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ABSTRACT  

 

Nondestructive Damage Detection by Simultaneous Identification of Stiffness 

and Damping. ( December 2007 ) 

Sang Su Hyung, 

B.S., Seoul National University, Korea; 

M.S., Seoul National University, Korea 

Chair of Advisory Committee: Dr. Norris Stubbs 

 

The objective of this study is to develop a nondestructive damage evaluation 

methodology that can identify simultaneously both stiffness and damping changes in a 

structure. Two approaches are used to meet the stated objectives. First, a method is 

developed on the basis of the conservation of total energy; second, the other method 

utilizes the acceleration-structural parameters (stiffness and damping) sensitivities. The 

total energy in a system consists of the sum of the kinetic energy, the potential energy, 

and the dissipated energy. In the second approach, a baseline structure is first identified. 

A baseline structure is defined to be a structural system having a similar dynamic 

response to the existing structure with no damage. In this study, natural frequencies and 

modal damping values are used to identify the baseline structure. 

The performance of the developed methodology is validated using several 

numerical experiments; Two classes of structures are considered here: (1) a high-rise 

building modeled as shear beams and (2) a two-span continuous beam structure. In the 

shear beam model of the structure, the damping damage is simulated by increasing the 

Newtonian dash pot constant which models the dissipation at the damaged story. For the 

two-span continuous beam structure, it is assumed that damping of the undamaged 

structure can be modeled using a proportional damping matrix. The damping matrix of 

the damaged structure is modeled as the combination of a proportional damping matrix 
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of the undamaged structure and a stiffness proportional damping matrix of the damaged 

element. 

Three damage cases are investigated for each of the two structures considered 

here. Only one element experiences damping damage for the first damage scenario. In 

the second damage scenario, both stiffness damage and damping damage are simulated 

with different severities in one element of the model. In the third damage scenario, two 

elements are simulated with stiffness damage and damping damage, to verify whether or 

not the developed methodology works for multi-damage cases. 

The proposed method is modified to use mode shapes and the modified proposed 

method is applied to experimental data to identify stiffness damage in a R/C structure.  
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1 INTRODUCTION 
 

1.1 STATEMENT OF THE PROBLEM 

The accumulation of damage in a structural member can cause structural failure. 

Structural failure of a civil engineering structure can endanger human lives and result in 

huge economic losses. Consequently, it is very important to check periodically the 

integrity of the structure to avoid the collapse of the structure. Nondestructive Damage 

Evaluation (NDE) involves, among other things, locating and estimating severities of 

damage in a structure without compromising the integrity of the structure. By combining 

the technique of NDE with periodical monitoring, a check of the integrity of the 

structure can be accomplished.  

Even if structures were designed and constructed very carefully, they can still be 

exposed to such environmental hazards as earthquakes, wind, aging, and higher service 

loads than those used in the design. Therefore, damage can occur in any structure. The 

location of a damaged element and its severity can be estimated by NDE.  NDE can be 

applied to both structures which are suspected to have sustained damage or structures in 

which the consequencies of failure are very severe. 

The ultimate goal of NDE is to locate and estimate the severity of damage as 

soon as possible after the damage has occurred in a structure. Many studies have been 

conducted to locate stiffness damage using the changes of modal parameters, especially 

mode shape vectors and natural frequencies. However, very few research studies have 

attempted to identify, simultaneously, changes in stiffness and damping characteristics 

of the elements of a structure. According to previous studies, if the changes of damping 

characteristics can be detected, damaged elements in the structure may be localized at an 

earlier stage, compared to stiffness damage, and consequently premature structural 

failure may be avoided.  

_______________ 

This dissertation follows the style and format of the ASCE Journal of Structural 
Engineering. 
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The correction of the damaged element when damage is very small may result in a 

significant reduction in repair costs and the other unwanted consequencies of failure. 

This study deals with damage detection approaches which can identify, 

simultaneously, changes in stiffness and damping characteristics in a structure. 

 

1.2 BACKGROUND 

1.2.1 Overview 

Damage may be defined as any change introduced into a system that yields 

unwanted performance of the system (Doebling et al. 1998). Currently available NDE 

methods can be categorized into local methods and global methods. Local methods 

examine the structure one piece at a time. Local methods include visual inspection, 

acoustic emission, ultrasonic, radiography, eddy current, and magnetic particle 

inspections (Bray and McBride 1992).  

Global damage detection methods usually examine the changes in vibration 

characteristics of the structure (Doebling et al. 1998). The basic idea behind vibration-

based damage detection is that changes in physical properties are reflected in modal 

parameters such as natural frequencies, mode shapes, and modal damping values. On the 

basis of their performance, these global methods can be classified into four levels of 

damage detection. The four levels are (Rytter 1993):  (1) Level I – determination of 

whether damage is present in the structure; (2) Level II – Level I plus the determination 

of the location of damaged elements; (3) Level III – Level II plus the severity estimation 

of the damaged elements; and (4) Level IV – Level III plus the evaluation of the impact 

of the damage on the performance of structure.  

Two general approaches are available for global damage detection: (1) “the 

Response-based approach”, which relates the response data directly to the damage; and 

(2) “the Model-based approach”, which updates structural parameters of an initial finite 

element model of the structure so that the analytical responses and measured responses 

are close in some optimal way. The Response-based approach is relatively fast and 

inexpensive, while the Model-based approach is expensive and time-consuming. 
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However, the Model-based approach can detect damaged elements and estimate the 

damage in a single iteration, based on the updated parameters. In this study, Level III 

model-based damage detection models are proposed.  

 

1.2.2 NDE Methods Based on System Identification 

System Identification is the process of selecting a model of a system from a 

specified class of models, to which the system under study is most equivalent, based on 

input and output data (Zadeh 1962). The process of system identification consists of 

three main steps: (1) defining a model and planning experiments to measure the response 

of the system (model selection and testing); (2) Estimating the unknown parameters of 

the model, using the defined model and the measured response (parameter estimation); 

and (3) validating and refining the model (model validation and model updating). 

Here, the term model is defined as a representation of a system that contains 

information of that system in a usable form. Usually, the construction of a model begins 

with the application of basic physical laws of the process under study. The construction 

of a model is equivalent to mapping from a data set of input and output pairs to a set of 

potential models (Ljung 1988). Parameter estimation can be defined as the determination 

of the parameters that govern the behavior of a specific model, based on the assumption 

that the structure of the model is known (Eykhoff 1974). The essence of parameter 

estimation is to find the values of the model parameters that render the difference 

between the responses of the calibrated model and real structure a minimum. Model 

validation is defined as the refinement of an analytical model so that the response of the 

analytical model approaches the measured responses. For model validation, natural 

frequencies, mode shapes, or modal damping values obtained from modal testing can be 

compared with those from finite element models.  

For the identification problem, incompleteness of the response measurements can 

give biased parameter estimations (Cottin 1998) and inadequacy of a mathematical 

model may yield discrepancy between modeling and reality (Yao 1998). In the field of 

structural engineering, finite element models are commonly used to build static and 
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dynamic numerical models of the subject structure. However, the identified model may 

not be correct if the model is not updated using results from modal testing (Juang 1994).  

Currently available system identification techniques include Time Domain 

Identification Procedures, Perturbation Methods, Sensitivity Matrix Methods, Frequency 

Response Function Methods, and Static Measurement Methods. In Time Domain 

Identification Procedures, accelerations and excitation forces are assumed to be known 

for a given time interval, and displacements and velocities are obtained by integrating 

the accelerations with respect to time. For example, Agbabian et al.(1990) applied a 

time-domain identification procedure to identify structural parameters of a 3-DOF 

mechanical system. In that study, noise-polluted output measurements and the excitation 

were used to evaluate the procedure. The results were reported as a statistical estimation 

of parameters. In addition, Natke(1982), and Tomlinson(1985), identified the system 

matrices for a variety of nonlinear structural dynamic problems using time domain data.  

Perturbation methods are also utilized to solve nonlinear differential equations. In 

perturbation methods, a solution that may depend on a presumed small quantity is 

assumed and the deviations of eigenvalues and eigenvectors between the analysis and 

the test are assumed to be relatively small. For example, Chen and Wada (1975) applied 

a matrix perturbation technique to update the response analysis based on the assumption 

that analytical eigenvalues and eigenvectors differ little from those of the equivalent 

experiment. Also, Sackman et al.(1983) used a perturbation method to determine modal 

properties of a structural system having attached light equipment and determined the 

dynamic response of the structural system to any excitation using the derived modal 

properties and mode superposition method.  

The applications of sensitivity-type analyses have increased, since the measured 

natural frequencies can be numerically duplicated using updating techniques. For 

example, Collins et al.(1974) formulated a sensitivity type method to identify the 

structural parameters in a statistical sense using experimental measurements of the 

modal parameters (natural frequencies and mode shapes). The sensitivity matrix 

technique was extended to system identification and nondestructive damage detection 
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studies by Stubbs (1985). Later, Stubbs and Kim (1996) used the sensitivity method 

approach to identify baseline models of structures. In the latter method, sensitivity 

matrices relating the fractional changes in stiffness elements to the fractional changes of 

eigenvalues of the system were used to identify the stiffness of the baseline structure.  

Most system identification techniques utilize modal parameters. To extract modal 

parameters, frequency response functions (FRF) must be generated. However, several 

methods do not use the frequency response function measurements directly. Lin and 

Ewins (1994) proposed a technique for model updating that use the measured frequency 

response functions directly. Also, Mottershead (1990) suggested a method that can 

identify structural parameters utilizing measured frequency responses and the least 

squares technique. In that study, a simply-supported beam model was employed to 

illustrate the validity of the suggested method.  

In another approach, the static measurement method, measured deformations, 

which are induced by static loads such as a slowly moving truck on bridge or a slowly 

moving mass on a building, are used for the identification of the structural parameters. 

Hajela and Soerio (1990) used not only dynamic responses but also static displacements 

to simulate higher modes ( which are difficult to measure ). Banan et al (1994) identified 

the stiffness parameters using different number of static load cases and different 

numbers of measured displacements. Nam(2001) selected several criteria to define the 

accuracy of the responses of identified structures with respect to the measured responses: 

modal scale factor (MSF), modal assurance criterion (MAC), coordinate modal 

assurance criterion (COMAC), frequency domain assurance criterion (FDAC), and 

frequency response assurance criterion (FRAC). Note that COMAC and FRAC reflect 

the degree of correlation between the analytical responses and experimentally measured 

responses while MAC and FDAC can indicate the global agreement of the responses. 

Nam(2001) also utilized the following four criteria to evaluate the SID techniques: (1) 

Can the structural parameters be identified?; (2) How much computational effort is 

needed to implement the SID technique?; (3) How easily can the SID technique be 

applied to complex structural systems?; and (4) How accurate are the structural 
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parameters  identified from the SID techniques? Based on these criteria, the sensitivity 

method was selected as the best system identification technique.  

 
1.2.3 NDE Methods from Changes in Modal Parameters 

Damage in a structure can cause various changes in the structural response such 

as frequency shifts, mode shape variation, and modal flexibility changes. The major 

existing NDE methods are listed in Table 1-1 (Kim 2002). 

 

Table 1-1 Existing NDE Methods 

Existing NDE Methods Author Year 

Methods Utilizing Frequency Changes 

Methods Utilizing Mode Shape Changes 

Methods Utilizing Mode Shape Curvature Changes 

Methods Utilizing Strain Mode Shape Changes 

Methods Utilizing Strain Energy Changes 

Methods Utilizing Modal Flexibility Changes 

Lifshitz 

Fox 

Pandey 

Chance 

Stubbs 

Biswas 

1969 

1992 

1991 

1994 

1992 

1994 

 

 

The essential concept governing the early studies of vibration-based NDE is that 

changes in local stiffnesses can cause changes in eigenfrequencies. Lifshitz and Roten 

(1969) performed an experiment in which particle-filled resin specimens were subjected 

to a tensile loading superimposed with low amplitude longitudinal and torsional 

oscillations. They observed any potential changes of the dynamic moduli and natural 

frequency shift.  Later, Adams et al. (1978) suggested a method based on receptance 

analysis to locate the damaged element and estimate the severity of the damage in a one 

dimensional axial member using vibration measurements made at single location on the 

structure. 

 Cawley and Adams (1979) used the sensitivity approaches to predict the location 

and magnitude of damage in a two dimensional plate structure. The sensitivity-based 
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Cawley and Adams’s approach was extended and generalized by Stubbs (1985) and 

Stubbs and Osgueda (1990a, 1990b). Later, it was shown that the measured resonant 

frequencies might be dependent on the site’s air temperature, humidity, mean air 

pressure, and mean rainfall on the previous day of the test day (Salawu 1997 and Farrar, 

et al. 2000). Given the changes in natural frequencies, usually only the presence of 

damage can be determined and the location of damage cannot be detected. If multiple 

frequency shifts are provided, the location of damage can be detected with the 

combination of changes in natural frequencies. 

The use of mode shapes was suggested as a better approach to detect the location 

of damage compared to the use of only resonant frequencies (Fox 1992). However, it 

was shown that changes in the displacement mode shapes between the undamaged and 

damaged structure may not be localized in the damage region (Pandey et al. 1991; Yao 

et al. 1992). Pandey et al.(1991) performed numerical studies on cantilever beams and 

simple-supported beams. They suggested that the severity of damage in a structure can 

be estimated by the magnitude of changes in curvature of the mode shapes. They also 

checked natural frequencies, MAC, COMAC, and displacement mode shape to 

determine whether any of the proposed techniques could indicate the location of damage. 

However, only the mode shape curvature, which was obtained by central difference 

approximation of displacement mode shape, could locate the damage.  

Wahap and Roeck (1999) suggested a Curvature damage factor which combined 

the differences in the curvature of the mode shape for all modes to one number for each 

measured point. This technique was demonstrated numerically with a simple beam and 

two-span continuous beam, and applied to a real structure, namely the Z24 bridge in 

Switzerland. Kramer et al.(1999) investigated the influence of the environment on the 

dynamic characteristics through the tests conducted on Z24 bridge.  

Some researches suggested strain mode shape as a better indicator of damage 

rather than displacement mode shape. For example, Yao et al. (1992) showed that the 

exact location of damage could not be detected with displacement mode shapes in their 

experiment on a 5-story frame. In their experiment, strain mode shapes at or near the 
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damage location exhibited the largest change while strain mode shapes remote from the 

damage location remained unchanged. Chance et al. (1994) used strain mode shapes 

instead of curvature mode shapes, which are obtained through the differentiation of the 

displacement mode shapes for damage location. In their experiment, they used a crack 

device to simulate a fatigue crack, and showed that changes in strain mode shapes are 

most effective for fault detection. Chen and Swamidas (1994) also showed that the 

difference of strain mode shapes between a cracked and an uncracked plate could be 

used for the location of crack through FE analysis. They observed that the amplitude of 

strain FRF decreased as the crack depth was increased.  

In some research studies, modal strain energy was used for damage detection. 

For example, the Damage Index (DI) method to locate and estimate the severity of 

damage in a structure using changes in the modal strain energy was proposed by Stubbs 

et al.(1992). This method is based on the assumption that the fractional modal strain 

energy of a potential damaged element is not changed for a small damage event. Stubbs 

et al.(1995) demonstrated the feasibility and practicality of this method by applying the 

procedure to a full-scale bridge. This method was expanded to perform damage detection 

without baseline modal parameters(Stubbs and Kim 1996). Petro et al. (1997) proposed a 

modal strain energy damage index based on a change rate in modal strain energy 

between undamaged and damaged structures. The authors showed that the changes in the 

modal strain energy estimated from mode shape can be used for location of damage, 

using modal test results on an aluminum plate. Carrasco et al. (1997) performed modal 

tests on a space truss structure with 18 different damage cases. In their studies, 

difference in modal strain energy, weighted by modal strain energy distribution for 

undamaged structure, was suggested for damage location. They recommended that for 

damage detection, lumping the modal strain energies at the nodes is better than 

observing the modal strain energy at the element level. Shi et al. (2000) showed that the 

modal strain energy change ratio can be used for damage location. The authors 

quantified damage with the sensitivity coefficient of Modal Strain Energy Change 

(MSEC) to damage and MSEC obtained from expanded damaged mode shape by 
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analytical undamaged mode shape. Nicholson and Alnefaie (2000) compared three 

indices for damage detection, the Strain Energy Damage Index(SEDI), SEDI2, and the 

Modal Moment Index(MMI). Among them, the Modal Moment Index showed the best 

performance for damage severity estimation. The MMI was based on the assumption that 

bending moment is not changed by damage and jumps sharply at the damaged location. 

Modal flexibility changes were also used for damage detection. For example, 

Rubbin and Coppolono (1983) proposed a normalized flexibility parameter for 

monitoring offshore jacket platforms using ambient vibration responses. Pandey and 

Biswas(1994) developed an approach based on the changes in the flexibility matrix 

which is the inverse of the stiffness matrix for detecting damage in structures. The 

advantage of this method is that the flexibility matrix can be approximated with a few 

measurable lower modes.  Toksoy and Aktan (1994) applied modal flexibility method to 

three-span reinforced-concrete high-way bridge. They demonstrated the sensitivity of 

modal flexibility to damage in RC slabs which were highly redundant. Aktan el al(1994) 

applied modal flexibility method to seven high-way bridges. They compared bridge 

deflections obtained from modal flexibility to measured deflections and verified the 

reliability of modal flexibility. Mayes(1995) proposed an algorithm (Structural 

Translation and Rotation Error Checking) and applied it to the I-40 bridge in 

Albuqueerque, New Mexico. In that experiment, better results were obtained with static 

flexibility data as compared with the predictions using individual mode shape. 

 
1.2.4 Damping Damage Detection 

Damping is one of the more important model parameters for the design and 

analysis of vibrating structures. However, unfortunately, it is impossible to identify all 

the mechanisms of damping that dissipate vibrational energy of actual structures. The 

damping coefficient cannot be calculated from the dimensions of the structure and the 

sizes of the structural elements and the damping coefficient varies with different 

environmental effects. Consequently, the damping of materials and structures are usually 

determined experimentally and represented in a highly idealized manner.  
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Lifshitz and Rotem(1969) showed that damping is more sensitive than the 

extensional (or torsional) modulus to damage. In their tests, a decrease of 8% to 14% in 

the dynamic moduli was observed with an increase of 40% in the logarithmic decrement. 

