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ABSTRACT 

 
Bayesian Prediction of Modulus of Elasticity of Self Consolidated Concrete. 

(December 2007) 

Chandan Bhattacharjee, B.Tech., Banaras Hindu University, India 

Co-Chairs of Advisory Committee:        Dr. Paolo Gardoni 
Dr. David Trejo 

 
 
 

Current models of the modulus of elasticity, E , of concrete recommended by the 

American Concrete Institute (ACI) and the American Association of State Highway and 

Transportation Officials (AASHTO) are derived only for normally vibrated concrete 

(NVC).  Because self consolidated concrete (SCC) mixtures used today differ from NVC 

in the quantities and types of constituent materials, mineral additives, and chemical 

admixtures, the current models may not take into consideration the complexity of SCC, 

and thus they may predict the E  of SCC inaccurately.  Although some authors 

recommend specific models to predict the E  of SCC, they include only a single variable 

of assumed importance, namely the compressive strength of concrete, cf ′ .  However 

there are other parameters that may need to be accounted for while developing a 

prediction model for the E  of SCC.  In this research, a Bayesian variable selection 

method is implemented to identify the significant parameters in predicting the E  of SCC 

and more accurate models for the E  are generated using these variables.  The models 

have a parsimonious parameterization for ease of use in practice and properly account 

for the prevailing uncertainties.  
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1      INTRODUCTION 

Self consolidated concrete (SCC) is a unique concrete proportioned to flow into 

formwork corners and between reinforcement under its self weight without the need for 

external vibration and consolidation during concrete placement.  The ease of placement 

results in reduced labor, the adequate compaction ensures quality and durability of the 

concrete, and the speed of placement results in increased production efficiency.  

Although the material costs of SCC are higher as much as 7% (Ouchi et al. 2003) due to 

costs of admixtures and quality control, labor costs can be reduced by 33% (Ouchi et al. 

2003), thus reducing the total cost.  Because of its desirable characteristics, many 

countries like Japan, the European Union and United States of America have begun 

adopting SCC in concrete construction.  Due to this increased use of SCC, it is important 

to better estimate the critical properties of this material for a safe analysis and design.  

One of the critical parameters is the modulus of elasticity, E , of concrete.  For example, 

this parameter is used to find deflections of structures for serviceability requirements and 

in seismic analysis and design for deformation and drift calculations.  The E  is also 

used in prestressed concrete design for calculating elastic shortening of concrete, creep 

loss, increase in prestressing steel strain and prestressing force in members of 

indeterminate frames. 

 

 

 

____________ 
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A literature review reveals that the models for predicting E  recommended by ACI, 

AASHTO and 7 other authors (see Table 1) have been developed based on tests from 

normally vibrated concrete (NVC).  Because SCC mixtures used today differ from NVC 

in the quantities and types of constituent materials, mineral additives, and chemical 

admixtures, the current models do not take into consideration the complexity of SCC and 

are not accurate in assessing E  of SCC. 

 

Table 1. Current models for predicting E  of NVC and SCC 

Author Model (SI units. MPa) Model (US units, psi) 
Models for NVC   
ACI 318 (2005) ( ) 5.04730 cfE ′=  ( ) 5.0000,57 cfE ′=  

AASHTO (2006) cfλKE ′= 5.1
10.043   cfλKE ′= 5.1

133   

Ahmad and Shah (1985) ( ) 65.05.251038.3 cfλE ′××= −  ( ) 65.05.2
cfλE ′=  

Jobse and Moustafa 
(1984) ( ) 5.05.1103.0 cfλE ′=  ( ) 5.05.15.275 cfλE ′=  

ACI 363R-1992 ( ) 68903320 5.0 +′= cfE  ( ) 65.0 10000,40 +′= cfE  

CEB-1990 ( ) 3/18000,10 +′= cfE  ( ) 3/11160000,276 +′= cfE
 

Jensen (1943) 
cfE ′+

=
8.131

41380  
cfE ′+

×
=

20001
106 6

 

Guitierrez and Canovas 
(1995) 

3 8340 cfE ′=  3 185,230 cfE ′=  

Cook (1989) ( ) 315.05.251022.3 cfλE ′××= −  ( ) 315.05.2
cfλE ′=  

Models for SCC   
Persson (2001) ( ) 5.03700 cfE ′=  ( ) 5.0554,44 cfE ′=  

Felekoglu et al. (2007) ( ) 8.01570 cfE ′=  ( ) 8.04248 cfE ′=  
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A new model is needed for predicting the E  of SCC that is accurate and properly 

accounts for the prevailing uncertainties.  Although some authors (Persson 2001; 

Felekoglu et al. 2007) recommend models for predicitng E  of SCC (see Table 1), they 

do not attempt to identify any potential variable other than cf ′ .  A literature review 

indicates that there are other potential parameters such as water-cement ratio, cement to 

aggregate ratio, aggregate type, curing time and temperature, quantity and amount of fly 

ash, amount of silica fume, blast furnace slag, limestone filler, superplasticizers, air-

entraining agents and water reducing agents that may need to be accounted for in 

developing an accurate prediction model for E  of SCC.  Therefore, there is a need to 

identify these variables using a standard selection procedure, and then develop an 

accurate model for predicting the E  of SCC considering these critical variables.  Also, 

the current models for predicting E  are not dimensionless.  Therefore, there is a need to 

derive a model that is dimensionless in its parameters and variables so that it can be used 

in any system of units. 

