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ABSTRACT

A Micromechanics Based Ductile Damage Model for Anisotropic Titanium Alloys.

(May 2008)

Shyam Mohan Keralavarma, B.Tech, University of Kerala, India

Chair of Advisory Committee: Dr. Amine Benzerga

The hot-workability of Titanium (Ti) alloys is of current interest to the aerospace

industry due to its widespread application in the design of strong and light-weight

aircraft structural components and engine parts. Motivated by the need for accurate

simulation of large scale plastic deformation in metals that exhibit macroscopic plas-

tic anisotropy, such as Ti, a constitutive model is developed for anisotropic materials

undergoing plastic deformation coupled with ductile damage in the form of internal

cavitation. The model is developed from a rigorous micromechanical basis, following

well-known previous works in the field. The model incorporates the porosity and

void aspect ratio as internal damage variables, and seeks to provide a more accurate

prediction of damage growth compared to previous existing models. A closed form

expression for the macroscopic yield locus is derived using a Hill-Mandel homoge-

nization and limit analysis of a porous representative volume element. Analytical

expressions are also developed for the evolution of the internal variables, porosity

and void shape. The developed yield criterion is validated by comparison to numeri-

cally determined yield loci for specific anisotropic materials, using a numerical limit

analysis technique developed herein. The evolution laws for the internal variables are

validated by comparison with direct finite element simulations of porous unit cells.

Comparison with previously published results in the literature indicates that the new

model yields better agreement with the numerically determined yield loci for a wide

range of loading paths. Use of the new model in continuum finite element simula-
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tions of ductile fracture may be expected to lead to improved predictions for damage

evolution and fracture modes in plastically anisotropic materials.
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CHAPTER I

INTRODUCTION

Alloys of Titanium (Ti) constitute some of the most important structural materials

used in the aerospace industry due to favorable properties like high strength to weight

ratio, high melting point and excellent corrosion resistance. Ti is approximately 40%

lighter than steel while having comparable strength. This makes it ideal for use in

those applications where light weight is a key design requirement. Trace quantities

of alloying elements such as Aluminium and Vanadium significantly improves the

mechanical properties of Ti. The alloy Ti-6Al-4V accounts for 50% of all alloys used

in aerospace applications [4]. Ti alloys are extensively used in the manufacture of

aircraft structural components, engine parts, landing gear, etc. Apart from its use in

aerospace applications, Ti alloys also find use in defense equipment such as armored

vehicles and tanks which are exposed to extreme operating conditions. The most

notable chemical property of Ti is its high resistance to corrosive environments like

acids and salt solutions. Hence Ti is used in marine applications like the manufacture

of propeller shafts. Pure Ti has good bio-compatibility and is used in the design of

implants and other medical and surgical equipment. Other applications of Ti include

chemical and petro-chemical process industry, premium sports equipment and some

consumer electronics devices.

Commercial production of Ti is similar to that of steel in the sense that the

typical processing operations involved are casting followed by a series of primary and

secondary hot working operations to produce the finished product. However, the pro-

cessing of Ti alloys poses a significant technological challenge, since Ti is considerably

The journal model is Comptes Rendus Mécanique.
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more difficult to hot work than steel due to its hexagonal crystal structure and sharp

dependence of flow stress on temperature [2]. Typical hot working operations used in

the manufacturing process are known to produce undesirable defects in the finished

product such as microcracks, shear bands and porosity due to internal cavitation [2,5].

Figure 1 illustrates a typical “wedge crack” formed during hot working of a Ti alloy.

The presence of such defects is the major cause of failure in Ti-based components.

Fig. 1. Wedge crack formed at a grain boundary triple point during hot working of an

α Ti-6Al-2Sn-4Zr-2Mo alloy. Micrograph from Semiatin et al. [2].

Therefore, the problem of determining optimal processing conditions or workability

maps for Ti-alloys under various loading states is of high technological interest and

one that was considered by several authors [6–8]. The results are usually presented

in terms of graphs illustrating the reduction in area achieved in uniaxial tension tests

at various temperatures and strain rates. Such maps are then used to determine safe

strain rates that can be employed during hot working at various temperatures. How-

ever, since these maps are developed based on simple tensile or upset tests conducted

at various temperatures, they may be expected to be accurate only for simple loading
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states. On the other hand, the material often undergoes complex non-proportional

loading paths under actual processing conditions, such as in rolling and extrusion. An

alternative to experimental characterization of workability is computer based simu-

lation of the actual processing operations, using numerical techniques like the finite

element method. This option is increasingly being preferred due to its obvious cost

advantage and widespread availability of computing resources.

However, accurate prediction of damage accumulation during plastic deforma-

tion requires use of a good constitutive model (yield criterion and flow rule) for the

material under consideration. The α phase of Ti, which is dominant in Ti alloys

at room temperature, has a hexagonal crystal structure which develops a textured

microstructure leading to plastic flow anisotropy [9]. An ideal constitutive model

should capture the evolution of the material texture for it to be representative of

the material’s actual response under external loading. In addition, large deformation

plastic flow is associated with significant ductile damage accumulation in the form

of microcracks and voids [10], which grow and evolve during the forming process.

The macroscopic constitutive model should incorporate some of these microstruc-

tural details, like the porosity, void shape and orientation, and predict their evolution

reasonably accurately. Developing a constitutive model incorporating the details of

crystal plasticity of the anisotropic matrix coupled with damage growth, from first

principles, is a challenging task. In this work, we attempt to couple the two effects

using a simplified description of material anisotropy, which is modeled using the Hill

quadratic yield criterion. The main emphasis is placed on faithful modeling of dam-

age growth, i.e. the evolution of porosity and the void shape during plastic flow in an

anisotropic matrix, since this is expected to be the key determinant that limits the

formability of the material.

Another important application where accurate modeling of the material’s plas-
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tic response is of importance is the case of Ti components manufactured through

the powder compaction process, which exhibit significant flow anisotropy due to the

peculiar shape of the voids. Use of a simplified constitutive model to determine the

reduction in porosity during the compaction process leads to poor agreement with the

actual values observed [11], due to the fact that the models used are often phenomeno-

logical in nature and/or based on a simplistic description of the microstructure, like

spherical voids. Use of a more sophisticated model that is developed from a rigorous

micromechanical foundation and allows for non-spherical voids may be expected to

yield better results in these cases.

Various plasticity models for materials with voids have been developed over the

past few decades, starting with the works of McClintock [12], Rice and Tracey [13] and

Gurson [14, 15] using the micromechanical approach. Alternative approaches to the

problem have been explored in the works of Ponte Castaneda and Zaidman [16] using

the non-linear variational principle developed by Ponte Castaneda [17], and that of

Rousselier [18] using continuum thermodynamics. Among these works, Gurson’s [15]

has received the most attention due to its pioneering contribution to ductile fracture

modeling, as he derived a closed form expression for the yield function of an isotropic

porous material having a finite porosity and containing spherical voids. Gurson used

a micromechanical rather than a phenomenological approach, basing his result on an

approximate limit analysis of a porous representative volume element (RVE) made of a

Von Mises matrix. Gurson’s RVE consisted of a composite spheres assemblage with a

void as the inclusion phase, and subjected to homogeneous deformation rate boundary

conditions. Such an approach allowed him to derive a plastic potential for a material

with finite porosity (albeit a small one), whereas previous models considered either

growth of spherical holes in an infinite medium as in the Rice–Tracey model [13],

or unrealistic void shapes like cylindrical through–thickness voids [12]. The novel
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aspect of Gurson’s result was that he derived a homogenized macroscopic constitutive

relation that was substantially different from that of the individual phases. The form

of the Gurson yield criterion, for spherical voids in an isotropic matrix, is shown

below.

F(Σ) ≡
Σ2

eq

σ2
0

+ 2f cosh
3

2

Σm

σ0

− 1− f 2 = 0, Σeq ≡
√

3

2
Σ

′
: Σ

′
(1.1)

where Σm and Σ
′
represents the mean and deviatoric parts of the macroscopic stress

tensor, Σ, Σeq denotes the Von Mises effective stress and f represents the porosity.

Notice that the criterion depends on the mean macroscopic stress through the “cosh”

term, which when combined with a normality flow rule results in an exponential

growth of the porosity with the mean stress. For a sound material, with porosity

f = 0, the criterion reduces to the Von Mises yield criterion.

The success of the Gurson model, as it is known in the literature, could be

attributed to the fact that the result represented a rigorous upper bound, which

also happened to lie close to the true yield locus. It may be noted that the former

was not apparent initially and some of the approximations used in Gurson’s original

derivations suggested the contrary. However, it was established much later by Leblond

and Perrin [19] that the Gurson criterion could be derived based on a homogenization

and limit analysis approach that resulted in a rigorous upper bound for the true yield

criterion. Many of the later works have followed a similar micromechanical approach

and extended Gurson’s results to include plastic anisotropy of the matrix [20–22]

and void shape effects [23–27]. The objective of the present work is to develop a

unified constitutive model of anisotropic porous plastic materials, based on rigorous

micromechanical analysis, and incorporating the effects of plastic anisotropy of the

matrix and void shape effects in the spirit of the above mentioned works. In particular,

the development of the model follows closely the works of Gologanu et al. [25] on void
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shape effects and Benzerga and Besson [22] on plastic anisotropy.

It may be mentioned here that a similar problem was considered recently by

Monchiet et al. [3, 28], who developed a yield criterion for porous materials contain-

ing spheroidal voids in an anisotropic Hill matrix, following the approach of the earlier

works of Gologanu et al. [23,24]. However, finite element simulations on porous unit

cells, containing spheroidal voids in an isotropic matrix, conducted by Sovik [29] had

revealed some discrepancies with the model predictions of Gologanu et al. [23, 24] in

relation to the evolution of porosity and void shape. Based on these findings, Golo-

ganu et al. have proposed an improved criterion using an enhanced description of

the admissible deformation fields in the material [25]. In our work, we have chosen

to follow this approach and replace the isotropic Von Mises matrix by an orthotropic

matrix obeying the Hill criterion. Our numerical analysis, presented in chapter IV,

indicates that this approach results in an improved agreement between the analytical

and the numerical yield loci vis-a-vis the criterion of Monchiet et al. [3]. The trade-

off in adopting this approach is that the enhanced description of the deformation

field greatly increases the mathematical complexity of the subsequent analysis. This

necessitates introduction of a set of approximations, which do not always preserve

the upper bound character of the resulting yield criterion. However, our numerical

results reveal that the new approximate criterion provides better agreement with the

true yield loci than the criterion of Monchiet et al. in the cases of small porosity and

practical range of values of the anisotropy parameters for the matrix.

The remainder of this thesis is organized as follows. The second chapter pro-

vides a brief introduction to the fields of homogenization and limit analysis. The

treatment is in no way exhaustive, and the scope is limited to presentation of those

results that are directly relevant to the development of our model, with references to

the literature cited at appropriate places. The third chapter contains the definition of
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the homogenization problem, followed by derivation of the analytical yield criterion

based on results presented in the second chapter. Emphasis is placed on presenta-

tion of the logical sequence of the derivations, discussion of the main assumptions,

related approximations and the results. The fourth chapter presents the details of the

numerical limit analysis procedure used to derive the “exact” numerical yield loci,

followed by a discussion of the results, including comparisons of the analytical and

numerical yield loci. The evolution equations for the internal variables, porosity and

void shape parameter, are derived in the fifth chapter. The constitutive equations

are integrated for specific loading paths, and the results are compared with finite

element simulations of porous unit cells for validation of the evolution laws. Finally,

we discuss heuristic generalizations of the model to arbitrary loading states in the

final chapter, followed by our conclusions.
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CHAPTER II

HOMOGENIZATION AND LIMIT ANALYSIS

This chapter presents a brief introduction to the main results from homogenization

and limit analysis that form the theoretical basis for the derivations presented in

subsequent chapters. Homogenization is the process by which the microscopic fields

at the scale of the material microstructure are averaged out to obtain a constitutive

relation that is representative of the material’s response at the macro scale, which is

typically several orders of magnitude larger than the scale of the microstructure. For

a porous material, the micro scale corresponds to the scale of the voids, which are

typically micron-sized, while the macro scale may be the size of the specimen which is

usually of the order of millimeters or higher. The homogenized constitutive relation at

the macro scale will contain some information of the microstructure, like the volume

fraction of the voids for a porous material, in the form of internal variables. Limit

analysis is a subfield of plasticity theory, where general results about an elastic-plastic

solid are obtained using variational principles without having a complete knowledge

of the microscopic fields in the material. Typically, limit analysis is used to derive

bounds and estimates for the quantities of interest in an engineering problem, like the

limit loads for an elasto-plastic beam, without having to solve the complete boundary

value problem. In conjunction with homogenization theory, limit analysis performed

on a micromechanical RVE can be used to derive constitutive relations for a composite

material undergoing plastic deformation, as illustrated in the following sections in the

context of a porous material containing a distribution of voids in a rigid perfectly

plastic matrix.
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A. Hill-Mandel Homogenization Theory

Consider a representative volume element (RVE) of a porous material as shown in

figure 2. Here ω represents the total volume of the voids and Ω the volume of the RVE

(matrix + voids). The RVE is chosen such that the void volume fraction, f ≡ ω/Ω, is

representative of that of the material. Required is the average constitutive response

Fig. 2. Sketch of a porous representative volume element.

of the RVE to the macroscopic imposed fields, which translates into appropriate

boundary conditions specified on ∂Ω, the boundary of the RVE. Considering that the

scale of the RVE is several orders of magnitude smaller than that of the specimen, one

may neglect the gradients of the macroscopic fields at the scale of the RVE in the first

approximation. Hence, the problem reduces to determination of the response of the

RVE subject to homogeneous stress or deformation-rate boundary conditions on ∂Ω.

