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ABSTRACT 

 

Shape Memory Behavior of Ultrafine Grained NiTi and TiNiPd  

Shape Memory Alloys.  

(December 2007) 

Benat Kockar, B.S., Middle East Technical University; 

M.S., Middle East Technical University 

Chair of Advisory Committee: Dr. Ibrahim Karaman 

 

The cyclic instability in shape memory characteristics of NiTi-based shape 

memory alloys (SMAs), such as transformation temperatures, transformation and 

irrecoverable strains and transformation hysteresis upon thermal and mechanical cycling 

limits their applications requiring high number of cycles. The main reasons for these 

instabilities are lattice incompatibility between transforming phases and relatively low 

lattice resistance against dislocation motion. The objective of this study is to increase the 

slip resistance and thus, to minimize the plastic accommodation upon phase 

transformation in NiTi and TiNiPd SMAs. The effects of grain refinement down to 

submicron to nanorange through Equal Channel Angular Extrusion (ECAE) on the 

cyclic stability were investigated as potential remedies. The influence of ECAE 

parameters, such as processing temperature and strain path on the microstructural 

refinement was explored as well as the corresponding evolution in the stress differential 

between the yield strength of martensite and the critical stress to induce martensite and 

SMA characteristics of Ni49.7Ti50.3, Ti50Ni30Pd20, and Ti50.3Ni33.7Pd16 SMAs.  

Severe plastic deformation via ECAE at temperatures from 300°C up to 450°C 

refined the grains from 50μm down to a range between 0.03μm and 0.3μm in Ni49.7Ti50.3 

and 0.5μm and 1μm in TiNiPd alloys. Regardless of the material, the lower the ECAE 

temperature and the higher the ECAE strain path, the better the cyclic stability. ECAE 

led to an increase in the stress differential between the yield strength of martensite and 

critical stress to induce martensite due to observed microstructural refinement and this 
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increase is responsible for the improvement in the cyclic stability of the aforementioned 

SMA characteristics in all investigated materials. Addition of Pd to the NiTi alloy 

reduced the thermal hysteresis from 36°C down to 11°C, and enhanced the cyclic 

stability of the SMA characteristics. In additions to positive influence of ECAE on cyclic 

stability, it also led to an increase in the fracture stress levels of the TiNiPd alloys due to 

the fragmentation or dissolution of the precipitates responsible for the premature 

failures. ECAE caused a slight reduction in the work output; however it was possible to 

obtain large stable work outputs under higher stress levels than unprocessed materials. 
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CHAPTER I 

INTRODUCTION 

 

 
1.1 Motivation 

NiTi alloys which undergo thermoelastic martensitic phase transformation are the 

most popular shape memory alloys (SMAs) owing to their ability to recover their initial 

shape after deformation and due to high actuation work outputs per unit volume [1, 2]. In 

addition to these superior shape memory properties, NiTi alloys are exceptional due to 

their biocompatibility and good corrosion resistance [3]. Many practical applications of 

these alloys require a large number of thermo-mechanical cycles, as well as a stable and 

reliable shape memory effect. However, there are problems frequently reported in the 

literature associated with cyclic stability of the shape memory effect in NiTi alloys. For 

instance, Miyazaki et al. [4, 5] and Lexcellent et al. [6] have reported that pseudoelastic 

hysteresis loops drift down with cycles and settle to a stable loop [7]. In addition, poor 

cyclic stability during isobaric thermal cycling experiments has been observed [8-10]. It 

is reported that the martensite start temperature (Ms) decreases and the irrecoverable 

(plastic) strain levels increase with increasing number of thermal cycles [8-11]. 

Sehitoglu et al. [12] demonstrated large variations in the temperature hysteresis with 

external stress under thermal cycling conditions. The main reason for the cyclic 

instability of the parameters important for shape memory response is the accommodation 

of the incompatibility between austenite and martensite phases with dislocation 

formation, in addition to transformation twinning and elastic accommodation, which 

leads to plastic strain formation, martensite stabilization and variation in transformation 

temperatures, thermal and stress hysteresis upon thermo-mechanical cycling. Miyazaki 

et al. [5] showed that during thermo-mechanical cycling, the austenite/martensite 

interface travels forward and backward, during which deformation induced defects such  
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as dislocations form and these dislocations hinder the austenite/martensite interface 

movement. The accumulation of microscopic residual stresses and retained martensites 

eventually influences the macroscopic shape memory behavior of NiTi alloys.  

A possible way to tackle the cyclic instability problem is to increase the critical 

shear stress (CSS) for slip and thus to minimize the plastic accommodation and 

martensite stabilization upon phase transformation through small precipitation, grain 

refinement, specific texture formation and strain hardening via introducing dislocation 

substructures [13]. Hornbogen et al. [14] proposed that the cyclic stability can be 

improved by increasing the stress differential between the critical stress for stress-

induced martensitic transformation and the yield stress of the stress induced martensite. 

All the aforementioned studies showed that the cyclic response of these alloys depends 

on the thermo-mechanical history such as ausforming, aging, cold deformation and 

annealing treatments [5, 15].  

There have been many works performed on producing coherent Ti3Ni4 

precipitates in Ni-rich NiTi alloys which generally improves the cyclic stability of NiTi 

as compared to other heat treatments such as solutionizing or overaging [15, 16]. 

However, on the Ni-rich side of TiNi alloys, the transformation temperatures decrease to 

subzero levels with the increase in Ni-content. Formation of Ti3Ni4 precipitates 

somewhat increases the transformation temperatures due to depletion of Ni in the matrix, 

yet, the transformation temperatures of the aged Ni-rich TiNi are still below room 

temperature and depend on the amount and size of the precipitates. Superelasticity is 

available in the aged Ni-rich alloys in a narrow temperature range and the shape memory 

effect is observed with some permanent strain [15].  

Single crystal studies on TiNi alloys showed that the transformation behavior 

highly depends on crystallographic orientation. For instance, the [111] orientation shows 

poor cyclic degradation resistance and rapid increase in permanent strain with cycles 

[15]. In addition, the [111] orientation demonstrates a large stress hysteresis in 

pseudoleastic cyclic experiments [15]. On the other hand, in NiTi, the slip systems were 

reported to be {100}<001> and {110}<001>, therefore, NiTi single crystals with the 
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loading axis near the [001] pole have superior fatigue response as compared to other 

orientations because they demonstrate less irreversible slip [17]. The disadvantages of 

single crystals are high cost, difficulty of mass production and fabricating different 

forms such as wires and plates. In the light of these studies on the orientation 

dependence of shape memory properties in NiTi alloys, crystallographic texture is one of 

the important parameters that determines the shape memory response of polycrystalline 

NiTi alloys.  

Conventional deformation techniques such as cold rolling, drawing and extrusion 

can impart large strains to materials. However, one or more dimensions of the material 

are reduced. It is reported that cold deformation without annealing usually suppresses 

phase transformation to very low temperatures [18]. Therefore, annealing below the 

recrystallization temperature is needed to increase the transformation temperatures and 

rearrange the tangled dislocations to observe a smooth martensitic transformation upon 

heating and cooling. Cold drawn polycrystalline NiTi alloys have a strong texture of 

[111] type at which the cyclic degradation is mostly expected [19]. Miyazaki et al. [18] 

has found that annealing cold worked NiTi alloy at 673K establishes cyclic stability; 

however, it is reported that plastic strain accumulation with cyclic deformation is still an 

important issue in cold worked NiTi alloys under high stress levels [9]. 

Recently, the effect of ausforming on the martensitic transformation of 

equiatomic NiTi alloys was investigated extensively [15, 20]. Ausforming is a technique 

in which the dislocations are introduced into austenite phase. Severe plastic deformation 

(SPD) via ausforming might be advantageous in achieving the stable cyclic stability. 

Dislocation density increases and grain size decreases down to nano range using SPD 

techniques such as high pressure torsion (HPT) and equal channel angular extrusion 

(ECAE). HPT leads to amorphization and nanograin formation after subsequent 

annealing. The sample size that can be obtained from HPT is very small such that 

extensive investigation on the sample is not possible. In addition, the strain is not 

uniform throughout the sample in HPT. On the other hand, ECAE permits the 

application of large uniform strain without reduction in the cross-section of the work 
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piece [21]. ECAE offers several advantages over other competing processes such as HPT 

and conventional area-reduction extrusion, including larger sample sizes, and some 

control on grain morphology and crystallographic texture [22]. Therefore, ECAE is 

selected as the SPD process of choice in this study.  

Most SMAs are intermetallics and suffer from low ductility due to the lack of 

sufficient slip systems [23]. Although NiTi alloys exhibit relatively better ductility than 

many intermetallic alloys due to mechanical twinning as an additional deformation 

mechanism both in martensite and austenite, SPD via ECAE of NiTi based SMAs is 

challenging because they have high flow strength in austenite. The ECAE tool to be used 

during processing should be able to handle high stress levels, and the friction between 

the work piece and the walls should be as low as possible. 

Only a limited number of studies have been undertaken on the severe plastically 

deformed NiTi alloys because of the difficulty in processing. Waitz et al. [24-26] 

focused on the stabilization of austenite with the decrease in grain size to nano range 

after HPT. He also investigated twinning mechanisms in martensite as a function of 

grain size [24-26]. Valiev and his colleagues [27-29] demonstrated the effect of SPD via 

HPT and ECAE on the microstructural evolution and conventional mechanical 

properties such as strength and ductility but did not report any extensive shape memory 

properties such as transformation and irrecoverable strains and thermal cyclic stability 

after SPD processes. Therefore, in this study, the affect of ECAE parameters, such as 

processing temperature, strain magnitude and strain path, on the microstructural 

refinement and dislocation substructure formation were investigated, as well as the 

corresponding evolution in the shape memory, of monotonic and thermo-mechanical 

response for near equiatomic NiTi SMAs.  

For the applications beyond 100°C, there is a strong need to develop new alloys 

other than NiTi. The addition of ternary elements such as Au, Pd, Pt, Hf and Zr was 

shown to increase the transformation temperatures above 100°C [30, 31]. High-

temperature SMA compositions in the NiTiPd and NiTiPt systems have attracted great 

interest for use in compact solid-state actuators for the aerospace, automotive, and power 
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generation industries [32]. Zr and Hf could be more favorable because of their relatively 

low cost, however, thermal and stress hysteresis of these alloys is large [13, 33]. 

Moreover, transformation-induced plasticity and creep have limited the level and 

stability of the shape memory effect and superelasticity in these ternary alloys more than 

that in binary NiTi [13]. On the other hand, NiTiPd and NiTiPt SMAs have very small 

thermal hysteresis and high transformation temperatures depending on their 

compositions [32, 34].  

Martensitic transformation in NiTiPd and NiTiPt SMAs was first reported by 

Donkersloot and Van Vucht [35]. The addititon of more than 10at.% Pd or Pt to the NiTi 

system with substitution Ni increases the transformation temperature to above 100°C 

[36]. The disadvantage of these ternary alloys is their brittleness due to intrinsic low 

ductility and oxygen stabilized precipitates. Additionally, Cai et.al [37] reported that the 

shape memory behavior of TiNiPd alloys is fairly good at room temperature however 

becoming poor with increasing temperature due to the decrease in the critical shear stress 

for slip. To date, much of the published work is on the shape memory effect of these 

alloys under stress free conditions [38-40]. Golberg et al. [41] studied the effect of cold 

rolling and post annealing on the shape memory behavior of Ti50Ni30Pd20 alloy. They 

were able to achieve 100% recovery up to a given strain of 5.3% in tensile experiments 

at 443K in cold rolled and annealed Ti50Ni30Pd20 alloy. However, they did not study the 

thermal cyclic behavior of the alloy after cold deformation. Noebe and his co-workers 

have recently investigated the shape memory characteristics of hot extruded TiNiPd 

alloys with different compositions [32, 34]. They have reported the results of actuator-

type constant-load thermal cycling tests (load-biased tests). The results showed that 

permanent deformation occurs at every stress level and increases with the stress level 

[32, 34]. They also investigated the work output of the TiNiPd alloys which is another 

important parameter in actuation type applications. It was found that the work capability 

of the TiNiPd alloys diminishes due to the permanent deformations occuring during 

thermal cycling [34].  

To date, there is no published study on the severe plastic deformation of TiNiPd 
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alloys. It is expected that grain refinement and the introduction of dislocations using 

SPD via ECAE should improve the shape memory properties, work capability and 

thermal cyclic stability of the TiNiPd alloys. For instance, ECAE might lead to a 

decrease in the permanent deformations determined at even low stress levels in the 

aforementioned studies upon grain refinement and dislocation substructure formation. 

Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 are chosen due to their transformation temperatures. 

The temperature range for the target application which is the actuator part in 

reconfigurable airplane rotor blades is 100-150°C.  

 

1.2 Objectives 

In the light of this motivation, the present study focused on the ECAE of 

equiatomic NiTi, and Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 high temperature shape memory 

alloys. The equiatomic NiTi alloy was chosen due to its high transformation temperature 

as compared to other NiTi compositions [42]. In addition, there is no expectation to have 

second phase precipitation in this composition which should allow investigating only the 

SPD effect on microstucture, conventional mechanical properties and shape memory 

behavior of the alloy. The initial part of the study on the equiatomic NiTi alloy also 

provides a base line for the investigation of TiNiPd high temperature shape memory 

alloys. For instance, the lowest possible ECAE temperature that TiNiPd alloys can be 

deformed, or types of experiments to evaluate the shape memory response of TiNiPd 

alloys, are important beginning steps to start an investigation.  

 

The overall objectives of this research with specific details are to:  

1. Determine the uniform formability limits (i.e. temperature and strain rate) 

of the equiatomic NiTi, Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 alloys. The purity level of the 

materials is an important factor which dictates the ease of the deformation processing 

and the lowest possible ECAE temperature.  

2. Identify better ECAE routes and ECAE temperatures for obtaining the 

most microstructural refinement in the presence of recovery-recrystallization tendencies. 
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3. Identify the affects of ECAE on the microstructural evolution of the 

alloys such as on possible twinning modes in refined grains, dislocation substructures, 

precipitate size and morphology. 

4. Characterize the mechanical properties such as critical stress to induce 

martensite and yield strength of stress induced martensite of the unprocessed and ECAE 

processed materials. The purpose of this characterization is to identify the increase in 

critical shear stress for slip due to microstructural evolution such as grain refinement, 

dislocation density increase and the change in precipitate size and morphology upon 

ECAE. 

5. Determine the affect of the microstructural evolution on certain shape 

memory characteristics including transformation temperature, transformation and 

irrecoverable strain levels, and thermal hysteresis. 

6. Identify the mechanisms responsible for brittleness of TiNiPd ternary 

alloys. 

7. Characterize the influences of microstructural refinement on thermal 

cyclic stability of the alloys. The purpose of this investigation is to determine the 

transformation temperature and thermal hysteresis stability and transformation and 

irrecoverable strain evolution with the number of thermal cycles under constant stress 

levels. 

8. Develop a thermodynamical framework to understand irreversible and 

elastic energy contributions which trigger the phase transformation in the unprocessed 

and ECAE processed equiatomic NiTi alloys. The purpose of this thermodynamical 

approach is to understand why the irreversible and elastic energy change with 

microstructural refinement/evolution and the effect of this change on the shape memory 

characteristics. 

To accomplish these objectives, a well planned/executed experimental study was 

undertaken to demonstrate that ECAE processing can be a viable method to improve the 

shape memory response of equiatomic NiTi and TiNiPd alloys.  

 

 



 8

CHAPTER II 

THEORETICAL BACKGROUND 

 

 
2.1 Martensitic Transformations  

Since shape memory effect is related to thermoelastic martensitic transformations 

(MT), the basic information about MT is introduced in this section in a simplified 

manner before going into details about shape memory effect. The martensitic 

transformation is a diffusionless, military type phase transformation in solids, in which 

atoms move by a shear-like mechanism [1]. The transformation is schematically 

described in Figure 2.1. Parent phase or austenite which is the high temperature phase is 

usually cubic and martensite which is the low temperature phase has a lower symmetry 

crystal structure. When the temperature is lowered below martensite start (Ms) 

temperature, MT starts by a shear like mechanism. When temperature is raised 

martensite becomes unstable, reverse transformation begins, and martensite transforms 

back to parent phase with the same orientation if the transformation is 

crystallographically reversible.  
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(a) 

(b) 

(c)

Martensite Parent Phase 

A 
B 

 
Figure 2.1 a) Shape change upon phase transformation b) represents the accommodation 

of external strain by slip, c) represents the accommodation of external strain by twin 

[44]. 

 

MT is associated with a shape change as shown in Figure 2.1.a; hence, a large 

strain occurs around the martensite phase within the parent phase. There are two ways to 

decrease the large strain around martensite; either by introducing slip as in Figure 2.1.b 

or by introducing twinning as in Figure 2.1.c. These are called lattice invariant shears 

because neither slip nor twinning changes the structure of martensite. The introduction 

of slip or twinning in martensite depends on the alloy system, however, in shape 

memory alloys the strain relieve mechanism is usually twinning. The martensites in 

region A and in region B in figure 2.1.c have the same structure; however, their 

orientations are twin related. These are called correspondence variants. Since martensite 

phase has lower symmetry than parent phase many variants can be formed from the 

same parent phase. 

Martensitic transformations are not associated with the compositional change, 

thus the free energy curves of parent and martensite phases can be represented as in 

Figure 2.2. T0, Gm and Gp are defined as the thermodynamic equilibrium temperature 

between two phases, Gibbs free energy of martensite and Gibbs free energy of parent 
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phase, respectively. ΔGp→m= Gm – Gp represents the driving force for the nucleation of 

martensite. The Gibbs free energy change of a system upon martensite transformation 

can be written as [43]: 

ΔG = ΔGc + ΔGnc = ΔGc + ΔGirr + ΔGe     (2.1.1) 

ΔGc is the chemical free energy difference between parent phase and martensite, 

ΔGirr is the irreversible energy term which is associated with the frictional energy 

required to propagate the transforming interface between parent phase and martensite, 

and ΔGe is the elastic energy around the martensite. ΔGnc is the non-chemical energy 

term which is equal to the sum of elastic energy and irreversible energy terms.  

Temperatures where parent phase starts and stops to transform martensite are 

martensite start (Ms) and martensite finish (Mf) temperatures, respectively, and 

temperatures where martensite starts and stops to transform back to parent phase is 

austenite start (As) and austenite finish (Af) temperatures, respectively.  

 

Ms T0 As 

ΔTs 

Gm 

Gp 

ΔGp→m 

ΔGm→p 

T 

G 

 
Figure 2.2 Schematic representation of free energy curves of parent and martensite 

phases, and their relationship to the Ms and As [44]. 
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In most martensitic transformations, the non chemical free energy term is non-

zero, hence, supercooling of ΔTs is needed for the nucleation of martensite and 

superheating is necessary for the back transformation. Because of the elastic energy 

storage around martensite further undercooling is necessary to overcome the resistance 

to the growth of martensite. 

Martensitic transformations can be classified in two categories, thermoelastic and 

non-thermoelastic. If the non-chemical energy term is small which means the interface 

between martensite and austenite is mobile, energy dissipation is low and transformation 

is crystallographically reversible, then martensite is thermoelastic. On the other hand, if 

the non-chemical energy term is large which means the interface between martensite and 

austenite is immobile and energy dissipation is large the reverse transformation occurs 

by the renucleation of austenite, and then martensite is non-thermoelastic [45]. The 

difference between thermoelastic and non-thermoelastic martensite is presented in 

Figure 2.3 in terms of their thermal hysteresis. Shape memory alloys show 

characteristics of thermoelastic martensitic transformations. The notion “thermoelastic 

transformations” in SMAs were first introduced by Kurdjumov and Khandros who 

observed the behavior in Cu-Al-Ni alloys [46]. In Figure 2.3, Au-Cd alloy represents the 

thermoelastic shape memory alloy. 
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Figure 2.3 Electrical resistivity vs temperature curves for thermoelastic and non-

thermoelastic martensite [1]. 

 

2.2 Shape Memory Effect 

The shape memory effect (SME) is a property which covers two basic 

requirements; thermoelastic martensitic transformation and twinning as a deformation 

mode. The defomation processes that are mainly responsible for shape memory effect 

are deformation of martensite or stress induced martensitic transformation. As discussed 

in section 2.1, the deformation of martensite should occur by twinning to realize the 

shape memory effect, because slip is an irreversible process. The martensitic 

transformation occurs in self accommodating manner to keep the same shape upon 

cooling (upon transformation) and to minimize the energy change. Further deformation 

proceeds with twin boundary motion which is the reorientation process of one martensite 

variant to another. Saburi et al. [47] demonstrated that the most favorable 

correspondence variant grows at the expense of the others and gives the largest strain 

under the applied stress. Martensite transform back to austenite upon heating above Af. 

When the temperature is below Mf the specimen is in complete martensitic state, thus the 

deformation is the deformation of martensite, however if the temperature is above Mf a 

part or whole of the deformation is by stress-induced martensitic transformation. The 
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superelasticity or transformation pseudoelasticity concept arises from the stress induced 

martensitic transformations. Superelasticity occurs by the stress induced transformation 

upon loading and transforms back to austenite upon unloading. The condition of 

observing superelasticity and shape memory effect in the same specimen depends on the 

test temperature. The required conditions for each mechanism are demonstrated in 

Figure 2.4. 

The line with positive slope in Figure 2.4 represents the critical stress to induce 

martensitic transformation and the lines with negative slopes represent the critical stress 

for slip. The hatched region is the region that if the stress is applied above Af, the stress 

induced martensite transformation occurs at a stress above the critical stress for inducing 

martensite. Upon unloading the martensite transforms back to austenite since martensite 

is unstable above Af in the absence of stress. If the stress is applied at temperatures 

below As, martensite stays deformed after unloading and the strain can be recovered only 

by heating the specimen above Af. Therefore, in the region between As and Af, both 

superelasticity and shape memory effect coexist. Deformation at temperatures above Md 

do not lead to stress induced transformation since the main mechanism taking place is 

deformation by slip. Figure 2.5 demonstrates schematic stress-strain response of a shape 

memory alloy. There are three possible deformation mechanisms which are explained 

below and represented in Figure 2.5. 

1st Case: If the material is in the austenitic phase, in Stage I, elastic deformation 

of austenite occurs, in Stage II, stress induced martensite forms and in Stage III, slip 

deformation occurs. 

2nd Case: If the material is in the martensitic phase, in Stage I, elastic 

deformation of martensite occurs, in Stage II, detwinning of martensite proceeds with 

the growing of some favored variants at the expense of others, in Stage III, slip 

deformation of martensite occurs. 

3rd Case: If the initial material is a mixture of austenite and martensite phases 

mixture of the 1st and 2nd mechanisms take place. 

Upon unloading, the martensite phase unloads elastically in all mechanisms and 
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pseudoelastic strain would follow the elastic strain (transformation from martensite to 

austenite) in Case I and III. Further strain can be recovered by heating above Af, and this 

behavior is called shape memory effect. The remaining strain is the irrecoverable strain. 

 

Transformation 

Pseudoelastitcity 

Temperature Mf Ms As Af 

Critical Stress for Slip (A)  

Critical Stress to 
Induce Martensite 

Stress 

Shape 
Memory 

Effect 

 
Figure 2.4 Schematic representation for the thermo-mechanical conditions of shape 

memory effect and superelasticity [44].  
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Figure 2.5 Schematic stress-strain behavior of shape memory alloys [48].  

 

In shape memory effect, the remembered shape is the shape of parent phase. 

Remembering the shape of both parent and martensite phases under certain conditions is 

known as two-way shape memory effect (TWSME). TWSME occurs if internal stress 

fields due to microstructure bias certain martensite variants to lower the energy of the 

system and leads to external shape change. The first report of two-way shape memory 

effect on TiNi alloys was published by Wang and Buehler [49]. The required conditions 

necessary for TWSME are; 1) introduction of plastic deformation [50, 51], 2) constraint 

aging [52], 3) thermal cycling [53], and 4) martensite aging due to symmetry-

conforming short range order [54]. Certain stress sources are created during these 

processes such as dislocation configurations and precipitates which produce internal 

stress fields to choose specific martensite variants to lower the energy of the system and 

create the certain shape of martensite.  
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2.3 Conventional Shape Memory Alloys 

Shape memory alloys (SMAs) which demonstrate thermoelastic martensitic phase 

transformations have revolutionized the development and use of active materials in the 

last 40 years by providing large reversible shape changes and very high actuation forces. 