In this study, Bayesian variable selection method (Brown et al. 1998; Chipman et al. 

2001) is used to select the informative variables from a large set of candidate variables 

by comparing the posterior probabilities of competing models containing different 

subsets of variables.  In addition to the more systematic Bayesian variable selection 

method, a second more intuitive method of analysis, called the method of stepwise 

addition of variables, is also considered in this research.  This method explores the 

relationship of a particular independent variable to a dependent variable based on the 

potential trend in the scatter plot between the two variables.  After identifying a model 
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that is both accurate and parsimonious (with as few parameters as possible), a regression 

analysis is carried out to assess the values of the unknown regression parameters.  

Finally, the accuracy of the developed predictive model is validated using a subset of 

data not used for the parameter estimation. 

This thesis has four sections.  After this introduction, the parameters that can affect 

the modulus of elasticity are discussed.  Next, the theory of the Bayesian variable 

selection method is summarized.  The following section describes the proposed model, 

the analysis procedure and the results of this study. Finally, the last section draws some 

conclusions. 
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2 PARAMETERS THAT MIGHT AFFECT THE MODULUS OF 

ELASTICITY 

A thorough literature review shows that there are many parameters other than cf ′  that 

might be important in predicting E .  These parameters are broadly classified as 

constituent materials, SCMs and chemical admixtures. 

2.1 Constituent materials 

Several researchers have found that water cement ratio ( cw / ) is an important parameter 

in predicting E .  Based on data on NVC, Abram (1918), Asselanis and Tajirian (2005) 

and Felekoglu et al. (2007) showed that cw /  is inversely proportional to E .  Thus cw /  

may be an important parameter for predicting E  of SCC.  While for NVC a prediction 

of E  only based on crf ′  (also inversely proportional to cw / ) is adequate, considering 

the complexity of SCC with respect to NVC, crf ′  alone may not be sufficient to predict 

E  with the same accuracy as for NVC. 

The cement to aggregate ratio is another variable that may influence E .  

Suwanvitaya et al. (2006) found that in NVC, E  increased by over 100% with the 

increase in aggregate volume, keeping the cw /  constant.  Because cement to aggregate 

ratio is an important parameter in predicting E  for NVC, it might also be an important 

parameter for SCC. Although its inclusion in the model for NVC was not essential, it 

might be necessary to include it in the model for SCC, considering the complexity of 

SCC with respect to NVC.  Thus the cement to aggregate ratio should also be considered 

as a candidate variable in predicting E . 
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Other studies have shown that the type of aggregate used also affects the E .  

Turkmen and Kantarci (2006) found that when normal aggregate is replaced in SCC by 

expanded perlite aggregate (EPA) by 5, 10 and 15 percent, the crf ′  is reduced by 1, 3 and 

7 percent respectively.  Aitcin and Mehta (1990) found that using diabase and limestone 

aggregates produced concretes with significantly higher E  and crf ′  than those using 

granite and river gravel.  Sengul et al. (2002) prepared concrete mixtures with four 

different types of aggregates (Triassic crushed limestone, Devonian limestone, sandstone 

and basalt) and six classes of concrete (ranging from 2610 psi to 13,053 psi).  Sengul et 

al. found that for low strength concretes Triassic limestone provides the highest crf ′ , and 

for high strength concretes basalt aggregate leads to the highest crf ′ .  Thus specific types 

of aggregates may have a significant effect on crf ′  and, consequently, on E . 

The work of other researchers suggests that curing temperature may also be a 

significant parameter in predicting E , but not curing time.  Brunner (2005) studied SCC 

mixtures manufactured with varying cw /  (0.45, 0.55, and 0.65) and air void contents, 

and subjected to different curing times (none, 24 hours, 48 hours, 6 days and 90 days) at 

100% relative humidity and 23 °C.  The specimens were then stored at 20 °C and 65% 

relative humidity.  Brunner found that the influence of curing times on E  is practically 

negligible.  Stegmaier (2005) investigated the influence of curing temperatures on the 

mechanical properties of SCC using a hot air method of curing for 3 days.  Stegmaier 

found that curing temperature hardly affects the E  of SCC with low cw / .  However, for 
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SCC with high cw / , E  decreases with increasing curing temperatures.  Thus curing 

temperature may be an important parameter in predicting E . 