Tilly (1977) observed that damping values of highway bridges are influenced by the type 

of excitation and the amplitude of movement.  

Savage and Hewlett(1978) observed that geometrically similar unstressed beams 

had significantly higher damping ratios than prestressed beams and hypothesized that the 

difference of damping ratio was caused by micro-cracking along the beam’s length. In 

the cracked region, microscopic movement can cause friction between solid concrete and 

this friction can increase the damping ratio. In the prestressed beam, the microcracks 

were effectively closed up by the post-load and friction motion was reduced.  

Dorn (1982) found that the changes in energy consumption can be used to 

characterize the damage. Variation in the damping properties was measured from the 

changes in energies supplied into the system which is always operated at its proper 

frequency. In Dorn’s experiment, the fatigue strength was estimated rapidly with the 

changes in damping. Jeary and Ellis (1984) also suggested change in damping as a 

potential indicator of structural changes since damping changes may indirectly indicate 

small local stiffness change. When both frequencies and mode shapes are insensitive to 

damage, damping may be the only indicator of damage. 

 Tsai and Yang(1988) suggested that the damping matrix derived from system 

identification techniques could be used to detect the location of damage. Salane and 

Baldwin made tests on a single span bridge laboratory model and a full-scale highway 

bridge and concluded that changes in damping ratios indicate that structural changes had 

occurred. Hearn and Testa(1991) conducted tests on a steel frame subjected to sine wave 

load cycles and found sharp change in damping for each damage case. The same authors 

made tests on the transverse motion of wire ropes under constant tension and found that 

damping increased with damage.  

Slastan and Pietrzko(1993) also reported a general increase in damping values 

after the initiation of cracks in reinforced concrete beams. Kawiecki (2001) applied 
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arrays of surface-bonded piezoelements to determine modal damping characteristics of a 

tested structure. A 0.5 mm thick Dyad 606 viscoelastic patch was used to simulate 

damage and different modal damping characteristics for the damaged structure were 

obtained from modal damping characteristics for the undamaged structure. The authors 

expected that this approach can be applied for structural health monitoring because 

structural or material damage is frequently associated with changes in damping.  

 

1.3 LIMITATIONS OF CURRENT NDE TECHNIQUES 

Although a very large number of NDE techniques have been developed, most of 

them are focused on the detection of stiffness damage. These methods are based on the 

assumption that stiffness changes cause modal parameter changes and damage can be 

detected only when stiffness parameters are changed. However, in the early stage of 

damage, stiffness parameters change very little, while damping characteristics may 

change more significantly. When local damping characteristics are changed, mode 

shapes do not change significantly. Furthermore, it is very difficult to measure the mode-

shape differences. Thus, NDE methods using mode shapes or mode shape curvatures 

cannot be applied to damping damage detection. The same situation applies to the 

difference in natural frequencies. Among the three modal parameters available, modal 

damping values will experience the most obvious changes; however, modal damping 

values are global parameters, since they do not directly reflect local damping changes. 

Consequently, new NDE techniques which can detect the changes not only in stiffness 

parameters but also in damping characteristics are needed. 

.  

1.4 OBJECTIVES OF THIS WORK 

The goal of this study is to develop a methodology to locate and estimate 

simultaneously the severity of both stiffness and damping damage in structures. This 

goal is accomplished by meeting the following four objectives: 

 
1. Identify a selected baseline structure; 
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2. Develop a methodology to locate and estimate the severities of stiffness and 

damping damage in structural elements; 

3. Validate the methodology using numerical simulations of high-rise building 

modeled as shear building; 

4. Validate the methodology using numerical simulations of a two-span 

continuous beam structure. 

 

1.5 SIGNIFICANCE OF THIS WORK 

The study proposed here is important since not only stiffness change but also 

damping change can be detected, located, and sized. In NDE, the capability to detect and 

estimate damage as soon as possible after the damage has occurred in structure is a 

paramount task. For early detection of damage, more sensitive indicators of damage 

should be developed. Most current NDE techniques  focus on the detection of stiffness 

damage. However, as we have argued earlier, damping changes may be more sensitive to 

damage than stiffness changes. Damping characteristics can be changed significantly 

while stiffness changes remain negligible. So, if both damping damage and stiffness 

damage can be detected, damage can be detected at an earlier stage and the 

documentation of such damage can lead to such desirable consequencies as the saving of 

lives, reduction of property losses, and a reduction in maintenance cost and business loss 

time.  

In addition, the results of this study can be extended to the problem of estimating 

the integrity of dampers that have been incorporated to control the motion of critical 

structures. Recently, large-scale dampers have been used to decrease member design 

load demands and displacement demands. However, if the incorporated dampers are 

damaged, potentially catastrophic system failure may ensue in the structure. The 

proposed NDE method is expected to be applied to the estimation of the integrity of 

dampers incorporated in structure to dissipate energy. 
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2 DEVELOPMENT OF NDE METHODOLOGY BASED ON THE ENERGY 

CONSERVATION 

 

2.1 INTRODUCTION 

In previous studies, the data from modal space (such as mode shapes and 

eigenfrequencies) were used to locate and size stiffness-damaged element. However, in 

this study, the responses in the time domain (such as accelerations-time, velocities-time, 

and displacements-time) are used for the detection of damaged element and estimation 

of the severity. In this study, NDE methods based on the conservation of the total energy 

in a system which can simultaneously detect and estimate both of stiffness damaged 

elements and damping damaged elements are developed.  

 

2.2 DERIVATION OF EQUATIONS FOR ENERGY CONSERVATION 

The basic concept driving the proposed method is that the total energy in a 

system is constant for every time step in the response of the system. In any conservative 

elastic system, the sum of the potential and the kinetic energy is constant at any time step, 

whether the system is linear or nonlinear (Reddy, 1984). If damping is considered, 

dissipated energy also should be taken into consideration and the conservation of energy, 

including dissipated energy, can be expressed as 

 constpot kin dissE E E+ + = F =  (2-1) 

 
Here, F  represents for the total energy of the system. The model that will be 

considered in this development is shown in Fig. 2-1. The total potential energy of this 

system, potE , is given by  

 
2

1

( ) ( )
2

NS
j

pot j
j

k
E t x t

=

= Då  (2-2) 

for a system with NS stiffness elements. The parameter jk  is the stiffness of jth element 

and jxD  is the deformation experienced by jth element. The quantity kinE  is the total 

kinetic energy of the system and is given by  
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where NM is the number of lumped masses, and jm  and jx&  are lumped mass and 

velocity of the jth DOF, respectively. The quantity dissE  is the total dissipated energy of 

the system and can be expressed as   
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where ND is the number of damping elements. jc  and jxD&  denote the damping 

coefficient and the velocity of the elongation of element j, respectively. Parameters 
1

t  

and n
t  are the first time when the observation was taken, and current time, respectively. 

Thus in expanded from, the equation for energy conservation is given by 
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Since, responses are available only at discrete times, the above equation becomes 

 

 
1

2 2 2

1 1 12 2

ntNS NM ND
j jn n n

j j j j
j j j t

k m
x x c x dt

= = =

D + + D =Få å åò& &  (2-6) 

where superscript n denotes the nth readings. 

 To calculate kinetic energy, potential energy, and dissipated energy, 

displacements and velocities are needed. These values are obtained by numerical 

integration of the measured acceleration. Conceptually, the values could also be obtained 

from dedicated displacement and velocity sensors. 

It is convenient to move the kinetic energy to the right-hand side of Equations 

(2.6) and the total energy to the left-hand side of Equation (2.6), since the kinetic energy 

is assumed as known and the total energy is assumed as unknown. Thus, Equation (2.6) 

becomes: 
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Fig. 2-1 Model of 10-Story Shear Building 

 

 

2.3 DERIVATION OF EQUATIONS FOR IDENTIFICATION OF STIFFNESS 

AND DAMPING 

The energy conservation equation can now be defined for any time step, and the 

resulting equations, evaluated for arbitrary time steps, can be expressed in matrix form 

as follows: 
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The above equation may be expressed as  

 ΛΔ = β  (2-11) 

The unknowns, which are spring constants and damping coefficients and total energy 

can be obtained from the solution: 
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1(( ) )T T-Δ = Λ Λ Λ β  (2-12) 

Note that when the square matrix TΛ Λ  is rank-deficient, the Moore-Penrose 

pseudoinverse can be used to get Δ . 

 

2.4 OVERALL SOLUTION PROCEDURES 

Based on the latter discussion, the overall identification of stiffness and damping 

can be achieved by the three steps described below: 

 

Step 1: Velocities and displacements at each node of the existing structure are measured; 

 

Step 2: Using estimated velocities and displacement, construct Λ and β  given in  Eq. 2-

10; and 

 

Step 3: Use the pseudo-inverse technique to solve for the stiffness parameters and 

damping parameters, in 1(( ) )T T-Δ = Λ Λ Λ β , (Eq.2-12) 

 

2.5 SUMMARY 

In this section, the equation for energy conservation at each time step has been 

derived. Next an efficient solution procedure has been introduced to identify stiffness 

parameters and damping parameters simultaneously. Finally the overall procedure to 

solve for the stiffness parameters and damping coefficients has been summarized. 
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3 DEVELOPMENT OF NDE METHODOLOGY BASED ON THE 

SENSITIVITY APPROACH 

 

3.1 INTRODUCTION 

In this section, another NDE method to identify stiffness and damping 

parameters using the acceleration responses of the existing structure are developed. In 

this method, a baseline structure is first identified.  The stiffness parameters and 

damping characteristics of the baseline structure are adjusted so that the simulated 

accelerations of baseline structure at selected points are close to the measured 

accelerations of the existing structure. The adjusted stiffness parameters and damping 

characteristics of the baseline structure are then forced to converge to those of the 

existing structure.  

 

3.2 IDENTIFICATION OF BASELINE STRUCTURE 

A baseline structure is defined to be a structural system that has a similar 

response to the existing structure under investigation but have no damage in the elements 

of the structure. In this study, natural frequencies and modal damping values are used to 

identify the baseline structure. The structural parameters of the baseline structure are 

updated so as to have similar natural frequencies and modal damping values with those 

of the existing structure. However, the mode shapes of the identified baseline structure 

may be different in the neighborhood of the flaw. The comparison of an existing 

structure and an identified baseline structure is shown in Fig. 3-1. Here, *
iw , *

iV , and *
iF  

represent the ith natural frequency, ith modal damping value, and the ith mode shape 

vector, respectively, of the damaged structure. To identify the stiffness and damping 

characteristics of the baseline structure, the system identification methodology proposed 

by Stubbs and Kim (1996) is used.  Only stiffness was treated in Stubbs and Kim’s 

methodology, so that methodology is extended in this study to include also damping 

characteristics of the system  
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     ( a ) Existing Structure : *** ,, iii FVw  

 
 

( b ) Baseline Structure : iii F,, ** Vw  

 

Fig. 3-1 Damaged Structure and Estimate of Baseline Structure 

The driving concept behind the system identification methodology proposed by 

Stubbs and Kim (1996) is that the adjustment of stiffness for each element can be 

determined from a sensitivity matrix, F, and a fractional difference in eigenvalues vector, 

Z, by solving the system of equations -1α = F Z . Here, a  is a vector in which each 

component represents the fractional change of stiffness of each element. The updated 

stiffness of the baseline structure can be determined from a  and an initially assumed 

stiffness by )1(*
jjj kk a+= . Here,  *

jk  is the updated stiffness of the jth element of the 

baseline structure, and jk  is the initially assumed stiffness of the jth element of the 

baseline structure. If the number of available natural frequencies is M, and the number of 

elements is NE, F will be M x NE matrix, Z will be M x 1 column matrix and α  will be 

NE x 1 column matrix. The reason F is called as sensitivity matrix is that each 

component of F represents the fractional change in the square of the natural frequency 

with respect to fractional change in the local stiffness. In the system identification 

procedure proposed by Stubbs and Kim ( 1996 ), F, Z and α  were formulated for only 

natural frequencies and stiffness, but in this study, the analogous F, Z and α  matrices 

are formulated to include also damping. 

The sensitivity matrix F for stiffness can be determined as follows: first, M 

natural frequencies are obtained numerically from the FE ( finite element ) model with 

initially assumed stiffness and damping characteristics; second, the stiffness of the first 
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group of elements is changed by a known amount; third, M natural frequencies of FE 

model having the modified stiffness parameters but unchanged damping characteristics 

are computed numerically; fourth, the fractional changes of eigenfrequencies are 

computed; fifth, each row of the first column of the F matrix is obtained in the fourth 

process by the modified stiffness in the second process; and sixth, the above processes 

are repeated for all groups.  

The Sensitivity matrix for damping can be determined by a similar process. The 

only differences are that damping characteristics instead of stiffness are modified in the 

second process, while stiffness parameters remain unchanged and modal damping values 

are used instead of eigenfrequencies in the third process. In this approach, it is assumed 

that elements of baseline structure can be categorized into a few groups; this assumption 

is reasonable since many elements in civil engineering structure have identical sectional 

properties and mechanical properties 

 If the number of available modes in which natural frequency and modal damping 

values can be measured is larger than the number of groups, the problem will be over-

determined. If the number of groups is NG, the sensitivity matrix F will be M x NG 

matrix, Z will be M x 1, and α  will be NG x 1 vector. 

The baseline structure can be identified by utilizing the following procedure: 
 
1. Natural frequencies and modal dampings of the existing structure (the damaged 

structure) are measured (Mode shape will not be used for the identification of the 

baseline structure); 

2. Based on information using as-built plans and field inspection, an initial estimate of 

the stiffness parameters and damping characteristics is made; 

3. Natural frequencies and modal damping values are numerically generated from an 

FE model with the estimated stiffness parameters and damping characteristics; 

4. Sensitivity matrix F relating fractional stiffness vector a  to fractional eigenvalue 

vector Z is computed; 

5. Using F and Z, the stiffness parameters are updated; 

6. Step 4 and 5 are repeated until @Z 0  or @α 0 ; 
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7. Senstivity matrix F relating fractional damping characteristics vector α to fractional 

modal damping values vector Z with modified stiffness parameters are computed; 

8. Using F and Z, damping characteristics are updated; 

9. Steps 7 and 8 are repeated until @Z 0  or @α 0  for modal damping values; and 

10. Steps 3 ~ 9 are repeated until natural frequencies and modal damping values of the 

baseline structure are sufficiently close to those of the existing structure. 

  
The converged FE model is the baseline structure. It has natural frequencies and 

modal damping values close to those of the existing structure, but no flaws or damage 

exist in the baseline structure. 

 

3.3 IDENTIFICATION OF EXISTING STRUCTURE 

The stiffness parameters and damping characteristics of the baseline structure are 

updated repeatedly until the differences between simulated accelerations of the baseline 

structure and simulated accelerations of the existing structure at measurement locations 

converge to zero. After repeated updates of stiffness parameters and damping 

characteristics, the baseline structure should converge to the existing structure. The 

existing structure can be identified by incorporating the following steps: 

 
1. Accelerations at several pre-selected locations of the existing structure are simulated. 

2. A baseline structure is generated using the process suggested in Section 3.2 and the 

accelerations at the selected points with existing structure are numerically simulated. 

3. A Sensitivity matrix F for acceleration to stiffness parameters and damping 

characteristics at each time step is calculated for each time step.  

For the nth time step, the sensitivity matrix F will have the form: 
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Where Mk  is Mth stiffness parameter, Nc  is Nth damping parameter, and ( )m na t  is 

the acceleration at mth measurement location at nth time step. For each time step, 

sensitivity matrix can be made and they are stacked up, so if n time steps are 

available at m measurement points, and M stiffness parameters and N damping 

parameters are to be identified, sensitivity matrix F will be nm x (M+N) matrix. 

4. A difference column matrix Z, of which each row is equivalent to the difference 

between the simulated accelerations of the existing structure and the simulated 

accelerations of the baseline structure at each time step, is built up. The difference 

column matrix at nth time step has the form: 

 

%

%

1 1( ) ( )

( ) ( )

n n

m n m n

a t a t

a t a t

ì ü-
ï ï

= í ý
ï ï

-î þ

Z M  (3-2) 

         

where %1( )na t  is the measured acceleration at 1st measurement location at the nth time 

step, and 

1( )na t  : calculated responses of reference structure at the 1st measurement 

location at the nth time step. 

For each time step, the difference column matrix can be generated and stacked up, 

just as the sensitivity matrix and if n time steps are available at m measurement 

locations, the size of the final difference column matrix is nm X 1. 

5. With the sensitivity matrix and difference column matrix obtained using Steps 3 and 

4, stiffness parameters and damping characteristics are updated, by solving the 

following system of equations: 
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Let  

 

1
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M

N

k

k
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c

Dì ü
ï ï
ï ï
ï ïDï ï

= í ý
Dï ï

ï ï
ï ï
Dï ïî þ

α

M

M

 (3-4) 

then  

 T -1 T

Fα = Z

α = (F F) ? F Z)
 (3-5) 

 

6.  Steps 3 ~ 5 are repeated until @Z 0  or @α 0 . 

 
The converged stiffness parameters and damping parameters of the baseline 

structure are the stiffness parameters and damping parameters of the existing structure, 

and given the identified parameters, the stiffness-damaged elements and the damping-

damaged elements can be located and their associated severities can be estimated. For 

the energy conservation approach, the displacements, velocities, and accelerations at all 

nodes are required, but for this methodology, only accelerations at some selected 

locations are needed. However, the measured accelerations at additional locations will 

give a better estimation of the stiffness parameters and the damping characteristics. 

 

3.4 OVERALL SOLUTION PROCEDURE 

Based on previous process, the overall identification of stiffness and damping 

scheme can be achieved by completing the four steps described below. 

 

Step 1: Accelerations of the existing structure are measured. 
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Step 2: A baseline structure is identified based on measured natural frequencies and 

modal damping values 

 

Step 3: A sensitivity matrix, F and a difference column matrix, Z, are constructed. 

