
LOW POWER LOW-DENSITY PARITY-CHECKING (LDPC) CODES

DECODER DESIGN USING DYNAMIC VOLTAGE AND FREQUENCY

SCALING

A Thesis

by

WEIHUANG WANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2007

Major Subject: Electrical Engineering

LOW POWER LOW-DENSITY PARITY-CHECKING (LDPC) CODES

DECODER DESIGN USING DYNAMIC VOLTAGE AND FREQUENCY

SCALING

A Thesis

by

WEIHUANG WANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Gwan Choi
Committee Members, A. L. Narasimha Reddy

Jean-Francois Chamberland
Duncan M. Walker

Head of Department, Costas N. Georghiades

December 2007

Major Subject: Electrical Engineering

iii

ABSTRACT

Low Power Low-Density Parity-Checking (LDPC) Codes Decoder Design Using

Dynamic Voltage and Frequency Scaling. (December 2007)

Weihuang Wang, B.S., Peking University

Chair of Advisory Committee: Dr. Gwan Choi

This thesis presents a low-power LDPC decoder design based on speculative schedul-

ing of energy necessary to decode dynamically varying data frame in both block-fading

channels and general AWGN channels. A model of a memory-efficient low-power

high-throughput multi-rate array LDPC decoder as well as its FPGA implementa-

tion results is first presented. Then, I propose a decoding scheme that provides the

feature of constant-time decoding and thus facilitates real-time applications where

guaranteed data rate is required. It pre-analyzes each received data frame to es-

timate the maximum number of necessary iterations for frame convergence. The

results are then used to dynamically adjust decoder frequency and switch between

multiple-voltage levels; thereby energy use is minimized. This is in contrast to the

conventional fixed-iteration decoding schemes that operate at a fixed voltage level

regardless of the quality of data received. Analysis shows that the proposed decoding

scheme is widely applicable for both two-phase message-passing (TPMP) decoding

algorithm and turbo decoding message passing (TDMP) decoding algorithm in block

fading channels, and it is independent of the specific LDPC decoder architecture. A

decoder architecture utilizing our recently published multi-rate decoding architecture

for general AWGN channels is also presented. The result of this thesis is a decoder

design scheme that provides a judicious trade-off between power consumption and

coding gain.

iv

To My parents

v

ACKNOWLEDGMENTS

This thesis would not have been possible without the boundless assistance of mentors,

colleagues, and friends. I would like to express my gratitude to my advisor, Dr. Gwan

Choi. Dr. Choi encouraged and supported my research. It is always a pleasure to

sit together with Dr. Choi for discussion. He has provided me with tremendous help

for not only my academic research, but also for my career and life. Thanks to Dr.

Narasimha Reddy, Dr. Jean-Francois Chamberland and Dr. Duncan M. Walker, for

serving on my committee and for taking the time to discuss with me.

I would also like to express my heartfelt thanks to the other professors who have

always kept their doors open, ready to discuss and encourage new ideas; particular

thanks go to Dr. Sunil Khatri and Dr. Alexander Sprintson. During my time at

Texas A&M University, I have had the opportunity to collaborate with a number of

different people. I would like to thank Dr. Kiran Gunnam for the successful and

joyful collaboration. Dr. Gunnam also provided me with important suggestions and

opportunities for my career.

Additionally, thanks to Qiuyang Li, Yang (Cindy) Yi, Zhanyuan (Jerry) Jiang,

Hang Su, Sanghoan Chang. Finally, I would like to express my sincere thanks to my

family whose unwavering support has been indispensable to me over the last years.

Thank you to my family: Dad, Mom, my elder sisters and brothers.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND . 4

A. LDPC codes and decoding algorithms 4

B. Circuit power estimation and reduction 7

III MODELING AND FPGA IMPLEMENTATION OF LAY-

ERED LDPC DECODER . 9

IV SPECULATIVE ENERGY SCHEDULING IN DECODING

FOR BLOCK FADING CHANNEL 14

A. Analysis of TPMP decoding algorithm 14

B. Analysis of TDMP decoding algorithm 17

C. Implementation and results 20

V SPECULATIVE DECODING FOR NON-FADING AWGN

CHANNEL . 27

VI CONCLUSION . 32

REFERENCES . 33

VITA . 37

vii

LIST OF TABLES

TABLE Page

I FPGA implementation and performance comparison. 13

viii

LIST OF FIGURES

FIGURE Page

1 Performance level adjustment for power reduction. 2

2 (a) Micro-architecture of CNU. (b) Block diagram of CNU. 9

3 LDPC decoder using layered decoding and OMS. 11

4 Simplified diagram for block serial processing and 3-stage pipelin-

ing for TDMP using OMS. 12

5 Probability density function of number of check error. (std: stan-

dard deviation) . 15

6 Distribution of decoding iteration for different number of check errors 15

7 Distribution of decoding iterations at different SNR levels for each

frame as well as average decoding iterations of every 10 frames 16

8 Probability density function of number of check errors for array

codes (p = 67, dc = 25 and dv = 5). 17

9 Distribution of decoding iteration for different number of check errors. 18

10 Block diagram (a) and buck converter (b) of the proposed DVFS

controller. 21

11 Voltage supply requirement for different operating frequency 22

12 Simulated voltage response Vddl . 23

13 Saving in energy (a) and coding performance (b) based on different

thresholds of check errors. 24

14 Coding performance at different level of energy saving for different

threshold value selection. 25

15 Energy saving for different SNR levels. 26

ix

FIGURE Page

16 Distribution of decoding iteration for different number of check

errors after three sub-iterations with channel Eb/No at 3.7dB. 27

17 Decoding architecture for non-fading AWGN channel. 28

18 Saving in decoding energy at different SNR levels. 30

19 BER comparison for traditional decoding and proposed specula-

tive decoding. 30

1

CHAPTER I

INTRODUCTION

Ultra-low-power decoding is a necessity in communication for wireless portable de-

vices. A competing coding scheme to the popular Turbo Coding is Low Density

Parity Check (LDPC) codes that are special cases of error correcting codes originally

proposed by Gallager [1] in 1960’s and rediscovered in late 1990’s [2]. The LDPC

codes inherently exhibit simple streamlined algorithmic flow that supports highly

regular hardware structure to implement. And such structure lends to power-efficient

strategies. Like the Turbo coding, LDPC also achieves Shannon limit approaching

performance and a number of efficient implementation of LDPC decoders [3, 4] have

been proposed. LDPC has successfully been adopted in next-generation standards,

such as IEEE802.16e, DVB-S2, etc. Nevertheless, implementation of LDPC in these

applications imposes significant challenges for the real-time requirements.