(Note that only one of the two can be imposed on any given part of the boundary of

the RVE, ∂Ω). The term “homogeneous” here signifies that the form of the tractions

or velocities on ∂Ω is the same as if the stress or deformation-rate field in the RVE

were homogeneous. I.e.,

∀ x ∈ ∂Ω, t(x) = σ(x) · n(x) = Σ · n(x) (2.1)
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for homogeneous stress boundary conditions, and

∀ x ∈ ∂Ω, v(x) = D · x (2.2)

for homogeneous rate of deformation on the boundary. Here, σ and d represent the

microscopic stress and deformation-rate fields respectively, while Σ and D denote the

corresponding imposed macroscopic fields on the boundary. The boundary condition

on ∂ω corresponds to the traction free condition, i.e. σ(x) · n(x) = 0 on ∂ω.

In the Hill-Mandel [30, 31] homogenization theory, the macroscopic stress and

deformation rate fields for the RVE are defined as the volume average over the RVE

of the corresponding microscopic fields. I.e.,

Σ ≡ 〈σ(x)〉Ω, D ≡ 〈d(x)〉Ω (2.3)

where the notation 〈·〉Ω represents the volume average over the RVE. It is then

straightforward to show, using the divergence theorem, that the quantities Σ and D

of equation (2.3) are equal to the imposed macroscopic fields Σ and D of equations

(2.1) and (2.2), for homogeneous stress and deformation-rate boundary conditions

respectively. Again, employing the virtual velocities theorem in conjunction with

the divergence theorem, one can proceed to show that these two quantities are work

conjugate, i.e.,

Σ : D = 〈σ〉Ω : 〈d〉Ω = 〈σ : d〉Ω (2.4)

The above result is known as the Hill-Mandel lemma, which will be used later to

derive an upper bound for the macroscopic yield criterion.

A few caveats may be mentioned for the case of a porous material. In this case,

the microscopic fields, σ and d, are not defined within the voids. Nevertheless, one

can show that all the theorems discussed above hold regardless of the extension chosen
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for σ and d in ω as long as the continuity of tractions and velocities across ∂ω is

preserved. Also, it may be noted that the macroscopic deformation field D defined

by (2.3) need not be traceless, even if the matrix is assumed to be incompressible,

due to the possible expansion of the voids (and hence ∂ω).

B. Limit Analysis of the Macroscopic Yield Criterion

As mentioned previously, the field of limit analysis deals with determination of bounds

and estimates of the quantities of interest for an elasto-plastic material, using varia-

tional principles. Limit analysis is useful in those instances where the actual boundary

value problem may be too difficult to solve, as is usually the case in problems involv-

ing nonlinear material behavior like plasticity, and full knowledge of the deformation

fields is not required. A typical example is determination of the limit load for an

elasto-plastic beam, i.e. the load at which the beam undergoes unbounded plastic

deformation. In the context of homogenization theory, limit analysis can be used to

derive bounds for the yield criterion of an elasto-plastic composite. A detailed treat-

ment of homogenization and limit analysis may be found in [32, 33]. The scope of

the treatment here will be restricted to presentation of the theorems of limit analysis

that are used in the derivation of an upper bound for the macroscopic yield locus

of a porous material. Some of the expected features of the sought for yield criterion

may be noted. A priori, the yield criterion may be expected to depend on the mean

macroscopic pressure, unlike for a sound plastic material. Also, the macroscopic plas-

tic deformation field derived from the yield criterion through the associated flow rule

need not be incompressible due to the possible expansion of the holes.

Considering again the RVE sketched in figure 2, we now assume that the matrix

is made of a rigid-ideal plastic orthotropic material that obeys the Hill quadratic yield
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criterion [34]. The space of admissible stresses is a convex region, C, in stress space

given by

σeq ≡
√

3

2
σ : p : σ =

√
3

2
σ′ : h : σ′ ≤ σ1, p = J : h : J (2.5)

where σeq is called the “equivalent” (or “effective”) stress, p is the Hill tensor which

represents the anisotropy of the material, σ
′
is the stress deviator, and σ1 is the yield

stress in one of the directions of orthotropy, chosen arbitrarily. Since the criterion is

independent of pressure (piikl = 0), the tensor p admits a definition in terms of the

anisotropy tensor h [22] through the relation shown above involving the deviatoric

projection operator J ≡ I4 − 1
3
I2 ⊗ I2 (I4 = fourth order identity tensor, I2 = sec-

ond order identity tensor). The tensor p (and consequently h) obeys the symmetries

pijkl = pjikl = pijlk = pklij. In the frame of material orthotropy, h may be represented

as a diagonal 6× 6 matrix, whose diagonal elements are denoted hi. In fact, only five

of the six diagonal elements are independent, since the values of hi are normalized

such that the quadratic form for σeq equals the yield stress in one of the orthotropy di-

rections. The microscopic plastic dissipation for a given microscopic deformation

field d, is defined by

π(d) ≡ sup
σ∗∈C

σ∗ : d (2.6)

The supremum is taken over all stresses that fall within the microscopic convex of

rigidity, C, defined by equation (2.5). Performing the above maximization one can

show that, for a Hill orthotropic material

π(d) = σ1deq, deq ≡
√

2

3
d : ĥ : d (2.7)

where deq is called the microscopic “equivalent” (or “effective”) strain rate, work

conjugate with σeq. ĥ is the formal inverse of the h tensor, obtained from the relation
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ĥ = J : p̂ : J with p̂ given by p : p̂ = p̂ : p = J [22].

Let σ(x) represent a statically admissible stress field in the RVE of figure 2, i.e.

σij,j = 0, σ ·n = 0 on ∂ω and σ ·n = Σ ·n on ∂Ω (for homogeneous boundary stress)

or 〈σ〉Ω = Σ (for homogeneous boundary strain rate). Let d be a kinematically ad-

missible deformation field, i.e. satisfying dii = 0 (incompressibility) and d · x = D · x

on ∂Ω (for homogeneous boundary strain rate) or 〈d〉Ω = D (for homogeneous bound-

ary stress). Using the Hill-Mandel lemma (2.4) and the definition of the microscopic

plastic dissipation (2.6), we have

Σ : D = 〈σ : d〉Ω ≤ 〈π(d)〉Ω (2.8)

The above inequality is true for any kinematically admissible velocity field and hence

Σ : D ≤ inf
d∈K(D)

〈π(d)〉Ω ≡ Π(D) (2.9)

whereK(D) denotes the set of microscopic deformation fields kinematically admissible

with D. Π(D) is termed the macroscopic plastic dissipation associated with

D. The above inequality implies that of all the admissible deformation fields in the

RVE, the true field minimizes the functional Π(D). Equation (2.9) is a statement

of the principle of minimum plastic dissipation of limit analysis applied to a

micromechanical RVE, and allows us to derive an upper bound for the macroscopic

yield locus of the RVE.

For a given D, equation (2.9) represents a half-space in the macroscopic stress

space. It then follows that the domain of potentially supportable macroscopic stresses

(macroscopic convex of rigidity) is the region that lies at the intersection of all such

half-spaces (for all D) [32]. The macroscopic yield locus is then the envelope of the

hyper-planes Σ : D = Π(D) in stress space, with D as the parameter. A consequence

of the above result is that the macroscopic yield locus is convex. We have from (2.7)
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that the microscopic plastic dissipation, π(d), is positively homogeneous of degree 1

in the components of d, which implies that Π(D) is also positively homogeneous of

degree 1 in the components of D. Therefore, Π(D) obeys the following Euler relation

∂Π

∂D
: D = Π(D) (2.10)

Differentiating the relation Σ : D = Π(D) with respect to D, we have

Σ− ∂Π

∂D
= 0 (2.11)

Equations (2.10) and (2.11) together yields the result that the parametric equation

of the macroscopic yield surface is given by

Σ =
∂Π

∂D
(D) (2.12)

with D as the parameter. Note that since Π(D) is homogeneous of degree 1 on the

components of D, ∂Π/∂D is homogeneous of degree zero, i.e. Σ depends on the five

ratios of the components of D. Thus, equation (2.12) represents a 5-D surface in a

6-D space. Elimination of these ratios between the six equations (2.12) yields the

explicit equation of the macroscopic yield locus.

Use of equation (2.12) to determine an expression for the macroscopic yield locus

requires the minimization of the functional, Π(D), given by (2.9) over an infinite

number of kinematically admissible velocity fields. In practice, a finite number of

admissible velocity fields are used and equation (2.9) guarantees that the resulting

expression is an upper bound for the actual Π(D), denoted Π+(D). It then follows

that the envelope of the hyper-planes Σ : D = Π+(D) ≥ Π(D) is a convex hyper-

surface that is external to the true yield surface.
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CHAPTER III

APPROXIMATE ANALYTICAL YIELD CRITERION FOR ANISOTROPIC

POROUS MEDIA

The homogenization and limit analysis approach presented in the previous chapter is

now used to derive an approximate analytical yield criterion for a porous spheroidal

RVE made of an orthotropic Hill matrix, containing a single confocal spheroidal

void. The RVE geometry is a generalization of the composite spheres model used by

Gurson [15] and was used in the previous works on void shape effects [3,23–25]. Two

different void shapes are considered, namely prolate and oblate voids. Admittedly,

this choice of the void shape is an approximation and a better choice would have

been to consider the more general case of ellipsoidal voids, with two associated shape

parameters. However, this will require a fully three dimensional description of the

velocity fields, and the calculations involved are not tractable analytically. In spite

of this limitation, it may be mentioned that the spheroidal shape is representative of

a variety of actual void shapes observed, ranging from penny shaped cracks (limiting

case of oblate voids) to needle shaped voids (limit of prolate shaped voids). Following

Gologanu et al. [25], we make two additional assumptions that considerably simplify

the derivation of the analytical yield locus:

1. The macroscopic loading is assumed to be axisymmetric about the axis of sym-

metry of the RVE. The resulting yield criterion will then be expressed in terms

of the two independent principal components of the macroscopic stress tensor.

We propose a heuristic generalization of this criterion to general cases of loading

in chapter VI.

2. The RVE is assumed to deform axisymmetrically and the void is assumed to
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(a) (b)

Fig. 3. Porous RVEs considered (a) prolate (b) oblate.

remain approximately spheroidal throughout the deformation. This is obviously

not true for the general cases of loading and material orthotropy. However, as

discussed in chapter II, equations (2.9) and (2.12) guarantee that the resulting

yield locus is an upper bound to the true yield locus. Thus, this approximation

preserves the upper bound character of the approach.

A. Geometry and Coordinates

Consider a prolate or oblate spheroidal RVE containing a confocal spheroidal void,

as illustrated in figure 3. Let Ω and ω represent the volume of the RVE and the

void respectively, and let c represent the semi-focal length of the spheroids, given by

c =
√
|a2

1 − b2
1| =

√
|a2

2 − b2
2|. Since the problem is scale independent, the geometry

is completely defined by two parameters, namely the porosity f = ω/Ω and the void

shape parameter, S = ln w1, where w1 is the void aspect ratio defined by w1 = a1/b1.
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Fig. 4. Base vectors of the spheroidal curvilinear coordinate system (a) prolate (b)

oblate.

Thus, we have S > 0 for prolate voids and S < 0 for oblate voids.

Due to the spheroidal geometry of the problem being considered, it is most conve-

nient to express the microscopic fields and the boundary conditions using spheroidal

coordinates (λ, β, ϕ), associated with the natural basis (gλ,gβ,gϕ) (see figure 4).

These are defined in an orthonormal cylindrical basis (er, eθ, ez), with ez aligned with

the symmetry axis of the spheroid, as

gλ = a sin β er + b cos β ez

gβ = b cos β er − a sin β ez

gϕ = b sin β eθ

(3.1)

where a and b represent the semi-axes of the current spheroid, given by

a = c cosh λ, b = c sinh λ, e = c/a = 1/ cosh λ (p)

a = c sinh λ, b = c cosh λ, e = c/b = 1/ cosh λ (o)
(3.2)

and e denotes the eccentricity. The notation (p) and (o) above represent prolate

and oblate spheroids respectively. The covariant components of the metric tensor are

obtained from the relation gij = gi ·gj. The non-zero components of the metric tensor
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are

gλλ = gββ = a2 sin2 β + b2 cos2 β

gϕϕ = b2 sin2 β
(3.3)

and the Lamé coefficients are given by

Lλ =
√

gλλ, Lβ =
√

gββ, Lϕ =
√

gϕϕ (3.4)

The iso-λ surfaces are confocal spheroids of focal length 2c and the iso-β surfaces are

confocal hyperboloids of revolution orthogonal to the iso-λ surfaces. In particular,

the boundaries of the void and the RVE are given by constant values of λ, designated

λ1 and λ2 (eccentricities e1 and e2) respectively.