Based on these matrices, over-determined linear matrix equation, Fα = Z (Eq.3-5) are 

constructed 

 

Step 4: The pseudo-inverse technique is used to solve for the adjustment of the stiffness 

parameters and damping parameters, in T -1 Tα = (F F) ? F Z) , (Eq.3-5) 

 

Step 5: Step 3 and Step 4 are repeated until @Z 0  or @α 0 . 

 

3.5 SUMMARY 

In this section, a technique to identify a baseline structure, in which natural 

frequencies and modal damping values are close to those of the existing structure, has 

been developed. Next an efficient solution procedure using the sensitivity of the 

accelerations to the structural parameters has been introduced to identify stiffness 

parameters and damping parameters of the existing structure. Finally the overall 

procedure has been summarized. 
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4 NUMERICAL VERIFICATION OF THE ENERGY CONSERVATION 

METHOD FOR A SHEAR BUILDING 

 

4.1 INTRODUCTION 

The objective of this section is to verify the performance of the proposed method, 

which uses energy conservation numerically for a shear building with known damage 

scenarios. Damage scenarios are simulated by reducing spring constants and increasing 

dash pot constants for a shear building. Displacements and velocities are measured at all 

horizontal degrees of freedom. The Newmark- b  method is used to simulate the 

displacements and velocities at each measurement location. 

 

4.2 DAMAGE DETECTION IN A SHEAR BUILDING 

In this study, a 10-story shear building is introduced for the verification of the 

proposed methodology. The selected model of a 10-story shear building is depicted in 

Fig.4-1. The numberings for the DOF, the spring elements, and the dash pots are 

included in Fig. 4-1.  To get the simulated responses such as accelerations, velocities, 

and displacements in the time domain, a horizontal tensile force of 200 kips was 

numerically simulated at the 10th story, and the load was instantaneously released thus 

permitting the structure to vibrate freely. Displacements and velocities were measured 

with a 1000 Hz sampling rate for 40 seconds. The mass constants, spring constants and 

dash pot constants of the intact structure are listed in Table 4-1. 

 Three damage scenarios were introduced to investigate the performance of the 

developed methodology. In the first damage scenario, only one element had an increased 

dash pot constant to simulate the early stage of damage at a single location. In the second 

damage scenario, both stiffness damage and damping damage were simulated at one 

element with different severities by decreasing spring constant and increasing dash pot 

constant. In the third damage scenario, two elements were inflicted both stiffness 

damage and damping damage to check whether the developed methodology works for 
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multi-damage cases. The locations and the magnitude of the damage of each scenario are 

listed in Table 4-2.  

 

m1 k1

c1

m2 k2

c2

m3

c3

m4

c4

m5 k5

c5

m6 k6

c6

m7

c7

m8

c8

m9 k9

c9

m10 k10

c10

k4

k3

k8

k7

 

Fig. 4-1 Selected Model of 10-Story Shear Building 

Table 4-1. Mass, Spring, and Dash Pot Constants of Undamaged Structure 

 Mass Spring Dash pot 

Element 1 1 1000 5 
Element 2 1 1000 5 
Element 3 1 1000 5 
Element 4 1 1000 5 
Element 5 1 1000 5 
Element 6 1 1000 5 
Element 7 1 1000 5 
Element 8 1 1000 5 
Element 9 1 1000 5 
Element 10 1 1000 5 
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Table 4-2. Damage Scenarios for a Shear Building 

Stiffness Damage Damping Damage 
Scenario 

Location Severity (%) Location Severity (%) 

1   3 +10 
2 3 -10 3 +20 

3 -10 3 +20 
3 

8 -20 8 +40 

 
  

4.2.1 Case 1 

In this damage scenario, only Element 3 has damping damage which is 

equivalent to 10% increase of the dash pot constant magnitude. To check the 

conservation of total energy, the total energy, sum of the potential energies of each and 

every spring element, sum of the kinetic energies of each and every mass element, and 

sum of the dissipated energy by each and every dash pot element at each time step were 

calculated with displacements and velocities. These results are shown in Fig. 4-2. 
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Fig. 4-2 Check of Conservation of Total Energy  

 

In Fig. 4-2, Note that the total energy has a constant value for the observation 

time as expected and the dissipated energy increases with time and converges to total 

energy. Note also that the sum of the potential energy and the kinetic energy decreases 

with time. The measured displacements and velocities at Node 5 and Node 10 are shown 

in Fig. 4-3 and Fig. 4-4, respectively. 
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Fig. 4-3 Displacements and Velocities at Node 5 for Case 1 

 

Fig. 4-4 Displacements and Velocities at Node 10 for Case 1 
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With these assumed measured values for 3 seconds, the spring constant and dash 

pot constant of each element are identified using the equations proposed in Section 2.3. 

These identified values are compared with the simulated values in Table 4-3 below. 

 

Table 4-3 Comparison of the Identified and the Simulated Values for Case 1 

 Spring Dash pot 

 Simulated Identified Simulated Identified 

Element 1 1000 1000 5.0 5.0 

Element 2 1000 1000 5.0 5.0 

Element 3 1000 1001 5.5 5.5 

Element 4 1000 999 5.0 5.0 

Element 5 1000 1001 5.0 5.0 

Element 6 1000 999 5.0 5.0 

Element 7 1000 1000 5.0 5.0 

Element 8 1000 1000 5.0 5.0 

Element 9 1000 1000 5.0 5.0 

Element 10 1000 1000 5.0 5.0 

 
 
 
The simulated values and identified values are compared graphically in Fig. 4-5 and Fig. 

4-6. 
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Fig. 4-5 Simulated and Identified Values in Spring for Case 1 

 

 

Fig. 4-6 Simulated and Identified Values in Dash Pot for Case 1 
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Check of influence of observation time on identification 

To test the robustness of the method, the observation time for sampling was 

changed from 3 seconds to 10 seconds by 1 second intervals to investigate its influence 

on identification accuracy. Sampling rate was fixed at 200 Hz. The identified values with 

varying observation times for each element are displayed in from Fig. 4-7 to Fig. 4-10. 

Identified values are expected to converge to simulated values with increasing 

observation time. However, it is difficult to find an obvious relationship between 

observation times and identified values. Only for spring constants for Element 1 to 

Element 5, identified values appear to converge to the simulated values as observation 

time increases. Except for those elements, no clear trend is apparent. Increase of the 

observation time is not effective way to get better identification. 

 

 

Fig. 4-7 Identified Spring Constants with Observation Time-I 
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Fig. 4-8 Identified Spring Constants with Observation Time-II 

 

 

Fig. 4-9 Identified Dash Pot Constants with Observation Time-I 
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Fig. 4-10. Identified Dash Pot Constants with Observation Time-II 

 

 

Check of influence of sampling frequency on identification 

To check the influence of sampling rate on the identification process, the 

sampling rate was varied from 100Hz to 1000Hz with a fixed observation time of 3 

seconds. Sampling rate was increased by intervals of 100 Hz. The variation of the 

identified spring constants and dash pot constants with different sampling rate are shown 

in Fig. 4-11, Fig. 4-12, Fig. 4-13 and Fig. 4-14. From the figures, it is observed that both 

spring elements and dash pot elements are identified more exactly with higher sampling 

rates. It can be concluded that identified values converged to the simulated values with 

increasing sampling rate. This observation holds for both spring and dash pot 

identification. 
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Fig. 4-11 Identified Spring Constants with Sampling Rate-I 

 

 

 

Fig. 4-12 Identified Spring Constants with Sampling Rate-II 
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Fig. 4-13 Identified Dash Pot Constants with Sampling Rate-I 

 

 

 

 

Fig. 4-14 Identified Dash Pot Constants with Sampling Rate-II 
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4.2.2 Case 2 

 In this damage scenario, Element 3 has both stiffness damage and damping 

damage. The spring constant was decreased by 10% and the dash pot constant was 

increased by 20%. Displacements and velocities are measured with a sampling rate of 

1000Hz, at all nodes for 3 seconds. The identified spring constants and dash pot 

constants are shown in Table 4-4. As seen in Table 4-4, Element 3 is shown to have 

spring constant of 900, while it is about 1000 for other elements. It can be concluded that 

Element 3 has 10% stiffness damage. For the dash pot, Element 3 was identified to have 

a higher dash pot constant than the other elements. Except Element 3, all other elements 

have dash pot constants of near 5, which is originally simulated value. With this result of 

identification, we conclude that Element 3 was detected as a damaged element: Note that 

the element had both damping damage and stiffness damage. The identified results are 

graphically shown in Fig. 4-15 and Fig. 4-16. 

 

Table 4-4 Identified Spring Constants and Dash Pot Constants by Energy Method for Case 2 

  Spring Dash pot 

  Simulated Identified Simulated Identified 

Element 1 1000 1000 5.0 5.0 

Element 2 1000 1000 5.0 5.0 

Element 3 900 900 6.0 6.0 

Element 4 1000 999 5.0 5.0 

Element 5 1000 1001 5.0 5.0 

Element 6 1000 1000 5.0 5.0 

Element 7 1000 1000 5.0 5.0 

Element 8 1000 1000 5.0 5.0 

Element 9 1000 1000 5.0 5.0 

Element 10 1000 1000 5.0 5.0 
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Fig. 4-15 Simulated and Identified Values in Spring for Case 2 

 

 

 

Fig. 4-16 Simulated and Identified Values in Dash Pot for Case 2 
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4.2.3 Case 3 

 In this damage scenario, damage at multiple locations is studied by damaging 

two elements. Element 3 and Element 8 have both stiffness damage and damping 

damage. For Element 3, the spring constant was decreased by 10% and the dash pot 

constants was increased by 20%, while for Element 8, spring constant was decreased by 

20% and the dash pot constant was increased by 40%. Displacements and velocities are 

measured with a sampling of 1000Hz, at all nodes for 3 seconds. Identified spring 

constants and dash pot constants are shown in Table 4-5 and are graphically shown in 

Fig 4-17 and Fig 4-18. Element 3 and Element 8 were shown to have decreased spring 

constant of around 900 and 800, respectively, while it is about 1000 for other elements. 

It is concluded that Element 3 had 10% stiffness damage and Element 8 had 20% 

stiffness damage. For the dash pots, Element 3 and Element 8 were identified to have 

higher dash pot constants than other elements. Besides Element 3 and Element 8, all 

other elements have dash pot constants of near 5, which was the originally simulated 

value. With these results of identification, we conclude that Element 3 and Element 8 

were correctly detected as damaged elements, with both damping damage and stiffness 

damage. 

 

Table 4-5 Identified Spring Constants and Dash Pot Constants by Energy Method for Case 3 

  Spring Dash pot 

  Damaged Baseline Damaged Baseline 

Element 1 1000 1000 5.0 5.0 

Element 2 1000 1000 5.0 5.0 

Element 3 900 900 6.0 6.0 

Element 4 1000 1000 5.0 5.0 

Element 5 1000 1000 5.0 5.0 

Element 6 1000 1000 5.0 5.0 

Element 7 1000 1000 5.0 5.0 

Element 8 800 800 7.0 7.0 

Element 9 1000 1000 5.0 5.0 

Element 10 1000 1000 5.0 5.0 
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Fig. 4-17 Simulated and Identified Values in Spring for Case 3 

 

 

 

Fig. 4-18 Simulated  and Identified Values in Dash Pot for Case 3 
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4.3 SUMMARY 

The proposed damage evaluation method, based on the conservation of total 

energy, was verified numerically using simultaneous stiffness and damping damage 

scenarios that were generated from a numerical model of a high-rise building modeled as  

a shear beam. Three damage scenarios were investigated to simulate the damping 

damage, combined stiffness damage and damping damage, and multi-damage case. The 

sampling rate influenced the identified values more than the observation time. The 

proposed method identified very well both spring constants and dash pot constants for all 

damage scenarios.  
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5 NUMERICAL VERIFICATION OF THE SENSITIVITY METHOD FOR A 

SHEAR BUILDING 

 

5.1 INTRODUCTION 

The objective of this section is to verify the performance of the sensitivity 

method, presented in Section3, which uses acceleration-structural parameter sensitivities 

for a shear building.  

 

5.2 DAMAGE DETECTION IN A SHEAR BUILDING 

The same target structure and same damage scenarios that were used in the last 

section will be used here. To excite the structure, a horizontal tensile force of 200 kips 

was applied at the 10th story, and the load was quickly released thus permitting the 

structure to vibrate freely. The Newmark’s- b  method was used to calculate the resulting 

simulated accelerations. While the displacements and velocities at all nodes were needed 

for the previous method, only accelerations are required for the method proposed here. 

Accelerations are measured with a sampling rate of 200Hz at all floors for a duration of 

3 seconds.  

 

5.2.1 Case 1 

In this damage scenario, Element 3 has only damping damage which is 

equivalent to a 10% increase in the dash pot constant. The first step in this proposed 

NDE method, which uses the acceleration-structural parameter sensitivities, is to identify 

a baseline structure, based on the measured natural frequencies and modal damping 

values. The simulated measured natural frequencies and modal damping values of the 

damaged structure are shown in Table 5-1.The spring constants, and dash pot constants 

of a baseline structure were determined to have the natural frequencies and modal 

damping values close to those of the damaged structure. It was assumed that all elements 

of the baseline structure had the same spring constants and dash pot constants. Firstly, 

the initial values were given as 2000 and 10, respectively, for the spring constants and 
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the dash pot constants. Subsequently, the values of the parameters were adjusted via the 

iteration process.  

 

Table 5-1 Natural Frequencies and Modal Damping Values of the Existing Structure for Case 1 

  Mode 1 Mode 2 Mode 3 

Natural frequency (Hz) 0.75 2.24 3.67 

Modal damping (%) 1.20 3.53 5.79 

 

 

The history of the adjustment of the spring constants and the dash pot constants 

are shown in Fig. 5-1 and Fig. 5-2. The converged values for the spring constants and the 

dash pot constants were given as initial value and the iteration process was repeated. The 

converged spring constants and dash pot constants were compared with the simulated 

damaged structure in Table 5-2. The natural frequencies and modal damping values of 

the damaged structure and the baseline structure are compared in Table 5-3. The 

accelerations of the damaged structure at Node 5 and Node 10 are shown in Fig. 5-3 and 

Fig. 5-4. 
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Fig. 5-1 Spring Constant of Baseline Structure 

 

 

Fig. 5-2 Dash Pot Constant of Baseline Structure
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Table 5-2 Comparison of Structural Parameters for Case 1 

 Spring Dash pot 

 Damaged Baseline Damaged Baseline 

Element 1 1000 1000.02 5 5.04 

Element 2 1000 1000.02 5 5.04 

Element 3 1000 1000.02 5.5 5.04 

Element 4 1000 1000.02 5 5.04 

Element 5 1000 1000.02 5 5.04 

Element 6 1000 1000.02 5 5.04 

Element 7 1000 1000.02 5 5.04 

Element 8 1000 1000.02 5 5.04 

Element 9 1000 1000.02 5 5.04 

Element 10 1000 1000.02 5 5.04 

 
 

Table 5-3 Comparison of Natural Frequencies and Modal Damping Values for Case 1 

  Natural Frequency (Hz) Modal damping (%) 

  Damaged Baseline Damaged Baseline 

Mode 1 0.75 0.75 1.20 1.19 

Mode 2 2.24 2.24 3.53 3.55 

Mode 3 3.67 3.67 5.79 5.82 
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Fig. 5-3 Measured Accelerations at Node 5 for Case 1 

 

 

Fig. 5-4 Measured Accelerations at Node 10 for Case 1 
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The accelerations of the baseline structure were close to the accelerations of the 

damaged structure. This result follows from the fact that the stiffness parameters of the 

baseline structure are almost identical to those of the damaged structure, with only 

damping parameters slightly modified. To identify the spring constants and dash pot 

constants of the damaged structure, the NDE technique proposed in Section 3 was 

applied. When the accelerations at all nodes were used, the identified values are shown 

in Table 5-4. 

 

Table 5-4 Identified Spring Constants and Dash Pot Constants with 10 Measurements for Case 1 

  Spring Dash pot 

  Simulated Identified Simulated Identified 

Element 1 1000 1000 5 5 

Element 2 1000 1000 5 5 

Element 3 1000 1000 5.5 5.5 

Element 4 1000 1000 5 5 

Element 5 1000 1000 5 5 

Element 6 1000 1000 5 5 

Element 7 1000 1000 5 5 

Element 8 1000 1000 5 5 

Element 9 1000 1000 5 5 

Element 10 1000 1000 5 5 

 
 
With the NDE method proposed in Section 3, the spring constants and dash pot constants 

could be identified exactly, even with the lower sampling rate of 200 Hz. 

To investigate the influence of the number of measurement locations on the 

identified values, it was tried again to identify the structural parameters with the 

acceleration at Node 5 and 10. The results of the identification are shown in Table 5-5. 

Even with the accelerations at only 2 measurement locations, the structural parameters 

were identified exactly. 

With the accelerations at only 1 measurement location, it was tried to identify the 

structural parameters. The measurement location was changed from Node 1 to Node 10. 

The identified results are listed in Table 5-6 and Table 5-7. Even with the accelerations 
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at only 1 measurement location, the structural parameters were identified exactly for all 

cases. 

 

Table 5-5 Identified Spring Constants and Dash Pot Constants with 2 Measurements for Case 1 

  Spring Dash pot 

  Simulated Identified Simulated Identified 

Element 1 1000 1000 5 5 

Element 2 1000 1000 5 5 

Element 3 1000 1000 5.5 5.5 

Element 4 1000 1000 5 5 

Element 5 1000 1000 5 5 

Element 6 1000 1000 5 5 

Element 7 1000 1000 5 5 

Element 8 1000 1000 5 5 

Element 9 1000 1000 5 5 

Element 10 1000 1000 5 5 

 
 

Table 5-6 Identified Spring Constant with 1 Measurement Location for Case 1 

 Measurement Location 

 1 2 3 4 5 6 7 8 9 10 

Element 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 2 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 3 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 6 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 7 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 8 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 9 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Element 10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 
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Table 5-7 Identified Dash Pot Constant with 1 Measurement Location for Case 1 

 Measurement Location 

 1 2 3 4 5 6 7 8 9 10 

Element 1 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 2 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 3 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 

Element 4 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 5 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 7 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 8 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 9 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 10 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

 

 
5.2.2 Case 2 

In this damage scenario, Element 3 has both stiffness damage and damping 

damage. The spring constant was decreased by 10% and the dash pot constants was 

increased by 20%. The natural frequencies and modal damping values of the damaged 

structure are shown in Table 5-8. 