The commonly used message passing algorithms for LDPC decoding exchange

information between the bit nodes and check nodes (parity checks constraining the

bits) in an iterative fashion. There are again popular derived algorithm, including

the two phase message passing (TPMP) algorithm and turbo decoding message pass-

ing (TDMP, also known as layered decoding) algorithm [5]. In practice, the LDPC

decoder is typically set to run until a preset maximum number of iteration (e.g. 20),

depending on the code rate, if no data convergence is observed. There have been

researches on early termination of frames which can not be decoded even maximum

iterations are applied [6, 7]. Hardware is dynamically switched off when additional

iteration will not amount to increase in decoding performance. In both of these pa-

The journal model is IEEE Transactions on Automatic Control.

2

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Time

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 le
ve

l

Fixed voltage supply
Adaptive voltage adjustment

Fig. 1. Performance level adjustment for power reduction.

pers, however, early termination of the iterative process is determined by checking

the messages during the decoding process. These approaches result in excessive hard-

ware overhead and no predictions are made prior to the commencement of decoding

iterations. The authors in [8] lower the power consumption by reducing precision at

the least significant bits in soft digital signal processing system (filter for example).

Real-time applications pose restrictions on the decoding time schedule. In ad-

dition, power consumption is always an important design constraint for the mobile

applications. In this paper, we propose a novel scheme to dynamically configure the

decoding hardware to achieve, while guaranteeing quality of service (QoS) for time-

sensitive data, minimum energy consumption for block-fading channel [9], where noise

level changes slowly enough that variation within a frame is negligible. The proposed

energy-scheduling scheme is illustrated in Figure 1. The figure shows clock frequency

over a time period. Each frame requires different number of iterations to complete

decoding. With fixed-voltage architecture, the result is decoder operating for a given

3

amount of time before it is turned off. Decoding resumes when a next frame is re-

ceived. In contrary, our proposed scheme adjusts clock frequency and voltage level

appropriately to ascertain timely termination of decoding before the next frame is

received. An increased number of decoding iterations are taken for lower-SNR data

frames; thus the iteration process is completed in less amount of time. The aim is

to keep the total decoding time constant for all data frames. This is achieved by

utilizing the recently developed dynamic voltage and frequency scaling (DVFS) tech-

niques [10, 11]. System power dissipation is proportional to occurrence of activity

and quadratic voltage supply [12]. The number of decoding iterations predicted from

channel data is used to determine the amount of energy and operating frequency nec-

essary to decode each frame, within a fixed time period. Thereby, making available

the output of each frame synchronized to the fixed rate at which the data is consumed

in real-time application interface.

The rest of this thesis is organized as following: In chapter II, the background

of LDPC code together with decoding algorithm and DVFS are briefly described.

Chapter III presents modeling and FPGA implementation of a memory and energy

efficient LDPC decoding architecture based on TDMP. In Chapter IV, the low-power

real-time decoding policy for block-fading channel is presented. It is shown that the

empirical policy works well across different iterative decoding algorithms and the pol-

icy is independent of any specific LDPC decoder architectures. Coding performance,

as well as savings in decoding energy is shown. Chapter V discusses the low-power

real-time decoding architecture for general non-fading AWGN channel. Chapter VI

concludes the thesis.

4

CHAPTER II

BACKGROUND

This chapter describes the background of LDPC codes, the belief-propagation de-

coding algorithm as well as the layered decoding algorithm. The power estimation

technique is also introduced.

A. LDPC codes and decoding algorithms

LDPC codes are defined by a sparse parity check matrix H = [Hmn] that consists

mostly of 0’s. First introduced by Gallager [1], the H matrix of (n, dc, dv) regular

LDPC code has the following properties. Each column contains a small fixed number

dv of 1’s and each row contains a small fixed number dc > dv of 1’s. The block length

of this code is n which is equal to the number of columns in the H matrix. Suppose

that the number of data bits before the channel encoding is l, then the number of

rows of this H matrix is m = n− l. Rate of this code is defined as l/n = 1− dv/dc.

The code words consist of all one-dimensional row vectors that span the null space of

the parity check H matrix. The number for dv and dc should be no less than 3 and

6 respectively, for good coding performance. The array LDPC codes [13] used in this

paper is specified by three parameters: a prime number p and two integers k and j

such that j < p and k < p. It is given by Equation 2.1:

H =




I I I · · · I

I α α2 ... αk−1

I α2 α4 ... α2(k−1)

...
...

...
...

I αj−1 α(j−1)2 · · · α(j−1)(k−1)




(2.1)

5

where I is the p×p identity matrix, and α is a p×p permutation matrix representing

a single left or right cyclic shift of I. Power of α in H denotes multiple cyclic shifts,

with the number of shifts given by the value of the exponent.

Assume binary phase shift keying (BPSK) modulation (a 1 is mapped to −1

and a 0 is mapped to 1) over an additive white Gaussian noise (AWGN) channel.

The received values yn are Gaussian with mean xn = 1 and variance δ2. The iterative

two-phase message-passing (TPMP) algorithm, also known as belief-propagation (BP)

algorithm [14, 15] is computed in two phases. One is a check node processing and the

other is variable node processing. In the check node processing, each row of the parity

matrix is checked to verify that parity check constraints are satisfied. In the variable

node processing the probability will be updated by summing up the other probabilities

from the rest of the rows and the a priori probabilities from the channel output. The

message-passing algorithm can be simplified to the belief-propagation based algorithm

(also called Min-Sum algorithm) [16]. While greatly reducing the decoding complexity

in implementation, the Min-Sum degrades the coding performance. The improved

BP based algorithm, Normalized-Min-Sum and Offset-Min-Sum [16] eliminates this

performance degradation.