B. Incompressible Axisymmetric Velocity Fields of Lee and Mear

As discussed at the beginning of the chapter, we consider only axisymmetric velocity

fields, primarily due to the fact that this considerably simplifies the algebra involved

in the limit analysis. Since the matrix is assumed to be plastically incompressible,

the microscopic velocity fields considered must be incompressible, i.e. tr(d) = 0. In

spheroidal coordinates, the covariant components of the deformation rate tensor, d,

are given by

dλλ =
∂vλ

∂λ
− c2 sinh λ cosh λ

L2
λ

vλ +
c2 sin β cos β

L2
λ

vβ

dββ =
∂vβ

∂β
+

c2 sinh λ cosh λ

L2
λ

vλ −
c2 sin β cos β

L2
λ

vβ

dϕϕ =
L2

ϕ

L2
λ

(vλ coth λ + vβ cot β)

dλβ =
1

2

(
∂vλ

∂β
+

∂vβ

∂λ

)
− c2

L2
λ

(vλ sin β cos β + vβ sinh λ cosh λ)

dλϕ = dβϕ = 0

(p) (3.5)
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for the prolate case and

dλλ =
∂vλ

∂λ
− c2 sinh λ cosh λ

L2
λ

vλ −
c2 sin β cos β

L2
λ

vβ

dββ =
∂vβ

∂β
+

c2 sinh λ cosh λ

L2
λ

vλ +
c2 sin β cos β

L2
λ

vβ

dϕϕ =
L2

ϕ

L2
λ

(vλ coth λ + vβ cot β)

dλβ =
1

2

(
∂vλ

∂β
+

∂vβ

∂λ

)
+

c2

L2
λ

(vλ sin β cos β − vβ sinh λ cosh λ)

dλϕ = dβϕ = 0

(o) (3.6)

for the oblate case. In the above expressions, vi are the covariant components of the

microscopic velocity field (associated with the dual basis gi defined by gi · gj = δij).

Therefore, the incompressibility condition in spheroidal coordinates becomes

∂vλ

∂λ
+

∂vβ

∂β
+ vλ coth λ + vβ cot β = 0 (3.7)

Lee and Mear [35] have proposed a general solution to the above equation, which

supposedly represents the complete set of axisymmetric incompressible velocity fields.

The components of the Lee-Mear fields in spheroidal coordinates writes

vλ(λ, β) = c2 {B00/ sinh(λ)

+
∑+∞

k=2,4,..

∑+∞
m=0 k(k + 1)[BkmQ1

m(w) + CkmP 1
m(w)]Pk(u)}

vβ(λ, β) = c2 {
∑+∞

k=2,4,..

∑+∞
m=1 m(m + 1)[BkmQm(w)

+CkmPm(w)]P 1
k (u)}

(p) (3.8)



vλ(λ, β) = c2 {B00/ cosh(λ)

+
∑+∞

k=2,4,..

∑+∞
m=0 k(k + 1)im[i BkmQ1

m(w) + CkmP 1
m(w)]Pk(u)}

vβ(λ, β) = c2 {
∑+∞

k=2,4,..

∑+∞
m=1 m(m + 1)im[i BkmQm(w)

+CkmPm(w)]P 1
k (u)}

(o) (3.9)
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where,

w ≡

 cosh λ (p)

i sinh λ (o)
; u ≡ cos β (3.10)

In the above expressions, Pm
n and Qm

n represent associated Legendre functions of the

first and second kinds respectively, of order m and degree n [36], and Bij and Cij are

arbitrary real constants.

C. Derivation of the Approximate Analytical Criterion

1. Boundary Conditions

As the first step in the derivation of an approximate analytical yield criterion for

the RVE of figure 3, we need to derive an expression for the macroscopic plastic

dissipation, Π(D). This requires evaluation of the infimum of equation (2.9) over a

set of kinematically admissible velocity fields. We choose a subset of the Lee-Mear

fields, equations (3.8-3.9), to represent the microscopic deformation field, so that

the condition of plastic incompressibility is automatically satisfied. The boundary

conditions at the remote boundary, ∂Ω, imposes further constraints on the velocity

fields. It has been shown by Leblond and Perrin [19] that the choice of homoge-

neous deformation-rate boundary conditions leads to a rigorous upper bound, and is

preferable to homogeneous stress boundary conditions. Hence, following the previous

works [22, 25], we impose homogeneous (axisymmetric) deformation rate boundary

conditions, which writes

D = D11 (e1 ⊗ e1 + e2 ⊗ e2) + D33 e3 ⊗ e3

∀ x ∈ ∂Ω, v = D · x
(3.11)

where (e1, e2, e3) is a Cartesian basis with e3 aligned with the void axis and the

directions of e1 and e2 chosen arbitrarily (see figure 3). Using spheroidal coordinates,
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the two independent components of the above equation become

vλ(λ = λ2, β) = a2b2(Dm + D
′
33P2(u))

vβ(λ = λ2, β) = (a2
2D33 − b2

2D11)P
1
2 (u)/3

(3.12)

where Dm and D
′

denote the mean and deviatoric parts of the deformation tensor

respectively. Since the associated Legendre functions are linearly independent and

the coefficients Bij and Cij are arbitrary, comparison with equations (3.8) and (3.9)

yields

c3B00 = a2b
2
2Dm; 6c2F2(λ2) = a2b2D

′
33; 3c2G2(λ2) = a2

2D33 − b2
2D11;

Fk(λ2) = Gk(λ2) = 0, k = 4, 6, 8...
(3.13)

where,  Fk(λ) ≡
∑+∞

m=0 [BkmQ1
m(w) + CkmP 1

m(w)]

Gk(λ) ≡
∑+∞

m=1 m(m + 1) [BkmQm(w) + CkmPm(w)]
(p)

 Fk(λ) ≡
∑+∞

m=0 im [iBkmQ1
m(w) + CkmP 1

m(w)]

Gk(λ) ≡
∑+∞

m=1 m(m + 1)im [iBkmQm(w) + CkmPm(w)]
(o)

(3.14)

Eliminating D11 and D33 between the three equations (3.13)1 yields the following

equations e3
2B00/(3(1− e2

2)) + (3− e2
2)F2(λ2)/

√
1− e2

2 −G2(λ2) = 0 (p)

−e3
2B00/(3

√
1− e2

2) + (3− 2e2
2)F2(λ2)/

√
1− e2

2 −G2(λ2) = 0 (o)
(3.15)

Equations (3.13)2 and (3.15) constitute linear constraints on the space of admissible

values of Bij and Cij, corresponding to the condition of homogeneous axisymmetric

strain rate on the RVE boundary, ∂Ω.
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2. Choice of Velocity Fields

The approach followed in Gurson’s work [15] and later works based on it [3,22–24] was

to use two trial velocity fields so that the need for explicit minimization of Π(D) is

eliminated. This is because the two independent components of the imposed macro-

scopic deformation field completely determines the multiplicative factors of these

velocity fields. However, this approach was found to have some limitations in the

case of spheroidal voids. The model predictions for porosity and void shape evolution

using the two field approach was found to be in poor agreement with direct finite

element calculations on porous unit cells [25]. Gologanu et al. [25] have proposed

an improved yield criterion that remedies some of these defects, using an enhanced

description of the deformation field derived from the Lee-Mear decomposition. Since

these considerations also apply in the present case (as the case of a Von Mises matrix

considered by [25] is a special case of the Hill matrix being considered here), we have

chosen to follow the extended approach of Gologanu et al. [25]. Specifically, we use

the same Lee-Mear field components employed by these authors and described below.

First, the microscopic velocity field, v, is decomposed into a uniform deviatoric

strain rate field, vB, and a non-homogeneous field, vA, responsible for the expansion

of the voids. i.e.

v = AvA + BvB (3.16)

where

vB = −x1

2
e1 −

x2

2
e2 + x3e3 (3.17)

The expansion field, vA, is chosen as a linear combination of four Lee-Mear field

components corresponding to the coefficients B00, B20, B21 and B22 in equations (3.8)

-(3.9). The coefficient B00 taken as unity to “normalize” the field vA. The remaining

coefficients, collectively referred to as B2i, are left undefined, to be fixed later indepen-
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dently of the boundary conditions. The coefficients A and B are then linear functions

of the macroscopic strain components, D11 and D33, and B2i. It may also be noted

that the field vB corresponds to the coefficient C22 in the Lee-Mear decomposition.

The choice of the expansion field is a generalization of the fields used in the earlier

works of Gologanu et al. [23,24] (B00 and B22) and Garajeu [27] (B00 and B20), which

were found to give acceptable results for the yield criterion in the case of the isotropic

matrix. Recent work by Monchiet et al. [3] using the Hill matrix also considered the

fields B00 and B22 to describe the expansion field. However, we have chosen to follow

the extended approach of [25] and, as will be seen later, the resulting criterion and

evolution laws show better agreement with simulation results than those proposed by

Monchiet et al. Additional arguments in favor of the choice of the velocity fields may

be found in [25].

3. Derivation of the Yield Criterion

The essential step in the derivation of the analytical yield criterion is the evaluation

of an upperbound for the macroscopic plastic dissipation, Π+(D), using the chosen

set of trial velocity fields. Henceforth, we will use the notation Π(D) to refer to the

upperbound, for convenience. Using equations (2.9) and (2.7), we have for the RVE

of interest

Π(D) = inf
d∈K(D)

〈π(d)〉Ω =
σ1

Ω

∫ λ2

λ1

∫ π

0

∫ 2π

0

deqb L2
λ sin β dϕ dβ dλ (3.18)

where deq is given by

d2
eq ≡

2

3
d : ĥ : d (3.19)

Note that we no longer need to evaluate the infimum in equation (3.18) since the

coefficients of the chosen velocity fields are fixed independently as explained in the
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previous section. Using equation (3.16) in (3.19), we have

d2
eq = A2dA

eq

2
+ B2dB

eq

2
+

4

3
ABdA : ĥ : dB (3.20)

where dA
eq and dB

eq are defined similar to deq in (3.19). Using equation (3.17) along

with the incompressibility of dA, the above simplifies to

d2
eq = A2dA

eq

2
+ 2hABdA

33 + hB2, h ≡ ĥ11 + ĥ22 + 4ĥ33 − 4ĥ23 − 4ĥ31 + 2ĥ12

6
(3.21)

where ĥij represent the components of the symmetric 6 × 6 matrix (Voigt) repre-

sentation of the fourth order tensor ĥ in the frame (e1, e2, e3) of figure 3. It is

straightforward to demonstrate that the parameter h is invariant with respect to ar-

bitrary coordinate rotations about the void axis, e3. Also note that deq is, in general,

a function of λ, β and ϕ, even though only axisymmetric velocity fields are used, since

dA
eq depends on the orthotropy coefficients which are different in the three coordinate

directions.

Expressing the macroscopic deformation rate in terms of the contributions from

fields vA and vB, we have

D11 = D22 = ADA
11 + BDB

11 = A [c3/(a2b
2
2)− 3c2F2(λ2)/(a2b2)]−B/2

D33 = ADA
33 + BDB

33 = A [c3/(a2b
2
2) + 6c2F2(λ2)/(a2b2)] + B

(3.22)

where equation (3.13)1 has been used for DA
11 and DA

33. The macroscopic stress com-

ponents are obtained as derivatives of Π(D) with respect to the components of the

macroscopic deformation rate, by equation (2.12). Using the chain rule, we have

∂Π

∂A
=

∂Π

∂D11

∂D11

∂A
+

∂Π

∂D22

∂D22

∂A
+

∂Π

∂D33

∂D33

∂A
= 2DA

11Σ11 + 2DA
33Σ33 (3.23)
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Defining the parameter α2 by

α2 ≡
DA

11

2DA
11 + DA

33

=
1

2
− b2

c
F2(λ2) (3.24)

equation (3.23) becomes

∂Π

∂A
=

3c3

a2b2
2

Σh, Σh ≡ 2α2Σ11 + (1− 2α2)Σ33 (3.25)

Using a similar procedure we also obtain

∂Π

∂B
= 2DB

11Σ11 + 2DB
33Σ33 = Σ33 − Σ11 (3.26)

Equations (3.25) and (3.26) represent the parametric equation of the macroscopic

yield locus, where the ratio A/B acts as the parameter. Elimination of the parameter

between the two equations would result in the explicit equation of the yield locus.

This proves to be a challenging task, since it requires the explicit evaluation of Π(D),

given by equation (3.18), and is in fact not feasible analytically. The approach followed

in [25] was to introduce a series of approximations that reduce the plastic dissipation

integral (3.18) to a form similar to that obtained by Gurson [15], so that the final

criterion reduces to the Gurson criterion in the isotropic case. We follow a similar

approach and introduce two approximations, designated A1 and A1, as explained

below. It may be noted that approximation A2 is identical to that in [25] while A1

differs.

Approximation A1: In equation (3.18), deq is replaced by its root mean square

value obtained by evaluating the integral over the coordinates β and ϕ, designated

drms
eq , as shown below.