 

Table 5-8 Natural Frequencies and Modal Damping Values of the Existing Structure for Case 2 

  Mode 1 Mode 2 Mode 3 

Natural frequency (Hz) 0.75 2.23 3.67 

Modal damping (%) 1.24 3.56 5.81 

 

 

The identified spring constants and dash pot constants of the baseline structure are 

compared with the simulated damaged structure in Table 5-9. The natural frequencies 

and modal damping values of the damaged structure and the baseline structure are 

compared in Table 5-10. The accelerations of the damaged structure and the baseline 

structure at Node 5 and Node 10 are compared in Fig. 5-5 and Fig .5-6. 
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Table 5-9 Comparison of Structural Parameters for Case 2 

  Spring Dash pot 

  Damaged Baseline Damaged Baseline 

Element 1 1000 992.11 5 5.09 

Element 2 1000 992.11 5 5.09 

Element 3 900 992.11 6 5.09 

Element 4 1000 992.11 5 5.09 

Element 5 1000 992.11 5 5.09 

Element 6 1000 992.11 5 5.09 

Element 7 1000 992.11 5 5.09 

Element 8 1000 992.11 5 5.09 

Element 9 1000 992.11 5 5.09 

Element 10 1000 992.11 5 5.09 

 

 

Table 5-10 Comparison of Natural Frequencies and Modal Damping Values for Case 2 

  Natural Frequency (Hz) Modal damping (%) 

  Damaged Baseline Damaged Baseline 

Mode 1 0.75 0.75 1.24 1.21 

Mode 2 2.23 2.23 3.56 3.60 

Mode 3 3.67 3.66 5.81 5.91 
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Fig. 5-5 Measured Accelerations at Node 5 for Case 2 

 
 
The accelerations measured at Node 5 show more deviation than the accelerations at 

Node 10. It is hypothesized that this is because Node 5 is closer to the damaged element 

than Node 10. To identify the spring constants and dash pot constants of the damaged 

structure, the NDE technique proposed in Section 3 was applied. When the accelerations 

at all nodes were used, the identified values are listed in Table 5-11. It was tried again to 

identify the structural parameters with the accelerations at Node 5 and Node 10 as in 

Case 1. The results of the identification are listed in Table 5-12. With the accelerations 

measured at only 1 location, we tried to identify the structural parameters. The 

measurement location was changed from Node 1 to Node 10.  
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Fig. 5-6 Measured Acceleration at Node 10 for Case 2 

 

 

Table 5-11 Identified Spring Constants and Dash Pot Constants with 10 Measurements for Case 2 

 Spring Dash pot 

 Simulated Identified Simulated Identified 

Element 1 1000 1000 5 5 

Element 2 1000 1000 5 5 

Element 3 900 900 6 6 

Element 4 1000 1000 5 5 

Element 5 1000 1000 5 5 

Element 6 1000 1000 5 5 

Element 7 1000 1000 5 5 

Element 8 1000 1000 5 5 

Element 9 1000 1000 5 5 

Element 10 1000 1000 5 5 

 

 

 



53 
 

Table 5-12 Identified Spring Constants and Dash Pot Constants with 2 Measurements for Case 2 

 Spring Dash pot 

 Simulated Identified Simulated Identified 

Element 1 1000 1000 5.00 5.00 

Element 2 1000 1000 5.00 5.00 

Element 3 900 900 6.00 6.00 

Element 4 1000 1000 5.00 5.00 

Element 5 1000 1000 5.00 5.00 

Element 6 1000 1000 5.00 5.00 

Element 7 1000 1000 5.00 5.00 

Element 8 1000 1000 5.00 5.00 

Element 9 1000 1000 5.00 5.00 

Element 10 1000 1000 5.00 5.00 

 

Table 5-13 Identified Spring Constant with 1 Measurement Location for Case 2 

 Measurement Location ( Node )  

 Simulated 2 3 4 5 6 7 8 9 10 

Element 1 1000 993 1003 1000 1000 1000 1000 1000 1000 1000 

Element 2 1000 1004 1000 1000 1000 999 1000 1000 1000 1000 

Element 3 900 993 897 900 900 899 900 900 900 900 

Element 4 1000 1036 998 1000 1000 1000 1000 1000 1000 1000 

Element 5 1000 898 1001 1000 1000 1000 1000 1000 1000 1000 

Element 6 1000 877 1005 1000 1000 1000 1000 1000 1000 1000 

Element 7 1000 978 998 1000 1000 1001 1000 1000 1000 1000 

Element 8 1000 1102 997 1000 1000 999 1000 1000 1000 1000 

Element 9 1000 1042 997 1000 1000 999 1000 1000 1000 1000 

Element 10 1000 988 1003 1000 1000 1000 1000 1000 1000 1000 

 

Table 5-14 Identified Dash Pot Constant with 1 Measurement Location for Case 2 

 Measurement Location ( Node )  

 Simulated 2 3 4 5 6 7 8 9 10 

Element 1 5 5.52 5.03 5.00 5.00 5.01 5.00 5.00 5.00 5.00 

Element 2 5 4.59 5.02 5.00 4.99 4.98 5.00 5.00 5.00 5.00 

Element 3 6 6.65 5.96 6.00 6.00 6.00 6.00 6.00 6.00 6.00 

Element 4 5 6.40 4.98 5.00 5.00 4.99 5.00 5.00 5.00 5.00 

Element 5 5 3.65 5.02 5.00 5.00 4.99 5.00 5.00 5.00 5.00 

Element 6 5 3.24 4.99 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 7 5 4.92 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Element 8 5 7.25 4.95 5.00 5.00 4.99 5.00 5.00 5.00 5.00 

Element 9 5 3.64 4.97 5.00 5.00 5.01 5.00 5.00 5.00 5.00 

Element 10 5 5.18 5.03 5.00 5.00 5.00 5.00 5.00 5.00 5.00 
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As seen in Table 5-13 and Table 5-14, with measured accelerations at Node 1, the spring 

constants and dash pot constants could not be identified. The identified spring constants 

diverged at each iteration process. When the measured accelerations at Node 2 were 

used, the locations of the damaged elements in spring constants were falsely detected. 

The simulated damaged element was Element 3, but Element 3 was not detected as the 

damaged element. Instead, Element 5 and Element 6 were identified to have decreased 

spring constants. With respect to dash pot constants, not only the simulated damaged 

element, Element 3 was indicated, but Element 4 and Element 8 were falsely detected as 

the damping damaged elements. However, with the accelerations measured at other 

nodes, good results for the damage estimation were obtained.  

 

5.2.3 Case 3 

In this damage scenario, both Element 3 and Element 8 were inflicted with 

stiffness damage and damping damage, to simulate a scenario of multiple damages. For 

Element 3, the spring constant was decreased by 10% and the dash pot constant was 

increased by 20%, while for Element 8, the spring constant was decreased by 20% and 

the dash pot constant was increased by 40%. The natural frequencies and modal 

damping values of the damaged structure are shown in Table 5-15. 

 

Table 5-15 Natural Frequencies and Modal Damping Values of the Existing Structure for Case 3 

  Mode 1 Mode 2 Mode 3 

Natural frequency (Hz) 0.74 2.18 3.62 

Modal damping (%) 1.27 4.06 6.28 

 
 

The identified spring constants and dash pot constants of the baseline structure are 

compared with the simulated damaged structure in Table 5-16. 
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Table 5-16 Comparison of Structural Parameters for Case 3 

 Spring Dash pot 

 Damaged Baseline Damaged Baseline 

Element 1 1000 966 5.00 5.44 

Element 2 1000 966 5.00 5.44 

Element 3 900 966 6.00 5.44 

Element 4 1000 966 5.00 5.44 

Element 5 1000 966 5.00 5.44 

Element 6 1000 966 5.00 5.44 

Element 7 1000 966 5.00 5.44 

Element 8 800 966 7.00 5.44 

Element 9 1000 966 5.00 5.44 

Element 10 1000 966 5.00 5.44 

 
 
The natural frequencies and modal damping values of the damaged structure and the 

baseline structure are compared in Table 5-17. 

 

Table 5-17 Comparison of Natural Frequencies and Modal Damping Values for Case 3 

  Natural Frequency (Hz) Modal damping (%) 

  Damaged Baseline Damaged Baseline 

Mode 1 0.74 0.74 1.27 1.31 

Mode 2 2.18 2.20 4.06 3.89 

Mode 3 3.62 3.61 6.28 6.40 

 
 
The accelerations of the damaged structure and the baseline structure at Node 5 and 

Node 10 are compared in Fig. 5-7 and Fig. 5-8. 
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Fig. 5-7 Acceleration at Node 5 for Case 3 

 

 

Fig. 5-8 Acceleration at Node 10 for Case 3 
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Note that from about zero to two seconds, the accelerations measured at Node 5 and 

Node 10 indicate more deviation; afterwards, the accelerations of the damaged structure 

and the baseline structure are almost identical. To identify the spring constants and dash 

pot constants of damaged structure, the NDE technique proposed in Section 3 was 

applied. When the accelerations measured at all nodes were used, the identified values 

are listed in Table 5-18. 

 

Table 5-18 Identified Spring Constants and Dash Pot Constants with 10 Measurements for Case 3 

 Spring Dash pot 

 Simulated Identified Simulated Identified 

Element 1 1000 1000 5 5 

Element 2 1000 1000 5 5 

Element 3 900 900 6 6 

Element 4 1000 1000 5 5 

Element 5 1000 1000 5 5 

Element 6 1000 1000 5 5 

Element 7 1000 1000 5 5 

Element 8 800 800 7 7 

Element 9 1000 1000 5 5 

Element 10 1000 1000 5 5 

 

 

We attempted again to identify the structural parameters using the acceleration at Node 5 

and Node 10 as in Case 1. The results of identification procedure are listed in Table 5-19. 
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Table 5-19 Identified Spring Constants and Dash Pot Constants with 3 Measurements for Case 3 

 Spring Dash pot 

 Simulated Identified Simulated Identified 

Element 1 1000 1000 5.00 5.00 

Element 2 1000 1000 5.00 5.00 

Element 3 900 900 6.00 6.00 

Element 4 1000 1000 5.00 5.00 

Element 5 1000 1000 5.00 5.00 

Element 6 1000 1000 5.00 5.00 

Element 7 1000 1000 5.00 5.00 

Element 8 800 800 7.00 7.00 

Element 9 1000 1000 5.00 5.00 

Element 10 1000 1000 5.00 5.00 

 

 

With the accelerations measured at only one location, we attempted to identify the 

structural parameters. The measurement location was changed from Node 1 to Node 10. 

Even with the accelerations measured at only one location, the structural parameters 

were identified exactly for several cases. The identified values are listed in Table 5-20 

and Table 5-21. 

 

Table 5-20 Identified Spring Constant with 1 Measurement Location for Case 3 

 Measurement Location ( Node )  

 Simulated 4 5 6 7 8 9 10 

Element 1 1000 1012 1003 1007 998 1000 1000 1000 

Element 2 1000 965 1005 1006 998 999 999 999 

Element 3 900 913 900 917 903 900 900 900 

Element 4 1000 993 992 983 999 1000 1000 1000 

Element 5 1000 1015 998 969 1002 1000 1000 1000 

Element 6 1000 968 1001 1007 1000 1000 1000 1000 

Element 7 1000 1021 995 962 1002 1000 1000 1000 

Element 8 800 798 795 796 798 800 800 800 

Element 9 1000 1010 1009 1034 1004 1000 1000 1000 

Element 10 1000 981 1003 1007 997 1000 1000 1000 
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Table 5-21 Identified Dash Pot Constant with 1 Measurement Location for Case 3 

 Measurement Location ( Node )  

 Simulated 4 5 6 7 8 9 10 

Element 1 5.00 5.39 4.98 4.57 5.01 5.01 4.99 4.99 

Element 2 5.00 6.43 4.93 5.41 5.03 5.00 5.00 5.01 

Element 3 6.00 5.63 5.96 6.22 5.99 5.99 6.01 6.00 

Element 4 5.00 4.30 5.25 4.37 5.09 4.98 4.99 4.99 

Element 5 5.00 4.67 4.98 5.15 4.96 5.02 5.00 5.01 

Element 6 5.00 5.35 4.83 5.11 5.01 5.00 5.01 5.00 

Element 7 5.00 4.66 5.24 4.41 4.94 5.01 5.00 5.00 

Element 8 7.00 6.42 6.96 7.00 6.94 6.99 7.00 7.00 

Element 9 5.00 5.21 5.01 5.70 5.04 4.99 5.00 5.00 

Element 10 5.00 5.57 4.83 4.76 5.00 5.01 5.00 5.00 

 
 
With measured accelerations at Node 1, Node 2, and Node 3, the spring constants and 

dash pot constants could not be identified. The identified spring constants diverged at 

iterations. For Node 4, the locations of stiffness damaged element were detected, but the 

damping damaged elements were falsely detected. The dash pot constants were 

identified satisfactorily with the accelerations measured at Nodes 5, 6, 7, 8, 9, and 10.  

 

5.3 SUMMARY 

The proposed method, based on the acceleration-structural parameter sensitivities, 

was verified numerically using a high-rise building modeled as a shear beam. Three 

damage scenarios were investigated: 1) damping damage at a single location, 2) both 

stiffness damage and damping damage at a single location, and 3) several multi-damage 

cases. The spring constants and dash pot constants of the baseline structure were 

identified using natural frequencies and modal damping values. The proposed method 

identified both spring constants and dash pot constants for all damage scenarios. With 

only one measurement location, the spring constants and dash pot constants were 

identified exactly.  
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6 NUMERICAL VERIFICATION OF THE SENSITIVITY METHOD FOR A 

TWO-SPAN CONTINUOUS BEAM STRUCTURE 

 

6.1 INTRODUCTION 

The objective of this section is to verify numerically the performance of the 

sensitivity method using a two-span continuous beam structure with known damage 

scenarios. In the shear-beam building model, stiffness damage was simulated by 

decreasing the spring constant at the damaged element, and damping damage was 

imposed by increasing the damping coefficient of the appropriate dash pot. For a beam 

structure, stiffness damage can be simulated by the decreasing bending stiffness of the 

damaged element in a finite element model. However, how to model the damping of a 

damaged structure presents another problem.  

 

6.2 MODELING OF DAMPING DAMAGE IN A BEAM STRUCTURE 

In this study, it was assumed that the damping of the undamaged structure can be 

modeled with a proportional damping matrix as follows: 

 0 1a a= +C M K  (6-1) 

Note that the proportional damping matrix is a linear combination of the mass matrix 

and the stiffness matrix. With this assumption, damping for the damaged structure is 

modeled as the combination of proportional damping of the undamaged structure and 

stiffness proportional damping of the damaged elements as follows: 

 0 1
1 1

NDDE NDDE

j j
j j

c a a c
= =

= + = + +å å*
j jC C K M K K  (6-2) 

Where C = Damping matrix of the undamaged structure 

 NDDE= Number of damping damaged element 

           M = Mass matrix of the undamaged structure 

           K = Stiffness matrix of the undamaged structure 

            0a = Proportional coefficient for the mass matrix 

            1a = Proportional coefficient for the stiffness matrix 
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            *C =Damping matrix of the damaged structure 

            jc =Proportional coefficient for the jth element 

            jK =Contribution of the jth element to the stiffness matrix 

If the damping characteristics of each element can be identified, the damping damaged 

elements should be able to be detected and estimated. This assumption for the modeling 

of damping damage in a structure is shown in Fig.6-1. Note that in the damping matrix 

of the damaged structure, K and jK  of the undamaged structure cannot be determined. 

Thus, the stiffness parameters of the baseline structure are used for K and jK . 

 

6.3 DAMAGE DETECTION IN A BEAM STRUCTURE 

The structure to be analysed in this study is shown in Fig. 6-2. 

 

(a) Undamaged Structure 

 
Mass : M,  Stiffness : K 

Damping : 0 1a a= +C M K  

 
(b) Damaged Structure 

 

 
Mass : M,  Stiffness : *K  

Damping : 0 1
1 1

NDDE NDDE

j j
j j

c a a c
= =

= + = + +å å*
j jC C K M K K  

Fig. 6-1 Model of Damping Damaged Structure 
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Fig. 6-2 Model of Two-Span Continuous Beam Structure 

 

 
To obtain the simulated responses of the structure, a finite element model was 

used. If the model has too many elements, to execute the model may be prohibitive in 

time and cost. However, if the model doesn’t have enough elements, an accurate solution 

cannot be obtained. To determine an appropriate finite element mesh size for this 

problem, natural frequencies from finite element model with varying number of finite 

elements were compared in Fig. 6-3.  

 

 

Fig. 6-3 Natural Frequencies with Different Number of Finite Elements 
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If the natural frequencies obtained with 50 finite elements are considered as the 

exact solution, the natural frequencies obtained with 20 finite elements have 1.02% and 

1.17% errors for first mode and second mode, respectively. These errors were considered 

as allowable and for the convenience of programming, the beam structure was modeled 

with 20 finite elements.  

To apply the first method, which uses the conservation of energy, the rotations at 

each node was needed. To get the rotations, differentiation of displacements was 

required; but differentiation introduces additional errors. Therefore, only the second 

method, which utilizes accelerations-structural parameters sensitivities, was used for 

verification purposes.  

To get the simulated responses in the time domain (such as accelerations, 

velocities, and displacements), a vertical force of 20kN was statically applied at the 

center of left span, and the load was quickly released thus permitting the structure to 

vibrate freely. Accelerations were measured at a 1000Hz sampling rate.  The Newmark-

b  method was used to evaluate the response.  

Three anticipated damage scenarios were introduced to check the performance of 

the developed methodology. In the first damage scenario, a single element had only 

damping damage (to simulate the early stage of damage). In the second damage scenario, 

both stiffness damage and damping damage were simulated in a single element with 

varying severities. In the third damage scenario, two elements were simulated with 

stiffness damage and damping damage, in order to check whether or not the developed 

methodology works for multi-damage case. The anticipated locations and the 

magnitudes of the damage for each of the scenarios are listed in Table 6-1.  