Following the same notation in [17], the check node processing can be expressed

as:

R(i)
mn = δ(i)

mn max
(
κ(i)

mn − β, 0
)
, (2.2)

κ(i)
mn =

∣∣∣R(i)
mn

∣∣∣ = min
n′∈N(m)\n

∣∣∣Q(i−1)
n′m

∣∣∣ , (2.3)

where Q(i)
nm is the message from variable node n to check node m, R(i)

mn is the message

from check node m to variable node n, and superscript i denotes the ith iteration.

M(n) is the set of the neighboring check nodes for variable node n, and N(m) is the

6

set of the neighboring variable nodes for check node m, β is a positive constant and

depends on the code parameters [16]. The sign of check-node message R(i)
mn is defined

as

δ(i)
mn =


 ∏

n′∈N(m)\n
sgn

(
Q

(i−1)
n′m

)

 . (2.4)

In the vairalbe node processing,

Pn = L(0)
n +

∑

m∈M(n)

R(i)
mn (2.5)

where the log-likelihood ratio of bit n is L(0)
n = yn. For final decoding

Pn = L(0)
n +

∑

m∈M(n)

R(i)
mn (2.6)

A hard decision is taken by setting x̂n = 0 if Pn(xn) ≥ 0, and x̂n = 1 if Pn(xn) ≤ 0. If

x̂nH
T = 0, the decoding process is finished with x̂n as the decoder output; otherwise,

repeat processing of Equation 2.2-Equation 2.6. If the decoding process does not end

within predefined maximum number of iterations, itmax, stop and output an error

message flag and proceed to the decoding of the next data frame.

Mansour, et al. [5] introduce the concept of layered decoding (also known as

turbo decoding message passing, TDMP) algorithm. In layered decoding algorithm,

the array LDPC with j block rows are taken as a concatenation of j constituent

sub-codes. After the check-node processing of one layer, the updated messages are

immediately used to calculate the variable-node message, whose results are then ap-

plied to next layer of sub-code. Each iteration in the layered decoding algorithm is

composed of j sub-iterations.

Mathematically, ~R
(0)
l,n is initialized to 0 and ~Pn to ~L(0)

n , then

For i = 1, 2, · · · , itmax,

7

For l = 1, 2, · · · , dv,

For n = 1, 2, · · · , dc

[
~Q

(i)
l,n

]S(l,n)
=

[
~Pn

]S(l,n) − ~R
(i−1)
l,n (2.7)

~R
(i)
l,n = f

([
~Q

(i)
l,n′

]S(l,n′)
)

,∀n′ = 1, 2, · · · , dc (2.8)

[
~Pn

]S(l,n)
=

[
~Q

(i)
l,n

]S(l,n)
+ ~R

(i)
l,n (2.9)

This thesis has analyzed both TPMP and TDMP algorithms based on architec-

ture from [3].

B. Circuit power estimation and reduction

There are three major sources of power dissipation in CMOS circuit [12]:

Ptotal = Pswitching + PSC + Pleakage

= αCL∆V Vddfclk + ISCVdd + IleakageVdd,
(2.10)

Pswitching represents the switching power resulted from charging and discharging par-

asitic capacitances in the circuit. CL is the loading capacitance, fclk is the clock

frequency, and a is the node transition factor defined as the probability that a power

consuming transition occurs. In most cases, the voltage swing ∆V is the same as the

supply voltage Vdd. The short circuit power PSC is caused by direct-path short circuit

current ISC which arises when both NMOS and PMOS are simultaneously turned

on. This is caused by the finite rising and falling time of input signal. The short

circuit power can be kept within 15% of the switching power if carefully designed

[18]. Pleakage is the leakage component of power, where Ileakage is the total leakage

current in CMOS circuit. Further, delay of the circuit increase with decreased voltage

8

supply, as shown in Equation 2.11:

τ =
1

fclk

=
CLVdd

Idsat

∝ Vdd

(Vdd − Vth)1.3
(2.11)

Typically, switching power is the main source of power dissipation in the circuit.

It should be noted that while power consumption decreases linearly with the operation

frequency, the time for finishing the certain workload increases. As a result, the total

energy consumption remains the same for the same workload if the power supply is

not changed. Dynamic voltage and frequency scaling is an effective method to reduce

the energy consumption, especially under wide variations in workload. A number of

DVFS designs have been presented. This thesis follows the design described in [9].

9

CHAPTER III

MODELING AND FPGA IMPLEMENTATION OF LAYERED LDPC DECODER

This chapter presents modeling of an memory-efficient low-power multi-rate LDPC

decoder as well as its FPGA implementation. Micro-architecture of the check-node

processing unit is first introduced. Architecture of the decoder and its FPGA imple-

mentation results are then shown.

M1_M2 finder

FF A<B

Clk

Q

A<B

M1ps

M2psM
u

x

RF0

RF1

M2ps

M1_indexps

Counter

M1ps

RF1

Offset and

2's

complement

M1_negfs

M2fs

M1_indexfs

M
u

x R

A=B
Rsel

Final StatePartial State

R selectorOffset

M1fs

Enable

Clk

Clk

(b)

M1_M2

finder

Final StatePartial

State
Offset

R selector

R

Counter

Q

2'-SM

Sign

(a)

PS Storage

Fig. 2. (a) Micro-architecture of CNU. (b) Block diagram of CNU.

The check node unit (CNU) design, as discussed more fully in [3, 19, 20], utilize

the less known property of the offset-based min-sum algorithm. In this algorithm,

the check node processing produces only two different output magnitude values irre-

spective of the number of incoming variable to check messages. This property greatly

10

simplifies the number of comparisons required as well as the memory needed to store

CNU outputs. Figure 2 shows the serial CNU architecture for a (dv = 5, dc = 25)

code. We use the same notation as in Chapter II: R for check node messages, Q for

variable node messages, and P for the sum of variable node messages and channel

values. In the first 25 clock cycles of the check node processing, incoming variable

messages are compared with the two up-to-date least minimum numbers (partial

state, PS) to generate the new partial state. The partial state includes the least

minimum value, M1, the second minimum value M2, and index of M1. The final

state (FS) is then computed by offsetting the partial state. It should be noted that

the final state includes only M1, −M1, +/−M2 with offset correction. This results

in a reduction of around 50%-90% of R memory based on the rate of the code, which

has dependence on check node degree dc, when compared to BCJR algorithm [5] or

sum of products algorithm. Since the sign information of R memory is still stored,

the total savings in R memory is around 40%-72% for 5-bit messages based on the

rate of the code.

