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ABSTRACT 

 

Numerical Simulation of Three-Dimensional Combined Convective Radiative Heat 

Transfer in Rectangular Channels. (December 2007) 

Min Seok Ko, B.S., Inha University, South Korea; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. N. K. Anand 

 

This dissertation presents a numerical simulation of three-dimensional flow and 

heat transfer in a channel with a backward-facing step. Flow was considered to be steady, 

incompressible, and laminar. The flow medium was treated to be radiatively 

participating. Governing momentum equations, energy equation, and the radiative 

equation were solved by a finite volume method. Extensive validation studies were 

carried out. As part of the validation study, three-dimensional combined convection and 

radiation in a rectangular channel without a backward-facing step was studied. The 

SIMPLE algorithm was used to link pressure and velocity fields. The combined 

convective-radiative heat transfer were studied by varying three parameters, i.e. optical 

thickness ( Hτ =0.1, 0.2, and 0.4) and scattering albedo (ω =0, 0.25, 0.5, 0.75 and 1). 

Variation of thermophysical properties with temperature was considered in this study. In 

this work consideration was given only to cooling. Effects of those radiative parameters 

on velocity, bulk temperature, and Nusselt number are presented in detail. The fluid with 

a hot inlet compared to a cold wall was cooled in a relatively short distance from the 
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channel inlet because of the radiation effect. The thermal penetration decreased with a 

decrease in optical thickness and an increase in scattering albedo. Thermal penetration 

increased with increasing optical thickness and decreasing scattering albedo. The 

reattachment length varied with temperature due to variation of thermophysical 

properties with temperature. 
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NOMENCLATURE 

 

AR aspect ratio 

jC  expansion coefficient 

pC  specific heat of fluid, /J kg K⋅  

, ,cx cy czD D D  defined quantities, Eqs. (3.38) - (3.40) 

ER expansion ratio 

G incident radiation, 2/W m  

H channel height, m 

I radiative intensity, 2/W m sr⋅  

bI  blackbody intensity, 2/W m sr⋅  

k thermal conductivity, /W m K⋅  

l step height, m 

L channel length, m 

M total number of ordinates direction 

, ,x y zn n n  unit vector for x,y,z directions 

Nuc convective Nusselt number, Eq.(5.5) 

Nux,p peripheral average local Nusselt number 

Nur radiative Nusselt number, Eq. (5.6) 

Nut total Nusselt number, Eq. (5.7) 

Nϕ  number of control angles in ϕ direction 
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Nθ  number of control angles in θ direction 

p pressure, 2/N m  

jP  Legendre polynomial 

q radiative heat flux, 2/W m  

Re Reynolds number (= 0 /U H ν ) 

Rφ  residual for velocity components 

pR  residual for pressure 

s step height, m 

s  traveled distance 

S source function 

l
mS  modified source function 

T temperature, K 

bT  bulk temperature, K 

inT  inlet temperature, K 

wT  wall temperature, K 

0U  bulk inlet velocity, m/s 

x,y,z coordinate directions 

W channel width, m 

Xu non-dimensional reattachment length from the step wall 

 



 ix

Greek 

β  extinction coefficient 

l
mβ  modified extinction coefficient 

Γ  diffusion coefficient 

AΔ  area of control volume face, 2m  

ΔΩ  solid angle, sr 

vΔ  control volume, 3m  

ε  emissivity 

wε  wall emissivity 

κ  absorption coefficient, 1m−  

ν  kinematic viscosity, 2 /m s  

Φ  scattering phase function 

l l′Φ  average energy scattered form control angle l′  to l  

ϕ  azimuthal angle, rad 

φ  velocity components, m/s 

ρ  density, 3/kg m  

ρ  reflectivity 

σ  scattering coefficient 

Hτ  optical thickness 

θ  polar angle, rad 

bθ  non-dimensional bulk mean temperature, Eq. (5.4) 



 x

ω  scattering albedo 

Ψ  scattering angle, rad 

Subscripts 

b bottom (surface between nodes) 

B bottom neighbor node 

e east (surface between nodes) 

E east neighbor node 

n north (surface between nodes) 

N north neighbor node 

nb  neighbor points 

P central grid point 

s south (surface between nodes) 

S south neighbor node 

t top (surface between nodes) 

T top neighbor node 

w west (surface between nodes) 

W west neighbor node 

Superscript 

l′ , l  l′ and l direction in control angle 

∗  previous value 

, pressure correction 

 



 xi

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

NOMENCLATURE..................................................................................................  vii 

TABLE OF CONTENTS ..........................................................................................  xi 

LIST OF FIGURES...................................................................................................  xiii 

LIST OF TABLES ....................................................................................................  xv 

1. INTRODUCTION AND LITERATURE REVIEW...........................................  1 

  1.1 Background ..........................................................................................  1 
  1.2 Literature Review.................................................................................  2 
  1.3 Ray Effect and False Scattering ...........................................................  8 
  1.4 Motivation and Objective.....................................................................  9 
  1.5 Dissertation Outline..............................................................................  10 

2. PROBLEM FORMULATION............................................................................  12 

  2.1 Geometry and Assumptions .................................................................  12 
  2.2 Governing Equations............................................................................  14 
  2.3 Radiative Transfer Equation.................................................................  15 
  2.4 Treatment of Horizontal Step...............................................................  18 
  2.5 Boundary Conditions............................................................................  18 
     
3. SOLUTION TECHNIQUE .................................................................................  20 

  3.1 Introduction ..........................................................................................  20 
  3.2 Staggered Grid......................................................................................  20 
  3.3 General Transport Equation .................................................................  23 
  3.4 Finite Volume Discretization ...............................................................  24 
  3.5 Finite Volume Discretization of Radiative Transfer Equation ............  28 
  3.6 SIMPLE Algorithm..............................................................................  33 



 xii

              Page 

  3.7 Tri-Diagonal Matrix Algorithm (TDMA) ............................................  34 
  3.8 Numerical Procedure and Convergence Criteria..................................  35 

4. VALIDATION AND GRID INDEPENDENCE ................................................  37 

  4.1 Numerical Validation ...........................................................................  37 
  4.1.1 Forced Convective Flow through a Square  
   Horizontal Channel ............................................................  37 
  4.1.2 Radiative Transfer in a Rectangular Enclosure..................  38 
  4.1.3 Forced Convective Flow over a Three-Dimensional 
   Horizontal Backward-Facing Step .....................................  40 
  4.1.4 Combined Convective Radiative Flow through  
   a Three-Dimensional Horizontal Channel..........................  41  
  4.2 Grid Set-up ...........................................................................................  42 
  4.3 Grid Independence Study .....................................................................  46 

5. RESULTS AND DISCUSSION .........................................................................  48 

  5.1 Parameters and Definitions ..................................................................  48 
  5.2 Effect of Optical Thickness..................................................................  49 
  5.3 Effect of Scattering Albedo..................................................................  60 

6. CONCLUSIONS.................................................................................................  68 

REFERENCES..........................................................................................................  69  

APPENDIX A ...........................................................................................................  74 

VITA .........................................................................................................................  99 



 xiii

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

 2.1 Schematic of the three-dimensional backward-facing step........................  12 
 
 2.2 Scattering angle ..........................................................................................  16 
 
 3.1 Staggered grid for U-velocity component at a constant z-plane ................  22 
 
 3.2  Control volume element with neighboring nodal points ............................  25 
 
 3.3 A typical angular direction.........................................................................  29 
 
 4.1 Temperature distribution at y=1m..............................................................  39 

 4.2 Xu-line (Re=200 and 400) ..........................................................................  41 

 4.3 Non-uniform grid set-up in a constant z-plane...........................................  43 

 4.4 Non-uniform grid set-up in a constant y-plane ..........................................  44 

 4.5 Non-uniform grid set-up in a constant x-plane ..........................................  45 

 5.1 Effect of optical thickness: 

  (a) bulk mean temperature; (b) Xu-line distribution...................................  51 

 5.2 Density distributions at constant z-plane (z=0.02):  

  (a) forced convection; (b)τH=0.2; (c)τH=0.4...............................................  52 

 5.3 Viscosity distributions at constant z-plane (z=0.02):  

  (a) forced convection; (b)τH=0.2; (c)τH=0.4...............................................  53 

 5.4 U-velocity profile at plane z=0.02 at different x positions: 

  (a) forced convection; (b) τH=0.4...............................................................  54 

 5.5 Temperature distributions for forced convection .......................................  55 



 xiv

                                                                                                                         Page 

 5.6 Temperature distributions for Hτ =0.4........................................................  56 

 5.7 Effect of optical thickness on temperature distribution at constant z-plane 

(z=0.02): (a) without radiation; (b) Hτ =0.1; (c) Hτ =0.2; (d) Hτ =0.4 ........  57 

 5.8 Span-wise averaged Nusselt number variation: 

  (a) convective and radiative Nu; (b) total Nu.............................................  58 

 5.9 Effect of scattering albedo (ω =0, 0.25, 0.5, 0.75 and 1):  

  (a) bulk mean temperature; (b) Xu-line distribution...................................  61 

 5.10 Density distributions at constant z-plane (z=0.02):  

  (a) ω=1; (b) ω=0.5; (c) ω=0........................................................................  63 

 5.11 Viscosity distributions at constant z-plane (z=0.02):  

  (a) ω=1; (b) ω=0.5; (c) ω=0........................................................................  64 

 5.12 U-velocity profile at plane z=0.02 at different x positions: 

  (a) ω=1; (b) ω=0........................................................................................  65 

 5.13 Effect of scattering albedo on temperature distribution at constant z-plane 

(z=0.02): (a) ω=0; (b) ω=0.25; (c) ω=0.5; (d) ω=0.75 ...............................  66 

 5.14 Span-wise averaged Nusselt number variation: 

  (a) convective and radiative Nu; (b) total Nu.............................................  67 

  

 



 xv

LIST OF TABLES 

 

TABLE                                                                                                                          Page 
 
 2.1 Thermophysical properties of air at atmospheric pressure [27] .................  13 
 
 2.2 The phase function expansion coefficients [30].........................................  17 
 
 3.1 Values for the general transport equation...................................................  23 

 4.1 Comparison of Ref  and Nu for fully developed flow in a square channel 38 

 4.2 Boundary condition of rectangular enclosure [15].....................................  39 

 4.3 Grid independence study-  

  span-wise averaged total Nusselt number at the channel outlet ................  47 

 



 1

1. INTRODUCTION AND LITERATURE REVIEW  

 

1.1 Background 

Combined mode of heat transfer for a radiatively participating medium is 

important in high temperature applications such as glass manufacturing, oil or gas-fired 

boilers, nuclear reactors, and industrial furnaces. The analysis of these systems is 

complicated by the presence of radiation. In high temperature applications the fluids are 

usually a participating media which can absorb and emit thermal radiation. Therefore, 

we should consider not only convective flow and heat transfer but also radiative heat 

transfer of participating media. 

It has been of interest to many researchers to investigate the fluid flow and heat 

transfer of combined convective radiative mode. Especially, there have been many 

efforts to solve thermal radiation in combined heat transfer applications because the 

solution of the radiative transfer equation is difficult to obtain even for simple geometry.  

Among many developed methods to solve the radiative transfer equation, it is desirable 

to choose the finite volume method which can share the same computational grid and 

concept during the discretization procedure. 

This dissertation presents the numerical procedures to study three-dimensional 

combined convective radiative heat transfer using a finite volume method in rectangular 

channels. In particular, combined convection and radiation in a three-dimensional 

rectangular channel with and without a backward-facing step is considered. Study of 

_____________ 
  This dissertation follows the style of Numerical Heat Transfer. 
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combined convection and radiation in a straight rectangular channel serves to validate 

finite volume formulation. Flow over a backward-facing step in a rectangular channel 

includes rich flow physics. The flow behavior includes through flow, flow separation, 

reattachment, and flow recirculation. Thus, this flow geometry is regarded as the 

“benchmark problem”. The results of this study will serve as a benchmark for further 

investigations in the area of combined convection and radiation. 

 

1.2 Literature Review 

Over the past decade, a number of combined mode heat transfer analysis in 

channel flow have been reported in literature.  

Wassel [1] presented the result for laminar and turbulent flow with combined 

non-gray radiation and thermal diffusion. He solved the governing equation by the 

Galerkin method for laminar flow and by a finite difference method for turbulent flow.  

