
UNCERTAINTY QUANTIFICATION USING MULTISCALE METHODS

FOR POROUS MEDIA FLOWS

A Dissertation

by

PAUL FRANCIS DOSTERT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Mathematics

UNCERTAINTY QUANTIFICATION USING MULTISCALE METHODS

FOR POROUS MEDIA FLOWS

A Dissertation

by

PAUL FRANCIS DOSTERT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Yalchin Efendiev
Committee Members, Akhil Datta-Gupta

Richard Ewing
Raytcho Lazarov
Bani Mallick

Head of Department, Al Boggess

December 2007

Major Subject: Mathematics

iii

ABSTRACT

Uncertainty Quantification Using Multiscale Methods

for Porous Media Flows. (December 2007)

Paul Francis Dostert, B.S., James Madison University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Yalchin Efendiev

In this dissertation we discuss numerical methods used for uncertainty quantifi-

cation applications to flow in porous media. We consider stochastic flow equations

that contain both a spatial and random component which must be resolved in our nu-

merical models. When solving the flow and transport through heterogeneous porous

media some type of upscaling or coarsening is needed due to scale disparity. We de-

scribe multiscale techniques used for solving the spatial component of the stochastic

flow equations. These techniques allow us to simulate the flow and transport pro-

cesses on the coarse grid and thus reduce the computational cost. Additionally, we

discuss techniques to combine multiscale methods with stochastic solution techniques,

specifically, polynomial chaos methods and sparse grid collocation methods.

We apply the proposed methods to uncertainty quantification problems where the

goal is to sample porous media properties given an integrated response. We propose

several efficient sampling algorithms based on Langevin diffusion and the Markov

chain Monte Carlo method. Analysis and detailed numerical results are presented

for applications in multiscale immiscible flow and water infiltration into a porous

medium.

iv

ACKNOWLEDGMENTS

First and foremost I would like to thank Dr. Yalchin Efendiev for all his guidance

and support throughout my graduate career. His many insights and ideas have been

invaluable in my preparation to begin my career as a mathematician. I would like

to acknowledge Dr. Raytcho Lazarov and Dr. Richard Ewing for not only serving

on my committee, but also convincing me to study at Texas A&M. In addition, I

wish to thank the entire numerical analysis group for helping me prepare to begin my

research and write my dissertation.

I would like to thank Dr. Thomas Yizhao Hou, Dr. Wuan Luo, and Dr. Victor

Ginting for their help in my research. I also wish to thank Dr. Akhil Datta-Gupta

and Dr. Bani Mallick for serving on my committee and providing many insightful

comments and questions.

I would also like to recognize the wonderful mathematics professors at James

Madison University. Specifically I’d like to thank Dr. James Sochacki, who encour-

aged me to pursue a career in mathematics. I also wish to express my gratitude to the

professors and staff of the Department of Mathematics at Texas A&M. I would like

to thank Mr. Art Belmonte for his help in preparing me to teach mathematics at the

university level. I also wish to thank Ms. Monique Stewart for her incredible patience

and knowledge with the university administration. I also thank the students in the

mathematics department, specifically Dimitar Trenev, Veselin Dobrev, Dr. Dylan

Copeland, Dr. Troy Henderson, and Dr. Taejong Kim.

My research was partially supported by the NSF under DMS-0327713, EIA-

05401.36, DMS-062113, DMS-0216275 and by the DOE under DE-FG02-05ER25669.

Last, but certainly not least, I’d like to thank my wife, Laura, and my family for

their incredible patience and encouragement throughout my graduate career.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

I INTRODUCTION . 1

II BACKGROUND MATERIAL 5

2.1. Prototypical Examples of Porous Media Flows 5

2.1.1. Two-Phase Immiscible Flow 5

2.1.2. Richards’ Equation 6

2.2. Karhunen-Loève Expansion (KLE) 9

2.3. Numerical Homogenization and Multiscale Methods . . . 14

2.3.1. Two-Phase Flow Case 16

2.3.2. Richards’ Equation Case 22

III SOLUTION TECHNIQUES FOR STOCHASTIC EQUATIONS 24

3.1. Polynomial Chaos Methods 24

3.2. Collocation Methods . 30

3.2.1. Sparse Grid Collocation 31

3.3. Application to Single-Phase Flow 33

3.3.1. Polynomial Chaos 34

3.3.2. Sparse Grid Collocation 40

3.4. Application to Richards’ Equation 42

3.4.1. Polynomial Chaos 42

3.4.2. Sparse Grid Collocation 46

vi

CHAPTER Page

IV MULTISCALE METHODS FOR STOCHASTIC POROUS

MEDIA FLOWS . 49

4.1. Upscaling Methods . 49

4.1.1. Polynomial Chaos Equations 49

4.1.2. Collocation Methods 54

4.2. Multiscale Methods . 56

V THEORETICAL RESULTS FOR UNCERTAINTY QUAN-

TIFICATION . 68

5.1. Metropolis-Hasting MCMC 69

5.2. Langevin MCMC Method Using Coarse-Scale Models . . 73

5.2.1. Analysis of the Preconditioned Coarse-Gradient

Langevin Algorithm 77

5.3. Langevin MCMC Method Using Collocation 80

5.3.1. Analysis of the Interpolated Preconditioned Coarse-

Gradient Langevin Algorithm 83

VI NUMERICAL APPLICATIONS FOR UNCERTAINTY QUAN-

TIFICATION . 85

6.1. Two-Phase Immiscible Flow 85

6.1.1. Coarse vs Fine . 87

6.1.1.1. Single-Phase Flow 88

6.1.1.2. Two-Phase Flow 94

6.1.1.3. Theoretical Computational Costs 97

6.1.1.4. Predictions 99

6.1.2. Sparse Grid Collocation 99

6.1.2.1. Interpolation of the Target Distribution . . . 100

6.1.2.2. Interpolation of the Fractional Flows 105

6.1.3. Single-Phase Flow with Exponential Covariance . . 109

6.2. Richards’ Equation . 111

6.2.1. Coarse vs Fine . 114

6.2.2. Sparse Grid Collocation 118

6.2.2.1. Interpolation of the Target Distribution . . . 119

6.2.2.2. Interpolation of the Average Fluxes 126

6.2.3. Exponential Covariance 131

VII CONCLUSIONS . 135

7.1. Conclusions . 135

vii

CHAPTER Page

7.2. Future Work . 135

REFERENCES . 138

VITA . 144

Paul
Rectangle

viii

LIST OF TABLES

TABLE Page

4.1 Mean, median, and standard deviation for the CDF using the

1 × 1, 5 × 5, and 10 × 10 coarse grids. 57

4.2 Error ||p̃− p||2 for 4, 6 and 8 intervals using one, two and three θ

values. 67

6.1 Comparison of Algorithm I, II and III for different coarse-grid

resolutions in two-phase flow simulations. σ2
f = σ2

c = 0.003, δ =

0.05. 96

ix

LIST OF FIGURES

FIGURE Page

2.1 Left: The first 20 eigenvalues for the normal covariance function

(2.16). Right: The energy ratio (2.15) using 1 through 20 terms.

In each case L1 = 0.5, L2 = 0.1 and σ2 = 2.0. 12

2.2 Six example eigenvectors generated using the KLE for the normal

covariance function (2.16) with 20 terms. We use L1 = 0.5, L2 =

0.1 and σ2 = 2.0. 13

2.3 Four example permeability fields generated using the KLE for

the normal covariance function (2.16) with 20 terms. In each

permeability we use L1 = 0.5, L2 = 0.1 and σ2 = 2.0. 13

2.4 Left: The first 200 eigenvalues for the exponential covariance func-

tion (2.17). Right: The energy ratio (2.15) using 1 through 200

terms. In each case L1 = 0.5, L2 = 0.1 and σ2 = 2.0. 14

2.5 Six example eigenvectors generated using the KLE for the ex-

ponential covariance function (2.17) with 200 terms. We use

L1 = 0.5, L2 = 0.1 and σ2 = 2.0. 15

2.6 Four example permeability fields generated using the KLE for the

exponential covariance function (2.17) with 200 terms. In each

permeability we use L1 = 0.5, L2 = 0.1 and σ2 = 2.0. 15

2.7 Example boundary conditions for local upscaling problem. The

upper left demonstrates boundary conditions in the x-direction

and the upper right demonstrates boundary conditions in the y-

direction. 17

2.8 Nodal points and grid for the MsFVEM. 20

3.1 Left: Saturation profile at a fixed time for the direct solve to

(3.22). Right: Reconstructed saturation profile at the same fixed

time using the polynomial chaos expansion. 41

x

FIGURE Page

3.2 Left: Saturation profile at a fixed time for the direct solve to

(3.22). Right: Interpolated saturation profile at the same fixed

time using 19 values. 42

3.3 Left: Pressure profile for the direct solve to (3.36). Right: Recon-

structed pressure profile using the polynomial chaos expansion. . . . 47

3.4 Left: Pressure profile for the direct solve to Richards’ equation.

Right: Interpolated pressure profile using 19 values. 48

4.1 Left: Saturation profile at a fixed time for the direct solve to

(3.22) for the full 32 × 32 grid. Middle: Saturation profile at the

same fixed time using global upscaling to the 8 × 8 grid with a

direct solve to (3.22). Right: Reconstructed saturation profile at

the same fixed time using the globally upscaled polynomial chaos

expansion on an 8 × 8 grid. 54

4.2 Left: CDF for a coarse grid of size 1 × 1. Middle: CDF for a

coarse grid of size 5 × 5. Right: CDF for a coarse grid of size 10 × 10. 57

4.3 Schematic description of patch . 59

4.4 Comparison between exact solution and MsFEM solution. Left:

4 intervals. Middle: 6 intervals. Right: 8 intervals. 67

6.1 Left: Coarse-scale response surface π∗ (defined by (5.9)) restricted

to a 2-D hyperplane. Right: Fine-scale response surface π (defined

by (5.3)) restricted to the same 2-D hyperplane. 89

6.2 Acceptance rate comparison between Algorithms I, II and III;

δ = 0.05, σ2
f = 0.003. In the left plot, the coarse-grid 11 × 11 is

used in the simulation. 90

6.3 Acceptance rate comparison for Algorithms I, II and III for single-

phase flow, δ = 0.1, σ2
f = 0.003. 91

6.4 Natural log of CPU time (seconds) comparison for the different

Langevin algorithms. Left: σ2
f = 0.003, δ = 0.05, 11 × 11 coarse-

grid. Middle: σ2
f = 0.003, δ = 0.05, 7 × 7 coarse-grid. Right:

σ2
f = 0.003, δ = 0.1, 11 × 11 coarse-grid. 91

xi

FIGURE Page

6.5 Left: The fractional flow errors for Algorithm I and Algorithm

II. Right: The fractional flows of sampled realizations and the

reference fractional flow. In these numerical tests, δ = 0.05, σ2
f =

0.003 and 11 × 11 coarse-scale model is used. 93

6.6 Samples of the permeability realizations. Realizations are selected

to represent the uncertainty range in the simulations. 93

6.7 Left: Coarse-scale response surface π∗ restricted to 2-D hyper-

plane. Right: Fine-scale response surface π restricted to the same

2-D hyperplane . 95

6.8 Left: Acceptance rate comparison for Algorithms I, II and III.

Right: Natural log of CPU times (seconds) for Algorithms I, II

and III. Each plot is for two-phase flow with δ = 0.05, σ2
f = 0.003

and a 7 × 7 coarse-grid. 95

6.9 Left: The fractional flow errors for Algorithm I compared with

Algorithm II. Right: The fractional flows of sampled realizations

and the reference fractional flow. In these numerical tests, δ =

0.05, σ2
f = 0.003 and 7 × 7 coarse-scale model is used. 96

6.10 Samples of the permeability realizations. Realizations are selected

to represent the uncertainty range in the simulations. 97

6.11 Prediction results using the information about the dynamic data

on various time spans. Left: The dynamic data information on

[0, 0.8] PVI is used; Middle: The dynamic data information on

[0, 0.4] PVI is used; Right: No dynamic data information is used. . . 100

6.12 Coarse-scale response surface π∗ and interpolated coarse-scale re-

sponse surfaces π̃∗ restricted to a 2-D hyperplane. 102

6.13 Left: Acceptance rates for Algorithms I, II and IV. Right: Natural

log of CPU time (seconds) for Algorithms I, II and IV. In each

plot δ = 0.05 and σ2
f = 0.002. 103

6.14 Left: The fractional flow errors for Algorithm I compared with

Algorithm IV. Right: The fractional flows of sampled realizations

and the reference fractional flow. In these numerical tests, δ =

0.05, σ2
f = 0.002 and an 11 × 11 coarse-scale model is used. 104

xii

FIGURE Page

6.15 Upper left plot is the reference permeability. The other three plots

are examples of accepted permeability realizations. 105

6.16 Coarse-scale response surface π∗ and interpolated coarse-scale re-

sponse surfaces π̃∗ restricted to a 2-D hyperplane. 106

6.17 Left: Acceptance rate comparison between the Langevin algo-

rithms. Right: Comparison of the natural log of CPU time (sec-

onds) for the different Langevin algorithms. In each plot δ = 0.05

and σ2
f = 0.003. 107

6.18 Left: The fractional flow errors for Algorithm I compared with

Algorithm IV. Right: The fractional flows of sampled realizations

and the reference fractional flow. In these numerical tests, δ =

0.05, σ2
f = 0.003 and 11 × 11 coarse-scale model is used. 108

6.19 Samples of the permeability realizations. Realizations are selected

to represent the uncertainty range in the simulations. 108

6.20 Coarse-scale response surface π∗ and interpolated coarse-scale re-

sponse surface π̃∗ restricted to a 2-D hyperplane. 110

6.21 Left: Acceptance rate comparison. Right: Natural log of CPU

time (seconds) comparison. In each we compare Algorithm II and

Algorithm IV for δ = 0.05, σ2
f = 0.001. 111

6.22 Left: The fractional flow errors for Algorithm II compared with

Algorithm IV. Right: The fractional flows of sampled realizations

and the reference fractional flow. In these numerical tests, δ =

0.05, σ2
f = 0.001. 112

6.23 Upper left plot is the reference permeability. The other three plots

are examples of accepted permeability realizations. 112

6.24 Example of average flux for 4 × 8 grid with n = 2 measured intervals. 114

6.25 Exponential model boundary and initial conditions. 115

6.26 Left: Fine-scale response surface π restricted to the same 2D hy-

perplane. Right: Coarse-scale response surface π∗ restricted to a

2D hyperplane. 116

xiii

FIGURE Page

6.27 Comparison between Algorithm I and Algorithm II for various σc
values with σ2

f = 0.001 and δ = 0.05. Left: Acceptance rate.

Right: Natural log of CPU time (seconds) 117

6.28 Left: Average flux errors for Algorithm I compared to Algorithm

II. Right: The fluxes of sampled realizations and the reference flux. . 118

6.29 Exact Ks (upper left) and three different accepted conductivites. . . 119

6.30 Coarse-scale response surface π∗ and interpolated coarse-scale re-

sponse surfaces π̃∗ restricted to a 2D hyperplane. 121

6.31 Left: Acceptance rate comparison. Right: Natural log of CPU

time (seconds) comparison. Comparison is between Algorithm I,

Algorithm II, and Algorithm IV for various σc with σ2
f = 0.001

and δ = 0.05. 122

6.32 Left: Average flux errors for fine-scale Langevin compared to in-

terpolated Langevin. Right: The fluxes of sampled realizations

and the reference flux. In each plot σ2
f = 0.001 and δ = 0.05. 123

6.33 Exact Ks (upper left) and three different accepted conductivites. . . 123

6.34 Coarse-scale response surface π∗ and interpolated coarse-scale re-

sponse surfaces π̃∗ restricted to a 2D hyperplane. 124

6.35 Left: Acceptance rate comparison. Right: Natural log of CPU

time (seconds) comparison. Comparison is between Algorithm I,

Algorithm II, and Algorithm IV for various σc with σ2
f = 0.001,

δ = 0.05, L1 = 0.2 and L2 = 0.2. 125

6.36 Left: Average flux errors for fine-scale Langevin compared to in-

terpolated Langevin. Right: The fluxes of sampled realizations

and the reference flux. In each plot σ2
f = 0.001, δ = 0.05, L1 = 0.2

and L2 = 0.2. 125

6.37 Exact Ks (upper left) and three different accepted conductivites. . . 126

6.38 Two typical interpolated and coarse average flux responses. 127

xiv

FIGURE Page

6.39 Two typical gradient of the target distribution for both interpo-

lated and coarse average flux responses. 128

6.40 Coarse-scale response surface π∗ and interpolated coarse-scale re-

sponse surfaces π̃∗ restricted to a 2D hyperplane. 129

6.41 Left: Acceptance rate comparison. Right: Natural log of CPU

time (seconds) comparison. Each plot compares Algorithm I, Al-

gorithm II, and Algorithm IV for various σc values with σ2
f = 0.001

and δ = 0.05. 130

6.42 Left: Average flux errors for Algorithms I and IV. Right: The

fluxes of sampled realizations and the reference flux. In each plot

σ2
f = 0.001 and δ = 0.05. 130

6.43 Coarse-scale response surface π∗ and interpolated coarse-scale re-

sponse surfaces π̃∗ restricted to a 2D hyperplane. 132

6.44 Left: Acceptance rate comparison. Right: Natural log of CPU

time (seconds) comparison. Each plot compares Algorithm I and

Algorithm IV for various σc values with σ2
f = 0.001 and δ = 0.05.

We use exponential covariance in the KLE with L1 = 0.2 and L2 = 0.2. 132

6.45 Left: Average flux errors for Algorithm II compared to Algorithm

IV. Right: The fluxes of sampled realizations and the reference

flux. In each plot we use exponential covariance in the KLE,

σ2
f = 0.001, δ = 0.05, L1 = 0.2 and L2 = 0.2. 133

6.46 Exact Ks (upper left) and three different accepted conductivites. . . 134

1

CHAPTER I

INTRODUCTION

Uncertainties in the detailed description of reservoir lithofacies, porosity, and per-

meability are major contributors to uncertainty in reservoir performance forecasting.

Making decisions in reservoir management requires a method for quantifying uncer-

tainty. Large uncertainties in reservoirs can greatly affect the production and decision

making on well drilling. Better decisions can be made by reducing the uncertainty.

Thus, quantifying and reducing the uncertainty is an important and challenging prob-

lem in subsurface modeling. Additional dynamic data, such as the production data,

can be used in achieving more accurate predictions. Previous findings show that

dynamic data can be used to improve the predictions and reduce the uncertainty.

Therefore, to predict future reservoir performance, the reservoir properties, such as

porosity and permeability, need to be conditioned to dynamic data. In general it

is difficult to calculate this posterior probability distribution because the process of

predicting flow and transport in petroleum reservoirs is nonlinear. Instead, we esti-

mate this probability distribution from the outcomes of flow predictions for a large

number of realizations of the reservoir. It is essential that the permeability (and

porosity) realizations adequately reflect the uncertainty in the reservoir properties,

i.e., we correctly sample this probability distribution.

The prediction of permeability fields based on dynamic data is a challenging

problem because permeability fields are typically defined on a large number of grid

blocks. The Markov chain Monte Carlo (MCMC) method and its modifications have

been used previously to sample the posterior distribution of the permeability field.

This dissertation follows the style of the Journal of Computational Physics.

2

Oliver et al. [36, 37] proposed the randomized maximum likelihood method, which

generates unconditional realizations of the production and permeability data and

then solves a deterministic gradient-based inverse problem. The solution of this min-

imization problem is taken as a proposal and accepted with probability one because

the rigorous acceptance probability is very difficult to estimate. In addition to the

need of solving a gradient-based inverse problem, this method does not guarantee

a proper sampling of the posterior distribution. Developing efficient and rigorous

MCMC calculations with high acceptance rates remains a challenging problem.

In this dissertation, we study multiscale methods for stochastic porous media

flow equations and their as applications to uncertainty quantification. We propose an

approach where traditional MCMC algorithms are modified by the use of multiscale

methods to coarsen the flow equations spatially. We combine this with sparse col-

location or polynomial chaos techniques to obtain solutions in the high dimensional

stochastic space.

In Chapter II, we cover some preliminary background material. We introduce two

porous media flow equations that will be studied throughout the dissertation. First,

we present the equations for two-phase immiscible flow which have many applica-

tions in petroleum engineering and reservoir modeling. Second, we present Richards’

equation, often used in hydrology, which models the flow of water in unsaturated

soils. We then introduce the Karhunen-Loève expansion, which allows us to represent

the realizations of the random field information in each of our equations. Lastly, we

present a brief introduction to homogenization.

In Chapter III, we consider the techniques needed to solve the stochastic equa-

tions arising in porous media. We first discuss polynomial chaos expansions. We

expand the unknown variables in the porous media equations as multidimensional

Hermite polynomials. We derive a system of equations which, when solved, recover

3

the coefficients in the polynomial expansion. Once these coefficients are found, then

for any stochastic input, an inexpensive approximation to the solution of the porous

media equations can be made using the Hermite polynomial expansion. Next, we

discuss sparse grid collocation methods. In these methods, we solve the porous me-

dia equations for stochastic variables at some sparse grid points in high dimensional

stochastic space. Using the data at these sparse grid points, we can approximate the

solution for any stochastic input by using multivariate polynomial interpolation. In

contrast to polynomial chaos methods, sparse grid collocation methods do not require

the solution to a large system of coefficients.

In Chapter IV, we combine multiscale methods with the stochastic solution meth-

ods described in Chapter III. We first derive the upscaled equations for the polyno-

mial chaos system using single-phase flow. We then present analysis for the use of

sparse grid collocation within multiscale finite element methods. We consider two ap-

proaches. In the first approach we compute basis functions at some sparse points in

stochastic space. Instead of solving for basis functions for each stochastic variable, we

interpolate using pre-computed basis functions based on interpolation. In the second

approach we use the family of basis functions for a given set of stochastic variables

without interpolating them to a particular realization.

In Chapter V we present details of the uncertainty quantification problems under

consideration. Our general goal is to obtain a set of fields that reproduce some given

or measured response. We consider the uncertainty quantification problems in the

context of sampling using Markov chain Monte Carlo methods. Various algorithms

using Langevin diffusion, multiscale models, and collocation methods are presented

and analyzed.

In Chapter VI we present numerical results for the sampling problems introduced

in Chapter V. We discuss the strengths and weaknesses for each algorithm and present

4

corroborating numerical results. Results for single-phase flow, two-phase flow, and

Richards’ equation are presented.

Lastly, in Chapter VII, we summarize our findings and present possibilities for

future research.

5

CHAPTER II

BACKGROUND MATERIAL

In this chapter, we introduce some background material that is necessary for

our later chapters. We first introduce the two different classes of porous media flow

equations. Secondly, we introduce the Karhunen-Loève Expansion, which will be used

extensively throughout the later discussions. Lastly, we present some basic concepts

of homogenization and discuss the numerical methods involved in the porous media

equations.

2.1. Prototypical Examples of Porous Media Flows

We consider two prototypical examples of porous media flows. The first model,

referred to as two-phase immiscible flow, has applications in petroleum reservoir sim-

ulation. The second, Richards’ equation, describes the infiltration of water flow into

a porous media whose pore space is filled with air and water.

2.1.1. Two-Phase Immiscible Flow

We consider two-phase flow in a reservoir (denoted by Ω) under the assumption

that the displacement is dominated by viscous effects; i.e., we neglect the effects of

gravity, compressibility, and capillary pressure. Porosity is considered to be constant.

The two phases will be referred to as water and oil, designated by subscripts w and

o, respectively. We write Darcy’s law for each phase as follows:

vj = −krj(S)

µj
K · ∇p, (2.1)

where vj is the phase velocity, µj is the phase porosity, and krj is the relative per-

meability to phase j (j = o, w). We denote the permeability as K tensor, the water

6

saturation (volume fraction) as S and p as the pressure. We will assume that the

permeability tensor is diagonal, thus K = kI, where k is a scalar and I is the unit

tensor. In this work, a single set of relative permeability curves is used. Combin-

ing Darcy’s law with a statement of conservation of mass allows us to express the

governing equations in terms of the so-called pressure and saturation equations:

∇ · (λ(S)k∇p) = h, (2.2)

∂S

∂t
+ v · ∇f(S) = 0, (2.3)

where λ is the total mobility, h is the source term, f(S) is the flux function, and v is

the total velocity, which are respectively given by:

λ(S) =
krw(S)

µw
+
kro(S)

µo
, (2.4)

f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo
, (2.5)

v = vw + vo = −λ(S)k · ∇p. (2.6)

Throughout our discussions, the above descriptions will be referred to as the two-

phase flow problem. We define single-phase flow as the same equation, but with

krw(S) = S and kro(S) = 1 − S.

2.1.2. Richards’ Equation

We consider Richards’ equation which describes the infiltration of water into a

porous media whose pore space is filled with air and water. The equation describing

Richards’ equation under some assumptions is given by

Dtθ(u) − div(k(x, u)Dx(u+ x3)) = 0 in Ω, (2.7)

7

where θ(u) is the volumetric water content and u is the pressure. The following

are assumed ([39]) for (2.7): (1) the porous medium and water are incompressible;

(2) the temporal variation of the water saturation is significantly larger than the

temporal variation of the water pressure; (3) air phase is infinitely mobile so that the

air pressure remains constant, in this case it is atmospheric pressure which equals

zero; (4) neglect the source/sink terms.

Constitutive relations between θ and u and between k and u are developed appro-

priately, which consequently gives nonlinear behavior in (2.7). The relation between

the water content and pressure is referred to as the moisture retention function. The

equation written in (2.7) is called the coupled-form of Richards’ equation. In other

literature this equation is also called the mixed form of Richards’ equation, due to

the fact that there are two variables involved in it, namely, the water content θ and

the pressure head u. Taking advantage of the differentiability of the soil retention

function, one may rewrite (2.7) as follows:

C(u)Dtu− div(k(x, u)Dx(u+ x3)) = 0 in Ω, (2.8)

where C(u) = dθ/du is the specific moisture capacity. This version is referred to as

the head-form (h-form) of Richards’ equation. Another formulation of the Richards’

equation is based on the water content θ,

Dtθ − div(D(x, θ)Dxθ) −
∂k

∂x3

= 0 in Ω, (2.9)

where D(θ) = k(θ)/(dθ/du) defines the diffusivity. This form is called the θ-form of

Richards’ equation.

The sources of nonlinearity of Richards’ equation comes from the moisture re-

tention and relative hydraulic conductivity functions, θ(u) and k(x, u), respectively.

