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ABSTRACT 

 

Studies toward the Total Synthesis of the Marine Toxin, (-)-Gymnodimine. 

(December 2007) 

Ke Kong, B.S., Tsinghua University, P. R. China; 

M.S., Tsinghua University, P. R. China 

Chair of Advisory Committee: Dr. Daniel Romo 

 

(-)-Gymnodimine is a member of a growing family of spirocylic imine 

containing marine natural products. The construction of the complete skeleton of (-)-

gymnodimine has been accomplished in a convergent manner in 23 steps (the longest 

linear sequence). 

A highly diastereo- and enantioselective Diels-Alder reaction employing 

bis(oxazoline)·Cu(II) catalyst provided the spirolactam core structure of gymnodimine 

bearing a quaternary carbon stereogenic center. An improved procedure for 

hydrostannylation of the hindered internal triple bond in 96a was discovered by slow 

addition of tributyltin hydride to minimize formation of hydrogenated byproduct. 

Fragment coupling featured a Nozaki-Hiyama-Kishi reaction between a vinyl 

iodide derived from the spirolactam and a tetrahydrofuran moiety. The macrocyclization 

was realized through a rather unusual intramolecular opening of an activated N-

tosyllactam by an alkyllithium species generated in situ. The butenolide was appended 

through a vinylogous Mukaiyama aldol addition of silyloxyfuran 155 to the ketone 163 
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under meticulously controlled conditions. The generality of this process was explored in 

some detail. Addition of silyloxyfurans to cyclohexanones proceeds with moderate to 

good diastereoselectivities. The potential application of this process to the synthesis of 

butenolide and γ-lactone containing natural products was demonstrated by further 

transformations of the addition adducts. 

Finally, toward our goal of developing an enzyme-linked immunosorbent assay 

(ELISA) for gymnodimine monitoring a hapten derived from the tetrahydrofuran has 

been synthesized. Even though the raised antibodies failed to recognize the natural 

product itself, the results provided some information regarding the essential structural 

elements of an efficient hapten. 
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CHAPTER I 

INTRODUCTION: GYMNODIMINE AND SPIROCYCLIC IMINE 

CONTAINING MARINE NATURAL PRODUCTS 

 

I.1. Isolation and Structure Elucidation of (-)-Gymnodimine 

The past several decades have witnessed a growing number of fish and human 

intoxication incidents as a result of harmful algal blooms leading to massive fish kills 

and sometimes human death.1 Early in 1993 a case of neurotoxic shellfish poisoning 

(NSP) occurred off the coast of New Zealand. This wass believed to be related to the 

bloom of the dinoflagellate, Gymnodinium mikimotoi (later redescribed as Gymnodinium 

selliforme syn. Karenia selliformis),2 after oysters collected from Foveaux Strait off the 

South Island of New Zealand were later found to be toxic at high levels with concurrent 

blooms of this dinoflagellate species. Collection of oysters Tiostrea chilensis in the same 

area in 1995 by Yasumoto and coworkers led to the isolation of a new marine toxin, (-)-

gymnodimine (Figure 1, 1). 3 The gross structure was assigned by spectroscopic studies 

including IR, UV, accurate mass measurements and 2D NMR correlation methods. The 

structural features of gymnodimine include a trisubstituted tetrahydrofuran within a 16-

membered carbocycle, a chiral butenolide, and most interestingly an 

azaspiro[5.5]undecadiene moiety. 

 
 
 
 
____________ 
This dissertation follows the style of Journal of Organic Chemistry. 
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Figure 1. Structures of gymnodimines. 

It was not until 1997 that Munro, Blunt and coworkers established the relative 

and the absolute configuration of this marine natural product through X-ray 

crystallographic analysis of a derivative.4 Thus, a stereoselective reduction of the imine 

moiety using sodium cyanoborohydride followed by p-bromobenzamide formation 

provided crystalline benzamide 5 suitable for X-ray structural analysis (Scheme 1). More 

recently, two new analogs were isolated and named gymnodimine B (2) and C (3), 

respectively.5 

Scheme 1 
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The presence of a spirocyclic imine6 in gymnodimines places them into the same 

family with other marine metabolites that include the pinnatoxins (6-9),7 pteriatoxins (10, 
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11),8 spirolides (12-16),9 prorocentrolide (17),10 and spiro-prorocentrimine (18)11 (Figure 

2). 
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I.2. Biological Activities 

I.2.1 Toxicity of Gymnodimine and Related Marine Toxins 

Gymnodimine is believed to be responsible for several neurotoxic shellfish 

poisoning incidents in New Zealand. Indeed, gymnodimine was found to be highly toxic 

in a recent assay with LD50 of 96 µg/kg by injection and 755 µg/kg by oral 

administration.12 However, it showed much lower toxicity when administered with food, 

and mice did not show any signs of intoxication when voluntarily ingesting food 

containing gymnodimine at a level sufficient to give a dose of 7500 µg/kg. 

Gymnodimine causes a characteristic rapid death in the intraperitoneal mouse 

assay. The exact mode of action of this “fast-acting toxin” has yet to be understood. 

However, it might exert its toxic effects via blockage of nicotinic receptors at the 

neuromuscular junction as pretreatment with physostigmine or neostigmine protected the 

mice against injected gymnodimine.10 Preliminary studies showed that gymnodimine 

and its analogues have variable effects on reducing cell numbers but no effects on the 

expression of a number of signal transduction proteins. 13  These studies also found 

gymnodimine sensitizes cells to an apoptosis inducing agent, okadaic acid. Independent 

studies revealed that gymnodimine affects the neurological system of mice as it appears 

to cause upper chest paralysis.14  

The related cyclic imine containing compounds such as pinnatoxins and 

spirolides have been shown to be more potent neurotoxins. Pinnatoxin A (LD50 2.7 

µg/MU (ip.)), pinnatoxin B and C (LD50 0.99 µg/MU) are among the most potent toxins 

in mouse bioassays, with the latter two as toxic as tetrodotoxin.15  Pinnatoxin A is 
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believed to be involved in the activation of Ca2+ channels. Spirolides also showed a high 

level of toxicity against mice (spirolide A: LD100 250 µg/kg).9a In vitro assays of the 

spirolides carried out by Wright have shown that they do not interfere with common 

excitatory amino acid neurotransmitter receptors such as N-methyl-D-aspartate 

(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) or kainate 

(KA) receptors. Furthermore, they do not inhibit PP1 and PP2A phosphatases, nor do 

they activate or block voltage dependent Na+ channels. However, the spirolides show 

weak activation of type L Ca2+ channels (at 1.7 mM), but this activity does not correlate 

with the potent toxicity of these compounds. 

The toxicity of this family of marine natural products has been attributed, at least 

partially, to the imine functionality as imine reduction leads to non-toxic derivatives. 

Wright and coworkers have found that spirolides E and F, in which the imine has been 

hydrolyzed to a keto amine, are inactive in the mouse lethality assay.9b In addition, the 

imine reduced form of spirolide B failed to elicit any toxic effects even at four times the 

equivalent of spirolide B dose. Since no significant conformational differences between 

spirolides B and F were found from molecular modelling studies, the cyclic imine 

functionality has been postulated to be the pharmacophore for the toxicity of these 

compounds. This hypothesis was further supported by lack of activity of gymnodiamine 

(4) compared with gymnodimine.4 

I.2.2. Immunoassays for Detection of Marine Toxins 

The increasingly frequent outbreaks of human intoxications due to ingestion of 

seafood have spurred worldwide surveillance programs for the detection of marine 



 6 

toxins in the ocean. Currently, there are several methods capable of detecting and 

quantifying marine toxins such as mouse bioassays, radioimmunoassays (RIA), HPLC, 

and CE-MS. However antibody-based immunoassays, particularly enzyme-linked 

immunosorbent assays (ELISA), remain the most desirable method due to their 

generality, accuracy, sensitivity, and low cost.16 In the following section, a brief review 

of development of ELISA for detection of some representative marine toxins as shown 

in Figure 3 is presented. 

O
O

Me

HO

O

HO Me
Me

O

O
O

OH

OH Me
O

O

H

H

H

Me

H
OH

H

H

H

NHN
H2N

HO

O O

OH

OHHO

OH
OH

H

O

O

O

O

O

O
O

O

O
O

O O O

OH

OH
Me

Me

MeH

OH

Me
Me

R2

H

H

H

H

H

H

H

H

H

H

H

H
H H

H
H

H
H H

H
R1 H

HO
OH

O

O

O

O

O

O

O

O
O

O

O

Me

H

H Me

H

H

H

H

H

Me

H

Me

H Me

H H

H

H

H

Me
HO

H

CHO

Me

O

O

Me
O

H

H

H

H

H
H

HOMe

H

NH

Me

Me

O O

O

HO

O

O

OH

O

Me

Me

O

Ciguatoxin (19): R1=

Brevetoxin B (21)

n

, R2 = OH, n = 0

CTX3C (20): R1 = R2 = H, n = 1

Azaspiracid 1 (23)

Okadaic acid (24)

Tetradotoxin (22)

 

Figure 3. Structures of some potent marine toxins. 
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In a series of seminal papers, Baden and coworkers developed efficient ELISA-

based tools to monitor brevetoxins using antibodies raised against haptens derived from 

the natural product itself.17 The isolated antibodies showed high affinity to the natural 

product. These protocols have been successful for accurate detection of brevetoxins at 

very low levels (as low as 2.5 µg/100 g shellfish meat) in limited applications. 

The major limitation of using natural toxins to raise antibodies lies in the fact that 

often times extremely low amount of such compounds is available from natural sources, 

thus severely hampering further development. In this regard, synthetic haptens are more 

valuable as ease of access to these intermediates is made possible by modern synthetic 

chemistry. In addition, design of haptens having substructures shared by a whole family 

of toxic molecules allows detection of different congeners simultaneously, instead of a 

single compound. 

Hirama, Fujii and coworkers have developed a direct sandwich immunoassay for 

ciguatoxin (CTX) based on this approach. 18  After careful analyses of the hapten 

structures required for antibody-antigen interactions, two haptens were designed 

representing the substructures of A-E ring and I-M ring of CTX3C, respectively (Figure 

4, 25 and 26). Immunization of mice with protein conjugates of the synthetic haptens led 

to preparation of several monoclonal antibodies (mAbs). These antibodies proved to 

bind specifically to each end of CTX3C with high affinity and a direct sandwich ELISA 

was established that could detect CTX3C at ppb level. 
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Figure 4. Structures of synthetic haptens for ciguatoxin CTX3C. 

The advantages of synthetic haptens-based ELISA are further highlighted in 

recent studies by Forsyth, Miles, and coworkers for generation of antibodies against 

azaspiracids (AZA).19 Their strategy was to utilize a designed hapten 27 representing the 

invariant C26-C40 domain of azaspiracids (Figure 5). Indeed, antibodies raised against 

this hapten cross-reacted with AZA 1, AZA 2, AZA 3 and AZA 6 with similar affinity. 

Furthermore, purified antibody proteins recognized only AZA congeners but not another 

polyether natural product yessotoxin, while cross-reactivity is often a problem for 

ELISA assay based on natural product haptens.20 
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Figure 5. Structure of synthetic hapten for azaspiracids. 
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I.3. Biosynthetic Origin 

It is believed that the biosynthesis of these spirocyclic imine marine natural 

products follows a polyketide pathway. Uemura first proposed a speculative polyketide 

biogenetic pathway for pinnatoxins.15 More recently, compelling evidence has indeed 

indicated that most carbons from spirolides are polyketide-derived and glycine serves as 

the source for the imine moiety.21 Walter and coworkers conducted biosynthetic studies 

by supplementing cultures of the toxigenic dinoflagellate Alexandrium ostenfeldii with 

stable isotope-labeled precursors [1,2-13C2]acetate, [1-13C] acetate, [2-13CD3]acetate, and 

[1,2-13C2,15N]glycine and harvasting 13-desmethyl spirolide C. Information garnered 

from 13C NMR spectroscopic analysis pointed to a biosynthetic pathway starting with a 

glycine unit followed by unidirectional acetate condensation (Figure 6a). 
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Figure 6. (a) structure of 13-desmethyl spirolide C, showing incorporation of stable isotope 

labels. (b) structure of gymnodimine with proposal for expected incorporation of isotope labels. 



 10 

While the biosythetic pathway for gymnodimine has not been studied yet, given 

its high degree of structural homology with spirolides, it is very likely that the former 

compound has the same biogenetic origin that is polyketide-derived with glycine as the 

source of the cyclic imine (Figure 6b). 

 

I.4. Synthetic Studies of Spirocyclic Imine Containing Natural Products 

I.4.1. Synthetic Studies of Pinnatoxins 

Biological activities notwithstanding, the intriguing structures of gymnodimine 

and related natural products have attracted considerable attention from the synthetic 

community. Among these, the pinnatoxins have been the most extensively studied, 

culminating in a total synthesis of pinnatoxin A in 1998 by Kishi 22 and a formal total 

synthesis in 2004 by Hirama 23. 

In Kishi’s landmark synthesis of (-)-pinnatoxin A leading to the antipode of the 

natural compound, the defining step was an intramolecular Diels-Alder reaction.22 This 

process formed the cyclohexene ring system bearing a quaternary carbon stereogenic 

center with the simultaneous construction of the macrocycle (Scheme 2). After 

generation of the advanced intermediate 28, subsequent treatment of the allylic mesylate 

with DABCO then triethylamine induced elimination to furnish the requisite diene 

system. This diene 29 was directly heated at 70 ºC in dodecane to produce the desired 

exo adduct 30 in 34% yield, along with another exo product and a minor endo congener 

in a ratio of 1:0.9:0.4, respectively. 
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Building on the precedent laid by Kishi, Hirama and coworkers finished a formal 

synthesis of pinnatoxin A in 2004, wherein the cyclohexene core was constructed via an 

intramolecular alkylation of an epoxy nitrile (Scheme 3).23b Utilizing the strategy 

developed earlier in the same group,23a they treated the mesylate 31 with 2.5 equivalent 

KHMDS to promote the epoxide formation (see intermediate 32). In the same pot, 

addition of excess KHMDS led to opening of the epoxide, giving rise to the desired 

product 33 as the sole diastereomer in 72% yield. The diastereoselectivity of the 

cyclization step is consistent with the intermediate structure 32 wherein the large 

branched carbon chain preferentially occupies the pseudo-equatorial position. 
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Scheme 3 
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I.4.2. Synthetic Studies Toward Gymnodimine 

Several groups have disclosed their synthetic studies toward gymnodimine. 

However, to date a total synthesis of this natural product still remains elusive. Murai and 

coworkers synthesized the tetrahydrofuran segment of gymnodimine in a highly 

stereoselective fashion starting from the known �,�-unsaturated ester 35 (Scheme 4).24 

Treatment of this ester with CSA induced lactonization, which then underwent conjugate 

addition with lithium dimethylcuprate in a highly stereoselective fashion (dr > 20:1). The 

next key step was a C-glycosylation of acetoxy furanose 37 with allyl trimethylsilane. 

The allylation proceeded efficiently to give exclusively the �-isomer of tetrahydrofuran 

38. After a few standard transformations, the synthesis of the tetrahydrofuran 40 was 

accomplished with suitable functionalities for further elaboration. 
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Scheme 4 
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In subsequent studies, the Murai group explored a double diastereoselective 

Diels-Alder reaction to construct the spirocyclic lactam for the gymnodimine synthesis 

(Scheme 5).24b Thus, the tetrahydrofuran 41 was elaborated to the aldehyde 42 in a 

highly efficient four-step sequence. The derived �-ketone phosphonate 43 was joined 

with the L-glutamic acid derived aldehyde 44 to furnish a trienenone. A Corey-Bakshi-

Shibata reduction was used to introduce the C-10 carbinol center with high 

diastereoselectivity (dr > 20:1) and the alcohol was then protected to give silyl ether 45. 

The key intermolecular Diels-Alder reaction of the triene 45 with �-methylene N-Cbz 

lactam 46a was conducted in the presence of a full equivalent of Ellman’s copper 

bis(sulfinyl)-imidoamidine (siam) complex.25 This reaction provided the spirolactam 48 

in good yield and remarkably high diastereoselectivity (dr > 20:1). 
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Scheme 5 
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White’s construction of the tetrahydrofuran moiety is depicted in Scheme 6, 

featuring a highly diastereoselective iodoetherification step.26a Asymmetric crotylation 

of the aldehyde 49 furnished the homoallylic alcohol 50 after cleavage of the silyl group. 

Reprotection of both hydroxyl groups followed by one carbon homologation gave the 

olefin 51 for the key iodoetherification. Upon treatment with iodine, the 2,5-cis-

tetrahydrofuran 52 was formed with highly diastereoselectivity (dr = 18:1). The 2,6-

dichlorobenzyl substituent was crucial for the high selectivity, promoting a transition 

state for cyclization that avoids 1,2-steric interactions and permitting facile cleavage of 

the intermediate oxonium ion. Two-carbon homologation of the resultant iodide 52 to 

the ester 53 was accomplished by displacement of the iodo substituent with the anion of 

diethyl malonate, Krapcho decarboxylation of the diester and cleavage of the 
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dichlorobenzyl ether. A few more transformations led to the iodoalkene 55 through the 

intermediacy of the alkyne 54. 
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To access the spirocyclic imine, an intermolecular Diels-Alder reaction of an 

optically active diene was utilized by White and coworkers (Scheme 7).26b Tin-lithium 

exchange of the vinyl stannane 56 and quenching with the Weinreb amide 57 gave the 

diene 58 after Wittig methylenation. The Diels-Alder reaction between diene 58 and the 

in situ prepared �-methylene Meldrum’s acid 59 afforded 60 in a non-selective fashion 

(dr = 1.2:1). The C7-� isomer was treated with DDQ to unmask the primary alcohol, 

which cyclized spontaneously to give lactone 61. Reduction, mixed anhydride formation 

followed by treatment with triethylamine provided the trans-fused lactone 62. 
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Elaboration to the acetate 65 proceeded smoothly and set the stage for the fragment 

coupling reaction. 

Scheme 7 
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The two fragments were efficiently joined through a B-alkyl Suzuki-Miyaura 

coupling reaction (Scheme 8).26c The acetate 65 was reacted with 9-BBN to give the 

alkylborane which without isolation was coupled with iodoalkene 55 to produce 66 in 

62% yield. The silyl ether 66 was then transformed to the alkyne 67 in good overall yield. 

A protocol developed by Suzuki 27  was used for the methylation of the alkyne 67. 

Unfortunately, all attempts to functionalize the resultant internal alkyne 68 met with 

failure. 
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Scheme 8 
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In a manner related to his pinnatoxin studies, Kishi utilized a Diels-Alder/ 

macrocyclization process for an approach to gymnodimine (Scheme 9).28 Alkylation of 

the lithium enolate of the amide 69 with the chiral epoxide 70 yielded the requisite diol 

as a single diastereomer. Protection of the diol, reductive removal of the chiral auxiliary 

and oxidation then set the stage for a Ni(II)/Cr(II) mediated coupling, which provided 

the allylic alcohol 74 as an inconsequential mixture of diastereomers. Upon treatment 

with p-toluenesulfonic acid, a cationic intramolecular cyclization ensued providing the 

desired tetrahydrofuran 76 with good diastereoselectivity (dr = 9:1). Presumably, 

minimization of unfavorable steric interactions with pseudo-equatorial placement of the 

substituents in the intermediate allylic cation 75 accounted for the high selectivity of the 

cyclization step. Trienone 78 was then readily available from the tetrahydrofuran 76 in a 

few steps involving another Ni(II)/Cr(II) promoted coupling. 
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Scheme 9 
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The desired allylic alcohol was then introduced via an asymmetric reduction 

using the Corey-Bakshi-Shibata protocol with moderate diastereoselectivity (dr = 6:1, 

Scheme 10). A Ni(II)/Cr(II) promoted coupling reaction paved the way for the synthesis 

of the �,�-unsaturated imine 80. Diels-Alder macrocyclization of this imine occurred in 

water at pH 6.5 under dilute conditions to give the desired product 81 as a mixture of 

three diastereomers after treatment of the entire reaction mixture with molecular sieves 

in benzene. The diastereomer corresponding to the natural product could be isolated after 

reduction of the imine and acylation. 
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Scheme 10 
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Brimble and Trzoss developed an alternative approach for synthesis of the 

spirolactam (Scheme 11).29 Their method involved double alkylation of the lactam 82 

followed by ring closing metathesis of the double alkylated lactam 83. Even though the 

spirolactam could be transformed to allylated product 86 through a Lewis acid mediated 

allylation of a derived acyliminium ion, the potential utility of this methodology for 

gymnodimine synthesis has not been demonstrated. 
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I.5. Previous Work from Our Laboratory 

Previous studies from the Romo group have resulted in concise syntheses of the 

chiral, non-racemic tetrahydrofuran and the racemic spirolactam moiety.30 Our synthesis 

of the tetrahydrofuran commenced with the Heathcock anti-aldol reaction between the 

acyloxazolidinone 87 and the enal 88 (Scheme 12).30a Cleavage of the chiral auxiliary 

through methanolysis and subsequent homologation led to enol ether 90. Upon treatment 

with methanolic acid, the unmasked secondary hydroxyl group cyclized onto the enol 

ether to provide the furanose 91a. Allylation of the furanose proceeded with modest 

diastereoselectivity (dr = 4:1) and the product was then transformed to the protected diol 

92. 
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We also demonstrated the potential of an intermolecular Diels-Alder process 

between �-methylene lactam 46b and an oxygenated diene (Z)-95 to rapidly assemble 

the spirocyclic moiety common to the gymnodimines (Scheme 13).30a This [4+2] 

cycloaddition was promoted by Et2AlCl and proceeded in good yield and excellent 

diastereoselectivity. Furthermore, it is of interest to note that the two geometrical 
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isomers (Z)-95 and (E)-95 behaved similarly in the Diels-Alder reaction both leading to 

the same diastereomer with high diastereoselectivity which implicated a stepwise 

mechanism for the [4+2] cycloaddition reaction. 

Scheme 13 
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Subsequent studies also provided a possible solution for the challenging task of 

coupling the tetrahydrofuran with the spirolactam (Scheme 14).30b Based on Hua’s 

protocol for cyclic imine synthesis from silylated lactams,31 N-silylation of the lactam 97 

followed by alkyllithium addition led directly to cyclic imines 98 in moderate yields 

after elimination of silanol. 

Scheme 14 
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I.6. Design of a Synthetic Strategy Toward Gymnodimine: Plan I 

Our initial synthetic plan envisioned a late-stage intramolecular Nozaki-Hiyama-

Kishi coupling32 to close the 16-membered macrocycle following a Hua coupling to 

generate the imine (Figure 7). It is not unlikely that minimization of transannular or 

eclipsing interactions of the intermediate vinyl chromium species could lead to 

preferential formation of one stereoisomer.33 However, it is rather difficult to predict, a 

priori, the stereochemical outcome of this macrocyclization reaction. In the worst 

scenario, a Mitsunobu inversion 34 could be used to correct the stereochemistry of the 

newly generated carbinol center at C-10 if the wrong stereoisomer were obtained. 
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Figure 7. Initial synthetic plan toward gymnodimine (Plan I). 

Preliminary studies on more advanced model systems indicated that the modified 

Hua imine synthesis would not be suitable for fragment coupling. One possible solution 

to this difficult problem is a cross-coupling reaction between a lactam derived iminoyl 
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triflate and a suitable organometallic species derived from the tetrahydrofuran 92. 

Alternatively, use of an intramolecular instead of an intermolecular process for the C20-

C21 bond formation could overcome the lack of reactivity from a kinetic standpoint. The 

Eschenmoser sulfide contraction protocol stands out as a viable candidate in this 

regard.35 

To achieve maximum convergence and to avoid awkward adjustment of 

oxidation state, appending the butenolide fragment would ideally happen at a late stage 

in the synthesis. This would also avoid any potential instability issues known to be 

problematic with this moiety.36 A few possibilities were considered initially including a 

Heck or related coupling reaction between a vinyl triflate and a dihydrofuran 

(Disconnection A, Figure 7), and nucleophilic addition to an aldehyde derived from 96 

after one carbon homologation (Disconnection B, Figure 7). 

Building on our success in the racemic Diels-Alder reaction, we envisioned an 

enantioselective [4+2] cycloaddition reaction 37  between �-methylene lactam 46 and 

diene 95 to access the optically active spirocylic lactam 96. Furthermore, we had hoped 

to accomplish this in a catalytic fashion which would provide another example of 

catalytic asymmetric Diels-Alder reactions for the construction of stereochemically 

defined quaternary carbon centers.38 

Finally, the potential for human consumption of shellfish carrying toxic 

concentrations of gymnodimines prompted efforts to develop a suitable antibody assay 

to monitor these marine toxins. By utilizing some of the intermediates during our 
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synthesis, we planned to synthesize several haptens for protein conjugation to ultimately 

develop an ELISA to monitor and quantify gymnodimine and congeners. 
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CHAPTER II 

ASYMMETRIC SYNTHESIS OF THE SPIROLACTAM 

AND FURTHER FUNCTIONALIZATION* 

 

II.1. Diels-Alder Reaction of a (Z)-Diene 

Since the pioneering work by Koga on menthol-aluminum complex catalyzed 

Diels-Alder reactions, 39  great efforts have been devoted to the development of the 

catalytic, asymmetric Diels-Alder reactions to further exploit this already powerful 

transformation. Excellent, sometimes near perfect, control over both diastereo- and 

enantioselectivity has been achieved in some catalytic systems. Elegant work from 

Evans40 and Corey,41 among others, has demonstrated the power of these protocols in the 

synthesis of complex molecules. However, the vast majority of these protocols have only 

dealt with simple substrates like cyclopentadiene and acrolein derivatives. Therefore, 

seeking more general catalytic systems is still an active field of research. 

We were attracted to the possibility of using bis(oxazoline) (box) copper 

complexes for the construction of the spirolactam moiety in optically active form. First 

reported by the Evans group,42 the copper(II)-bis(oxazoline) complexes are among the 

most extensively studied catalytic systems for the Diels-Alder reaction. These catalysts 

benefit from their well-defined catalyst-substrate structures and thus provide high and 

predictable enantioselectivity across a wide range of substrates. The operational 

                                                 
* Reproduced in part with permission from Studies toward a Marine Toxin Immunogen: 
Enantioselective Synthesis of the Spirocyclic Imine of (–)-Gymnodimine. Kong, K.; 
Moussa, Z.; Romo, D. Org. Lett. 2005, 7, 5127-5130. Copyright [2005] American 
Chemical Society. 
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simplicity for the preparation of the catalysts is an additional merit. Even though the 

requirement for two-point catalyst-dienophile binding sometimes represents a limitation, 

we reasoned that chelation could potentially be achieved by choosing an appropriate 

protecting group on the nitrogen of the dienophile that provides the second binding point 

(Figure 8). 

N

O
X

Y

O
Cu

N N* *

 

Figure 8. Design of an exo-methylene lactam substrate suitable for chelation with Cu(II) center. 

Not surprisingly, results employing the N-tosyl lactam 46b, which would not be 

expected to chelate, with Cu(t-Bu-box)(SbF6)2 complex as catalyst were not encouraging 

(Scheme 15). Exposure of the mixture of tosyl lactam 46b and diene (Z)-95 to a solution 

of Cu(t-Bu-Box)(SbF6)2 catalyst (condition A) only led to desilylation of the diene. To 

achieve better catalyst-dienophile interactions, the alkoxycarbonyl protected dienophiles 

46a and 46c were used for the reaction but proved fruitless. Switching to the 

Cu(II)·bis(sulfinyl)-imidoamidine complex (condition B),25 which had been successfully 

applied to the synthesis of the spirolactam core in Murai’s approach,24b did not provide 

the desired cycloaddition adduct in any detectable amount.  
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Scheme 15 
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II.2. Diels-Alder Reaction of a Homologated Diene 

In the attempted Diels-Alder reactions of diene (Z)-95 with lactam 46, the 

majority of the acid-labile diene simply underwent an unproductive desilylation in the 

presence of the copper catalysts. On the other hand, our preliminary results indicated that 

generation of a vinyl triflate from the silylenol ether 96 was not viable (cf. Chapter V, Eq. 

8). Thus, a modified Diels-Alder approach to the spirolactam employing the 

homologated diene (cf. 101, Figure 9) was deemed more convergent. While the stability 

of the diene was enhanced, the obvious drawback of this plan was the sacrificed 

reactivity of the diene. The consequence of this alteration to the planned Diels-Alder 

reaction had to be determined experimentally. 
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Figure 9. Design of a homologated diene 101 in the Diels-Alder reaction. 

For the synthesis of dienyne 101, we considered a Stille coupling43 between vinyl 

stannane 102b and the readily available vinyl iodide 104 (Scheme 16).44  Extensive 

screening of the Stille coupling conditions between vinyl iodide 104 and 102b, derived 

from the know vinyl telluride 94, identified Corey’s conditions 45  as optimal which 

provided the dieneyne 101 in moderate yield (Condition A). Presumably the well-known 

cine substitution of hindered vinyl stannanes during the Stille coupling accounted for the 

low yield of this step.46 The Suzuki coupling using vinyl boronic acid 103 under Roush’s 

modified conditions gave the same product in a slightly improved yield (Condition B).47 
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Not surprisingly, the dienyne 101 only reluctantly participated in the Diels-Alder 

reaction with N-tosyl lactam 46a (Scheme 17). The cycloaddition reaction did not 

proceed in the presence of Lewis acid, while thermal conditions provided the desired 
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adduct 100 in an unsatisfactory yield, and the regio- and diastereoselectivity were 

temporarily assigned based on previous results. 

