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ABSTRACT

Variable Length Pattern Coding for Power Reduction in Off-chip Data Buses.

(May 2008)

Jayakrishnan Venkitasubramanian Iyer, B.E., National Institute of Technology

Karnataka, Surathkal, India

Chair of Advisory Committee: Dr. Eun Jung Kim

Off-chip buses consume a huge fraction (20%-40%) of the system power. Hence, tech-

niques such as increasing bus widths, transition encoding etc. have been used for

power reduction on off-chip data buses. Since capacitances at the I/O pads and in-

terwire capacitances contribute significantly to increase in power, encoding/decoding

schemes have been developed to reduce switching activity of the off-chip bus lines,

thus reducing power. Frequent-Value Encoding(FVE) [1], Frequent Value Encoding

with Xor (FVExor) [1] and VALVE [2] are some of the better known encoding schemes

but they still have scope for improvement.

This thesis addresses the problem of power reduction in off-chip data buses by

encoding variable number (1 to 4) of fixed-size (32-bit) data values (variable length

patterns) which exhibit temporal locality. This characteristic enables us to cache

these patterns using 64-entry CAM at the encoder and 64-entry SRAM at the decoder.

Whenever a pattern match occurs a 2-bit code indicating the index of the match is

sent. If a variable length pattern match occurs then the code and unmatched portion

of data is sent.

We implemented our scheme, Variable Length Pattern Coding (VLPC) for vari-

ous integer and floating point benchmarks and have seen 6% to 49% encodable pat-

terns in these benchmarks. Based on the experiments on simplescalar and our anal-

ysis in MATLAB, we obtained 4.88% to 40.11% reduction in transition activity for
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SPEC2000 benchmarks such as crafty, swim, mcf, applu, ammp etc. over unencoded

data. This is 0.3% to 38.9% higher than that obtained using FVE, FVExor [1] and

VALVE [2] encoding schemes. Finally, we have designed a low-power custom CAM

and SRAM using 45nm BSIM4 technology models which has been used to verify lower

latency of data matching and storing.
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CHAPTER I

INTRODUCTION

Power optimization is very critical due to its applications to varied domains such

as embedded systems, mobile computing environment and other general computing

devices. Most of the devices dissipate power dynamically due to charging and dis-

charging of capacitances at the I/O pins. The interwire capacitances between adjacent

wires also contribute to dynamic power. Due to 20-40% of the overall system power

being consumed by off-chip buses, we see huge scope for power savings at that level.

Reduction of switching activity on bus lines reduces dynamic power dissipation at

the processor I/O pads, bus drivers, as well as individual bus lines. Hence, previ-

ous studies have focused on reducing the switching activity of adjacent wires using

transition encoding/decoding. This is achieved by reducing the hamming distance1

between consecutive values sent over the off-chip buses. The trade-off is a slight in-

crease in capacitances of internal nodes which is much less than that of off-chip bus

capacitances, thus increasing power savings.

Encoding/Decoding methods to reduce power at bus-level can be mainly classi-

fied as data bus encoding and address bus encoding. These schemes can either be

general in nature and hence applicable to both domains [3][4][5] or specific such as

[1][6][7][2][8][9] for data bus encoding and [10][11][12][13] for address bus encoding.

Addresses sent over the bus being incremental in nature as well as previous studies on

address bus encoding do not leave much room for improvement. In this thesis work

we mainly concentrate on data bus encoding due to much higher randomness (both

The journal model is IEEE Transactions on Automatic Control.

1The hamming distance between 2 n-bit binary sequences is the number of bit
positions k in which they differ.
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spatial and temporal) found in data bus traces rather than address bus traces.

Among these schemes we primarily look at the popular schemes, Frequent Value

Encoding (FVE) [1], Frequent Value Encoding with Xor (FVExor) [1] and Variable

Length Value Encoding (VALVE) [2]. These schemes have certain drawbacks which

we discuss here. Access to the same memory location in most cases do not occur

consecutively, hence hamming distance between consecutively coded data is 2. Also,

size of the Value Cache (VC) at both encoder/decoder ends is too small viz. 8, 16,

32-entry and is constrained by maximum bus width leading to ineffective utilization

of frequent values in the data stream. Frequent value encoding with Xor (FVExor) [1]

reduces bit switching for consecutively coded values (from 2 to 1), but in certain cases

of non-consecutively coded values it decreases performance. In [2], Yang et. al. focus

on coding partially matched data in a given 32-bit value. Fixed partial matching (16,

24, 32-bit) is not very useful due to, excessive data comparison in CAM at encoder

and decoder.

Additionally, we extract data traces for different SPEC2000 benchmarks using

the simplescalar out-of-order processor simulator. Analysis of these data traces show

a large number of consecutive 32-bit data values (1 to 4) exhibiting the property of

temporal locality. We call these variable length (1 to 4) consecutive 32-bit data values

as encodable patterns. The frequent observation of these encodable patterns motivates

us to cache them and encode them. We keep a sliding window of size k ∈ [1, 4]

which we use to sample the data from the memory buffer at the encoder and the

bus buffer at the decoder. Preliminary experiments with a window size of 4 show a

high percentage of encodable patterns ranging from 6% to 49% for various SPEC2000

benchmarks.

Therefore, in this thesis we focus on reduction of switching activity by encod-

ing variable length data patterns, spaced out over time. We keep a Variable length
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Pattern CAM/cache at both ends(encoder/decoder) to keep track of frequently ob-

served consecutive 32-bit data values (1 to 4 sized data patterns) and send a simple

2-bit code instead of the original code. At the other end of the bus it is decoded

before forwarding it to the Unified L2 cache. Using this scheme we get a 4.88% to

40.11% reduction in power over a purely unencoded scheme for various SPEC2000

benchmarks.

Chapter II gives an insight into the related literature on reducing power on off-

chip data buses using various encoding techniques, details of problem statement are

sketched out in chapter III, our algorithm and explanation follow in chapter IV with

experimental results in chapter V and lastly we conclude with comments and future

enhancements in chapter VI.
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CHAPTER II

BACKGROUND AND LITERATURE

A. Bus Energy Model

The first step is to define the bus energy model which will serve as the backbone to

understand the relevant research done in the past. In this thesis we use the following

energy model, suggested by [14]. Energy consumption for the bus per cycle can be

given as,

Eeff = αswitch · Ceff · Vdd · Vswing (2.1)

= αswitch · Ceff · V 2
dd (2.2)

where αswitch is the number of bitlines that switch on the bus for a single cycle, Vdd

is the source voltage and Ceff is the effective bitline capacitance. Also, in the second

equation Vdd is an upper-bound on Vswing, as for buses, Vswing < Vdd. Now as all the

bitlines do not switch, we have for K cycles, according to [8]

Eeff =

(
K∑

i=1

(αswitch)i

)
· Ceff · V 2

dd (2.3)

where (αswitch)i is the number of bitline switches at the ith cycle. This is the dy-

namic power consumed by the bus over a period of K cycles. Bus capacitance mainly

depends upon the following factors namely, switching activity, supply voltage, effec-

tive bus capacitance (which can be a combination of diffusion capacitance, interwire

crosstalk capacitance, driver capacitance, capacitances at the I/O pads etc.). From

the above equations it can be seen that the reducing the switching activity on the

adjacent bitlines can lead to a significant reduction in the off-chip data bus energy

consumption, primarily due to a direct impact on interwire capacitances and capaci-



5

tances at the I/O pads.