Im and Ahluwalia [2 and 3] studied combined convective and radiative heat 

transfer in a rectangular duct and a circular duct by solving simultaneously the flow and 

radiative transport equations. They used the assumption of parabolic flow and the 

moment method to simplify the fluid and radiative heat transfer equation respectively. 

Also, they used the exponential wideband model and the Mie theory for determining the 

spectral absorption and scattering coefficients of the particles. One of their foundations 

was that the combined contribution of carbon dioxide and water vapor to radiative heat 

transfer was less than the sum of individual contributions of carbon dioxide and water 
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vapor when present alone. It was observed in their work that the radiation caused the 

thermal boundary to become thicker than the momentum boundary layer. 

Kassemi and Chung [4] examined the combined effects of forced convection and 

radiation in a fully developed flow in a two-dimensional parallel plate channel by using 

an element-to-node approach. The effects of Peclet number, gas and wall conduction to 

radiation parameters, and optical thickness on gas and wall temperature distribution were 

investigated.  

Kim and Lee [5] presented a thermally developing Poiseuille flow with 

anisotropic scattering medium between two parallel plates. They considered gray 

absorbing, emitting, and anisotropic fluid flow. They found that results obtained from 

one-dimensional treatment of the radiative transfer were shown to be quite different 

from those obtained from two-dimensional radiation analysis. They showed that the 

reflecting walls enhanced the fluid thermal development significantly even with small 

radiative energy input. 

Simultaneously developing laminar flow and heat transfer with convection and 

radiation in a smooth tube was studied by Seo et al. [6]. They solved the radiative heat 

transfer equation by the P-1 approximation and the exponential wideband model. They 

assumed the gas physical properties to be constant. They showed that the bulk mean 

temperature variation, the temperature profiles, and the Nusselt number distributions for 

non-gray gas mixtures are very different from those for pure convection. Also, they 

found that the heat transfer characteristics of non-gray gas mixtures depend strongly on 
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the mole fraction of non-gray gases, and a small amount of radiating gases can change 

the heat transfer significantly.  

Kim and Baek [7] investigated a combined heat transfer mode of conduction, 

convection, and radiation in a two-dimensional gradually expanding channel. They 

developed a program to study the radiation in a curvilinear coordinate system. They 

showed that the thermal characteristics were affected by various parameters such as 

Prandtl number, conduction to radiation parameter, wall emissivity, and scattering 

albedo. They also mentioned that faster heating resulting in the lower adverse pressure 

gradient led to a decrease in the reattachment length. They reported that temperature 

distribution was also influenced by radiation, depending on the absorption coefficient. 

A numerical study of the interaction between thermal radiation and laminar 

mixed convection for ascending flows of participating gases in vertical tubes are 

presented by Sediki et al. [8]. The radiative properties of real gas such as 2H O , 2CO , and 

mixtures were considered. They found that the propagation of radiation towards the 

central region of the duct tends to increase the centerline velocity and decreases the 

friction factor, and results in a significant increase of the critical Gr/ Re ratio 

corresponding to reverse flow occurrence. They also mentioned that radiation had a 

small effect on the regime of reverse flow occurrence in an optically thin region. 

More recently, Chiu et al. [9] presented numerically the mixed convective heat 

transfer with radiation effects in a horizontal duct. They used the discrete ordinates 

method to solve the radiative transfer equation and the vorticity-velocity method to solve 
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the momentum and energy equations simultaneously. The effects of thermal buoyancy 

and radiation on temperature, friction factor, and Nusselt number were presented. 

Chai et al. [10] presented a numerical analysis for laminar radiating fluid over a 

two-dimensional backward-facing step geometry. They assumed that the flow field was 

decoupled from the energy field by treating the thermophysical properties to be constant. 

They presented various effects related to combined mode of heat transfer, such as 

conduction to radiation parameter, Reynolds number, scattering albedo, anisotropic 

scattering phase function, and optical thickness. They found that the shape of the 

scattering phase function had insignificant effects on the temperature distribution. They 

considered the backward-facing step but only focused on isotherms as a result because 

the velocity fields were not affected from temperature due to the constant property 

assumption. 

It is also important to choose a useful method for solving a radiation heat transfer 

equation. The solution method should be able to handle the complexity encountered in 

combined convective radiative mode conveniently and accurately. During the past few 

decades, numerous radiation models have been developed to calculate radiative heat 

transfer. Many of those models are based on the solution of the radiative transfer 

equation.  

The Hottel’s zonal method was proposed by Hottel and Cohen [11] for solving 

radiative heat transfer with absorbing, emitting, non-scattering gray medium with 

constant absorption coefficient. In this method, the enclosure was subdivided into a 

finite number of volumes and surface area zones with uniform temperature and 
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properties. Then, surface-volume and volume-volume “exchange areas” were calculated. 

An energy balance was performed on each volume to give a set of nonlinear equations. 

This procedure leads to a set of simultaneous equations for unknown temperature or heat 

fluxes. One of the disadvantages of the zonal method is the complicated work needed in 

the evaluation of the “exchange areas”. Naraghi and Kassemi [12] presented various 

improvements on those problems and proposed the procedure to implement an 

unstructured grid. Accuracy of the zonal method can be improved by increasing the 

number of zones, but it requires inversion of a large matrix. Despite several 

improvements and approaches, the evaluation of “exchange areas” is still difficult to 

evaluate in irregular geometries. 

The Monte Carlo method was introduced by Howell and Perlmutter [13]. The 

Monte Carlo method solves the thermal radiation equation by tracing the history of a 

finite number of photons from their points of emission to their points of absorption. For 

a finite number of photons random numbers are generated and used to determine the 

travel distance. The Monte Carlo method has an advantage of applying to complicated 

problems with relative ease. The disadvantage of the Monte Carlo method is that it 

entailes a statistical error. Also, it can be time-consuming because this procedure is 

repeated until all rays are absorbed. 

The method of spherical harmonics is also called PN approximation. This 

approximation was proposed by Jeans [14]. Menguc and Viskanta [15 and 16] 

introduced P1 and P2 formulations for absorbing, emitting, and anisotropically scattering 

gas in two-dimensional cylindrical and three-dimensional rectangular enclosures. Using 
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the PN approximation, we can transform the radiative transfer equation into a set of 

simultaneous partial differential equations with high accuracy. This is also an advantage 

of PN approximation. The disadvantage of the method is that complicated reformulation 

is required when we need to use a different order for approximation. 

The discrete ordinates method has been used frequently in multidimensional 

radiative heat transfer problems. The discrete ordinate method was proposed by 

Chandrasekhar [17] to evaluate the intensities at 2n discrete directions instead of the two 

coordinate directions. The discrete ordinate method solves the radiative transfer equation 

for a set of discrete directions spanning the angle range from 0 to 4π. This method has 

two drawbacks, ray effect and false scattering. The impact of these drawbacks can be 

minimized by increasing the order of angular discretization and spatial grid [18]. We 

will discuss those effects in the next section. The discrete ordinate procedure has been 

used for solving the radiative heat transfer equation because of its small computational 

cost and accuracy, and compatibility with other computational fluid dynamics (CFD) 

methods. 

Among the methods to solve the radiative heat transfer equation with 

participating media, the finite volume method proposed by Chui and Raithby [19] and 

Chai et al.[20] have been used in this study. The finite volume method is one of the 

popular methods used in CFD procedures and has been applied to many situations. The 

finite volume method has many similarities with the discrete ordinates method in sharing 

grid points and marching procedure. If this method is applied to a radiative heat transfer 

equation, the procedure is very efficient because the calculation procedure for a radiative 
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transfer equation can share the same grid point set for other dependent variables in the 

finite volume method. We can specify angular discretization in any manner, even in 

complex geometries [20], because the finite volume method calculates the value 

of n sd⋅ Ω∫  instead of the angular weights used in the discrete ordinates method. Also, a 

finite volume method can be applied to multi-dimensional geometries without additional 

formulation procedures.  

 

1.3 Ray Effect and False Scattering 

 If we use the discrete ordinates or finite volume method, it is important to 

understand the shortcomings of them. 

One of the serious shortcomings of the discrete ordinates method is ray effect. 

This is a consequence of angular discretization. When we consider an enclosure with a 

very small volume (surface) with very high emission, intensity from this volume 

(surface) will be carried away from it into the discretized angular directions. Far away 

from the emission zone these intensities may become so far apart that some control 

volume (surface) can not receive any radiation energy from this high emission, and have 

zero intensity. This situation leads to physical unrealistic results and is called ray effect. 

The angular discretization practice causes ray effect and this effect is independent of the 

spatial discretization.  

Another drawback is false scattering, which is a consequence of spatial 

discretization practice. It is also called false diffusion in computational fluid dynamics. 

This occurs when the direction of radiation is sloping with respect to the grid lines. This 



 9

physically unrealistic smearing of the radiative intensity is known as false scattering. It 

is independent of the angular discretization. Finer spatial grids can reduce false 

scattering, but the ray effect becomes more noticeable. Thus when using a finer spatial 

grid, a finer angular method is also needed [21]. 

 

1.4 Motivation and Objective 

In most of the previous studies involving combined convection and radiation the 

effect of property variation resulting from radiative effects on the momentum field was 

not considered. In this study combined convection and radiation in a three-dimensional 

rectangular channel with and without a backward-facing step is considered. Variation of 

thermophysical properties (density, kinematic viscosity, and thermal conductivity) with 

temperature was considered in this study. Flow over a backward-facing step is 

considered as a standard benchmark problem due to rich flow physics that it entails, viz. 

flow separation, recirculation, and reattachment [22]. The other reason for its popularity 

as a benchmark problem is its simple geometry [23 and 24]. 

The objectives of this study are: 

1. To develop a numerical code that can be used to simulate combined laminar 

forced convection and radiation heat transfer in a three-dimensional 

rectangular channel using a finite volume method. 

2. To study the effect of combined forced convection and radiation on 

temperature field and reattachment length distribution in a three-dimensional 

rectangular channel with a horizontal backward-facing step. 
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3. To present the effect of variation of thermophysical properties with 

temperature on the velocity and temperature fields. 

4. To study and compare the effects of radiative parameters such as optical 

thickness ( Hτ =0.1, 0.2, and 0.4) and scattering albedo (ω =0, 0.25, 0.5, 0.75, 

and 1) on bulk temperature, Nusselt number, and reattachment length 

distribution along the channel for the cooling case. 

 

1.5 Dissertation Outline 

In this section the importance, literature review, motivations, and objectives for this 

study are stated. A literature review related to the topic of combined mode fluid flow and 

heat transfer problem in the two- and three-dimensional channel is presented. Also, a 

brief review about methods for solving a radiation heat transfer equation is also 

mentioned.  

In Section 2, the geometry and assumption considered in this study are presented. 

These are followed by governing equations and boundary conditions to describe fluid 

flow and heat transfer. Radiative equation and its useful quantities are defined. Since the 

geometry in this study includes a horizontal backward-facing step, the treatments of 

irregular geometry (step) for numerical code are described. 

Section 3 contains the solution technique including grid generation, discretization 

method, Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm, and 

Tri-Diagonal Matrix Algorithm (TDMA). The finite volume technique for solving the 

three-dimensional convective and radiative equations is included. Iteration sequence and 
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convergence criteria are also mentioned.  

Section 4 shows the numerical validation and grid independence studies of the 

algorithm. The code is validated by comparing reattachment line distribution and 

temperature distribution with those of others. Study of combined convection and 

radiation in a channel without a backward facing step was treated as a part of validation. 

This study was published in ‘International Journal for Computational Methods in 

Engineering Science and Mechanics’. A copy of this paper [25] is enclosed in Appendix 

A. 

In section 5 numerical results are presented and discussed. The results include the 

effects of optical thickness ( Hτ ) and scattering albedo (ω ) on bulk temperature, Nusselt 

number, and reattachment length distribution along the channel for the cooling case.  

Section 6 includes a summary and conclusions of the numerical study discussed in 

previous sections.  
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2. PROBLEM FORMULATION 

 

2.1 Geometry and Assumptions 

A schematic of the system considered in the present study is shown in Figure 2.1. 