Π(D) =
σ1

a2b2
2

∫ λ2

λ1

drms
eq b(2a2 + b2)dλ (3.27)
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where

drms
eq =

[
3

4π(2a2 + b2)

∫ π

0

∫ 2π

0

d2
eq L2

λ sin βdϕdβ

]1/2

(3.28)

and we have used the expression for the volume of the RVE, given by Ω = 4πa2b
2
2/3

to obtain the simplified form (3.27). This approximation is necessary since the triple

integral in (3.18) can not be evaluated in closed form, whereas drms
eq can be evaluated

using equation (3.28). Note that this approximation preserves the upper bound char-

acter of the approach since the RMS value is always greater than the mean. drms
eq is

a function of λ alone, and using a change of variable x ≡ c3/ab2, equation (3.27) can

be written in the simple form

Π(D) = σ1x2

∫ x1

x2

drms
eq

dx

x2
(3.29)

where drms
eq has the form

drms
eq =

√
A2P (x) + hB2 + 2hABQ(x) (3.30)

The functions P (x) and Q(x) above are the mean values, obtained using equation

(3.28), of the dA
eq

2
and dA

33 terms appearing in the expansion for d2
eq, equation (3.21).

These functions have complicated expressions and are evaluated using MAPLE soft-

ware. However, despite their lengthy expressions, they have a relatively simple be-

havior in the domain of interest, as indicated by their limiting values for the cases

of x → 0 (spherical void) and x → ∞ (cylindrical void for the prolate case and a

“sandwich” in the oblate case). The limiting values of P (x) are

P (x → 0) =
4

5
(h + 2ht + 2ha)x

2 (3.31)

P (x →∞) =

 3htx
2 (p)

9h(3πB22 + 4B21)
2 + 6ha(πB21 + 12B22)

2 (o)
(3.32)
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where the parameter h was introduced earlier, in equation (3.21), and ht and ha are

given by

ht ≡
ĥ11 + ĥ22 + 2ĥ66 − 2ĥ12

4
, ha ≡

ĥ44 + ĥ55

2
(3.33)

with ĥij as the components of the tensor ĥ expressed in Voigt form, in the frame

(e1, e2, e3) associated with the RVE of figure 3. It can be shown that, similar to

the case of h, the values of ht and ha are invariant with respect to arbitrary coordi-

nate rotations about the symmetry axis of the RVE, e3. Notice that in the prolate

case, P (x) may be considered to be approximately proportional to x2 in both limits,

whereas in the oblate case, P (x) tends to a constant value in the limit of x → ∞.

Figure 5 shows the variation of P (x)/x2 as a function of e, the eccentricity of the

current spheroid, for the case of prolate cavities and three different sets of material

anisotropy parameters, corresponding to an isotropic matrix, Material 1 and Material

2 from Table 1 on page 49. In all cases, the material’s e3–axis of orthotropy is aligned

with the void axis. The independent variable has been changed to e, so that the

entire domain of variation of the function can be shown. The variable x and e are

related by x = e3/(1− e2)n, where n = 1 for prolate cavities and n = 1/2 for oblate

cavities.

The function Q(x), on the other hand, is independent of the material anisotropy

parameters. It is seen that Q(x) can be considered approximately proportional to x

for prolate cavities and constant for oblate cavities. The values of Q(x) in the limiting

cases are shown below.

lim
x→0

Q(x)

x
= lim

x→∞

Q(x)

x
= 0 (p) (3.34)

lim
x→0

Q(x) = 0

lim
x→∞

Q(x) = 12B21 + 9πB22

(o) (3.35)
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Fig. 5. Variation of P/x2 as a function of the eccentricity of the current spheroid e for

an isotropic matrix (symbol +), Material 1 (symbol ×) and Material 2 (symbol

∗) from Table 1. In all cases B20 and B21 were taken as zero.

The variation of Q(x)/x as a function of the eccentricity of the current spheroid, e,

is shown in figure 6 for prolate cavities.

Based on the above observations, we see that P (x) varies like x2 and Q(x) like

x through the domain of interest for prolate cavities, but not for oblate cavities.

However, introducing the change of variable proposed by Gologanu et al. [24,25] and

writing P (x) = F (u)u2, where u ≡ x for prolate cavities and u ≡ x/(1 + x) for

oblate cavities, we may consider the function F (u) to be approximately constant in

the domain x ∈ (0,∞) for both prolate and oblate cavities. Also, following Gologanu

et al. [25], we write Q(x) = F (u)G(u)u2. Substituting for P (x) and Q(x), as above,

in the expression for drms
eq (3.30), the plastic dissipation integral, equation (3.29), can
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all cases B20 and B21 were taken as zero.

be written

Π(D) = σ1x2

∫ u1

u2

√
[AF (u) + hBG(u)]2u2 + B2H2(u)

du

u2
(3.36)

where H(u) ≡
√

h(1− hG2(u)u2). With these changes, we now introduce the next

approximation.

Approximation A2: In equation (3.36), the functions F (u), G(u) and H(u) are

replaced by constants, designated F̄ , Ḡ and H̄, respectively.

This approximation is identical to the one that was used by Gologanu et al. in

the case of spheroidal voids and the isotropic matrix [25]. Note that although this

approximation is justified in the case of function F (u), the same can not be said for

functions G(u) and H(u), since these functions tend to infinity in the limit of spherical

cavities. However, this approximation was found to give good results in the case of
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the isotropic matrix. Also, the functions G(u) and H(u) result from the “crossed”

term in the expression for drms
eq (3.30) and good estimates of the yield criterion were

obtained in the case of the isotropic matrix by Gologanu et al. [23] and Garajeu [27]

by completely neglecting this term. Therefore, the effect of the “crossed” term on

the yield criterion is expected to be “weak” in which case replacing these functions

by constants is a reasonable approximation. In spite of the above approximation, the

final criterion does reduce to the Gurson [15] criterion in the limit of spherical cavities

and the isotropic matrix, as will be seen later.

With these changes, the integral for the plastic dissipation can be written in the

form

Π(D) = σ1x2

∫ u1

u2

√
A′ 2u2 + B′ 2

du

u2
, A

′ ≡ F̄A + hḠB, B
′ ≡ H̄B (3.37)

Indeed the object of approximation A2 was to recover the above form for the plastic

dissipation integral, which is similar to the form obtained by Gurson [15]. This has

the advantage that the final criterion will have a form similar to that of Gurson and

will reduce to it as a special case, which is desirable since the Gurson model is known

to be a tight upper bound for the actual yield criterion in the isotropic case.

From this point, the calculations are formally identical to those in [25]. Eval-

uation of the derivatives ∂Π/∂A
′

and ∂Π/∂B
′

and elimination of the ratio A
′
/B

′

between the two equations results in

1

σ2
1

(
∂Π

∂B′

)2

+ 2(g + 1)(g + f) cosh
1

σ1x2

∂Π

∂A′ − (g + 1)2 − (g + f)2 (3.38)

where the parameter g is taken as zero for prolate cavities and x2 for oblate cavities.

Expressing ∂Π/∂A
′

and ∂Π/∂B
′

in terms of ∂Π/∂A and ∂Π/∂B using equations

(3.37)2,3 and then in terms of the macroscopic stress components using equations

(3.25) and (3.26), we obtain the final expression for the yield criterion, which is in



31

fact formally identical to that obtained by Gologanu et al. [25].

C

σ2
1

(Σ33 − Σ11 + ηΣh)
2 + 2(g + 1)(g + f) cosh κ

Σh

σ1

− (g + 1)2 − (g + f)2 = 0 (3.39)

where,

C ≡ 1

H̄2
, η ≡ −3x2

hḠ

F̄
, κ ≡ 3

F̄
, g ≡

 0 (p)

x2 (o)
(3.40)

Note that although the form of the criterion is identical to that in [25], the parameters

κ, α2, C and η are now functions of the anisotropy parameters h, ht and ha in addition

to the porosity, f , and void shape parameter, S. Their expressions are determined in

the following section.

4. Determination of the Criterion Parameters

We follow an approach essentially similar to that of Gologanu et.al [25] in order

to determine the closed form expressions for the criterion parameters, κ, α2, C and

η, which involves further approximations. The main consideration determining the

nature of these approximations is that the resulting yield locus is close to the “exact”

yield locus, determined numerically in chapter IV.

a. Parameters κ and α2

The parameters κ and α2, defined by equations (3.40)3 and (3.24) respectively, depend

on the components of the “expansion” field, identified by the parameters B2i. Recall

that these parameters were left undefined thus far in the derivations. The parameter

κ is tied to the definition of the constant F̄ . F̄ is chosen such that replacement of

F̄ for F (u) in equation (3.36) results in the exact value of the integral in the case of
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purely hydrostatic loading and assuming B = 0. In such case, F̄ is given by

F̄ =

(
ln

u1

u1

)−1 ∫ u1

u2

F (u)
du

u
(3.41)

and since the right hand side, which is proportional to the plastic dissipation, depends

on the parameters B2i, the best choice of F̄ that gives the closest fit to the true

yield locus will be obtained by minimizing the above integral with respect to these

parameters. However, this minimization is not tractable analytically, but may be

performed numerically for specific choices of the limits u1 and u2 (corresponding to

specific values of f and S). In order to obtain a closed form expression for F̄ for

general values of f and S, the following scheme is used, which is a variant of the

method used in [25].

First, the parameters B2i are taken to be functions of u, rather than constants.

Their values are obtained by minimizing an approximation to the function dA
eq

2
, ob-

tained by replacing the variable cos2 β that appears in the expansion of dA
eq

2
by 1/3,

with respect to the unknown parameters B2i. This was the method used in [25] to

obtain the values of B2i, but they also used this method to approximate the value

of Π(D), which we no longer do here due to poor results obtained for the case of

anisotropic matrix. Note that the existence and uniqueness of the above minimum is

guaranteed, since dA
eq

2
is a positive definite quadratic form in the values of B2i. The

minimization is performed while respecting the linear constraints among the param-

eters, B2i, equation (3.15), imposed by the homogeneous deformation rate boundary

conditions. The resulting values of B2i are functions of u and the anisotropy factors,

h, ht and ha. However, we choose to ignore the dependence on the anisotropy factors

and use the isotropic values of h = ht = ha = 1, so that B2i are functions of u alone.

Note that, a priori, one would expect the microscopic velocity field, and hence B2i, to

depend on material anisotropy. Indeed, this is verified to be the case in our numerical
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results to be presented in chapter IV, and in figure 7 for the parameter α2. However,

our numerical experience indicates that using the values of B2i as functions of h, ht

and ha, obtained above, grossly over-predicts this effect and a better yield criterion

is obtained by constraining B2i to not depend on the anisotropy parameters. Note

that F̄ and κ will still depend on the anisotropy factors, since the expression for F (u)

depends explicitely on h, ht and ha.

Once the values of B2i are specified, the microscopic deformation field is com-

pletely defined and one can calculate the expression for the parameter α2 given by

(3.24). This yields

α2 =


(1 + e2

2)

(1 + e2
2)

2 + 2(1− e2
2)

(p)

(1− e2
2)(1− 2e2

2)

(1− 2e2
2)

2 + 2(1− e2
2)

(o)
(3.42)

where e2 denotes the eccentricity of the RVE and hence depends implicitly on f

and S. Note that these expressions of α2 are identical to those obtained by [25]

for the isotropic case, which is a consequence of the fact that we have neglected the

dependence of B2i on anisotropy. Figure 7 shows the variation of α2 as a function of e2

for prolate and oblate RVEs. Numerically determined values of α2 using the method

explained in chapter IV for RVEs of porosity, f = 0.01, and three different material

anisotropy parameters are also shown using discrete points. The anisotropy factors

were so chosen as to obtain the largest possible range of α2 in figure 7. Notice that

the assumption that α2 is independent of the anisotropy parameters is not strictly

true, but the effect appears to be weak for both prolate and oblate cavities. On the

other hand numerical curves of α2, obtained for different values of f (not shown here),

indicates that the dependence of α2 on f is weak, apart from the implicit dependence

through e2.

For the case of prolate cavities, it turns out that the function F (u) obtained by us-
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Fig. 7. Variation of α2 as a function of e2 for (a) prolate and (b) oblate RVEs, with

f = 0.01. Discrete points correspond to numerically determined values of α2

for isotropic matrix (∗), Material 1 (+) and Material 2 (×) from Table 1.
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Fig. 8. Variation of F (e) as a function of e for prolate RVEs, with f = 0.001 and

w1 = 5 (a) Isotropic matrix (b) Material 1 from Table 1.

ing the above determined values of B2i, designated F app(u), results in close agreement

with the true function F (u) that minimizes the integral of equation (3.41), regardless

of the values of u1 and u2 and for all values of material anisotropy parameters tested.

However, this function is still too complicated to be used in equation (3.41) to find F̄ .

It may be observed that F app(u) has the form F app(u) =
√

hF1 + htF2 + haF3, where

the functions F1, F2 and F3 depend on u alone. Despite their complicated expression,

these functions can be well approximated by fits of the form C1
(1−e4)
(3+e4)2

+ C2, where

the eccentricity of the current spheroid, e, is used as the independent variable and

the constants C1 and C2 are determined by fitting the original function at the end

points, i.e. e = 0 and e = 1. This results in the following expression for F app(e)

F app(e) =

√
9

5
(4h + 8ha − 7ht)

(1− e4)

(3 + e4)2
+ 3ht (p) (3.43)

The figure 8 compares F app(e) with the true function that minimizes the integral in

(3.41), designated Fmin(e) for two different material anisotropy parameters and for

f = 0.001 and the void aspect ratio, w1 = 5.
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Fig. 9. Variation of F (u) as a function of u for oblate RVEs, with f = 0.001 and

w1 = 1/5 (a) Isotropic matrix (b) Material 1 from Table 1.