The unique shape memory behavior was publicized in 1963 [55] when the equiatomic 

NiTi binary alloy, the most well-known SMA, was shown to exhibit shape memory 

effect at the U.S. Naval Ordinance Laboratory, that brought the true scientific and 

technological value of these alloys into realization. After 1960s, especially in late 70s 

and early 80s when extensive research on Cu and NiTi based alloys started in the U.S. 

and Japan, processing-microstructure-functional property relationships in these unique 

alloys were revealed and several commercial applications have been attained since then. 

After all these work and development, shape memory alloys are now being used as 

functional materials for pipe couplings, electrical connectors, various actuators and 

sensors, biomedical devices, springs, and glass frames. 

Conventional SMAs display superelasticity and shape memory effect behaviors 

usually at temperatures near or below ambient temperature. Among many SMAs, NiTi 

and Cu-based alloys are the most utilized ones due to their excellent mechanical and 

functional properties. Phase transformation temperatures of available binary NiTi and 

ternary Cu-based alloys (CuZnAl, CuNiAl, CuNiBe, etc.) are usually below 100 °C [56] 

and 200 °C [57], respectively.  

 

2.3.1 Cu-based Shape Memory Alloys 

Among Cu-based SMAs, Cu-Zn based have actually been used and Cu-Al based 

SMAs have shown promise. Many Cu-based SMAs posses martensitic transformation 

from body centered cubic ordered parent phase to a mixture of monoclinic β’ and 

orthorhombic γ’ martensitic phases [58]. The martensitic transformation start 

temperature of Cu-40at%Zn alloy is far below room temperature [59]. Thus, to increase 

the Ms temperature and to stabilize the parent phase, ternary elements such as Al, Ga, Si 

and Sn are added. CuZnAl ternary alloys exhibit the most excellent properties as 
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compared to other Cu-based SMAs due to their higher ductility and resistance to grain 

boundary fracture properties. Ms temperature of Cu-Al alloy is a little above room 

temperature when the Al content is 14wt%. The alloys with Al content higher that 

14wt% are susceptible to precipitation of a second phase γ2 which does not undergo 

phase transformation. When Ni is added as a ternary element, precipitation of γ2 is 

suppressed. However, as the Ni content increases the alloy becomes brittle [60]. 

Excellent SME is observed in CuAlNi alloys with Al content close to 14wt% and with 

4.5wt%Ni content.  

The mechanical properties of Cu-based shape memory alloys highly depend on the 

resistance to grain boundary fracture since it occurs very easily. For instance, the 

fracture stress of single crystal CuAlNi alloys is about 600MPa while that in the 

polycrytals is 280MPa [61]. Therefore, above Af, no superelasticity is observed in 

polycrystalline CuAlNi alloys since grain boundary fracture occurs before the martensite 

is stress induced, however, they exhibit superelasticity as large as 18% in the single 

crystalline state [62]. The intergranular cracking occurs not because of the impurities at 

the grain boundaries such as Bi, Sb, S, P, O and Pb which are known to cause 

intergranular embrittlement of Cu [60], but instead, takes place due to elastic and plastic 

incompatibilities between grains, a consequence of high elastic anisotropy [63].  

The detailed studies on CuAlNi alloys have shown that the formation of stress 

induce martensite along grain boundaries upon quenching is the main reason for 

intergranular cracking. If the stress due to the displacement associated with the 

formation of stress induced martensite is not accommodated by a deformation mode, to 

maintain compatibility at a grain boundary, the displacement causes a crack of a width 

which depends on the orientation mismatch between two adjacent grains [64]. Small 

grain size, small orientation dependence of transformation strain and ease of plastic 

deformation might be the conditions to reduce the crack size. CuZnAl alloys are rather 

ductile in polycrystalline state due small orientation dependence of transformation strain, 

thus, they exhibit pseudoelasticity (superelasticity) at stresses as high as 300MPa [1]. 
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2.3.2 TiNi Shape Memory Alloys 

As opposed to Cu-based SMAs TiNi alloys show good ductility eventhough they 

are intermetallic compounds. Such unique feature is the result of their low elastic 

anisotropy. In addition to their high ductility, they have superior corrosion resistance and 

ability to recover their initial shape after deformation [1, 2].  

Many researches studied the phase diagram of NiTI systems since thermal 

treatments are important to improve the shape memory properties NiTi alloys. Laves and 

Laves et al. [65] first reported the single phase TiNi at near equiatomic composition. 

Poole and Hume-Rothery confirmed the decomposition of TiNi into Ti2Ni and TiNi3 

which was first determined by Duwez and Taylor [66, 67]. It was found that TiNi phase 

extends to lower temperatures, however, the solubility range decreases with lowering 

temperature on Ni-rich side [66, 68]. Purdy et al. [68] first determined that the 

martensitic transformation proceeds with a diffusionless process at low temperatures 

although they did not use the term “martensitic transformation”. After the discovery of 

martensitic transformation in TiNi alloys in 1963, Wasilewski et al. [69] determined a 

new phase, Ti2Ni3, and noticed that there is a vertical boundary on the Ti-rich side and 

solubility range of TiNi phase is very narrow at 500°C and below.  

Up to this point, although some of the basics of the phase diagram were 

established, there were some difficulties in understanding all the phase transformations 

and the presence of some of the phases like Ti2Ni3. Nishida and his co-workers [70] 

studied extensively the transformations at high temperatures in the Ti-52at%Ni alloy. 

They found that at lower aging temperatures and shorter aging times Ti3Ni4 phase 

appears, at higher aging temperatures and longer aging times TiNi3 phase forms and at 

intermediate aging temperatures and times Ti2Ni3 phase nucleates. The phase diagram of 

Ti-Ni alloys by Massalski [71] can be found in Figure 2.6. 

The solubility limit on the Ti-rich side of the binary TiNi alloy is almost vertical 

and precipitation of Ti2Ni phase preferentially appears at grain boundaries in bulk NiTi 

alloys. These precipitates decrease the fracture strength and degrade the shape memory 

behavior of the NiTi alloys. The possible solution to this problem is producing the Ti-
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rich NiTi alloy in thin film forms and heat treating the thin films at high temperatures 

like 700°C for 1 hour or longer times like 10 hours at 500°C for the equilibrium 

distribution of Ti2Ni precipitates in the grains [72]. Since the amorphous thin film 

supersaturates Ti atoms at high temperatures or during longer heating times excess Ti 

can precipitate upon crystallization [73].  

 

 
Figure 2.6 Phase diagram of binary NiTi [71]. 

 

Fully annealed near-equiatomic NiTi alloys transform from B2 to monoclinic 

B19’ phase martensitically upon cooling. If near equiatomic TiNi alloys is thermally 

cycled or thermo-mechanically treated, the martensitic transformation occurs in two 

steps, i.e., B2 to R-phase and then to monoclinic B19’ phase [74]. B2 to R transition is 

also martensitic. The R-phase was first reported as tetragonal phase, however, 

rhombohedral distortion was recognized later [75, 76]. Ni-rich TiNi alloys which are 

aged at an appropriate temperature and ternary TiNiFe and TiNiAl also show two-step 
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phase transition [77-79].  

 

2.3.2.1 Self Accommodation and Twinning in NiTi Alloys 

In NiTi SMAs, martensite variants form self accommodated structure to 

minimize the energy of the system. Between B19’ martensite and B2 parent phase, there 

are 12 lattice correspondences resulting in 24 martensite variants. Self accommodation 

NiTi alloys can be characterized by triangular morphology which is presented in Figure 

2.7 [80]. When TiNi alloys are cooled down below Ms temperature, the martensite can 

transform to 24 possible internally twinned variants to form self accommodating 

structure. The interphase between each two of three variants is a twin plane. There are 16 

subgroups forming the triangular self accommodating morphology around each of the 

[001]B2 poles, indicating 48 possible combination of variants can form such triangles 

[80]. 

  (a)      (b) 

Figure 2.7 a) Schematic representation of triangular morphology and b) crystallographic 

relationships between the variants in the triangular morphology [80]. 
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In all self accommodating structures martensite variants have twin relations with 

each other and when an external force is applied the most favorable variant grows at the 

expense of others, resulting in net shape change. As discussed in section 2.1 the lattice 

invariant shear in SMAs is twinning which is schematically shown in Figure 2.8. K1 is 

invariant plane and K2 is the other undistorted plane. The plane which is normal to K1 

and parallel to η1 shear direction is the shear plane. η2 is the intersection of K2 and the 

other shear plane. If K1 and η2 are rational and K2 and η1 are irrational the type of 

twinning is called type I twinning, if it is the opposite then the twinning is called type II 

twinning. If all of them are irrational, compound twinning takes place [1].  

 

 

 

 

 

 

 

 

 

Figure 2.8 The deformation of a sphere into an ellipsoid and the definition of K1, η1, K2 

and η2 [1]. 

 

2.3.2.2 The Effect of Thermo-Mechanical Treatments on NiTi Alloys 

All the aforementioned studies showed that the shape memory behaviors of NiTi 

alloys depend on the thermo-mechanical history such as aging, cold deformation and 
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severe plastic deformation [5]. In this section, the effect of the thermo-mechanical 

treatments (TTs) on shape memory characteristics of NiTi alloys such as transformation 

temperatures, transformation and irrecoverable strains will be revealed. In addition, the 

effect of the thermo-mechanical treatments on the microstructural evolution such as 

twinning mode evolution and grain size refinement will be summarized. 

 

2.3.2.2.1 The Effect of Thermo-Mechanical Treatments on Transformation 

Temperatures 

The transformation temperatures of the NiTi alloys are highly dependant on the 

composition of the alloy and the thermo-mechanical treatments. For instance, on the Ni-

rich side of TiNi alloys, the transformation temperatures decrease to subzero levels with 

the increase in Ni-content. Aging treatments cause the formation of Ti3Ni4 precipitates 

which increase the transformation temperatures due to depletion of Ni in the matrix. The 

transformation temperatures of the aged Ni-rich TiNi are still below room temperature 

and depend on the amount and size of the precipitates while Ti-rich NiTi alloys are less 

sensitive to the aging treatments, because the formation of Ti2Ni precipitates keeps the 

Ni-content of the matrix to be of equilibrium. Figure 2.9 shows the aging time effect on 

the Ms temperatures of one Ni-rich and one Ti-rich NiTi alloys [84]. Ms temperatures are 

not affected from heat treatments in near equiatomic NiTi alloys since precipitates do not 

form upon aging [77]. 

The transformation treatments of NiTi alloys are also affected from the cold 

deformation or severe plastic deformation. It is known that cold deformation suppresses 

the transformation temperatures to very low temperatures such that no transformations 

were detected down to -60°C in Ni-rich NiTi alloys and equiatomic NiTi alloys [9, 82]. 

The transformation temperatures of cold deformed NiTi alloys can be increased by 

subsequent annealing at intermediate temperature like 350°C. Ms temperature of the cold 

deformed Ti-50.9at%Ni alloy at 350°C was determined as slightly above room 

temperature [82]. The increase in Ms temperature in Ni-rich NiTi alloys can be attributed 

to rearranging and annihilating the tangled dislocations and the formation of Ti3Ni4 
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precipitates. The increase in transformation temperatures was also observed in cold 

deformed and annealed equiatomic NiTi alloys [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Effect of aging time on Ms temperature of Ni-rich and Ti-rich NiTi SMAs 

[81]. 

 

The transformation temperatures of equiatomic NiTi alloys are also affected from 

thermal cycling while they are not affected from thermal cycling in Ni-rich NiTi alloys. 

This implies that the precipitates in Ni-rich NiTi alloys suppress the cyclic effect. On the 

other hand, the transformation temperatures of equiatomic NiTi alloys decreases with the 

number of cycles which can be attributed the dislocation formation. The dislocations 

which are formed during thermal cycles suppress the martensitic transformation. 

Severe plastic deformation also affects the transformation temperatures of NiTi 

alloys. It was found that Ms temperature of the equiatomic NiTi alloy which is deformed 

at 300°C only for 1 pass decreased down to 72°C while Ms of the solutionized 

equiatomic NiTi alloy is around 80°C. The R-phase start temperature (Rs) of Ti-

50.8at%Ni alloy which is ECAE processed at room temperature is detected as 40°C only 
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after annealing at 350°Cfor 30mins while martensite transformation is still not clear [20]. 

The affect of severe plastic deformation can be attributed to the formation of 

dislocations.  

 

2.3.2.2.2 The Effect of Thermo-Mechanical Treatments on Twinning Mode and 

Grain Size in NiTi Alloys 

The mechanisms to accommodate the shape change which occurs through the 

deformation of NiTi alloys differ according to the deformation mode and amount. The 

most common twinning system in solutionized NiTi is <011> type II twinning which 

was first found by Knowles and Smith [83, 84]. Zheng et al. [84] studied the studied the 

effect of amount of cold rolling on the twinning modes in Ti-49.8 %at Ni alloy and 

revealed that up to 12% area reduction (AR), coalescence of martensite variants is the 

mechanism for accommodation of the shape change. The dominant twinning mode is 

still type II twinning but some type I twinning is also observed. The intervariant 

boundaries became curved, distorted and blurred eventually. After 16% AR, the 

deformation took place mainly inside the variants; formation and rearrangement of 

structural bands and formation of new twins would occur. Type I and compound 

twinnings operate and consume type II twinning. Otsuka et al. [85] determined m1}11{
−−

 

type I twins. Gupta and Johnson found m(001)  compound twins and  type I twins 

[86]. Onda et al. [87] determined the conjugate pair of 

m}011{

m(001)  compound twin which is 

m(100)  and Nishida et al. [88] found m}1{20
−

 twins although they cannot be lattice 

invariant shear. Waitz et al. [24-26] studied the effect of severe plastic deformation via 

high pressure torsion on the twinning modes of NiTi alloy and showed that martensitic 

transformation causes a unique “herring-bone” morphology of the martensite composed 

of fine lamellae containing nanotwins. Strain energy calculations and high resolution 

transmission electron microscope analysis lead to the conclusion that compensation of 

the transformation strains occurs by the m(001)  nanotwins [26]. m(001)  and m(001)  

compound twinnings can be considered as the deformation twinning in martensite since 
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one of the slip systems of NiTi is [100](001) and it is proposed that <100> compound 

twin is created by the slip of a/2 on the (001) plane because of the presence of a partial 

pseudo-mirror [89, 90]. Kockar et al. [9] found deformation twins in the austenite in 

heavily deformed equiatomic NiTi alloys and revealed the formation of highly refined 

twins which have  twinning plane and high dislocation density in the equiatomic 

NiTi samples which were ECAE processed at 300°C. Severe plastic deformation leads to 

the formation of compound twins in martensite and deformation twins in austenite. 

1)3(1
−

Waitz et al. [25] studied the effect of severe plastic deformation using high 

pressure torsion on the grain size and the corresponding transformation behavior of Ni-

50.3at%Ti alloys. The range of the grain size is from 5 to 350nm in the HPT processed 

and then annealed samples. It was found that the martensitic transformation is 

suppressed in the grains smaller than 60nm and the R-phase transformation only causes 

small transformation strains in the grains between 15 and 60nm. Large transformation 

strains which occur in B2 parent phase to B19’ martensite transformations are reduced 

with the formation of very fine (001) compound twins [25]. It was also proposed that the 

grain size refinement changes the transformation sequence from B2→R phase→B19’ to 

minimize the overall energy which opposed the transformation. Martensitic phase 

transformation of nanostructures NiTi alloys, high density of grain boundaries acts as 

transformation barrier and causes austenite stability in the grains and change the 

transformation path [24-26]. 

The grain size refinement also affects the other shape memory properties of NiTi 

alloys such as transformation temperatures and superelasticity. There are two approaches 

to the effect of grain size on the Ms temperature. One of them is the decrease in grain 

size increases Ms which is attributed to the homogeneous nucleation of martensite phase 

caused by internal stress arising from high anisotropy of nanoscale grain size [91]. The 

other approach is the decrease in grain size decreases the Ms temperature due to the 

increase in density of grain boundaries which act as transformation barriers and cause 

austenite stabilization.  
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Grain size refinement has influence on the pseudoelastic behavior of NiTi alloys. 

It was reported that small grain size is effective to improve pseudoelasticity since grain 

boundaries would support the back stress needed for back transformation and act as 

nucleation sites for martensite. Saburi et al. [92] demonstrated that Ti-50.5at%Ni alloy 

with 50μm grain size shows complete pseudoleasticity, however the alloy with 1mm 

grain size shows 85% recovery when the samples are tested at 40°C.  

 

2.3.2.2.3 The Effect of Thermo-Mechanical Treatments on Texture 

Single crystals and cold rolled polycrystals studies showed that mechanical 

response and transformation behavior of NiTi alloys are highly orientation dependent 

[93]. For instance, tensile stress-strain curves of a cold rolled NiTi sheet show a flat 

stress-plateu during tension along the rolling direction while along the transverse 

direction the material strain hardens quickly [93]. This is attributed to the deformation 

behavior of the three types of twins which are , )001( )111(
−

type I and type II 

twins differs along rolling and transverse directions. Gall et al. [19] showed that [111] 

orientation showed poor cyclic degradation resistance and rapid increase in the 

permanent strain with cycles [15] and revealed that cold rolled Ni-rich NiTi polycystals 

has a strong texture of  type [19]. It was also found that the critical 

resolved shear stress depends (CRSS) on orientation in aged NiTi single crystals which 

demonstrate tension-compression asymmetry. These deviations are attributed to the 

strong local stress fields surrounding the coherent Ti3Ni4 precipitates which alter the 

orientation relationship of CRSS [19]. 

>< 011

}110{111 ><

[001] orientation in single crystalline NiTi alloys show the superior fatique 

response as compared to the other orientations, because in NiTi alloys, the slip systems 

were reported to be {100}<001> and {110}<001> [17].  

In the literature, there is a lack of knowledge on the texture evolution of 

polycrystal NiTi alloys with severe plastic deformation. The texture evolution with 

ECAE studies focus on generally one element materials like Cu, Ti and W. These studies 

showed that texture highly depends on the processing routes and number of passes in 
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ECAE. The definitions of the routes will be given in section 2.5. It is found that after the 

first pass of ECAE the typical shear-type texture >< 110}111{  is dominated, however 

after three passes,  texture type can be seen [94]. Since the preferred 

austenite texture formation near [001] pole in NiTi alloys can suppress the dislocation 

formation, NiTi alloys are generally ECAE processed for more than three passes to 

achieve 001 texture. However, texture formation also depends on the ECAE temperature 

and at relatively higher processing temperatures strong texture is not expected [9]. 

>< 110}001{

 

2.3.2.2.4 The Effect of Thermo-Mechanical Treatments on Thermal Cyclic 

Response of NiTi Alloys 

NiTi SMAs as actuation devices produce large forces/stresses up to 500MPa over 

4-8% strains; however their thermo-mechanical responses may vary significantly due to 

change in chemical compositions, material processing and thermo-mechanical cycling. 

There are vast amount of work on the stress-induced martensitic transformations in NiTi 

at temperatures above As revealing the effects of stress and strain level, cycle, 

prestraining and strain rate on the transformation characteristics. For instance, thermo-

mechanical cycling leads to evolution of plastic strain which imparts internal stresses 

such that martensite stabilization occurs during transformation back to austenite. 

Miyazaki et al. [18] studied large plastic deformations above As in Ni50.6Ti alloy. It was 

found that if the material was deformed to the range of 4-7% level the strain is not 

recovered completely, since the deformation is accompanied both by twinning and 

dislocations. Miller et al [8] studied the effect of cold working and annealing 

temperature on the transformation and plastic strain of equiatomic NiTi alloy under 

applied stress. They found that the increase in the level of cold working raises stress 

level for the onset of plastic deformation and decreases the additional development of 

plastic strain with cycling. The maximum transformation strain levels of the alloy cold 

worked 20%, 30% and 40% and annealed at different temperatures for various time 

ranges do not change much and are 5-5.5%. The sample 10% cold worked shows 

maximum level of 6.1% transformation strain. 
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Several studies have been conducted on SPD of NiTi SMAs by Valiev and his 

colleagues [27, 29] and Karaman et al [20]. The former group studied the mechanical 

properties of HPT and ECAE processed NiTi alloys. They reported that NiTi alloy 

processed by HPT and subsequent annealing leads to an increase in the strength at 

failure up to 2650MPa with an elongation to failure of 5% [28]. However, they only 

investigated the microstructural evolution and mechanical properties of the alloys. The 

later group studied the effect of ECAE on shape memory properties transformation and 

irrecoverable strain levels of NiTi alloys [9, 20]. They reported that thermal cyclic 

stability is improved in the ECAE processed samples which is attributed to the refined 

microstucture and nanometer range deformation twins [9]. They revealed that under 

200MPa, the irrecoverable strain level of equiatomic NiTi alloy, ECAE processed at 

300°C, decreased down to 0.2% from 0.8% which is irrecoverable strain level of the 

30% cold drawn and subsequently annealed equiatomic NiTi alloy. 

 

2.4 High Temperature Shape Memory Alloys (HTSMAs) 

The existing HTSMAs can be classified in three regimes in terms of their 

transformation temperature ranges: 100°C to 400 °C, 400°C to 700°C, and 700°C and 

over. Such classification is a result of different issues and operative microstructural 

mechanisms associated with each temperature range and available alloy systems. Some 

of the known HTSMAs are NiTi with Pd, Pt, Zr, and Hf additions, Ti-Pd, Ti-Pt, Ni-Al, 

Ni-Mn, TaRu, NbRu, TiIrPt and ZrCu-based binary and ternary systems. In addition, 

there are few new alloy systems with transformation temperatures lower than 100°C but 

demonstrating superelasticity at high temperatures. These high temperature superelastic 

alloys are CoNiGa, CoNiAl, NiFeGa. 

NiTi alloys with Pd, Pt Zr and Hf and Zr-based intermetallics are the most 

common HTSMAs in the first temperature regime. Firstov and his coworkers studied the 

Zr-based quasibinary intermetallics [95, 96]. They reported that these alloys suffer from 

transformation-induced plasticity and are significantly more brittle than the NiTi based 

ternary alloys. Thin films, on the other hand, have demonstrated improved high 
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temperature shape recovery as compared to their bulk counterparts [96]. The shape 

memory behavior and further information about NiTi alloys with Pd, Pt, Zr and Hf will 

be summarized in subsection 2.4.1. 

The challenge on the high temperature superelastic alloy systems such as CoNiGa, 

CoNiAl and NiFeGa is poor workability because these alloys suffer from poor ductility, 

thus the practical use of these new alloys depends highly on the solution to this problem 

[97-98]. It was reported that introduction of γ second phase improves the workability of 

the alloys both at high temperatures and at room temperature as well [97-98]. 

The number of HTSMA systems with transformation temperatures higher than 400 

°C is quite limited. The martensitic transformation in binary and ternary Au-Ti and Ti-

Pd alloys occurs in the second temperature regime and has been extensively studied by 

Donkersloot and Van Vucht [35]. They have also explored the phase transformation 

characteristics of equiatomic binary Ti-Pt system for which the transformation 

temperature is around 1000 °C, in the third temperature regime. The main issue with the 

alloys in the second regime is dynamic recrystallization and martensite aging effect in 

the course of forward and reverse phase transformation. Otsuka and his co-workers have 

focused on the recrystallization process in TiPd alloys which appears to be directly 

affecting the high temperature shape memory response and transformation stability [99, 

100]. The ordinary martensite aging, recovery and recrystallization, and other diffusional 

processes occur at temperatures below reverse transformation start temperature (As), 

even in very short times, competes with diffusionless martensitic transformation, and 

cause an increase in As. Such degradation in transformation and cyclic degradation 

response prevent the long term use of these alloys. 