2.2 SCMs and fillers 

A literature review shows that fly ash quantity may have significant effect on E .  Naik 

and Ramme (1989) found that concrete with 20% and 40% replacement of the cement 

with Class C fly ash gained 11% and 26% more crf ′  at 28 days compared to the mixtures 

without fly ash replacement.  Similar effects can be expected on E .  Similarly, 

Hammons and Smith (1990) found that the early age (14 days) crf ′  and E  increased 

with increasing proportions of Class C fly ash.  Lane and Best (1982) reported that the 

crf ′  and E  of concrete with Class F fly ash is lower at early ages and slightly higher at 

later ages compared with similar concretes without fly ash.  These studies show that fly 

ash has a direct relationship with E . 

Other experimental data on SCC suggest that silica fume may be another important 

parameter in predicting E .  Bentur and Goldman (1989) found that there is up to 25% 

increase in the 28-day crf ′  when 10% silica fume is added to the concrete mixture.  

Larrard (1989) experimented with four types of mineral additives (limestone filler, 

limestone ultrafine filler, siliceous ultrafine fillers and silica fume), and found that the 

use of silica fume is responsible for the highest increase in crf ′ .  Thus silica fume is 

expected to have an effect also on E . 

Research also shows that blast furnace slag could be another variable of significance 

in predicting E .  Kaufmann et al. (2004) found that when 30% ultrafine cement (50% 
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OPC + 50% blast furnace slag) is added to 70 % OPC, there is an increase of 47% in the 

crf ′  compared to the crf ′  of the concrete with 100% OPC.  Swamy and Bouikni (1990) 

found that 50 to 65% replacement of cement with slag produces similar crf ′  as OPC 

concrete at 3 and 7 days.  This shows that the use of blast furnace slag has an effect on 

crf ′  and likely on E . 

Other studies also show that limestone fillers may also have an important effect on 

E .  Zhu and Gibbs (2005) found that the crf ′  of SCC mixes containing limestone and 

chalk powders were 60 to 80% higher at 7 days and 30 to 40% higher at 28 days, 

compared with the corresponding values for NVC.  Bosiljkov (2003) found that the 

addition of filler improves the 28-day crf ′  of concrete mixes due to improved fine-

particle packing.  Thus limestone fillers may affect crf ′  and possibly E . 

2.3 Chemical admixtures 

Several researchers found that superplasticizers may be a significant variable in 

predicting E .  Sahmaran et al. (2006) concluded that the use of polycarboxylic ether, 

modified polycarboxylate and melamine formaldehyde superplasticizers increase the 28-

day crf ′  by 15%, 25% and 21% compared to control concrete without any 

superplasticizer.  Malhotra (1981) conducted similar experiments and found that the 28-

day crf ′  of a concrete mixture with melamine formaldehyde condensate and naphthalene 

condensate superplasticizers are 11% and 18% more than the 28-day crf ′  of a control 

mixture with no superplasticizer.  The corresponding values are 18% for naphthalene 

condensate and 6.5% for sulphonated polymer.  Swamy (1989) found that when 2% 
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superplasticizers (by weight of binder) is added to a concrete with 50% fly ash 

replacement, the concrete achieves 50% of the 28-day crf ′  in 3 days and 70% of the 28-

day crf ′  in 7 days.  Siebel (1989) performed experiments with superplasticizers based on 

melamine and naphthalene sulphonates.  He found that the crf ′  of the concretes with 

superplasticizers are 12% higher compared to the concretes without superplasticizers.  

These studies show that the addition of superplaticizers have an effect on crf ′ .  Similar 

effects can be expected for E . 

Other studies suggest that water reducing agents may also have an effect on E .  

Agarwal (2003) performed experiments with a water reducing agent made from creosote 

oil.  He found that when this reducing agent is added at a proportion of 0.6% by weight 

of cement, the 28-day crf ′  of the concrete is increased by 11%.  Artigues et al. (1990) 

studied the influence of carboxylic polymer based water reducing agent and found that 

when this admixture is added at 0.7% of the cement weight, there is an average increase 

in 28-day crf ′  by 17%.  These results show that water reducing agents may be another 

important parameter in predicting crf ′  and E . 

Some studies also showed that air entrainment may be an important parameter in 

predicting E .  Ernzen and Carrasquillo (1992) found that the addition of 3% air 

entrainment can be associated with a decrease of 1% in crf ′ .  Ansari et al. (2002) 

concluded that, due to the creation of larger air bubbles, concretes produced with the 

synthetic air entraining admixtures, in general, exhibit lower values of crf ′  than those 
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produced with vinsol resin agents.  These studies show that air entrainment is a 

parameter that might be important in predicting crf ′  and similarly E . 
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3 BAYESIAN VARIABLE SELECTION 

Bayesian variable selection (Brown et al. 1998; George and McCulloch 1997) is a 

statistical approach for selecting a subset of important variables from a larger set of 

candidate ones by comparing the posterior probabilities of competing models containing 

different choices of the variables. The advantages of this method compared to other 

selection methods are: 

1) Accountability of uncertainty related to models and parameter values; 

2) Ability to incorporate prior information in the form of expert opinion or previously 

collected data;  

3) Ability to assess the joint effect of the predictors on the response variable and 

4) Flexibility of allowing the sample size to be smaller than the number of available 

variables. 