The data flow graph, based on the TDMP algorithm and the value reuse property

of min-sum algorithm is shown in Figure 3. For ease of discussion, we will illustrate

the architecture for a specific structured code: array code of length 1525 described

in Chapter II, dv = 5, dc = 25 and p = 61, the discussion can be easily generalized

to any other structured codes. First, functionality of each block in the architecture

is explained. A check-node process unit (CNU) is the serial CNU based on OMS

described in the previous section. The CNU array is composed of p computation

units that compute the partial state for each block row to produce the R messages in

block serial fashion. Since final state of previous block rows, in which the compact

information for CNU messages is stored is needed for TDMP, it is stored in register

banks.

11

Fig. 3. LDPC decoder using layered decoding and OMS.

There is one register bank of depth dv−1, which is 4 in this case, connected with

each CNU. Each final state is the same as the final state register bank in the CNU.

Besides the shifted Q messages, the CNU array also take input of the sign information

for previous computed R messages in order to perform R selection operation. The sign

bits are stored in sign FIFO. The total length of sign FIFO is dc and each block row

has p one bit sign FIFOs. We need dv − 1 of such FIFO banks in total. p number of

R select units is used for Rold. An R select unit generates the R messages for dc edges

of a check-node from three possible values stored in final state register associated

with that particular check-node in a serial fashion. Its functionality and structure

is the same as the block denoted as R select in CNU. This unit can be treated as

de-compressor of the check node edge information which is stored in compact form in

FS registers. The generation of R messages for all the layers in this way amounts to

12

significant memory savings, which would be quantified in a later section. The shifter

is constructed as cyclic down logarithmic shifter to achieve the cyclic shifts specified

by the binary encoded value of the shift. The logarithmic shifter is composed of

log2(p) stages of p switches. Since cyclic up shift is also needed in the operation of

the decoder, cyclic up shift by u can be simply achieved by doing cyclic down shift

with p-u on the vector of size p. The decoding operation proceeds as per the vector

equations described in Chapter II. The shift value can be either positive or negative

indicating that a down shift or up shift need to be performed by the cyclic shifter.0 1Clock Cycle Offset2nd block row...CNU PSCNU FS FSR selection 2nd block rowP Update 2nd block row3rd block row... 51
IdlePS: Partial StateFS: Final State

...............2nd block row ...Q Update
Fig. 4. Simplified diagram for block serial processing and 3-stage pipelining for TDMP

using OMS.

Snapshot of the pipeline of the decoder is shown in Figure 4. The partial state

stage in CNU (CNU PS) is first operating on the 2nd block row. Final state stage

in CNU (CNU FS) can not start until the end of PS processing. As soon as the FS

is done, R select is able to select the output R messages, and P and Q messages

processing starts. With the first block of Q message ready, PS for the next block row

can be started immediately.

This architecture is scalable for scalable for low-throughput application. Assume

13

the desired parallelization is M , and M < p, and M is power of 2 here. Number

of instantiations of in the CNU array would be M and the cyclic shifter needed is

M × M . Since it is needed to achieve p × p cyclic shift with consecutive shifts of

M×M ,it is necessary that the complete vector of size p is available in M banks with

the depth s = (ceil(p/M)) and shifting is achieved in part by the cyclic shifter, and

in part by the address generation. Now, all the CNU and variable node processing is

done in a time division multiplexed fashion for each sub-vector of length M , so as to

process the vector of size p to mimic the pipeline in Figure 4.

The TDMP LDPC decoding architecture has been modeled, clock cycle by clock

cycle in Matlab. It has also been implemented on Xilinx 2V8000 FPGA. The synthesis

results and performance comparison with other recent state of the art implementations

are given in Table I. The work in [21] and [22] only supports one fixed code length.

Similarly the work in [23] supports one code rate only while supporting different

lengths from 1000-3000. The amount of memory that needs to be used in multi-rate

architectures is dependent on the maximum values of code parameters that need to

be supported.

Table I. FPGA implementation and performance comparison.

Hocevar, M. Karkooti, T. Brack, Implemented Implemented
et al. [21] et al. [22] et al. [23] (M = p = 61) (M = 61,p = 347)

Slices N/A 11,35 14,475 6,002 6,182
LUT 72,621 20,374 N/A 7,713 8,022
SFF 6,779 N/A N/A 9,981 10,330

BRAM 32 66 165 12 102
Frequency (MHz) 44 121 100 112 112

Throughput 80 127 180 1,366×code rate
number of iterations

, 2,277×code rate
number of iterations

(Mbps) 68.3-125.4 113-159

14

CHAPTER IV

SPECULATIVE ENERGY SCHEDULING IN DECODING FOR BLOCK FADING

CHANNEL

The key observation made for speculative-energy decoding is that for most of the data

frames, the decoding process is finished before the maximum number of decoding

iterations. Thus the aim is to allot only sufficient amount of energy to complete

decoding before the next frame is received. The mechanism to achieve this is that

frequency and voltage can be tuned as discussed in Chapter II. Such performance

adjustment is feasible because the observation that severity of noise corruption of

channel data can be estimated in advance.

Based on statistical analysis of the received data from channel, we develop a

heuristic decoding policy of LDPC codes wherein a judicious consumption of energy

is made. In the proposed scenario, decoding process is dynamically adjusted so that

the maximum number of decoding iteration for each frame is set close to optimum in

term of energy and coding performance.

A. Analysis of TPMP decoding algorithm

In this thesis, simulation of the TPMP decoding algorithm is carried out based on

randomly constructed (3, 6) 1/2 rate code with block length of 2048 over a block fading

channel, assuming Gaussian noise and code length equal to fading block length. The

discussion and conclusion could be also extended to other LDPC codes.