The binary Ta-Ru and Nb-Ru intermetallics which have transformation 

temperatures higher than 700°C demonstrate multistage phase transformations and 

undergo B2 to tetragonal to monoclinic martensitic transformations [101, 102]. The 

equiatomic compositions result in the best shape recovery with low thermal hysteresis 

[101]. TaRu and NbRu exhibit low strain recovery, 2% under compression and around 

5% and 4% under tension, respectively [102]. They are based on equilibrium phases and 
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transitions as opposed to metastable phases in conventional SMAs, thus, they don’t show 

overaging effects caused by decomposition and precipitation at elevated temperatures. 

 

2.4.1 NiTi HTSMAs with Pd, Pt, Zr and Hf  

NiTi-based ternary alloys with the addition of one of Pd, Pt, Zr, and Hf have been 

the most studied HTSMAs up-to-date. Although the transformation temperatures of 

NiTiAu are higher than NiTiPd for a given composition, there is not much work 

performed on this alloy. It was found that AuTi binary alloys exhibit B2 to orthorhombic 

B19 martensitic transformation [35]. Wu and Wayman studied the ternary TiNiAu alloys 

and found that NiTi alloy with 5-10at% Au transforms from B2 to B19’ monoclinic 

structure and NiTi with 40-50at%Au transforms form B2 to B19 orthorhombic structure. 

The later two alloys have transformation temperatures higher than 450°C [103, 104]. 

The other alloy system which has received little attention like the TiNiAu alloys is 

TiNiPt since they are very expensive materials. Ms temperature of TiNi alloy with 0-

10at%Pt decreases slightly, however at higher levels of Pt, Ms temperature increases 

linearly up to 1040°C for 50at%Pt addition [35, 36]. TiNi alloys with 16at%Pt or greater, 

it is found that there is a one step transformation which is B2 to B19 orthorhombic 

martensite [36]. Zr is added to TiNi alloys at the expense of Ti which is opposite to Au 

and Pt additions for Ni. Mulder et al. determined that Ms temperature of NiTiZr alloys 

increases with a rate of 18°C/at% of rate [105]. It was also observed that the 

transformation temperatures decrease during thermal cycling which was attributed to the 

precipitation on the alloy. Basically, TiNiZr alloys are the least potential ones in high 

temperature shape memory alloys because they exhibit poor ductility and unstable shape 

memory response. 

Hf is added to NiTi alloys at the expense of Ti, however, the amount of Hf addition 

is limited since there is no continuous solid solution between NiTi and NiHf. The 

transformation temperatures of the alloy do not increase much up to 10at% Hf but at 

concentrations higher than 10at%, transformation temperatures increase linearly up to 

525°C at 30at%Hf. [106, 107]. TiNiHf alloys show B2 to B19’ monoclinic martensitic 
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transformation as in binary NiTi, if the Hf content is less than 15at%. The alloys which 

contain higher than 15at%Hf show B2 to orthorhombic B19 martensitic transformation 

[109, 109]. The second phases suh as (Ti,Hf)2Ni and (Ti+Hf)4Ni2Ox were identified in 

NiTiHf alloys [110, 33]. Although the former may be desirable for improving the shape 

memory properties, the latter is not desirable as it may influence the workability and 

shape memory properties [111]. The disadvantages of TiNiHf alloys are the large 

hysteresis and poor shape memory behaviour. It was reported that the hysteresis is on the 

order of 40-50°C and sometimes even larger. It was observed that shape recovery is 80% 

when the Ni50Ti38Hf12 is deformed at room temperature to a strain of 2.5% which is 

attributed to the high stress for the reorientation of martensite and detwinning but the 

low critical stress for slip [33]. Meng et al. [108, 110] examined the tensile properties of 

Ni49Ti36Hf15 at room temperature and above Af temperature and observed significant 

strain hardening which means martensite reorientation is not easy. To increase the 

critical shear stress for slip, Karaman’s group studied severe plastic deformation of 

NiTiHf alloys and they observed an increase in the recoverable transformation strain 

(recoverable strain) and a decrease in the irrecoverable strain levels under constant stress 

experiments [13]. They also investigated the thermal cyclic behavior of the 

Ni49.8Ti42.2Hf8 alloy after severe plastic deformation via equal channel extrusion and 

found that cyclic stability is improved and thermal hysteresis is decreased [13]. 

NiTi alloys with 10at%Pd or less transform from B2 to B19’ monoclinic martensite 

with significantly reduced transformation temperatures, for instance, Ms is -26°C in NiTi 

alloy with 10at%Pd. [36]. In contrast, the addition of Pd more than 10at% increases 

transformation temperatures and changes the martensite type to orthorhombic martensite 

[36]. The transformation temperatures increase with the Pd content almost linearly 

reaching 510-563°C for Ti50Pd50 binary alloy [35, 112].  

PdTi and NiTi binary alloys form a continuous solid solution with a serious 

decrease in transformation temperature by the amount of Ni content in the ternary alloy 

[36]. The intermetallic phase Ti2(Ni,Pd) which is isostructural to the face-centered-cubic 

Ti2Ni phase in binary titanium-rich NiTi alloys was found in ternary NiTiPd alloys 

 



 32

[113]. The other phase detected in NiTiPd alloys is titanium carbides or oxycarbides 

(TiC or Ti(C,O)) [34]. The size of the intermetallics is usually several microns while the 

sizes of carbides and oxycarbides are average of 0.5μm. 

Otsuka et al. has reported that the shape memory behavior of TiNiPd alloys is 

fairly good at room temperature however becomes poor with increasing temperature due 

to the decrease in critical shear stress for slip [114]. Lindquist and Wayman reported 6% 

unconstrained shape recovery [36]. Khachin et al. reported 4% complete strain recovery 

which is introduced by applying 200MPa stress in torsion for Ni13Ti50Pd37 [115]. Otsuka 

and his co-workers studied the shape memory effect in Ti50Pd50 alloys and reported poor 

shape memory behavior which can be attributed to the low critical stress for slip such 

that high density of slip is introduced in addition to twinning in martensite [116]. NiTi 

alloys with 40-50at%Pd shows 0.5% shape recovery when loaded in tension.  

The first requirement for being high temperature shape memory alloys is having 

high transformation temperatures, however; this is not sufficient for desirable SME. As 

explained above NiTiPd alloys also suffer from low critical stress for slip especially at 

high temperatures which causes plastic deformation during phase transformation and 

thus, poor shape memory behavior. Thus, to improve the shape memory response of the 

NiTiPd alloys different approaches has been used such as alloying with a fourth element, 

precipitation hardening or thermo-mechanical treatments. Yang and Mikkola examined 

the effect of boron addition to the shape memory characteristics of Ni22.3Ti50.7Pd27 alloy 

and found 90% shape recovery for 2-3% applied deformation under compression [38]. 

Boron has no real effect on the shape memory characteristics; however, they determined 

an increase in the ductility of the alloy at room temperature and attributed this increase 

to the grain refinement due to boron addition. The other method to improve the shape 

memory characteristics of the NiTiPd alloys is using alloy which slightly deviates from 

stoichiometry to generate homogeneously distributed Ti2Ni precipitates as in 

Ni19.4Ti50.6Pd30 alloy [39]. It was observed that 90% recovery rate when the material is 

deformed to total strain of 6% at 100°C which is about 10% higher than Ti50Ni30Pd20 

[39]. The improvement of shape recovery was attributed to the hardening effect by the 
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homogeneously distributed Ti2Ni precipitates. In addition, some thermo-mechanical 

treatments were applied to modify the microstructure and strengthen the material by 

grain refinement and dislocation formation. Goldberg and his coworkers reported the 

improvement of shape memory properties of Ti50Ni30Pd20 after cold rolling and 

subsequent heat treatment. They claimed superelasticity for the first time in Ti50Ni30Pd20 

after annealing the alloy at 673K and testing at 535K [41]. Cai et al. [114] studied the 

effect of thermal cycling on the shape memory properties of Ni19.4Ti50.6Pd30 alloys. It 

was found that Ms temperature, total transformation strain and irrecoverable plastic 

strain increase with the number of cycles. The change in these parameters occurs quickly 

in the first 40 cycles and tends to stabilize after then. Thus, thermal cycling may be one 

of the thermo-mechanical treatments to stabilize the shape memory response of NiTiPd 

alloys. 

The previous works on TiNiPd alloys mostly demonstrated the shape recovery of 

these alloys under free stress conditions, isothermal mechanical properties and the 

corresponding microstructural analysis. Most of the applications, however, require shape 

recovery under applied stress. A research group at NASA Glenn Research Center 

recently reported the shape recovery of several NiTiPd and NiTiPt alloys and 

corresponding work outputs [32, 34]. They determined the strain-temperature response 

of Ni19.5Ti50.5Pd30 alloy under various tensile and compressive loads [32]. They observed 

that there is a slight difference between the tensile and compressive responses and work 

output first increases, reaches a maximum and then start decreasing with increasing 

stress level. They also observed an irrecoverable plastic deformation at each stress level 

[34]. They proposed that before using this alloy in cyclic actuation applications the 

resistance of the alloy to dislocation slip should be enhanced with promoting the twin 

formation and motion by the similar methods summarized above.  

 

2.5 Principles of ECAE 

In this study, ECAE is chosen as the severe plastic deformation technique to 

improve the mechanical, shape memory behavior and cyclic response of the equiatomic 
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NiTi SMAs and NiTiPd HTSMAs. The purpose of choosing ECAE instead of any other 

severe plastic deformation techniques was revealed in Chapter I. Thus, in this section, 

the principles of this deformation technique will be presented. 

ECAE is a novel technique which permits the application of a large uniform 

strain without reduction in the cross-section of the work piece [21]. The intersecting 

angle of the channels is 2φ which is 90°C in our study as denoted in Figure 2.10. The 

billet is inserted into one of the channels and the punch presses the billet into second 

channel, thus the work piece passes through two intersecting channels which are 90° to 

each other. After the extrusion stops, the billet is withdrawn from the channel. The 

extrusion of a billet through these channels produces simple shear at the channel 

intersection plane and the billets can be deformed in the same uniform manner 

repeatedlyexcept the small part of the end regions.  

 

Punch 

Shear Plane 

Billet 

Extrusion 
Direction 

φ 

 

Figure 2.10 Schematic of ECAE process. 
 

ECAE offers several advantages over the other competing processes such as HPT 

and conventional extrusion. Some of these are the possibility of processing much larger 
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sample sizes, the ability to control the grain morphology and crystallographic texture, 

the possibility to apply uniform strain throughout the billet [22]. 

Multiple passes are possible in ECAE without changing the cross-section. In 

addition, ECAE permits a variety of deformation configurations by changing the 

orientation of the billet with respect to the extrusion axis after each pass. This allows the 

modification of shear planes and directions to develop different structures and textures 

[117]. There are several possible ECAE routes. The main ECAE routes and their 

schematics are given in Figure 2.11. 

 

90° 270° 180° 

Route A Route B: N=3, 5, 9… Route C: all passes Route Bc: all passes 
Route B: N=2, 4, 6… i

Figure 2.11 The description of the ECAE routes. 

 

Route A: The billet rotation is the same at each pass. The distortion of the 

material continuously increases and the laminar grain structure is developed. 

Route B: The billet is deformed alternatively by rotating about the extrusion axis 

counter clockwise 90°after every odd numbered passes and clockwise 90° after every 

even numbered passes. 

Route C: The billet is rotated 180° after each pass.  

Route Bc: The billet is rotated 90° counter clockwise at each pass. Route Bc is the 

most effective route to obtain equiaxed grains [118]. 

Route E: This is a hybrid route which is the combination of two passes of Route 

C, rotating the billet 90°, and then two more passes following Route C. Following Route 
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E, the materials are highly worked with uniform refined microstructure and high density 

of high angle grain boundaries [119]. 

The microstructural evolution and grain refinement mechanism during ECAE, 

for a common material can be summarized as follows. In the first ECAE pass, the 

dislocations are introduced. After then, the dislocations start to arrange to decrease the 

internal energy of the system. In the following passes, subgrains are formed via 

dislocation arrangement inside original grains with low angle grain boundary 

configurations. More dislocations are introduced into the material in the subsequent 

passes and these dislocations are absorbed by the low angle grain boundaries, hence their 

misorientations increase. As a result, low angle grain boundaries evolve into high angle 

grain boundaries and grains are refined [120]. Among the five previously defined routes, 

route Bc is generally the most effective route for grain refinement because there are two 

sets of available shear planes which intersect and cause grain subdivision [121] and 

shear bands with different orientations create a uniform network in the materials [121]. 
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CHAPTER III 

EXPERIMENTAL PROCEDURE 

 

 
3.1 As-Received Materials 

The fabrication details and initial states of materials used in this study are 

summarized below. The compositions of the alloys are given in atomic percentages. 

Equiatomic NiTi alloy: The Ni49.7Ti50.3 alloy was prepared using vacuum 

induction melting and then hot rolled at 900°C. The initial grain size and Ms temperature 

of the hot rolled Ni49.7Ti50.3 alloy are determined as 40μm and 79°C, respectively.  

TiNiPd alloys: The Ti50Ni30Pd20 alloys was prepared using vacuum induction 

melting and solutionized at 1000°C for 1 hour in evacuated quartz tubes to homogenize 

the as cast structure. Solutionizing was followed by water quenching. The initial grain 

size and Ms temperature of the solutionized Ti50Ni30Pd20 alloy are determined as 30-

40μm and 135°C. 

Ti50.3Ni33.7Pd16 was prepared using vacuum induction melting and hot rolled at 

1700°F. Ms temperature of the hot rolled Ti50.3Ni33.7Pd16 alloy is determined as 90°C 

The carbon and oxygen contents of NiTi and Ti50Ni30Pd20 were analyzed by 
standard combustion methods. For carbon content, ASTM E 350-90e1 was applied using 
a LECO C-200 analyzer and a calibration was performed using a NIST-traceable 
standard. For oxygen content, a LECO TC136/EF-100 was used according to ASTM 
E1409-04 standard procedure. The results are summarized in Table 3.1. 
 
Table 3.1 Carbon and oxygen impurity levels in Ni49.7Ti50.3 and Ti50Ni30Pd20. 
 

Materials Carbon (wt%) Oxygen (wt%) 
Ni49.7Ti50.3 0.031 0.02 
Ti50Ni30Pd20 0.051 0.047 
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3.2 ECAE Processing 

ECAE of the initial materials were carried out following different processing 

routes, temperatures and rates using a 250 ton press as shown in Figure 3.1. Higher 

ECAE temperatures were necessary due to the limited ductility of the materials. 

However, the materials were ECAE processed at different temperatures to achieve 

minimum possible deformation temperatures for each material. This is because of the 

desire to achieve the maximum possible microstructural refinement by avoiding 

recovery/recrystallization.  

The details of the ECAE schedules are given in Table 3.2 for NiTi and Table 3.3 

for NiTiPd and the details of ECAE processes for each material are summarized in 

sections 3.2.a, and 3.2.b. 

 

 
Figure 3.1 250 ton extrusion press at Texas A&M University. 
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3.2.1 ECAE Processing of NiTi 

Our previous works on NiTi alloys and the initial works on NiTiPd alloys 

showed that non-isothermal ECAE led to shear localizations in the billets. A tool was 

designed which is suitable for isothermal ECAE of NiTi and NiTiPd alloys. The tool was 

designed for 4.84cm2 ingots, with length up to 25.4cm. Many of the tool’s components 

were made of Inconel 718 which is a precipitation hardenable nickel-chromium alloy. It 

was selected for its superior strength at temperatures in the 400 – 600ºC range. After the 

initial extrusions at 450°C and 425°C, the front leg was remade by H13 tool steel for the 

extrusion at 400°C and below because, the lower end of the front leg, which partially 

defines the shear zone where the material is strained, has not been dimensionally stable. 

In some runs the maximum load has apparently exceeded the capability of this part, and 

it has deformed. H-13 tool steel can maintain its strength which is higher than Inconel at 

400°C and below. The sliding faces of the tool were coated for wear resistance. The tool 

is operated in a custom furnace that provides a buffer to allow the tool’s built-in heaters 

to be quite effective. The furnace is loosely enclosed so that it can be purged with inert 

gas. Tools with different cross sections can be replaced if billets with different cross 

sections are needed to be ECAE processed. The replaceable inserts and the ECAE 

furnace are shown in Figure 3.2. 
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  (a)       (b) 

Figure 3.2 a) Replaceable inserts for ECAE processing of billets with different cross 

sections b) ECAE furnace for isothermal extrusions up to 600°C. 

 

The ECAE billets were cut by electron discharge machine (EDM) from the hot 

rolled bar into 4.84cm2 cross section and 10.2cm long bars. The bars were wrapped in 

brass foil to reduce friction. The ECAE die with a sharp 90° corner angle was preheated 

to extrusion temperatures. The samples were kept in the ECAE die for 30 minutes before 

the first pass for uniform heat conduction throughout the billets and then extruded 

isothermally at 300°C, 400°C, 425°C and 450°C at a rate of 0.005”/sec. The heating 

periods in the ECAE tool were decreased to 15 minutes before the successive passes to 

prevent recovery/recrystallization as much as possible and in addition, the heat 

conduction is easier in the billets which were ECAE processed for one pass than that of 

in unprocessed billets. ECAE was conducted in nitrogen atmosphere for preventing 

oxidation. The billets extruded at 400°C and 425°C were rotated 90° in between each 

pass, (route Bc) and the one extruded at 450°C was processed using route E having billet 

rotation sequence: +180°-90°-180°. The billets were water quenched after each ECAE 

pass to freeze the ECAE processed microstructure. The bars were straightened and 

thinned slightly between the passes so they could be reinserted in the tool. Route E was 

chosen in the initial extrusion because of its lower punch load than that of route Bc and 

to evaluate the formability of the NiTi alloy at high temperatures before attempting 
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lower extrusion temperatures using route Bc. Route Bc was selected since it usually 

results in the most effective refinement with increasing number of passes among all 

known routes [118,119]. Usually four ECAE passes were used for each billet due to the 

fact that at least four or higher number of passes are required to obtain significant 

volume fraction of high angle grain boundaries in body centered cubic structures during 

ECAE [122]. However only one ECAE pass was used for the billet extruded at the 

lowest deformation temperature possible for not to cause shear localization at higher 

number of passes and to obtain sufficient material for further analysis. 

 

Table 3.2 Summary of the equiatomic Ni49.7Ti50.3 ECAE processing detail. 

Materials Extrusion 
Route 

ECAE 
Temperature 

(°C) 

Ext. Rate 
(mm/sec) 

Ni49.7Ti50.3 4E 450 0.127 

Ni49.7Ti50.3 4Bc 425 0.127 

Ni49.7Ti50.3 4Bc 400 0.127 

Ni49.7Ti50.3 1A 300 0.127 
 

3.2.2 ECAE Processing of TiNiPd 

The initial extrusions were conducted on Ti50Ni30Pd20 alloy which were provided 

as 2.25cm2 cross section were canned in two-piece Ni cans since the cross section of the 

ECAE die is larger than the cross section of the billets. Ni cans were machined into 

4.84cm2×10.2cm long bars using conventional techniques. After inserting the 

Ti50Ni30Pd20 billets into the cans, the cans were copper coated to reduce the friction 

between the work piece and the walls of the die. The canned billets were heated to 

ECAE temperature in a furnace for 1 hour before the first pass and 30 minutes before the 

successive passes. They were transferred to ECAE die as quick as possible to prevent the 

chilling effect and ECAE processed non-isothermally in the die which was preheated to 

300°C. Since the initial ECAE of Ti50Ni30Pd20 alloys were conducted non-isothermally 

 



 42

only one of them was successful. The successful ECAE on Ti50Ni30Pd20 billets was the 

one which was conducted at 400°C using Route C for four passes. The other billets 

experienced shear localization during ECAE. Digital image of a Ni30Ti50Pd20 billet 

ECAE processed 400°C is shown before and after ECAE in Figure 3.3 as an example. 

Later Ti50Ni30Pd20 billets were provided as 0.75in2 cross section rectangular bars. 

These billets were wrapped in stainless steel foils and lubricated using stainless steel dye 

to reduce friction. The billets were kept in the ECAE die, which was nitrogen purged and 

preheated to ECAE temperature, for 45 minutes before the first pass and 30 minutes 

before the successive passes. The initial billet was ECAE processed isothermally at 

600°C using Route C for four passes and the later one was ECAE processed isothermally 

at 500°C using Route C for 2 passes. The extrusion rate of ECAE processed non-

isothermally at 400°C Ti50Ni30Pd20 billet is lower than that of the billets ECAE 

processed isothermally at 600°C and 500°C for preventing chilling effect in the ECAE 

die which was preheated to 300°C. 

Ti50.3Ni33.7Pd16 alloy was provided as rounded bars having diameters of 0.4in. Ni 

cans which were used in the initial Ti50Ni30Pd20 extrusions were replaced with 

commercial purity grade 2 titanium because in some of the Ti50Ni30Pd20 extrusions, Ni 

cans failed in the first or second passes and did not allow running further passes. The 

reasons of these inevitable failures could be due to the fact that Ni is softer than the 

Ti50Ni30Pd20 alloy. Thus, the rounded bars were canned in commercial purity grade 2 

titanium. The canned billets were wrapped in stainless steel foils and lubricated using 

stainless steel dye. The billets were kept in the ECAE die, which was preheated to ECAE 

temperature, under nitrogen atmosphere for 45 minutes before the first pass and 30 

minutes before the successive passes. ECAEs of Ti50.3Ni33.7Pd16 billets were conducted 

at 450°C using Route Bc for four passes, 425°C using Route B for 2 passes and 400° 

using Route B for 2 passes.  
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(b) 

Figure 3.3 Digital images of a Ni30Ti50Pd20 ECAE billet (a) before and (b) after 4 ECAE 

passes at 400°C using Route C. 
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Table 3.3 Summary of the NiTiPd ECAE processing detail 

Materials Extrusion 
Route 

ECAE 
Temperature 

(°C) 

Ext. Rate 
(in/sec) 

Ni30Ti50Pd20 4C 400 12.7 
Ni30Ti50Pd20 4C 600 0.127 
Ni30Ti50Pd20 2C 500 0.127 

Ni33.7Ti50.3Pd16 4Bc 450 0.127 
Ni33.7Ti50.3Pd16 2B 425 0.127 
Ni33.7Ti50.3Pd16 2B 400 0.127 

 

3.3 Microstucture Evaluation Methods 

The unprocessed materials were examined with optical microscopy (OM) to 

determine the grain size. Transmission electron microscope (TEM) and scanning 

electron microscope (SEM) have been utilized to investigate the microstructures of 

severe plastically deformed materials since the grain boundaries are heavily deformed 

and can be poorly delineated by OM due to the high dislocation density and the 

formation of submicron grains. It is necessary to keep track of the grain size and 

microstructure evolution after ECAE using transmission electron microscope (TEM). All 

OM samples were mechanically ground down to 1200 SiC grit paper and then polished 

with 3 and 0.05 microns alumina powder sequentially. They were chemically etched 

with HF: HNO3: Glycerol solution with the ratio of 1:4:5 to reveal grain boundaries. 

JEOL JSM-6400 SEM equipped with energy dispersive spectrometer (EDS) and 

Cameca SX-100 electron microprobe equipped with wavelength dispersive spectrometer 

(WDS) were used to examine the second phase particles in NiTiPd materials. Secondary 

electron and back scattered electron images were taken to represent the size of particles 

in the NiTiPd materials. The same OM sample preparation recipe is used to prepare 

samples for SEM; however, they were not etched in order to investigate only the second 

phase particles without mixing them with the matrix microstructure. The compositions 

of the precipitates were determined using wave dispersive spectrometer since WDS 
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analysis allows a more spectral resolution and more sensitivity than EDS analysis does. 

The detection limits of WDS ordinarily varies between 300 and 30 parts per million.  

TEM studies were conducted using a JEOL JEM-2010 microscope operated at an 

accelerating voltage of 200 kV. The TEM samples were mechanically ground down to a 

thickness of 100μm and twin jet electro-polished with a 20vol.% Nitric Acid and 

80vol.% Methanol solution at -10°C. In order to examine the parent phase, the sample 

was heated above austenite finish (Af) temperature (i.e: 200°C) using an in-situ TEM 

heating stage. Bright Field, dark field and electron diffraction patterns were recorded. 

