APPLICATION OF KINETIC ISOTOPE EFFECTS AND THEORETICAL

 CALCULATIONS TO THE STUDY OF INTERESTING REACTION MECHANISMSA Dissertation
by
JENNIFER SUE HIRSCHI

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Chemistry

APPLICATION OF KINETIC ISOTOPE EFFECTS AND THEORETICAL CALCULATIONS TO THE STUDY OF INTERESTING REACTION MECHANISMS

A Dissertation
by
JENNIFER SUE HIRSCHI

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Approved by:
Chair of Committee, Daniel A. Singleton
Committee Members, Frank M. Raushel
Paul Fitzpatrick
Coran M. Watanabe
Head of Department, David H. Russell

December 2007

Major Subject: Chemistry

ABSTRACT
Application of Kinetic Isotope Effects and Theoretical Calculations to the Study of Interesting Reaction Mechanisms. (December 2007)
Jennifer Sue Hirschi, B.S., Southern Utah University
Chair of Advisory Committee: Dr. Daniel A. Singleton

A variety of biological and organic reaction mechanisms are studied using powerful tools from experimental and theoretical chemistry. These tools include the precise measurement of kinetic isotope effects (KIEs) and the use of theoretical calculations to predict KIEs as well as determine factors that contribute to reaction acceleration and selectivity.

Theoretical analysis of the Swain-Schaad relationship involves the prediction of a large number of isotope effects and establishes the semiclassical boundaries of the relationship. Studies on the mechanism of oxidosqualene cyclase involve the determination of a large number of precise KIEs simultaneously. Transition state models for the Sharpless asymmetric epoxidation have been developed that explain the versatility, high selectivities, and ligand accelerated catalysis of the reaction. Theoretical predictions on the proposed enzymatic mechanism of flavin dependent amine oxidation suggest a hydride transfer mechanism and rules out mechanisms involving covalent intermediates. Finally, a theoretical analysis of Diels-Alder reactions successfully describes the unexpected exo selectivity in some of these reactions.

DEDICATION

To Billy and Katharina

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Singleton, and my committee members, Dr. Raushel, Dr. Fitzpatrick, and Dr. Watanabe, for their guidance and support throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for making my time at Texas A\&M University a great experience. I also want to extend my gratitude to the National Institutes of Health for continued funding during the course of my studies.

Finally, thanks to my mother and father for their encouragement and to Mathew Joseph for his patience and love.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION iv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
CHAPTER
I INTRODUCTION 1
General Overview 1
Measurement of KIEs at Natural Abundance 2
Predicting KIEs 5
Theoretical Calculations 7
II THE NORMAL RANGE FOR SECONDARY SWAIN-SCHAAD EXPONENTS WITHOUT TUNNELING OR KINETIC COMPLEXITY 10
Introduction 10
Results and Discussion 16
Conclusions 20
III KINETIC ISOTOPE EFFECT STUDIES ON THE ENZYMATIC CYCLIZATION OF OXIDOSQUALENE 21
Introduction 21
Background 22
Plausible Mechanisms for OSC 26
Results and Discussion 27
Optimization of Experimental Conditions 28
Optimization of NMR Conditions 35

CHAPTER

Page

KIE Measurements 43
Conclusions 44
IV STUDIES ON THE MECHANISM OF THE SHARPLESS EPOXIDATION - ORIGIN OF LIGAND ACCELERATED CATALYSIS 46
Introduction 46
Results and Discussion 51
Experimental Kinetic Isotope Effects. 51
Theoretical Calculations 53
Predicted Isotope Effects 66
Conclusions 67
V THEORETICAL INVESTIGATIONS INTO THE MECHANISM OF FLAVOPROTEIN-CATALYZED AMINE OXIDATION OF N-METHYL TRYPTOPHAN 69
Introduction 69
Results and Discussion 72
Theoretical Mechanisms 72
Predicted Isotope Effects 79
Discussion 81
Isotope Effects 81
Covalent Adducts and Concerted Addition/Elimination. 83
Single Electron Transfer 86
Hydride Transfer 90
Conclusions 92
VI THEORETICAL ANALYSIS OF EXO SELECTIVE DIELS-ALDER REACTIONS OF VINYLAZEPINES, VINYLPIPERIDEINES, VINYL CYCLOALKENES 94
Introduction 94
Results and Discussion 98
Conclusions 104
VII EXPERIMENTAL SECTION 106
Theoretical Methods for the Swain-Schaad Relationship 106
CHAPTER Page
Experimental Section for the Reaction of Oxidosqualene Cyclase (OSC) 107
NMR Method for Collection of ${ }^{13} \mathrm{C}$ NMR Data on Lanosterone.. 118
Determination of KIEs for OSC 120
Theoretical Methods for Sharpless Asymmetric Epoxidation 120
Theoretical Methods for MTOX 121
Theoretical Methods for Diels-Alder Reactions 121
VIII CONCLUSIONS 123
REFERENCES 125
APPENDIX A 142
VITA 538

LIST OF FIGURES

FIGURE Page
2-1 Distribution of SSEs for equation 2-5 versus $\mathrm{kH} / \mathrm{kT}$ based on exact harmonic semi-classical isotope effects 18
3-1 Possible mechanisms for the cyclization of oxidosqualene by OSC 27
3-2 Reactions of oxidosqualene cyclase performed with varying amounts of Triton X-100 29
3-3 Reactions of oxidosqualene cyclase performed with varying amounts of oxidosqualene concentrations 30
3-4 Reactions of oxidosqualene cyclase performed with varying reaction times in hours 30
3-5 Reactions of oxidosqualene cyclase performed with varying reaction times (hours) and temperatures 31
3-6 The optimal reaction conditions for the reaction of OSC for large scale reaction on a 1 L scale. 34
3-7 KIE measurements for the reaction of oxidosqualene cyclase 45
4-1 Experimental and predicted ${ }^{13} \mathrm{C}$ KIEs $\left(\frac{k_{\mathrm{b}_{C}}}{k_{\mathrm{B}_{\mathrm{B}}}}\right)$ for the AE of geraniol using$\mathrm{Ti}(\mathrm{OiPr})_{4},(+)$-diisopropyl tartrate, and t-butyl hydroperoxidein $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$52
4-2 Predicted and experimentally determined KIEs for various epoxidations are shown 55
4-3 Calculated structures based upon the Sharpless model for the AE 58
4-4 Calculated structures based upon the Wu model for the AE. 59
4-5 Structures 4-16-4-19 are novel transition state models for the AE 61
6-1 Transition structures for the reaction of 6-9 with maleimide 101
FIGURE Page

6-2 Select low-energy transition structures for reaction of several dienes with maleimide102

LIST OF TABLES

TABLE Page

4-1 A list of relative energies of the transition states in reference to the lowest energy transition state 4-1662

5-1 Predicted ${ }^{15} \mathrm{~N}\left(\mathrm{k}_{15 \mathrm{~N}} / \mathrm{k}_{14 \mathrm{~N}}\right.$, high- pH limit) or deuterium $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right)$ kinetic isotope effects at $25^{\circ} \mathrm{C}$.

CHAPTER I

INTRODUCTION

General Overview

Tools used for mechanistic study have traditionally centered on experimental studies. The traditional physical organic chemist utilized experimental techniques involving linear free energy relationships, kinetics, thermochemistry, photolysis, kinetic isotope effects (KIEs), and spectrometric analysis to probe reaction mechanisms. ${ }^{1}$ The arsenal of modern physical organic techniques comprise these experimental tools in combination with advanced theoretical methods to describe the specific details of a reaction mechanism. ${ }^{2,3}$ This dissertation describes methods from modern physical organic chemistry used to probe the details of a variety of organic and enzymatic reaction mechanisms including the:

1) measurement of KIEs for the enzymatic reaction of oxidosqualene cyclase (OSC);
2) theoretical studies of the Sharpless Epoxidation (SE) to interpret KIEs, predict stereoselectivity, and explain the observed ligand accelerated catalysis;
3) theoretical evaluation of the kinetic relationship of isotopomers, the Swain-Schaad relationship (SSR), as an experimental probe;

[^0]4) prediction of KIEs in the enzymatic reaction of N-methyl tryptophan oxidase (MTOX) and the mechanistic interpretation of experimental data;
5) explanation of the stereoselectivity in Diels-Alder reactions using theoretical models.

The importance of these studies lies not only within the detailed findings of the experiments, but within the development of the mechanistic methodology used in the analysis. This methodology includes the development of new techniques for measuring product KIEs of an enzymatic reaction (with a large substrate) at natural abundance, calculations using density functional theory (DFT) for the prediction of isotope effects and other experimental variables, as well as for predictions on the limitations of the SSR.

Measurement of KIEs at Natural Abundance

KIEs have been used extensively as a mechanistic probe for a variety of organic, biological, and inorganic reactions. ${ }^{4-19}$ KIEs are defined as the difference in rates between two isotopomers and reflect changes in bonding at the transition state of the rate-determining step of a reaction as shown below. The difference in rates is caused by changes in the difference of the zero point energies (ZPE) between the ground state and transition state of a reaction, since the rate of a reaction is dependent upon the activation energy.

The ZPE is the minimum energy in a quantum one dimensional harmonic oscillator model and directly correlates with the vibrational frequency. Since the vibrational frequency (v) is directly related to the square root of the force constant (f) and
inversely proportional to the square root of the reduced mass (μ) as shown in equation 11, the differences in the vibrational frequencies of the isotopomers are determined by the differences in masses between the isotopes and the changes in the force constants:

$$
k=e^{-E a / k T}
$$

between the ground state and transition state of the reaction. Therefore, a change in the rate between isotopes (a KIE) indicates that a bonding change or significant geometric change has occurred at the transition state involving the position of isotopic substitution. Therefore, KIEs are a sensitive probe used to distinguish between several mechanistic possibilities in a reaction.

$$
\begin{equation*}
v=\frac{1}{2 \pi} \sqrt{\frac{f}{\mu}} \tag{1-1}
\end{equation*}
$$

Traditionally KIEs have been determined by measuring the difference in rates between synthetically labeled and unlabeled materials. The measurement of KIEs using synthetically labeled substrates is sometimes difficult or prohibitive since it requires the synthesis of materials labeled in specific positions. Additionally, ${ }^{13} \mathrm{C}$ KIEs have been determined at natural abundance using mass spectrometric analysis of CO_{2}, however,
this method is limited to labile carbonyls that can easily form $\mathrm{CO}_{2} \cdot{ }^{20}$ Consequently, Singleton et al have developed a method involving the analysis of ${ }^{13} \mathrm{C},{ }^{2} \mathrm{H}$, and ${ }^{17} \mathrm{O}$ KIEs at natural abundance using NMR methodology. ${ }^{11,16}$ The advantages of KIE measurements at natural abundance are:

- the material does not require synthetic labeling because of the natural abundance of different isotopomers in chemical materials;
- each peak corresponds to a specific position in the molecule and many isotope effects can be analyzed simultaneously;
- the "unlabeled" material does not interfere with the analysis.

Natural abundance measurements are a reflection of the competition between the isotopomers that occur naturally within the material. Since the lighter isotopomer will not always react faster, the starting material will become enhanced in the heavier isotopomer and the enhancement is measured by comparing reacted and unreacted materials. The enhancement (R/Ro) is related to the KIE by the following equation (1-2) which is dependent upon F , the fractional conversion of the reaction. ${ }^{5}$

$$
\begin{equation*}
K I E=\frac{\log \left(1-F_{1}\right)}{\log \left(1-F_{1}\right)\left(\frac{R}{R_{0}}\right)} \tag{1-2}
\end{equation*}
$$

A similar equation can be derived for measuring the KIEs of the product of a reaction as shown in equation 1-3.

$$
\begin{equation*}
K I E=\frac{\log \left(1-F_{1}\right)}{\log \left[1-\left(F_{1} \frac{R_{p}}{R_{0}}\right)\right]} \tag{1-3}
\end{equation*}
$$

The measurement of KIEs at natural abundance is an excellent method that has been applied in several organic and organometallic reactions, and more recently in an enzymatic reaction. ${ }^{6-15,21-24}$ However, this method does have some disadvantages including: the requirements of large amounts of materials (compared to scintillation counting or mass spectrometry), occasionally prohibitive reaction requirements (fractional conversion requirements, no side reactions), and the specific characteristics of the molecule in NMR spectroscopy (inseparable peaks, long relaxation times). Methods for addressing these difficulties will be specifically discussed in the measurement of KIEs for OSC in Chapter III.

Predicting KIEs

The interpretation of experimentally measured KIEs is often aided by the development of theoretical models used to quantitatively predict the experimental KIEs. Theoretical predictions of equilibrium isotope effects (EIEs) and KIEs are based upon the formulation of Bigeleisen and Mayer. ${ }^{25}$ The calculation of the KIE is represented by equation 1-4. The KIE is composed of the $\left(\frac{v_{1}^{\ddagger}}{v_{2}^{\ddagger}}\right)$ term which represents the product of vibrational frequencies for the ground state and transition state. The $\left[\left(s_{2} / s_{1}\right) f\right]$ represent the contributions from the rotational, vibrational and electronic partition functions to the KIE for the different isotopomers.

$$
\begin{equation*}
K I E_{T S T}=\frac{v_{1}^{\ddagger}}{v_{2}^{\ddagger}} \frac{\left(s_{2} / s_{1}\right) f_{G S}}{\left(s_{2} / s_{1}\right) f_{T S}} \tag{1-4}
\end{equation*}
$$

At the ground state $3 \mathrm{~N}-6$ (for non-linear molecules where $\mathrm{N}=$ the number of atoms) vibrational degrees of freedom must be taken into account as shown in equation $1-5$, conversely the equation for the transition state requires only $3 \mathrm{~N}-7$ because the motion along the reaction coordinate is excluded as shown in equation 1-6.

$$
\begin{gather*}
\left(s_{2} / s_{1}\right) f_{G S}=\prod_{i}^{3 N-6} \frac{v_{2 i}}{v_{1 i}} \frac{1-e^{-u_{i i}}}{1-e^{-u_{2 i}}} \frac{e^{u_{i i} / 2}}{e^{2_{2 i} / 2}} \tag{1-5}\\
\text { where } \rightarrow u_{i}=\frac{h v_{i}}{k T} \\
\left(s_{2} / s_{1}\right) f_{T S}=\prod_{i}^{3 N-7} \frac{v_{2 i}}{v_{1 i}} \frac{1-e^{-u_{1 i}}}{1-e^{-u_{2 i}}} \frac{e^{u_{i j} / 2}}{e^{u_{2 i} / 2}} \tag{1-6}
\end{gather*}
$$

These calculated KIEs represent the semi-classical KIE and do not take into account non-statistical effects such as tunneling, barrier recrossing, and variational transition state theory. Singleton as well as others have demonstrated the necessity for including a tunneling correction in the calculation of heavy atom isotope effects. ${ }^{11,15,26-28}$ Similar corrections can be used for hydrogen isotope effects, unless a large amount of tunneling is involved (represented by an unusually large KIE); then a more in depth analysis of the KIE is required. ${ }^{29-33}$ Several tunneling corrections are available including the Bell, Wigner, and infinite parabola corrections. ${ }^{34}$ Other non-statistical effects require a more intense theoretical treatment such as dynamic simulations; however, in most cases these effects are negligible.