The anticipated sectional properties and material properties for the test structure 

were as following: Young’s modulus E= 9 20.21 10  kN/m´ , sectional area 

A= 2 20.459 10 m-´ , moment of inertia I= 4 40.579 10 m-´ , and density r = 37850kg/m . 

For the undamaged element, coefficient jc  had zero value, and for the damaged element, 

the severity can be estimated with identified 1a  and jc .  
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Table 6-1 Damage Scenarios for a Beam Structure 

Stiffness damage Damping damaged 
Scenario 

Location in m Severity ( % ) Location in m Severity ( %) 

1   15 ~18 +10 

2 15 ~ 18 -10 15 ~ 18 +20 

15 ~ 18 -10 15 ~ 18 +20 
3 

45 ~ 48 -20 45 ~ 48 +40 

 

 

6.3.1 Case 1 

In this damage scenario, only Element 6 has damping damage which is 

equivalent to a 10% increase of the damping coefficient. The damping matrix of the 

undamaged structure was assumed to be a proportional damping matrix with 

proportional coefficients of 0.01 and 0.005 for the mass matrix and the stiffness matrix, 

respectively. The damping matrix of the damaged structure was simulated with the 

combination of the damping matrix of the undamaged structure and the proportional 

matrix to the stiffness matrix of the damaged element. The relationships between these 

two matrices are shown in Eq. (6-3). 

 *
6

C = 0.01M + 0.005K

C = 0.01M + 0.005K + 0.0005K
 (6-3) 

 

The first step in this proposed NDE method, which uses the acceleration-

structural parameters sensitivities, is to identify the baseline structure based on the 

natural frequencies and modal damping values. The natural frequencies and modal 

damping values of the damaged structure are shown in Table 6-2. 

 



65 
 

Table 6-2 Natural Frequencies and Modal Damping Values of the Beam for Case 1 

  Mode 1 Mode 2 Mode 3 

Natural frequency (Hz) 1.03 1.61 4.25 

Modal damping (%) 1.71 2.59 6.72 

 

 

The bending stiffness and proportional damping coefficients of a baseline structure 

were determined to have natural frequencies and modal damping values close to those of 

the damaged structure. Firstly, the initial bending stiffness was given as 

5 20.21 10  kN m´ · ; the simulated value is 5 20.1216 10  kN/m´ . The proportional 

coefficients were initially assumed to be 0.02 and 0.01 for the mass matrix and the 

stiffness matrix, respectively. Subsequently, the proportional coefficients were adjusted 

by the iteration process. The adjustments of bending stiffness and proportional 

coefficients for damping matrix are shown in Fig. 6-4 and Fig. 6-5. 

The converged values for bending stiffness and proportional damping coefficients 

were taken as the initial values and the iteration process was repeated. The converged 

identified bending stiffness and proportional damping coefficients were compared with 

those of the simulated damaged structure in Table 6-3 and Table 6-4. The natural 

frequencies and modal damping values of the damaged structure and the baseline 

structure are compared in Table 6-5. 
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Fig. 6-4 Bending Stiffness of Baseline Structure for Case 1 

 

           

Fig. 6-5 Proportional Coefficients of Baseline Structure for Case 1 
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Table 6-3 Comparison of Structural Parameters of the Beam for Case 1  

 Bending stiffness Damping cj 

 Damaged Baseline Damaged Baseline 

Element 6 12159 12159 0.005 0.000 

all other 

elements 
12159 12159 0.000 0.000 

 

Table 6-4 Comparison of Proportional Coefficients of Damping Matrix for Case 1 

 Proportional coefficients 

 Damaged Baseline 

a0 0.010 0.012 

a1 0.005 0.005 

 
 
 

Table 6-5 Comparison of Natural Frequencies and Modal Damping Values of the Beam for Case 1 

 Natural Frequency (Hz) Modal damping (%) 

  Damaged Baseline Damaged Baseline 

Mode 1 1.03 1.03 1.71 1.71 

Mode 2 1.61 1.61 2.59 2.58 

Mode 3 4.25 4.25 6.72 6.71 

 
 

The accelerations of the damaged structure and the baseline structure at 9m away 

from left-most support and 9m away from right-most support are compared in Fig. 6-6 

and Fig. 6-7. The accelerations of the baseline structure did not show any obvious 

differences from the acceleration responses of the damaged structure. This observation 

may be related to the fact that the stiffness parameters of the baseline structure are 

almost identical to those of the damaged structure, with only the damping parameters 

differing slightly. To identify the bending stiffness and damping characteristics of the 

damaged structure, the NDE technique proposed in Section 3 was applied. The 

accelerations measured at 9m, 21m, 39m and 51m away from left-most support were 

used. The identified values are shown in Fig. 6-8 and Fig. 6-9. 
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With the NDE techniques proposed in Section 3, the bending stiffness and 

damping characteristics constants accurately identified. As shown in Fig. 6-8, there no 

element indicates stiffness damage. However, in Fig. 6-9, it is obvious that Element 6, 

which is equivalent to a location 15m ~18m from the left-most support, has damping 

damage. The damping coefficient of Element 6 was increased about 10% and all other 

elements had negligible damping change. Therefore, it could be concluded that Element 

6 has damping damage, and its severity is 10%. 

 

Fig. 6-6 Accelerations at 9m Away from Left-most Support for Case 1 
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Fig. 6-7 Accelerations at 9m Away from Right-most Support for Case 1 

 

 

Fig. 6-8 Identified Bending Stiffness for Case 1 
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Fig. 6-9 Identified Damping Coefficients for Case 1 

 

 
6.3.2 Case 2 

In this damage scenario, Element 6 has both stiffness damage and damping 

damage. The severity of stiffness damage is 10% and the severity of damping damage is 

20%.  The damping matrix of the undamaged structure was assumed to be a proportional 

damping matrix, in which the proportional coefficients were 0.01 and 0.005 for the mass 

matrix and the stiffness matrix, respectively, as in Case 1. The damping matrix of the 

damaged structure was simulated with the combination of the damping matrix of the 

undamaged structure and a matrix proportional to the stiffness matrix of the damaged 

element. The relationships between these two matrices are shown in Eq. (6-4). 

 
1*

6

C = 0.01M + 0.005K

C = 0.01M + 0.005K + 0.00 K
 (6-4) 

 

The natural frequencies and modal damping values of the damaged structure are shown 

in Table 6-6. The bending stiffness and proportional damping coefficients of a baseline 

structure were identified by the same process as in Case 1. The adjustment of the 
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bending stiffness and proportional coefficients for the damping matrix are shown in Fig. 

6-10 and Fig. 6-11. The converged identified bending stiffness and proportional damping 

coefficients were compared with those of the damaged structure in Table 6-7 and Table 

6-8. 

 

Table 6-6 Natural Frequencies and Modal Damping Values of the Beam for Case 2 

  Mode 1 Mode 2 Mode 3 

Natural frequency (Hz) 1.02 1.60 4.24 

Modal damping (%) 1.74 2.61 6.73 

 
 

 

Fig. 6-10 Bending Stiffness of Baseline Structure for Case 2 
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Fig. 6-11 Proportional Coefficients of Baseline Structure for Case 2 

 

 

Table 6-7 Comparison of Structural Parameters of the Beam for Case 2 

 Bending stiffness Damping cj 

 Damaged Baseline Damaged Baseline 

Element 6 12159 12131 0.001 0.0000 

all other 

elements 
10943 12131 0.000 0.0000 

 

Table 6-8 Comparison of Proportional Coefficients of Damping Matrix for Case 2 

 Proportional coefficients 

 Damaged Baseline 

a0 0.010 0.016 

a1 0.005 0.005 

 
 
The proportional damping coefficient a0 was influenced by the increased damping in the 

damaged element. However, damping coefficient a1 for the stiffness matrix was not 
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influenced. The natural frequencies and modal damping values of the damaged structure 

and the baseline structure are compared in Table 6-9. 

 

Table 6-9 Comparison of Natural Frequencies and Modal Damping Values of the Beam for Case 2 

  Natural Frequency (Hz) Modal damping (%) 

  Damaged Baseline Damaged Baseline 

Mode 1 1.02 1.02 1.74 1.74 

Mode 2 1.60 1.60 2.61 2.61 

Mode 3 4.24 4.24 6.73 6.73 

 
 
 The accelerations of the damaged structure and the baseline structure at 9m away from 

left-most support and 9m away from right-most support were compared in Fig. 6-12 and 

Fig. 6-13.  

To identify the bending stiffness and damping characteristics of the damaged 

structure, the NDE technique proposed in Section 3 was applied. The accelerations 

measured at 9m, 21m, 39m and 51 m away from left-most support were used. The 

stiffness damage severity and damping damage severity of each element are shown in 

Fig. 6-14 and Fig. 6-15, respectively. 
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Fig. 6-12 Accelerations at 9m Away from Left-most Support for Case 2 

 

 

Fig. 6-13 Accelerations at 9m Away from Right-most Support for Case 2 
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Fig. 6-14 Identified Bending Stiffness for Case 2 

 

 

Fig. 6-15 Identified Damping Coefficients for Case 2 
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As shown in Fig. 6-15, Element 6, which is equivalent to a location 15m ~18m, is 

suspected to have stiffness damage with a severity of about 10%. In Fig. 6-16, it is 

observed that Element 6 has damping damage as well as stiffness damage. The damping 

coefficient of Element 6 increased about 20%. For other elements, increases of the 

damping coefficients are negligible. Therefore, it is concluded that Element 6 has 10% 

stiffness damage and 20% damping damage. 

 

6.3.3 Case 3 

In this damage scenario, two elements were simulated with stiffness damage and 

damping damage in order to check whether or not the developed methodology works for 

multi-damage cases. Damages were inflicted to Element 6 and Element 16. For Element 

6, 10% stiffness damage and 20% damping damage were inflicted and 20% stiffness 

damage and 40% damping damage were inflicted at Element 16. The damping matrix of 

the undamaged structure was assumed to be a proportional damping matrix, of which 

proportional coefficients were 0.01 and 0.005 for the mass matrix and the stiffness 

matrix, respectively, as in Case 1. The damping matrix of the damaged structure was 

simulated with the combination of the damping matrix of the undamaged structure and 

the proportional matrix to the stiffness matrix of the damaged element. The relationships 

between these two matrices are shown in Eq. (6-5). 

 
11 2+*

6 6

C = 0.01M + 0.005K

C = 0.01M + 0.005K + 0.00 K 0.00 K
 (6-5) 

 

The natural frequencies and modal damping values of the damaged structure are shown 

in Table 6-10. 

 

Table 6-10 Natural Frequencies and Modal Damping Values of the Beam for Case 3 

  Mode 1 Mode 2 Mode 3 

Natural frequency (Hz) 1.01 1.59 4.24 

Modal damping (%) 1.86 2.76 6.79 
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The bending stiffness and proportional damping coefficients of a baseline structure were 

identified by the same process in Case 1. The adjustments of the bending stiffness and 

the proportional coefficients for the damping matrix are shown in Fig. 6-16 and Fig. 6-

17. The converged identified bending stiffness and the proportional damping coefficients 

were compared with those of the damaged structure in Table 6-11 and Table 6-12. 

The proportional damping coefficient a0 of the baseline structure was identified to 

be more than three times a0 of the damaged structure. However damping coefficient a1, 

which is for the stiffness matrix was identified to be almost the same as that of the 

damaged structure. The natural frequencies and modal damping values of the damaged 

structure and the baseline structure are compared in Table 6-13. 

 

 

Fig. 6-16 Bending Stiffness of Baseline Structure for Case 3 
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Fig. 6-17 Proportional Coefficients of Baseline Structure for Case 3 

 

Table 6-11 Comparison of Structural Parameters of the Beam for Case 3 

 Bending stiffness Damping cj 

 Damaged Baseline Damaged Baseline 

Element 6 
Element 16 

10943 
97272 

12060 
12060 

0.001 
0.002 

0.000 
0.000 

all other 

elements 
12159 12060 0.000 0.0000 

 
 

Table 6-12 Comparison of Proportional Coefficients of Damping Matrix for Case 3 

 Proportional coefficients 

 Damaged Baseline 

a0 0.010 0.0336 

a1 0.005 0.0051 
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Table 6-13 Comparison of Natural Frequencies and Modal Damping Values 

of the Beam for Case 3 

  Natural Frequency (Hz) Modal damping (%) 

  Damaged Baseline Damaged Baseline 

Mode 1 1.01 1.02 1.86 1.89 

Mode 2 1.59 1.60 2.76 2.71 

Mode 3 4.24 4.23 6.79 6.80 

 
 
The accelerations of the damaged structure and the baseline structure 9m away from the 

left-most support and 9m away from the right-most support are compared in Fig. 6-18 

and Fig. 6-19. 

 

Fig. 6-18 Accelerations at 9m Away from Left-most Support for Case 3 
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Fig. 6-19 Accelerations at 9m Away from Right-most Support for Case 3 

 

 
To identify the bending stiffness and damping characteristics of the damaged structure, 

the NDE technique proposed in Section 3 was applied. The accelerations measured at 

9m, 21m, 39m and 51 m away from the left-most support were used. The stiffness 

damage severity and damping damage severity of each element are shown in Fig. 6-20 

and Fig. 6-21, respectively. As shown in Fig. 6-20, Element 6 and Element 16, which are 

located at 15m~18m and 45m~48m, respectively, are suspected to be damaged in its 

stiffness and their severities are expected to be about 10% and 20%. In Fig. 6-21, it is 

observed that Element 6 and Element 16 have damping damage as well as stiffness 

damage. The damping coefficient of Element 6 was increased by about 20% and the 

damping coefficient of Element 16 was increased by about 40%. For other elements, the 

increases of the damping coefficients were negligible. Therefore, it could be concluded 

that Element 6 had 10% stiffness damage and 20% damping damage and Element 16 had 

20% stiffness damage and 40% damping damage. 
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Fig. 6-20 Identified Bending Stiffness for Case 3 

 

 

Fig. 6-21 Identified Damping Coefficients for Case 3 
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6.4 SUMMARY 

The proposed method, based on the acceleration-structural parameters sensitivities, 

was verified numerically using a two-span continuous beam structure. A method to 

model damping damage in the beam structure was proposed and three damage scenarios 

were investigated to simulate simultaneously damping damage and stiffness damage for 

single damage and multi-damage cases. The proportional damping coefficients for the 

mass matrix and the stiffness matrix were identified using modal damping values and the 

bending stiffness of the baseline structure was determined using the natural frequencies. 

The increased damping coefficient of the damping damaged element influenced the 

proportionality coefficient for the mass matrix. The change in the proportionality 

coefficient for the stiffness matrix was negligible. The proposed method accurately 

identified both bending stiffness changes and damping coefficient changes for all 

damage scenarios investigated here.  
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7 NUMERICAL VERIFICATION OF THE ENERGY CONSERVATION 

METHOD FOR A SHEAR BUILDING WITH NOISE-POLLUTED DATA 

 

7.1 INTRODUCTION 

The objective of this section is to verify the performance of the proposed method 

which uses energy conservation numerically for a shear building with known damage 

scenarios and noise-polluted data.  

 

7.2 DAMAGE DETECTION IN A SHEAR BUILDING 

The same target structure and the same damage scenarios considered in Section 4 

are used. In this study, to excite the structure, a horizontal tensile force of 200 kips was 

applied at the 10th story, and the load was quickly removed, thus permitting the structure 

to vibrate freely as in Section 4. The Newmark- b  method was used to obtain the 

simulated accelerations. Accelerations were measured using a 1000 Hz sampling rate. To 

simulate noise, random numbers were generated for each time step and each 

measurement location. The mean value of the parent distribution was set to zero and the 

standard deviation of the distribution was set to 1. The random numbers were multiplied 

by the noise level constant and the displacement or velocity at the corresponding time 

step and measurement location. The scaled random numbers were superposed to the 

corresponding noise-free displacements and velocities generated by The Newmark- b  

method. Noise polluted displacements were produced as follows: 

 (1 )ji ji jiu u ss= +  (7-1) 

Where jiu = noise-polluted displacement at jth time step for ith node 

jiu = noise-free displacement at jth time step for ith node 

 s  = noise level 

 jis = random number produced for the acceleration at jth time step for ith node 

 

In this study, noise levels corresponding to 1%, 3%, and 5%  were considered.  
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7.2.1 Case 1 

In this damage scenario, only Element 3 has damping damage equivalent to a 

10% increase in the dash pot constant.  

 

1%  Noise 

The random number scaled by 1% of the displacement and velocity was added to 

the corresponding noise-free displacement and noise-free velocity. The displacement and 

velocities at Node 5 and Node 10 are shown in Fig. 7-1 and Fig. 7-2. 

 

Fig. 7-1 Displacements with 1% Noise for Case 1 
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Fig. 7-2. Velocities with 1% Noise for Case 1 

 

 

To check the conservation of total energy, the sum of the potential energy of each 

spring element, the sum of the kinetic energy of each mass element, and the sum of the 

dissipated energy of each dash pot element at each time step was calculated using noise-

polluted displacements, velocities. The results of these calculations are shown in Fig. 7-3. 

Note that in Fig. 7-3 the total energy and the sum of kinetic energy and potential energy 

vary in time as a result of the noise. Note also that the dissipated energy does not vary as 

much as the total energy; This is because the influence of the noise is decreased because 

the dissipated energy is an integrated quantity. Displacements and velocities at each 

node were measured 10 times and the identified results with 10 sets of the measured 

displacements and velocities are shown in Fig. 7-4 and Fig. 7-5. 
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Fig. 7-3 Check of Conservation of Total Energy with Noise Polluted Data 

 

 
The Damage Index calculated with the identified values are shown in Fig. 7-6 

and Fig 7-7. Damage Index for each element is obtained as following: 

 

For spring 

 

For dash pot 

i
i

s

s s
DI

s

-
=

 

i
i

d

d d
DI

s

-
=  

 

(7-2) 

 

Where s = mean value of the identified spring constants. 

is  = identified spring constant of ith element. 

ss =standard deviation of the identified spring constants. 

d = mean value of the identified dash pot constants. 

id = identified dash pot constant of ith element. 
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ds =standard deviation of the identified dash pot constants. 