 

3.4 Measurement of Phase Transformation Temperatures 

The specimens were thermally cycled for 5 cycles during which transformation 

characteristics was monitored using a Perkin-Elmer Pyris I differential scanning 

calorimeter (DSC) in nitrogen atmosphere. The heating-cooling rate during the 

experiments was set to 10°C/min in all experiments. Ni49.7Ti50.3 samples were cycled 

between 20°C and 160°C, Ni30Ti50Pd20 and Ni33.7Ti50.3Pd16 samples were cycled between 

20°C and 200°C. 

 

3.5 Mechanical Testing 

The thermo-mechanical experiments were conducted using an MTS 810 

servohydraulic test frame. The heating and cooling of the samples was achieved by 

conduction through the grips which were heated by heating bands and cooled by liquid 

nitrogen flowing through copper tubing wrapped around the grips with a heating-cooling 

rate of 10°C/min. Temperature gradient on the sample was kept 2°C/min at maximum 

during the heating-cooling experiments. An extensometer for high temperature 

applications with a gauge length of 12.54mm was used to record the axial strains by 

attaching its ceramic extension rods directly to the tension samples. The digital image of 

the high temperature extensometer is shown in Figure 3.4. Small dog-bone shaped 

tension samples with a gauge section of 1.5 mm x 3 mm x 8 mm wire electro-discharge 

machined (wire EDM) from the billets. The thickness of the tension samples reduced 
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down to 1.0mm for the monotonic failure experiments for preventing the pins, which are 

used to attach the tension samples to the MTS test machine, from failure before the 

sample fails. The sample dimensions are presented in Figure 3.5. Before the 

experiments, the samples were ground to remove the residue layers formed during EDM. 

The temperature was measured using a thermocouple directly attached to the samples.  

 

 
Figure 3.4 The MTS high temperature extensometer used to measure the axial strain. 
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Figure 3.5 A schematic showing the dimensions of the tension test samples. 

 

Three types of experiments were conducted on hot rolled and ECAE processed 

samples:  

1) Tensile failure experiments at Ms+15°C in austenite (to assure 

thermodynamically equivalent conditions in all samples) in order to determine the effect 

of ECAE on the flow strength and ductility. 

2) Isobaric cooling-heating experiments under increasing stress levels from 50 

MPa to 400 MPa with a 50MPa increments to determine the shape memory 

characteristics such as transformation temperatures, transformation and irrecoverable 

strain levels as a function of stress and find out the threshold stress level for the onset of 

irrecoverable strain. 
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3) Isobaric thermal cyclic experiments up to 10 cycles under 50MPa and 150MPa 

to evaluate the cyclic stability of the unprocessed and ECAEd samples. 150MPa was 

chosen for the isobaric thermal cyclic experiments due to the fact that 150MPa is the 

threshold stress level for the onset of irrecoverable strain. 

4) Loading-unloading experiments at constant temperatures to verify and extend 

the stress-temperature relationships for stress-induced martensitic transformation, 

martensite reorientation and plastic yield of martensite. 
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CHAPTER IV 

THERMO-MECHANICAL, MONOTONIC AND CYCLIC 

RESPONSE OF AN ULTRAFINE-GRAINED NiTi SHAPE 

MEMORY ALLOY  

 

 
4.1 Preamble 

As mentioned in the motivation part of the Chapter I, many practical applications 

of NiTi alloys require large number of cycles, a stable and reliable shape memory effect. 

Understanding the thermal and mechanical cyclic behavior that involves irreversible 

changes is important for the design and utility of NiTi SMAs. However, there are 

problems frequently reported in the literature associated with cyclic stability of shape 

memory effect in NiTi alloys [4-6]. For instance, martensite start temperature (Ms) and 

the irrecoverable (plastic) strain level increase with the number of cycles [6-8]. The 

cyclic instability in NiTi alloys was attributed to the accommodation of the austenite to 

martensite phase transformation with dislocation formation in addition to transformation 

twinning which leads, upon thermo-mechanical cycling, to plastic strain, martensite 

stabilization and variation in transformation temperature, thermal and stress hysteresis.  

A possible solution to the cyclic instability problem is to increase the critical 

shear stress (CSS) for slip and thus to minimize the dislocation formation upon phase 

transformation [11]. Major thermo-mechanical treatments in the literature which 

improve the cyclic stability of NiTi alloys are reported are cold rolling, cold rolling and 

annealing, thermo-mechanical cycling (training) and severe plastic deformation via HPT 

and ECAE. The reports on HPT and ECAE usually demonstrate the microstructural 

evolution and the enhancement of the mechanical properties of NiTi alloys [28]. There is 

a lack of information on the cyclic behavior of severe plastically deformed ECAE 

processed NiTi alloys. 

In this chapter, the effect of ECAE on microstructural refinement and dislocation 
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substructure and the corresponding thermo-mechanical, monotonic and thermal cyclic 

response of the equiatomic NiTi alloy will be investigated. The particular shape memory 

characteristics such as transformation temperatures, thermal hysteresis, transformation 

and irrecoverable strains from thermal cyclic experiments will be revealed. 

Thermodynamic energy contributions to the phase transformations such as stored elastic 

and irreversible energy will be investigated in consideration with the evolution of 

microstructure and twin mode. This study constitutes the first systematic work in 

understanding and building a bridge between the thermodynamics and mechanics of 

martensitic phase transformation in the ultrafine grained NiTi alloys. 

The study on Ni49.7Ti50.3 was started by ECAE processing of the alloy. The 

ECAE processing of the alloys is summarized briefly to refresh the detailed information 

given in Chapter III as following: hot rolled Ni49.7Ti50.3 alloy was ECAE processed at 

450°C for four passes using Route E, 425°C for four passes using Route Bc and 400°C 

for four passes using Route Bc. 

 

4.2 Differential Scanning Calorimetry (DSC) Experiments 

 Figure 4.1 shows the DSC response of the hot rolled and ECAE processed 

Ni49.7Ti50.3 alloy samples during five thermal cycles.  and  in Figure 4.1.c 

correspond to the peak temperatures in the DSC traces.  and  simply define the 

temperatures at which approximately 50% transformation occurs and the thermal 

hysteresis is defined as . There is a notable improvement in the cyclic stability 

of the transformation temperatures after the ECAE processing as it can be seen in the 

Figure.  

*A *M

*A *M

** MA −

The transformation temperatures, As, Ms and Rs, the difference between the first 

and fifth cycles of As and Ms ( , ) temperatures and the thermal 

hysteresis in the first cycles for all samples are summarized in Table 4.1. A decrease in 

transformation temperatures and an increase in thermal hysteresis ( ) after 4 

pass ECAE process are observed. The decrease in Ms temperature of the sample ECAE 

1st
s

5th
s AA − 1st

s
5th
s MM −

1st
s

5th
s AA −
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processed at 300°C for 1 pass is not as pronounced as in that of ECAE processed 

samples for 4 passes. There is no change in the thermal hysteresis of the sample ECAE 

processed at 300°C as compared to the thermal hysteresis of the hot rolled sample. In the 

hot rolled sample, the As temperature is 88.1°C and decreases down to 84.5°C after 5 

cycles, and Ms drifts from the initial value of 79.3°C down to 69.9°C, resulting in the 

temperature shifts about 9.4°C after only 5 cycles. In the sample ECAE processed at 

400°C, there is no shift in the Ms temperature after 5 cycles. The shift of Ms temperature 

of the sample ECAE processed at 300°C is 2.1°C after 5 cycles.  

In equiatomic NiTi alloy the martensitic transformation can occur either directly 

from B2 to B19’ or through the intermediate R phase, B2 →R → B19’, depending on 

the thermo-mechanical treatment [38]. *R  in Figure 4.1 represents the peak temperature 

of the austenite to R-phase transformation. The intermediate R phase is observed in all 

four pass extruded samples which is common for deformed NiTi alloys since 

dislocations introduced during severe plastic deformation process create energy barrier 

for martensite formation, making the R-phase formation a lower energy alternative [46]. 

Austenite to R-phase transformation was not observed in the sample ECAE processed at 

300°C which can be attributed to the lower dislocation density than that of in ECAE 

processed samples for four times. 

The main observations from the DSC results can be summarized as: 1) The 

transformation temperatures decrease after ECAE process, however, the effect of ECAE 

is less pronounced in the sample ECAE processed at 300°C for 1 pass, 2) The thermal 

hysteresis increases after ECAE, however, there is no increase in thermal hysteresis of 

the sample ECAE processed sample at 300°C for 1 pass as compared to the thermal 

hysteresis of the hot rolled sample, 3) Austenite to R-phase transformation is observed in 

ECAE processed samples for four passes, 4) There is a considerable improvement in the 

stability of the transformation temperatures after ECAE. 
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(b) 

Figure 4.1 Cyclic DSC response of the hot rolled and ECAE processed Ni49.7Ti50.3 alloy 

samples demonstrating the improvement in the cyclic stability of the transformation 

temperatures upon ECAE processing (a) Hot rolled, (b) ECAE 4E at 450°C, (c) ECAE 

4Bc at 425°C, (d) ECAE 4Bc at 400°C, (e) ECAE 1A at 300°C samples. 
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(d) 

Figure 4.1 Continued 
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(e) 

Figure 4.1 Continued 

 

Table 4.1 Martensitic transformation temperatures and thermal hysteresis of hot rolled 

and ECAE processed Ni49.7Ti50.3 alloy at the first and fifth thermal cycles from DSC. 

Material A1sts
(°C) 

M1sts
(°C) 

R1sts
(°C) 

A5ths
(°C) 

M5ths
(°C) 

R5ths
(°C) 

A1stsA5ths −
(°C) 

M1stsM5ths −
(°C) 

M*1stA*1st−
(°C) 

As Received 88.1 79.3 - 84.5 69.9 - 3.6 9.4 36.5 

ECAE 4E at 

450°C 
81 52.1 64 80 49.7 63.4 1 2.4 45.5 

ECAE 4Bc 

at 425°C 
78 44.6 61 77 43.9 61 1 0.7 45 

ECAE 4Bc 

at 400°C 
73.7 38.6 62 73 38.6 62 0.7 0 52 

ECAE 1A at 

300°C 
74.5 66.1 - 75.7 64 - 1.2 2.1 36 
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4.3 Microstructural Evolution 

Before presenting the thermo-mechanical response of the hot rolled and ECAE 

processed Ni49.7Ti50.3 alloy, it is imperative to understand the microstructural changes 

induced by ECAE. Figure 4.2 shows the optical microscopy image of the hot-rolled 

Ni49.7Ti50.3 alloy demonstrating the average grain size of about 40μm. Figure 4.3 shows 

the bright field TEM images of the ECAEd samples taken above the Af temperature, 

approximately at 175°C, illustrating the grain size reduction as a function of the ECAE 

temperature. Note that the magnifications of these images are different. It is clear in the 

figure that the lower the ECAE temperature is, the refiner the resulting grain size gets. 

The average grain size of the sample extruded at 400°C is about 0.1μm (Figure 4.3.a) 

while that for the sample extruded at 450°C is around 0.2~0.3μm (Figure 4.3.c). 

However, the grain size distribution is relatively wide especially in the samples extruded 

at higher temperatures. As shown in Figure 4.3, the grain size varies between 0.05 and 

0.3μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Optical micrograph of the hot-rolled Ni49.7Ti50.3 alloy demonstrating the 

initial grain size. 
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Selected area diffraction (SAD) patterns were also recorded to analyze the 

existing phases at different grain sizes. Figure 4.4 shows TEM bright field image taken 

at room temperature from ECAE processed sample at 400°C and the corresponding SAD 

patterns from the indicated areas which demonstrate the simultaneous presence of R and 

B19’ martensite phases in one apparent grain. In Figure 4.4.b, weak superlattice 

reflections are the indications for the R-phase. It was recently reported that when the 

grain size of Ni-50.3at%Ti alloy is in between 0.06 to 0.15μm, the grains mainly contain 

R-phase and B19’ martensite [25] confirming our observations. However, the 

aforementioned study was conducted on very small HPT processed and heat treated 

samples. HPT processed amorphous samples were annealed at different heat treatment 

temperatures to achieve various grain sizes via recrystallization, but mainly in an 

amorphous matrix. 

 

0.3μm 0.4μm 0.5μm

(a)    (b)    (c) 

Figure 4.3 Bright field TEM images taken above Af at 175°C showing the grain size 

reduction due to ECAE processing. Four ECAE passes following (a) route Bc at 400°C 

b) route Bc at 425°C and (c) route E at 450°C. 

 

Figures 4.5.a and 4.5.c show TEM bright field images taken at room temperature 

from the ECAE 4Bc sample processed at 425°C and Figures 4.5.b, 4.5.d and 4.5.e are the 

corresponding SAD patterns from the circled areas in Figures 4.5.a and 4.5.c. Figure 
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4.5.b depicts the formation of >< 011  Type II twins and the size of these twins is 

measured as approximately 30nm. Figures 4.5.d and 4.5.e demonstrate two different 

twin modes which are m(001)  compound twin and }1{11
−

 Type I twin, respectively. 

Type II twins are quite common in solutionized and cold worked plus annealed NiTi 

alloys. Nishida et al. [123] showed that  compound twinning mode is the most 

frequently observed one among the 

m(001)

}1{11
−

 and >< 011  twinning modes in grains 

smaller than 4μm. The rationale behind the observation of these twins will be discussed 

in detail in section 4.8.1. 
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Figure 4.4 (a) Bright field (BF) TEM images taken at room temperature showing the 

grains containing R-phase and martensite in the ECAE 4Bc sample processed at 400°C 

SAD patterns of the circled areas in BF showing (b) the R-phase and (c)  B19’ 

martensite. 
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Figure 4.5 Bright field TEM images taken at room temperature from ECAE 4Bc sample 

processed at 425°C showing (a), (c) twins in martensite, (b) SAD pattern taken from the 

circled area in (a) showing the ><011  Type II twin, and (d), (e) SAD patterns taken 

from the circled areas in (b) showing the  compound twinning and  Type I 

twinning, respectively. 
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Figure 4.6.a shows TEM bright field image taken at 200°C from the ECAE 1A 

sample processed at 300°C and Figure 4.6.b demonstrates corresponding SAD pattern 

from the circled area in Figure 4.6.a. Figure 4.6.b depicts the formation of )131(
−

 

deformation twins which is a common deformation twinning mode in the high 

temperature phase of NiTi alloys having thicknesses around 0.02μm. The grain 

boundaries are not well delineated since the microstructure in Figure 4.6.a demonstrates 

high dislocation density with high volume fraction of refined twins. 
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Figure 4.6 Bright field TEM images taken at 200°C from ECAE 1A sample processed at 

300°C showing (a) twins in austenite and the relatively heavy dislocation density (b) 

SAD pattern taken from the circled area in (a) showing the )131(
−

 deformation twin. 
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Figure 4.7 represents the TEM bright field image of a unique microstructure of 

B19’ martensite which is observed in the sample ECAE 4Bc processed at 425°C. The 

full lines represent the twinned lamellae and the dashed lines represent the junction 

planes between the twin variants. This unique microstructure is called as “herring bone” 

morphology [26]. Waitz et al. [26] showed that the  compound twins observed in 

nanograins represent a unique “herring bone’ morphology of the martensite which are 

not observed in coarse grained NiTi alloys. The junction planes represented as dashed 

lines in Figure 4.7 can be either straight or curved. These junction planes are the 

coherent twin boundaries which are formed to reduce the lattice misfit, thus, the lattice 

strain at the twin boundary decreases with the formation of these coherent twin 

boundaries. 

m(001)

 

0.06μm  
Figure 4.7 Bright field TEM image taken at room temperature from the ECAE 4Bc 

sample processed at 425°C showing “herring bone”  type twins having an 

average size of 3nm. 
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4.4 Monotonic Mechanical Response under Tension 

To analyze the effect of severe plastic deformation on the  and  levels, 

tension tests were conducted to failure on hot rolled and ECAE processed at 

temperatures 15°C above the Ms of each sample under 50MPa. Ms under 50MPa was 

chosen as the test temperature to be at the same thermodynamical conditions in all cases. 

The stresses shown as  and σ  in Figure 4.8 correspond to critical stress level to 

induce martensite and the yield stress of stress induced martensite, respectively. Figure 

4.8 shows the schematic of a stress-strain curve which is composed of five stages of 

different types of deformation in a typical SMA at temperatures below Md. Md is the 

maximum temperature at which stress induced martensitic transformation is possible. 

These deformation stages can be summarized as: Stage 1: Elastic deformation of 

austenite or martensite depending on testing temperature; Stage 2: Stress-induced 

martensite formation or martensite reorientation and detwinning of martensite again 

depending on testing temperature; Stage 3: Elastic deformation of stress-induced 

martensite; Stage 4: Plastic deformation of stress-induced martensite; Stage 5: Fracture 

of martensite after necking. Stress dependence of deformation stages was explained 

detail in Chapter II. 

SIMσ σM
y

SIMσ M
y

Figure 4.9 illustrates the results of monotonic response of the hot rolled and 

ECAE processed samples under tension. The stresses,  and , and the stress 

differential between them (Δσ) obtained from these experiments are summarized in 

Table 4.2.  and  stresses are found using the intersecting slopes technique and 

0.2% offset value respectively as shown in Figure 4.8. 

SIMσ σM
y

SIMσ σM
y

The yield stress levels of stress induced martensite notably increase with the 

decrease in ECAE temperature for the same number of passes of ECAE process. The 

critical stress levels for stress induced martensitic transformation of the samples ECAE 

processed for four passes were determined to be decreasing. It can be noticed that the 

stress differential increases in all ECAE processed samples, however, the increase in 
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stress differential of ECAE 1A at 300°C case is less pronounced as compared to that of 

the ECAE processed for four passes because  increases after ECAE process at 

300°C for one pass.  
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Figure 4.8 Schematic of a different deformation stage in a typical SMA at temperatures 

below Md.  and show the critical stress level to induce martensite and the yield 

stress of stress induced martensite, respectively. 
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Figure 4.9 Monotonic mechanical response of the hot rolled and ECAE processed 

Ni49.7Ti50.3 samples under tension at  to be thermodynamically same 

condition. 
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Table 4.2  and  stresses and the stress differential determined from monotonic 

mechanical response experiment under tension of hot rolled and ECAE processed 

Ni49.7Ti50.3 samples.  

SIMσ σM
y

 SIMσ  
(MPa) 

σM
y   

(MPa) 
σΔ ( ) SIM

M
y σσ −

(MPa) 
Hot Rolled 300 520 220 

ECAE 4E at 450°C 220 790 570 

ECAE 4Bc at 425°C 150 840 690 

ECAE 4Bc at 400°C 120 1020 900 

ECAE 1A at 300°C 395 950 555 
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4.5 Isobaric Thermal Cyclic Experiments 

Isobaric thermal cyclic experiments were performed, incrementally increasing 

the applied stress at each thermal cycle, using the same specimen throughout the test. 

From these experiments, transformation strain and irrecoverable strain levels are 

determined at each stress level. Transformation strain is determined from the middle of 

the temperature range between the extrapolated thermal expansion lines of parent and 

martensite phases and irrecoverable strain is the strain difference between the heating 

curve and the cooling curve at Af+30°C as shown in Figure 4.10. Thermal Hysteresis 

and the transformation temperature intervals (i.e. Ms-Mf) of the hot rolled and ECAE 

processed samples are compared. Ms and Mf temperatures are determined from the 

intersection points of the extrapolated thermal conduction of martensite and the 

martensitic transformation curves and thermal expansion of austenite and the martensitic 

transformation curves, respectively. Thermal hysteresis is the temperatue range at the 

middle of the points between the martensitic transformation and back (austenite) 

transformation curves as shown in Figure 4.10. 
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Figure 4.10 Schematic illustration of transformation and irrecoverable strain, Ms and Mf 

temperatures and thermal hysteresis. 

 

Figure 4.11 shows the strain vs. temperature response of the hot rolled and ECAE 

processed samples during isobaric heating-cooling experiments. These experiments were 

conducted under increasing stress levels from 50 MPa to 400 MPa with 50MPa 

increments to find out the threshold stress level for the onset of irrecoverable strain. Ms 

temperatures of all samples increase as the applied stress increases which can be 

attributed to the stabilization of martensite with the increase in stress level. In addition, 

the transformation temperature interval (i.e. Mf-Ms) is low in the samples ECAE 

processed for four passes. The samples ECAE processed at 300°C and hot rolled show 

larger transformation temperature interval. One can observe that the thermal hystereses 

of ECAE processed samples for four times are larger than that of ECAE processed 

sample at 300°C for one pass.  

Figure 4.12 represents the transformation and irrecoverable strain levels as a 

function of applied stress level determined from these experiments. It is clear that there 

 



 67

is a significant increase in the irrecoverable strain levels of the hot rolled sample with 

increasing stress. The ECAE processed samples, on the other hand, all show stable 

response and the irrecoverable strain levels are negligible up to 100MPa. One can 

observe a detectable irrecoverable strain only above 200MPa for the samples extruded at 

400°C and 300°C. As the extrusion temperature decreases, the irrecoverable strain level 

also decreases for the four pass ECAE samples. The transformation strain levels of 

samples ECAE processed at 450°C, 425°C and 400°C increase with increasing stress up 

to 150MPa and then stabilize above 200MPa and are lower than the transformation strain 

level of the hot rolled sample. The transformation strain level of the sample ECAE 

processed at 300°C continues to increase with increasing stress up to 400MPa. 

Transformation strain levels of the ECAE processed for four passes samples increase up 

to maximum values of 4.5% at 200MPa and stabilize at higher stress levels, on the other 

hand the transformation strain level of the hot rolled sample never stabilizes and 

increases up to 10%. The red markers in Figure 4.12 represent the values determined 

from comparison experiments to confirm the repeatability of the results. It was observed 

that the transformation and irrecoverable strain values determined from different 

experiments are almost the same, except the transformation strain levels of the hot rolled 

sample from seperate experiments differ slightly. The reason of this difference might be 

due to sample inhomogeneity. Since there are large strains imparted on the ECAEd 

samples and the deformation is homogeneous, the similar transformation behavior is 

expected. 

The main observations from Figures 4.11 and 4.12 can be summarized as: 1) the 

transformation interval (i.e. Mf-Ms) of the samples ECAE processed for four passes is 

lower than that of the sample ECAE processed at 300°C for one pass, 2) thermal 

hysteresis of the samples ECAE processed samples for four passes at each stress level is 

larger than that of the sample ECAE processed at 300°C for one pass, 3) irrecoverable 

strain levels of the ECAE processed samples are lower than that of the hot rolled sample, 

4) the irrecoverable strain levels of the sample ECAE processed at 300°C for one pass at 

higher stress levels are lower than that of the sample ECAE processed at 400°C for four 
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passes, 5) the transformation strain levels of the ECAE processed samples are lower than 

that of the hot rolled sample, and they are more stable above 200MPa. 
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(b) 

Figure 4.11 Strain vs. temperature response of the Ni49.3Ti50.7 alloy under various 

constant stress levels during isobaric cooling-heating experiments: (a) Hot rolled, (b) 

ECAE 4E at 450°C, (c) ECAE 4Bc at 425°C, (d) ECAE 4Bc at 400°C, (e) ECAE 1A at 

300°C samples. 
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Figure 4.11 Continued 
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Figure 4.11 Continued 
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Figure 4.12 Transformation and irrecoverable strain response as a function of constant 

tensile stress levels in the Ni49.7Ti50.3 samples from the isobaric cooling-heating 

experiments under increasing applied stress levels of Figure 4.5.2. 
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4.6 Critical Stress vs. Critical Temperature Response for Inelastic Deformation 

Thermoelastic martensitic transformation is a combination of mechanical and 

thermal transformation processes. Thermodynamical conditions have been established to 

express the effect of stress and temperature as the external driving forces on the 

martensitic phase transformation [129]. The relationship between stress and temperature 

to induce martensitic transformation has been expressed using Clausius-Clapeyron 

equation [124]:  

troεT
ΔH

dT
dσ −=          (4.6.1) 

ΔH is the enthalpy change of the transforming body, T0 is the chemical equilibrium 

temperature of the transformation, and εtr is the transformation strain of the 

transformation in the direction of the stress. Basically, the Clausius-Clapeyron equation 

defines a linear relationship between stress and temperature required to induce 

martensitic transformation.  