The step height (s) is assumed to be half of the channel height (H). The channel and 

backward-facing step have an aspect ratio 4/ == sWAR  and an expansion 

ratio 2)/( =−= sHHER . The total length of the channel (L) is equal to 52 times the 

step height and the length of step (l) is 2 times the step height. The particular geometry 

considered here is identical to the one considered by Barbosa-Saldana et al. [26].  

 

 
Figure 2.1. Schematic of the three-dimensional backward-facing step. 

 

In this study the following simplifying assumptions were made for the 

development of the mathematical model: 

1. Laminar flow 

2. Steady state 

3. Incompressible flow 
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4. Viscous dissipation terms were neglected 

5. Thermophysical properties of fluid (air) are considered to vary 

with temperature 

6. Gravitational forces are negligible 

7. No internal heat generation 

8. Flow medium is participating and gray 

The variations of the thermophysical properties of the fluid with temperature 

were approximated by the piecewise-linear function of temperature as follows: 

  1

1

( ) ( )n n
n n

n n

T T T
T T
φ φφ φ+

+

−
= − +

−
 (2.1) 

 Thermophysical properties of gas with temperature 300K to 1,000K are shown in 

Table 2.1 below. 

Table 2.1 Thermophysical properties of air at atmospheric pressure [27] 
 

T 
(K) 

ρ  
)/( 3mkg  

PC  
)/( KkgkJ ⋅

)10( 7μ  
)/( 2msN ⋅

)10( 6ν
)/( 2 sm

)10( 3k  
)/( KmW ⋅  

300 1.1614 1.007 184.6 15.89 26.3 
350 0.9950 1.009 208.2 20.92 30.0 
400 0.8711 1.014 230.1 26.41 33.8 
450 0.7740 1.021 250.7 32.39 37.3 
500 0.6964 1.030 270.1 38.79 40.7 
550 0.6329 1.040 288.4 45.57 43.9 
600 0.5804 1.051 305.8 52.69 46.9 
650 0.5356 1.063 322.5 60.21 49.7 
700 0.4975 1.075 338.8 68.10 52.4 
750 0.4643 1.087 354.6 76.37 54.9 
800 0.4354 1.099 369.8 84.93 57.3 
850 0.4097 1.110 384.3 93.80 59.6 
900 0.3868 1.121 398.1 102.9 62.0 
950 0.3666 1.131 411.3 112.2 64.3 

1000 0.3482 1.141 424.4 121.9 66.7 
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2.2 Governing Equations 

The fundamental governing equations of fluid flow and heat transfer are 

continuity, momentum, and energy equations. The governing equations for present study 

can be expressed in the Cartesian vector notation for steady, incompressible laminar 

flow as follows: 

Continuity:  

 0Vρ∇ ⋅ =  (2.2) 

Momentum 

 ( ) ( )V V P Vρ μ⋅∇ = −∇ + ∇ ⋅ ∇  (2.3) 

Energy  

 ( ) ( )PV C T k T qρ⋅∇ = ∇ ⋅ ∇ − ∇ ⋅  (2.4) 

Eq. (2.2) is also called the Navier-Stokes equation. Since variations of 

thermophysical properties of fluid with temperature are considered, the momentum 

equations are not independent of the energy equation. Thus the momentum and energy 

equations are coupled.  

Note that the divergence of the radiative heat flux equation in the energy 

equation of Eq. (2.4) is used as a radiative source term and defined as follows: 

  ( )4

4
4 (4 )s bq T Id I G

π
κ σ κ π∇ ⋅ = − Ω = −∫  (2.5) 

where G is the incident radiation. If there is no heat source, sink, and other modes of 

heat transfer, Eq. (2.5) equals to zero and the system is called radiative equilibrium [28]. 
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In radiative equilibrium the condition temperature of the medium can be obtained 

directly from Eq. (2.5). 

 

2.3 Radiative Transfer Equation 

The radiation intensity for an absorbing, emitting, and scattering gray medium at 

any position, r , along a path, s , is defined as [29] 

  ( , ) ( ) ( , ) ( , )dI r s r I r s S r s
ds

β= − +  (2.6) 

where the extinction coefficient ( β ) and the source function (S) is written as 

  ( ) ( ) ( )r r rβ κ σ= +  (2.7) 

  
4

( )( , ) ( ) ( ) ( , ) ( , )
4

l l l
b

rS r s r I r I r s s s d
π

σκ
π

= + Φ Ω∫  (2.8) 

The above equation indicates that the change of intensity along a path, or the energy 

accumulation, is equal to the difference between the energy gained and energy lost. The 

extinction coefficient represents attenuation of radiation intensity due to absorption and 

out-scattering. The source function means augmentation of intensity due to the gas 

emission and in-scattering. 

The scattering phase function ( Φ ) describes how radiant energy is scattered by a 

participating medium and satisfies the following relation 

  
4

( , ) 4
lls s d

π

πΦ Ω =∫  (2.9) 

Scattering could be isotropic and anisotropic. Isotropic scattering means energy is 

scattered equally in all directions. Anisotropic scattering can be divided into forward and 
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backward scattering. Forward scattering scatters more energy in the forward directions, 

whereas backward scattering scatters more energy in the backward directions. The 

analytical expression for the scattering phase function is expressed by approximation 

using a finite series of Legendre polynomial as follows [5]: 

  
0

(cos ) (cos )
K

l l
j j

j

C P′

=

Φ = Φ Ψ = Ψ∑  (2.10) 

 

 
Figure 2.2. Scattering angle 

 

where Ψ and jC  are the scattering angle between radiation direction l and l′ , and the 

phase function expansion coefficient respectively. Figure 2.2 showed the schematic 

scattering angle. The expansion coefficient depends on the size and reflective index of 

the particle. Table 2.2 shows the phase function series expansion coefficient [30]. 
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Table 2.2 The phase function expansion coefficients [30] 
j F0 F1 F2 F3 F4 Isotropic B1 B2 
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 2.782 2.536 2.009 0.554 1.200  -0.565 -1.200 
2 4.259 3.565 1.563 0.560 0.500  0.298 0.500 
3 5.387 3.980 0.674 0.116   0.086  
4 6.190 4.002 0.222 0.011   0.010  
5 7.745 3.664 0.047 0.001   0.001  
6 7.067 3.016 0.007 0.000     
7 7.210 2.233 0.001      
8 7.201 1.303 0.000      
9 7.036 0.535       
10 6.766 0.201       
11 6.359 0.055       
12 5.834 0.011       
13 5.230        
14 4.479        
15 3.690        
16 2.816        
17 1.923        
18 1.115        
19 0.508        
20 0.209        
21 0.071        
22 0.021        
23 0.005        
24 0.001        
25 0.000        
26 0.000        

C1/3 0.927 0.845 0.670 0.185 4.000 0.000 -0.188 -0.400 
 

 

The incident radiation (G) and radiative heat flux (q) are defined as 

  
4

( ) ( , )G r I r s d
π

= Ω∫  (2.11) 

  ( ) ( , )( )x xq r I r s s n d= ⋅ Ω∫  (2.12) 

  ( ) ( , )( )y yq r I r s s n d= ⋅ Ω∫  (2.13) 
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  ( ) ( , )( )z zq r I r s s n d= ⋅ Ω∫  (2.14) 

 

2.4 Treatment of Horizontal Step 

If the computational domains include irregular geometries, additional treatment 

is needed in the program code. In this study the temperature is given on a boundary 

(upper wall of step). Because this boundary is an internal domain in the computational 

procedure, we cannot specify the temperature on a boundary, directly.     

The computational domain that includes the step region was assumed to have a 

very high value of conductivity and viscosity to have the same wall temperature and a 

zero velocity in the step region, respectively [31]. As a result, the temperature through 

the step region (high conductivity) will have the same value specified on the boundary.  

To ensure the continuity of heat flux at the solid (step)-fluid interface, pseudo-

solid-specific-heat method was used [32]. The block-off region procedure proposed by 

Chai et al. [33] was implemented to treat the radiative heat transfer of the step region. 

The significant temperature difference imposed between the inlet and the walls was 

considered for the radiation effects.  

 

2.5 Boundary Conditions 

A zero velocity condition was imposed at all y- and z- boundary walls. The 

velocity profile at the channel inlet was assumed as a fully developed flow [34]. The 

inlet bulk velocity 0U was computed from Reynolds number, channel height H, and 

kinematic viscosityν  according to Eq. (2.15). 
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  Re
oU

H
ν

=  (2.15) 

 We assumed a constant uniform wall and inlet temperature, Tw and Tin, 

respectively. The gradient of the transport variable (φ ) in the flow direction is zero at 

the out flow. 

We also need to mention the intensity boundary conditions to solve the radiative 

transfer equation. The boundary condition for an opaque diffuse wall given in the form 

of the boundary intensity case is expressed as 

  ( )( , ) ( ) ( ) ( , )b
rI r s r I r I r s s n dρε

π
′ ′ ′= + ⋅ Ω∫  (2.16) 

The first term on the right-hand side of Eq. (2.16) represents the emission due to 

the surface temperature. The second term is the reflection of the incoming intensities at 

the wall. The inlet as well as outlet of the channel was assumed to be a pseudo-black 

wall. 

In this work only cooling of the fluid flow was considered. In this case Tin and 

Tw were set at 1,000K and 300K respectively.  
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3. SOLUTION TECHNIQUE 

 

3.1 Introduction 

We have developed a numerical code that can handle governing equations 

including a radiative heat transfer equation in three-dimensional Cartesian coordinates. 

The spatial and angular domains were divided into a finite number of control volumes 

and control solid angles.  

A finite volume method was used to solve flow fields along with the related 

boundary conditions. In this procedure, the momentum and energy equations inside the 

computational domain were discretized. The pressure and velocity fields were linked by 

the SIMPLE algorithm [35]. The solution to the one-dimensional convection diffusion 

equation was represented by the power law [35]. All scalar properties including pressure 

and temperature were located at the main grid nodes. But the modes for velocities were 

placed at staggered locations in each coordinate direction. At the outlet boundary, the 

condition of zero first-derivative was applied for all variables. The discretized equations 

for velocities, pressure, and temperature at each plane in the Cartesian coordinates were 

solved by the line-by-line method, which is a combination of the TDMA and the Gauss-

Seidal procedure. 

 

3.2 Staggered Grid 

When we handle the governing equation, we need to consider the location of 

dependent variables to be calculated and stored in grids. Calculating the velocity 
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components and the pressure at the same grid point is the simplest and easiest way, but 

some physically unrealistic fields arise as solutions [35]. In order to avoid this kind of 

problem, the concept of the staggered grid was proposed by Harlow and Welch [36]. In 

the staggered grid, dependent variables are not all calculated at the same grid points.  A 

two-dimensional staggered grid is used to illustrate the grid layout to avoid complex 

three-dimensional representation. Figure 3.1 illustrates the locations of the U velocity on 

the control volume faces in a three-dimensional geometry. The staggering for the V and 

W velocity component can be done in a similar way. All other variables, including 

pressure, and temperature, are calculated at the main grid points. This approach 

eliminates the possibility of unrealistic velocity distributions in the solution because each 

dependent variable can have a different grid if the volumes within each unique grid are 

not overlapped. In this approach, the center of velocity control volumes was located on 

the face of the temperature control volume.  

One of the shortcomings of this staggered grid procedure is that dependent variables 

and properties should be interpolated between nodal values to give results at staggered 

nodes, which are located on the faces of the main central volumes.  



 22

 
Figure 3.1. Staggered grid for U-velocity component at a constant z-plane 
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3.3 General Transport Equation 

All conservation equations have similar structure. Thus a generalized equation of 

the governing equations can be applied to the flow and energy equations [37]. 

The generalized steady state transport equation for the variable φ  can be written as 

 ( ) ( )V Sφ φρφ φ∇ = ∇ Γ ∇ +  (3.1) 

The left hand side of Eq. (3.1) represents the convection term, and the right hand 

side represents diffusion and source terms, respectively. 

The transport equation can be identified by substituting the variables into Eq. (3.1). 

The values for the transport variables, diffusion coefficients and source terms for 

governing equations are given in Table 3.1. 