With respect to the spring, Element 9 and Element 10 were falsely detected as damaged 

elements and with respect to the dash pot, even negative values were identified for some 

element. On comparing the results presented in Fig. 7-4 and Fig. 7-5, the ranges of 

identified values for the dash pot constants are very wide compared with those of the 

identified spring constants. From statistical view point, the identified dash pot constants 

have larger coefficients of variation than those of the identified spring constants. This 

observation suggests that the identified values of the dash pot constants are less reliable 

than the identified values of the spring constants. The average values of the identified 

values for each set are compared with the simulated values in Table 7-1. 

 

 

Fig. 7-4 Identified Spring with 1% Noise for Case 1 
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Fig. 7-5 Identified Dash Pot with 1% Noise for Case 1 

 
 

 

Fig. 7-6 Damage Index for Spring with 1% Noise or Case 1 
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Fig. 7-7 Damage Index for Dash Pot with 1% Noise for Case 1 

 

Table 7-1 Identified Values with 1% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1001 0.1 5.0 6.9 38.0 

Element 2 1000 992 0.8 5.0 -0.2 104.0 

Element 3 1000 987 1.3 5.5 11.0 100.0 

Element 4 1000 974 2.6 5.0 1.5 70.0 

Element 5 1000 999 0.1 5.0 5.3 6.0 

Element 6 1000 1011 1.1 5.0 4.4 12.0 

Element 7 1000 1031 3.1 5.0 6.7 34.0 

Element 8 1000 1010 1.0 5.0 5.7 14.0 

Element 9 1000 888 11.2 5.0 7.0 40.0 

Element 10 1000 736 26.4 5.0 -6.4 228.0 

 
 

For spring constants, the results indicate that the predicted values of the stiffnesses of 

Element 9 and Element 10 show significant errors. With respect to the dash pot constants, 

Element 3 was detected as damaged element, but the identified values show 100% error. 

When the average of the 10 measured displacements and velocities were used, the 
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identification results listed in Table 7-2 were obtained. On comparing Table 7-1 and 

Table 7-2, it is observed that no significant improvement is made by averaging the raw 

data. Thus here, the average of the identified values for each data set will be taken rather 

than to identify with the average of the measured data. 

 

Table 7-2 Identified Values with Average of Measurements for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1059 5.9 5.0 5.8 16.0 

Element 2 1000 789 21.1 5.0 1.2 76.0 

Element 3 1000 1290 29.0 5.5 12.3 123.6 

Element 4 1000 854 14.6 5.0 3.5 30.0 

Element 5 1000 751 24.9 5.0 -5.8 216.0 

Element 6 1000 1683 68.3 5.0 18.5 270.0 

Element 7 1000 301 69.9 5.0 4.3 14.0 

Element 8 1000 1184 18.4 5.0 -6.8 236.0 

Element 9 1000 1190 19.0 5.0 13.0 160.0 

Element 10 1000 1035 3.5 5.0 9.5 90.0 

 
 
3% Noise 

The random number scaled by 3% of the displacement and velocity was 

superposed on the corresponding noise-free displacement and velocity. The 

displacements and velocities at Node 5 and Node 10 are shown in Fig. 7-8 and Fig. 7-9. 

Displacements and velocities at each node were measured 10 times and the identified 

results with 10 sets of the measured displacements and velocities are shown in Fig. 7-10 

and Fig. 7-11. It is observed that the variances of the identified dash pot constants 

increased compared with Fig. 7-5. 

Damage indices for each element in spring and dash pot are shown in Fig. 7-12 

and Fig. 7-13, respectively. The identified values are listed in Table 7-3. Note that with 

1% noise, even if the identified severities were in error, the location of the damping 

damaged element was detected. However, in with 3% noise, even the location of the 

damping damaged is not detected. 



91 
 

 

Fig. 7-8 Displacements with 3% Noise for Case 1 

 

 

Fig. 7-9 Velocities with 3% Noise for Case 1 
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Fig. 7-10 Identified Spring with 3% Noise for Case 1 

 

 

Fig. 7-11 Identified Dash Pot with 3% Noise for Case 1 
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Fig. 7-12 Damage Index for Spring with 3% Noise for Case 1 

 

 

Fig. 7-13 Damage Index for Dash Pot with 3% Noise for Case 1 
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Table 7-3 Identified Values with 3% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 922 7.8 5.0 9.4 88.0 

Element 2 1000 929 7.1 5.0 -1.7 134.0 

Element 3 1000 989 1.1 5.5 4.8 12.7 

Element 4 1000 1005 0.5 5.0 5.5 10.0 

Element 5 1000 1032 3.2 5.0 1.4 72.0 

Element 6 1000 996 0.4 5.0 18.2 264.0 

Element 7 1000 937 6.3 5.0 6.5 30.0 

Element 8 1000 772 22.8 5.0 6.0 20.0 

Element 9 1000 566 43.4 5.0 -1.1 122.0 

Element 10 1000 319 68.1 5.0 -29.9 698.0 

 

 
5% Noise 

The randomly generated numbers scaled by 5% of the displacement and velocity 

were superposed on the corresponding noise-free displacement and velocity. The 

displacements and velocities at Node 5 and Node 10 are shown in Fig. 7-14 and Fig. 7-

15. Displacements and velocities were measured 10 times and the average of the 

identified parameter values for each data set was taken as the finally identified value. 

The Damage indices calculated with the average of the identified values for each 

element in spring and dash pot are shown in Fig. 7-16 and Fig. 7-17, respectively. The 

identified values are listed in Table 7-4. In the spring constants, Element 8 was falsely 

detected as a damaged element in addition to Element 9 and Element 10. The increased 

noise tends to increase the number of false positives. The stiffness of Element 9 and 

Element 10 were underestimated compared to the case with 3% noise. The coefficients 

of variation of the identified values of the dash pot constants were increased. 
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Fig. 7-14 Displacements with 5% Noise for Case 1 

 

 

Fig. 7-15 Velocities with 5% Noise for Case 1 
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Fig. 7-16 Damage Index for Spring with 3% Noise for Case 1 

 

 

Fig. 7-17 Damage Index for Dash Pot with 3% Noise for Case 1 
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Table 7-4 Identified Values with 5% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 835 16.5 5.0 10.4 108.0 

Element 2 1000 997 0.3 5.0 -4.3 186.0 

Element 3 1000 1075 7.5 5.5 -1.7 130.9 

Element 4 1000 1063 6.3 5.0 10.6 112.0 

Element 5 1000 957 4.3 5.0 27.8 456.0 

Element 6 1000 815 18.5 5.0 -7.2 244.0 

Element 7 1000 671 32.9 5.0 38.8 676.0 

Element 8 1000 477 52.3 5.0 -14.1 382.0 

Element 9 1000 311 68.9 5.0 -9.9 298.0 

Element 10 1000 155 84.5 5.0 -43.8 976.0 

 
 
7.2.2 Case 2 

In this damage scenario, Element 3 has both damping damage and stiffness 

damage. Damping damage was simulated by 20% increase of dash pot constant, and 

stiffness damage was imposed by 10% decrease of spring constant. The structure was 

excited in the same way we described in Case 1. 

 

1%  Noise 

The random number scaled by 1% of the displacement and velocity was 

superposed on the corresponding noise-free displacement and velocity. Displacements 

and velocities were measured 10 times, as in Case 1 and the average of the identified 

values for each data set was taken as the identified values. The Damage indices 

calculated with the average of the identified values for each element in the springs and 

the dash pots are shown in Fig. 7-18 and Fig. 7-19, respectively. The identified values 

are listed in Table 7-5. With respect to spring constant, Element 3 was detected correctly 

as a damaged element. However, Element 9 and Element 10 were falsely detected as 

damaged elements. With respect to the dash pot constants, Element 3 and Element 7 

were detected as damaged elements; however,. Element7 is a false positive prediction. 
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Fig. 7-18 Damage Index for Spring with 1% Noise for Case 2 

 

 

 

Fig. 7-19 Damage Index for Dash Pot with 1% Noise for Case 2 
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Table 7-5 Identified Values with 1% Noise for Case 2 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 995 0.5 5.0 6.9 38.0 

Element 2 1000 1003 0.3 5.0 0.5 90.0 

Element 3 900 885 1.7 6.0 10.0 66.7 

Element 4 1000 976 2.4 5.0 0.5 90.0 

Element 5 1000 991 0.9 5.0 6.6 32.0 

Element 6 1000 1022 2.2 5.0 3.3 34.0 

Element 7 1000 1031 3.1 5.0 9.3 86.0 

Element 8 1000 995 0.5 5.0 3.8 24.0 

Element 9 1000 895 10.5 5.0 6.4 28.0 

Element 10 1000 713 28.7 5.0 -6.2 224.0 

 
 
3% Noise 

The random number scaled by 3% of the displacement and velocity was 

superposed on the corresponding noise-free displacement and velocity. Displacements 

and velocities were measured 10 times as in Case 1 and the average of the identified 

values for each data set was taken to be the identified values. The Damage indices for 

each element in the springs and dash pots are shown in Fig. 7-20 and Fig. 7-21, 

respectively. The identified values are listed in Table 7-6. With respect to the spring 

constant, Element 3 was not detected as a damaged element. Instead, Element 9 and 

Element 10 were falsely detected as damaged elements. With respect to the dash pot 

constants, Element 6 and Element 8 were detected as damaged elements. Element 3 was 

not detected. The 5% noise level analysis was not performed for Case 2, because the 

damaged element was not detected at the 3% noise level. 
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Fig. 7-20 Damage Index for Spring with 3% Noise for Case 2 

 

 

Fig. 7-21 Damage Index for Dash Pot with 3% Noise for Case 2 
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Table 7-6 Identified Values with 3% Noise for Case 2 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 893 10.7 5.0 9.6 92.0 

Element 2 1000 930 7.0 5.0 -3.1 162.0 

Element 3 900 888 1.3 6.0 7.3 21.7 

Element 4 1000 1033 3.3 5.0 6.9 38.0 

Element 5 1000 1044 4.4 5.0 -3.4 168.0 

Element 6 1000 1005 0.5 5.0 25.6 412.0 

Element 7 1000 921 7.9 5.0 -3.4 168.0 

Element 8 1000 748 25.2 5.0 15.2 204.0 

Element 9 1000 530 47.0 5.0 -8.8 276.0 

Element 10 1000 299 70.1 5.0 -27.4 648.0 

 
 
7.2.3 Case 3 

In this damage scenario, damages were simulated at multiple elements. Element 

3 and Element 6 were assigned both damping damage and stiffness damage. In previous 

sections, damaged element was Element 8, but in this scenario, it was changed to 

Element 6. The reason for this decision is that because Element 8 was falsely detected as 

a damaged element even when it did not have damage. For Element 3, damping damage 

was simulated as a 20% increase in the dash pot constant, and stiffness damage was 

simulated as a 10% decrease in the spring constant. The dash pot constant for Element 6 

was increased by 40% and the spring constant of Element 6 was decreased by 20%. 

 

1% Noise 

The random number scaled by 1% of the displacement and velocity was 

superposed on the corresponding noise-free displacement and velocity. Displacements 

and velocities were measured 10 times as in Case 1 and the average of the identified 

values for each data set was taken as the finally identified values. The Damage indices 

for each element in the springs and dash pots are shown in Fig. 7-22 and Fig. 7-23, 

respectively. The identified values are listed in Table 7-7. With respect to the spring 

constants, Element 3 and Element 6 were detected correctly as damaged elements. 

However, Element 9 and Element 10 were falsely detected as damaged elements, as in 
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Case 2. With respect to the dash pot constants, Element 3 and Element 6 were detected 

correctly as damaged elements and Element 1 and Element 7 were falsely detected . 

 

Fig. 7-22 Damage Index for Spring with 1% Noise for Case 3 

 

 

Fig. 7-23 Damage Index for Dash Pot with 1% Noise for Case 3 
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Table 7-7 Identified Values with 1% Noise for Case 3 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1006 0.6 5.0 8.7 74.0 

Element 2 1000 996 0.4 5.0 -3.9 178.0 

Element 3 900 879 2.3 6.0 12.1 101.7 

Element 4 1000 972 2.8 5.0 2.4 52.0 

Element 5 1000 997 0.3 5.0 1.6 68.0 

Element 6 800 823 2.9 7.0 8.6 22.9 

Element 7 1000 1030 3.0 5.0 7.8 56.0 

Element 8 1000 982 1.8 5.0 5.4 8.0 

Element 9 1000 879 12.1 5.0 4.9 2.0 

Element 10 1000 698 30.2 5.0 -6.7 234.0 

 
 
3% Noise 

The random numbers scaled by 3% of the displacement and velocity were 

superposed on the corresponding noise-free displacement and velocity. Displacements 

and velocities were measured 10 times as in Case 1 and the   average of the identified 

values for each data set was taken as the finally identified values.  The Damage indices 

for each element are shown in Fig. 7-24 and Fig. 7-25. The identified values are listed in 

Table 7-6. With respect to spring constant, Element 3 and Element 6 were not detected 

as damaged element. Instead of the simulated Element 3, Element 9 and Element 10 

were falsely detected as damaged elements. In the dash pot constants, Element 6 and 

Element 8 were detected as damaged elements. Element 3 was not detected. Note that 

5% noise level analysis was not performed for Case 2, because the damaged element was 

not detected at 3% noise level. The 5% noise level analysis is not performed for Case 3, 

either. 
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Fig. 7-24 Damage Index for Spring with 3% Noise for Case 3 

 

 

Fig. 7-25 Damage Index for Dash Pot with 3% Noise for Case 3 
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Table 7-8 Identified Values with 1% Noise for Case 3 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 916 8.4 5.0 14.6 192.0 

Element 2 1000 938 6.2 5.0 -9.4 288.0 

Element 3 900 891 1.0 6.0 2.8 53.3 

Element 4 1000 1015 1.5 5.0 38.2 664.0 

Element 5 1000 1052 5.2 5.0 -68 1460.0 

Element 6 800 823 2.9 7.0 59 742.9 

Element 7 1000 898 10.2 5.0 -22.2 544.0 

Element 8 1000 710 29.0 5.0 13.4 168.0 

Element 9 1000 487 51.3 5.0 -7.5 250.0 

Element 10 1000 248 75.2 5.0 -30.4 708.0 

 
 

7.3 SUMMARY 

The performance of the proposed damage evaluation method, based on the 

conservation of total energy with noise-polluted data, was investigated with a high-rise 

building modeled as a shear beam. Three damage scenarios were investigated: damping 

damage was simulated at a single location, both stiffness damage and damping damage 

were simulated at a single location, and multi-damage cases involving both damping and 

stiffness were simulated. The identified values of the dash pot indicated larger 

coefficients of variation than the spring constants. The damaged elements were detected 

correctly, but they were accompanied with false-positive predictions for 1% noise. For 

3% noise, the elements simulated to be damaged were not detected as the damaged 

element. In all cases, Element 10 was falsely detected as a stiffness damaged element 

and the magnitude of the dash pot constant of Element 10 was identified as negative. 
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8 NUMERICAL VERIFICATION OF THE SENSITIVITY METHOD FOR A 

SHEAR BUILDING WITH NOISE-POLLUTED DATA  

 

8.1 INTRODUCTION 

The objective of this section is to analyse the performance of the method which 

uses acceleration-structural parameters sensitivities numerically for a shear building with 

known damage scenarios and noise-polluted data.  

 

8.2 DAMAGE DETECTION IN A SHEAR BUILDING 

The same structure and same damage scenarios discussed in Section 4 are used 

here. To excite the structure, a horizontal tensile force of 200 kips was applied at the 10th 

story, and the load was quickly removed thus permitting the structure to vibrate freely as 

in Section 4. The Newmark- b  method was used to get the simulated accelerations. 

Accelerations were measured at a 1000 Hz sampling rate. The same technique discussed 

in Section 7 was used to produce the noise-polluted accelerations. Three levels of noise, 

1%, 3%, and 5%, were considered.  

 The accelerations at each node were measured 10 times, and the average values 

of all measured accelerations were finally used to identify the spring constants and the 

dash pot constants. 

 

8.2.1 Case 1 

In this damage scenario, only Element 3 has damping damage which is 

equivalent to a 10% increase in the dash pot constant. It was assumed that the modal 

damping values and natural frequencies are not influenced by noise, so the same baseline 

structure identified in Section 5 was used as the baseline structure. 

 

1% Noise 

The random number scaled by 1% of the acceleration was superposed on the 

acceleration generated using the The Newmark- b  method, to simulate noise-polluted 
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data. The accelerations of the damaged structure at Node 5 and Node 10 are shown in 

Fig. 8-1 and Fig. 8-2. With the measured accelerations at five nodes, which are Node 2, 

4, 6, 8 and 10, for one second, the identified spring constants and dash pot constants for 

each measured data set are shown in Fig. 8-3, Fig. 8-4 and the average of the identified 

values are compared with the simulated values in Table 8-1. 

 It is observed in Fig. 8-3 that all of the identified spring constant values are near 

the simulated value,1000.  

 

 

Fig. 8-1 Accelerations at Node 5 with 1% Noise for Case 1 
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Fig. 8-2 Accelerations at Node 10 with 1% Noise for Case 1 

 

 

Fig. 8-3 Identified Spring with 5 Measurements and 1% Noise for Case 1 
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Fig. 8-4 Identified Dash Pot with 5 Measurements and 1% Noise for Case 1 

 

Table 8-1. Identified Values with 5 Measurements and 1% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1001 0.1 5.0 5.1 1.7 

Element 2 1000 999 0.1 5.0 5.1 1.5 

Element 3 1000 998 0.2 5.5 5.4 2.0 

Element 4 1000 1000 0.0 5.0 5.0 0.2 

Element 5 1000 997 0.3 5.0 4.9 2.9 

Element 6 1000 1002 0.2 5.0 4.9 1.4 

Element 7 1000 999 0.1 5.0 4.9 1.2 

Element 8 1000 1002 0.2 5.0 5.0 0.6 

Element 9 1000 999 0.1 5.0 5.1 1.5 

Element 10 1000 999 0.1 5.0 5.0 0.4 

 
 
There is no element which shows any obvious difference from the simulated values in 

the spring constant or in the dash pot constant. Element 3 was identified to have the 

largest dash pot constant. Therefore, it can be concluded that Element 3 was damaged in 

damping without stiffness damage. 
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It was attempted again to identify the structural parameters with accelerations at 

Nodes 5 and 10. With the accelerations at these two nodes for 1 second, the identified 

spring constants and dash pot constants for each measured data set are shown in Fig. 8-5 

and Fig. 8-6. The average values are compared with the simulated values in Table 8-2. 