An excellent review monograph on Bayesian variable selection methods has been 

prepared by Chipman et al. (2001). Let Y  be the 1 n×  vector of response variables, 

where n  is the number of observations, and let 1X , 2X ,…, pX  be the corresponding 

1 n×  vectors of the independent variables (potential variables of significance in 

predicting Y ).  The present analysis aims at modeling the relationship between Y  and a 

subset of 1X , 2X ,…, pX , where there is uncertainty about which X ’s to include in the 

model.  A normal linear model relates Y  to 1X , 2X ,…, pX  as: 

ε+= XθY  (1)
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where ε  is a Gaussian random variable with zero mean and variance 2σ  and where 

( , )σ=Θ θ  denotes the unknown model parameters,. 

In formulating the model, it is convenient to use a suitable transformation of the 

physical quantity of interest to justify the following assumptions: (a) the model variance 

2σ  is independent of pXXX  ,... , 21  (homoskedasticity assumption), and (b) ε  follows a 

normal distribution (normality assumption).  It may be explored which transformation is 

most appropriate by checking diagnostic plots of the data or the residuals against model 

predictors or individual regresses (Rao and Toutenburg 1997). 

The variable selection problem arises when there is some unknown subset of the 

predictors with regression coefficients so small that it would be preferable to ignore 

them.  Let each of the p2  possible subset choices among the s'X  be indexed by the 

vector γ  defined as 

( )′= pγγγ  ,,, 21 Kγ  (2)

where 0=iγ  or 1 according to whether iθ  is small or large, respectively.  Let 1γq ′= γ  

denote the size of γ , that is the number of components equal to 1.  The distribution of 

interest in the Bayesian formulation can be written as 

( ) ( ) ( )
( ) ( )γγY

γγYYγ
pp

ppp
∑

=
|

||  (3)

where Θγ|ΘγΘYγ|Y dppp )(),|()( ∫= .  The term )(γp  is called the model space 

prior, )( γ|Θp  is called the parameter prior, )( γ|Yp  is the marginal likelihood, and 

)( Y|γp  is the posterior probability. An obvious choice for model selection is to choose 
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the most probable γ , that is the model γ  that has the largest )( Y|γp .  Another option 

is to consider a set of models with high posterior probabilities.  In this context, marginal 

models can also be used for variable selection. A marginal model identifies variables 

that appear most often in a set of models with high posterior probabilities.  Prior 

specification and posterior calculations are discussed next. 

3.1 Selection of priors 

The problem is selecting a submodel of Eq. (1) as indexed by γ .  In the Bayesian 

formulation, the vector γ  induces a prior on the regression coefficients of the form 

( ) ( )2 2| , 0,pp N D RDσ σ= γ γθ γ  (4)

where R is the correlation matrix and γD  is a diagonal matrix with diagonal elements: 

( ) =
ii

Dγ iv0  when 0=iγ  

        iv1=  when 1=iγ  
(5)

Under prior (4), the marginal prior distribution of each component of θ  is given by 

( ) ( )( ) ( ) ( ) ( )iiiii vNγpvNγpp 1
2

0 ,0,01 σ+−=θ  (6)

that is a scale mixture of two normal distributions, and iv0  and iv1  are the two 

hyperparameters of the distribution.  The hyperparameters iv0  and iv1  are set small and 

large respectively so that when the data supports 0=iγ  over 1=iγ , then iθ  is small 

enough so that iX  will not be needed in the model.  Eq. (4) is then coupled with the 

inverse gamma prior as shown here 
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( ) ( ) ( )2 2| / 2, / 2p p IG ν νλσ σ= =γ  (7)

where ν  and λ  are the parameters of the inverse gamma prior.  This coupling makes the 

conditional distribution of θ  and 2σ  given γ  conjugate.  This allows for the analytical 

marginalization of θ  and 2σ  from 2 2 2 2( , , | ) ( | , ) ( | , ) ( | )p p p pσ σ σ σ=Y θ γ Y θ θ γ γ  to 

yield the following relationship: 

( ) ( ) ( ) ( ) 2/22/12/11 ν+−−−− ++′∝
nSνλRDDRDDp γγγγγXXγ|Y  (8)

 

where ( )( ) YXRDDXXXYYYS ′+′′−′=
−− 112

γγγ  (9)

The prior used for γ  is the Bernoulli prior, given by the expression: 

( ) ( )1 p qqp w w γγ −= −γ  (10)

where w  is the priori expected proportion of s'X  to be included in the model. 