 
Table 3.1. Values for the general transport equation 

Transport 
variable (φ) 

Diffusion 
coefficient ( φΓ ) Source term( φS ) Equation 

1 0 0 Mass Conservation 

u μ  /p x−∂ ∂  X-Momentum 

v μ  /p y−∂ ∂  Y-Momentum 

w μ  /p z−∂ ∂  Z-Momentum 

T pCk /  Eq. (2.5) Energy 
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3.4 Finite Volume Discretization 

The finite volume technique presents considerable advantages because of its 

simplicity, easy numerical implementation, and applicability for dealing with complex 

geometries. The most significant characteristic is that the finite volume technique is 

conservative by construction; which means that for each finite control volume inside the 

computational domain the resulting discretized approximations for each property express 

an exact balance between the control volume and its neighbors [38]. In this research, the 

finite volume technique is applied to solve the momentum, energy, and radiative heat 

transfer equations. 

The numerical solution domain is divided into a finite number of non-overlapping 

control volumes, and the conservation equations are applied to each control volume. At 

the center of each control volume lies a node point at which the variable values are to be 

calculated.  

Figure 3.2 shows a schematic diagram of a control volume with dimensions Δx, Δy, 

and Δz. In Figure 3.2 the P is the nodal point and the N, S, W, E, T, and B represent the 

neighboring nodal points in each coordinate direction. The subscripts n, s, w, e, t, and b 

represent the face of the control volume at each coordinate direction. The variables δX, 

δY, and δZ are the distances (diffusion lengths) between the central point and the 

neighboring points according to the coordinate direction. 

The numerical discretization implies that the transport equation for the variable φ 

would be expressed as an algebraic equation for each control volume inside the domain 

that involves the values of the physical quantity at the control volume and its neighbors.  
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Figure 3.2. Control volume element with neighboring nodal points 

 

A finite volume technique involves an integration of the transport equation for each 

control volume in the computational domain as follows: 

 ( ) ( )
cv cv cv

V dv dv S dvφ φρφ φ∇ = ∇ Γ ∇ +∫ ∫ ∫  (3.2) 

The discretized form of the governing equation can be obtained after integration 

followed by applying the divergence theorem in Eq. (3.2) 

The discretized governing equation becomes 
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( )

e w

s n

t b

u dydz u dydz
x x

v dxdz v dxdz
y y

w dxdy w dxdy S dxdydz
z z

φ φ

φ φ

φ φ φ

φ φρ φ ρ φ

φ φρ φ ρ φ

φ φρ φ ρ φ

∂ ∂⎛ ⎞ ⎛ ⎞− Γ − − Γ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
+ − Γ − − Γ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞+ − Γ − − Γ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (3.3) 

As shown in Eq. (3.3), a combined convective and diffusive flux must be known at 

the control volume faces. The fluxes are defined at the control volume surfaces in each 

direction, but they need to be expressed with the value of the neighboring nodal points. 

In order to find an appropriate approximation to evaluate the convection-diffusion flux at 

the face of the control volume several methods have been developed, such as central 

difference, upwind, exponential, hybrid, and power law schemes. Patankar developed the 

so-called power law scheme [35], which is an approximation of the exact solution of the 

one-dimensional convection-diffusion behavior for the property φ. The Power Law 

scheme is represented by the equation below; 

 ( )5
( ) max 0, 1 0.1A P P= −  (3.4) 

where P (cell Peclet number) is the ratio of flow to diffusion variables as  

 /i i iP F D=  (3.5) 

 ( )i iF u Aρ= Δ  (3.6) 

 i
i

D A
x
φ

δ
Γ⎛ ⎞

= Δ⎜ ⎟
⎝ ⎠

 (3.7) 

Note that the value of φΓ  is evaluated using the harmonic mean of properties in the 

neighboring nodal points.  
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The discretized transport equation in three-dimensions is represented as follows: 

 
1

n

P p i i
i

a a S x y zφφ φ
=

= + Δ Δ Δ∑  (3.8) 

where  

 ( ) ,0E e e ea D A P F= + −  (3.9) 

 ( ) ,0W w w wa D A P F= +  (3.10) 

 ( ) ,0N n n na D A P F= + −  (3.11) 

 ( ) ,0S s s sa D A P F= +  (3.12) 

 ( ) ,0T t t ta D A P F= + −  (3.13) 

 ( ) ,0B b b ba D A P F= +  (3.14) 

 P E W N S T Ba a a a a a a= + + + + +  (3.15) 

In Eq. (3.8) the sub index “P” refers to the nodal point and the “n” should be 

interpreted as the number of neighbors surrounding 6 nodal points in a three dimensional 

problem. The operator ,a b   is equivalent to max [a,b] and returns the larger one 

between two numbers.  

Note that the radiative source term in the energy equation is the function of 

temperature. In such case this dependence could result in numerical instabilities, which 

precludes reaching a convergent solution. Thus, we must express this dependence in a 

linear form to avoid the numerical instabilities by following method [35] 
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*

* *( )c P P P P
dSS S S T S T T
dTφ

⎛ ⎞= + = + −⎜ ⎟
⎝ ⎠

 (3.16) 

where the asterisk symbol was used to represent the previous value of the marked 

variables. Only negative values of SP are allowed to facilitate a diagonal dominance 

condition that ensures at least one solution to the linear system of equations [35]. 

Considering the source term linearization, the discretized transport equation in 

three-dimensions is written below. 

 
1

n

P p i i
i

a a bφ φ
=

= +∑  (3.17) 

where  

 cb S x y z= Δ Δ Δ  (3.18) 

 P E W N S T B Pa a a a a a a S x y z= + + + + + − Δ Δ Δ  (3.19) 

The coefficients of other nodal points are not changed.  

From this final form for the general transport equation we can solve the continuity, 

momentum, and energy equations. We need to solve the radiative equation to find the 

source term in the energy equation. Thus the next step is the solution procedure for the 

radiative transport equation.  

 

3.5 Finite Volume Discretization of Radiative Transfer Equation 

Since radiative intensities have to be solved in the spatial and angular domains, 

the discretization procedure of Eq. (2.6) should include these two discretizations. To 

discretize Eq. (2.6) the finite volume method was used. The finite volume method for 
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radiative heat transfer has formulated the discretization by integration over the spatial 

control volume and angular control angle. The control angles used in this study are the 

solid angles proposed by Chui et al. [39], and a typical control angle is shown in Figure 

3.3. The angular space is subdivided into MNN =× ϕθ control angles.  

 
Figure 3.3. A typical angular direction. 

 

Integrating Eq. (2.6) over a control angle and control volume can be written as 

  ( ) ( )
l l

l l l l l l

v v
I s n dv d I S dv dβ

ΔΩ Δ ΔΩ Δ
⋅ Ω = − + Ω∫ ∫ ∫ ∫  (3.20) 

Applying the divergence theorem in Eq. (3.20) gives 

  ( ) ( )
l l

l l l l l l

A v
I s n dAd I S dv dβ

ΔΩ Δ ΔΩ Δ
⋅ Ω = − + Ω∫ ∫ ∫ ∫  (3.21) 

In the control volume approach, the intensity within a control volume is assumed to be 

constant. With this assumption, Eq. (3.21) can be simplified to 
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6

1
( ) ( )

l

l l l l l l
i i i

i
I A s n d I S vβ

ΔΩ
=

Δ ⋅ Ω = − + Δ ΔΩ∑ ∫  (3.22) 

  
14

M
l l l l l

b
l

S I Iσκ
π

′ ′ ′

′=

= + Φ ΔΩ∑  (3.23) 

The left hand side of Eq. (3.22) represents the inflow and outflow of radiative 

energy across the six control volume faces, and the right hand side represents the 

attenuation and augmentation of radiative energy within a control volume. Note that in 

Eq. (3.22) the magnitude of the intensity is assumed constant, but the radiation direction 

varies within a control angle. In Eq. (3.23) l l′Φ is the average scattering phase function 

from control angle l to l′ . In the finite volume method, the phase function in Eq. (2.9) can 

be expressed as 

  
14

( , )
M

l l l l l

l
s s d

π

′ ′

′=

Φ Ω = Φ ΔΩ∑∫  (3.24) 

Chui et al. [39] proposed the approach to evaluate the average scattering phase function 

as follows: 

Using the source term linearization of Patankar [35], the modified extinction 

coefficient and the modified source function can be expressed as [20] 

  ( )
4

l ll l
m

σβ κ σ
π

= + − Φ ΔΩ  (3.25) 

  
1,4

M
l l l l l
m b

l l l

S I Iσκ
π

′ ′ ′

′ ′= ≠

= + Φ ΔΩ∑  (3.26) 

With these expressions, Eq. (3.22) becomes 

  
6

1
( ) ( )

l

l l l l l l
i i i m m

i
I A s n d I S vβ

ΔΩ
=

Δ ⋅ Ω = − + Δ ΔΩ∑ ∫  (3.27) 
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From Eq. (2.16) the discretized boundary condition for an opaque diffuse wall is 

expressed as 

  
l
cx

l lw
w w B w cx

D

I I I Dρε
π ′

′ ′= + ∑  (3.28) 

To relate the intensity at the boundaries of control volumes to the nodal 

intensities, a spatial differencing scheme is needed. The diamond scheme was used in the 

present study and the final discretized equation could be expressed as follows [40]: 

 l l l l l l l l l l l l l l
P P W W E E S S N N B B T Ta I a I a I a I a I a I a I= + + + + +  (3.29) 

where 

 ( )max ,0l l l
W e ce w cwa A D A D= Δ − Δ  (3.30) 

 ( )max ,0l l l
E w cw e cea A D A D= Δ − Δ  (3.31) 

 ( )max ,0l l l
S n cn s csa A D A D= Δ − Δ  (3.32) 

 ( )max ,0l l l
N s cs n cna A D A D= Δ − Δ  (3.33) 

 ( )max ,0l l l
B t ct b cba A D A D= Δ − Δ  (3.34) 

 ( )max ,0l l l
T b cb t cta A D A D= Δ − Δ  (3.35) 

 
( ) ( ) ( )

( )
max 2 ,0 max 2 ,0 max 2 ,0

max 2 ,0

l l l l
P e ce w cw e ce

l l
w cw P P

a A D A D A D

A D Vβ

= Δ + Δ + Δ

+ Δ + Δ ΔΩ
 (3.36) 

 l l
P Pb S V= Δ ΔΩ  (3.37) 

 ( )l l l l
ce cw xD D s n d= − = ⋅ Ω∫  (3.38) 
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 ( )l l l l
cn cs yD D s n d= − = ⋅ Ω∫  (3.39) 

 ( )l l l l
ct cb zD D s n d= − = ⋅ Ω∫  (3.40) 

A typical angular direction is defined by the polar angle (θ) and the azimuthal 

angle (ϕ ), and is expressed as 

 (sin cos ) (sin sin ) coss i j kθ φ θ φ θ= + +  (3.41) 

This discretization of the radiative heat transfer equation resulted in a set of 

algebraic equations of intensity. The process of intensity calculation was repeated for all 

specified intensity directions. The detailed procedure is written below [30]. 

1.  Guess an intensity field. 

2.  March in one direction, 0l
cxD > , 0l

cyD > , and 0l
czD >  

(a) Calculate the boundary intensity from Eq. (3.28). 

(b) Solve for the nodal intensity using Eq. (3.29). 

(c) Repeat steps 2(a) and 2(b) for all 0l
cxD > , 0l

cyD > , and 

0l
czD > directions. 

3.   Repeat Step 2 for 0l
cxD > , 0l

cyD > , and 0l
czD < directions. 

4.   Repeat Step 2 for 0l
cxD > , 0l

cyD < , and 0l
czD > directions. 

5.   Repeat Step 2 for 0l
cxD > , 0l

cyD < , and 0l
czD < directions. 

6.   Repeat Step 2 for 0l
cxD < , 0l

cyD > , and 0l
czD > directions. 

7.   Repeat Step 2 for 0l
cxD < , 0l

cyD > , and 0l
czD < directions. 
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8.  Repeat Step 2 for 0l
cxD < , 0l

cyD < , and 0l
czD > directions. 

9.  Repeat Step 2 for 0l
cxD < , 0l

cyD < , and 0l
czD < directions. 

10.  Repeat the cycle, from Step 2 to 9, with the previous iteration field 

until the solutions satisfy the convergence criteria. 