To determine the complete stress-temperature relationship for hot rolled sample 

and the samples ECAE processed at 400°C and 425°C for four passes at three different 

deformation modes which were defined in Chapter II and redefined in Figure 4.13.a, 

three types of tests were conducted which are: 

1) Isothermal loading-unloading experiments in martensite phase to find the 

critical stress for martensite reorientation. Critical stress for martensite reorientation was 

measured at 0.2% offset strain using the apparent elastic modulus of martensite on the 

stress vs. strain curves. 

2) Isobaric thermal cyclic experiments to find the critical temperature for the 

onset of martensitic transformation. 

3) Isothermal loading-unloading experiments in austenite phase to find 

plastic yield point of austenite. The critical stress for plastic deformation of austenite 

was measured at 0.2% offset strain from the apparent elastic modulus of austenite on the 

stress vs. strain curves. 

Figure 4.13.a shows three separate regions of stress vs. temperature relationships 
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which are for martensite reorientation, stress induced martensitic transformation and 

plastic yielding of austenite for the hot rolled sample and the samples ECAE processed 

at 400°C and 425°C. Then, stress vs. temperature curves in Figure 4.13.b are constructed 

for martensitic reorientation and stress induced martensitic transformation and the slopes 

of these curves are determined for three samples. In each region, the stress vs 

temperature relationship is clearly different. Martensitic reorientation and plastic 

deformation of austenite show an expected temperature dependence with a negative 

slope, however, the critical stress for stress induced-martensitic transformation is highly 

dependant on temperature according the Clausius-Clapeyron equation with a positive 

slope. σy for austenite, i.e. Region II and Region III intercept at stress levels of 550MPa, 

750MPa and 850MPa for the hot rolled sample, ECAE processed samples at 425°C and 

400°C, respectively. To better observe Region II behavior and the intersection with 

Region I a magnified version of Figure 4.13.a is represented in Figure 4.13.b. Region I 

and Region II intercept at stress levels of 110MPa, 100MPa and 80MPa for the hot 

rolled sample, ECAE processed samples at 425°C and 400°C, respectively. The critical 

stresses for the stress induced martensitic transformations of samples ECAE processed at 

400°C and 425°C and hot rolled samples showed a linear dependence on testing 

temperature with the dσ/dT values of, 9.4MPa/°C, 8.1MPa/°C and 7.5MPa/°C, 

respectively.  

Comparing the stress vs. temperature relationship at low stress level, there is an 

obvious difference between ECAE processed and hot rolled sample responses in Figure 

4.13.a. Extrapolating the Region II response of the hot rolled sample in Figure 4.13.b 

gives the temperature of 56°C at zero stress which is 16°C below the Ms temperature 

detected using DSC ( ). Similarly, the Ms temperatures under 50 and 100MPa 

determined from isobaric cooling/heating experiments are found to be the same as the 

, i.e. 72°C. On the other hand, extrapolating Region II response of the ECAE 

processed samples results approximately 4-5°C higher Ms temperatures than that of the 

Ms temperatures of ECAE processed samples measured using DSC as shown in Figure 

4.13.b. The implications of this response and possible rationale for such differences will 

M 0σ
s
=

M 0σ
s
=
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be discussed in section 4.8 in detail considering the role of R-phase, the effect of grain 

size and martensite twin type and morphology. 
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(b) 

Figure 4.13 Effect of temperature on the critical stress for martensitic reorientation, 

stress-induced martensitic transformation and plastic yielding of austenite of ECAE 

processed and hot rolled samples. 
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4.7 Thermal Cyclic Experiments under Constant Stress 

 As shown in section 4.5, none of the samples demonstrated irrecoverable strain at 

and below 50MPa, however, the samples extruded at 400°C and 300°C show no 

irrecoverable strain up to 150MPa. Thus 50MPa and 150MPa were chosen as two stress 

levels for thermal cyclic experiments. The main purpose to conduct cyclic tests was to 

evaluate the transformation and the irrecoverable strain levels as a function of the 

number of cycles. Figures 4.14 and 4.15 represent the cyclic strain temperature response 

of the ECAE processed and hot rolled samples under these stress levels, respectively, for 

ten cycles.  
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(a) 

Figure 4.14 Strain vs. temperature response of the Ni49.3Ti50.7 alloy under 50MPa. (a) 

Hot rolled, (b) ECAE 4E at 450°C, (c) ECAE 4Bc at 425°C, (d) ECAE 4Bc at 400°C, (e) 

ECAE 1A at 300°C samples. 
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Figure 4.14 Continued 
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Figure 4.14 Continued 
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(b) 

Figure 4.15 Strain vs. temperature response of the Ni49.3Ti50.7 alloy under 150MPa. (a) 

Hot rolled, (b) ECAE 4E at 450°C, (c) ECAE 4Bc at 425°C, (d) ECAE 4Bc at 400°C, (e) 

ECAE 1A at 300°C samples. 
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Figure 4.15 Continued 
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Figure 4.15 Continued 

 

The main observation from Figure 4.14 and 4.15 is the considerable 

improvement in the cyclic stability after ECAE process.  

The evolution of transformation strain under 50MPa and 150MPa and 

irrecoverable strain levels under 150MPa as a function of the number of cycles is given 

in Figures 4.16 and 4.17, respectively. As expected from isobaric heating-cooling 

experiments, none of the samples show irrecoverable strain under 50MPa. Under 

150MPa, the samples which are ECAE processed at 400°C and 300°C show no 

irrecoverable strain respectively and irrecoverable strain levels of the other ECAE 

processed samples are much lower than that of the hot rolled sample. In all samples, the 

irrecoverable strain decreases with the number of cycles and seems to saturate in the last 

few cycles. In the samples ECAE processed at 425°C and 450°C, the irrecoverable strain 

values decreases down to 0% after 5th and 8th cycles, respectively, however, certain level 

of irrecoverable strain is measured in the hot rolled sample even at 10th cycle. Another 

observation from the strain vs. temperature graphs is the improved cyclic stability of the 

 



 80

transformation strain levels with ECAE, which enhances further with decreasing ECAE 

temperature. The transformation strain levels of the samples ECAE processed at 450°C, 

425°C and 400°C under 50MPa are around 1.3% and ECAE processed at 300°C under 

50MPa is 0.5%. There is almost no change in the transformation levels of ECAE 

processed samples with the number of cycles, however the transformation strain level of 

the hot rolled sample is initially 0.6% and continuously increases and becomes 3.4% 

after 10 cycles. Under 150MPa, the transformation strain levels of ECAE processed 

samples are lower than that of the hot rolled sample. These levels for the samples ECAE 

processed at 450°C, 425°C, 400°C and 300°C are approximately  4%, 3.9%, 3.5% and 

2.5% respectively at the 1st cycle and none of these samples show distinctive 

transformation strain level change after 10 cycles. The transformation strain level of the 

hot rolled sample is approximately 6% at the 1st cycle and decreases down to 5.8% after 

10th cycle.  

The main observations for the thermal cycling under constant stress levels are: 1) 

the transformation and irrecoverable strain levels of ECAE processed samples are lower 

than that of the hot rolled sample, 2) the transformation strain level decreases with the 

decrease in ECAE temperature under 150MPa, 3) the transformation strain levels of 

ECAE processed samples are stable with the number of cycles, 4) No irrecoverable 

strain is evident in the sample ECAE processed at 400°C under 150MPa, and 5) the 

irrecoverable strain levels of other ECAE processed samples seem to saturate at 0% after 

few number of cycles. 

Another intriguing observation from cyclic experiments under 50MPa and 

150MPa is the decrease in thermal hysteresis of the ECAE processed samples with the 

increase in applied stress as shown in Figure 4.18. Under 50MPa, the hysteresis of the 

hot rolled sample vary between 35°C and 40°C, first slightly decreasing and then 

increasing with the number of cycles. Under 150MPa, the hot rolled sample experiences 

a decrease in ΔT with the number of cycles from 52°C to 42°C. On the other hand, under 

50MPa, the hysteresis of the sample ECAE processed at 400°C is about 42°C and does 

not change notably with the number of cycles, More surprisingly, under 150MPa, 

 



 81

thermal hysteresis is 39°C at the first cycle and drops down to 32°C after ten cycles of 

cooling-heating. In other words, in the hot rolled sample, increasing stress level 

increases thermal hysteresis while the opposite is observed in the ECAE processed 

sample. Note that, thermal hysteresis is an indication of how much dislocation occurs in 

the material during the forward and reverse phase transformation. 
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(a) 

Figure 4.16 Transformation strain evolution of the hot rolled and ECAE processed 

Ni49.3Ti50.7 samples with the number of cycles under (a) 50MPa and (b) 150MPa. 
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Figure 4.16 Continued 
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Figure 4.17 Irrecoverable strain evolution of the hot rolled and ECAE processed 

Ni49.3Ti50.7 samples with the number of cycles under 150MPa. 
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Figure 4.18 Thermal hysteresis comparison of the sample ECAE processed at 400°C 

and the hot rolled sample under 50MPa and 150MPa. 

 

4.8 Discussion of the Results 

In this part of work, the main goal was to reveal the effect of severe plastic 

deformation via ECAE and associated microstructural refinement on the thermo-

mechanical cyclic stability of Ni49.3Ti50.7. The main observations could be summarized 

as: 

1) The transformation temperatures decrease after ECAE process, however, 

the effect of ECAE is less pronounced in the sample ECAE processed at 300°C for 1 

pass. 

2) The thermal hysteresis of the samples ECAE processed for four passes 

are larger than that of hot rolled sample and the sample ECAE processed at 300°C for 

one pass. The transformation temperature interval (Mf-Ms) is low in the samples ECAE 

processed for four passes while the hot rolled sample and the sample ECAE processed 

for one pass have higher transformation temperature interval. 

3) The grain sizes of the samples ECAE processed for four passes at 450°C, 
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425°C and 400°C were determined to be on the order of 100 to 300nm. Microstructural 

refinement in the sample ECAE processed at 300°C is achieved via deformation 

twinning-induced refinement. 

4) The twin mode in martensite was found to be a mixture of Type I and 

Type II twins in addition to the  compound twins in the samples ECAE processed 

for four passes. 

)001(

5) Austenite to R-phase transformation is observed in ECAE processed 

samples for four passes. 

6) ECAE led to an increase in the strength differential between the critical 

stress to induce martensite and the yield stress of martensite. Such increase was thought 

to be responsible for the significant improvement in the thermal cyclic stability and 

reduction in the irrecoverable strain levels under constant stresses. The negligible 

irrecoverable strain levels under very high stress levels observed in the samples ECAE 

processed at 400°C and 300°C is attributed to the increase in critical stress level for 

dislocation slip due to grain size and deformation twinning-induced refinement via 

ECAE.  

The rationale and mechanisms responsible for these main observations are 

discussed below in detail. 

 

4.8.1 Grain Size, Twin Formation and Microstructural Evolution during ECAE 

Figure 4.3 shows both the grain size refinement and well-delineated grain 

boundaries which can be attributed to the dynamic recovery and recrystallization during 

ECAE at 400°C and above from the contrast changes across the grain boundaries, it can 

be deduced that the volume fraction of high angle grain boundaries is relatively large. 

The microstructural evolution in the sample ECAE processed at 300°C does not feature 

delineated grain boundaries due to the high volume fraction of deformation twins. The 

microstructural refinement in the samples ECAE processed at 400°C, 425°C and 450°C 

is achieved through grain refinement. The mechanism of grain refinement is the 

continuous dynamic recovery/recrystallization. Severe plastic deformation at slightly 
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high temperatures causes the development of new grains as a result of gradual increase 

in the misorientations between the subgrains. Further deformation reduces the grain size 

continuously and the volume fraction of newly generated ultrafine grains increases. 

Figure 4.6 shows the deformation twins in the austenite. There is a high volume 

fraction of deformation twins with a twin size of 20nm, thus, microstructural refinement 

in the sample ECAE processed at 300°C is achieved via deformation twinning-induced 

refinement. Deformation twinning in B2 nanograins instead of Type I and Type II 

twinning modes was also observed in severely plastically deformed NiTi alloys due to 

high strength and shear stress applied during room temperature deformation [125]. 

)131(
−

TEM images and diffraction patterns in Figure 4.4 showed that grain size 

refinement suppresses the formation of martensite due to the increase in energy barrier. 

Grain boundaries act as obstacles such that martensite plate nucleated within the grain is 

stopped at the boundary. To initiate the nucleation and growth of martensite in the next 

grain the martensite plates in the neighboring grain should induce some stress which 

could be a result of the mismatch between transformed and untransformed grains. 

However, according to Waitz et al. [25] grains that have sizes less than 60nm, the 

stresses are not enough to initiate martensite nucleation in the adjacent grain and the 

dislocations in each grain suppress the martensite nucleation and growth. 

The grain size of B2 austenite phase affects the twinning mode and the size of the 

twin plates of B19’ martensite in Ni49.7Ti50.3 alloys. In the refined grains of the samples 

ECAE processed for four passes,  compound twins are found in addition to 

common  Type II and 

)001(

>< 011 }111{
−

 Type I twins. compound twinning with fine 

platelet is selected as a internal defect of the matensite to minimize the transformation 

strain in nanograins, although  compound does not give solution to 

crystallographic theory [26, 123, 126]. The constraints of the grain boundaries facilitates 

the self accommodation of the martensite with selection of  compound twin 

formation as an energy minimizing transformation path. The morphological difference 

)001(

)001(

)001(
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between  compound,  Type II and )001( >< 011 }111{
−

 Type I twinning is in the twin 

plate width. The width of  compound twin platelets which show “herring-bone 

morphology is 2-3nm while the width of the twin platelets of Type I and Type II twins is 

20-30nm. 

)001(

 

4.8.2 Effect of ECAE and Grain Refinement on Martensitic Transformation 

Temperatures 

In a thermoelastic martensitic transformation, there is a thermodynamic 

equilibrium between chemical and non-chemical energies which can be expressed as, for 

the forward and reverse transformation, respectively: 

irre ΔEΔESTΔΔHΔG ++−=               (4.8.2.1) 

ΔG, ΔH, ΔS, ΔEe and ΔEirr are the free energy, enthalpy, entropy, elastic free 

energy and irreversible energy changes upon phase transformation, respectively. In order 

to rationalize the isobaric cooling heating or cyclic under constant stress experiment 

results, it is necessary to consider the thermodynamic factors which control the 

martensitic transformations. The total free energy change in equation 4.8.2.1 is 

comprised of three contributions: the change in chemical free energy which is 

, the change in strain energy  associated with the transformation induced 

elastic stresses and irreversible energy 

STΔΔH − eΔE

irrΔE  needed to propagate the transforming 

interface. The chemical energy is not expected to change because the structure and the 

order of the parent and martensite phase remain unaltered. Therefore, the change in total 

free energy can be associated with the change in elastic strain energy and the irreversible 

energy. The change in elastic strain energy can be expressed as for a tensile loading 

[126]:  

mp
eo

tmp
e ΔE/ρσεΔE →→ +−=                (4.8.2.2) 

Here σ is the applied tensile stress and εt is the transformation strain.  is 

the summation of  and   and  are transformation induced elastic 

mp
e0ΔE →

t
eΔE d

eΔE . t
eΔE d

eΔE
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strain energy and elastic strain energy associated with the local stress field at defects. 

p→m represents the parent to martensite transformation. 

For a single stage martensitic transformation the transformation temperatures of 

parent to martensite and the back transformations can be expressed as [126]:  

S)/ΔΔEE(ΔTT mp
irr

mp
e0mp

→→
→ ++=               (4.8.2.3) 

S)/ΔΔEE(ΔTT mp
irr

mp
e0pm

→→
→ −+=              (4.8.2.4) 

Substituting equation 4.8.2.2 in 4.8.2.3 gives: 

mp
irr

t
0mp

mp
e0 EΔ/ρσεS)ΔT(TΔE →

→
→ −+−=    …….(4.8.2.5) 

The irreversible energy which depends on the thermal hysteresis of the 

transformation can be determined using equations 4.8.2.2, 4.8.2.3 and 4.8.2.4 as [126]:  

)/2T(TSΔΔE pmmp
mp

irr →→
→ −=               (4.8.2.6) 

ΔS can be evaluated from the stress dependence of the transformation 

temperature via Clausius-Clapeyron equation obtained by differentiating equations 

4.8.2.3 or 4.8.2.4. 

)ρ/ε/dT)/(σ(dSΔ t−=                 (4.8.2.7) 

The changes in the elastic and the irreversible energies under zero stress and 

150MPa are calculated for hot rolled Ni49.7Ti50.3 and the Ni49.7Ti50.3 samples ECAE 

processed at 425°C and 400°C and tabulated in Table 4.3. The density of Ni49.7Ti50.3 

which is represented as ρ in equation 4.8.2.7 is 6.5g/mm-3. T0 which is the equilibrium 

temperature is calculated from the equation in 4.8.2.8 as 100°C for the hot rolled case 

and should be unaltered after ECAE and applied stress because T0 is only composition 

dependent. 

2
AMT fs

0
+

=                 (4.8.2.8) 
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Table 4.3 The changes in the elastic and irreversible energies under no stress and 

150MPa for the Ni49.7Ti50.3 samples hot rolled and ECAE processed at 425°C and 400°C. 

Material mp
e0ΔE →  

(no stress) 

(J/g) 

mp
irrΔE →  

(no stress) 

(J/g) 

mp
e0ΔE →  

(150MPa) 

(J/g) 

mp
irrΔE →  

(150MPa) 

(J/g) 

Hot Rolled 0.87 0.4 1.41 1.47 

ECAE 4Bc at 425°C 1.94 0.85 1.82 0.85 

ECAE 4Bc at 400°C 2.70 1.06 2.49 0.84 

 

From Table 4.1, Ms temperature decreases after ECAE process due to the 

increase in irreversible and elastic energy according to equation 4.8.2.3. This increase in 

irreversible energy can be attributed to the increase in strength levels via grain 

refinement and dislocation density. In such a microstructure multiple phase fronts should 

be nucleated and propagated which would require more energy (i.e., reduction in the 

transformation temperature) and more energy dissipation due to both difficulty of 

propagation of and interaction between multiple phase fronts, but especially due to the 

later. Grain boundaries and high dislocation density act as barriers to the transforming 

interfaces and require the nucleation of new phase fronts. Therefore, under no stress, the 

transformation temperatures decrease while the thermal hystereses increase after ECAE 

process for four passes. However, note that the increase in thermal hysteresis and the 

decrease in transformation temperature are only under no stress condition. The thermal 

hystereses of samples ECAE processed for four passes start to decrease with the increase 

in applied stress as shown in Figure 4.18 which can be attributed to the decrease in 

irreversible energy as represented in Table 4.3. The decrease in irreversible energy and 

the increase in elastic energy are due to the improved compatibility of the transforming 

interface between the austenite and martensite phases. In ECAE processed samples 

under no stress, there is a mixture of single variant martensite and self accommodating 

martensite variants which leads to some dissipation by local plasticity due to variant-

variant interaction. The variant-variant interaction becomes less since the volume 
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fraction of single variant martensite increases which leads to less dissipation thus smaller 

thermal hysteresis [128]. In hot rolled sample, the increase in thermal hysteresis with the 

increase in applied stress originates from the partial accommodation of martensitic 

transformation with dislocations instead of twins. When the stress level increases 

dislocation formation becomes easy and thermal hysteresis increases. 

One important indication of the improvement in cyclic stability is to compare the 

variation in thermal hystereses of ECAE processed and hot rolled samples under 50MPa 

and 150MPa. It is clearly seen in Figures 4.14 and 4.15, thermal hysteresis of ECAE 

processed samples during 10 cycles are very stable due to the less defect generation with 

cycles in ECAE processed samples.  

Another observation from the DSC experiments and isobaric cooling-heating 

experiments is the decrease in transformation temperature interval (i.e. Ms-Mf) and 

increase in the thermal hysteresis in the samples ECAE processed for four passes. The 

transformation temperature interval elucidates the stored elastic energy during the phase 

transformation. When the stored elastic energy is high the slope of the cooling curve in 

isobaric cooling-heating experiment is shallow (i.e. Ms-Mf is high) whereas when the 

stored elastic energy is low the slope of the cooling curve is steep (i.e. Ms-Mf is low). 

Thus, the stored elastic energy during the phase transformation in the samples ECAE 

processed for four times is low, while the samples ECAE processed for one pass shows 

higher stored elastic energy during phase transformation. One of the reasons of 

observing low stored elastic energy is the dissipation of stored elastic energy during 

phase front motion. Increasing energy dissipation leads to higher thermal hysteresis. 

Thus, if the stored elastic strain energy is higher, the heating necessary to initiate reverse 

transformation is lower and thermal hysteresis will be lower as in the sample ECAE 

processed for one pass at 300°C. Therefore, there is an inverse relationship between the 

thermal hysteresis and the transformation temperature interval. The increase in 

dissipation energy during phase front motion in samples ECAE processed for four passes 

can be attributed to the grain refinement. Grain boundaries act as barriers to the 

transforming interfaces which require more energy. On the other hand, formation of 
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refined microstructure due to very fine deformation twins in the sample ECAE processed 

for one pass may help suppressing energy dissipation. Deformation twins in austenite or 

compound twins in martensite are shown to transform into twin boundaries in martensite 

or vice versa [20, 129]. Therefore, these twin boundaries in the sample ECAE processed 

at 300°C do not affect the elastic energy storage and the energy required for the phase 

transformation as much as a grain boundary or dislocation cell walls do.  

 

4.8.3 Effect of ECAE on Monotonic Response under Tension 

The increase in yield strength of martensite ( ) and the increase in the stress 

differential between yield strength and critical stress to induce martensitic 

transformation ( ) after ECAE process can be attributed to the microstructural 

refinement (grain refinement and deformation induced twinning refinement) and 

hardening due to high dislocation density. , , and 

yσ

SIMy σσ −

yσ SIMσ SIMy σσ −  levels of all 

samples determined from Figure 4.9 are tabulated in Table 4.4.1. 

There is a decrease in the critical stress to induce martensitic transformation in 

the samples ECAE processed for four passes and an increase in that of the sample ECAE 

processed at 300°C for one pass. The critical stress to induce martensitic transformation 

levels measured from the isothermal monotonic experiments are in good agreement with 

the critical stress levels found in Region II of stress vs. temperature curves in Figure 

4.13.b.  

There are few possible mechanisms responsible for the reduction in  after 

ECAE for four passes as compared to that of hot rolled sample. These include: 1) small 

internal local stresses which may exist in the ECAE processed samples and help 

externally applied stress in triggering martensitic transformation; 2) R-phase 

transformation prior to martensitic transformation making martensitic transformation 

relatively easier via reducing the direct incompatibility between martensite and austenite, 

and the need for an accommodation mechanism which would increase the stress level 

required to continue transformation; 3) more significant elastic modulus mismatch 

SIMσ

 



 91

between austenite and martensite near Ms due to lattice softening in austenite near Ms 

leading to more severe incompatibility and thus, more dissipation, and higher stress 

levels for the continuation of transformation in the hot rolled case; and 4) the change in 

martensite twinning mode with the grain size in the ECAE processed samples and the 

lower nucleation strain energy and interfacial energy needs of compound twins as 

compared to Type I and Type II transformation twins. On the other hand, the sample, 

ECAE processed for one pass at 300°C does not show a similar reduction in  

because, firstly, of the absence of R-phase transformation prior to martensite. Secondly, 

due probably to significant difference between 1A 300°C sample and other four pass 

ECAE processed samples, the internal local stress may oppose the externally applied 

tension. And finally, the martensite twin type might be different than  compound 

twins in the 1A 300°C sample, even though the microstructure of martensite in this 

sample was not studied. Note that the aforementioned possibilities can also shed some 

light onto the differences between the critical stress vs. critical temperature responses of 

the ECAE processed samples and the hot rolled sample at low stress ranges as shown in 

Figure 4.13.b and this will be elaborated on the following section. 

)001(

SIMσ

)001(

 

4.8.4 Effect of ECAE on Cyclic Stability and Critical Stress vs. Critical 

Temperature Behavior 

In this section the variation in the transformation and irrecoverable strain levels 

of ECAE processed and hot rolled samples in the isobaric cooling/heating experiments 

and thermal cyclic experiments under 50MPa and 150MPa, and mechanisms responsible 

for the improvement in the cyclic stability after ECAE will be introduced. Peculiarities 

in the critical stress vs. critical temperature response of the ECAE processed and hot 

rolled samples part of which can be expressed using Clausius-Clapeyron equation will 

be scrutinized in detail. 