When the comparing Fig. 8-5 with Fig. 8-3, it is observed that the variation of the 

identified values were increased with the decreased measurement locations. The same 

fact is applied to Fig. 8-4 and Fig. 8-6. In dash pot constant, Element 3 was correctly 

detected as the most severely damping damaged element. The damping damaged 

element was detected correctly with 2 measurement locations.  

 

 

Fig. 8-5 Identified Spring with 1% Noise for Case 1 
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Fig. 8-6 Identified Dash Pot with 1% Noise for Case 1 

 

Table 8-2 Identified Values with 2 Measurements and 1% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 998 0.2 5.00 4.98 0.4 

Element 2 1000 1002 0.2 5.00 5.22 4.4 

Element 3 1000 995 0.5 5.50 5.50 0.1 

Element 4 1000 1003 0.3 5.00 4.97 0.5 

Element 5 1000 998 0.2 5.00 4.98 0.4 

Element 6 1000 999 0.1 5.00 4.90 2.0 

Element 7 1000 1002 0.2 5.00 4.90 2.0 

Element 8 1000 1001 0.1 5.00 5.00 0.1 

Element 9 1000 1001 0.1 5.00 5.07 1.3 

Element 10 1000 1001 0.1 5.00 5.07 1.5 

 
 
We attempted again to identify the structural parameters with the average of the 

measured accelerations. The identified values obtained by the average accelerations at 

Node 5 and Node 10 are listed in Table 8-3. 
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Table 8-3 Identified Values with Average Accelerations for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1001 0.1 5.00 5.05 0.9 

Element 2 1000 999 0.1 5.00 5.00 0.0 

Element 3 1000 1000 0.0 5.50 5.52 0.3 

Element 4 1000 999 0.1 5.00 4.99 0.3 

Element 5 1000 1001 0.1 5.00 4.93 1.4 

Element 6 1000 1001 0.1 5.00 4.95 1.0 

Element 7 1000 1000 0.0 5.00 4.97 0.6 

Element 8 1000 1000 0.0 5.00 5.01 0.3 

Element 9 1000 999 0.1 5.00 5.03 0.7 

Element 10 1000 1000 0.0 5.00 5.07 1.5 

 
 
On comparing Table 8-2 and Table 8-3, better identification results were obtained when 

the average of the measured accelerations were used than when taking the average of the 

identified values. Thus, for the next cases, the structure parameters are identified using 

the average of the measured accelerations. 

 

3% Noise 

As before, the random number scaled by 3% of acceleration was superposed on 

the produced accelerations generated by the Newmark- b  method to simulate noise-

polluted data. The accelerations of the damaged structure at Node 5 and Node 10 are 

shown in Fig. 8-7 and Fig. 8-8. 
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Fig. 8-7 Accelerations at Node 5 with 3% Noise for Case 1 

 

 

Fig. 8-8 Accelerations at Node 10 with 3% Noise for Case 1 
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When the accelerations at Nodes 2, 4, 6, 8 and 10 were used, the identified results 

generated using the same process as in the 1% noise, are listed in Table 8-4. For the dash 

pot constants, Element 3 was correctly detected as the damaged element. 

 

Table 8-4 Identified Values with 5 Measurements and 3% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 998 0.2 5.00 5.04 0.7 

Element 2 1000 1001 0.1 5.00 5.01 0.1 

Element 3 1000 1000 0.0 5.50 5.47 0.6 

Element 4 1000 1001 0.1 5.00 5.01 0.1 

Element 5 1000 1000 0.0 5.00 5.01 0.1 

Element 6 1000 1000 0.0 5.00 5.05 1.1 

Element 7 1000 999 0.1 5.00 5.00 0.0 

Element 8 1000 1000 0.0 5.00 4.98 0.4 

Element 9 1000 1000 0.0 5.00 4.98 0.4 

Element 10 1000 1000 0.0 5.00 5.00 0.0 

 
 
When the accelerations at only two nodes, Node 5 and Node 10, for 1 second were used, 

a singular stiffness matrix was obtained because the spring constants were identified as 

negative; thus the spring constants and dash pot constants were not identified. When the 

observation time was extended to 2 seconds, the identified results with 2 measurements 

are listed in Table 8-5. Element 3 was identified as the damping damaged element 

correctly and Element 2 was false-positive. The Element 1 had the largest error, 16% in 

its estimated dash pot constant. 
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Table 8-5 Identified Values with 2 Measurements and 3% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 999 0.1 5.00 4.20 16.0 

Element 2 1000 997 0.3 5.00 5.45 8.9 

Element 3 1000 997 0.3 5.50 5.70 3.6 

Element 4 1000 1007 0.7 5.00 5.21 4.1 

Element 5 1000 998 0.2 5.00 5.41 8.2 

Element 6 1000 1000 0.0 5.00 4.99 0.2 

Element 7 1000 1010 1.0 5.00 5.31 6.2 

Element 8 1000 997 0.3 5.00 5.28 5.7 

Element 9 1000 997 0.3 5.00 4.96 0.9 

Element 10 1000 1000 0.0 5.00 4.89 2.2 

 

 
5% Noise 

The random number scaled by 5% of the acceleration was superposed on the 

produced acceleration generated by The Newmark- b  method to simulate noise-polluted 

data. The accelerations of the damaged structure at Node 5 and Node 10 are shown in 

Fig. 8-9 and Fig. 8-10. When the accelerations at five nodes, Nodes 2, 4, 6, 8, and 10, 

were used, the identification results are listed in Table 8-6. Element 3 was detected 

correctly as the damping damaged element. Element 2 was falsely detected as in 3% 

noise. 
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Fig. 8-9 Accelerations at Node 5 with 5% Noise for Case 1 

 

 

Fig. 8-10 Accelerations at Node 10 with 5% Noise for Case 1 
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Table 8-6 Identified Values with 5 Measurements and 5% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1004 0.4 5.00 4.61 7.8 

Element 2 1000 994 0.6 5.00 5.34 6.9 

Element 3 1000 1002 0.2 5.50 5.56 1.2 

Element 4 1000 999 0.1 5.00 5.13 2.6 

Element 5 1000 997 0.3 5.00 4.97 0.6 

Element 6 1000 1004 0.4 5.00 5.04 0.8 

Element 7 1000 997 0.3 5.00 5.11 2.2 

Element 8 1000 999 0.1 5.00 4.99 0.2 

Element 9 1000 1000 0.0 5.00 5.03 0.7 

Element 10 1000 1001 0.1 5.00 5.07 1.4 

 
 
When the accelerations at only two nodes, Node 5 and Node 10, for a 2-second time 

period were used, the identified results are listed in Table 8-7. Element 3 was identified 

as the damping damaged element, but Element 10 indicated the existence of the possible 

damage. The errors increased compared when the accelerations at 5 locations were used. 

 

Table 8-7 Identified Values with 2 Measurements and 5% Noise for Case 1 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 989 1.1 5.00 5.22 4.5 

Element 2 1000 1016 1.6 5.00 5.14 2.8 

Element 3 1000 991 0.9 5.50 5.97 8.6 

Element 4 1000 1000 0.0 5.00 4.47 10.7 

Element 5 1000 1005 0.5 5.00 5.07 1.4 

Element 6 1000 991 0.9 5.00 4.57 8.6 

Element 7 1000 1005 0.5 5.00 4.68 6.5 

Element 8 1000 1000 0.0 5.00 4.93 1.3 

Element 9 1000 1003 0.3 5.00 5.18 3.7 

Element 10 1000 1007 0.7 5.00 5.32 6.4 

 
 
8.2.2 Case 2 

In this damage scenario, Element 3 has both damping damage and stiffness 

damage. Damping damage was simulated by 20% increase of the undamaged dash pot 
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constant, and stiffness damage imposed was a 10% decrease in the spring constant. The 

structure was excited by the same condition as in Case 1. 

It was assumed that the modal damping values and natural frequencies are not 

influenced much by noise, so the same baseline structure identified in Section 5 was 

used as the baseline structure. Note that in Case 1, the structural parameters were 

identified well with 5% noise level. Therefore, 1% noise and 3% noise were not 

considered in Case 2. Only 5% noise case was treated in Case 2. 

When the accelerations at all nodes for a time period of 1 second were used, the 

Damage indices for spring constants and dash pot constants are shown in Fig. 8-11 and 

Fig. 8-12, respectively. As seen in Fig. 8-11 and Fig. 8-12, Element 3 was detected 

correctly as the damaged element both in spring and dash pot. The identification results 

are listed in Table 8-8.  

 

 

Fig. 8-11 Damage Index for Spring with 10 Measurements for Case 2  
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Fig. 8-12 Damage Index for Dash Pot with 10 Measurements for Case 2  

 

Table 8-8 Identified Values with 10 Measurements and 5% Noise for Case 2 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1002 0.2 5.00 5.12 2.4 

Element 2 1000 999 0.1 5.00 5.06 1.2 

Element 3 900 899 0.1 6.00 5.97 0.5 

Element 4 1000 999 0.1 5.00 5.07 1.4 

Element 5 1000 1002 0.2 5.00 4.86 2.9 

Element 6 1000 1001 0.1 5.00 4.90 1.9 

Element 7 1000 1000 0.0 5.00 4.94 1.2 

Element 8 1000 999 0.1 5.00 4.94 1.2 

Element 9 1000 1000 0.0 5.00 5.03 0.6 

Element 10 1000 1007 0.7 5.00 5.09 1.8 

 

 

It was tried again to identify structural parameters with the measured accelerations at 

five nodes, Node 2, Node 4, Node 6, Node 8, and Node 10, for a time interval 2 seconds; 

the identification results are shown in Fig. 8-13 and Fig. 8-14. 
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Fig. 8-13 Damage Index for Spring with 5 Measurements for Case 2  

 

 

Fig. 8-14 Damage Index for Dash Pot with 5 Measurements for Case 2 
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For spring constants, Element 3 was detected as stiffness damaged element correctly, but 

for dash pot constants, not only Element 3, which was originally simulated as the 

damping damaged element, but also Element 1 indicated some possible damage. The 

identification results are listed in Table 8-9.  

 

Table 8-9 Identified Values with 5 Measurements and 5% Noise for Case 2 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 998 0.2 5.00 5.43 8.7 

Element 2 1000 1001 0.1 5.00 5.03 0.6 

Element 3 900 898 0.2 6.00 5.93 1.1 

Element 4 1000 1005 0.5 5.00 4.87 2.6 

Element 5 1000 996 0.4 5.00 4.99 0.1 

Element 6 1000 997 0.3 5.00 5.04 0.7 

Element 7 1000 999 0.1 5.00 4.83 3.4 

Element 8 1000 1006 0.6 5.00 4.93 1.3 

Element 9 1000 996 0.4 5.00 5.02 0.5 

Element 10 1000 997 0.3 5.00 4.92 1.5 

 
 
It was tried again to identify structural parameters with the measured accelerations at 

Node 5 and 10 for a time interval of 2 seconds, and the identification results are shown 

in Fig. 8-15 and Fig. 8-16. With only 2 measurement locations, the damaged element 

was correctly detected in spring, but the Elements 4, 5, 6, and 7 were falsely detected in 

dash pot. The identified values are listed in Table 8-10. 
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Fig. 8-15 Damage Index for Spring with 2 Measurements for Case 2  

 

Fig. 8-16 Damage Index for Dash Pot with 2 Measurements for Case 2 
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Table 8-10  Identified Values with 2 Measurements and 5% Noise for Case 2 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 988 1.2 5.00 4.03 19.5 

Element 2 1000 1008 0.8 5.00 5.16 3.1 

Element 3 900 890 1.1 6.00 5.97 0.4 

Element 4 1000 1023 2.3 5.00 5.49 9.8 

Element 5 1000 992 0.8 5.00 5.83 16.5 

Element 6 1000 1007 0.7 5.00 5.50 9.9 

Element 7 1000 1006 0.6 5.00 5.66 13.3 

Element 8 1000 999 0.1 5.00 5.31 6.3 

Element 9 1000 997 0.3 5.00 4.71 5.7 

Element 10 1000 994 0.6 5.00 4.54 9.3 

 
 
8.2.3 Case 3 

In this damage scenario, damage was simulated to multiple elements. Element 3 

Element 6 had both damping damage and stiffness damage. For Element 3, damping 

damage was simulated by 20% increase of dash pot constant, and stiffness damage was 

imposed by 10% decrease of spring constant. The dash pot constant of Element 8 was 

increased by 40% and the spring constant of Element 8 was decreased by 20%. It was 

assumed that the modal damping values and natural frequencies are not influenced much 

by noise, so the same baseline structure identified at Section 5 was used as the baseline 

structure. 1% noise and 3% noise were not considered in Case 3. Only 5% noise case 

was treated in Case 3. 

When the accelerations at all nodes for 1 second were used, the Damage Indices 

for spring constants and dash pot constants are shown in Fig. 8-17 and Fig. 8-18, 

respectively. As seen in Fig. 8-17 and Fig. 8-18, Element 3 and Element 8 were correctly 

detected as the damaged elements both in spring constants and dash pot constants. The 

identification results are listed in Table 8-11.  
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Fig. 8-17 Damage Index for Spring with 10 Measurements for Case 3 

 

Fig. 8-18 Damage Index for Dash Pot with 10 Measurements for Case 3 
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Table 8-11 Identified Values with 10 Measurements and 5% Noise for Case 3 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1001 0.1 5.00 4.96 0.8 

Element 2 1000 1003 0.3 5.00 4.91 1.9 

Element 3 900 902 0.2 6.00 6.01 0.2 

Element 4 1000 1003 0.3 5.00 4.86 2.8 

Element 5 1000 996 0.4 5.00 5.07 1.4 

Element 6 1000 993 0.7 5.00 4.91 1.8 

Element 7 1000 999 0.1 5.00 4.90 1.9 

Element 8 800 800 0.0 7.00 7.01 0.1 

Element 9 1000 1002 0.2 5.00 5.10 2.1 

Element 10 1000 1002 0.2 5.00 5.07 1.3 

 

 

When the accelerations at Node 2, Node 4, Node 6, Node 8, and Node 10 for a 

duration of 1 second were used, the Damage Indices for spring constants and dash pot 

constants are shown in Fig. 8-19 and Fig. 8-20, respectively. The identification results 

are listed in Table 8-12.  
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Fig. 8-19 Damage Index for Spring with 5 Measurements for Case 3  

 

Fig. 8-20 Damage Index for Dash Pot with 5 Measurements for Case 3 
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With respect to both spring constants and dash pot constants, Element 3 and Element 8 

were correctly detected as the damaged elements. The errors in the predicted values of 

the dash pot constants are larger than those of the spring constants. 

 

Table 8-12 Identified Values with 5 Measurements and 5% Noise for Case 2 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1007 0.7 5.00 4.78 4.3 

Element 2 1000 986 1.4 5.00 5.25 4.9 

Element 3 900 902 0.2 6.00 5.96 0.7 

Element 4 1000 1000 0.0 5.00 4.95 1.0 

Element 5 1000 1003 0.3 5.00 5.02 0.4 

Element 6 1000 998 0.2 5.00 5.14 2.8 

Element 7 1000 1002 0.2 5.00 4.78 4.4 

Element 8 800 802 0.2 7.00 7.06 0.8 

Element 9 1000 999 0.1 5.00 5.23 4.6 

Element 10 1000 1000 0.0 5.00 5.10 2.0 

 
 

We attempted again to identify the structural parameters with the measured 

accelerations at Node 5 and 10 for a duration of 2 seconds; the identification results are 

shown in Fig. 8-21 and Fig. 8-22. Element 3 and Element 8 were correctly detected as 

the damaged elements both in spring constants and in dash pot constants. However, the 

identified value for the dash pot constant of Element 3 included 9% error. 
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Fig. 8-21 Damage Index for Spring with 2 Measurements for Case 3  

 

 

Fig. 8-22 Damage Index for Dash Pot with 2 Measurements for Case 3 
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Table 8-13  Identified Values with 2 Measurements and 5% Noise for Case 3 

 Spring Dash pot 

 Simulated Identified Error (%) Simulated Identified Error (%) 

Element 1 1000 1000 0.0 5.00 4.57 8.6 

Element 2 1000 1002 0.2 5.00 5.30 6.0 

Element 3 900 902 0.2 6.00 6.54 9.0 

Element 4 1000 992 0.8 5.00 4.83 3.4 

Element 5 1000 1005 0.5 5.00 4.85 3.1 

Element 6 1000 993 0.7 5.00 4.78 4.5 

Element 7 1000 1008 0.8 5.00 4.65 7.0 

Element 8 800 801 0.1 7.00 7.24 3.5 

Element 9 1000 999 0.1 5.00 5.31 6.2 

Element 10 1000 999 0.1 5.00 5.20 4.1 

 
 

8.3 SUMMARY 

The proposed method, based on the acceleration-structural parameters sensitivities, 

was verified numerically using a high-rise building modeled as a shear beam. Three 

levels of noise (1%, 3%, and 5%) were introduced to investigate the robustness of the 

proposed method to predict damping and stiffness damage in a noise environment. Three 

damage scenarios were investigated: (1) damping damage in a single location, (2) both 

stiffness damage and damping damage in a single location and (3) multi-damage cases. 

Better identification results to identify the structural parameters were produced with the 

averages of the measured accelerations compared with those obtained by taking the 

average of the identified values. By increasing the number of measurement locations, 

false-positive predictions were avoided and more accurate results were obtained. 
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9 EXPERIMENTAL VERIFICATION OF THE SENSITIVITY METHOD  

 

9.1 INTRODUCTION 

In this section, the performance of the sensitivity method is verified using 

experimental data for a three-story R/C frame building. The proposed method is applied 

to experimental data generated in a laboratory to identify structural parameters. The 

experimental data were provided by Bracci(1992). 

