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ABSTRACT 

 

Reactivity and Stability of Platinum and Platinum Alloy Catalysts Toward the Oxygen 

Reduction Reaction. (December 2007) 

Sergio Rafael Calvo, B.S., Universidad Nacional de Ingenieria 

Chair of Advisory Committee: Dr. Perla B. Balbuena 

 

Density functional theory (DFT) is used to study the reactivity of Pt and Pt-M 

(M: Pd, Co, Ni, V, and Rh) alloy catalysts towards the oxygen reduction reaction (ORR) 

as a function of the alloy overall composition and surface atomic distribution and 

compared to that on pure Pt surfaces. Reactivity is evaluated on the basis of the 

adsorption strength of oxygenated compounds which are intermediate species of the 

four-electron oxygen reduction reaction, separating the effect of the first electron-proton 

transfer from that of the three last electron-proton transfer steps.  

It is found that most homogeneous distribution PtxM catalysts 

thermodynamically favor the dissociation of adsorbed OOH in comparison with pure 

Platinum and adsorb strongly O and OH due to the strong oxyphilicity of the M 

elements. On the other hand, in all cases skin Platinum surfaces catalysts do not favor 

the dissociation of adsorbed OOH and do favor the reduction of M-O and M-OH with 

respect to Platinum. Considering the overall pathway of the reactions to catalyze the 

ORR most of the skin Platinum monolayer catalysts provide more negative free energy 

changes and should behave at least in a similar way than Platinum in following order: 

Pt3V (skin Pt) > Pt3Co (skin Pt) > Pt3Ni (skin Pt) > Pt > PtPd (skin) > Pt4Rh (skin Pt) > 

PtPd3 (skin ). In all cases, the reactivity is shown to be not only sensitive to the overall 

composition of the catalyst, but most importantly to the surface atomic distribution.  

Proposed electrochemical dissolution reactions of the catalyst atoms are also 

analyzed for the ORR catalysts, by computing the free energy changes of Platinum and 

bimetallic Pt-X (X: Co, Pd, Ni, and Rh) catalysts. It is found that Platinum is 

thermodynamically more stable than Pt-alloys in Pt3Co, Pt3Pd, Pt3Ni and Pt4Rh.   
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CHAPTER I 

INTRODUCTION  

 

In the last decades a necessity to reduce and eradicate high levels of 

contamination in the environment has raised the development of the so-called clean 

technologies. Among these alternative technologies fuel cells have emerged as 

promising alternative sources of energy that can eventually replace the use of internal 

combustion engines. Fuel cells operate on the basis of electrochemical reactions that 

convert chemical energy coming from fuels such as hydrogen, methanol, gasoline, etc. 

into electricity. Fuel cells today are certainly much more than simple curiosities of 

laboratories, and although they still need some improvements in the selection of the 

materials and design for practical operation, they constitute a real alternative for the 

replacement of internal combustion engines. That is the reason why the automobile 

industry and the energetic sector have shown interest in their development in the last 

decades.       

In 1839 Sir William Grove who is known as “father of the Fuel Cell” undertook a 

series of experiments discovering the possibility of the production of electric current 

from electrochemical reactions of hydrogen and oxygen. However, he also raised 

questions about the production of heat and "novel gaseous and liquid products", 

questions that he could not answer with the equipment and theory available to him. 

These questions became puzzles for later researchers to solve. Grove verified that the 

oxidation of hydrogen in the negative electrode (anode) combined with the reduction of 

oxygen in the positive electrode (cathode) generate electric current. The experiments of 

Grove showed the inter-convertibility between the chemical energy from a fuel and the 

electric energy, without going through an intermediate process of combustion, which 

involve a low efficient mechanism that converts thermal energy into mechanical energy. 

In fuel cells the chemical energy of the fuel is converted directly to  electric  current  and  

  ____________ 
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Figure 1.1. Schematic representation of a hydrogen-air fuel cell operation  

 

the efficiency can reach values in the order of 60 to 70%. 

 

Figure 1.1 shows a schematic representation of a hydrogen-air fuel cell operation. 

This device is conceptually simple; an individual fuel cell is constituted by two 

electrodes that are separated by an electrolyte. This electrolyte allows the flow of ions 

but not electrons. In the negative electrode (anode) the oxidation of the fuel takes place; 

the fuel can be hydrogen, methanol or gasoline and in the positive electrode (cathode) 

the reduction of the oxygen from the air takes place. The overall reaction is given by: O2  

+  4e-  +  4H+  ↔  2H2O. The H+ ions migrate through the electrolyte while the electrons 

(e-) flow from the anode to the cathode through an external circuit. Each of these cells 

generates a voltage close to one volt; for applications that require more voltage a series 

of fuel cells is stacked.  

Anode Cathode
Electrolyte

Hydrogen Oxygen

Water

Anode Cathode
Electrolyte

Hydrogen Oxygen

Water
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There are different types of fuel cells; they are usually characterized by their 

electrolyte, operating temperature, transported ion and fuel. Table 1.1 lists a summary of 

the most important characteristics of different types of fuel cells.  

 

Table 1.1  

Summary of electrolyte materials, operating temperature, fuel (transported ion), 

advantages and disadvantages of common fuel cell types 

Fuel Cell Type Electrolyte Operating 
temperature 

Fuel 
(Ion) 

Advantages Disadvantages 

Polymer 
electrolyte 
membrane fuel 
cell  
(PEMFC) 

Cation 
conducting 
polymer 

membrane 

60 – 100 ºC H2 

(H+) 
Low 
temperature, 
solid 
electrolyte 
and low 
corrosion 

Require 
expensive 
catalyst and pure 
H2 

Direct 
methanol fuel 
cell 
(DMFC) 

Cation 
conducting 
polymer 

membrane 

60 – 100 ºC CH3OH 
(H+) 

Liquid fuel Poor fuel 
utilization 

Phosphoric 
acid fuel cell  
(PAFC) 

Molten 
phosphoric 

acid 
(H3PO4) 

175 – 200 ºC H2 

(H+) 
High 
efficiency 
(85%), 
impure H2 
can be used 

Low electric 
current and high 
size and weight 

Alkaline fuel 
cell  
(AFC) 

Aqueous 
alkaline 
solution 

(e.g. KOH) 

90 – 100 ºC H2 

(OH-) 
Fast cathode 
reaction  

CO2 emissions 
and fuel 

Molten 
carbonate fuel 
cell  
(MCFC) 

Molten 
alkaline 

carbonate 
(e.g. 

NaHCO3) 

600 – 1000 ºC H2 
(CO3

2-) 
Advantages 
related to 
the high 
temperature 

corrosion 

Solid oxide 
fuel cell  
(SOFC) 

O2- 
conducting 

ceramic 
oxide (e.g. 

Y2O3-
stabilized 

ZrO2) 

800 – 1000 ºC H2 
(O2-) 

Solid 
electrolyte 
reduce 
corrosion 

Hard to operate 
due to high 
temperature 
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Among all types of fuel cells, the PEMFC is the most advanced for applications, 

but there are still issues to be solved before the PEM fuel cells can successfully compete 

with conventional technologies. Probably the most important outstanding technological 

challenge is the slow kinetics in the cathode reactions, and catalysts durability and 

lifetime, which have not yet been solved completely. Furthermore, the current price of 

both catalysts and the electrolyte materials are too high for competitiveness with 

conventional technologies. 

Due to its importance, a large amount of experimental [1-10] and theoretical [11-18] 

work has been reported in recent years, however because of its complexity the complete 

understanding of the reaction mechanism remains unclear.  Alloy catalysts have been 

proposed and tested with various degrees of success. For example, it has been 

demonstrated that the use of alloys such as Pt-Pd, Pt-Fe, Pt-Ni, Pt-Co, and Pt-Cr leads to 

an enhancement in the activity of the oxygen reduction on the fuel cell cathode 

compared with pure platinum. [2-4; 19-22] Stamenkovic et al. [23] evaluated the ORR on 

polycrystalline Pt3Ni and Pt3Co alloys in acid electrolytes using the rotating disk 

electrode (RRDE) method. They found that in the temperature range of 293 < T < 333 K 

the activity increases in the order of: Pt3Ni > Pt3Co > Pt. Catalytic enhancement of Pt3Ni 

and Pt3Co vs. Pt is attributed to the inhibition of Pt-OHad formation on Pt sites 

surrounded by oxide covered Ni and Co atoms beyond 0.8 V.   

Additional information were collected in studies of ORR activity using electrode 

catalysts that do not contain Pt., Min-Hua Shao et al. [24] found that Pd-Fe alloy 

nanoparticles have a very high ORR activity. Similar results were reported for Pd-Co [25] 

and Pd-Co-Au [26] catalysts. A relationship has been found between the electrocatalytic 

activity and the Pd-Pd bond distances, which is related to the electronic structure through 

changes in the orbital overlap that alter the d-band center, thus determining surface 

reactivity. They observed an interesting correlation between the current density at 0.85 V 

and the Pd-Pd distances. A higher activity was found for a 2.73Å Pd-Pd bond distance, 

which corresponds to Pt3Pd. It is also pointed out that the value of the Pd-Pd distance for 

any of the used composition highly depends on the method used in the catalyst 
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preparation. Myoung-ki Min et al. [27] also investigated the origin of the enhanced 

activity of the ORR using Pt-based binary alloys of Pt3Co, Pt3Cr, and Pt3Ni. According 

to cyclic voltammetry and X-ray adsorption near-edge structure (XANES) analyses, the 

electrocatalytic activity was related to the adsorption strength of the oxygen 

intermediates on the Pt surface, which is apparently favored by reduced Pt-Pt bond 

distances. It was also found that Pt-based alloy catalysts showed significantly higher 

specific activities than Pt catalyst with the same surface area.  

In general, most of the studies [28-32] indicate that the enhancement of the 

electrocatalytic activity for the ORR on Pt-Co and Pt-Ni alloys may be attributed to the 

modification of the electronic structure, which is reflected on the increase of the 5d 

orbital vacancies, changes in the physical structure of Pt (Pt-Pt bond distance and 

coordination number), and on the adsorption strength of oxygen-containing species from 

the electrolyte onto Pt or the alloying element.  Toda et al. [33] on the other hand, show 

some disagreement with the previous cited statements related to the ORR enhancement 

in some bimetallic alloys. They found an enhancement of the electrocatalytic activity of 

Pt by alloying with Fe. It was observed a maximum activity at ca. 50% Fe content (25 

times higher activity than pure Pt). They also observed the formation of a skin Pt surface 

in the bulk catalyst (< 1nm in thickness). These results showed some discrepancy with 

other works. For example, Jalan and Taylor [34] claimed that the enhancement of the Pt 

catalytic activity is due to the reaction results from the shortening of Pt-Pt distances. In 

the same way Appleby [35] shows a volcano type behavior in the relationship between the 

electrocatalytic activity and the adsorbed bond length. The lattice contraction due to 

alloying was shown to result in more favorable Pt-Pt distances for the dissociative 

adsorption of molecular oxygen, while maintaining the favorable electronic properties of 

Pt. Mukerjee and Srinivasan [31] supported the view of favorable Pt-Pt distances, but 

found no electronic structure changes on binary alloys in PEFCS. Toda suggests the 

enhancement in terms of the 5d-vacancy of the surface, but not by the interatomic 

distance or roughening of the surfaces. The increased d-vacancy of the Pt in the 

electrode surface, brought about by alloying, must bring about a strong metal-oxygen 
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interaction. Such strong interaction will cause an increase of the adsorbed O2-, a 

weakening of the O-O bond and an increase in its length, resulting in fast bond scission 

and/ or a new bond formation between the O atom and H+ in the electrolyte. 

In order to achieve a better understanding of the ORR, results from experiments 

must be also interpreted with thermodynamic principles analyses. Fernandez et al. [26] 

proposed guidelines for the design of bimetallic catalysts for the oxygen reduction 

reaction (ORR) in acid media. Assuming that the ORR starts with an initial dissociative 

chemisorption [36] (equation 1.1); involving the splitting of the O-O bond to form 

adsorbed oxygen atoms, followed by the four electron reduction of the metal oxide to 

water (equation 1.2),  

 
O2  +  2M   →   2MO         (1.1) 

2MO  +  4H+ +  4e-   →   2H2O  +  2 M      (1.2) 

 
They reported the standard potential for reaction (1.2) versus the Gibbs free 

energy for reaction (1.2). From this analysis, it is inferred that metals that favor the bond 

cleavage of molecular oxygen, stabilize the metal oxide. And from tabulated data [37; 

38] of the free Gibbs energy of the formation of metal oxide versus the standard 

potential for the reduction of metal oxide to water, metals that form less stable M-O 

bonds are easier to reduce to water. It is proposed to couple a good oxygen bond 

cleaving metal (M) with a second metal (M’) that adsorbs atomic oxygen weakly so this 

can be easily to reduce to water. It is also pointed out that since most of the metal oxide 

with lower Gibbs free energy for reaction (1.1) and standard potential for reaction (1.2) 

dissolve rapidly in acidic solutions, especially in the presence of molecular oxygen, they 

should be alloyed into a stable phase to avoid dissolution under real conditions. Another 

point to have in mind is the metal miscibility because some of them are not miscible 

under normal conditions.   

Besides important insights about the ORR from experimental works, the 

complete understanding is not yet available due to the complexity of this process. In 

recent years the use of computational chemistry has raised as an alternative tool to 
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explain and analyze the complex thermodynamic of the surface reaction catalysts, 

especially on Pt and Pt-based bimetallic catalysts. At the same time, these theoretical 

publications have been successfully supported by experiments. [12; 13; 15; 21; 22; 39]   

Xu et al. [18] correlated the atomic and molecular binding energies on Pt3Co, 

Pt3Ni, Skin Pt on Pt3Co, and Skin Pt on Pt3Fe and the activation energy differences of 

the dissociation of molecular oxygen and the formation of hydroxyl finding that weaker 

atomic adsorption on the catalyst surface facilitates the O-H bond formation but makes 

the O-O bond breaking more difficult. They also correlated the binding energies of 

atomic oxygen with the d-band center. They proposed that an alleviation of poisoning by 

O and enhanced rates of reactions involving O may be some of the reasons why Pt skins 

are more active for the ORR in low temperature fuel cells. Minhua Shao et al. [40] also 

showed a volcano type dependence between the measured ORR activity of Pt or Pd 

monolayers supported on many different noble metal single crystals and their calculated 

d-band center and the atomic oxygen binding energy using DFT calculations. 

The continuous search for more active and less expensive ORR catalyst than Pt 

also includes the search for more stable Pt alloy catalysts. Although metals such as Pt, 

Pd, Rh, Co, and Ni have been extensible used as electrodes for the ORR, few 

investigations has been directed to analyze the dissolution of these metals in acid 

medium. Recent investigations [41] [9; 33; 42; 43] have found that Pt and another important 

metal alloys are not completely inert in non-complexing acids. This process is not also 

affected by the concentration of the active species, the agitation of the electrolyte and the 

electrolyte temperature but also the applying potential which lead to passivation and 

repassivation of the electrodes.  The dissolution of the metal electrode is also expected to 

be accompanied by changes in the surface morphology and composition. 

It was found that in wet cells after the catalysts have been briefly immersed in an 

acid electrolyte, a skin consisting of a monolayer of pure Pt forms on the surface of the 

Pt alloys. These results indicate the dissolution of the metal from the cathode catalyst 

during the cell operation. Recent studies on the catalytic activity and stability of 

supported Pt–Co alloys with well-defined structures by Watanabe et al. [41]  
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demonstrated that both Co and Pt dissolve out preferentially from small-size alloy 

particles and Pt re-deposits on the surfaces of large-size ones in hot H3PO4. As a result, 

an alloy with a disordered crystallite structure, which is more corrosion-resistant than an 

ordered one, maintains higher electrocatalytic activity for a longer time due to the active 

alloy surfaces with a relatively large surface area. It was also found that a fine Pt alloy 

catalyst is covered with a pure Pt skin under the practical operation conditions in 

PEMFCs [41]. Thus, it is important to examine the electronic–structure changes of alloy 

surfaces during the catalytic life as a possible factor for the enhancement in combination 

with the surface composition.  

Therefore, although the mechanism of the ORR has been the main topic to 

researches debating how the oxygen adsorption and dissociation takes place in the 

catalyst, and how the use of Pt alloys can change and enhance the activity of the ORR, 

there is also a new question that is raised regarding the stability of the catalyst in the 

presence of the electrolyte. Over time, fuel cell performance decreases, and it is believed 

that this is because the platinum dissolves away, resulting in a decrease of the 

electrochemically active surface area of the catalyst [42] which reduces the performance 

of the fuel cell. It was observed that the surface area initially increases until it reaches a 

maximum value due to the initial wetting of the thin Nafion layer covering the catalyst 

particles in polymer electrolyte polymer fuel cell (PEMFC), but after saturation of the 

active material with the electrolyte, the surface area starts to decrease.  

It is also known that after the catalyst is immerse in the acid electrolyte, a skin Pt 

monolayer is formed [9; 33; 42; 43] under practical operation conditions even in dilute acid 

solutions. This theory proved that Pt alloys on the surface most likely dissolve in the 

presence of the acid electrolyte. And even after some hours of operation, the Pt surface is 

also dissolved in the presence of the electrolyte. It is believed that platinum oxidizes and 

dissolves at high potentials often encountered at the cathode; such a process would be 

exacerbated with repeated cycling between high and low cathode potentials, which leads 

to platinum oxidation and reduction, respectively. The dissolved platinum then either 

deposits on existing platinum particles to form larger particles or diffuses into an 
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electrochemically inaccessible portion of the membrane-electrode assembly or its 

support structure. As we can see the stability and the dissolution of Pt and Pt alloys of 

the catalyst play an important role for the application to practical fuel cells.  