Perhaps the most widely used empirical constitutive relations for the moisture content

8

and hydraulic conductivity is due to the work of van Genuchten [43]. He proposed

a method of determining the functional relation of relative hydraulic conductivity to

the pressure head by using the field observation knowledge of the moisture retention.

In turn, the procedure would require curve-fitting to the proposed moisture retention

function with the observational data to establish certain parameters inherent to the

resulting hydraulic conductivity model. There are several widely known formulations

of the constitutive relations:

Haverkamp model [25] :

θ(u) =
α (θs − θr)

α + |u|β + θr,

k(x, u) = Ks(x)
A

A + |u|γ .

van Genuchten model [43] :

θ(u) =
α (θs − θr)

[1 + (α|u|)n]m + θr,

k(x, u) = Ks(x)

{

1 − (α|u|)n−1 [1 + (α|u|)n]−m
}2

[1 + (α|u|)n]m/2
.

Exponential model [44] :

θ(u) = θs e
βu, (2.10)

k(x, u) = Ks(x) e
αu.

Irmay model [28] :

θ(u) = θr + (θs − θr) e
αu, (2.11)

k(x, u) = Ks(x)

(

θ − θr
θs − θr

)m

.

In each of the above constitutive relations θr is the residual moisture content when the

9

soil is very dry and θs is the saturated moisture content when the soil is fully saturated.

α, β and m are fitting parameters. Generally one uses the fitting parameters to fit

the proposed function with experimental or observed data.

The variable Ks in the above models is known as the saturated hydraulic con-

ductivity, which we will generally refer to as simply the saturated conductivity. It

has been observed that the saturated conductivity has a broad range of values, which

together with the functional forms presented above, confirm the nonlinear behavior

of the process. Furthermore, the water content and saturated conductivity approach

zero as the pressure head goes to very large negative values.

2.2. Karhunen-Loève Expansion (KLE)

In many practical applications one wishes to express the permeability k in (2.2)

or the saturated conductivity Ks in the constitutive relations for k(x, u) in (2.7) as

an expansion of some parameters, rather than simply a function in physical space.

In this section we discuss one particular type of expansion, known as the Karhunen-

Loève expansion [31, 45], or the KLE. For simplicity, the KLE will be explained with

respect to permeability, but the same explanation holds for saturated conductivity.

Using the KLE, a permeability field can be expanded in terms of an optimal

L2 basis. By truncating the expansion we can represent the permeability matrix

by a small number of random parameters. Denote Y (x, ω) = log[k(x, ω)], where the

random element ω is included to remind us that k is a random field. For simplicity, we

assume that E[Y (x, ω)] = 0. Suppose Y (x, ω) is a second order stochastic process with

E
∫

Ω
Y 2(x, ω)dx < ∞, where E is the expectation operator. Given an orthonormal

basis {φk} in L2(Ω), we can expand Y (x, ω) as a general Fourier series

Y (x, ω) =

∞
∑

k=1

Yk(ω)φk(x), Yk(ω) =

∫

Ω

Y (x, ω)φk(x)dx.

10

We are interested in the special L2 basis {φk} which makes the random variables Yk

uncorrelated. That is, E(YiYj) = 0 for all i 6= j. Denote the covariance function of Y

as R(x, y) = E [Y (x)Y (y)]. Then such basis functions {φk} satisfy

E[YiYj] =

∫

Ω

φi(x)dx

∫

Ω

R(x, y)φj(y)dy = 0, i 6= j.

Since {φk} is a complete basis in L2(Ω), it follows that φk(x) are eigenfunctions of

R(x, y):
∫

Ω

R(x, y)φk(y)dy = λkφk(x), k = 1, 2, . . . , (2.12)

where λk = E[Y 2
k] > 0. Furthermore, we have

R(x, y) =

∞
∑

k=1

λkφk(x)φk(y). (2.13)

Denote θk = Yk/
√
λk, then θk satisfy E(θk) = 0 and E(θiθj) = δij. It follows that

Y (x, ω) =
∞
∑

k=1

√

λkθk(ω)φk(x), (2.14)

where φk and λk satisfy (2.12). We assume that the eigenvalues λk are ordered as

λ1 ≥ λ2 ≥ The expansion (2.14) is called the Karhunen-Loève expansion (KLE).

In the KLE, the L2 basis functions φk(x) are deterministic and resolve the spatial

dependence of the permeability field. The randomness is represented by the scalar

random variables θk. After we discretize the domain Ω by a rectangular mesh, the

continuous KLE is reduced to finite terms. Generally, we only need to keep the

leading order terms (quantified by the magnitude of λk) and still capture most of

the energy of the stochastic process Y (x, ω). For an N -term KLE approximation

YN =
N
∑

k=1

√

λkθkφk, define the energy ratio of the approximation as

e(N) :=
E‖YN‖2

E‖Y ‖2
=

∑N
k=1 λk

∑∞
k=1 λk

. (2.15)

11

If λk, k = 1, 2, . . . , decay very fast, then the truncated KLE would be a good approx-

imation of the stochastic process in the L2 sense.

We consider two different types of permeability fields k(x, ω). First, let us sup-

pose k(x, ω) is a log-normal homogeneous stochastic process, then Y (x, ω) is a Gaus-

sian process and θk are independent standard Gaussian random variables. We assume

that the covariance function of Y (x, ω) has the form

R(x, y) = σ2 exp
(

−|x1 − y1|2
2L2

1

− |x2 − y2|2
2L2

2

)

. (2.16)

In the above formula, L1 and L2 are the correlation lengths in each dimension, and

σ2 = E(Y 2) is a constant. We also consider the case when k(x, ω) is a log-exponential

homogeneous stochastic process. In this case, we have a covariance function of Y (x, ω)

of the form

R(x, y) = σ2 exp
(

−|x1 − y1|
L1

− |x2 − y2|
L2

)

. (2.17)

In either case, we first solve the eigenvalue problem (2.12) numerically on the rect-

angular mesh and obtain the eigenpairs {λk, φk}. We then truncate the KLE using

an appropriate number of terms so that the energy ratio (2.15) is still high. We can

then sample Y (x, ω) from the truncated KLE (2.14) by generating Gaussian random

variables θk.

In Figure 2.1 we plot the eigenvalues and energy ratio for the KLE with a normal

covariance function (2.16). We assume L1 = 0.5, L2 = 0.1 and σ2 = 2.0. The conver-

gence rate of the KLE depends only on the smoothness of the covariance function,

thus for the normal (Gaussian) covariance function, very few terms are needed. In

this particular example we capture more than 95% of the energy using under 20 terms

in the KLE. In Figure 2.2 we plot six example eigenvectors. The top three plots show

the first three eigenvectors (1, 2, and 3) in the KLE. The bottom three plots show the

12

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Eigenvals

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Energy Ratio

Fig. 2.1. Left: The first 20 eigenvalues for the normal covariance function (2.16).

Right: The energy ratio (2.15) using 1 through 20 terms. In each case

L1 = 0.5, L2 = 0.1 and σ2 = 2.0.

last three eigenvectors (18, 19, and 20) in the KLE. Note the first three eigenvectors

contain large scale features while the last three eigenvectors contain relatively small

scale features. We again note that, in addition to the scale of the features, the latter

eigenvectors also correspond to eigenvalues of smaller magnitude. While there is a

large benefit in using normal covariance functions due to the fast convergence, we are

somewhat limited in what types of fields we can generate using this KLE. From the

previous eigenvector plots, it is clear that very small scale features cannot be repro-

duced. The smallest scales we can hope to reproduce are those shown in the plots

for eigenvectors 18, 19, and 20. In Figure 2.3 we plot four random permeability fields

generated using the KLE with normal covariance. Note that these permeability fields

are generally quite smooth with fairly large features, consistent with the eigenvector

expansion.

In Figure 2.4 we plot the eigenvalues and energy ratio for the KLE with the

exponential covariance function (2.17). We again assume L1 = 0.5, L2 = 0.1 and

σ2 = 2.0. We now must keep over 200 eigenvalues in the KLE to capture just over

90% of the energy. While we must keep many more terms in this expansion, in many

13

Fig. 2.2. Six example eigenvectors generated using the KLE for the normal covariance

function (2.16) with 20 terms. We use L1 = 0.5, L2 = 0.1 and σ2 = 2.0.

Fig. 2.3. Four example permeability fields generated using the KLE for the normal co-

variance function (2.16) with 20 terms. In each permeability we use L1 = 0.5,

L2 = 0.1 and σ2 = 2.0.

14

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25
Eigenvals

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Energy Ratio

Fig. 2.4. Left: The first 200 eigenvalues for the exponential covariance function (2.17).

Right: The energy ratio (2.15) using 1 through 200 terms. In each case

L1 = 0.5, L2 = 0.1 and σ2 = 2.0.

practical applications one may wish to generate permeability fields which are not

nearly as smooth as when using normal covariance. In Figure 2.5 we plot six example

eigenvectors. The top three plots show eigenvectors 1, 10, and 20 in the KLE. The

bottom three plots show eigenvectors 180, 190, and 200 in the KLE. As with the

normal covariance, the first eigenvectors in the KLE contain large scale information.

As we descend through the eigenvector expansion, we find smaller scale features. In

Figure 2.6 we show four random permeability fields generated using the KLE with

exponential covariance. Note the small scale features are consistent with the features

found in the plots for the tail of the eigenvector expansion.

2.3. Numerical Homogenization and Multiscale Methods

In this section we discuss the upscaling procedures that will be used to solve our

coarse-scale equations. For the coarse-scale models, we consider only upscaling of the

15

Fig. 2.5. Six example eigenvectors generated using the KLE for the exponential co-

variance function (2.17) with 200 terms. We use L1 = 0.5, L2 = 0.1 and

σ2 = 2.0.

Fig. 2.6. Four example permeability fields generated using the KLE for the exponen-

tial covariance function (2.17) with 200 terms. In each permeability we use

L1 = 0.5, L2 = 0.1 and σ2 = 2.0.

16

elliptic equations, which we refer to as flow-based upscaling. We begin our discussion

with the presentation of the coarse-scale equations in terms of upscaled permeability

fields and two-phase flow. Next, we introduce the coarse-scale models for Richards’

equation. The process of deriving coarse-scale models is similar for each.

2.3.1. Two-Phase Flow Case

Let us first discuss traditional upscaling procedures, where the coarse-scale pres-

sure equation is of the same form as the fine-scale equation (2.2) but with an equiva-

lent grid block permeability tensor replacing the fine-scale permeability field (see e.g.,

[9]). For two-phase flow the proposed coarse-scale model consists of the upscaling

of the pressure equation (2.2) first. We then compute the coarse-scale velocity and

coarse-scale saturation.

We consider single-phase Darcy’s flow in a domain Ω

v = −k(x)∇p, ∇ · v = f, (2.18)

where v is velocity, k is the permeability, p is pressure, and f is the source. To

capture the subgrid effects in two-phase flow simulations, typically, flow based subgrid

capturing methods are used. These approaches compute the equivalent coarse grid

permeability. We will briefly discuss the main idea of these approaches next. There

are numerous ways to construct an equivalent grid block permeability tensor, k∗. For

a coarse grid element K we define k∗ by

k∗ 〈∇φ〉K = 〈k∇φ〉K , (2.19)

where

〈·〉K =
1

K

∫

K

(·) dx

17

�

�

�������

������

�������

�

���
�

�

�

�

�

�

���

�

�

�

�

�

�

�����
��

����� �� �����
		

����� ��

Fig. 2.7. Example boundary conditions for local upscaling problem. The upper left

demonstrates boundary conditions in the x-direction and the upper right

demonstrates boundary conditions in the y-direction.

is the volume average over K. In (2.19) φ is computed from the solution to (2.18)

with some prescribed boundary conditions, as in Figure 2.7. Note that we must solve

the local problems for each of the d dimensions in order to compute the full upscaled

tensor k∗. In solving the local problems one can use various local boundary conditions,

e.g. periodic. We refer to [20] for details.

We may consider various upscaling procedures, which we refer to as local, over-

sampled, and global. In a local upscaling procedure (2.18) is solved on the fine grid

within each individual coarse block K. In an oversampled upscaling procedure (2.18)

is solved in a slightly larger domain than the coarse block K. In a global upscaling

procedure, (2.18) is solved globally on the fine-scale domain. In each procedure k∗

is calculated within each coarse grid block from the calculated values of φ according

to (2.19). It has been shown that local upscaling can introduce some errors due to

the fact that the small scale features of the local solution along the boundaries are

not consistent with those of the global solution. In order to improve the method,

18

one needs to impose oscillatory boundary conditions for the local problems in a way

that these oscillations embody the fine-scale features of the solution. Oversampling

methods are introduced for this reason (see e.g.,[20]). The main idea of the oversam-

pling technique is to use the local solutions in larger regions to compute the effective

permeability over the target coarse grid block following (2.19). Oversampling reduces

subgrid capturing error, because the boundary is outside the coarse block K and

hence has less influence. One can further improve upscaling methods by using global

information which takes into account non-local effects. Global upscaling approaches

are particularly accurate for problems with strong non-local effects. Once the per-

meability is upscaled, the two-phase flow and transport equations are solved on the

coarse grid.

We now discuss a different method to obtain upscaled equations, known as the

multiscale finite volume element method (MsFVEM). This model is similar to the

single-phase upscaling method. However, instead of coarsening the absolute perme-

ability, we use pre-computed multiscale finite element basis functions. The key idea of

the method is the construction of basis functions on the coarse grids such that these

basis functions capture the small scale information on each of these coarse grids.

The method that we use follows its finite element counterpart presented in [27]. The

basis functions are constructed from the solution of the leading order homogeneous

elliptic equation on each coarse element with some specified boundary conditions.

Thus if we consider a coarse element K which has d vertices, the local basis functions

φi, i = 1, · · · , d satisfy the following elliptic problem:

−∇ · (k · ∇φi) = 0 inK,

φi = gi on ∂K,

(2.20)

for some function gi defined on the boundary of the coarse element K. Hou et al.

19

[27] have demonstrated that a careful choice of boundary condition would guarantee

the performance of the basis functions to incorporate the local information and hence

improve the accuracy of the method. We note that in previous findings, the function

gi for each i is chosen either to vary linearly along ∂K, to be the solution of the

local one-dimensional problems [29], or to be the solution of the problem in a slightly

larger domain. If function gi for each i varies linearly along ∂K then, for example,

in the case of a constant diagonal tensor the solution of (2.20) would be a standard

linear/bilinear basis function.

Referring to Figure 2.8, we define our problem as follows. Let Kh denote the

collection of coarse elements (rectangles in our case) K. Consider a coarse element K

and let ξK denote its center. Element K is divided into four rectangles of equal area by

connecting ξK to the midpoints of the element’s edges. We denote these quadrilaterals

by Kξ, where ξ ∈ Zh(K) are the vertices of K. Also, we denote Zh =
⋃

K Zh(K) and

Z0
h ⊂ Zh the vertices which do not lie on the Dirichlet boundary of Ω. The control

volume Vξ is defined as the union of the quadrilaterals Kξ sharing the vertex ξ. We

note that, as usual, we require φi(ξj) = δij . Finally, a nodal basis function associated

with the vertex ξ in the domain Ω is constructed from the combination of the local

basis functions that share this ξ and zero elsewhere. These nodal basis functions are

denoted by {ψξ}ξ∈Z0
h
.

Having described the basis functions, we denote by V h the space of our approx-

imate pressure solution which is spanned by the basis functions {ψξ}ξ∈Z0
h
. Now we

may formulate the finite dimensional problem corresponding to the finite volume el-

ement formulation of (2.2). A statement of mass conservation on a control volume

Vξ is formed from (2.2), where now the approximate solution is written as a linear

combination of the basis functions. Assembly of this conservation statement for all

control volumes would give the corresponding linear system of equations that can

20

ξ

V
ξ

ξ
K

K

Fig. 2.8. Nodal points and grid for the MsFVEM.

be solved accordingly. The resulting linear system has incorporated the fine-scale

information through the involvement of the nodal basis functions on the approximate

solution. Specifically, the problem now is to seek ph ∈ V h with ph =
∑

ξ∈Z0
h
pξψξ such

that
∫

∂Vξ

λ(S)k · ∇ph · n dl =

∫

Vξ

f dA (2.21)

for every control volume Vξ ⊂ Ω. Here n defines the unit normal vector on the

boundary of the control volume, ∂Vξ, and S is the fine-scale saturation field at this

point. We note that, concerning the basis functions, a vertex-centered finite volume

difference is used to solve (2.20), and a harmonic average is employed to approximate

the permeability k at the edges of fine control volumes.

Furthermore, the pressure solution may be used to compute the total velocity field

at the coarse-scale level, denoted by v = (vx, vz) via (2.6). In general, the following

equations are used to compute the velocities in horizontal and vertical directions,

respectively:

vx = − 1

hz

∑

ξ∈Z0
h

pξ

(∫

E

λ(S)kx
∂ψξ
∂x

dz

)

, (2.22)

21

vz = − 1

hx

∑

ξ∈Z0
h

pξ

(
∫

E

λ(S)kz
∂ψξ
∂z

dx

)

, (2.23)

where E is the edge of Vξ. Furthermore, for the control volumes Vξ adjacent to

the Dirichlet boundary (which are half control volumes), we can derive the velocity

approximation using the conservation statement derived from (2.2) on Vξ. One of the

terms involved is the integration along part of the Dirichlet boundary, while the rest

of the three terms are known from the adjacent internal control volumes calculations.

The detailed analysis of the two-scale finite volume method can be found in [22].

As for the upscaling of the saturation equation, we only use the coarse-scale

velocity to update the saturation field on the coarse grid, i.e.,

∂S

∂t
+ v · ∇f(S) = 0, (2.24)

where S denotes the saturation on the coarse grid. In this case the upscaling of

the saturation equation does not take into account subgrid effects. This kind of

upscaling techniques in conjunction with the upscaling of absolute permeability are

commonly used in applications (see e.g. [10, 11, 12]). The difference of our approach is

that the coupling of the small scales is performed through the finite volume element

formulation of the pressure equation. One can also try to upscale the saturation

equation and couple it to MsFVEM. This is done in [15, 14]. Due to the strong

distant effects, the upscaling of the saturation equation is difficult. In this dissertation,

we will not consider any subgrid treatment for the saturation equation, though the

proposed approaches can be used in conjunction with upscaled saturation equation

in uncertainty quantification problems. One can also solve the saturation equation

on the fine grid combined with the coarse grid solution of the pressure equation as it

is done in [29, 17].

22

2.3.2. Richards’ Equation Case

For Richards’ equation, because we are interested in mass conservative schemes,

a finite volume formulation of the global problem will be used. The coarse-scale

equations will be described for only the finite volume formulation and for a rectangular

mesh. For (2.7), our goal is to find uh ∈ Sh such that

∫

Vz

(θ(ηuh) − θn−1) dx− ∆t

∫

∂Vz

K(x, ηuh)Dxuǫ,h · n dl = 0 ∀z ∈ Z0
h, (2.25)

where θn−1 is the value of θ(ηuh) evaluated at time step n − 1, and uǫ,h ∈ V h
ǫ is a

function that satisfies the boundary value problem:

−div(K(x, ηuh)Dxuǫ,h) = 0 in K ∈ Sh,

uǫ,h = uh on ∂K.

(2.26)

Here Vz is the control volume surrounding the vertex z ∈ Z0
h and Z0

h is the collection

of all vertices that do not belong to the Dirichlet boundary as before. At this point,

we can perform single-phase upscaling procedures to the elliptic equation exactly the

same as in the previous description of two-phase flow upscaling.

We again consider the use of the MsFVEM. The MsFVEM can be applied to

Richards’ equations of general form as it was shown in [17], however, the MsFVEM

offers a great advantage when the nonlinearity and heterogeneity of k(x, u) is separa-

ble, i.e.,

k(x, u) = Ks(x) kr(u). (2.27)

In this case, the local basis functions become linear and the corresponding space V h
ǫ

is a linear space. We consider the same exact setup as the MsFVEM for two-phase

immiscible flow, again referring to Figure 2.8. The local basis functions φi, i = 1, · · · , d

are set to satisfy the elliptic problem given by (2.20) and we again require φi(ξj) = δij .

23

We would like to note that one can use an approximate solution of (2.20) when it

is possible. For example, in the case of periodic or scale separation cases, the basis

functions can be approximated using homogenization expansion (see [18]). This type

of simplification is not applicable for the problems we consider.

Now, we may formulate the finite dimensional problem. We want to find a

uǫ,h ∈ V h
ǫ with uǫ,h =

∑

z∈Z0
h
pzφi such that

∫

Vz

(θ(ηuh) − θn−1) dx− ∆t

∫

∂Vz

Ks(x) kr(η
uh)Dxuǫ,h · n dl = 0 (2.28)

for every control volume Vz ⊂ Ω. To this equation we can directly apply a linearization

procedure, as described in [23]. Let us denote

rm = umǫ,h − um−1
ǫ,h , m = 1, 2, 3, · · · , (2.29)

where umǫ,h is the iterate of uǫ,h at the iteration level m. Thus, we want to find

rm =
∑

z∈Z0
h

rmz ψz such that for m = 1, 2, 3, · · · until convergence we have

∫

Vz

C(ηuh,m−1) rm dx− ∆t

∫

∂Vz

Ks(x) kr(η
uh,m−1)Dxr

m · n dl = Rh,m−1, (2.30)

with

Rh,m−1 = −
∫

Vz

(θ(ηuh,m−1) − θn−1) dx+ ∆t

∫

∂Vz

Ks(x) kr(η
uh,m−1)Dxu

m−1
ǫ,h · n dl.

(2.31)

The superscript m at each of the functions means that the corresponding functions

are evaluated at an iteration level m. Numerical examples presented in [18] show that

MsFVEM can provide an accurate approximation for the solution.

24

CHAPTER III

SOLUTION TECHNIQUES FOR STOCHASTIC EQUATIONS

In this chapter, we consider different techniques used for solving the stochastic

equations arising in porous media. After using the KLE to express the permeability

or saturated conductivity, we can write our model equations as stochastic equations.

Using the KLE we write k(x, θ) and Ks(x, θ) for the permeability and conductivity,

respectively, where θ is a Gaussian random variable. Our goal in this section is not

to compare the solution techniques for the stochastic equations to each other, but

instead provide a description of how both methods can be used for our porous media

equations.

3.1. Polynomial Chaos Methods

In this section, we will give some necessary information on polynomial chaos

methods. In the following sections, we will consider the applications. Consider the

Hilbert space L2(R, µ), where µ is the Gaussian measure

µ(dx) =
1√
2π
e−

x2

2 dx.

Here dx denotes the regular Lebesgue measure. The inner product in space L2(R, µ)

is defined as

(f, g) =

∫ +∞

−∞
f(x)g(x)µ(dx) =

∫ +∞

−∞
f(x)g(x)

1√
2π
e−

x2

2 dx.

We define the unnormalized Hermite polynomial as

Pn(x) = (−1)ne
x2

2
dn

dxn

(

e−
x2

2

)

(3.1)

25

and the normalized Hermite polynomial as

Hn(x) = (n!)−
1
2Pn(x) = (n!)−

1
2 (−1)ne

x2

2
dn

dxn

(

e−
x2

2

)

, (3.2)

where n = 0, 1, 2, It is well known that Hn(x) form a complete orthonormal bases

in L2(R, µ). Thus, for any f(x) ∈ L2(R, µ), there exists a Fourier-Hermite expansion

f(x) =

∞
∑

n=0

fnHn(x), fn = (f, Hn). (3.3)

Further, from the isometric property of the Fourier expansion, we have

‖f‖2
2 = (f, f) =

∞
∑

n=0

f 2
n.

In the space L2(R, µ), we can also view the variable x as a unit Gaussian random

variable. Then the inner product can be interpreted as an expectation with respect to

the Gaussian random variable. Specifically for the Fourier-Hermite expansion (3.3),

we have

fn = (f, Hn) = E[f(x)Hn(x)], Ef 2(x) =

∞
∑

n=0

f 2
n.

Further,

E[Hn(x)] =

∫ +∞

−∞
Hn(x)dµ(x) = (Hn, 1) = 0, if n 6= 0. (3.4)

Therefore we have

Ef(x) = f0.

We can expand a function f(x) of Gaussian random variable into Fourier-Hermite

polynomials. The mean of f(x) is the first coefficient of the expansion, and the

second moment of f(x) is the summation of the square of each coefficients. Because

of this fact, the Fourier-Hermite expansion provides a useful tool to study Gaussian

randomness.

26

Let us now recall some useful results about Hermite polynomials which will be

used in later discussions. Denote

ψ(x, t) = e−
t2

2
+xt.

ψ(x, t) is usually called the generating function of Hermite polynomials because

ψ(x, t) = e
x2

2 e−
(t−x)2

2 = e
x2

2

∞
∑

n=0

(−1)n

n!

dn

dxn

(

e−
x2

2

)

tn =

∞
∑

n=0

Pn(x)

n!
tn. (3.5)

That is, the coefficients of the Taylor expansion of ψ(x, t) are exactly the unnormal-

ized Hermite polynomials.

If we differentiate the unnormalized Hermite polynomial (3.1) directly we get

P ′
n(x) = xPn(x) − Pn+1. (3.6)

On the other hand, by differentiating both sides of equation (3.5), we have

∂

∂x
ψ(x, t) = tψ(x, t) =

∞
∑

n=0

Pn(x)

n!
tn+1 =

∞
∑

n=0

P ′
n(x)

n!
tn.

Shifting the summation index we get

P ′
n(x) = nPn−1(x). (3.7)

Combining (3.6) and (3.7) we get

Pn+1(x) − xPn(x) + nPn−1(x) = 0, n = 1, 2, . . . , (3.8)

with P−1(x) = 0, P0(x) = 1. From (3.2) we have

Hn+1(x) − x

√

1

n + 1
Hn(x) +

√

n

n + 1
Hn−1(x) = 0, (3.9)

H−1(x) = 0, H0(x) = 1.

27

Since the product of Hermite polynomials is still a polynomial, it can be expanded

as a linear combination of Hermite polynomials. We have the following theorem.

Theorem 3.1.1. For any nonnegative integers α and β, denote α∧ β = min{α, β}.

We have

Hα(x)Hβ(x) =
∑

p≤α∧β
B(α, β, p)Hα+β−2p(x), (3.10)

where

B(α, β, p) =

(

α

p

)(

β

p

)

p!

√

(α+ β − 2p)!√
α!β!