Scheme 17 
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II.3. Diels-Alder Reaction of (E)-Diene: Effect of Geometry of the Diene 

After these unsuccessful attempts, we began to realize that the lack of reactivity 

of the diene may be due to the olefin geometry despite the fact that our racemic series 

indicated that the Diels-Alder process was stereoconvergent with respect to E/Z isomers. 

It is generally recognized that (Z)-dienes are poor reactants in Diels-Alder reactions, 

even though some notable exceptions could be found in the literature.48 Therefore we 

decided to pursue the synthesis of diene (E)-95. 

Synthesis of this diene commenced with stannylcupration of the readily available 

2,4-hexadiyne 93. The pioneering work by Piers, Oeschlager, Cummins and Pancrazi 

had demonstrated that highly selective cis-addition to the triple bond could be achieved 

by addition of an external proton source, presumably by trapping the intermediate vinyl 

cuprate and insuring the formation of the kinetic stannane in an irreversible manner.49 

Indeed, stannylcupration in the presence of methanol afforded a mixture of regio- and 

stereoisomers with (E)-vinyl stannane 102a being the major (Table 1, entry 1). While 

radical and metal-catalyzed hydrostannylations gave higher yields, the regio- or 
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diastereoselectivities were less satisfactory. Radical hydrostannlyation gave comparable 

amounts of (E) and (Z) vinyl stannane (entry 2), whereas Pd-catalyzed 

hydrostannylation 50  gave the undesired regioisomer as the sole product (entry 3). 

Surprisingly, leaving out the proton source actually led to the desired regioisomer in 

higher ratio (entry 4), even though the exact reason still remains unclear. Tin-lithium 

exchange of stannane 102a followed by reaction with N-methoxy-N-methyl acetamide 

gave the corresponding ketone 105 (Scheme 18). Subsequent formation of silylenol ether 

occurred without incident leading to the diene (E)-95. 

Table 1. Synthesis of Vinyl Stannane 102 from 2, 4-Hexadiyne 

SnBu3

SnBu3

SnBu3

+ +

102c102a 102b

Conditions

93  

entry condition yield (%) ratio (a:b:c) 

1 (Bu3Sn)2CuCNLi2, MeOH, THF, -78 ºC 86 5:2:1 

2 Bu3SnH, AIBN, PhMe, 80 ºC 90 1:1.4:0 

3 Bu3SnH, PdCl2(PPh3)2, THF, 25 ºC 90 0:0:1 

4 (Bu3Sn)2CuCNLi2, THF, -78 ºC 67 7:0:1 
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We were pleased to find that Evans’ copper-bis(oxazoline) hexafluoroantimony 

complex indeed promoted the Diels-Alder reaction of lactam 46a and diene (E)-95 to 

afford spirolactam 96b as a single diastereomer in 85% yield (Scheme 19).51 The Diels-

Alder adduct proved to be rather unstable, as it undergoes spontaneous autoxidation in 

air at ambient temperature, leading to the formation of the �,�-unsaturated ketone 96-Ox. 

Therefore, the subsequent step must be carried out immediately after purification of the 

Diels-Alder adduct. 

After initial disclosure of this asymmetric Diels-Alder reaction,52 we found that 

to ensure reproducibility it was best to use the modified procedure (Method B, Scheme 

19) for catalyst preparation,53 especially on larger scale. In addition, molecular sieves 

appear to slow down the reaction and even erode the enantioselectivity,54 possibly by 

preventing the hydrophobic effect exerted by a small amount of adventitious moisture.55 
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Determination of the enantiomeric excess of the process initially met with some 

difficulty by attempted use of chiral GC or HPLC. After considerable experimentation, 

the chiral shift reagent (Eu(hfc)3) provided a good estimate of the enantiomeric excess 

upon mixing with the lactam 96c. A more accurate method was finally found through 
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Mosher ester analysis of a derived alcohol (Scheme 20).56 In related studies, we found 

that addition of n-BuLi to N-Cbz lactams such as 96b led to exclusive Cbz 

deprotection.57 This allowed a chemoselective deprotection and conversion to the N-

tosyl lactam 96a. Reduction of lactam to alcohol 106 with LiBH4 proceeded smoothly 

and the alcohol was converted to Mosher ester 107 via a DCC mediated coupling. 

Analysis of the crude mixture by 19F NMR (in comparison to the diastereomeric mixture 

obtained from the racemic adduct) indicated that the Diels-Alder reaction leading to 

spirolactam 96b had proceeded with high enantioselectivity (95% ee). The absolute 

stereochemistry was established by X-ray crystallographic analaysis of lactam 96a by 

anamolous dispersion (Figure 10). 

Scheme 20 

OH

Me
OTBS

TsHN

O
R
N

OTBS
Me

HO

O
Ph

F3C OMe

O
Ts
N

OTBS
Me

O

Me
OTBS

TsHN

O
Ph

CF3

OMe

LiBH4, THF

25°C, 91%

DCC, DMAP, CH2Cl2
25°C, 84%

KHMDS, TsCl, 80%

96b: R = Cbz
96c: R = H

96a

106 107

n-BuLi, THF
-78 oC, 82%

 

 

 



 33 

 

Figure 10. ORTEP representation of X-ray crystal structure of N-tosyl lactam 96a (some 

hydrogen atoms omitted for clarity). 

The Diels-Alder reaction leading to spirolactam 96b which proceeds with both 

high diastereo- and enantioselectivity has a few features worthy of comment. An 

interesting observation is the complete unreactivity of diene (Z)-95. In contrast, we 

previously determined that both geometric isomers of diene 95 could be used to provide 

the same diastereomer in high yield using Et2AlCl as promoter.30a These results suggest 

either different mechanisms for these Diels-Alder reactions (~synchronous vs 

completely stepwise) or the potential for olefin isomerization with the stronger Lewis 

acid Et2AlCl but not with the weakly Lewis acidic chiral catalyst. Calculations suggest 

that the energy difference between s-cis and s-trans conformers is not sufficient to 

rationalize the unreactivity of diene (Z)-95 due to the low steric requirement of the 

alkyne (Figure 11).58 In fact, the s-cis conformation of diene (Z)-95 is lower in energy 

than s-trans. As expected, the s-trans conformer of diene (E)-95 is more stable than the 

s-cis conformer but the latter conformer is accessible at room temperature. Taken 

together, these data suggest that the unreactivity of diene (Z)-95 in the asymmetric 

reaction is due to steric interactions with the catalyst-ligand complex proceeding through 

a more or less synchronous process and not the inaccessibility of the reactive s-cis 

conformer (vide infra). 
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OTBS
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Figure 11. Calculated relative energies for dienes (Z)-95 and (E)-95. 

Another noteworthy feature is the high diastereoselectivity resulting from an exo-

selective reaction. This selectivity is not unusual for this type of conformationally 

restricted (s-cis) dienophile and has been attributed to favorable dipole cancellation in 

the exo-transition state by Roush and Brown.59 In the present enantioselective process, 

the preference for exo selectivity would be more pronounced due to interactions of the 2-

silyloxy substituent of diene 95 with the chiral ligand in the endo transition state as 

previously observed by Evans in reactions of 3-methyl-1-acetoxy buadienes.42b The 

stereochemistry of adduct 96b thus results from an exo trajectory of the diene (E)-95 

from the most accessible face opposite the t-butyl substituent (sphere) of the Cu(box)-

dienophile complex (Figure 12A). The severe steric interaction of diene (Z)-95 with the 

catalyst-ligand complex readily explains its low reactivity in the enantioselective Diels-

Alder reaction (Figure 12B). 
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Figure 12. Favored and unfavored transition state arrangements that rationalize the differential 

reactivity of dienes (E) and (Z)-95. 

 

II.4. Functionalization of the Internal Acetylene 

Ultimately, it would be necessary to functionalize the internal alkyne to enable 

assembly of the macrocycle, therefore we sought to ascertain whether such a 

transformation might be achieved. Spirolactam 96a thus served as an ideal model for the 

requisite alkyne functionalization. A close inspection of the substrate revealed that the 

proximity of the internal triple bond to a trisubstituted and a fully substituted carbon 

might pose a considerable challenge to this otherwise routine transformation due to 

steric considerations. 
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Not unexpectedly, extensive screening of hydrometallation protocols,60 such as 

hydrozirconation,61  hydroboration 62  and hydroalumination,63  identified the palladium 

catalyzed hydrostannylation50 as the only viable way to functionalize the triple bond, 

albeit in low conversion. 

Attempted optimization of the reaction variables, involving the temperature and 

the catalyst source, did not result in any improvement of the conversion (Table 2). The 

reaction temperature did not have a notable effect on the conversion (entries 1 and 2). 

Among the solvents screened, THF remained optimal (entries 1, 3-6). In agreement with 

Guibé’s findings,50a the best palladium source was PdCl2(PPh3)2 (entries 1, 7, and 8). 

Employing PdCl2(o-Tol3P)2 catalyst which proved to be particularly useful in a recent 

hydrostannylation of a hindered internal alkyne64 did not provide any desired product 

(entry 9). Finally, use of a mixed solvent of THF/hexanes as recently described by 

Semmelhack and Lee65 led to a significant improvement in conversion (entry 10). 



 37 

Table 2. Optimization of the Hydrostannylation of Spirolactam 96a 

Ts
N O

OTBS
Me

Ts
N O

OTBS
Me

Bu3Sn Me

nBu3SnH, Pd

solvent

10896a  

entry Pd source conditions yield (%) 

1 PdCl2(PPh3)2 THF, 25 ºC 25 

2 PdCl2(PPh3)2 THF, 70 ºC 23 

3 PdCl2(PPh3)2 PhMe, 100ºC <10% 

4 PdCl2(PPh3)2 NMP, 25 ºC <5 

5 PdCl2(PPh3)2 DMF, 25 ºC <5 

6 PdCl2(PPh3)2 CH2Cl2, 25 ºC <5 

7 Pd(PPh3)4 THF, 25 ºC 11 

8 Pd2(dba)3·CHCl3, Ph3As THF, 25 ºC NR 

9 PdCl2(P(o-tol)3)2 THF, 25 ºC NR 

10 PdCl2(PPh3)2 THF/hexanes, 25 ºC 60 

 

Careful analysis of the reaction mixture identified a significant amount of the 

alkene 109, which was not derived from protodestannylation during the reaction or 

purification (Scheme 21, condition A).66 The same phenomena were previously observed 

by Pancrazi and coworkers during hydrostannylation of some hindered substrates, even 

though possible reasons were not suggested in that report (Scheme 22).67  It is well 

recognized that the addition of tin hydride to triple bonds competes with dimerization of 

tributyltin hydride itself.50 Therefore it is very likely that molecular hydrogen, the 

byproduct from the dimerization process (Eq 1), would hydrogenate triple bonds in the 

presence of Pd leading to the formation of reduction products such as 109 (Eq. 2). This 



 38 

is particularly true in the case of the hindered internal alkyne substrates when the 

hydrostannylation step is sufficiently slow. A good control reaction would make use of 

Bu3SnD leading to the bis-deuterated alkene however this was not performed. 

R'R

2 nBu3SnH
Pd(0)

H2, Pd R
R'

(2)

Bu3SnSnBu3 + H2             (1)

 

Based on this hypothesis, we speculated that by keeping the concentration of 

nBu3SnH low throughout the reaction, the competing hydrogenation pathway would be 

suppressed. Indeed, when tributyltin hydride was added to the reaction over a period of 

12 h via syringe pump, the vinyl stannane 108 could be isolated in good yield, along 

with only a small amount of the hydrogenated product (Scheme 21, condition B). 
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Scheme 22 
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The subsequent conversion of the stannane 108 to the corresponding iodide 

required for the Nozaki-Hiyama-Kishi coupling also took a considerable amount of 

optimization (Scheme 23). One competing process during this reaction is the �-

iodination of the reactive silylenol ether moiety. By keeping the reaction temperature 

low and controlling the amount of iodine added, a relatively clean reaction resulted. 

However the product 110 proved to be rather sensitive to standard workup conditions 

such as sodium thiosulfate as it led to significant amounts of desilylated product. Thus a 

neutral workup by addition of cyclohexene as the scavenger provided the desired vinyl 

iodide 110 in good yield. 

Scheme 23 
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CHAPTER III 

SYNTHESIS OF THE TETRAHYDROFURAN MOIETY 

 

III.1. Improvement of the Stereoselective Allylation of the Furanose 

As described above, previous work from this laboratory had provided a concise 

route to the tetrahydrofuran moiety of gymnodimine in non-racemic form.3030a In 

addition, previous assignment of stereochemistry of anti-aldol adduct 89 based on NMR 

studies was firmly secured through X-ray crystallographic analysis (Figure 13). However, 

the modest diastereoselectivity during the allylation of the furanose 91a left room for 

further improvement especially given that the diastereomers were inseparable (Scheme 

24). Thus optimization studies of the tetrahydrofuran fragment were focused on this 

pivotal step. 

Me
OPMB

OH

N
Me

O

O

O

MePh
89  

Figure 13. ORTEP representation of X-ray crystal structure of 89 (some hydrogen atoms 

omitted for clarity). 
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The more reactive acetoxyfuranose 91b was chosen for the optimization in the 

hope of enhancing the selectivity by lowering the reaction temperature. However, the 

reaction temperature did not have a notable effect on the stereoselectivity (Scheme 25). 

Screening of Lewis acids including but not limited to BF3·OEt2, AlCl3, Et2AlCl, 

TMSOTf and TiCl4 indicated that the stereochemical outcome depends on Lewis acid 

only to a minor extent. On the other hand, solvent affected the reaction more 

pronouncedly and toluene provided the best diastereoselectivity (�:� = 4:1) with 

excellent reproducibility. Convincing evidence from the Woerpel group has indicated 

that allylation of five-membered-ring oxocarbenium ions proceeds through a 

stereoelectronically controlled “inside attack” mode with high 1,3-anti stereoselectivity 

when the C-3 position is occupied by a methyl group.68 Thus, the discrepancies between 

our result and those of Woerpel and Murai’s24a reflect the subtle structural differences in 

substrates which in turn affect the stereochemical outcome of the allylation reaction. 

Scheme 25 
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A potentially useful route for the diastereoselective allylation of the 

oxocarbenium intermediate was use of a chiral allylation reagent in a double 

diastereoselective process to enhance the modest inherent selectivity through a 

synergetic effect of the substrate and the reagent. Indeed, preliminary results showed that 
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allylation using Brown’s Ipc2BAll reagent69 in the presence of exogenous Lewis acid 

BF3·OEt2 led to slightly improved diastereoselectivity but in poor yield (Scheme 26, �:� 

= 5:1). Interestingly, the major byproduct in this transformation was the alcohol 112 

possibly derived from the addition of the allyl group to an isomeric oxocarbenium 

intermediate. Even though the yield of this reaction is still low, this unexplored strategy 

for the allylation of chiral oxocarbenium ions using chiral allylation reagents holds great 

potential and deserves further studies. 

Scheme 26 
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III.2. Synthesis of an Alkyl Iodide Suitable for Fragment Coupling 

To construct the macrocycle of gymnodimine, our initial plan was to join the 

tetrahydrofuran with the spirolactam fragment through the C20-C21 bond formation 

followed by an intramolecular Nozaki-Hiyama-Kishi coupling (cf. Figure 7, Chapter I). 

Thus, the alkene 111a had to be functionalized in suitable form for the fragment 

coupling. Following the established sequence from this laboratory,30a the olefin was 

converted to the protected alcohol 92 in two steps (Scheme 27). While the oxidative 

cleavage of the PMB ether 92 using standard protocol (DDQ, CH2Cl2/H2O,70 with or 

without NaHCO3) was marginally successful, dissolving metal conditions proved to be 
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more satisfactory, affording the alcohol 113 in good yield. The primary alcohol 113 was 

then transformed to the alkyl iodide 114b, which was used in our first generation 

coupling strategy with great success (vide infra). 

Scheme 27 
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III.3. Synthesis of an Aldehyde Suitable for Fragment Coupling 

Our original plan of using an intramolecular Nozaki-Hiyama-Kishi reaction for a 

macrocyclization did not return any fruitful results (vide infra) and the modified strategy 

necessitated a different form of the tetrahydrofuran, such as aldehyde 116 (Scheme 28), 

for fragment coupling. Along these lines, the mesylate 114a was converted to the alkyl 

chloride 114c upon treatment with LiCl. The silyl group was removed through the action 

of HF·pyridine and the alcohol 115 was then oxidized to the aldehyde 116 by Dess-

Martin periodinane.71 In order to achieve an efficient coupling with the spirolactam, it 

was necessary to prepare the aldehyde 116 immediately prior to use. Thus, it was 

convenient to store the tetrahydrofuran at the alcohol stage. 
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Scheme 28 
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While this route did provide the aldehyde in a relatively concise fashion, we 

reasoned that a more direct way by avoiding the superfluous protection/deprotection 

steps would allow greater material throughput. The new route commenced with the 

reductive cleavage of the PMB ether 111a, again under dissolving metal conditions 

(Scheme 29). The newly revealed alcohol 111b was then transformed to the alkyl 

chloride 111c in one step, which was hydroborated and oxidized to the aldehyde 116 

according to the aforementioned sequence. This new sequence proceeds remarkably well 

and is more efficient than the previous one (4 steps vs. 7 steps, starting from the alkene 

111a). 

Scheme 29 
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CHAPTER IV 

FRAGMENT COUPLING AND MACROCYCLIZATION* 

 

IV.1. Fragment Coupling: Model Studies 

After successful construction of the tetrahydrofuran and spirolactam moieties 

respectively in chiral, non-racemic form our next goal was to find a mild and efficient 

coupling protocol for their union. The previously developed single-pot Hua reaction30b 

was unfortunately not applicable to the real system. Model studies were then conducted 

to evaluate various coupling strategies. 

One possibility was the cross-coupling reaction between an iminoyl triflate 

derived from the model lactam 97 and organometallic nucleophiles (Scheme 30). 

Modern variants of the cross-coupling reactions have allowed some of the most complex 

molecules to be synthesized under sufficiently mild conditions.72 However, there are 

only few reports employing lactam-derived iminoyl triflates in cross-coupling 

reactions. 73  Our exploration of this reaction between the triflate 117 and various 

organometallic species involving Sonogashira, Suzuki and Negishi couplings invariably 

failed. Lack of reactivity of the iminoyl triflate in the cross-coupling reactions promoted 

us to seek a different method. 

                                                 
* Reproduced in part with permission from Studies toward a Marine Toxin Immunogen: 
Enantioselective Synthesis of the Spirocyclic Imine of (–)-Gymnodimine. Kong, K.; 
Moussa, Z.; Romo, D. Org. Lett. 2005, 7, 5127-5130. Copyright [2005] American 
Chemical Society. 
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Scheme 30 

H
N O N OTf

TBSO

N R
pyridine, Tf2O

CH2Cl2, 73%

various conditions

, CuI, Et3N, Pd(PPh3)4

or 9-Octyl-9-BBN, PdCl2(dppf), K3PO4, THF
or nBuLi, ZnCl2, Pd(PPh3)4, THF
or nBuMgCl, ZnCl2, Pd(PPh3)4, THF

97 117 98

 

The low reactivity of the iminoyl triflate 117 at least partially stems from the 

steric nature of the �,�’-disubstituted lactam, implying that an intramolecular process 

could be used for this bond formation. The Eschenmoser sulfide contraction stood out as 

a viable candidate to achieve an intramolecular reaction at the hindered carbonyl site. In 

the event, lactam 97 was converted to the thiolactam 118 through the action of 

Lawesson’s reagent,74 which was then alkylated on sulfur to afford the thioiminoester 

119a (Scheme 31). Upon treatment with PPh3 in the presence of a base according to 

Eschenmoser’s protocol, the putative intermediate episulfide collapsed to give the imine 

120 after extrusion of triphenylphosphine sulfide. Disappointingly, the method was not 

applicable to the more advanced model substrate 121.75 This �,�’-disubstituted ester 

failed to undergo the desired nucleophilic displacement with the thiolactam 118 under a 

variety of conditions. 
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Scheme 31 
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Eventually, it was a serendipitous finding that led to the discovery of the 

successful coupling strategy. Our initial attempts to transform the silylenol ether 96a to 

the corresponding triflate by treatment with methyllithium and PhNTf2 led to isolation of 

a single product in high yield, which was identified as the amino ketone 122a instead of 

the expected vinyl triflate (Eq. 3). Not surprisingly, in retrospect, the hindered, but 

activated lactam 96a is already set up for a direct coupling with an alkyllithium species. 

Further experimentation revealed that n-BuLi also opened the lactam in high yield at low 

temperature (Eq. 4), while n-BuMgBr only reacted reluctantly at room temperature. 

Somewhat unexpected was the dominance of the monoalkylated adducts even when 

large excess of the alkyllithium species was used, while addition of alkyllithiums to 

simple �,�’-dimethyl-N-tosyl lactams is known to give predominantly alcohols57 

resulting from double alkylation even when one equivalent of alkylithium was employed 

(Eq. 5). 
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Capitalizing on this fortunate finding,76 we started to examine the scope of this 

reaction for the eventual application to the real system. It was found that this process 

could be readily extended to other alkyllithiums. Thus, treatment of lactam 96a with (4-

methyl-3-pentenyl)lithium 77  in the presence of TMEDA afforded the desired amino 

ketone 123a in good yield. The tosyl group was resistant to cleavage under a variety of 

conditions. Utilizing a mild, single-pot sequence developed in this laboratory,78 we were 

able to convert the N-tosyl amine 123a to trifluoroacetyl amide 123b by sequential 

treatment with base, trifluoroacetic anhydride and samarium diiodide. Cleavage of the 

trifluoroacetamide with warm ammonium hydroxide led to concomitant cyclization to 

provide imine 124 in good overall yield, which represents the spirocyclic imine portion 

of gymnodimine. 
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Scheme 32 
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IV.2. Fragment Coupling and Nozaki-Hiyama-Kishi Macrocyclization 

With the success of the model studies, we embarked on further extension of the 

process to the tetrahydrofuran 114b. Initial experimentation under the aforementioned 

conditions by treatment of the alkyllithium species derived from the alkyl iodide 114b 

with N-tosyllactam 96a provided the desired amino ketone 125a, albeit in very low yield 

(Scheme 33, condition A). Pleasingly, simple inversion of the order of addition by 

adding t-BuLi to a mixture of the reactants at low temperature (condition B) 

substantially improved the yield of this intermolecular Barbier-type transformation.79 

This of course benefits from the well-known high rate of lithium-iodine exchange 

preventing any side reactions such as opening of the N-tosyl lactam by t-BuLi.80 
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Scheme 33 
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The acetylene 125a was then hydrostannylated in the presence of the palladium 

catalyst according to the conditions developed on model substrates (cf. Scheme 21, 

Chapter II), leading to the formation of the vinyl stannane 126a (Scheme 34). Following 

tin-iodine exchange, the two silyl groups of 127a were removed upon treatment with 

HF·pyridine. The primary alcohol 128a was finally oxidized to the aldehyde 129 by 

Dess-Martin periodinane.71 
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Scheme 34 
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The synthesis of the aldehyde 129 set the stage for the key intramolecular 

Nozaki-Hiyama-Kishi macrocyclization. Much to our disappointment, this substrate did 

not undergo the planned cyclization under a variety of conditions (Scheme 35). The sole 

product isolated from these reactions was in all instances the deiodinated compound 130. 

Obviously, during the reaction the intermediate vinyl chromium species resulting from 

the oxidative addition/transmetallation was not reactive enough to overcome the high 

enthalpy barrier for the formation of this macrocycle and thus underwent simple 

hydrolysis during workup to give the olefin 130. Attempted cyclization under other 

conditions such as SmI2 or t-BuLi only led to reduction of the aldehyde and deiodination, 

respectively. 
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Scheme 35 
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Reasoning that formation of the spiroimine could possibly change the solution 

conformation of the substrate and assist the macrocyclization by bringing the reactive 

centers into proximity, the N-tosylamine 128a was converted to trifluoroacetamide 128b 

in good yield (Scheme 36). Interestingly, this mild transformation could be performed 

with the free alcohol presumably because of facile hydrolysis of the intermediate 

trifluoroacetate. The amide 128b was then converted to the required aldehyde 131 in two 

steps following the previously described sequence. Once again, this aldehyde did not 

undergo the desired macrocyclization under a number of Cr/Ni mediated coupling 

conditions. 
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Scheme 36 
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Our final attempt of the intramolecular Nozaki-Hiyama-Kishi coupling was 

conducted on substrate 133. Even though ample precedents have demonstrated the 

chemoselective reactions of vinyl chromium species with aldehydes, we nevertheless 

suspected that an electrophilic ketone might interfere with this process. Thus, the 

triethylsilyl ether 125b was synthesized in similar fashion as for the preparation of 125a, 

allowing a selective removal of the triethylsilyl group (PPTS, MeOH/CH2Cl2) after 

completion of the acetylene functionalization (Scheme 37). Dess-Martin oxidation 

furnished the aldehyde 133 with the silylenol ether moiety remaining intact. Our final 

efforts were not rewarding, as this substrate also proved to be unsuitable for the 

macrocyclization under the Nozaki-Hiyama-Kishi protocol. 
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Scheme 37 
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IV.3. Intermolcular NHK Coupling and Barbier Macrocyclization 

At this stage, convinced that an intramolecular Nozaki-Hiyama-Kishi reaction 

was not a viable option to close the 16-membered macrocycle, the decision was made to 

pursue a different route. An alternative was to first conduct an intermolecular Nozaki-

Hiyama-Kishi coupling followed by an intramolecular Barbier-type cyclization (Figure 

14). Unlike the intramolecular macrocyclization, the possibility of achieving a 

diastereoselective intermolecular Cr/Ni-mediated coupling was slim in the absence of 

any nearby stereocontrol elements. While this difficulty could be overcome either 

through an oxidation/reduction sequence or a Mitsunobu inversion, the second hurdle 

was more serious as the lithium-halogen exchange initiated intramolecular Barbier-type 

cyclization would have to be conducted on a very advanced intermediate.81 However, the 
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success of this protocol in an intermolecular setting provided some confidence to pursue 

this route. 
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Figure 14. Revised plan for the macrocyclization (Plan II). 

Pleasingly, it did not require much effort to find optimal conditions for the 

intermolecular Nozaki-Hiyama-Kishi coupling (Scheme 38). The smooth intermolecular 

coupling between vinyl iodide 110 and the aldehyde 116 provided the allylic alcohols 

134 in excellent yield as a 1.3:1 mixture of epimers. Although modified Mosher ester 

analyses 82  did not provide unambiguous evidence for the assignment of the 

stereochemistry of either diastereomer, X-ray crystallographic analysis of a subsequent 

intermediate confirmed that the major epimer was the desired one having the �-OH 

configuration. Thus, the minor epimer 134a was smoothly converted to the desired one 

through an oxidation/asymmetric reduction sequence using the Corey-Itsuno protocol.83 

The allylic alcohol 134b was then protected as silyl ether and the C-13 epimer (derived 

from minor diastereomer from the allylation of the furanose 91b, cf. Chapter III) could 
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be separated at this stage from the major diastereomer. Subsequent Finkelstein reaction 

set the stage for the crucial Barbier-type macrocyclization reaction. 

Scheme 38 
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Our optimism quickly gave away to disappointment as attempted 

macrocyclization of the iodide 136b under the conditions successful for the 

intermolecular process only led to minimal amounts of the desired product (Scheme 39). 

At least two competitive reaction pathways could be discerned after analysis of the 

reaction mixture. One was the unproductive quenching of the formed alkyllithium 

species either during the reaction or after workup. The other involved the opening of the 

N-tosyl lactam by the second molecule of t-BuLi leading to the formation of 138 after 

aqueous workup. Thus the intramolecular cyclization appears unable to compete with the 

intermolecular ring opening by t-BuLi under these reaction conditions. Screening of 
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solvents (Et2O, THF and Trapp solvent) and additives (TMEDA, HMPA) all gave 

similar results. 

Scheme 39 
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We briefly considered the possibility of using a different metallating reagent for 

halogen-metal exchange for this Barbier-type process. Planned formation of a Grignard 

reagent upon treatment of the substrate 136b with i-PrMgCl only led to the ring opening 

product 139 (Eq. 6),84 whereas treatment with SmI2 simply removed the N-tosyl group 

from lactam (Eq. 7).85 
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Thus, the narrow reactivity spectrum of the alkyl iodide 136b towards 

nucleophiles, due to the presence of more than one electrophilic/reducible site, promoted 

us to reinvestigate the t-BuLi promoted Barbier cyclization (Scheme 40). One major 

breakthrough came when it was observed that the desired product 141a became the 

major product simply by conducting the reaction at 0 ºC rather than -78 ºC. Further 
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increasing the reaction temperature to ambient temperature provided the desired product 

in an impressive 50-70% yield! It seems that the intramolecular cyclization of the 

alkyllithium species dominates at higher temperature (23 ºC) while the intermolecular 

addition of the second equivalent of t-BuLi is faster at lower temperature (-78 ºC). 