However, in the case of oblate cavities the above approach does not result in a

satisfactory approximation for Fmin(u). Therefore, we use a heuristic modification of

the function F app(u) proposed by Gologanu et al. [25] and given below

F app(u) =

√
4

5
(h + 2ha + 2ht)(1 + u + 2u5/2 − 3u5) (o) (3.44)

This function gives an acceptable agreement with the true function that minimizes

the integral (3.41), determined numerically, as illustrated in figure 9 for two different

material anisotropy parameters and f = 0.001 and w1 = 1/5.

The parameter κ can be determined by substituting (3.43) and (3.44) in (3.41)

and then using equation (3.40)3. For the prolate case, since the integral cannot be

evaluated in closed form, the mean of F app2(e) is evaluated using equation (3.41) and

the square root of this value is assigned to F̄ . It is verified numerically that for all
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Fig. 10. (a) Variation of κ with ht for h = ha = 1.0. (b) Variation of κ with ha for

h = ht = 1.0. In both cases, f = 0.01 and w = 5 (prolate) and 1/5 (oblate).

values of e1 and e2, the two values are close to each other. Thus

κ =



√
3
{

1
ln f

[
2
3
ln

1−e2
2

1−e2
1

+
3+e2

2

3+e4
2
− 3+e2

1

3+e4
1

+ 1√
3

(
tan−1 e2

2√
3
− tan−1 e2

1√
3

)
−1

2
ln

3+e4
2

3+e4
1

]
4h+8ha−7ht

10
+ 4(h+2ha+2ht)

15

}−1/2 (p)

3
2

(
h+2ha+2ht

5

)−1/2
{

1 +
(gf−g1)+ 4

5
(g

5/2
f −g

5/2
1 )− 3

5
(g5

f−g5
1)

ln
gf
g1

}−1

(o)

(3.45)

where

gf ≡
g

g + f
, g1 ≡

g

g + 1
(3.46)

In the case of spherical voids, (3.45) reduces to κ = 3/2
√

5/(h + 2ha + 2ht) and in

the limit of cylindrical voids κ =
√

3/ht, which are results established in [22]. Figure

10 shows the variation of κ with the anisotropy parameters ht and ha, for prolate and

oblate cavities with f = 0.01 and w1 = 5 and 1/5 respectively.

b. Parameters C and η

The parameters C and η are tied to the constants Ḡ and H̄ by equations (3.40)1,2.

These are now determined by forcing the approximate analytical yield locus to pass
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through and be tangent to known exact points on the two field yield locus (i.e. the

yield locus defined by equations (3.25) and (3.26) without the approximations A1 and

A2), which can be determined in the case of A = 0. In this case, the derivatives of

the plastic dissipation, ∂Π/∂A and ∂Π/∂B can be evaluated exactly and then using

equations (3.25) and (3.26), we obtain

Σh/σ1 = ±2
√

h(α2 − α1)

(Σ33 − Σ11)/σ1 = ±
√

h(1− f)
(3.47)

where the parameter α1 is defined in a manner similar to α2 (3.24), by

α1 ≡
DvA

11

2DvA
11 + DvA

33

(3.48)

In the above equation, DvA is the “macroscopic deformation rate of the void” due to

the field A, defined by

DvA ≡ 〈dA〉ω =
3

4πa1b2
1

∫
∂ω

1

2
(v ⊗ n + n⊗ v)dS (3.49)

The surface integral form of DvA, above, is obtained by using the divergence theorem.

The two algebraic equations that result from substituting (3.47) in (3.39) and

equating the slopes of the analytical and the exact two field yield loci at these points,

can be solved for the values of the two unknown parameters C and η. This results in

the following expressions

η = − κQ∗(g + 1)(g + f)sh

(g + 1)2 + (g + f)2 + (g + 1)(g + f)[κH∗sh− 2ch]
,

C = −κ(g + 1)(g + f)sh

(Q∗ + ηH∗)η
, sh ≡ sinh (κH∗), ch ≡ cosh (κH∗)

(3.50)

where H∗ ≡ Σh/σ1 and Q∗ ≡ (Σ33 − Σ11)/σ1 from (3.47). Note that the above

expressions are formally identical to those in [25], except that the parameters H∗ and



39

Q∗ now depend on the anisotropy factor, h, by (3.47).

The expression for α1 is determined in a manner identical to that in [25]. Similar

to the case of α2, which was found to be closely approximated by a function of e2

alone, it is assumed that α1 depends only on e1 (or S) and is independent of f and

the anisotropy parameters. In such case, the value of α1 can be evaluated by letting

the boundary of the RVE tend to infinity (i.e. a2, b2 →∞ or f → 0). In such case, it

turns out that one must take B20 = B21 = 0 for the velocity fields to not diverge. The

remaining parameter B22 is then fixed by the boundary conditions and the integrals

(3.49) can be evaluated in closed form. Using equation (3.48), we obtain

α1 =


[
e1 − (1− e2

1) tanh−1 e1

]
/(2e3

1) (p)[
−e1(1− e2

1) +
√

1− e2
1 sin−1 e1

]
/(2e3

1) (o)
(3.51)

which are identical to the expressions from [25].

5. Special Cases

Equation (3.39) provides the homogenized yield criterion for plastically anisotropic

materials containing spheroidal voids. The parameters in the criterion, κ, α2, C, η and

α1 are defined by equations (3.45), (3.42), (3.50)1,2 and (3.51) respectively, in terms of

the microstructural parameters, f and S, and the anisotropy parameters h, ht and ha.

By considering the special cases of an isotropic matrix and/or spherical or cylindrical

voids, many of the existing results can be recovered, as shown below.

In the case of spheroidal voids in an isotropic matrix, i.e. h = ht = ha = 1,

the criterion established by Gologanu et al. [25] is recovered exactly in the case of

oblate cavities. However, in the case of prolate cavities the two criteria differ in the

exponential “cosh” term of the criterion, equation (3.39). This difference is due to

the fact that we have used a different approach to defining the constant F̄ which is
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tied to the value of κ. The approximate method of Gologanu et al. [25] for defining

the variable κ gave good results for the isotropic matrix, but was found to give poor

results in the case of anisotropic matrix properties. In the isotropic case, it can be

verified that although the expression for κ differs, the two yield criteria are very close

to each other for most practical values of f and S.

Other special cases to be considered are the two limiting configurations of sphe-

roidal cavities, namely spherical voids and infinitely long cylindrical holes. For these

two void geometries in an orthotropic matrix, closed form yield criteria were estab-

lished by Benzerga and Besson [1, 22]. In the case of spherical or cylindrical cavities

in an orthotropic matrix, equation (3.39) reduces to

(Σ33 − Σ11)
2

hσ2
1

+ 2f cosh κ
Σm

σ1

− 1− f 2 = 0 (3.52)

where,

κ =


3
2

√
5

h+2ha+2ht
(sphere)√

3
ht

(cylinder)
(3.53)

The value of κ in both the limits above agrees with that established in [22]. In the

case of axisymmetric loadings, the coefficient of the square term, (Σ33−Σ11)
2, in [22]

was (h11 +h22 +4h33− 4h23− 4h31 +2h12)/6, where hij are the components (in Voigt

form) of h, the Hill anisotropy tensor, introduced in chapter II. In general, this is not

equal to 1/h as in equation (3.52). However, a simple analysis using the definitions

of the components of the h and ĥ tensors in terms of the five strain ratios of the

material, provided in Appendix A, shows that the value of the above coefficient is

close to 1/h, and reduces to it in the case of transverse isotropy in the plane normal to

the void axis. In the general case of orthotropy it may be verified that, assuming one

of the directions of material orthotropy coincides with the void axis, the difference of

the two coefficients is proportional to the square of the difference of the strain ratios
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in the other two directions of material orthotropy, which may be expected to be small

for most materials.

In the case of spherical or cylindrical cavities in an isotropic matrix, we have

h = ht = ha = 1 and κ = 3/2 for spherical cavities and
√

3 for cylindrical cavities. In

these cases, equation (3.52) reduces to Gurson’s original results [14,15].
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CHAPTER IV

NUMERICAL DETERMINATION OF THE EXACT YIELD CRITERION

In order to validate the analytical yield criterion derived in the previous chapter, we

now develop a numerical scheme to derive the “exact” yield criterion for specific values

of porosity, f , and the void shape parameter, S, representing a given microstructure.

To illustrate the principle used in determining the numerical yield locus, we refer

back to the original definition of the macroscopic yield locus, defined as the envelope

of the hyperplanes in stress space given by

Σ : D = Π(D) (4.1)

where the components of D act as the parameters (see discussion in chapter II, page

14), and Π(D) is defined by equation (2.9). In the case of axisymmetric loadings

assumed in the derivations in chapter III, the macroscopic yield locus is a function of

the two independent macroscopic stress components, see equation (3.39), and hence

can be represented in a plane. By convention, and for comparison to the yield loci

available elsewhere in the literature for porous materials, the yield loci are represented

here in a plane with the mean macroscopic stress, Σm = Σkk/3, as the abscissa and the

macroscopic effective stress, Σe ≡
√

3
2
Σ

′
: Σ

′
(= Σ33−Σ11 for axisymmetric loadings),

as the ordinate. The ratio of the mean stress to the effective stress in known as the

stress triaxiality ratio, T ≡ Σm/Σe, which corresponds to a radial line in the Σm−Σe

plane. It is related to the ratio of the normal stress components through

X ≡ Σ33

Σ11

=
9T

3T − 1
− 2 (4.2)
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for axisymmetric loading paths. To find the intersection of the above radial line with

the yield locus, we use equation (4.1) to write

Σ11 =
Π(D11, D33)

2D11 + XD33

(4.3)

Noting that since Π(D11, D33) is a homogeneous function of degree one in the compo-

nents of D, the above ratio is homogeneous of degree zero, one may scale the values

of D11 and D33 arbitrarily in evaluating the right hand side of the above equation.

For convenience, we impose the constraint that

2D11 + XD33 = 1 (4.4)

in which case, equation (4.3) becomes

Σ11 = Π(D11, D33) (4.5)

where Π(D11, D33) is obtained by evaluating the infimum in equation (2.9), using a

subset of the complete set of axisymmetric velocity fields in the Lee-Mear decompo-

sition, equations (3.8) and (3.9). By varying the value of X, we can then evaluate

individual points on the macroscopic yield locus. The above approach may be re-

ferred to as numerical limit analysis of the “exact” yield criterion, and was also used

by Gologanu et al. in [25]. The phrase “exact” here implies that the yield locus thus

obtained is a rigorous upperbound to the true yield locus, that gets closer to the true

locus as the number of velocity fields is increased. In practice, it is observed that

using a few fields (< 20) corresponding to the lower order Lee-Mear coefficients re-

sults in a very good estimate of the yield locus, and addition of further velocity fields

(upto 50) does not result in perceptible improvement in the upper bound obtained.

The numerical scheme used to minimize the plastic dissipation in equation (4.5) is

explained in the following section.
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A. Numerical Minimization of the Plastic Dissipation

For a given set of microstructural parameters, f and S, an RVE can be defined (see

figure 3) by solving for the eccentricities of the void and the RVE, e1 and e2, from

1

1− e2
1

= e2|S|

(1− e2
2)

n

e3
2

=
1

f

(1− e2
1)

n

e3
1

, n =

 1 (p)

1/2 (o)

(4.6)

and the coordinates λ1 and λ2 can be determined from the relation e = 1/ cosh λ.

The focal length c can be set arbitrarily since the problem is scale invariant. The

plastic dissipation is defined by

Π(D) = inf
d∈K(D)

〈π(d)〉Ω = inf
d∈K(D)

σ1

Ω

∫ λ2

λ1

∫ π

0

∫ 2π

0

deqLλ Lβ Lϕ dϕ dβ dλ (4.7)

where deq =
√

2
3
d : ĥ : d. The infimum is taken over all kinematically admissible

deformation fields. For the case of axisymmetric deformations, we have

d = dλλg
λ ⊗ gλ + dββg

β ⊗ gβ + dϕϕg
ϕ ⊗ gϕ + dλβg

λ ⊗ gβ (4.8)

where the components dij are given by equations (3.5) and (3.6) respectively for

prolate and oblate cavities. Introducing an orthonormal basis (eλ, eβ, eϕ), whose

vectors are collinear with the vectors (gλ,gβ,gϕ), the above equation becomes

d =
1

L2
λ

(dλλeλ ⊗ eλ + dββeβ ⊗ eβ + dλβeλ ⊗ eβ) +
1

L2
ϕ

(dϕϕeϕ ⊗ eϕ) (4.9)

Representing d as a column vector in Voigt notation, we have

[d] =

[
dλλ

L2
λ

dββ

L2
λ

dϕϕ

L2
ϕ

0 0

√
2dλβ

L2
λ

]T

(4.10)



45

In the Lee-Mear decomposition for v, equations (3.8) and (3.9), let us adopt ve-

locity fields corresponding to B00, Bkm and Ckm, where k = 2, 4, 6, .., K and m =

0, 1, 2, ..,M , to evaluate the tensor d. This corresponds to a total of N = K(M+1)+1

velocity fields. From equations (3.5) and (3.6), it is clear that [d] can be written in

the form

[d] = [L][A] (4.11)

where [L] = [L(λ, β, ϕ)] is a 6×N matrix derived from (3.5) and (3.6) and [A] is an

N × 1 column vector given by

[A] ≡ [B00 [Bkm]T [Ckm]T ]T (4.12)

with [Bkm] and [Ckm] defined as column vectors of the chosen Lee-Mear coefficients.