. (3.11)

Proof. From equation (3.5) we have

ψ(x, t)ψ(x, s) =

∞
∑

α=0

∞
∑

β=0

Pα(x)Pβ(x)

α!β!
tαsβ. (3.12)

On the other hand

ψ(x, t)ψ(x, s) = e−
t2+s2

2
+(t+s)x = etse−

(t+s)2

2
+(t+s)x

=
∞
∑

p=0

(ts)p

p!

∞
∑

k=0

Pk(x)

k!
(t+ s)k

=

∞
∑

p=0

∞
∑

k=0

Pk(x)

p!

∑

0≤m≤k

1

k!

(

k

m

)

tm+psk+p−m.

If we let k = m+ ν, then m ≤ k is equivalent to ν ≥ 0. Then the above formula can

be rewritten as

ψ(x, t)ψ(x, s) =

∞
∑

p=0

∞
∑

m=0

∞
∑

ν=0

Pm+ν(x)

p!m! ν!
tm+psν+p.

Denote m+ p = α and ν + p = β. Since m = α− p ≥ 0 and ν = β − p ≥ 0 we have

28

p ≤ α ∧ β. Then the previous summation changes to

ψ(x, t)ψ(x, s) =

∞
∑

α=0

∞
∑

β=0

∑

m+ p = α

ν + p = β

Pm+ν(x)

p!m! ν!

tαsβ

=
∞
∑

α=0

∞
∑

β=0

∑

p≤α∧β

Pα+β−2p(x)

p! (α− p)! (β − p)!
tαsβ.

Comparing the above equation with (3.12) we get

Pα(x)Pβ(x) =
∑

p≤α∧β

α!β!

p! (α− p)! (β − p)!
Pα+β−2p(x). (3.13)

Note Pn(x) = (n)
1
2Hn(x). Substituting this into the above formula immediately gives

us (3.10).

Suppose θ1, θ2, . . . are independent unit Gaussian random variables. Denote the

Gaussian vector as θ = (θ1, θ2, . . .). Define the multi-index set as

J =

{

α = (α1, α2, . . .) | αi ∈ {0, 1, 2, . . .}, |α| =

∞
∑

i=1

αi <∞
}

.

For each α ∈ J , define the multi-variable Hermite polynomial of θ as

Tα(θ) =
∞
∏

i=1

Hai
(θi). (3.14)

Note that each Tα(θ) only involves a finite number of factors. The multi-variable

Hermite polynomial Tα(θ) is usually called the Wick polynomial.

Now, let us introduce some notation that will be used in the context of chaos

expansions. For any α, β ∈ J , denote α∧β = min{αi, βi} and α∨β = max{αi, βi}.

We say β ≤ α if βi ≤ αi for all i ≥ 1. The operation α ± β is also defined for each

component. We denote α! =
∏

i αi!.

29

The following properties of the Wick polynomials are especially important:

1. The set {Tα, α ∈ J } are orthonormal bases:

E[TαTβ] =

0 if α 6= β

1 if α = β.

2. Since T0 = 1, where 0 denotes the zero index, we have E[T0] = 1, and

E[Tα] = E[TαT0] = 0 if α 6= 0.

3. For any function f(θ1, θ2, . . .) with E(f 2) < +∞, we have

f(θ1, θ2, . . .) =
∑

α∈J
fαTα, fα = E(fTα),

and

Ef = f0, Ef 2 =
∑

α∈J
f 2
α.

4. Theorem 3.1.1 can be generalized to multi-variable Hermite polynomials easily.

TαTβ =
∑

p≤α∧β
B(α, β, p)Tα+β−2p. (3.15)

It is important that the product of the Hermite polynomials can be expressed as

a linear combination of the Hermite polynomials themselves. The following lemma is

especially useful in practice.

Lemma 3.1.1. Suppose u, v have the Fourier-Hermite expansion

u =
∑

α∈J
uαTα, v =

∑

β∈J
vβTβ.

30

Then, the product uv has the following expansion:

uv =
∑

θ∈J

(

∑

p∈J

∑

0≤γ≤θ
C(θ, γ, p) uθ−γ+p vγ+p

)

Tθ, (3.16)

where

C(θ, γ, p) =

[(

θ

γ

)(

γ + p

p

)(

θ − γ + p

p

)]
1
2

. (3.17)

Proof. From property (3.15), we have

uv =
∑

α∈J

∑

β∈J
uαvβTαTβ

=
∑

α∈J

∑

β∈J
uα vβ

∑

p≤α∧β

(

α

p

)(

β

p

)

p!

√

(α+ β − 2p)!√
α! β!

Tα+β−2p.

Changing the variables θ = α+β−2p, γ = β−p and substituting α = θ+p−γ,

β = γ + p, we immediately obtain formula (3.16), which completes the proof.

3.2. Collocation Methods

In this section, we introduce pertinent information on collocation methods for

use in later sections. Suppose we wish to approximate functions f : [−1, 1]N → R

using only the known values of f at some locations in [−1, 1]N . One may consider

two different problems in this situation: the first where the known values are given

by scattered data in [−1, 1]N and the other where the approximation is based on

values at previously chosen points (gridded data). We will consider only the latter,

since interpolation from scattered data in high dimensions remains a challenging

problem. For simplicity, we consider approximation via Lagrange interpolation in

high dimensions.

First, recall one dimensional Lagrange interpolation. We have a function f :

[−1, 1] → R given at nodes θj , j = 1, . . . ,M for some M ∈ N, and we wish to find

31

a polynomial of degree M − 1 that interpolates the function at the given nodes. In

order to construct this polynomial we form the Lagrange polynomials Lk(θ) such that

Lk (θj) = δjk and Lk(θ) ∈ ΠM−1. Then our polynomial approximation is given by

I(f)(θ) =
M
∑

j=1

f (θj)Lj(θ).

In multiple dimensions, let us define interpolation for each dimension i = 1, . . . , N

by

Ui(f)(θ) =

Mi
∑

j=1

f
(

θij
)

Lij(θ),

where Mi is the number of nodes in the ith dimension. A logical multidimensional

extension of Lagrange interpolation in R
N is to use a simple tensor product of the

one dimensional interpolants. Such an approximation is given by

(Ui1 ⊗ · · · ⊗ UiN) (f) =

Mj1
∑

j1=1

· · ·
MjN
∑

jN=1

f
(

θi1j1 , . . . , θ
iN
jN

)

·
(

Li1j1 ⊗ · · · ⊗ LiNjN
)

. (3.18)

If we were to use the above formulation as our multidimensional interpolant, then

we need Mj1 · · ·MjN function values. Specifically, if we were to use M nodes in each

dimension, then MN values are required for full grid interpolation. In many practical

applications, it is not unusual to have N ≥ 10. For example, if N = 10 and M = 4 we

have 410 or 1, 048, 576 values needed for interpolation. We are generally interested in

applications in which a single function value results from the solution to a nonlinear

PDE system, thus full tensor product interpolation is prohibitively expensive. Sparse

grid collocation methods can be used to alleviate this problem.

3.2.1. Sparse Grid Collocation

We now consider sparse grid collocation methods, specifically the Smolyak algo-

rithm introduced in [41]. The Smolyak algorithm is a linear combination of product

32

formulas chosen so that an interpolation property for N = 1 is preserved for N > 1.

We let |i| = i1 + · · · + iN for i ∈ N
N . Using notation from [35, 46] we define the

Smolyak algorithm by

A (q,N) =
∑

q−N+1≤|i|≤q
(−1)q−|i| ·

N − 1

q − |i|

· (Ui1 ⊗ · · · ⊗ UiN) . (3.19)

Note that we must evaluate f at only sparse values given by

H (q,N) =
⋃

q−N+1≤|i|≤q
(Θi1 × · · · × ΘiN) , (3.20)

where Θi =
{

θi1, . . . , θ
i
Mi

}

are the set of points used by Ui. This leads us to n(k +

N,N) ≈ 2k

k!
·Nk nodes used by A(N + k,N). Here the k term determines how many

nodes will be used. For a fixed N , we define A(N + k,N) as kth order Smolyak

interpolation. The smallest order, of course, is k = 1, in which case we will have only

2N + 1 nodes.

As suggested by numerous sources [35, 46, 4], we consider Smolyak formulas that

are based on the extrema of Chebyshev polynomials. We choose

θij = − cos
π · (j − 1)

Mi − 1
, j = 1, . . . ,Mi

and define θi1 = 0 for Mi = 1. We also choose M1 = 1 and Mi = 2i−1 + 1 for i > 1.

This has the benefit of making our nodal sets nested, thus H (q,N) ⊂ H (q + 1, N).

Using the Smolyak formulas and Lagrange interpolation, we have thatA (N + k,N)

is exact for all polynomials of degree k. Using techniques described in [4] we have the

one dimensional error estimate given by

‖f − Ui(f)‖∞ ≤ EMi−1(f) · (1 + ΛMi
) ,

where EM is the error of the best approximation by polynomials p ∈ P(M, 1) and ΛM

33

is the Lebesgue constant for the Chebyshev polynomials. We have the estimate

ΛM ≤ 2

π
log(M − 1) + 1

for M ≥ 2. In multiple dimensions we define the space

F k
N =

{

f : [−1, 1]N → R |Dαf continuous if αi ≤ k ∀ i
}

with norm

‖f‖ = max
{

‖Dαf‖∞ |α ∈ N
N
0 , αi ≤ k

}

.

We find an interpolation error of

‖IN −A(N + k,N)‖ ≤ cN,k · n−k · (logn)(k+2)(d−1)+1 , (3.21)

where IN is the identity operator [4, 46, 35].

3.3. Application to Single-Phase Flow

We consider approximations to the stochastic flow equations using both poly-

nomial chaos and collocation methods. In this section, to ease both notations and

computations, we consider only single-phase flow given by

∇ · (k∇p) = h,

v = −k∇p,
∂S
∂t

+ v · ∇S = 0.

(3.22)

We assume the spatial domain is given by Ω and the permeability, k, is given by the

KLE. We further assume that the permeability satisfies the strong elliptic condition.

Thus there are constants kmin and kmax such that

0 < kmin ≤ k(x) ≤ kmax <∞. (3.23)

34

As we will see later, the lower bound of the permeability is important in proving the

polynomial chaos matrix equation for the elliptic system is symmetric and positive

definite. Note k is a function of both space and the multidimensional Gaussian

random variable θ. Further, v, p and S are also functions of θ. We will generally omit

this notation and simply write k(x) instead of k(x, θ) and likewise for v, p, and S.

3.3.1. Polynomial Chaos

We assume the permeability field k is given by

k(x) = κ(x) + δeY (x), (3.24)

where κ(x) is a deterministic function, δ > 0 is a constant, and Y (x) is a homogeneous

isotropic Gaussian field. We assume

0 < a ≤ κ(x), x ∈ Ω, (3.25)

which is a legitimate assumption from the strong elliptic condition (3.23). Since δ > 0

we have

0 < a ≤ κ(x) ≤ k(x), x ∈ Ω.

Using these assumptions, we can show the elliptic equation in (3.22) has a unique

weak solution in a corresponding Hibert space. It is this property we wish to retain

in the polynomial chaos formulation.

We expand k(x) into Fourier-Hermite polynomials of θ using the KLE (2.14).

We find

k(x) =
∑

α∈J
E
[

eY (x,θ)Tα(θ)
]

Tα(θ) ,
∑

α∈J
kα(x)Tα(θ). (3.26)

We now wish to find an expression for the kα(x) coefficients in terms of the KLE. To

do this, we need the following lemma.

35

Lemma 3.3.1. Suppose Hn(x) is the n-th order normalized Hermite polynomial and

θ is a standard Gaussian random variable, then

E [Hn(θ + a)] =
an√
n!
,

where a is an arbitrary deterministic number.

Proof. From (3.5) we can write

ψ(x+ a, t) =

∞
∑

n=0

Pn(x+ a)

n!
tn,

but we also have

ψ(x+ a, t) = e−
t2

2
+xteat =

(∞
∑

i=0

ai

i!
ti

)(∞
∑

j=0

Pj(x)

j!
tj

)

=

∞
∑

n=0

(

n
∑

i=0

ai

i!

Pn−i(x)

(n− i)!

)

tn.

(3.27)

Equating the two formulas, we can conclude

Pn(x+ a) =
n
∑

i=0

ai

i!

n!

(n− i)!
Pn−i(x).

Note that E [Pk(θ)] = δk,0 because Pk(x), k = 0, 1, . . . are orthogonal with respect to

Gaussian measure and P0(x) = 1. The desired result follows, as

E [Hn(θ + a)] =
E [Pn(θ + a)]√

n!
=

an√
n!
.

Using the previous lemma, we can calculate the coefficients in the expansion of

k.

Lemma 3.3.2. If k(x) = κ(x)+ δeY (x) and k has the expansion given by (3.26) then

k0(x) = κ(x) + δeσ
2/2

36

and

kα(x) = eσ
2/2

∞
∏

i=1

(√
λiφi(x)

)αi

√
αi!

, α 6= 0. (3.28)

Proof. From the previous lemma

E
[

eY (x,θ)Tα(θ)
]

=
∞
∏

i=1

(
∫ ∞

−∞
e
√
λiθiφiHαi

(θi) e
−−θ2

i
2

dθi

)

(3.29)

=

∞
∏

i=1

e
1
2
λiφ

2
iE
[

Hαi

(

θi +
√

λiφi

)]

= eσ
2/2

∞
∏

i=1

(√
λiφi

)αi

√
αi!

,

where the last equation comes from the fact that σ2 = E (Y 2) =
∑

λiφ
2
i . We now

have

k0(x) = E [k(x)] = κ(x) + E
[

δeY (x)
]

= κ(x) + δeσ
2/2

and

kα(x) = E
[

δeY (x)Tα(θ)
]

= δeσ
2/2

∞
∏

i=1

(√
λiφi(x)

)αi

√
αi!

.

Since the permeability k(x) depends on the Gaussian random variables θi so do

p, v, and S in (3.22). We can expand each of these and find

p(x) =
∑

α∈J
pα(x)Tα(θ),

v(x) =
∑

α∈J
vα(x)Tα(θ), (3.30)

S(x, t) =
∑

α∈J
Sα(x, t)Tα(θ).

Since we are interested in the expansion for single-phase flow, we multiply both sides

37

of the elliptic equation in (3.22) by Tα(θ) and take expectations. We find

E [hTα] = ∇ ·E [(k∇p)Tα]

= ∇ ·E
[

k

(

∑

γ∈J
pγ(x)Tγ

)

Tα

]

= ∇
∑

γ∈J
·E [kTαTγ]∇pγ.

We denote

Aα,γ(x) = E [kTαTγ]

and using (3.15) we get

Aα,γ(x) =
∑

p≤α∧β
B(α, β, p)E (kTα+γ−2p) (3.31)

=
∑

p≤α∧β
B(α, β, p)kα+γ−2p.

Using all of the above, we can now write the governing equations for the poly-

nomial chaos coefficients for single-phase flow:

∇ ·
(

∑

γ∈J
Aα,γ(x)∇pγ(x)

)

= hIα=0,

vα =
∑

γ∈J
Aα,γ(x)∇pγ(x),

∂Sα
∂t

+
∑

p∈J

∑

0≤β≤α
C (α, β, p)∇ · (vα−β+pSβ+p) = 0.

(3.32)

In the first equation, the indicator function Iα=0 is 1 if α = 0 and 0 otherwise. System

(3.32) is an infinite system, and we truncate it for numerical purposes. In [32] it is

shown that this system must be truncated carefully in order to preserve the strong

elliptic condition. Instead of simply truncating the index set for k and using the

inherited truncation for p, v, and S, we truncate the index for the expansion of p first.

38

We have

p(x) =
∑

α∈JM,N

pα(x)Tα(θ),

where JM,N is the truncated multi-index set given by

JM,N=

{

α = (α1, . . . αN) | αi ∈ {0, 1, 2, . . .}, |α| =

N
∑

i=1

αi 6 M

}

.

Note, here N corresponds to the dimension of the KLE, and M represents the order

of the polynomial chaos approximation. Clearly, v and S can be expressed similarly.

The difference now is that in the formula (3.31) the summation includes all eligible

terms even if the index α + γ − 2p /∈ JM,N . Due to the explicit formula for kα in

(3.28), is it quite easy to determine these high order terms.

It is necessary that the truncated polynomial chaos system (3.32) preserves the

properties of the original elliptic equation in (3.22). Since the original equation is

symmetric and positive definite, we expect the system to be as well.

Lemma 3.3.3. The elliptic system in (3.32) is symmetric and positive definite.

Proof. For symmetry, we wish to show:

Aα,β(x) = Aβ,α(x).

This is a direct result from the construction of Aα,β. Recall Aα,β(x)E (kTαTβ) .

As for positive definiteness, we must show for any uα, α ∈ JM,N that

0 < a|u|2 ≤
∑

α,β∈JM,N

uTαAα,β(x)uβ, x ∈ Ω,

39

where |u|2 =
∑

α∈JM,N
|uα|2. From the definition of Aα,β we have

∑

α,β∈JM,N

uTαAα,β(x)uβ =
∑

α,β∈JM,N

uTαE [kTαTβ] uβ

= E

∑

α∈JM,N

uαTα

T

k

∑

β∈JM,N

uβTβ

≥ aE

∑

α∈JM,N

uαTα

T

∑

β∈JM,N

uβTβ

= a|u|2,

where the inequality comes from (3.25).

Even with a truncated index, the number of terms in the truncated polynomial

chaos expansion increase exponentially with respect to both N and M . A typical

truncation may have N = 6 and M = 4. Then the finite polynomial expansion, JM,N ,

has 210 coefficients. However, the simple truncation is not optimal. The polynomial

expansion decays both in Gaussian variable θi and Wick polynomial order. Note that

for Wick polynomial Tα, α = (α1, α2, . . . , αK), the component αi denotes the order of

the Hermite polynomial for random variable θi. Instead of using Hermite polynomials

of the same order for all θi, i ≤ M , it is better to use lower order polynomials for

θi with higher subscripts. In addition to the truncation
∑N

i=1 αi ≤ M , we introduce

some extra constraints such as αi ≤ M − i. This idea is similar to the sparse tensor

product in high dimensional finite element method and also similar to our sparse

collocation methods. For N = 6 and M = 4, we can use the maximum fourth

order Hermite polynomials for θ1, θ2, but only third order Hermite polynomials for

θ3, second order Hermite polynomials for θ4 and first order Hermite polynomials for

θ5, θ6. We can also decouple the random variables θ5, θ6 from the rest of our random

variables θ1, θ2, θ3, θ4. With the above compressions, the number of coefficients will

40

be reduced dramatically, from 210 to 66 in the sparse truncation.

We consider a polynomial chaos approximation to the single-phase flow problem.

We use a 32 × 32 grid in Ω = [0, 1]2. We assume p = 1 and S = 1 on x = 0,

p = 0 on x = 1 and no flow boundary conditions on the lateral boundaries y = 0 and

y = 1. We choose N = 5 and M = 3 which, after truncation, results in 37 terms in

JM,N . We solve the system (3.32) using a finite volume method. We then choose a

random θ ∈ R
5 and reconstruct the pressure, velocity, and saturation according to

(3.30). We calculate the permeability for θ and solve the single-phase problem (3.22)

directly using a finite volume method. In Figure 3.1 we plot the saturations at a fixed

time using both methods. The left figure represents the saturation from the direct

solution to (3.22), while the right represents the saturation reconstructed from the

polynomial chaos expansion. While the saturation front is duplicated quite well by

the polynomial chaos approximation, we notice some slight oscillations along the flow

front. These approximations are satisfactory in practice.

3.3.2. Sparse Grid Collocation

We again consider the single-phase system (3.22). In contrast to the previous

polynomial chaos method, sparse grid collocation techniques do not require a solution

to a system of coefficients in order to approximate our desired quantities. Indeed, for

the single-phase system, two-phase system, or Richards’ equation, the process in

approximation via sparse grid collocation is identical.

For (3.22), let us suppose we wish to approximate p, given some permeability

k. Our permeability is found from the KLE, and hence k and p are functions of the

multidimensional stochastic variable θ. To obtain the approximation to p at any fixed

θ, we interpolate using the values of p for each θ̂ in the set H (q,N), given by (3.20).

Thus, for each θ̂ ∈ H (q,N) we must calculate k(x, θ̂) and solve (3.22) for p(x, θ̂).

41

Fig. 3.1. Left: Saturation profile at a fixed time for the direct solve to (3.22). Right:

Reconstructed saturation profile at the same fixed time using the polynomial

chaos expansion.

Once we have the values of p(x, θ̂) then for any other θ, we calculate A (q,N) (p)(θ)

according to (3.19).

If we wish to approximate v and S as well, we simply need to save their values

at each θ̂ ∈ H (q,N) while solving (3.22) and interpolate similarly. As mentioned

previously, we choose θ̂ based on the extrema of Chebyshev polynomials. By trans-

formation, we can choose θ̂ for any hypercube. By the nature of interpolation, we

will restrict ourselves to approximations of θ that are within this hypercube.

We consider sparse collocation approximations to the single-phase flow problem.

We use a 61 × 61 grid in Ω = [0, 1]2. We assume p = 1 and S = 1 on x = 0,

p = 0 on x = 1 and no flow boundary conditions on the lateral boundaries y = 0 and

y = 1. We take N = 9 and choose 1st order Smolyak interpolation, q = N + 1. For

N = 9, 1st order Smolyak interpolation requires us to use only 19 nodes. Thus only

19 single-phase solutions are needed to generate the necessary data for sparse grid

42

Fig. 3.2. Left: Saturation profile at a fixed time for the direct solve to (3.22). Right:

Interpolated saturation profile at the same fixed time using 19 values.

collocation. We generate nodes for Smolyak interpolation based on the hypercube

[−2.5, 2.5]N . We choose a specific θ and generate the corresponding permeability.

We solve (3.22) directly and compare the results with the interpolated values. In

Figure 3.2 we plot the corresponding saturations for a fixed time snapshot. The left

plot represents the saturation from the direct solution to (3.22), while the right is

interpolated saturation. The two saturations are nearly identical, with only a slight

fluctuation along the saturation front.

3.4. Application to Richards’ Equation

3.4.1. Polynomial Chaos

We consider Richards’ equation in the form given by (2.7), rewritten as

∂f

∂t
(u) −∇ · [KsKr∇ (u+ x3)] = 0. (3.33)

43

Here we have written the conductivity as K = KsKr where the term Kr depends on

which constitutive relation we choose. Note we have written the volumetric water

content as f(u) instead of θ(u) to avoid confusion with the random variables θ in the

KLE.

We expand the saturated conductivity as a Fourier-Hermite polynomial of θ,

Ks(θ) =
∑

α∈J
KsαTα(θ).

Since u depends on Ks we also write

u(θ) =
∑

α∈J
uαTα(θ).

We must also compute the expansions of f (u) and Kr. For the exponential model, we

have f (u) = fse
bu and Kr = eau (where again we write fs for the saturated moisture

content instead of θs). To approximate ebu we must use a Taylor series expansion

about u = 0. Using a fifth order expansion, we have the estimate

ebu ≈ 1 + b

(

u+
b

2

(

u+
b

3

(

u+
b

4

(

u+
b

5

))))

.

In order to expand ebu as a Fourier-Hermite series, we must recursively apply the

formula in Lemma 3.1.1. Similarly we can expand eau. Putting these results together,

we write

K (x, u) = Ks(x)Kr(u) ,
∑

α∈J
gα (x, t)Tα (θ) .

With the above definitions, we may write the governing equations for the poly-

nomial chaos coefficients for the exponential model of Richards’ equation as

fs
dfα
dt

−
∑

p∈J

∑

0≤β≤α
∇ · [gα−β+p∇ (uβ+p + x3)] = 0.

We generally use an implicit scheme in time to solve the Richards’ equation. A com-

44

bination of an implicit formulation along with the recursive applications of Lemma

3.1.1 make this particular formulation expensive. The derivation of the polynomial

chaos system is similar for the van Genuchten and Haverkamp models. Both mod-

els lead to a nonlinear implicit system which contains recursive applications of the

Fourier-Hermite polynomial multiplication formulas.

We now consider a simpler model using the constitutive relation given by Irmay

[28]. If we assume m = 1 then we will greatly increase the ease at which we can

solve the Richards’ equation. If we assume this Kr is the same as the exponential

constitutive relation, then we have

Kr = eau =

(

f − fr
fs − fr

)

,

which leads to the equation

f = fr + (fs − fr) e
au. (3.34)

Note we have again substituted f for θ. As shown in Tracy [42] this model is at least

physically reasonable when compared with the van Genuchten model. We also will

consider boundary conditions on Γ = ΓD ∪ ΓN given by

u (x) = ψ (x) , x ∈ ΓD,

[Kse
au∇ (u+ x3)] · n = Q (x) , x ∈ ΓN .

Here we have ψ (x) a randomly prescribed pressure head and Q (x) is a randomly

prescribed flux.

We consider a Kirchhoff transformation given by

Φ (x) =

∫ u(x)

−∞
eat dt =

1

a
eau. (3.35)

45

Thus we have

∇Φ (x) = ∇1

a
eau = eau∇u,

which gives us

∇ · [Kse
au∇ (u+ x3)] = ∇ · (Ks∇Φ) + a

∂

∂x3

(KsΦ) .

Inserting the formula for f from the Irmay model, we find

∂f

∂t
(u)−∇·[Kse

au∇ (u+ x3)] =
∂

∂t
(fr + (fs − fr) aΦ)−∇·(Ks∇Φ)−a ∂

∂x3
(KsΦ) = 0,

which leads to the following PDE:

(fs − fr) a
∂Φ

∂t
−∇ · (Ks∇Φ) − a

∂

∂x3
(KsΦ) = 0. (3.36)

After transformation, our boundary conditions are given by

Φ (x) = 1
a
eaψ(x), x ∈ ΓD,

[

(Ks∇Φ) + a ∂
∂x3

(KsΦ)
]

· n = Q (x) , x ∈ ΓN .

We again assume that the saturated conductivity can be expressed as

Ks(x) =
∑

α∈J
Ksα(x)Tα (θ) .

Since Φ depends on Ks, we can also express Φ as a Fourier-Hermite polynomial. Thus

we write

Φ (x, t) =
∑

α∈J
Φα (x, t)Tα (θ) .

Using the multiplicative rule for Fourier-Hermite expansions we may write our system

as

(fs − fr) a
∂Φα

∂t
−
∑

β∈J

[

∇ · (Aα,β∇Φβ) + a
∂

∂x3

(Aα,βΦβ)

]

= 0, α ∈ J ,

46

where

Aα,β =
∑

β∈J

∑

p≤α∧β
B (α, β, p)Ksα+β−2p .