B. Power Reduction Strategies for Off-chip Buses

After a brief introduction to the subject of power dissipation at the bus level in the

previous section, it is important to look at the previous work that has been done

in this subject. Most of the work done to reduce power dissipation on bus lines is

generally classified into the following approaches:

• Changing the bus topologies or widening buses but at the cost of increased cross

sectional areas.

• Applying optimal algorithms to Place and Route tools so as to achieve minimal

cross talk. The main problem associated with this approach is scalability and

its application to off-chip buses.

• Bus encoding techniques so as to reduce bitline switching between adjacent

bitlines as well as among consecutive words communicated over the bus lines.

In this thesis we employ an encoding algorithm to reduce power, hence it is im-

portant to look at the various bus encoding schemes. Some of the important contri-

butions to reduce power of the off-chip data bus using encoding/decoding techniques

are detailed in the next section.

C. Literature Survey

In this section we discuss encoding in both the domains, data bus encoding and

address bus encoding.
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1. Data bus encoding

• Bus Invert Coding

In its nascent stage there were advances made by Stan/Burleson in [3] to re-

duce the transition activity on the bus lines by introducing a technique called

Bus Invert Coding. The authors sent inverted bit sequence whenever Hamming

distance of consecutive words to be sent over the bus was high. They indicated

this inverted word using an additional bitline. This was a seminal work with

respect to bus encoding techniques. This was improved upon by [4] which is a

variant of bus-invert coding. Of significance are the schemes, partial bus-invert

coding and multiway partial bus-invert coding [4]. In this scheme, Shin et. al.

address the issue of redundancy of bus-invert coding for bus lines which are

relatively inactive for most of the data transfer or are uncorrelated. They elim-

inate this redundancy by identifying highly correlated bus lines and clustering

them as groups of subbuses. Each such subbus is encoded independently after

clustering. The main disadvantage of bus-invert coding and its variants is their

generic nature. Hence these schemes are not able to take advantage of temporal

properties of different applications thus leading to modest power savings

• Bus coding considering inter-wire capacitances

Some of the bus encoding techniques [15][16] specifically model buses according

to the dynamic power consumed due to inter-wire capacitances while transmit-

ting data over the bus. In this scheme the value (n = m + a bits) sent over the

bus at time t, L(t) consists of the data part, LD(t) (m bits) and the control

part, LC(t) (a bits). Thus control part (a bits) is calculated using an energy

function E = f(D(t)
⊕

Pr, Jr, L(t − 1)), where D(t) is the original data to be

encoded at time t, L(t − 1) is the the coded value sent over the bus at time
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t− 1 and r = 1, 2, .., 2a − 1. The authors use a linear combination of predefined

set of basis vectors Y = Y1, Y,..., Ya to construct vectors P = P1, P2, ..., P2a−1.

Also, Jr is r in binary form. At the decoder end the multiplexer uses the control

bits (|LC(t)| = a) to select one of the Prs which eventually aids in getting the

decoded data D(t) using LD(t)
⊕

Pr. [16] also builds on this previous scheme

to take a more theoretical approach to bus coding for deep submicron bus tech-

nologies.

• Dictionary-based and Frequent Value Encoding schemes

In [17], Tiehan et. al. introduce an adaptive dictionary based encoding/decoding

scheme so as to exploit temporal locality of the data transmitted over the bus.

They use an adaptive updating mechanism to keep track of transition patterns

over time. A similar approach is applied in [1] where Yang et. al. keep a

Value Cache (VC) at each end of the bus to keep track of frequent values that

have been transmitted over the bus over time. If a frequently occurring value

is encountered then the index of the value is sent using a one-hot code, else

the unencoded data is sent. They used two approaches to keeping track of

frequent values, that of keeping the set of frequent values fixed and that of

run-time updation of the value cache. They also use correlator-decorrelator

pair which uses the XOR’ing function to reduce switching among consecutive

codewords. Suresh et. al. [7], improve over FVE by removing external control

signals as well as to have independent MSB-LSB tables for exploiting partial

data matches. Some other papers which solve the problem using the same fun-

damental concept of using a Value Caches (VCs) for encoding frequent values

are Variable Length Value Encoder (VALVE) [2] and Power Protocol [6]. Vari-

able Length Value Encoder VALVE [2] is important encoding scheme that we
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compare against in this work. Yang et. al. [2] concentrate on coding partially

matched data in a given 32-bit value. The partial matches are fixed to be 32,

24 or 16 bit with individual caches for each of the partial matched data. Every

data value is compared against all these three CAMs and code is generated ac-

cording to the maximally matched value (32, 24 or 16-bit). Some disadvantages

to these schemes are constrained size of Value Cache in FVE [1], which leads

to ineffective utilization of frequent values in a working set while VALVE [2]

suffers from excessive data comparisons in the 3 CAMs.

• Encoding schemes based on Frequent value encoding with conceptual

and architectural-level modifications

Suresh et. al [18] propose a scheme wherein they observe consecutive words to

identify hot bits (more transitions) and silent bits (less transitions). These bits

which have been identified are encoded independently, for which the authors

use an off-line profiling mechanism. They use an M-hot code to encode the hot

and silent bits. Two control signals are used, external for indicating whether

data(0) or code(1) has been sent on the entire bus, and internal for indicating if

the code is available on the upper segment(0) or both segments(1), upper and

lower. Through [9], the authors introduce a modified architecture for the the

Value Cache (VC) used for Frequent Value Encoding. They have proposed a

Hierarchical Unified VC (HUVC), which has multiple cache levels each storing

32-bit data values, while the Hierarchical Combinational VC (HCVC) has mul-

tiple cache levels, with monotonically increasing number of smaller sized caches

at each level. The HUVC has the cache levels ordered as a binary tree. Thus [9]

tries to reduce power consumption through architectural modifications to the

Value Cache used in FV encoding [1]. Due to the fundamental encoding scheme
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used in these enchanced schemes is FVE [1] it suffers from inherent problems

of that scheme.

• Theoretical approach to find optimal codewords for a non-adaptive

memoryless encoding scheme

In [8], Chee et. al. show a more theoretical approach to minimizing the bit

transitions in off-chip data buses. Also, this work is of significance due to its

use of a memoryless approach to encoding rather than a conventional approach

of adaptive encoding schemes which store information observed in the past.

They have developed optimal and explicit codes which can be constructed in

polynomial time over the input data set, S ⊂ H(n) where H(n) is Hamming

n-space defined as the set {0, 1}n where for each u, v ∈ H(n), hamming distance

dH is the number of bit positions in which u and v differ. The authors prove that

the codes obtained are optimal and reduce power significantly at the bus-level.