 

3.6 SIMPLE Algorithm 

 The general calculation procedure is based on the solution of the general 

transport equation. However, the momentum equations require a separate treatment 

because of the staggered grid and existence of the pressure term. The pressure-correction 

and pressure equations should be included in the overall procedure. The particular 

treatment of these equations used in this study is called SIMPLE procedure. The 

SIMPLE algorithm stands for Semi-Implicit Method For Pressure-Linked Equations. 

The calculation procedure of SIMPLE algorithm is outlined as follows [35]: 

1. Start with the guessed value for the pressure field p*. 

2. Using the guessed pressure distribution in step 1, calculate the coefficient in 

the momentum equations and obtain u*, v* and w*.  

3. Solve the pressure correction p′ . The pressure correction is obtained by 

integrating the continuity equation for each control volume using the velocity 

values computed in step 2. If the pressure distribution is equal to zero, then no 

further pressure correction is needed. 

4. Update the pressure field by the addition of the guessed pressure p* to the 

pressure correction p′ , as follows: 



 34

 *p p p′= +  (3.42) 

5. Update the new value u, v, and w from their guessed values using the velocity 

correction formula as follows: 

 ( )* e
e e P Eu

p

Au u P P
a

′ ′= + −  (3.43) 

 ( )* n
n n P Nv

p

Av v P P
a

′ ′= + −  (3.44) 

 ( )* t
t t P Tw

p

Aw w P P
a

′ ′= + −  (3.45) 

6. Replace guessed pressure ( p′ ) with new updated pressure field (Eq. 3.42). 

Return to step 2 and repeat procedure until pressure and velocity fields 

converge. 

7. Solve the discretized equations for the other scalar variables (i.e. temperature). 

 

3.7 Tri-Diagonal Matrix Algorithm (TDMA) 

There are two categories for solving the discretized equation: direct methods and 

iterative method. The iterative method has an advantage of accuracy and memory 

storage, but needs many iterations for convergence. 

When the discretized equations associated with the nodes in any particular plane 

are being solved, the currently available values of the dependent variables at the nodes 

on neighboring planes are treated as known values. To solve the discretized equation in 

the plane of interest a line-by-line TDMA is used. The TDMA [41] procedure is repeated 

plane-by-plane until the entire computational domain is swept. During the solution 
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process variables in other dimensions are treated as known values, and variables along 

each line are updated.    

In this study, a three-dimensional computational domain is swept as follows: 

1. For x-direction TDMA solving, sweep from south to north and from bottom 

to top. 

2. For y-direction TDMA solving, sweep from west to east and from bottom to 

top. 

3. For z-direction TDMA solving, sweep from south to north and from west to 

east. 

Many sweeps of the computational domain in alternating directions are needed to 

obtain a converged solution.  

 

3.8 Numerical Procedure and Convergence Criteria 

The appropriate under-relaxation factors are imposed to avoid instability in the 

solution. Relaxation factor for velocity components, pressure, and temperature fields 

were set at 0.7, 0.4, and 0.6, respectively. 

The numerical computing order for one iteration cycle is as follows. First, the 

momentum equation was solved to obtain velocities. After the velocity and pressure 

fields were obtained, the radiative heat transfer equation was solved to get the intensity 

and the divergence of radiative heat flux, which were used as a source term in the energy 

equation. When the maximum relative change of the radiative intensities fell below 610− , 

the intensities were stored as the initial values of the radiative heat transfer equation for 
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the next iteration, and the radiative heat flux was calculated. After we obtained the 

temperature distribution from the energy equation, all thermophysical properties were 

updated. This procedure was repeated until the convergence criteria were satisfied. The 

convergence criteria for velocity components and pressure are defined as follows [42]: 

 
( )e e nb nb e P E

nodes
U u

e e

a U a U A P P
R

a U
ε

− − −
= ≤

∑ ∑
 (3.46) 

 
( )n n nb nb n P N

nodes
V v

n n

a V a V A P P
R

a V
ε

− − −
= ≤

∑ ∑
 (3.47) 

 
( )t t nb nb t P T

nodes
W w

t t

a W a W A P P
R

a W
ε

− − −
= ≤

∑ ∑
 (3.48) 

 
( ) ( ) ( )w e s n b t

nodes
P p

in

U U dydz V V dxdz W W dxdy
R

U LH

ρ
ε

ρ

− + − + −
= ≤

∑
 (3.49) 

The convergence tolerance in this study was set to less than 61 10−×  for velocity, 

pressure, and temperature fields. For the temperature field, the convergence criteria 

required that the maximum relative change of each value between successive iterations 

be less than 61 10−× .  
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4. VALIDATION AND GRID INDEPENDENCE 

 

4.1 Numerical Validation 

The numerical code was validated by reproducing results for three different 

problems: the friction factor and Nusselt number in rectangular ducts for pure forced 

convection, the temperature distributions in a rectangular enclosure filled with a 

participating medium, and Xu-line adjacent to backward-facing step for pure forced 

convective flow. In addition, to benchmark this code a three-dimensional combined 

convection and radiation in a rectangular channel without no steps was studied. 

 

4.1.1 Forced Convective Flow through a Square Horizontal Channel 

The first validation test was to study fully developed fluid flow in a rectangular 

duct. Shah and London [34] compiled data of flow and heat transfer for various cases. 

The friction factor and Nusselt number for a rectangular duct were used for validating 

this code. In the present 3-D code the source term in the energy equation (Eq. 2.4), was 

set to zero so that the temperature field could be compared with the ones by Shah and 

London [34] for fully developed flow in a straight channel of arbitrary length. The 

product of friction factor f and Re for fully developed laminar flow through a square 

channel is 57.048. The peripheral average local Nusselt number for constant wall 

temperature case was calculated using the following definition for a straight channel: 

 ,

h
w x

p x
w b

TD
n

Nu
T T

⎛ ⎞∂⎛ ⎞
⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠=

−
 (4.1) 
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The parameters given by Shah and London [34] are compared with those calculated 

by current numerical code and are given in Table 4.1. Comparisons presented in Table 

4.1 lend credibility to our numerical predictions for flow and temperature fields without 

considering radiative heat transfer. 

 

Table 4.1. Comparison of Ref  and Nu for fully developed flow in a square channel 
 

Parameters Shah and London [34] Present numerical
model 

Percent 
difference 

Ref  56.908 57.048 0.246 
Nu 3.091 3.0945 0.129 

 
 

4.1.2 Radiative Trasnsfer in a Rectangular Enclosure 

The second validation test was that for simulating a pure radiative heat transfer in 

a three-dimensional rectangular enclosure duct with participating medium. For the 

purpose of the code validation with radiative heat transfer part, the present results were 

compared with those obtained by Menguc and Viskanta [15]. This proposed test case 

consisted of a rectangular enclosure ( 2 2 4m m m× × ) which was filled with an absorbing 

and emitting medium with 10.5mβ −= . A uniform volumetric heat source of 

35 /gq kW m=  was considered in the medium. The boundary conditions are given in 

Table 4.2. 
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Table 4.2. Boundary condition of rectangular enclosure [15] 
 

Boundary Temperature (K) Wall emissivity ( wε ) 
z=0 1200 0.85 
z=4m 400 0.70 
all other walls 900 0.70 
 

The simulated temperature distributions for the test case are shown in Figure. 4.1. 

Computations were performed on 25 25 25× ×  uniformly sized control volumes and 

8 24×  control angles. Calculated temperature distributions in three different z-planes are 

in agreement with those obtained by Menguc and Viskanta [15] using 3P -approximation 

and by Chai et al. [20] using a finite volume method.  
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Figure 4.1. Temperature distribution at y=1m 

 



 40

4.1.3 Forced Convective Flow over a Three-Dimensional Horizontal Backward-

Facing Step 

The third validation test was that pure forced convective flow over a three-

dimensional horizontal backward-facing step. Loci of all points of reattachment are 

called Xu-line. The primary vortex reattachment length (Xu-line) adjacent to the 

backward-facing step for pure forced convective flow was compared with those of Nie 

and Armaly [43]. They set the geometry as follows: a duct aspect ratio AR=8, an 

expansion ratio ER=2, and a step length equal to two times the step height. The 

numerical predictions using the present code were compared with the result for the same 

geometry. The Xu-line along the span-wise direction was used for validating the code. 

These distributions are presented in Figures 4.2 for Re=200 and 400. Flow at the inlet 

was considered to be fully developed and isothermal. The Reynolds number was defined 

based on the channel height and the bulk velocity at the channel inlet. The uniform grid 

used for this simulation was similar to the one used by Nie and Armaly in their 

numerical solution for this test problem. In the present numerical simulation a total of 

3.36x105 nodal points were distributed in 140x40x60 control volumes along the x, y, and 

z directions, respectively. z/(W/2)=0 and 1 represents the wall and the central plane 

respectively. Because the reattachment lines showed a symmetric behavior with respect 

to the central plane (z/(W/2)=1), we presented the graph on half of the channel along the 

bottom wall. It was seen that the numerical results compared well with those presented 

by Nie and Armaly [43].   
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Figure 4.2. Xu-line (Re=200 and 400) 

 

Based on the above results, it was concluded that the developed numerical code 

is an accurate one and could be reliably applied to study heat transfer and fluid flow over 

a three-dimensional backward-facing step problem under consideration. 

 

4.1.4 Combined Convective Radiative Flow through a Three-Dimensional Horizontal 

Channel 

The last validation test was that for simulating the combined convective radiative 

flow through a three-dimensional horizontal channel without a step. The effects of 
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Reynolds number, conduction-radiation parameters, absorption coefficient, and 

scattering albedo on the Nusselt number and bulk temperature profiles along the channel 

were predicted. This study was published in ‘International Journal for Computational 

Methods in Engineering Science and Mechanics’. In the interest of brevity a copy of this 

paper [25] is enclosed in Appendix A. 

 

4.2 Grid Set-up 

The geometry considered in this study is shown in Figure 2.1.  Because the step 

and the fluid flow region have different thermophysical properties, the computational 

domain presents discontinuities. To handle these discontinuities the computational 

domain is divided such that the control volume faces coincide with the location of the 

discontinuities as well as the physical boundaries. 

The grids were non-uniformly distributed and concentrated close to the step and 

corners in order to assure the accuracy of the numerical simulation using the grid 

expansion factor. The grid expansion ratio and grid positions are expressed by the 

following relation: 

 ( ) ( )
( )

1

1

n
i

i N

L e
n

e
δ

−
=

−
 (4.2) 

where ( )i nδ represents the distance from the wall to the face of the nth control volume, Li 

is the geometrical length that needs to be divided into the N total number of control 

volumes, and the e represents the grid expansion coefficient. Note that e=1 means that 

the grids are uniform.  
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Figure 4.5.  Non-uniform grid set-up in a constant x-plane 
 

The x-direction is the largest dimension in the computational domain because it is the 

stream-wise flow direction. The backward-facing step length (l) represents a small 

portion of the total length in the x-direction. Also, the velocity gradients in this zone are 

negligible because we treated the inlet flow as hydrodynamically fully developed It is 

also expected that the velocity gradient is large near the downstream of the backward-

facing step. For the above reasons, the region upstream of the backward-facing step was 

fitted with a uniform grid. The grid for the rest of the channel in the stream-wise 

direction was non-uniform with expansion ratio of 1.025.  

z 

y 

x 

W

H 
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In z-direction the smallest control volume is located at the side walls (z=0 and 

W), then the grid is spread to the central plane (z=W/2) with expansion ratio of 1.15. 

In y-direction we need to consider the solid region and the flow inlet region. A 

symmetry line was considered at half of the channel in the y-coordinate direction. Thus, 

the smallest control volume is located near y=0, H/2, and H. The grid is expanded to the 

middle of solid region (z=H/4) and the middle of the flow inlet height (z=3H/4) with 

expansion ratio of 1.15. 

To give a better understanding of the grid set-up in this geometry, each plane is 

shown in Figures 4.3 - 4.5. 