Respect to the ORR mechanism, it is generally accepted that depending on the 

experimental conditions, the oxygen reduction reaction takes place through two overall 

pathways: the series two-electron reduction to peroxide, followed by its decomposition, 

and the direct four-electron reduction to water [44]. It has been postulated that the two 

electron reduction is caused by the availability of only one atom site, and on the other 

hand in the four electron reduction the oxygen atoms are bonded to the surface forming 

di-σ structure [45].  

Wang and Balbuena [12] studied the reaction thermodynamics of the ORR using 

theoretical methods. Based on ab-initio molecular dynamics [46], they suggested an 

alternative reaction pathway for the ORR on Pt(111). They proposed a parallel pathway, 

where the direct and the series occurring simultaneously, with the direct as a dominant 

step. In agreement with Damjanovic [47] and Anderson [48; 49], the proton transfer 

participates in the first step simultaneously with the electron transfer. The product of this 

step is OOH, which dissociates with a small barrier compared to the dissociation of O-O 

as it has been previously suggested [12; 13]. Tsuda and Kasai also supported this idea; they 

found that the activation barrier for the proton transfer in the CF3SO3-Pt2-O2 + H system 

(0.105 eV and 0.051 eV for the singlet and the triplet respectively) are lower than those 

in the CF3SO3-Pt2-O + H system (0.239 eV and 0.187 eV for the singlet and the triplet 

respectively). The trifluoro-methane sulfonate ion (CF3SO3
-) represents the physical 

properties of the active site of the Nafion chain [50-55]. These results indicated that the 

protonation tends to be followed by the molecular oxygen dissociation, resulting in H2O 

production via a hydroperoxo (-OOH) species. Considering the high activation barrier 

for the O2 dissociation, which it is been found to be high in both experimental [56] (0.38 

eV) and theoretical studies [48; 57; 58] (this value changes depending on the size of the 

cluster and on the adsorption sites: 0.74, ~0.9, and ~1.7 eV) and the lower activation 

barrier for the OOH dissociation, we can consider that the protonation tends to occur 
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before the molecular oxygen dissociation, which is promoted by the formation of M-

OOH.    

Using this analysis and based on the work of Wang and Balbuena [59], which 

indicated that it is possible to separate the effect of the first reduction step from that of 

the last three reduction steps (last three electron-proton transfers) and might be 

considered coupled; they proposed that a good ORR catalyst could be designed as a 

combination of a metal M that adsorbs OOH stronger than Pt plus a second metal M’ 

able to bind OH and O less stronger than Pt, thus can be easily reduced to water. Figure 

1.2 shows the ability of various metals to thermodynamically favor the formation of M-

OOH (∆∆G1 < 0) and the reduction of OH and the O (∆∆G4 < 0).  

In this work we study the changes in reaction energy (at 0 K) for the parallel 

pathway, evaluating ∆E1 (equation 1.3), ∆E2 (equation 1.4), and ∆E3 (equation 1.5) for 

the first electron reduction step on a given metal site M as: 

 
O2   +   M   +   H+   +   e-   →     M-OOH            (1.3) 

M-OOH   +   M      →     M-OH     +    M-O         (1.4)                            

 
The reaction for the first electron and proton reduction becomes 

 
O2   +   2M   +   H+   +   e-   →     M-OH   +   M-O        (1.5)     

 
And the last three electron reduction steps evaluating ∆E4 (equation 1.6): 

 
M-OH + M-O   +   3H+    +  3e-  →    2M  +   2H2O          (1.6) 

 

which combines the last three electron and proton transfers representing successive 

reductions of the adsorbed hydroxyl and the atomic oxygen resulting from the 

dissociation of the OOH intermediate to water molecules.  

Although the characterization of surface atomic distribution in alloy 

nanoparticles is still far from being solved, recent theoretical and experimental studies 
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have yielded some interesting information [60]. In these work we explore the surface 

catalyst distribution in terms of segregation and stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Plot of relative Gibbs free energies (eV), ∆∆G4/3 vs ∆∆G1. The metals (M) 

in region A have vacant valence d orbitals and are able to more efficiently enhance 

thermodynamically the formation of M-OOH, whereas the valence d orbitals for the 

metals (M’) in region B are fully occupied and the metals M’ favor the reductions of M-

O and M-OH. [59] 
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It is emphasized that the nature of the environment used in this study corresponds 

to a solid-gas interaction, which differs from the electrochemical environment (solid-

liquid) under which the cathode catalyst operates in a fuel cell. However, as it has been 

shown by a large number of computational studies the general trend provided by these 

approximations offers important insights useful to analyze ORR real operational 

conditions [24; 46; 48; 59; 61]. 

In the first part of this dissertation, we analyze the reactivity of Pt and Pt-Pd 

catalysts. We use a variety of compositions and atomic distributions to evaluate the 

reactivity of the ORR in terms of reaction thermodynamics. In the second part, we 

explore the reactivity of Pt3Co, Pt3Ni, Pt3V, and Pt4Rh catalysts using two different 

distributions (homogeneous and Pt skin monolayer catalysts). In addition, a comparison 

of surfaces (111) and (211) in terms of reactivity toward the ORR is performed for Pt 

and Pt3Ni. In the last part we analyze the electrochemical stability of the Pt3Co, Pt3Ni, 

Pt3V, and Pt4Rh alloy catalysts against the dissolution in acidic environment measuring 

the free energy changes of allowed dissolution reactions. 
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CHAPTER II 

COMPUTATIONAL TECHNIQUES  

 

Introduction 

Since the mid 1980’s, computational chemistry has been one of the fastest 

growing areas of chemistry and engineering. One of the reasons for the fast development 

is the vast increase in the number of computing platforms and the development of 

efficient high performance computational algorithms. It has already been accepted that 

high-quality of theoretical data is not just an addition to experimental findings, but it is a 

reliable, independent source of information about molecular structures, properties, and 

reactivity. In this section, an overview of the basic theories, models, and approximations 

involved is given. The theoretical frameworks of Hartree-Fock (HF) theory and density 

functional theory (DFT) are presented as approximate methods to solve the many-

electron problem, a variety of ways to incorporate electron correlation are discussed. 

Emphasis is also given to the application of these techniques to calculate thermodynamic 

and spectroscopic properties in chemical systems. This tool will be used to explain the 

catalyst reactivity and stability toward the oxygen reduction reaction. 

 Let us start with the most important restriction in this study, since we will be 

dealing with isolated clusters and extended surfaces, which do not interact with the 

environment in any way, these systems must have their energy conserved; therefore their 

energies and electron distributions are independent of time. This important restriction 

enables us to remove all time dependence form the Schrödinger equation leaving the 

wave function with only a trivial time dependence which is usually ignored. So, we start 

with the time independent Schrödinger equation that is given by: 

 

Ψ⋅=Ψ⋅ EH          (2.1)
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Where H is the Hamiltonian operator,  is the wave function and E is the energy of the 

system. In the next sections we introduce some of the assumptions and approximations 

needed to deal with the solution of the time independent Schrödinger equation.   

 

Born-Oppenheimer Approximation 

A good approximation of the electronic structure can be obtained with all the 

nuclei fixed in space. This is an essence the Born-Oppenheimer approximation[62], which 

allows the degrees of freedom of the electrons to be treated separately from those of the 

ions. Its justification resides on the fact that the nuclei are much heavier than the 

electrons (the mass of the proton or a neutron is about 1835 times as large as the electron 

mass). So it is intuitively clear that the nuclei move much more slowly than the 

electrons. The later will then be able to adapt themselves to the current configuration of 

the nuclei. This approach results also from formal calculations, and leads to a 

Hamiltonian for the electrons in the field generated by a static configuration of the 

nuclei, and a separate Schrödinger equation for the nuclei in which the electronic energy 

enters as a potential. The Born-Oppenheimer approximation for electrons is given by:    
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 where the first term corresponds to the kinetic energy of the system, the second term 

represents the electron interactions, and the third term represents the interaction between 

the nuclei and the electrons. The total energy is given by the sum of the energy of the 

electrons and the energy resulting from the Schrödinger equation satisfied by the nuclei. 

With this approximation, the motion of the nuclei is neglected and only the electrostatic 

energy of the nuclei should be added to the energy of the electrons to arrive at the total 

energy. The positions of the nuclei can be varied in order to find the minimum of this 

energy, that is, the ground state of the whole system. In this procedure the nuclei is 
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treated on a classical footing since their ground state is determined as the minimum of 

their potential energy, neglecting quantum fluctuations [63].  

Even with the position of the nuclei fixed, the problem of solving the 

Schrödinger equation of the electronic wave function using the Hamiltonian remains 

intractable, even in a computer, since too many degrees of freedom are involved. The 

second term, which contains the interactions between the electrons, makes the problem 

so difficult.  

 

Pauli Principle 

Perhaps the most important constrain that we must place on the solution of the 

time-independent Schrödinger equation is that due to the consequences of the fact that 

the electrons are all the same; the wave function of a many-electron system must reflect 

the fact that electrons are indistinguishable. In can be also stated in other words that an 

acceptable wave function for many electrons must be antisymmetric with respect to the 

exchange of coordinates of any two electrons, which is perhaps the most general 

statement of the Pauli Principle for electrons. The relevance of the Pauli principle to the 

computation of molecular electronic structures is enormous. The complications brought 

about by the antisymmetric requirement itself look trivial at first sight, however the real 

complications arise when we consider what is meant by the “coordinate” of the 

electrons. We have not included anything about the description of the electrons to 

account for electron “spin” in previous correlations, and since there is no mention of 

electron spin in the Hamiltonian the spin should have as little relevance to the energy of 

the system as any other coordinate which does not occur in the Hamiltonian. However, 

the Pauli principle applies to exchange of all the coordinates of an electron; space and 

spin. So, in order to compile with the Pauli principle in full we have to bring formally 

the electron spin into the theory [63]. 
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The Orbital Model 

There are just few one-particle systems for which the Schrödinger equation is 

completely soluble. The ones of greatest chemical interest are the hydrogen-like atom 

and the harmonic oscillator. Assuming that we have access to the set of all solutions of 

the one electron Schrödinger equation we have:  

iiih φεφ =
∧

             (2.3) 

Mathematically, these solutions are the eigenvalues iε  and the eigenfunctions iφ  of the 

Hermitian operator 
∧
h  and, as such, they have several important properties. One of these 

properties is that they are complete; any function of ordinary three-space with 

sufficiently similar boundary conditions can be expanded as a linear combination of 

these functions. That is any function )(
→
rf can be written exactly as    

∑
∞

=

→→
=

1

)()(
i

ii rcrf φ             (2.4) 

This is a very powerful result since it means, in principle, that any one-electron 

Schrödinger equation may be solve by evaluating a set of numerical coefficients; that is 

a partial differential equation may be replaced by an ordinary, algebraic equation [63]. 

 

Variational Method for the Schrödinger Equation 

 The time independent Schrödinger equation can be solved analytically in a very 

restricted number of cases; examples include the free particle, the harmonic oscillator 

and the hydrogen atom. In most cases we must resort to computers to determine the 

solution to this equation. The variational method enables us to solve the Schrödinger 

equation much more in efficiently in many cases. In the variational method, the possible 

solutions are restricted to a subspace of the Hilbert space, and in this subspace the best 

solution is found. This method allows us to approximate the ground state energy of a 

system without solving the Schrödinger equation. It also can be extended to estimate the 

energy of the excited states. To see how this works, we first show that the stationary 

Schrödinger equation can be derived by a stationary condition of the functional: 
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E =             (2.5) 

 

which is recognized as the expectation value of the energy for a stationary state ψ . The 

stationary state of this energy functional is defined by postulating that if such a state is 

changed by an arbitrary but small amount δψ , the corresponding change in E vanishes 

to first order. 

A special kind of variation function widely used in the study of molecules is the 

linear variation function. A linear variation function is a linear combination of n linearly 

independent functions f1, f2,…,fn.  
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jj fc

1

φ              (2.6) 

where φ  is the trial variation function and the coefficients cj are the parameters to be 

determined by minimizing the variational integral. The basis functions fj must satisfy the 

boundary conditions of the problem. We shall restrict ourselves to real φ  so that the cj’s 

and fj’s are all real. 

Applying the variational theorem for the linear variation function, we have 
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The stationary states follow from the condition that the derivative of this functional with 

respect to the ck vanishes, which leads to 

∑
=

=−
N

j
jkjkj CEH

1

0)( δ      for     k = 1,…,n.       (2.11) 

An extended derivation of this method can be found in Levine’s book [64]. 

  

The Hartree-Fock Method 

 The Hartree-Fock (HF) method can be viewed as a variational method in which 

the wave functions of the many-electron system have the form of an anti-symmetrized 

product of one electron wave function. This restriction leads to an effective Schrödinger 

equation for the individual one-electron wave functions (orbitals) with a potential 

determined by the orbitals occupied by the other electrons. This coupling between the 

orbitals via the potentials causing the resulting equations to become nonlinear in the 

orbitals, and the solution must be found iteratively in a self-consistency procedure.  

We shall see that in this variational approach, correlations between electrons are 

neglected to some extent. In particular, the coulomb repulsion between the electrons is 

represented in an averaged way. However, the effective interaction caused by the fact 

that the electrons are fermions, obeying Pauli’s principle, and hence want to keep apart if 

they have the same spin, is accurately included in the HF approach (there exist several 

methods which improve on the approximation made in the HF method). The HF 

equation is given by: 

 

kkkF Ψ=Ψ ε      with                             (2.13) 
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The operator F is called the Fock operator. The first term represents the kinetic energy of 

the electrons, the second term represents the Coulomb attraction potential of the nucleus, 

and the third term is the Coulomb energy of the particle resulting from a charge 

distribution caused by all the electrons. The fourth term is the same as the third, with two 

spin-orbital labels k and l interchanged and a minus sign in front as a resulting from the 

antisymmetry of the wave function – it is called the exchange term. Note that this term is 

nonlocal: it is an operator acting onkΨ , but its value at r  is determined by the value 

assumed by kΨ  at all possible position r’ . 

A subtlety is that the eigenvalues kε  of Fock operator are not the energies of single 

electron orbitals, although they are related to the total energy by 

[ ]∑ ΨΨ+=
k

kkk hE ||
2

1 ε                              (2.15) 

It is clear that equation 2.14 is a nonlinear equation, which must be solved by a self-

consistency iterative procedure. The self-consistent procedure is carried out as follow. 

Solving equation 2.14 yields an infinite spectrum. To find the ground state, we must take 

the lowest N eigenstates of this spectrum as the spin-orbitals of the electrons. These are 

lΨ  eigenfunctions which are then used to build the new Fock operator which is 

diagonalized again and the procedure is repeated over and over until convergence is 

achieved. Extended derivations of HF method are given in detail in Cook’s [63] and 

Thijssen’s books [65]. 

 

Density Functional Theory (DFT) 

 Most electronic calculations for solids are based on density functional theory 

(DFT), which results from the work of Hohenberg, Kohn, and Sham [66; 67]. This 

approach has also become popular for atoms and molecules. In the density functional 

theory, the electronic orbitals are solutions to a Schrödinger equation which depends on 

the electronic density rather than on the individual electron orbitals.  

∫ −− Ψ⋅⋅= 2
1211321 |),...,,,(|...)( nn rrrrdrdrdrdrnrρ                    (2.16) 
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 The electronic density ρ  is a much simpler quantity than Ψ  because it depends 

on one spatial coordinate only. For a while it was not obvious how to relate the ground 

state energy of the electrons to the electronic density. This issue has been elucidated by 

theorem due to Hohenberg and Kohn [66]. The theorem states that the ground state energy 

of a system of interacting electrons subject to an external local potential V(r) is a unique 

functional of the electron density.  

In density functional theory, an effective independent particle Hamiltonian is 

arrived at, leading to the following Schrödinger equation for one-electron spin Orbital: 
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The first three terms in the left hand side of this equation are exactly the same as 

those of Hartree-Fock equation (2.14), namely the kinetic energy, the electrostatic 

interaction between the electrons and the nuclei, and the electrostatic energy of the 

electron in the field generated by the total electron density ρ(r). The fourth term contains 

the many-body effects, lumped together in an exchange correlation potential. The main 

result of the density functional theory is that there exists a form of this potential, 

depending only on the electronic density ρ(r), which yields the exact ground state energy 

and density. 

A substantial step forward to make the DFT approach useful for practical 

calculations was made by Kohn and Sham [67]. These authors introduce the concept of 

fictitious non-interacting electrons having the same density of the true interacting 

electrons. Non-interacting electrons are described by orthonormal single-particle 

wavefunctions and their density is given by: 

∑ Ψ=
n

k
kr 2|)(|)( rρ                                     (2.18) 

The total energy of a many-electron system is given by 
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where the parameters kε  are the eigenvalues occurring in equation (2.17) and the Exc is 

the exchange correlation energy. The exchange correlation potential Vxc[ρ]  which occurs 

in equation (2.17) is the functional derivative of this energy with respect to the density: 

][
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)]([ ρ
δ

δρ xcxc E
n

V
r

r =                              (2.20) 

The Exc describes all many-body effects differences between the real system and the 

effective non-interacting system. It contains an exchange energy contribution as well as 

a correlation distribution to the kinetic and potential energy of the electrons. In order to 

specify the Exc, an approximation is needed. The basic approximation is the local density 

approximation (LDA). In the LDA we assume instead that it depends only on the density 

at point r itself (it becomes a local functional). The LDA often predicts structural and 

vibrational properties of molecules and solids with surprising accuracy. Typical errors 

are 1-2 percent in bond lengths and 5-10 percent in vibrational frequencies. It tends, 

however to overestimate cohesive energies of solids and the atomization energies of 

molecules (even by 20 percent and more). A turning point for the success of DFT has 

been the development of the generalized gradient approximation (GGA). This 

approximation allows the Exc to depend not only on the local electronic density, as in the 

LDA, but also on the local electronic density gradient. It is possible to construct the 

GGA functional in a non-empirical way. This is achieved in the parameterization of 

Perdew, Burke and Enzerhoff (PBE) [68], which is today one of the widely used GGA 

functionals. The GGA improved substantially over the LDA, particularly for the 

cohesive properties and atomization energies. Extended derivations of the DFT method 

are given in detail in Cook’s [63] and Thijssen’s books [65]. 