The codes have been shown to be theoretically optimal while being memoryless

but the performance trade-off associated with the coding scheme has not been

considered. Thus the scheme is practicable only if it power/performance trade-

off is low for different applications.

• Prediction-based approach to encoding for power reduction Yatish et.

al. [19] use a prediction based encoding approach to reducing transitions on

buses (also called transcoding). Although, the proposed approach is mainly

geared towards on-chip data buses, the coding schemes are general in nature

and use classical data prediction approaches such as stride-predictor, LAST-

value predictor, context-based predictor. Also they explore encoders like the

inversion encoder and spatial encoder. As this method is mainly developed for

on-chip buses it would difficult to adapt it for off-chip buses due to increase in
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latency whenever any data value is mispredicted. Also, mispredicted data has

to be sent again leading to reduction in power savings if measured over n cycles

of operation.

2. Address bus encoding techniques

In this subsection, we introduce the address bus encoding techniques. Address bus

encoding is different from data bus encoding due to much less randomness found in

the addresses generated by the processor and are generally found to be consecutive

in nature, thus leaving a huge scope to encode them. Physically, the codes can be

classified into redundant and irredundant codes. irredundant codes are those which

transmit fixed k-bit patterns to encode 2k data words, while redundant codes are

those which transmit additional redundant bits for better performance. The most

important motivation behind address bus encoding is that of the following:

• reduced hamming distance leads to reduction in transition activity thereby

yielding power savings

• the previous goal can be attained by exploiting heavy spatial locality exhibited

by addresses transmitted over the address bus.

[11][20][10] have made important contributions to developing schemes to reduce

switching activity over the address bus. [10] uses irredundant gray code to encode

stream of consecutive addresses, while [11] improves on this scheme by using an extra

bitline INC and raising it high to indicate consecutive addresses. Here, the bitlines

are frozen to reduce bitline activity when consecutive addresses are found. INC

remains low for non-consecutive addresses and normal transaction occurs over the

address bus. [20] introduced the T0-XOR scheme which reduced switching activity

of address buses by almost 74%. The encoder is given by the expression, B(t) =
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b(t)
⊕

(b(t− 1) + S)
⊕

B(t− 1) where B(t) is the codeword at time t and b(t) is the

sourceword at time t. They also proposed the Offset-XOR code which is given by

B(t) = (b(t)− b(t− 1))
⊕

B(t− 1). Most of the schemes for address bus encoding are

on the same lines as that of those described in the previous section for data buses.

D. Summary

In this chapter we laid the groundwork by describing in brief the low-level details

of the influential factors such as interwire capacitances and substrate capacitances

on dynamic power dissipation with energy models. Also, we delved into the previous

works done on energy reduction using encoding schemes. We categorized the different

techniques used (data/address bus encoding) and put each relevant work into perspec-

tive. Our work falls into the category of Dictionary-based encoding schemes where

data patterns are tabulated adaptively to obtain power savings. In this approach we

do not use an off-line profiling scheme to set initial parameters, but it can be done

in order to achieve customized results depending on the application in consideration.

The next chapter explains the details of the problem, while laying out the foundation

for our algorithm which is explained in detail in chapter IV.
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CHAPTER III

PROBLEM DETAILS

A. Insight into the Problem

An architecture-level block diagram which serves as an example for our data bus

encoding scheme (Variable Length Pattern Coding, VLPC) is given in Figure 1. Here,

we have a data pattern (3 consecutive 32-bit words) which is encoded using a 2-bit

code at the encoder module and sent over the off-chip bus. This 2-bit code is the

index into a Content Addressable Memory. The decoder module uses this 2-bit code

to retrieve the original data from its cache.

Fig. 1. Encoding variable number (3, here) fixed-length (32-bit) data streams

Data bus encoding techniques in literature have been discussed in the previous

section. Some solutions to the drawbacks in those schemes could be summarized here.

• In FVE [1] Hamming distance between consecutively coded data is 2 ⇒ disad-

vantageous for related data. Hence, to overcome this problem, we adaptively
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encode variable number of fixed-size (say, 32-bit) streams (depending on the

bandwidth of the bus) to effectively utilize repeating patterns.

• In FVE [1] size of the Value Cache (VC) at both encoder and decoder ends is

too small viz. 8, 16, 32-entry, constrained by the coding scheme. Hence, we

use increased number of entries in the CAM/cache for effective utilization of

frequently observed data patterns.

• In VALVE [2], excessive data comparison in CAM at encoder and decoder leads

to increased power consumption. We overcome this by using a bank-precharging

strategy where we shut off k− i CAM banks if there are misses in the ith CAM

bank, thus reducing power. Here k ∈ [1, 4] and i ∈ [1, k).

In addition to overcoming the disadvantages of the previous schemes, we take

advantage of the variable length data patterns which are read from the memory and

are observed frequently over time. Considering a 64-byte block is read from the

memory, there are consecutive 32-bit data values which are repeated over a period of

time. An example of 3 consecutive words that are repeated periodically during the

run of the ammp SPEC2000 benchmark on simplescalar processor simulator is seen

in Figure 1.

As our scheme keeps track of the data patterns observed in the past, it is impor-

tant to consider the following two approaches to storing data values,

• Fixed Values : This is done by doing an off-line profile of the entire data transfer

between chip and memory and tabulating frequently occurring values, which in

our case would be variable length 32-bit patterns. These values once fixed are

not changed over another run of the particular application.

• Adaptive Updation: In this approach we have a control circuit which samples the



14

data from the memory buffer and checks the CAM for partial or full matches.

It accordingly updates the CAM banks or sends out the code, in the event of a

miss or a match, respectively.

The approach to keep the values in the CAM/cache fixed is a simple but rather

inflexible solution. The advantages of having a fixed CAM/cache are, non-requirement

of the control circuitry for updation and maintenance of data values, elimination of

the need for implementing a replacement policy such as LRU/LFU and effectiveness

for individual applications in the case of a small set of frequent values. The main

drawbacks include, a lack of flexibility across multiple applications, need for off-line

profile before running the actual application and if the CAM/cache size (number of

entries) is small then it might not be able to fully utilize the frequent values for

various working sets1 of an application.

In our case the cons outweigh the pros mainly due to the fact that for most

applications the frequent values do not remain constant over a period of the entire

application lifetime. Also, doing an off-line profile for each application is cumbersome

and time-consuming. Hence, we decide to go with the on-line updation mechanism

for the CAM/cache.