The predictions of KIEs are derived from theoretical models of the lowest energy ground state of the molecule and the model of the transition state of the reaction. The FORTRAN program QUIVER developed by Saunders and Wolfsberg, is a useful script for extracting the necessary data from a theoretical frequency calculation in Gaussian used to calculate the theoretical KIE using the Bigeleisen equation. ${ }^{35}$

Theoretical Calculations

Theoretical models also aid in our understanding of the details of a chemical reaction, for example: sources of catalysis; reaction stereo and regioselectivities; and steric and electronic effects of a reaction. Several methodologies are currently available to the theoretical chemist. Some of the calculational methods available include: molecular mechanics, semi-empirical methods, density functional theory, ab initio methods, monte carlo simulations, RRKM theory, variational transition state theory, marcus theory, electron valence bond theory, and other more specific methods. An appropriate level of theory is determined depending upon the chemical system to be explored and the desired goal of the study. Density functional theory (DFT) has previously given excellent agreement between experimental and predicted KIEs. ${ }^{11,14,26,36}$ Therefore, DFT is the theoretical method used in all of the studies within this dissertation.

The perfect theoretical method would give an exact solution to the nonrelativistic Schrodinger equation. However, in systems with many electrons (many being more than H_{2}) an exact solution is unrealistic. Ab initio methods such as HartreeFock (HF) and Møller-Plesset (MP) theories include a term for electron exchange which
takes into account the interaction of an electron with other electrons in the system which is displayed in the electron correlation energy. The electronic correlation energy is defined as the difference between the actual energy of the system including relativistic effects and the calculated energy of the system. The more advanced levels of ab initio theory include a greater amount of electron correlation and more closely represents reality. An exact quantum mechanical result could theoretically be obtained with an inclusion of all possible electronic excited states (full configuration interaction) and an infinitely large number of orbitals (infinite basis set) placed upon the system. However, this is calculationally prohibitive. Another approach to correctly calculating the energy of a system is DFT.

In DFT, the energy of a molecule is determined as a functional of the electron density of the system rather than the interaction of electronic wave functions as in $a b$ initio. Within DFT several functionals have been developed to more correctly describe the energies of specific molecules. Theorists must consider the validity of a particular functional in the calculation of the desired system. The theoretical method that best describes the experimental results of a particular system, or similar systems, should be employed when determining which method and functional to employ. The following chapters employ a series of functionals and methods within DFT to describe a myriad of chemical reactions.

This dissertation includes a wide variety of experimental and theoretical methods to investigate the specific details of chemical reactions from organic, organometallic, and biological chemistry. This includes the largest system to date for the simultaneous
measurement of KIEs at natural abundance. Subsequent chapters involve the theoretical analysis of several reactions. Theory is used to develop models of the transition state and predict KIEs. In addition, theoretical calculations give insight into the specific details of the chemical reaction that determine selectivity and reactivity. Another theoretical analysis is used to predict the relationship between isotopomers for several EIEs and KIEs.

CHAPTER II

THE NORMAL RANGE FOR SECONDARY SWAIN-SCHAAD EXPONENTS

WITHOUT TUNNELING OR KINETIC COMPLEXITY*

An analysis is presented of the range of secondary Swain-Schaad exponents to be expected at $25^{\circ} \mathrm{C}$ in the absence of tunneling or kinetic complexity. From 15,996 sets of exact harmonic semi-classical equilibrium isotope effects for simple $\mathrm{C}-\mathrm{H} / \mathrm{D} / \mathrm{T}$ exchange reactions and 954 sets of exact harmonic semi-classical secondary H/D/T kinetic isotope effects for $\mathbf{C}-\mathrm{H}$ positions in simple organic reactions, the distribution of Swain-Schaad exponents versus magnitude of the isotope effect is determined. This distribution defines when a secondary Swain-Schaad exponent may be considered to implicate non-semi-classical behavior, revises the expected Swain-Schaad exponent for extrapolation of secondary isotope effects, and serves as a guide to the uncertainty in such extrapolations.

Introduction

Quantum mechanical tunneling affects the rates of barrier crossings in all chemical reactions, and there has been considerable interest in identifying reactions where the impact of tunneling is large. Tunneling is defined as a process where a particle of low molecular weight (such as an electron or proton) penetrates through a potential energy barrier, rather than the classical pathway of surmounting the energy

[^1]barrier. Tunneling is possible because of the wave-particle duality of property of particles as shown in the deBroglie wave equation 2-1.
\[

$$
\begin{equation*}
\lambda=\frac{h}{m v} \tag{2-1}
\end{equation*}
$$

\]

Therefore, particles with a small mass are more likely to display wavelike properties and tunnel through a barrier than heavier particles. Since the lighter atom hydrogen (hydrogen) has a higher probability of tunneling through the barrier than larger deuterium atom, the experimental consequence of tunneling is an increase in the H / D KIE. Several examples of large KIEs exist in both organic and enzymatic reactions and have been attributed to a significant amount of tunneling. ${ }^{37-39}$

Large differences in Arrhenius factors for different isotopomers have been attributed to tunneling. ${ }^{37-45}$ The Arrhenius equation is defined in equation 2-2.

$$
\begin{equation*}
k=A e^{-\frac{E_{a}}{R T}} \tag{2-2}
\end{equation*}
$$

A modified form of the Arrhenius equation is shown below and is often used to plot the \log of the rates of isotopes versus the inverse of the temperature as shown in equation 23.

$$
\begin{equation*}
\ln k=\left(\frac{-E_{a}}{R}\right)\left(\frac{1}{T}\right)+\ln (A) \tag{2-3}
\end{equation*}
$$

In an Arrhenius plot, the difference in the slopes of isotopomers relates to the difference in the energy of activation for the different isotopes for the reaction and the intercept is related to the pre-exponential Arrhenius factor. Many researchers have assumed that Arrhenius factors that greatly deviate from unity are directly related to the amount of
tunneling that occurs within the reaction, since the pre-exponential factor accounts for effects in the reaction that are not related to the enthalpic barrier. However, the relationship between the Arrhenius pre-exponential factor and tunneling is still unclear since several other factors can affect the factor including entropy, barrier recrossing, and dynamic effects.

Another important probe for tunneling involves the measurement of relative rates for protium versus deuterium versus tritium and comparison of these rates with semiclassical predictions. "Semi-classical" in this context includes the quantum effects on vibrations within conventional transition state theory, but does not include either tunneling or the effects of zero-point energy or barrier recrossing within variational transition state theory. Most often, an approximate treatment first described by Swain and Schaad is used as the measure of semi-classical expectations. ${ }^{46}$ For example, experimental KIEs would be expected to fit equation 2-5 with a Swain-Schaad exponent (SSE) of roughly 3.34 in the absence of tunneling. ${ }^{47}$ A larger SSE might be taken as evidence for substantial tunneling. ${ }^{48}$ Assuming semi-classical behavior, equations 2-4 and 2-5 are often used to extrapolate KIEs to different isotopes (e.g., estimation of $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}$ from $\left.\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right) .{ }^{49-57}$ SSEs are also often used to assess intrinsic KIEs and kinetic complexity in mechanisms. ${ }^{58-68}$

$$
\begin{align*}
& \left(\frac{k_{H}}{k_{T}}\right)=\left(\frac{k_{D}}{k_{T}}\right)^{S S E} \tag{2-4}\\
& \left(\frac{k_{H}}{k_{T}}\right)=\left(\frac{k_{H}}{k_{D}}\right)^{S S E^{\prime}} \tag{2-5}
\end{align*}
$$

The determination of SSEs for hydrogen atoms being transferred (1° SSEs) has been carried out for diverse reactions over the last forty years. ${ }^{69-72}$ A fair summary is that 1° SSEs are usually close to semi-classical expectations, even for reactions in which other observations suggest extensive tunneling. More recently, SSEs for hydrogen atoms not being transferred ($2^{\circ} \mathrm{SSEs}$) have become an often-used probe for tunneling, particularly in enzymatic reactions. ${ }^{73-80}$ The 2° SSEs vary from the Swain-Schaad expectation much more often than $1^{\circ} \mathrm{SSEs}$, so they are considered to be a more sensitive probe for tunneling.

The Swain-Schaad treatment involves greatly simplifying assumptions versus the full semi-classical theory of isotope effects, due to Bigeleisen and Mayer. ${ }^{81,25,82} \mathrm{~A}$ simplified version of the Bigeleisen equation is shown below in equation 2-6. The semiclassical KIE is related to the product of the frequencies and the vibrational and rotational partition functions at the ground state and transition state.

$$
\begin{equation*}
K I E_{T S T}=\frac{v_{1}^{\ddagger}}{v_{2}^{\ddagger}} \frac{\left(s_{2} / s_{1}\right) f_{G S}}{\left(s_{2} / s_{1}\right) f_{T S}} \tag{2-6}
\end{equation*}
$$

In the derivation of the Swain-Schaad relationship, some over simplifications of this equation ignore the partition function portion of the equation entirely. Additionally, the vibrational frequencies are simplified to a relationship between the masses of the two isotopomers and the force constants are assumed to be equal. The derivation of the Swain-Schaad relationship is shown below and the assumptions of the relationship discussed.

The rate of a reaction is dependent upon the activation energy for the reaction as shown in equation 2-7. The activation energy is related to the difference in zero point energies (equation 2-8) at the ground state and transition state of the reaction. Therefore, the rate of the reaction can be directly related to the frequency by equation 2-9. A KIE is defined as the ratio of rates for two different isotopomers, in this case hydrogen and tritium, and can be related to the differences in vibrational frequencies using equation 210). Additionally, the vibrational frequency is proportional to the square root of the force constant and inversely proportional the square root of the reduced mass as shown in equation 2-11. Substituting equation 2-11 into equation 2-10 results in equation 2-12. The Swain-Schaad assumption is that the difference in the force constants between isotopomers is negligible and the reduced mass is approximately equal to the average mass of the isotopes. These assumptions give equation 2-13. The Swain-Schaad relationship assumes that the rates of isotopomers are directly dependent only upon the ratio of the inverse square roots of the masses as shown in equation 2-14.

$$
\begin{gather*}
k=e^{-E a / k T} \tag{2-7}\\
Z P E=\left(n+\frac{1}{2}\right) h v \tag{2-8}\\
k=e^{\frac{-h\left(v^{*}-v\right)}{2 k T}} \tag{2-9}\\
\frac{k_{H}}{k_{T}}=e^{\frac{-h\left(v_{H}^{*}-V_{T}-V_{H}+v_{T}\right)}{2 k T}} \tag{2-10}\\
v=\frac{1}{2 \pi} \sqrt{\frac{f}{\mu}} \tag{2-11}
\end{gather*}
$$

$$
\begin{align*}
& \frac{k_{H}}{k_{T}}=E^{\left(\frac{1}{\sqrt{m_{H}}}-\frac{1}{\sqrt{m_{T}}}\right)} \tag{2-12}\\
& \text { where } \longrightarrow E=e^{\frac{-h\left(f_{y}^{*}+f_{z}^{*}-f_{x}-f_{y}-f_{z}\right)}{4 \pi k T}} \\
& \frac{k_{D}}{k_{T}}=E^{\left(\frac{1}{\sqrt{m_{D}}}-\frac{1}{\sqrt{m_{T}}}\right)} \tag{2-13}\\
& \frac{k_{H}}{k_{T}}={\frac{k_{D}}{k_{T}}}_{\left(\frac{1}{\frac{1}{\sqrt{m_{H}}}-\frac{1}{\sqrt{m_{D}}}}-\frac{1}{\sqrt{m_{T}}}\right.}^{1}
\end{align*}
$$

As previously mentioned Saunders corrected the relationship to include a factor for the reduced masses. Perhaps the most misleading part of the relationship is the ignorance of the well established portion of the Bigeleisen equation including the partition functions for rotation and vibration, this is related to the assumption that force constants are equivalent for isotopomers, and that a reduced mass factor will be similar for the culmination of all reactions.

Over 30 years ago, Stern and Vogel analyzed in detail the range of possible SSEs within the full theory. ${ }^{83}$ (See the following references for warnings regarding other aspects of the Swain-Schaad equation). ${ }^{84,85}$ They found that for small KIEs, SSEs can in fact vary from negative infinity to positive infinity. Their results also show clearly that there is no reliable expectation for the value of an SSE for a small or inverse isotope effect. Even for "reasonably large" isotope effects (defined as having $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}>2.7$), the

SSEs can fall in a broad range $\left(\mathrm{SSE}^{\prime}=1.33\right.$ to 1.58 for equation 2-5), and it was expected that deviations from this range should not be rare.

Given these conclusions, it may seem rather surprising that the Swain-Schaad relationship is used so commonly, or that it is used at all with small isotope effects, or that the modern literature contains consideration of a "semi-classical limit" for SSEs. ${ }^{86}$ However, Stern and Vogel had demonstrated only theoretical possibilities for the range of SSEs and not the likelihood of unusual SSEs. In fact, they emphasize that the SwainSchaad relationship should work well for large isotope effects. In addition, the expected SSE of about 3.34 for equation 2-4 has been often observed for large KIEs. For real reactions, it is quite uncertain how often the theoretical possibilities for deviation from the Swain-Schaad relationship will materialize.

Results and Discussion

We describe here an analysis of the range of 2° SSEs that may be realistically expected at $25^{\circ} \mathrm{C}$ in the absence of tunneling or kinetic complexity. The results define when a 2° SSE may be considered to implicate tunneling or kinetic complexity, revise the SSEs for extrapolation of $2^{\circ} \mathrm{KIEs}$, and serve as a guide to the uncertainty in such extrapolations.

To evaluate the range of 2° SSEs to be expected semi-classically, 15,996 sets of exact harmonic semi-classical equilibrium isotope effects (EIEs) were calculated for simple $\mathrm{C}-\mathrm{H} / \mathrm{D} / \mathrm{T}$ exchange reactions and 954 sets of exact harmonic semi-classical 2° H/D/T KIEs were calculated for $\mathrm{C}-\mathrm{H}$ positions in simple organic reactions, shown in Appendix A. EIEs were calculated for all possible C-H/D/T single-position exchange
reactions for methane, ethene, ethyne, ethane, methanimine, ethanol, formaldehyde, HCN, methanol, methylamine, acetone, acetaldehyde, propyne, and 26 additional neutral molecules, $\mathrm{H}_{3} \mathrm{CO}^{-}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHO}^{-}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{O}^{-}, \mathrm{H}_{2} \mathrm{C}=\mathrm{OH}^{+}, \mathrm{H}_{3} \mathrm{CCH}=\mathrm{OH}^{+}$, allyl cation, 2-propyl cation, $\mathrm{H}_{3} \mathrm{C} \bullet \mathrm{ClH}_{2} \mathrm{C}^{\bullet}, \mathrm{FH}_{2} \mathrm{C}^{\bullet}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CHO} \bullet$, and 9 additional reactive intermediates, with a total of 127 substitution positions. KIEs were based on singleposition isotopic substitutions in 20 ene reactions, 9 diimide reductions, 11 hydride transfer reactions, 24 radical reactions, 5 carbene reactions, 12 electrocyclic reactions, a sigmatropic reaction, a Diels-Alder reaction, $8 \mathrm{~S}_{\mathrm{N}} 2$ reactions and the retro-reactions for all non-symmetrical cases. Complete reaction lists are given in Supporting Information. Calculations used the program QUIVER. ${ }^{35}$ Frequencies were scaled by 0.9614 . This was accomplished by first optimizing diverse ground-state and transition structures in B3LYP/6-31G* calculations, then calculating the isotope effects at $25^{\circ} \mathrm{C}$ from the harmonic frequencies. SSEs were then calculated for each set of isotope effects. The results are summarized in Figure 2-1. The B3LYP/6-31G* calculations here have previously led to accurate predictions of experimental KIEs. ${ }^{26,11,14,36}$ Limited studies at other theoretical levels (HF/6-31G* and B3LYP/6-311+G**) gave a similar distribution of SSEs.