In summary, DFT calculations require solution of the Kohn-Sham equations. If 

the single particle Kohn-Sham orbitals are expanded in a finite basis, these amounts can 

be reduced to a self-consistent diagonalization problem.  
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Figure 2.1. Comparison of a wavefunction in the Coulomb potential of the nucleus 

(dashed line) to the one in the pseudopotential (continues line). The real and the pseudo 

wavefunction and potentials match above a certain cutoff radius rc. 

 

Pseudopotentials 

 For practical uses of the DFT approach, it is realized that only valence electrons 

are important for chemical bonding. Freezing core electrons in the state corresponding to 

a reference atomic configuration usually does not affect significantly the calculated 

binding properties. A powerful approach to implement this idea is provided by 

pseudopotential theory. In this formalism, originally developed in the context of solid 

state physics, the external potential is replaced by an external pseudopotential (see 

Figure 2.1). This is an effective potential acting on the valence electrons only.  The 

pseudo-wavefunctions have the same Kohn-Sham eigenvalues of their all-electron 

counterparts. In the core region pseudo and all-electron-wavefunctions differ, notably 

the pseudo-wavefunctions are smoother than their all-electron counterparts because they 

are nodeless and do not exhibit the fast oscillations due to orthogonality to the core 

states. An interesting discussion of pseudopotentials for DFT and Ab-initio molecular 
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dynamic methods is offered by Car [69]. Pseudopotentials constructed according the 

above procedure are called norm-conserving pseudopotentials [70] and have optimal 

transferability properties. It must be noticed that pseudopotentials are uniquely defined 

only outside the core region. The error introduced by the pseudopotential is usually 

smaller than the error due to the GGA. Nodeless pseudo-wavefunctions can be 

conveniently expanded in plane waves. This corresponds to the adsorption of periodic 

boundary conditions. For a finite system like a molecule, it means that the molecule is 

placed in a periodically repeated cell. The supercell has to be large enough that the 

wavefunction of the occupied molecular state be essentially zero at the cell boundary. 

 

Projector Augmented Wave Pseudopotential 

Projector Augmented Wave (PAW) approaches has established itself as one of 

the most efficient and widely used tools for performing ab-initio density functional 

calculations. It was pointed out by Blochl [71]  that a true wavefunction Ψ , and a well 

behaving pseudo-wavefunction 
~

Ψ  can be linked by a linear transformation 
~

Ψ=Ψ T , 

by which physical quantities like ΨΨ || A  can be easily calculated in the pseudo 

Hilbert space representation, rather than directly from true wavefunctions. 

Similarly, the variational principle for the total energy gives an equivalent of the 

Kohn-Sham equation for the pseudo-wavefunctions, and the search for the ground state 

can be also done in the pseudo Hilbert space. This latter, due to the slowly varying 

character of the pseudo-wavefunctions can be efficiently spanned by the plane wave 

expansion. However, contrary to the norm-conserving pseudopotential, the pseudo-

wavefunctions are directly shadowing the true crystal wavefunctions by means of the T 

transformation [72]. 

 As it can be expected, T mainly concerns the regions of the atomic cores. In the 

interstitial regions, where the true crystal wave function varies slowlyΨ , 
~

Ψ  may 

practically be built to coincide withΨ . As a consequence, T can be seen as a sum of 
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non-overlapping atom-centered contributions TR, each of them acting within the 

corresponding augmentation region, such that 

 ∑+=
R RTT 1           (2.21) 

In the following points we focus on the practical construction of the operator TR. 

Inside each atomic sphere, both the true and the pseudo-wavefunctions can be 

represented as linear combinations of (true and pseudo) partial waves: 

∑=Ψ
i

iic
~~

ψ   and    ∑ Ψ==Ψ
i

ii Tc
~

ψ        (2.22) 

Where, since ii T
~

ψψ = , the coefficients ci are the same in both the expansions. As a 

consequence:  

∑ −+Ψ=Ψ
i

iiic )(
~~

ψψ          (2.23) 

And the transformation T can be written as:  

∑ 〈−+=
i

ii pT |)(1
~~

ψψ          (2.24) 

In the above expression we have introduced the set of projector function |
~

p〈 , which 

verify the condition: 