B. Summary

In this section we took a look at the the problem at hand and listed the drawbacks

of the popular encoding/decoding methods for reducing transition activity. Then we

detailed certain areas which could be improved upon, especially the variable number

of cache entries that could be used which is not tied to the encoding algorithm. In

1the collection of information referenced by a process during the process time
interval (t−τ, t). This gives an approximation of the information that the application
will access in τ time units
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addition, we try to exploit the temporal locality of data values alongwith minimal spa-

tial locality due to random distributions of data over space. As the patterns we look

at are variable in length, our prefix word (32-bit) matching algorithm matches and

stores consecutive words ranging from length 1 to 4, details of which are explained in

the next chapter. Also, we explained our rationale for choosing an adaptive updation

mechanism over that of a static CAM/cache. The algorithm skeleton and details of

each component are explained in the next chapter.
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CHAPTER IV

VARIABLE LENGTH PATTERN CODING

In this chapter we look at our variable length pattern coding algorithm in detail.

In the following sections, we sketch the outline of the encoding and decoding algo-

rithm with a detailed example in section A.2 and flow charts in section A.3. The

algorithmic/pseudo-code representation of the workings of the encoder and decoder

are also given in section A.4.

The main components of our encoding algorithm are initialization, Data extrac-

tion, Tag comparison, Code generation/Populating cache. A similar albeit simpler

structure exists for our decoding algorithm. We expand the skeleton structure by

detailing the work of each component in section B. Also we correlate the algorithm

with the architectural-level details in section B. The hardware details are handled in

sections C and we summarize in section D.

A. Details of the Algorithm

1. Assumptions

• The block size transferred at any point in time from the memory to the cache

and cache to memory is same.

• Each block say 64-byte (cache block size) is transferred in one point-to-point

burst sequentially as 32-bit consecutive streams (as is handled in simplescalar

[21] processor simulator)

• Experiments were conducted assuming a memory bus width of 32-bit in order to

make a fair comparison against FVE and FVExor schemes. The algorithm can

be scaled to 64-bit buses also, but will need subtle changes in the architecture.
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• Disambiguation: At the encoder end, the storage table used is a Content

Addressable Memory (CAM) [22] for data comparison and storage while at the

decoder end we have an SRAM circuit of equivalent size which is used to extract

the original data from code.

2. Encoder and decoder operation - example scenarios

In this section we explain how the encoder and decoder works, with an example. We

formalize this explantion in the following sections.

a. Encoder operation

Consider the snapshot of an 8-entry CAM which has 4 banks each storing 32-bit

values for data matching shown in table 1.

The first scenario of operation of an encoder for a stream of consecutive 32-bit

data values from the memory buffer is shown in Figure 2. In this example stream of

data in the memory buffer is shown. We take disjoint samples using a sliding window

of size 4. As seen in Figure 2 if there is a full match a max 2-bit code corresponding

to index of the match is sent over the off-chip bus with bitline encoded = 1. If there

is a miss in the CAM then the original data is sent with encoded = 0 and the data

is stored in the CAM. Now, in case of a prefix match where prefix is present in the

CAM, the index corresponding to the prefix is sent using a max 2-bit code followed

by the unmatched data. Here, encoded = 1 for the code and encoded = 0 for the

unmatched data.

The second scenario is shown in Figure 3. The first two cases are similar to

scenario 1. Now, in case of a prefix match with prefix not present in the CAM, we

insert the prefix into the CAM. To indicate to the decoder that the prefix has to be

inserted into it’s cache, a padding of size wind − x is added to the prefix, where x
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is the prefix match size. The prefix is sent over the bus with encoded = 0 and the

padding is sent with encoded = 1. The unmatched data is sent with encoded = 0.

After the scenario 1, the updated CAM is shown in table 2. A similar table exists

for scenario 2.

Table 1. Sample snapshot for a 8-entry CAM

index bank1 data bank2 data bank3 data bank4 data

1 a1072f40 8d042244 1004eb47 1204e947

2 a1f32240 cc042644 a4076c40 400080f4

3 1204e947 00000000 00000000 00000000

4 90dc0120 01000000 a0450120 01000000

5 10410120 01000000 509d0120 01000000

6 1f04ff47 00000000 00000000 00000000

7 080010a4 300050a4 20014040 020000f8

8 020000f8 080050b4 0180fa6b 000050a0
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Fig. 2. Scenario 1 showing cases of full match, miss and prefix matched data found in

cache.

Fig. 3. Scenario 2 showing cases of full match, miss and prefix matched data not found

in cache.
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Table 2. The 8-entry CAM after inserting the matched prefix and unmatched data

into the LFU index.

index bank1 data bank2 data bank3 data bank4 data

1 a1072f40 8d042244 1004eb47 1204e947

2 a1f32240 cc042644 a4076c40 400080f4

3 1204e947 00000000 00000000 00000000

4 90dc0120 01000000 a0450120 01000000

5 080010a4 300050a4 00000000 00000000

6 1f04ff47 00000000 00000000 00000000

7 8adf384d 23fda828 34dfaecd ef35dca2

8 020000f8 080050b4 0180fa6b 000050a0
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b. Working of the decoder

The decoder cache snapshot is similar to the encoder snapshot in table 1 taken at

time t + k where k denotes the operational cycles completed.

Similar to the encoder scenarios depicted above, we have a stream of consecutive

32-bit words taken from the off-chip bus. The first scenario is shown in Figure 4.

Fig. 4. Scenario 1 showing cases of coded, unencoded and prefix coded data.

Here, if bitline encoded = 1 the original data is extracted from the cache corre-

sponding to the max 2-bit code. In case of encoded = 0 for the whole window, the

data from the bus is the original data is forwarded to UL2 cache and it is also inserted

into the cache. Now, if encoded = 1 for beginnning 32-bit value of the window and

0 for the remaining wind − x data where x is prefix data size corresponding to the

2-bit code. The data is extracted from cache corresponding to the 2-bit code and

forwarded followed by wind− x words of unencoded data.
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The second scenario is shown in Figure 5.

Fig. 5. Scenario 2 showing cases of coded, unencoded data and prefix with padding to

be added to the cache.

The first two cases are similar to scenario 2. Now, for a sampled data with

padding, we insert the prefix with padding in the cache and remove the padding.

Then we extract the following unencoded data with size(padding). This consolidated

data is sent to the UL2 cache.

An updated CACHE after scenario1 is complete is shown in table 3. A similar

table exists for scenario 2.
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Table 3. Updated 8-entry CACHE at the decoder after insertion.

index bank1 data bank2 data bank3 data bank4 data

1 a1072f40 8d042244 1004eb47 1204e947

2 a1f32240 cc042644 a4076c40 400080f4

3 1204e947 00000000 00000000 00000000

4 90dc0120 01000000 a0450120 01000000

5 080010a4 300050a4 00000000 00000000

6 1f04ff47 00000000 00000000 00000000

7 8adf384d 23fda828 34dfaecd ef35dca2

8 020000f8 080050b4 0180fa6b 000050a0
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3. Flow chart

In Figure 6 we have the flow chart for the encoder. We can clearly mark out the stages:

initialization, tag comparison and prefix matching, code generation/populating the

cache. With certain marked differences to the encoder in Figure 6 we have the flow

chart diagram for the decoder in Figure 7. Here too, we have clearly separated

stages of initialization, recovering original data/populating the cache. The stages are

explained in Section B.