The components of the tensor ĥ in the frame (eλ, eβ, eϕ) can be derived from the

tensor transformation equation

ĥijkl = QimQjnQkpQlqĥmnpq (4.13)

where ĥmnpq are the components of ĥ in the frame of material orthotropy and Q is the

orthogonal transformation tensor. As explained in chapter II, ĥ can be represented

as a diagonal positive definite matrix in Voigt form, in the frame of orthotropy. Let

[ĥ] denote the (6 × 6) matrix representation of ĥ in the (eλ, eβ, eϕ) frame. We can

now write the expression for the Hill equivalent strain rate, deq, as

deq =

√
2

3
[A]T [L]T [ĥ][L][A] =

√
[A]T [M][A] (4.14)

where [M] ≡ 2
3
[L]T [ĥ][L] is an N ×N matrix.

The problem is now reduced to determination of the coefficients [A] that mini-

mize the plastic dissipation integral, (4.7). However, not all the components of [A] are
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independent since [A] is constrained by the requirement of homogeneous boundary

deformation-rate, equations (3.13)2 and (3.15). Also, we have imposed the additional

constraint, given by equation (4.4), which can be written using the Lee-Mear coeffi-

cients and associated Legendre functions as

2D11 + XD33 =
3c2

a2
2 − b2

2

[
(2 + X)G2(λ2)− 3

(
2
a2

b2

+ X
b2

a2

)
F2(λ2)

]
= 1 (4.15)

where the functions F2(λ) and G2(λ) are defined in (3.14). This makes a total of K

linear equality constraints on the components of [A]. Using these linear equations,

we can solve for K of the N unknowns and write

[A] = [C][B] + [A0] (4.16)

where [B] is an (N−K)×1 vector of the remaining unknowns, [C] is an N× (N−K)

constraint matrix derived using the equality constraints, and [A0] is a constant vector.

Using (4.16) in (4.14) and (4.14) in (4.7), the expression for Π(D) becomes

inf
[B]∈R(N−K)

σ1

Ω

∫ λ2

λ1

∫ π

0

∫ 2π

0

√
([B]T [C]T + [A0]T )[M]([C][B] + [A0])Lλ Lβ Lϕ dϕ dβ dλ

(4.17)

The above represents an unconstrained optimization problem where Π(D) is the ob-

jective function in (N −K) variables, [B], and the space of admissible values of [B]

is R(N−K). Note that the existence and uniqueness of the minimum is guaranteed by

the fact that the matrix [M] is positive definite, and hence the objective function is

convex. The gradient of the objective function with respect to the unknowns, [B] is

given by

∂Π

∂[B]
=

σ1

Ω

∫ λ2

λ1

∫ π

0

∫ 2π

0

[C]T [M]([C][B] + [A0])√
([B]T [C]T + [A0]T )[M]([C][B] + [A0])

Lλ Lβ Lϕ dϕ dβ dλ

(4.18)

The above problem can be solved for various values of the macroscopic stress
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triaxiality, T , to obtain individual points on the yield locus using equation (4.3). A

program is developed to solve the above optimization problem using the Conjugate-

Gradient minimization routines from the NAG numerical library [37]. From here

onwards, the yield locus obtained using the above method will be referred to as the

exact numerical yield locus. The analytical criterion of chapter III is compared with

the exact numerical yield loci for various microstructural parameters and material

anisotropy coefficients in the following section.

B. Comparison of the Analytical and Numerical Yield Loci

For the purpose of generation of the numerical yield loci, we need to choose a set of

anisotropy parameters representative of actual material properties. For simplicity, we

assume that the void axis coincides with one of the material orthotropy directions, so

that the frame (e1, e2, e3) of figure 3 may be taken to be the frame of orthotropy. The

anisotropy tensors h and ĥ have six non-zero components in the frame of orthotropy,

and may be represented as a diagonal 6×6 matrix in Voigt notation. Let ĥi (i = 1..6)

represent the diagonal elements of the matrix representation of ĥ. The anisotropy

factors, h, ht and ha that appear in the analytical criterion are then given by

h =
ĥ1 + ĥ2 + 4ĥ3

6
, ht =

ĥ1 + ĥ2 + 2ĥ6

4
, ha =

ĥ4 + ĥ5

2
(4.19)

Only five of the six factors, ĥi, are independent as their values are normalized such that

the quadratic form for the Hill equivalent stress, equation (2.5), equals the yield stress

in any one of the three orthotropy directions. In our case, for ease of comparison of

the results for different materials, we choose this to be the axial direction of the void,

i.e. e3. The values of the parameters, ĥi, can be derived from the five intrinsic strain

ratios of the material, as shown in [1, 22]. The relation between the material strain



48

ratios and the parameters, ĥi, are given in Appendix A. Table A in Appendix A lists

material anisotropy data, in the form of strain ratios in the orthotropy directions,

for a range of engineering materials. The data in Table A has been reproduced

from [1]. The values of the factors h, ht and ha are also tabulated. Notice that the

value of h for all materials is very close to unity. This is because we have chosen to

normalize the anisotropy factors in such a way that the Hill equivalent stress equals

the yield stress in the 3–direction, so that the diagonal elements of the tensor h obeys

(h1 + h2 + 4h3)/6 = 1. It can be shown using the relations (A.1) that the above

is close to 1/h, as is indeed observed from the data in Table A. Also notice that

the largest value of ht was obtained for some alloy of Al and the smallest value for

Zircaloy, for the chosen void orientation. The value of ha, which depends on the out

of plane strain ratios, is not available for thin sheet metals.

The numerical results presented in this section are generated for four sets of

materials parameters, tabulated in Table 1. The first row corresponds to an isotropic

matrix (h = ht = ha = 1). Second and third rows correspond to some transversely

isotropic materials with e1−e2 as the plane of isotropy. These are designated material

1 and material 2 respectively, with the strain ratios, R = 1/2 and Rh = 5 for material

1 and R = 3 and Rh = 1/4 for material 2 (see Appendix A for definitions of R and

Rh). These are representative of thin sheets of Al and Zircaloy respectively [22].

The last row (material 3) is representative of commercially pure Ti, with the in-plane

strain ratios taken from Table A [38]. The out of plane ratios (RTS and RSL) were

not available from the literature and were assumed to be unity.

Figure 11 shows the comparison of the analytical and numerical yield loci for

prolate cavities and and the four different material properties from Table 1. Results

are presented for three different values of the porosity, f = 0.001, f = 0.01 and

f = 0.1 and a void aspect ratio w1 = 5. The solid lines correspond to the analytical
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Table 1. Table of material anisotropy parameters used in the numerical computations.

Name ĥ1 ĥ2 ĥ3 ĥ4 ĥ5 ĥ6 h ht ha

Isotropic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Material 1

(Al) 1.50 1.50 0.75 0.36 0.36 1.50 1.00 1.50 0.36

Material 2

(Zircaloy) 0.43 0.43 1.29 1.00 1.00 0.43 1.00 0.43 1.00

Material 3

(C.P. grade Ti) 0.49 1.25 1.15 0.73 1.06 0.61 1.05 0.74 0.89

yield loci of equation (3.39) and the dotted lines to the loci from Monchiet et al. [3].

The numerical yield points are generated using the method explained in the previous

section, using 21 Lee-Mear velocity fields corresponding to the coefficients B00 and

Bkm with (k = 2, 4) and (m = 0..4), equation (3.8). Notice that in all cases, the

proposed analytical criterion is in excellent agreement with the numerical data, where

as the criterion of [3] shows significant discrepancies, especially towards smaller values

of porosity.

Figure 12 shows the comparison of the yield loci for the four materials from Table

1, for the case of f = 0.001 and w1 = 5. The new criterion gives good agreement

with the numerical yield points in all cases.

Figure 13 shows the comparison of the analytical and numerical yield loci for

oblate cavities with w1 = 1/5 and three values of porosity. The solid lines corre-

spond to the analytical loci of equation (3.39) while the dotted line corresponds to

the criterion of [3]. The numerical points are generated using 21 velocity fields cor-

responding to the coefficients B00 and Bkm with (k = 2, 4) and (m = 0..4), equation

(3.9). Again, the new criterion is seen to be in closer, albeit approximate, agreement
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Fig. 11. Comparison of the analytical and numerical yield loci for prolate cavities. (a)

Isotropic matrix (b) Material 1 (c) Material 2 (d) Material 3 and porosity,

f = 0.001 (∗), f = 0.01 (×), f = 0.1 (+). In all cases, w1 = 5. The solid

lines correspond to the analytical criterion of this thesis and the dotted line

is from [3].
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Fig. 12. Comparison of the analytical and numerical yield loci for Isotropic matrix

(×), Material 1 (+), Material 2 (∗) and Material 3 (◦), for the case f = 0.001

and w1 = 5. The solid lines correspond to the analytical criterion of this

thesis and the dotted line is from [3].
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with the numerical data than the criterion of Monchiet et al. [3].

Figure 14 shows the comparison of the yield loci for the four different materials

from Table 1 for the case f = 0.001 and w1 = 1/5. Notice that in all cases the criterion

of [3] provides a strict upper bound, but lies relatively far from the numerical curve.

The new criterion appears to violate the strict upperbound character for some values

of the triaxiality, but lies close to the numerical points in all cases.

In order to further assess the validity of the new yield criterion, we now present

a set of parameter studies illustrating the distinct influences of material anisotropy

and void shape on the macroscopic yield point. As seen from the results presented

in figures 11-14, variation of either results in a significant change in the yield point

towards higher stress triaxialities. In the results to be presented in the following

figures, we study the variation of the yield point under a state of macroscopic hy-

drostatic stress, designated Σy
m, as a function of the void aspect ratio for a given set

of material anisotropy factors (h, ht, ha), and vice versa. Thus, these results serve

to illustrate the individual effects of void shape and the anisotropy of the matrix on

macro yield.

Figure 15 illustrates effect of the void aspect ratio, w1, on the hydrostatic yield

point, Σy
m, for the four materials from Table 1. As before, the solid line corresponds

to the new yield criterion, the dotted line to the criterion of Monchiet et al. [3] and

the discrete points to the numerically determined upper bound values. As is clearly

seen from the figure, the new criterion gives a significantly better prediction for the

hydrostatic yield point over a wide range of void aspect ratios.

In order to characterize the influence of material anisotropy, we present the vari-

ation of Σy
m as a function of the parameters ht and ha respectively, in figures 16 and

17. As per their definitions in equation (3.33), ht depends only on the anisotropy

coefficients in the plane normal to the void axis, while ha depends only on the out-of-
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Fig. 13. Comparison of the analytical and numerical yield loci for oblate cavities. (a)

Isotropic matrix (b) Material 1 (c) Material 2 (d) Material 3 and porosity,

f = 0.001 (∗), f = 0.01 (×), f = 0.1 (+). In all cases, w1 = 1/5. The solid

lines correspond to the analytical criterion of this thesis and the dotted line

is from [3].
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Fig. 14. Comparison of the analytical and numerical yield loci for Isotropic matrix

(×), Material 1 (+), Material 2 (∗) and Material 3 (◦), and f = 0.001, for the

case f = 0.001 and w1 = 1/5. The solid lines correspond to the analytical

criterion of this thesis and the dotted line is from [3].
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Fig. 15. Variation of the yield point under hydrostatic loading, Σy
m, as a function of

the void aspect ratio, w1, for porosity f = 0.001, and (a) Isotropic matrix

(b) Material 1 (c) Material 2 (d) Material 3. The discrete points are the

numerically determined yield points, the solid line correspond to the analytical

criterion of this thesis and the dotted line is from [3].
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plane “shear” coefficients. Hence, these two parameters can be varied independently

to study their respective influence on the yield criterion. It must be mentioned here

that the parameters ht and ha are in fact linear combinations of Hill orthotropy coef-

ficients that can vary independently and hence these do not uniquely characterize a

specific state of orthotropy. However, as the yield criterion is seen to depend explic-

itly on these specific combinations of the anisotropy coefficients, it appears reasonable

to study the effect of plastic anisotropy through the variation of these factors. For

convenience, the results presented here are generated assuming transversely isotropic

material behavior for which the state of anisotropy can in fact be described using two

parameters [22]. The results are presented for four different values of the void aspect

ratio, (w1 = 1/5, 1/2, 2, 5). Figure 16 shows the variation of Σy
m as a function of ht for

ha = 1 and four different void aspect ratios. Figure 17 shows the variation of Σy
m as a

function of ha for ht = 1 and the four different void shapes. The solid line shows the

predictions from the new yield criterion, the dotted line is from [3], and the discrete

points are the numerically determined values. In all cases, the new criterion gives

better predictions for the yield point over a wide range of values of the anisotropy

factors.
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Fig. 16. Variation of the yield point under hydrostatic loading, Σy
m, as a function of

the parameter ht, for ha = 1, f = 0.001 and (a) w1 = 5 (b) w1 = 2 (c)

w1 = 0.5 (d) w1 = 0.2. The discrete points are the numerically determined

yield points, the solid line correspond to the analytical criterion of this thesis

and the dotted line is from [3].
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Fig. 17. Variation of the yield point under hydrostatic loading, Σy
m, as a function of

the parameter ha, for ht = 1, f = 0.001 and (a) w1 = 5 (b) w1 = 2 (c)

w1 = 0.5 (d) w1 = 0.2. The discrete points are the numerically determined

yield points, the solid line correspond to the analytical criterion of this thesis

and the dotted line is from [3].
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CHAPTER V

EVOLUTION LAWS FOR POROSITY AND VOID SHAPE PARAMETER

Complete specification of the constitutive laws requires specification of the flow rule

and the evolution laws of the internal variables (f and S in this case), in addition to

the yield criterion. Once these are specified, the constitutive laws can be integrated

for various loading paths, using a suitable integration scheme, to obtain the stress-

strain response of the material. These are also required for implementing the model in

finite element packages, for simulation of practical engineering problems. The closed

form expressions for the flow rule and the evolution laws for f and S will be specified

in this chapter.