Scheme 40 
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The exact reason for this dramatic effect of the temperature on the outcome of 

this reaction is currently not clear and must await further mechanistic studies. What is 

clear is that assuming the iodine-lithium exchange (Step A, Figure 15) is the fastest step, 

the intramolecular cyclization of the alkyllithium species (Step C) and intermolecular 

addition of the second equivalent of t-BuLi (Step B) have different temperature profiles, 

enabling preferential formation of one product by controlling reaction temperature. In 

addition, the critical role that the subtle conformation of the substrate played in 

facilitating the macrocyclization should not be overlooked as a closely related compound 

142 did not undergo cyclization under identical conditions (Eq. 8). 
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Figure 15. Competing reaction pathways during the Barbier cyclization of 136b. 



 59 

Me

O

Me

TBSO

Me

I

Me
OTBS

Ts
N

O

Me

Me

OTBS

OTBS
O

Me

Me

O

NHTs

t-BuLi, Et2O

142

(8)

iso-141a



 60 

CHAPTER V 

BUTENOLIDE ANNULATION AND END GAME STRATEGY* 

 

V.1. Butenolide Annulation: the Heck Route 

A Heck reaction 86  was originally proposed for the annulation of butenolide 

(Figure 16). Thus, the Heck reaction would join the dihydrofuran 143 with the presumed 

intermediate vinyl triflate through the C4-C5 bond formation, while the methyl-bearing 

stereogenic center residing in dihydrofuran could serve as a stereocontrol element. 

Moreover, recent developments in asymmetric Heck reactions, such as those by Pfaltz,87 

Ozawa and Hiyashi, 88  provided some confidence in executing a double 

diastereoselective transformation if the inherent selectivity turned out to be low. 
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Figure 16. Planned Heck reaction for the butenolide annulation. 

The synthesis of the enantiomer of dihydrofuran 143 was pursued starting with 

the known lactone 144,89 readily available in a few steps from (L)-malic acid (Scheme 

41). Tosylation of the alcohol 144 was accompanied by the facile �-elimination, which 

accounted for the low yield of this transformation. DIBAL reduction of the tosylate 

                                                 
* Reproduced in part with permission from Diastereoselective, Vinylogous Mukaiyama 
Aldol Addition of Silyloxy Furans to Cyclic Ketones: Annulation of Butenolides and �-
Lactones. Kong, K.; Romo, D. Org. Lett. 2006, 8, 2909-2912. Copyright [2006] 
American Chemical Society. 
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provided a mixture of anomeric lactols 145 in ca. 2:1 ratio and the major �-epimer 146 

was separated from the minor one after silyl protection. However, planned elimination of 

146 under a variety of conditions did not lead to the desired product ent-143 in any 

detectable amount. Oxidation 90  of a phenylselenide derived from the tosylate 146 

(PhSeSePh, NaBH4, EtOH, 31% yield) was also unsuccessful, leading to a mixture of 

unidentified polar products. 

Scheme 41 
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Due to the difficulties encountered in the synthesis of the dihydrofuran 143, and 

more seriously, our incapability to transform the silylenol ether 96a to the vinyl triflate 

or any other derivatives suitable for the Heck coupling (Eq. 9), this route was eventually 

abandoned and a more productive strategy was pursued. 
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V.2. The Vinylogous Mukaiyama Aldol Addition to Ketones 

After pursuing several unsuccessful strategies, it came to our attention that a 

vinylogous Mukaiyama aldol addition of a silyloxy furan to a ketone might be used for 

appending a butenolide. The Mukaiyama aldol reaction is arguably one of the most 

important carbon-carbon bond forming processes in an organic chemist’s repertoire. The 
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vinylogous version of this process is an important extension and allows concise access to 

the �-hydroxy-�,�-unsaturated carbonyl motif (Scheme 42). 

Scheme 42 
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Addition of dienolsilanes to carbonyls or imines has been extensively used in 

organic synthesis.91 Considering the significance of this process, it is surprising that 

there are only scant reports of dienolsilane additions to non-symmetric ketones.92 This is 

in sharp contrast with aldehydes which have been extensively explored as substrates for 

the vinylogous Mukaiyama aldol addition. Presumably low reactivity and low 

diastereoselectivity have hampered the use of ketones as electrophiles.93 Since ketones 

are less reactive than aldehydes towards nucleophilic addition, highly electrophilic 

ketones,92b-9292d such as pyruvate esters, have been used in the vinylogous Mukaiyama 

aldol reactions. Due to the greater difficulty of differentiating diastereotopic faces of 

ketones compared to aldehydes, the addition of silyloxyfurans to aliphatic ketones 

proceeded with only moderate diastereoselectivity in the absence of external chiral 

ligands.92a One solution to this difficulty was the use of tetronic acid derived dianions.94 

In this case, a chelation controlled process allowed the addition to proceed with good 

diastereoselectivity. 

For the problem at hand, the direct attachment of the butenolide to a 

cyclohexanone substrate by a vinylogous Mukaiyama aldol reaction is very attractive. 

Furthermore, control of diastereoselectivity might be possible with cyclic ketones due to 

the conformational rigidity of such substrates, which would lead to better facial 
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differentiation with the dienolsilane nucleophiles. In addition to providing a concise and 

convergent route to the gymnodimine problem, if successful, this process could find a 

broader application for appending butenolides and �-lactones in natural products 

possessing such arrays, such as the spirolides (cf. Figure 2, 12-16, Chapter I). 

Guided by the structure of gymnodimine, 2-methylcyclohexanone (147a) and 3-

methyl-2-(tert-butyldimethyl)silyloxy furan 148a95 were chosen as model substrates. We 

were pleased to find that the Mukaiyama aldol addition afforded the �-hydroxy 

butenolide 149a/149b in good yield in the presence of a variety of Lewis acids (Table 3). 

The product was obtained as a mixture of the tertiary alcohol 149b and the 

corresponding TBS silylether 149a. The presence of alcohol product 149b after the 

reaction has reached completion has important mechanistic implication. It indicates that 

silylation, whether being an inter or intramolecular silyl transfer, of the aldolate 

intermediate is a slow step. Thus the silicon-species generated might compete and 

become the actual catalyst in the reaction (entries 1-3). 96  In most cases, the 

diastereoselectivity was good, with only two adducts obtained out of four possible 

stereoisomers for all the Lewis acids screened, with the exception of ZnBr2 which led to 

poor diastereoselectivity (entry 4). The relative stereochemistry of the major 

diastereomer 149b and minor diastereomer epi-149b was unambiguously established by 

X-ray crystallographic analysis (Figure 17). 
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Table 3. Vinylogous Mukaiyama Aldol Reaction of Cyclohexanone 147a with Silyloxy 

Furan 148a: Effect of Lewis Acids 

O
Me

O

Me

OTBS

Me

RO O
O

Me

Lewis acid (0.4 equiv.)
CH2Cl2147a

148a

149a: R = TBS
149b: R = H  

entry condition % yield 149a drb 

1 BF3·OEt2, -78 ºC 67 (17) 10 : 1 

2 TiCl4, -78 ºC 70 (9) 9 : 1 

3 SnCl4, -78 ºC 58 (13) 9 : 1 

4 ZnBr2, -20 ºCc (~20) 2 : 2 : 1 : 1 

5 TMSOTf, -78 ºC 16 (69) 11 : 1 

a Refers to isolated, purified yield. b Determined on crude reaction mixture by 1H NMR 

integration. c 1.0 equiv of Lewis acid was employed. 
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Figure 17. ORTEP representations of X-ray crystal structures of 149b and epi-149b (some 

hydrogen atoms omitted for clarity). 
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Apparently, during this reaction the silyloxyfuran 148a approaches the cyclic 

ketone 147a in a facially selective manner to avoid 1, 3-diaxial interactions. Consistent 

with the Jefford and Brown model,97 a Diels-Alder reaction-like arrangement between 

the silyloxy furan and the ketone (si/si face, A, Figure 18) leads to the syn adducts 

149a/149b, while si/re face approach (B) is less desirable due to the unfavorable 

interaction of the �-methyl substituent of the ketone 147a with the C4 hydrogen of the 

silyloxy furan 148a. 
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Figure 18. Stereochemical models for the Mukaiyama aldol addition between 2-

methylcyclohexanone (147a) and silyloxy furan 148a. 

The scope of the reaction was explored further by use of other ketone substrates. 

While TMSOTf gave the best yield and diastereoselectivity on the model substrate, 

further experiments indicated that TiCl4 had greater substrate generality and promoted 

the addition reaction even at -78 ºC. Moreover, Ti(IV) complexes constitute a well-

studied platform for asymmetric processes, thus providing impetus for further study. The 

Mukaiyama aldol addition proceeded with various �-substituted cyclohexanones in good  
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yields with moderate to high diastereoselectivity (entries 1-5, Table 4). A pendant ester 

was tolerated (entry 2) and bicyclic ketones, such as norcamphor and trans-decalone, 

also provided good diastereoselectivities as expected (entries 3, 4). However, the 

addition reaction was susceptible to steric factors, as evidenced by the finding that while 

norcamphor reacted efficiently (entry 3), camphor was totally inert even at elevated 

temperatures for extended times (not shown). From these examples, it appears that the �-

substituent was responsible for high diastereoselectivity, since 3-methyl cyclohexanone 

and 4-tert-butyl cyclohexanone provided good yields but poor diastereoselectivity 

(entries 6, 7). This could be easily understood since the lack of the unfavorable 

interaction (cf. B in Figure 18) would reduce the energy difference of these two 

arrangements when an �-substituent is absent (Figure 18, A and B). The conformational 

flexibility and the absence of prominent 1,3-diaxial interactions probably account for the 

poor diastereoselectivity when 2-methyl cyclopentanone was used as a substrate (entry 

8). 
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Table 4. Substrate Scope of the Mukaiyama Aldol Addition 

O

R

O

Me

OTBS

R
TBSO O

O

Me
R

HO O
O

Me
Lewis acid, CH2Cl2

-78 ºC147

148a

149
n n n

 

entry Lewis acid product yield (%)d dre 

1a TiCl4 

(3 equiv.) 
TBSO O

Me

O

Me

Me

Me

149c

 

14 (63) 10 : 1 

2a TiCl4 

(3 equiv.) 
TBSO O

Me

O

CO2Me
149d  

48(28) 13 : 1 

3b TiCl4 

(3 equiv) 

TBSO
O O

Me

144e  

56(34) 5 : 1 

4b TiCl4 

(3 equiv.) 
H

TBSO
O

O

Me

H
149f  

50(31) 9 : 1 

5a TiCl4 

(3 equiv.) 
TBSO

Ph

O

Me

O

149g  

34(42) 10 : 1 

6c TMSOTf (0.4 
equiv.) 

TBSO O

Me

O

Me
149h 

33 (66) 1.5 : 1.5 : 
1 : 1 

7b TMSOTf (0.4 
equiv.) 

TBSO O

Me

O

t-Bu 149i  

19 (70) 1.7 : 1 

8c TiCl4  
(0.4 equiv.) 

TBSO O

Me

O

Me 149j  

47 (7) 3.6 : 2.3 : 1 
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a The relative stereochemistry of the product was predicted by the Jefford and Brown 

model analogous to 149a. b The relative stereochemistry of the major product was established by 

X-ray crystallographic analysis (Figure 19). c Stereochemistry not known. d Refers to isolated, 

purified yield. Yield in parenthesis refers to the non-silylated adduct. e Determined on crude 

reaction mixture by integration of 1H NMR. 
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Figure 19. ORTEP representations of X-ray crystal structures of 149e, 149f, and 149i (some 

hydrogen atoms omitted for clarity). 

The silyloxyfuran partner could also be varied (Table 5). Unsubstituted silyloxy 

furan 148b and 4-methyl silyloxy furan 148c both reacted to give the addition adducts in 

good yield and diastereoselectivity (entries 1 and 2). The fact that the reaction of 4-

methyl silyloxy furan 148c provided only one detectable diastereomer further validated 
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the rationale in Figure 18. In this case, unfavored interactions as in B (Figure 18) would 

be more prominent when a vinylic hydrogen is substituted by a methyl group. 

Intriguingly, the addition of 5-methylsilyloxy furan 148d to ketone 147a occured at the 

�-position (entry 3). Since with silyloxyfuran substrates, �-addition is favored 

electronically in Lewis acid promoted vinylogous Mukaiyama aldol additions,91b steric 

reasons must be responsible for the reversal in regioselectivity.98 

Table 5. Scope of the Mukaiyama Aldol Addition: Reaction of Various Silyloxyfurans 

with 2-Methylcyclohexanone (147a) 

entrya silyloxyfuran product and 
yield (%)a 

drb 

1 O OTBS

148b  
Me

RO O
O

149k: R = TBS, 64 %
          R = H, 6 %  

10 : 1 

2 O OTIPS

Me 148c  
Me

RO O
O

Me

149l: R = TIPS, 66 %
         R = H, 30 %  

>20 : 1 

3 O OTBSMe

148d  
Me

TBSO
O

O

Me

149m: 53 %  

2 : 1 

a Reaction conditions: TiCl4 (0.4 equiv.), CH2Cl2, -78 ºC. b Determined on crude reaction 
mixture by 1H NMR integration. The relative stereochemistry of the major product was 
established by X-ray crystallographic analysis (Figure 20). 
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Figure 20. ORTEP representations of X-ray crystal structures of 149k and 149l (some hydrogen 

atoms omitted for clarity). 

The �-hydroxy butenolide adducts 149a-149m allow for further functionalization 

to access various motifs found in natural products. Thus, hydrogenation of butenolide 

149b afforded the �-lactone 150 in excellent yield as a single diastereomer (Eq. 10). 

Dihydroxylation was conducted to give triol 151 in excellent diastereoselectivity (Eq. 

11). Dehydration under thionyl chloride/pyridine conditions99 led to cyclohexene 152 

with moderate regioselectivity (Eq. 12), the major isomer being a substructure of 

gymnodimine and the spirolides. Alternatively treatment of trifluoroacetate derived from 

149b led to exocylic elimination adduct 153 as a mixture of E/Z isomers (Eq. 13). The 

butenolide was inert towards conjugate addition using methyl cuprate and deoxygenation 

of the tertiary alcohol proved to be fruitless. 
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V.3. Silyloxyfuran Dimerization: Some Serendipitous Findings 

During the course of optimizing the vinylogous Mukaiyama aldol addition 

reactions, we observed some dimerization products derived from the silyloxyfurans. 

Indeed in a separate experiment it was found that the silyloxyfuran 155 undergoes a 

Mukaiyama-Michael addition by treatment of a mixture of furanone 154 and the 

silyloxyfuran 155 with SnCl4 (Scheme 43). This led to the isolation of dimers 156 and 

epi-156 as a 1 : 1.3 mixture of diastereomers in good yield. The relative stereochemistry 

of the major diastereomer epi-156 was confirmed through single crystal X-ray analysis 

(Figure 21). 
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Figure 21. ORTEP representation of X-ray crystal structure of epi-156 (some hydrogen atoms 

omitted for clarity). 

More intriguingly, the fluoride promoted dimerization gave an inseparable 

mixture of trans-substituted �-lactones 157 and epi-157 instead (Scheme 44). These 

dimers are epimeric with 156 and epi-156 at C-4’ center, respectively. Literature 

searching revealed that they are actually plant-derived natural products telephinone A 

and B isolated in 1990 by Fung and coworkers!100 This unexpected yet not surprising 

finding along with the fact that the natural products were also isolated as racemates leads 

us to speculate the biosynthetic origin of these second metabolites. Furthermore, the 

dimerization process also implicates its application in synthesis of other natural occuring 

dimers such as chilenone A (Figure 22).101 
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Figure 22. Structure of chilenone A. 

 

V.4. Butenolide Annulation and Further Manipulations 

After successfully developing a protocol for appending a butenolide to cyclic 

ketones, we thought it would be prudent to test the applicability of this reaction on more 

advanced models before application to gymnodimine synthesis. Thus, two substrates 

were chosen for this purpose, the first was spirolactam ketone 158 (Scheme 45) and the 

other was hydroxyl ketones 161 (Scheme 46). It was shown later that the results 

garnered from these model studies were indispensable for the final realization of this 

strategy in the synthesis of gymnodimine. 

The first model ketone 158 was derived from the racemic silylenol ether 96a 

after acid hydrolysis (Scheme 45). The low reactivity of the ketone 158 towards aldol 

addition dictated use of higher reaction temperatures (-20 ºC or higher) and the more 

stable triisopropylsilyloxyfuran 155102 as utilization of the TBS-counterpart 148a in the 

reaction only led to silyloxyfuran hydrolysis. As a result this led to diminished 

diastereoselectivity and all four possible diastereomers were isolated. Some efforts were 

devoted to improve the diastereoselectivity by using external chiral sources, such as 

Carreira’s BINAP·CuF2 system103 and BINOL·Ti(IV) system,104 without much success. 

The alcohols 159 could be dehydrated as described previously providing the desired 

olefins 160 along with its regioisomers. 
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Initial experiments with the more advanced model ketone 161a were rather 

disappointing. No desired product could be detected, the major reaction pathways being 

cleavage of the silyl group and elimination of the allylic alcohol to form a diene (Scheme 

46). Switching to a more stable substrate 161b did not alter the reaction outcome. The 

tendency of the silyl ether 161a and 161b to undergo elimination called for the use of a 

ketone with a free hydroxyl group. Indeed, when the ketone 161c and the silyloxyfuran 

155 were treated with TiCl4, a small amount of the desired product 162c was isolated. 

Further studies revealed that the aldol addition of silyloxyfuran to the ketone 161c is a 

fast process followed by slower decomposition of the addition adduct after a few 

minutes. Addition of a hindered base such as 2,6-di-tert-butyl-4-methylpyridine to 

scavenge adventitious hydrochloric acid did not lead to any notable improvement of 

yield. Taken together, the optimal protocol consisted of slow addition of TiCl4 to the 

ketone 161c in the presence of large excess of silyloxyfuran 155 followed by a fast 

quenching of the reaction. In this way the desired product 162c was obtained in greater 

than 50% yield. 
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Armed with the valuable information gained from these model studies, we then 

embarked on the task of completing the synthesis of gymnodimine. Before moving to the 

key Mukaiyama aldol addition step, it was necessary to switch the robust tosyl group to 

a more labile trifluoroacetamide as described before (Scheme 47). Both silyl groups in 

141b were then removed under acidic conditions furnishing the hydroxyl ketone 163, 

whose structure was firmly established through X-ray analysis (Figure 23). Brief 

exposure of the mixture of the ketone 163 and silyloxyfuran 155 to TiCl4 provided the γ-

hydroxy-�,�-unsaturated lactones 164 (dr = 1.1:1) in excellent yield. The two epimeric 

tertiary alcohols 164 were readily separated after silyl protection. It was found that the 

undesired silyl ether 165a could be epimerized to 2:1 mixture of 165b/165a upon 

treatment with DBU at ambient temperature. Thus it allows virtually complete utilization 

of the epimeric lactones 165. 
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The stereochemistry of the butenolides 165a/165b was assigned based on the 

following arguments. The fact that the two compounds are interconvertable under basic 

conditions implies that they are epimeric at C-4 position. Furthermore, the observation 

that alcohol 165b underwent dehydration to give predominantly �5, 6 olefin (cf. Scheme 

48) suggests the stereochemistry of the tertiary alcohol center C5 is as depicted in 

Scheme 47 as anti-elimination is preferential under SOCl2/base conditions105. Finally, 

comparison of 13C NMRs of 165a and 165b with simpler compounds 144b/epi-144b, 

whose relative stereochemistry has been firmed established through X-ray 

crystallographic analysis, enabled the assignment of C5 stereochemistry of 165a/165b 

with much confidence (Table 6). 
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Table 6. Comparison of 13C NMR between Butenolides 165a/165b with Model 

Compounds 144b/epi-144b 
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4
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23
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 13C NMR (CDCl3) Chemical Shift (ppm) 

 144b 165a �1 = 
�165a - �144b 

epi-144b 165b �2 = 
�165b - �epi-144b 

C1 174.1 173.5 -0.6 174.3 173.9 -0.4 

C2 131.1 132.1 +1.0 130.6 131.1 +0.5 

C3 145.1 144.0 -1.1 147.8 147.0 -0.8 

C4 86.3 86.1 -0.2 83.1 83.0 -0.1 

C5 74.5 73.9 -0.6 74.4 73.8 -0.6 
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Figure 23. ORTEP representation of X-ray crystal structure of 163 (some hydrogen atoms 

omitted for clarity). 

While dehydration of the tertiary alcohol 165b under previously described 

conditions (pyridine, SOCl2) required higher temperature and was capricious, use of a 

stronger base Et3N was more reliable and afforded the desired olefin 166a along with its 

�5,24 regioisomer (Scheme 48). Interestingly, dehydration of 165a under identical 

conditions led to the undesired regioisomer as the major product. The 13C NMR of 166b 

is in good agreement with that of gymnodimine (Table 7). 

Scheme 48 

Me

Me

OTES

O

Me

Me

O

NHCOCF3

OH

O O

Me

Me

Me

OTES

O

Me

Me

O

NHCOCF3

OH

O O

Me

Me

Me

OTES

O

Me

Me

O

NHCOCF3

O O

Me

Me

Me

OTES

O

Me

Me

O

NHCOCF3

O O

Me

Et3N, SOCl2, CH2Cl2

165b

-78 ºC, 82%
∆5,6 : ∆5,24= 2.5:1

5
6

24

166b

Et3N, SOCl2, CH2Cl2

-78 ºC, 64%
∆5,6 : ∆5,24= 1:1.3

5
6

24

165a 166a  



 79 

Table 7. Comparison of 13C NMR between Gymnodimine, 166a and 166b 

Me

Me

OTES

O

Me

Me

O

NHCOCF3

O O

MeMe

Me
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O

Me

Me

O

NHCOCF3

O O

Me

45

166b166a

1

23

45 1

23

 

 13C NMR (CDCl3) Chemical Shift (ppm) 
 Gymnodimine 166a 166b �1 = 

�166a - �gymno 
�2 = 

�166b - �gymno  
C1 174.5 174.4 174.6 -0.1 +0.1 

C2 130.2 131.1 130.4 +0.9 +0.2 

C3 146.8 147.2 146.6 +0.4 -0.2 

C4 80.4 79.5 80.3 -0.9 -0.1 

C5 124.7 122.3 122.3 -2.4 -2.4 

C6 132.5 135.5 132.6 +3.0 +0.1 

C7 46.1 46.9 46.7 +0.8 +0.6 

C8 126.7 124.8 125.2 -1.9 -1.5 

C9 139.6 142.6 142.6 +3.0 +3.0 

C10 79.2 79.3 79.2 +0.1 0.0 

C13 77.8 78.0 78.1 +0.2 +0.3 

C16 89.5 89.1 89.1 -0.4 -0.4 

C17 134.9 135.8 135.9 +0.9 +1.0 

C18 123.6 122.4 122.3 -1.2 -1.3 

C22 41.6 40.4 40.4 -1.2 -1.2 

Average    1.16 0.83 

 

The silyl ether was removed under mild acidic conditions to provide the 

penultimate alcohol 167a (Scheme 49). Unfortunately, application of previously 

described basic conditions to hydrolyze the trifluoroacetamide 167a was detrimental to 
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this substrate. A variety of basic conditions such as K2CO3/MeOH, NH3·H2O/MeOH, 

LiOH/THF/H2O, NaHCO3/MeOH were screened and all led to decomposition of this 

sensitive substrate, in good agreement with Miles’ finding that gymnodimine is instable 

under neutral and alkaline pH values.36 Attempted acid hydrolysis (2M HCl/MeOH, 44 

ºC)106 also proved too harsh for this highly functionalized substrate. 

Scheme 49 
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Faced with these setbacks, the decision was made to change the 

trifluoroacetamide group to a more acid labile group such as t-butoxycarbonyl group 

(Scheme 50). Hence, treatment of the trifluoroacetamide 166a with (Boc)2O followed by 

brief exposure to hydrazine provided the N-Boc amine 167b.107 Acid hydrolysis of the 

Boc amine 167b under standard conditions was accompanied by removal of the silyl 

group providing an unidentified compound X after basic workup. Mass spectrum of this 

compound X matched with the natural product, as well as Rf value (5% MeOH/CH2Cl2). 

However, 1H NMR of this compound did not completely correlate with the reported data. 

Lack of access to an authentic sample made direct comparison impossible and thus a 

total synthesis of gymnodimine can not be claimed at this time. 
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CHAPTER VI 

SYNTHESIS OF A GYMNODIMINE IMMUNOGEN SUITABLE FOR 

ANTIBODY PRODUCTION 

 

VI.1. Strategy for Immunogen Synthesis 

When confronted with the invasion of foreign substances, a vertebrate is capable 

of eliciting an immune response to destroy these entities, which are called “antigens” or 

“immunogens”. However, small molecules (so called “haptens”) in general cannot cause 

an immune response on their own, rather they can be made immunogenic by coupling to 

a suitable carrier molecule. The proteins at the heart of the humoral immune response are 

antibodies produced by B cells, which could specifically bind to these antigens and 

eventually lead to their phagocytosis.108 

The specific interaction between antibody-antigen is the basis for a variety of 

important analytical procedures, such as enzyme-linked immunosorbent assay (ELISA). 

In a typical direct ELISA, an antigen is added to a solid surface and absorbs passively on 

incubation, to which antibodies specific for the antigen and labeled with an enzyme are 

added. The enzyme would then catalyze a reaction that forms a colored product, which 

serves as an in-situ readout of the concentration of the antigen both qualitatively and 

quantitatively. As the first step towards development of an efficient ELISA to monitor 

gymnodimines, we needed to synthesis suitable haptens and attach them through a linker 

to a carrier protein (Figure 24). 
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Figure 24. The generic structure of an immunogen. 

An efficient hapten should at least mimic some of the structural elements of 

gymnodimine in order to elicit positive immune responses. Because of the likelihood of 

the cyclic imine functioning as the pharmacophore of gymnodimines and the instability 

of the butenolide at neutral and alkaline pH values, the spirocyclic imine hapten S was 

designed (Figure 25). It conserves the important substructure for biological activities and 

eliminates the unstable elements. In addition, it does not incorporate the variable portion 

of gymnodimines (cf. gymnodimines B and C, Figure 1) and thus the antibodies raised 

against this hapten should be able to recognize all gymnodimine congeners. 
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Figure 25. Designed haptens based on structures of gymnodimines. 
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Even though hapten T derived from the tetrahydrofuran does not seem ideal as it 

lacks the key imine portion, it is structurally complementary to hapten S and was 

proposed to produce antibodies against the tetrahydrofuran portion of gymnodimine. 

Furthermore, this hapten could provide some insight into the structure-activity 

relationship of the toxicity of gymnodimine. 

The hapten M retains most structural and stereochemical information of the 

natural product. The relatively rigid skeleton of this hapten should mimic the structure of 

gymnodimine well and the chance of getting positive immune responses is high. 

However, it would not be expected to lead to a congener-independent immunoassay as it 

incorporates the variable region. 

The design of a suitable linker is not trivial.109 It should be water-soluble, readily 

available, stable at physiological pH, and finally of a sufficient length to allow 

appropriate presentation of all the important recognition elements of the hapten. Based 

on these principles the amide linker L was designed, which would be attached to haptens 

through an oxime ether from the N-terminus (Figure 26).110 The C-terminus would be 

conjugated to a carrier protein through amide bond formation. 
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Figure 26. Designed linker L. 
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VI.2. Synthesis of the Linker and a Tetrahydrofuran Hapten 

VI.2.1. Synthesis of the Linker 

The synthesis of the linker commenced with the amide coupling between the 

commercially available methyl 4-aminobutyrate (169) and N-Cbz γ-amino butyric acid 

168 (Scheme 51).111 The dipeptide 170 was then deprotected through hydrogenolysis. 

The following amide bond formation was complicated by insolubility of the amine 171 

in common polar solvents (THF, DMF, and EtOH) in pure form. Thus, it is more 

convenient to use 171 as a THF/EtOH solution. The coupling between this amine and 

Cbz-aminooxyacetic acid 172a provided alkoxyamine 173a. However, hydrogenolysis 

of this compound led to cleavage of the N-O bond and provided the alcohol 174 only. 
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Hence, a base labile Fmoc group was used for the protection of the N-terminus 

(Scheme 52). Coupling between the activated acid 172b and the primary amine 171 

provided the alkoxyamine 173b. Upon treatment with Et2NH, essentially pure 

hydroxylamine 175 was obtained after washing the crude reaction mixture with EtOAc. 
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Scheme 52 
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VI.2.2. Synthesis of a THF Hapten 

The synthesis of the hapten T derived from the tetrahydrofuran was attempted 

first due to its ease of access (Scheme 53). The previously synthesized alcohol 111b (cf. 

Chapter III) was oxidized to provide the aldehyde 176 which proved to be rather 

sensitive towards common manipulations, presumably due to the tendency of the internal 

double bond to isomerize. The oxime ether formation between this aldehyde and the 

amine 175 provided the ester 177a in moderate yield. However, the subsequent basic 

hydrolysis of 177a provided the acid 177b at best in a semipure form which underwent 

decomposition upon attempted further purification. 

Scheme 53 

O

Me
Me OH

O

Me
Me N

O

H
N

O
N
H

O
OR

O

O

Me
Me O

NaOAc, EtOH
ca. 40%

111b
176

Dess-Martin periodinane
175

177a: R = Me

177b: R = H

CH2Cl2, 59%

 



 87 

To avoid the problematic double bond isomerization, we decided to attach the 

linker to the lower arm of the tetrahydrofuran. The synthetic intermediate alcohol 178 

was oxidized and treated with the amine 175 in the presence of sodium acetate, leading 

to the oxime 180a as a mixture of geometric isomers (Scheme 54). Basic hydrolysis led 

to the carboxylic acid 180b in good yield. This hapten has been attached to a carrier 

protein in our collaborator’s laboratory (Prof. Chris Elliott, Queen’s College at Belfast, 

Ireland). Immunization with this antigen led to the production of antibodies (pAbs). 