  

4.3 Grid Independence Study 

Grid independence of the solution was tested with several grid density changes in 

x-direction for Re 200, 20, 0.4, 300 ,H wT Kκ τ= = = = and 1,000 .inT K= We used 

expansion ratios of 1.025:1.15:1.25 for x, y, and z directions, respectively. The Nusselt 

number at the outlet was monitored to declare grid independence (Table 4.3). The 

difference in the results of the span-wise averaged total Nusselt number at the channel 

exit obtained using a ( x y zN N N× × ) = (160 40 40× × ) and (180 40 40× × ) was less than 

2%. Accordingly, we chose 160 40 40× ×  non-uniformly spaced grids in this study to 

make parametric runs. 
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Table 4.3. Grid independence study - span-wise averaged total Nusselt number at the 
channel outlet 

Grid size Total number of cells Percent difference
in number of cells Nu Percent 

difference in Nu

120 40 40× ×  192000  4.9868  

140 40 40× ×  224000 16.67 4.7925 3.896 

160 40 40× ×  256000 14.29 4.7175 1.565 

180 40 40× ×  288000 12.5 4.6835 0.721 
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5. RESULTS AND DISCUSSION 

 

5.1 Parameters and Definitions 

The optical thickness represents the total strength of absorption and scattering. 

The optical thickness is one of the parameters affecting radiative energy transfer, and is 

defined as  

 ( )Hτ κ σ= +  (5.1) 

The relative ratio of absorption and scattering can be described using scattering 

albedo as follows: 

 σω
κ σ

=
+

 (5.2) 

Once the velocity, radiative intensity, and temperature fields are converged, the 

bulk temperatures along the channel were calculated using the following equation: 

 p
b

p

C u Tdydz
T

C u dydz

ρ

ρ
= ∫∫

∫∫
 (5.3) 

We also have interest in the thermal entry length. Thus we define the bulk mean 

temperature as: 

 b w
b

in w

T T
T T

θ −
=

−
 (5.4) 

 

The definitions for the averaged span-wise convective (Nuc), radiative (Nur), and 

total Nusselt numbers (Nut) are given as follows:  
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( )
( )

0y
c

b w

dTH dy
Nu

T T
==

−
 (5.5) 

 
( )

0|r y
r

b w

H q
Nu

k T T
=⋅

=
−

 (5.6) 

 t c rNu Nu Nu= +  (5.7) 

where qr in Eq. (5.6) is radiative heat fluxes and is calculated by the summation of q 

from Eqs. (2.12)-(2.14). 

Also, the reattachment length (Xu) was studied. This reattachment length is the 

location along the bottom wall adjacent to the step where the shear stress ( 0/ |yu yμ =∂ ∂ ) 

is equal to zero. Loci of all points along the bottom wall wherein the wall shear stress is 

zero is termed as Xu-line. 

 

5.2 Effect of Optical Thickness 

The optical thickness of a medium is a well-known radiation property that affects 

the temperature distribution. Figure 5.1 illustrates the effect of the optical thickness 

( Hτ =0.1, 0.2, and 0.4) on the bulk mean temperature and Xu-line distribution for the 

non-scattering medium with Re = 200, 300 ,wT K= and 1,000inT K= . A higher value of 

Hτ  means that the medium’s ability to absorb and emit energy is greater. The bulk mean 

temperature for the pure forced convection case was also presented to compare the 

effects of radiation heat transfer. From this comparison, we can easily understand that 

the thermal development is augmented by radiation effect. For the case of Hτ =0.1 
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compared to Hτ =0.4, the bulk mean temperature gradually decreases from inlet to outlet 

(Figure 5.1(a)). It is evident from Figure 5.1(a) that the bulk temperature decreases with 

an increase in optical thickness. Also, the drop in bulk temperature is much steeper at 

higher values of optical thickness. As expected, the fluid participates in the radiation 

transfer process by absorbing more energy radiated from the wall and emitting more 

energy to the medium at higher optical thickness values. Hence, the medium approaches 

the wall temperature at a much shorter distance from the entrance at higher optical 

thickness values.  

Figure 5.1(b) shows the Xu-line distribution. In the vicinity of the side walls the 

highest (x-l)/s values for the Xu-line are found for all cases. This behavior can be 

explained by the no slip condition imposed on the side wall. Also, the minimum values 

are located approximately at z/(W/2)=0.5. This behavior is due to the influence of the 

viscous effects and the no slip condition imposed on the side walls. Note that the 

kinematic viscosity of the fluid decreases from 6 2121.9 10 /m s−×  to 6 215.89 10 /m s−×  in 

the temperature range of 1,000K to 300K. Figures 5.2 and 5.3 represent the variations of 

density and viscosity distributions for each case, respectively. In the temperature change 

from 1,000K to 300K the kinematic viscosity decreases by a factor of 7.6 and the density 

increases by a factor of 3.34. If we apply mass conservation to inlet and outlet, then the 

outlet bulk velocity can be calculated approximately as: 

 1 0.15
(3.335)(2)

in in
out in in in

out out

AU U U U
A

ρ
ρ

= = =  (5.8) 
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Figure 5.1. Effect of optical thickness: 
(a) bulk mean temperature; (b) Xu-line distribution 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.2. Density distributions at constant z-plane (z=0.02):  

(a) forced convection; (b)τH=0.2; (c)τH=0.4 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.3. Viscosity distributions at constant z-plane (z=0.02):  

(a) forced convection; (b)τH=0.2; (c)τH=0.4 
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(b) 

Figure 5.4. U-velocity profile at plane z=0.02 at different x positions: 
(a) forced convection; (b) τH=0.4 
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Figure 5.5. Temperature distributions for forced convection 
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Figure 5.6. Temperature distributions for Hτ =0.4 
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Figure 5.8. Span-wise averaged Nusselt number variation: 
(a) convective and radiative Nu; (b) total Nu  
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With a decrease in kinematic viscosity by a factor of 7.6 and bulk velocity by a 

factor of 6.67 Reynolds number increase by a factor of 1.15. Thus, the bulk temperature 

decreases in the direction of flow resulting in an increase in the Reynolds number. As a 

result the recirculation zone expands and the Xu-line shifts further downstream with an 

increase in optical thickness (Figure 5.1(b)). 

Figure 5.4 presents the U velocity component for the central plane in the span-

wise direction (z/W=0.5) at different x positions for pure forced convection and 

combined convective radiative flow with τH=0.4. The flow was fully developed at the 

inlet. Downstream of the backward-facing step, U velocity components have negative 

values near the bottom wall because of the recirculation of flow. This effect is much 

more significant for the case of combined convection and radiation due to the expansion 

of the recirculation zone.  

Results for the temperature distribution for the force convection and the case 

of Hτ =0.4 are presented along different planes in Figures 5.5 and 5.6, respectively. For 

both the forced convection and combined convection and radiation ( τ H=0.4) the 

temperature decreases along the channel. As expected, fluid is much cooler near the wall 

compared to the interior of the channel. Figure 5.7 shows the temperature contours for 

each value of the optical thickness. It is evident that the thermal penetration increases 

with increase in optical thickness.  

Figure 5.8 presents the effect of optical thickness on Nusselt numbers. Note that 

the definitions of convective, radiative, and total Nusselt number are different. At the 

entrance the convective and radiative Nusselt number distributions have the highest 



 60

value and then dramatically decrease. Near the step a rapid change in both convective 

and radiative Nusselt number variations were found because of the sudden geometrical 

change. Figure 5.8(a) shows that Nuc slightly decreases with an increase in optical 

thickness and Nur increases with an increase in optical thickness. It is evident from 

Figure 5.8(b) that Nut increases with an increase in optical thickness. This is to be 

expected as an increase in optical thickness implies that the radiation effect is dominant 

compared to the convective effect. Therefore Nuc decreases slightly with an increase in 

optical thickness, but Nur increases much more resulting in an increase in Nut.  

 

5.3 Effect of Scattering Albedo 

The effect of scattering albedo ( ω =0, 0.25, 0.5, 0.75, and 1) on the bulk 

temperature and reattachment length distribution for Hτ =0.2, Re=200, 300wT K= , and 

1,000inT K=  are shown in Figure 5.9. The scattering albedo ( ω ) is defined as 

/( )ω σ κ σ= + , ω =0 implies pure absorption (no scattering), and κ =0 implies pure 

scattering (ω =1). As ω  increases from 0 to 1 the medium changes from pure absorption 

to pure scattering. Thus the bulk temperature gradually decreases from inlet to outlet 

with an increase in ω  (Figure 5.9(a)). This is attributed to the fact that less radiative 

energy is converted to thermal energy in a pure scattering case compared to a pure 

absorption case. For reasons discussed in reference to Figure 5.1 a decrease in bulk 

temperature results in an increase in the size of the recirculation zone shifting the Xu-line 

further downstream. Hence, a decrease in ω  leads to a shift in the Xu-line further 

downstream.  
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Figure 5.9. Effect of scattering albedo (ω =0, 0.25, 0.5, 0.75 and 1): 
(a) bulk mean temperature; (b) Xu-line distribution 
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Figures 5.10 and 5.11 show density and viscosity variations with scattering 

albedo along the central plane (z/W=0.5). The density of the fluid is high at the walls 

and low towards the exit of the channel. The density increases from 0.35 to 1.16 kg/m3 

resulting in the variation of density by a factor of 3.3 in the temperature range of 1,000K 

to 300K. As discussed earlier ω=0 corresponds to pure absorption and ω=1 corresponds 

to the pure scattering. Accordingly, the extent of cooling (thermal penetration) is much 

smaller for ω=1 compared to ω=0. Hence, density variations are much steeper for the 

case of ω=0. For the same reasons, a decrease in the dynamic viscosity value is much 

steeper for the case of ω=0 (Figure 5.11). 

Figure 5.12 presents the U velocity component for the central plane in the span-

wise direction (z/W=0.5) at different x positions for pure scattering (ω=1) and pure 

absorption cases (ω=0). As discussed earlier, a decrease in bulk temperature results in an 

increase in the size of the recirculation zone shifting the Xu-line further downstream. 

Therefore, it is evident that ω =0 results in fully developed state further downstream 

than that for ω =1. 

Figure 5.13 shows the temperature contours for each value of scattering albedo. 

Nusselt number variation along the channel is shown in Figure 5.14. The Nuc 

distributions for each case are not much different from each other. The Nur increased 

with a decrease in scattering albedo due to radiation dominance in the media. The Nut 

for ω=0 is the largest among these cases, although Nuc is the smallest. 
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(a) 

 
(b) 

 
(c) 

Figure 5.10. Density distributions at constant z-plane (z=0.02):  
(a) ω=1; (b) ω=0.5; (c) ω=0 
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Figure 5.11. Viscosity distributions at constant z-plane (z=0.02): 
(a) ω=1; (b) ω=0.5; (c) ω=0 
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(b) 

Figure 5.12. U-velocity profile at plane z=0.02 at different x positions: 
(a) ω=1; (b) ω=0 
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Figure 5.14. Span-wise averaged Nusselt number variation: 
(a) convective and radiative Nu; (b) total Nu 
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6. CONCLUSIONS 

 

The present study investigates the characteristics of a combined forced 

convection and radiation problem in a three-dimensional channel with a horizontal 

backward-facing step. A finite volume based FORTRAN code was developed to 

simulate the flow and radiative heat transfer in the Cartesian coordinates.  A detailed 

analysis for the distribution of reattachment length, bulk temperature, and Nusselt 

number was carried out to investigate the radiation effect on fluid flow and heat transfer.  

Temperature distribution was influenced by radiation, depending on the 

absorption coefficient and the temperature, and was very different from that of pure 

forced convection. The radiation effects decrease with an increase in scattering albedo 

and a decrease in optical thickness. This reduction in radiation effects decreases thermal 

penetration. The fluid bulk temperature decreases with an increase in optical thickness or 

a decrease in scattering albedo which results in a decrease in kinematic viscosity which 

in turn increases the flow Reynolds number. An increase in Reynolds number implies 

dominance of inertial effects over viscous effects leading to an increase in the size of the 

recirculation zone shifting the Xu-line further downstream. An increase in optical 

thickness and decrease in scattering albedo represents the radiation dominance in the 

media. Therefore, the effect of radiative Nusselt number is greater than that of 

convective Nusselt number on total Nusselt number in the present study. 
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APPENDIX A 

 

NUMERICAL SIMULATION OF THREE-DIMENSIONAL 

COMBINED CONVECTIVE RADIATIVE HEAT TRANSFER 

- A FINITE VOLUME METHOD∗ 

 
 

A.1 Abstract 
 

Combined laminar forced convection and radiation heat transfer was numerically 

simulated in a three-dimensional channel flow. A finite volume method was used to 

solve the steady incompressible Navier-Stokes equations, energy equation, and radiative 

transfer equation. The effects of Reynolds number, conduction-radiation parameters, 

absorption coefficient, and scattering albedo on the Nusselt number and bulk 

temperature profiles along the channel are presented. Radiation was found to play a 

major impact on temperature field in the range of parameters considered in this study. It 

was found that the radiation effect is diminished, and thermal penetration is increased 

with increasing Reynolds number, conduction-radiation parameter, scattering albedo, 

and decreasing absorption coefficient.   