Since our original boundary conditions are given by

Φ (x) = 1
a
eaψ(x), x ∈ ΓD,

[

(Ks∇Φ) + a ∂
∂x3

(KsΦ)
]

· n = Q (x) , x ∈ ΓN ,

then for the polynomial chaos system we have

Φα (x) =
1

a
eaψ(x)δα0, x ∈ ΓD,

∑

β∈J

[

∇ · (Aα,β∇Φβ) + a
∂

∂x3
(Aα,βΦβ)

]

· n = 0, x ∈ ΓN .
(3.37)

We consider a polynomial chaos approximation to the above formulation of

Richards’ equation using the Irmay model. We use a 32 × 32 grid in Ω = [0, 1]2.

We assume a pressure head of u = 1 on y = 0, u = 0 on x = 1, and no flow boundary

conditions on the side boundaries x = 0 and x = 1. We choose N = 5 and K = 2

which, after truncation, results in 17 terms in JM,N . We solve (3.37) using an implicit

finite volume method. We choose a random θ ∈ R
5, calculate Ks and solve (3.36)

using an implicit finite volume method as well. In Figure 3.3 we compare the pressure

head using both methods. The reconstructed pressure matches the original pressure

profile almost exactly. These approximations will be satisfactory for the uncertainty

quantification problems discussed later.

3.4.2. Sparse Grid Collocation

We again consider Richards’ equation, but now we focus on the exponential

model. In contrast to the previous polynomial chaos method, sparse grid collocation

techniques can be applied regardless of which constitutive relation or what form of

Richards’ equation we desire to use.

47

Fig. 3.3. Left: Pressure profile for the direct solve to (3.36). Right: Reconstructed

pressure profile using the polynomial chaos expansion.

As in the previous case of single-phase flow, we wish to approximate u given some

saturated conductivity Ks. Since Ks is found using the KLE, k and u are functions

of the multidimensional stochastic variable θ. We interpolate using the values of u

for each θ̂ ∈ H (q,N) where H is given by (3.20). We calculate Ks(x, θ̂) and solve

Richards’ equation for each u(x, θ̂). We choose θ̂ based on the extrema of Chebyshev

polynomials, transformed to a hypercube centered at the origin.

We consider a 49×49 grid in Ω = [0, 1]2. We assume a pressure head of u = −20

on y = 0, u = 0 on x = 1, and no flow boundary conditions on the side boundaries

x = 0 and x = 1. We choose first order Smolyak interpolation, thus for N = 9 we

use only 19 nodes. We choose a specific θ and generate the corresponding Ks. We

solve Richards’ equation directly using an implicit finite volume solver and compare

the results with the interpolated values. In Figure 3.4 we compare the pressure head

from each method. The left figure represents the pressure from the direct solution,

while the right represents the interpolated pressure. There is very little difference

48

Fig. 3.4. Left: Pressure profile for the direct solve to Richards’ equation. Right: In-

terpolated pressure profile using 19 values.

between the two. This close approximation allows us to use the collocation methods

in the uncertainty quantification problems discussed in the later chapters.

49

CHAPTER IV

MULTISCALE METHODS FOR STOCHASTIC POROUS MEDIA FLOWS

In this chapter, our aim is to combine multiscale methods with the stochastic

equations for porous media flows. We use the methods presented in the previous

chapter to approximate the stochastic portion of the equations, while using multiscale

methods to solve in the spatial dimensions.

4.1. Upscaling Methods

We first consider upscaling methods, as described in Section 2.3. We derive the

upscaled equations for the polynomial chaos method for single-phase flow. Next, we

discuss applications of upscaling using collocation methods.

4.1.1. Polynomial Chaos Equations

Recall the system given by (3.32). In most applications the permeability k has

multi-scale structures, and thus the stiffness coefficients Aα,β(x) do as well. We wish

to capture the effects of the small scales by deriving an upscaled system. We now

derive the upscaled equations in the framework of homogenizaton as it is usually done

for the scalar flow equations. The obtained method is applicable to more general cases

[20].

We write the elliptic system in (3.32) as

∂

∂xi

(

Aijα,β

(

x,
x

ε

) ∂

∂xj
Pβ

)

= 0, (4.1)

where we assume that Aα,β
(

x, x
ε

)

is periodic. We further assume k has a nonzero

lower bound, and thus Aα,β(x) has a nonzero bound as well [32]. For ease of notation

let us assume summation over the indices throughout. We denote y = x
ε

and assume

50

x ∈ Ω and y ∈ Y . We perform a multiscale expansion of Pβ and find

Pβ = P 0
β

(

x,
x

ε

)

+ εP 1
β

(

x,
x

ε

)

+ ε2P 2
β

(

x,
x

ε

)

+ (4.2)

Note for any f
(

x, x
ε

)

we have

∂

∂x
f
(

x,
x

ε

)

=
∂

∂x
f
(

x,
x

ε

)

+
1

ε

∂

∂y
f
(

x,
x

ε

)

.

Using the chain rule in (4.1) we get

[

∂

∂xi
+

1

ε

∂

∂yi

](

Aijα,β (x, y)

[

∂

∂xj
+

1

ε

∂

∂yj

]

Pβ (x, y)

)

= 0. (4.3)

If we substitute the expansion for Pβ back into our pressure equation we get

∂

∂xi

(

Aijα,β (x, y)
∂

∂xj
P 0
β (x, y)

)

+
1

ε

∂

∂yi

(

Aijα,β (x, y)
∂

∂xj
P 0
β (x, y)

)

+

1

ε

∂

∂xi

(

Aijα,β (x, y)
∂

∂yj
P 0
β (x, y)

)

+
1

ε2

∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
P 0
β (x, y)

)

+

ε
∂

∂xi

(

Aijα,β (x, y)
∂

∂xj
P 1
β (x, y)

)

+
∂

∂yi

(

Aijα,β (x, y)
∂

∂xj
P 1
β (x, y)

)

+

∂

∂xi

(

Aijα,β (x, y)
∂

∂yj
P 1
β (x, y)

)

+
1

ε

∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
P 1
β (x, y)

)

+

ε2 ∂

∂xi

(

Aijα,β (x, y)
∂

∂xj
P 2
β (x, y)

)

+ ε
∂

∂yi

(

Aijα,β (x, y)
∂

∂xj
P 2
β (x, y)

)

+

ε
∂

∂xi

(

Aijα,β (x, y)
∂

∂yj
P 2
β (x, y)

)

+
∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
P 2
β (x, y)

)

+ · · · = 0.

Collecting the ε−2 terms we get

∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
P 0
β (x, y)

)

= 0.

We multiply both sides by P 0
α(x, y) and integrate by parts. We use the fact that Y is

periodic and that Aα,β has a lower bound. Hence

0 =

∫

Y

Aijα,β(x, y)
∂

∂yj
P 0
β (x, y)

∂

∂yi
P 0
α (x, y) dy ≥

∫

Y

∑

α

∣

∣

∣

∣

∂

∂yi
P 0
α (x, y)

∣

∣

∣

∣

2

dy,

51

which implies that

P 0
β (x, y) = P 0

β (x) . (4.4)

When we collect the ε−1 terms, we find

∂

∂yi

(

Aijα,β (x, y)
∂

∂xj
P 0
β (x, y)

)

+
∂

∂xi

(

Aijα,β (x, y)
∂

∂yj
P 0
β (x, y)

)

+
∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
P 1
β (x, y)

)

= 0.

Since P 0
β (x, y) = P 0

β (x), the second term is zero and we may separate the first

term. We get

∂

∂yi
Aijα,β (x, y)

∂

∂xj
P 0
β (x) +

∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
P 1
β (x, y)

)

= 0.

We note that this can be written as LP 1
β (x, y) = f (x, y) g (x) where L is a linear

operator. Thus, we may write P 1
β (x, y) = N (x, y) g (x) where LN (x, y) = f (x, y) .

Thus

P 1
β (x, y) = N j

β,γ (x, y)
∂

∂xj
P 0
γ (x)

and N j
β,γ satisfies

∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
Nk
β,γ (x, y)

)

= − ∂

∂yi
Aikα,γ (x, y) . (4.5)

Collecting ε0 terms, we have

∂

∂xi

(

Aijα,β (x, y)
∂

∂xj
P 0
β (x)

)

+
∂

∂xi

(

Aijα,β (x, y)
∂

∂yj
P 1
β (x, y)

)

+ (4.6)

∂

∂yi

(

Aijα,β (x, y)
∂

∂xj
P 1
β (x, y)

)

+
∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
P 2
β (x, y)

)

= 0.

Let 〈·〉 be an averaging over Y , and note that

〈∇y · f〉 =

∫

∂Y

f (x, y) · n dl = 0

52

if f (x, y) is periodic. If we average (4.6) over a period, then we find that the last two

terms are zero. Then (4.6) reduces to

∂

∂xi

(

〈

Aijα,β (x, y)
〉 ∂

∂xj
P 0
β (x, y)

)

+
∂

∂xi

〈

Aijα,β (x, y)
∂

∂yj
P 1
β (x, y)

〉

=

∂

∂xi

(

〈

Aijα,β (x, y)
〉 ∂

∂xj
P 0
β (x)

)

+
∂

∂xi

〈

Aijα,β (x, y)
∂

∂yj
Nk
β,γ (x, y)

∂

∂xk
P 0
γ (x)

〉

= 0.

If we let
(

Aijα,β
)∗

=
〈

Aijα,β (x, y)
〉

+

〈

Aijα,β (x, y)
∂

∂yj
Nk
β,γ (x, y)

〉

(4.7)

then the previous equation for the ε0 terms reduces to

∂

∂xi

(

Aijα,β
)∗ ∂

∂xj
P 0
β (x) = 0. (4.8)

Then equation (4.8) is the upscaled equation for the leading order terms P 0
β , with

(

Aijα,β
)∗

as the stiffness coefficients.

In order to compute
(

Aijα,β
)∗

, we must first find Nk
β,γ (x, y). In order to apply

the explicit upscaled formulations, we partition the domain Ω into coarse blocks

Ω =
K
⋃

k=1

Ωk. Then we solve the equation on each coarse block Ωk. Referring back to

(4.5) we write

∂

∂yi

(

Aijα,β (x, y)
∂

∂yj
Nk
β,γ (x, y) + Aikα,γ (x, y)

)

= 0, x ∈ Ωk. (4.9)

If we write Aikα,β (x, y) = Aijα,γ (x, y) δβ,γδjk then we can simplify the above to

∂

∂yi
Aijα,γ (x, y)

(

∂

∂yj
Nk
β,γ (x, y) + δβ,γδjk

)

=
∂

∂yi
Aijα,γ (x, y)

∂

∂yj

(

Nk
β,γ (x, y) + δβ,γyk

)

= 0.

Thus, we need to solve the local problems

∂

∂xi
Aijα,γ

∂

∂xj
ϕβ,γ = 0, x ∈ Ωk. (4.10)

Once we have ϕβ,γ then we compute the stiffness coefficient on each block by the local

53

average
(

Aijα,β
)∗
Ωk

=

〈

Aijα,γ (x, y)
∂

∂yj
ϕβ,γ

〉

Ωk

. (4.11)

One can also consider global upscaling as it is done for scalar equations. Global

upscaling is particularly important if there is no apparent scale separation. Here,

we refer to [5, 26] and references therein for some single-phase flow results using

global upscaling. The main idea of the global upscaling is to compute the effective

permeability from the global solution instead of local solutions. As we mentioned

earlier, these approaches are similar to oversampling method when the oversampling

domain is taken to be the entire domain. One can also do global upscaling for the

polynomial chaos system, similar to scalar elliptic equations. We note that this type

of work is not done previously. To do the global upscaling, we solve (4.9) or (4.10)

over the entire domain (i.e, Ωk is replaced by Ω). Then, (4.10) is used to compute

the upscaled coefficients in each coarse grid block.

Next, we present some representative numerical examples using polynomial chaos

expansions and upscaling. We consider the same polynomial chaos approximation to

the single-phase flow problem as in Section 3.3.1. We start with a 32 × 32 grid

and use global upscaling to form the solution on an 8 × 8 grid for Ω = [0, 1]2. We

repeat the same process from Section 3.3.1 and solve the upscaled version of (3.32).

We fix a θ and solve the single-phase problem (3.22) using (4.11). In Figure 4.1

we compare the saturations for a fixed-time snapshot using each solution technique.

On the left, we have the saturation from the solution of (3.22) on the full 32 ×

32 grid. The middle plot contains the saturation from the solution to (3.22) using

global upscaling. The right figure contains the saturation from the globally upscaled

polynomial chaos approximation using (4.11). The saturation front is duplicated quite

well by the polynomial chaos approximation, which is satisfactory for our uncertainty

54

Fig. 4.1. Left: Saturation profile at a fixed time for the direct solve to (3.22) for

the full 32 × 32 grid. Middle: Saturation profile at the same fixed time

using global upscaling to the 8 × 8 grid with a direct solve to (3.22). Right:

Reconstructed saturation profile at the same fixed time using the globally

upscaled polynomial chaos expansion on an 8 × 8 grid.

quantification problems.

4.1.2. Collocation Methods

In this section, our aim is to show that collocation methods can be used in

conjunction with single-phase upscaling. Using methods mentioned in Section 2.3, we

formulate the single-phase upscaling problem for flow in porous media. We calculate a

permeability k(x, θ) using the KLE, then calculate the upscaled permeability k∗(x, θ)

using solutions to local (or global) problems. If we wish to solve this problem for

numerous permeabilities, then the upscaled permeability k∗ must be recomputed for

each new permeability. We instead wish to consider a collocation method, where,

using the Smolyak algorithm, we compute a set of upscaled permeabilities at some

55

fixed reference nodes in stochastic space. Thus we compute k∗ (x, θi) for each θi ∈

H (q,N). Then each time we choose a new permeability k, the upscaled permeability

k∗ is approximated by interpolation based on the reference upscaled permeabilities

by

k̃∗(x, θ) =
∑

i

k∗ (x, θi) βi(θ).

We note the weights are computed apriori, and they are Lagrange polynomials in our

particular collocation techniques.

We wish to compare only the interpolated upscaled permeability k̃∗ and the

calculated upscaled permeability k∗. In the previous chapter, we considered inter-

polation of both pressure and saturation for the normal covariance (2.16). For the

same reasons as mentioned in the previous chapter, we have a good correspondence

between the interpolated coarse-scale permeability, k̃∗, and the original coarse-scale

permeability, k∗. The two permeabilities are very close to each other because of the

smoothness of the fields generated using normal covariance. We do not present these

results here, and instead focus on using exponential covariance (2.17). Another rea-

son the interpolation worked so well in the previous chapter is because the stochastic

dimension for the KLE with normal covariance is relatively small due to the reduced

truncation. For example, in Section 3.3.2 we interpolate in only 9 stochastic dimen-

sions after using a reduced KLE. In this section, we generate a KLE using exponential

covariance where we choose L1 = 0.5, L2 = 0.05 and σ2 = 2.0 in (2.17). A truncated

KLE with N = 500 terms captures over 95% of the energy for this case. For inter-

polation, we use only 1st order Smolyak. Since N = 500 we require 1, 001 reference

values for 1st order Smolyak interpolation. If we were to consider 2nd order Smolyak

interpolation as well, then for just N = 100 we would have to generate 20, 201 refer-

ence values. To even compute the number of nodes necessary for N = 500 with 2nd

56

order interpolation would require us to modify the traditional Smolyak algorithm due

to computational memory issues.

We consider the single-phase elliptic problem where boundary conditions are

given by p = 1 on x = 0, p = 0 on x = 1 and no flow boundary conditions on the

lateral boundaries y = 0 and y = 1. We consider a 100×100 fine grid and coarse grids

of size 1 × 1, 5 × 5 and 10 × 10. We restrict the stochastic domain to the hypercube

[−2.5, 2.5]500 for Smolyak interpolation. We solve the single-phase upscaling problem

for each of the three coarse grids to generate the 1, 001 reference values of k∗. We

then choose 1, 000 random values of θ ∈ [−2.5, 2.5]500 and compute both k∗ and k̃∗.

To test the importance of the higher order terms in the KLE to interpolation, we also

compute an interpolated permeability based on only the first 100 terms in the KLE.

Let us denote this as k̃∗100

In Figure 4.2 we compare the empirical cumulative distribution function (CDF)

for each of the three coarse grids. In each plot the CDF value on the y-axis represents

the proportion of permeabilities that are less than or equal to the value on the axis.

In each plot, the CDF from the two interpolated upscaled permeabilities matches the

reference upscaled permeability almost exactly. This indicates that our interpolation

is statistically accurate, and also indicates that the trailing 400 terms in the KLE do

not have a significant effect on the upscaled permeabilities in this case. In Table 4.1

we show the mean, median, and standard deviation for each of the CDFs. We note

both interpolation methods work very well.

4.2. Multiscale Methods

In this section, we present a multiscale approach for solving stochastic flow

equations (elliptic equation) using sparse grid collocation (e.g., [46]). We restrict our

57

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

K

C
D

F
Empirical CDF, Coarse grid 1x1

Exact
Interp using 500 values
Interp using 100 values

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

K

C
D

F

Empirical CDF, Coarse grid 5x5

Exact
Interp using 500 values
Interp using 100 values

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

K

C
D

F

Empirical CDF, Coarse grid 10x10

Exact
Interp using 500 values
Interp using 100 values

Fig. 4.2. Left: CDF for a coarse grid of size 1 × 1. Middle: CDF for a coarse grid of

size 5 × 5. Right: CDF for a coarse grid of size 10 × 10.

Table 4.1. Mean, median, and standard deviation for the CDF using the 1× 1, 5 × 5,

and 10 × 10 coarse grids.

1 × 1 Coarse Grid 5 × 5 Coarse Grid 10 × 10 Coarse Grid

Perm
Mean Med Std Dev Mean Med Std Dev Mean Med Std Dev

k∗ 1.706 1.071 1.912 1.721 1.303 1.707 1.854 1.729 1.444

k̃∗ 1.604 0.997 1.808 1.699 1.283 1.688 1.863 1.734 1.451

k̃∗100 1.712 0.954 2.107 1.678 1.264 1.671 1.874 1.739 1.491

58

discussion to two-phase immiscible flow presented in Section 2.1.1. We assume the

solution is computed for some values of θ = (Θ1, ...,ΘN), denoted by θk, and then

interpolated for θ ∈ RN . Throughout, we assume that k(x, θ) smoothly depends on

θ, keeping in mind Karhunen-Loève type expansions. The results of this section do

not depend on specific collocation methods. We only use the fact that the solution

can be approximated using its values at certain locations

p(x, θ) =
∑

i

p(x, θi)βi(θ),

where βi(θ) are the corresponding weights.

Next, we present a multiscale approach. Typically, in the absence of scale sep-

aration, one needs to use multiscale models based on global fields [17]. We propose

two related approaches. The first approach entails the computation of basis functions

at some sparse points θk. Denote these basis functions by φi(x, θk). Then, at each θ

for which the solution needs to be computed, instead of solving for basis functions at

θ, we interpolate it via pre-computed basis functions

φi(x, θ) =
∑

k

φi(x, θk)βk(θ).

This approach is efficient, in particular, when interpolation weights can be easily

computed. Moreover, this approach is similar to ensemble level upscaling methods

where the upscaled permeabilities are computed for selected collocation points and

then interpolated for any given θ [7]. Our second approach is different from the first

one, and we believe it does not have an analog within traditional upscaling methods.

In our second approach, we propose to use the family of basis functions for all θk

without interpolating them to a particular realization θ. This is an interpolation free

approach and has advantages when the number of collocation points are not large

and the interpolation formula is not readily available.

59

i

xi

ω
K

Fig. 4.3. Schematic description of patch

Next, we briefly present an analysis for the second approach. Analysis of the

first approach is similar. Our goal is to find a finite number of global fields such that

they can be used to approximate the ensemble, i.e., the probability distribution of the

solution. For each realization θi, we assume that the solution can be represented using

the global fields uj (x, θk). These global fields, for example, may be global solutions

to the single-phase elliptic equation with various boundary conditions or source terms

(see [1] for more details). In multiscale methods, our goal is to find basis functions

that can be used to approximate the solution for p(x, θk) for any smooth functions

λ(x) in

div(λ(x)k(x, θk)∇p) = 0.

Following to [1], our first step is to determine global fields such that the solution

smoothly depends on these fields. Let ωi be a patch (see Figure 4.3) and define

φ0
i (x) to be a piecewise linear basis function in patch ωi such that φ0

i (xj) = δij . For

simplicity of notation, denote u1 = 1. Then, the multiscale finite element method for

each patch ωi is constructed by

ψijkl(x) = φ0
i (x)uj (x, θk) , (4.12)

60

where j = 1, .., N and i is the index of nodes (see Figure 4.3). Note that in each K,
∑n

i=1 ψijkl(x) = uj(x, θk) is the desired single-phase flow solution.

We define the Galerkin finite element space by

Vh = span{ψKijkl : i = 1, · · · , d, j = 1, . . . , N ;K ∈ τh}. (4.13)

The weak formulation of (2.2) is to find ph ∈ Vh such that

(λk∇ph,∇qh) = (f, qh) for any qh ∈ Vh, (4.14)

where (·, ·) denotes inner product in L2.

To estimate the error between our fine-scale pressure and multiscale pressure,

we assume that the pressure field for each θ is a smooth function of ui(x, θ). This

assumption for each θ has been shown in [1] for channelized two-phase flow and in

[38] for more general permeability fields under the assumption that λ(x) is a smooth

function. Thus, for our analysis we make the following assumption. Assume there

exists a sufficiently smooth scalar valued function G̃(η), η ∈ RN (G ∈ C3), such that

|p (x, θ) − G̃(u1 (x, θ) , ..., uN (x, θ))|1,Ω ≤ Cδ, (4.15)

where δ is sufficiently small.

Theorem 4.2.1. Under the assumption (4.15) and ui (x, θ) ∈ W 1,s(Ω), s > 2, i =

1, ..., N , we have

|p (x, θ) − ph (x, θ) |1,Ω ≤ Cδ + Ch1−2/s, (4.16)

for each θ.

Remark 4.2.1. We present the proof of this theorem below, but first note that in a

typical application, we assume that θ is in a compact set. In this case, one can obtain

from Arzela-Ascoli that (4.16) holds uniformly with respect to θ. We note that one

61

can also consider local basis functions following the previous discussion.

Proof. First, we note the following stability estimate

|p− ph|1,Ω ≤ C|p− cijkψijk|1,Ω, (4.17)

where cijk is chosen later. We remind that the index k refers to a realization θk, and

p is evaluated at an arbitrary θ. The estimate (4.17) can be written as

|p(x, θ) − ph|1,Ω ≤ |p− G̃(u1(x, θ), ..., uN(x, θ))|1,Ω+

|G̃(u1(x, θ), ..., uN(x, θ)) −G(u1(x, θk), ..., uN(x, θk))|1,Ω+

|G(u1(x, θk), ..., uN(x, θk)) − cijkψijk|1,Ω,

(4.18)

where cijk is chosen later and G(u1(x, θk), ..., uN(x, θk)) depends on all k, i.e., G :

RNM → R,

G(u1(x, θk), ..., uN(x, θk)) = G(u1(x, θ1), ..., uN(x, θM)).

The first term on the right hand side of (4.18) can be estimated based on our

assumption (4.15). To estimate the second term on the right hand side of (4.18), we

note that

ui(x, θ) =
∑

j

ui(x, θk)Lk(θ) + E, (4.19)

where E is the error term.

If we assume (4.19) is exact at θ = θk, then G = G̃ at θ = θk. Thus, from

standard interpolation results assuming G is sufficiently smooth with respect to θ, we

have

|G̃(u1(x, θ), ..., uN(x, θ)) −G(u1(x, θk), ..., uN(x, θk))|1,Ω ≤ CGδ1, (4.20)

where CG depends on the derivative of G̃ and θ. Provided θ is in a compact set, CG

62

is uniformly bounded.

Next, we present the choice of cijk and the estimate for the third term on the

right hand side of (4.18). In each ωi, we choose cijk as

cijk =
∂G

∂uj
(ui1(θk), ..., u

i
N(θk)), j ≥ 2

and

ci1k = G(ui1(θk), ..., u
i
N(θk)) −

∂G

∂uj
(ui1(θk), ..., u

i
N(θk))u

i
j(θk),

where uij is the average of uj over ωi for each (θk). We note the following Taylor

expansion in each ωi and for each θk

G(u1, ..., uN) = G(ui1, ..., u
i
N) +

∂G

∂uj
(ui1, ..., u

i
N)(uj − uij) +Ri,

where Ri is the remainder given by

Ri =
∑

j,m

1

2

∂2G

∂um∂uj
(ξi1, ..., ξ

i
N)(um − uik)(uj − uij),

where ξim = uim + ζ i(um − uik), 0 < ζ i < 1. Note that we omit the index of θk in the

remainder for simplicity. Then, it can be shown that in each ωi (fixed i)

|G(u1(x, θk), ..., uN(x, θk)) − cijkuj(x, θk)|1,ωi
≤

|G(u1(θk), ..., uN(θk))+

∂G

∂uj
(u1(θk), ..., uN (θk))(uj(x, θk) − uj(θk)) − cijkuj(x, θk)|1,ωi

+ |R|1,ωi
.

(4.21)

The first term on the right hand side is zero because of the choice of cijk. Under the

assumption that ui ∈W 1,s (s > 2), we have the following estimate for the remainder

63

(we ignore the index of θk for simplicity):

|Ri|1,ωi
≤

C
∑

l,j,k

‖ ∂3G

∂ul∂uj∂uk
∇ul(uj − uij)(uk − uik)‖0,ωi

+ C
∑

l,j 6=l
‖ ∂2G

∂ul∂uj
(uj − uij)‖0,ωi

+

C
∑

l

‖∂
2G

∂u2
l

(ul − uil)
2∇ul‖0,ωi

≤

C
∑

l,j,k

Ch2−4/s|uj|1,ωi
|uk|1,ωi

|ul|1,ωi
+ C

∑

l,j 6=l
h1−2/s|uj|1,ωi

+ C
∑

l

h2−4/s|ul|21,ωi
≤

C
∑

l

h2−4/s|ul|1,ωi
+ C

∑

l,j 6=l
h1−2/s|uj|1,ω+i ≤

Ch1−2/s
∑

l

|ul|1,ωi
.