∑∑ 〉Ψ〈==Ψ
ii

ii pc
~~~~~

| ψψ         (2.25) 

Each augmentation region is associated to two sets of partial waves and a set of 

projector functions. The set of the all-electron partial waves lΨ  can be generated from 

numerical solutions of the radial Schrödinger equation. They can be chosen to describe 

the physically relevant states (valence band and semi-core states), and their number per l 

channel can be increased up to the desired convergence of results. Additionally, the 

divergent tail of the true partial wave cancels with that of the corresponding pseudo 

partial wave, so that there is no constrain to the bound states only. Since the pseudo 
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partial waves l

~

Ψ  are supposed to be slowly oscillating, they can be in principle 

generated by the techniques used in the pseudopotential approach.  

Different practical schemes can be used to generate the set of projector 

functions
~

p . The Gram–Schmidt inspired scheme by Blochl [71] seems particularly well 

adapted for numerical implementation, assuring that the all electron and the pseudo wave 

partial waves form complete sets of functions within the augmentation region. 

 

Periodic Density Functional Theory 

The conservation of the crystal momentum k follows from the periodicity of the 

one-particle Hamiltonian [73], according to Bloch’s theorem. k is therefore a good 

quantum number for the electronic wavefunctions, with the following property: 

 

)()( reLr mk
Lik

mk ψψ ⋅=+              (2.26) 

 

Where L is the lattice vector. For the normalization of the wavefunctions, the Born-Von 

Karman (BvK) cyclic boundary conditions are used: 

 

)()( raNr mkiimk ψψ =+                     (2.27) 

 

m and k label the band and the wave-vector, respectively, while three ai vectors form a 

basis of the real space lattice, and the three corresponding Ni are large numbers, that 

should tend to infinity. Wavefunctions   are normalized to one in the BvK supercell. 

Because of the BvK conditions, the number of k wave-vectors in the Brillion zone (BZ) 

is equal to N = N1 N2 N3, and their density is 
3

0 )2/( πΩ , where 0Ω  is the primitive unit 

cell volume. 

The Bloch wavefunctions can be decomposed in a product of a phase factor by a 

function umk having the crystal periodicity umk(r+L) = u mk(r): 
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)()()( 2/1
0 rueNr mk

rik
mk

⋅−Ω⋅=ψ                        (2.28) 

 

The periodic part umk of a Bloch wavefunction is normalized to one in the primitive cell. 

This periodic part of the Bloch function can be expanded in terms of plane waves as 

follow: 

 

∑ ⋅−=
G

mk
riG

mk Gueru )()(                     (2.29) 

Where the sum runs over all vectors G of reciprocal lattice. The coefficients umk(G) are 

the Fourier transform of umk(r): 

∫
Ω

⋅−

Ω
=

0

)(
1

)(
0

drrueGu mk
riG

mk                     (2.30) 

 

The expansion of (3)(2.28) is easily truncated, to provide a finite basis set; one can select 

wave-vectors such that 

 

cutE
m

Gk
〈

+
2

|| 22
h

                     (2.31)

  

Ecut is the maximum kinetic energy of the plane waves and is usually called cutoff 

energy. The larger cutoff energy, the more accurate the wavefunction representation. 

(Gonze and Finocchi [72] provide detailed explanations of this derivation). 
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CHAPTER III 

METHODOLOGY AND COMPUTATIONAL DETAILS 

 

DFT Calculations for the Reactivity of Pt and Pt-M (M: Pd, Co, Ni, V, and Rh) 

Catalyst Models 

All the calculations were performed within the framework of DFT using the 

Vienna Ab initio Simulation package (VASP) [74-77], which is a DFT code based on plane 

wave basis sets. Electron-ion interactions are described using the projector-augmented 

wave (PAW) method [78], which was expanded within a plane wave basis set up to a 

cutoff energy of 400 eV. Electron exchange and correlation effects were described by 

Perdew-Burke-Ernzerhof (PBE) [79] GGA type exchange correlation functional; spin 

polarization was included in all the simulations.   

The Pt(111) and the Pt-M(111) catalyst systems were described using a 4-layer 

periodic slab model, where each slab was infinite in the x and y directions, while finite 

along the z direction, and then repeated periodically along all the directions. The 

optimum bulk lattice constant was determined for each case and then used for a model 

four-layer slab, in which the first two layers on the top are allowed to relax, while the 

two at the bottom are fixed (Figure 3.1). A vacuum space equivalent to 19 layers was 

used to ensure that there were no interaction between the adsorbed intermediates and the 

bottom surface of the next slab. The (111) surfaces were modeled using a 2x2 supercell.  

Brillouin zone integration was performed using 5x5x1 Monkhorst Pack grid [80] and a 

Methfessel-Paxton [81] smearing of 0.2 eV. All the adsorption sites used to evaluate the 

interaction between the ORR intermediates OOH, OH, and O and the surface were those 

found as the most stable sites using an overall coverage of ¼ monolayer (ML). For OOH 

and OH the most stable are the surface top sites, and for atomic oxygen both fcc and hcp 

hollow sites are studied, with fcc being the most stable. 
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Figure 3.1. Extended surface approach. Left: The unit cell includes 16 metal atoms and 

the vacuum space.  Right: Top view of the surface and a few of its periodic images. (All 

the schematic representations in this work were performed using Xcrysden [89; 90]). 

 

DFT Calculations for Hydrated Metal Cations M(H2O)6
2+ (M: Pt, Pd, Co, Ni, and 

Rh) 

For the complex molecules, the calculations were performed with the same VASP 

framework using a simple cubic supercell of 20 Å length. This length is sufficiently big 

to isolate the system from their supercell image [82]. VASP handles the charged system 

by applying a background charge to maintain the charge neutrality, and by adding 

dipole, and quadrupole corrections [83; 84]. Balamurugan and Prasad [85] reported that 

VASP calculated total energies and structures of positive charged systems using a big 

supercell provide good accuracy, while negatively charged systems do not provide the 

same accuracy in terms of energy values and structures compared to results performed in 

real space from Gaussian [86]. In the negatively charged cluster, the uppermost electron is 

highly diffuse in nature; therefore negative clusters require even a larger supercell. For 

protons the inner shell may be conceived as the three water molecules solvating H3O
+ [87; 

88] (the H3O
+ ion itself is similar in diameter to K+ and both have similar solvation 
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energies). The hydrated metal cation (M2+) is modeled as M(H2O)6
2+  because six-

coordinate complexes of transition metals are commonly formed. 

 

Transition State Calculations (CI-NEB Method) 

Transition state calculations have been performed using the climbing image 

nudged elastic band (CI-NEB) method [91]. This method constitutes a small modification 

of the NEB method, in which the information of the minimum energy pathway (MEP) is 

retained, and a rigorous convergence of the saddle point is also obtained.  Qualitatively 

the climbing image moves up to the potential energy surface along the elastic band and 

down the potential surface perpendicular to the band. The other images in the band serve 

the purpose of defining the one degree of freedom for which a maximization of the 

energy is carried out. Since the images in the band eventually converge to the MEP, they 

give a good approximation to the reaction coordinate around the saddle point. The CI-

NEB method refines an accurate pathway and finds the diffusion barrier. At the same 

time this method guarantees that the image with the highest energy converges to the 

saddle point [91-93]. 

All the calculations in this section are performed using the VASP package [74-77]. 

Electron-ion interactions are described using the PAW method [78], which was expanded 

within a plane wave basis set up to a cutoff energy of 400 eV. Electron exchange and 

correlation effects were described by Perdew-Burke-Ernzerhof (PBE) [79] GGA type 

exchange correlation functional, and the Brillouin zone integration was performed using 

5x5x1 Monkhorst Pack grid [80]. An initial relaxation of the reactants (OOH) and 

products (OH and O) initiates a full relaxation of seven images along the path, keeping 

the volume of the cell fixed. The seven images are initialized by linear interpolation 

between the two relaxed end points.  
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CHAPTER IV 

CHEMICAL REACTIVITY OF PT AND PT-PD ALLOY CATALYSTS  

 

Introduction 

Commonly platinum catalysts are used in anodes and cathodes to promote the 

electrochemical reactions that generate electrical energy. Alloy catalysts have emerged 

as potential candidates of more active and less expensive catalytic materials.[23; 24; 94-96]  

There have been many attempts to elucidate the factors affecting the catalytic activity 

toward the ORR, but there is still some debate about the reasons for the enhanced 

reactivity of certain alloy combinations. Previous results suggest that the enhancement is 

related to changes in the electronic structure with respect to that of Pt and to changes of 

the physical structure of the catalyst (metal-metal catalyst distances and coordination 

numbers). The continued search to overcome the slow kinetics of the ORR even with the 

use pure Pt catalyst has lead to the use of Pt alloys, which has been demonstrated to 

reduce the poisoning effect caused by the OH adsorption and to produce an improvement 

in the activity of the ORR. Norskov et al. [97] predicts a volcano-shaped relationship 

between the oxygen reduction activity of Fe, Mo, W, Co, Ru, Ni, Rh, Cu, Ir, Pd, Ag, Pt, 

and Au and the adsorption energies of OH and O using DFT calculations. From the 

results it was observed that Pt and Pd are the best catalysts for the ORR in agreement 

with experiments [98; 99]. Considering this fact, in previous work[100] we evaluated the free 

energy changes corresponding to the first and the last three electron-proton transfer 

reactions (equations 1.3-1.6) to evaluate the performance of various Pt-Pd combinations 

in small clusters of 10 atoms. The calculations indicated that two different ensembles: 

one ordered and one randomly mixed, with overall composition Pt3Pd7 are 

thermodynamically more favorable than pure Pt10 for the oxygen reduction reaction.  

The reasons for this behavior are clearly explained in terms of the atomic and electronic 

distribution, which makes the Pd atoms to act as electron donors to Pt atoms and to the 

adsorbates, thus having intermediate reactivity between Pt and Pd.  Moreover, it is found 

that in the mixed Pt3Pd7 state the electronic distribution makes the average atom more 
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similar to Pt than to Pd, whereas in the ordered Pt3Pd7 cluster, the average atom is more 

similar to Pd than to Pt. 

In this Chapter extended Pt-Pd surfaces are evaluated exploring the overall 

composition of the catalyst and the surface atomic distribution, comparing the results 

with previous results found for small clusters. We use nine different periodic slabs: Pt, 

Pt3Pd, PtPd, PtPd3, skin Pt/Pd, skin Pd/Pt, skin Pt/Pt3Pd, skin Pt/PtPd, and skin Pt/PtPd3. 

We define the skin surface as one pure component monolayer over the periodic slab, 

which differs from the overall composition of the substrate.  

 

Lattice Constant and Slab Structures of Pt-Pd Catalysts 

The value of the lattice constant may play an important role on the ORR 

reactivity considering experimental evidence that shows that alloying Pt with Fe [1], Co 
[1; 5], Ni [5; 39], and Cr [5] results in enhanced catalytic activities possibly associated with a 

lowering of the lattice parameters and reduction of the Pt-Pt bond distances, with the 

consequent modification of the surface electronic properties caused by charge and 

atomic redistribution on the surface. Similar studies have been made for Pd-Fe alloys [20], 

showing a comparable relation between the Pd-Pd bond distances and the ORR activity.  

Others report the same trend for trimetallic systems such as Pd-Co-Au alloy 

nanoparticles [6].   

Table 4.1 lists the optimum lattice constant for nine different Pt-Pd alloys and 

that for pure Pt. The calculated total energy of bulk platinum shows a minimum at 3.98 

Å lattice constant, which is 1.45% higher than the experimental value (3.923 Å) [101].  

Table 4.1 illustrates that alloying Pt with Pd results in lowering the lattice constant and 

hence the Pt-Pt bond distances. The highest computed lattice constant corresponds to 

pure Pt, while the smallest lattice constant of this group corresponds to the case with the 

highest composition of Pd in the PtPd3 alloy.   In all cases, the optimized structures 

reveal a contraction of the interlayer distance between the first two layers after relaxation 

with respect to the bulk conformation; such contractions are approximately proportional 

to the amount of Pt in the alloy. 
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Table 4.1  

Calculated lattice constant (Å) for Pt and Pt-Pd alloys, their atomic composition in the 4-

layer slab, the interlayer separation between the first two layers (∆12), and the percent of 

change of such interlayer separation after relaxation with respect to the bulk 

conformation 

Bulk system 
Lattice 

constant (Å) 
% Pt 

Pt:Pd layer by layer 
distribution 

Separation ∆12 
(Å) 

% Change 

Pt  3.98 100 4:0  4:0  4:0  4:0 2.38 -1.81 

Skin Pt/Pt3Pd 3.97 81 4:0  3:1  3:1  3:1 2.37 -1.57 

Skin Pd/Pt 3.96 75 0:4  4:0  4:0  4:0 2.34 -1.87 

Skin Pt/PtPd 3.96 63 4:0  2:2  2:2   2:2 2.36 -1.05 
 
Pt3Pd 3.96 75 3:1  3:1  3:1  3:1 2.37 -1.05 

PtPd 3.95 50 2:2  2:2  2:2  2:2 2.35 -0.61 

Skin Pt/PtPd3 3.95 44 4:0  1:3  1:3  1:3  2.36 -0.54 

Skin Pt/Pd 3.95 25 4:0  0:4  0:4  0:4 2.36 -0.57 

PtPd3  3.94 25 1:3  1:3  1:3  1:3 2.34 -0.39 

 

 

Binding Energies of ORR Intermediates on Pt(111) Surfaces and Structural 

Characteristics  

In this section we compare our results corresponding to adsorption on pure Pt 

surfaces with published data.  It is found that the fcc hollow is the most stable site for the 

adsorption of atomic oxygen with a binding energy of -3.92 eV/O, which is close to both 

theoretical -3.88 eV/O [18] and experimental results -3.60 eV/O [102; 103], while the hcp 

hollow is less stable (-3.52 eV/O). Panchenko et al. [104] report Pt-O distances of the O 

atom to its first metal neighbors in the fcc hollow site of 2.04 Å each and on the hcp 

hollow sites 2.06 Å each, which compare well with our values of 2.04 Å  and 2.05 Å for 

fcc and hcp hollow sites respectively.  OH, one of the key intermediates in the ORR, at 

low coverage adsorbs on top site with a binding energy of -2.27 eV/OH. This value is in 
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agreement with previous reports of -2.25 eV/OH [105] and -2.23 eV/OH [104].  The binding 

energy for OOH adsorbed on top site is -1.085 eV and the Pt-O and O-O distances are 

2.04 and 1.43 Å, compared to reported values of binding energy of -1.07 eV and 

distances of 2.03 and 1.45 Å for Pt-O and O-O respectively [104] .  

 

Binding Energies and Structural Characteristics of ORR Intermediates on Pt-

Pd(111) Surfaces  

Most of the surfaces in this study have either Pt or Pd surface sites exclusively 

(skin monolayer catalyst cases), except for Pt3Pd, PtPd, and PtPd3; in those cases we 

have found an interesting binding behavior of the oxygenated species. Table 4.2 shows 

that both OOH and OH bind stronger to Pt than to Pd top sites on the three surfaces, 

which could be attributed to the oxidation of Pd donating electrons to their neighbor Pt 

atoms.  The difference in binding energies between Pt and Pd sites are between 0.3 and 

0.4 eV, suggesting a clear preference of the adsorbates for the Pt sites in these surfaces.  

For O adsorption, the Pt-Pt-Pd fcc hollow site shows stronger adsorption than the 

equivalent in the Pt(111) surface. To test the accuracy of our results, we evaluated the 

adsorption of the three adsorbates to a pure Pd(111) surface.  The results are -1.019 eV 

for OOH (top site), -2.221 eV for OH (top site), and -4.196 eV for O adsorbed in the fcc 

hollow site of Pd(111), versus -1.085 eV for OOH (top site), -2.271 eV for OH (top site) 

and -3.922 eV   for O (fcc hollow) in the Pt (111) surface.  Similar results were reported 

recently by Karlberg [14] based on DFT calculations. 

 

Table 4.2  

Binding energies (in eV) of OOH, OH, and O on various sites of the Pt3Pd, PtPd, and 

PtPd3 surfaces  

Adsorbate Pt3Pd PtPd PtPd3 
OOH -1.073 

(Pt top) 
-0.740 
(Pd top) 

-1.188 
(Pt top) 

-0.830 
(Pd top) 

-1.206 
(Pt top) 

-0.903 
(Pd top) 

OH -2.371 
(Pt top) 

-1.954 
(Pd top) 

-2.45 
(Pt top) 

-2.077 
(Pd top) 

-2.506 
(Pt top) 

-2.120 
(Pd top) 

O -4.055 
(Pt, Pt, Pd hollow site) 

-4.200 
(Pt, Pt, Pd hollow site) 

-4.203 
(Pt, Pd, Pd hollow site) 
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As it is shown in equation 1.3, the OOH adsorption is directly related to the first electron 

reduction step coupled to a proton transfer. It has been proposed [12] that a good ORR 

catalyst could be designed as the combination of a metal that adsorbs OOH stronger than 

Pt, and a second metal able to bind OH and O less strong than Pt, thus favoring O and 

OH reduction to water. Figure 4.1 shows the binding energies of OOH on Pt and Pt-Pd 

alloys. It is found that alloys such as PtPd3, PtPd and skin Pd/Pt satisfy the first criterion, 

adsorbing OOH strongly on Pt sites, whereas Pt3Pd yields very similar binding energies 

than pure Pt. Thus, increasing the amount of Pd atoms present on the surface makes the 

adsorption of OOH stronger, as in PtPd3, even though the adsorption is on the Pt sites.  

Regarding the monolayer skin Pt surfaces, the presence of Pd atoms in the substrate 

reduces the interaction strength between OOH and the surface Pt atoms.  

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.1. Binding energies of OOH adsorbed on Pt(111) and Pt-Pd(111) alloys (top Pt 

sites). OOH is adsorbed with the O atom on top of Pt atoms (the most favorable site). 

The inset shows the structures of OOH adsorbed on Pt(111) (top site), with Pt (blue), O 

(red), and H (light blue) and the adsorption of OOH on Pt3Pd(111) (Pt top site).  The 

three surfaces at the left of Pt have increasing amounts of Pd and show the strongest 

binding to OOH (even though adsorption is on Pt sites, see Table 4.2), whereas the four 

Pt-skin surfaces show reduced binding strength.  
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The O-O bond length for the OOH top site adsorption -its most stable 

conformation on Pt- is 1.43 Å (Table 4.3). Surfaces with stronger OOH adsorption, such 

as PtPd and PtPd3, show elongated bond lengths of 1.48 Å and 1.47 Å respectively, thus 

signaling the dissociation of OOH into OH and O.  The d-electron distribution averaged 

on the surface and in the slab (not shown) after adsorption of OOH is qualitatively 

similar to that of the naked surface (Figure 4.2). The geometric adsorption features of the 

intermediates are listed in Table 4.2. 

 

Table 4.3  

Structural characteristics of adsorption of oxygenated species on Pt and Pt-Pd alloys. O 

is adsorbed in fcc hollow sites, and the interactions with Pd atoms are indicated in bold 

font. Distances are in Å  

  
M-OOH  

d O-O  
M-OOH  

d M-O  
M-OH     
d M-O  

M-O   
d  M-O fcc  

M-O  
 d  M-O hcp  

Pt 1.430 2.037 2.002 2.042 2.055 

Skin Pd/Pt 1.462 2.025 1.987 2.007 2.019 

Skin Pt/Pd 1.424 2.024 1.991 2.03 2.041 

Skin Pt/Pt3Pd 1.425 2.019 1.993 2.038 2.042 2.042 2.053 

Skin Pt/PtPd 1.427 2.031 1.999 2.043 2.027 2.027 2.043 2.043 2.058 

Skin Pt/PtPd3  1.429 2.032 1.993 2.030 2.031 2.033 2.045 

Pt3Pd 1.440 2.011 1.993 2.010 2.012 2.080 2.012 2.011 2.125 

PtPd 1.475 2.010 1.993 1.998 1.998 2.081 2.006 2006 2.109 

PtPd3  1.471 2.006 2.000 1.972 2.035 2.036 1.970 2.055 2.058 
 

Figure 4.3 shows the most favorable binding energies of OH on Pt and the alloys. 