 

_____________ 
∗ Reprinted with permission from “Numerical Simulation of Three-Dimensional 
Combined Convective Radiative Heat Transfer-A Finite Volume Method” by M. Ko and 
N. K. Anand, International Journal of Computational Methods in Engineering Science 
and Mechanics, 8: 429-437, 2007, © Taylor & Francis Group, LLC.  
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A.2 Nomenclature 
 

jC  expansion coefficient ε  emissivity 

pC  specific heat of fluid κ  absorption coefficient 

, ,cx cy czD D D
 

defined quantities, Eqs. (A.14)-
(A.16) 

μ  dynamic viscosity 

hD  hydraulic diameter Φ  scattering phase function 

f friction factor l l′Φ  average energy scattered from 
control angle l′ to l 

G incident radiation φ  azimuthal angle 

I radiative intensity ρ  density 

bI  blackbody intensity σ  scattering coefficient 

k thermal conductivity of fluid 
sσ  Stefan-Boltzmann constant 

, ,x y zL L L  total length of channel in x,y,z 
directions 

DHτ  optical thickness 

crN  conduction-radiation parameter θ  polar angle 

Nu Nusselt number ω  scattering albedo 

xNu  local Nusselt number Ψ  scattering angle 

P pressure ξ  general variable 

Pe Peclet number   

, ,u v wR R R  residual for U,V,W Subscripts 

pR  residual for pressure  

s traveled distance i, j, k indices of nodes in x,y,z 
directions 

,c pS S  defined quantities,  
Eqs (A.23 and A.24) 

nb neighbor point 

l
mS  modified source function p central grid point 

U,V,W velocity component in x,y,z 
direction 

w,e,s,n,b
,t 

west, east, south, north, 
bottom, and top  

inU  inlet velocity   

T temperature  

bT  bulk temperature Superscript 

inT  inlet temperature   

wT  wall temperature l′ , l  
l
mβ  modified extinction coefficient  

l′ and l direction in control 
angle 

ΔΩ  solid angle   
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A.3 Introduction 
 

In various thermal engineering systems, such as glass manufacturing, oil or gas-

fired boilers, and in high temperature technological applications, interaction of 

conductive, convective and radiative heat transfer are important. In such situations, the 

conduction, convection and radiation modes in heat transfer must be considered in order 

to determine the velocity and temperature profiles.  

Heat transfer problems involving combined modes have been extensively studied 

and published in the literature. Wassel studied combined non-gray radiation and thermal 

diffusion for laminar and turbulent flows with uniform internal heat generation. He 

solved the integro-differential thermal equation using the Galerkin method for the 

laminar flow case and finite difference method for turbulent flow case. Im and 

Ahluwalia analyzed combined convective and radiative heat transfer in a rectangular 

duct by solving simultaneously the flow and radiative transport equations. They used the 

method of moments to simplify a radiative heat transfer equation. Kassemi and Chung 

reported the combined effects of laminar forced convection and various radiation effects 

on the flow in a two-dimensional rectangular channel. Fluid was considered to be 

absorbing, emitting, and isotropically scattering. They also presented a numerical model 

by a set of coupled nonlinear integro-partial differential equations using an element-to-

node approach. Kim and Lee studied a thermally developing Poiseuille flow with 

anisotropic scattering medium between two infinite parallel plates. They considered gray 

absorbing, emitting, and anisotropic fluid flow. Chai et al. discussed the effect of 

radiation in a two dimensional channel flow with a backward facing step and used the 
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discrete ordinates method to solve radiative heat transfer equation. They presented 

various effects important to combined mode heat transfer, but their work only showed 

isotherms for all cases. Their work did not show detailed heat transfer analysis; e.g. 

variation of Nusselt number and bulk temperature along the flow direction and the effect 

of variation of wall emissivity and temperature. 

Among the methods to solve the radiative heat transfer with participating media, the 

finite volume method has been used. If the finite volume method is used for radiation 

calculation, the procedure is very efficient because a radiation heat transfer calculation 

procedure can share the same computational grid as used for other dependent variables 

in the finite volume method, and we have full flexibility in positioning the spatial and 

angular grids. Mezrhab et al. described a numerical study of the radiation-natural 

convection interaction in a differentially heated cavity with an inner body. They 

developed a finite volume method for the solutions of the governing differential 

equations and discussed the radiation and convection interaction. Chiu et al. studied 

numerically the mixed convective heat transfer with radiation effects in a horizontal duct. 

They used a discrete ordinates method to solve a radiative transfer equation and the 

vorticity-velocity method to solve the momentum and energy equation simultaneously. 

The effects of buoyancy force and radiation on temperature, friction factor, and Nusselt 

number were presented.     

The above cited references show that in the past investigators have tried to solve the 

combined mode heat transfer equations with participating media. However, most of them 

were confined to solve a two-dimensional model for a combined heat transfer problem. 
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The main objective of this study is to present and understand the effects of combined 

conduction, convection, and radiation on temperature field of a flow in a three-

dimensional channel using a finite volume method. Contributions in the present paper 

differs from the ones in the literature in the following ways: (1) this is the first attempt to 

study combined convection-radiation in a 3-D channel using a finite volume technique, 

(2) span-wise averaged local Nusselt number and bulk temperature are presented for 

combined convection and radiation in presence of a participating medium, and (3) the 

present paper serves as validation for us to study 3-D combined convection-radiation in 

Cartesian geometry. In this respect the present contribution has both research and tutorial 

value. We have developed a numerical code that can handle absorbing-emitting, 

isotropic or anisotropic scattering, gray, and heat generating medium and showed the 

effect of various dimensionless parameters and wall temperature on Nusselt number and 

bulk temperature along the channel or cross section.  

In the following sections, the governing equation for flow fields and radiative heat 

transfer equations, development of a finite volume technique and solution methodology, 

validation and grid independence of the algorithm, and result of various independent 

parameters on temperature field are presented. 

 
A.4 Problem Formulation 

 

Figure A.1 shows the geometry under consideration. The axial length of the channel 

is equal to 20 times the hydraulic diameter of the channel. In this study, three-

dimensional laminar incompressible flow and temperature fields are simulated. Variation 
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of thermophysical properties of the fluid was accounted for using piecewise-linear 

function of temperature. The medium was assumed to be gray and viscous dissipation 

was neglected.  

Based on these assumptions, the mass conservation, momentum, and energy 

equations governing the fluid motion and the temperature distribution expressed in the 

Cartesian coordinate can be written as: 

 

 

 

 

 

  

 
Figure A.1. Geometry 

 

Continuity 

 0Vρ∇ ⋅ =  (A.1) 

Momentum 

 ( ) ( )V V P Vρ μ⋅ ∇ = −∇ + ∇ ⋅ ∇  (A.2) 

Energy  

 ( ) ( ) ( )4

4
4P sC V T k T T Id

π
ρ κ σ⋅ ∇ = ∇ ⋅ ∇ − − Ω∫  (A.3) 

Note in the energy equation of Eq. (A.3) source term appears on the right-hand 

Ly
x y

z 
Lx

Lz 

Flow 
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side, ( )4

4
4 sT Id

π
κ σ − Ω∫ , which is the divergence of radiative heat flux, i.e., 

  ( )4

4
4 (4 )s bq T Id I G

π
κ σ κ π∇ ⋅ = − Ω = −∫  (A.4) 

This radiative source term in energy equation is an important quantity in combined 

heat transfer cases with a participating media because this term is function of 

temperature and significantly affects the temperature distribution. 

The linearized radiation transfer equation for absorbing, emitting, and scattering 

gray medium is defined as 

  
l

l l l
m m

dI I S
ds

β= − +  (A.5) 

where the superscript l  represents the angular direction of interest. The radiant intensity 

I depends on spatial position and angular position. The modified extinction coefficient 

l
mβ  and the modified source function l

mS  are defined as follows:      

  ( )
4

l ll l
m

σβ κ σ
π

= + − Φ ΔΩ  (A.6) 

  
1,4

L
l l l l l
m b

l l l

S I Iσκ
π

′ ′ ′

′ ′= ≠

= − Φ ΔΩ∑  (A.7) 

where l′ represents the in-scattering from all possible directions. 

Approximately, the scattering phase function is defined by a finite series of 

Legendre polynomials as 

  
0

(cos ) (cos )
K

l l
j j

j

C P′

=

Φ = Φ Ψ = Ψ∑  (A.8) 

Where Ψ  is the scattering angle and represents the angle between radiation direction 
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l and l′ . The jC s are called the phase function expansion coefficients and Table A.1 

gives these values for an isotropic and two anisotropic scattering phase functions used in 

this study. In Table A.1, F represents forward scattering phase functions, and B 

represents backward scattering phase functions. Further explanation about these phase 

function expansion coefficients can be found in Kim and Lee. 

Fluid enters the domain with a uniform velocity and temperature, inU and inT , 

respectively, and the walls are maintained at temperature wT . The difference between 

inlet ( inT ) and wall ( wT ) temperature is chosen such that the radiation effects in the 

channel will be significant. Because the values of thermophysical properties depend on 

temperature, the flow field is coupled with the energy field including radiation source 

term. To handle the temperature distribution in the radiative transfer equation, we set the 

inlet and outlet walls to be pseudo-black walls with prescribed temperature, inT and wT , 

respectively. 

Air at a very high temperature relative to wall temperature enters the channel. The 

uniform inlet velocity, inU , is computed by the Reynolds number and hydraulic diameter. 

With these settings, we studied the effect of independent parameters such as Reynolds 

number (Re), Planck number 3

( )
4cr

s in

kN
T

κ σ
σ

⎛ ⎞+
=⎜ ⎟

⎝ ⎠
, absorption coefficient ( κ ), and 

scattering albedo ( σω
κ σ

=
+

) on bulk temperature and Nusselt number along the 

channel. 
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Table A.1. The phase function expansion coefficients  
 

j Isotropic F B 
0 1.000 1.000 1.000
1  2.536 -0.565
2  3.565 0.298
3  3.980 0.086
4  4.002 0.010
5  3.664 0.001
6  3.016  
7  2.233  
8  1.303  
9  0.535  

10  0.201  
11  0.055  
12  0.011  

Phase function 
asymmetry factor 0.000 0.845 -0.188

 
 
A.5 Solution Technique 
 
 

Flow fields along with the related boundary conditions are solved using a finite 

volume method. In this procedure, the momentum and energy equation inside the 

computational domain are discretized.  Pressure and velocity fields are linked by the 

SIMPLE algorithm. Solution to the one-dimensional convection diffusion equation is 

represented by the power law. All scalar properties including pressure and temperature 

are located at the main grid nodes. But the nodes for velocities are placed at staggered 

locations in each coordinate direction. At the exit, it is important to note that axial 

gradients of all variables are neglected and the ratio of overall mass flow in and out 

inside the domain are used for correcting the outlet velocities. The discretized equations 

for velocity component and pressure at each plane in Cartesian coordinates were solved 
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by the line-by-line method, which is a combination of the Tri-Diagonal Matrix 

Algorithm (TDMA) and the Gauss-Seidal procedure.  

For computational stability under-relaxation factor was used for velocity variable in 

momentum equations. The momentum and pressure relaxation factors are set between 

0.5 and 0.7. The convergence criteria for velocity components and pressure are defined 

as follows:  

 
( )e e nb nb e P E

nodes
U u

e e

a U a U A P P
R

a U
ε

− − −
= ≤

∑ ∑
 (A.9) 

 
( )n n nb nb n P N

nodes
V v

n n

a V a V A P P
R

a V
ε

− − −
= ≤

∑ ∑
 (A.10) 

 
( )t t nb nb t P T

nodes
W w

t t

a W a W A P P
R

a W
ε

− − −
= ≤

∑ ∑
 (A.11) 

 
( ) ( ) ( )w e s n b t

nodes
P p

in x y

U U dydz V V dxdz W W dxdy
R

U L L

ρ
ε

ρ

− + − + −
= ≤

∑
 (A.12) 

The convergence tolerance in this study is set to less than or equal to 61 10−×  for all 

variables. 