Figure 2-1. Distribution of SSEs for equation 2-4 versus kH/kT based on exact harmonic semi-classical isotope effects. The blue dots are based on 15,996 sets of EIEs, and the red open circles are based on 954 sets of KIEs. The limited domain and range were chosen for clarity - the full distribution is shown in the Appendix.

KIEs are harder to calculate in large numbers than EIEs, so we have far fewer 2° SSEs based on KIEs. Within semi-classical theory, 2° EIEs and $2^{\circ} \mathrm{KIEs}$ are quite similar: EIEs are derived from the $3 \mathrm{~N}-6$ vibrational frequencies while KIEs are derived from $3 \mathrm{~N}-7$ vibrations plus a temperature-independent contribution from the imaginary frequency. This imaginary-frequency factor is usually a minor contributor to significant $2^{\circ} \mathrm{H} / \mathrm{D} / \mathrm{T}$ KIEs, and its effect on the average of SSEs for $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}>1.1$ and $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}<0.9$ was <0.01. From this and the similarity of distributions for 2° SSEs based on KIEs versus EIEs, we expect that the distribution of 2° SSEs based on EIEs should adequately represent semi-classical 2° KIEs.

For the purpose of analysis, we will assume that the results of figure 2-1 are statistically representative of the universe of organic reactions. This assumption leads to three conclusions: 1.) In the range $0.9<\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}<1.1$, the Swain-Schaad relationship is of no value. SSEs as low as -296 and as high as 2100 were observed in this range. There is no semi-classical limit for SSEs without the context of the magnitude of the isotope effect. 2.) For $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}<0.9$ and $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}>1.1$, the mean and median $2^{\circ} \mathrm{SSE}$ is 3.72. This corresponds to 1.368 for SSE^{\prime} in equation 2-5 [SSE' $\left.=\mathrm{SSE} /(\mathrm{SSE}-1)\right]$. The use of the conventional values for SSE and SSE' to extrapolate 2° KIEs should be discontinued, and conclusions based on these values may need to be reevaluated. The original values came from reduced masses for $\mathrm{C}-\mathrm{H}$ stretching frequencies, ${ }^{87}$ ignoring bending vibrations, and it should not be surprising that they do not apply to 2° KIEs. 3.) For $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}>1.1$, an approximate 95% confidence interval is defined by the lines $\mathrm{Max}=3.66$ $+0.24 /\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}-1\right)$ and $\operatorname{Min}=3.40-0.13 /\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}-1\right)$. For $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}<0.9$, the approximate 95%
confidence lines are: $\operatorname{Max}=3.55+0.2 /\left(1-\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}\right)$ and $\operatorname{Min}=3.52-0.12 /\left(1-\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}\right)$. Experimental 2° SSEs outside of this range may be sufficiently unusual to be considered as evidence for non-semi-classical behavior or kinetic complexity, but SSEs inside this range are not. Extrapolations of 2° KIEs should take into account the uncertainty.

Conclusions

Stern and Vogel warned of the variability of SSEs. ${ }^{83}$ The results here amplify that warning, while providing a framework for the interpretation of $2^{\circ} \mathrm{SSEs}$ and the extrapolation of KIEs with regard to the possible error. Ultimately, however, it should be recognized that the Swain-Schaad treatment is an approximation that should be applied only with proper caution. In many cases, a detailed theoretical analysis of the SSEs to be expected for the particular system of interest would be most appropriate.

CHAPTER III

KINETIC ISOTOPE EFFECT STUDIES ON THE ENZYMATIC CYCLIZATION OF OXIDOSQUALENE

Introduction

We have measured the ${ }^{13} \mathrm{C}$ KIEs for the reaction of oxidosqualene cyclase (OSC), which involves the extraordinary conversion of (3s)-2,3-oxidosqualene 3-1 to lanosterol 3-2, resulting in the concurrent formation of four rings and six stereocenters. Our goal was to study this system using product KIEs at natural abundance on all 30 carbons of lanosterol simultaneously, to gain insight into the nature of the cyclization.

A fascinating and fundamental question in this reaction is the degree to which the polyclization occurs in a concerted versus stepwise fashion. In order to obtain the samples needed for measurements on this complex enzymatic case, we have optimized reaction conditions by modifying concentrations, solubility, pH , temperature, lysis technique, and reactions times to give 100% conversion of (3S)-2,3-oxidosqualene to lanosterol. In addition, we have developed unique NMR conditions to address the spectral complexity of this molecule by testing several lanosterol derivatives, solvents, temperatures, concentrations, and methods. This is the largest number of isotope effects
ever measured simultaneously for one molecule. From the isotope effects, we discuss the nature of the polycyclization mechanism.

Background. The intricate ring structure of cholesterol (ergosterol in yeast) is formed biosynthetically by a single enzyme, oxidosqualene cyclase. This enzyme is intriguing biologically because it is a regulatory point for steroid synthesis. However, our interest is based upon the unique chemical transformation that has fascinated scientists for decades. The mechanism of oxidosqualene cyclase has engaged the interest of researchers for the last 50 years, and over 500 papers have been published about the cyclization. ${ }^{88,89}$ The intriguing chemistry of oxidosqualene cyclase has triggered investigations into every aspect of the enzyme's mechanism using tools from microbiology, synthetic chemistry, crystallography, and computational chemistry.

Early studies began with the research of Woodward and Bloch. ${ }^{90-92}$ Labeled isoprene (3-3) was fed to yeast, and the labeled lanosterol product 3-4 revealed the fate of the labels from the small molecules, establishing the cyclization structure.

This study is well accepted and established the basic information about the folding of the squalene. Prestwich and Corey later established that oxidosqualene folds
into a chair-boat-chair structure as shown in 3-5, and that correctly folded substrate is essential for lanosterol formation. ${ }^{93-95}$

Subsequently several researchers identified the subsequent rearrangement which occurs by a deprotonation, several hydride shifts, and a methyl shift of the protosterol cation 3-5 to give lanosterol as shown in structure 3-6. ${ }^{91,92,96}$

3-5

3-6

At this point it was unclear whether the water was added to the squalene by the enzyme (pathway A) or if an oxygen was present in the precursor to lanosterol (pathway B). The Corey and van Tamelen research groups independently established that oxidosqualene is the precursor for lanosterol (pathway B). However, the mechanism of the subsequent cyclization is still not well understood.

Further studies on the mechanism of cyclization involved the synthesis of substrate mimics that reveal information about the cyclization step. ${ }^{93-113}$ The most widely accepted mechanism was provided by Corey and is based on substrate mimics that give the 6-6-5 tricyclic ring structures as products. ${ }^{95,101,107,113}$

trans-syn-trans

trans-anti-trans

trans-syn-trans

Corey proposed a cationic 6-6-5 intermediate ring structure 3-7 followed by ring expansion 3-8 and subsequent ring closure to give the 6-6-6-5 lanosterol ring system 3-9.

In addition, nonenzymatic studies have helped chemists develop mechanistic hypotheses for the enzymatic reaction. ${ }^{110,111}$ More recently researchers have used site directed mutagenesis on the terpene cyclases and have found several products that allude to a stepwise mechanism. ${ }^{114,115}$ Matsuda discovered the monocycle achilleol A (3-10) with mutations of oxidosqualene cyclase at V454A or V454G and proposed a cationic stepwise pathway for cyclization. ${ }^{14}$

3-10

Density functional theory calculations by Hess support the mechanism of Corey and suggest concerted ring formation to the 6-6-5 intermediate ring structure, followed by concerted C ring expansion with concurrent D ring formation. ${ }^{116-118}$ On the other hand, a recent study by Gao performing a quantum mechanics/molecular mechanics
calculation of the entire enzymatic system of squalene cyclase has shown the ring expansion step proposed by Corey is energetically unfavorable. ${ }^{19,120}$

Finally, the crystal structure of the enzyme has recently been solved by a group of researchers in Switzerland. ${ }^{121}$ The structure shows that aromatic residues in the active site lie in close proximity to stabilize the positive charges on intermediate structures and the crystallographers support the Corey stepwise mechanism.

These mechanistic studies are diverse and contradictory to one another. Regardless of the numerous studies, the literature lacks definitive evidence for details of the reaction mechanism.

Plausible Mechanisms for OSC. Shown below in figure 3-1 is a schematic of the possible mechanistic pathways available to OSC. The yellow circles show the positions that KIEs would be expected for each mechanistic pathway. A stepwise ring closure to give the closed A ring carbocation would give KIEs at four possible positions within the A ring. The KIE at the carbocation center and the carbon with the hydroxyl attached may be slightly smaller, theoretical predictions would aid in the interpretation. On the other hand, a concerted mechanism of the simultaneous ring closure of the ABCD rings would KIEs through the entire core of the ring system. The possible mechanisms will be discussed further in the analysis of the measured KIEs.

lanosterol

Figure 3-1. Possible mechanisms for the cyclization of oxidosqualene by OSC. The yellow circles show the positions that should display KIEs in each particular mechanism.

Results and Discussion

We have studied the cyclization of oxidosqualene from Saccharomyces cerviscae by measuring the product kinetic isotope effects at natural abundance. The product KIEs must be measured in this system, since the measurement of starting material KIEs is not viable because 1) the starting material is racemic and the isolation of pure starting material, (3S)-2,3-oxidosqualene, would be difficult and 2) the ${ }^{13} \mathrm{C}$ peaks of the starting
material overlap in the spectra making isotopic analysis of each individual carbon prohibitive. Therefore, we have developed a new NMR methodology to handle this complicated case, which allows the determination of the isotope effects on all 30 carbons of lanosterone, a derivative of lanosterol, simultaneously. ${ }^{16}$ The process for studying the KIEs involved the synthesis of (+)-2,3-oxidosqualene; optimization of reaction conditions; isolation of lanosterol; optimization of NMR conditions and data collection; and KIE analysis.

Optimization of Experimental Conditions. Racemic 2,3-oxidosqualene was synthesized from squalene based on the methodology of Scott. ${ }^{122}$ This was accomplished in large scale batches of several 100 gram reactions that were purified and combined into a single batch, resulting in approximately $25-40 \%$ yields of isolated \pm oxidosqualene. Low yields were due to the insolubility of the squalene and the formation of several side products from the bromohydrin reaction. Therefore, extensive time was needed just in preparation of starting materials.

The measurement of product (rather than starting material) KIEs adds difficulty to the enzymatic experimental procedure, since the measurements require a large amount of starting material to be taken to complete conversion by the enzyme. The initial experimental conditions followed the procedure of Scott et a.l and were initially 0.7%

Triton X-100, 100 mM phosphate buffer, $\mathrm{pH} 6.2,1 \mathrm{mg} / \mathrm{ml}$ oxidosqualene, at $37{ }^{\circ} \mathrm{C} .{ }^{123}$ The reaction conversion was determined by the amount of (3R)-2,3-oxidosqualene remaining in the reaction mixture determined by NMR chiral shift studies in d_{6}-benzene using $\mathrm{Eu}(\mathrm{hfc})_{2}$. Initial reactions gave about approximately $60-85 \%$ conversion of the oxidosqualene to lanosterol product. The enzymatic reaction was initially optimized by changing the concentration of Triton X-100 (fig 3-2), concentration of \pm oxidosqualene (fig 3-3), reaction time (fig 3-4), and temperature (fig 3-5) and leaving all other conditions similar to literature procedure, as shown below.

Figure 3-2. Reactions of oxidosqualene cyclase performed with varying amounts of Triton X-100. The $\%$ conversion of (3S)-2,3-oxidosqualene to lanosterol is plotted on the y -axis and the $\%$ Triton X -100 is plotted on the x -axis.

Figure 3-3. Reactions of oxidosqualene cyclase performed with varying amounts of oxidosqualene concentrations. The $\%$ conversion of (3S)-2,3-oxidosqualene to lanosterol is plotted on the y-axis and the concentration of oxidosqualene $(\mathrm{mg} / \mathrm{ml})$ is plotted on the x -axis.

Figure 3-4. Reactions of oxidosqualene cyclase performed with varying reaction times in hours. The \% conversion of (3S)-2,3-oxidosqualene to lanosterol is plotted on the y axis and the reaction times (hours) is plotted on the x -axis.

Figure 3-5. Reactions of oxidosqualene cyclase performed with varying reaction times (hours) and temperatures. The \% conversion of (3S)-2,3-oxidosqualene to lanosterol is plotted on the y-axis and the reaction times (hours) is plotted on the x-axis.

The best conditions found were 100% reaction completion on 100 mgs of \pm oxidosqualene at $.7 \%$ Triton $\mathrm{X}-100,1 \mathrm{mg} / \mathrm{ml} \pm$ oxidosqualene, $37{ }^{\circ} \mathrm{C}, 24$ hour reaction time, 50 minutes lysis time, and 30 g Fleishman's bakers yeast. Consequently, under these optimized conditions, regardless of the amount of yeast added, the maximum amount of substrate that could undergo complete conversion was 100 mgs of \pm oxidosqualene, which is not enough material for ${ }^{13} \mathrm{C}$ NMR isotopic analysis. The inconsistency in the data listed in figures 3-2 to 3-5 for reaction conversions led us to believe that a systematic error existed within the current procedure.

We hypothesized that the solubility of the oxidosqualene may be a problem, since the reaction did not appear homogenous. In addition, we did not have a clear way of measuring the amount of active enzyme that was being added to the reaction since we were adding crude lysate from the cell extracts. A simple NMR experiment in $\mathrm{D}_{2} \mathrm{O}$ showed that only 19% of the \pm oxidosqualene was soluble using the current set of conditions (see experimental section for details). To further study the optimization of conditions several attempts were made to increase the solubility of oxidosqualene in the reaction. A Potter-Elvehjem homogenizer was initially used, but did not seem to improve solubility much. A sonicator was then used to homogenize the reaction mixture.