3.2 Calculation of posterior probability 

Once the priors have been chosen, all the needed information for a Bayesian inference 

and decision is provided by the posterior probability.  Eq. (8) is used to compute: 

( ) ( ) ( ) ( )Y|γγγ|Yγ pppg ∝∝  (11)

The availability of such )(γg  can facilitate posterior calculation and estimation.  In 

general, this simply entails calculating )(γg  for every γ  and then summing over all γ  

values to obtain the normalizing constant.   
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In problems where p  is large and where the exact calculation of )( Y|γp  is not 

feasible, a stochastic search method is used for posterior inference.  In this method, the 

following sequence is simulated: 

( ) ( ) ( ) ,,, 321 γγγ … (12)

The sequence starts from an initial value ( )1γ  and proceeds by successive simulation 

from a probability kernel ( ) )|( jp γγ , and after sufficient iterations, converges to the 

posterior distribution )( Y|γp .  The posterior probability helps to identify those high 

probability γ , which are expected to appear more frequently.  Thus MCMC methods can 

be used to stochastically search for high probability models.  Metropolis Algorithm 

(Metropolis et al. 1953) is an important algorithm for constructing a kernel to simulate 

the sequence of Eq. (12).  The corresponding algorithm is: 

1. Simulate a value of *γγ =  by randomly changing one component of )( jγ ; 

2. Set *)1( γγ =+j  with probability ( )( ) ( )
( )( ) 








= 1,min|
*

*
j

jM

g
gα
γ
γγγ ; 

3. Else )()1( jj γγ =+ . 

In this paper, we have used the implementation of the methods given in Brown et. al. 

(1998) that exploits fast updating schemes that use QR decompositions. The related 

Matlab codes can be found at www.stat.tamu.edu/~mvannucci/webpages/codes.html. 
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4 APPLICATION OF BAYESIAN VARIABLE SELECTION 

 

In this section the Bayesian variable selection method described above is used to 

construct an accurate and parsimonious probabilistic model to predict E  of SCC. 

4.1 Database used for analysis 

Data for E  of SCC is collected from the following sources: Khayat et al. (1997), Khayat 

et al. (2001), Kim et al. (1998), Khayat et al. (2000), Khayat (2000), Markus (2000), 

Asselanis and Tajirian (2005) and experimental results from Texas A&M University.  A 

total of 275 data points are obtained.  Each data point gives the value of E  and of the 

independent predictor variables.  Tables 2 and 3 show the ranges of the variables in the 

collected data. 
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Table 2.  Ranges of variables used in this research 

Name of the variable Range 

Modulus of elasticity 3,031,287 − 7,112,795 psi 

Unit weight 2,102 – 2,425 kg/m3 

Total cementitious (binder) materials 300 – 650 kg/m3 

Fine aggregate 600 – 950 kg/m3 

Coarse aggregate 700 – 1,032 kg/m3 

High range water reducing agent 0.96 – 12.95 kg/m3 

Viscous modifying agent 0 – 0.075 % of cement 

Slump flow 389 – 750 mm 

Silica fumes 0 – 18 kg/m3 

Cement content 150 – 589 kg/m3 

Fly ash quantity 0 – 253 kg/m3 

Limestone powder quantity 0 – 200 kg/m3 

Blast furnace slag 0 – 236 kg/m3 

Set retarding agent 0 – 1.06 L/m3 

Compressive strength 4,177.1 – 16,918.2 psi 

Total aggregate content 1,300 – 1,982 kg/m3 
 

4.2 Analysis with collected data 

The collected data points are randomly divided in two groups, 2/3 of the data points are 

used in the variable selection process and to assess the resultant model.  The remaining 

1/3 of the data are used to quantify the accuracy of the developed model. Considering 

the non-negative nature of the E , the logarithmic variance-stabilizing transformation is 

selected among other possible transformations to generate a homoskedastic model.   
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Table 3.  Ranges of normalized variables used in this research 

Normalized variable Range 

Water / binder ratio 0.23 – 0.50 

Viscous modifying agent 0 – 0.075 % of 
cement 

Binder / aggregate ratio 0.18 – 0.39 

High range water reducing agent / cement 0.0059 – 0.0423 

Fly ash / cement 0 – 0.67 

Blast furnace slag / cement 0 – 1 

Limestone powder / cement 0 – 0.54 

Silica fumes / cement 0 – 0.058 

Fine aggregate / coarse aggregate 0.656 – 1.11 

Binder / coarse aggregate 0.36 – 0.76 

Binder / fine aggregate 0.36 – 0.86 
Slump flow ×unit weight / compressive 
strength 0.000144 – 0.000497 

Set retarding agent / cement quantity 0 – 0.00234 

 

Thus, the model is formulated as follows: 

( ) ( ) ( )0 1 1ln ln ... lnr r p pr r rY θ θ X Xθ σ ε= + + + +     nr  ,...,2,1 =  (13)

In formulating the model, the Y  and the X  are grouped in two alternate ways.  In the 

first group, a suitable combination of the variables are defined so that pXXX  ,..., , 21  and 

Y  are dimensionless and thus each model parameter pθθθ ,,, 21 K  is also dimensionless.  

