem by

incorporating the defender’'s reputation. We further classifrexl repeated games into two
categories based on whether the attackers have completeatifor about the defender’s
objectives. We presented the basic ideas, detailed algoyitAnts theoretical analysis of
reputation-aware anomaly detection approaches for the twoodategWe demonstrated the
effectiveness of our scheme by numerical studies on the studyprofi detection. Our data
validates our findings and indicate that incorporating reputaigon significantly improve the

performance of anomaly detection systems. As part of our futark, we are applying this

framework to investigate the defender’s reputation and ganoeytlamalysis on other security

applications and systems.
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CHAPTER VIII

CONCLUDING REMARKS

In this dissertation, we have systematically studied comme@sures against worm attacks,
namely traffic-based and non-traffic based countermeasures.affa-iased countermeasures,
we propose our approaches and develop countermeasures by identiyviackey features of
worm propagation and probing attack traffic. For non-traffic h@eeintermeasures, we propose
approaches that robustly capture dynamic signatures of wormapragrecution, test a feature
of contradicted objectives, and incorporate a defender’s ability todlafginst worm attacks.
This dissertation develops a framework that allows us tty siath traffic related features
and non-traffic related features and, hence, to develop counternseagaiast worm attacks.
The problems addressed in the proposed research are importanttheothtically and
practically. Particularly, the developed results lay theritical foundation for countermeasures
of worm attacks and help us to understand problem and solution. spaeetechniques

developed for countermeasures are practical and hence can be applietvtoldesystems.
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