A finite volume method proposed by Chai et al. is used to discretize the Eq. (A.5). 

The upwind scheme was used for a spatial differencing which is needed to relate the 

boundary intensities to the nodal intensities. The final discretization equation for the 

upwind scheme can be expressed as 
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( )

( )
l l l l l l l l
cx W cy S cz B ml P

p l l l l l
cx cy cz m P

D I y z D I x z D I x y S x y z
I

D y z D x z D x y x y zβ

Δ Δ + Δ Δ + Δ Δ + ΔΩ Δ Δ Δ
=

Δ Δ + Δ Δ + Δ Δ + ΔΩ Δ Δ Δ
 (A.13) 

where  

 2( ) sin cosl l l
cx xD s n d d d

θ φ

θ φ θ φ= ⋅ Ω =∫ ∫ ∫  (A.14) 

 2( ) sin sinl l l
cy yD s n d d d

θ φ

θ φ θ φ= ⋅ Ω =∫ ∫ ∫  (A.15) 

 ( ) sin cosl l l
cz zD s n d d d

θ φ

θ θ θ φ= ⋅ Ω =∫ ∫ ∫  (A.16) 

 sin d d
θ φ

θ θ φΔΩ = ∫ ∫  (A.17) 

Angular direction shown in Figure A.2 is expressed as 

 (sin cos ) (sin sin ) coss i j kθ φ θ φ θ= + +  (A.18)  

A detailed procedure for the discretization of equation using a finite volume method 

is given in Chai and Patankar. Using Eq. (A.13) and related boundary conditions, the 

radiative intensity fields are obtained. 
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Figure A.2. Angular direction 

.  

The energy equation for forced convection, Eq. (A.3), is solved with the velocity 

fields and radiative source term. Because the radiative source term in the energy 

equation depends on temperature, we must express the dependence in a linear form to 

avoid the numerical instabilities. In a finite volume discretization technique the source 

term is transformed through a linearization as shown below 

 c p pS S Sφ φ= +  (A.19) 

Considering this source term linearization method, the final discretized energy 

equation is expressed as 

 p p nb nba T a T b= +∑  (A.20) 

where 

 P W E S N B T pa a a a a a a S x y z= + + + + + − Δ Δ Δ  (A.21) 

φ

θ
z

x

k

i

j

r

y

s
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 cb S x y z= Δ Δ Δ  (A.22) 

 ( )4(1 ) 12c s p
p

S T G
C
ω β σ

ρ
−

= +  (A.23) 

 16 (1 )s
p

p

S
C

σ ω β
ρ

−
= −  (A.24) 

and the coefficients for the all nodal points, ia , are given in Patankar. 

The numerical computing order in this study is as follows. It starts with the solution 

of momentum equations. After the velocity and pressure fields are obtained, we start to 

solve the linearized radiative heat transfer equation to calculate radiative intensities. 

When the maximum relative change of the radiative intensities falls below the prescribed 

value, the intensities are stored for the initial values for the radiative heat transfer 

equation in the next iteration, and the incident radiation energy is calculated and used in 

the energy source term. After we calculate the temperature distribution from the energy 

equation, all thermophysical properties are updated. This procedure is repeated until the 

temperature between two successive iterations is less than or equal to a prescribed value. 

The definition for convergence criteria used for radiative intensity and temperature is 

presented as follows: 

 
1

, , , , 6
1

, ,

10
n n
i j k i j k

n
i j k

Rφ

ξ ξ
ξ

+
−

+

−
= ≤  (A.25) 

This is also equivalent to monitoring the residuals as shown by Kim et al.  
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A.6 Validation and Grid Independence 

 

A reference case of the fully developed fluid flow problem for a rectangular duct is 

used to validate the current 3-D code. Shah and London compiled data of flow and heat 

transfer for various cases. The friction factor and Nusselt number for rectangular duct 

are used for validation of our code. In present 3-D code the source term in the energy 

equation, Eq. (A.4), was set to zero so that the temperature field could be compared with 

the ones by Shah and London for fully developed flow in a straight channel of arbitrary 

length. The product of friction factor f and Re for fully developed laminar flow through a 

square channel is 57.048. The peripheral average local Nusselt number for constant wall 

temperature case is calculated using the following definition for a straight channel: 

 
h

w x
x

w b

TD
n

Nu
T T

⎛ ⎞∂⎛ ⎞
⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠=

−
 (A.26) 

The parameters given by Shah and London are compared with those calculated by 

current numerical code and are given in Table A.2. Comparisons presented in Table A.2 

show and lend credibility to our numerical predictions for flow and temperature fields 

without considering radiative heat transfer. 

 
Table A.2 Comparison of Ref  and Nu for fully developed flow in a square channel 
 

Parameters Shah and London Present numerical
model 

Percent 
difference 

Ref  56.908 57.048 0.246 
Nu 3.091 3.0945 0.129 
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The three-dimensional rectangular box like furnace ( 2 2 4m m m× × ) of Chai et al. 

was chosen as the next benchmark problem to validate the radiative heat transfer part of 

the code because they applied a finite volume method to absorbing and emitting medium 

with heat source. They considered a medium with extinction coefficient of 10.5mβ −=  

and a heat generation of 35 /gq kW m= . The following boundary conditions are used in 

this calculation: 
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Figure A.3. Temperature distribution at y=1m 
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Once the blackbody intensity is calculated using Eq. (A.4), the medium temperature 

can be obtained using 

 4
b b gE I Tπ σ= =  (A.27) 

The temperature distributions at 1y m=  and 0.4,2.0, 3.6x and m= of the furnace are 

compared with those predicted by Chai et al. and Menguc and Viskanta. Computations 

were performed on 25 25 25× ×  uniform control volumes and 8 24×  control angles. 

Figure A.3 shows that the numerical results very closely agree with those using the finite 

volume method of Chai et al. and the 3P -approximation of Menguc and Viskanta. Thus 

validates our code. 

For grid independence study a reference case of uniform grid with Re=400, Pr=0.7 

was chosen. To consider various radiative effects we also chose absorbing, emitting, and 

anisotropic backward scattering medium. For phase function B Table A.1 was used. Also, 

the following quantities were used, : 0.5, 0.5, 300wT Kκ σ= = = , and 1,000inT K= .  

The average Nusselt number distribution was monitored with increase in grid size 

and results are presented in Table A.3. The relative percent difference in average Nusselt 

number for 60 30 30× ×  and 75 38 38× ×  is less than 0.02%. Accordingly, we chose 

60 30 30× ×  uniformly spaced grid in this study. 
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Table A.3 Grid independence study for Re=400 and Pr=0.7 
 

Grid size Total number of cells Percent difference
in number of cells Nu Percent 

difference in Nu
30 15 15× ×  6,750  4.4873  
40 20 20× ×  16,000 137.037 4.4170 1.5666 
50 25 25× ×  31,250 95.313 4.3757 0.9350 
60 30 30× ×  54,000 72.800 4.3501 0.5850 
75 38 38× ×  108,300 100.556 4.3252 0.5724 

 
 
 
A.7 Results and Discussion 

 

A.7.1 Effect of Reynolds Number on Bulk Temperature and Nusselt Number 

 

The effect of the Reynolds number (Re=200, 300, and 400) on the temperature 

distribution of the non-scattering medium with DHτ =0.1, 300wT K= , 1,000inT K=  is 

shown in Figure A.4. For the case of Re=400 compared to Re=200, the bulk temperature 

and Nusselt number gradually decreased from inlet to outlet. It is evident that because of 

the inlet velocity augmentation for Re=400, the fluid flows faster and the radiation effect 

on temperature field diminishes. This result is clear when we change the energy equation, 

Eq. (A.3) into the dimensionless form, Eq. (A.28) as presented by Chai et al.  

 
42

21
Re Pr Re Pr

h

in in in cr in

DV T T T G
U T T N T

κβ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⋅ ∇ = ∇ − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (A.28) 

Note in radiative source term appeared on the second term of right-hand side and an 

increase in Reynolds number decreases the radiation effect. 
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Figure A.4  Effect of Reynolds number (Re=200,300, and 400) 
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A.7.2 Effect of Conduction-Radiation Parameter on Bulk Temperature 

 

The dimensionless bulk temperature distributions for combined mode heat transfer 

are calculated in the system with the assumption of a non-scattering medium, DHτ =1 and 

Re=300. inT  depends on conduction-radiation parameter and 0wT K=  is imposed at 

walls to simulate the large temperature variation between wall and inlet. This is shown in 

Figure A.5 for different values of conduction-radiation parameters ( crN =0.001, 0.01, 0.1, 

and 1) and without radiation. The simulation for crN =1 is very similar to the simulation 

without radiation. With a decrease in conduction-radiation parameter, the extent of 

thermal penetration decreases. This is attributed to the fact that radiation enhances the 

heat transfer when there is a large variation in temperature between the inlet and the 

walls. Hence, the medium reaches the wall temperature rapidly with an increase in 

conduction-radiation parameter. Thus the conduction-radiation parameter has significant 

effect on temperature field.   

 

A.7.3 Effect of Absorption Coefficient 

 

       Figure A.6 presents the temperature distribution for absorption coefficient (κ =1, 5, 

and 10) with crN =0.01, Re=300, and 300wT K= . The effect of absorption coefficient on 

temperature profiles is shown to be of considerable significance. It reveals that with an 

increase in absorption coefficient, radiation is a dominant mode of heat transfer and the 
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bulk temperature and the penetration depth had steeper gradients. As expected, the fluid 

participates in the radiation transfer process by absorbing more energy radiated from the 

wall and emitting more energy to the medium at a higher absorption coefficient. Hence, 

the medium approaches the wall temperature at a much shorter distance from the 

entrance at higher absorption coefficient. 
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Figure A.5  Effect of conduction-radiation parameter ( crN =0.001, 0.01, 0.1, 1, and no 

radiation) 
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Figure A.6  Effect of absorption coefficient (κ =1, 5, and 10) 
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Figure A.7   Effect of scattering albedo (ω =0, 0.5, and 1) 
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A.7.4 Effect of Scattering Albedo 

 

The effect of scattering albedo (ω =0, 0.5, and 1) on the temperature distribution for 

isotropic scattering phase function F in Table 1, DHτ =0.5, crN =0.01, and Re=300 is 

shown in Figure A.7. As we can see the definition of scattering albedo ( σω
κ σ

=
+

), 

ω =0 means pure absorption, and ω =1 represents pure scattering which means that the 

fluid does not absorb or emit radiative energy. From Figure A.7 increasing the scattering 

albedo increases the thermal penetration. This implies that increasing the scattering 

albedo enhances energy scattering by the medium. Hence, this results in increased 

thermal penetration. Bulk temperature increased with increase in scattering albedo. 

 

A.8 Summary 
 

A numerical simulation for combined heat transfer mode with participating medium 

was conducted using a finite volume technique to evaluate the temperature profile in a 

three-dimensional channel flow. Pressure and velocity fields were linked by the SIMPLE 

algorithm. The discretized equations were solved iteratively by the line-by-line method 

which is a combination of the Tri-Diagonal matrix algorithm and Gauss-Seidel scheme. 

The radiative heat transfer equation was also solved by a finite volume method. The 

energy equation with radiative source term was linearly discretized. The effects of 

Reynolds number, conduction-radiation parameters, optical thickness, and scattering 

albedo on average Nusselt number and the temperature distribution were presented. 
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Temperature distribution was influenced by radiation, depending on the absorption 

coefficient and the temperature difference between inlet and walls. The thermal 

penetration was influenced such that the fluid with a hot inlet compared to a cold wall 

was cooled in a relatively short distance from the channel inlet because of the radiation 

effect. With increasing Reynolds number, conduction-radiation parameter, scattering 

albedo, and decreasing optical thickness, the radiation effect is diminished, and thermal 

penetration is increased as a result. 
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