Severity of noise corruption is first observed from the number of checks in error

from the channel data. For a (dc, dv) regular LDPC code, suppose there is one bit

in error, the number of checks violated will be dc if a hard decision is made. When

multiple data bits are flipped, depending on the position of the flipped bits with

15

250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Numbe of Check Errors

P
ro

ba
bi

lit
y

SNR: 1.5, mean 409.1, std 18.34
SNR: 2.0, mean 385.7, std 18.88
SNR: 2.5, mean 358.9, std 19.25
SNR: 3.0, mean 329.1, std 19.63

Fig. 5. Probability density function of number of check error. (std: standard devia-

tion)

Fig. 6. Distribution of decoding iteration for different number of check errors

16

5 10 15 20
0

20

40

60

80

100

Distribution of decoding iterations

P
er

ce
nt

ag
e

(%
)

SNR 2.0
SNR 2.0, average
SNR 2.5
SNR 2.5, average
SNR 3.0
SNR 3.0, average

Fig. 7. Distribution of decoding iterations at different SNR levels for each frame as

well as average decoding iterations of every 10 frames

respect to the H matrix, the numbers of checks in error are analyzed statistically.

Figure 5 shows that at given SNR, the number of received bits in error is consistent

with Gaussian distribution. The average number of check errors decreases linearly.

Figure 6 shows that the number of soft decoding iteration required varies with different

number of checks in error. The more checks in error, the more decoding effort is

needed. Number of checks in error carries part of the information about the severity

of the damage in the frame.

In addition, it is prudent to track the number of decoding iterations of the past

frames. That can be used to compensate the large variance in decoding iterations

from check-error estimation. It is generally accepted that higher SNR level requires

less number of decoding iterations. Figure 7 shows a statistical relationship between

SNR and number of decoding iterations. The average number of decoding iterations

for multiple frames is highly correlated with SNR, and almost all frames are decoded

17

after 1.5 times of the average decoding iterations. In a slowly fading communication

channel, channel condition is unlikely to change abruptly, which means that it is pos-

sible to estimate the SNR level for incoming channel data. Based on the information

of average decoding iterations of past few frames and number of checks in error for

incoming frame, we can estimate an upper bound for the decoding iteration with high

confidence level.

B. Analysis of TDMP decoding algorithm

Fig. 8. Probability density function of number of check errors for array codes (p = 67,

dc = 25 and dv = 5).

For analysis of TDMP deciding algorithm, the sample LDPC code is conducted

based on rate 0.8 array code with expansion factor p of 67, check-node degree of 25,

variable-degree of 5, and block length of 1675 over a block fading channel, assuming

Gaussian noise where code length is equal to fading block length. It aims to show

that out proposed decoding scheme can be applied to different algorithms for different

18

codes.

Fig. 9. Distribution of decoding iteration for different number of check errors.

Figure 8 shows that at given SNR, the number of checks in error for received

data is consistent with Gaussian distribution, with the average number of check errors

decreases linearly. Figure 9 shows that the number of soft decoding iteration required

for different frames varies with different number of checks in error. The more checks

in error, the more decoding iteration is required on average. Number of checks in error

carries part of the information about the severity of the corruption in the frame. The

average decoding sub-iterations (E) for the four cases (i.e. number of check errors

larger than 140, between 140 and 130, between 130 and 115, as well as less than 115)

are 19.6, 17.3, 12.5 and 8.8, respectively, and the corresponding standard deviation

(δ) is 17.7, 12.3, 7.1 and 3.3. The E+2δ points are then 55, 42, 27 and 16 respectively.

There are only 4.7%, 4.3%, 2.6% and 1.1% loss of erroneous frames in each category

as compared with the situation where 100 sub-iterations are applied. In summary, we

19

utilize the information of number of check errors to determine the decoding process.

The adaptively decoding scheme is implemented by truncating the distributions

of decoding efforts at a point where a tradeoff between performance and energy is

achieved. For example, if the number of check nodes in error is greater than a thresh-

old, then the number of decoding iteration is fixed to a pre-determined number. In

similar fashion, several threshold levels derived from the empirical data are generated

and a set of respective decoding iteration numbers affixed. The policy is described in

the following pseudo-codes:

if(Num_Check_Err>=Check_Err_Theshold1)

Num_Dec_Iteration = num1;

elseif(Num_Check_Err>=Check_Err_Theshold2)

Num_Dec_Iteration = num2;

elseif(Num_Check_Err>=Check_Err_Theshold3)

Num_Dec_Iteration = num3;

else

Num_Dec_Iteration = num4;

end if

As aforementioned, the E + 2δ point is found to be a reasonable choice based

on the number of check-errors threshold selections for this particular sample LDPC

code. Other sets of numbers can also be selected depending on different power and

coding-performance trade-offs. The threshold values Check Err Theshold(i) (i =

1, 2, 3) and numbers of decoding iterations num(j) for j = 1, · · · , 4 are chosen through

simulation.

20

C. Implementation and results

The above policy could be implemented with low hardware complexity. It has been

reported [24] that for deep sub-micro VLSI technology, the leakage power is becoming

so large that the best solution in terms of power is maintaining the highest perfor-

mance for the longest time as possible and then turning the circuit into sleep mode.

In the case of LDPC decoder, however, this is not feasible because of the real-time

constrain, constantly incoming data, as well as power overhead of turning off and

on the circuit. The clock frequency is determined by the constant decoding time,

for instance, the clock frequency for frames required 20 iterations is twice as high

as those requiring only 10 iterations. Operating at low clock frequency, the voltage

supply could also be lowered correspondingly.