Initialize 
input

 mbuf 
is Empty?

YES

sampled_val = 
get_values(mbuf,wind)

advance_sliding_
window(wind)

 sampled_val 
FOUND in VLPC?

NO

NO

Send INDEX of
match over the

off-chip bus

set encoded = 1

YES

Fig. 6. Flow chart description of working of the encoder
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 k word
 prefix match?

set encoded=0

free slots
available?

Put sampled_val
in next available

slot in VLPC

NO

YES

Update free 
slots list

Put sampled_val
in LFU slot

Get LFU value

NO

Update LFU value

YES

set encoded = 1

Send INDEX of 
matched prefix over the

off-chip bus

x = match_size

prefix found
in VLPC?

YES
NO

set encoded = 0

Send original data for 
sampled_val(wind - x) 
over the off-chip bus

set encoded=0

free slots
available?

Put matched prefix
in next available

slot in VLPC

YES

Update free 
slots list

Put matched prefix
in LFU slot

Get LFU value

NO

Update LFU value

Send sampled_val
over the off-chip bus

NO

Figure 6 continued.
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Fig. 7. Flow chart description of working of the decoder
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Figure 7 continued.
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4. Algorithm pseudo-code

The algorithm to encode the data to be transferred from the memory buffer to the

processor via the off-chip data bus is given in Alg:1

Algorithm 1 Encoding Algorithm for coding Variable length 32-bit data patterns

1: mbuf ⇐ addr memory buff {Address of the head of the memory buffer is given

by mbuf}

2: wind ∈ [1, 4] {wind is the size of the sliding window which determines the size of

data sampled at any given time t}

3: free slots = size of CAM() {free slots gives the number of free slots available

at any time t. When free slots available is called, the value of free slots is checked

against 0}

4: while TRUE do

5: while mbuf = NULL do

6: idle

7: end while

8: if POSEDGE(CLK1) then

9: sampled value ⇐ copy values(mbuf + wind ∗ next offset)

10: advancewindow(wind)

11: if comparevalue(sampled value, VLPC) = FOUND then

12: set encoded control line ⇐ 1

13: send(index of the match)

14: else

15: if 32bit prefix match = TRUE then

16: x ⇐ prefix match size

17: matched prefix = sampled value(x)
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18: if NotIn(VLCP,prefix) = TRUE then

19: if free slots available() = TRUE then

20: slt ⇐ get next free slot

21: matched prefix ⇒ VLPC(slt)

22: update free slots();

23: else

24: slt ⇐ get LFU index()

25: matched prefix ⇒ VLPC(slt)

26: update LFU()

27: end if

28: set encoded control line ⇐ 0

29: send(matched prefix)

30: padding ⇐ zero words(wind − x) {For sending to the decoder for

inserting in cache at that end}

31: set encoded control line⇐ 1 {Indicator for the decoder so as to insert

in cache and skip forwarding to UL2 cache}

32: send(padding)

33: set encoded control line ⇐ 0

34: send(sampled value(wind − x)) {Sending unmatched suffix data to

be forwarded as is by decoder}

35: else

36: set encoded control line ⇐ 1

37: send(index of prefix match)

38: set encoded control line ⇐ 0

39: send(sampled value(wind− x))

40: end if
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41: else

42: if free slots available() = TRUE then

43: slt ⇐ get next free slot

44: sampled value ⇒ VLPC(slt)

45: update free slots()

46: else

47: slt ⇐ get LFU index()

48: sampled value ⇒ VLPC(slt)

49: update LFU()

50: end if

51: end if

52: end if

53: end if

54: end while

The decoding algorithm which is used to decode the data received at either end

of the bus follows the algorithmic structure below in Alg:2

Algorithm 2 Decoding Algorithm for coding Variable length 32-bit data patterns

1: bus buf ⇐ bus data buff {Address of the head of the bus data buffer is given by

bus buf}

2: wind ∈ [1, 4] {wind is the size of the sliding window which determines the size of

data sampled at any given time t}

3: free slots = size of cache() {free slots gives the number of free slots available

at any time t. When free slots available is called, the value of free slots is checked

against 0}

4: initialize
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5: while TRUE do

6: while bus floated() = TRUE do

7: idle

8: end while

9: if encoded control line = 1 then

10: bus value ⇐ get data from bus(bus buf ,wind) {Function fills data value

buffer till encoded control line is in same state(0/1), else returns}

11: x ⇐ size(bus value)

12: data value ⇐ get data from cache(bus value)

13: forward to UL2(data value) {Assuming the next component is a Unified L2

Cache}

14: if x < wind then

15: data value ⇐ get data from bus(bus buf ,wind− x)

16: forward to UL2(data value)

17: end if

18: else

19: data value = get data from bus(bus buf ,wind) {Function fills data value

buffer till encoded control line is in same state(0/1), else returns}

20: x ⇐ size(data value)

21: if x < wind and encoded control line = 1 then

22: padding ⇐ get data from bus(bus buf ,wind− x)

23: data value ⇐ append(padding,wind− x) {Append into temporary regis-

ter file at wind− x index}

24: end if

25: if free slots available() = TRUE then

26: slt ⇐ get next free slot
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27: data value ⇒ VLPC(slt)

28: update free slots()

29: else

30: slt ⇐ get LFU index()

31: data value ⇒ VLPC(slt)

32: update LFU()

33: end if

34: remove(data value,wind−x) {Remove padding from temporary register file

at (wind− x) index}

35: if encoded control line = 0 then

36: data value ⇐ get data from bus(bus buf ,wind−x) {Add to register orig-

inal data of same size after removing padding}

37: end if

38: forward to UL2(data value)

39: end if

40: end while
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B. Explanation of the Algorithm (break-down) - Architectural-level

1. Encoder algorithm

For the sake of brevity and modularity we subdivide our discussion into four parts,

initialization, data extraction, tag comparison and code generation/populating CAM.

They are explained in detail as follows:

a. Initialization

When the system is reset or the reset interrupt is triggered, all the scratchpad registers

are zeroed and the CAM is cleared at both the ends. After the reset, the window

size for the sliding window (wind in the above algorithm) can be set. Here we set the

window size wind ∈ [1, 4] due to the following reasons,

• To customize sampling interval for different applications.

• Also we cater to pattern sizes from 1 to 4 so as to take care of single 32-

bit frequent values as well as frequent data patterns (here, consecutive 32-bit

words) of size 2 to 4.

• Exceeding a window size of 4 (i.e. wind > 4) is not realistic for most applica-

tions.

• Also, for wind > 4, CAM sizes will be very large.

• It also allows us the liberty to control the shutting-off of some of the CAM

banks which leads to reduced power usage of the CAM lines.