However disappointingly, the derived antibodies do not bind to gymnodimine itself. 

Therefore, further experiments are required to find a suitable hapten that leads to 

antibodies capable of recognizing gymnodimine. 
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CHAPTER VII 

CONCLUSIONS 

 

In summary, construction of the complete carbon skeleton of the marine toxin (-

)-gymnodimine has been accomplished in a convergent manner in 23 steps (the longest 

linear sequence, Scheme 55). Key features of the synthesis include a catalytic, 

asymmetric Diels-Alder reaction to construct the spirolactam core, an intermolecular 

Nozaki-Hiyama-Kishi coupling for fragment coupling, a Barbier-type reaction for the 

macrocyclization and finally, a vinylogous Mukaiyama aldol addition to attach the 

appendant butenolide. 

The bis(oxazoline)·Cu(II) complex catalyzed asymmetric Diels-Alder reaction 

provided the spirolactam core 96b with high diastereo- and enantioselectivity. An 

improved procedure for hydrostannylation of the hindered internal triple bond in 96a 

was discovered by slow addition of tributyltin hydride to minimize formation of 

hydrogenated byproduct. 

The first approach for fragment coupling employed an intermolecular Barbier-

type process providing the coupling adduct 125a in excellent yield. This route was 

eventually abandoned due to the failure of the Nozaki-Hiyama-Kishi macrocyclization 

reaction. The second route proved more successful featuring an intermolecular Cr/Ni 

mediated coupling followed by an intramolecular Barbier cyclization process. The 

outcome of this Barbier reaction is critically dependent on reaction temperature and 

conducting the reaction at ambient temperature allowed macrocyclization in good yield. 
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The butenolide was appended through a vinylogous Mukaiyama aldol addition of 

silyloxyfuran 155 to the ketone 163. Under meticulously controlled conditions, this 

process provided the γ-hydroxy-�,�-unsaturated lactone 164 in good yield. The 

generality of this process was explored in some detail. Addition of silyloxyfurans to 

cyclohexanones proceeds with moderate to good diastereoselectivities. The potential 

application of this process to the synthesis of butenolide and γ-lactone containing natural 

products was demonstrated by further transformations of the addition adducts. 

A compound closely related to (-)-gymnodimine was synthesized from the 

Mukaiyama addition adduct 164 in a few steps including switching of N-protecting 

group due to the instability of the natural product under basic conditions. 

Finally, a hapten derived from the tetrahydrofuran has been synthesized. Even 

though the raised antibodies failed to recognize the natural product itself, the results 

provided some information regarding the essential structural elements of an efficient 

hapten. 
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Scheme 55 
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CHAPTER VIII 

EXPERIMENTAL PROCEDURES 

 

VIII.1. General 

All non aqueous reactions were carried out under nitrogen atmosphere in oven-

dried (120 ºC) glassware. Acetonitrile, dichloromethane, tetrahydrofuran, diethyl ether, 

N,N-dimethylformamide, toluene were purified by Mbraun solvent purification system. 

Methanol was distilled from magnesium prior to use. Triethyl amine was distilled from 

calcium hydride prior to use. The molarities indicated for organolithium reagents were 

established according to literature procedure. 112  All other commercially obtained 

reagents were used as received. 

1H NMR and 13C NMR spectra were recorded on a Varian Unity-500, VXR-300 

spectrometer. 1H NMR chemical shifts are reported as δ values in ppm relative to 

tetramethylsilane (TMS, 0.00 ppm). 1H NMR coupling constants (J) are reported in 

Hertz (Hz) and multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q 

(quartet), sep (septet), m (multiplet), br s (broad singlet), dd (doublet of doublet), dt 

(doublet of triplet), tt (triplet of triplet). Unless indicated otherwise, deuterochloroform 

(CDCl3) served as an internal standard (77.0 ppm) for all 13C spectra. 

Trichlorofluoromethane (CFCl3) served as an internal standard (0.0 ppm) for 19F spectra. 

Flash column chromatography was performed using 60Å Silica Gel (Baker, 230-400 

mesh) as a stationary phase. Sometimes basic Al2O3 (Brochmann, 150 mesh) was used 

for purification of acid labile compounds. Mass spectra were obtained on a VG 



 92 

analytical 70S high resolution, double focusing, sectored (EB) mass spectrometer at the 

center for Chemical Characterization and Analysis. Thin layer chromatography (TLC) 

was performed using glass-backed silica gel 60F254 (Merck, 250 µm thickness). 

Infrared spectra were recorded with a Nicolet Impact 410 FTIR spectromer. 

Calculations were performed using the unrestricted Harfree-Fock approach to ab 

initio theory as implemented using Gaussian 03 program package* which is available on 

the supercomputer at Texas A&M University. The standard 3-21G basis set has been 

used to perform the full geometry optimization. The vibrational frequencies were 

determined to characterize stationary points and zero-point energies (ZPE), and have 

been calculated at this level of theory applying the coordinates generated from the full 

optimization. (*Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. 

A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; 

Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; 

Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; 

Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; 

Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; 

Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; 

Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, 

M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; 

Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. 

S.; Pople, J. A. Gaussian 98, Revision C.02. Gaussian, Inc., Wallingford CT, 2004.) 
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VIII.2. Procedure 

SnBu3

 

Vinyl stannane 102a: To a slurry of CuCN (6.9 g, 76.8 mmol) in THF (300 ml) 

at -35 ºC was added n-BuLi (2.3 M in hexanes, 67 ml, 154 mmol). The resulting yellow 

homogenous solution was stirred at -35 ºC for 30 min, cooled to -78 ºC and nBu3SnH 

(41 ml, 154 mmol) was added. The yellow-greenish solution was stirried at -78 ºC for 30 

min and a solution of 2,4-hexadiyne (3 g, 38.4 mmol) in THF (20 ml) was added down 

the side of the flask. The reaction mixture was at -78 ºC stirred for 3 h, quenched by 

slow addition of MeOH (45 ml) followed by saturated NH4Cl solution (45 ml). The 

mixture was warmed to room temperature, extracted with Et2O, washed with brine, dried 

(MgSO4), concentrated in vacuo, and purified by flash chromatography (hexanes) to 

afford 9.5 g (67%) of colorless oil as mixture of isomers (7:1). Major isomer: Rf = 0.65 

(hexanes); 1H NMR (500 MHz, CDCl3) � 5.61 (m, 1H), 2.09 (d, J = 2.0 Hz, 3H), 2.02 (d, 

J = 2.0 Hz, 3H), 1.49 (m, 6H), 1.31 (qt, J = 7.5 Hz, 7.5 Hz, 6H), 0.91 (q, J = 8.0 Hz, 

6H), 0.89 (q, J = 7.5 Hz, 9H); 13C NMR (125 MHz, CDCl3) � 156.7, 118.7 (d, J = 15 

Hz), 89.7, 77.2, 29.3, 27.6, 22.9, 13.9, 9.5, 4.6; HRMS calcd for for C18H34SnLi [M+Li]: 

377.1843. Found: 377.1859. 

SnBu3

 

Vinyl stannane 102c: To a solution of 2,4-hexadiyne (52 mg, 0.666 mmol) in 

THF (2 ml) was added PdCl2(PPh3)2 (23 mg, 0.0333 mmol). n-BuSnH (200 µl, 0.732 

mmol) was then added over a period of 30 min. The reaction mixture was stirred at room 
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temperature for 30 min, concentrated in vacuo, and purified by flash chromatography 

(pentane) to afford 220 mg (90%) of the desired product as a slightly yellow oil. Rf = 

0.68 (hexanes); 1H NMR (500 MHz, CDCl3) � 5.91 (q, J = 6.5 Hz, 1H), 2.04 (s, 3H), 

1.95 (d, J = 6.5 Hz, 3H), 1.53 (m, 6H), 1.33 (qt, J = 7.5, 7.5 Hz, 6H), 0.95 (t, J = 8.0 Hz, 

6H), 0.90 (t, J = 7.5 Hz, 9H); 13C NMR (125 MHz, CDCl3) � 145.7, 124.9, 94.5, 81.1, 

29.2, 27.6, 18.7, 13.7, 10.2, 5.1; LRMS calcd for C18H34SnLi [M+Li]: 377. Found: 377. 

O
 

Ketone 105: To a solution of vinyl stannane 102a (7.08 g, 19.2 mmol) in THF 

(150 ml) at -78 ºC was added n-BuLi (2.0 M in hexanes, 12.0 ml, 24.0 mmol). After 

stirring at -78 ºC for 20 min, N-methoxy-N-methyl acetamide (2.4 g, 23.0 mmol) in THF 

(15 ml) was added dropwise. The resulting light yellow solution was stirred at -78 ºC for 

1 h, warmed to room temperature and was quenched by 1 N HCl solution (about 40 ml) 

until the mixture was slightly acidic. The aqueous layer was extracted with Et2O and the 

combined organic layers were dried (Mg2SO4), concentrated in vacuo and purified by 

flash chromatography (5% Et2O/pentane �10% Et2O/pentane) to afford 1.8 g (77%) of 

product as a yellow oil. Rf = 0.43 (5% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 

6.47 (m, 1H), 2.31 (d, J = 1.0 Hz, 3H), 2.10 (dq, J = 2.5 Hz, 0.5 Hz, 3H), 1.97 (q, J = 0.5 

Hz, 3H); 13C NMR (125 MHz, CDCl3) � 198.8, 146.3, 121.0, 101.3, 76.7, 25.5, 14.1, 

4.9; IR (thin film): 2220, 1668 cm-1; LRMS Calcd. for C8H11O [M+H]: 123. Found: 123. 
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OTBS

 

Silyl enol ether (E)-95: To a solution of ketone 105 (643 mg, 5.25 mmol) in 

CH2Cl2 (30 ml) at -78 ºC was added Et3N (1.47 ml, 10.5 mmol) and TBSOTf (1.31 ml, 

5.79 mmol). The reaction mixture was stirred at -78 ºC for 10 min and quenched by pH 7 

buffer. The aqueous layer was extracted with CH2Cl2 and combined organic layers were 

dried (Na2SO4) and concentrated in vacuo. The residue was purified by flash 

chromatography on basic Al2O3 (pentane) to afford 1.12 g (90%) of product as a 

colorless oil. Rf = 0.57 (hexanes); 1H NMR (300 MHz, CDCl3) � 5.88 (m, 1H), 4.54 (d, J 

= 1.5 Hz, 1H), 4.36 (br s, 1H), 2.05 (d, J = 2.4 Hz, 3H), 2.01 (s, 3H), 0.97 (s, 9H), 0.18 

(s, 6H); 13C NMR (75 MHz, CDCl3) � 156.1, 142.6, 107.7, 93.5, 93.3, 78.1, 25.8, 18.2, 

15.8, 4.7, -4.7; IR (thin film): 2220 cm-1; LRMS (ESI) Calcd. for C14H25OSi [M+H]: 

237. Found: 237. 

Cbz
N O

 

N-Cbz lactam 46a: To a solution of �-methylene �-lactam (400 mg, 3.60 mmol) 

in THF (36 ml) at -78 ºC was added LiHMDS (1.0 M in THF, 4.32 mmol). After stirring 

at -78 ºC for 20 min, benzyl chloroformate (617 µl, 4.32 mmol) was added. The reaction 

mixture was stirred at -78 ºC for 30 min and quenched by pH 7 buffer. The aqueous 

layer was extracted with Et2O and the combined organic layers were dried (Na2SO4) and 

concentrated in vacuo. The residue was purified by flash chromatography (10% � 30% 

� 50% Et2O/hexanes) to afford 523 mg (59%) of the desired product as a slightly 
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yellowish oil which solidifies upon standing in refrigerator overnight. . m.p.51-53 ºC; Rf 

= 0.45 (30% EtOAc/hexanes); 1H NMR (300 MHz, CDCl3) � 7.47-7.31 (m, 5H), 6.36 

(dd, J = 0.9 Hz, 0.9 Hz, 1H), 5.45 (dd, J = 0.9, 0.9 Hz, 1H), 5.31 (s, 2H), 3.81 (app q, J = 

3.9 Hz, 2H), 2.60 (tt, J = 0.9 Hz, 3.9 Hz, 2H), 1.90 (tt, J = 3.9 Hz, 3.9 Hz, 2H); 13C NMR 

(125 MHz, CDCl3) � 164.5, 154.4, 138.2, 135.4, 128.5, 128.2, 128.0, 125.6, 68.5, 47.0, 

29.1, 22.4; IR (thin film): 1697 cm-1; HRMS (ESI) Calcd. for C14H16NO3 [M+H]: 

246.1130. Found: 246.1199. 

Cbz
N O

OTBS
Me  

N-Cbz spirolactam 96b: A flask wrapped with aluminum foil was charged with 

CuCl2 (69.4 mg, 0.516 mmo) and (S, S)-tert-butyl-bis(oxazoline) (167 mg, 0.568 mmol) 

in a glove box. The flask was removed from the glove box and CH2Cl2 (3 ml) was 

added. The greenish homogeneous solution was stirred at room temperature in dark for 

3.5 h, then a solution of AgSbF6 (354.7 mg, 1.03 mmol, weighed in a glove box) in 

CH2Cl2 (3 ml) was added. White precipitate formed immediately. After stirring at room 

temperature for 2 h, the dark green mixture was filtered through a pad of oven-dried 

Celite, rinsed with CH2Cl2 (3 ml) and the resulting blue catalyst solution was used in the 

reaction. 

To this catalyst solution was added a solution of Cbz lactam 46a (1.27 g, 5.16 

mmol) in CH2Cl2 (6 ml) followed by a solution of TBS enol ether (E)-95 (1.83 g, 7.74 

mmol) in CH2Cl2 (3 ml). The reaction mixture was stirred at room temperature in dark 
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for 11 h, concentrated in vacuo and purified by flash chromatography (5%�7.5%�10% 

� 20% EtOAc/hexanes) to afford 2.1 g (84%) of the desired product as a slightly yellow 

oil. Rf = 0.48 (20% EtOAc/hexanes); [�]D
21 + 87.1 (c 1.0, CHCl3); 1H NMR (500 MHz, 

CDCl3) � 7.45-7.32 (m, 5H), 5.27 (dd, AB system, J =12.0 Hz, 12.0 Hz, 1H), 3.82 (m, 

1H), 3.77 (m, 1H), 3.69 (m, 1H), 2.14-2.07 (m, 3H), 1.98-1.91 (m, 2H), 1.85-1.78 (m, 

3H), 1.75 (d, J = 2.5 Hz, 3H), 1.71 (q, J = 1.5 Hz, 3H), 0.94 (s, 9H), 0.11 (s, 3H), 0.10 

(s, 3H); 13C NMR (75 MHz, CDCl3) � 176.4, 154.9, 141.8, 135.7, 128.5, 128.1, 128.0, 

110.2, 79.3, 77.7, 68.3, 48.0, 47.6, 40.8, 30.3, 21.2, 26.7, 25.8, 20.1, 18.1, 14.8, 3.6, -3.9; 

IR (thin film): 1772, 1721 cm-1; HRMS calcd for C28H40NO4Si [M+H]: 482.2727. 

Found: 482.2748. CAUTION: The product is readily oxidized to �,�-unsaturated ketone 

when exposed to air and should be immediately (within one hour) used in the following 

deprotection step after purification. 

H
N O

OTBS
Me  

Spirolactam 96c: To a solution of the lactam 96b (500 mg, 1.04 mmol) in THF 

(30 ml, degassed through freeze-thaw processes) at -78 ºC was added n-BuLi (2.0 M in 

hexanes, 675 µl, 1.35 mmol). After stirring for 15 min, another 600 µl of n-BuLi (2.0 M 

in hexanes) was added. The reaction mixture was stirred for 15 min and was quenched 

by pH 7 buffer. The aqueous layer was extracted with Et2O, and the combined organic 

layers were dried (Na2SO4), concentrated in vacuo, and purified by flash 

chromatography (50% � 70% EtOAc/hexanes) to afford 296 mg (82%) of the desired 
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lactam as a white powder. Rf = 0.40 (50% EtOAc/hexanes); [�]D
21 +105.6 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 6.11 (br s, 1H, NH), 3.97 (br s, 1H), 3.40-3.24 

(m, 2H), 2.18-1.88 (m, 8H), 1.79 (d, J = 2.5 Hz, 3H), 1.71 (app d, J = 1.5 Hz, 3H), 0.94 

(s, 9H), 0.12 (s, 6H); 13C NMR (125 MHz, CDCl3) � 176.7, 141.5, 109.9, 79.1, 78.1, 

44.3, 42.4, 39.6, 30.1, 26.3, 25.8, 24.6, 19.6, 18.1, 14.7, 3.6, -3.8, -3.9; IR (thin film): 

3192, 1655 cm-1; LRMS calcd for C20H34NO2Si [M+H]: 348. Found: 348. A mixture of 

spiro lactam 96c (3 mg, 0.00863 mmol) and (+)-Eu(hfc)3 (10 mg, 0.00863 mmol) was 

dissolved in CDCl3. 1H NMR showed separated peaks for two enantiomers and 

integration gave 83% ee. 

Ts
N O

OTBS
Me  

N-Tosyl spirolactam 96a: To a solution of the lactam 96c (270 mg, 0.777 mmol) 

in THF (20 ml) at -78 ºC was added KHMDS (0.5 M in toluene, 2.33 ml, 1.17 mmol). 

After stirring at -78 ºC for 20 min, TsCl (recrystallized from ether, 250 mg, 1.17 mmol) 

was added. The reaction mixture was stirred at -78 ºC for 1 h, warmed to room 

temperature over a period of 1 h, and quenched by pH 7 buffer. The aqueous layer was 

extracted with Et2O and the combined organic layers were dried (Na2SO4) and 

concentrated in vacuo. The residue was purified by flash chromatography (10%�20% 

Et2O/hexanes) to afford 311 mg (80%) of product as a white solid. NMR matched with 

previously reported. [�]D
21 +125.7 (c 1.0, CHCl3). Recrystallization from heptane 

provided white crystals suitable for X-ray analysis. 
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OH

Me
OTBS

TsHN

 

Amino alcohol 106: To a solution of tosyl lactam 96a (7.0 mg, 0.0140 mmol) in 

THF (1 ml) at 0 ºC was added LiBH4 (2M in THF, 70 µl, 0.140 mmol). The reaction 

mixture was stirred at 25 ºC for 4 h and then quenched by pH 7 buffer. The aqueous 

layer was extracted with Et2O, and the combined organic layers were dried (Na2SO4), 

concentrated and purified by flash chromatography (60% EtOAc/Hexanes) to afford 6.4 

mg (91%) of the product 106 as a white foam. Rf = 0.15 (30% EtOAc/hexanes); [�]D
21 

+42.4 (c 0.42, CHCl3); 1H NMR (500 MHz, CDCl3) � 7.75 (d, J = 8.5 Hz, 2H), 7.31 (d, J 

= 8.5 Hz, 2H), 4.54 (t, J = 5.5 Hz, 1 H), 3.49 (d, J = 11.0 Hz, 1H), 3.36 (d, J = 11.0 Hz, 

1H), 2.96 (dt, J = 6.0 Hz, 5.5 Hz, 2H), 2.64 (br s, 1H), 2.43 (s, 3H), 1.98 (m, 2H), 1.81 

(d, J = 2.5 Hz, 3H), 1.66 (app q, J = 1.5 Hz, 3H), 1.56 (m, 3H), 1.48 (m, 3H), 0.94 (s, 

9H), 0.12 (3H, s), 0.09 (3H, s); 13C NMR (125 MHz, CDCl3) � 143.3, 143.1, 136.9, 

130.0, 127.2, 110.3, 78.7, 78.5, 64.8, 43.9, 39.2, 39.0, 30.1, 27.1, 27.0, 25.8, 23.2, 21.5, 

18.2, 15.4, 3.6, -3.6, -3.9; IR (thin film): 3478, 3278 cm-1; HRMS (ESI) calcd for 

C27H43NO4SSiLi [M+Li]: 512.2842. Found: 512.2844. 

O

Me
OTBS

TsHN

O
Ph

CF3

OMe

 

Mosher ester 107: To a solution of (S)-(-)-�-methoxy-�-

(trifluoromethyl)phenylacetic acid (5 mg, 0.0198 mmol) in CH2Cl2 (1ml) was added 
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DCC (3 mg, 0.0149 mmol), a solution of amino alcohol 106 (5 mg, 0.00990 mmol) in 

CH2Cl2 (1 ml) and a crystal of DMAP successively. The reaction mixture was stirred at 

room temperature for 12 h, concentrated in vacuo. 19F NMR integration of the crude 

reaction mixture showed ratio of 97.6:2.4 of the two diastereomers corresponding to 

95% ee. The crude mixture was purified by flash chromatography (30% EtOAc/hexanes) 

to afford 6 mg (84%) of product 107 as a colorless oil. 19F NMR integration of the pure 

product gave the same ee. Rf = 0.50 (30% EtOAc/hexanes); [�]D
21 +26.0 (c 0.63, 

CHCl3); 19F NMR (300 MHz, CFCl3) � -71.25 (minor diastereomer), -71.29 (major 

diastereomer); 1H NMR (500 MHz, C6D6) � 7.73 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.5 Hz, 

2H), 7.09 (m, 2H), 7.04 (m, 1H), 6.79 (d, J = 8.0 Hz, 2H), 4.04 (s, 2H), 3.93 (t, J = 6.0 

Hz, 1H), 3.38 (s, 3H), 2.64 (dt, J = 6.5 Hz, 6.5 Hz, 2H), 2.54 (br s, 1H), 1.98 (m, 2H), 

1.89 (s, 3H), 1.83 (s, 3H), 1.63 (m, 1H), 1.54 (d, J = 2.5 Hz, 3H), 1.40 (m, 1H), 1.34 (m, 

1H), 1.25 (m, 1H), 1.10 (m, 2H), 0.95 (s, 9H), 0.074 (s, 3H), 0.068 (s, 3H); 13C NMR 

(125 MHz, C6D6) � 166.5, 143.5, 142.7, 138.6, 132.9, 130.0, 129.6, 128.7, 128.3, 127.7, 

127.5, 125.4 (q, CF3, J = 287 Hz), 123.1, 110.5, 85.2, 78.9, 78.1, 67.0, 55.4, 43.8, 38.6, 

38.2, 32.3, 27.5, 27.4, 25.9, 23.7, 21.1, 18.3, 15.9, 3.3, -3.6, -3.7; IR (thin film): 3283, 

1752 cm-1; HRMS (ESI) calcd for C37H50F3NO6SSiLi [M+Li]: 728.3240. Found: 

728.3222. 

Ts
N O

Bu3Sn Me

OTBS
Me
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Vinyl stannane 108: To a solution of alkyne 96a (231 mg, 0.461 mmol) in a 

mixed solvent of THF/hexanes (1:7, total 10.4 ml, hexanes were dried over powdered 

4� molecular sieves) containing PdCl2(PPh3)2 (16 mg, 0.0231 mmol) at room 

temperature was added a solution of tributyltin hydride (124 µl, 0.461 mmol) in hexanes 

(1 ml) over 12 h via a syringe pump. After finishing the addition, another 16 mg of 

PdCl2(PPh3)2 was added followed by syringe pump addition of a solution of tributyltin 

hydride (124 µl) in hexanes (1 ml) over 12 h. The dark reaction mixture was 

concentrated in vacuo and purified by flash chromatography (hexanes�5%�10% 

EtOAc/hexanes) to afford 310 mg (85%) of the desired product 108 as a colorless oil, 5 

mg (2% )of hydrogenated product 109 as a white solid and 14 mg (6%) of the recovered 

starting material. 

Desired product 108: Rf = 0.72 (20% EtOAc/hexanes); [�]D
21 +128.9 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 7.87 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 

2H), 5.16 (dq, J = 10.5 Hz, 1.5 Hz, 1H), 3.92 (ddd, J = 6.0 Hz, 6.0 Hz, 12.0 Hz, 1H), 

3.82 (ddd, J = 6.0 Hz, 6.0 Hz, 12.0 Hz, 1H), 3.64 (d, J = 10.5 Hz, 1H), 2.43 (s, 3H), 2.24 

(m, 2H), 1.96-1.84 (m, 4H), 1.68-1.60 (m, 2H), 1.57 (d, J = 1.5 Hz, 3H), 1.45 (m, 6H), 

1.40 (s, 3H), 1.30 (m, 6H), 0.93 (s, 9H), 0.89 (t, J = 7.0 Hz, 9H), 0.83 (t, J = 8.0 Hz, 6H), 

0.09 (s, 3H), 0.08 (s, 3H); 13C NMR (125 MHz, CDCl3) � 175.4, 144.1, 142.3, 141.0, 

139.1, 136.5, 129.1, 128.6, 112.0, 47.2, 46.6, 43.3, 31.4, 29.2, 28.2, 27.4, 26.9, 25.8, 

21.6, 20.6, 19.2, 18.1, 14.4, 13.7, 9.1, -3.9, -4.1; IR (thin film): 1688 cm-1; HRMS (ESI) 

Calcd. for C39H67NO4SSiSnLi [M+Li]: 800.3742. Found: 800.3673. 
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Hydrogenated product 109: m.p.122-126 ºC; Rf = 0.57 (20% EtOAc/hexanes); 1H 

NMR (500 MHz, CDCl3) � 7.86 (d, J = 7.5 Hz, 2H), 7.29 (d, J = 7.5 Hz, 2H), 5.42 (dq, J 

= 11.0 Hz, 7.0 Hz, 1H), 5.06 (ddq, J = 11.0 Hz, 11.0 Hz, 1.5 Hz, 1H), 3.95 (ddd, J = 6.0 

Hz, 6.0 Hz, 12.0 Hz, 1H), 3.83 (m, 1H), 3.60 (d, J = 11.0 Hz, 1H), 2.44 (s, 3H), 2.04 (m, 

2H), 1.96-1.88 (m, 3H), 1.86-1.80 (m, 1H), 1.70 (ddd, J = 5.0 Hz, 5.0 Hz, 13.0 Hz, 1H), 

1.67-1.61 (m, 1H), 1.41 (s, 3H), 1.28 (dd, J = 7.0 Hz, 1.5 Hz, 3H), 0.94 (s, 9H), 0.10 (s, 

3H), 0.09 (s, 3H); 13C NMR (125 MHz, CDCl3) � 175.3, 144.2, 142.1, 136.6, 129.1, 

128.9, 128.5, 127.0, 111.9, 47.3, 46.9, 42.8, 31.5, 26.9, 26.8, 25.8, 21.6, 20.7, 18.1, 14.1, 

12.7, -3.9, -4.0; IR (thin film): 1686 cm-1; HRMS (ESI) Calcd. for C27H41NO4SSiLi 

[M+Li]: 510.2686. Found: 510.2727. 

Ts
N O

I Me

OTBS
Me  

Vinyl iodide 110: To a solution of the vinyl stannane 108 (268 mg, 0.338 mmol) 

in CH2Cl2 (15 ml) at -78 ºC was added a solution of iodine (79 mg, 0.321 mmol) in 

CH2Cl2 (5 ml). The reaction mixture was stirred at -78 ºC for 10 min and quenched by 

cyclohexene (1 ml). The yellowish mixture was warmed to room temperature and stirred 

until the solution turned to colorless (ca. 1 h). The solvent was evaporated and the 

residue was purified by flash chromatography (hexanes�5%�10% EtOAc/hexanes) to 

afford 161 mg (76%) of the desired product as a white solid and 21 mg (8%) of the 

recovered starting material. m.p.180-183 ºC; Rf = 0.52 (20% EtOAc/hexanes); [�]D
21 

+126.3 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) � 7.85 (d, J = 8.0 Hz, 2H), 7.35 (d, J 
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= 8.0 Hz, 2H), 5.82 (dq, J = 11.5, 1.5 Hz, 1H), 3.96 (m, 1H), 3.89 (m, 1H), 3.53 (d, J = 

11.5 Hz, 1H), 2.45 (s, 3H), 2.12-2.00 (m, 2H), 1.98-1.88 (m, 3H), 1.87 (d, J = 1.5 Hz, 

3H), 1.83-1.77 (m, 1H), 1.75-1.70 (m, 1H), 1.69-1.64 (m, 1H), 1.41 (app d, J = 1.5 Hz, 

3H), 0.93 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); 13C NMR (125 MHz, CDCl3) � 174.8, 

144.4, 142.7, 140.1, 136.6, 129.4, 128.4, 110.4, 97.6, 47.4, 46.9, 46.8, 31.9, 27.5, 26.5, 

26.3, 25.8, 21.6, 20.8, 18.1, 14.1, -3.87, -3.91; IR (thin film): 1675 cm-1; HRMS (ESI) 

Calcd. for C27H40INO4SSiLi [M+Li]: 636.1652. Found: 636.1602. 