The consequence of observing notably lower transformation strain levels in 

ECAE processed samples than that of the hot rolled sample under 50MPa and 150MPa is 

the increase in slope of the critical stress vs. critical temperature curves of ECAE 
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processed samples in Region II shown in Figure 4.13.b. According to Clausius-

Clapeyron equation introduced in section 4.6, transformation strain is inversely 

proportional to the slope of the curve in Region II. There are few possible reasons for the 

decrease in the transformation strain and increase in slope after ECAE.  

First of all, it is observed that, in the very fine and nano grains, only R-phase 

exists. R-phase to martensite transformation leads to observe less transformation strain 

than that of B2 to martensite transformation. Secondly, due to very fine and nano grains, 

and considering the large elastic mismatch across the grain boundaries of the nanograins, 

it is likely to have regions near grain boundaries which are untransformed or with self 

accommodated martensite morphology limiting the overall transformation strain. 

In the isobaric thermal cyclic experiment, the transformation of the hot rolled 

sample under 150MPa is 6.1% and the slope of the critical stress vs. critical temperature 

in Region II is 7.5MPa/°C. Using the equation 4.6.1, 
0T

ΔH  is calculated as 

45.75 . Assuming that ECAE has no effect on equilibrium temperature T0, the 

transformation strain of the sample ECAE processed at 400°C can be calculated as 4.8% 

by using the slope 9.4MPa/°C from Figure 4.13.b and 

CJ/cm3°

0T
ΔH  45.75 . This 

calculated transformation strain is higher than the measured strain (i.e. 3.5%) in both 

isobaric cooling/heating experiment and thermal cyclic experiment under 150MPa. This 

indicates that ΔH should be smaller. Thus, clearly, there should be some untransformed 

regions in the ECAE processed samples. 

CJ/cm3°

The last reason of observing lower transformation strains in ECAE processed 

samples can be crystallographic texture in the ECAE processed samples substantially 

different than that of the hot rolled sample. However, since the ECAE temperatures are 

high, significant texture evolution would not be expected. In addition, the texture 

formation after four passes of ECAE in several BCC and FCC materials is shown to be 

not as strong as in the case of what is usually observed after conventional cold working 

techniques. Therefore, it is believed that crystallographic texture cannot have a first 
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order effect in the transformation levels in the present cases. Note that texture 

measurements are challenging due to the need to measure austenite texture and thus in-

situ heating requirement. 

In Figure 4.13.b, extrapolating  curve of the hot rolled sample gives the 

temperature 56°C which is 16°C below the Ms temperature of the hot rolled sample 

measured using DSC. Similarly, the Ms temperatures under 50MPa and 100MPa 

determined from the isobaric cooling/heating experiments are found to be the same as 

the . On the other hand, extrapolating  curves of the ECAE processed 

samples gives approximately the same Ms temperatures measured using DSC. This 

peculiarity between the hot rolled and ECAE processed samples are in accordance with 

the reduction of the  levels in the ECAE processed samples as discussed in section 

4.8.3, and the similar microstructural factors are thought to be responsible for this 

observation. The increase in elastic mismatch between austenite and martensite near Ms 

due to austenite softening and inelastic accommodation of this mismatch in the hot rolled 

sample lead to the need for higher supercooling or higher stress levels for triggering 

martensite nucleis to grow in the hot rolled case. This causes austenite to transform into 

martensite at a lower temperature under a given stress or at a higher stress level under a 

constant temperature. Similarly, a possible internal local stress, the presence of R-phase, 

likelihood of more elastic accommodation due to grain size hardening, and transition in 

the martensite twin type to a lower strain and interfacial energy compound twins make 

the ECAE processed samples to phase transform earlier and follow the well-known 

Clausius-Clapeyron equation down to very low stress levels. 

SIMσ

0σ
sM =

SIMσ

SIMσ

In the isobaric thermal cyclic experiments the transformation strains of the ECAE 

processed and hot rolled samples increase as the level of externally applied stress 

increase as shown in Figure 4.12. In SMAs, the externally applied stress favors certain 

variants over the others upon phase transformation [130]. This helps the formation of the 

martensitic variant with the most favorable orientation (single variant martensite 

morphology) instead of self accommodation morphology, and thus leads to external 

shape change. Transformation strain levels depend on the material’s ability to form 
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single variant martensite morphology as opposed to self accommodating transformation 

structure [13]. The transformation strain level observed in ECAE processed and hot 

rolled samples is a function of externally applied stress. Note that, the transformation 

strain level of the hot rolled sample increases continuously due to the fact plastic 

deformation is induced at higher stress levels. The irrecoverable strain level of the hot 

rolled sample increases as the externally applied stress increases whereas the increase in 

the irrecoverable strain levels of ECAE processed samples is very low as shown in 

Figure 4.12. This could be attributed to the increase in critical shear stress for slip in 

ECAE processed sample due to microstructural refinement and increase in dislocation 

density.   

The irrecoverable strain levels of ECAE processed samples in thermal cyclic 

experiments under 150MPa are considerably lower than that of hot rolled sample as 

shown in Figure 4.17 due to the same reason mentioned above (increase in CSS for slip 

after ECAE). Although the irrecoverable strain level of the hot rolled sample decreases 

with the number of cycle and stabilizes after 7th cycle, the irrecoverable strain level is 

still significant under 150MPa as shown in Figure 4.17. In four pass ECAE processed 

samples the irrecoverable strain levels diminish to be zero after 4th, 5th and 8th cycles of 

the samples ECAE processed at 400°C, 425°C and 450°C, respectively. Thermal cycling 

under constant stress causes a training effect due probably to defect generation, such as 

dislocations, at the phase front and/or the rearrangement of existing dislocations in both 

the hot rolled and ECAE processed samples. Note that, no irrecoverable strain is 

observed under 150MPa in the sample ECAE processed at 300°C. 
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CHAPTER V 

SHAPE MEMORY BEHAVIOR OF THERMO-MECHANICALLY 

PROCESSED TiNiPd HIGH TEMPERATURE SHAPE MEMORY 

ALLOYS 

 

 
5.1 Preamble 

The transformation temperatures of NiTi alloys can be increased with the 

addition of Pd, however, Cai et al. [37] reported that the shape memory behavior of 

TiNiPd alloys is poor, especially at high temperatures due to the decrease in critical 

shear stress for dislocation slip. The other problem in TiNiPd high temperature shape 

memory alloys (HTSMAs) is the deterioration of fracture toughness due to the formation 

of detrimental precipitates/inclusions. In this chapter, few methods of engineering 

microstructure including the grain refinement and precipitate fragmentation using ECAE 

are studied. The thermo-mechanical response of the materials processed via ECAE 

including transformation strain, irrecoverable strain levels, transformation temperature, 

thermal hysteresis, enhanced cyclic reversibility and fracture strength are presented and 

the ramifications of the microstructural evolution on these properties are discussed. 

ECAE processing schedules conducted on the Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 

alloys are recalled for refreshing as: As-cast Ti50Ni30Pd20 is solutionized at 1000° for one 

hour and ECAE processed at 600°C and 400°C for four passes using route C and at 

500°C for two passes using route C. Ti50.3Ni33.7Pd16 alloy was received in hot-rolled 

condition. Hot-rolled Ti50.3Ni33.7Pd16 alloy was ECAE processed at 450°C for four passes 

using route Bc and at 400°C for two passes using route B. 

 

5.2 Differential Scanning Calorimetry (DSC) Experiments 

Figures 5.1 and 5.2 show the DSC response of the solutionized and ECAE 

processed Ti50Ni30Pd20 samples and hot rolled and ECAE processed Ti50.3Ni33.7Pd16 
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samples, respectively, during five thermal cycles. The transformation temperatures of all 

samples are highly stable during cycling. Comparing these figures with Figure 4.2 

clearly demonstrates the impact of ternary Pd addition on cyclic stability of 

transformation temperatures. In addition, it can be deduced from Figures 5.1 and 5.2 that 

ECAE processing does not notably influence the cyclic stability of transformation 

temperatures of the TiNiPd alloys under no load.  

To compare cyclic stability of the transformation temperatures of all TiNiPd 

samples, Ms temperatures are presented with respect to the number of cycle in Figure 

5.3. As expected [30, 31], the transformation temperatures increase as the Pd content 

increases and the transformation temperatures decrease after ECAE. One intriguing 

finding is the effect of number of passes on the transformation temperatures of 

Ti50.3Ni33.7Pd16 alloy. The decrease in transformation temperatures of Ti50.3Ni33.7Pd16 

sample ECAE processed at 450°C and at 400°C is almost the same since the sample 

ECAE processed at 450°C is processed for four passes.  

The transformation thermal hysteresis ( ** MA − ) of all TiNiPd samples are 

presented in Figure 5.4. The thermal hysteresis decreases as the Pd content increases in 

the unprocessed samples. Note that, unprocessed sample means that ECAE processing is 

not conducted on the sample. After ECAE the thermal hysteresis increases and as the 

ECAE temperature decreases the increase in thermal hysteresis is higher.  

The main observations from the transformation temperature measurements of 

TiNiPd alloys can be summarized as: 1) transformation temperatures are very stable 

before and after ECAE process, 2) transformation temperatures increase as the Pd 

content increases, 3) they decrease further with ECAE process, 3) thermal hysteresis 

decreases as the Pd content increases, 4) it increases as the ECAE temperature decreases, 

5) the effect of number of ECAE passes is similar to the effect of ECAE temperature on 

the transformation temperatures.  
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(b) 

Figure 5.1 Cyclic DSC response of the solutionized and ECAE processed Ti50Ni30Pd20 

demonstrating the effect of ECAE processing and ECAE temperatures on the 

transformation temperatures, (a) solutionized, (b) ECAE 4C at 600°C, (c) ECAE 2C at 

500°C, (d) ECAE 4C at 400°C. 
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Figure 5.1 Continued 
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(b) 

Figure 5.2 Cyclic DSC response of the hot-rolled and ECAE processed Ti50.3Ni33.7Pd16. 

demonstrating the effect of ECAE processing and ECAE temperatures on the 

transformation temperatures, (a) Hot-rolled, (b) ECAE 4Bc at 450°C, (c) ECAE 2B at 

400°C. 
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Figure 5.2 Continued 

160

155

150

145

140

135

130

125

120

115

110

105

100

M
s T

em
pe

ra
tu

re
 (º

C
)

54321

Number of Thermal Cycles

Ti50Ni30Pd20  Solutionized
 ECAE 4C at 600ºC
 ECAE 2C at 500ºC
 ECAE 4C at 400ºC

 
(a) 

Figure 5.3 Ms temperatures of all TiNiPd samples extracted from the DSC data showing 

the effect of ECAE processing, ECAE temperature and Pd content (a) Ti50Ni30Pd20, (b) 

Ti50.3Ni33.7Pd16. 
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Figure 5.3 Continued 
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(a) 

Figure 5.4 Hysteresis of all TiNiPd samples extracted from the DSC data showing the 

effect of ECAE processing, ECAE temperature and Pd content (a) Ti50Ni30Pd20, (b) 

Ti50.3Ni33.7Pd16. 
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Figure 5.4 Continued 

 

5.3 Microstructural Evolution 

Figure 5.5 shows the optical microscopy image of the solutionized Ti50Ni30Pd20 

alloy demonstrating the average grain size of about 50μm. Figure 5.6 shows the bright 

field TEM images of the sample ECAE processed at 400°C taken at 200°C (above the Af 

temperature) illustrating the grain size reduction after ECAE processing the sample at 

400°C for four passes following route C. The grains are elongated as seen in Figure 5.6. 

The length and width of the grains are 0.5-1μm and 0.2-0.4μm on the average, 

respectively.  
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Figure 5.5 Optical micrograph of the solutionized Ti50Ni30Pd20 alloy demonstrating the 

microstructure. Dotted lines are included to distinguish some of the grains and grain size. 

Figure 5.6 Bright field TEM images taken above Af at 200°C showing the grain size 

reduction in Ti50Ni30Pd20 due to ECAE processing for four passes following route C at 

400°C.  

0.5μm 

0.5μm 
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Selected area diffraction (SAD) patterns were also recorded to analyze the 

existing phases in the solutionized and ECAE processed Ti50Ni30Pd20 samples. Figure 

5.7 shows TEM bright field image taken at room temperature from the solutionized 

Ti50Ni30Pd20 sample and the corresponding selected area diffraction pattern (SAD) from 

the indicated area which demonstrates B19 martensite phase and  Type I twin.  

Figure 5.8 shows the bright field TEM image taken at room temperature from 

Ti50Ni30Pd20 sample which is ECAE processed at 400° and the corresponding diffraction 

patterns recorded from the indicated areas in the bright field image. The SAD patterns in 

Figure 5.8.b and 5.8.c demonstrate <011>Type II and [110] Type I twins, respectively. 

Although the grain size of Ti50Ni30Pd20 after ECAE process decreases the size of the 

martensite twins does not change. Figure 5.9 represents the bright field TEM image of 

Ti50Ni30Pd20 sample ECAE processed at 400°C and confirms the dislocation density 

increase after ECAE process. 

]110[

000

110M

110T

101M,T

000

110M

110T

101M,T

 
0.2μm 

[110]B19,T

Figure 5.7 Bright field TEM image from the solutionized Ti50Ni30Pd20 sample taken at 

room temperature in martensite and the corresponding diffraction pattern showing the 

martensite and [110] Type I twin. 
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Figure 5.8 Room temperature bright field TEM image of Ti50Ni30Pd20 sample ECAE 

processed at 400°C and the corresponding diffraction pattern showing the martensite b) 

<011> Type II and c) [110] Type I twins. 
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0.5µm 
 

Figure 5.9 Room temperature bright field TEM image of Ti50Ni30Pd20 sample ECAE 

processed at 400°C showing the high dislocation density. 

 

5.4 Monotonic Response under Tension 

To analyze the effect of severe plastic deformation on the critical stress level to 

induce martensite, , and the yield stress of stress induced martensite,  levels, 

tension tests were conducted until failure on all the Ti50.3Ni33.7Pd16 samples which are 

under investigation in this research. The test temperatures were chosen to be the same as 

in the equiatomic NiTi failure experiments which is 15°C above the Ms of each sample 

under 50MPa. Figure 5.10 illustrates the stress vs. inelastic strain response of the 

Ti50.3Ni33.7Pd16 samples. The ,  and the stress differential (i.e. ) 

are tabulated in Table 5.1. σ  and the stress differential increase after ECAE. The 
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change in , on the other hand, is not significant. SIMσ
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Figure 5.10 Monotonic tensile response of the hot rolled and ECAE processed 

Ti50.3Ni33.7Pd16 samples.  

 

Table 5.1 Critical stresses for the onset of phase transformation and plastic yielding and 

the stress differential of the Ti50.3Ni33.7Pd16 samples determined from the monotonic 

experiments under tension.  

Materials 
SIMσ  

(MPa) 

σM
y  

(MPa) 

SIM
M
y σσ −  

(MPa) 

Ti50.3Ni33.7Pd16-Hot Rolled 240 660 420 

Ti50.3Ni33.7Pd16-ECAE 4BC at 450°C 260 1130 870 

Ti50.3Ni33.7Pd16-ECAE 2B at 400°C 270 1130 860 
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5.5 Isobaric Thermal Cyclic Experiments 

Isobaric thermal cyclic experiments were performed, incrementally increasing 

the applied stress after each thermal cycle, using the same specimens throughout the 

experiment. The transformation and irrecoverable strain levels were determined using 

the same procedure described in section 4.5. 

Figures 5.11 and 5.12 show the strain vs. temperature response of the 

Ti50Ni30Pd20 samples and the Ti50.3Ni33.7Pd16 samples, respectively, before and after 

ECAE. Figures 5.13.a and 5.13.b represent the transformation and irrecoverable strain 

levels as a function of applied stress determined from the isobaric heating-cooling 

experiments of all Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 samples.  

One of the most significant observations from these experiments is that there is a 

significant increase in the level of stress at which fracture occurs in the Ti50Ni30Pd20 

samples as the ECAE temperature decreases. The solutionized Ti50Ni30Pd20 sample 

failed under 250MPa and the hot rolled Ti50.3Ni33.7Pd16 sample failed under 300MPa, 

while Ti50Ni30Pd20 sample ECAE processed at 400°C failed under 400MPa all during the 

transformation from austenite to martensite. Ti50.3Ni33.7Pd16 sample ECAE processed at 

400°C did not fail even at 400MPa. This was attributed to the positive effect of hot 

rolling prior to ECAE as it will be discussed in the following section. Clearly, ECAE 

affects considerably the fracture stress level of the TiNiPd alloys in this study. The 

mechanisms responsible for such improvement will be discussed later. 
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(b) 

Figure 5.11 Strain vs. temperature response of the Ti50Ni30Pd20 alloy under various 

constant stress levels: (a) solutionized, (b) ECAE 4C at 600°C, (c) ECAE 2C at 500°C, 

(d) ECAE 4C at 400°C. 
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Figure 5.11 Continued 
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(b) 

Figure 5.12 Strain vs. temperature response of the Ti50.3Ni33.7Pd16 alloy under various 

constant stress levels: (a) hot rolled, (b) ECAE 4Bc at 450°C, (c) ECAE 2B at 400°C. 
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Figure 5.12 Continued 
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(a) 

Figure 5.13 Transformation and irrecoverable strain response as a function of constant 

tensile stress levels in the (a) Ti50Ni30Pd20, (b) Ti50.3Ni33.7Pd16 samples during isobaric 

thermal cyclic experiments.  
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(b) 

Figure 5.13 Continued 

 

The irrecoverable and transformation strain levels were extracted from the 

isobaric cooling-heating experiments using the same procedure defined in section 4.5 

and in Figure 4.10. Figure 5.13.a and 5.13.b represent the transformation and 

irrecoverable strain levels as a function of applied stress level determined from the 

isobaric cooling-heating experiments conducted on Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 

samples, respectively. In Figure 5.13, the irrecoverable strain levels of the solutionized 

Ti50Ni30Pd20 sample are lower than that of the Ti50.3Ni33.7Pd16 hot rolled sample. One can 

observe a detectable irrecoverable strain only above 250MPa for the Ti50Ni30Pd20 and 

Ti50.3Ni33.7Pd16 samples extruded at 400°C. As the extrusion temperature decreases, the 

irrecoverable strain level of Ti50Ni30Pd20 samples also decreases. The effect of number of 

passes on the irrecoverable strain can be monitored in the results of Ti50.3Ni33.7Pd16 

samples which are shown in Figure 5.13.b. The irrecoverable strain levels of the 

Ti50.3Ni33.7Pd16 sample ECAE processed at 400°C do not exceed 0.3% under 400MPa. 

The irrecoverable strain levels of Ti50.3Ni33.7Pd16 sample which is ECAE processed at 

450°C for four passes are lower than that of Ti50.3Ni33.7Pd16 sample which is processed at 
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400°C for two passes and are almost negligible at all stress levels below 400MPa.  

The transformation strain level of the solutionized Ti50Ni30Pd20 increases from 

0.5% to 4% up to 200MPa at which the sample failed during cooling. The ECAE 

processed Ti50Ni30Pd20 samples show higher transformation strain levels under 50MPa 

and 100MPa. Since the solutionized sample failed at 250MPa, it is not possible to 

compare the transformation strain levels after this point. However, the trend is the 

stabilization of the transformation strain levels of ECAE processed samples at 3.5% 

above 200MPa. On the other hand, the transformation strain level of solutionized sample 

keeps increasing drastically. The trend in the ECAE processed Ti50.3Ni33.7Pd16 samples is 

the same for the ECAE processed Ti50Ni30Pd20 samples. The difference in the 

transformation strain levels of Ti50.3Ni33.7Pd16 and Ti50Ni30Pd20 samples is that the 

transformation strain levels of ECAE processed Ti50Ni30Pd20 samples are higher than 

that of the solutionized sample under 50MPa and 100MPa while the transformation 

strain levels of ECAE processed Ti50.3Ni33.7Pd16 samples and hot rolled sample are 

almost same under 50MPa and are lower than that of the hot rolled sample under 

100MPa and higher stress levels. 

 The main observations from Figures 5.13 can be summarized as: 1) fracture 

stress level of the samples increases as the ECAE temperature decreases, 2) 

irrecoverable strain levels of the ECAE processed samples are lower than the 

unprocessed samples, 3) the effect of the number of ECAE passes on the irrecoverable 

strain levels is similar to the effect of ECAE temperature i.e. the lower the ECAE 

temperature and the higher the number of ECAE passes is, the lower the irrecoverable 

strain level gets, 4) the transformation strain levels of the ECAE processed Ti50Ni30Pd20 

samples are higher than that of the solutionized sample at low stress levels and lower at 

high stress levels, and 5) the transformation strain levels of ECAE processed samples 

stabilize at 3.5% for Ti50Ni30Pd20 alloy 3.0% for Ti50.3Ni33.7Pd16 alloy above 200MPa. 

The fracture stress levels are marked for each case except the Ti50.3Ni33.7Pd16 

sample ECAE processed at 400°C for two passes which did not fail even under 400MPa 

in Figure 5.13. All the samples were failed during cooling at the particular stress level, 
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i.e. during austenite to martensite transformation. 

Figure 5.14 demonstrates the temperature and stress phase diagram for the onset 

of martensitic transformation for all Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 samples determined 

from the isobaric heating–cooling experiments. For the sake of completeness, Ms 

temperatures from the DSC experiments in Figure 5.3 are also included. Clearly, a linear 

relationship between stress and temperature can be observed in this figure for all 

samples, as expected from the Clausius-Clapeyron (CsCl) relationship for thermoelastic 

martensitic transformations. The CsCl slopes which can also be represented as 
dT
dσ  for 

each sample are tabulated in Table 5.2. The CsCl slopes of the Ti50Ni30Pd20 alloy 

decrease after ECAE and the slopes of the Ti50.3Ni33.7Pd16 alloy slightly increase after 

ECAE. 

It was observed from Figure 5.14 that there is a mismatch between the  

from DSC experiment and M  from the extrapolation of CsCl curves in all 

Ti50Ni30Pd20 samples. The mismatch gets smaller in Ti50.3Ni33.7Pd16 samples. In hot 

rolled Ti50.3Ni33.7Pd16 sample  from DSC experiment is similar to  from the 

extrapolation of CsCl curves. Another observation is the decrease in Ms temperature 

under applied stress with the decrease in ECAE temperature in Ti50Ni30Pd20 samples. On 

the other hand, in Ti50.3Ni33.7Pd16 samples, the effect of number of ECAE passes on Ms 

temperatures is more significant than the effect of ECAE temperature. The implications 

of these results and the possible rationale for such observations will be discussed in 

section 5.8. 
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(b) 

Figure 5.14 Critical stress versus Ms temperatures of (a) Ti50Ni30Pd20 and (b) 

Ti50.3Ni33.7Pd16 samples before and after ECAE determined from the isobaric heating-

cooling shown in Figure 5.13. For the sake of the completeness the Ms temperatures 

from the DSC experiments (Figure 5.3) are also included in the figure. 
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Table 5.2 The slopes of the critical stress vs. temperature curves (
dT
dσ ) shown in Figure 

5.14. 