Also, we initialize the scratchpad registers which temporarily hold the data from

the memory buffer as the window slides by wind after each processing step. In the

algorithm Alg:1, it is referred to as mbuf . Also we keep track of the next free slot
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available in a yet non-full CAM using free slots while for a full CAM we keep of

the next pattern to be replaced using LFU index, for which we use a modified LFU

strategy which is detailed in Alg. 3.

b. Data extraction

Each processing step begins with copying the data of size wind∗ size(word) from the

memory buffer into the scratchpad register. We also store the address of the head of

the memory buffer so as to slide the window according to mbuf + wind ∗ size(word).

c. Tag comparison

After obtaining the current value of the memory buffer, the control unit on the positive

clock edge raises the RE line, at which point the tag matching is done on the 1st bank,

which is a 64-entry 32-bit CAM, as shown in Figure 8. After the 1st bank comparison

is done, if there is a match on any line (i.e. one of the match-lines is high), then only

the next PC bar and RE signal (precharge) will be asserted, so as to not precharge all

the banks if there is miss in the first bank itself. Thus the matchline ML in banki−1

acts as trigger for PC bar (active low) to begin precharging banki for i ∈ [2, 4]. We

can call this bank-precharging strategy. The drawback of this strategy is an increase

in delay between the banks but this is only in the case of a full match. In case of

prefix matches the delay is much less.

d. Code generation/populating CAM

When code has to be generated for incoming data we have two cases, CAM miss and

match respectively. Each case is explained below:

• Code generation:Whenever there is match we generate a 2-bit code correspond-

ing to index of the match and encoded line is raised to 1. The encoded line set to
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Fig. 8. Architectural-level representation of the encoder

1 or 0 suggests if the data on the bus is coded or unencoded, respectively. The

code is generated by the code generator block as shown in Figure 8. In case of

a prefix match, if the prefix is found in the CAM then we send the index of the

prefix match, with encoded line raised to 1. Here we generate a 2-bit code using

positional notation so as to indicate the index of the 64-entry CAM. Also for the

rest of unmatched data of size wind−x where x is the size of the matched prefix,

we send the data as is with the encoded line lowered to 0. If matched prefix is

not found in the CAM then we send the prefix with encoded line as 0. Also,

we send padding (zero-valued) of size, x = wind − size(matched prefix) with

encoded line as 1. This is an indication to the decoder to insert the matched
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prefix in its cache. Rest of the unmatched data is sent as is with encoded line

as 0. We use a zero-valued padding as we never insert zeroed original data into

our CAM/cache.

• Populating CAM : In case of a full miss we send the original data as is with

encoded line lowered to 0. Also we populate the CAM by direct write to the

CAM in case of a non-full CAM using free slots as seen in Alg:1 while in the

event of a full CAM we replace the least frequent used slot, LFU index. In

case of prefix match where the prefix itself is not present in the CAM, we place

the prefix in the CAM, similar to that described previously.

The modified LFU strategy is given below:

Algorithm 3 modified LFU strategy for CAM slot replacement

INPUT: CAM count, previous index

OUTPUT: LFUindex

index ⇐ previous index

len ⇐ size(CAM count)

i ⇐ modulo(index,len)+1

count ⇐ 1

while count ≤ len do

if CAM count(i) ¡ CAM count(index) then

index ⇐ i

end if

i ⇐ modulo(i,len) + 1

count ⇐ count+1

end while
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RETURN index

2. Decoding algorithm

The decoding algorithm is explained in the following two stages, initalization and

data decoding/populating cache:

a. Initialization

Similar to the encoding algorithm, initialize the scratchpad registers which temporar-

ily hold the data from the bus as the window slides by wind after each processing

step. In the algorithm Alg:2, it is referred to as bus buf . Also we keep track of the

next free slot available in a yet non-full CAM using free slots while for a full CAM

we keep of the next pattern to be replaced using LFU index, for which we use the

modified LFU strategy given in Alg:3.

b. Data decoding/populating cache

During the decoding phase when the data is received over the bus there can be two

cases corresponding to whether the encoded line is 1 or 0.

• Unencoded : In case of a 0 on the encoded line we populate the cache as discussed

in the previous subsection. If the encoded line is 0 and then transitions to 1 for

the sampled window of data, then we insert the data in the cache. This data

consists of the matched prefix at the encoder alongwith the padding. Now, we

remove the padding and resample data of size x = size(padding) from the bus

and place in scratchpad register. Forward this data to the L2 cache.

• Coded : In case of a 1 we use the data on the bus, as an index into the cache and

get the corresponding original data value which is forwarded to the Unified L2



38

cache. In case of a prefix match we still get the corresponding original data value

from the cache, but for size wind − x where x is the size of the data obtained

from cache, forward the original data from the bus scratchpad register.

The architectural-level representation of the decoder is give in Figure 9.

Fig. 9. Architectural-level representation of the decoder
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C. Low-level Design

The encoder end uses a CAM to store the incoming data patterns. Matching the

incoming data pattern value with the CAM banks can be pipelined with the data

extraction from the memory buffer. Also, in case of a miss, storage of the value in

the CAM can be done in parallel with sending the value on the bus. Parallelism can

also be achieved during the match, in the case of sending the encoded value on the

bus as well as updation of the LFU counters.

Our encoder uses 4 banks where each is an 64-entry 32-bit CAM bank shown in

Figure 10. Here each building block is a 4-entry 4-bit CAM block which is show in

Figure 11.
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Fig. 10. One 64-entry one word(32-bit) CAM array, with each small block being a

4-entry 4-bit CAM building block.
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Fig. 11. A 4-entry 4-bit CAM array building block.
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The main component of a 4-entry 4-bit CAM is a 9 transistor CAM cell shown

in Figure 12. In a 9-T CAM cell write process is similar to that in a 6-T SRAM cell.

During the matching process, SL and SL bar lines are precharged high. When RE

line is asserted, if data match input D mat in0 in Figure 13 is 0, SL is driven low,

else if D mat in0 is 1, SL bar is driven low. If data in a CAM cell is 1 and SL is

1, then there is a match and ML remains high during evaluation. For more detailed

explanation of content addressable memories please refer [23][22][24][25][26].

Fig. 12. A single 9-T CAM cell.

Other components that make up a 4-entry 4-bit CAM are a data match input

circuit shown in Figure 13 and data write input circuit shown in Figure 14. The data
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match input circuit uses data inputs for matching, D mat in, to drive SL or SL bar

low whenever a RE signal is asserted. On the other hand, the data write input circuit

uses data inputs for storing, D in, to drive BL or BL bar low whenever a WE signal

is asserted.

Fig. 13. Input control for data used for CAM tag matching.



44

Fig. 14. Input control for writing data to the CAM array.
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The input control for CAM and SRAM write/match circuits is shown in Figure

15. For write if WE signal is asserted, depending on whether D in is 0 or 1, BL

or BL bar is driven low respectively. In case of matching, if RE signal is asserted,

depending on whether D mat in is 0 or 1, SL or SL bar is driven low respectively.