An NMR experiment in $\mathrm{D}_{2} \mathrm{O}$ using sonication and increasing the Triton $\mathrm{X}-100$ ten times displayed $100 \% \pm$ oxidosqualene solubility, even over an extended period of time. These new conditions increased the reactivity greatly, resulting in $\sim 80-85 \%$ reaction completion on 2 g of \pm oxidosqualene at $.7 \%$ Triton $\mathrm{X}-100,1 \mathrm{mg} / \mathrm{ml}$ \pm oxidosqualene, $37^{\circ} \mathrm{C}, 24$ hour reaction time, 50 minutes lysis time, and 452 g of Fleishman's bakers yeast (the amount of Triton X-100 was not increased because previous experiments indicate that greater that excess of the surfactant results in enzyme inhibition), ${ }^{123}$

Large scale reactions under these conditions exhibited only $\sim 65 \%$ conversion at 3 hours and stopped reacting after approximately 12 hours, extended reaction times for several days did not increase the extent of the reaction. Increasing the amount of yeast above 452 grams did not increase the reaction conversion, but actually decreased the
reactivity (probably due to interference from all of the excess materials in the lysate). Using the new procedure for solubilizing the oxidosqualene, 50 mg test reactions were performed to optimize the temperature of the reaction. Reactions at $37^{\circ} \mathrm{C}$ gave conversions of 100% in duplicate and $25^{\circ} \mathrm{C}$ gave 68% and 96%. An increase in the Triton X-100 to 0.1% gave 96% conversion of $2.0 \mathrm{~g} \pm$ oxidosqualene to lanosterol. However, the reaction was erratic and high conversions were difficult to reproduce. The extent of conversion ranged from $\sim 60-96 \%$ using similar conditions each time.

To further optimize the reaction, the type of cell lysis was studied to maximize the amount of active enzyme being added to the reaction. The initial method used to lyse the yeast cells was continuous sonication of the cell lysate. ${ }^{123}$ The inability of the sonication method to produce enough enzyme for complete conversion of the oxidosqualene in a consistent manner, is probably due to the heat generated from the long amount of time needed to lyse such a large batch of yeast. This probably causes degradation of the oxidosqualene cyclase enzyme. This is consistent with other studies that show protein degradation increases with long sonication times in yeast lysis. ${ }^{124}$ However, sonication is a quick and efficient method for the lysis of small batches of yeast required in the microscale conversion of oxidosqualene to lanosterol.

A series of lysis methods were screened on small scale and included chemical autolysis, freezing, mechanical grinding, french pressing, enzymatic lysis, and vortexing with glass beads (see experimental section for details). Chemical autolysis, freezing, mechanical grinding of the dry yeast before solubilizing, and enzymatic lysis with lyticase (Sigma-Aldrich Chemical Company), gave little or no conversion of the
substrate to lanosterol, despite a series of attempts. The French press method increased the conversion of oxidosqualene to 100% conversion, however, this method was limited by the small amount of yeast that could be lysed in a batch, which was not sufficient for the conversion of the large amount of \pm oxidosqualene needed for isotopic analysis. Finally, the mechanical method of beating the yeast with glass beads $(.5 \mathrm{~mm})$ in a bead beater (Biospec) gave excellent results on a batch of yeast for a large scale reaction, and the conversion of oxidosqualene increased to $>98 \%$.

However, throughout the study of oxidosqualene cyclase the most problematic portion was the lysis of the yeast. The enzyme activity was very sensitive to temperature and the amount of time required for lysis:

Figure 3-6. The optimal reaction conditions for the reaction of OSC for large scale reaction on a 1 L scale. Conditions are $2 \mathrm{mg} / \mathrm{mL} \pm$ oxidosqualene, 1% Triton X-100, 452 grams of dry yeast, at $37^{\circ} \mathrm{C}$, at $\mathrm{pH}=6.2$, under anaerobic conditions.

Lysates with a pH over 6.1 were not used because these lysates resulted in poor activity, probably resulting from poor lysis exhibited in the lack of acid contributed from the breakage of the yeast cell wall. Additionally, batches that seemed to have a good lysis would sometimes give little or no conversion of the oxidosqualene, destroying valuable
starting material as a result of a "bad batch" of yeast. (This was hypothesized from discussions with Dr. Williams, based upon previous studies in the Scott lab).

The optimal reaction conditions are shown below in figure 3-6. (See the experimental section for specific details of the reaction conditions) Further attempts to increase the scale of the reaction failed. Reactions on a 3.0, 3.5, and 4.0 gram scale of \pm oxidosqualene never exceeded 90% conversion regardless of the amount of yeast added to the reaction.

Optimization of NMR Conditions. The next step was to optimize the conditions for NMR analysis of the product lanosterol. This involved the synthesis of derivatives to give optimal sample solubility and the best separation of peaks in the ${ }^{13} \mathrm{C}$ spectra. The derivatives of lanosteryl acetate 3-11, lanosteryl triflouroacetate 3-12, and lanosterone 3-13 were all synthesized and tested for solubility and NMR properties as described in the experimental section. For each derivative of lanosterol the solubility was tested at various temperatures. The ${ }^{13} \mathrm{C}$ spectra were analyzed for peak separation in a series of solvents including $\mathrm{CDCl}_{3}, \mathrm{~d}_{6}$-benzene, d_{8}-THF, d_{8}-toluene, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and $\mathrm{CD}_{3} \mathrm{OD}$:

3-11

3-12

3-13

Ketone 3-13 displayed the best solubility in a series of solvents and each of the 30 carbon peaks resolved in the ${ }^{13} \mathrm{C}$ NMR spectra.

Initially three samples were oxidized with pyridinium chlorochromate (PCC) according to the procedure in the experimental section. NMR samples were prepared using 400 mgs of lanosterone in CDCl_{3}. ${ }^{13} \mathrm{C}$ NMR analysis indicated several small impurity peaks in the spectra. The impurity could be a side product from the oxidation or could result from an impure lanosterol sample from the yeast reaction. An impure sample from the yeast reaction could be a result of side product formation in the enzymatic reaction or impurities from the lysate. Even though the ${ }^{13} \mathrm{C}$ NMR for lanosterol appeared pure, the ketone is much more concentrated and side products would become visible in the NMR spectra. A likely impurity could be ergosterone 3-16, which is the oxidation product of ergosterol 3-15, a sterol present in large quantities in yeast lysate.

Attempts to remove the impurity by silica gel chromatography were unsuccessful, this was not surprising since only one spot was visible by TLC in a series of solvent systems. A series of recrystallizations from pentanes, hexanes, methanol, methanol/water, acetone, and acetone/water were also unsuccessful in removing the
impurity. Tandem gas chromatrography/mass spectrometry (GC/MS) indicated a 4.4% impurity $\left(m / z\left[\mathrm{M}^{+}\right] 422\right)$ that was 2 mass units less than lanosterone $\left(\mathrm{m} / \mathrm{z}\left[\mathrm{M}^{+}\right] 424\right)$. The mass spec data eliminated the possibility of ergosterol (mass 396.7) as the impurity. We suspected that the lanosterone had formed a triene derivative during the PCC oxidation, which was also consistent with ${ }^{13} \mathrm{C}$ NMR data that displayed six peaks in the alkene region of the spectra. We used silver nitrate impregnated and reverse phase TLC plates to see if we could separate the material. Silver nitrate impregnated silica gel is known to separate sterols according to the number of double bonds in the molecule. ${ }^{125}$ PCC oxidized lanosterone displays two distinct spots on silver nitrate TLC in 7:3 hexanes/toluene. However, attempts to separate large quantities of the lanosterone on silver impregnated silica gel columns were unsuccessful. Separation of the mixture on reverse phase TLC was unsuccessful in a series of solvent systems. Next, we thought that perhaps the impurity would selectively react and then we could separate the product from lanosterone using chromatography. Tetracyanoethylene would react in a DielsAlder reaction if the impurity were an s-cis-conjugated diene, if the diene was an s-trans-diene it could perhaps react in an ene reaction. ${ }^{126}$ Unfortunately, even excesses of the reagent did not cause the transformation to occur (as described in the experimental section). In conclusion, initial attempts by recrystallization, chromatographic techniques, and chemical reactivity were unsuccessful in removing the impurity.

Several triene derivatives of lanosterone could exist. Some possibilities are shown below, and represent only some of the possible isomers. Trienes that involve double bond rearrangement or migrations have not been included, but were considered.

3-17

3-20

3-18

3-21

3-19

3-22

Most of these isomers could be eliminated based upon the structure or spectroscopic data of the ketones. For example, 3-21 is not a likely possibility because the proton NMR for the impurity displays two doublets for alkene peaks at $\delta 5.4(J=5.6$ $\mathrm{Hz})$ and $\delta 5.5(J=6.5 \mathrm{~Hz}) . \mathbf{3 - 1 9}$ is unlikely because the proton NMR of the impurity contains a doublet of triplets at $\delta 2.7 \mathrm{ppm}$ for the diasteriomeric methylene hydrogens α to the ketone. 3-20 is an unlikely chemical transformation, but could not be ruled out. 322 is an unattractive possibility because the mass spec pattern for the impurity exhibits an intense peak at 111 , representing the side chain with only one double bond. However, compound \mathbf{A} is quite likely based upon ${ }^{1} \mathrm{H}$ NMR and mass spectral data. We assumed that the structure of the impurity at least resembled compound A, giving similar
spectral properties, and was probably a triene that had a double bond on the side chain and a cyclic conjugated diene system.

In order to remove the impurity, we decided to characterize the compound. However, this is difficult since the impurity could not be isolated and constitutes only a small portion of the reaction mixture. An extensive literature search revealed that a possible side product from oxidation of lanosterol could be agnosterone 3-23.

Analysis by UV spectroscopy of an impure mixture of the PCC oxidation products of lanosterol displays an intense peak at $\lambda=244 \mathrm{~nm}$, characteristic of the diene system of agnosterol. ${ }^{125}$ Infrared analysis of the ketone mixture showed the expected peak at $1736 \mathrm{~cm}^{-1}$ for the ketone of lanosterone, however the spectrum did not provide information about the nature of the impurity. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis of the impure mixture revealed small impurity peaks that were consistent with reported values for agnosterone. ${ }^{127}$

The solubility of the lanosterone was tested in a series of solvents to determine the best solvent system for recrystallization and NMR sample preparation. Solubility tests revealed that lanosterone was soluble in diethyl ether, THF, and pyridine; slightly
soluble in chloroform, benzene, acetone, cyclohexane, 1,4 dioxane, methylcyclohexane, dimsethyl formamide, and methylene chloride; and insoluble in methanol, ethanol, acetic acid, and diglyme. Several more attempts were made at recrystallization since we now knew the structure of the impurity. Recrystallizations were performed in a series of benzene/methanol mixed solvent systems, chloroform/methanol mixed systems, methanol, heptanes, and cold recrystallizations from ether. These recrystallizations were unsuccessful in removing the impurity. Another attempt was made at selectively reacting the impurity in the mixture and then removing the derivative using chromatography. The reaction mixture was treated with N-phenyl triazoline dione which should give the ene product more readily with the conjugated system than the corresponding lanosterone (see experimental section for details). However, ${ }^{1} \mathrm{H}$ NMR of the products indicated that reaction occured solely with the double bond on the side chain of the sterols and not with the cyclic double bonds within the ring system. Therefore, all attempts to remove the impurity from the lanosterone were unsuccessful.

We then decided to synthesize the agnosterone and dope the samples evenly with impurity to measure the ${ }^{13} \mathrm{C}$ isotope effects. We synthesized agnosterol according to literature procedures and then oxidized with PCC. ${ }^{128}$ The impurities of all samples were doped to 5\% agnosterone/lanosterone according to ${ }^{1} \mathrm{H}$ NMR integrations of the ketones, on reactions taken to 98,35 , and 27% conversion of the (S)-2,3-oxidosqualene to lanosterol, and measurements were made according to the procedures in the experimental section for runs 1-3.

Our next goal was to obtain data sets on samples that did not contain any impurities in the lanosterone. Another set of reactions gave 99, 100, 15, and 20\% conversions, these were run under the same reactions as previously, except an N_{2} atmosphere was maintained throughout the reaction to prevent the formation of any side products. Lanosterol from one of the reactions that had been taken to completion was purified and analyzed for any sign of impurity using GC/MS, NMR, and UV. Only a slight impurity at $\lambda=290$ was visible in the UV spectra, which was probably ergosterol from the yeast lysate. The sample was purified further with chromatography until analysis indicated pure lanosterol. A test reaction of 20 mgs was oxidized with a minimal amount of PCC. Analysis of the purified lanosterone indicated the presence of 4% agnosterone impurity.

Since reaction of the ketone was prone to impurity, we explored the possibility of acquiring data sets directly on the lanosterol. A series of solvents, temperatures, and concentrations of lanosterol were tested for the desired amount of signal in the ${ }^{13} \mathrm{C}$ spectra to give reproducibility in the integration of the peaks. Regardless of the conditions, the signal was much too low to give reproducibility in the peak integrations.

A test reaction of 20 mgs of lanosterol was submitted to the Swern oxidation conditions, the product lanosterone did not show any signs of the agnosterone impurity by UV or ${ }^{1} \mathrm{H}$ NMR, however, the yield was only 40% :

Several test reactions were performed to optimize the oxidation of lanosterol in the Swern conditions. The main complication of the reaction is the insolubility of lanosterol in the methylene chloride at the temperature $\left(-78^{\circ} \mathrm{C}\right)$ required for the Swern oxidation. Reactions were tested using different concentrations of materials and at different temperatures. The final conditions are reported in the experimental section and changes from the literature procedure involved a decrease in the concentration of the lanosterol, to improve solubility; an increase in the temperature to $-50^{\circ} \mathrm{C}$; and an increase in the amount of oxalyl chloride and DMSO. Oxidation of two of the samples were successful, however, the oxidation of the other two reaction samples were unsuccessful and destroyed the lanosterol in the process. Data sets were collected on the samples of $>99 \%$ and 20% conversions according to the procedure in the experimental section for reactions 4 and 5 .

Since two of the previous samples had been ruined by the Swern oxidation reaction, we sought another method for oxidation. A series of oxidation methods were tested including PCC on alumina, PCC in sodium acetate, Jones, Collins, and the ParikhDoering (see experimental section for procedures and reaction details). All of the chromium oxidations gave agnosterone side product, even when buffered. The Parikh-

Doering conditions resulted in very low conversions of the lanosterol to the ketone. Therefore, to date the Swern oxidation is the best method we have found for the oxidation of lanosterol to lanosterone, with no inseparable side product formation, however the reaction is prone to low yields with destruction of the starting material.

In order to acquire a second independent data set on pure lanosterone, the preparation of several other samples have been attempted. Three more samples of lanosterol were successfully run to 100 and 31% conversion of oxidosqualene to product. Unfortunately, the Swern oxidations were too low yielding to provide samples that could be analyzed. Nine other oxidosqualene cyclase reactions resulted in conversions of slightly less than 100% conversion to product (ranged from 92-96\%) of the starting material to product, insufficient for KIE study. In these studies starting materials were often wasted by incomplete reactions or poor oxidations. The preparation of samples is very time consuming. This requires large amounts of starting materials that take several months to synthesize and purify. This is magnified by the difficulty to oxidize the lanosterol in high yields without any side product formation and by the random error of poor batches of yeast.