Material 
dT
dσ  

(MPa/°C) 

Ti50Ni30Pd20-Solutionized 13.5 

Ti50Ni30Pd20-ECAE 4C at 600°C 8.1 

Ti50Ni30Pd20-ECAE 2C at 500°C 7.7 

Ti50Ni30Pd20-ECAE 4C at 400°C 6.8 

Ti50.3Ni33.7Pd16-Hot Rolled 7.2 

Ti50.3Ni33.7Pd16-ECAE 4Bc at 450°C 8.1 

Ti50.3Ni33.7Pd16-ECAE 2B at 400°C 7.6 

 

Thermal hystresis were extracted from the isobaric cooling-heating experiments 

using the same procedure defined in section 4.5 and in Figure 4.10. Figure 5.15.a and 

5.15.b represent the thermal hysteresis as a function of applied stress level determined 

from the isobaric cooling-heating experiments conducted on Ti50Ni30Pd20 and 

Ti50.3Ni33.7Pd16 samples, respectively. Thermal hysteresis increase after ECAE 

Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 samples and increase further with the increase in 

applied stress. One intriguing observation is the lower thermal hysteresis under 50MPa 

with respect to thermal hysteresis under no load in all samples. The rationale behind this 

observation is not clear at this point.  
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(b) 

Figure 5.15 Thermal hysteresis as a function of constant tensile stress levels in the (a) 

Ti50Ni30Pd20, (b) Ti50.3Ni33.7Pd16 samples during isobaric thermal cyclic experiments. 
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5.6 Microstructural Investigation of Failure Samples 

To reveal the potential reasons for premature failure at low stress levels in 

ternary alloys during the isobaric heating-cooling experiments, the microstructure of the 

failed samples were studied using scanning electron microscope (SEM) and Electron 

Microprobe (EM).  

Figure 5.16 represents the back scattered electron SEM images taken from the 

Ti50Ni30Pd20 solutionized sample and samples ECAE processed at 600°C and 400°C. 

The images demonstrate the second phase particles in the matrix. To analyze the 

composition of the precipitates, the wave dispersion spectroscopy (WDS) and energy 

dispersion spectroscopy (EDS) analysis were conducted on the selected precipitates. It 

was found from both of the analysis that the black precipitates indicated in Figure 5.16.b 

are Ti(C,O) precipitates while the light gray precipitates are Ti2(Ni, Pd) intermetallics. 

The EDS analyses of the indicated precipitates in Figure 5.16.b are represented in Figure 

5.17. The carbon and oxygen elements in Ti(C, O) particles are also analyzed using 

WDS since WDS analysis allows a more spectral resolution and more sensitivity on low 

atomic number elements than EDS analysis does and this analysis is shown in Figure 

5.17.b. The images in Figure 5.16 show the notable decrease in precipitate size and 

volume after ECAE at 400°C and the second phase particles are more homogeneously 

distributed in ECAE processed at 400°C sample than that of in solutionized sample. The 

average size and volume percent of the precipitates before and after ECAE is tabulated 

in Table 5.3.  
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   (c) 

Figure 5.16 Back scattered electron SEM images showing the precipitate size and 

distribution within the matrix of Ti50Ni30Pd20 samples (a) solutionized, (b) ECAE 

processed at 600°C and (c) ECAE processed at 400°C. 
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(a)      (b) 

 

 

 

 

 

 

 

 

 

 

   (c) 

Figure 5.17 EDS and WDS analyses of the second phase particles in the matrix of 

Ti50Ni30Pd20 samples for (a) dark particles Ti(C, O) in Figure 5.16 and (b) light gray 

particles Ti2(Ni, Pd) in Figure 5.16 (c) WDS analysis showing the carbon and oxygen in 

dark particles Ti(C, O).  

 

Figure 5.18 represents secondary electron SEM image of the solutionized 

Ti50Ni30Pd20 sample. The image shows that there are pores in the matrix which might be 

responsible for the premature failures in the isobaric cooling-heating experiments. The 

length of the pore shown in Figure 5.18 is around 100μm. No pores were observed in the 
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Ti50Ni30Pd20 sample ECAE processed at 400°C. 

 

 
Figure 5.18 Secondary electron SEM image of solutionized Ti50Ni30Pd20 sample 

showing one of the porosity in the matrix. 

 

Table 5.3 The average size of the precipitates in Ti50Ni30Pd20 samples before and after 

ECAE. 

Materials Average 

Size(μm)

Volume 

(%) 

Solutionized 2.3±1 2.1±0.1 
ECAE 4C at 400°C 1.2±0.4 1.6±0.1 

 

It was shown that high strains induced in ECAE not only lead to the grain 

refinement but also affect the size and the distribution of the second phase/precipitates 

contained within the matrix. The precipitates either fragment into smaller parts or 

dissolve in the matrix since both the average size and volume percent of the precipitates 

decrease notably after ECAE. Ti2(Ni, Pd) precipitates are probably dissolved in the 

matrix since no light gray precipitates were observed in the sample ECAE processed at 

400°C as shown in Figure 5.16.c. This observation is not uncommon for ECAE. 
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Langdon et al. showed that ECAE leads to the formation of ultrafine grain size with 

finely dispersed precipitates in AlZnMg alloys [131]. In addition, ECAE affects the 

porosity content of the Ti50Ni30Pd20 samples. 

 

5.7 Thermal Cyclic Experiments under Constant Stress 

As shown in section 5.5, none of the ECAE processed Ti50Ni30Pd20 samples 

demonstrate irrecoverable strain at and below 150MPa. Although the solutionized 

Ti50Ni30Pd20 sample failed at 250MPa in isobaric heating-cooling experiments, it failed 

at the second cycle under 150MPa in the thermal cyclic experiments. Figures 5.19 and 

5.20 represent the strain-temperature response of the ECAE processed Ti50Ni30Pd20 

samples under 150MPa and 250MPa for ten cycles, respectively. The main purpose to 

conduct cyclic tests was to evaluate the transformation and the irrecoverable strain levels 

as a function of the number of cycles. The samples ECAE processed at 600°C and 500°C 

show no irrecoverable strain under 150MPa, therefore, the sample ECAE processed at 

400°C was not thermally cycled under 150MPa.The transformation and irrecoverable 

strain levels for ten cycles determined from these thermal cyclic experiments are 

presented in Figure 5.21. Under 250MPa, the samples ECAE processed at 500°C and 

400°C show no detectable irrecoverable strain after the first cycle. The transformation 

strain levels of the samples ECAE processed at 600°C and 500°C under 150MPa are 

stable around 3%. Under 250MPa, the transformation strain levels of samples ECAE 

processed at 500°C and 400°C are again stable and about 3.2%. 
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Figure 5.19 Strain vs. temperature response of the ECAE processed Ti50Ni30Pd20 alloy 

under 150MPa (a) ECAE 4C at 600°C, (b) ECAE 2C at 500°C. 
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Figure 5.20 Strain vs. temperature response of the ECAE processed Ti50Ni30Pd20 alloy 

under 250MPa (a) ECAE 2C at 500°C, (b) ECAE 4C at 400°C. 
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(b) 

Figure 5.21 Transformation and irrecoverable strain evolution during thermal cyclic 

experiments in the ECAE processed Ti50Ni30Pd20 samples as a function of number of 

cycles (a) ECAE 4C at 600°C and ECAE 2C at 500°C under 150MPa for 10 cycles and 

(b) ECAE 2C at 500°C and ECAE 4C at 400°C under 250MPa. 
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The thermal cyclic experiments were not conducted on Ti50.3Ni33.7Pd16 because 

the results are expected to be similar to what determined from the thermal cyclic 

experiments on Ti50 Ni30Pd20. 

The main observations from these experiments are: 1) there is no irrecoverable 

strain under 150MPa and insignificant irrecoverable strain under 250MPa; 2) the 

transformation strain levels are stable for all samples and vary between 3 to 3.5%, there 

is no significant strain evolution. 

 

5.8 Discussion of the Results 

In the present study, the main purpose is to investigate the shape memory 

characteristics of Ti50Ni30Pd20 and Ti50.7Ni33.7Pd16 alloys since only a limited number of 

studies were undertaken on TiNiPd alloys up to date [105, 112]. The experiments 

mimicking the real actuator operation (i.e. thermal cycling under load) were performed 

only by the NASA Glenn research group very recently, about the same time with the 

present work [32]. They have investigated the evolution in transformation temperatures, 

work behavior, and dimensional stability of the TiNiPd alloys with different Pd contents. 

The main differences between this study and the studies of the NASA group are the Pd 

content and in the present case the investigation of the effect of ECAE on microstructure 

and the corresponding improvement of the mechanical and shape memory behavior of 

the alloys. The present NiTiPd compositions were selected to have all transformation 

temperatures in between 100°C and 150°C for a particular target application. Thus, this 

is the first study that thoroughly investigates the shape memory and actuator 

characteristics of NiTiPd alloys. The main observations could be summarized as follows: 

 

1) The grains are elongated in the ECAE processed samples. The average 

grain size of the samples was reduced from 50μm down to 0.5 μm after ECAE. The 

length and width of the grains are 0.5-1μm and 0.2-0.4μm, respectively, for the sample 

ECAE processed at 400°C. 

2) The twin mode in martensite was found to be a mixture of typical Type I 
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and Type II twins. There is no change in the twin type and twin size after ECAE. 

3) Addition of Pd to TiNi alloy enhances the shape memory characteristics 

of NiTi alloys such as the significant decrease in thermal hysteresis and irrecoverable 

strain under constant stress levels, and transformation temperature cyclic stability under 

no load condition. 

4) ECAE led to increase the strength differential between the critical stress 

to induce martensite and the yield stress of martensite and led to a notable improvement 

in the thermal cyclic stability by further reducing the irrecoverable strain levels under 

constant stresses which can be attributed to the increase in critical stress level for 

dislocation slip due to grain size refinement and dislocation density increase via ECAE.  

5) ECAE led to decrease the size and volume fraction of the undesirable 

precipitates which is thought to be the main reason for the premature failure in the 

isobaric heating-cooling experiments. 

6) The decrease in size and volume fraction of the precipitates led to the 

increase in the stress levels at which the failure occurs during isobaric heating-cooling 

experiments. 

The possible mechanisms responsible from these observations are discussed below. 

 

5.8.1 Grain Size and Microstructural Evolution during ECAE 

The knowledge base gathered from the transmission electron microscopy study 

of equiatomic NiTi alloy showed us that the lowest ECAE processing temperature has 

the most influence on the grain size refinement. Therefore, the solutionized Ti50Ni30Pd20 

sample and the sample ECAE processed at 400°C were chosen for the transmission 

electron microscopy study to investigate the grain refinement. Figure 5.6 shows both the 

grain size refinement and elongated grain structure after the ECAE process. Langdon et 

al. [118] presented the model for grain refinement in ECAE routes A, Bc and C and 

confirmed the formation of elongated grains when using route C in ECAE processing. 

The development of new refined grains is a result of gradual increase in the 

misorientations between subgrains that is caused by the deformation at slightly high 
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temperature and with further deformation, the grain size continues to decrease and the 

amount of newly generated ultrafine grains increase.  

TEM images and diffraction patterns showed that ECAE has no real effect on 

martensite twinning mode observed in TiNiPd alloys. The diffraction patterns taken 

from the twins demonstrate the common twinning modes in TiNi based shape memory 

alloys. In the literature, none of the previous works showed one of the compound 

twinning modes in TiNiPd SMAs which are occasionally observed in NiTi binary alloys. 

Madangopal et al. stated that  plane cannot be a twinning plane in B19 martensite 

as it is a mirror plane of the orthorhombic structure [126]. Similarly, in this study, no 

traces of compound twins were detected even after ECAE, although in the binary, 

compound twins are in abundance after ECAE. ECAE parameters used in this study 

affect neither the twinning mode nor the twin size in NiTiPd. It is known that B19 

martensite exists in TiNiPd alloys, which is of higher symmetry than B19’. Therefore 

there are less variants in B19 martensite than in B19’ martensite of binary NiTi. This 

leads to difficulties in the accommodation of the transformation strain as effectively as 

that in B19’ martensite, which might be the reason why compound twinning does not 

exist. 

)001(

 

5.8.2 Effect of ECAE Processing on Martensitic Transformation Temperatures 

It is quite interesting to observe excellent thermal cyclic stability of the 

transformation temperatures in solutionized Ti50Ni30Pd20 and hot rolled Ti50.3Ni33.7Pd16 

samples without application of any thermo-mechanical treatment. Previous studies on 

equiatomic NiTi and TiNiHf alloys [9, 13] showed that thermal stability of 

transformation temperatures is improved after thermo-mechanical treatments. It is found 

that addition of Hf to NiTi alloys leads to the degradation of thermal cyclic stability due 

to the decrease in critical shear stress for slip [132]. On the contrary, the results of DSC 

experiments of TiNiPd alloys in this study showed that addition of Pd to TiNi alloys 

improves the thermal cyclic stability possibly due to increase in critical shear stress for 

slip and to the improvement in the geometrical lattice compatibility between austenite 
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and martensite upon Pd addition similar to Cu addition [133]. The rationale of the 

improvement of geometrical compatibility will be discussed extensively in Chapter VI. 

The decrease in transformation temperatures after ECAE in stress free DSC 

experiments can be explained using the same approach introduced in section 4.8.2. From 

Figure 5.3, the transformation temperatures decrease after ECAE process due to the 

increase in irreversible energy. This increase in irreversible energy can be attributed to 

the increase in strength levels via grain refinement and dislocation density. In such a 

microstructure multiple phase fronts should be nucleated and propagated which would 

require more energy (i.e., reduction in the transformation temperature) and more energy 

dissipation due to both difficulty of propagation of and interaction between multiple 

phase fronts, but especially due to the later. Grain boundaries and high dislocation 

density act as barriers to the transforming interfaces and require the nucleation of new 

phase fronts. However, note that above is only valid at stress-free conditions. Under 

applied stress, the situation is slightly different. From isobaric cooling-heating 

experiments in section 5.5, the transformation temperatures increase under the influences 

of the external stress. The increase is proportional to the applied stress according to the 

equation 4.8.2.3.  

The decrease in thermal hysteresis upon Pd addition can be explained using the 

same approach for the explanation of improved thermal cyclic stability in stress free 

DSC experiments. The geometric lattice compatibility between austenite and martensite 

is improved upon Pd addition. This improvement leads to decrease in the required 

energy for the propagation of phase front, thus the decrease in dissipation energy for the 

phase front propagation leads to a decrease in thermal hysteresis. Thermal hysteresis 

increases after ECAE due to the grain size refinement and the increase in dislocation 

density. Grain boundaries and high dislocation density act as barriers to the transforming 

interfaces and require the nucleation of new phase fronts. Thus, additional energy is 

required to overcome this energy barrier. The temperature must be raised above the 

transformation temperature on heating and lowered below on cooling. This leads to an 

increase in thermal hysteresis.  
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Thermal hysteresis extracted from isobaric cooling-heating experiments alters 

from the expected behavior. Thermal hysteresis of all samples initially decreases under 

50MPa and the increases upon increasing the external stress. The rationale behind the 

initial decrease is not clear at this point. However, the increase in thermal hysteresis with 

the increase in external stress levels is due to the increase in dislocation density under 

higher stress levels. The dislocations introduced due to thermal cycling under stress act 

as barriers to the transforming interface which leads to a further increase in the energy to 

overcome this energy barriers. Thus, thermal hysteresis increases as the external stress 

level increases. 

 

5.8.3 Effect of ECAE on Monotonic Mechanical Response under Tension 

The increase in yield strength of martensite ( ) and the increase in the stress 

differential between yield strength and critical stress to induce martensitic 

transformation ( ) of ECAE processed Ti50.3Ni33.7Pd16 samples as compared to 

the hot rolled sample in the same thermodynamic conditions can be attributed to the 

grain size refinement and the increase in dislocation density. The grain refinement and 

the increase in dislocation density after ECAE were clearly shown in the TEM 

micrographs in Figure 5.2 and Figure 5.4, respectively.  

yσ
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5.8.4 Effect of ECAE on Fracture Strength, Cyclic Stability and Critical Stress vs. 

Critical Temperature Behavior 

 

The premature failures observed in Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 samples in 

isobaric heating-cooling experiments can be attributed to the second phase particles 

observed in the matrix. Karaman et al. [20] showed that Ni4Ti3 were found to exist in Ti-

50.8at%Ni alloy after heat treatment at 450°C, but no precipitates were observed after 

ECAE processing at 450°C indication that the precipitates dissolved during the ECAE 

process or precipitates fragment into small parts such that their sizes are below the 

detection limit of TEM (<0.01μm). Langdon et al. [131] also studied the effect of ECAE 
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on precipitate size and shape and found that ECAE helps to fragment the precipitates 

into smaller parts and to dissolve the smaller ones in the matrix. From Figure and Table 

5.3, there is a notable decrease in precipitate size and volume fraction after ECAE 

processing. In addition, it is observed that ECAE leads to the elimination of the 

porosities in the matrix. Thus, the increase of the fracture strength in isobaric heating-

cooling experiments can be attributed to the decrease in the precipitate size and volume 

fraction and the elimination of the porosities after ECAE, however, whichever has the 

most influence is not clear yet.  

The stress levels at which hot rolled and ECAE processed at 450°C 

Ti50.3Ni33.7Pd16 samples failed in isobaric heating-cooling experiments are lower than the 

fracture stress levels obtained from the monotonic failure experiments. The failures in 

isobaric experiments occurred during cooling at which the austenite is transforming to 

martensite. This might be due to the fact that B19 martensite is of higher symmetry than 

B19’ martensite. Therefore, there are less variants in B19 martensite than in B19’ 

martensite of binary NiTi. This leads to difficulties in the accommodation of the 

transformation strain as effectively as that in B19’ martensite [134]. 

In the isobaric thermal cyclic experiments the transformation strains of the ECAE 

processed and hot rolled samples increase as the level of externally applied stress 

increase as shown in Figure 5.13. The externally applied stress favors certain variants 

over the others upon phase transformation [135]. This helps the formation of the 

martensitic variant with the most favorable orientation (single variant martensite 

morphology) instead of self accommodation morphology, and thus leads to external 

shape change. Note that, the transformation strain levels of ECAE processed 

Ti50Ni30Pd20 are higher than that of the solutionized sample under 50, 100 and 150MPa. 

It was also observed that Clausius-Clapeyron (CsCl) slopes of ECAE processed 

Ti50Ni30Pd20 samples are lower than that of the solutionized sample. The lower CsCl 

slopes and higher transformation strains in ECAE processed Ti50Ni30Pd20 samples can be 

a consequence of the local internal stress due to the favorable deformation structure 

formation, refinement of the grains and increased dislocation density during ECAE. The 
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local internal stress may help externally applied stress to bias the single variant 

martensite [13]. On the other hand, the transformation strain levels of ECAE processed 

Ti50.7Ni33.7Pd16 samples are lower than that of the hot rolled Ti50.7Ni33.7Pd16 sample under 

each stress level in isobaric heating-cooling experiments and CsCl slopes of ECAE 

processed Ti50.7Ni33.7Pd16 samples are higher than that of hot rolled sample. The lower 

transformation strain levels in ECAE processed can be due to the texture formation 

during route Bc and B ECAE processing. This texture might be the one which gives 

lower transformation strain as oppose to the texture formed during route C ECAE 

processing. Although the texture of austenite could not be studied due to the high 

temperature requirement and the lack and difficulty of high temperature texture 

measurements it is reasonable to expect deformation texture formation in TiNiPd alloys 

during ECAE processing at relatively low temperatures considering the recrystallization 

temperature of Ti50Ni30Pd20 alloy around 600°C for is considered [112]. 

The irrecoverable strain levels of both Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 decrease 

after ECAE which can be attributed to the increase in the difference between the yield 

strength of stress induced martensite and the critical stress to induce martensite. This 

increase in stress difference leads to an increase in critical shear stress for slip due to the 

grain size refinement and the increase in dislocation density. This conclusion is also 

consistent with recent the results from the NASA Glenn group [32]. They also found that 

TiNiPd alloys with lower Pd content show less permanent deformation since the strength 

of austenite is very much higher than the strength of martensite such that transformation 

from martensite to austenite occurs without slip formation [34].  

In Figure 5.14.a, extrapolating  curve of the Ti50Ni30Pd20 samples gives 

lower temperatures at 0MPa than that of the Ms temperatures measure from DSC. On the 

other hand, extrapolating  curves of the Ti50.3Ni33.7Pd16 samples gives 

approximately the same Ms temperatures measured using DSC. This peculiarity between 

the Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 samples might be due to the increase in elastic 

mismatch between austenite and martensite near Ms due to austenite softening and 

inelastic accommodation of this mismatch in the Ti50Ni30Pd20 samples. The increase in 
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elastic mismatch with the increase in Pd content leads to the need for higher 

supercooling or higher stress levels for triggering martensite nucleis to grow in the 

Ti50Ni30Pd20. This causes austenite to transform into martensite at a lower temperature 

under a given stress or at a higher stress level under a constant temperature.  
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CHAPTER VI 

COMPARISON OF SHAPE MEMORY CHARACTERISTICS OF 

THERMO-MECHANICALLY PROCESSED NiTi AND TiNiPd SMAs 

 

 
6.1 Preamble 

NiTi alloys have become widely used in medical field and have been receiving 

increased attention in the aerospace, automotive, and power generation industries, 

especially if the application needs actuator type behavior. For example, the actuation 

systems in aeronautics and aerospace propulsion technologies can benefit from SMAs 

which have transformation temperatures higher than 150° or the SMAs that could be 

applicable in and around the engines of automobiles should have transformation 

temperatures at least 100°C to 300°C. NiTi can do work equivalent to 10-20 J/cm3 under 

biased load [136] and these alloys have the ability to recover 8% strain when 

unconstrained [137]. Even though NiTi alloys demonstrate the best known SMAs, its 

undesirable cyclic instability response when unconstrained, along with large thermal and 

stress hysteresis and low operational temperature range in the aforementioned actuation 

type applications leads to investigate ternary alloy systems. The development of new 

ternary alloys is largely based on trial and error without a suitable guidance of 

theoretical approach. In one of these trial and errors, it is found that the addition of Pd 

and Pt increases the transformation temperatures and decreases thermal hysteresis [30, 

31, 35]. However, the increase in transformation temperatures and the decrease in 

thermal hysteresis come at the expense of diminished work capability [32].  

In this chapter, the effect of Pd addition to NiTi on the transformation 

temperatures, thermal hysteresis and cyclic stability response will be revealed. In 

addition, microstructural evolution with severe plastic deformation in Ti50Ni30Pd20 and 

Ni49.7Ti50.3 alloys will be compared since, in the previous chapters, it is shown that, the 

microstructural refinement and evolution with thermo-mechanical processing have 

influence on the shape memory responses of both of the alloys. Although TiNiPd and 
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NiTi alloys can’t be each others alternative for high temperature applications, it is useful 

to compare the shape memory response of TiNiPd with superior shape memory 

properties of NiTi alloys in order to show TiNiPd ternary alloys are promising for high 

temperature applications and it is worth while to carry out extensive research for further 

improvement in the shape memory and cyclic stability response of these ternary alloys. 

 

6.2 Comparison of Microstructural Evolution in NiTi and TiNiPd alloy after ECAE 

Severe plastic deformation via ECAE of the Ni49.7Ti50.3 and Ti50Ni30Pd20 showed 

that grain size refinement of these alloys was different. The average grain size of the 

Ni49.7Ti50.3 and Ti50Ni30Pd20 alloys before ECAE process was determined as 50μm using 

optical microscope (OM) images and the OM images of hot rolled Ni49.7Ti50.3 and 

solutionized Ti50Ni30Pd20 alloys were demonstrated in Figure 4.2 and 5.5, respectively. 

Figure 6.1 represents the grain size reduction in both of these alloys after ECAE 

processing at 400°C. It was found that the average grain size of the Ni49.7Ti50.3 sample 

ECAE processed at 400°C is 100nm, on the other hand, the grains in the Ti50Ni30Pd20 

sample ECAE processed at 400°C are elongated and the average length and width of the 

grains are 0.5 and 1μm, respectively. Thus, the grain size refinement using ECAE in 

TiNiPd is not as pronounced as that of in NiTi alloy. 
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(a)     (b) 

Figure 6.1 Bright field TEM images taken above Af temperature of the samples showing 

the grain size reduction due to ECAE processing, (a) Ti50Ni30Pd20 ECAE 4C at 400°C, 

and (b) Ni49.7Ti50.3 ECAE 4Bc at 400°C.  

 

The mechanism of grain refinement is the continuous dynamic 

recovery/recrystallization as mentioned in section 4.8 and 5.8. Severe plastic 

deformation using ECAE at slightly high temperatures causes the development of new 

grains as a result of gradual increase in the misorientations between the subgrains. 