Fig. 15. Input control which serves as a building block for CAM write/match circuits

and also SRAM read/write circuits.
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Also we have the matchline sense amplifier (MLSA) in Figure 16 which senses

the matchlines to see if there is a match on any of the lines and amplifies them. This

has to be done due to attenuation of the match signal over the array. Depending

on the attenuation and noise margins we are able to sense the match line signal and

amplify it correspondingly. In the MLSA circuit, initially the output ML out is set

to zero by driving ML line to the ground. This is done by setting ML pre to high.

During matching ML pre is set to low and ML is precharged by driving cur en bar

to low. If there is a match ML remains high thus driving the input A to the inverter

I3 low. ML out hence remains high in case of a match. Similarly in case of a miss,

ML out remains low.

Fig. 16. Circuit for the match-line sense amplifier



47

Next we have the SRAM array shown in Figure 17, and similar to the description

for CAM, we have the 6 transistor SRAM cell shown in Figure 18. The sense amplifier

for the sram is different from that of a matchline sense amplifier as the sram sense

amplifier is used for column sensing and amplification while that for a CAM is used

for row matchline sensing. Hence, given an address we read the value from the SRAM,

while in a CAM we perform a parallel search for a given data value. The SRAM sense

amplifier is shown in Figure 19. The input control for the CAM and the SRAM is

shown in Figure 15. It handles the precharging of each line BL and BL bar in case

of an SRAM and also the SL and SL bar lines for precharging them for the purpose

of matching in case of a CAM.

Fig. 17. One 64-entry one word(32-bit) SRAM array, with each block being a 4-entry

1-bit column array

D. Summary

In this chapter we looked into at the most important part of this thesis, the variable

length pattern encoding algorithm with a detailed explanation of the various compo-

nents of the algorithm using comprehensive set of flow charts, pseudo-code and dia-

grams (both architectural-level and circuit-level). With flow-charts and algorithms in

sections A, we clearly differentiate our scheme from those of [1][2]. The architectural-

level and circuit-level diagrams of the Encoder and Decoder with their corresponding
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Fig. 18. A single 6-T SRAM cell

explanations in section B and section C respectively, give an insight into the inner

workings of algorithm thus serving to be the backbone of our scheme. We obtain the

power and latency for the CAM and SRAM cache from Spectre simulations. These

and other comparison results are discussed at length in the next chapter.
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Fig. 19. Circuit for the SRAM sense amplifier
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CHAPTER V

EXPERIMENTS AND RESULTS

In this chapter we present a thorough comparison of VLPC with the popular methods,

FVE, FVexor [1] encoding and the VALVE [2] encoding schemes, which have been

discussed in detail in Chapter II. We divide this chapter into two major sections, A)

experiments and B) results & discussion, where we discuss the experimental details

including the simulation parameters and configurations with the summary to follow

in section C.

A. Experiments

We modified the Simplescalar out-of-order simulator, sim-outorder to obtain data

traces for the various SPEC2000 benchmarks. The simulator was also modified to

incorporate various encoding schemes in consideration and obtain data traces for each

different scheme. The schemes that we compare against are Frequent Value encoding

(FVE) [1], FVE with Xor’ing scheme applied [1] and the VALVE [2] encoding scheme

. The flow chart in Figure 20 shows the experimental flow for the work performed. As

shown in the table 4, we run the simulations for 10M instructions and record the data

traces for each of the encoding schemes that we have incorporated into simplescalar

[21]. These data traces are then given as inputs to a MATLAB m-file for analysis to

calculate overall bit transitions for 10M instructions and percentage reduction in bus

energy consumed from the unencoded.

The basic experimental configuration for the simplescalar [21] out-of-order sim-

ulator is given in the table 4.

Here we have performed simulations for eight different SPEC CPU2000 [27]

benchmarks whose descriptions have been given in Table 5.
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Fig. 20. Experimental flow

B. Results and Discussion

1. Architectural-level simulations

The simplescalar [21] simulation parameters have been discussed in detail in the

previous section. Here we answer the question as to how observing the patterns

of data values spaced out over time is helpful in reducing the transitions between
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Table 4. Experimental configuration

L1 Data Cache 128KB

L2 Unified Cache 1MB

L1 Instruction Cache 128KB

Instruction TLB 1MB

Data TLB 1MB

Memory-CPU bus width 4 bytes

Maximum instructions to Execute 10M

consecutively sent values. As shown in the Figure 21, with a window size of 4 we

obtain a high percentage of patterns which can be encoded. The results for the

benchmarks, ammp, gap, bzip2, crafty and mcf are of significance here.

In the figure Figure 22 it can be seen that our results clearly agree with that of

the Figure 21, thus verifying our assumptions. It can also be seen that in most of

the cases, namely crafty, swim, mcf, applu, ammp, and gap our algorithm performs

better than all the other algorithms, FVE, FVExor [1] and VALVE [2] compared here.

The exceptional cases are for benchmarks lucas and bzip2. As seen in Figure 21 lucas

has very low encodable fraction of the overall data, hence the behavior is anticipated.

For bzip2, although the fraction of encodable data is almost 32%, but for the 10M

instructions executed in simplescalar [21] the cache miss rate is 0.0008 for the dl1

cache and 0.5 for the ul2 cache, which shows that the off-chip data bus transactions

are very low. Also, dtlb miss rate is 0.0002, which is very low, thus substantiating

the above statements. Here we also explain why our algorithm is better than the

algorithms we compare against:
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Table 5. Benchmarks and their descriptions

Benchmarks Description

bzip2 A standard compression/decompression algorithm found on most

UNIX-based machines. To isolate work done to the CPU and Mem-

ory, the compression/decompression entirely takes place in memory.

crafty A high performance computer chess program, designed around a

64-bit word. It is primarily an integer benchmark which uses sig-

nificant number of logical operations.

mcf A combinatorial optimization program written in C for single-depot

vehicle scheduling in mass transportation. Uses integer arithmetic.

gap Implements a language and library to do group computation such

as finite fields, permutation groups, lattice computation, in C.

ammp A computational chemistry program which models molecular dy-

namics on a protein-inhibitor complex embedded in water. It is a

floating-point benchmark written in C.

applu It is program to find solution of five coupled non-linear Partial

Differential Equations on a 3-d logical grid structure. It is written

in Fortran and is a floating-point benchmark.

swim This program does weather prediction by using shallow-water

equation models. Highly computationally-intensive floating-point

benchmark written in fortran.

lucas This program is designed to perform primality testing of Mersenne

numbers, using arbitrary-precision arithmetic. A floating-point

benchmark written in fortran 90
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Fig. 21. Fraction of encodable patterns obtained from data trace

• the encoding schemes FVE, FVExor and VALVE are not able to take advantage

of m*32-bit consecutive patterns that occur over time. Here m ∈ [1, 4], as

explained in the previous chapter.

• In VALVE [2], encoding is done either per 32-bit sequence [1] or for partial data

in 32-bit value (24, 16-bit) [2].

• Due to the above stated drawbacks there is inevitable bit switching in either

cases.