It is observed that skin Pt/PtPd3, skin Pt/PtPd, and skin Pt/Pd favor the reduction of OH, 

allowing a weaker interaction of OH with the surface compared with pure Pt, as we had 

observed in Figure 4.2 for the interaction with OOH. Thus, the three most favorable 

surfaces for OH reduction yield binding energies of -2.179, -2.221, and -2.225 eV 

respectively, whereas the binding energy for Pt is -2.271 eV.  Note that the best Pt-skin 

surface catalysts for reducing OH are those containing > 50% Pd in the substrate. 
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Figure 4.2. Average electronic d-population on the surface and in the four-layer slab.  

The skin slabs are skin Pt/Pd and skin Pd/Pt respectively. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. Binding energies of OH adsorbed on Pt(111) and Pt-Pd(111) alloys (top 

sites). OH is adsorbed on Pt top sites, except in the Pd-skin surface. 
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The last three electron transfer steps (represented by equation 1.6) are controlled 

not only by adsorption of the hydroxyl radical but also by that of atomic oxygen, and it 

is found that in all cases except skin Pt/PtPd, atomic oxygen adsorbs stronger on the 

alloy surfaces than on Pt, as shown in Figure 4.4. Thus, based on our second criteria we 

can state that only skin Pt/PtPd favors both the reduction of atomic oxygen having less 

strong interaction with the catalyst (-3.905 eV) compared with pure Pt (-3.922 eV), and 

the OH reduction because of its weaker (-2.221 eV) adsorption compared to that of Pt (-

2.271 eV).  

 

 

 

 
 

 

 

 

 

 

 

 

Figure 4.4. Binding energies of atomic oxygen adsorbed on Pt(111) and Pt-Pd(111) 

alloys (fcc hollow sites).  

 

d-Population Analysis 

The d-electron population shown in Figure 4.5 for the OH adsorption case 

reveals a significant change in the surface d population after adsorption of OH on Pd of 

the Pt3Pd surface, in comparison to the values shown in Figure 4.2 for the naked surface.  

Changes in that average population defined as percents with respect to the population 

existent in the naked surface are listed in Table 4.4.  In all cases, changes in the surface 

after adsorption are negative, indicating a charge transfer, with the largest changes found 
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for OH and O.  Note also that the electron transfer may occur not only to the adsorbate 

but  also  to  the  subsurface  layers  as  shown  by  a positive value of ∆slab in Table 4.4. 

 

Figure 4.5. Average electronic d-population on the surface and in the four-layer slab 

after adsorption of OH.  The skin slabs are skin Pt/Pd and skin Pd/Pt respectively.   

 

Thus comparing the values of ∆slab after adsorption of OOH among the different 

surfaces, the largest change is observed on the Pt3Pd surface, with OH adsorption 

strength comparable to pure Pt (Figure 4.3); such large change seems to be not only due 

to the presence of the adsorbate but also because of charge redistribution in the slab, 

possibly due to oxidation of Pd atoms.  On the other hand, for ∆surf after O adsorption 

large changes are found for PtPd3 and for the skin Pd/Pt surfaces, both yielding the 

strongest binding energies (Figure 4.4); in those cases note that the corresponding ∆slab 

is also negative, suggesting that the decrease of d population on the surface is due 

mainly to charge transfer to the adsorbate. 
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Table 4.4  

Changes in d-electron population after adsorption of OOH, OH, and O, defined as 

percents with respect to the population found in the naked surface. In each group, ∆surf 

is the change on the surface, and ∆slab is the change per atom averaged for the total slab. 

Largest changes indicate significant depletion of the d population and are shown in bold 

font 

ΟΟΗ ΟΗ Ο  

∆surf ∆slab ∆surf ∆slab ∆surf ∆slab 

Pt -0.075 -0.043 -0.130 -0.035 -0.104 -0.019 

Pt3Pd -0.064 -0.016 -1.153 0.784 -0.196 -0.041 

PtPd -0.070 -0.006 -0.245 -0.047 -0.261 -0.040 

PtPd3  -0.060 -0.009 -0.217 -0.036 -0.362 -0.070 

Skin Pt/Pd -0.055 0.024 -0.123 0.009 -0.127 0.020 

Skin Pd/Pt -0.112 -0.028 -0.175 -0.051 -0.449 -0.110 

 

 

Thermodynamic Reactivity of Pt-Pd Catalysts 

 According to Figure 4.6 the free energy changes ∆E1 for the first electron-proton 

transfer is parallel to ∆E2 corresponding to the dissociation of OOH into OH and O, and 

since both pathways are driven by the chemisorption of oxygenated species such us 

OOH (equation 1.3) and OH and O (equation 1.4), the catalyst surface that favors the 

formation of M-OOH, at the same time will favor the dissociation of this specie into M-

OH and M-O by elongation of the O-O distance.  Figure 4.6 also shows the different 

trend of ∆E4 with respect to ∆E1 proving that the stability of the OH and O (reaction 1.3) 

do not favor the reduction of these species to water. 
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Figure 4.6. Reaction free energy changes for equations 1.3-1.6 (∆E1, ∆E2, ∆E3, and ∆E4) 

of Pt and Pt-Pd alloy catalysts. 

 

Figure 4.7 depicts the relative reaction energies ∆∆E1 corresponding to equation 

1.3 (first electron transfer step) and ∆∆E4 corresponding to equation 1.6 (last three 

electron transfer steps) for all cases taking Pt as a reference, it is observed that none of 

the studied Pt-Pd alloys provides both negative ∆∆E1 and ∆∆E4, therefore the best 

surfaces are those that have the smallest values of ∆∆E1 and ∆∆E4, i.e., they are the 

closest to pure Pt. For the skin monolayer systems ∆∆E1 is slightly positive due to the 

presence of Pd atoms in the substrate that decrease the binding strength of Pt to OOH.  

Figure 4.7 shows that ∆∆E1 decreases as less Pd atoms are loaded in the subsurface, the 

best surfaces follow the order: skin Pt/PtPd > skin Pt/PtPd3 > skin Pt/Pd > skin Pt/Pt3Pd; 

and the same surfaces give the smallest values of ∆∆E4.  On the other hand, ∆∆E4 

becomes more positive as more Pd atoms are present (as in PtPd3, PtPd, and skin Pd/Pt), 

because the presence of Pd enhances the binding strength especially of atomic oxygen 

(Figure 4.4) making these surfaces less appropriate for reduction of O and OH (equation 
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1.6), in agreement with experimental analyses of Pd monolayers on various 

substrates.[15]   

According to our thermodynamic analysis, the best alloy of the group of bulk 

ordered alloys may be Pt3Pd, which is almost as good as Pt for dissociating the OO 

bond, and it performs better than the other bulk ordered alloys for reduction of adsorbed 

O and OH.  In a previous study, we had analyzed similar overall compositions in small 

clusters (a total of 10 atoms)[100].  Comparing those results on the 10-atom clusters to the 

ones in this work, on slabs representing extended surfaces, we note that there are general 

trends common to both sets of systems, such as the effect of Pd for enhancing the 

adsorption energy of the oxygenated compounds and the lower reactivity of the Pt-skin 

surfaces; however the distinct nature (shape, geometry, electronic structure) of the small 

clusters and their tendency to become polarized even in the absence of the adsorbate (see 

Table 2 in reference [100]) yields some interesting differences.  In the case of the 10-atom 

clusters we found the disordered system Pt3Pd7 (PtPd2.33) and the ordered Pd-monolayer 

over Pt (Pd2.33Pt) the best towards the ORR reaction according to equations 1.3 and 1.6.  

Recent work by Crooks et al.[106] reported kinetic current densities at different potentials 

for dendrimer-encapsulated Pt-Pd nanoparticles, and enhanced current values with 

respect to pure Pt were found in a range between Pt2Pd and Pt5Pd with a maximum of 

activity approximately at a composition Pt5Pd.  These findings are in fair agreement with 

the trend observed in Figure 4.7, and differ from our results on very small clusters, 

making clear the reactivity difference based on size.   

Regarding the lattice constants in Table 4.1, there is no clear trend with 

reactivity.  Note however that the lattice constant only represents an average for the 

system; individual surface metal-metal bond lengths could vary according to the specific 

surface compositions; thus additional analysis is needed to establish a clear relationship 

between specific geometries and reactivity. 
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Figure 4.7. Relative free energies (eV) according to equations 1.3 and 1.6 for Pt and Pt-

Pd alloys with respect to pure Pt. 

 

Correlation Between the Surface d-band Center and the ORR Intermediates  

Minhua Shao et al. [40] found using DFT calculations a volcano type dependence 

between the measured ORR activity of Pt or Pd monolayers supported on many different 

noble metal single crystals and their calculated d-band center and the atomic oxygen 

binding energy. The d-band center values reported for Pt and Pd are closest to -2.18 and 

-1.80 eV respectively, while in this study we found d-band center values of -2.16 (Figure 

4.8) and -1.67 eV for Pt and Pd respectively. Figure 4.9 shows the changes of the partial 

density of states of the d-electrons as a function of the Pd content in the Pt-Pd alloy from 

a high Pd content (PtPd3) to low Pd content (Pt3Pd). It is observed a shift of the partial 

density of states and the d-band to negative values as the Pd content decreases and the Pt 

content increases reaching Pt partial density of state positions. This behavior can be 
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attributed to the electronic interactions between Pt and Pd atoms because of the 

relaxation of the bond distance of the atoms due to the increase of Pt content in the slab.    

 As it is proposed by Stamenkovic et al. [107] the best catalyst is predicted to bond 

oxygen more weakly than pure Pt by 0.2 eV. The binding energies of atomic oxygen 

found in this study are around -1.86 eV at the top of the volcano plot for Pt skin on 

Pd3Fe, which is consistent with this prediction. Nevertheless weaker interactions with O 

are needed to achieve the enhancement, lower atomic oxygen binding energies than -

1.86 eV do not favor the activity of the ORR, suggesting an optimum value for this 

adsorption. This fact is in agreement with our results and can be attributed to the trend 

found for the adsorption of OOH and O and OH. The more strongly O and OH are 

adsorbed on the catalyst, the stronger OOH is adsorbed.  

 Figure 4.10 shows the almost linear relationship between the calculated surface 

d-band center for Pt, Pt3Pd, PtPd, PtPd3, skin Pt/Pd, skin Pd/Pt, skin Pt/Pt3Pd, skin 

Pt/PtPd, and skin Pt/PtPd3 and the atomic oxygen binding energy. M. Shao et al. [40]  and 

Norskov [97] showed similar trends, but using the d-band center values for the periodic 

slab instead of using the surface d-band center value, which is directly related to the 

reactivity and adsorption of all the intermediates.  

We found that the smaller the surface d-band center, the strongest atomic oxygen 

adsorption to the surface. As we can expect the other intermediates OH and OOH have 

similar trends (Table 4.5). Nevertheless the reduction of the interaction distances 

between the metals on the surfaces due to the reduction of the lattice constant increases 

the interaction of all the intermediates, and somehow favor the first electron and proton 

transfer (equation 1.3), at the same time this effect is translated into an different effect 

for the last the electron and proton transfers (equation 1.6); increasing the interaction of 

the adsorption of both the hydroxyl and the atomic oxygen intermediates. This evidence 

is in agreement with M. Shao’s work [40], who found that the maximum enhancement in 

the ORR electroactivity for the Pd monolayer catalyst is located at an intermediate point 

along the d-band center of the catalysts. Mavrikakis [18] also stated that lowering the d-

band center will make the catalyst less reactive because the weak interactions of the 
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ORR intermediates and the catalyst surface. However in some degree this can make the 

catalyst more active toward the ORR due to the weak interactions of OH and O that 

facilitate their reduction to water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Partial density of states of d-electrons for Pt(111). Ed-band center (Pt) = -2.16 eV 
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Table 4.5  

Slab and surface d-band center ordered with respect to the surface d-band center 

Pt:Pd M 
d-band 
center 

Surf. d-band 
center 

L.C. B.E. (OOH) B.E. (OH) B.E. (O) 

100:00 
Pt 
 

-2.16 -1.96 3.98 -1.08 -2.27 -3.92 

81:19 
Skin 

Pt/Pt3Pd 
-2.04 -1.91 3.97 -0.99 -2.29 -3.98 

75:25 
Pt3Pd 

 
-2.05 -1.87 3.96 -1.07 -2.37 -4.05 

44:56 
Skin 

Pt/PtPd3 
-1.86 -1.87 3.95 -0.90 -2.18 -3.95 

25:75 
SkinPt/Pd 

 
-1.76 -1.83 3.95 -0.95 -2.23 -4.00 

50:50 
PtPd 

 
-1.91 -1.74 3.95 -1.19 -2.45 -4.20 

75:25 
Skin Pd/Pt 

 
-2.10 -1.68 3.96 -1.11 -2.31 -4.21 

25:75 
PtPd3 

 
-1.81 -1.66 3.94 -1.21 -2.51 -4.20 

00:100 
Pd 
 

-1.67 -1.52 3.94 -1.02 -2.22 -4.20 
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Figure 4.9. Comparison of the partial density of states of d-electrons for Pd in Pt-Pd 
alloys.  (a) Pd in PtPd3 (Ed-band center = -1.765 eV), (b) Pd in PtPd (Ed-band center = -1.825 
eV), and (c) Pd in Pt3Pd (Ed-band center = -1.906 eV). 
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Figure 4.10. Binding energies of O as a function of the surface d-band center for Pt, 

Pt3Pd, PtPd, PtPd3, skin Pt/Pd, skin Pd/Pt, skin Pt/Pt3Pd, skin Pt/PtPd, and skin Pt/PtPd3. 

 

Transition State Calculations of the OOH Dissociation on Pt(111) and Pt3Pd(111) 

As it was suggested by Anderson [48] and Damjanovic [47] the proton transfer 

participates in the first electroreduction step. This step also involves the electron 

transfer, yielding to the formation of the OOH radical. This step could be considered the 

rate determining step of the ORR because of its activation barrier of 0.4 eV [59].  

The OOH dissociation follows this step, which is crucial to understand because 

of its implication in the further reduction of OH and O species into water. Today there is 

no a complete understanding of the barrier and pathway for this event. For that reason 

we analyze the transition state of the OOH dissociation on Pt and then Pt3Co to compare 

the effect of the alloyed catalyst toward the dissociation of OOH into OH and O.  
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obtain the pathway of the OOH dissociation and to finds the OOH dissociation barrier. 
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stable conformation corresponds to the hydroxyl adsorption on top Pt sites and the 

atomic oxygen adsorption on fcc hollow sites. The results of the CI-NEB calculation of 

the OOH dissociation on Pt(111) are shown in Figure 4.11. An activation barrier of 0.32 

eV is found. In the same plot the O-O elongation bond length is reported during the 

dissociation event. In the saddle point it is found a O-O bond length of 1.902 Å, which 

varies by 33 % with respect to the initial Pt-OOH structure (1.430 Å). The Pt-O 

distances are 1.903 Å and 2.096 Å, the angle Pt-Pt-O is 81.9 º and the angle Pt-O-O is 

102.3 º. In earlier investigations Sidik and Anderson [48] reported a much more smaller 

activation barrier of 0.06 eV using a initial structure of Pt2-OOH, finding Pt-O distances 

of 1.842 Å and 2.017 Å, Pt-Pt-O angle of 76.7 º, and Pt-O-O angle of 107.6 º. A much 

higher activation barrier was reported over a Pt15 cluster with an activation barrier of 

0.22 eV, which is close to what we computed for the OOH dissociation on a Pt(111) 

periodic slab cluster.   

From Figure 4.7 it is observed that the closest Pt-Pd alloy catalyst to behave like 

Pt toward the first electroreduction step is Pt3Pd (∆∆E = 0.01 eV). We use this catalyst 

to evaluate the OOH dissociation and to compare how the presence of Pd atoms in the 

surface can alter the OOH dissociation activation barrier. Figure 4.12 shows the results 

of the CI-NEB calculation of the OOH dissociation on Pt3Pd(111). In the same way as 

the previous case the most stable conformations are used for the initial and final 

configurations. For Pt3Pd, an activation barrier of 0.35 eV was computed, which is very 

close to the one on Pt(111) (0.32 eV). In the same plot the O-O elongation bond length is 

reported during the dissociation event. In the saddle point it is found a O-O bond length 

of 2.503 Å, which varies by 73.8 % with respect to the initial Pt3Pd-OOH structure 

(1.440 Å). The Pt-O distance is 1.843 Å, Pd-O distance is 1.987 Å, the angle Pt-Pt-O is 

92.5 º and the angle Pt-O-O is 89.0 º. As it is observed although the activation barrier in 

both cases is very close (which is in agreement with the small ∆∆E), some of the 

geometric characteristics are not necessarily close. In this section it is pointed out that 

the pathways between states have nothing to do with what the system really does 

dynamically under real conditions. Sometimes, the guess which is assumed by the 



 49 

method based on the minima found in the calculations of the initial and final structures is 

used by the program to map and suggest a pathway between the minima that we found. It 

is good, however, to keep in mind that that something important on the reaction pathway 

could be missing. And of course there is qualitative valuable information that is provided 

by these numerical simulations.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.11. Transition state pathway for the OOH dissociation on Pt(111) (red line) and 

elongation distance O-O (green line). 
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Figure 4.12. Transition state pathway for the OOH dissociation on Pt3Pd(111) (red line) 

and elongation distance O-O (green line). 
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decrease is observed on the d surface population due both to electron transfer to the 

adsorbates and to the metal subsurface atoms. In addition the calculated surface d-band 

center is correlated with all the intermediates of the ORR, not only atomic oxygen as it 

was found in previous investigations, but also with hydroxyl and OOH. That is the 

reason why the activation of the OOR can not be correlated directly to the d-band center.   

It was found that the adsorption of oxygenated species is stronger on Pt-sites of 

Pd-rich surfaces; thus those would be favorable surfaces to dissociate oxygen, however 

the skin-surfaces are better suited for O and OH reduction while they perform similar to 

pure Pt for O-O dissociation. It was observed that the best surfaces for the ORR are 

those that have the smallest values of ∆∆E1 and ∆∆E4, i.e., they are the closest to pure 

Pt, and therefore should behave like Pt. This fact has been demonstrated analyzing the 

activation barrier for catalyst with almost the same ∆∆E1.  

In summary, it could be concluded that the Pt-skin surfaces are the best alloys of 

this group because of their ability to emulate a pure Pt surface.   
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CHAPTER V 

CHEMICAL REACTIVITY OF PT3CO, PT3NI, PT3V, AND PT4R H ALLOY 

CATALYSTS 

 

Introduction 

 In the previous chapter we observed that the skin Pt monolayer catalysts are the 

most suitable for the ORR. In addition a Pt:X (X: alloy metal) surface ratio 3:1 can also 

have some impact toward the ORR. This fact can be supported by the changes in the 

electronic structure with respect to that of pure Pt and to changes of the physical 

structure of the catalyst (metal-metal catalyst distances). Mukerjee and Srinivasan [31] 

and Min et. al. [27] reported an ORR activity enhancement by a factor of 1.1 to 3 on 

several binary Pt-M (3:1) alloy catalysts. Toda et. al. [9; 33]  reported the effect of Pt 

alloying with Ni, Co, and Fe, prepared by sputtering, on the ORR activity and found 

enhancement factors of 10, 15, and 20 with 30, 40, and 50 atomic % Ni, Co, and Fe, 

respectively, which was attributed to electronic effects. The two selected distributions 

for each bimetallic catalyst in this chapter; the ordered structure and the skin Pt 

monolayer catalysts (Figure 5.1) were chosen considering the previously mentioned 