It can be easily shown that

|Ri|0,ωi
≤ C

∑

j,k

‖(uj − uij)(uk − uik)‖0,ωi
≤

C
∑

j,k

h2−4/s|uj|1,ωi
|uk|1,ωi

h ≤ Ch3−4/s
∑

j

|uj|1,ωi
.

Following [3], we have

|G(u1, ..., uN) − cijkψijk|21,Ω =

∫

Ω

|∇(G− cijkφ
0
iuj(x, θk))|2dx =

∫

Ω

|∇(φ0
i (G− cijkuj(x, θk)))|2dx ≤

C

∫

Ω

|(G− cijkuj(x, θ)k))∇φ0
i |2dx+ C

∫

Ω

|φ0
i∇(G− cijkuj(x, θk))|2dx ≤

1

h2

∑

i

∫

ωi

|Ri|2dx+
∑

i

∫

ωi

|∇Ri|2dx ≤

C
∑

i

1

h2
h6−8/s

∑

j

|uj|21,ωi
+ Ch2−4/s

∑

i

∑

j

|uj|21,ωi
≤ Ch4−8/s + Ch2−4/s,

where we have used the fact that
∑

i φ
0
i = 1 and C depends on the overlapping index

64

of ωi’s. Consequently, we have the following error estimate

|p− ph|1,Ω ≤ Cδ + Ch1−2/s.

Finally, we would like to note that one can extend the above approach to mixed

multiscale finite element methods. In [1], the authors have presented mixed multiscale

finite element methods using multiple global information. In mixed multiscale finite

element methods, the basis functions for the velocity field are constructed. Taking

the global fields to be the single-phase flow velocities at sparse collocation points, one

can also obtain the mixed multiscale method for stochastic porous media equations

[1].

We present a simple one-dimensional numerical example to demonstrate the ef-

ficiency of multiscale finite element methods. We consider a permeability given by

k (x, θ) = exp (θΦ(x)) ,

where Φ(x) is a highly oscillatory function. Using this k(x, θ) we wish to solve the

one-dimensional version of the single-phase flow equation on Ω = [0, 1]

(k(x, θ)p′(x, θ))
′
= f(x),

p(x, θ) = 0 for x on ∂Ω.

(4.22)

We take f(x) = −1. Let us solve this equation exactly for Ω = [0, 1]. After one

integration we have

k (x, θ) p′ (x, θ) = −x+ C

thus

p′ (x, θ) =
−x

k (x, θ)
+

C

k (x, θ)
.

65

Taking the integral from 0 to 1 of both sides and using the fact that we have zero

Dirichlet boundary conditions, we have

∫ 1

0

p′ (x, θ) dx =

∫ 1

0

−x
k (x, θ)

+
C

k (x, θ)
dx = 0.

Thus

C

〈

1

k (x, θ)

〉

=

〈

x

k (x, θ)

〉

or

C =
〈x/k (x, θ)〉
〈1/k (x, θ)〉 ,

where 〈·〉 denotes the integral over 0 to 1.

We now have that the solution to (4.22) can be written as

p (x, θ) =

∫ −x
k (x, θ)

+
〈x/k (x, θ)〉
〈1/k (x, θ)〉

1

k (x, θ)
dx. (4.23)

We wish to compare this exact solution to one obtained by using multiscale finite

element methods (MsFEM).

To find the basis function for the MsFEM, we begin by assuming Ω = [0, 1] is

partitioned into L segments, with nodes x0 = 0 to xL = 1. We solve

(k (x, θk)ϕ
′
i (x, θk))

′

= 0, ϕi (xi−1) = 0, ϕi (xi) = 1

on each Ωi = [xi−1, xi] , i = 1 . . . L. Similar to the exact solution, we can solve for

the basis functions analytically.

Using the basis functions ϕi, we find p̃ (x, θ) ≈ p (x, θ) at a general θ by using

linear combinations of ϕi. In other words, we wish to write

p̃ (x, θ) =
∑

i,k

αikϕi (x, θk) . (4.24)

66

Plugging this p̃ into (4.22) gives us

(

∑

i,k

αikϕ
′
i (x, θk) k (x, θ)

)′

= −1.

We multiply both sides by ϕj (x, θm) and integrate by parts over Ωj to get

∑

i,k

αik

∫

Ωj

k (x, θ)ϕ′
i (x, θk)ϕ

′
j (x, θm) dx =

∫

Ωj

−ϕj (x, θm) dx. (4.25)

Since ϕ′
i (x, θk) has support only on Ωi, we have ϕ′

i (x, θk)ϕ
′
j (x, θm) = 0 unless j =

i− 1, i or i+ 1. Thus we can rewrite (4.25) as

∑

i,k

αik

∫

Ωij

k (x, θ)ϕ′
i (x, θk)ϕ

′
j (x, θm) dx =

∫

Ωj

−ϕj (x, θm) dx, (4.26)

where Ωij = Ωj ∩ Ωi. We solve the above linear system for αik and obtain p̃.

We test the above method on a problem with 4, 6 and 8 intervals in Ω = [0, 1]

and Φ(x) = sin(40x). We use 3 different expansions for (4.24). First, we use only a

single θ value, θ1 = 0. Next, we take two θ values, θ1 = −2 and θ2 = 2. Lastly, we

take three θ values, θ1 = −2, θ2 = 0, and θ3 = 2. For a fixed θ = −1 we compare the

pressure p, found from the solution to (4.22) given by (4.23), and p̃, the approximate

pressure computed by solving the linear system in (4.26). In Figure 4.4 we plot both

p and p̃ for each of the above cases. The approximations behave as expected, with

an increase in accuracy as the number of θ values used increases. In Table 4.2 we

compare the errors, ||p̃ − p||2, between p and p̃ as calculated from using collocation

to compute the MsFEM basis functions. We observe that with more sampling points

one achieves a higher accuracy for the same number of intervals. Moreover, with 3

collocation points, which corresponds to 1st order Smolyak interpolation, one achieves

approximately a 3% error for 6 intervals.

67

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x

p

Exact
MsFEM, 1 pt
MsFEM, 2 pts
MsFEM, 3 pts

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x

p

Exact
MsFEM, 1 pt
MsFEM, 2 pts
MsFEM, 3 pts

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x

p

Exact
MsFEM, 1 pt
MsFEM, 2 pts
MsFEM, 3 pts

Fig. 4.4. Comparison between exact solution and MsFEM solution. Left: 4 intervals.

Middle: 6 intervals. Right: 8 intervals.

Table 4.2. Error ||p̃− p||2 for 4, 6 and 8 intervals using one, two and three θ values.

Number of intervals θ1 = 0 θ1 = −2, θ2 = 2 θ1 = −2, θ2 = 0, θ3 = 2

4 0.3280 0.0902 0.0534

6 0.4293 0.0792 0.0311

8 0.4397 0.0815 0.0123

68

CHAPTER V

THEORETICAL RESULTS FOR UNCERTAINTY QUANTIFICATION

The general goal in the uncertainty quantification problems we are interested

in is to obtain a set of fields, usually conductivity or permeability, that reproduce

some given or measured response. Our response is usually given in terms of some

production data, such as oil-cut or average flux values. In both two-phase immiscible

flow and Richards’ equation, the sampling techniques are similar. The following

results are presented in the context of some general unknown field, k, and some

given integrated response, F . In our uncertainty quantification problems, we employ

the Langevin algorithms within the context of Markov chain Monte Carlo (MCMC)

methods for sampling k. Langevin algorithms provide efficient sampling techniques

because they use the gradient information of the target distributions. However, the

direct Langevin algorithm is very expensive because it requires the computation of the

gradients with fine-scale simulations. Based on a coarse-scale model of the problem,

we propose an approach where the gradients are computed using inexpensive coarse-

scale simulation. These coarse-scale gradients may not be very accurate; therefore,

the computed results are first tested with coarse-scale distributions. If the result is

accepted at the first stage, then a fine-scale simulation is performed at the second

stage to determine the acceptance probability. The first stage of the method modifies

the Markov chain generated by the direct Langevin algorithms. It can be shown that

the modified Markov chain satisfies the detailed balance condition for the correct

distribution. Moreover, we point out that the chain is ergodic and converges to the

correct posterior distribution under some technical assumptions. The validity of the

assumptions for our application is also discussed.

69

5.1. Metropolis-Hasting MCMC

The most general problem under consideration consists of sampling an unknown

random field k given some related measured data (or integrated response) F . In our

cases, there are numerous fields k which reproduce the same response F . From the

probabilistic point of view, the problem can be regarded as conditioning the random

fields to the measured data with measurement errors. Consequently, our goal is to

sample from the conditional distribution P (k|F), where k is the fine-scale field and

F is the related data. Using the Bayes formula we can write

P (k|F) ∝ P (F |k)P (k). (5.1)

In the above formula, P (k) is the unconditioned (prior) distribution of the random

field. In practice, the measured data contains measurement errors. We assume that

the measurement error satisfies a Gaussian distribution, thus, the likelihood function

P (F |k) takes the form

P (F |k) ∝ exp
(

−‖F − Fk‖2

σ2
f

)

, (5.2)

where F is the reference data, Fk is the data for the field k, and σf is the measurement

precision. In most of our applications, Fk is a quantity found using the solution a

nonlinear PDE system for the given k. Depending on the data F we must define a

relevant norm for ‖F − Fk‖2. For example, if both F and Fk are functions of time

(denoted by t), the norm ‖F − Fk‖2 is defined as the L2 norm

‖F − Fk‖2 =

∫ T

0

[F (t) − Fk(t)]
2 dt,

where T is the time of the available history.

70

Denote the sampling target distribution as

π(k) = P (k|F) ∝ exp
(

−‖F − Fk‖2

σ2
f

)

P (k). (5.3)

Since different fields may produce the same data, the distribution π(k) is a func-

tion of k with multiple local maxima. Sampling from the distribution π(k) can be

accomplished by the MCMC method. For a given proposal distribution q(y|x), the

Metropolis-Hasting MCMC algorithm (see, e.g., [40], page 233) consists of the follow-

ing steps.

Algorithm I (Metropolis-Hasting MCMC, Robert and Casella [40])

• Step 1. At kn generate Y from q(Y |kn).

• Step 2. Accept Y as a sample with probability

p(kn, Y) = min

(

1,
q(kn|Y)π(Y)

q(Y |kn)π(kn)

)

, (5.4)

i.e. take kn+1 = Y with probability p(kn, Y), and kn+1 = kn with probability

1 − p(kn, Y).

The MCMC algorithm generates a Markov chain {kn} whose stationary distribution

is π(k).

A remaining question is how to choose an efficient proposal distribution q(k|kn).

Two commonly used types of proposal distributions are the independent sampler

and the random walk sampler. In the case of the independent sampler, the proposal

distribution q(k|kn) is chosen to be independent of kn and equal to the prior (uncondi-

tioned) distribution. In the random walk sampler, the proposal distribution depends

71

on the previous value of k and is given by

k = kn + ǫn, (5.5)

where ǫn is a random perturbation with prescribed distribution. If the variance of

ǫn is chosen to be very large, then the random walk sampler becomes similar to the

independent sampler. Although the random walk sampler allows us to accept more

realizations, it often gets stuck in the neighborhood of a local maximum of the target

distribution.

An important type of proposal distribution can be derived from the Langevin

diffusion, as proposed by Grenander and Miller [24]. The Langevin diffusion is defined

by the stochastic differential equation

dk(τ) =
1

2
∇ log π(k(τ))dτ + dWτ , (5.6)

where Wτ is the standard Brownian motion vector with independent components. It

can be shown that the diffusion process k(τ) has π(k) as its stationary distribution.

The actual implementation of the Langevin diffusion requires a discretization of the

equation (5.6),

kn+1 = kn +
∆τ

2
∇ log π(kn) +

√
∆τǫn,

where ǫn are independent standard normal distributions. However, the discrete solu-

tion kn can have vastly different asymptotic behavior from the continuous diffusion

process k(τ) [40]. In general, the discrete solution kn does not necessarily have π(k)

as its stationary distribution. Instead of taking kn as direct samples, we use them as

test proposals for Algorithm I. The samples will be further tested and corrected by

the Metropolis acceptance-rejection step (5.4). Consequently, we choose the proposal

72

generator q(Y |kn) in Algorithm I as

Y = kn +
∆τ

2
∇ log π(kn) +

√
∆τǫn. (5.7)

Since ǫn are independent Gaussian vectors, the transition distribution of the proposal

generator (5.7) is

q(Y |kn) ∝ exp

(

−‖Y − kn − ∆τ
2
∇ log π(kn)‖2

2∆τ

)

,

q(kn|Y) ∝ exp

(

−‖kn − Y − ∆τ
2
∇ log π(Y)‖2

2∆τ

)

.

(5.8)

The scheme (5.7) can be regarded as a problem-adapted random walk. The

gradient information of the target distribution is included to enforce a biased ran-

dom walk. The use of the gradient information in inverse problems for subsurface

characterization is not new. In their original work, Oliver et al. [36, 37] developed

the randomized maximum likelihood method, which uses the gradient information

of the target distribution. This approach uses unconditional realizations of the data

and solves a deterministic gradient-based minimization problem. The solution of this

minimization problem is taken as a proposal and is accepted with probability one,

since the acceptance probability is very difficult to estimate. In addition to needing

to solve a gradient-based inverse problem, this method does not guarantee a proper

sampling of the posterior distribution. Thus, developing efficient and rigorous MCMC

calculations with high acceptance rates remains a challenging problem. Though the

Langevin formula (5.7) resembles the randomized maximum likelihood method, it is

more efficient and rigorous, and one can compute the acceptance probability easily.

The Langevin algorithms also allow us to achieve high acceptance rates. However,

computing the gradients of the target distribution is very expensive. We propose to

use the coarse-scale solutions in the computation of the gradients to speed up the

73

Langevin algorithms.

5.2. Langevin MCMC Method Using Coarse-Scale Models

The major computational cost of Algorithm I is in computing the value of the

target distribution π(k) for different fields, k. Since generally the map between the

k and the response Fk is governed by a PDE system, there is no explicit formula

for the target distribution π(k). To compute the function π(k), we need to solve a

nonlinear PDE system on the fine-scale for the given k. For the same reason, we need

to compute the gradient of π(k) in (5.7) numerically (by finite differences), which

involves solving a nonlinear PDE system multiple times. To compute the acceptance

probability (5.4), the PDE system needs to be solved one more time. As a result, the

direct (full) MCMC simulations with Langevin samples are prohibitively expensive.

To bypass the above difficulties, we design a coarse grid Langevin MCMC algo-

rithm where most of the fine-scale computations are replaced by the coarse-scale ones.

Based on a coarse grid model of the distribution π(k), we first generate samples from

(5.7) using the coarse-scale gradient of π(k), which requires solving a PDE system

on the coarse grid. Then we further filter the proposals by an additional Metropolis

acceptance-rejection test on the coarse grid. If the sample does not pass the coarse

grid test, the sample is rejected and no further fine-scale test is necessary. The argu-

ment for this procedure is that if a proposal is not accepted by the coarse grid test,

then it is unlikely to be accepted by the fine-scale test either. By eliminating most

of the “unlikely” proposals with cheap coarse-scale tests, we can avoid wasting CPU

time simulating the rejected samples on the fine-scale. We note these procedures have

been used before within the context of porous media [15, 13, 19, 33].

To model π(k) on the coarse-scale, we define a coarse grid map F ∗
k between the

74

field k and the response F . The map F ∗
k is determined by solving the PDE system

on a coarse grid. Consequently, the target distribution π(k) can be approximated by

π∗(k) ∝ exp

(

−‖F − F ∗
k ‖2

σ2
c

)

P (k), (5.9)

where σc is the measurement precision on the coarse grid, and should be slightly larger

than σf . Then the Langevin samples are generated from (5.7) using the coarse grid

gradient of the target distribution

Y = kn +
∆τ

2
∇ log π∗(kn) +

√
∆τǫn. (5.10)

The transition distribution of the coarse grid proposal (5.10) is

q∗(Y |kn) ∝ exp

(

−‖Y − kn − ∆τ
2
∇ log π∗(kn)‖2

2∆τ

)

,

q∗(kn|Y) ∝ exp

(

−‖kn − Y − ∆τ
2
∇ log π∗(Y)‖2

2∆τ

)

.

(5.11)

To compute the gradient of π∗(kn) numerically, we only need to solve the PDE system

on the coarse grid. The coarse-scale distribution π∗(k) serves as a regularization of

the original fine-scale distribution π(k). By replacing the fine-scale gradient with the

coarse-scale gradient, we can reduce the computational cost dramatically but still

direct the proposals to regions with larger probabilities.

Because of the high dimension of the problem and the discretization errors, most

proposals generated by the Langevin algorithms (both (5.7) and (5.10)) will be re-

jected by the Metropolis acceptance-rejection test (5.4). To avoid wasting expensive

fine-scale computations on unlikely acceptable samples, we further filter the Langevin

proposals by the coarse-scale acceptance criteria

g (kn, Y) = min

(

1,
q∗ (kn|Y) π∗(Y)

q∗(Y |kn)π∗ (kn)

)

,

75

where π∗(k) is the coarse-scale target distribution (5.9). q∗(Y |kn) and q∗(kn|Y) are

the coarse-scale proposal distributions given by (5.11). Combining all the discussion

above, we have the following revised MCMC algorithm [8].

Algorithm II (Preconditioned Coarse-Gradient Langevin Algorithm)

• Step 1. At kn, generate a trial proposal Y from the coarse Langevin algorithm

(5.10).

• Step 2. Take the proposal k as

k =

Y with probability g(kn, Y),

kn with probability 1 − g(kn, Y),

where

g(kn, Y) = min

(

1,
q∗(kn|Y)π∗(Y)

q∗(Y |kn)π∗(kn)

)

.

Therefore, the proposal k is generated from the effective instrumental distribu-

tion

Q(k|kn) = g(kn, k)q
∗(k|kn) +

(

1 −
∫

g(kn, k)q
∗(k|kn)dk

)

δkn
(k). (5.12)

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

(

1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

)

, (5.13)

i.e., kn+1 = k with probability ρ(kn, k), and kn+1 = kn with probability 1 −

ρ(kn, k).

Step 2 screens the trial proposal Y by the coarse grid distribution before passing

it to the fine-scale test. The filtering process changes the proposal distribution of

the algorithm from q∗(Y |kn) to Q(k|kn) and serves as a preconditioner to the MCMC

76

method. This is why we call it the preconditioned coarse-gradient Langevin algorithm.

We note that testing proposals by approximate target distributions is not a very new

idea. Similar strategies have been developed previously in [15, 30, 6, 13, 19, 33].

Note that there is no need to compute Q(k|kn) and Q(kn|k) in (5.13) by formula

(5.12). The acceptance probability (5.13) can be simplified as

ρ(kn, k) = min

(

1,
π(k)π∗(kn)

π(kn)π∗(k)

)

. (5.14)

In fact, this is obviously true for k = kn since ρ(kn, kn) ≡ 1. For k 6= kn,

Q(kn|k) = g(k, kn)q(kn|k) =
1

π∗(k)
min

(

q(kn|k)π∗(k), q(k|kn)π∗(kn)
)

=
q(k|kn)π∗(kn)

π∗(k)
g(kn, k) =

π∗(kn)

π∗(k)
Q(k|kn).

Substituting the above formula into (5.13), we immediately get (5.14).

In Algorithm II, the proposals generated by (5.10) are screened by the coarse-

scale acceptance-rejection test to reduce the number of unnecessary fine-scale simu-

lations. One can skip that preconditioning step and get the following algorithm.

Algorithm III (Coarse-Gradient Langevin Algorithm)

• Step 1. At kn, generate a trial proposal Y from the coarse Langevin algorithm

(5.10).

• Step 2. Accept Y as a sample with probability

ρ(kn, Y) = min

(

1,
q∗(kn|Y)π(Y)

q∗(Y |kn)π(kn)

)

, (5.15)

i.e. kn+1 = Y with probability ρ(kn, Y), and kn+1 = kn with probability 1 −

ρ(kn, Y).

We will demonstrate numerically that Algorithm II is indeed more efficient than

77

Algorithm III.

Preconditioning the MCMC algorithms by coarse-scale models is studied in

[19, 13]. There the independent sampler and random walk sampler are used as the

instrumental distribution. Our goal is to show that one can use coarse-scale models,

in Langevin algorithms. More specifically, we can use coarse-scale gradients instead

of fine-scale gradients in these algorithms. Our numerical experiments show that the

coarse-scale distribution somewhat regularizes (smooths) the fine-scale distribution,

which allows us to take larger time steps in the Langevin algorithm (5.10). In addi-

tion, we employ the preconditioning technique from [19] to increase the acceptance

rate of the coarse-gradient Langevin algorithms.

5.2.1. Analysis of the Preconditioned Coarse-Gradient Langevin Algorithm

In this section, we will briefly discuss the convergence property of the precondi-

tioned coarse grid Langevin algorithm. Denote

E =
{

k; π(k) > 0
}

,

E∗ =
{

k; π∗(k) > 0
}

,

D =
{

k; q∗(k|kn) > 0 for any kn ∈ E
}

.

(5.16)

The set E is the support of the posterior (target) distribution π(k). E contains all the

fields k which have a positive probability of being accepted as a sample. Similarly,

E∗ is the support of the coarse-scale distribution π∗(k), which contains all the k

acceptable by the coarse-scale test. D is the set of all possible proposals which can

be generated by the Langevin distribution q∗(k|kn). To make the coarse-gradient

Langevin MCMC methods sample properly, the conditions E ⊆ D and E ⊆ E∗ must

hold (up to a zero measure set) simultaneously. If one of these conditions is violated,

78

say, E 6⊆ E∗, then there will exist a subset A ⊂ (E \ E∗) such that

π(A) =

∫

A

π(k)dk > 0 and π∗(A) =

∫

A

π∗(k)dk = 0,

which means no element of A can pass the coarse-scale test and A will never be visited

by the Markov chain {kn}. For Langevin algorithms, E ⊂ D is always satisfied since

D is the whole space. By choosing the parameter σc in π∗(k) properly, the condition

E ⊂ E∗ can also be satisfied. A typical choice would be σc ≈ σf . More discussions on

the choice of σc can be found in [19], where a two-stage MCMC algorithm is discussed.

Denote by K the transition kernel of the Markov chain {kn} generated by Algo-

rithm II. Since its effective instrumental proposal is Q(k|kn), the transition kernel K

has the form

K(kn, k) = ρ(kn, k)Q(k|kn), k 6= kn,

K(kn, {kn}) = 1 −
∫

k 6=kn
ρ(kn, k)Q(k|kn)dk.

(5.17)

That is, the transition kernel K(kn, ·) is continuous when k 6= kn and has a positive

probability at the point k = kn. First we show that K(kn, k) satisfies the detailed

balance condition, that is

π(kn)K(kn, k) = π(k)K(k, kn) (5.18)

for all k, kn. The equality is obvious when k = kn. If k 6= kn, then

π(kn)K(kn, k) = π(kn)ρ(kn, k)Q(k|kn) = min
(

Q(k|kn)π(kn), Q(kn|k)π(k)
)

=

min

(

Q(k|kn)π(kn)

Q(kn|k)π(k)
, 1

)

Q(kn|k)π(k) = ρ(k, kn)Q(kn|k)π(k) = π(k)K(k, kn).

Using the detailed balance condition (5.18), we can easily show that for any mea-

surable set A ⊂ E the expression π(A) =
∫

K(k, A)dk holds. So π(k) is indeed the

stationary distribution of the transition kernel K(kn, k).

79

In Algorithm II, the proposal distribution (5.10) satisfies the positivity condition

q∗(k|kn) > 0 for every (kn, k) ∈ E × E . (5.19)

With this property, we can easily prove the following lemma.

Lemma 5.2.1. If E ⊂ E∗, then the chain {kn} generated by Algorithm II is strongly

π-irreducible.

Proof. According to the definition of strong irreducibility, we only need to show that

K(kn, A) > 0 for any kn ∈ E and any measurable set A ⊂ E with π(A) > 0. From

the formula (5.17) we have

K(kn, A) ≥
∫

A\kn

K(kn, k)dk =

∫

A\kn

ρ(kn, k)Q(kn, k)dk

=

∫

A\kn

ρ(kn, k)g(kn, k)q(k|kn)dk.

In the above inequality, the equal sign holds when kn 6∈ A. Since π(A) =
∫

A
π(k)dk >

0, it follows that m(A) = m(A \ kn) > 0, where m(A) is the Lebesgue measure. If

E ⊂ E∗, then both ρ(kn, k) and g(kn, k) are positive in A. Combining the positivity

condition (5.19), we can easily conclude that K(kn, A) > 0, which completes the

proof.

For the transition kernel (5.17) of Algorithm II, there always exist certain states

κ ∈ E such that K(κ, {κ}) > 0. That is, if the Markov chain is on state κ at

step n, then it has a positive probability to remain on state κ at step n + 1. This

condition ensures that the Markov chain generated by Algorithm II is aperiodic.

Based on the irreducibility and stability property of Markov chains [40, 34], the

following convergence result is readily available.

80

Theorem 5.2.1. (Robert and Casella [40]) The Markov chain {kn} generated by the

preconditioned coarse-gradient Langevin algorithm is ergodic: for any function h(k),

lim
N→∞

1

N

N
∑

n=1

h(kn) =

∫

h(k)π(k)dk. (5.20)

Moreover, the distribution of kn converges to π(k) in the total variation norm

lim
n→∞

sup
A∈B(E)

∣

∣Kn(k0, A) − π(A)
∣

∣ = 0 (5.21)

for any initial state k0, where B(E) denote all the measurable subsets of E .

5.3. Langevin MCMC Method Using Collocation

We now consider the use of collocation methods discussed in Section 3.2 along

with coarse grid models as a replacement for the MCMC methods using coarse grid

models. Instead of repeating the same derivation as for Algorithm II, we simply note

that in the previous equations, one can replace the coarse-scale target distribution π∗

with an interpolated coarse-scale target distribution π̃∗. We will consider two ways to

obtain π̃∗. The first, we interpolate to find π̃∗ based directly on values of π∗ at sparse

collocation points. Second, we consider interpolation of the coarse-scale response F ∗

by F̃ ∗. Based on the interpolated coarse-scale response F̃ ∗, we obtain an interpolated

coarse-scale target distribution π̃∗. We can now present the revised MCMC algorithm

using interpolation.

Algorithm IV (Preconditioned Interpolated Coarse-Gradient Langevin

Algorithm)

• Step 1. At kn, generate a trial proposal

Y = kn +
∆τ

2
∇ log π̃∗(kn) +

√
∆τǫn.