O

Me

Me
OH

OTIPS  

Alcohol 113: To a three-necked flask immersed in acetone/dry ice bath (-78 ºC) 

equipped with a cold finger was condensed about 40 ml of liquid ammonia. Sodium (376 

mg, 16.4 mmol, cut in small pieces) was added and the resulting blue mixture was stirred 

for 10 min. Then a solution of PMB ether 92 (826 mg, 1.64 mmol) in THF (25 ml) was 

added. The reaction mixture was stirred at -78 ºC for 45 min and quenched by slow 

addition of MeOH (10 ml). The solution was warmed to room temperature, stirred in 

open air for 1 h and then water (10 ml) and Et2O (10 ml) were added. The aqueous layer 

was extracted with Et2O and the combined organic layers were dried (MgSO4) and 

concentrated in vacuo. The residue was purified by flash chromatography (30% 

EtOAc/hexanes) to afford 566 mg (90%) of the desired product as a colorless oil as a 

mixture of two diastereomers (4:1). Major diastereomer: Rf = 0.37 (30% 

EtOAc/hexanes); [�]D
21 -17.1 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) � 5.43 (t, J = 

7.0 Hz, 1H), 3.99 (m, 1H), 3.71 (m, 2H), 3.69 (d, J = 8.0 Hz, 1H), 3.65 (t, J = 6.5 Hz, 
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2H), 2.35 (m, 2H), 2.01 (m, 1H), 1.78 (ddd, J = 5.5 Hz, 8.5 Hz, 12.5 Hz, 1H), 1.68 (m, 

2H), 1.65 (s, 3H), 1.55 (m, 3H), 1.06 (m, 21H), 0.96 (d, J = 6.5 Hz, 3H); 13C NMR (75 

MHz, CDCl3) � 137.6, 123.2, 92.2, 77.8, 63.4, 62.3, 39.8, 36.1, 32.8, 31.4, 29.5, 18.0, 

17.1, 11.9, 11.4.; IR (thin film): 3401 cm-1;  HRMS (ESI) Calcd. for C22H44O3SiLi 

[M+Li]:391.3220. Found: 391.3219. 

O

Me

Me
OMs

OTIPS  

Mesylate 114a: To a solution of the alcohol 113 (450 mg, 1.17 mmol) in CH2Cl2 

(20 ml) at -78 ºC was added Et3N (815 µl, 5.85 mmol) and methanesulfonyl chloride 

(136 µl, 1.75 mmol). The reaction mixture was stirred at -78 ºC for 10 min and quenched 

by pH = 7 buffer. The aqueous layer was extracted with CH2Cl2 and the combined 

organic layers were dried (Na2SO4) and concentrated in vacuo. The residue was purified 

by flash chromatography on Et3N deactivated SiO2 (30% EtOAc/hexanes) to afford 498 

mg (92%) of the desired product as a colorless oil as a mixture of diastereomers (4:1). 

Major diastereomer: Rf = 0.47 (30% EtOAc/hexanes); [�]D
21 -12.2 (c 1.0, CHCl3); 1H 

NMR (500 MHz, CDCl3) � 5.40 (t, J = 7.0 Hz, 1H), 4.22 (dt, J = 2.5 Hz, 6.5 Hz, 2H), 

4.00 (m, 1H), 3.71 (t, J = 6.0 Hz, 2H), 3.68 (d, J = 8.0 Hz, 1H), 3.01 (s, 3H), 2.53 (dt, J 

= 7.0 Hz, 7.0 Hz, 2H), 2.00 (m, 1H), 1.78 (ddd, J = 5.5 Hz, 8.5 Hz, 12.5 Hz, 1H), 1.68-

1.52 (m, 5H), 1.65 (s, 3H), 1.05 (m, 21H), 0.96 (d, J = 6.5 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) � 138.7, 120.5, 91.8, 77.9, 69.1, 63.3, 39.7, 37.5, 36.3, 32.7, 29.5, 27.8, 18.0, 

17.1, 12.0, 11.6; HRMS (ESI) Calcd. for C23H46O5SSiLi [M+Li]: 469.2995. Found: 

469.3002. 
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Alkyl iodide 114b: To a solution of mesylate 114a (180 mg, 0.389 mmol) in 

THF (10 ml) was added tetrabutylammonium iodide (287 mg, 0.778 mmol). The mixture 

was refluxed for 4 h, concentrated in vacuo and purified by flash chromatography (5% 

EtOAc/hexanes) to afford 176 mg (91%) of the desired product as a colorless oil as a 

mixture of two diastereomers (4:1). Major diastereomer: Rf = 0.53 (10% 

EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 5.38 (t, J = 7.0 Hz, 1H), 4.01 (m, 1H), 

3.71 (t, J = 5.5 Hz, 2H), 3.68 (d, J = 8.0 Hz, 1H), 3.13 (dt, J = 2.0 Hz, 7.5 Hz, 2H), 2.69-

2.61 (m, 2H), 2.05-1.98 (m, 1H), 1.79 (ddd, J = 5.5 Hz, 8.5 Hz, 12.5 Hz, 1H), 1.62 (s, 

3H), 1.70-1.52 (m, 5H), 1.06 (m, 21H), 0.94 (d, J = 6.5 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) � 137.0, 125.9, 91.9, 77.9, 63.3, 39.7, 36.2, 32.8, 32.0, 29.5, 18.0, 17.1, 12.0, 

11.6, 5.4; IR (thin film): 2945, 2868, 1107 cm-1; HRMS (ESI) Calcd. for C22H43IO2SiLi 

[M+Li]: 501.2237. Found: 501.2234. 

O

Me

Me
Cl

OTIPS  

Alkyl chloride 114c: A solution of the mesylate 114a (498 mg, 1.08 mmol) in 

DMF (15 ml) containing anhydrous LiCl (500 mg, 11.8 mmol) was stirred at room 

temperature for 36 h and was quenched by water (7 ml). The mixture was extracted with 

Et2O and the combined organic layers were washed with brine, dried (Na2SO4) and 

concentrated in vacuo. The residue was purified by flash chromatography (10% 

EtOAc/hexanes) to afford 387 mg (89%) of the desired product as a colorless oil as a 
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mixture of diastereomers (4:1). Major diastereomer: Rf = 0.53 (10% EtOAc/hexanes); 

[�]D
21 -15.9 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) � 5.43 (t, J = 7.0 Hz, 1H), 3.99 

(m, 1H), 3.71 (t, J = 6.0 Hz, 2H), 3.68 (d, J = 8.0 Hz, 1H), 3.51 (m, 2H), 2.52 (m, 2H), 

2.00 (m, 1H), 1.78 (ddd, J = 5.5 Hz, 8.5 Hz, 12.5 Hz, 1H), 1.67 (m, 2H), 1.63 (s, 3H), 

1.55 (m, 3H), 1.05 (m, 21H), 0.96 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) � 

137.5, 122.9, 91.9, 77.8, 63.4, 44.0, 39.7, 36.2, 32.8, 31.2, 29.5, 18.0, 17.1, 12.0, 11.5; 

LRMS (APCI) Calcd. for C22H44ClO2Si [M+H]: 403. Found: 403. 

O

Me

Me
Cl

OH  

Alcohol 115: To a solution of TIPS ether 114c (400 mg, 0.993 mmol) in CH3CN 

(15 ml) in a plastic bottle at 0 ºC was added HF·Py (~70 wt% of HF in pyridine, 0.2 ml). 

The reaction mixture was stirred at room temperature for 20 h and quenched by saturated 

NaHCO3 solution (10 ml). The aqueous layer was extracted with Et2O and the combined 

organic layers were dried (Na2SO4) and concentrated in vacuo. The residue was purified 

by flash chromatography (40% EtOAc/hexanes) to afford 243 mg (99%) of the desired 

product as a colorless oil as a mixture of two diastereomers (4:1). Major diastereomer: Rf 

= 0.19 (30% EtOAc/hexanes); [�]D
21 -16.9 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) 

� 5.43 (t, J = 7.0 Hz, 1H), 4.00 (m, 1H), 3.71 (d, J = 8.0 Hz, 1H), 3.66 (m, 2H), 3.52 (m, 

2H), 2.52 (m, 2H), 2.44 (brs, 1H, -OH), 2.02 (m, 1H), 1.78 (ddd, J = 5.5 Hz, 8.5 Hz, 12.5 

Hz, 1H), 1.68 (m, 5H), 1.63 (s, 3H), 0.97 (d, J = 6.5 Hz, 3H); 13C NMR (125 MHz, 

CDCl3) � 137.4, 123.2, 92.1, 77.9, 62.9, 44.0, 39.9, 36.2, 33.4, 31.1, 29.8, 17.1, 11.6; IR 

(thin film): 3378 cm-1; LRMS (APCI) Calcd. for C13H24ClO2 [M+H]: 247. Found: 247. 
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Alternatively, to a solution of the alkene 111c (745 mg, 3.26 mmol) in THF (35 

ml) at 0 ºC was added 9-BBN (0.5 M in THF, 9.1 ml, 4.56 mmol). The reaction mixture 

was stirred at room temperature for 12 h, cooled to 0 ºC and quenched by addition of 2 N 

NaOH solution (10 ml) and H2O2 solution (35 wt% in H2O, 10 ml). The mixture was 

stirred at 0 ºC for 30 min. The aqueous layer was extracted with Et2O, and the combined 

organic layers were washed with brine, dried (MgSO4) and concentrated in vacuo. The 

residue was purified by flash chromatography (20% � 40 % EtOAc/hexanes) to afford 

791 mg (98%) of the same product. 

O

Me

Me
Cl

O  

Aldehyde 116: To a solution of the alcohol 115 (161 mg, 0.652 mmol) in CH2Cl2 

(10 ml) containing anhydrous NaHCO3 powder (329 mg, 3.91 mmol) at 0 ºC was added 

Dess-Martin periodinane (553 mg, 1.30 mmol). The reaction mixture was stirred at room 

temperature for 80 min, diluted with Et2O and filtered through a pad of Celite. The 

filtrate was concentrated in vacuo and the residue was purified by flash chromatography 

(10%�20%�30% EtOAc/hexanes) to afford 113 mg (71%) of the desired product as a 

colorless oil. Major diastereomer: Rf = 0.52 (30% EtOAc/hexanes); [�]20
D -16.1 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 9.79 (t, J = 1.5 Hz, 1H), 5.43 (t, J = 7.0 Hz, 1H), 

4.00 (m, 1H), 3.69 (d, J = 8.0 Hz, 1H), 3.53 (m, 2H), 2.54 (m, 4H), 2.01 (m, 1H), 1.90-

1.75 (m, 3H), 1.69 (ddd, J = 8.0 Hz, 8.0 Hz, 12.0 Hz, 1H), 1.62 (s, 3H), 0.97 (d, J = 6.5 

Hz, 3H); 13C NMR (125 MHz, CDCl3) � 202.3, 137.0, 123.3, 92.1, 76.7, 44.0, 40.6, 
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40.0, 36.1, 31.1, 28.6, 16.8, 11.5; IR (thin film): 1724 cm-1; HRMS (ESI) Calcd. for 

C13H21ClO2Li [M+Li]: 251.1390. Found: 251.1369. 

Me

O

Me OH

 

Alcohol 111b: In a three-necked flask immersed in acetone/dry ice bath (-78 ºC) 

equipped with a cold finger was condensed about 40 ml of liquid ammonia. Sodium 

(1.04 g, 45.0 mmol, cut in small pieces) was added and the resulting blue mixture was 

stirred at -78 ºC for 10 min. Then a solution of the PMB ether 111a (1.86 g, 5.63 mmol) 

in THF (30 ml) was added. The reaction mixture was stirred at -78 ºC for 30 min and 

quenched by slow addition of MeOH (15 ml). The solution was warmed to room 

temperature, stirred in open air for 1 h and saturated NH4Cl solution (20 ml) was added. 

The mixture was extracted with Et2O and the combined organic layers were washed with 

brine and concentrated in vacuo. The residue was purified by flash chromatography 

(40% EtOAc/hexanes) to afford 1.09 g (92%) of the desired product as a colorless oil. Rf 

= 0.27 (30% EtOAc/hexanes); [�]D
21 -26.9 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) 

� 5.81 (m, 1H), 5.41 (t, J = 7.5 Hz, 1H), 5.05 (m, 2H), 4.02 (m, 1H), 3.66 (d, J = 8.0 Hz, 

1H), 3.61 (t, J = 7.0 Hz, 2H), 2.33 (m, 2H), 2.28 (m, 1H), 2.24 (m, 1H), 1.99 (m, 1H), 

1.81 (ddd, J = 5.5 Hz, 8.5 Hz, 12.5 Hz, 1H), 1.62 (s, 3H), 1.60 (m, 1H), 0.93 (d, J = 7.0 

Hz, 3H); 13C NMR (125 MHz, CDCl3) � 136.8, 134.9, 123.7, 116.8, 92.3, 77.2, 62.1, 

40.7, 39.0, 35.9, 31.3, 16.9, 11.4; IR (thin film): 3395 cm-1; HRMS (ESI) Calcd. for 

C13H22O2Li [M+Li]: 217.1780. Found: 217.1777. 
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Chloride 111c: To a solution of the alcohol 111b (500 mg, 2.38 mmol) in DMF 

(20 ml) at room temperature were added carbon tetrachloride (1.38 ml, 14.3 mmol) and 

triphenylphosphine (1.87 g, 7.13 mmol). The reaction mixture was stirred at 65 ºC for 1 

h, cooled to room temperature, and quenched by water. The mixture was extracted with 

Et2O and the combined organic layers were washed with water, brine, and concentrated 

in vacuo. The residue was purified by flash chromatography (hexanes�5% 

EtOAc/hexanes) to afford 461 mg (85%) of the desired product as a colorless oil. Rf = 

0.34 (5% EtOAc/hexanes); [�]D
21 -24.8 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) � 

5.83 (m, 1H), 5.43 (t, J = 7.5 Hz, 1H), 5.06 (m, 2H), 4.04 (m, 1H), 3.69 (d, J = 8.5 Hz, 

1H), 3.50 (m, 2H), 2.53 (m, 2H), 2.36 (m, 1H), 2.25 (m, 1H), 1.99 (m, 1H), 1.83 (ddd, J 

= 5.5Hz, 8.5Hz, 12.5 Hz, 1H), 1.64 (m, 1H), 1.63 (s, 3H), 0.96 (d, J = 7.0 Hz, 3H); 13C 

NMR (125 MHz, CDCl3) � 137.3, 134.9, 123.1, 116.8, 92.0, 77.1, 44.0, 40.7, 38.9, 36.1, 

31.2, 16.9, 11.5; IR (thin film): 1641 cm-1; HRMS (ESI) Calcd. for C13H22ClO [M+H]: 

229.1359. Found: 229.1365. 
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Amino ketone 123a: To a solution of 5-bromo-2-methyl-2-pentene (9.3 mg, 

0.0571 mmol) in Et2O (1 ml) at -78 ºC was added t-BuLi (1.2 M in pentane, 0.095 ml, 

0.114 mmol) dropwise. After stirring for 5 min, freshly distilled TMEDA (0.034 ml, 

0.228 mmol) was added followed by a solution of 96a (26 mg, 0.0519 mmol) in THF (1 

ml). The reaction mixture was stirred at -20 ºC for 4 h, warmed to room temperature and 

stirred for 10 h. The reaction was quenched by pH 7 buffer. The aqueous layer was 

extracted with Et2O, and the combined organic layers were dried (Na2SO4), concentrated 

in vacuo and purified by flash chromatography (10% � 20% EtOAc/Hexanes) to afford 

19 mg (63%) of the desired product 123a as a colorless oil. Rf = 0.67 (30% 

EtOAc/hexanes); [�]20
D + 65.6 (c 0.86, CHCl3); 1H NMR (500 MHz, CDCl3) � 7.73 (d, J 

= 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 5.03 (t and septet, J = 7.5 Hz, 1.5 Hz, 1H), 4.27 

(t, J = 6.5 Hz, 1H), 3.24 (br s, 1H), 2.90 (dt, J = 6.5 Hz, 6.5 Hz, 2H), 2.44 (s, 3H), 2.38 

(t, J = 7.5 Hz, 2H), 2.18 (dt, J = 7.5 Hz, 7.5 Hz, 2H), 2.00-1.85 (m, 4H), 1.83 (d, J = 2.5 

Hz, 3H), 1.70 (br s, 3H), 1.66 (s, 3H), 1.60 (s, 3H), 1.73 (m, 1H), 1.53 (m, 1H), 1.30 (m, 

1H), 1.16 (m, 1H), 0.90 (s, 9H), 0.03 (s, 6H); 13C NMR (125 MHz, CDCl3) � 211.5, 

143.7, 143.5, 137.1, 133.0, 130.0, 127.4, 123.3, 112.8, 78.9, 78.7, 53.6, 43.6, 37.2, 37.0, 

34.5, 28.3, 28.2, 26.03, 25.96, 24.1, 22.5, 21.8, 18.4, 17.9, 16.0, 3.9, -3.5, -3.7; IR (thin 

film): 3283, 1701 cm-1; HRMS (ESI) calcd for C33H51NO4SSiLi [M+Li]:592.3468. 

Found: 592.3478. 
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Amino ketone 123b: To a solution of 123a (21 mg, 0.0358 mmol) in THF (2 ml) 

at room temperature was added triethylamine (0.060 ml, 0.430 mmol) and trifluoroacetic 

anhydride (0.035 ml, 0.251 mmol). After stirring for 15 min, samarium iodide (0.1 M in 

THF) was added until the mixture stayed blue (totally about 5 ml, 0.5 mmol). The 

mixture was stirred for 30 min, diluted with CH2Cl2, and quenched with 10% sodium 

thiosulfate solution. The aqueous layer was extracted with Et2O, and the combined 

organic layers were dried (Na2SO4), concentrated in vacuo and purified by flash 

chromatography (10% � 20% EtOAc/Hexanes) to afford 12 mg (63%) of the desired 

product as a slightly yellow oil. Rf = 0.48 (20% EtOAc/hexanes); [�]20
D + 194 (c 0.3, 

CHCl3);  1H NMR (500 MHz, CDCl3) � 6.20 (br s, 1H), 5.05 (t and septet, J = 7.0 Hz, 

1.5 Hz, 1H), 3.32 (br s, 1H), 3.30 (m, 2H), 2.44 (t, J = 7.0 Hz, 2H), 2.21 (m, 2H), 2.02-

1.89 (m, 4H), 1.80 (m, 1H), 1.58 (m, 1H), 1.79 (d, J = 2.5 Hz, 3H), 1.71 (s, 3H), 1.67(d, 

J = 1.5 Hz, 3H), 1.61 (s, 3H), 1.48 (m, 1H), 1.28 (m, 1H), 0.91 (s, 9H), 0.05 (s, 6H); 13C 

NMR (75 MHz, CDCl3) � 211.6, 157.2 (q, J = 36 Hz), 143.4, 133.1, 123.1, 114.6 (q, J = 

287 Hz), 112.9, 78.8, 78.4, 53.6, 40.2, 37.3, 36.9, 34.4, 28.3, 28.1, 26.0, 25.9, 23.8, 22.5, 

18.4, 17.9, 16.0, 3.7, -3.5, -3.9; IR (thin film): 3343, 1706 cm-1; HRMS calcd for 

C28H44F3NO3SiLi [M+Li]: 534.3203. Found: 534.3155. 
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Spirocyclic imine 124: To a solution of amino ketone 123b (4.0 mg) in MeOH 

was added 28% ammonia hydroxide in water (0.2 ml). The mixture was stirred at 80 ºC 

for 2 h, concentrated and purified by flash chromatography (40% � 60% 

EtOAc/Hexanes) to afford 2.8 mg (89%) of the desired product as a colorless oil. Rf = 

0.49 (60% EtOAc/hexanes); [�]20
D + 77.6 (c 0.5, CHCl3);  1H NMR (500 MHz, CDCl3) � 

5.16 (t and septet, J = 7.0 Hz, 1.5 Hz, 1H), 3.68 (m, 1H), 3.64 (br s, 1H), 3.56 (m, 1H), 

2.35 (m, 2H), 2.22 (m, 2H), 2.12 (m, 1H), 2.00-1.90 (m, 2H), 1.80 (m, 2H), 1.79 (d, J = 

2.5 Hz, 3H), 1.72 (s, 3H), 1.69 (br s, 3H), 1.63 (br s, 3H), 1.62-1.56 (m, 3H), 0.96 (s, 

9H), 0.12 (s, 6H). 13C NMR (125 MHz, CDCl3) � 174.8, 142.0, 131.7, 124.4, 109.6, 

79.3, 78.0, 49.6, 42.3, 39.5, 33.6, 29.4, 26.4, 25.9, 25.8, 25.7, 24.4, 19.6, 18.2, 17.7, 

14.9, 3.5, -3.6, -3.9; IR (thin film): 1685, 1650 cm-1; HRMS calcd for C26H43NOSiLi 

[M+Li]: 414.3192. Found: 414.3191. 

Me

O

Me

O
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NHTs

OTIPS  

Amino ketone 125a: Alkyl idodide 114b (83 mg, 0.168 mmol) and 

tosylspirolactam 96a (67 mg, 0.134 mmol) were placed in a flask and azeotropically 

dried with toluene. The mixture was dissolved in Et2O (15 ml) and the resulting solution 

was cooled to -78 ºC. t-BuLi (1.5 M in pentane, 246 µl, 0.369 mmol) was then added 
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dropwise. The reaction mixture was stirred at -78 ºC for 2 h and quenched by pH 7 

buffer. The aqueous layer was extracted with Et2O and the combined organic layers were 

dried (Na2SO4) and concentrated in vacuo. The residue was purified by flash 

chromatography (5%�10%�15% EtOAc/hexanes) to afford 107 mg (92%) of the 

desired product as a colorless oil. Rf = 0.50 (20% EtOAc/hexanes); [�]20
D +62.2 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 7.71 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 

2H), 5.51 (t, J = 6.0 Hz, 1H, -NH), 5.31 (t, J = 7.0 Hz, 1H), 4.03 (m, 1H), 3.67 (m, 2H), 

3.62 (d, J = 8.0 Hz, 1H), 3.17 (br s, 1H), 2.85 (m, 2H), 2.47 (m, 1H), 2.43 (s, 3H), 2.38-

2.32 (m, 2H), 2.15 (m, 1H), 2.04-1.90 (m, 5H), 1.80 (d, J = 2.5 Hz, 3H), 1.78 (m, 2H), 

1.68 (s, 3H), 1.65 (m, 1H), 1.62 (s, 3H), 1.62-1.45 (m, 7H), 1.05 (m, 21H), 0.94 (d, J = 

6.5 Hz, 3H), 0.90 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H); 13C NMR (125 MHz, CDCl3) � 

210.7, 143.6, 142.9, 137.6, 135.3, 129.5, 126.9, 126.4, 112.4, 92.1, 78.4, 78.2, 77.9, 63.3, 

53.3, 43.4, 39.5, 37.2, 36.1, 35.9, 34.0, 32.7, 29.4, 27.8, 26.8, 25.7, 23.9, 21.5, 21.4, 

18.04, 17.96, 16.9, 15.7, 11.9, 11.1, 3.6, -3.8, -4.2; IR (thin film): 3437, 3298, 1701 cm-1; 

HRMS (ESI) Calcd. for C49H83NO6SSi2Li [M+Li]: 876.5640. Found: 876.5641. 

Me

O
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O
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Bu3Sn Me

 

Vinyl stannane 126a: To a solution of the alkyne 125a (235 mg, 0.270 mmol) in 

THF/hexanes (1:7, 8 ml) at room temperature was added PdCl2(PPh3)2 (45 mg, 0.0641 

mmol) and tributyltin hydride (545 µl, 2.03 mmol) in five portions, with 12 h between 
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every portion. The resulting dark reaction mixture was concentrated in vacuo and 

purified by flash chromatography (5%�10%�15% EtOAc/hexanes) to afford 122 mg 

(39%) of the desired product as a colorless oil and 122 mg (52%) of the recovered 

starting material. Rf = 0.63 (20% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.67 

(d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 5.82 (t, J = 6.5 Hz, 1H, -NH), 5.31 (t, J = 

7.5 Hz, 1H), 5.18 (dq, J = 9.5 Hz, 2.0 Hz, 1H), 4.07 (m, 1H), 3.67 (m, 2H), 3.63 (d, J = 

8.0 Hz, 1H), 3.46 (d, J = 9.5 Hz, 1H), 2.78-2.46 (m, 4H), 2.41 (s, 3H), 2.37 (m, 1H), 

2.20-1.94 (m, 5H), 1.92 (d, J = 2.0 Hz, 3H), 1.79 (m, 1H), 1.65 (s, 3H), 1.62-1.56 (m, 

3H), 1.49 (m, 12H), 1.30 (m, 8H), 1.08 (m, 2H), 1.04 (m, 21H), 0.94 (d, J = 6.5 Hz, 3H), 

0.88 (m, 24H), 0.05 (s, 3H), 0.03 (s, 3H); 13C NMR (125 MHz, CDCl3) � 211.8, 143.7, 

142.7, 140.1, 139.5, 137.9, 135.2, 129.4, 126.89, 126.85, 113.9, 92.3, 78.0, 63.3, 53.2, 

43.5, 42.2, 39.5, 36.0, 35.9, 33.4, 32.8, 29.4, 29.2, 27.7, 27.3, 25.9, 25.0, 24.1, 21.5, 

21.4, 19.8, 18.2, 18.0, 16.9, 15.3, 13.7, 12.0, 11.2, 9.2, -3.9, -4.2; IR (thin film): 3280, 

3186, 1703 cm-1. 
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Vinyl stannanne 126b: To a solution of the alkyne 125b (62 mg, 0.0748 mmol) 

in THF/hexanes (1:7, 4 ml) at room temperature was added PdCl2(PPh3)2 (3 mg, 0.00374 

mmol) followed by a solution of tributyltin hydride (20 µl, 0.0748 mmol) in hexanes 

(0.5 ml) over 10 h via a syringe pump. The same addition procedure was repeated for 
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four times. The resulting dark reaction mixture was concentrated in vacuo and purified 

by flash chromatography (hexanes�10%�15% EtOAc/hexanes) to afford 26 mg (31%) 

of the vinyl stannane intermediate as a colorless oil and 32 mg (52%) of the recovered 

starting material. Rf = 0.63 (20% EtOAc/hexanes); [�]20
D + 116.0 (c 1.0, CHCl3); 1H 

NMR (500 MHz, CDCl3) � 7.67 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 5.86 (t, J = 

6.5 Hz, 1H, -NH), 5.30 (t, J = 7.5 Hz, 1H), 5.17 (dq, J = 9.5 Hz, 1.5 Hz, 1H), 4.07 (m, 

1H), 3.62 (m, 3H), 3.45 (d, J = 9.5 Hz, 1H), 2.78-2.52 (m, 4H), 2.41 (s, 3H), 2.34 (m, 

1H), 2.18-1.94 (m, 5H), 1.91 (d, J = 1.5 Hz, 3H), 1.79 (m, 1H), 1.64 (s, 3H), 1.62-1.54 

(m, 3H), 1.48 (m, 12H), 1.29 (m, 8H), 1.10 (m, 2H), 0.98-0.84 (m, 36H), 0.58 (q, J = 8.0 

Hz, 6H), 0.04 (s, 3H), 0.02 (s, 3H); 13C NMR (125 MHz, CDCl3) � 211.8, 143.7, 142.8, 

140.1, 139.4, 137.8, 135.2, 129.4, 126.9, 126.8, 113.9, 92.3, 77.9, 62.8, 53.2, 43.5, 42.2, 

39.4, 35.9, 35.8, 33.3, 32.8, 29.24, 29.17, 27.6, 27.3, 25.8, 24.9, 24.1, 21.5, 21.4, 19.8, 

18.2, 16.9, 15.3, 13.7, 11.1, 9.1, 6.8, 4.3, -3.9, -4.2; IR (thin film): 3280, 3185, 1701, 

1684 cm-1; HRMS (MALDI) Calcd. for C58H106INO6SSi2Sn [M+H]: 1120.6301. Found: 

1120.7857. 
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Vinyl iodide 127b: To a solution of the vinyl stannanne 126b (24 mg, 0.0223 

mmol) in CH2Cl2 (2 ml) at -78 ºC was added a solution of iodine (10 mg) in CH2Cl2 (1 

ml) until the reaction went to ca. 90% completion as monitored by TLC (ca. 0.5 ml of 
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the iodine solution was added). The reaction mixture was quenched by cyclohexene (100 

µl), warmed to room temperature and stirred for 30 min. The mixture was concentrated 

in vacuo and then purified by flash chromatography (5%�10%�15% EtOAc/hexanes) 

to afford 13 mg (63%) of the desired product as a colorless oil and 2 mg (8%) of the 

recovered starting material. Rf = 0.47 (20% EtOAc/hexanes); [�]20
D + 120.3 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 7.71 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 

2H), 5.87 (dq, J = 11.0 Hz, 1.5 Hz, 1H), 5.79 (t, J = 6.0 Hz, 1H, -NH), 5.33 (t, J = 7.0 Hz, 

1H), 4.04 (m, 1H), 3.64 (d, J = 8.0 Hz, 1H), 3.59 (m, 2H), 3.21 (d, J = 11.0 Hz, 1H), 

2.75 (m, 2H), 2.56 (m, 1H), 2.51 (m, 1H), 2.47 (d, J = 1.5 Hz, 3H), 2.43 (s, 3H), 2.37 (m, 

1H), 2.14 (m, 1H), 2.01 (m, 4H), 1.78 (m, 1H), 1.68 (m, 1H), 1.65 (s, 3H), 1.58 (m, 2H), 

1.52 (s, 3H), 1.48 (m, 3H), 1.33 (m, 2H), 1.12 (m, 1H), 1.01 (m, 1H), 0.95 (m, 12H), 

0.90 (s, 9H), 0.59 (q, J = 8.0 Hz, 6H), 0.05 (s, 3H), 0.03 (s, 3H); 13C NMR (125 MHz, 

CDCl3) � 210.7, 144.3, 142.9, 140.3, 137.7, 135.3, 129.6, 126.9, 126.6, 112.3, 95.0, 

92.2, 77.9, 62.8, 53.1, 45.5, 43.3, 39.4, 35.91, 35.86, 33.4, 32.7, 29.3, 28.1, 27.5, 25.8, 

25.3, 24.1, 21.5, 21.4, 18.1, 16.9, 15.2, 11.2, 6.8, 4.4, -3.8, -4.2; IR (thin film): 3280, 

3181, 1703, 1684 cm-1; HRMS (ESI) Calcd. for C46H79INO6SSi2 [M+H]: 956.4211. 