Diagram of the adaptively decoding controller is presented in Figure 10(a). Num-

ber of check errors in incoming data frame is calculated as cHT , where c is the code

word based on hard decision of the incoming log-likelihood channel data. Since cHT

is also implemented inside the decoder for decoding termination decision and it can

be reused in the controller. Therefore this unit does not impose any additional hard-

ware resource or power consumption. Because level of the voltage supply can not be

changed instantly, frame buffer is required for incoming channel data, a frequency-

selection buffer that stores decoding iteration information for corresponding data

frames. The buffer size K is determined by time response of voltage supply Vddl as

well as expected decoding time, i.e. throughput. As presented later, buffer size of 2

frames (K = 2) is needed typically. The overhead is buffer of size 1 frame since a

buffer size of 1 frame is intrinsic for the decoder. cHT of the incoming data frame

Fi, is used to predict the number of decoding cycles, hence the decoding frequency

can be determined. Decoding frequency of frames Fi−1 to Fi−K+1 also participate

21

Fi-1Fi

T

fsi-1fsi

j

Channel

Data

ctr

Frequency

Selection

Register

System Clock

dec

ctr

dec

To decoder

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Vdd 1.8v

fctr

hold

Vdd 1.8v

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D
Critical Path

Replica

Vdd

fctr

T
e

s
t

D
a

ta

Mp2

ctr_out

Vddl

Q

Q
SET

CLR

D

Vddl

fctr

fctr

fctr

Fig. 10. Block diagram (a) and buck converter (b) of the proposed DVFS controller.

in the process because of the finite voltage response time. The clock divider divides

the fast system clock into slower clock signals according to the frequency selection

register. Clock divider is preferred over other designs such as phase-loop locker (PLL)

in [11], because it provides reasonable frequency resolution for the decoding policy

and capability to change immediately. fdec clocks the decoder for current frame, and

fctr is sent to the voltage scaling controller. fctr is conservatively generated as the

fastest clock such that the voltage supply will be within safe region for operation.

A variety of VLSI implementations of the voltage-scaling controller have been

reported in the literatures. Firstly, this paper adapted the design in [10] of the buck

converter, because it is of reasonable complexity. Other control schemes can also be

used. Secondly, a design based on Min-Sum algorithm in [3] is used for the decoder.

22

50 100 150 200 250 300 350
1

1.5

2

2.5

Operating Frequency (MHz)

S
up

pl
y

V
ol

ta
ge

 (
V

)

Based on critical path delay
Critical path delay plus extra 5%

safe region

Timing violation

Fig. 11. Voltage supply requirement for different operating frequency

The critical path of the decoder is extracted and replicated for the voltage controller.

Load capacitor of the voltage controller should be large enough to maintain a steady

voltage level in presence of sudden change in the output current. The capacitor is

chosen to be 0.65µC. The power transistor Mp2 is 400µm in width, which is driven

by five stages of buffer, with a scaling up factor of 4 [10], considering the minimum

power consumption. Figure 10(b) shows the diagram of the circuitry.

The design of voltage-scaling controller has been simulated using TSMC0.13µm

technology. With 1.5V voltage supply, the decoder can be clocked as fast as 175MHz,

as shown in Figure 11. Extra 5% timing margin has been added to the critical path

replica in the controller to accommodate variations. Figure 12 demonstrates voltage

response of the converter. The buck converter can scale up the output voltage level

to a maximum of 60mV/µs. Results presented in [10] align with our simulation

results. Assuming a 500MHz system clock, it can be divided into 167MHz, 125MHz,

23

Fig. 12. Simulated voltage response Vddl

100MHz and 84MHz for decoder. The voltage supply varies from 1.45V to 1.05V

within this frequency range. It takes about 10µs to scale the voltage up by 0.4V . In

the case of 2048 bits code-length, the voltage controller is able to respond to as much

as 200Mbps decoder throughput with a frame-buffer size of 2. Current through the

PMOS power transistor constitutes the majority of power overhead of the controller.

It is simulated to be in the order of 10mW , which is small comparing to the total

power dissipation of the decoder, around 200mW .

Coding gain and energy saving is a multi-dimensional function of threshold values

and SNR. The effect of threshold values is first explored. In the simulation, SNR of the

channel varies in a wide range, from 2.2 to 3.0, and the maximum number of decoding

iterations is fixed at 20. The resulting average bit-error rate (BER) is 1.5×10−5, and

average frame error rate(FER) is 6.4 × 10−4. The numbers of maximum decoding

iterations are set to be 24, 18, 14 and 12, based on analysis shown in Figure 6 and

Figure 7. The numbers are chosen based on complexity of design and consideration

24

320
340

360
380

400
420

320
340

360
380

400
20

25

30

35

40

Check_Err_Theshold2Check_Err_Theshold3

P
er

ce
nt

ag
e

of
 d

ec
od

in
g

en
er

gy
 r

ed
uc

ed
 (

%
)

320
340

360
380

400
420

320
340

360
380

400
1

1.5

2

2.5

x 10
−5

Check_Err_Theshold2Check_Err_Theshold3

(a)

(b)

Fig. 13. Saving in energy (a) and coding performance (b) based on different thresholds

of check errors.

of performance requirement.

As the frequency selections are 167MHz, 125MHz, 100MHz and 84MHz, the

above numbers of decoding iterations yield constant-time decoding. Other sets of

choices are also possible for different power-performance trade-offs. In the power esti-

mation, the relative weights of dynamic power, which is proportional to the square of

power supply, and leakage power which is proportional to power supply, are considered

to be 80% and 20%, respectively.

Figure 13 shows the resulted power reduction as well as coding performance corre-

25

sponding to different choices of check-error thresholds. The value checkErr threshold1

is always set to be 420 empirically in this paper. Average BER is 1.6×10−5 when the

threshold values checkErr threshold2 and checkErr threshold3 described in section

B are 380 and 350 respectively. There is 35% energy saving. Further decreasing

the threshold values will not improve coding performance much, while the saving in

number of decoding iterations decreases rapidly.

24 26 28 30 32 34 36 38

10
−4

10
−3

Percentage of decoding energy reduced (%)

Bit Error
Frame Error

Frame−error rate for fixed 20 decoding
iterations

Bit−error rate for fixed 20
decoding iterations

Fig. 14. Coding performance at different level of energy saving for different threshold

value selection.

While the number of maximum decoding iterations is set to be 20 for all data

frames in the conventional decoding scenario, the proposed decoding scheme discrim-

inately varies the number of iterations for each frame. The relationship between

coding performance and power saving is presented in Figure 14. It is clearly seen

that up to 30% power is saved without bit-error degradation and minimum frame-

error rate loss. Additional saving in energy is achieved for high SNR, as shown in

Figure 15. The increased saving is due to the fact that the small probability of a bit

26

being corrupted by channel noise when SNR is high. Therefore, minimum number of

decoding iteration will correct all errors and power supply Vddl mostly stays at low

level, which results in very low power dissipation.