KIE Measurements. Two sets of KIE measurements were collected for independent reactions of OSC. However, one of the sets was contaminated with the agnosterone impurity and must be disregarded. The KIEs predicted from the second set of samples is shown below in figure 3-7, and the details for the analysis are listed in the experimental section of this text.

The measurements display KIEs throughout the core of the ring system, suggesting a concerted type ring ABC closure as demonstrated in figure 3-7. However, this result must be verified by the acquisition of data on a second set of data of independent reactions. KIEs are displayed on a methyl group in the A ring and a methylene carbon in the C ring, an enhancement is not expected in these positions and this is probably an artifact of an impurity within the 100% conversion sample. Also a number of inverse KIEs were apparent in the analysis and the interpretation of these is not well understood from a qualitative analysis.

Measured KIE for the reaction are also slightly lower than might be expected ring closing process, which might be due to partial rate-limiting binding of the substrate. Reaction conditions at a higher pH might cause the chemistry step to become more ratelimiting and unmask the KIE for the cyclization reaction. Also, the importance of extremely clean sample for KIE measurements at natural abundance on large molecules should be emphasized and analytical techniques for purification should be integrated into the sample preparation. Overall, a method was developed for the measurement of 30 simultaneous ${ }^{13} \mathrm{C}$ KIEs with high precision.

Conclusions

The reaction of OSC was optimized for reaction conditions suitable for the measurement of product KIEs using NMR methodology. A method was developed for measuring KIEs on a large 30 carbon system successfully, with excellent precision in the measurement. One set of KIEs was analyzed and suggests a concerted ABC ring closure.

Figure 3-7. KIE measurements for the reaction of oxidosqualene cyclase. The standard deviations are calculated from a set of eight independent measurements for the partial conversion reaction (20%) and ten measurements for the 100% conversion reaction.

CHAPTER IV

STUDIES ON THE MECHANISM OF THE SHARPLESS EPOXIDATION - ORIGIN OF LIGAND ACCELERATED CATALYSIS

Introduction

The Sharpless asymmetric epoxidation (AE) was the first general, highly enantioselective, functionalizing reaction in asymmetric catalysis. ${ }^{129-131}$ There has been extensive investigation of the AE reaction, and ideas derived from these studies, particularly the concept of ligand-accelerated catalysis (LAC), have been of substantial importance in rational approaches to asymmetric catalysis in general. ${ }^{132}$ The idea of ligand-accelerated catalysis is that in asymmetric reactions catalyzed by chiral metal complexes, the overall enantioselectivity obtained depends not only on the enantioselectivity engendered by a chiral ligand but also on the competition between the desired catalysis and that by non-ligated achiral catalysts. The task of achieving high enantioselectivity is thus simplified when the coordination of a ligand increases catalytic activity. The understanding of the nature of the ligand-accelerated catalysis in a reaction depends on a detailed knowledge of the mechanism including the transition state for the selectivity-determining step. In complex catalytic reactions, this knowledge may be elusive - it can be difficult enough to identify the active catalyst. In the AE reaction considerable research has succeeded in establishing the stoichiometry and basic structure of the active catalyst, but proposals for the active transition state are circumstantial.

The necessary components of the AE include an allylic alcohol (4-1), alkyl hydroperoxide (4-2, usually $\mathrm{R}=\mathrm{t}$-butyl), a titanium tetraalkoxide (4-3, usually $\mathrm{R}=\mathrm{iPr}$),
and a chiral diol (4-4, usually $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CO}_{2}$ alkyl). ${ }^{129,133,134}$ Increased selectivities directly correlate with rate enhancements, suggesting rate-limiting C-O bond formation. ${ }^{135,136}$ This is supported by the observation of a deuterium isotope effect on the olefinic positions of the allylic alcohol, a dependence of the rate upon olefin concentration, and a lack of a solvent isotope effect. ${ }^{134}$

4-1

R-OOH

4-2

4-3

4-4

A variety of observations support a dimeric structure for titanium tartrate ester species in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, and support that a dimeric structure is retained in the rate-limiting transition state. ${ }^{137}$ The observation of a non-linear effect of the tartrate enantiomeric excess (ee) on product ee and an effect of using racemic tartrate ester on product disastereoselectivity is compelling evidence for the involvement of two tartrates in the rate-limiting transition state. ${ }^{137}$ Crystal structures of titanium tartrate complexes exhibit a titanium oxo bridged dimer species, compatible with the experimentally determined molecular weight of the solution structure. ${ }^{137,138}$ The rate law (equation 4-1) measured under pseudo-first order conditions is consistent with a rate-limiting step involving two titanium atoms, two molecules of tartrate ester, two isopropanols, one allylic alcohol and one alkyl hydroperoxide. ${ }^{134,137}$

$$
\begin{equation*}
\text { rate }=\mathrm{k}[\text { allylic alcohol }][\text { Ti-tartrate }][\text { alkyl peroxide }] /[i n h i b i t o r ~ a l c o h o l] ~] ~ 2 ~ \tag{4-1}
\end{equation*}
$$

Additional kinetic studies show that the reaction is first order in titanium and tartrate ester (in a 1:1 ratio) over a ten fold concentration supporting a single dimeric aggregation state for the active catalyst. Reaction conditions that deviate from a $1: 1$ ratio of titanium to tartrate decrease the rate and selectivity. ${ }^{134}$

High enantioselectivities in the AE reaction require specific structural features of the alkyl hydroperoxide oxidant, chiral diol, allylic alcohol substrate, and bystander alcohols. From studies of coordination equilibrium constants the alkyl hydroperoxide coordination is thought to be bidendate. ${ }^{134}$ The alkyl group of the hydroperoxide is brought into close proximity of the metal, and steric bulk in the alkyl group is required for high selectivity (4-2 $\mathrm{R}=\mathrm{t}$-butyl is a more selective oxidant than the $\mathrm{R}=\mathrm{n}$-butyl). The chiral diol 4-4 must contain two substituents (R ' cannot be H), one of which must be an ester or amide $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{R}\right.$ or $\left.\mathrm{CONR}_{2}\right)$ with the second being ester, amide, or bulky hydrocarbon $\left(\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{R}, \mathrm{CONR}_{2}\right.$, or alkyl) ${ }^{135}$ The detailed steric and electronic characteristics of 4-4 affect selectivities, for example, the selectivity in kinetic resolutions is reduced with decreasing steric bulk of the ester group of tartrates (R and $\left.\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}<\mathrm{CO}_{2} \mathrm{Et}<\mathrm{CO}_{2} \mathrm{iPr}\right) .{ }^{139}$

General trends are observed in the steric requirements of the substituents on the substrate 1. Substitutions in the trans position of the olefin $\mathbf{1}, \mathrm{R}_{\mathrm{T}}$ tend to enhance selectivity, alternatively large substituents in the cis position $\mathbf{1}, \mathrm{R}_{\mathrm{C}}$ decrease selectivity. The composition of the titanium tetralkoxide can also affect selectivities. The use of 4-3, R=t-butyl leads to lower selectivity, and this is thought to result from a decreased ability to form the active dimeric catalyst complex, resulting in an increase of the non-
ligated process. ${ }^{140}$ Other reaction conditions that affect the amount of the active dimer complex affect the selectivity. For example, decreased selectivity is observed in nonpolar solvents, resulting from the formation of higher aggregate states of the catalyst in the non-polar environment. ${ }^{134,137}$

Several models have been proposed for the transition state geometry of the AE. Experimental evidence has excluded many of these models, such as the 10 -membered ring tartrate bridged structure, and the alkoxide bridged structure. ${ }^{135,141,142}$ From their diverse experimental observations, Sharpless and Finn proposed that a preference for transition state 4-5 is responsible for enantioselectivity. ${ }^{130}$ In this model, the dimeric transition state complex consists of two titanium glycolate rings conjoined in a central four-membered ring by bridging alkoxides. One of the titanium glycolates, the "reactive titanocycle," has the titanium coordinated with both the allylic alcohol and the alkyl hydroperoxide. The second titanium glycolate, the "spectator titanocycle," has axially oriented carboxylates with the carboxylate that is distal to the reactive titanocycle serving as the sixth ligand for the spectator titanium. The allylic alcohol on the reactive titanocycle is loaded anti to the ligated carboxylate on the spectator titanocycle and "hooks in", i.e., toward the spectator titanocycle.

4-5

4-6

From a careful analysis based on DFT calculations of monomeric Ti complexes (a necessary limitation at the time), Wu and Dai proposed an alternative model for transition state complex. ${ }^{143}$ In the Wu model 4-6, the allylic alcohol is loaded syn to the ligated carboxylate on the spectator titanocycle and "hooks out", i.e., away from the spectator titanocycle. The Wu model refined some other aspects of the reactive transition state, for example assigning an equatorial orientation of the ester groups in the reactive titanocycle.

Both the Sharpless and Wu models provide a ready explanation for one aspect of the selectivity in the AE , the differing reactivities of chiral alcohols in kinetic resolutions. In either model, the less reactive of chiral allylic alcohols $\left(\mathbf{4 - 1}, \mathrm{R}_{\mathrm{A}}=\right.$ alkyl $)$ would orient an alkyl group into a sterically encumbered position toward the titanocycles. However, the origin of the basic enantioselectivity with achiral allylic alcohols is less clearly defined. Sharpless attributes the enantioselectivity to general steric and electronic effects. In the Wu proposal, a steric interaction of the allylic alcohol with the spectator titanocycle disfavors a key diastereomeric transition state leading to the minor enantiomer, though this steric interaction was not directly
assessable by the calculations on monomeric complexes. Neither model provides a welldefined explanation for the ligand-accelerated catalysis.

We report here that current models of the AE mechanism do not account for its stereoselectivity, and we propose a new model that is supported by high-level theoretical calculations and experimental KIEs. This model provides an explanation for ligandaccelerated catalysis in the AE, and suggests a new principle for the design of catalysts for stereoselective reactions.

Results and Discussion

Experimental Kinetic Isotope Effects. The prototypical epoxidation of geraniol (4-7) to the corresponding epoxide (4-8) was chosen for study under standard AE conditions using $\mathrm{Ti}(\mathrm{OiPr})_{4},(+)$-diisopropyl tartrate, and t-butyl hydroperoxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C} .{ }^{133}$ The ${ }^{13} \mathrm{C}$ KIEs were measured at natural abundance using NMR methodology. ${ }^{16}$ The unreacted starting material was isolated from reactions of geraniol taken to $87.4 \pm 1.0,87.0 \pm 1.0$, and $94.3 \pm 1.0 \%$ conversion using fractional vacuum distillation followed by column chromatography. Changes in isotopic composition were determined by ${ }^{13} \mathrm{C}$ NMR analysis of the recovered material against a standard sample of starting material that was not subjected to reaction conditions. The C_{5} methylene peak of geraniol was used as an internal standard with the assumption that the KIE in this position is negligible. The KIEs were calculated from the fractional conversion of the reaction and the change in isotopic composition as previously described. ${ }^{16}$

4-7

4-8

The resulting KIEs are shown in figure 4-1. Allowing for the uncertainties, the independent sets of ${ }^{13} \mathrm{C}$ KIEs are in good agreement, significant KIEs were observed at the C_{2} and C_{3} positions of the geraniol, with the C_{2} KIE being slightly larger. The measurements indicate that KIEs are present at C_{9} and C_{10}, this is an artifact caused by an impurity in the reisolated starting material. The qualitative interpretation of these KIEs is that the epoxidation involves slightly asynchronous C-O bond formation in the rate-limiting step of the reaction, with more advanced bond formation at the C_{2} position than the C_{3} position. A more quantitative interpretation of these KIEs will be discussed with the assistance of theoretical models.

Figure 4-1. Experimental and predicted ${ }^{13} \mathrm{C} \mathrm{KIEs}\left(\frac{k_{1^{2} C}}{k_{1_{C}}}\right)$ for the AE of geraniol using $\mathrm{Ti}(\mathrm{OiPr})_{4},(+)$-diisopropyl tartrate, and t-butyl hydroperoxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. The three sets of experimental KIEs refer to three independent experiments, and standard deviations in the last digit from six determinations are shown in parentheses. The predicted ${ }^{13} \mathrm{C}$ KIEs are shown in brackets and are based on transition structure 4-16.

Theoretical Calculations. The choice of method and basis set for the study of the AE is complicated by the balance of calculating a geometrically accurate titanium dimeric complex and an accurate geometry for the epoxidation transition state. B3LYP calculations have been found to perform well with simple epoxidation reactions. However, a substantial issue in applying DFT calculations to the AE is the dative bond between the axial carbonyls and titanium. DFT methods have often performed weakly with such dative bonds. For this study, geometry optimizations were carried out in mPW1K using a SDD basis set with a core potential for titanium and $6-31 \mathrm{G}^{*}$ on all other atoms (designated here as SB). Single-point energies were then calculated using an extension of the SDD basis set augmented with three f-functions and a separated dfunction (a 3111 contraction instead of the normal 411) for titanium, along with a 6$31+\mathrm{G}^{* *}$ basis set on the remaining atoms (designated here as BB). Geometry optimizations of a subset of models in mPW1K/BB gave similar single point energies (less than . $01 \mathrm{kcal} / \mathrm{mol}$ difference) to corresponding geometries optimized in $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}$. Therefore, the mPW1K/SB method was found sufficient for geometry optimizations. For the lowest energy structures, geometry optimizations in mPW1K/SB and single point energies in mPW1K/BB were performed using a PCM solvent model in dichloromethane.

We chose to explore the accuracy of a number of DFT functionals and basis sets in reproducing the experimental bond lengths of a truncated model of a crystal structure published by Sharpless and Lippard. ${ }^{138}$ Dimeric model 4-9 is shown below and consists
of a bridged titanium dimer complex with two methoxide bystander alcohols and a diamide ethylene glycol as the complexing ligand.

The ability of several theoretical methods to reproduce the experimental geometry of $4-9$, specifically the dative bond of the carbonyl oxygen to the titanium (shown in red), was tested. The mPW1K functional most accurately reproduced the geometry of the published crystal structure and differences in the basis set resulted in negligible geometric effects; the details of this study are included in the appendix.

4-9

To ensure the correctness of the $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}$ in predicting the epoxidation transition state geometry, we analyzed several previously explored epoxidation systems where other theoretical methods have accurately predicted experimentally measured ${ }^{13} \mathrm{C}$ KIEs. ${ }^{6,144,145}$ Illustrated below in figure 4-2 are the experimental and theoretical KIEs from the Shi Epoxidation of β-methyl styrene, oxaziridine epoxidation of 2-methyl-2butene, and mCPBA epoxidation of 1-pentene. Figure 4-2 includes previously measured experimental KIEs (no brackets) and theoretical predictions (square brackets) using the models shown. The KIEs calculated from optimized geometries in mPW1K/SB (curly brackets) for gas phase and PCM solvent models accurately predict experimental
measurements, validating the use of the selected method in modeling transition states for the AE .

oxaziridine expoxidation

mCPBA epoxidation

Figure 4-2. Predicted and experimentally determined KIEs for various epoxidations are shown. KIEs are listed for the Shi epoxidation of β-methyl styrene, oxaziridine epoxidation of 2-methyl-2-butene, and mCPBA epoxidation of 1-pentene. ${ }^{13}$ C KIEs were measured at natural abundance using NMR methodology. Each set of experimental KIEs represent an independent experiment, and standard deviations in the last digit from six independent experiments are shown in parentheses. The previously calculated ${ }^{13} \mathrm{C}$ KIEs are shown in square brackets. Listed are the predicted KIEs from geometries optimized in B3LYP/6-31G* for the Shi and oxaziridine epoxidations, and MP2/6-31G* for the mCPBA epoxidation. KIEs calculated from mPW1K/6-31G* optimized geometries of the same model systems are listed in the curly brackets.