Found: 956.4056. 
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Alcohol 132: To a solution of the silyl ether 127b (16 mg, 0.0167 mmol) in 

CH2Cl2/MeOH (1:1, 2 ml) at 0 ºC was added pyridinium p-toluenesulfonate (4 mg, 

0.0167 mmol). After stirring at 0 ºC for 20 min, the reaction mixture was quenched by 

sat. NaHCO3 solution. The aqueous layer was extracted with Et2O and the combined 

organic layers were dried (Na2SO4) and concentrated in vacuo. The residue was purified 

by flash chromatography (5%�10%�15% EtOAc/hexanes) to afford 12 mg (85%) of 

the desired alcohol as a colorless oil. Rf = 0.13 (30% EtOAc/hexanes); [�]20
D + 118.6 (c 

1.0, CHCl3); 1H NMR (500 MHz, CDCl3) � 7.72 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 

2H), 6.01 ((t, J = 6.0 Hz, 1H, -NH), 5.86 (dq, J = 11.0 Hz, 1.5 Hz, 1H), 5.35 (t, J = 7.0 

Hz, 1H), 4.07 (m, 1H), 3.65 (d, J = 8.0 Hz, 1H), 3.62 (m, 2H), 3.21 (d, J = 11.0 Hz, 1H), 

2.75 (m, 2H), 2.61-2.53 (m, 2H including -OH), 2.48 (m, 1H), 2.45 (d, J = 1.5 Hz, 3H), 

2.43 (s, 3H), 2.38 (m, 1H), 2.14 (m, 1H), 2.06-1.92 (m, 5H), 1.78 (m, 1H), 1.68 (m, 5H), 

1.64 (s, 3H), 1.51 (s, 3H), 1.30 (m, 2H), 1.10 (m, 1H), 1.01 (m, 1H), 0.96 (d, J = 6.5 Hz, 

3H), 0.90 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); 13C NMR (125 MHz, CDCl3) � 210.7, 

144.3, 143.0, 140.3, 137.5, 135.1, 129.6, 127.0, 126.7, 112.3, 94.9, 92.4, 78.0, 62.7, 

53.0, 45.4, 43.4, 39.7, 36.03, 35.98, 33.7, 33.2, 29.6, 28.1, 27.5, 25.8, 25.5, 24.0, 21.5, 

21.3, 18.1, 17.1, 15.2, 11.3, -3.8, -4.1; IR (thin film): 3498, 3292, 3168, 1701, 1686 cm-1; 

HRMS (ESI) Calcd. for C40H65INO6SSi2 [M+H]: 842.3347. Found: 842.3361. 
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Aldehyde 133: A solution of the alcohol 132 (3.0 mg, 0.00356 mmol, 

azeotropically dried with toluene) in CH2Cl2 (1 ml) containing anhydrous NaHCO3 

powder (4 mg) at 0 ºC was treated with Dess-Martin periodinane (3 mg, 0.00713 mmol). 

The reaction mixture was stirred at room temperature for 1.5 h, diluted with Et2O and 

filtered through a pad of Celite. The solution was concentrated in vacuo and the residue 

was purified by flash chromatography (20%�30% EtOAc/hexanes) to afford 2.7 mg 

(90%) of the desired product as a colorless oil. Rf = 0.45 (30% EtOAc/hexanes); [�]20
D + 

154.4 (c 0.73, CHCl3); 1H NMR (500 MHz, CDCl3) � 9.78 (t, J = 1.5 Hz, 1H), 7.71 (d, J 

= 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.87 (dq, J = 10.5 Hz, 1.5 Hz, 1H), 5.66 (t, J = 

6.5 Hz, 1H, -NH), 5.32 (t, J = 7.5 Hz, 1H), 4.12 (m, 1H), 3.64 (d, J = 8.5 Hz, 1H), 3.21 

(d, J = 10.5 Hz, 1H), 2.79 (m, 1H), 2.70 (m, 1H), 2.61-2.49 (m, 4H), 2.46 (d, J = 1.5 Hz, 

3H), 2.44 (s, 3H), 2.38 (m, 1H), 2.13 (m, 1H), 2.06-1.92 (m, 4H), 1.81 (m, 3H), 1.71 (m, 

1H), 1.63 (s, 3H), 1.51 (s, 3H), 1.48 (m, 1H), 1.30 (m, 2H), 1.14 (m, 1H), 1.00 (m, 1H), 

0.95 (d, J = 6.5 Hz, 3H), 0.90 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); 13C NMR (125 MHz, 

CDCl3) � 210.7, 202.3, 144.4, 143.1, 140.3, 137.4, 135.0, 129.7, 127.06, 126.96, 112.2, 

95.0, 92.6, 77.2, 53.0, 45.5, 43.4, 40.5, 39.5, 35.9, 35.8, 33.5, 28.7, 28.1, 27.5, 25.8, 

25.3, 24.1, 21.51, 21.45, 18.1, 16.7, 15.2, 11.2, -3.8, -4.1; IR (thin film): 3274, 3192, 
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1723, 1703, 1689 cm-1; HRMS (ESI) Calcd. for C40H63INO6SSi2 [M+H]: 840.3190. 

Found: 840.3301. 
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Alcohol 134a/134b: Anhydrous DMF used in this experiment was degassed 

through freeze-thaw processes (three times) and further dried over activated powdered 

4� molecular sieves. THF was degassed through freeze-thaw processes (three times). 

In a glove box, anhydrous CrCl2 (5 g, 40.7 mmol) and anhydrous NiCl2 (26 mg, 

0.201 mmol) were thoroughly mixed. A flask was charged with 995 mg (8.10 mmol) of 

this mixture. The flask was taken out of the glove box and DMF (4 ml) was added. The 

resulting green mixture was stirred at room temperature for 30 min. In a separate flask 

the aldehyde 116 (198 mg, 0.810 mmol) and the vinyl iodide 110 (1.02 g, 1.62 mmol) 

were azeotropically dried with toluene (2 ml × 2) and dissolved in THF (4 ml). The 

substrate solution was added to the NiCl2/CrCl2 solution plus 8 ml of THF/DMF (1:1) 

rinse. The reaction mixture was stirred at room temperature for 18 h and quenched by 

water (10 ml). The solution was extracted with Et2O (20 ml × 3), the combined organic 

layers were washed with brine, dried (Na2SO4) and concentrated in vacuo. The residue 

was purified by flash chromatography (20%�30%�40% EtOAc/hexanes) to afford 327 

mg (54%) of the desired diastereomer 134b as a white foam and 260 mg (43%) of the 

epimeric diastereomer 134a as a white foam. 
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Major diastereomer 134b: Rf = 0.42 (40% EtOAc/hexanes); [�]D
21 +83.0 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 7.86 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 

2H), 5.43 (t, J = 7.0 Hz, 1H), 5.14 (d, J = 11.5 Hz, 1H), 3.97-3.85 (m, 3H), 3.81 (m, 1H), 

3.69 (d, J = 8.0 Hz, 1H), 3.53 (m, 3H), 2.52 (m, 3H), 2.42 (s, 3H), 2.00 (m, 4H), 1.94-

1.84 (m, 3H), 1.80-1.66 (m, 2H), 1.62 (s, 3H), 1.60-1.46 (m, 6H), 1.38 (s, 3H), 1.33 (s, 

3H), 0.96 (d, J = 6.5 Hz, 3H), 0.92 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H); 13C NMR (125 

MHz, CDCl3) � 175.3, 144.1, 142.1, 140.1, 137.1, 136.5, 129.1, 128.6, 123.8, 123.2, 

111.9, 92.0, 77.8, 76.7, 47.2, 47.0, 44.0, 43.6, 39.8, 36.2, 32.1, 31.8, 31.4, 31.1, 27.0, 

26.7, 25.8, 21.6, 20.7, 18.1, 17.1, 14.3, 12.5, 11.5, -3.9, -4.0; IR (thin film): 3538, 3426, 

1682 cm-1; HRMS (ESI) Calcd. for C40H63ClNO6SSi [M+H]: 748.3834. Found: 

748.3784. 

Minor diastereomer 134a: Rf = 0.27 (40% EtOAc/hexanes); [�]D
21 + 93.4 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 7.88 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 

2H), 5.43 (t, J = 6.5 Hz, 1H), 5.17 (d, J = 11.0 Hz, 1H), 4.01-3.88 (m, 3H), 3.81 (m, 1H), 

3.70 (d, J = 8.0 Hz, 1H), 3.53 (m, 3H), 2.53 (dt, J = 6.5 Hz, 6.5 Hz, 2H), 2.43 (s, 3H), 

2.40 (br s, OH, 1H), 1.62 (s, 3H),1.46 (s, 3H), 1.39 (s, 3H), 2.06-1.64 (m, 11H), 1.59-

1.48 (m, 4H), 0.97 (d, J = 6.5 Hz, 3H), 0.93 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); 13C NMR 

(125 MHz, CDCl3) � 175.6, 144.4, 142.1, 140.5, 137.2, 136.5, 129.2, 128.6, 124.4, 

123.1, 111.9, 92.1, 78.2, 78.0, 47.4, 47.2, 40.03, 40.01, 39.8, 36.3, 33.0, 32.0, 31.1, 31.0, 

26.83, 26.76, 25.8, 21.6, 20.7, 18.1, 17.1, 14.4, 11.7, 11.5, -3.88, -3.94; IR (thin film): 

3537, 3424, 1682 cm-1. 
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Ketone 135: To a solution of the alcohol 134a (178 mg, 0.238 mmol) in CH2Cl2 

(10 ml) containing anhydrous NaHCO3 powder (200 mg, 2.38 mmol) at 0 ºC was added 

Dess-Martin periodinane (202 mg, 0.476 mmol). The reaction mixture was stirred at 

room temperature for 80 min, diluted with Et2O and filtered through a pad of Celite. The 

filtrate was concentrated in vacuo and the residue was purified by flash chromatography 

(20%�30% EtOAc/hexanes) to afford 156 mg (88%) of the desired ketone as a 

colorless oil. Rf = 0.59 (30% EtOAc/hexanes); [�]20
D + 103.8 (c 1.0, CHCl3); 1H NMR 

(500 MHz, CDCl3) � 7.79 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 6.28 (d, J = 11.5 

Hz, 1H), 5.44 (t, J = 7.0 Hz, 1H), 3.97 (m, 2H), 3.77 (m, 1H), 3.69 (d, J = 8.5 Hz, 1H), 

3.65 (d, J = 11.5 Hz, 1H), 3.52 (m, 2H), 2.76 (ddd, J = 5.5 Hz, 9.5 Hz, 16.5 Hz, 1H), 

2.63 (m, 1H), 2.54 (m, 2H), 2.44 (s, 3H), 2.06 (m, 2H), 2.02-1.92 (m, 3H), 1.87-1.68 (m, 

8H), 1.62 (s, 3H), 1.45 (s, 3H), 1.35 (s, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.93 (s, 9H), 0.11 

(s, 3H), 0.10 (s, 3H); 13C NMR (125 MHz, CDCl3) � 201.3, 174.6, 144.6, 143.2, 139.9, 

138.7, 137.1, 136.1, 129.2, 128.4, 123.5, 110.2, 92.2, 77.2, 47.1, 46.8, 45.0, 44.0, 40.0, 

36.1, 34.3, 31.3, 31.2, 31.1, 27.5, 26.8, 25.8, 21.6, 20.6, 18.1, 16.8, 14.2, 11.6, 11.4, -3.8, 

-3.9; IR (thin film): 1672 cm-1; LRMS (ESI) Calcd. for C40H61ClNO6SSiLi [M+H]: 746. 

Found: 746. 

Ketone 135 (250 mg, 0.335 mmol) was azeotropically dried with toluene (2 ml), 

dissolved in CH2Cl2 (20 ml) and cooled to 0 ºC. A solution of (R)-Me-CBS 
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oxazaborolidine (1.0 M in PhMe, 335 µl, 0.335 mmol) was added followed by 

catecholborane (107 µl, 1.00 mmol). The mixture was stirred at 0 ºC for 3 h and then 

quenched by water (2 ml). 2N NaOH solution (8 ml) was added and the black mixture 

was vigorously stirred at room temperature for 20 min. The aqueous layer was extracted 

with Et2O, and the combined organic layers were washed with brine, and concentrated in 

vacuo. The residue was purified by flash chromatography (10%�20%�30%�40% 

EtOAc/hexanes) to afford 173 mg (69%) of the desired product 134b and 29 mg (12%) 

of the epimer 134a. 
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TBS alcohol 136a: To a solution of the alcohol 134b (237 mg, 0.317 mmol) in 

CH2Cl2 (20 ml) at -78 ºC were added Et3N (220 µl, 1.58 mmol) and TBSOTf (179 µl, 

0.792 mmol). The reaction mixture was stirred at -78 ºC for 10 min and quenched by pH 

7 buffer. The aqueous layer was extracted with CH2Cl2 and the combined organic layers 

were dried (Na2SO4) and concentrated in vacuo. The residue was purified by flash 

chromatography (5%�10%�15% EtOAc/hexanes) to afford 236 mg (86%) of the 

desired product as a white foam. The undesired C-13 epimer was easily separated at this 

stage. Rf = 0.15 (10% EtOAc/hexanes); [�]20
D = +74.0 (c 1.0, CHCl3); 1H NMR (500 

MHz, CDCl3) � 7.87 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 5.43 (t, J = 7.0 Hz, 

1H), 5.00 (d, J = 11.5 Hz, 1H), 3.93 (m, 3H), 3.76 (m, 1H), 3.67 (d, J = 8.5 Hz, 1H), 

3.51 (m, 3H), 2.53 (m, 2H), 2.42 (s, 3H), 2.02 (m, 3H), 1.86 (m, 3H), 1.74 (m, 3H), 1.66 
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(m, 4H), 1.62 (s, 3H), 1.52 (m, 2H), 1.40 (s, 3H), 1.35 (s, 3H), 0.96 (d, J = 6.5 Hz, 3H), 

0.92 (s, 9H), 0.86 (s, 9H), 0.081 (s, 3H), 0.076 (s, 3H), 0.009 (s, 3H), -0.05 (s, 3H); 13C 

NMR (125 MHz, CDCl3) � 175.3, 144.1, 142.0, 140.2, 137.4, 136.4, 129.1, 128.7, 123.9, 

122.9, 112.3, 91.8, 77.91, 77.90, 47.1, 47.0, 44.0, 43.3, 39.6, 36.2, 32.8, 32.3, 31.5, 31.2, 

27.5, 26.8, 25.82, 25.76, 21.6, 20.4, 18.11, 18.07, 17.0, 14.7, 11.8, 11.5, -3.9, -4.0, -4.7, -

4.9; IR (thin film): 1684 cm-1; HRMS (ESI) Calcd. for C46H77ClNO6SSi2 [M+H]: 

862.4699. Found: 862.4665. 

Me

O

Me

OTBS

Me

I

Me
OTBS

Ts
N

O

 

Iodide 136b: A solution of the alkyl chloride 136a (236 mg, 0.274 mmol) in 

acetone (20 ml) containing NaI (410 mg, 2.74 mmol) was heated at 65 ºC for 5 d. The 

reaction mixture was directly concentrated in vacuo and purified by flash 

chromatography (5%�10% EtOAc/hexanes) to afford 262 mg (99%) of the desired 

product as a slightly yellow oil. Rf = 0.15 (10% EtOAc/hexanes); [�]20
D = + 67.1 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 7.87 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 

2H), 5.37 (t, J = 6.5 Hz, 1H), 5.01 (d, J = 11.5 Hz, 1H), 3.92 (m, 3H), 3.75 (m, 1H), 3.67 

(d, J = 8.5 Hz, 1H), 3.49 (d, J = 11.5 Hz, 1H), 3.15 (m, 2H), 2.65 (m, 2H), 2.43 (s, 3H), 

2.01 (m, 3H), 1.86 (m, 3H), 1.74 (m, 3H), 1.64 (m, 4H), 1.60 (s, 3H), 1.52 (m, 2H), 1.40 

(s, 3H), 1.35 (s, 3H), 0.98 (d, J = 6.5 Hz, 3H), 0.93 (s, 9H), 0.86 (s, 9H), 0.082 (s, 3H), 

0.077 (s, 3H), 0.01 (s, 3H), -0.05 (s, 3H); 13C NMR (125 MHz, CDCl3) � 175.3, 144.1, 

142.0, 140.2, 136.9, 136.4, 129.1, 128.7, 125.8, 123.9, 112.3, 91.8, 77.96, 77.92, 47.1, 
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47.0, 43.3, 39.6, 36.2, 32.8, 32.3, 31.9, 31.2, 27.5, 26.8, 25.83, 25.77, 21.6, 20.4, 18.12, 

18.08, 17.0, 14.7, 11.8, 11.5, 5.4, -3.9, -4.0, -4.6, -4.9; IR (thin film): 1686 cm-1; HRMS 

(ESI) Calcd. for C46H77INO6SSi2 [M+H]: 954.4055. Found: 954.4212. 
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N-Tosyl amine 141a: The alkyl iodide 136b (96 mg, 0.101 mmol) was 

azeotropically dried with PhMe (1 ml) and dissolved in Et2O (15 ml). t-BuLi (1.6 M in 

pentane, 140 µl) was then added dropwise at room temperature. The resulting slightly 

yellow solution was stirred at room temperature for 15 min and quenched by pH 7 buffer 

(5 ml). The aqueous layer was extracted with Et2O and the combined organic layers were 

concentrated in vacuo. The residue was purified by flash chromatography 

(5%�10%�15%�20% EtOAc/hexanes) to afford 47 mg (56%) of the desired product 

as a white foam. Rf = 0.30 (20% EtOAc/hexanes); [�]20
D + 20.2 (c 1.0, CHCl3); 1H NMR 

(500 MHz, CDCl3) � 7.76 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.01 (br t, J = 5.0 

Hz, 1H), 4.94 (dd, J = 11.5 Hz, 1.5 Hz, 1H), 4.86 (t, J = 5.5 Hz, 1H, NH), 4.09 (m, 1H), 

3.99 (br s, 1H), 3.84 (dd, J = 3.5 Hz, 11.5 Hz, 1H), 3.68 (d, J = 11.5 Hz, 1H), 2.94 (m, 

2H), 2.74 (ddd, J = 3.0 Hz, 12.5 Hz, 19.0 Hz, 1H), 2.61 (ddd, J = 3.0 Hz, 3.0 Hz, 19.0 

Hz, 1H), 2.44 (s, 3H), 2.21 (m, 2H), 2.10-1.96 (m, 5H), 1.82 (m, 1H), 1.73 (m, 2H), 1.69 

(d, J = 1.5 Hz, 3H), 1.66-1.56 (m, 2H), 1.53 (s, 3H), 1.50 (m, 3H), 1.46 (s, 3H), 1.41 (m, 

2H), 1.11 (d, J = 7.0 Hz, 3H), 0.96 (s, 9H), 0.86 (s, 9H), 0.142 (s, 3H), 0.135 (s, 3H), 

0.05 (s, 3H), 0.01 (s, 3H); 13C NMR (125 MHz, CDCl3) � 213.1, 143.1, 143.0, 140.5, 
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136.8, 135.5, 129.5, 127.2, 123.8, 122.6, 111.9, 89.1, 79.4, 78.1, 53.3, 45.4, 43.7, 37.6, 

36.9, 34.6, 32.9, 32.1, 28.8, 27.3, 25.8, 25.6, 24.6, 23.4, 21.5, 20.6, 20.0, 18.1, 18.0, 

14.2, 13.8, 10.7, -3.6, -3.8, -4.76, -4.82; IR (thin film): 3281, 1701, 1683 cm-1; HRMS 

Calcd. for C46H77NO6SSi2Li [M+Li]: 834.5170. Found: 834.5163. 

Me

RO O
O

Me
Me

HO O
O

Me

149a: R = TBS
149b: R = H

epi-149b
 

Representative procedure (procedure A) for the vinylogous Mukaiyama aldol as 

described for addition of 3-methyl-2-(tert-butyldimethyl)silyloxy furan to 2-

methylcyclohexanone (Table 3, entry 5): To a solution of 2-methylcyclohexanone (52 

mg, 0.464 mmol) in CH2Cl2 (5 ml) at -78 ºC was added TMSOTf (34 µl, 0.185 mmol). 

After stirring for 15 min, 3-methyl-2-(tert-butyldimethyl)silyloxy furan 148a (128 mg, 

0.603 mmol) was added dropwise. The reaction mixture was stirred at -78 ºC for 2 h, 

quenched by saturated NaHCO3 solution. The aqueous layer was extracted with Et2O, 

and the combined organic layers were dried (MgSO4), concentrated and purified by flash 

chromatography (10→30 % EtOAc/hexanes) to afford 24 mg (16 %) silylated product 

149a as a colorless solid and 67 mg (69 %) non-silylated product as a colorless solid. For 

characterization purpose, purification of non-silylated product by flash chromatography 

(low flow rate, 20→30 % EtOAc/hexanes) gave pure 149b and small amount of epi-

149b. 

Silylated butenolide 149a: m.p.68-80 ºC; Rf = 0.76 (30 % EtOAc/hexanes); 1H 

NMR (500 MHz, CDCl3) � 6.98 (dq, J = 1.5, 1.5 Hz, 1H), 5.03 (dq, J = 1.5, 1.5 Hz, 1H), 
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1.94 (dd, J = 1.5, 1.5 Hz, 3H), 1.72-1.52 (m, 4H), 1.46-1.38 (m, 2H), 1.36-1.31 (m, 1H), 

1.20-1.08 (m, 1H), 0.97 (d, J = 6.5 Hz, 3H), 0.95 (s, 9H), 0.84 (dt, J = 4.5, 13.0 Hz, 1H), 

0.23 (s, 3H), 0.18 (s, 3H); 13C NMR (125 MHz, CDCl3) � 173.9, 145.2, 131.3, 86.4, 

78.2, 39.8, 30.2, 29.4, 26.3, 25.7, 20.4, 19.2, 15.2, 10.8, -2.7, -3.0; IR (thin film): 1753 

cm-1; LRMS (ESI) Calcd. for C18H32O3SiLi [M+Li]: 331. Found: 331. 

Hydroxy butenolide 149b: Recrystallization from heptane provided crystals 

suitable for X-ray analysis. m.p.77-85 ºC; Rf = 0.30 (30 % EtOAc/hexanes); 1H NMR 

(500 MHz, CDCl3) � 7.02 (dq, J = 1.5, 1.5 Hz, 1H), 5.10 (dq, J = 1.5, 1.5 Hz, 1H), 1.95 

(dd, J = 1.5, 1.5 Hz, 3H), 1.79 (br s, 1H, OH), 1.68 (m, 1H), 1.61-1.44 (m, 7H), 1.20 (m, 

1H), 1.04 (d, J = 6.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) � 174.1, 145.1, 131.1, 86.3, 

74.5, 37.4, 31.0, 30.2, 25.4, 20.6, 15.4, 10.8; IR (thin film): 3431, 1738 cm-1; LRMS 

(ESI) Calcd. for C12H18O3Li [M+Li]: 217. Found: 217. 

Hydroxy butenolide epi-149b: Recrystallization from heptane provided crystals 

suitable for X-ray analysis. m.p.77-85 ºC; Rf = 0.22 (30 % EtOAc/hexanes); 1H NMR 

(500 MHz, CDCl3) � 7.19 (dq, J = 1.5, 1.5 Hz, 1H), 4.96 (dq, J = 2.0, 2.0 Hz, 1H), 1.94 

(dd, J = 1.5, 2.0 Hz, 3H), 1.87 (m, 1H), 1.71 (br s, 1H, OH), 1.64 (m, 1H), 1.55 (m, 2H), 

1.45 (m, 1H), 1.34-1.20 (m, 4H), 0.99 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) 

� 174.3, 147.8, 130.6, 83.1, 74.4, 36.2, 30.8, 30.3, 25.2, 20.9, 14.9, 10.7; IR (thin film): 

3495, 1732 cm-1. 
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Representative procedure (procedure B) for vinylogous Mukaiyama aldol 

addition of 3-methyl-2-(tert-butyldimethyl)silyloxy furan to ketones as described for 

menthone (Table 4, entry 1): To a solution of menthone (86 mg, 0.558 mmol) in CH2Cl2 

(5 ml) at -78 ºC was added TiCl4 (1.0 M in CH2Cl2, 1.67 ml, 1.67 mmol). After stirring 

for 15 min, 3-methyl-2-(tert-butyldimethyl)silyloxy furan 148a (237 mg, 1.12 mmol) in 

CH2Cl2 (3 ml) was added over 7 h via a syringe pump. The reaction mixture was 

quenched by saturated NH4Cl solution. The aqueous layer was extracted with Et2O, and 

the combined organic layers were dried (MgSO4), concentrated and purified by flash 

chromatography (10→30 % EtOAc/hexanes) to afford 29 mg (14 %) silylated product 

149c-TBS as a colorless solid and 88 mg (63 %) non-silylated product 149c-H as a 

colorless solid. 

Butenolide 149c-H, major diastereomer (Table 4, entry 1): m.p.121-126 ºC; Rf = 

0.57 (30 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 6.96 (dq, J = 1.5, 1.5 Hz, 

1H), 5.26 (dq, J = 1.5, 1.5 Hz, 1H), 2.12 (dhept, J = 2.0, 7.0 Hz, 1H), 1.96 (dd, J = 1.5, 

1.5 Hz, 3H), 1.81 (d, J = 1.0 Hz, 1H, OH), 1.80-1.72 (m, 2H), 1.66-1.47 (m, 3H), 1.21 

(m, 1H), 1.01 (d, J = 6.5 Hz, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.83 (d, J = 6.0 Hz, 3H), 0.80 

(dq, J = 3.5, 13.5 Hz, 1H), 0.61 (q, J = 13.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) � 

174.1, 144.9, 131.4, 86.6, 76.5, 48.1, 40.4, 34.9, 27.1, 26.6, 23.4, 22.2, 20.1, 17.7, 10.8; 

IR (thin film): 3499, 1739 cm-1; LRMS (ESI) Calcd. for C15H24O3Li [M+Li]: 259. 

Found: 259. 
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Butenolide 149d (Table 4, entry 2): The butenolide 149d was prepared according 

to general procedure B from methyl 3-(2-oxocyclohexyl)propanoate (106 mg, 0.576 

mmol). Purification by flash chromatography (20→30→50 % EtOAc/hexanes) afforded 

110 mg (48 %) of silylated product 149d-TBS as a colorless oil and 45 mg (28 %) of 

non-silylated product 149d-H as a colorless oil. Silylated product 149d-TBS, major 

diastereomer: Rf = 0.53 (30 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.24 (dq, 

J = 2.0, 2.0 Hz, 1H), 5.17 (dq, J = 2.0, 2.0 Hz, 1H), 3.70 (s, 3H), 2.45 (ddd, J = 6.0, 6.0, 

17.0 Hz, 1H), 2.36 (ddd, J = 6.0, 10.5, 17.0 Hz, 1H), 1.95 (dd, J = 2.0, 2.0 Hz, 3H), 1.72 

(m, 2H), 1.55 (m, 4H), 1.40 (m, 3H), 1.08 (m, 1H), 0.93 (s, 9H), 0.83 (dt, J = 4.5, 13.0 

Hz, 1H), 0.23 (s, 3H), 0.18 (s, 3H); 13C NMR (125 MHz, CDCl3) � 174.3, 174.1, 145.7, 

131.2, 86.3, 78.4, 51.6, 43.6, 30.4, 29.2, 26.3, 25.5, 25.4, 23.8, 20.3, 19.1, 10.8, -2.7, -

3.0; IR (thin film): 1771, 1734 cm-1; LRMS (ESI) Calcd. for C21H36O5SiLi [M+Li]: 403. 

Found: 403. 

TBSO
O O

Me

 

Butenolide 149e (Table 4, entry 3): The butenolide 149e was prepared according 

to general procedure B from norcamphor (23 mg, 0.209 mmol). Purification by flash 

chromatography (10→30 % EtOAc/hexanes) afforded 38 mg (56 %) of silylated product 

149e-TBS as a colorless solid and 15 mg (34 %) of non-silylated product 149e-H as a 

colorless solid. Silylated product 149e-TBS, major diastereomer: Recrystallization from 
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heptane provided crystals suitable for X-ray analysis. m.p.51-68 ºC; Rf = 0.67 (30 % 

EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.05 (dq, J = 1.5, 1.5 Hz, 1H), 4.79 (br 

s, 1H), 2.26 (m, 2H), 1.94 (dd, J = 1.5, 1.5 Hz, 3H), 1.91 (m, 1H), 1.78 (ddd, J = 3.0, 4.5, 

13.0 Hz, 1H), 1.53 (m, 2H), 1.32 (m, 3H), 1.22 (m, 1H), 0.87 (s, 9H), 0.17 (s, 3H), 0.06 

(s, 3H); 13C NMR (125 MHz, CDCl3) � 174.2, 146.5, 131.2, 85.9, 82.1, 44.9, 40.5, 37.5, 

36.9, 28.0, 25.9, 22.3, 18.4, 10.8, -2.1, -2.4; IR (thin film): 1750, 1738 cm-1; LRMS 

(ESI) Calcd. for C18H30O3SiLi [M+Li]: 329. Found: 329. 