This group is henceforth called the dimensionless group, and has the advantage that the 

finalized model can be used irrespective of the system of units.  In the second group, 

some of the elements of X  are dimensionless and some are not normalized and have 
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dimensions.  This group is henceforth called the mixed group.  The mixed group has the 

advantage of being more flexible and what can be selected for the predictive model, as 

the Bayesian variable selection process can select any important variable without 

limiting the choice on the dimensionless variables. 

In each of these groups, two classes of models are formulated.  One class includes 

only the independent variables without any square or cross term of the independent 

variables.  The second class includes the squares and cross terms.  After the selection of 

the significant variables is carried out for each class, a linear regression analysis is used 

to assess the reduced model for each class. 

4.3 Parameter choices 

The selection of parameters is important in this analysis as the values of the parameters 

justify the assumptions made.  The hyperparameter iv0  is set to 0 and iv1  is set to 5.  

Recommended choices for the parameter iv1  are in the range 0.1 to 10.  The parameter 

w  in the Bernoulli prior is set to 2, as the current models for E  generally contain 2 

variables.  For the inverse gamma prior, the parameter  λ  can be thought of as a prior 

estimate of 2σ , and has been chosen as 0.1 2
Yσ .  A vague specification of this inverse 

gamma prior is then obtained by setting  ν  to 2.  The choice R I=  is also made as this 

works well in practice. 

4.4 Results of analysis 

Summary of the finalized models from all groups is presented here.  The model selected 

for the dimensionless group without square terms or cross terms is: 
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( ) ( )
307.0

611.0
105.0

389.059874
−−







λ×






′=

a
bsf

b
wfE cr  (14)

where bw /  is the water to binder ratio by weight, where binder is a term collectively 

used for cement, silica fume, fly ash and blast furnace slag, sf  is the slump flow, λ  is 

the unit weight of the concrete and ab /  is the binder to aggregate ratio by weight. 

Model (14) was selected with the following procedure. First, the models selected by 

the Bayesian variable selection method are listed in descending order according to their 

posterior probability. Then, the best 10 of these models are compared according to their 

prediction performances, as described in the validation section below. Once the variables 

are selected, least squares estimates are used to compute the coefficients in Eq. (14). 

The proposed model relates the crf ′  to E  in contrast to the existing models (as in 

Table 1) which relate cf ′  to E . However, as the crf ′  values are generally higher than cf ′  

values, the predicted values of E  based on crf ′  would generally be non-conservative.  

The unknown parameters ( , )σ=Θ θ  of the selected model are also estimated using a 

Bayesian updating procedure.  This makes use of the importance sampling method 

proposed by Ditlevsen and Madsen (1996) and Gardoni (2002).  The sampling 

distribution is assumed Normal, centered in the MLE estimates and with covariance 

matrix given by the negative of the inverse of the Hessian of the log-likelihood of the 

data evaluated at the maximum-likelihood estimator.  Posterior means and standard 

deviations of the model parameters are reported in Table 4.  The accuracy of the model 

can be judged by the standard deviation of the model error, sigma, with lower values 

representing better accuracy. 
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Table 4.  Estimates of Θ  for dimensionless group without cross terms 

Correlation coefficient 
Parameter Mean Standard 

deviation 1θ  2θ  3θ  4θ  5θ  σ  

1θ  11.32 0.14 1      

2θ  0.56 0.08 −0.39 1     

3θ  −0.25 0.04 −0.52 0.76 1    

4θ  0.18 0.08 −0.21 0.98 0.67 1   

5θ  −0.24 0.03 0.38 −0.24 −0.08 −0.24 1  

σ  0.076 0.003 0.03 0.005 −0.01 0.01 0.01 1 

 

The accuracy of the model is also compared from the plot of predicted versus the 

observed values of E .  Such graphs have been drawn for predicted values using the 

models by all the authors in Table 1.  These graphs are shown in Figures 1, 2 and 3.  It 

can be noted that the models by Ahmad and Shah, Jobse and Moustafa, ACI 363R, CEB, 

Jensen, Guitierrez and Canovas, Cook and Persson underestimate the E  at higher 

values, whereas the model by Felekoglu overestimates the E  at higher values.  Also, the 

model by CEB overestimates the E  at lower values. The corresponding graphs for the 

proposed model are shown in Figure 4.  It can be noted that most of the points lie closer 

to the 1:1 line, and so the predictions by the proposed model are more accurate.  The 

σ±  bounds of the model are also drawn. It is found that most of the points in the graph 

lie between these two bounds, and thus the model is accurate.  The model in Eq. (14) is 

concise and so it can be used for quick calculation with good accuracy.  Because the 

terms in the model are dimensionless, the model can be used irrespective of system of 

units used. 