The theoretical model consists of an allyl alcohol as the substrate, t-butyl peroxide as the oxidant, dimethyl tartrate on the spectator titanocycle ring systems, ethylene glycol on the reactive titanocycle, and methoxides as the bystander alcohols.

Methyl groups rather than isopropyl groups were used in the alcohols as well as the tartrates because of the increased conformational complexity added by the inclusion of isopropyls in the system. Several conformations of the titanocycle rings, the esters on the spectator titanocycle, the allylic alcohol, the peroxide, and the bystander alcohols were explored. Initial transition structure searches were performed on a simplified system using tartaric acid as the ligand on the spectator titanocycle and hydroxide groups as the bystander alcohols. The bystander hydroxide groups were modified to methoxides early in the process because of unrealistic hydrogen bonding within the catalytic structure. A variety of functionals and basis sets were sampled in the exploration of the AE transition state geometry and are included within the supporting information. To study the effects of solvent in the stabilization of the transition state, the Onsager and PCM implicit solvent models were utilized in geometry optimization and single point energy calculations for the lowest energy transition state conformations.

Initial models were based upon the proposed models of Sharpless and Wu. The lowest energy calculational models of structure 4-5 are shown below in figure 4-3, other high energy conformers are included in the supporting information. In all of these structures the allylic alcohol on the reactive titanocycle is loaded anti to the ligated carboxylate on the spectator titanocycle. In structures 4-10 and 4-11 the allylic alcohol "hooks in" toward the spectator titanocycle representing the transition state that would lead to the experimentally favored stereoisomer. Both structures 4-10 and 4-11 resemble the model of 4-5, and differ only by the conformation of the noncoordinating methyl ester in the reactive titanocycle. In structure 4-10 the carbonyl oxygen of the
noncoordinating ester points away from the catalyst and in 4-11 the carbonyl oxygen points down towards the center of the catalyst. Catalyst 4-11 is favored over 4-10 by 0.1 $\mathrm{kcal} / \mathrm{mol}$ in the gas phase, however, $\mathbf{4 - 1 0}$ is favored in the solvent calculations by 0.5 $\mathrm{kcal} / \mathrm{mol}$. A similar analysis was performed for catalyst structures 4-12 and 4-13 where the allylic alcohol "hooks out" away from the spectator titanocycle representing the experimentally disfavored stereoisomer for the AE. The carbonyl oxygen of the noncoordinating ester points away from the catalyst center in 4-12 and conversely points towards down towards the catalyst center in 4-13. Structure 4-13 is favored over 4-12 by $1.1 \mathrm{kcal} / \mathrm{mol}$ in gas phase and $0.1 \mathrm{kcal} / \mathrm{mol}$ in solvent. The conformational preference of the nonligating ester is a delicate balance between steric effects and an electronic interaction of the carbonyl oxygen with the allyl alcohol. In general, the energy difference is often small for the isomers where the allyl alcohol hooks into the spectator titanocycle and larger for the transition states where the allyl alcohols are syn to the nonligating ester and that hook away from the spectator titanocycle. In the remainder of the discussion the transition state with the lowest energy conformation for the nonligating ester will be shown, however, both conformations are listed in the supporting information.

The most important aspect of these calculations is that transition state $\mathbf{4 - 1 3}$ which shows a preference for the experimentally disfavored isomer is the lowest energy conformation in gas phase (relative energies displayed in figure 4-3)!! Though structure 4-10 is slightly favored in solution phase, the difference in energies of the three:

Figure 4-3. Calculated structures based upon the Sharpless model for the AE. Transition state 4-10 through 4-13 are based upon model 4-5. Structures 4-10 and 4-11 represent transition states that lead to the experimentally favored epoxide, 4-12 and 4-13 lead to the disfavored epoxide. Energies in $\mathrm{kcal} / \mathrm{mol}$ are listed relative to $\mathbf{4 - 1 3}$, and selected bond lengths are shown in angstroms. Geometry optimizations were performed in $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}$, and single point energies were calculated in $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{BB}$ for gas phase (outside of parentheses) and in dichloromethane using a PCM model (in parentheses).
lowest conformations are negligible. Models based upon 4-5 cannot account for the high selectivities observed in the AE reaction.

4-14 0.6 (0.0)

4-15-0.3 (-0.5)

Figure 4-4. Calculated structures based upon the Wu model for the AE. Structures 4-14 and 4-15 represent transition structures based upon model 6 for the SE. Structure 4-14 leads to the favored stereoisomer and $\mathbf{4 - 1 5}$ corresponds to the disfavored isomer. Energies in $\mathrm{kcal} / \mathrm{mol}$ are listed relative to the lowest energy transition state 4-13, and selected bond lengths are shown in angstroms. Geometry optimizations were performed in $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}$, and single point energies were calculated in $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{BB}$ for gas phase (outside of parentheses) and in dichloromethane using a PCM model (in parentheses).

A similar analysis was performed on models of 4-6. Shown below in figure 4-4 are models that involve the allylic alcohol loaded syn to the ligated carboxylate on the spectator titanocycle. In structure 4-14 the allyl alcohol "hooks out" away from the spectator titanocycle representing the transition state of the experimentally favored epoxide. Conversely, transition state 4-15 depicts the allyl alcohol hooking into the
spectator titanocycle leading to the experimentally disfavored epoxide. The energies are shown below in figure 4-4 relative to the previously discussed lowest energy transition state 4-13.

Once again transition state 4-15, which leads to the disfavored stereoisomer, is slightly lower in energy than all of the other calculated structures based upon models 4-5 and 4-6. Therefore, previously proposed models for catalysis do not explain the selectivity or LAC of the AE system.

To gain some insight on the origin of selectivity and LAC in the SE, we extensively searched a number of possible transition state conformations representing both the favored and disfavored isomers. Structures 4-16 through 4-19 in figure 4-5 are a set of the lowest energy transition state conformations found in the search; other high energy conformations are included within the appendix. The most notable difference among these structures and the previously discussed geometries is that the carbonyl oxygen of the internal ester is forming a dative bond to the titanium and the distal ester on the spectator titanocycle is noncoordinating.

In transition states 4-16 and 4-17, the allylic alcohol is loaded anti to the ligated carbonyl and hooks out away from the spectator titanocycle. The allylic alcohol in 4-16 hooks out away from the spectator titanocycle and represents a transition state that leads to the favored stereoisomer. Conversely, in 4-17 the allylic alcohol hooks in towards the spectator titanocycle and leads to the disfavored stereoisomer. In both transition states 4-16 and 4-17 the nonligating carbonyl prefers to point towards the allylic alcohol, other conformations of the nonligating ester were explored and found to be slightly higher in:

Figure 4-5. Structures 4-16-4-19 are novel transition state models for the AE. Structures 4-16 and 4-19 lead to the favored stereoisomer, conversely, 4-17 and 4-18 corresponds to the disfavored isomer. Energies in $\mathrm{kcal} / \mathrm{mol}$ are listed relative to the lowest energy transition state 4-16, and selected bond lengths are shown in angstroms. Geometry optimizations were performed in $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}$, and single point energies were calculated in mPW1K/BB for gas phase (outside of parentheses) and in dichloromethane using a PCM model (in parentheses).
energy, these alternative structures will be discussed for the lowest energy transition states later in the discussion.

In the current set of isomers, the lowest energy transition state 4-16 leads to the desired stereoisomer and is favored by $1.3 \mathrm{kcal} / \mathrm{mol}$ in the gas phase and $2.4 \mathrm{kcal} / \mathrm{mol}$ in the solvent calculation (mPW1K/BB//mPW1K/SB+zpe). A set of transition state structures, 4-18 and 4-19 were located that include the allylic alcohol syn to the ligated carbonyl. The allylic alcohol in 4-18 hooks away from the spectator titanocycle and leads to the disfavored product isomer, conversely, 4-19 hooks in towards the spectator ring and gives the desired product. In this set of isomers $\mathbf{4 - 1 8}$ is $0.1(0.9) \mathrm{kcal} / \mathrm{mol}$ lower in energy than 4-19. However, 4-18 is higher in energy than transition state $\mathbf{4 - 1 6}$ by 0.3 $\mathrm{kcal} / \mathrm{mol}$ in the gas phase and $1.27 \mathrm{kcal} / \mathrm{mol}$ in solution. Table 4-1 includes a list of the relative energies of all transition states in reference to $\mathbf{4 - 1 6}$ for gas phase and solvent calculations.

Table 4-1. A list of relative energies of the transition states in reference to the lowest energy transition state 4-16. The gas phase energies are calculated in $\mathrm{mPW} 1 \mathrm{~K} / \mathrm{BB} / / \mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}+$ zpe. Solution energies are a result of a gas phase optimization in mPW1K/SB and single point energy calculations with a PCM model in mPW1K/BB.

gas phase
solvent
experimentally favored or disfavored $\mathbf{1 0}$ 1.23 2.48 favored $\mathbf{1 1}$ 1.2 3.0 favored $\mathbf{1 2}$ 1.9 2.7 disfavored 13 0.9 2.6 disfavored 14 1.4 2.7 favored 15 0.6 2.1 disfavored 16 0.00 0.00 favored $\mathbf{1 7}$ 1.3 2.4 disfavored 18 0.3 1.3 disfavored 19 0.4 1.9 favored

The sources of selectivity and LAC are dependent upon several factors that are best described from the lowest energy transition state 4-16. As depicted in figure 4-5 stabilization of 4-16 is derived from the ability of the transition state to 1) form a strong dative bond from the coordinating ester to the titanium; 2) create a pi bonding network between the ligating carbonyl, titanium, and oxygen of the coordinating t-butoxide (referred to as the "titanium pi bonding network" herein); and 3) hydrogen bond from the nonligated ester carbonyl oxygen to the alpha methylene of the allyl alcohol. Many of the models possess one or more of these attributes; however, only transition state 16 incorporates all three of these stabilizing effects. For example, the closest energy transition state 4-18 displays a relatively strong dative bond to the Ti ($2.59 \AA$) , but the coordinating ester lacks the ability to form a titanium pi bonding network because it is placed anti to the t-butoxide, additionally the noncoordinating ester is on the opposite face of the catalyst from the allyl alcohol prohibiting hydrogen bonding interaction. Transition state 4-17 has the ability to generate a titanium pi bonding network; however, steric effects prevent strong dative bonding ($2.67 \AA$) , additionally the transition state lacks the hydrogen bonding effect since the allylic alcohol is hooking in towards the spectator titanocycle. From the previous set of structures, 4-13 has a relatively strong interaction between the nonligating ester and the hydrogen on the methylene of the allyl alcohol (2.26 Á), however this transition state exhibits poor dative bonding (2.79 Á) and since the ligating carbonyl is distal the titanium pi bonding network is interrupted. Transition state 4-14 exhibits one of the strongest dative pi bonds ($2.54 \AA$), but is a high energy transition state because the ligating ester is anti to the t-butoxide and cannot
participate in the titanium pi bonding network, additionally the nonligating carbonyl is anti to the allyl alcohol and cannot interact. The general features for catalyst stability include positioning for strong dative bonding to the titanium, the ligating carbonyl must be proximal and syn to the t-butoxide to form the titanium pi bonding network, and the noncoordinating ester must be syn to the allyl alcohol to form the hydrogen bonding interaction.

A conformational search on the two lowest energy transition states (4-16 and 4-18) revealed two other low energy transition states that differ in the conformation of the nonligating ester. A conformational isomer of transition state 4-16 with the nonligating carbonyl turned towards the bystander alcohols is $0.5 \mathrm{kcal} / \mathrm{mol}(0.7 \mathrm{kcal} / \mathrm{mol}$ PCM) higher in energy than 4-16. Similarly a conformational isomer of 4-18 with the nonligating carbonyl turned towards the bystander alcohols is $0.3 \mathrm{kcal} / \mathrm{mol}(1.6 \mathrm{kcal} / \mathrm{mol}$ PCM) higher in energy than $\mathbf{4 - 1 6}$. Therefore, the two lowest energy conformations of 416 lead to the correct stereoisomer and the predicted reaction mixture consists of a ratio of isomers of 88:12 (using solvent energies for all of the four lowest energy transition states), which is a reasonable prediction for allyl alcohol. An increase in selectivity should be seen if the full experimental system was modeled, i.e. isopropyl tartrates and isopropyl bystander alcohols.

To further study the effects of solvent on transition state geometries, optimizations were performed in mPW1K/SB using a PCM solvent model in dichloromethane. Dative bonding was slightly strengthened in the solvent calculation for both isomers, to give a dative bond length of $2.50 \AA \AA$ for 4-16 and $2.52 \AA$ for 4-18.

The hypothesis is that the solvent increases the interaction of the carbonyl with the titanium stabilizing the transition state of the catalyst.

We were also interested in testing the versatility of the transition state models in predicting experimental trends in selectivity. Transition states 4-16 and 4-18 were modeled with cis-2-buten-1-ol (designated as 4-16C and 4-18C) and trans-2-buten-1-ol (designated as 4-16T and 4-18T), the structures are included in the appendix. The difference in energies between $\mathbf{4 - 1 6 C}$ and $\mathbf{4 - 1 8 C}$ decreases to $0.9 \mathrm{kcal} / \mathrm{mol}$ (mPW1K/BB//mPW1K/SB +zpe using dichloromethane PCM), resulting in a decrease in selectivity. A reversal in the asynchronity of the bond formation along the reaction coordinate is clearly visible in the transition states with the cis allyl alcohol substrate (shorter bond distance to the C_{2} carbon of the alkene). A larger energy difference of 1.4 $\mathrm{kcal} / \mathrm{mol}(\mathrm{mPW} 1 \mathrm{~K} / \mathrm{BB} / / \mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}+$ zpe using dichloromethane PCM) was observed between 4-16T and 4-18T, increasing the selectivity. Interestingly, a nearly synchronous transition state was observed for 4-16T and 4-18T (similar bond distance to C_{2} and C_{3} of the alkene). Experimental trends in selectivity are nicely reproduced in the models and show greater selectivity between transition states with the trans substituted allyls than the cis congeners. The versatility of the AE for a wide variety of substrates is displayed by the flexibility of the transition state to accommodate several different substrates while maintaining high selectivities.