Hill [30], and later Gurson [14] for the case of porous materials, has demonstrated

that the normality (or associated) flow rule holds at the macroscale, provided that

the boundary of the elastic convex is regular. The normality flow rule writes

Dp = Λ
∂F
∂Σ

(5.1)

where F(Σ) denotes the macroscopic yield function (left hand side of equation (3.39)),

Λ is the plastic multiplier and Dp denotes the plastic deformation rate. Equation

(5.1) can be integrated in the usual way, by solving for the parameter Λ using the

consistency conditions.

A. Evolution of Porosity

The evolution law for porosity can be derived from (5.1) in a straightforward manner

using the plastic incompressibility of the Hill matrix. Using the definition of porosity,
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we have

ḟ =
˙(ω

Ω

)
= (1− f)

ω̇

Ω
(5.2)

where we have used the condition that Ω̇ = ω̇, assuming the matrix to be plastically

incompressible, and neglecting the volumetric strain due to elasticity. Using the small

deformation approximation, we have

Ω̇

Ω
=

ω̇

Ω
= Dp

ii = 3Dp
m (5.3)

One can show using equation (5.1) that the following equality holds

Dp
m =

1

3
Λ

∂F
∂Σm

(5.4)

Combining equations (5.2), (5.3) and (5.4) we obtain

ḟ = (1− f)Λ
∂F
∂Σm

(5.5)

The above equation specifies the evolution rate for the porosity.

In order to see the effect of void shape and matrix anisotropy on the porosity

rate, figure 18 illustrate the variation of Dm/Dsph
m as a function of the void aspect

ratio for f = 0.01, macroscopic stress triaxiality, T = 1, and three different material

anisotropy parameters. Dsph
m here corresponds to the value of Dm for a spherical void

(w1 = 1). Note that since, in general, the spherical and the non-spherical RVEs have

different yield points, and the materials being considered are not hardenable, the

comparison is made for the case that the two RVEs have the same axial strain rate,

i.e. D33 = Dsph
33 . The actual value of Dsph

m , used in the calculations reported here, is

obtained using a void with a vanishingly small eccentricity, which may be considered

for all practical purposes to be a sphere. Discrete points in the figure correspond to

numerically obtained values of Dm/Dsph
m using the method described in chapter IV.
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The solid lines correspond to the model predictions using equations (5.5) and (3.39).

The dotted line represents the model results from Monchiet et al. [3].

In the prolate case, it may be observed that the present model yields closer

agreement the numerical results for all three materials tested. In the oblate case,

however, both models yield acceptable, albeit approximate, results for the variation

of Dm/Dsph
m with the void aspect ratio.

B. Evolution of the Shape Parameter

Unlike the case of the yield criterion, which was derived based on sound variational

principles, and the evolution rate for porosity which followed from the yield criterion

using the normality flow rule and plastic incompressibility of the matrix, the evolution

of the shape parameter, S, can not be determined based on fundamental principles.

Therefore, an empirical approach is followed to define a closed form expression for Ṡ,

as was done in [25]. The resulting expression for Ṡ contains empirical factors that

are determined based on comparisons to numerical simulation results, as explained

below. The shape parameter, S, is defined by S = ln a1/b1 and hence we have

Ṡ =
ȧ1

a1

− ḃ1

b1

(5.6)

However, if we assume that the RVE is being deformed homogeneously, Ṡ would also

be given by

Ṡ = Dv
33 −Dv

11 (5.7)

In reality, the RVE is not deformed homogeneously and the void loses its initial sp-

heroidal shape. In this case, the above two expressions are different and the latter

expression is adopted to represent the void shape change, which in some sense mea-
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Fig. 18. Dm/Dsph
m as a function of the void aspect ratio, (a) a1/b1 for prolate cavities

(b) b1/a1 for oblate cavities, stress triaxiality, T = 1 and f = 0.01. The solid

line corresponds to the predictions from the present model, and the dotted

line corresponds to the model in [3]. Discrete points correspond to numerically

determined values for an isotropic matrix (∗), material 1 (+) and material 2

(×) from Table 1.
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sures the “average shape change” of the void. This can be rewritten as

Ṡ = A(DvA
33 −DvA

11 ) + B(DvB
33 −DvB

11 ) (5.8)

Using equation (3.48) and the incompressibility of the matrix leads to

Ṡ = 3(1− 3α1)ADvA
m +

3

2
B = 3

1− 3α1

f
ADA

m +
3

2
B (5.9)

We have, using (3.22) and (3.24)

A =
Dm

DA
m

, B = −2(1− 2α2)D11 + 2α2D33 (5.10)

Combining (5.9) and (5.10), we get

Ṡ = D33 −D11 + 3

(
1− 3α1

f
+ 3α2 − 1

)
Dm (5.11)

It can be demonstrated that in some special cases like cylindrical voids, “sandwich”

shaped voids and penny shaped cracks, the above expression reduces to the exact

values for Ṡ [25].

In the case of the isotropic matrix, the above expression was modified by Golo-

ganu et al. [25] to incorporate a heuristic factor multiplying the D33−D11 term, which

depended in the void shape, the stress triaxiality and the porosity, as follows

Ṡ = s(D33 −D11) + 3

(
1− 3α1

f
+ 3α2 − 1

)
Dm (5.12)

where,

s ≡ 1 + sesfsT

se(e1)≡
9

2

α1 − αGar
1

1− 3α1

, sf (f) ≡ (1−
√

f)2, sT (T ) ≡

8>>>><>>>>:
1− (T 2 + T 4)/9 for ε = +1

1− (T 2 + T 4)/18 for ε = −1

(5.13)
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The parameters ε and αGar
1 , above, are defined by

ε ≡ sgn(ΣmΣ
′

33), αGar
1 =

 1/(3− e2
1) (p)

(1− e2
1)/(3− 2e2

1) (o)
(5.14)

The expressions for the heuristic parameters se, sf and sT were determined by com-

parison to numerical calculations of the type described in chapter IV. The details of

the same may be found in [25].

The considerations used in determining the above parameters may be expected

to hold when the Von Mises matrix considered by these authors is replaced by a Hill

orthotropic matrix. In addition, it is expected that the anisotropy factors, h, ht and ha

will impact the void shape evolution. Recall that the numerical simulations results for

the parameter α2 that appears in the Dm term of equation (5.12), presented in figure

7 of chapter III, showed a (small) influence of the anisotropy parameters, especially

towards small void eccentricities. This implies that, even for a spherical void under

hydrostatic loading, the void shape can evolve due to the anisotropy of the matrix.

However, we have chosen to ignore this influence in determining the functions α1 and

α2, equations (3.51) and (3.42). In practice, states of pure hydrostatic loading are rare

and the triaxiality is usually of the order of unity or lower. In such circumstances, the

term proportional to D33 − D11 is expected to play a dominant role in determining

Ṡ. Therefore, we propose to augment the heuristic factor, s, in equation (5.12), to

include a term that represents the influence of the anisotropy factors as shown below.

s ≡ 1 + shsesfsT (5.15)

where se, sf and sT are as given by equation (5.13) and sh is a new factor that depends

on the anisotropy parameters.

Clearly, sh should be unity for an isotropic matrix, in which case equation (5.15)



65

reduces to that of Gologanu et al. (5.13). In the anisotropic case, one can determine

the exact value of Ṡ using the numerical method outlined in chapter IV, by numeri-

cally evaluating the surface integrals in equation (3.49) and then using (5.7) to find Ṡ.

The numerical value of sh can be calculated from the value of Ṡ using equations (5.12)

and (5.15). We may then seek to find an analytical expression for sh = sh(h, ht, ha)

that fits the numerical data. Considering the definitions of the parameters h, ht and

ha, equations (3.21) and (3.33), we can see that the values of parameters h and ht

can not be varied independently while that of ha (which depends on the shear coeffi-

cients alone) can be varied independently of the other two. The values of ht and ha

are therefore varied independently and the corresponding variation of sh is studied

numerically, for the case of f = 0.01, T = 0 and the void aspect ratio, w1 = 2. It is

seen that a simple expression of the form

sh =
h

4

(
3

ht

+
1

ha

)
(5.16)

fits the numerical results quite well as can be seen from the figures 19 and 20. Figure

19 illustrates the variation of sh with ht, keeping ha constant, and figure 20 illustrates

the variation of sh with ha, keeping ht constant. Discrete points are the data obtained

numerically and the solid line corresponds to equation (5.16). The numerical data is

generated using seven velocity fields from the Lee-Mear decomposition corresponding

to k = 2 and m = 0..2. Notice that equation (5.16) agrees very well with the numerical

data.

C. Comparison to Finite Element Simulations on Unit Cells

The best means of validating the expressions obtained for the evolution of porosity and

void shape is to compare them to finite element simulations on porous unit cells. For
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this purpose, we use the object–oriented finite element program, Zebulon, developed

by Besson and Foerch [39, 40]. A cylindrical RVE is defined containing a single

spheroidal void in the center, and triaxial axisymmetric loading paths are considered.

The matrix material is assumed to be transversely isotropic in the plane normal to

the void axis and is modeled using Hill quadratic yield criterion [34]. Under these

conditions, the deformation will be axisymmetric and can be simulated using a 2-D

(axisymmetric) analysis. The major stress is applied in the axial direction of the voids

and the stress triaxiality is held constant through the simulation. The calculations

presented are in fact similar to those in [22], using spheroidal voids instead of spherical

voids. Figure 21 show typical RVEs used in the calculations and the details of the

mesh used. Exploiting the symmetry of the problem, only a quarter of the domain is

modeled. The calculations are terminated prior to the onset of void coalescence, as

the emphasis here is on comparing the porosity and void shape evolution rates in the

pre-coalescence stage.

For comparison, we also need to integrate the constitutive equations from the

model developed here for the case of proportional (axisymmetric) loading paths. For

this purpose a program is developed to integrate the constitutive equations (equations

(3.39), (5.1), (5.5) and (5.12)) using a class of return-mapping algorithms called the

convex cutting plane algorithm developed by Simo and Ortiz [41, 42]. A material

element is homogeneously strained at a constant rate in the axial direction, while

the applied strain in the lateral direction is varied continuously through each loading

step so as to maintain a constant stress triaxiality. The results obtained for ḟ and Ṡ

are compared to the direct finite element simulation results in the following figures.

Emphasis is placed on comparing the qualitative trends in the evolution of f and S,

rather than direct quantitative comparison.

Figure 22(a) and 22(b) show comparison of the evolution of porosity, f , as a
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(a) (b)

Fig. 21. RVEs used for the unit cell calculations (a) prolate (a1/b1 = 2) (b) oblate

(a1/b1 = 1/2). Porosity, f = 0.01 for both cases.

function of the axial strain, ε33, obtained from the FE simulation of the unit cell and

integration of the porous constitutive equation respectively. The initial porosity and

void aspect ratio were f = 0.01 and w1 = 2, corresponding to figure 21(a). The

stress triaxiality was held constant at T = 1 through the simulation. Figure 23(a)

and 23(b) show comparison of the evolution of void aspect ratio, w1, as a function of

the axial strain for the same RVE. Note that the unit cell results give the evolution

of the void aspect ratio as given by equation (5.6) rather than (5.7) assumed in the

model. However, qualitatively, the two measures may be expected to show similar

trends.

It is observed that the qualitative trends for the evolution of porosity and void

shape with deformation for the three materials is correctly predicted by the consti-

tutive equations developed here. However, the unit cell results show a slower growth

rate of the porosity as compared to the model results for all the materials considered.
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Fig. 22. Evolution of porosity, f , with axial strain for an initially prolate cavity (a) FE

simulation of porous unit cell (b) integration of constitutive equation. The

material properties are taken from Table 1. The stress triaxiality was held

constant at T = 1.
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Fig. 23. Evolution of the void aspect ratio, w1, with axial strain for an initially prolate

cavity (a) FE simulation of porous unit cell (b) integration of constitutive

equation. The material properties are taken from Table 1. The stress triaxi-

ality was held constant at T = 1.
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Also, it is seen that the void aspect ratio for material 2 actually decreases in the finite

element simulation results, unlike in the model predictions, for the case of triaxiality,

T = 1, being considered. Some of these discrepancies could be attributed to the

fact that elasticity and hardening were neglected in the development of the analytical

model. However, in the finite element computations, elasticity can not be neglected

and a power law hardening model (with a small hardening exponent) was assumed for

the matrix for stability of the computations. However, despite these discrepancies,

the analytical model does capture the effect of plastic anisotropy qualitatively. Some

calibration of the model using additional finite element calculations will probably

be required to improve the quantitative accuracy of the model predictions for the

evolutions of f and w1.