• Also, as we implement the CAM at the encoder as bank-precharged one wherein

precharging for (i + 1)th 64-entry 32-bit bank occurs only if there is a match

at the ith bank. This leads to reduced power consumption in case of prefix

pattern matches. Also, as we use a window size of 4 with a maximum overlap of
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1 between consecutive sliding windows, we reduce redundant tag comparisons

thus saving power.

• The encoding scheme in [2] suffers from the fact that for every 32-bit data value

there is a comparison done in all the tables (32-bit table, 24-bit table, 16-bit

table), thus increasing energy consumption.

Fig. 22. Energy reduction(percent) comparison of FVE, FVExor [1], VALVE encoder

[2] and our VLPC encoder
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The exact figures from the analysis of the data traces in MATLAB is given in

tables 6 and 7. These tables depict the number of observed encodable data values and

percentage (%) reduction in Energy for different benchmarks over 10M instructions

executed in the out-of-order simplescalar [21] simulator (sim-outorder).

Table 6. Number of encodable patterns (1 to 4 consecutive 32-bit words) obtained

from analysis of data traces in MATLAB

Benchmark Overall blks 2 encode percentage

blk encodable

fraction

lucas 30146 3299 10.94

crafty 20387 4927 24.17

swim 63759 13353 20.94

mcf 7683 1680 21.87

bzip2 3778 1244 32.93

gap 9138 3066 33.55

ammp 1833106 911864 49.74

applu 237239 14433 6.08
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Table 7. Percentage reduction in bit transitions obtained from analysis of data traces

in MATLAB

Benchmark percentage

reduction

(FVE)

percentage

reduction

(FVExor)

percentage

reduction

(ours)

percentage

reduction

(valve)

lucas 2.3 8.79 4.88 1.24

crafty 6.3 9.52 21.81 6.07

swim 8.82 22.2 22.79 9.74

mcf 3.54 16.86 17.07 10.01

bzip2 5.12 20.81 17.53 11.08

gap 4.66 20.6 22.57 10.52

ammp 1.92 -4.68 40.11 -0.91

applu 0.26 4.17 6.64 5.41
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It is important to measure the performance trade-off alongwith power. Cache

misses are the main source of traffic on off-chip buses. Data transfer occurs mainly as

64-byte blocks which is the size of a cache block. Hence latency for transferring 32-bit

data is mainly divided into 2 components, latency for tranferring the first 32-bit data

value (chunk) and latency for transferring subsequent chunks. Thus, latency for our

approach can be given by:

Latfirst chunk = Latmem + Latbus + Latenc + Latdec

Latnext chunk = Latbus + max(Latenc, Latdec)

Here, num chunks = cache blk size/mem bus width. This latency is measured for

all SPEC2000 benchmarks for executing 10M instructions. Latency comparison with

the approaches in consideration (FVE, FVExor and VALVE) is shown in Figure 23.

It clearly shows that our performance suffers in benchmarks such as lucas, bzip2,

swim due to lack of sufficient encodable patterns found in the data trace as confirmed

by Figure 21. Lack of patterns causes large fraction of data being sent unencoded

thus increasing latency in our case due to the waiting time associated with each

window of data. If there is higher percentage of encodable patterns then there is

decrease in latency as seen for benchmarks, crafty, ammp. FVE encoding has a

better performance due to simplicity of operation while FVExor has a higher latency

due correlator and decorrelator circuit added to the encoder and decoder respectively.



59

Fig. 23. Latency reduction(percent) comparison of FVE, FVExor [1], VALVE encoder

[2] and our VLPC encoder

2. Low-level simulations

Some of the plots that show correctness of the operation of the Content Addressable

Memory designed by us are given in Figure 24, 25 26. The first plot 24, shows

the matchline output ML outi where i ∈ [0, 3]. Here for a match on the 4th line

the matchline ML out3 has been asserted. This triggers the precharge of the next

CAM bank. Rest of the matchlines 0 to 2 are zero, which means there is a miss on

those lines. If there is a miss in the first bank then the precharge for the next bank

PC bari+1 is not pulled down to active low. In this case the rest of banks are not

precharged, thus saving power.

Data inputs for some of the 32-bit data lines are shown in Figure 25. Also, the

corresponding plot for some 32-bit data lines to be matched are shown in Figure 26.
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Fig. 24. The matchline output when the data matches with 4th CAM line
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Fig. 25. The data written to the 64-entry CAM
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Fig. 26. The data to be matched with that of the 64-entry CAM
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C. Summary

In this section we have discussed the experiments that we have performed concerning

our VLPC algorithm that we discussed in detail in the previous chapter. We per-

formed simulations in simplescalar [21] for different benchmarks and incorporated the

algorithms, FVE, FVExor [1] and VALVE [2] so as to obtain the corresponding data

traces. The data traces were analyzed in MATLAB to obtain the comparison results

with respect to the overall bit transitions and corresponding reduction in energy con-

sumption of the off-chip data bus. The results have been detailed along with their

explanations as to why our algorithm performs better than the other schemes in light

of the given configuration parameters.



64

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

A. Conclusions

It is imperative to reduce power consumption at the off-chip level due to its impact on

overall system power. In this research we have developed a new encoding/decoding

strategy (VLPC) to reduce power in off-chip data buses. We have demonstrated that

this method is superior to existing popular schemes such as FVE [1], FVExor [1] and

VALVE [2].

To summarize, we believe we have made some significant contributions to the

problem of power reduction in off-chip data buses. We highlighted significant draw-

backs in the previous schemes FVE, FVExor and VALVE, such as, small size of the

Value Cache (VC) at both encoder/decoder ends, ineffective utilization of frequent

values in the data stream, decreased power savings in case of non-consecutively coded

values, and excessive data comparison at the encoder due to fixed partial matching

(16, 24, 32-bit) [2]. To alleviate these drawbacks we developed a VLPC scheme which

reduces bit transitions by 4.88% to 40.11% when compared to the Unencoded scheme

for various SPEC2000 benchmarks. Also, bit transitions are 0.3% to 38.9% lesser than

other popular schemes, FVE, FVExor and VALVE. Additionally, we demonstrated

the effective usage of bank-precharged CAM circuits for our maximal prefix matching

strategy.

B. Future Work

There is scope for improvement in our proposed scheme of encoding. For example,

experimenting with multimedia benchmarks would further ensure that our scheme
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is highly effective in reducing power exclusively for these applications. The bank-

precharging strategy could be changed to reduce latency in case of large percentage

of full matches. Performing RTL synthesis of the encoder circuits in verilog would

enable measurement of area constraints of the encoder circuits and intrinsic power

dissipation of the controller logic. Additionally, we are working on a new technique,

called Signature-value encoding, where we generate signature along with code at the

encoder, and the signature is used to obtain original data from code at the decoder.

The functionalities of this encoding scheme are:

• Uses intrinsic properties of the patterns to generate the code.

• Removes the need for cache at the decoder, as it has to only apply the decoding

function to obtain original data. As no storage of values is required, it consumes

less power.

• The computation at the encoder end is pipelined to reduce latency.
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