Sharpless reports a rate enhancement of approximately 10 for the ligand accelerated catalysis of the AE. ${ }^{132,134}$ The competence of transition state 4-16 in affecting the rate of LAC was tested by calculating structures for the monomeric titanium catalyst
epoxidation. ${ }^{146}$ An energy difference of $25.2 \mathrm{kcal} / \mathrm{mol}(\mathrm{mPW} 1 \mathrm{~K} / \mathrm{BB} / / \mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}+$ +zpe in gas phase) between the monomeric transition state and the precatalyst monomeric complex was found. The difference in energy between 4-16 and the precatalyst dimeric complex of 4-16 is $22.9 \mathrm{kcal} / \mathrm{mol}$. A rate acceleration of approximately 13 is calculated from the difference in energy between the ligand catalyzed process and the monomeric epoxidation (the number of exchangeable ligand sites must be taken into account for each catalyst). The agreement between experimentally measured rates and the theoretical prediction is striking. The sources of rate acceleration for the dimeric complex are synonymous to those that enhance selectivity. In particular, the dative bonding and pi bonding network enhance the electrophilicity of the alkyl peroxide and increasing the rate for the ligated process.

Predicted Isotope Effects. Theoretical kinetic isotope effects were calculated from the scaled vibrational frequencies using the formulation of Bigeleisen and Mayer using the most stable transition state conformation 4-16 with 3-methyl 2-buten-1-ol as a model for geraniol. ${ }^{25}$ Tunneling corrections were applied using a one dimensional infinite parabolic model. ${ }^{147}$ The predicted KIEs agree exceptionally well with the experimentally measured values (figure 4-1). In particular, the KIEs at the C_{2} and C_{3} positions undergoing epoxidation are predicted strikingly well, and support the asynchronous transition state model with more bonding to $\mathrm{C}_{2}(2.01 \AA)$ than $\mathrm{C}_{3}(2.23 \AA ́)$ at the transition state.

Conclusions

Previously proposed models of the AE failed to explain the high selectivities observed for a variety of substrates in the reaction. We have proposed a novel transition state model that explains the high selectivities and LAC for the AE reaction. The model successfully predicts experimental trends in the AE system. The transition state is labile and flexible towards a variety of substrates while still maintaining high selectivity. A rate acceleration similar to experiment was predicted for LAC from model 4-16. In addition, experimentally measured KIEs support the theoretical model.

CHAPTER V

THEORETICAL INVESTIGATIONS INTO THE MECHANISM OF FLAVOPROTEIN-CATALYZED AMINE OXIDATION OF NMETHYLTRYPTOPHAN*

The mechanism of N-methyltryptophan oxidase, a flavin-dependent amine oxidase from Escherichia coli, was studied using theoretical calculations. The ${ }^{15}\left(\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}\right)$ kinetic isotope effect for sarcosine oxidation is pH -dependent with a limiting value of $0.994-0.995$ at high pH . Density functional theory (DFT) calculations on model systems were used to interpret these isotope effects. The isotope effects are inconsistent with proposed mechanisms involving covalent amine-flavin adducts but cannot conclusively distinguish between some discrete electron-transfer mechanisms and a direct hydridetransfer mechanism.

Introduction

Flavin-dependent amine oxidases and dehydrogenases catalyze the oxidative deamination of primary amines and the oxidative dealkylation of secondary amines. These enzymes are ubiquitous in nature and are involved in a myriad of biological activities. For example, glycine oxidase is involved in thiamin biosynthesis in microorganisms, ${ }^{148}$ while the recently discovered lysine-specific histone demethylase is involved in regulation of transcription in humans. ${ }^{149}$ The ubiquity and functional diversity of this family of enzymes underlie its importance and has prompted many

[^2]structural and biochemical studies. To date, flavoenzymes that catalyze amine oxidations have fallen into two structural groups. One class includes D-amino acid oxidase, ${ }^{150}$ monomeric sarcosine oxidase (MSOX) ${ }^{1,151}$ and glycine oxidase, ${ }^{148}$ with monoamine oxidase (MAO) B, ${ }^{152}$ polyamine oxidase, ${ }^{153}$ lysine-specific demethylase-1, ${ }^{154}$ and Lamino acid oxidase ${ }^{155}$ forming a separate structural class. While a number of these enzymes have been the subject of kinetic, spectroscopic, and structural studies, only in the case of D-amino acid oxidase have mechanistic ${ }^{156}$ and structural studies ${ }^{150}$ led to a consensus that the reaction involves hydride transfer. The chemical mechanism of the remaining amine oxidases is still debated.
N-Methyltryptophan oxidase (MTOX) catalyzes the oxidative demethylation of N-methyl amino acids (Scheme 5-1), with a preference for bulky hydrophobic substrates such as N-methyl-L-tryptophan. ${ }^{157}$ Although the three dimensional structure of MTOX is unavailable, it shares 41% sequence identity with MSOX and the active site residues are conserved, establishing that it can be assigned to the same structural class. As shown in Scheme 5-2, a variety of mechanisms have been proposed for substrate oxidation by MTOX. ${ }^{158}$ Similar mechanisms have been proposed for other flavin-dependent amine demethylases and for flavin-dependent amine oxidation in general. ${ }^{159,160}$ Therefore, investigation of the chemical mechanism of MTOX should aid in understanding a number of important flavoenzymes.

Scheme 5-1

The simplest mechanism in Scheme 5-2 is a one-step hydride transfer from the methyl group of the substrate 5-1 to the flavin to form iminium product 5-2 directly. In a second possibility, the substrate nitrogen attacks the flavin cofactor at $\mathrm{C}^{4 \mathrm{a}}$ or N^{5} to form a covalently bound flavin adduct 5-3. This is followed by the loss of a proton from the substrate methyl carbon and elimination to give the final products. In a variation of this mechanism, the addition and elimination occur in a single step. ${ }^{161}$ A third possible mechanism involves two separate one-electron transfer steps. The initial transfer of an electron to the flavin from $\mathbf{5 - 1}$ forms a flavin semiquinone and aminium cation radical $\mathbf{5 - 4}$, which is then further oxidized by separate proton and electron transfers via 5-5. In variations of the electron-transfer mechanism, proton and electron transfers are combined into a single hydrogen transfer step, either forming 5-5 directly from 5-1 or forming 5-2 directly from 5-4.

Scheme 5-2

The deuterium kinetic isotope effects show that CH bond cleavage is fully ratelimiting for sarcosine turnover by MTOX. ${ }^{162}$ Moreover, no intermediate flavin species is observable when the reduction of the flavin in MTOX is monitored using a stopped-flow spectrophotometer. These results are fully consistent with the hydride-transfer mechanism and put limitations on the covalent-adduct and electron-transfer mechanisms, each of which involve an intermediate flavin species prior to CH bond cleavage. If an intermediate flavin species is indeed formed, it must be formed reversibly and it must be significantly higher in energy than its precursor, so that less than 5% of the enzyme is in the form of the postulated intermediate species at any time in the reaction.

The observed ${ }^{15} \mathrm{~N}$ isotope effects, measured by Ralph and Fitzpatrick, are $\mathrm{pH}-$ dependent, starting at a value greater than 1 and then decreasing with increasing $\mathrm{pH} .{ }^{163}$ The pH dependence of the observed ${ }^{15} \mathrm{~N}$ isotope effects is not due to changes in either
the rate-limiting step or the transition state structure, as the observed deuterium kinetic isotope effect is pH -independent. ${ }^{162}$ It can therefore be attributed to the ${ }^{15} \mathrm{~N}$ equilibrium isotope effect on sarcosine deprotonation. The ${ }^{15} \mathrm{~N}$ isotope effect for the N demethylation of sarcosine by MTOX is significantly inverse (less than unity), with a limiting value of 0.994-0.995 at high pH .

Although the previous results are consistent with a hydride-transfer mechanism, they do not by themselves rule out the alternative mechanisms. Mechanistic proposals are difficult to postulate based upon qualitative interpretation of the measured isotope effects. Therefore in the present study, theoretical calculations have been utilized to further probe the mechanism of sarcosine oxidation by MTOX. The results firmly exclude mechanisms involving covalent adducts.

Results and Discussion

Theoretical Mechanisms. No simple theoretical model can adequately represent the energy surface for the enzymatic reaction in solution. Instead, our goal was to calculationally explore a range of mechanistic models for the amine oxidation mechanisms of Scheme 5-2 in order to interpret the experimental ${ }^{15} \mathrm{~N}$ kinetic isotope effect. This by itself is complicated due to the involvement of charged intermediates. Gas-phase calculations on mechanistic steps involving charge separation or annihilation are dominated by Coulombic effects, distorting the calculated transition structures for such steps. To mitigate this problem, the calculational models here employ either cationic species (avoiding zwitterionic charge separation), an implicit solvent model, or a combination of the two. The calculational models cannot mimic the specific
interactions employed by the enzyme in promoting the reaction, but should serve as a guide for interpreting the isotope effects.

Scheme 5-3 shows the calculational model reactions for direct hydride transfer. Relative energies ($\mathrm{kcal} / \mathrm{mol}$ versus starting materials) and selected interatomic distances (in \AA) are shown in the Scheme for the structures obtained employing a solvation model (PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** + zpe), along with corresponding energies and distances in brackets obtained with gas-phase calculations. Transition structure 5-7 was located for the transfer of a hydride from dimethylamine to the neutral FAD model 5-6, affording a complex of the N-methyliminium cation with $\mathbf{5 - 6}-5-\mathrm{H}^{-}$(the model for FADH^{-}). The favored orientation shown minimizes charge separation between the incipient ions and leads to a very tight anion-cation complex. Pulling apart these ions in the gas phase is prohibitively uphill (accounting for most of the $\approx 114 \mathrm{kcal} / \mathrm{mol}$ to form separate gas-phase product ions), but the barrier for hydride transfer to form an ion pair is only $26.3 \mathrm{kcal} / \mathrm{mol}$ (B3LYP/6-31+G** + zpe). When an implicit solvent model for water is incorporated, the hydride transfer is predicted to be much less endothermic, with the separate ions only $12.4 \mathrm{kcal} / \mathrm{mol}$ uphill from 5-6/dimethylamine (PCM/B3LYP/6$31+\mathrm{G}^{* *} / /$ Onsager/B3LYP/6-31+G** + zpe), and the transition structure shifts earlier as expected from Hammond's postulate.

Scheme 5-3

An alternative calculational model for the hydride transfer starts with a 1protonated FAD model 5-6-1- H^{+}, and proceeds to form FADH_{2} model 5-6-1,5- H_{2} via transition structure 5-8. The discrete protonation of FAD prior to subsequent steps is probably unrealistic due to its low basicity, but protonation at N^{1} could reasonably occur as the reaction coordinate for hydride transfer to N^{5} proceeds. Weighing against any concerted hydride transfer / proton transfer mechanism is the lack of a solvent isotope effect on the $\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ value for sarcosine. ${ }^{162}$ Because the hydride transfer from dimethylamine to $\mathbf{5 - 6}-1-\mathrm{H}^{+}$is more nearly thermoneutral than hydride transfer to $\mathbf{5 - 6}$, the transition structure 5-8 is earlier than 5-7. Interestingly, the barrier for hydride transfer to 5-6-1- H^{+}is increased by about $15 \mathrm{kcal} / \mathrm{mol}$ in the PCM solvent model compared to the
gas phase, and this barrier in solution is predicted to be fairly similar to the barrier for hydride transfer to 5-6 in solution. (Similar results were obtained using an IPCM solvent model for water.) The increased barrier with 5-6-1- H^{+}in free solution may be understood by considering that the starting cation $\mathbf{5 - 6}-1-\mathrm{H}^{+}$is more stabilized by solvent than the more charge-delocalized transition structure 5-8.

The ion pair that would result from electron transfer between adjacent flavin and amine molecules is an electronic excited state, and is not readily modeled computationally. For this reason, the computational exploration of the electron-transfer mechanism was limited to separate discrete flavin and amine oxidation states as shown in Scheme 5-4. Electron transfer between dimethylamine and 5-6 to afford separate 5-6 ${ }^{-0}$ and aminium cation radical 5-9 in free solution is predicted to be quite uphill at $33.8 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{PCM} / \mathrm{UB} 3 \mathrm{LYP} / 6-31+\mathrm{G}^{* *} / /\right.$ Onsager/UB3LYP/6-31+G${ }^{* *}+$ zpe $)$. This is in reasonable agreement with an approximate separation of $1.7 \mathrm{~V}(39 \mathrm{kcal} / \mathrm{mol})$ between the oxidation potential of secondary amines ${ }^{164}$ and the reduction potential of FAD. ${ }^{165}$ Electron transfer between flavin and amine in the enzyme could of course be much less unfavorable than this calculation suggests, owing to the possibility of flavin distortion or specific solvation by the enzyme, or ion pairing, depending on the distance between resulting ions. However, the active site of MTOX is identical to that of MSOX and the structure of the latter enzyme with dimethylglycine bound ${ }^{166}$ shows no negatively charged residue in the active site which could form such an ion pair.

Scheme 5-4

Proton transfer between 5-6 ${ }^{-}$and 5-9 affords neutral radicals 5-6-5-H• and 5-10. The overall formation of $\mathbf{5 - 6}-5-\mathrm{H} \cdot / \mathbf{5}-10$ from $\mathbf{5 - 6}$ /dimethylamine is predicted to be uphill by $30.8 \mathrm{kcal} / \mathrm{mol}$, and because the two radicals are neutral, solvation by the enzyme is less likely to be able to avoid this barrier. However, the high-energy radical pair could be avoided by direct hydrogen transfer between 5-6 ${ }^{-}$and $\mathbf{5 - 9}$ to afford $\mathbf{5 - 6 - 5 - \mathrm { H } ^ { - } / N -}$ methyliminium cation, which can also result from a notably downhill proton transfer between $\mathbf{5 - 6 - 5 - H} \cdot$ and $\mathbf{5 - 1 0}$.

Mechanisms involving a covalently bound flavin adduct could potentially occur in two ways, either by addition of the amine to $\mathrm{C}^{4 \mathrm{a}}$ or by addition to $\mathrm{N}^{5}{ }^{167-171}$ From our previous observation of a large deuterium kinetic isotope effect of 7.2 ± 1.0 in this reaction, ${ }^{162}$ the formation of a discrete adduct would have to be reversible and followed by a rate-limiting elimination step. Alternatively, a concerted addition/elimination process as proposed by Miller and Edmondson ${ }^{161}$ could account for the deuterium isotope effect. For the purpose here of interpreting the ${ }^{15} \mathrm{~N}$ kinetic isotope effect, the exploration of each of these mechanisms focused on the possible rate-limiting steps.