facts. In addition two different criteria were used. The first one is the segregation 

information for each of the components of the catalyst. Ruban et al. [108] reported a 

database with surface segregation energies of single transition metal impurities in 

transition metal hosts; it is shown that Rh, Ni, Co, and V present a moderate to strong 

anti-segregation of 0.26, 0.43, 0.46, and 0.98 eV per atom respectively. The second 

criterion is the information found in some studies about the dissolution of the metal from 

the cathode catalyst during the cell operation [9; 33; 43]. It was found that in wet cells after 

the immersion of the bimetallic catalyst in an acid electrolyte, a skin consisting of a 

monolayer of pure Pt is formed on the surface. These results indicate the dissolution of 

the metal from the cathode catalyst during the cell operation. Recent studies on the 

catalytic activity and stability of supported Pt–Co alloys with well-defined structures by 

Watanabe et al. [41]  demonstrated that both Co and Pt dissolve out preferentially from 
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small-size alloy particles and Pt re-deposits on the surfaces of large-size ones in hot 

H3PO4. As a result, an alloy with a disordered crystallite structure, which is more 

corrosion-resistant than an ordered one, maintains higher electrocatalytic activity for a 

longer time due to the active alloy surfaces with a relatively large surface area. It was 

also found that that a fine Pt alloy catalyst is covered with a pure Pt skin under the 

practical operation conditions in PEMFCs [41]. Thus, it is important to examine the 

electronic–structure changes of alloy surfaces as a possible factor for the enhancement in 

combination with the surface composition.  

 

  
 
 

 

 

 

 

 

 

 
 
Figure 5.1. Distribution layer by layer for top adsorption sites of OOH and OH on skin 

Pt monolayer of Pt3Co, Pt3Ni, Pt3V, and Pt4Rh. 

 

Lattice Constant and Slab Structures of Pt and Pt-X Catalysts (X: Co, Ni, V, and 

Rh)  

Experimental values of lattice constants have been reported for ordered Pt3Co, 

3.85 Å [109], and for Pt 3.92 Å [110]; the predictions in Table 5.1 slightly overestimate 

these values by 0.77% and 1.53% respectively, in agreement with other theoretical 

studies [18; 111; 112]. We computed lattice constants for Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh of 

3.98 Å, 3.88 Å, 3.88 Å, 3.92 Å, and 3.95 Å respectively. 
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Table 5.1  

Lattice constants and slab layer by layer distribution for Pt, Pt3Co, Pt3Ni, Pt3V, and 

Pt4Rh. The Pt:M layer by layer distribution is indicated starting from the surface 

composition 

System Case 
Lattice 

constant (Å) 
Pt:M distribution per 

layer 

Pt    3.98 4:0  4:0  4:0  4:0 

Pt3Co  (Skin Pt) A 3.88 4:0  3:1  3:1  2:2 

Pt3Co  B 3.88 3:1  3:1  3:1  3:1 

Pt3Ni  (Skin Pt) A 3.88 4:0  3:1  3:1  2:2 

Pt3Ni  B 3.88 3:1  3:1  3:1  3:1 

Pt3V  (Skin Pt) A 3.92 4:0  3:1  3:1  2:2 

Pt3V  B 3.92 3:1  3:1  3:1  3:1 

Pt4Rh  (Skin Pt) A 3.95 4:0  3:1  3:1  3:1 

Pt4Rh  B 3.95 3:1  3:1  3:1  4:0 

 

 

Binding Energies of ORR Intermediates on Pt(111) and Pt-X(111) Surfaces (X: Co, 

Ni, V, and Rh) and Structural Characteristics  

 In this section we evaluate the binding properties of OOH, OH, and O. From 

equations 1.3 and 1.6, as it was suggested in the previous chapter, the first electron 

reduction step is favored by strong OOH adsorption while the last three electron 

reduction steps are favored by weak O and OH adsorption, which will promote the 

reduction of O and OH to water. And a good ORR catalyst could be designed as the 

combination of a metal that adsorbs OOH stronger than Pt plus a second metal able to 

bind OH and O less strong than Pt, thus these species can be easily reduced to water. 

Tables 5.2 and 5.3 show the binding energies and some structural characteristics of all 

the ORR intermediates adsorbed on Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh surfaces. 

It is found that the fcc hollow is the most stable adsorption site for atomic oxygen 

on Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh surfaces. Xu et al. reported theoretical calculation 

with values of -3.88 eV, -4.29 eV, and -3.50 eV for oxygen in the hollow fcc site of Pt, 

Pt3Co and skin Pt/Pt3Co respectively (surface  coverage 1/4 ML) in good agreement with 
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our calculations. Campbell et al. [113] and Gland et al. [56] estimated from experiments the 

binding energy of atomic oxygen on Pt(111) to be -3.6 eV. Karlberg [112] also reported 

similar DFT calculated values for the adsorption of atomic oxygen and hydroxyl on Pt 

(111) and skin Pt monolayers and Panchenko et al. [111] reported values for the 

adsorption of OOH , OH, and O on Pt(111):  -1.07 eV, -2.23 eV, and -4.08 eV 

respectively.  

Table 5.2 shows that the adsorption of the intermediates OOH, OH and O is 

weaker on skin Pt surfaces. The presence of any of the metal alloy elements used in this 

study in the substrate of the periodic slab reduces the interaction of the surface with the 

oxygenated species mainly because of the redistribution of the charges found in the skin 

monolayer and the substrate; this is clearly observed in the distribution of the d-

population of the periodic slab (see Figure 5.3). On the other hand the presence of the 

alloy metal on the surface increases the interaction of the OOH with the surface 

particularly when the adsorption takes place on the alloy metal site, generating a strong 

adsorption of OOH. This strong OOH interaction elongates the distance O-O facilitating 

the dissociation of OOH into OH and O. Even if the oxygenated species are adsorbed on 

Pt, for example OOH adsorbed on Pt3V (homogeneous distribution) yields a binding 

energy of -1.37 eV and a O-O distance of 1.513 Å compared to 1.430 Å in pure Pt. This 

trend is found in all cases (Pt3Co, Pt3V, and Pt4Rh surfaces) except on Pt3Ni surfaces; the 

OOH adsorption in Pt sites for this case is -1.00 eV while the adsorption on Ni sites is -

0.92 eV. This behavior could be attributed to the oxidation of Ni atoms donating 

electrons to the Pt neighbor atoms in the surface based on the d-population of the Ni 

surface atoms, which decreases once OOH is adsorbed in Pt atoms. It is pointed out that 

the value reported in Table 5.2 for the binding energy when OOH is adsorbed on 

Vanadium corresponds to the average of the hydroxyl and atomic oxygen. This is the 

only case we found that the adsorption of OOH leads to an instantaneous dissociation 

(Figure 5.2).   

The presence of the metal alloy in the surface increases strongly the interaction 

of hydroxyl and especially atomic oxygen, thus making difficult the reduction of these 
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species to water. In contrast, skin Pt monolayers of Pt3Co, Pt3Ni, Pt3V, and Pt4Rh favor 

the reduction of both atomic oxygen and hydroxyl allowing weaker interaction on the 

most stable sites of these species compared with pure Pt.  

 

 

 

 

 

 

 
 
 
 
Figure 5.2. Initial (a) and final (b) structures (after optimization) for the OOH adsorption 

on Vanadium atom in Pt3V slab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Average electronic d-population on the surface and in the four-layer slab for 

Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh (cases A and B). 
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d-Population Analysis 

 Table 5.3 shows the structural relaxation of the surfaces as differences from the 

bulk separation between the first two layers after relaxation with respect to the bulk 

conformation. It was found that most of the homogeneous Pt-X (X: Co, Ni, V, and Rh) 

distribution atoms on the surface relax inwards by a small amount (-1.81 %) while most 

of the Pt-skin monolayer surfaces (except the one on Pt4Rh) relax outward by a 

noticeable amount. On the other hand, all the homogeneous distribution surfaces relax 

inwards with the highest values of -2.62%, found for Pt3V, and Pt4Rh. All the details of 

the catalyst surface relaxation with respect to the bulk structure are listed in Table 5.4. 

 

Table 5.2  

Binding energies (BE, in eV) of OOH, OH, and O on Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh 

surfaces. BEs calculated as: BEslab-adsorbate = E slab +adsorbate – E slab – E adsorbate.  Interactions 

with either Co or Ni or V or Rh are indicated in bold font 

M Case BE (M-OOH) BE (M-OH) BE (M-O (fcc)) comment 

Pt  -1.08 -2.27 -3.92  

Pt3Co  (Skin Pt) A -0.83 -2.11 -3.42 All weaker 

Pt3Co B -1.05  -1.10 -2.28 , -2.57 -4.22 
All stronger on Co; OOH 

weaker on Pt 

Pt3Ni  (Skin Pt) A -0.88 -2.16 -3.51 All weaker 

Pt3Ni B -1.00 , -0.92 -2.32 , -2.30 -4.14 
All stronger on Ni except 

OOH; OOH weaker on Pt as 
well 

Pt3V  (Skin Pt) A -0.64 -2.00 -3.23 All weaker 

Pt3V B -1.37, -4.16* -2.16 , -3.93 -6.01 
All stronger on V; OH 

weaker on Pt 

Pt4Rh  (Skin Pt) A -0.93 -2.22 -3.91 All weaker 

Pt4Rh B -1.13 , -1.29 -2.24 , -2.50 -4.37 
All stronger on Rh; OH 

weaker on Pt 
 
* OOH adsorption on Vanadium atom leads to an instantaneous dissociation into OH 

and O due to the strong interaction between the surface and the OOH intermediate (-4.16 

eV after the dissociation), which elongates the O-O distance dissociating this bond. 
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The separation found in skin Pt monolayers is mainly caused by the 

rearrangement of the electronic density in the slab. This effect is observed in the d-

population analysis shown in Figure 5.3. The average d-population on the surface is 

higher than that in the slab by approximately the same amount in the Pt-skin surfaces 

over Pt3Co and Pt4Rh, whereas it is much higher on the surface than in the slab of skin 

Pt/Pt3V, and is lower on the surface than in the slab of skin Pt/Pt3Ni. On the other hand it 

is observed that the average d-population is practically the same for the catalyst with 

homogeneous distribution in all the slab layers (cases B). 

 

Table 5.3  

Structural characteristics of the adsorption of oxygenated species on Pt, Pt3Co, Pt3Ni, 

Pt3V, and Pt4Rh. Atomic oxygen is adsorbed on fcc hollow sites while hydroxyl and 

OOH adsorb on top sites. Interactions with either Co or Ni or V or Rh are indicated in 

bold font   

M Case 
M-OOH 

d O-O 
M-OOH  

d M-O 
M-OH 
d M-O 

M-O   
d  M-O fcc 

M-O   
d  M-O hcp 

d-band 
center (eV) 

Pt  1.430 2.037 2.002 2.042 2.055 -2.16 

Pt3Co  (Skin Pt) A 1.427 2.032 2.009 
2.032 
2.038 
2.042 

2.080 
2.052 
2.039 

-1.99 

Pt3Co B 
1.492 
1.486 

2.023 
1.807 

2.002 
1.808 

2.044 
2.055 
1.878 

2.058 
2.070 
1.883 

-2.02 

Pt3Ni  (Skin Pt) A 1.423 2.038 2.006 
2.041 
2.040 
2.033 

2.072 
2.058 
2.040 

-1.95 

Pt3Ni B 
1.434 
1.443 

2.014 
1.848 

1.994 
1.821 

2.030 
2.037 
1.879 

2.041 
2.040 
1.892 

-1.98 

Pt3V  (Skin Pt) A 1.432 2.049 2.019 
2.023 
2.023 
2.017 

2.079 
2.070 
2.054 

-1.88 

Pt3V B 
1.513 
2.865 

2.109,2.055 
1.614,2.023 

2.025 
1.774 

3.489 
3.471 
1.605 

1.606 -1.92 

Pt4Rh  (Skin Pt) A 1.427 2.031 2.002 
2.038 

2.042 (2) 
2.055  

2.058 (2) 
-2.11 

Pt4Rh B 
1.491 
1.447 

2.035 
1.964 

2.002 
1.960 

2.044 
2.035 
1.995 

2.048 
2.059 
1.995 

-2.12 
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Table 5.4  

Surface relaxation estimated as changes from bulk separation between the first two 

layers ∆12  

M Cases 
Pt:M distribution layer by 

layer starting from top Separation ∆12 (Å) 
% Separation change 

wrt bulk 

Pt   4:0  4:0  4:0  4:0 2.38 -1.81 

Pt3Co  (Skin Pt) A 4:0  3:1  3:1  2:2 2.36 3.29 

Pt3Co  B 3:1  3:1  3:1  3:1 2.26 -1.97 

Pt3Ni  (Skin Pt) A 4:0  3:1  3:1  2:2 2.36 2.49 

Pt3Ni  B 3:1  3:1  3:1  3:1 2.29 -1.52 

Pt3V  (Skin Pt) A 4:0  3:1  3:1  2:2 2.34 0.28 

Pt3V  B 3:1  3:1  3:1  3:1 2.28 -2.62 

Pt4Rh  (Skin Pt) A 4:0  3:1  3:1  3:1 2.37 -0.59 

Pt4Rh  B 3:1  3:1  3:1  4:0 2.33 -2.62 
 

Thermodynamic Reactivity of Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh Catalysts 

 In a similar way to the behavior of Pt-Pd catalyst model surface, Figure 5.4 

shows the free energy changes ∆E1 for the first electron-proton transfer is parallel to ∆E2 

corresponding to the dissociation of OOH into OH and O for , Pt3Co, Pt3Ni, Pt3V, and 

Pt4Rh catalysts, suggesting that both pathways are driven by the chemisorption of 

oxygenated species such us OOH (equation 1.3) and OH and O (equation 1.4), the 

catalyst surface that favors the formation of M-OOH, at the same time will favor the 

dissociation of this specie into M-OH and M-O by elongation of O-O distance.  Figure 

5.4 also shows the different trend of ∆E4 with respect to ∆E1 proving that the strong 

adsorption of OH and O (reaction 1.3) do not favor the reduction of these species to 

water. It is pointed out that P3V (case B) shows a particular behavior compared with the 

other cases. In this case similar ∆E for reactions 1.3 and 1.4 suggests similar favorability 

for the formation of the OOH radical and its dissociation into OH and O. At the same 

time it is the only case that shows lower values for ∆E3 compared to ∆E4. 
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Figure 5.4. Reaction free energy changes for equations 1.3-1.6 (∆E1, ∆E2, ∆E3, and ∆E4) 

of Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh (case B) and their respective skin Pt monolayers 

(case A). 

 

In order to compare how each of these systems catalyzes the ORR compared with 

pure Pt, the reaction energy differences are calculated with respect to pure Pt (∆∆E1 and 

∆∆E4). Thus, the common energetic terms such as protons and water molecules in 

equations 1.3 and 1.6 cancel out.  All the relative energies for Pt3Co, Pt3Ni, Pt3V, and 

Pt4Rh (cases A and B) with respect to Pt for reactions 1.3 and 1.6 are listed in Table 5.5. 

According to thermodynamics, both ∆E1 and ∆E4 for a given catalyst should be more 

negative than those of pure Pt to be able to catalyze better the ORR than pure Pt.  For the 

skin-Pt surfaces we found that none of them has both negative values of ∆∆E1 and ∆∆E4 

(relative free energy taking Pt as a reference). For the skin-Pt monolayer surfaces ∆∆E1 

is always positive, this is an evidence of the weak interaction of these surfaces with the 

oxygenated species and consequently of the poor OOH cleavage which makes difficult 

its further dissociation into OH and O. On the other hand, for the same reason these 

surfaces favor the reduction of OH and O (equation 1.6) due to their weak interactions 

with atomic oxygen and hydroxyl compared to the ones in pure Pt, that facilitate the 
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reduction of OH and O to water. Among all cases, skin Pt monolayer of Pt3V has the 

highest ∆∆E1 (0.44 eV), this is reflected in the weak interaction of OOH and the surface 

with a low binding energy of -0.64 eV. Considering the ORR reactivity in terms of 

∆∆E1+4 we found the following order: Pt3V (skin Pt) > Pt3Co (skin Pt) > Pt3Ni (skin Pt) 

> Pt > Pt4Rh (skin Pt). From these cases, the closest catalyst to the ∆∆E values of Pt is 

skin Pt/Pt4Rh.   

Similarly, for the homogeneous distribution layer by layer (case B) none of the 

cases has both negative values of ∆∆E1 and ∆∆E4. But in contrast to the skin-Pt surfaces, 

these surfaces favor the first electron transfer by having a relatively strong interaction 

with OOH. For the same reason, the presence of the metal alloy on the surface increases 

the interaction with atomic oxygen making difficult its reduction to water. Among all 

cases Pt3V presents the highest ∆∆E4 (1.97) with a very strong atomic oxygen binding 

energy (-6.01 eV). Thus, none of these cases has an overall negative value of ∆∆E1+4. 

Figure 5.5 shows the relative free energy of Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh 

alloys taking Pt as a reference for the first reduction step against the last three reduction 

steps. It is clearly shown that none of the studied model catalyst surfaces has the ability 

to reduce oxygen as pure Pt. All the catalysts have either positive values of ∆∆E1 and 

∆∆E4 or a mix of positive and negative values for ∆∆E1 and ∆∆E4. In order to be 

considered a better catalyst than Pt, the catalyst must be on the quadrant with negative 

values of both ∆∆E1 and ∆∆E4. It is observed that most of them are on quadrants with 

either positive values of ∆∆E1 and negative values of ∆∆E4 (skin Pt monolayer catalysts 

of Pt4Rh, Pt3Ni, Pt3Co, and Pt3V) which favor the reduction of OH and O to water or 

negative values of ∆∆E1 and positive values of ∆∆E4 (Pt4Rh, Pt3Co, and Pt3V) which 

favor the formation of M-OOH (however they do not promote the reduction of O and 

OH to water in the last three electron and proton transfer steps).  
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Table 5.5  

Relative free energies (eV) according to equations 1.3 and 1.6 for Pt, Pt3Co, Pt3Ni, Pt3V, 

and Pt4Rh alloys with respect to pure Pt 

  Case ∆∆E1  ∆∆E2  

Pt    0.00 0.00 

Pt3Co  (Skin Pt) A 0.26 -0.66 

Pt3Co  B -0.01 0.59 

Pt3Ni  (Skin Pt) A 0.21 -0.52 

Pt3Ni  B 0.08 0.27 

Pt3V  (Skin Pt) A 0.44 -0.96 

Pt3V  B -0.28 3.74 

Pt4Rh  (Skin Pt) A 0.16 -0.06 

Pt4Rh  B -0.20 0.68 

 

According to thermodynamic guidelines for the design of OOR alloy catalysts[26; 

59], which are based on information of pure metal catalyst behavior toward the ORR; a 

good candidate to catalyze the ORR better than Pt  must have both ∆∆E1 < 0 and ∆∆E4 < 

0. Thus, none of these cases satisfy the two criteria, however we can expect that some of 

the studied skin Pt monolayer model catalyst surfaces can behave at least comparably to 

pure Pt. That is the case of skin Pt/Pt4Rh, skin Pt/Pt3Ni, and skin Pt/Pt3Co. For example, 

OOH binds on Pt/Pt4Rh with a binding energy of -0.93 eV, very close to the one found 

in Pt (-1.08 eV). And atomic oxygen and hydroxyl binding energies are -3.91 and -2.22 

eV compared to -3.92 and -2.27 eV in pure Pt; the free energy profile for Pt4Rh (skin Pt) 

is shown in Figure 5.6.  
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Figure 5.5. Relative energies (eV) according to equations 1.3 and 1.6 for Pt, Pt3Co, 

Pt3Ni, Pt3V, and Pt4Rh alloys with respect to pure Pt.  

 

Nevertheless skin Pt/Pt3V has the lowest ∆∆E4, it should be expected to has 

serious problems to dissociate the OOH radical into OH and O on the surface due to its 

relative high ∆∆E1 (0.44 eV) compared to the other cases. 
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Figure 5.6. Gibbs free energy profile for the ORR on Pt4Rh (skin Pt). The data in 

parenthesis are for pure Pt.  

  

Correlation Between the Surface d-band Center and the ORR Intermediates  

 In this section the d-band center (Figure 5.7) and the surface d-band center 

(Figure 5.8) of the slab cluster for Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh (cases A and B) are 

computed. It was found a linear relationship between the calculated surface d-band 

center for the studied slab catalysts and the binding energy of OOH, hydroxyl and 

atomic oxygen. It is noticed however that the d-band center values do not follow the 

same trend. M. Shao et al. [40]  and Norskov [97] showed a correlation between the d-band 

center values and the binding energy of atomic oxygen, and at the same time this trend is 

related to the reactivity of the catalyst.  

In Figure 5.7 it is observed that the d-band center values of cases A (skin Pt 

monolayer) and B (homogeneous distribution) for each of the model catalyst surfaces are 

close in magnitude, having the skin Pt monolayer the lower values. The d-band center 
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values for Pt4Rh. Pt3Co, Pt3Ni, and Pt3V are -2.11, -1.99, -1.95, and -1.88 eV 

respectively whereas the corresponding d-band center values for their Pt skin monolayer 

catalyst are -2.12, -2.02, -1.98, and -1.92 eV. The d-band center value for pure Pt is -2.16 

eV.     

In Figure 5.8 is particularly interesting to observe the trend of the surface d-band 

center and the binding energies for OOH, OH, and O. We found that the smaller absolute 

value of the surface d-band center (meaning that the d-band center is closer to the Fermi 

level, i.e. more reactive the surface), the stronger adsorption of the intermediates on the 