Figures 24(a) and 24(b) show a similar comparison of the evolution of porosity,

f , as a function of the axial strain, ε33, for an initially oblate cavity. The initial

porosity and void aspect ratio were f = 0.01 and w1 = 1/2, corresponding to figure

21(b). The stress triaxiality was held constant at T = 1 through the simulation.

Figures 25(a) and 25(b) show comparison of the evolution of void aspect ratio, w1, as

a function of the axial strain for the same RVE. Again, the model correctly predicts

the qualitative trends for the evolution of w1 with deformation for the three materials

studied. However, the prediction for ḟ is seen to have a larger discrepancy, especially

in the case of material 1. This could be due to the fact that a greater degree of

distortion was observed for the numerically determined yield loci for oblate cavities,

in chapter IV, especially in the case of larger values of porosity. This curve is only

approximately reproduced by the analytical criterion and hence the normals to the two

curves may be different. Since ḟ is derived as a direct consequence of the normality

flow rule, this could impact the quality of the prediction for ḟ .



72

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.1  0.2  0.3  0.4  0.5  0.6

f

ε33

Isotropic
Material 1
Material 2

(a)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.1  0.2  0.3  0.4  0.5  0.6

f

ε33

Isotropic
Material 1
Material 2

(b)

Fig. 24. Evolution of porosity, f , with axial strain for an initially oblate cavity (a) FE

simulation of porous unit cell (b) integration of constitutive equation. The

material properties are taken from Table 1. The stress triaxiality was held

constant at T = 1.
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cavity (a) FE simulation of porous unit cell (b) integration of constitutive

equation. The material properties are taken from Table 1. The stress triaxi-

ality was held constant at T = 1.
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

A. Generalizations

In the previous chapters, a homogenized constitutive relation was developed for plasti-

cally anisotropic porous materials containing non-spherical voids. The yield criterion

was derived assuming transversely isotropic loading and consequently axisymmetric

deformation of the spheroidal RVE. The form of the yield criterion is given by equa-

tion (3.39) in chapter III, with the parameters in the criterion defined by equations

(3.45), (3.42), (3.50) and (3.51). These parameters are expressible as functions of

the microstructural variables, f and S, and the material anisotropy factors, h, ht and

ha. In this chapter, we propose a heuristic generalization of the yield criterion to

arbitrary loading states so that the criterion can be used in practical finite element

simulations of ductile fracture. We show that in the case of axisymmetric loadings

about the void axis, the generalized criterion reduces approximately to the criterion

of equation (3.39).

We propose the following generalized macroscopic criterion for the case of arbi-

trary loading states.

F(Σ) = h
C

σ2
1

(Σ
′
+ηΣhX)2

eq +2(g+1)(g+f) cosh κ
Σh

σ1

− (g+1)2− (g+f)2 = 0 (6.1)

where Σ
′
is the stress deviator and the tensor X is defined by

X ≡ 1

3
(−e1 ⊗ e1 − e2 ⊗ e2 + 2e3 ⊗ e3) (6.2)

with e3 as the void axis. The parameter Σh is defined as

Σh ≡ α2(Σ11 + Σ22) + (1− 2α2)Σ33 (6.3)
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which is a generalization of the definition in equation (3.25). The main difference

between equations (6.1) and (3.39) appears in the square term, where we now use the

square of the Hill norm of the tensor Σ
′
+ ηΣhX. Recall that the Hill norm is defined

for a tensor T by

Teq ≡
√

3

2
T : h : T (6.4)

In the case of axisymmetric loadings about the void axis, equation (6.1) specializes

to

h

h∗
C

σ2
1

(Σ33 −Σ11 + ηΣh)
2 + 2(g + 1)(g + f) cosh κ

Σh

σ1

− (g + 1)2 − (g + f)2 = 0 (6.5)

where h∗ ≡ 6/(h11 +h22 +4h33−4h23−4h31 +2h12). However, as discussed in section

C.5 of chapter III, one can show using the definitions of the anisotropy parameters

in terms of the strain ratios of the material that the value of h∗ is very close to h.

Indeed, if one of the material orthotropy directions coincides with the void axis, and

the anisotropy parameters are normalized such that h∗ is necessarily equal to unity,

as is done in the material data reported in Table A of Appendix A, we see that the

value of h is close to unity for all the materials in Table A. Hence, we may conclude

that the criterion of equation (6.5) is very close to that of equation (3.39). One may

also note that the criterion of equation (6.1), unlike (3.39), reduces exactly to the

criterion established by Benzerga and Besson [22] for the case of spherical cavities in

an anisotropic matrix.

Elasticity may be incorporated by adding to the plastic strain-rate, Dp, obtained

from the normality flow rule of equation (5.1), a hypoelastic strain rate, De, rate

obtained from an objective derivative of the stress. The evolution law of porosity

is given by equation (5.5), which derives from macroscopic normality and plastic in-

compressibility of the matrix. For the evolution of void shape parameter, we formally



76

adopt the proposal of Gologanu et al. [25], given by

Ṡ =
3

2
sDp

33

′
+ 3

(
1− 3α1

f
+ 3α2 − 1

)
Dp

m (6.6)

where the heuristic factor, s, is given by equation (5.15).

Finally, we also need an equation for the rotation of the void axis during defor-

mation, of the form

ė3 = Ω · e3 (6.7)

where Ω is the spin tensor. As in [25], we adopt the simplest proposal that the void

rotates with the material, in which case Ω will be the same as the rotation rate of the

material. One may note here that more sophisticated approaches are possible using

a spin concentration tensor for the void, as in the works of Kailasam et al. [43].

B. Conclusions

In conclusion, we present the salient features of the new constitutive model developed,

which may be considered as the main outputs of this thesis.

• A closed form analytical yield criterion was derived for an anisotropic porous

material containing spheroidal voids, using a Hill-Mandel homogenization and

approximate limit analysis of a porous RVE, undergoing axisymmetric plastic

deformation. The analytical form of the yield criterion, generalized to arbitrary

states of loading, is given by equation (6.1).

• A numerical method was developed for determination of upper-bound yield loci

for specific anisotropic materials, using the approach detailed in chapter IV.

The analytical yield loci were seen to be in close agreement with the numerical

data for a wide range of values of the porosity. In particular, the new criterion
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was shown to be significantly more accurate than previous analytical criteria

proposed by Monchiet et al. [3] for anisotropic materials.

• Analytical expressions for the evolution of the internal microstructural variables,

f and S, were developed in chapter V. The model results were validated by

comparison to numerical data obtained through the numerical limit analysis

approach, as well as direct finite element simulation of anisotropic porous RVEs.

The model results were shown to be in reasonable agreement with the numerical

data. Particularly, the model was seen to capture the correct trends for the

influence of material anisotropy on void shape evolution.

C. Future Work

The main interest in developing sophisticated constitutive models is in the field of

ductile fracture modeling. The prediction of fracture modes and the transition be-

tween them, during material processing and in service, continues to be a challenge,

due to the limitations of analytical models in representing the actual microstructure.

Accurate prediction of the evolution of damage parameters like porosity and void

shape could lead to improved predictive capability in the simulation of ductile frac-

ture. For Ti alloys, this could lead to improved predictions for the forming limits and

optimal loading paths during processing, that minimizes damage growth in the form of

porosity. One major challenge is the prediction of specific loading paths that achieve

“cavity sealing”, i.e. closure of cracks and voids already present in the material, as a

result of the forming process. It is hoped that once the new model is implemented in

a finite element code, the results show better agreement with experimentally observed

data for damage evolution during processing.
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thesis, Université Paris 6 (1997).
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APPENDIX A

ANISOTROPY DATA FOR ENGINEERING MATERIALS

Material anisotropy data for sheet materials is usually specified in terms of three

strain ratios in the rolling direction (L), 90◦ from the rolling direction in the plane

of the sheet (T) and 45◦ from the rolling direction in the plane of the sheet (LT).

These are designated RL, RT and RLT respectively. For bulk materials we have two

additional strain ratios in the off-plane directions (TS) and (SL), where S represents

the thickness direction for sheet metals [22]. Assuming that the coordinate directions

1, 2 and 3 coincides with the L, T and S directions respectively, and the anisotropy

factors are normalized such that the Hill equivalent stress in equation (2.5) equals the

yield stress in the 3-direction, one can show that the diagonal elements of the Voigt

form of the tensor ĥ are given by (see [22])

ĥ1 =
3RT (RLRT + 1)

2(RLRT + RT + 1)
, ĥ2 =

3(RLRT + 1)

2RL(RLRT + RT + 1)

ĥ3 =
3(RLRT + 1)

2(RLRT + RT + 1)
, ĥ4 =

3(RLRT + 1)

(RL + 1)(2RTS + 1)

ĥ5 =
3(RLRT + 1)

RL(RT + 1)(2RSL + 1)
, ĥ6 =

3

(2RLT + 1)

(A.1)

For the case of transverse isotropy in the plane of the sheet, we have RL = 1/RT =

RLT ≡ R and RTS = RSL ≡ Rh [22], in which case

ĥ1 = ĥ2 = ĥ6 =
3

2R + 1
, ĥ3 =

3R

2R + 1

ĥ4 = ĥ5 =
6

(R + 1)(2Rh + 1)

(A.2)

Assuming that the void axis coincides with the 3-direction, the anisotropy factors

h, ht and ha are given by

h =
ĥ1 + ĥ2 + 4ĥ3

6
, ht =

ĥ1 + ĥ2 + 2ĥ6

4
, ha =

ĥ4 + ĥ5

2
(A.3)
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The below table, reproduced from [1], contains the values of the strain ratios for a

range of engineering materials available in the literature. The column t in the table

represents the thickness of the sheet in millimeters. Note that many of the available

data is for thin sheet metals for which only the in-plane strain ratios are reported.

The calculated values of h, ht and ha, using (A.3), are also shown.
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Table 2. Table of material anisotropy parameters from the literature. Adapted from

[1].

Material t RL RT RS RTS RSL RLT h ht ha

7475-T3

Al. alloy 32 0.9 1/1.4 1.6 5.0 3.5 1.5 1.0150 0.8521 0.3176

7475-T6

Al. alloy 32 0.9 1/1.1 1.9 5.0 5.8 1.3 1.0034 0.9217 0.2565

7475-T73

Al. alloy 32 0.8 1/1.1 1.6 3.0 4.7 1.4 1.0088 0.9252 0.3687

H.S.

Steel 25 0.5 1/0.7 1.7 1.9 0.7 1.2 1.0130 1.1425 1.2395

C-Mn X52

Steel 10 0.67 1/0.71 1.05 1.45 1.30 0.91 1.0004 1.1627 0.9495

As-received

Al. alloy – 0.57 1/0.62 – – – 0.90 1.0008 1.2219 –

-W 25%

Al. alloy – 0.64 1/0.69 – – – 0.80 1.0006 1.2216 –

-W 50%

Al. alloy – 0.46 1/0.50 – – – 0.78 1.0009 1.3526 –

Annealed

Al. alloy – 0.74 1/0.71 – – – 1.76 1.0002 0.9444 –

3004-H12

Al. alloy 1.0 0.44 1/0.90 – – – 0.72 1.0571 1.3414 –

2038-T4

Al. alloy 0.9 0.68 1/0.71 – – – 0.65 1.0002 1.2801 –
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Material t RL RT RS RTS RSL RLT h ht ha

5052-H32

Al. alloy 1.3 0.57 1/0.72 – – – 0.59 1.0060 1.3521 –

5182-0

Al. alloy 1.1 0.63 1/0.71 – – – 1.01 1.0015 1.1400 –

SPCE Steel

Deep-draw – 1.35 1/1.66 – – – 1.14 1.0027 0.8354 –

I.F. Steel 0.9 1.60 1/2.27 – – – 2.00 1.0063 0.6175 –

H.S. 950X

Steel 0.8 0.70 1/0.88 – – – 1.27 1.0051 1.0128 –

DP 90-T

Steel 0.8 0.79 1/1.07 – – – 0.86 1.0081 1.0881 –

A-30

Galvanized

Steel 0.7 1.31 1/1.77 – – – 1.31 1.0056 0.7904 –

Grade 304

Stainless

Steel 0.8 0.95 1/0.82 – – – 1.06 1.0020 1.0252 –

Copper 0.7 0.90 1/0.96 – – – 0.94 1.0004 1.0459 –

70:30

Brass 0.7 0.90 1/0.78 – – – 0.97 1.0019 1.0728 –

Titanium

(C.P. Grade) 1.2 0.92 1/2.34 – – – 1.94 1.0550 0.7419 –

Molybdenum 0.7 1.62 1/2.03 – – – 1.46 1.0027 0.7094 –

Zircaloy 0.4 3.3 1/4.5 – – – 4.4 1.0028 0.3276 –
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