H
TBSO

O

O

Me

H  

Butenolide 149f (Table 4, entry 4): The butenolide 149f was prepared according 

to general procedure B from trans-decalone (100 mg, 0.657 mmol). Purification by flash 

chromatography (5→20 % EtOAc/hexanes) afforded 119 mg (50 %) of silylated product 

149f-TBS as a colorless solid and 51 mg (31 %) of non-silylated product 149f-H as a 

colorless solid. Silylated product 149f-TBS, major diastereomer: Recrystallization from 

heptane provided crystals suitable for X-ray analysis. m.p.104-115 ºC; Rf = 0.78 (30 % 

EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 6.97 (dq, J = 1.5, 1.5 Hz, 1H), 5.06 (dq, 

J = 2.0, 2.0 Hz, 1H), 1.94 (dd, J = 2.0, 2.0 Hz, 3H), 1.80 (m, 1H), 1.74-1.54 (m, 8H), 

1.44 (m, 2H), 1.22 (m, 2H), 0.95 (s, 9H), 0.84 (m, 3H), 0.23 (s, 3H), 0.17 (s, 3H); 13C 

NMR (125 MHz, CDCl3) � 173.9, 145.1, 131.3, 86.2, 78.1, 50.4, 36.0, 34.4, 33.9, 29.6, 

26.39, 26.36, 25.9, 25.0, 20.1, 19.2, 10.8, -2.7, -3.0; IR (thin film): 1757, 1749 cm-1; 

LRMS (ESI) Calcd. for C21H36O3SiLi [M+Li]: 371. Found: 371. 
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Butenolide 149g (Table 4, entry 5): The butenolide 149g was prepared according 

to general procedure B from 2-benzylcyclohexanone (108 mg, 0.574 mmol). Purification 

by flash chromatography (5→20 % EtOAc/hexanes) afforded 79 mg (34 %) of silylated 

product 149g-TBS as a colorless solid and 69 mg (42 %) of non-silylated product 149g-

H as a colorless solid. Non-silylated product 149g-H, major diastereomer: m.p.115-118 

ºC; Rf = 0.33 (30 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.28 (m, 2H), 7.24 

(dq, J = 1.5, 1.5 Hz, 1H), 7.20 (m, 3H), 5.22 (dq, J = 1.5, 1.5 Hz, 1H), 3.16 (dd, J = 3.5, 

13.0 Hz, 1H), 2.35 (dd, J = 11.0, 13.5 Hz, 1H), 2.04 (dddd, J = 3.5, 3.5, 11.0, 11.0 Hz, 

1H), 1.98 (dd, J = 1.5, 1.5 Hz, 3H), 1.79 (s, 1H, OH), 1.58 (m, 2H), 1.45 (m, 2H), 1.35 

(m, 2H), 1.22 (m, 1H), 1.08 (tq, J = 3.5, 13.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) � 

173.9, 144.8, 140.7, 131.5, 129.1, 128.5, 126.1, 85.9, 75.0, 44.3, 35.9, 31.1, 26.8, 25.1, 

20.6, 10.8; IR (thin film): 3449, 1742 cm-1; LRMS (ESI) Calcd. for C18H22O3Li [M+Li]: 

293. Found: 293. 

HO O

Me

O

t-Bu  

Butenolide 149i (Table 4, entry 7): The butenolide 149i was prepared according 

to general procedure A from 4-tert-butylcyclohexanone (66 mg, 0.428 mmol). 

Purification by flash chromatography (10→30 % EtOAc/hexanes) afforded 30 mg 

(19 %) of silylated product 149i-TBS as a colorless solid and 76 mg (70 %) of non-

silylated product 149i-H as a colorless solid. Non-silylated product 149i-H, major 
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diastereomer: Recrystallization from heptane provided crystals suitable for X-ray 

analysis. m.p.101-110 ºC; Rf = 0.30 (30 % EtOAc/hexanes); 1H NMR (500 MHz, 

CDCl3) � 7.09 (dq, J = 2.0, 2.0 Hz, 1H), 4.67 (dq, J = 2.0, 2.0 Hz, 1H), 1.94 (dd, J = 2.0, 

2.0 Hz, 3H), 1.78 (m, 1H), 1.71-1.61 (m, 3H), 1.50-1.31 (m, 4H), 0.96 (m, 1H) 0.86 (s, 

9H); 13C NMR (125 MHz, CDCl3) � 174.2, 145.8, 131.1, 87.5, 72.1, 47.6, 33.7, 33.5, 

32.3, 29.7, 27.4, 21.7, 10.7; IR (thin film): 3547, 1745 cm-1; LRMS (ESI) Calcd. for 

C15H24O3Li [M+Li]: 259. Found: 259. 

Me

TBSO O
O

 

Butenolide 149k (Table 5, entry 1): The butenolide 149k was prepared according 

to general procedure A from 2-methylcyclohexanone (135 mg, 1.20 mmol) and 2-(tert-

butyldimethyl)silyloxy furan 148b (310 mg, 1.56 mmol). Purification by flash 

chromatography (10→30 % EtOAc/hexanes) afforded 240 mg (64 %) of silylated 

product 149k-TBS as a colorless solid and 15 mg (6 %) of non-silylated product 149k-H 

as a colorless solid. Silylated product 149k-TBS, major diastereomer: m.p.64-72 ºC; Rf 

= 0.58 (30% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.41 (dd, J = 1.5, 6.0 Hz, 

1H), 6.16 (dd, J = 2.0, 6.0 Hz, 1H), 5.20 (dd, J = 2.0, 2.0 Hz, 1H), 1.76 (m, 1H), 1.67 

(m, 1H), 1.63-1.52 (m, 2H), 1.47-1.39 (m, 2H), 1.38-1.33 (m, 1H), 1.14 (tq, J = 4.0, 13.0 

Hz, 1H), 0.99 (d, J = 6.5 Hz, 3H), 0.95 (s, 9H), 0.85 (dt, J = 4.0, 13.5 Hz, 1H), 0.24 (s, 

3H), 0.19 (s, 3H); 13C NMR (75 MHz, CDCl3) � 172.8, 152.9, 122.7, 88.7, 78.1, 39.8, 

30.1, 29.4, 26.2, 25.6, 20.3, 19.2, 15.2, -2.8, -3.1; IR (thin film): 1759 cm-1; LRMS (ESI) 

Calcd. for C17H30O3SiLi [M+Li]: 317. Found: 317. 



 132 

Me

TIPSO O
O

Me  

Butenolide 149l (Table 5, entry 2): The butenolide 149l was prepared according 

to general procedure A from 2-methylcyclohexanone (47 mg, 0.419 mmol) and 4-

methyl-2-(triisopropyl)silyloxy furan 148c (139 mg, 0.545 mmol). Purification by flash 

chromatography (10→30 % EtOAc/hexanes) afforded 101 mg (66 %) of silylated 

product 149l-TIPS as a colorless solid and 26 mg (30 %) of non-silylated product 149l-

H as a colorless solid. Silylated product 149l-H, major diastereomer: m.p.35-55 ºC; Rf = 

0.55 (30 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 5.88 (dq, J = 1.0, 1.0 Hz, 

1H), 5.14 (br s, 1H), 2.20 (dd, J = 1.0, 1.0 Hz, 3H), 1.77-1.60 (m, 4H), 1.48 (m, 1H), 

1.38 (m, 1H), 1.28 (m, 2H), 1.14 (m, 21H), 1.08 (d, J = 7.0 Hz, 3H), 0.85 (dt, J = 4.0, 

13.5 Hz, 1H); 13C NMR (125 MHz, CDCl3) � 172.4, 165.4, 120.3, 88.8, 78.6, 38.4, 30.5, 

30.2, 25.8, 21.0, 18.99, 18.96, 16.4, 16.2, 14.1; IR (thin film): 1761 cm-1; LRMS (ESI) 

Calcd. for C21H38O3SiLi [M+Li]: 373. Found: 373. 

Me

TBSO
O

O
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Butenolide 149m (Table 5, entry 3): The butenolide 149m was prepared 

according to general procedure A from 2-methylcyclohexanone (39 mg, 0.348 mmol) 

and 5-methyl-2-(tert-butyldimethyl)silyloxy furan 148d (96 mg, 0.452 mmol). 

Purification by flash chromatography (5→20 % EtOAc/hexanes) afforded 60 mg (53 %) 

of 149m as an inseparable mixture of two diastereomers (2 : 1) as a colorless oil. Major 

diastereomer: Rf = 0.76 (30 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 5.12 (dq, 
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J = 2.5, 1.5 Hz, 1H), 3.56 (dq, J = 2.5, 2.5 Hz, 1H), 1.99 (dd, J = 1.5, 2.5 Hz, 3H), 1.78-

1.70 (m, 1H), 1.68-1.54 (m, 2H), 1.52-1.38 (m, 4H), 1.28 (m, 2H), 0.93 (d, J = 6.5 Hz, 

3H), 0.90 (s, 9H), 0.19 (s, 3H), 0.13 (s, 3H); 13C NMR (75 MHz, CDCl3) � 176.9, 152.3, 

102.1, 97.4, 52.9, 37.0, 32.6, 30.3, 26.2, 22.1, 22.0, 19.2, 15.5, 14.1, -1.8, -2.0; IR (thin 

film): 1789 cm-1; LRMS (ESI) Calcd. for C18H32O3SiLi [M+Li]: 331. Found: 331. 

Me

HO O
O

H

H

Me

5%
nOe:

 

�-Hydroxy �-lactone 150: A mixture of butenolide 149b (13 mg, 0.0618 mmol) 

and 5 wt % palladium on carbon (5 mg) in EtOAc (1.5 ml) was bubbled with H2. The 

reaction mixture was stirred at 25 ºC for 1 h, filtered through a pad of Celite, 

concentrated and purified by flash chromatography (30 % EtOAc/hexanes) to afford 13 

mg (98 %) of the product 150 as a colorless solid. m.p.55-62 ºC; Rf = 0.49 (40 % 

EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 4.51 (dd, J = 6.0, 11.0 Hz, 1H), 2.70 

(ddq, J = 7.0, 8.5, 12.0 Hz, 1H), 2.32 (ddd, J = 6.0, 8.5, 12.5 Hz, 1H), 1.78-1.42 (m, 9H), 

1.71 (s, 1H, OH), 1.28 (d, J = 7.0 Hz, 3H), 1.24 (m, 1H), 0.97 (d, J = 6.5 Hz, 3H); 13C 

NMR (125 MHz, CDCl3) � 179.0, 83.2, 73.3, 36.8, 35.7, 31.7, 30.2, 29.9, 24.8, 20.9, 

15.4, 14.9; IR (thin film): 3537, 1750 cm-1; LRMS (ESI) Calcd. for C12H20O3Li [M+Li]: 

219. Found: 219. The stereochemistry was assigned by nOe analysis as shown above. 

OH O
O

OH
OH

 

Triol 151: To a solution of alcohol 149b (18 mg, 0.0856 mmol) in 5 : 1 THF/H2O 

mixture (1 ml) was added N-methyl morphiline N-oxide hydrate (23 mg, 0.171 mmol) 
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and osmium tetraoxide (2 mg). The reaction mixture was stirred at 70 ºC for 10 h. The 

resulting black mixture was quenched by saturated sodium sulfite solution and stirred at 

room tempreture for 1 h. The aqueous layer was extracted with EtOAc and the combined 

organic layers were dried (MgSO4), concentrated and purified by flash chromatography 

(80 % EtOAc/hexanes) to afforded 15 mg (72 %) of product 151 as a colorless oil. Rf = 

0.29 (60 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 4.46 (d, J = 7.5 Hz, 1H), 

4.03 (dd, J = 7.5, 9.5 Hz, 1H), 3.50 (s, 1H, OH), 3.02 (d, J = 9.5 Hz, 1H, OH), 1.90 (br s, 

1H, OH), 1.81 (m, 1H), 1.73 (m, 1H), 1.66-1.50 (m, 5H), 1.49 (s, 3H), 1.46 (m, 1H), 

1.30 (m, 1H), 1.02 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) � 175.2, 86.8, 73.1, 

72.9, 72.3, 36.7, 30.4, 30.3, 23.7, 21.2, 21.1, 15.5. IR (thin film): 3433, 1775 cm-1; 

LRMS (ESI) Calcd. for C12H20O5Li [M+Li]: 251. Found: 251. 

Me

O
O
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Cyclohexene 152: To a solution of alcohol 149b (17 mg, 0.0809 mmol) in 

CH2Cl2 (1.5 ml) at -50 ºC was added pyridine (131 µl, 1.62 mmol) and thionyl chloride 

(30 µl, 0.405 mmol). The reaction mixture was stirred at -50 ºC for 2 h, quenched by 

saturated NaHCO3 solution. The aqueous layer was extracted with Et2O, and the 

combined organic layers were dried (MgSO4), concentrated and purified by flash 

chromatography (10 % EtOAc/hexanes) to afford 13 mg (88 %) of product 152 as a 

colorless oil (6:1 mixture of regioisomers). Major isomer: Rf = 0.50 (30 % 

EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 6.87 (dq, J = 1.5, 1.5 Hz, 1H), 5.84 (dq, 

J = 1.5, 1.5 Hz, 1H), 2.02 (m, 2H), 1.94 (dd, J = 2.0, 2.0 Hz, 3H), 1.78 (s, 3H), 1.62 (m, 
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1H), 1.53 (m, 5H); 13C NMR (125 MHz, CDCl3) � 174.9, 147.9, 134.5, 130.3, 124.2, 

80.0, 32.4, 22.55, 22.51, 22.4, 19.0, 10.6; IR (thin film): 1758 cm-1; LRMS (ESI) Calcd. 

for C12H16O2Li [M+Li]: 199. Found: 199. Note: Minor regioisomer is readily 

distinguished by the presence of additional vinyl proton. 

Me

O
O

H
HO

O

H
H

(E)-153

3%

1%
3%(Z)-153

nOe's:

 

(E, Z)-Diene 153: To a solution of alcohol 149b (21 mg, 0.0999 mmol) in 

CH2Cl2 (2 ml) at 25 ºC were sequentially added triethyl amine (70 µl, 0.499 mmol), 

DMAP (4 mg, 0.0300 mmol) and trifluoroacetic anhydride (71 µl, 0.499 mmol). The 

reaction mixture was stirred at 25 ºC for 15 min, concentrated and purified by flash 

chromatography (30 % EtOAc/hexanes) to afford 30 mg (98 %) of trifluoroacetate 

intermediate as a colorless oil. Rf = 0.34 (30 % EtOAc/hexanes); 1H NMR (500 MHz, 

CDCl3) � 7.02 (dq, J = 1.5, 1.5 Hz, 1H), 5.65 (dq, J = 2.0, 2.0 Hz, 1H), 2.60 (m, 1H), 

1.95 (dd, J = 1.5, 2.0 Hz, 3H), 1.91 (m, 1H), 1.73-1.63 (m, 2H), 1.60-1.54 (m, 1H), 1.52-

1.44 (m, 2H), 1.42-1.28 (m, 2H), 0.99 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) 

� 173.1, 156.2, 155.9, 155.6, 155.3 (COCF3, J = 42 Hz), 144.5, 131.9, 117.9, 115.6, 

113.3, 111.0 (CF3, J = 288 Hz), 91.5, 82.4, 37.2, 30.6, 29.9, 24.3, 21.0, 16.2, 10.8; IR 

(thin film): 1784, 1775 cm-1; LRMS (ESI) Calcd. for C14H17F3O4Li [M+Li]: 313. Found: 

313. 

To a solution of trifluoroacetate (30 mg, 0.0979 mmol) in CH2Cl2 (2 ml) was 

added DBU (29 µl, 0.196 mmol). The reaction mixture was stirred at 60 ºC for 15 min, 
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concentrated and purified by flash chromatography (20 % EtOAc/hexanes) to afford 17 

mg (88 %) of olefin 153 as a colorless oil (Z: E = 1.5 : 1, inseperable mixture). Rf = 0.66 

(30 % EtOAc/hexanes); IR (thin film): 1756 cm-1; LRMS (ESI) Calcd. for C12H17O2 

[M+H]: 193. Found: 193. The stereochemistry of each isomer was assigned by nOe 

analysis as shown above. 

(Z)-153: 1H NMR (500 MHz, CDCl3) � 7.33 (q, J = 1.5 Hz, 1H), 2.88 (m, 2H), 

2.13 (ddd, J = 5.0, 14.0, 14.0 Hz, 1H), 1.99 (s, 3H), 1.88 (m, 1H), 1.72-1.52 (m, 4H), 

1.32 (m, 1H), 1.19 (d, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) � 171.6, 141.7, 

134.3, 132.0, 127.8, 32.7, 30.0, 27.9, 24.7, 20.5, 18.0, 10.6. 

(E)-153: 1H NMR (500 MHz, CDCl3) � 7.28 (q, J = 1.5 Hz, 1H), 3.33 (m, 1H), 

2.38 (m, 1H), 2.24 (ddd, J = 4.5, 13.5, 13.5 Hz, 1H), 1.99 (s, 3H), 1.88 (m, 1H), 1.72-

1.52 (m, 4H), 1.31 (m, 1H), 1.15 (d, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) � 

171.6, 142.0, 133.8, 132.1, 127.9, 33.5, 31.1, 27.2, 24.0, 20.5, 19.2, 10.6. 

O
O

Me

O
O

Me

H

O
O

Me

O
O

Me

H

156 epi-156  

Furan dimer 156 and epi-156: To a solution of the silyloxyfuran 155 (33 mg, 

0.130 mmol) and 2-methyl-2(5H)-furanone 154 (13 mg, 0.130 mmol) at -78 ºC was 

added SnCl4 (1.0 M in CH2Cl2, 13 µl, 0.0130 mmol). The reaction mixture was stirred at 

-78 ºC for 2 h, warmed to -20 ºC and stirred for 2 h. The reaction was then quenched by 

saturated NH4Cl solution, extracted with CH2Cl2 and concentrated in vacuo. The residue 
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was purified by flash chromatography (30%�60%� 90 % EtOAc/hexanes) to afforded 

9 mg (35%) of product 156 as a white solid and 12 mg (48%) of epi-156 as a white solid. 

156: Rf = 0.30 (60 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 6.92 (dq, J 

= 2.0 Hz, 1.5 Hz, 1H), 5.05 (ddq, J = 5.5 Hz, 2.0 Hz, 2.0 Hz, 1H), 4.20 (dd, J = 6.0 Hz, 

10.0 Hz, 1H), 3.91 (dd, J = 2.5 Hz, 10.0 Hz, 1H), 3.02 (m, 1H), 2.97 (dq, J = 7.5 Hz, 7.0 

Hz, 1H), 1.98 (dd, J = 1.5 Hz, 2.0 Hz, 3H), 1.40 (d, J = 7.0 Hz, 3H); 13C NMR (125 

MHz, CDCl3) � 178.0, 172.8, 143.9, 133.1, 77.9, 65.1, 41.8, 36.2, 10.9, 10.3; IR (thin 

film): 1758 cm-1; HRMS (ESI) Calcd. for C10H12O4Li [M+Li]: 203.0896. Found: 

203.0932. 

epi-156: Rf = 0.10 (60 % EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.00 

(m, 1H), 5.01 (ddq, J = 5.5 Hz, 1.5 Hz, 1.5 Hz, 1H), 4.28 (dd, J = 7.5 Hz, 10.0 Hz, 1H), 

4.10 (dd, J = 4.0 Hz, 10.0 Hz, 1H), 2.90 (dq, J = 7.5 Hz, 7.5 Hz, 1H), 2.73 (m, 1H), 1.98 

(dd, J = 1.5 Hz, 1.5 Hz, 3H), 1.42 (d, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) � 

177.8, 172.8, 145.6, 132.6, 78.4, 66.1, 41.3, 36.2, 10.82, 10.76; IR (thin film): 1758 cm-

1; HRMS (ESI) Calcd. for C10H12O4Li [M+Li]: 203.0896. Found: 203.0932. 

Recrystallization from heptane provided crystals suitable for X-ray analysis. 

Ts
N O

O
Me  

Ketone 158: To a solution of the N-tosyl lactam 96a (140 mg, 0.279 mmol) in 

CH2Cl2/MeOH (1:1, 10 ml) at 0 ºC was added p-TSA·H2O (200 mg). The reaction was 

stirred at room temperature for 12 h and quenched by saturated NaHCO3 solution. The 
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aqueous layer was extracted with Et2O and the organic layers were dried with MgSO4, 

concentrated in vacuo and purified by flash chromatography (30% � 50% 

EtOAc/Hexanes) to afford 95 mg (88%) of the desired product 158 as a white solid 

power. Rf = 0.12 (20% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.90 (d, J = 8.0 

Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.25 (m, 1H), 3.68 (ddt, J = 3.5 Hz, 12.0 Hz, 12.0 Hz, 

1H), 2.97 (dq, J = 2.5 Hz, 13.0 Hz, 1H), 2.42 (s, 3H), 2.35 (m, 2H), 2.25 (dq, J = 6.5 Hz, 

13.0 Hz, 1H), 2.14 (m, 2H), 2.04-1.88 (m, 4H), 1.65 (d, J = 2.5 Hz, 3H), 1.09 (d, J = 6.5 

Hz, 3H); 13C NMR (125 MHz, CDCl3) � 173.7, 144.5, 135.8, 129.0, 128.4, 126.3, 80.8, 

76.7, 48.8, 46.7, 45.0, 44.3, 35.9, 32.2, 24.6, 21.5, 20.5, 12.3, 3.3; IR (thin film): 1703, 

1676 cm-1; HRMS (ESI) calcd for C21H25NO4SLi [M+Li]: 394.1664. Found: 394.1721. 

About 10% of the C-6 epimer was also obtained from this reaction, whose structure was 

confirmed by X-ray analysis after recrystallization from heptane/toluene (3:1). 

Ts
N O

Me

O O

Me  

Butenolide 160: The ketone 158 (3.6 mg, 0.00929 mmol) was azeotropically 

dried with PhMe and dissolved in CH2Cl2 (1ml). TiCl4 (1.0 M in CH2Cl2, 37 µl) was 

then added and the yellowish cloudy mixture was stirred at room temperature for 10 min. 

Then silyloxyfuran 155 (9.5 mg, 0.00372 mmol) was added. After stirring at room 

temperature for 10 min, the reaction was quenched by saturated NaHCO3 solution. The 

aqueous layer was extracted with Et2O and the combined organic layers were dried 

(Na2SO4) and concentrated in vacuo. The residue was purified by flash chromatography 
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(30%�40%�50%�60% EtOAc/hexanes) to give two fractions, each composed of two 

diastereomers. Less polar fraction (2.0 mg, 44% yield): Rf = 0.38 (60% EtOAc/hexanes); 

More polar fraction (1.6 mg, 35% yield): Rf = 0.20 (60% EtOAc/hexanes). No further 

attempts were made to separate each diastereomer. 

To a solution of the less polar fraction (5.0 mg, 0.0103 mmol) in CH2Cl2 (1 ml) 

at room temperature was added pyridine (two drops) and thionyl chloride (4 µl, 0.0515 

mmol). The reaction mixture was stirred at room temperature for 1 h and quenched by 

saturated NaHCO3 solution. The aqueous layer was extracted with Et2O and the 

combined organic layers were concentrated. The residue was purified by flash 

chromatography (40% EtOAc/hexanes) to afford a mixture of regio- and 

diastereoisomers (2.7 mg, 56% combined yield). For characterization purpose further 

purification of this mixture (10%�30%EtOAc/hexanes, low flow rate) gave 1.2 mg 

(25%) of the butenolide 160. The stereochemistry at the butenolide center was not 

established. Rf = 0.64 (60% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 7.90 (d, J = 

8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.83 (dq, J = 1.5 Hz, 1.5 Hz, 1H), 5.76 (br s, 1H), 

4.12 (m, 1H), 3.73 (ddd, J = 4.0 Hz, 10.0 Hz, 12.0 Hz, 1H), 3.59 (br s, 1H), 2.43 (s, 3H), 

2.00 (m, 2H), 1.94 (dd, J = 1.5 Hz, 2.0 Hz, 3H), 1.90 (m, 1H), 1.87 (d, J = 1.0 Hz, 3H), 

1.75 (m, 2H), 1.69 (d, J = 2.5 Hz, 3H), 1.64 (m, 2H), 1.50 (m, 1H); 13C NMR (125 MHz, 

CDCl3) � 174.9, 174.6, 147.1, 144.4, 136.2, 131.3, 130.3, 129.2, 128.4, 123.5, 80.6, 

79.8, 76.2, 47.4, 47.2, 41.5, 29.1, 25.9, 21.7, 20.1, 18.9, 17.3, 10.6, 3.5; IR (thin film): 

1757, 1682 cm-1; HRMS (ESI) calcd for C26H29NO5SLi [M+Li]: 468.1845. Found: 

468.1987. 
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Trifluoroacetamide 141b: To a solution of the tosylamine 141a (37 mg, 0.447 

mmol) in CH2Cl2 (4 ml) at 0 ºC was added triethylamine (62 µl, 0.447 mmol) and 

trifluoroacetic anhydride (38 µl, 0.268 mml). After stirring at 0 ºC for 15 min, SmI2 (0.1 

M in THF) was added until the intermediate disappeared as monitored by TLC (ca. 0.5 

ml of SmI2 solution was added). The reaction mixture was stirred for additional 10 min 

and quenched by half saturated Na2S2O3 solution (2 ml). The aqueous layer was 

extracted with Et2O and the organic layers were concentrated in vacuo and purified by 

flash chromatography (5%�10%�15% EtOAc/hexanes) to afford 25 mg (73%) of the 

desired product as a white foam. Rf = 0.65 (20% EtOAc/hexanes); [�]20
D + 1.26 (c 1.0, 

CHCl3); 1H NMR (500 MHz, CDCl3) � 7.40 (br s, 1H), 5.00 (br t, J = 5.0 Hz, 1H), 4.96 

(d, J = 11.5 Hz, 1H), 4.06 (m, 1H), 3.97 (br s, 1H), 3.81 (dd, J = 3.5 Hz, 11.5 Hz, 1H), 

3.73 (d, J = 11.5 Hz, 1H), 3.35 (m, 2H), 2.81 (m, 1H), 2.65 (m, 1H), 2.28 (m, 1H), 2.18 

(m, 1H), 2.09 (m, 4H), 1.98 (m, 1H), 1.86 (m, 1H), 1.77 (m, 1H), 1.69 (s, 3H), 1.64 (m, 

2H), 1.56 (m, 1H), 1.49 (s, 3H), 1.47 (s, 3H), 1.43 (m, 3H), 1.38-1.28 (m, 2H), 1.09 (d, J 

= 7.0 Hz, 3H), 0.96 (s, 9H), 0.86 (s, 9H), 0.142 (s, 3H), 0.135 (s, 3H), 0.06 (s, 3H), 0.01 

(s, 3H); 13C NMR (125 MHz, CDCl3) � 214.3, 157.6 (COCF3, q, J = 37 Hz), 143.2, 

140.8, 135.7, 123.6, 122.4, 115.9 (CF3, q, J = 286 Hz), 112.0, 89.1, 79.4, 78.1, 53.8, 

45.5, 40.6, 37.6, 36.6, 34.7, 32.9, 31.9, 28.8, 27.6, 25.8, 25.7, 23.4, 23.2, 20.5, 19.9, 
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18.2, 18.0, 14.2, 13.9, 10.8, -3.6, -3.8, -4.77, -4.85; IR (thin film): 3319, 1722, 1709 cm-

1; HRMS (ESI) Calcd. for C41H70F3NO5Si2Na [M+Na]: 792.4642. Found: 792.4852. 

Me

Me

OH

O
O

Me

Me

O

NHCOCF3

 

Ketone 163: To a solution of the silyl ether 141b (17 mg, 0.0221 mmol) in 

THF/CH2Cl2/MeOH (1:1:1, 1.8 ml) at room temperature was added p-toluenesulfonic 

acid monohydrate (17 mg, 0.0883 mml). The reaction mixture was stirred at room 

temperature for 2.5 h and quenched by saturated NaHCO3 solution. The aqueous layer 

was extracted with Et2O and the combined organic layers were concentrated in vacuo. 