    22

 

3 4 5 6 7 8

x 10
6

3

4

5

6

7

8
x 10

6

Pauw
MAE = 6.7574

P
re

di
ct

ed
  E

 

Observed  E
3 4 5 6 7 8

x 10
6

3

4

5

6

7

8
x 10

6

ACI 318
MAE = 7.3315

P
re

di
ct

ed
  E

 

Observed  E

3 4 5 6 7 8

x 10
6

3

4

5

6

7

8
x 10

6

AASHTO
MAE = 6.7574

P
re

di
ct

ed
  E

 

Observed  E
3 4 5 6 7 8

x 10
6

3

4

5

6

7

8
x 10

6

Ahmad and Shah
MAE = 11.4715

P
re

di
ct

ed
  E

 

Observed  E

 

Fig. 1.  Graph of predicted versus observed values of E  from the models by Pauw, ACI 

318, AASHTO and Ahmad and Shah 
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Fig. 2.  Graph of predicted versus observed values of E  from the models by Jobse and 

Moustafa, ACI 363R, CEB and Jensen 
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Fig. 3.  Graph of predicted versus observed values of E  from the models by 

Guitierrez and Canovas, Cook, Persson and Felekoglu 
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Fig. 4.  Graph of predicted versus observed values of E  from the models proposed 

in this research 

 

The domain of search for the best model in case of the dimensionless group is 

restricted as the individual terms can be combined in only the patterns which make the 

combined term dimensionless.  So, the term sf is always associated with crf ′ .  Thus in 

the model in Eq. (14), the term sf is included, even though it is not an important 

parameter. 

 The model selected for the dimensionless group with square terms and cross terms 

is: 
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where aCb /  is the binder to coarse aggregate ratio by weight. 

It is expected (and will be shown in the validation section) that the model selected 

for the dimensionless group with cross terms is more accurate than the model selected 

without cross terms.  But the better accuracy is obtained as a compromise with the 

complexity of the model.  So, the model in Eq. (15) can be used for detailed calculation 

with requirements of better accuracy, and can be used irrespective of the system of units 

followed.  The estimates of the parameter ( , )σ=Θ θ  of the model are listed in Table 5.  

In the plot of the predicted versus the observed values as shown in Figure 4, the majority 

of the points lie within the σ± bounds, and closer to 1:1 line than the models in Table 1. 

So, the proposed model is accurate in predicting the values of E . 

 

Table 5.  Estimates of Θ  for dimensionless group with cross terms 

Correlation coefficient 
Parameter Mean Standard 

deviation 1θ  2θ  3θ  4θ  5θ  6θ  7θ  σ

1θ  11.7 0.14 1        

2θ  0.53 0.13 −0.03 1       

3θ  0.18 0.22 0.56 0.51 1      

4θ  0.15 0.12 0.07 0.98 0.47 1     

5θ  0.0001 1.72 0.09 −0.07 0.02 −0.08 1    

6θ  0.08 0.22 0.64 0.38 0.98 0.34 0.05 1   

7θ  0.22 0.14 −0.32 0.33 −0.12 0.33 −0.24 −0.26 1  

σ  0.075 0.14 −0.16 0.04 −0.10 0.03 −0.08 −0.23 0.16 1 
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The model selected for the mixed group without square terms or cross terms in SI 

units is: 

( )
219.0

383.0
308.0

4226
−−



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

′


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
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a
bf
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wE cr  (16)

The similar model in US customary units is: 

( )
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−−
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′


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b
wE cr  (17)

The estimates of the parameter ( , )σ=Θ θ  of the model are listed in Table 6.  The plot of 

predicted versus observed values of E  are shown in Figure 4.  Most of the points lie 

within the σ±  bounds, and closer to 1:1 line than the models in Table 1. So, the 

proposed model is accurate.  The domain of search for the best model in case of the 

mixed group is flexible, as the Bayesian variable selection method chooses models 

without any limitations.  It is noted that the term sf  is not selected in the model in Eq. 

(16) and Eq. (17), confirming that it is not an important parameter as discussed earlier in 

case of the model in Eq. (14).     

 

Table 6.  Estimates of Θ  for mixed group without cross terms 

Correlation coefficient 
Parameter Mean Standard 

deviation 1θ  2θ  3θ  4θ  σ  

1θ  11.41 0.04 1     

2θ  −0.31 −0.05 −0.43 1    

3θ  0.39 0.04 −1.02 0.70 1   

4θ  −0.21 −0.04 0.35 0.22 −0.05 1  

σ  0.076 0.04 −0.08 0.04 0.08 −0.06 1 
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The model selected for the mixed group with square terms and cross terms in US 

customary units is: 
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(18)

where b is the binder weight. 