2.2 2.4 2.6 2.8 3
28

30

32

34

36

38

SNR (dB)

P
er

ce
nt

ag
e

of
 d

ec
od

in
g

en
er

gy
 r

ed
uc

ed
 (

%
)

Fig. 15. Energy saving for different SNR levels.

In summary, the presented adaptively decoding scheme will achieve significant

saving in decoding energy. Based on different choices of control parameters and

channel conditions, different optimization objectives in terms of coding performance

and power are achievable.

27

CHAPTER V

SPECULATIVE DECODING FOR NON-FADING AWGN CHANNEL

This chapter presents the adaptive decoder architecture for non-fading AWGN chan-

nel. Decoding effort is estimated before starting of the decoding process of every

frame in the proposed decoding scheme for block-fading channel. Decoding energy

is saved via truncating the distribution of decoding effort and applying DVFS tech-

nique. The aforementioned scheme is independent of any specific LDPC decoding

architecture. LDPC decoding in non-fading channel, however, differs from that of

fading channel, thus a variation of the aforementioned decoding schemes is proposed.

5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of decoding sub−iterations

P
ro

ba
bi

lit
y

Number of checkError >= 108

Number of checkError between 108 and 90

Number of checkError between 90 and 64

Number of checkError < 64

Fig. 16. Distribution of decoding iteration for different number of check errors after

three sub-iterations with channel Eb/No at 3.7dB.

While number of check errors for the coming channel data still partially repre-

sents the degree of noise impairment, and indicate effort required for decoding, the

correlation between number of check errors and number of decoding iteration though,

28

Fig. 17. Decoding architecture for non-fading AWGN channel.

becomes much less. This correlation can be recovered after several initial decoding

iterations. Analysis in this chapter has been carried out based on a sample array

LDPC code, with parameters dv = 5, dc = 25, and p = 67. And TDMP based on off-

set min-sum (OMS) algorithm is used for decoding. Similar analysis can be extended

to other array LDPC codes. It is shown in Figure 16 that after three sub-iterations,

the number of check errors remaining is correlated with the total number of decoding

iterations. As such, similar approach as the adaptively decoding scheme in Chapter

IV can be applied. However, special treatment is needed because prediction take

place in the middle of the decoding process, instead of before decoding starts.

An efficient adaptively decoding architecture is proposed based on the decoding

architecture presented in Chapter III. Block diagram of the architecture is shown in

Figure 17. It can be divided into three main blocks. First is the pre-processing block,

where the first three sub-iterations are carried out with little hardware overhead.

This block lies in the regular power supply Vdd voltage domain. Second is the

29

processing block. The main decoding process is carried out in this block, which is in

the variable power supply Vddl domain. Third is the DVFS controller. It is the same

as in Figure 10, except that now the cHT value comes from after three sub-iterations

instead of channel data.

Recall that for the architecture in Figure 3, Qshift equals channel LLR or P

message subtracting Rold, in which Rold is check node message from last iteration.

Since both FS register and sign FIFO are reset to zero when decoding starts, and

remains zero during the first decoding iteration, the subtraction is not necessary

for the pre-processing block. As such, channel data will go directly to the CNU

array through the shifter. Since only three sub-iterations will take place in the pre-

processing block, less CNU units can be instantiated, to match its throughput with

the processing block. Achieving p× p cyclic shifts by M ∗M shifter, where M < p, is

introduced in Chapter III. P messages, instead of Q messages are stored. P messages

and check node messages are also passed from pre-processing block to processing block

through the frame buffer. The size of frame buffer is to make sure that there will

be sufficient time for voltage adjustment in the variable voltage domain. Study from

Chapter IV has already shown that size of two frame is sufficient. Considering the

memory-saving nature of the decoder architecture, this overhead is very small. Note

that other than the frame buffer, the preprocessing block should not be considered

as hardware overhead of the adaptively decoding architecture. This is because that

it contribute directly to the final throughput.

When check node messages and P messages are ready from the pre-processing

block, the process block start operation as described previously in Chapter III. Op-

eration of the two blocks is pipelined, so no idle state will be introduced because of

this adaptively decoding architecture.

The proposed adaptively decoding architecture save significant power and energy

30

3.4 3.5 3.6 3.7 3.8 3.9 4

20

22

24

26

28

30

32

Eb/No (dB)

S
av

in
g

in
 d

ec
od

in
g

en
er

gy
 (

%
)

Fig. 18. Saving in decoding energy at different SNR levels.

3.4 3.5 3.6 3.7 3.8 3.9 4

10
−5

10
−4

10
−3

Eb/No (dB)

B
it

er
ro

r
ra

te

Traditional decoding
Proposed adaptively decoding

Fig. 19. BER comparison for traditional decoding and proposed speculative decoding.

31

consumption. Simulation results is shown in Figure 18. At relatively low SNR level,

with Eb/No at 3.4dB for example, up to 30% percent saving in energy consumption

is achieved. Energy consumption is lowered at hight SNR level. At Eb/No of 4.0dB,

the saving, though decrease to 21%, is still significant. This decreasing occurs because

the reduced average number of decoding iterations. Since the first three sub-iteration

takes place in the fixed Vdd voltage domain, as SNR increases, decoding energy con-

sumption of the pre-processing block rises relative to the processing unit. Figure 19

shows that the proposed adaptively decoding architecture performs closely with con-

ventional decoding schemes in terms of code performance. As seen, less than 0.05dB

BER degradation is observed.

32

CHAPTER VI

CONCLUSION

A LDPC decoder scheme suitable for portable device in real-time mobile communi-

cation is presented. First, modeling and FPGA implementation results for a memory

and power efficient layered decoding LDPC architecture is discussed. Then, adap-

tively LDPC decoding is presented. For block-fading channels, incoming channel data

is processed before decoding to determine the decoding process. While larger num-

ber of decoding iterations is used for critical data frames to maintain high coding

performance, smaller number of iterations, lower frequency, and hence lower power

supply are used for data frames less severely damaged by noise in order to save power.