The residue was purified by flash chromatography (40%�70%�100% EtOAc/hexanes) 

to afford 10 mg (84%) of the desired product as a white foam. Rf = 0.42 (70% 

EtOAc/hexanes); [�]20
D –84.4 (c 0.473, CHCl3); 1H NMR (500 MHz, CDCl3) � 5.16 (d, 

J = 11.0 Hz, 1H), 4.97 (br t, J = 5.0 Hz, 1H), 4.09 (m, 1H), 3.98 (br s, 1H), 3.91 (dd, J = 

11.5 Hz, 2.5 Hz, 1H), 3.43 (m, 2H), 3.00 (dd, J = 11.5 Hz, 11.5 Hz, 1H), 2.69 (m, 2H), 

2.52 (m, 1H), 2.46-2.38 (m, 2H), 2.29 (m, 1H), 2.24-2.14 (m, 3H), 2.12-1.96 (m, 4H), 

1.85 (m, 1H), 1.72-1.62 (m, 3H), 1.69 (s, 3H), 1.52 (s, 3H), 1.47 (m, 1H), 1.36 (m, 1H), 

1.11 (d, J = 7.0 Hz, 3H), 1.06 (m, 1H), 1.03 (d, J = 6.0 Hz, 3H); 13C NMR (125 MHz, 

CDCl3) � 212.4, 209.6, 157.6 (COCF3, q, J =36 Hz), 140.7, 136.1, 124.6, 121.8, 98.2, 

78.8, 78.0, 115.9 (CF3, q, J = 286 Hz), 55.0, 50.5, 45.9, 40.2, 37.7, 37.5, 36.7, 34.8, 31.9, 

31.3, 31.1, 23.3, 22.8, 20.5, 19.9, 14.2, 11.9, 11.2; IR (thin film): 3483, 3320, 1706, 1558 
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cm-1; HRMS (ESI) Calcd. for C29H42F3NO5Na [M+Na]: 564.2913. Found: 564.2983. 

Recrystallization from EtOAc provided colorless crystals suitable for X-ray analysis. 
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Me

OTES

O

Me

Me

O

NHCOCF3
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O O

Me  

Alcohols 165a/165b: A mixture of the ketone 163 (8.4 mg, 0.0155 mmol) and 

silyloxyfuran 155 (39 mg, 0.155 mmol) was azeotropically dried with PhMe and 

dissolved in CH2Cl2 (0.8 ml). At room temperature to this vigorously stirred solution 

was added TiCl4 (1.0 M in CH2Cl2, 39 µl) dropwise over 30 s. The cloudy yellow 

reaction mixture was stirred at room temperature for 30 s and quenched by saturated 

NH4Cl solution. The mixture was extracted with Et2O and the combined organic layers 

were concentrated in vacuo. The residue was purified by flash chromatography 

(40%�70%�100% EtOAc/hexanes) to afford 6.1 mg (61%) of the addition product 

164 as a white solid as a mixture of two diastereomers (dr = 1.1:1). Rf = 0.16 (70% 

EtOAc/hexanes). 

A mixture of 164 (10.0 mg, 0.0156 mmol, used as a mixture of two 

diastereomers), imidazole (21 mg, 0.313 mmol) and one crystal of DMAP was 

azeotropically dried with PhMe. The mixture was dissolved in CH2Cl2 (1 ml) and at 

room temperature was treated with TESCl (26 µl, 0.156 mmol). White precipitate 

formed immediately. The reaction mixture was stirred at room temperature for 5 min and 

quenched by saturated NaHCO3 solution. The aqueous layer was extracted with Et2O 

and the combined organic layers were concentrated and purified by flash 
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chromatography (30%�40%�50% EtOAc/hexanes) to afford 4.1 mg (34%) of the 

desired product 165b and 5.0 mg (42%) the C-4 epimer 165a, respectively. 

165a: Rf = 0.81 (70% EtOAc/hexanes); [�]20
D –14.1 (c 0.778, CHCl3); 1H NMR 

(500 MHz, CDCl3) � 7.31 (br s, 1H, -NH), 7.05 (dq, J = 1.5 Hz, 1.5 Hz, 1H), 5.15 (dq, J 

= 1.5 Hz, 1.5 Hz, 1H), 5.00 (br s, 1H), 4.83 (d, J = 11.0 Hz, 1H), 4.06 (m, 1H), 3.97 (br 

s, 1H), 3.77 (dd, J = 3.5 Hz, 11.5 Hz, 1H), 3.35 (m, 2H), 3.12 (dd, J = 11.0 Hz, 11.0 Hz, 

1H), 2.79 (m, 2H), 2.23 (m, 3H), 2.03 (m, 4H), 1.99 (dd, J = 1.5 Hz, 1.5 Hz, 3H), 1.87 

(m, 2H), 1.69 (s, 3H), 1.62 (m, 3H), 1.51 (s, 3H), 1.46 (m, 4H), 1.30 (m, 2H), 1.10 (d, J 

= 7.0 Hz, 3H), 1.03 (d, J = 7.0 Hz, 3H), 0.92 (t, J = 8.0 Hz, 9H), 0.55 (m, 6H); 13C NMR 

(125 MHz, CDCl3) � 214.1, 173.5, 157.8 (COCF3, q, J = 36 Hz), 144.0, 141.9, 135.6, 

132.1, 123.3, 122.5, 117.1 (CF3, q, J = 286 Hz), 89.1, 86.1, 79.7, 78.0, 73.9, 54.7, 42.8, 

40.3, 37.6, 37.5, 36.8, 34.7, 32.9, 32.3, 26.8, 25.1, 23.1, 22.5, 20.6, 20.0, 14.2, 11.4, 

11.3, 11.0, 6.9, 4.9; IR (thin film): 3447, 3328, 1757, 1716 cm-1. 

165b: Rf = 0.65 (70% EtOAc/hexanes); [�]20
D –48.8 (c 0.4, CHCl3); 1H NMR 

(500 MHz, CDCl3) � 7.49 (br s, 1H, -NH), 7.22 (dq, J = 1.5 Hz, 1.5 Hz, 1H), 5.00 (br s, 

1H), 4.97 (dq, J = 1.5 Hz, 1.5 Hz, 1H), 4.89 (d, J = 11.0 Hz, 1H), 4.07 (m, 1H), 3.97 (br 

s, 1H), 3.78 (dd, J = 3.0 Hz, 11.5 Hz, 1H), 3.34 (m, 2H), 2.96 (dd, J = 11.0 Hz, 11.0 Hz, 

1H), 2.76 (m, 2H), 2.21 (m, 3H), 2.02 (m, 5H), 1.97 (dd, J = 1.5 Hz, 1.5 Hz, 3H), 1.85 

(m, 2H), 1.68 (s, 3H), 1.62 (m, 3H), 1.51 (s, 3H), 1.48 (m, 3H), 1.33 (m, 2H), 1.11 (d, J 

= 7.0 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.93 (t, J = 8.0 Hz, 9H), 0.55 (m, 6H); 13C NMR 

(125 MHz, CDCl3) � 213.9, 173.9, 157.5 (COCF3, q, J = 36 Hz), 147.0, 141.2, 135.8, 

131.1, 123.7, 122.4, 115.9 (CF3, q, J = 286 Hz), 89.1, 83.0, 79.6, 78.0, 73.8, 54.9, 43.3, 
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40.4, 37.5, 36.73, 36.68, 34.7, 32.9, 32.3, 26.4, 25.2, 22.9, 22.4, 20.6, 19.9, 14.2, 11.3, 

10.9, 10.8, 6.9, 4.9; IR (thin film): 3468, 3326, 1754, 1721, 1711 cm-1; HRMS (ESI) 

Calcd. for C40H62F3NO7Li [M+Li]: 760.4408. Found: 760.4666. 
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Olefin 166b: To a solution of the alcohol 165b (2 mg, 0.00265 mmol, 

azeotropically dried with PhMe) in CH2Cl2 (1 ml) at -78 ºC was added Et3N (three 

drops) and 48 µl of a solution of SOCl2 (20 µl) in CH2Cl2 (1 ml). The reaction mixture 

was stirred at -78 ºC for 1 h and quenched by saturated NaHCO3 solution. The aqueous 

layer was extracted with Et2O and the combined organic layers were concentrated in 

vacuo. The residue was purified by flash chromatography (40% EtOAc/hexanes) to 

afford 1.6 mg (82%) of the desired olefin 166a and its regioisomer (�5,6 : �5,24 = 3:1). Rf 

= 0.58 (40% EtOAc/hexanes); [�]20
D –67.7 (c 0.268, CHCl3); 1H NMR (500 MHz, 

CDCl3) � 7.40 (br s, 1H, -NH), 6.92 (br s, 1H), 5.84 (br s, 1H), 4.97 (m, 2H), 4.07 (m, 

1H), 3.98 (br s, 1H), 3.85 (dd, J = 3.0 Hz, 11.5 Hz, 1H), 3.63 (d, J = 11.5 Hz, 1H), 3.33 

(m, 2H), 2.70 (m, 3H), 2.28 (m, 1H), 2.18 (m, 1H), 2.13 (m, 2H), 1.98 (s, 3H), 1.92 (m, 

2H), 1.83 (m, 4H), 1.73 (s, 3H), 1.68 (s, 3H), 1.64 (m, 2H), 1.52 (s, 3H), 1.45 (m, 2H), 

1.32 (m, 2H), 1.11 (d, J = 7.0 Hz, 3H), 0.93 (t, J = 8.0 Hz, 9H), 0.56 (m, 6H); 13C NMR 

(125 MHz, CDCl3) � 213.6, 174.6, 157.6 (COCF3, q, J = 36 Hz), 146.6, 142.6, 135.9, 

132.6, 130.4, 125.2, 122.31, 122.28, 116.0 (CF3, q, J = 286 Hz), 89.1, 80.3, 79.2, 78.1, 

53.6, 46.7, 40.4, 37.6, 36.5, 34.6, 32.9, 31.9, 28.2, 23.3, 23.0, 20.5, 19.9, 19.6, 16.3, 
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14.2, 11.0, 10.7, 6.9, 4.9; IR (thin film): 3502, 3328, 1761, 1721, 1707 cm-1; HRMS 

(MALDI) Calcd. for C40H60F3NO6Na [M+Na]: 758.4040. Found: 758.4523. 
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Olefin 166a: To a solution of the alcohol 165a (4 mg, 0.00265 mmol, 

azeotropically dried with PhMe) in CH2Cl2 (1 ml) at -78 ºC was added Et3N (20 µl) and 

100 µl of a solution of SOCl2 (20 µl) in CH2Cl2 (1 ml). The reaction mixture was stirred 

at -78 ºC for 25 min and quenched by saturated NaHCO3 solution. The aqueous layer 

was extracted with Et2O and the combined organic layers were concentrated in vacuo. 

The residue was purified by flash chromatography (50%�60%�70%�80% 

Et2O/hexanes) to afford 1.1 mg (28%) of the desired olefin 166a and 1.4 mg (36%) of 

the undesired regioisomer (�5,6 : �5,24 = 1:1.3). Rf = 0.58 (40% EtOAc/hexanes); [�]20
D 

+26.3 (c 0.262, CHCl3); 1H NMR (500 MHz, CDCl3) � 6.92 (t, J = 1.5 Hz, 1H), 5.88 (br 

t, 1H), 4.98 (m, 2H), 4.08 (m, 1H), 3.98 (br s, 1H), 3.84 (dd, J = 3.5 Hz, 11.5 Hz, 1H), 

3.69 (d, J = 10.0 Hz, 1H), 3.53 (m, 2H), 2.71 (m, 3H), 2.28 (m, 1H), 2.18 (m, 1H), 2.08 

(m, 2H), 1.98 (s, 3H), 1.96 (m, 2H), 1.83 (m, 4H), 1.75 (s, 3H), 1.74 (s, 3H), 1.64 (m, 

2H), 1.52 (s, 3H), 1.49 (m, 2H), 1.32 (m, 2H), 1.11 (d, J = 7.0 Hz, 3H), 0.93 (t, J = 8.0 

Hz, 9H), 0.53 (m, 6H); 13C NMR (125 MHz, CDCl3) � 213.7, 174.4, (COCF3 missing), 

147.2, 142.6, 135.8, 135.5, 131.1, 124.8, 122.4, 122.3, (CF3 missing), 89.1, 79.5, 79.3, 

78.0, 53.3, 46.9, 40.4, 37.6, 36.6, 34.6, 32.9, 31.9, 28.0, 23.4, 23.1, 20.5, 20.4, 19.9, 

16.8, 14.2, 11.0, 10.8, 6.9, 4.9. 
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Et3N, (Boc)2O, DMAP
CH2Cl2; hydrazine

TFA, CH2Cl2
Compound X

166b: R = COCF3

167b: R = Boc  

Compound X: To a solution of the trifluoroacetamide 166b (3.0 mg, 0.00408 

mmol, azeotropically dried with PhMe, Rf = 0.39 in 30% EtOAc/hexanes) in CH2Cl2 

(0.5 ml) at room temperature was added Et3N (20 µl), DMAP (5 mg) and a solution of 

(Boc)2O (9 mg, azeotropically dried with PhMe) in CH2Cl2 (0.5 ml). The reaction 

mixture was stirred at room temperature for 30 min and TLC indicated the starting 

material was completely converted to a new intermediate (Rf = 0.61, 30% 

EtOAc/hexanes). Hydrazine hydrate (10 µl) was added and the cloudy reaction mixture 

was stirred at room temperature for 5 min (TLC indicated the complete hydrolysis of this 

intermediate). The mixture was then quenched with saturated NaHCO3 solution. The 

aqueous layer was extracted with Et2O, the combined organic layers were concentrated 

in vacuo and passed through a pad of silica gel (eluted with 25% EtOAc/hexanes) to give 

1.9 mg of the crude 167b. Rf = 0.39 (30% EtOAc/hexanes); HRMS (ESI) Calcd. for 

C43H70NO7Si [M+H]: 740.4922. Found: 740.5005. 

The crude 167b was dissolved in CH2Cl2 (0.2 ml) and treated with trifluoroacetic 

acid (20 µl). The reaction mixture was stirred at room temperature for 4 h and was 

quenched by solid NaHCO3. The mixture was stirred at room temperature for 10 min, 

filtered through a pad of cotton and rinsed with CH2Cl2 (1 ml). The filtrate was 
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concentrated in vacuo and the residue was purified by flash chromatography (50% 

EtOAc/hexanes�5%�10% MeOH/CH2Cl2) to afford 0.4 mg of the compound X. Rf = 

0.33 (5% MeOH/CH2Cl2); HRMS (ESI) Calcd. for C32H46NO4 [M+H]: 508.3427. 

Found: 508.3430. 

N
H

O
OMe

O

CbzHN

 

Dipeptide 170: To a solution of methyl 4-aminobutyrate hydrochloride 169 

(1.26g, 8.21 mmol) in CH3CN (45 ml) at 0 ºC were successively added iPr2NEt (1.43 ml, 

8.21 mmol), N-Cbz γ-amino butyric acid 168 (1.77g, 7.46 mmol) and EDCI (1.57 g, 8.21 

mmol). The reaction mixture was stirred at room temperature overnight, concentrated in 

vacuo and the residue was redissolved in EtOAc (150 ml). The solution was washed with 

2 M NaHSO4 (2×20 ml), saturated NaHCO3 solution (2×20 ml), brine, dried (MgSO4) 

and concentrated to afford 1.85 g (74%) of the desired product as a white solid, which 

was used in the next step without further purification. m.p.68-73 ºC; Rf = 0.65 (10% 

MeOH/EtOAc); 1H NMR (300 MHz, CDCl3) � 7.38 (s, 5H), 6.18 (br s, 1H, -NH), 5.07 

(s, 2H), 3.61 (s, 3H), 3.30 (t, J = 6.3 Hz, 2H), 3.24 (t, J = 6.3 Hz, 2H), 2.37 (t, J = 7.2 

Hz, 2H), 2.21 (t, J = 6.9 Hz, 2H), 1.84 (m, 4H); 13C NMR (75 MHz, CDCl3) � 173.7, 

172.7, 156.8, 136.4, 128.4, 127.94, 127.88, 66.5, 51.6, 40.2, 38.7, 33.4, 31.3, 25.9, 24.5; 

IR (thin film): 3337, 3299, 1729, 1682, 1635, 1535 cm-1; HRMS (ESI) Calcd. for 

C17H25N2O5 [M+H]: 337.1763. Found: 377.1639. 
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Amine 171: A solution of dipeptide 170 (1.85 g, 5.51 mmol) in EtOH (30 ml) 

containing 10% Pd/C (290 mg, 0.275 mmol) was bubbled with H2 using a balloon. The 

reaction mixture was stirred at room temperature for 1.5 h, filtered through a pad of 

Celite and concentrated to afford 1.12 g (92%) of the desired product as a white solid, 

which was used directly in the next step without further purification. m.p.146-153 ºC 

(decomposed); Rf = 0.41 (MeOH containing 1% AcOH); 1H NMR (300 MHz, CDCl3) � 

6.52 (br s, 1H, -NH), 3.63 (s, 3H), 3.23 (dt, J = 6.0 Hz, 6.6 Hz, 2H), 2.70 (t, J = 6.9, 2H), 

2.33 (t, J = 7.2 Hz, 2H), 2.21 (t, J = 7.2 Hz, 2H), 1.81 (m, 2H), 1.74 (m, 2H), 1.68 (br s, 

2H, -NH2); 13C NMR (75 MHz, CDCl3) � 173.7, 172.9, 51.6, 41.4, 38.7, 33.9, 31.4, 28.9, 

24.5; IR (thin film): 3310, 1737, 1647, 1637, 1546 cm-1; HRMS (ESI) Calcd. for 

C9H19N2O3 [M+H]: 203.1396. Found: 203.1391. IMPORTANT: The pure form of the 

amine 171 as a solid is barely soluble in ALL solvents tested. Therefore, for the success 

of the following step, it is crucial to store the amine with small amount of EtOH and use 

as such in the following step. 

N
H

O
OMe

O

H
N

O
FmocHNO

 

Fmoc alkoxyamine 173b: To a solution of the amine 171 (2.0g, 4.09 mmol, 

containing small amount of ethanol) in CH2Cl2 (35 ml) at room temperature were added 

iPr2NEt (0.855 ml, 4.91 mmol) and Fmoc-aminooxyacetic acid 172b (2g, 4.91 mmol). 

The reaction mixture was stirred at room temperature for 2h, concentrated in vacuo and 

purified by flash chromatography (EtOAc�5%�10% MeOH/EtOAc) to afford 920 mg 
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(46%) of the desired product as a white solid. m.p.94-98 ºC; Rf = 0.44 (10% 

MeOH/EtOAc); 1H NMR (300 MHz, CDCl3) � 8.86 (br s, 1H, -NH), 8.00 (br s, 1H, -

NH), 7.75 (d, J = 7.2 Hz, 2H), 7.56 (d, J = 7.2 Hz, 2H), 7.40 (t, J = 7.2 Hz, 2H), 7.30 (t, 

J = 7.2 Hz, 2H), 6.59 (app t, 1H, -NH), 4.48 (d, J = 6.9 Hz, 2H), 4.33 (s, 2H), 4.22 (t, J = 

6.9 Hz, 1H), 3.62 (s, 3H), 3.33 (dt, J = 6.0 Hz, 6.0 Hz, 2H), 3.24 (dt, J = 6.6 Hz, 6.0 Hz, 

2H), 2.32 (t, J = 7.2 Hz, 2H), 2.21 (t, J = 6.6 Hz, 2H), 1.83 (m, 4H); 13C NMR (75 MHz, 

CDCl3) � 173.8, 173.0, 169.1, 158.3, 143.1, 141.2, 127.9, 127.1, 124.9, 120.1, 76.1, 

67.9, 51.7, 46.8, 39.0, 38.4, 33.8, 31.4, 25.3, 24.5; IR (thin film): 3306, 1725, 1634 cm-1; 

HRMS (ESI) Calcd. for C26H32N3O7 [M+H]: 498.2240. Found: 498.2254. 

N
H

O
OMe

O

H
N

O
H2NO

 

Alkoxyamine 175: To a solution of the Fmoc alkoxyamine 173b (2.6g, 5.23 

mmol) in THF (60 ml) at room temperature was added diethylamine (2.7 ml, 26.1 

mmol). The reaction mixture was stirred at room temperature for 20 h and concentrated 

in vacuo. The residue was loaded on filter paper and washed with EtOAc (20 ml). The 

solid collected from filter paper was dried under high vacuum to give 800 mg (56%) of 

the desired product as a white powder. Rf = 0.35 (MeOH containing 1% AcOH); 1H 

NMR (300 MHz, CD3OD) � 4.08 (s, 2H), 3.66 (s, 3H), 3.28 (t, J = 6.9 Hz, 2H), 3.20 (t, J 

= 6.9 Hz, 2H), 2.36 (t, J = 7.5 Hz, 2H), 2.23 (t, J = 7.5 Hz, 2H), 1.81 (m, 4H); 13C NMR 

(75 MHz, CD3OD) � 175.8, 175.5, 173.4, 75.7, 52.3, 39.9, 39.6, 34.6, 32.3, 27.0, 26.0; 

IR (thin film): 3312, 1732, 1634, 1538 cm-1; HRMS (ESI) Calcd. for C11H22N3O5 

[M+H]: 276.1559. Found: 276.1545. 



 150 

O

Me
Me OPMB

O
 

Aldehyde 179: To a solution of the alcohol 178 (62 mg, 0.178 mmol) in CH2Cl2 

(5 ml) at 0 ºC was added Dess-Martin periodinane (133 mg, 0.314 mmol). The reaction 

mixture was stirred at room temperature for 2 h and was quenched by saturated NaHCO3 

solution (2 ml) and saturated Na2S2O3 solution (2 ml). The aqueous layer was extracted 

with Et2O and the combined organic layers were dried (Na2SO4) and concentrated in 

vacuo. The residue was purified by flash chromatography (10%�20% EtOAc/hexanes) 

to afford 45 mg (73%) of the desired product as a colorless oil. Rf = 0.40 (30% 

EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) � 9.79 (t, J = 1.5 Hz, 1H), 7.25 (d, J = 8.5 

Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 5.43 (t, J = 7.0 Hz, 1H), 4.44 (s, 2H), 3.97 (m, 1H), 

3.80 (s, 3H), 3.66 (d, J = 8.5 Hz, 1H), 3.45 (dt, J = 3.0 Hz, 7.0 Hz, 2H), 2.57 (m, 2H), 

2.37 (m, 2H), 1.99 (m, 1H), 1.87-1.74 (m, 3H), 1.69 (ddd, J = 8.0 Hz, 8.0 Hz, 12.0 Hz, 

1H), 1.59 (s, 3H), 0.94 (d, J = 6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) � 202.3, 159.0, 

135.3, 130.5, 129.1, 124.2, 113.7, 92.4, 76.5, 72.4, 69.4, 55.2, 40.5, 39.6, 35.9, 28.6, 

28.4, 16.8, 11.2; IR (thin film): 1722 cm-1; HRMS (ESI) Calcd. for C21H31O4 [M+H]: 

347.2222. Found: 347.2168. 



 151 

Me

O

Me OPMB

N
N
H O

H
N

O
O

OH

O

 

Oxime ether 180b: To a solution of the aldehyde 179 (43 mg, 0.124 mmol) in 

EtOH (3 ml) at room temperature was added the amine 175 (81 mg, 0.296 mmol) and 

NaOAc (29 mg, 0.355 mmol). The reaction mixture was stirred at room temperature for 

13 h, concentrated and purified by flash chromatography (50%�100% EtOAc�10% 

MeOH/EtOAc) to afford 74 mg (100%) of the desired product 180a as a colorless oil. Rf 

= 0.62 (10% MeOH/EtOAc). 

To a solution of the methyl ester 180a (74 mg, 0.123 mmol) in THF/H2O (4 ml, 

4:1) was added LiOH (26 mg, 0.613 mmol). The reaction mixture was stirred at room 

temperature for 4 h, concentrated in vacuo and purified by flash chromatography (10% 

�20%�30% MeOH/EtOAc) to afford 38 mg (53%) of the oxime ether 180b as an 

inseparable mixture of E/Z isomers (E:Z ≈ 2.3:1) as a colorless oil. 

Major isomer: Rf = 0.43 (10% MeOH/EtOAc); 1H NMR (500 MHz, CDCl3) � 

7.56 (t, J = 5.5 Hz, 1H), 7.25 (d, J = 8.5 Hz, 2H), 6.96 (m, 1H), 6.87 (d, J = 8.5 Hz, 2H), 

6.74 (t, J = 5.5 Hz, 1H), 5.42 (t, J = 6.5 Hz, 1H), 4.46 (s, 2H), 4.44 (s, 2H), 3.99 (m, 1H), 

3.79 (s, 3H), 3.66 (d, J = 8.5 Hz, 1H), 3.45 (t, J = 7.0 Hz, 2H), 3.29 (m, 4H), 2.36 (m, 

6H), 2.20 (m, 2H), 1.98 (m, 1H), 1.80 (m, 8H), 1.60 (s, 3H), 0.94 (d, J = 7.0 Hz, 3H); 

13C NMR (125 MHz, CDCl3) � 177.2, 173.2, 170.9, 159.1, 153.5, 135.3, 130.5, 129.2, 

124.3, 113.7, 92.4, 76.70, 76.66, 72.5, 69.4, 55.2, 39.8, 39.6, 39.0, 38.4, 35.9, 33.4, 33.0, 
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28.4, 26.2, 25.6, 24.7, 16.8, 11.3; IR (thin film): 3308, 1654, 1615, 1546, 1514 cm-1; 

HRMS (ESI) Calcd. for C31H48N3O8 [M+H]: 596.3523. Found: 596.3511. 
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1H NMR spectrum of vinyl stannane 102a
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13C NMR spectrum of vinyl stannane 102a 
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1H NMR spectrum of vinyl stannane 102c 
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13C NMR spectrum of vinyl stannane 102c 
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1H NMR spectrum of ketone 105 



 167 

p
p
m

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

O

 
13C NMR spectrum of ketone 105 
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1H NMR spectrum of silylenol ether (E)-95 
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13C NMR spectrum of silylenol ether (E)-95 
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1H NMR spectrum of N-Cbz lactam 46a 
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13C NMR spectrum of N-Cbz lactam 46a  
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1H NMR spectrum of N-Cbz spirolactam 96b  
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13C NMR spectrum of N-Cbz spirolactam 96b  
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1H NMR spectrum of spirolactam 96c  
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13C NMR spectrum of spirolactam 96c  
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1H NMR spectrum of amino alcohol 106 
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13C NMR spectrum of amino alcohol 106 



 178 

p
p
m

1
2

3
4

5
6

7
8

9

O M
e

O
TB

S

Ts
H

N

O
P

h

C
F 3

O
M

e

 
1H NMR spectrum of Mosher ester 107 
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13C NMR spectrum of Mosher ester 107 
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1H NMR spectrum of vinyl stannane 108 
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13C NMR spectrum of vinyl stannane 108 
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1H NMR spectrum of hydrogenated product 109 
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13C NMR spectrum of hydrogenated product 109 
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1H NMR spectrum of vinyl iodide 110 
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13C NMR spectrum of vinyl iodide 110
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1H NMR spectrum of alcohol 113 
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13C NMR spectrum of alcohol 113 
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1H NMR spectrum of mesylate 114a 
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13C NMR spectrum of mesylate 114a 
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1H NMR spectrum of alkyl iodide 114b 



 191 

p
p
m

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

O

M
e

M
e

I

O
TI

P
S

 

13C NMR spectrum of alkyl iodide 114b 
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1H NMR spectrum of alkyl chloride 114c 
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13C NMR spectrum of alkyl chloride 114c 
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1H NMR spectrum of alcohol 115 
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13C NMR spectrum of aldehyde 116 
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1H NMR spectrum of alcohol 111b 
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13C NMR spectrum of alcohol 111b 
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1H NMR spectrum of chloride 111c 
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1H NMR spectrum of amino ketone 123a 
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13C NMR spectrum of amino ketone 123a 
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1H NMR spectrum of amino ketone 125a 
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1H NMR spectrum of vinyl stannane 126a 
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1H NMR spectrum of vinyl stannanne 126b



 213 

p
p
m

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

M
e

O

M
e

O

M
e

O
TB

S

N
H

Ts

O
TE

S

B
u 3

S
n

M
e

 

13C NMR spectrum of vinyl stannane 126b



 214 

p
p
m

1
2

3
4

5
6

7
8

9

M
e

O

M
e

O

M
e

O
TB

S

N
H

Ts

O
TE

S

I
M

e

 

1H NMR spectrum of vinyl iodide 127b 
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1H NMR spectrum of alcohol 132
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1H NMR spectrum of aldehyde 133 
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1H NMR spectrum of ketone 135 
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1H NMR spectrum of t-butyldimethylsilyl ether 136a 
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1H NMR spectrum of iodide 136b 



 227 

p
p
m

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

M
e

O

M
e

O
TB

S

M
eI

M
e

O
TB

S

Ts N
O

 
13C NMR spectrum of iodide 136b 



 228 

p
p
m

1
2

3
4

5
6

7
8

9

M
e

M
e

O
TB

S

O
TB

S
OM

e

M
eO

N
H

Ts

 
1H NMR spectrum of N-tosyl amine 141a 
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13C NMR spectrum of N-tosyl amine 141a 
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1H NMR spectrum of trifluoroacetamide 141b 
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1H NMR spectrum of ketone 163 



 241 

p
p
m

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

M
e

M
e

O
H

O
OM

e

M
eO

N
H

C
O

C
F 3

 
13C NMR spectrum of ketone 163 



 242 

p
p
m

1
2

3
4

5
6

7
8

9

M
e

M
e

O
TE

S

OM
e

M
eO

N
H

C
O

C
F 3

O
H

O
O

M
e

 
1H NMR spectrum of alcohol 165a 
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1H NMR spectrum of Fmoc alkoxyamine 173b 
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1H NMR spectrum of oxime ether 180b 
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