81

• Step 2. Take the proposal k as

k =

Y with probability g(kn, Y),

kn with probability 1 − g(kn, Y),

where

g(kn, Y) = min

(

1,
q̃∗(kn|Y)π̃∗(Y)

q̃∗(Y |kn)π̃∗(kn)

)

.

Therefore, the proposal k is generated from the effective instrumental distribu-

tion

Q(k|kn) = g(kn, k)q̃
∗(k|kn) +

(

1 −
∫

g(kn, k)q̃
∗(k|kn)dk

)

δkn
(k). (5.22)

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

(

1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

)

, (5.23)

i.e., kn+1 = k with probability ρ(kn, k), and kn+1 = kn with probability 1 −

ρ(kn, k).

Note that, as with each of the previous Langevin methods, we must compute

the gradient of the logarithm of the target distribution. In Algorithm IV, we must

compute ∇ log π̃∗(kn) in each step. Previously, since π in Algorithm I and π∗ in

Algorithm II are not analytical functions, this gradient was computed using finite

differences (or computed using an adjoint method). In each of the previous algorithms,

this required solving a given PDE system in each dimension. If we are using a target

distribution based on Smolyak interpolation, then we can write π̃∗ as an analytical

function. Hence, we can compute the gradient analytically.

Since the operator in (3.19) is based on tensor products of Ui1 , . . . , UiN we simply

need to take the derivative of each Ui in order to determine the gradient. For a

82

particular stochastic dimension i we write

Ui(θ) =

Mi
∑

j=1

F
(

θij
)

Lij(θ).

Since i is fixed, Ui(θ) is a function of only one variable, thus

U ′
i(θ) =

Mi
∑

j=1

F
(

θij
)

Lij
′
(θ).

Since the basis functions in Smolyak interpolation are the multidimensional Lagrange

polynomials, we have

Lij(θ) =

mi
∏

k=1,k 6=j

θ − θik
θij − θik

.

By using an application of the product rule we find the derivative of Lij with respect

to θ is given by the following

Lij
′
(θ) =

mi
∑

s=1,s 6=j

1

θij − θis

mi
∏

k=1,k 6=j,s

θ − θik
θij − θik

.

In the preconditioned interpolated coarse-gradient Langevin algorithm we must

compute ∇ log π̃∗(θ). Since we have

∇ log π̃∗(θ) = ∇
(

−‖F − F̃ ∗
θ ‖2

σ2
c

)

then

∂

∂θj

(

−‖F − F̃ ∗
θ ‖2

σ2
c

)

= − 2

σ2
c

‖F − F̃ ∗
θ ‖

∂

∂θj
‖F − F̃ ∗

θ ‖.

We write F k
θ as the reference integrated response where superscript k denotes the

dimension if the integrated response is not a scalar (such as a time-dependent re-

sponse). Similarly we write F̃ ∗k
θ as the interpolated coarse-scale integrated response.

In most of our practical applications, the integrated response is a vector function, and

we use the discrete L2 norm in the distributions. If we use the L2 norm and assume

83

the integrated response is M dimensional then we have

∇ log π̃∗(θ) = ∇
(

−‖F − F̃ ∗
θ ‖2

σ2
c

)

= ∇
(

− 1

σ2
c

M
∑

k=1

(

F k − F̃ ∗k
θ

)2
)

and thus

∂

∂θj

(

− 1

σ2
c

M
∑

k=1

(

F k − F̃ ∗k
θ

)2
)

= − 1

σ2
c

M
∑

k=1

2
(

F k − F̃ ∗k
θ

) ∂

∂θj
F̃ ∗k
θ .

Writing the Smolyak interpolation formula for F̃ ∗k
θ out in terms of Ui functions,

we find

∂

∂θj
F̃ ∗k
θ =

∂

∂θj
A(q,N)(F)(θ) =

∑

q−N+1≤|i|≤q
(−1)q−|i| ·

N − 1

q − |i|

∂

∂θj

(

Ui1 ⊗ · · · ⊗ U ′
j ⊗ · · · ⊗ UiN

)

(F)(θ).

(5.24)

Since U ′
j can be found analytically, we can determine an analytic gradient by finding

∂
∂θj
A(q,N)(F)(θ) in each of the N stochastic dimensions. This defines the derivative

of the coarse-scale interpolated response, F̃ ∗. This can then be used to calculate

∇ log π̃∗ directly, rather than by finite differences.

5.3.1. Analysis of the Interpolated Preconditioned Coarse-Gradient Langevin

Algorithm

As in the analysis of the preconditioned coarse-gradient Langevin algorithm, it

can be shown that under mild conditions the modified Markov chain is irreducible

and aperiodic. More precisely, denote

E =
{

k; π(k) > 0
}

,

Ẽ∗ =
{

k; π̃∗(k) > 0
}

,

D =
{

k; q̃∗(k|kn) > 0 for any kn ∈ E
}

.

(5.25)

84

The set E is the support of the posterior (target) distribution π(k). E contains

all the fields k which have a positive probability of being accepted as a sample.

Similarly, Ẽ∗ is the support of the interpolated coarse-scale distribution π̃∗(k), which

contains all the k acceptable by the interpolated coarse-scale test. D is the set of all

possible proposals which can be generated by the Langevin distribution q̃∗(k|kn). To

make the interpolated coarse-gradient Langevin MCMC methods sample properly, the

conditions E ⊆ D and E ⊆ Ẽ∗ must hold (up to a zero measure set) simultaneously.

In this case, we can show from the same argument as with Algorithm II that the

chain {kn} generated by Algorithm IV is strongly π-irreducible.

85

CHAPTER VI

NUMERICAL APPLICATIONS FOR UNCERTAINTY QUANTIFICATION

In this chapter, we present numerical results for the uncertainty quantification

problems introduced in the previous chapter. We first apply these methods to multi-

phase immiscible flow, where we will attempt to sample the permeability field given

fractional flow measurements. We present a detailed set of results using both fine and

coarse models, specifically using Algorithms I, II, and III. We then provide a short

set of results which provide evidence that collocation methods, and specifically Algo-

rithm IV, can be used in the context of uncertainty quantification. We next apply the

uncertainty quantification methods to Richards’ equation, where we will sample the

saturated conductivity given some average flux measurements. We provide a short set

of results using fine and coarse models, then again show collocation methods can be

used. For each equation we use a finite volume method and the MsFVEM discussed

in Section 2.3 for the fine-scale and coarse-scale numerical solutions, respectively.

6.1. Two-Phase Immiscible Flow

We consider the two-phase immiscible flow equations introduced in Section 2.1.1.

The problem under consideration consists of sampling the permeability field given

fractional flow measurements. Fractional flow, F (t) (denoted simply by F in further

discussion), is defined as the fraction of oil in the produced fluid and is given by qo/qt,

where qt = qo + qw, with qo and qw the flow rates of oil and water at the production

edge of the model. More specifically,

F (t) = 1 −
∫

∂Ωout f(S)vndl
∫

∂Ωout vndl
,

86

where ∂Ωout is the outflow boundary and vn is the normal velocity field. The fractional

flow curves will be plotted against pore volumes injected (PVI). PVI is comparable

to a dimensionless time and is defined as
qt · t
Vp

, where t is dimensional time and Vp is

the total pore volume of the system.

Typically, the prior information about the permeability field consists of its co-

variance matrix and the values of the permeability at some sparse locations. Since

the fractional flow is an integrated response, the map from the permeability field to

the fractional flow is not one-to-one. Hence this problem is ill-posed in the sense that

there exist many different permeability realizations for the given production data.

Numerical results for sampling permeability fields using two-point geostatistics

are presented. Using the KLE, we can represent the high dimensional permeabil-

ity field by a small number of parameters. Furthermore, the static data (the values

of permeability fields at some sparse locations) can be easily incorporated into the

KLE to further reduce the dimension of the parameter space. Imposing the values

of the permeability at some locations restricts the parameter space to a subspace

(hyperplane). Numerical results are presented for both single-phase and two-phase

flows. In all the simulations, we show that the gradients of the target distribution

computed using coarse-scale simulations provide accurate approximations of the ac-

tual fine-scale gradients. Furthermore, we present the uncertainty assessment of the

production data based on sampled permeability fields. Our numerical results show

that the uncertainty spread is much larger if no dynamic data information is used.

However, the uncertainty spread decreases if more information is incorporated into

the simulations.

87

6.1.1. Coarse vs Fine

In this section we discuss the implementation details of Langevin MCMC method

for two-phase immiscible flow and present some representative numerical results. Sup-

pose the permeability field k(x) is defined on the unit square Ω = [0, 1]2. We discretize

the domain Ω by a rectangular mesh, hence the permeability field k is represented

by a matrix (i.e., k is a high dimensional vector). As for the boundary conditions,

we have tested various boundary conditions and observed similar performance for the

Langevin MCMC method. In our numerical experiments we will assume p = 1 and

S = 1 on x = 0, p = 0 on x = 1, and no flow boundary conditions on the lateral

boundaries y = 0 and y = 1. We have chosen this type of boundary conditions

because they provide a large deviation between coarse-scale and fine-scale simula-

tions for the permeability fields considered. We will consider both single-phase and

two-phase flow displacements.

In the simulations, we first generate a reference permeability field using the full

KLE of Y (x, ω). We choose normal covariance and correlation lengths of L1 = L2 =

0.2 in (2.16) to obtain the corresponding fractional flows. To represent the discrete

permeability fields from the prior (unconditioned) distribution, we keep 20 terms in

the KLE, which captures more than 95% of the energy of Y (x, ω). We assume that

the permeability field is known at 9 distinct points. This condition is imposed by

setting
20
∑

k=1

√

λkθkφk(xj) = αj, (6.1)

where αj (j = 1, . . . , 9) are prescribed constants. For simplicity, we set αj = 0 for

all j = 1, . . . , 9. In the simulations we propose eleven θi and calculate the rest of the

θi by solving the linear system (6.1). In all the simulations, we test 5, 000 samples.

Because the direct Langevin MCMC simulations are very expensive, we only select a

88

61× 61 fine-scale model for single-phase flow and a 37× 37 fine-scale model for two-

phase flow. Here 61 and 37 refer to the number of nodes in each direction, since we

use a finite element based approach. Typically, we consider 6 or 10 times coarsening

in each direction. In all the simulations, the gradients of the target distribution are

computed using finite-difference differentiation rule. The time step size ∆τ of the

Langevin algorithm is denoted by δ. Based on the KLE, the parameter space of the

target distribution π(k) will change from k to θ in the numerical simulations, and the

Langevin algorithms can be easily rewritten in terms of θ.

6.1.1.1. Single-Phase Flow

Our first set of numerical results are for single-phase flows. First, we present a

comparison between the fine-scale response surface π and the coarse-scale response

surface π∗ defined by (5.3) and (5.9), respectively. Because both π and π∗ are scalar

functions of 11 parameters, we plot the restriction of them to a 2-D hyperplane by

fixing the values of the last nine θ values in the reduced KLE. In Figure 6.1, π∗ (left

figure) and π (right figure) are depicted on such a 2-D hyperplane. It is clear from

these figures that the overall agreement between the fine- and coarse-scale response

surfaces is good. This is partly because the fractional flow is an integrated response.

However, we notice that the fine-scale response surface π has more local features and

varies on smaller scales compared to π∗.

In Figure 6.2, we compare the acceptance rates of the Algorithms I, II and III

with different coarse-scale precision σc. The acceptance rate is defined as the ratio

between the number of accepted permeability samples and the number of fine-scale

acceptance-rejection tests. Since Algorithm I does not depend on the coarse-scale

precision, its acceptance rate is the same for different σc. As we can see from the

figure, Algorithm II has higher acceptance rates than Algorithm III. The gain in the

89

Fig. 6.1. Left: Coarse-scale response surface π∗ (defined by (5.9)) restricted to a 2-D

hyperplane. Right: Fine-scale response surface π (defined by (5.3)) restricted

to the same 2-D hyperplane.

acceptance rates is due to the Step 2 of Algorithm II, which filters unlikely acceptable

proposals. To compare the effect of different degrees of coarsening, we plot in Figure

6.2 the acceptance rate of Algorithm II using both 7 × 7 coarse models and 11 × 11

coarse models. Since 11 × 11 coarse models are more accurate, its acceptance rate

is higher. In Figure 6.3, we present the numerical results where larger time step δ is

used in the Langevin algorithms. Comparing with Figure 6.2, we find that that the

acceptance rates for all the three methods decrease as δ increases. In all the numerical

results, Algorithm I, which uses the fine-scale Langevin method (5.7), gives a slightly

higher acceptance rate than both Algorithms II and III. However, Algorithm I is more

expensive than Algorithms II and III since it uses the fine-scale gradients in computing

the Langevin proposals. In Figure 6.4, we compare the natural log of CPU time for

the different Langevin methods. From the left plot we see that Algorithm I is several

times more expensive than Algorithms II and III. In the middle and right plots, we

90

0.003 0.006 0.009 0.012
0.35

0.4

0.45

0.5

0.55

0.6

0.65

σ
c
2

a
c
c
e

p
ta

n
c
e

 r
a

te

preconditioned coarse Langevin
coarse Langevin
fine scale Langevin

0.003 0.006 0.009 0.012

0.4

0.45

0.5

0.55

0.6

0.65

σ
c
2

a
c
c
e

p
ta

n
c
e

 r
a

te

preconditioned coarse Langevin, 7x7 Grid
preconditioned coarse Langevin, 11x11 Grid

Fig. 6.2. Acceptance rate comparison between Algorithms I, II and III; δ = 0.05,

σ2
f = 0.003. In the left plot, the coarse-grid 11× 11 is used in the simulation.

compare Algorithms II and III when a different coarse-model and a different time

step size δ are used, respectively. We observe that Algorithm II is slightly faster than

Algorithm III, which does not use preconditioning.

In all the previous numerical simulations, we choose the fine-scale error precision

σ2
f = 0.003. The scaling of the error precision depends on the norm used in (5.3). If

one choses σf to be very large, then the precision is very low, and consequently, most

proposals will be accepted in the direct Langevin algorithm as well as in the coarse-

gradient Langevin algorithms. In this case, the acceptance rate of the coarse-gradient

Langevin algorithms is still similar to the acceptance rate of the direct Langevin

algorithms. Consequently, the speed-up will remain the same. For very large σf , the

preconditioning step in Algorithm II may not help to improve the acceptance rate,

since most proposals will pass the preconditioning step.

Next we compare the fractional flow errors for Algorithm II and Algorithm I in

Figure 6.5. Our objective is two-fold. First, we would like to compare the convergence

91

0.006 0.009 0.012 0.015 0.018 0.02

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

σ
c
2

a
c
c
e

p
ta

n
c
e

 r
a

te

preconditioned coarse Langevin
coarse Langevin
fine scale Langevin

Fig. 6.3. Acceptance rate comparison for Algorithms I, II and III for single-phase flow,

δ = 0.1, σ2
f = 0.003.

0.003 0.006 0.009 0.012

9.5

10

10.5

11

11.5

12

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

preconditioned coarse Langevin
coarse Langevin
fine scale Langevin

0.003 0.006 0.009 0.012

9.45

9.5

9.55

9.6

9.65

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

preconditioned coarse Langevin
coarse Langevin

0.003 0.006 0.009 0.012

9.4

9.5

9.6

9.7

9.8

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

preconditioned coarse Langevin
coarse Langevin

Fig. 6.4. Natural log of CPU time (seconds) comparison for the different Langevin algo-

rithms. Left: σ2
f = 0.003, δ = 0.05, 11 × 11 coarse-grid. Middle: σ2

f = 0.003,

δ = 0.05, 7 × 7 coarse-grid. Right: σ2
f = 0.003, δ = 0.1, 11 × 11 coarse-grid.

92

rates of Algorithm II with that of Algorithm I. Second, we would like to show that

the sampled permeability fields give nearly the same fractional flow response as the

reference fractional flow data. The left plot represents the error between the accepted

fractional flows and the reference fractional flow for both algorithms. It is clear from

this figure that both methods converge to the steady state within the same number

of iterations. The formal convergence diagnosis has been performed using multiple

chains method base convergence diagnosis ([21]). We wish to only compare the chains

obtained using both methods to each other, and thus we restrict ourselves to only

showing errors vs. the number of iterations. We note that the convergence diagnostics

have nothing to do with the rate of convergence. The rate of convergence depends

on the second largest eigenvalue of the transition matrix of the Markov chain. For

the complex chains, it is not easy to find these eigenvalues. Thus, for simplicity, we

instead choose graphical analysis of the samples as in the left plot of Figure 6.5. In the

right plot, the fractional flows for sampled realizations are plotted (dotted lines). The

fractional flows of the sampled realizations are very close to the reference fractional

flow. This is because the error precision is taken to be small (σ2
f = 0.003) in the

target distribution.

In Figure 6.6, some permeability realizations sampled from the posterior distri-

bution are plotted. In particular, we plot realizations which do not look very similar

to each other and represent the uncertainty range observed in our simulations. We

observe that the samples capture some of the features of the reference permeability

field. Note that all these permeability fields give nearly the same fractional flows as

the reference fractional flow, so they are all eligible samples.

93

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

accepted trials

fr
a

c
ti
o

n
a

l
fl
o

w
 e

rr
o

r

preconditioned coarse Langevin
fine scale Langevin

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI
F

Fractional Flows

exact F(t)
sampled F(t)s

Fig. 6.5. Left: The fractional flow errors for Algorithm I and Algorithm II. Right: The

fractional flows of sampled realizations and the reference fractional flow. In

these numerical tests, δ = 0.05, σ2
f = 0.003 and 11× 11 coarse-scale model is

used.

−2

0

2

−2

0

2

−2

0

2

−2

0

2

−2

0

2

−2

0

2

x

yy

x

x

y y

x

x

yy

x

Realization 4 Realization 5

Realization 3Realization 2

Realization 1Exact

ln(k)

ln(k)

ln(k)

ln(k)

ln(k)

ln(k)

Fig. 6.6. Samples of the permeability realizations. Realizations are selected to repre-

sent the uncertainty range in the simulations.

94

6.1.1.2. Two-Phase Flow

Next we consider two-phase flow simulations. Because two-phase flow simu-

lations are computationally intensive, we restrict our computations to the fine grid

37×37, and the coarse-grid 7×7. In all simulations, we set σ2
f = 0.003 and δ = 0.05.

Figure 6.7 shows the response surfaces π and π∗ restricted to a two dimensional hy-

perplane in θ. As in the case of the single-phase flow, π∗ approximates π very well in

large scales, though π has more variations on small scales. In the left plot of Figure

6.8, acceptance rates for Algorithms I, II and III are compared. As we can see from

this figure, the acceptance rates of Algorithm II is very similar to that of Algorithm

I. Without preconditioning, Algorithm III has lower acceptance rates than Algorithm

II. Comparing the natural log of the CPU time in the right plot of Figure 6.8, we

observe that Algorithm II is an order of magnitude faster than Algorithm I. If the

resolution of the fine-grid is increased, one can expect an even higher acceleration

rate by Algorithm II. In Table 6.1, we compare the acceptance rates and CPU times

between Algorithms I, II and III for different coarse grid resolutions. In these numer-

ical results, we have chosen σ2
f = 0.003, though similar results are observed for other

values of σ2
f . We also observe that Algorithm II has higher acceptance rate and lower

CPU time compared to Algorithm III for all coarse grid resolutions. For this reason,

we will not consider Algorithm III for the remainder our numerical tests.

In Figure 6.9, the fractional flow errors and fractional flows are plotted. In

the two-phase flow case, we observe that Algorithm I converges slightly faster than

Algorithm II. Finally, in Figure 6.10, we plot some permeability realizations. We

selected the samples which do not look very similar to each other and represent the

uncertainty range observed in the simulations. This figure illustrates that the sampled

permeability realizations capture the main features of the reference permeability field.

95

Fig. 6.7. Left: Coarse-scale response surface π∗ restricted to 2-D hyperplane. Right:

Fine-scale response surface π restricted to the same 2-D hyperplane

0.003 0.006 0.009 0.012

0.4

0.45

0.5

0.55

0.6

0.65

σ
c
2

a
cc

e
p

ta
n

ce
 r

a
te

preconditioned coarse Langevin
coarse Langevin
fine scale Langevin

0.003 0.006 0.009 0.012
9

10

11

12

13

14

15

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

ca
le

)

preconditioned coarse Langevin
coarse Langevin
fine scale Langevin

Fig. 6.8. Left: Acceptance rate comparison for Algorithms I, II and III. Right: Natural

log of CPU times (seconds) for Algorithms I, II and III. Each plot is for

two-phase flow with δ = 0.05, σ2
f = 0.003 and a 7 × 7 coarse-grid.

96

Table 6.1. Comparison of Algorithm I, II and III for different coarse-grid resolutions

in two-phase flow simulations. σ2
f = σ2

c = 0.003, δ = 0.05.

coarse coarse preconditioned direct

coarse grid
accept. rate CPU accept. rate CPU accept. rate CPU

4x4 0.47 8527 0.55 7036 0.53 655895

7x7 0.45 21859 0.52 17051 0.53 655895

10x10 0.46 70964 0.57 48653 0.53 655895

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

accepted trials

fr
a

ct
io

n
a

l f
lo

w
 e

rr
o

r

preconditioned coarse Langevin
fine scale Langevin

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI

F

Fractional Flows

exact F(t)
sampled F(t)s

Fig. 6.9. Left: The fractional flow errors for Algorithm I compared with Algorithm

II. Right: The fractional flows of sampled realizations and the reference

fractional flow. In these numerical tests, δ = 0.05, σ2
f = 0.003 and 7 × 7

coarse-scale model is used.

97

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

ln(k)

ln(k)

ln(k)

ln(k)

ln(k)

ln(k)

Exact Realization 1

Realization 2 Realization 3

Realization 5Realization 4

x

y y

x

x

yy

x

x

y y

x

Fig. 6.10. Samples of the permeability realizations. Realizations are selected to repre-

sent the uncertainty range in the simulations.

6.1.1.3. Theoretical Computational Costs

Next, we compare the theoretical computational costs of the three Langevin

algorithms for the two-phase flow problem. Denote tf and tc as the CPU time to

solve the PDE system (2.1)-(2.3) on the fine- and coarse-grid respectively. Suppose

D is the dimension of the parameter space of the permeability field k, and N is the

number of proposals that are tested in all three Langevin algorithms. For each new Y ,

Algorithm I needs to compute the target distribution π(Y) and its gradient ∇π(Y) on

the fine-grid. If the gradient is computed by the forward difference scheme, then the

PDE system (2.1)-(2.3) needs to be solved on the fine-grid (D+ 1) times. Therefore,

the total computational cost of Algorithm I is N(D + 1)tf . For Algorithm III, the

gradient of the distribution is computed on the coarse-grid. However, the acceptance

test is calculated on the fine-grid for each proposal. Thus, its computational cost is

N(Dtc + tf). In Algorithm II, the gradient of the distribution is also computed on

98

the coarse-grid, and each new sample is first tested by the coarse-scale distribution.

If it passes the coarse-grid acceptance test, then the proposal will be further tested

by the fine-scale distribution. Suppose M proposals (out of N) pass the coarse-scale

test, then the total computational cost of Algorithm II is N(D + 1)tc +Mtf . Thus,

Algorithm II is
N(D+1)tf

N(D+1)tc+Mtf
times faster than Algorithm I, and

N(Dtc+tf)

N(D+1)tc+Mtf
times

faster than Algorithm III. In our computations, D is of order of ten because we

represent the permeability field by its truncated Karhunen-Loève expansion. If the

fine-scale model is scaled up 6 times in each direction, as we did in the numerical

experiment, then the coarse-scale model is approximately 36 times faster than the

fine-scale model. Indeed, at each time step solving the pressure equation on the

coarse grid is approximately 36 times faster than on the fine grid. The same is true

for the saturation equation since it is also solved on the coarse grid and with larger

time steps. Moreover, in Algorithm II , only a portion of the N proposals can pass the

coarse-scale test, where N is usually two times larger than M . Using these estimates,

we expect that the CPU time of Algorithm II should be an order of magnitude lower

than that of Algorithm I. We indeed observed a similar speedup in our computations,

as demonstrated by Figure 6.8.

Note that one can use simple random walk samplers, instead of Langevin sam-

pling, in Algorithm I. We have observed in our numerical experiments that the accep-

tance rate of the random walk sampler is several times smaller than that of Langevin

algorithms. This is not surprising because Langevin algorithms use the gradient in-

formation of the target distribution and are problem adapted. One can also use

single-phase flow upscaling (as in [9]) in the preconditioning step as it is done in [13].

In general, we have found the multiscale methods to be more accurate for coarse-scale

simulations and they can be further used for efficient and robust fine-scale simula-

tions. We would like to mention some other relevant work, [16, 33] where streamline

99

simulations are used for analytical approximation of fractional flows within multi-

stage MCMC. In [33], the authors also compare Langevin algorithms to randomized

maximum likelihood method.

6.1.1.4. Predictions

Finally, we present the results demonstrating the uncertainties in the predictions.

In our simulations, we use the information of the dynamic data in various time spans.

In Figure 6.11, various prediction results are plotted based on information of the

dynamic data on [0, 0.8] PVI time (left figure), on [0, 0.4] PVI time (middle figure),

and when no dynamic data information is used (right figure). These results are

obtained by sampling 50 realizations from the posterior distribution. As we observe

from the figure, the uncertainty spread is the largest if no dynamic data information is

used. However, the uncertainty spread decreases, as expected, if more information is

incorporated into the simulations. In particular, using the dynamic data information

up to 0.8 PVI allows us to obtain accurate predictions and reduce the uncertainties.

These results allow us to assess the uncertainties in the predictions.

6.1.2. Sparse Grid Collocation

In this section we compare the numerical results using the Algorithm I, Algo-

rithm II, and Algorithm IV. Instead of repeating the same arguments as the previous

section, we will focus on a more limited set of results. We consider Algorithm IV with

two different interpolated values. First, we consider interpolation of the coarse-scale

target distribution π∗, where π∗ is found using the MsFVEM as previously. Next,

we consider interpolation of the coarse-scale fractional flow, F ∗
k , which allows us to

obtain an approximate coarse-scale target distribution using (5.9). Lastly, we show

the collocation methods can be used for exponential covariance in the KLE. Our aim

100

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI

F

Fractional Flows

exact F(t)
sampled F(t)s

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI

F

Fractional Flows

exact F(t)
sampled F(t)s

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI

F

Fractional Flows

exact F(t)
sampled F(t)s

Fig. 6.11. Prediction results using the information about the dynamic data on various

time spans. Left: The dynamic data information on [0, 0.8] PVI is used;

Middle: The dynamic data information on [0, 0.4] PVI is used; Right: No

dynamic data information is used.

is to show that Algorithm IV can be used as an inexpensive alternative to Algorithm

II.