catalyst surface.  

Nevertheless the reduction of the interaction distances between the metals on the 

surfaces due to the reduction of the lattice constant increases the interaction of all the 

intermediates, and somehow favors the first electron and proton transfers (equation 1.3), 

at the same time this effect is translated into a different effect for the last electron and 

proton transfers (equation 1.6); increasing the interaction of the adsorption of both the 

hydroxyl and the atomic oxygen intermediates. This evidence is in agreement with M. 

Shao et al [40], who found that the maximum enhancement in the electroactivity of the 

ORR for Pd monolayer catalyst is located at an intermediate point along the d-band 

center of the catalysts, demonstrating that a good catalyst should balance the effect in the 

d-band center considering not only atomic oxygen and hydroxyl adsorption but also the 

OOH intermediate adsorption. This trend causes that the correlation of the surface d-

band center clearly separates the catalyst location for cases A and B based on their 

capacity to adsorb the intermediates. In this plot Pt is located exactly in the middle and 

Pt4Rh, Pt3Co, Pt3Ni, and Pt3V developing a gap around Pt for cases A and B.  

In general it was observed that in both cases the surface d-band center and the d-

band center are directly related with the atomic size of the metal alloy. 
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Figure 5.7. Binding energies of OOH, OH, and O as a function of the d-band center of 

the slab cluster for Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh (cases A and B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Binding energies of OOH, OH, and O as a function of the surface d-band 

center of the slab cluster for Pt, Pt3Co, Pt3Ni, Pt3V, and Pt4Rh (cases A and B). 
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Summary 

None of the studied catalysts yield both negative values of ∆∆E1 and ∆∆E4. 

However skin Pt monolayer of Pt3Co, Pt3Ni, and Pt3V catalysts provide an overall 

negative value of ∆∆E1+4, and they should act at least in a similar way than pure Pt. The 

order of the reactivity based on the overall relative free energy is for the ORR is: Pt3V 

(skin Pt) > Pt3Co (skin Pt) > Pt3Ni (skin Pt) > Pt > Pt4Rh (skin Pt). This behavior is 

attributed to the polarization of the slab caused by the charge density distribution, which 

is also reflected in the separation of the atoms in the surface (first layer) and the 

substrate. All skin Pt monolayer model catalyst surfaces facilitate the reduction of OH an 

O to water (last three electron and proton transfer), and nevertheless they do not favor 

the formation of M-OOH in the same way of Pt (they all have ∆∆E1 > 0), most of them 

(skin Pt/Pt3Co, skin Pt/Pt3Ni, and skinPt/Pt3V) have ∆∆E1+4 < 0, suggesting that they 

could be used to catalyze the ORR, especially skin Pt/Pt3Co and skin Pt/Pt3Ni; both have 

similar strength to adsorb OOH, -0.83 and -0.88 eV for skin Pt/Pt3Co and skin Pt/Pt3Ni 

respectively compared to -1.08 eV of Pt. We also found that once any of the metal alloy 

elements is present on the surface the catalyst, they behave in a different way, the 

catalyst favors the formation of M-OOH, but at the same time it does not facilitate the 

reduction of O and OH into water. On the contrary, it adsorbs strongly the hydroxyl and 

especially the atomic oxygen making difficult their reduction to water. 

A correlation between the surface d-band center and the binding energy of the 

OOH, OH, and O intermediates was observed. They basically follow the same trend, the 

stronger adsorption of the intermediate the lower value for the surface d-band center. 
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CHAPTER VI 

CHEMICAL REACTIVITY IN STEPPED PT AND PT-NI SURFACE S 

 

Introduction 

In this chapter we extent the study of the reactivity of homogeneous, low Miller 

index surfaces to heterogeneous, stepped, high Miller index surfaces. Since most of 

catalytic reactions are structure sensitive due to the presence of step and kink sites, the 

under coordinated surface atoms and the changes of the electronic density of the surface, 

we explore the reactivity sensitivity of the ORR on these surfaces in terms of 

chemisorption of the ORR intermediates and the changes in the d-band structure. We 

evaluate the electrocatalytic activity in stepped surfaces (211), and then we explore the 

sensitivity of the atomic oxygen adsorption on Pt(320) and Pt(331). Pt(211) surfaces can 

be classified in surfaces with (111) terraces separated by monatomic (100) steps. In the 

same way Pt(331) consists of (111) terrace and (111) step, and Pt(320) has a (110) 

terrace and  (100) step. Pt(211), Pt(331) and Pt(320) surfaces can also be denoted as 

Pt[3(111)(100)],  Pt[3(111)(111)], and Pt[3(110)(100)] respectively. 

To explore the reactivity in (211) surfaces we chose two cases, Pt and skin Pt 

monolayer over Pt3Ni. We used skin Pt monolayer catalysts since it has been shown in 

previous chapters that this kind of model catalyst surfaces are the most suitable for the 

ORR, not only in terms of reactivity, but also in terms of stability. This last point will be 

addressed in the next chapter. 

The (211) surfaces were modeled using a 3x2 supercell. The Pt(211) and the 

Pt/Pt3Ni(211) catalyst systems were described using a 4-layer periodic slab model, 

where each slab was infinite in the x and y directions, while finite along the z direction, 

and then repeated periodically along all the directions. For each relaxation process, the 

first two layers on the top are allowed to relax, while the two at the bottom are fixed. A 

vacuum space equivalent to eight layers was used to ensure that there were no 

interaction between the adsorbed intermediates and the bottom surface of the next slab. 

In all the calculations, the obtained bulk lattice constant was used.    
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In order to compute the reactivity for these cases, we used the most stable 

conformation only for the adsorption of the ORR intermediates (OOH, OH, and O). The 

overall coverage used for these cases is 1/6 monolayer (ML). Table 6.1 lists the detailed 

information of the binding energy values taking as a reference positions sketched in 

Figure 6.1. It was found that the intermediates adsorbed stronger mostly in bridge step 

sites (in Pt/Pt3Ni(211) the hydroxyl radical adsorbs in hollow sites). 

 
Thermodynamic Reactivity of Pt(211) and Pt3Ni (211) Catalysts 

After testing all possible adsorption sites in the (211) surface based on the sketch 

of Figure 6.1, we found that all the intermediates tend to adsorbed strongly on bridge 

positions on step sites (position 1) while the interactions in terrace sites (positions 2 and 

3) are less stronger. This effect can be explained in term of the low coordination number 

at the step sites, which leads to the redistribution of the electron charge density. The 

strength of adsorption on step sites considerably overpass the strength on (111) surfaces. 

The OOH adsorption on Pt(211) has a binding energy of -1.91 eV while the binding 

energy on Pt (111) is -1.08 eV. The same trend is found for the other intermediates. On 

Pt model (211) catalyst surfaces OH and O adsorb with 38% and 14% more strength 

respectively than in the most stable sites of the (111) surface (these values can be 

observed in Table 6.1). 
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Figure 6.1. Extended surface (211) approach. Left: The unit cell includes 26 metal atoms 

and the vacuum space.  Right: Lateral view of the surface. 1: step site, 2 and 3: terrace 

sites.  

 

From Table 6.1 the role of the metal alloy in the substrate is also observed, which 

causes the reduction of the interaction strength between the intermediates and the 

catalyst surface. For example the binding energy of OOH on Pt(211) is -1.91 eV while 

the binding energy on Pt/Pt3Ni(211) is -1.59 eV.  

Table 6.2 shows a comparison between the relative free energies for reactions 1.3 

and 1.6 on Pt and Pt/Pt3Ni (111) and (211) surfaces while Table 6.3 shows some the 

structural characteristics after the adsorption of OOH, OH, and O on these surfaces. 

From the results it is clear that the (211) surface does not enhance the ORR activity 

compared to the same composition on a (111) surface. Nevertheless, (211) surfaces  

favor the first electron and proton transport due the strong interaction between the OOH 

intermediate and the surface in step sites, at the same time they also increase the 

adsorption of the intermediates involved in the reduction to water, which makes these 

type of surfaces less suitable for the reduction of oxygen. In a recent study [114] it was 

found however that stepped Pt surfaces enhance the catalytic activity of the ORR. It is 

stated that the ORR in acid media is a structure sensitive reaction that is affected by the 

1
2
3

1
2
3

terrace stepterrace step
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anion adsorption and the oxide formation, whereas the oxygen adsorption energies on 

the different sites play a secondary role in determining the catalytic activity of the 

electrode. The high activity of the stepped surfaces is attributed to the formation of a less 

stable (bi)sulfate adlayer compared to that formed on Pt(111). This explanation may be 

explored in future work for a better understanding of the ORR performance on stepped 

surfaces.   

The computed local density of states shows a shift of the d-band center to 

positive energy values, which suggests an increased reactivity of this surface. The 

computed d-band center for Pt(211) is -1.90 eV whereas for Pt(111) is -2.16 eV. This 

change is also reflected in the strong interaction between Pt(211) surfaces and the ORR  

intermediates compared to the ones found on Pt(111).     

In general terms, the comparison between (111) and (211) surfaces shows the 

important site structure sensitivity for the chemisorption in stepped surfaces. It is also 

noticed that surfaces (211) are also sensitive to the presence of the alloy metal in the 

substrate; in particular to the adsorption of OH and O.  

 

Table 6.1  

Binding energies (BE, in eV) of OOH, OH, and O on Pt and Pt/Pt3Ni. 

BEs calculated as: BEslab-adsorbate = E slab +adsorbate – E slab – E adsorbate   

Catalyst B.E. (OOH) B.E. (OH) B.E. (O) 

Pt (111) -1.08 -2.27 -3.92 

Pt (211) -1.91 -3.13 -4.45 

Skin Pt/Pt3Ni (111) -0.88 -2.16 -3.51 

Skin Pt/Pt3Ni (211) -1.59 -2.38 -4.49 

 

 

 

 

 

 



 72 

 

Table 6.2  

Relative free energies (eV) according to equations 1.3 and 1.6 for Pt and Pt/Pt3Ni with 

respect to pure Pt  

Catalyst ∆∆E1  ∆∆E4  

Pt (111) 0.00 0.00 

Pt (211) -0.83 1.40 

Skin Pt/Pt3Ni (111) 0.21 -0.52 

Skin Pt/Pt3Ni (211) -0.51 0.68 
 

Table 6.3 

Distances (in Å) for adsorption of oxygenated species on Pt and Pt/Pt3Ni(211). Atomic 

oxygen, hydroxyl and OOH adsorbed on bridge sites   

  Pt (111) Pt (211) Skin Pt/Pt3Ni (111) Skin Pt/Pt3Ni (211) 

M-OOH  d O-O  1.430 1.464 1.423 1.466 

M-OOH  d M-O  2.037 2.100 (2) 2.038 2.099(2) 

M-OH     d M-O  2.002 2.126 (2) 2.006 2.066 

M-O        d  M-O 2.042 1.941 (2) 2.041, 2.040 , 2.033 1.943 (2) 
 
 
Atomic Oxygen Adsorption on Pt(111), Pt(211), Pt(331), and Pt(320) 

As it was observed in the previous section, the reactivity of any specific catalyst 

is directly related to the adsorption of the intermediates on the surface. It was detected 

that the reactivity of the ORR is favored by a moderate atomic oxygen interaction with 

the surface. Therefore, we can use this criterion to suggest the best stepped catalyst for 

the ORR. In this section we evaluate the adsorption of atomic oxygen on Pt(111), 

Pt(211), Pt(331), and Pt(320) to evaluate the interaction of this specie with the model 

catalyst surface. 

Figure 6.2 shows the atomic oxygen binding energies on Pt(111), Pt(211), 

Pt(331), and Pt(320). We included the values for all possible adsorption sites on the 
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catalyst surfaces. In general, it was found that the most stable conformations correspond 

to either hollow or bridge sites (Figure 6.3). It is particularly interesting to see that 

among all cases and comparing only the most stable adsorption conformations that 

atomic oxygen is adsorbed weaker on Pt(111) than on the stepped surfaces. Atomic 

oxygen adsorbs to the surface with binding energies of -3.92, -4.32, -4.40, and -4.50 eV 

for Pt(111), Pt(331), Pt(320), and  Pt(211) respectively. From these results we should 

expect that all stepped surfaces should have problems to reduce atomic oxygen from the 

surface due to strong adsorption, therefore they should work less efficiently than Pt(111) 

in the ORR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Binding energies (in eV) of atomic oxygen on Pt(111), Pt(211), Pt(331), and 

Pt(320) surfaces tested in different positions along the steeped surface.  
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Figure 6.3. Adsorption of atomic oxygen on Pt(211), Pt(320), and Pt(331) surfaces.  

 

 

Summary 

 In this chapter we analyze the reactivity of Pt and Pt3Ni steeped surfaces. We 

found that in terms of adsorption energies none of the (211) surfaces enhances the 

catalytic activity of the ORR compared to Pt(111). On the other hand they may offer 

good sites for anion adsorption. It is also detected that the presence of the alloy metal in 

the substrate favors the reduction of OH and O.  

 The changes in the local density of states of stepped surface surfaces implied 

remarkable changes in the electronic structure; this effect is translated into the shift of 

the d-band center to positive energy values.  

We also compared Pt(111), Pt(331), Pt(320), and  Pt(211) surfaces, and we found 

that among all these surfaces Pt(111) is the most suitable catalyst for the ORR mainly 

because of the its moderate adsorption of the ORR intermediates that allows the 

reduction of them.  
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CHAPTER VII 

CHEMICAL STABILITY OF PT3CO, PT3NI, PT3PD, AND PT4R H ALLOY 

CATALYSTS 

 

Introduction 

In this section, we analyze the chemical stability of the Pt3Co, Pt3Ni, Pt3V, and 

Pt4Rh alloy catalysts against the dissolution in acidic environment measuring the free 

energy changes of allowed dissolution reactions considering the presence of some 

intermediates of the ORR. As a starting point based on previous work performed by 

Balbuena and Gu we selected thermodynamic allowed dissolution reactions [115] to 

evaluate the stability on Pt and Pt alloy model surfaces. The reactions that are 

thermodynamically favorable are electrochemical and involve interactions of the ORR 

oxygenated intermediates (OOH, OH, and O) with the catalyst surface and solvated 

proton molecules coming from the acid electrolyte. Balbuena and Gu also tested some 

chemical dissolution reactions, demonstrating that these type of reactions are 

thermodynamically unfavorable. The following are the electrochemical dissolution 

reactions used in this study: 

 

M16-OOH + 6H2O + 3H+ + e-  →  M(H2O)6
2+ + 2H2O + M15      (7.1) 

 

M16-OH + M16-O + 6H2O + 3H+ + e-  →  M(H2O)6
2+ + M16 + 2H2O + M15     (7.2) 

 

M16-OOH + M16-O + 12H2O + 5H+ + e-  →  2M(H2O)6
2+ + 3H2O + 2M15     (7.3) 

 

M16-OOH + 6H2O + M16-O + 5H+ + 3e-  →  M(H2O)6
2+ + M16 + 3H2O + M15    (7.4) 

 

M16-OOH + M16-OH + 6H2O + 4H+ + 2e- → M(H2O)6
2+ + M16 + 3H2O + M15    (7.5) 
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where M16 represents the 2x2 four layer periodic slab for Pt, Pt3Co, Pt3Ni, Pt3V, and 

Pt4Rh catalyst surfaces. As it is shown for the set of reactions, the dissolution of one of 

two M atoms from the surface leads to the formation of hydrated metal cations, 

M(H2O)6
2+. And in order to approximate the condition of hydrated protons present in the 

acidic environment, the protons are modeled as H3O
+(H2O)3; for protons the inner shell 

may be conceived as the three water molecules solvating H3O
+ [87; 88] (the H3O

+ ion itself 

is similar in diameter to K+ and both have similar solvation energies). On the other hand 

the hydrated metal cation (M2+) is modeled as M(H2O)6
2+  because six-coordinate 

complexes of transition metals are commonly formed in acid medium [116].  

The free energy change �E for each reaction is calculated as the difference 

between the free energy of the products and the reactants as it is shown for reaction 6.1: 

 

∆E1 = E[M(H2O)6
2+] + 2E[H2O]  + E[M15] – E[M16-OOH] – 6E[H2O] – 3E[H+] – U(e-)  

 

              (7.6) 

In each electrochemical reaction, the electron energy is set to zero, which corresponds to 

a zero cell potential (U = 0 V).  

 

We also evaluate the relative free energy ��E of these reactions respect to the 

free energy changes for pure Pt catalyst using the following correlation: 

 

∆∆Erxn (M) = ∆Erxn (M) – ∆Erxn (Pt)           (7.7) 

 

In this way we could reduce the errors arising from the modeling of the extended 

metal systems. It is pointed out that these calculations have a qualitative character since 

the metal dissolution of the electro-catalyst under real conditions would depend on many 

different variables such us the kind of the metal catalyst, potential, scan rate, 

temperature, solution concentration,  composition, etc. 
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Thermodynamic Trends of the Dissolution of Pt, Co, Ni, and Rh on Pt and Pt-X (X: 

Co, Ni, Pd, and Rh) Catalysts  

In this section we study how the presence of Pt atoms on the surface catalyst can 

alter the dissolution of Co, Pd, Ni, and Rh in homogeneous surface distributions of Pt:X 

(3:1) (X: Pt, Co, Ni, Pd, and Rh). In earlier investigations [42; 115; 117], it was shown that Pt 

atoms are more stable than elements from the Group VIII (Co, Ni, Rh, and Pd) coming 

from rows four and five of the periodic table.  

As it is shown in reactions 7.1-7.5, all dissolution reactions involve interactions 

of the ORR intermediates OOH, OH and O with the catalyst surfaces. We evaluate the 

dissolution of Pt, Co, Ni, Pd, and Rh respectively. In order to achieve realistic values for 

the �Es, we considered the energy values for the most stable conformations only.   

In agreement with Balbuena and Gu [115] we found that all the electrochemical 

reactions used in this study are thermodynamically favorable. Table 7.1 lists the values 

for all the free energy changes of reactions 7.1-7.5 for Pt, Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh. 

From Table 7.1 it is noticed that reaction 7.4 has the highest negative value of �E for all 

the considered dissolution reactions. This reaction also involves the highest number of 

electron transfer (three).  

 

Table 7.1  

Free energy changes �E (eV) for Pt, Co, Ni, Pd, and Rh dissolution in Pt, Pt3Co, Pt3Ni, 

Pt3Pd and Pt4Rh surface catalysts for reactions 7.1-7.5 

  Pt Pt3Co Pt3Ni Pt3Pd Pt4Rh 

∆E1 -46.094 -47.926 -50.002 -48.913 -48.222 

∆E2 -44.838 -46.088 -48.329 -47.496 -46.490 

∆E3 -68.355 -71.735 -75.785 -73.515 -72.367 

∆E4 -90.927 -92.462 -94.619 -93.613 -92.607 

∆E5 -68.671 -70.492 -72.526 -71.390 -70.832 
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Figure 7.1 shows the relative free energy changes ��E for the dissolution 

reactions 7.1-7.5 of Co, Ni, Pd, and Rh with respect to Pt in Pt3Co, Pt3Ni, Pt3Pd, and 

Pt4Rh respectively. We found that Co, Ni, Pd, and Rh are more easily dissolved than Pt, 

which is deduced by the negative values of the ��E. The free energy changes for Ni is 

~3.5 eV more negative than Pt for reaction 7.1, 7.2, 7.4, and 7.5 while reaction 7.3 is 

7.43 eV more negative than Pt. It is pointed out that reaction 7.3 describes the 

dissolution of two hydrated cation molecules X(H2O)6
2+ (X: Pt, Co, Ni, Pd, and Rh). 

From all the model catalyst surfaces studied, Ni was found to be the less stable metal 

atom on the surface. We found that the order of stability of the Pt, Co, Ni, Pd, and Rh in 

Pt3Co, Pt4Rh, Pt3Pd, and Pt3Ni catalyst surfaces is:  Pt > Co > Rh > Pd > Ni respectively. 

The results are in agreement with Juodkazis et al. in the investigation of the dissolution 

of Pd [118] and Rh [119] in 0.5 M H2SO4, finding that during the potential cycling through 