Power overhead of the adaptively decoding control unit mainly stems from the power

transistor, and it is found to be small compared with power saved. Up to 30% power

saving in decoding process is achieved without performance degradation. For non-

fading AWGN channels, decoding effort is estimated after three sub-iterations, similar

to that for block-fading channel. An efficient VLSI architecture is proposed and ana-

lyzed. 21% to 30% percent of decoding energy can be save with BER degradation of

less than 0.05dB in Eb/No.

33

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Inform. Theory,

vol. 8, pp. 21–28, Jan. 1962.

[2] D. MacKay and R. Neal, “Near shannon limit performance of low density parity

check code,” Elec. Letters, vol. 332, pp. 1645 – 1646, Aug. 1996.

[3] K. Gunnam, G. Choi, W. Wang, E. Kim, and M. Yeary, “Decoding of array ldpc

codes using on-the-fly computation,” Fortieth Asilomar Conference on Signals,

Systems and Computers, 2006. ACSSC 0́6, pp. 1192 – 1199, Oct. 2006.

[4] M. Mansour and N. Shanbhag, “High-throughput ldpc decoders,” IEEE Trans.

on Very Large Scale Integrated (VLSI) System, vol. 11, no. 6, pp. 976 – 996,

Dec. 2003.

[5] M. Mansour and N. Shanbhag, “A 640-mb/s 2048-bit programmable ldpc de-

coder chip,” IEEE J. of Solid-State Circuits, vol. 4, no. 3, pp. 684 – 698, Mar.

2006.

[6] F. Kienle and N. When, “Low complexity stopping criterion for ldpc code de-

coders,” IEEE 61st Vehicular Technology Conference, vol. 1, pp. 606 – 609, May

2005.

[7] G. Glikiotis and V. Paliouras, “A low-power termination criterion for iterative

ldpc code decoder,” IEEE Workshop on Signal Processing Systems Design and

Implementation, pp. 122 – 127, Nov. 2005.

[8] B. Shim, S. Sridhara, and N. Shanbhag, “Reliable low-power digital signal pro-

cessing via reduced precision redundancy,” IEEE Tran. On VLSI systems, vol.

1, no. 5, pp. 497 – 510, May 2004.

34

[9] L. H. Ozarow, S. Shamai, and A. D.Wyner, “Information theoretic considera-

tions for cellular mobile radio,” IEEE Trans. on Vehicle Technology, vol. 43, no.

2, pp. 359 – 378, May 1994.

[10] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, and et al., “Variable

supply-voltage scheme for low-power high-speed cmos digital design,” IEEE J.

of Solid-State Circuit, vol. 33, no. 3, pp. 454 – 462, Mar. 1998.

[11] P. Macken, M. Degrauwe, M. van Paemel, and H. Oguey, “A voltage reduction

technique for digital systems,” 1990 IEEE International Solid-State Circuits

Conference, Digest of Technical Papers. 37th ISSCC., pp. 238 – 239, Feb. 1990.

[12] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital design,”

IEEE J. of Solid-state Circuits, vol. 27, pp. 473 – 484, 1992.

[13] A. Dholakia and S. Olcer, “Rate-compatible low-density parity-check codes for

digital subscriber lines,” 2004 IEEE International Conference on Communica-

tions, vol. 1, pp. 415 – 419, Jun. 2004.

[14] T. J. Richarson, M. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. on Infor-

mation Theory, vol. 47, pp. 619 – 637, Feb. 2001.

[15] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. on Information Theory, vol. 47, pp. 498 – 519, Feb.

2001.

[16] J. Chen and M. Fossorier, “Near optimum universal belief propagation based

decoding of low-density-parity-check codes,” IEEE Trans. on Communications,

vol. COM-50, pp. 406 – 414, Mar. 2002.

35

[17] K. Gunnam, G. Choi W. Wang, and M.B. Yeary, “Multi-rate layered decoder

architecture for block ldpc codes of the ieee 802.11n wireless standard,” IEEE

International Symposium on Circuits and Systems, pp. 1645–1648, May 2007.

[18] M. Pedram and J. Rabaey, Power Aware Design Methodologies, Norwell, MA:

Kluwer Academic Publishers, 2002.

[19] K.Gunnam and G. Choi, “A low power architecture for min-sum decoding of ldpc

codes,” TAMU, Electrical and Computer Engineering Technical Report TAMU-

ECE-2006-02. Available at http://dropzone.tamu.edu/techpubs, May 2006.

[20] K. Gunnam, G. Choi, and M. B. Yeary, “A parallel layered decoder architecture

for array ldpc codes,” in Proceedings of the 20th International Conference on

VLSI Design held jointly with 6th International Conference, pp. 738–743, Jan.

2007.

[21] D. E. Hocevar, “A reduced complexity decoder architecture via layered decoding

of ldpc codes,” IEEE Workshop on Signal Processing Systems. SIPS 2004, pp.

107–112, Oct. 2004.

[22] M. Karkooti and J. Cavallaro, “Semi-parallel reconfigurable architectures for

real-time ldpc decoding,” IEEE Workshop on Signal Processing Systems, pp.

107–112, Apr. 2004.

[23] T. Brack, F. Kienle, and N. Wehn, “Disclosing the ldpc code decoder design

space,” Design Automation and Test in Europe (DATE) Conference, pp. 200–

205, Mar. 2006.

[24] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage scaling

36

for real-time embedded systems,” Design Automation Conference 2004, pp. 275–

280, Jun. 2004.

37

VITA

Weihuang Wang received his M.S. degree in the Department of Electrical and Com-

puter Engineering at Texas A&M University in December 2007. He obtained his B.S.

degree in Microelectronics from Peking University, Beijing, China in July 2005. His

research interests include VLSI design of communication circuits and image process-

ing, signal integrity analysis of high speed VLSI. He can be contacted at:

Department of Electrical and Computer Engineering

c/o Dr. Gwan Choi

Texas A&M University, M.S. 3259

College Station, TX, 77843