6.1.2.1. Interpolation of the Target Distribution

We begin by considering a numerical setup similar to the previous section, where

we first generate a reference permeability field using the full KLE of Y (x, ω) and

obtain the corresponding fractional flows. In the KLE we use normal covariance and

correlation lengths L1 = 0.5 and L2 = 0.1. We keep 20 terms in the KLE, and assume

that the permeability field is known at 11 distinct points. This reduces the dimension

of our stochastic space to 9 instead of the 11 dimensions we used previously. This is

simply to ease some computations in the collocation methods. We restrict ourselves to

the hypercube [−2.5, 2.5]9 in stochastic space. All the simulations are based on 5, 000

101

samples and a 61 × 61 fine-scale model is selected. We consider 6 times coarsening

in each direction (thus an 11× 11 coarse-scale model). The results are based only on

two-phase flow. In this section, we consider interpolation of the coarse-scale response

surface π∗ rather than interpolation of the coarse-scale fractional flow. An advantage

to interpolating π∗ is that we only have one single value per interpolation node. If we

were to interpolate the fractional flow, which is a function of PVI, we would have to

interpolate for each value of PVI. In our case, this contains 40 values. Thus we would

need to perform 40 interpolation operations as opposed to one. A slight disadvantage

to using π∗ is that we will not be able to use the analytical formula for the interpolated

gradient, given by (5.24). We instead use a gradient based on finite differences, as

in the previous section. We present results when using interpolation of the fractional

flow in Section 6.1.2.2.

First, we present a comparison between the coarse-scale response surface π∗ and

the interpolated coarse-scale response surfaces π̃∗. We have already noted that the

coarse-scale response surface approximates the general properties of the fine-scale re-

sponse surface well while losing some small fine-scale features, thus we do not compare

them again. We consider interpolated surfaces for various levels of interpolation. We

define kth order Smolyak interpolation as A(N + k,N) in (3.19). In particular, for

N = 9 stochastic dimensions, 1st order results in 19 nodes, 2nd order results in 181

nodes, and 3rd order results in 1, 177 nodes. Because both π and π∗ are scalar func-

tions of 9 parameters, we plot the restriction of them to a 2-D hyperplane by fixing

the values of the last seven θ in the KLE. In Figure 6.12, the coarse-scale response

surface π∗ is the upper left figure. Interpolated coarse-scale surfaces are in the upper

right, lower left, and lower right for 1st, 2nd, and 3rd order Smolyak interpolation,

respectively. We note that each interpolation surface matches the overall behavior of

π∗. It appears the surface using 2nd order interpolation matches slightly better than

102

Fig. 6.12. Coarse-scale response surface π∗ and interpolated coarse-scale response sur-

faces π̃∗ restricted to a 2-D hyperplane.

the surface using 1st order. The 3rd order is nearly exact in some places, but contains

what appears to be some extraneous features. This is likely due to the oscillations

that would be observed from a very high dimensional polynomial. Due to the fact

that the surface using 1st order interpolation matches well, we will consider 1st order

Smolyak interpolation, unless otherwise noted. Note that another reason for choosing

low order interpolation is that if we were sampling in much higher dimensions as in

Section 4.1.2, then we would not be able to use interpolation higher than 1st order

anyway.

In the left plot of Figure 6.13, we compare the acceptance rates of Algorithms

I, II and IV with different coarse-scale precisions σc. Recall the acceptance rate is

defined as the ratio between the number of accepted permeability samples and the

number of fine-scale acceptance-rejection tests. Since Algorithm I does not depend

on the coarse-scale precision, its acceptance rate is the same for different σc. As

we can see from the figure, Algorithms II and IV have a slightly higher acceptance

103

0.002 0.004 0.006

0.5

0.55

0.6

0.65

0.7

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

precond coarse Langevin 11x11
interp precond coarse Langevin 11x11
fine scale Langevin

0.002 0.004 0.006
8

10

12

14

16

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

precond coarse Langevin 11x11
interp precond coarse Langevin 11x11
fine scale Langevin

Fig. 6.13. Left: Acceptance rates for Algorithms I, II and IV. Right: Natural log of

CPU time (seconds) for Algorithms I, II and IV. In each plot δ = 0.05 and

σ2
f = 0.002.

rate as compared to Algorithm I. This is due to the Step 2 of Algorithm II and

IV, which filters unlikely acceptable proposals. We also note that Algorithm II has

a higher acceptance rate than Algorithm IV. This is expected, as the gradients in

the Langevin proposal for Algorithm II will be more precise than the interpolated

gradients in Algorithm IV. In the right plot of Figure 6.13, we compare the CPU

time (on a log scale) for the different Langevin methods. We see that Algorithm IV

is several times faster than Algorithm II, and significantly faster than Algorithm I.

Next we compare the fractional flow errors for Algorithm IV and Algorithm

I in Figure 6.14. Our objective is two-fold. First, we would like to compare the

convergence rates of Algorithm IV with that of Algorithm I. Second, we would like

to show that the sampled permeability fields give nearly the same fractional flow

response as the reference fractional flow data. We see from the left plot of Figure

6.14 that both methods converge to the steady state within the same number of

104

0 20 40 60 80
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Accepted Trials

F
F

 e
rr

o
r

Interpolated
Fine Scale

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI

F
F

 V
a

lu
e

s

FF Comparison

Exact FF
Sampled FF

Fig. 6.14. Left: The fractional flow errors for Algorithm I compared with Algorithm

IV. Right: The fractional flows of sampled realizations and the reference

fractional flow. In these numerical tests, δ = 0.05, σ2
f = 0.002 and an

11 × 11 coarse-scale model is used.

iterations. In the right plot, the fractional flows for sampled realizations are plotted

(dotted lines). The fractional flows of the sampled realizations are very close to the

reference fractional flow because the error precision is taken to be small (σ2
f = 0.002)

in the target distribution.

In Figure 6.15, some permeability realizations sampled from the posterior dis-

tribution are plotted. The upper left plot in Figure 6.15 represents the reference

permeability. The remaining plots are three different permeabilities that were ac-

cepted using Algorithm IV. We observe that the samples capture some features of the

reference permeability field. Note that all these permeability fields give nearly the

same fractional flows as the reference fractional flow, so they are all eligible samples.

105

Fig. 6.15. Upper left plot is the reference permeability. The other three plots are

examples of accepted permeability realizations.

6.1.2.2. Interpolation of the Fractional Flows

We now consider interpolation of the coarse-scale fractional flow values, F ∗
k ,

rather than interpolation of the coarse-scale target distribution π∗. Since the frac-

tional flow is a function in time, we must now interpolate at each discrete time step.

We consider a similar model as the in the previous section. We again have 20 terms in

the KLE. We use normal covariance with correlation lengths L1 = 0.5 and L2 = 0.1,

and we assume that the permeability field is known at 11 distinct points, resulting

in 9 stochastic dimensions. We test 5, 000 samples, a 61 × 61 fine-scale model, and

an 11 × 11 coarse-scale model. The results are based only on two-phase flow. Since

we consider interpolation of the coarse scale fractional flow F ∗, we use an analytical

formula for the gradient of the target distribution based on (5.24).

First, we present a comparison between the coarse-scale response surface π∗ and

the interpolated coarse-scale response surfaces π̃∗. We again consider interpolated

106

Fig. 6.16. Coarse-scale response surface π∗ and interpolated coarse-scale response sur-

faces π̃∗ restricted to a 2-D hyperplane.

surfaces for various levels of interpolation. In Figure 6.16, the coarse-scale response

surface π∗ is the upper left figure. Interpolated coarse-scale surfaces, π∗ are in the up-

per right, lower left, and lower right for 1st, 2nd, and 3rd order Smolyak interpolation,

respectively. Starting at 1st order interpolation, we have a good overall agreement

with the coarse surface. However, it appears the 1st order response surface does not

capture some local effects, Going to 2nd order interpolation, we appear to capture

more local effects, but we find some oscillations, likely due to the higher order poly-

nomial found under 2nd order interpolation. Furthermore, 3rd order interpolation does

not reflect the overall behavior of the response surfaces due to numerous oscillations.

Due to this fact, for the remainder of our discussion, we consider 1st order Smolyak

interpolation unless otherwise noted.

In Figure 6.17, we compare the acceptance rates and CPU time for Algorithms

I, II and IV with different coarse-scale precisions σc. Algorithms II and IV have

a slightly lower acceptance rate as compared to Algorithm I. This is likely due to

107

0.003 0.006 0.009

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

r
c
e

n
ta

g
e

Precond Langevin
Precond Interp Langevin − 19 pts
Fine Langevin

0.003 0.006 0.009

8

9

10

11

12

13

14

15

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

Precond Langevin
Precond Interp Langevin − 19 pts
Fine Langevin

Fig. 6.17. Left: Acceptance rate comparison between the Langevin algorithms. Right:

Comparison of the natural log of CPU time (seconds) for the different

Langevin algorithms. In each plot δ = 0.05 and σ2
f = 0.003.

the more accurate fine-scale gradients in Algorithm I. In the right plot we see that

Algorithm IV is several times faster than Algorithm II, and significantly faster than

Algorithm I.

We now consider the fractional flow errors and fractional flow comparisons for

Algorithm IV and Algorithm I in Figure 6.18. We see from the left plot that both

methods converge to the steady state within the same number of iterations. In the

right plot, the fractional flows of the sampled realizations are very close to the refer-

ence fractional flow because the error precision is taken to be small (σ2
f = 0.003) in

the target distribution. In Figure 6.19, some permeability realizations sampled from

the posterior distribution are plotted. We observe that the samples capture some

features of the reference permeability field. Note that all these permeability fields

give nearly the same fractional flows as the reference fractional flow, so they are all

eligible samples.

108

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Accepted Trials

F
F

 e
r
r
o

r

Smolyak Interp
Fine Scale

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI
F

F
 V

a
lu

e
s

FF Comparison

Exact FF
Sampled FF

Fig. 6.18. Left: The fractional flow errors for Algorithm I compared with Algorithm

IV. Right: The fractional flows of sampled realizations and the reference

fractional flow. In these numerical tests, δ = 0.05, σ2
f = 0.003 and 11 × 11

coarse-scale model is used.

Fig. 6.19. Samples of the permeability realizations. Realizations are selected to repre-

sent the uncertainty range in the simulations.

109

6.1.3. Single-Phase Flow with Exponential Covariance

We introduce numerical results which use the proposed algorithms for a perme-

ability generated using exponential covariance (2.17) in the KLE. As noted in Section

2.2, a proper expansion using exponential covariance contains many more terms than

an expansion using normal covariance in order to capture the effects of the desired

permeability fields. Moreover, unlike in the case of the normal covariance, the perme-

ability fields for exponential covariance have much rougher features. We wish to show

the results using the proposed algorithms in the context of exponential covariance are

similar to the previous results which used normal covariance.

We generate a truncated KLE using exponential covariance with correlation

lengths L1 = 0.5 and L2 = 0.1. We keep 105 terms and assume the permeability

field is known at 5 distinct points. This reduces the dimension of our stochastic space

to 100. We restrict ourselves to the hypercube [−2.5, 2.5]100 in stochastic space. We

again consider a 61 × 61 fine grid and an 11 × 11 coarse grid. Recall that in the

Langevin algorithms, we require the gradient of the target distribution. Since our

stochastic dimension is 100, in Algorithm I we would require 100 fine-scale solutions

for each proposal. This would be computationally impossible in our setting. Simi-

larly, in Algorithm II, we require 100 coarse-scale solution for each proposal. For this

reason, we do not consider Algorithm I for the numerical results in this section and

we restrict ourselves to single-phase flow. Additionally, we consider only 1st order

interpolation, since 2nd order would require 20, 201 values.

In Figure 6.20, we compare the coarse-scale response surface π∗ with the interpo-

lated coarse-scale surface π̃∗. As expected from our previous results, the π̃∗ captures

some of the important features of π∗ while not approximating π∗ exactly.

In Figure 6.21 we compare the acceptance rate and CPU time for each algorithm.

110

Fig. 6.20. Coarse-scale response surface π∗ and interpolated coarse-scale response sur-

face π̃∗ restricted to a 2-D hyperplane.

The acceptance rate of Algorithm IV is slightly lower than that of Algorithm II. This

is similar to our previous results and is likely due to the more precise gradients in

Algorithm II. We notice a large improvement in CPU time, clearly a result of the

need to run 100 solutions for each sample in Algorithm II. Also, note the CPU time

contribution from generating the data values for interpolation is negligible in com-

parison to the total CPU time, since it is the same cost as two samples in Algorithm

II.

Next we compare the fractional flow errors and fractional flow comparisons for

Algorithm II and Algorithm IV in Figure 6.22. In the left plot the fractional flow errors

reduce at approximately the same rate, showing that both methods converge to the

steady state within about the same number of iterations. In the right plot, we show

the fractional flows of the sampled realizations are very close to the reference fractional

flow. This is again because the error precision is taken to be small (σ2
f = 0.001) in the

target distribution. In Figure 6.23, some permeability realizations sampled from the

111

0.001 0.003 0.006

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

precond coarse Langevin 11x11
interp precond coarse Langevin 11x11

0.001 0.003 0.006

8.5

9

9.5

10

10.5

11

11.5

12

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

precond coarse Langevin 11x11
interp precond coarse Langevin 11x11

Fig. 6.21. Left: Acceptance rate comparison. Right: Natural log of CPU time (sec-

onds) comparison. In each we compare Algorithm II and Algorithm IV for

δ = 0.05, σ2
f = 0.001.

posterior distribution are plotted. The upper left plot in Figure 6.23 represents the

reference permeability. The remaining plots are three different permeabilities that

were accepted using Algorithm IV.

As we can see from the preceding results, exponential covariance produces results

very similar to normal covariance. In general, for multiphase flow, Algorithm IV

provides similar sampling performance as Algorithm II while providing a dramatic

saving in CPU time.

6.2. Richards’ Equation

In this section, we consider the application of uncertainty quantification tech-

niques introduced earlier to Richards’ equation. Our problems are motivated by

application in soil moisture predictions. Soil moisture conditions are important in

determining the amount of infiltration and ground water recharge. Soil moisture is

112

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Accepted Trials

A
v
g

 F
F

 e
rr

o
r

Interpolated Langevin
coarse scale Langevin

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI
F

Fractional Flows

Exact
Sampled

Fig. 6.22. Left: The fractional flow errors for Algorithm II compared with Algorithm

IV. Right: The fractional flows of sampled realizations and the reference

fractional flow. In these numerical tests, δ = 0.05, σ2
f = 0.001.

Fig. 6.23. Upper left plot is the reference permeability. The other three plots are

examples of accepted permeability realizations.

113

controlled by factors such as soil type, topography, vegetation, and climate. Soil

moisture is typically measured at different scales varying from point scale (in-situ)

to remote sensing scale (of order several miles). The objective is to predict the soil

moisture via prediction of saturated conductivity field. We note that the measure

data is coarse-scale data. We apply the procedure described previously to Richards’

equation. The multiscale techniques for Richards’ equation differ from that of two-

phase immiscible flow. In particular, we are not dealing with the saturation equation

in Richards’ equation. As a consequence, the coarse-scale methods are more accurate

for Richards’ equation.

Our goal in this section is not to repeat the same very detailed arguments and

results made in Section 6.1, but rather to provide evidence that similar results hold

for Richards’ equation. Recall Richards’ equation and the discussed constitutive

relations, given in Section 2.1.2. We consider the problem of sampling the saturated

conductivity field given an integrated response of the average flux over a certain region

at given time steps. Specifically, for a discretized domain Ω = [0, 1]2, let us define

the discrete integrated response function, F . In practice, we assume that F contains

the average flux on the uppermost boundary of the fine-grid domain for a given set

of times. Let us suppose that for each time in a given set of k times, the flux is found

across the entire upper cell boundary at n equally spaced intervals as in Figure 6.24.

We denote these times as t1, . . . , tk. The response is then given by the average flux

at each of the n intervals, and each of these k times, in order. In other words,

F = (F luxavg (x1, t1) , . . . , F luxavg (xn, t1) , F luxavg (x1, t2) , . . . , F luxavg (xn, tk))

(6.2)

We will again be using the MsFVEM for our coarse-scale model. Note, when using the

MsFVEM, we can reconstruct the fine-scale flux using the multiscale basis functions.

114

Regions for
Average Flux
Measurement

Fine-grid
 cell

Fig. 6.24. Example of average flux for 4 × 8 grid with n = 2 measured intervals.

Thus, the averaging used for F will always be over the fine-grid domain, regardless

of whether we are using a fine-scale or coarse-scale model. We remind the reader

that Algorithm I refers to fine-scale Langevin MCMC, Algorithm II refers to precon-

ditioned coarse-scale Langevin MCMC, and Algorithm IV refers to preconditioned

interpolated coarse-scale Langevin MCMC.

6.2.1. Coarse vs Fine

In the numerical simulations, to represent the discrete saturated conductivity

field we generate a KLE using normal covariance and correlation lengths L1 = 0.5 and

L2 = 0.1. We keep 20 terms in the KLE and assume that the saturated conductivity

is known at 9 sparse locations. For each simulation we test 5, 000 samples in the

MCMC. We choose a 49 × 49 fine-scale model and a 5 × 5 coarse-scale model. Note

these models are vertex-based, thus the number of cells are 48 × 48 and 4 × 4 in the

fine-scale and coarse-scale model, respectively.

We compare numerical results for the exponential constitutive relation. We

choose α = 0.01, β = 0.01, and θs = 1.0. In Figure 6.25 we show the boundary

conditions and initial conditions for the exponential model. We assume the initial

115

(0,0)

(0,1) (1,1)

(1,0)

(0.5,1)

Dirichlet boundary Neumann boundary

Initial Head = -20.0

Pressure Head = -20.0

Pressure Head = 0.0

Fig. 6.25. Exponential model boundary and initial conditions.

pressure head is u = −20. Dirichlet boundary conditions are given by u = −20 on the

bottom of Ω, [0, 1]×0, and u = 0 on the portion of the top boundary between x = 0.1

and x = 0.9, [0.1, 0.9] × 1. We assume no flow boundary conditions otherwise. We

choose these particular boundary conditions rather than simply no flow on the sides

and given pressure heads on the top and bottom so that we can see more variations in

the pressure head profiles. Additionally, we scale the average flux response surfaces

down by a factor of 20. This is done simply to keep σf and σc values at approxi-

mately the same magnitude as in our previous MCMC investigation for multiphase

immiscible flow.

First, we present a comparison between the fine-scale target distribution π and

the coarse-scale distribution π∗, defined by (5.3) and (5.9), respectively. We plot the

restriction of the target distributions to a 2D hyperplane by fixing the value of 9 of

the 11 stochastic dimensions. In Figure 6.26 we show both π and π∗. While the

values in the surfaces do not correspond exactly, the overall agreement between the

two surfaces appears to be quite good.

Next, we compare acceptance rates of Algorithm I with those of Algorithm II.

In the left portion of Figure 6.27 we compare these acceptance rates with different

116

Fig. 6.26. Left: Fine-scale response surface π restricted to the same 2D hyperplane.

Right: Coarse-scale response surface π∗ restricted to a 2D hyperplane.

coarse scale precision σc. Recall the acceptance rate is the ratio between the number

of accepted saturated conductivities and the number of fine-scale acceptance- rejec-

tion tests. Since Algorithm I does not have a coarse-scale test, it is constant for all

σc and its acceptance rate is simply the number of accepted saturated conductivities

divided by the total number of samples. From Figure 6.27, we notice Algorithm II

has a higher acceptance rate than Algorithm I. This is due to the preconditioning

step, which filters proposals that are not likely to be accepted by the fine-scale test.

In the right portion of Figure 6.27 we compare the CPU time for each of the two al-

gorithms. We notice a significant savings in CPU time when using Algorithm II. This

is partly due to the fact that Algorithm II uses a coarse-scale gradient, ∇ log π∗(k),

while Algorithm I uses a fine-scale gradient ∇ log π(k). Since π(k) and π∗(k) are

functions determined by simulations, these gradients are computed using finite dif-

ferences. Thus we must run a simulation in each of the 11 stochastic dimensions, so

our CPU savings is partly due to 11 coarse-scale simulations per sample as opposed

117

0.001 0.003 0.006

0.6

0.65

0.7

0.75

0.8

0.85

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

precond coarse Langevin
fine scale Langevin

0.001 0.003 0.006

9

10

11

12

13

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

precond coarse Langevin
fine scale Langevin

Fig. 6.27. Comparison between Algorithm I and Algorithm II for various σc values

with σ2
f = 0.001 and δ = 0.05. Left: Acceptance rate. Right: Natural log of

CPU time (seconds)

to 11 fine-scale simulations. Additionally, the preconditioning step in Algorithm II

helps filter the samples, resulting in fewer fine-scale acceptance-rejection tests.

We now compare the average flux errors for both algorithms in Figure 6.28.

First, we would like to compare the convergence rates for each of the algorithms.

Second, we wish to show that the sample saturated conductivities have responses

which closely match the reference response. The left plot demonstrates that both

algorithms converge to steady state for approximately the same number of accepted

trials. In the right plot, the average fluxes for the sampled realizations are plotted

(dotted lines) along with the reference average flux (solid line). Recall the average

flux defined by (6.2) is given by 2 average flux values at 10 discrete time steps. The

x-axis is given by this discrete data, where the first 2 values on the x-axis represent

the two average flux values at the first time step. The second 2 values represent the

average fluxes at the second time step and so on. The sampled realizations closely

118

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Accepted Trials

A
v
g

 F
lu

x
 e

rr
o

r

preconditioned coarse Langevin
fine scale Langevin

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

Data Size

A
v
e

ra
g

e
 F

lu
x
 V

a
lu

e
s

Average Flux Comparison

Exact Fluxes
Sampled Fluxes

Fig. 6.28. Left: Average flux errors for Algorithm I compared to Algorithm II. Right:

The fluxes of sampled realizations and the reference flux.

match the reference flux because the error precision is taken to be small (σ2
f = 0.001)

in the target distribution.

Lastly, we present some saturated conductivity realizations sampled from the

posterior distribution. In Figure 6.29 we observe that the samples capture some

features of the reference saturated conductivity quite well (such as the peak at ap-

proximately (0.75, 1)) while seemingly ignoring other features (such as the valley from

approximately (0.4, 1) to (0.4, 0.2)). Note that these accepted saturated conductivity

fields correspond to those with errors in Figure 6.28, thus they give nearly the same

average flux responses and are all eligible samples.

6.2.2. Sparse Grid Collocation

In this section we briefly compare the numerical results using Algorithms I, II

and IV. We consider Algorithm IV with two different interpolated values. First, we

consider interpolation of the coarse-scale target distribution π∗. Next we consider

119

Fig. 6.29. Exact Ks (upper left) and three different accepted conductivites.

interpolation of the average flux found using the MsFVEM model. Our aim is to

show that Algorithm IV can be used as an inexpensive alternative to Algorithm II.

6.2.2.1. Interpolation of the Target Distribution

We consider the same exponential constitutive relation as in the previous section,

given by (2.11). We again scale our average flux response by 20 as in the previous

numerical results. We choose a different exact permeability using a KLE with 20

terms. We again use normal covariance and correlation lengths L1 = 0.5 and L2 = 0.1.

We now assume that the saturated conductivity is known at 11 sparse locations rather

than 9. We use a 49×49 fine-scale model, a 5×5 coarse-scale model, and we base our

results on 5, 000 samples in the MCMC. For variety, we consider a slightly different

set of initial conditions and boundary conditions. We assume the initial pressure head

is u = −10. Dirichlet boundary conditions are given by u = −10 on the bottom of Ω,

[0, 1]×0, and u = 0 on the portion of the top boundary between x = 0.3 and x = 0.7,

120

[0.3, 0.7] × 1. We assume Neumann boundary conditions otherwise.

We again refer to kth order Smolyak interpolation as A(N + k,N) in (3.19). In

particular, for N = 9 stochastic dimensions, 1st order results in 19 nodes, 2nd order

results in 181 nodes, and 3rd order results in 1, 177 nodes. It is worth noting that

even for 3rd order, the computational cost in computing the Smolyak nodes is still

small compared to the coarse-gradient Langevin MCMC. For example if we are to

sample in 9 dimensions using coarse-gradient Langevin, then we must run 10 forward

simulations for each sample. After approximately 120 samples, we have already run

the coarse-scale simulations more times than if we had generated nodes for 3rd order

Smolyak interpolation. We now consider a set of numerical results for Algorithms I,

II and IV. We do not present the results in as much detail as in the previous section.

We simply wish to provide numerical justification for the use of Algorithm IV.

First, we present a comparison between the coarse-scale target distribution π∗

and the interpolated coarse-scale distribution π̃∗ for different interpolation orders.

We restrict the target distributions to a 2D hyperplane by fixing all but 2 of the

stochastic dimensions. In Figure 6.30 we show π∗ and π̃∗ for each interpolation order.

We note that each interpolation surface matches the reference quite well. However,

we have some local effects in the 2nd and 3rd order surface that do not appear in the

original coarse-scale surface. This is likely due to oscillations from the high order

polynomials involved in 2nd and 3rd order interpolation. Due to these oscillations,

and the fact that 1st order interpolation approximates quite well, we consider only

1st order interpolation.