The estimates of the parameter ( , )σ=Θ θ  of the model are listed in Table 7.  The 

plot of predicted versus observed values of E  are shown in Figure 4.  The majority of 

the points lie within the σ±  bounds, and closer to 1:1 line than the models in Table 1. 

So, the proposed model is accurate.  Similar to the observation in the dimensionless 

group, the model in Eq. (18) with cross terms is expected to be more accurate than the 

model in Eq. (16) and Eq. (17) without cross terms.  But the accuracy is at the cost of 

complexity of the model.  Thus the model in Eq. (18) can be used in detailed calculation 

with requirement for better accuracy. 
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Table 7.  Estimates of Θ  for mixed group with cross terms 

Correlation coefficient 
Parameter Mean Standard 

deviation 1θ  2θ  3θ  4θ  5θ  σ  

1θ  11.46 0.04 1      

2θ  0.11 0.04 −0.34 1     

3θ  0.13 0.04 0.76 0.30 1    

4θ  −0.17 −0.05 0.95 −0.05 0.91 1   

5θ  0.48 0.04 0.68 0.19 0.89 0.83 1  

σ  0.075 0.04 0.001 0.02 0.01 0.005 −0.001 1 

 

   

4.5 Validation of the models 

To facilitate the use in practice of a predictive model, the model needs to have a 

parsimonious parameterization (i.e., as few parameters as possible).  From a statistical 

point of view, a parsimonious model is also preferable in order to avoid loss of precision 

of the model due to inclusion of unimportant predictors and to avoid overfit of the data.  

The accuracy of a set of parsimonious candidate models can be assessed using the Mean 

Average Error (MAE) defined as: 

f

n

r
rrr

n

EEE∑
=

−
= 1

ˆ
MAE  (19)

where rÊ  is the predicted values of rE  for each data point in the 1/3 of the data that 

were not used to assess the models, and fn  is the number of observations from 1/3 of the 

data.  The MAE is a measure of the average relative error of the predicted values from 
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the observed values, and thus provides a measure of the accuracy level achieved by the 

model in predicting E .  In order to achieve a parsimonious model with acceptable 

accuracy, the competing models are also compared by two set of coefficients: Akaike 

information criteria (AIC) (Akaike 1974) and Bayesian information criteria (BIC) 

(Schwarz 1978), which measures the relative goodness of fit of the models by trading off 

the complexity of the model with the goodness of fit of the models.  Thus a model with 

the lowest values of AIC and BIC might be preferred.  The accuracy of the models 

proposed in this research are compared to the accuracy of the models in Tables 1 and 2 

using MAE, AIC and BIC values computed for the E  of each of those models.  The 

comparison for all the models is given in Table 8.  It can be seen that the MAE, AIC and 

BIC values for the 4 proposed models are lower than those of the other models 

indicating that the proposed models are more accurate than the other models.  The 

comparison of the values also indicate that the models with square and cross terms are 

more accurate than those without them as already noted in results of analysis section. 

 

 

 

 

 

 

 

 



    31

Table 8.  MAE, AIC and BIC values of various models 

Model MAE AIC BIC 

Jensen (1943) 16.86 3,014 3,017 

Pauw (1960) 6.757 2,856 2,861 

Jobse and Moustafa (1984) 16.11 3,027 3,032 

Ahmad and Shah (1985) 11.47 2,996 3,001 

Cook (1989) 18.10 3,046 3,051 

CEB-1990 11.47 2,894 2,896 

ACI 363R-1992 14.51 2,972 2,975 

Guitierrez and Canovas (1995) 15.53 2,989 2,992 

Persson (2001) 23.37 3,038 3,040 

ACI 318 (2005) 7.331 2,838 2,840 

AASHTO (2006) 6.757 2,856 2,861 

Felekoglu et al. (2007) 19.08 3,030 3,033 

Dimensionless model without cross terms 4.474 2,335 2,348 

Dimensionless model with cross terms 3.500 2,606 2,329 

Mixed model without cross terms 4.022 2,311 2,328 

Mixed model with cross terms 3.300 2,282 2,292 
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5 CONCLUSIONS 

 

In the present study, a Bayesian variable selection method is implemented on 275 data 

points to identify the variables of importance in predicting E  of SCC.  A linear 

regression analysis is done with the selected variables to derive models for predicting E  

of SCC.  Two groups of models are derived: the dimensionless group with dimensionless 

variables, and the mixed group with both dimensionless variables and variables with 

dimensions.  In each group, two classes of models are considered: without square or 

cross terms and with square and cross terms.  The following observations are made: 

1) The E  of SCC is related to more constituent variables such as 
b
w , 

a
b , 

aC
b  than is 

the E  of NVC. 

2) The models obtained for the dimensionless group can be used irrespective of the 

system of units followed. 

3) For each group of results, a model is proposed for quick calculation with good 

accuracy, and a detailed model is proposed with better accuracy. 
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