 

9.2 DESCRIPTION OF THE RC FRAME BUILDING 

The test structure is a three-story R/C fame building with 3 bays. This type of 

structure is considered to be representative of low-rise buildings typically constructed in 

the Eastern and Central United States. The general layout of the tested structure is shown 

in Fig. 9-1 and Fig. 9-2. 
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Fig. 9-1 Elevation View of Experimental Structure 
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Fig. 9-2 Plan View of Experimental Structure 
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9.3 SUMMARY OF THE TESTING 

The test structure was subjected to three levels of base motions: minor base motion, 

moderate base motion, and severe base motion. The N21E ground acceleration 

component of the July 21, 1952 Taft Earthquake at the Lincoln School Tunnel site in 

California was used as the base motion.  For each level of base motion, Taft N21E  was 

scaled to have the peak acceleration as 0.05g, 0.20g, and 0.30g ,respectively. After the 

structure was excited by each level of base motion, and before it was excited by the 

minor base motion, it was subjected to white noise base motion again to identify the 

structural parameters at each stage. The minor, moderate, and severe base motions were 

used to investigate the pre-yield behavior, the inelastic behavior, and the near collapse 

mechanism of the model structure ( Bracci, 1997 ).  

 

9.4 MODIFICATION TO THE SENSITIVITY METHOD TO 

ACCOMMODATE THE PROVIDED DATA 

In this section, the proposed method which uses acceleration-structural parameters 

sensitivities is modified to use the mode shape vectors supplied by Bracci (1992) instead 

of the accelerations. Since the mode shapes are determined based on the mass and the 

stiffness of the structure, only the stiffness parameters not damping parameters at each 

step are identified. The process to identify the stiffness parameters with mode shapes is 

divided into two procedures:  

(a) The first procedure determines the relative ratios of the story stiffness to reproduce 

mode shapes close to the measured mode shapes. (b) The second procedure scales the 

relative stiffnesses so that the structure has natural frequencies close to the measured 

natural frequencies. 

The mode shape of the structure depends on the relative stiffness of each story. 

The relative stiffness of each story can be determined as outlined below. 

a. Components of mode shape vectors at several pre-selected locations of the 

existing structure are measured. 
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b. A baseline structure, of which all stiffness parameters are 1, is generated, and 

the mode shape vectors at the same locations with the existing structure are 

numerically produced. 

c. A sensitivity matrix F relating mode shape vectors to stiffness parameters is 

calculated. The sensitivity matrix F has the form : 
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 (9-1) 

 

Where mnF =mth component of nth mode shape vector 

     Mk =Mth stiffness parameter 

If n mode shapes are available at m locations, and M stiffness parameters are to 

be identified, the sensitivity matrix F will be of size mn? . 

Each column of F matrix can be determined as follows: first, mode shapes are 

numerically produced at m locations for n mode from the FE model; second, 

the stiffness of the first element is modified by a known amount; third, the 

mode shapes are generated from the modified FE model; fourth, the fractional 

changes between the initial mode shapes and the mode shapes of the modified 

structure are computed; fifth, each column of the F matrix is computed by 

dividing the fractional changes in mode shape vectors by the magnitude of the 

modification at member one; sixth, the entire procedure is repeated for all 

members. 

d. A difference column matrix Z of which each row is equivalent to the difference 

between the measured mode shape vectors of the existing structure and the 

simulated mode shape vectors of the baseline structure is built up. The 

difference column matrix has the form: 
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Where mnF% = measured mode shape vector at mth measurement location of nth        

    mode shape 

mnF = numerically generated mode shape vector at mth location of nth  

  mode shape of the baseline structure 

e. With the sensitivity matrix and the difference column matrix determined in 

Step c and Step d, the stiffness parameters are updated by solving the 

following system of equations. 
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Letting 

1

M

k

k

Dì ü
ï ï

= í ý
ï ïDî þ

α M , Eq 9-3 can be expressed as  

Fα = Z  

The modification of the stiffness parameters can be obtained by solving the 

equation,  

 1( ) ( )T T-= ´α F F F Z  (9-4) 

 

f. The stiffness of each element is then updated and is scaled by the stiffness of 

Element 1.  

g. Steps c, d, e, and f are repeated until @Ζ 0  or @α 0  

 

The natural frequencies generated from the structure whose stiffness parameters were 

scaled to one for Element 1 will show considerable errors when compared with the 
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measured natural frequencies. The scaling of the relative stiffness parameters to produce 

a closer agreement between generated natural frequencies and the measured natural 

frequencies can be done by utilizing the following procedure. 

 

a. Natural frequencies of the existing structure are measured. 

b. Based on the information about the as-built plans and field inspection, an 

initial estimate of the stiffness parameters is made. 

c. The initial estimate of the scale factor is determined based on the estimated 

stiffness in Step b. 

d. A sensitivity matrix F for natural frequencies to stiffness parameters is 

calculated. In this procedure, F will be a column matrix, because only one 

unknown, the scaling factor for the stiffness parameters is to be determined. 

The sensitivity matrix has the form of  
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Where nw = nth natural frequency 

     s  = scaling factor 

e. The difference column matrix Z in which each row is equivalent to the 

difference between the measured natural frequencies of the existing structure 

and the simulated natural frequencies of the numerical model are generated. 

The difference column matrix has the form: 
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Where nw% = measured nth natural frequency of the existing structure 

    nw  = simulated nth natural frequency of the numerical model 
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f.  The scaling factor is updated by solving the following system of equations 
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h. Steps d, e, and f are repeated until @Ζ 0  or 0sD @ . 

 

9.5 IDENTIFICATION OF THE RC FRAME BUILDING 

The proposed method is applied to the measured mode shape vectors of the test 

structure before and after the test structure was subjected to the each level of base 

motion to identify the stiffness parameters. The stiffness parameters identified by the 

proposed method are compared with the stiffness parameters identified by Bracci(1992). 

Bracci identified the story stiffness of the test structure from the stiffness matrix 

constructed as follows: 

 
T

n nK = MΦ ΩΦ M  (9-8) 

 

Where K =Stiffness matrix 

         M =Mass matrix 

         nΦ =Normalized modal shape matrix 

         Ω =Diagonal natural frequency matrix 2 2 2
1 2, , nw w wé ùë ûL

 
          iw =i-th natural frequency (rad/sec) 

The test structure is modeled simply as the three story shear-beam building as 

shown in Fig. 9-3. 

Based on estimated quantities, Bracci assessed the mass matrix as 
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2

0.070 0.000 0.000

0.000 0.070 0.000 kip/in/sec

0.000 0.000 0.070

ij

é ù
ê ú= ê ú
ê úë û

M  (9-9) 

 

 

This mass matrix is used in the proposed method. It is assumed that mass matrix 

remains constant even though stiffnesses may vary while the structure experiences 

damage. 

The natural frequencies of the test structure at each step are listed in  

Table 9-1. 

 

 

Fig. 9-3 Simplified Model of the Model Structure 
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Table 9-1 Natural Frequencies of the Test Structure at Each Step in Hz 

 Undamaged Minor Damage Moderate Damage Severe Damage 

Mode 1 1.78 1.71 1.42 1.2 

Mode 2 5.32 5.22 4.37 3.76 

Mode 3 7.89 7.32 6.18 5.27 

 

 

After the structure experienced the moderate base motion and severe base motion, the  

natural frequencies of the test structure were considerably decreased. Therefore it is 

obvious that the structure was damaged, but the decrease of the natural frequencies itself 

doesn’t provide the information regarding the locations and the severities of the damage. 

The mode shapes of the test structure at each step are shown in Fig. 9-4. 

 

 

Fig. 9-4  Measured Mode Shapes of the Test Structure at Each Step 

 

The mode shapes of the severely damaged structure show obvious deviation from 

the mode shapes of other cases. Based on the measured mode shapes, the relative 

stiffness at each story for each damage case was calculated by the first procedure 
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suggested in Section 9.4. The determined relative stiffness parameters are listed in Table 

9-2 and the mode shapes produced with those stiffness parameters are compared with the 

measured mode shapes for each damage case in Fig. 9-5, Fig. 9-6, Fig. 9-7 and Fig. 9-8. 

For the undamaged case, the story stiffnesses differ little from each other. 

However, in the severely damaged structure, the story stiffness of second story is 65% of 

the story stiffness of the first story.  

Table 9-2 Relative Stiffness of Each Story for Each Damage Case 

 Undamaged Minor Damage Moderate Damage Severe Damage 

1st 1 1 1 1 

2nd 0.91 0.91 1.14 0.65 

3rd 0.94 0.88 1.03 0.72 

 

 

For the undamaged case and the minor damaged case, the mode shape from the FE 

model could be aprroximated to be very close to the measured mode shapes. However, 

for the moderately damaged case, and the severely damaged case, the numerically 

generated mode shapes show significant deviations from the measured mode shapes. 

These deviations are caused by the fact that the number of the stiffness parameters to be 

identified is less than the number of the measured mode shapes. 
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Fig. 9-5 Comparison of Mode Shapes for Undamaged Structure 

 

 

Fig. 9-6 Comparison of Mode Shapes for Minor Damaged Structure 
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Fig. 9-7 Comparison of Mode Shapes for Moderately Damaged Structure 

 

 

 

Fig. 9-8 Comparison of Mode Shapes for Severely Damaged Structure 
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The severities of the damaged elements can be assessed after the relative stiffness 

parameters are scaled so that the structure has the natural frequencies close to those 

listed in Table 9-1. The scaled stiffness parameters using the second procedure suggested 

in Section 9.3 are listed in Table 9-3; the natural frequencies with those stiffness 

parameters are compared with the measured natural frequencies in Table 9-4 and Table 

9-5. For each and every case, the first natural frequency has the largest error and the 

numerically generated first frequency is larger than the measured one. 

 

Table 9-3 Scaled Story Stiffness for Each Damage Case 

 Undamaged Minor Damage Moderate Damage Severe Damage 

1st 51.53 47.68 29.79 29.36 

2nd 46.91 43.44 33.89 18.97 

3rd 48.45 42.13 30.58 21.19 

 
 

Table 9-4 Comparison of Natural Frequencies I 

  Undamaged Minor 

  Measured Simulated Error (%) Measured Simulated Error (%) 

Mode 1 1.78 1.88 5.80 1.71 1.81 5.57 

Mode 2 5.32 5.27 0.93 5.22 4.98 4.53 

Mode 3 7.89 7.51 4.87 7.32 7.15 2.35 

 

 

Table 9-5 Comparison of Natural Frequencies II 

  Moderate Severe 

  Measured Simulated Error (%) Measured Simulated Error (%) 

Mode 1 1.42 1.50 5.28 1.2 1.30 8.60 

Mode 2 4.37 4.15 4.98 3.76 3.66 2.74 

Mode 3 6.18 6.16 0.30 5.27 4.96 5.87 
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The story stiffness identified by the proposed method and by Bracci(1992) are compared 

in Fig. 9-9, Fig. 9-10, and Fig. 9-11. 

 

 

Fig. 9-9 Stiffness of the First Story for Each Damage Case 

 

 

 

Fig. 9-10 Stiffness of the Second Story for Each Damage Case 
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Fig. 9-11  Stiffness of the Third Story for Each Damage Case 

 

 

9.6 SUMMARY 

In this section, the sensitivity method was modified to identify the stiffness 

parameters using mode shapes instead of accelerations. The proposed method, with 

modification, was applied to a referenced structure and three damage cases: (a) an 

undamaged referenced case, (b) a minor damaged case, (c) a moderately damaged case, 

and (d) a severely damaged case. Similar mode shapes to the measured mode shapes 

were reproduced by the proposed method. The stiffness parameters identified by the 

sensitivity method were similar to those estimated via the stiffness matrix method, which 

utilized the mass matrix, mode shapes, and natural frequencies.  
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10 SUMMARY AND FUTURE WORK 

 

10.1 SUMMARY 

The objective of this study was to develop NDE techniques that can identify, 

simultaneously, both stiffness and damping changes in a structure. Two approaches were 

used to meet the stated objectives. First, a method was developed on the basis of the 

conservation of total energy; second, a method was proposed which utilized the 

acceleration-structural parameters (stiffness and damping) sensitivities. 

In Section 2, the theoretical background of the approach based on the 

conservation of total energy was investigated. The governing equations for the 

identification of stiffness and damping were derived and expressed in matrix form. 

In Section 3, the theoretical background of the approach utilizing acceleration-

structural parameter sensitivities was investigated. The equations for the identification of 

stiffness and damping were derived in matrix form. 

In Section 4, the performance of the developed NDE technique based on the 

conservation of total energy was numerically verified for a shear building. 

In Section 5, the performance of the second proposed method, presented in 

Section3, which utilizes acceleration-structural parameter sensitivities, was verified for 

high-rise buildings modeled as shear beams.  

In Section 6, a damping damage model for the beam structure was proposed. The 

performance of the second proposed method which uses acceleration-structural 

parameters sensitivities was verified numerically for a two-span continuous beam 

structure with known damage scenarios. 

In Section 7, the performance of the developed NDE technique based on the 

conservation of total energy was numerically verified for high-rise buildings modeled as 

shear beams with noise-polluted data. 

In Section 8, the performance of the second proposed method, presented in 

Section 3, which utilizes acceleration-structural parameter sensitivity, was verified for 

high-rise buildings modeled as shear beams with noise-polluted data.  
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Finally, in Section 9, the performance of the second proposed method was verified 

using experimental data for a three-story  R/C frame building. The mode shapes, instead 

of the accelerations, were used for the identification of the story stiffness. 

 

10.2 FINDINGS 

In Section 4, in which the performance of the developed NDE technique based 

on the conservation of total energy was numerically verified for a shear building, the 

following major findings were made: 

 

1. The influence of the sampling rate and the observation time on the identified 

values were numerically investigated and it was concluded that better 

identification results can be obtained with higher sampling rates. Observation 

time does not have as much influence as the sampling rate. 

 

2. The performance of the energy based method was verified numerically using 

three damage scenarios. 

 

In Section 5, in which the performance of the sensitivity method was verified for 

high-rise buildings modeled as shear beams, the following major findings were made: 

 

1. Not only the spring constants but also dash pot constants of the baseline 

structure were identified using natural frequencies and modal damping values. 

2. The performance of the sensitivity method was verified numerically using 

three damage scenarios. 

3. Even with the accelerations measured at only one location, the structural 

parameters were identified accurately. 
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In Section 6, where the performance of the sensitivity-based method was verified 

numerically using a two-span continuous beam, the following major findings were 

made: 

 

1. The proportional damping coefficients for the mass matrix and the stiffness 

matrix were identified using modal damping values and the bending stiffness 

of the baseline structure was determined using the natural frequencies. 

 

2. The increased damping coefficient of the damping damaged element had an 

influence on the proportional coefficient for the mass matrix. The change in 

the proportional coefficient for the stiffness matrix was negligible. 

 
3. The proposed method accurately identified both bending stiffness and 

damping coefficients for all damage scenarios.  

 

In Section 7, the performance of the developed NDE technique based on the 

conservation of total energy was numerically investigated using a numerical model of a 

high-rise building modeled as a shear beam with noise-polluted data, the following 

major findings were made: 

1. The identified values of the dash pot had larger standard deviations than the 

spring constant. 

 

2. With 1% noise, the damaged elements were detected correctly, but there were 

some false-positive predictions. 

 
3. With 3% noise, the damaged elements were not detected  

 
4. Element 10 was detected as a false-positive prediction in almost every case. 
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In Section 8, in which the performance of the sensitivity method was analysed 

for a high-rise building modeled as shear beams with noise-polluted data, the following 

major findings were made: 

 

1. When the structure had damping damage of 10% severity at a single location, 2 

measurement locations were enough to accurately locate and size the damage 

for 1% noise.  

 

2. When the noise level was increased to 3% and 5%, with 2 measurement 

locations, undamaged elements were falsely detected as damaged elements. To 

avoid false detection, an increase in the measurement locations was needed. 

 
3. Stiffness damage was more detectable than the damping damage. With 5 

measurement locations, stiffness damaged elements were detected correctly, 

however with respect to damping, some undamaged elements were falsely 

detected. 

 

Finally, in Section 9, in which the performance of sensitivity method was 

verified using experimental data, the following major findings were made: 

 

1. The proposed method was modified to identify the stiffness parameters with 

the mode shapes instead of the accelerations.  

 

2. The stiffness parameters identified by the proposed method were similar to 

those estimated by the classical stiffness matrix formulation based on the mass 

matrix, mode shapes, and natural frequencies.  

 

3. The similar mode shapes to the measured mode shapes were reproduced by the 

proposed method.  
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10.3 ORIGINALITY OF THIS WORK 

There are three original aspects of this study. First, two new NDE techniques 

which can identify simultaneously both stiffness and damping changes were developed. 

With the NDE techniques developed in this study, the damping damaged element could 

be located and estimated in addition to the stiffness damaged element, while all current 

NDE techniques conducted to date can detect only stiffness damage. Second, the current 

baseline structure-identification technique was extended to include modal damping 

values. Current methods identify only the stiffness parameters using changes in the 

natural frequencies. However, in this study, the damping characteristics of the baseline 

structure were also identified using changes in the modal damping values. Finally, the 

damping damage model was proposed for a beam structure subjected to the assumption 

that the damping of the undamaged structure was modeled as proportional damping.  

 

10.4 CONTRIBUTION OF THIS WORK 

The damaged elements in the structure may be localized at an earlier stage with the 

NDE techniques developed in this study and, consequently, premature structural failure 

may be avoided at an earlier stage. Certainly, the correction of the damaged element 

when damage is very small may result in a significant reduction in repair costs and the 

other unwanted consequencies of failure. In addition, the result of this study can be 

extended to the problem of estimating the integrity of dampers that have been 

incorporated to control the motion of critical structures such as bridges.  

 

10.5 FUTURE STUDY 

On reviewing the findings in this work, future research may be directed in the 

following areas: 

1. Improvement in the method such that the location and the severity of the 

damaged can be estimated  when measurement points are sparsely spaced; 
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2. Improvements in the method that lead to practical estimates of the identified 

stiffness and damping changes; 

 
  

3. Improvements in the method such that the proposed method are robust to 

noise; and 

 

4. Development of damping damage models for more complicated structures (e.g., 

plates, shells, trusses, and frames). 
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