Further deformation reduces the grain size continuously and the volume fraction of 

newly generated ultrafine grains increases. Thus, there should be another mechanism 

which restricts the misorientation increase between the subgrains. It was found that, 

there are Ti rich Ti(C, O) and Ti2(Ni, Pd) precipitates in TiNiPd alloy as mentioned in 

section 5.6. These precipitates might play a role during grain size reduction such as 

pinning the subgrains and restricting the formation new grains as a result of gradual 

increase in the misorientations between the subgrains. Therefore, the grain size 

refinement is less pronounced in TiNiPd alloys utilizing ECAE at relatively high 

temperatures. 
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Another intriguing observation is the lack of formation of  compound twins 

in TiNiPd alloys. From the TEM study on TiNiPd alloys, no compound twin formation 

was observed. However, it is realized that,  plane cannot be a twinning plane in 

B19 martensite as it is a mirror plane of the orthorhombic structure [126]. Thus, 

compound twin formation in TiNiPd alloys which have B19 martensite structure is not 

possible. 
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6.3 The effect of Pd Addition on Transformation Temperatures, Thermal 

Hysteresis and Cyclic Stability of NiTi Alloys 

Aforementioned studies showed that the transformation temperatures increase 

and thermal hysteresis decrease upon Pd addition to NiTi binary alloys [33-35]. 

However, the effect of Pd addition on the cyclic response of NiTi as function of thermal 

cycles has not been shown up to date. Figure 6.2 demonstrates the increase in 

transformation temperatures, the decrease in thermal hysteresis and the improved 

stability of the transformation temperatures upon Pd addition.  

The main observations upon 20at%Pd addition to NiTi alloy are, 1) The increase 

in Ms temperature is 55°C, 2) thermal hysteresis decreases from 36.5°C down to 12°C, 

and 2) there is no shift in Ms temperature after 5 cycles (improved cyclic stability). 

The decrease in thermal hysteresis and improved stability of transformation 

temperatures can be explained by the enhancement of the geometric compatibility of the 

martensite-austenite upon addition of Pd [133]. Thermal hysteresis is the direct 

indication of the dissipation energy as mentioned in Chapter IV and V. Elastic and 

interfacial energy are stored owing to the presence of martensite and austenite at the 

transition interface because of the incompatibility between these two phases. This occurs 

in both austenite to martensite and martensite to austenite transformation. Thus, 

additional energy is required to overcome this energy barrier. In the case of thermally 

activated phase transformations, the temperature must be raised above the transformation 

temperature on heating and lowered below on cooling. This leads to an increase in 

thermal hysteresis. If the stored energy due to the incompatibility between austenite and 
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martensite is reduced, less energy is needed to overcome the dissipation energy which 

arises from the incompatibility. Thus, thermal hysteresis decreases upon Pd addition 

because of the enhanced geometrical compatibility between austenite and martensite. 

The improvement in the cyclic stability upon Pd addition also depends on this 

geometrical compatibility. If the compatibility is obtained at the transition interface 

dislocation formation, which suppresses Ms temperature, does not occur and this leads to 

cyclic stability. 
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Figure 6.2 Cyclic DSC response of the hot rolled Ni49.7Ti50.3 and solutionized 

Ti50Ni30Pd20 alloys demonstrating the increase in transformation temperatures, decrease 

in thermal hysteresis and improvement in the cyclic stability of the transformation 

temperatures upon Pd addition. 
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6.4 The Effect of Pd Addition on Transformation and Irrecoverable Strain Levels 

in Isobaric Cooling Heating Experiments 

The transformation and irrecoverable strain levels of the hot rolled and ECAE 

processed Ni49.7Ti50.3 and solutionized and ECAE processed Ti50Ni30Pd20 samples are 

compared in Figure 6.3. The transformation strain levels of solutionized and ECAE 

processed Ti50Ni30Pd20 samples are lower than that of the hot rolled and ECAE 

processed Ni49.7Ti50.3 due to the change in lattice parameter and structure. In both of the 

alloys, the transformation strain level increases as the applied stress increases due to the 

fact that externally applied stress helps the formation of the martensitic variant with the 

most favorable orientation (single variant martensite morphology) instead of self 

accommodation morphology which leads to external shape change. The most important 

observation in isobaric cooling-heating experiments is the decrease in irrecoverable 

strain levels at each stress level upon Pd addition. No significant irrecoverable strain is 

observed under 200MPa in solutionized Ti50Ni30Pd20 sample, on the other hand, the 

irrecoverable strain level of the hot rolled Ni49.7Ti50.3 sample under 200MPa is around 

1%. The decrease in irrecoverable strain upon Pd addition can be attributed to the 

decrease in elastic modulus mismatch between austenite and martensite due to the 

increase in geometrical compatibility between two phases which leads to strengthening 

of the alloy. ECAE leads to decrease in irrecoverable strain levels in both of the alloys 

due to the grain size refinement and the increase in dislocation density.  
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Figure 6.3 Transformation and irrecoverable strain response as a function of constant 

tensile stress levels in the hot rolled Ni49.7Ti50.3 and solutionized Ti50Ni30Pd20 samples, 

ECAE processed Ni49.7Ti50.3 and Ti50Ni30Pd20 samples from the isobaric cooling-heating 

experiments under increasing applied stress levels. 

 

6.5 Comparison of Thermal Hysteresis in NiTi and TiNiPd Alloys 

Thermal hysteresis is another important characteristic of shape memory alloys 

for their application since thermal hysteresis is directly related with the energy 

dissipation which depends on the irreversible component of the non-chemical energy in 

equation 4.8.2.1. There are two energy dissipative mechanisms which are the energy 

dissipation in the form of frictional work and the dissipation of the stored elastic energy. 

Frictional work is spent in resistance to interface motion during transformation. 

Dissipation of stored elastic energy is the relaxation of coherency strains of austenite-

martensite interface.  

Figure 6.4 shows the thermal hysteresis decrease with the addition of Pd in the 
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present materials in their initial conditions. Thermal hysteresis of the hot rolled 

Ni49.7Ti50.3 and the solutionized Ti50Ni30Pd20 samples under 150MPa are 53°C and 17°C, 

respectively. Figure 6.5 represents the comparison of the thermal hysteresis after ECAE 

process. Thermal hysteresis of the samples Ni49.7Ti50.3 and Ti50Ni30Pd20 samples ECAE 

processed at 400°C under 150MPa are 45°C and 18°C, respectively. The thermal 

hystresis of Ni49.7Ti50.3 sample decreases after ECAE which can be attributed to the 

improved elastic modulus compatibility of austenite-martensite interface. The improved 

compatibility is a result of the strengthening due to grain size refinement and 

accommodation of the lattice deformation mostly elastically. The effect is opposite in the 

TiNiPd alloy. However, the increase in thermal hysteresis of TiNiPd alloys is not 

significant. 
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Figure 6.4 Comparison of the thermal hysteresis of the hot rolled Ni49.7Ti50.3 and the 

solutionized Ti50Ni30Pd20 samples. 
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Figure 6.5 Comparison of the thermal hysteresis of the Ni49.7Ti50.3 and Ti50Ni30Pd20 

samples ECAE processed at 400°C. 

 

6.6 Comparison of the Work Outputs in NiTi and TiNiPd Alloys 

The performance of a thermally activated actuator material is dependent on the 

work output of the alloy which is the product of recoverable strain and the applied stress. 

In real applications of high temperature shape memory alloys, the material must be able 

to perform work against an externally applied load in order to function properly. The 

recoverable strain is obtained by subtracting the irrecoverable strain from transformation 

strain. The transformation and irrecoverable strains are defined in Figure 4.10.  

The work outputs under constrained stress levels of the hot rolled Ni49.7Ti50.3 and 

solutionized Ti50Ni30Pd20 alloys were calculated and shown in Figure 6.6. The effect of 

ECAE on the work outputs of the alloys is represented in Figure 6.7. 
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Figure 6.6 Work output as a function of applied stress in hot rolled Ni49.7Ti50.3, 

solutionized Ti50Ni30Pd20, and hot rolled Ti50.3Ni33.7Pd16 alloys. 

16

14

12

10

8

6

4

2

0

W
or

ko
ut

pu
t (

J/
cm

3 )

400350300250200150100500

Stress (MPa)

 Ni49.7Ti50.3- ECAE 4Bc at 400ºC
 Ti50Ni30Pd20

- ECAE 4C at 400ºC
 Ti50.3Ni33.7Pd16

- ECAE 2B at 400ºC

 

Figure 6.7 Work output as a function of applied stress in the ECAE processed 

Ni49.7Ti50.3, Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 samples. 
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In Figure 6.6, work output of the hot rolled Ni49.7Ti50.3 increases with increasing 

stress up to 300MPa, because the higher stresses cause martensite variants to reorient to 

form a single martensite variant at the expense of the others, therefore there is more 

strain available to be recovered during the transition to austenite which leads an increase 

in the work output level. However, above 300MPa, applied stress becomes high enough 

to prevent full recovery of the martensite since permanent deformation starts being more 

influential. Thus, the recoverable strain level begins to decrease. Since work output is 

the product of recoverable strain and applied stress it also starts to decrease above 

300MPa. The peak stress at which the highest transformation strain, thus the recoverable 

strain, is attained is not observed in the TiNiPd alloys. This is due to premature failure of 

the alloys because of the second phase particles in the matrix.  

Figure 6.7 compares the work outputs of the Ni49.7Ti50.3 and Ti50Ni30Pd20 and 

samples which are ECAE processed at 400°C. The work outputs of the ECAE processed 

samples never decrease up to 400MPa and until failure for Ni49.7Ti50.3, Ti50.3Ni33.7Pd16 

and Ti50Ni30Pd20, respectively. As the applied stress increases the work output also 

increases since there were no irrecoverable strains up to 200MPa and above 200MPa the 

levels were negligible as shown in the previous chapters. In addition, the transformation 

strain level does not change noticeable above a certain stress level. The work output 

levels decrease after ECAE since the transformation strain and the corresponding 

recoverable strain levels decrease due to the reasons explained in Chapter IV and V. 

Under 200MPa, the work output of the hot rolled Ni49.7Ti50.3 is 10.2 J/cm3 while 8.5 

J/cm3 in ECAE processed alloy and for the solutionized Ti50Ni30Pd20, the work output is 

7.4 J/cm3 and reduces down to 6.2 J/cm3. One intriguing finding is that higher work 

output values are obtained under 200MPa in the present TiNiPd alloys as compared to 

earlier work on the TiNiPd alloys having compositions [34]. The main difference 

between the samples used in the present study and in this previous work is the thermo-

mechanical treatment applied. In the previous work the Ni34.5Ti50.5Pd15 and 

Ni29.5Ti50.5Pd20 alloys were extruded at 900°C which is higher than the recrystallization 

temperature of TiNiPd alloys. Such processing might possibly help the homogenization 
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of the samples, however, the grain size would be quite large and dislocation density 

would be low. In this study, the work output under 200MPa for the Ti50Ni30Pd20 ECAE 

processed at 400°C is 6.2 J/cm3, notably higher than what has been reported before. This 

might be due to refined grain size and high dislocation density which lead to decrease in 

irrecoverable strain under stress. 

In addition to work output analysis, it is very useful to calculate the available 

energy efficiency in the design and development of SMA actuators. The proportion of 

Carnot efficiency in practical engines is 60% and the way of improving the energy 

efficiency of an engine is to increase the Carnot efficiency (i.e. by extension of the 

difference in temperature sources of heat between which the engine operates) [138]. The 

energy efficiency of an SMA engine is theoretically restricted by Carnot efficiency since 

an SMA actuator is a heat engine works at low temperature. Application of stress forces 

the martensitic transformations to occur at higher temperatures and provides a method to 

increase the Carnot efficiency although the onset of slip above critical stress imposes a 

critical limit. The Carnot efficiency of an SMA engine is a function of the dependence of 

transformation temperatures on the applied stress and can be represented as: 

)(σA
0)(σM)(σAη

maxf

fmaxf →−
=         (6.6.1) 

where:  

dσ
dAσ0)(σA)(σA f

fmaxf +==        (6.6.2) 

The equation shown below can be derived from equations 6.6.1 and 6.6.2: 

dσ
dAσ0)(σA

0)(σM1η
f

maxf

f

+=

→
−=        (6.6.3) 

dσ
dAf  can be found as the ratio of the change in the strain and entropy during the 

transformation. Strain can be evaluated from the strain vs temperature curves, however, 
the entropy change is more elusive because it is not reproducible due to a range of 
orthogonality resulting from the occurrence of differently deformed crystals in 

polycrystalline SMAs [138]. Therefore, 
dσ

dAf  can be determined from the slopes of 
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stress vs Af temperature curves. Using the equation 6.8, the transformation temperatures 
from differential scanning calorimetry results and Af dependence on the applied stress 
levels, the Carnot efficiencies are calculated for the hot rolled Ni49.7Ti50.3 and 
Ti50.3Ni33.7Pd16, solutionized Ti50Ni30Pd20 alloys and for all materials ECAE processed at 
400°C. The comparison of the Carnot efficiencies of all materials before and after ECAE 
is represented in Figure 6.8. 
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Figure 6.8 Carnot efficiencies of Ni49.7Ti50.3, Ti50.3Ni33.7Pd16 and Ti50Ni30Pd20 before and 

after ECAE. 

 

It was shown that the Carnot efficiencies increase after ECAE in TiNiPd samples 

which might be due to the increase in resistance to dislocation formation by increasing 

the stress differential between yield strength of martensite and critical stress to induce 

martensite. Since the applied stress forces the martensitic transformation to occur at 

higher temperatures the Carnot efficiencies increase with the increase in applied stress 

levels in all alloys. The Carnot efficiencies of the TiNiPd samples are lower than that of 

NiTi alloy because of the lower transformation strain levels.  

TiNiPd alloy can be considered as a very good candidate for high temperature 

shape memory applications in the light of the results presented in this chapter. 
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Transformation temperatures increase, thermal hysteresis and irrecoverable strains 

decrease with the addition of Pd to NiTi binary shape memory alloys. In addition, work 

outputs and the Carnot efficiencies of the TiNiPd alloys used in this study are close to 

the work outputs and Carnot efficiencies compiled from equiatomic NiTi alloy at higher 

temperatures. The increase in transformation temperatures with the addition of Pd does 

not come at the expense of diminished work capability. TiNiPd alloys demonstrate good 

work capability with dimensional stability under thermal cycling conditions, especially 

after ECAE process. 
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CHAPTER VII 

SUMMARY OF THE RESULTS AND CONCLUSIONS 

 
 

The present work investigated the effect of severe plastic deformation via ECAE 
on the microstructural refinement and dislocation substructure, and the corresponding 
evolution in the mechanical properties such as yield strength and stress differential 
between the yield strength of martensite and critical stress for stress induced martensitic 
transformation of Ni49.7Ti50.3, Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 shape memory alloys. The 
effect of microstructural evolution such as grain refinement, deformation twinning 
induced refinement and dislocation density increase the transformation temperatures, 
transformation temperature interval and thermal hysteresis under isobaric conditions was 
revealed. Possible effects of microstructural evolution on the transformation 
thermodynamics, in particular the elastic and irreversible energy, were introduced and 
their ramifications on the shape memory properties such as transformation and 
irrecoverable strain levels and thermal hysteresis were discussed. Thermal cyclic 
stability responses of the ECAE processed and unprocessed alloys at stress free and 
under isobaric conditions were investigated. The isobaric thermal cyclic stability of 
transformation temperatures, thermal hysteresis, transformation and irrecoverable strain 
levels of unprocessed and ECAE processed Ni49.7Ti50.3, Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 
SMAs was compared. The effect of ECAE on the premature failure of the TiNiPd alloys 
was investigated. The evolution in transformation temperatures, thermal hysteresis, 
irrecoverable strain levels and the corresponding work outputs of the NiTi alloy with the 
addition of Pd was also revealed. Due to the limited ductility of the alloys which is 
partially a consequence of their purity level, Ni49.7Ti50.3 alloy was ECAE processed at 
400°C, 425°C and 450°C for four passes and at a relatively lower temperature, i.e. 
300°C, for one pass, Ti50Ni30Pd20 alloy was ECAE processed at 400°C, and 600°C for 
four passes and at 500°C for two passes and Ti50.3Ni33.7Pd16 alloy was ECAE processed 
at 450°C for four passes and 400°C for two passes. 
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The following conclusions can be drawn from the study on Ni49.7Ti50.3 alloy:  
 
1) It is shown that severe plastic deformation via ECAE can lead to grain 

refinement in NiTi alloys at relatively high temperatures such as 400°C and above, and 
deformation-twinning induced refinement at relatively low temperatures such as 300°C. 

2) ECAE microstructure triggers the formation of  compound twins 

with fine platelets in martensite in addition to common 

)001(

>< 011  Type II and  Type 
I twins.  compound twinning with fine platelet is selected as an internal martensite 

defect to minimize the transformation energy in nanograins, although it does not result in 
a solution to the crystallographic theory of martensitic transformation. 

}111{
−

)001(

3) Grain refinement via ECAE led to R-phase stabilization in some of the 
submicron/nanosize grains. 

4) The transformation temperatures at stress free condition decrease while 
the thermal cyclic stability of them is improved after ECAE process due to high 
dislocation density and grain refinement.  

5) The transformation temperature interval, which is the indication of stored 
elastic energy, decreases in the ECAE processed NiTi due to the increase in energy 
dissipation. The increase in energy dissipation causes an increase in thermal hysteresis.  

6) ECAE leads to an increase in strength differential between the critical 
stress to induce martensite and the yield stress of martensite upon grain refinement and 
dislocation substructure formation. 

7) ECAE improves the thermal cyclic stability of transformation 
temperatures, thermal hysteresis and transformation strains and significantly reduces 
irrecoverable strain levels under constant stress. The negligible irrecoverable strain 
levels even under very high stress levels in the samples ECAE processed at 300°C and 
400°C is attributed to the increase in critical stress level for dislocation slip due to grain 
size and deformation twinning-induced refinement via ECAE.  
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The following conclusions can be drawn from the study on Ti50Ni30Pd20 and 
Ti50.3Ni33.7Pd16 alloy: 

 
1) Severe plastic deformation via ECAE refines the grains down to 

submicron size and increase the dislocation density in the Ti50Ni30Pd20.  
2) Pd addition to NiTi alloy significantly increases transformation 

temperatures and decreases thermal hysteresis. The enhancement of lattice compatibility 
between transforming phase upon addition of Pd and less need for plastic 
accommodation and energy dissipation is the reason for shrinking thermal hysteresis. 
The transformation temperatures of ternary alloys decrease and thermal hysteresis 
increases after ECAE due to the grain refinement and increase in dislocation density. 

3) Unexpected premature failures are observed in non-SPD processed 
Ti50Ni30Pd20 and Ti50.3Ni33.7Pd16 alloys in isobaric cooling-heating experiments due to 
the presence of Ti-rich Ti(C, O) and Ti2(Ni, Pd) precipitates in the matrix. The fracture 
stress levels increase after ECAE due to the fact that fragmentation and partial 
dissolution of the precipitates. The increase in fracture stress levels is also due to the 
elimination of large pores observed in the solutionized Ti50Ni30Pd20 sample after ECAE. 

4) Addition of Pd to NiTi alloy enhances thermal cyclic stability of 
transformation temperatures and thermal hysteresis at stress free conditions. 

5) It also decreases irrecoverable strain levels under isobaric heating-
cooling. 

6) ECAE improves the thermal cyclic stability notably by further reducing 
and stabilizing the irrecoverable strain levels under isobaric heating-cooling. This is due 
to the increase in critical stress for dislocation slip upon grain size refinement and 
dislocation density increase via ECAE. 

7) The work output of NiTi alloys decreases with the addition of Pd due to 
the decrease in transformation strain.  

8) TiNiPd alloys are very good candidates for high temperature shape 
memory applications due to the fact that transformation temperatures increase, thermal 
hysteresis and irrecoverable strain decrease, the former two are due to the Pd addition 
and the later is due to microstructural refinement via ECAE. 

9) TiNiPd alloys in this study demonstrate good work capability and 
dimensional stability under thermal cyclic conditions, especially after ECAE.  
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Therefore, it can be concluded that the increase in transformation temperatures 
with the addition of Pd does not come at the expense of diminished work capability with 
the help of microstructural refinement. 
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CHAPTER VIII 

FUTURE WORK 

 

 
ECAE processing leads to thermo-mechanical strengthening by increasing 

critical shear stress for slip via grain size refinement and increase in dislocation density. 

ECAE processed shape memory alloys show cyclic thermal cyclic stability under no 

load and biased load conditions. The parameter for thermal cyclic stability includes 

stable transformation temperatures, transformation and irrecoverable strain and thermal 

hysteresis as a function of the number of cycles. ECAE has advantages in terms of ease 

of processing, control on grain morphology, evolution of microstructure and formation 

of specific texture. In addition, ECAE permits the application of large amount of 

uniform strain without changing the cross section of the work piece. However, in this 

study, the limited ductility of TiNi, especially very low ductility of TiNiPd alloys made 

ECAE processing challenging. In the light of the results gathered in this study, future 

recommendations can be divided into three different parts: recommendations on (1) 

severe plastic deformation and post processing treatments, (2) different ternary alloys, 

and, (3) characterization experiments. 

 

1) Recommendations on severe plastic deformation and post processing treatments: 

1) Higher number of passes following different routes can be conducted at 

different temperature ranges such as from room temperature to 300°C. 

2) Marforming (deformation in martensite) via ECAE can be conducted on 

extremely pure alloys due to ductility limitations. Marforming might be a more efficient 

method in microstructural refinement. 

3) The effect of cold rolling after ECAE can be studied to investigate the 

effectiveness strain path changes on the microstructural evolution and corresponding 

change in the shape memory characteristics of the NiTi and TiNiPd alloys. 
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4) Low temperature annealing after ECAE should be investigated on TiNiPd 

alloys because it was found in our previous study that short time low temperature 

annealing improves the thermal cyclic stability of TiNiHf shape memory alloys due to 

the rearrangement of dislocations upon annealing, polygonization and/or 

vacancy/interstitial pair formation [19]. 

5) Large diameter billets can be used to obtain large product cross sections 

not to have difficulties of having limited number of samples for experimentation. 

6) Lubrication of the work piece is a very important parameter in ECAE 

processing in terms of decreasing the friction between the die walls and the work piece. 

Different high temperature lubricants should be searched and evaluated in terms of 

improvement in the ECAE performance. 

 

2) Recommendations on different ternary alloys: 

1) TiNiPd alloys with different compositions can be investigated 

considering different target applications (target transformation temperatures). Addition 

of different amounts of Pd definitely changes the shape memory behavior of the TiNiPd 

alloys.  

2) In this study, the second phase particles in the TiNiPd alloys were the 

most challenging problem in terms of processability of the alloys and the resulting shape 

memory response due to their brittle nature. Therefore, TiNiPd alloys should be obtained 

from another source which provides more clean alloys in terms of oxygen and carbon 

contents. 

3) TiNiPt ternary alloy system which is another promising high temperature 

shape memory alloy system can be ECAE processed and then compared with the TiNiPd 

alloys. 
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3) Recommendations on characterization experiments: 

1) One of the expected consequences of using different ECAE routes is 

certain texture evolution. Thus, it should be examined and the effect of texture on the 

shape memory characteristics of NiTi and TiNiPd alloys should be investigated. 

2) Monotonic response of the alloys should be determined for investigating 

the deformation behavior of martensite and austenite at different temperatures. 

3) Pseudoelastic cyclic behavior of TiNiPd alloys should be investigated. 

There is no report of high temperature pseudoleasticity in these alloys, thus, it is a great 

interest to find out the effect of ECAE on whether high temperature pseudoelasticity 

would be possible in ECAE processed NiTiPd alloys. 

4) Incremental strain loading experiments in other words, incremental step 

loading experiments should be conducted to investigate the evolution of irrecoverable 

strain which is the amount of strain remaining in the sample after loading to a particular 

strain and then unloading back to zero stress at a constant temperature and to determine 

the permanent strain which is the amount of this irrecoverable strain remaining after the 

sample is thermally cycled at zero stress. The irrecoverable and permeanent strain values 

could be different at each cycle unless the irrecoverable strain is zero after unloading. 

This experimental technique could be useful in understanding the reason of irrecoverable 

strain observed in thermal cyclic experiments in this study whether it is due to slip or 

due to retained martensite after heating the sample above Af temperature. 
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