the oxygen region the electrode mass decreases which each cycle as a indication of the 

metal dissolution. Lukaszewski and Czerwinski [117] also reported the dissolution of Pd, 

Rh and Pt-Pd, finding that Pd and Rh are less stable than Pt, and that Rh is more stable 

than Pt along the potential under experimental conditions. The trend found in this part is 

close to what is found in pure catalysts [115], however Co is more stable than Rh and Pd, 

suggesting that the stability of metal atoms in the catalyst surface are altered by the 

changes in the electronic distribution on the surface after a  pure element is alloyed.  

The dissolution of alloy metals from Group VIII was also investigated by 

Greeley and Norskov [120], they found trends between metal dissolution potentials and 

surface segregation energies. The more strongly a metal segregates to the surface of a 

particular host, the more stable the metal will be in a given surface. The increase in the 

stability of the surface, translates into the increase resistance to the dissolution. This 

concept can not be applied when the heat of the dissociation of the metal solute in the 

bulk host is large. However it can be applied for Co, Ni, Pd, and Rh with anti-

segregation energies [108] in Pt host, which is translated into a tendency for the 

dissolution on Pt catalysts.     
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Figure 7.1. Relative free energies of reactions 7.1-7.5 with respect to Pt for the 

dissolution of Pt, Co, Ni, Pd, Rh atoms from the model catalyst surfaces of pure Pt, 

Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh. 

 

Thermodynamic Trends of Pt Dissolution on Pt and Pt-X (X: Co, Ni, Pd, and Rh) 

Catalysts 

 In this section we study the tendency of Pt dissolution from catalysts with 

homogeneous surface distributions of Pt:X (3:1) (X: Pt, Co, Ni, Pd, and Rh). We explore 

the effect of the alloy metal on the stability of Pt atoms.     

As in the previous case and also in agreement with Balbuena and Gu [115] we found that 

all the electrochemical reactions for the dissolution of Pt atoms from the homogeneous 

catalyst surface are thermodynamically favorable. Table 7.2 lists the �E values for 

reactions 7.1-7.5 for Pt, Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh. From Table 7.2 it is noticed that 

among all the favorable dissolution reactions, reaction 7.4 has the highest negative value, 
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which indicates that the more electrons involved the higher equilibrium constant of the 

associated reaction. This fact is in agreement with a similar trend found in previous work 
[115].    

 

Table 7.2 

Free energy changes (eV) for Pt dissolution in Pt, Pt3Co, Pt3Ni, Pt3Pd and Pt4Rh 

catalysts for reactions 7.1-7.5 

  Pt Pt3Co Pt3Ni Pt3Pd Pt4Rh 

∆E1 -46.094 -46.023 -46.155 -46.214 -45.846 

∆E2 -44.838 -44.422 -44.549 -44.714 -44.220 

∆E3 -68.355 -67.879 -68.179 -68.450 -67.456 

∆E4 -90.927 -90.559 -90.772 -90.914 -90.232 

∆E5 -68.671 -68.302 -68.679 -68.691 -68.192 

 

Figure 7.2 shows the relative free energy changes ��E for Pt dissolution 

reactions 7.1-7.5 of Pt in Pt, Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh catalysts. We observe that all 

the ��E values for Pt3Co and Pt3Rh are positive, which means that Co and Rh improve 

the Pt stability on the surface. On the other hand positive and negative ��E values for 

Pt3Ni were found for reactions 7.2-7.4 and 7.1 and 7.5 respectively. In a similar way for 

Pt3Pd, reactions 7.2 and 7.4 have positive ��E values and reactions 7.1, 7.3, and 7.5 

have negative ��E values. The small ��E values for Pt3Ni and Pt3Pd, especially Pt3Pd 

that has values close to zero, suggest that Pd and Ni atoms on the surface could barely 

affect the stability of Pt surface atoms.  
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On the other hand, the positive ��E values for Pt3Co, Pt3Ni, and Pt4Rh catalysts 

suggest that Co, Ni, and Rh (especially Rh) help to stabilize Pt atoms on the surface. In 

general, from all the catalyst surfaces studied in this section, Pt atoms are not likely 

dissolved by the presence of the electrolyte. And in terms of stability we can state that 

the stability of Pt is favored by the presence of the alloy metals in the following order: 

Rh > Co > Ni > Pd. This order follows the trend of the cohesive energies of the alloy 

metals as it has been reported both from experimental [121] and theoretical works [122; 123], 

suggesting a correlation between the stability of Pt atoms on the surface and the cohesive 

energy of the alloy metal surrounded by Pt atoms on the surface. This relationship can be 

understood intuitively. The stronger cohesive energy of the alloy metal, the more 

stability the catalyst surface acquires against dissolution. It is pointed out that although 

the presence of metal alloys on the surface stabilize the Pt atoms in the surface, the effect 

on them is not significant, and for some cases it could be negligible based on the small 

��E values which in most of the cases are around 0.5 eV.  

In summary from the previous two sections, we can conclude that in all Pt-X 

homogeneous catalyst surfaces, the alloy metal most likely be dissolved from the surface 

forming a skin Pt monolayer as it was reported previously in experimental studies [9; 33; 

42; 43] under practical operational conditions even in dilute acid solutions. In the next 

section we will explore the stability of skin Pt monolayer catalysts.  
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Figure 7.2. Relative free energies with respect to Pt for reactions 7.1-7.5 for the 

dissolution of Pt atoms from the catalyst surfaces of pure Pt and Pt monolayers of Pt3Co, 

Pt3Ni, Pt3Pd, and Pt4Rh. 

 

Thermodynamic Trends of Pt Dissolution on Pt and Skin Pt Monolayers of Pt3Co, 

Pt3Ni, Pt3Pd, and Pt4Rh Catalysts 

 In this section we evaluate the dissolution of Pt atoms from skin Pt monolayer 

catalysts of Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh. As it was demonstrated in the two previous 

sections Pt atoms are very stable against the dissolution in acid medium compared with 

typical alloy metals such as Co, Ni, Pd, and Rh. And even if one of these metals is 

present on the catalyst surface, it is most likely dissolved by the acid media forming a 

skin monolayer of Pt. For that reason it results very interesting and necessary to explore 

how the skin Pt monolayer behaves against the dissolution having alloy metals in the 

substrate.    
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In the same way as the two previous cases all the electrochemical reactions for 

the dissolution of Pt atoms from the skin Pt monolayer catalysts are thermodynamically 

favorable. Table 7.3 listed the �E values for reactions 7.1-7.5 for Pt, skin Pt3Co, skin 

Pt3Ni, skin Pt3Pd, and skin Pt4Rh. From Table 7.3 it is noticed that among all the 

favorable dissolution reactions, reaction 7.4 has the highest negative �E value, which 

indicates that the more electrons involved the higher equilibrium constant of the 

associated reaction. 

 

Table 7.3 

Free energy changes (eV) for Pt dissolution in Pt, skin Pt3Co, skin Pt/Pt3Ni, skin 

Pt/Pt3Pd, and skin Pt/Pt4Rh catalysts for reactions 7.1-7.5  

  Pt Skin Pt3Co Skin Pt3Ni Skin Pt3Pd Skin Pt4Rh 

∆E1 -46.094 -46.193 -46.197 -46.069 -46.180 

∆E2 -44.838 -45.340 -45.253 -44.644 -44.823 

∆E3 -68.355 -68.798 -68.761 -68.154 -68.379 

∆E4 -90.927 -91.530 -91.439 -90.847 -91.024 

∆E5 -68.671 -68.928 -68.886 -68.627 -68.805 

 

 

Figure 7.3 shows the relative free energy changes ��E for Pt dissolution 

reactions 7.1-7.5 from skin Pt3Co, skin Pt3Ni, skin Pt3Pd, and skin Pt4Rh model catalyst 

surfaces. We observed that Co, Ni, Pd, and Rh affect the stability of the surface Pt atoms 

in a small degree for most of the dissolution reactions. It is found that the ��E for Pt3Co, 

Pt3Ni, and Pt3Rh are negative, which means that Co, Ni, and Rh reduce the stability of Pt 

atoms on the surface. On the other hand it is observed that Pd atoms in the substrate of 

skin Pt3Pd improve the stability of Pt atoms in the surface by a small amount that might 

be considered negligible since for most of the reactions the ��E are in the order of 0.2 

eV.  
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Pt4Rh has positive ��E values for all the dissolution reactions but reaction 7.2, 

and for all cases the ��E values are close to zero. This is an indication that Rh atoms in 

the substrate of the skin Pt4Rh barely affect the stability of Pt surface atoms. In terms of 

stability we found that skin Pt monolayer catalysts are favored by elements of the fifth 

row of the periodic table (Pd and Rh) in a different degree. The presence of Pd atoms in 

the substrate barely changes the stability of Pt atoms in the surface. On the other hand 

the elements of the fourth row (Co and Ni) reduce the stability of Pt atoms on the 

surface. These results provide insights about how the presence of alloy metal in the 

substrate may alter the electronic structure of the catalyst surface. 

It is pointed out that although the stability of Pt atoms in the surface is affected 

by the presence of Co, Ni, Pd, and Rh atoms in the substrate, based on the order of 

magnitude of ��E (-0.60 eV < ��E < 0.20 eV), their effect  may be relatively small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Relative free energies changes for reactions 7.1-7.5 for the dissolution of Pt 

atoms from the catalyst surface with respect to Pt in pure Pt and Pt skin monolayer of 

Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh model catalyst surfaces. 
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Composition and Atomic Distribution Effects on Catalyst Surface Stability 

In order to analyze the stability of the metal surface atom as a function of 

composition we added an additional case of PtPd surfaces. An overall catalyst 

composition of Pt:Pd ratio 1:1 is used for this case in each of the four layers of the 

periodic slab. After computing the relative ∆E for reactions 7.1-7.5, it is found that there 

is no significance difference between the ∆E values for Pt3Pd and PtPd catalysts, 

suggesting that the Pd atoms on the surface might dissolve at the same rate, but twice the 

amount of Pd atoms would be dissolved in the PtPd catalyst surface. Similar results were 

reported for PtNi, Pt3Ni, PtCo, and Pt3Co catalysts [42]. In those cases both Co and Ni are 

dissolved at the same dissolution rate but clearly PtNi and PtCo dissolve more Ni and Co 

atoms from the catalyst surfaces. 

Another interesting point to explore is the effect that the internal distribution in 

the substrate catalyst has over the stability of the catalyst surface. We have studied the 

skin Pt monolayer of Pt4Rh model catalyst surfaces using two different layer by layer 

distributions. First, we used the original case of skin Pt4Rh, which has a layer by layer 

distribution (from top to bottom) Pt:Rh 4:0 3:1 3:1 3:1. Then we used an additional 

Pt:Rh layer by layer distribution of  4:0 2:2 4:0 3:1. From the results it was noticed (not 

shown) that the ∆E values for the dissolution reactions 7.1-7.5 are almost the same. The 

difference between these cases is in the order of 0.1 eV. It is suggested that the internal 

distribution in the catalyst substrate does not alter significantly the electronic structure of 

the surface. Therefore, we should not expect a significant change in the dissolution 

characteristics of such catalyst surface.      

 

Summary 

In this chapter, periodic DFT methods have been applied to study the stability of 

Pt, Co, Ni, Pd, and Rh on Pt, Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh and their respective Pt 

monolayer catalysts. We evaluate the free energy changes using five different favorable 

electrochemical dissolution reactions. We found that the order of stability of Pt, Co, Ni, 

Pd, and Rh atoms in Pt3Co, Pt4Rh, Pt3Pd, and Pt3Ni catalyst is:  Pt > Co > Rh > Pd > Ni 
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respectively. The trend found in this section is close to what is found in pure catalysts 
[115], however Co is more stable than Rh and Pd, suggesting that the stability of metal 

atoms in the catalyst surface are altered by the changes in the electronic distribution on 

the surface after alloying. And in terms of stability surface Pt atoms are favored by the 

presence of surface alloy metals in the following order: Rh > Co > Ni > Pd. The positive 

��E values for Pt3Co, Pt3Ni, and Pt4Rh catalysts suggest that Co, Ni, and Rh (especially 

Rh) promote the stabilization Pt atoms in the surface.  

Based on the first two sections in this chapter, it was concluded that the most 

suitable catalysts in terms of stability against the dissolution for the ORR are the skin Pt 

monolayer catalysts. And the order of stability of skin Pt monolayer catalysts is: skin 

Pt3Pd > Pt > skin Pt4Rh > skin Pt3Ni > skin Pt3Co.  

In addition we analyzed the effect of the overall composition of the catalyst 

toward the dissolution for Pt3Pd and PtPd catalysts. We concluded that based on the 

negligible difference between the ∆Es values for Pt3Pd and PtPd catalysts, Pd atoms on 

the surface should dissolve at a similar rate, but twice the amount of Pd atoms should be 

dissolved in the PtPd catalyst surfaces. Finally we study the substrate distribution effect 

on the stability of the atoms in the catalyst surface. The small ∆Es difference found for 

the dissolution reactions suggests little influence of the substrate composition on the 

dissolution of atoms form the first layer.  
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

  

The use of computational methods as a tool to analyze and compute important 

properties of chemical systems have experienced a fast development in recent years, 

among other reasons due to the development of fast and more efficient computer 

hardware, which can be extended from personal computers, through workstations and 

mainframe machines to supercomputers and massive parallel devices. Areas involved in 

experimental research started to consider this tool as an efficient way to handle problems 

considering the advantages and limitations in this field. It allows the explanation of some 

concepts hardly explained experimentally. Currently the development of computer 

hardware and that of quantum mechanical software allows a detailed description of 

molecular systems. There are on the other hand obvious limitations related to the 

accuracy for describing weak interactions (van der Waals) especially in complex 

biological material systems. Other limitations are related to the size of the molecule and 

the number of molecules involved in the system (up to 1000 atoms) compared to 

molecular dynamic (MD) and Ab initio MD simulations.   

In this dissertation we have addressed two of the three main technical barriers 

needed to be overcome for the commercialization of low-temperature fuel cells; the 

electrocatalytic reactivity and the durability of the catalysts, but only indirectly we have 

examined the third barrier that is related to the high cost of some of the cell components. 

DFT calculations are used to analyze surface thermodynamic properties in order to get 

insights about the reactivity and stability of Pt and Pt alloys. The effect of the overall 

composition and atomic distribution over the electrocatalytic activity of the oxygen 

reduction reaction is studied. It must be noted that these calculations explore the not 

completely understood mechanism of he ORR using a solid – gas interphase instead of a 

real solid – electrolyte environment; however it is expected that important insights must 

follow qualitative agreement with a real environment under real operating conditions. 
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In terms of reactivity and stability we found that skin Pt monolayer surfaces are 

the most suitable catalysts for the ORR among the group of Pt-alloys in this study. 

Nevertheless these catalysts are not able to handle in the same efficient way than Pt the 

first electron and proton transfer due to less strong interaction between the OOH 

intermediate and the catalyst Pt, some of them can adsorb OOH with a reasonable 

strength close to that on Pt, that are the cases of skin Pt/Pd3Pd and skin Pt/Pt4Rh. On the 

other hand skin Pt monolayer catalysts have demonstrated good qualities to adsorb 

hydroxyl and atomic oxygen with a moderate strength in such a way that they can easily 

be reduced to water. Considering the overall reaction steps on the ORR, the 

electrocatalytic activity of all the studied skin Pt monolayer catalysts can be ordered as 

follow: Pt3V (skin Pt) > Pt3Co (skin Pt) > Pt3Ni (skin Pt) > Pt > PtPd (skin) > Pt4Rh 

(skin Pt) > PtPd3 (skin ).  The d-population analysis indicates that the separation of the Pt 

skin monolayer with respect the catalyst substrate causes a rearrangement of the 

electronic density in the surface; the average electronic d-population on the surface is 

higher than that in the slab while the d-band correlation shows a clear correlation 

between the surface d-band center and the skin Pt monolayer catalysts; for these cases 

the d-band is shifted to negative energy values as a indication of their moderate 

interaction with all the ORR intermediates (hydroperoxo radical, hydroxyl, and atomic 

oxygen).  

The dissolution of the catalyst in fuel cell operation plays an important role in the 

destabilization and the deactivation of the ORR. In this dissertation we have analyzed 

the stability of Pt, Co, Ni, Pd, and Rh on Pt, Pt3Co, Pt3Ni, Pt3Pd, and Pt4Rh and their 

respective Pt monolayer catalysts. We found that the order of stability of Pt, Co, Ni, Pd, 

and Rh atoms in Pt3Co, Pt4Rh, Pt3Pd, and Pt3Ni catalyst is:  Pt > Co > Rh > Pd > Ni 

respectively. Similar trend is reported in literature for pure elements. It was also found 

that the stability of Pt atoms in skin Pt monolayer catalysts is favored by the presence of 

surface alloy metals in the following order: Rh > Co > Ni > Pd. Co, Ni, and especially 

Rh improves the stability of Pt atoms in the surface.  
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We also analyzed steeped surfaces to measure the reactivity in terms of 

adsorption energies. It was found that the strong OOH adsorption on the catalyst surface 

favor the first electron and proton transfer, however the strong interaction between the 

OH and O intermediates and the catalyst surface makes difficult the further reduction of 

these species to water. The strength of the ORR intermediates interactions was attributed 

to the reduced coordination on the catalyst surface.  

As it was stated previously, the nature of the interphase of the systems in this 

study is solid-gas, and this should be improved to be able to approximate the behavior of 

them to a realistic solid-electrolyte interphase. It will obviously require future 

investigations. We would like to point out the necessity to incorporate in our simulations 

an additional component related to the presence of the electrolyte in the system. 

Although the formation of the OOH intermediate after the first electron a proton transfer 

indirectly involved the effect of the protonated acid medium and in the same way the 

hydrated protons are modeled as H3O
+(H2O)3 associating the effect of water molecules 

in the system for the characterization of the dissolution reactions, it would be important 

to address the effect of the degree of hydration of protons on the various steps of the 

reaction of oxygen molecules and their intermediates. In the same way the presence of 

the polymeric membranes such as Nafion, which is usually modeled as CF3SO3H, 

CH3C6H4SO3H or CF3OCF2CF2SO3H can affect the proton transfer due to the sulfonic 

acid functional groups [124; 125]. Another interesting point to be considered is the electrode 

potential dependence of the reduction steps that can be manifested as changes in the 

activation barrier of the ORR reactions. This effect is not only associated to the ORR 

reactivity but also to the catalyst dissolution under potential cycling regimes. These 

contributions would help for a better understanding of a real system under normal 

operating conditions. 
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