Next, we compare acceptance rates of Algorithm I, II and IV. The left plot in

Figure 6.31 shows the acceptance rates with different coarse scale precision σc. We

notice Algorithms II and IV have a higher acceptance rate than Algorithm I. As

discussed previously, this is due to the preconditioning step. Also notice Algorithm II

121

Fig. 6.30. Coarse-scale response surface π∗ and interpolated coarse-scale response sur-

faces π̃∗ restricted to a 2D hyperplane.

has a higher acceptance rate than Algorithm IV. This is expected, as the coarse-scale

target distribution in Algorithm IV is an approximation of the coarse-scale target

distribution in Algorithm II. Thus, there will be some slight errors involved, and

the Langevin proposals in Algorithm IV may be directed into a region with slightly

lower acceptance probabilities than Algorithm II. In the right portion of Figure 6.31

we compare the CPU time for each of the algorithms. We again notice a savings

in CPU time for Algorithm II as compared to Algorithm I. Further, Algorithm IV

uses significantly less CPU time than both Algorithms I and II. This is due to the

interpolated gradients. Interpolation using 19 points is nearly instantaneous, while

in Algorithms I and II we must run a fine or coarse-scale solution in each stochastic

dimension to find the gradients in the Langevin algorithm. Let us also note that in

Figure 6.31 we have not included the CPU time necessary to generate the interpolation

points. Since we use 19 points, we must obtain 19 coarse-scale solutions to generate

the interpolation data. Since this is less than the CPU time required for just 2

122

0.001 0.003 0.006

0.65

0.7

0.75

0.8

0.85

0.9

0.95

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4
fine scale Langevin

0.001 0.003 0.006

11

12

13

14

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4
fine scale Langevin

Fig. 6.31. Left: Acceptance rate comparison. Right: Natural log of CPU time (sec-

onds) comparison. Comparison is between Algorithm I, Algorithm II, and

Algorithm IV for various σc with σ2
f = 0.001 and δ = 0.05.

proposals in Algorithm II, it is negligible with respect to the MCMC CPU time.

In Figure 6.32 the left plot demonstrates that Algorithm IV converges to steady

state for approximately the same number of accepted trials as Algorithm I. The right

plot demonstrates that the accepted fluxes closely match the reference flux. In Figure

6.33 we compare the reference saturated conductivity (upper left) with three different

accepted conductivities. We observe that the samples capture many of the features

of the reference saturated conductivity.

We note that we have generally considered a KLE for Richards’ equation with

normal covariance and correlation lengths given by L1 = 0.5 and L2 = 0.1 in (2.16).

We now instead consider correlation lengths L1 = 0.2 and L2 = 0.2. We would not

expect this to change our results, but we will briefly present some numerical details

verifying this.

In Figure 6.34 we compare π∗ with π̃∗ for 1st through 3rd order interpolation. As

123

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Accepted Trials

A
v
g

 F
lu

x
 e

rr
o

r

Interpolated Langevin
fine scale Langevin

0 5 10 15 20
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Data Size
A

v
e

ra
g

e
 F

lu
x
 V

a
lu

e
s

Average Flux Comparison

Exact Fluxes
Sampled Fluxes

Fig. 6.32. Left: Average flux errors for fine-scale Langevin compared to interpolated

Langevin. Right: The fluxes of sampled realizations and the reference flux.

In each plot σ2
f = 0.001 and δ = 0.05.

Fig. 6.33. Exact Ks (upper left) and three different accepted conductivites.

124

Fig. 6.34. Coarse-scale response surface π∗ and interpolated coarse-scale response sur-

faces π̃∗ restricted to a 2D hyperplane.

previously, the interpolation surfaces match the general features of the coarse-scale

surface, with the higher order surfaces displaying more extraneous features. In Figure

6.35 we show the acceptance rate (left) and CPU time (right) for Algorithms I, II and

IV. We again find Algorithm IV has a similar acceptance rate to Algorithms I and II,

while providing a large saving in CPU time.

In Figure 6.36 the left plot demonstrates that Algorithm IV converges to steady

state for approximately the same number of accepted trials as Algorithm I. The right

plot demonstrates that the accepted fluxes closely match the reference flux. In Figure

6.37 we compare the reference saturated conductivity (upper left) with three different

accepted conductivities. The samples capture many of the features of the reference

saturated conductivity.

125

0.001 0.003 0.006

0.6

0.65

0.7

0.75

0.8

0.85

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4
fine scale Langevin

0.001 0.003 0.006

11

12

13

14

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4
fine scale Langevin

Fig. 6.35. Left: Acceptance rate comparison. Right: Natural log of CPU time (sec-

onds) comparison. Comparison is between Algorithm I, Algorithm II, and

Algorithm IV for various σc with σ2
f = 0.001, δ = 0.05, L1 = 0.2 and

L2 = 0.2.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Accepted Trials

A
v
g

 F
lu

x
 e

rr
o

r

Interpolated Langevin
fine scale Langevin

0 5 10 15 20
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Data Size

A
v
e

ra
g

e
 F

lu
x
 V

a
lu

e
s

Average Flux Comparison

Exact Fluxes
Sampled Fluxes

Fig. 6.36. Left: Average flux errors for fine-scale Langevin compared to interpolated

Langevin. Right: The fluxes of sampled realizations and the reference flux.

In each plot σ2
f = 0.001, δ = 0.05, L1 = 0.2 and L2 = 0.2.

126

Fig. 6.37. Exact Ks (upper left) and three different accepted conductivites.

6.2.2.2. Interpolation of the Average Fluxes

We perform the same numerical tests as in the previous section, but we con-

sider interpolation of the average flux in Algorithm IV rather than the target coarse-

distribution. We generate average flux values at the Smolyak nodes in our stochastic

dimensions using the MsFVEM as in (6.24). For each new proposal θ in Algorithm

IV we generate, F̃ ∗(θ) by interpolation. We also use the analytic formula for the in-

terpolated gradient, given by (5.24). Once we have the average flux, π̃∗ is computed

using F̃ ∗ rather than interpolated as in the previous section.

We again consider the exponential constitutive relation given in Section 2.1.2.

We consider the same exact boundary conditions as in the previous section, and we

again scale our average flux response by 20. We choose a different exact permeability

using a KLE with 20 terms, and we again assume that the saturated conductivity is

known at 9 sparse locations. We use a 49 × 49 fine-scale model, a 5 × 5 coarse-scale

model, and we base our results on 5, 000 samples in the MCMC.

127

0 2 4 6 8 10 12 14 16 18 20
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

Data Size

A
v
e

ra
g

e
 F

lu
x
 V

a
lu

e
s

Coarse
Interp 1
Interp 2
Interp 3

0 2 4 6 8 10 12 14 16 18 20
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

Data Size

A
v
e

ra
g

e
 F

lu
x
 V

a
lu

e
s

Coarse
Interp 1
Interp 2
Interp 3

Fig. 6.38. Two typical interpolated and coarse average flux responses.

We first would like to discuss the possible errors involved in interpolation of the

average flux, as opposed to interpolation of the coarse-scale target distribution. In

Figure 6.38 we compare a set of typical coarse-scale average fluxes and a set of in-

terpolated average fluxes for different order interpolations. Recall the average flux

defined by (6.2) is given by 2 average flux values at 10 discrete time steps. As ex-

pected, the interpolation surfaces generally match the coarse-scale average flux. Most

likely due to the smoothness in stochastic dimension of our response, the increase in

interpolation order does not appear to make a significant impact upon our interpo-

lation results. Due to this fact, we generally consider first order interpolation, which

requires very little computational effort to generate the Smolyak nodes.

Recall that we must also compute the gradient of the target distribution in the

Langevin algorithm. While Smolyak interpolation matches the coarse-scale average

flux responses quite well, there is no guarantee that the derivatives of the average

fluxes match well. In Figure 6.39 we show the gradients of the target distribution for

128

1 2 3 4 5 6 7 8 9 10 11
−600

−500

−400

−300

−200

−100

0

100

200

300

400

Stochastic Dimension

∇
 l
o

g
(π

)

Coarse
Interp 1
Interp 2
Interp 3

1 2 3 4 5 6 7 8 9 10 11
−600

−500

−400

−300

−200

−100

0

100

200

300

Stochastic Dimension

∇
 l
o

g
(π

)

Coarse
Interp 1
Interp 2
Interp 3

Fig. 6.39. Two typical gradient of the target distribution for both interpolated and

coarse average flux responses.

two typical cases, using 1st through 3rd order Smolyak interpolation. In the left plot,

the gradients using interpolation closely match the gradient of the coarse distribution.

In the right plot, however, the gradients do not match nearly as well. While it may

be the case that the interpolated gradient does not match well, note we have similar

approximations for 1st through 3rd order, providing further evidence that we may

consider only 1st order. For this reason, we expect some trials in Algorithm IV may

be rejected simply due to inaccurate gradients in the Langevin proposal.

We present a comparison between the coarse-scale distribution π∗, and the coarse-

scale distribution found through interpolation, π̃∗. We plot the restriction of the

target distributions to a 2D hyperplane by fixing the value of 9 of the 11 stochastic

dimensions. In Figure 6.40 we show both π∗ and π̃∗ for 1st, 2nd and 3rd order Smolyak

interpolation. As one would expect, the agreement between π∗ and π̃∗ is very close

in each case. The 3rd order surface tends to have more extraneous effects due to the

large degree polynomial involved in the interpolation. We again consider only 1st

129

Fig. 6.40. Coarse-scale response surface π∗ and interpolated coarse-scale response sur-

faces π̃∗ restricted to a 2D hyperplane.

order interpolation.

In the left portion of Figure 6.41 we compare these acceptance rates with differ-

ent coarse scale precision σc. From the figure, we notice Algorithm II has a higher

acceptance rate than Algorithm I while Algorithm IV has a slightly lower acceptance

rate. This is likely due to the errors in the gradients using collocation. In the right

portion of Figure 6.41 we compare the CPU time for each of the algorithms. We

notice a savings in CPU time above Algorithm I when using Algorithm II. We notice

an even larger saving when using Algorithm IV.

In Figure 6.42 the left plot demonstrates that Algorithm IV converges to steady

state for approximately the same number of accepted trials as the Algorithm I. The

right plot demonstrates that the accepted fluxes closely match the reference flux.

130

0.001 0.003 0.006
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4
fine scale Langevin

0.001 0.003 0.006

11

12

13

14

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4
fine scale Langevin

Fig. 6.41. Left: Acceptance rate comparison. Right: Natural log of CPU time (sec-

onds) comparison. Each plot compares Algorithm I, Algorithm II, and Al-

gorithm IV for various σc values with σ2
f = 0.001 and δ = 0.05.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

Accepted Trials

A
v
g

 F
lu

x
 e

r
r
o

r

Interpolated Langevin
fine scale Langevin

0 5 10 15 20
−3

−2.5

−2

−1.5

−1

−0.5

Data Size

A
v
e

ra
g

e
 F

lu
x
 V

a
lu

e
s

Average Flux Comparison

Exact Fluxes
Sampled Fluxes

Fig. 6.42. Left: Average flux errors for Algorithms I and IV. Right: The fluxes of

sampled realizations and the reference flux. In each plot σ2
f = 0.001 and

δ = 0.05.

131

6.2.3. Exponential Covariance

We now introduce a set of numerical results which use the proposed algorithms

for a conductivity generated using the KLE with exponential covariance (2.17). As

noted in Section 2.2, the KLE with exponential covariance contains many more terms

in the expansion. Moreover, the conductivity fields for exponential covariance have

more varied fine-scale features. We wish to show the results using the proposed

algorithms in the context of exponential covariance are similar to the previous results

which used normal covariance.

We generate a truncated KLE using exponential covariance with correlation

lengths L1 = 0.2 and L2 = 0.2. We keep 105 terms and assume the conductivity

field is known at 5 distinct points, thus we have 100 stochastic dimensions. We re-

strict ourselves to the hypercube [−2.5, 2.5]100 in stochastic space. We again consider

a 49 × 49 fine grid and a 5 × 5 coarse grid. Since we must compute the gradient of

the target distribution for each 100 dimensions, in Algorithm I we would require 100

fine-scale solutions for each proposal. This is computationally impossible in our set-

ting. Thus we compare only Algorithms II and IV. Additionally, we consider only 1st

order interpolation, since 2nd order would require 20, 201 values. We again present our

numerical results briefly, since many of the same ideas have already been discussed.

In Figure 6.43 we compare π∗ with π̃∗. As previously, the interpolation surfaces

match the general features of the coarse-scale surface. In Figure 6.44 we show the

acceptance rate (left) and CPU time (right) for Algorithms II and IV. We find that

the two algorithms have a similar acceptance rate, while Algorithm IV is over ten

times faster than Algorithm II. This vast improvement in CPU time is clearly due to

the use of interpolated gradients in Algorithm IV, as opposed to coarse-scale gradients

in Algorithm II.

132

Fig. 6.43. Coarse-scale response surface π∗ and interpolated coarse-scale response sur-

faces π̃∗ restricted to a 2D hyperplane.

0.003 0.006 0.009

0.6

0.65

0.7

0.75

0.8

0.85

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4

0.003 0.006 0.009

11

12

13

14

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

precond coarse Langevin 4x4
interp precond coarse Langevin 4x4

Fig. 6.44. Left: Acceptance rate comparison. Right: Natural log of CPU time (sec-

onds) comparison. Each plot compares Algorithm I and Algorithm IV for

various σc values with σ2
f = 0.001 and δ = 0.05. We use exponential covari-

ance in the KLE with L1 = 0.2 and L2 = 0.2.

133

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Accepted Trials

A
v
g

 F
lu

x
 e

rr
o

r

Interpolated Langevin
Coarse Scale Langevin

0 5 10 15 20
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

Data Size

A
v
e

ra
g

e
 F

lu
x
 V

a
lu

e
s

Average Flux Comparison

Exact Fluxes
Sampled Fluxes

Fig. 6.45. Left: Average flux errors for Algorithm II compared to Algorithm IV. Right:

The fluxes of sampled realizations and the reference flux. In each plot we

use exponential covariance in the KLE, σ2
f = 0.001, δ = 0.05, L1 = 0.2 and

L2 = 0.2.

In Figure 6.45 the left plot demonstrates that Algorithm IV converges to steady

state at a similar rate to Algorithm II. The right plot demonstrates that the accepted

fluxes closely match the reference flux. In Figure 6.46 we compare the reference

saturated conductivity (upper left) with three different accepted conductivities. The

samples appear to capture some of the features of the reference saturated conductivity.

Note the conductivity has many small features, as opposed to a few large smooth

features in the case of normal covariance.

As we can see from the preceding results, exponential covariance produces results

very similar to normal covariance for Richards’ equation. We find that Algorithm IV

provides an acceptance rate similar to Algorithm II while providing a dramatic savings

in CPU time.

134

Fig. 6.46. Exact Ks (upper left) and three different accepted conductivites.

135

CHAPTER VII

CONCLUSIONS

7.1. Conclusions

In this dissertation, we have combined multiscale methods with polynomial chaos

expansions and sparse grid collocation techniques to solve uncertainty quantification

problems in porous media. We have presented analysis for both polynomial chaos

expansions and sparse grid collocation methods. We have discussed and analyzed

applications of sparse grid collocation to multiscale finite element methods. We have

also presented an application of collocation methods in extremely high dimensions to

estimate upscaled permeabilities.

We have applied the various techniques to an uncertainty quantification prob-

lem in which we sample subsurface properties given some integrated response. We

discussed the preconditioned coarse gradient Langevin Markov chain Monte Carlo

algorithm, as well a variant using sparse grid collocation. We have applied these

Langevin algorithms, as well as traditional Langevin algorithms, to applications using

both two-phase immiscible flow and Richards’ equation. We have found the coarse

grid based algorithms give similar sampling results as compared to the traditional

fine-scale Langevin algorithm. Further, we have shown the coarse grid algorithms

provide a dramatic savings in computation time.

7.2. Future Work

While we have presented numerous techniques for applications in uncertainty

quantification, we believe there are still many interesting areas for further research.

In the area of upscaling combined with collocation, we believe there is a possibility

136

for further research in various petroleum applications. For some permeability models

it may be necessary to have a parameterization containing thousands of stochastic

variables. In these cases, it may not be possible to use sparse grid collocation methods

in the full stochastic dimensions. It may, however, be possible to use collocation for a

reduced set of variables and introduce a correction term to account for the remaining

variables.

It would be interesting in the future to consider the applications of upscaling

discussed in the previous paragraph to uncertainty quantification. In particular, we

observed that using fewer eigenvectors (or lower dimensional space), one can approx-

imate statistical properties of flow and transport accurately in some cases. We can

consider using these reduced upscaling techniques and resulting response surfaces

in uncertainty quantification problems. These techniques will allow us to perform

uncertainty quantification on very large models.

One can further consider improving CPU time by re-using the basis functions

generated for the MsFVEM. One example is to re-use the basis functions if the per-

meability field is conditionally accepted for fine-scale simulations. In this case, the

basis functions are already available from the coarse-scale simulations. One can also

attempt to take advantage of pre-computed basis functions in Langevin algorithms.

One can consider improved Langevin algorithms by using various discretization

methods. In our current studies, we have used explicit approaches to discretize

Langevin equation. It is known that for linear problems (Gaussian distributions)

[33], an implicit discretization of Langevin equations can give samples with accep-

tance probability 1, and the mixing of the Markov chain is very fast [2]. Though, for

general nonlinear probability density functions, there is no clear way to derive more

efficient discretization methods for MCMC. For our specific problems one can still

consider various other discretization techniques, e.g., semi-implicit discretizations.

137

In the future, it would be also interesting to test how saturation upscaling affects

the efficiency of the proposed sampling methods. We expect improved results if the

upscaling method for the saturation is accurate. However, these upscaled equations

will be more expensive, because the upscaling of the saturation is typically non-

local. As a consequence, computation time of coarse-scale Langevin algorithms will

be affected. The investigation of various upscaling methods for the saturation and

their effect in uncertainty quantification is one of our future goals.

Another future direction is to consider more general prior models where the cor-

relation lengths and the variance are unknown. In this case, one deals with very

large uncertainty space and the uncertainty quantification is a challenging problem.

We believe the proposed approaches which do not use the interpolation can be ap-

plied without much modification to this type of uncertainty quantification problem.

However, the use of interpolation techniques seems to be a challenging issue since it

requires the parameterization of the prior models. We plan to study these issues in

future.

In the area of uncertainty quantification in hydrology, we may be able to apply

our techniques to models which are more complicated variants of Richards’ equation.

For instance one may wish to use complex models that take into account precipitation,

solar radiation, air temperature, and vegetation.

138

REFERENCES

[1] J. E. Aarnes, Y. Efendiev, and L. Jiang, Analysis of multiscale finite element

methods using global information for two–phase flow simulations, submitted to

Computational Geosciences (2007).

[2] A. Apte, C. K. R. T. Jones, and A. M. Stuart, A Bayesian approach to La-

grangian data assimilation, in preparation (2007).

[3] I. Babuška and J. M. Melenk, The partition of unity method, International

Journal for Numerical Methods in Engineering, 40 (1997), 727–758.

[4] V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial interpo-

lation on sparse grids, Advances in Computational Mathematics, 12 (4) (2000),

273–288.

[5] Y. Chen, L. J. Durlofsky, M. Gerritsen, and X. H. Wen, A coupled local–

global upscaling approach for simulating flow in highly heterogeneous formations,

Advances in Water Resources, 26 (2003), 1041–1060.

[6] A. Christen and C. Fox, MCMC using an approximation, Journal of Computa-

tional and Graphical Statistics, 14 (4) (2005), 795–810.

[7] Y. Chen and L. J. Durlofsky, An ensemble level upscaling approach for efficient

estimation of fine–scale production statistics using coarse–scale simulations, SPE

106086, in Proceedings of the SPE Reservoir Simulation Symposium, Houston,

TX, February 26 – February 28, 2007.

[8] P. Dostert, Y. Efendiev, T. Hou, and W. Luo, Coarse–gradient Langevin algo-

rithms for dynamic data integration and uncertainty quantification, Journal of

Computational Physics, 217 (1) (2006), 123–142.

139

[9] L. J. Durlofsky, Numerical calculation of equivalent grid block permeability ten-

sors for heterogeneous porous media, Water Resources Research, 27 (5) (1991),

699–708.

[10] L. J. Durlofsky, Coarse scale models of two phase flow in heterogeneous reser-

voirs: Volume averaged equations and their relationship to the existing upscaling

techniques, Computational Geosciences, 2 (2) (1998), 73–92.

[11] L. J. Durlofsky, R. A. Behrens, R. C. Jones, and A. Bernath, Scale up of

heterogeneous three dimensional reservoir descriptions, SPE paper 30709 (1996).

[12] L. J. Durlofsky, R. C. Jones, and W. J. Milliken, A nonuniform coarsening

approach for the scale up of displacement processes in heterogeneous media,

Advances in Water Resources, 20 (5) (1997), 335–347.

[13] Y. Efendiev, A. Datta-Gupta, V. Ginting, X. Ma, and B. Mallick, An efficient

two–stage Markov chain Monte Carlo method for dynamic data integration, Wa-

ter Resources Research, 41 (12) (2005).

[14] Y. Efendiev and L. Durlofsky, Numerical modeling of subgrid heterogeneity in

two phase flow simulations, Water Resources Research, 38(8) (2002), 1128–1138.

[15] Y. Efendiev, L. Durlofsky, and S. Lee, Modeling of subgrid effects in coarse–

scale simulations of transport in heterogeneous porous media, Water Resources

Research, 36(8) (2000), 2031–2041.

[16] Y. Efendiev, A. Datta-Gupta, X. Ma, and B. Mallick, A modified MCMC using

streamline approach, submitted to Mathematical Geology (2005).

[17] Y. Efendiev, V. Ginting, T. Hou, and R. Ewing, Accurate multiscale finite ele-

ment methods for two–phase flow simulations, Journal of Computational Physics,

140

220 (1) (2006), 155–174.

[18] Y. Efendiev, T. Hou and V. Ginting, Multiscale finite element methods for

nonlinear problems and their applications, Communications in Mathematical

Sciences, 2 (4) (2004), 553-589.

[19] Y. Efendiev, T. Hou and W. Luo, Preconditioning Markov chain Monte Carlo

simulations using coarse–scale models, SIAM Journal on Scientific Computing,

28 (2) (2006), 776–803.

[20] Y. Efendiev, T. Hou, X. Wu, Convergence of a nonconformal multiscale finite

element method, SIAM Journal on Numerical Analysis, 37 (3) (2000), 888–910.

[21] A. Gelman and D. B. Rubin , Inference from iterative simulation using multiple

sequences, Statistical Science, 7 (1992), 457–511.

[22] V. Ginting, Analysis of two–scale finite volume element method for elliptic

problem, Journal of Numerical Mathematics, 12(2) (2004), 119–142.

[23] V. Ginting, Computational upscaled modeling of heterogeneous porous media

flow utilizing finite volume method, Ph.D. dissertation, Texas A&M University,

College Station, TX, May 2004.

[24] U. Grenander and M. I. Miller, Representations of knowledge in complex systems

(with discussion), Journal of the Royal Statistical Society Series B (Methodolog-

ical), 56 (4) (1994), 549–603.

[25] R. Haverkamp, M. Vauclin, J. Touma, P. J. Wierenga, and G. Vachaud, A

comparison of numerical solution models for one–dimensional infiltration, Soil

Science Society of America Journal, 41 (1977), 285–294.

141

[26] L. Holden and B. F. Nielsen, Global upscaling of permeability in heterogeneous

reservoirs: the output least squares (OLS) method, Transport in Porous Media,

40 (2000), 115–143.

[27] T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems

in composite materials and porous media, Journal of Computational Physics, 134

(1) (1997), 169–189.

[28] S. Irmay, On the hydraulic conductivity of unsaturated soils, Transactions of the

American Geophysical Union, 35 (1954), 463-467.

[29] P. Jenny, S. H. Lee, and H. Tchelepi, Multi–scale finite volume method for elliptic

problems in subsurface flow simulation, Journal of Computational Physics, 187

(1) (2003), 47-67.

[30] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer–Verlag, New

York, 2001.

[31] M. Loève, Probability Theory, 4th Edition, Springer, Berlin, 1977.

[32] W. Luo, Wiener chaos expansion and numerical solutions of stochastic par-

tial differential equations, Ph.D. dissertation, California Institute of Technology,

Pasadena, CA, 2006.

[33] X. Ma, M. Al–Harbi, A. Datta–Gupta, and Y. Efendiev, A multistage sampling

method for rapid quantification of uncertainty in history matching geological

models, SPE paper 102476, SPE Annual Conference and Exhibition, San Anto-

nio, TX, September 24–27, 2004.

[34] S. P. Meyn, R. L. Tweedie, Markov Chains and Stochastic Stability, Springer–

Verlag, London, 1996.

142

[35] F. Nobile, R. Tempone, C. G. Webster, A sparse grid stochastic collocation

method for elliptic partial differential equations with random input data, MOX

Technical Report 85, Dipartimento di Matematica, Politecnico di Milano, sub-

mitted to SIAM Journal of Numerical Analysis (2006).

[36] D. Oliver, L. Cunha, and A. Reynolds, Markov chain Monte Carlo methods for

conditioning a permeability field to pressure data, Mathematical Geology, 29 (1)

(1997), 61–91.

[37] D. Oliver, N. He, and A. Reynolds, Conditioning permeability fields to pressure

data, 5th European Conference on the Mathematics of Oil Recovery, Leoben,

Austria, September 3–6, 1996.

[38] H. Owhadi and L. Zhang, Metric based up-scaling, Communications on Pure

and Applied Mathematics (in press) (2007).

[39] L. A. Richards, Capillary conduction of liquids through porous mediums,

Physics, 1 (5) (1931), 318–333.

[40] C. Robert and G. Casella, Monte Carlo Statistical Methods, Springer–Verlag,

New York, 1999.

[41] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of

certain classes of functions, Doklady Akademii Nauk SSSR, 4 (1963), 240-243.

[42] F. T. Tracy, Clean two– and three–dimensional analytical solutions of Richards’

equation for testing numerical solvers, Water Resources Research, 42 (8) (2006).

[43] M. Th. van Genuchten, A closed–form equation for predicting the hydraulic

conductivity of unsaturated soils, Soil Science Society of America Journal, 44

(1980), 892–898.

143

[44] A. W. Warrick, Time–dependent linearized infiltration: III. Strip and disc

sources, Soil Science Society of America Journal, 40 (1976), 639–643.

[45] E. Wong, Stochastic Processes in Information and Dynamical Systems,

MCGraw–Hill, New York, 1971.

[46] D. Xiu and J. Hesthaven, High-order collocation methods for differential equa-

tions with random inputs, SIAM Journal on Scientific Computing, 27 (3) (2005),

1118–1139.

144

VITA

Paul Francis Dostert was born in New Haven, Connecticut on March 4, 1978.

He received his Bachelor of Science in Mathematics from James Madison University

in May 2000. He then began studies at Texas A&M University where he received

his Master of Science in Applied Mathematics in December 2002. He received his

Ph.D. from the Department of Mathematics in December 2007. Paul Dostert can

contacted by writing to: Department of Mathematics, The University of Arizona,

617 N. Santa Rita Ave., P.O. Box 210089, Tucson, AZ 85721-0089, or to the email

address dosterpf@gmail.com.