Scheme 5-5 outlines the model mechanism involving formation of adduct 5-11 by addition of the amine to $\mathrm{C}^{4 \mathrm{a}}$ of 5-6, followed by an E2 elimination to afford the $\mathbf{5 - 6}-1,5-\mathrm{H}_{2}$ and N -methylformaldimine. The adduct $\mathbf{5 - 1 1}$ is predicted to be uphill from 5-6/dimethylamine, consistent with the failure to observe adducts in simple flavin/secondary amine reactions. ${ }^{168}$ The key elimination step was modeled in two ways, using either methoxide anion to model a relatively early, tight transition state (5-12a) or methylamine to model a relatively late, loose transition state (5-12b). In either case, the elimination requires protonation at N^{1} to proceed, as the FADH^{-}model $\mathbf{5 - 6 - 5 - \mathrm { H } ^ { - }}$ is a poor leaving group. Even after protonating at N^{1}, the elimination in free solution would be extremely difficult; $\mathbf{5 - 1 2 b}$ is uphill by $59.7 \mathrm{kcal} / \mathrm{mol}$ from

5-6/dimethylamine/ $\mathrm{MeNH}_{3}{ }^{+}$(PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** + zpe).

Scheme 5-5

No transition structure could be located for an intramolecular elimination from the $\mathrm{C}^{4 \mathrm{a}}$ adduct. However, an intramolecular elimination process becomes possible if
adduct formation occurs by addition of the amine to N^{5} to afford adduct 5-13, followed by proton transfer from ammonium 5-13 to N^{5} (Scheme 5-6). The elimination transition structure $\mathbf{5 - 1 4}$ is predicted to be quite high in energy in free solution at $45.7 \mathrm{kcal} / \mathrm{mol}$, and would initially afford the $4,5-\mathrm{H}_{2}$ flavin tautomer.

Scheme 5-6

Finally, transition structure $\mathbf{5 - 1 5}$ was located as a model for the concerted addition/elimination process proposed by Miller and Edmondson, ${ }^{161}$ The location of a transition structure of this type requires the combination of protonation at N^{1} and deprotonation of the nitrogen of the attacking amine (presumably as the process ensues); otherwise, there is no attraction of the amine to $\mathrm{C}^{4 \mathrm{a}}$, and the resulting transition structures approach 5-7 or $\mathbf{5 - 8}$. Structure $\mathbf{5 - 1 5}$ is predicted to be $47.0 \mathrm{kcal} / \mathrm{mol}$ above 5-6/dimethylamine in free solution.

Predicted Isotope Effects. The calculated structures in the previous section provide a series of models for the prediction of the ${ }^{15} \mathrm{~N}$ isotope effect for various mechanistic possibilities. For the various hydride-transfer and elimination mechanisms, isotope effect predictions were obtained by applying conventional transition state theory to the discrete transition structures $\mathbf{5 - 7}, \mathbf{5 - 8}, \mathbf{5 - 1 2 a}, \mathbf{5 - 1 2 b}, \mathbf{5 - 1 4}$, and $\mathbf{5 - 1 5}$. The isotope effects associated with possible electron-transfer mediated mechanisms could not be modeled in this way due to the absence of electronically ground-state transition structures. An approach to predicting these isotope effects is described in the Discussion section, but a first step toward a prediction is the calculation of the equilibrium isotope effects for formation of either cation-radical $\mathbf{5 - 9}$ or radical $\mathbf{5 - 1 0 / 5 - 6 - 5 - H} \cdot$. These equilibrium isotope effects should be a poor model for the primary deuterium isotope effect in this reaction, but may approximate the secondary ${ }^{15} \mathrm{~N}$ isotope effect. Equilibrium predictions do not include a tunneling correction.

In predicting the isotope effects for the calculational models, a choice must be made of the starting material reference state between neutral dimethylamine and the protonated dimethylammonium ion. For comparison with the limiting pH -independent
${ }^{15} \mathrm{~N}$ isotope effect at high pH , dimethylamine was chosen as the reference state. This has the advantage of easing the qualitative understanding of the isotope effect predictions, without their being masked by a normal isotope effect for ammonium deprotonation. However, the choice makes no real difference in how closely predictions match with experiment. This is because the calculated equilibrium isotope effect for deprotonation of the dimethylammonium ion matches the experimental equilibrium ${ }^{15} \mathrm{~N}$ isotope effect $(1.0226 \pm 0.0001)^{172-174}$ used to arrive at the experimental high- pH limiting ${ }^{15} \mathrm{~N}$ isotope effect. Dimethylammonium ion was used as the starting material reference state for the prediction of deuterium isotope effects since sarcosine would be predominantly protonated under the conditions used to measure the experimental isotope effect.

The results are summarized in Table 5-1. A key observation in these results is that the mechanisms involving either intramolecular or intermolecular elimination reactions as the rate-limiting step are predicted to result in ${ }^{15} \mathrm{~N}$ isotope effects significantly greater than unity. The equilibrium ${ }^{15} \mathrm{~N}$ isotope effect associated with possible intermediates in an electron-transfer mechanism are slightly inverse. More substantially inverse ${ }^{15} \mathrm{~N}$ kinetic isotope effects are predicted for the hydride transfer transition structures 5-7 and 5-8.

Table 5-1. Predicted ${ }^{15} \mathrm{~N}\left(\mathrm{k}_{15 \mathrm{~N}} / \mathrm{k}_{14 \mathrm{~N}}\right.$, high-pH limit) or deuterium $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right)$ kinetic isotope effects at $25^{\circ} \mathrm{C}$.

Structure	${ }^{15} \mathrm{~N}$ isotope effect	${ }^{2} \mathrm{H}$ isotope $_{\text {effect }^{\mathrm{a}}}$	${ }^{15} \mathrm{~N}$ isotope effect/ Wigner correction	${ }^{2} \mathrm{H}$ isotope effect/ Wigner correction
$\mathbf{5 - 7}$	0.9921	4.00	0.9927	4.77
$\mathbf{5 - 8}$	0.9932	4.71	0.9942	6.17
$\mathbf{5 - 9}$	0.9978^{b}	1.38^{b}	----	----
$\mathbf{5 - 1 0 / 6 - 5 - H} \cdot$	0.9962^{b}	1.22^{b}	----	----
$\mathbf{5 - 1 2 a}$	1.0116	6.69	1.0130	9.20
$\mathbf{5 - 1 2 b}$	1.0223	4.16	1.0250	4.29
$\mathbf{5 - 1 4}$	1.0139	4.07	1.0151	4.45
$\mathbf{5 - 1 5}$	1.0197	3.24	1.0203	3.34

Abstract

${ }^{\text {a }}$ The ${ }^{2} \mathrm{H}$ isotope effect was calculated for a trideuterated methyl group, in keeping with experimental studies which used a trideuterated methyl group on sarcosine. The predicted ${ }^{2} \mathrm{H}$ isotope effect thus represents the product of a primary and two secondary isotope effects. ${ }^{\mathrm{b}}$ The isotope effects predicted for 5-9 and 5-10 are equilibrium isotope effects, not kinetic isotope effects.

Discussion

Isotope Effects. Previous analyses of the primary deuterium isotope effect on the MTOX-catalyzed reaction have established that cleavage of the sarcosine CH bond is rate-limiting for turnover. ${ }^{162}$ The observation that the intrinsic deuterium isotope effect is expressed in the $\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ value for sarcosine establishes that CH bond cleavage occurs during the first irreversible step in catalysis. While the presence of a primary deuterium isotope effect has thus proven exceedingly useful in identifying rate-limiting hydrogen transfer, the magnitude of a primary deuterium isotope effect is less useful in deciding
among competing mechanisms that all involve rate-limiting hydrogen transfer. A key problem is that primary deuterium isotope effects are not readily predicted accurately due to tunneling and variational transition state effects. ${ }^{175}$ The deuterium isotope effects predicted from conventional transition state theory in Table 5-1 are a lower bound, as tunneling will generally increase the deuterium isotope effect. The predictions using a one-dimensional Wigner tunneling correction are also likely to underestimate the isotope effect, as this correction is minimal. Because of this, comparison of the predicted deuterium isotope effects with the experimental deuterium isotope effect of about 7.0^{162} does not distinguish among the various mechanisms. The use of heavy-atom isotope effects in concert with calculational studies has the substantial advantage that tunneling plays a much smaller role. As a result, heavy-atom isotope effects are often accurately predicted when the theoretical mechanism is correct. ${ }^{144,176-178}$ Here, such predictions allow a detailed interpretation of the experimental ${ }^{15} \mathrm{~N}$ isotope effect.

While the proposed chemical mechanisms in Scheme 5-2 involve substrate with a neutral nitrogen, the zwitterionic form of sarcosine predominates over the pH range accessible for mechanistic study. Deprotonation of the substrate nitrogen is affected by the isotopic content of the nitrogen, such that there is a measurable ${ }^{15} \mathrm{~N}$ effect on the equilibrium constant for deprotonation. Because $\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ values reflect the reaction of the free substrate and enzyme, they will include this ${ }^{15} \mathrm{~K}_{\mathrm{eq}}$, and the measured ${ }^{15}\left(\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}\right)$ values must be corrected to obtain the ${ }^{15} \mathrm{~N}$ isotope effect on catalysis. The decrease in the measured isotope effects with increasing pH reflects this equilibrium isotope effect, in that the fraction of the substrate in the zwitterionic form decreases with increasing pH .

The accuracy of correction of the measured values to obtain the high- pH isotope effect for the reaction of the anionic substrate is obviously affected by the accuracy of the equilibrium ${ }^{15} \mathrm{~N}$ isotope effect for sarcosine protonation which is used. While the ${ }^{15} \mathrm{~N}$ isotope effect for sarcosine protonation has not been measured, we have calculated the equilibrium ${ }^{15} \mathrm{~N}$ isotope effect for dimethylamine/dimethylammonium ion (Onsager/B3LYP/6-31+G**) as 1.0226. This is identical to literature values for measured equilibrium ${ }^{15} \mathrm{~N}$ isotope effects for deprotonation of glycine, alanine, and phenylalanine, ${ }^{172-174}$ so that it is likely to be quite reliable. Consequently, this value was used to correct the observed ${ }^{15}\left(\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}\right)$ values, yielding the pH -independent values. As noted above, the ${ }^{15}\left(\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}\right)$ values determined from sarcosine are consistently slightly greater than those determined from glycine, reflecting a systematic but unidentified experimental error. Still, the average ${ }^{15} \mathrm{~N}$ effects for oxidation of anionic sarcosine calculated independently from the residual sarcosine and the glycine product are much closer than the isotope effects for several of the different mechanisms under consideration. Even with the caveats above, it is clear that the ${ }^{15} \mathrm{~N}$ isotope effect for the N-demethylation of sarcosine by MTOX is significantly inverse (less than unity), with a limiting value of 0.994-0.995 at high pH . This value can be used for comparison with values for the isotope effect calculated for the different proposed mechanisms in Scheme 5-2.

Covalent Adducts and Concerted Addition/Elimination. The possibility of a $\mathrm{C}^{4 \mathrm{a}}$ adduct was supported in model reaction studies done by Mariano. ${ }^{168,169}$ However, the observable amine adducts in the Mariano work were stabilized by a combination of N^{5}
alkylation and amine deprotonation. In the absence of such stabilization, formation of a $\mathrm{C}^{4 \mathrm{a}}$ adduct is energetically unfavorable. Thus, calculational model $\mathbf{5 - 1 1}$ is $14.6 \mathrm{kcal} / \mathrm{mol}$ above starting materials, and there is no energy minimum in calculations for the zwitterionic adduct that would result from attack of dimethylamine at $C^{4 a}$ of 5-6. Addition at $\mathrm{C}^{4 \mathrm{a}}$ would need to be aided by flavin distortion ${ }^{179,180}$ or deprotonation of the amine as it attacks $\mathrm{C}^{4 \mathrm{a}}$, or a combination of the two. Deprotonation of the amine probably cannot occur by direct transfer from the amine to N^{5} during addition - the required four-membered-ring transition state would be expected to be high in energy and was not locatable calculationally. Calculations were also unable to locate a transition state for unimolecular elimination of N -methylformaldimine from 5-11. These observations suggest that both the formation of the $\mathrm{C}^{4 \mathrm{a}}$ adduct and the subsequent elimination step (as in 12) would require an as yet undefined catalytic base. While the crystal structure of MTOX is not available, a catalytic base in MSOX (sharing 41\% sequence identity) has not been identified. ${ }^{181}$

The alternative possibility of an N^{5} adduct is favored in calculations by greater electrophilicity at N^{5}. While zwitterionic adduct $\mathbf{5 - 1 3}$ would be high in energy in free solution, it is at least a local energy minimum, unlike the analogous adduct resulting from attack at $\mathrm{C}^{4 \mathrm{a}}$. Elimination from an N^{5} adduct could also avoid the need for an external base, with imine being formed directly via a transition state resembling model

5-14. However, the barrier associated with 5-14 in free solution is very high, and the overall neutrality of this cyclic transition structure would make it difficult for an enzyme to electrostatically catalyze the elimination.

In a study of the oxidation of benzylamine analogues by MAO A, Miller and Edmondson made the intriguing observation that the reaction was accelerated by electron-withdrawing groups. ${ }^{161}$ From a ρ of ≈ 2.0, a deuterium isotope effect in a range of 6 to 13, and the lack of observable flavin intermediates, they proposed a concerted addition/elimination mechanism. This unusual process can be modeled as in transition structure $\mathbf{5 - 1 5}$ with the proviso that the amine is deprotonated.

The ${ }^{15} \mathrm{~N}$ isotope effect results strongly weigh against any of these mechanisms. For these mechanisms involving elimination reactions as the rate-limiting step, the various calculational models lead to high-pH limit ${ }^{15} \mathrm{~N}$ isotope effects of 1.012-1.022. The predictions of normal isotope effects in these cases are readily understandable and expected on a qualitative basis. The mechanisms all involve transition states in which the nitrogen atom is undergoing a σ-bonding change, so that a primary ${ }^{15} \mathrm{~N}$ isotope effect should be observed. The observed absence of a primary ${ }^{15} \mathrm{~N}$ isotope effect would be conventional qualitative evidence against these mechanisms, and the calculated isotope effects strongly support the conventional interpretation.

One complicating factor in this interpretation is that the ${ }^{15} \mathrm{~N}$ isotope effect could be decreased if the amine nitrogen were protonated at the transition state. None of the elimination transition structures $\mathbf{5 - 1 2 a}, \mathbf{5 - 1 2 b}, \mathbf{5 - 1 4}$, and $\mathbf{5 - 1 5}$ involve protonated amine nitrogens. However, this is because these elimination steps are not viable when the amine is protonated. This may be understood at an electron-pushing level by considering that any of these eliminations involve pushing electrons away from the amine nitrogen, which is much more difficult when the nitrogen is protonated. As a result, when high-
level calculations search for elimination transition structures in protonated analogs of $\mathbf{5 - 1 2 a}, 5-12 \mathrm{~b}, \mathbf{5 - 1 4}$, and 5-15, alternative processes intervene.

It should be noted that the barriers associated with 5-14 and 5-15 in free solution are very high, and the overall neutrality of the transition structures makes it difficult to envision how an enzyme could catalyze these cyclic elimination steps. The calculated energetics thus support the conclusion from the ${ }^{15} \mathrm{~N}$ isotope effect that mechanisms of this type are not viable.

Single Electron Transfer. Electron-transfer mechanisms have been frequently proposed for flavin-dependent amine oxidations. ${ }^{182}$ Support for these mechanisms comes primarily from oxidation studies of cyclopropyl or cyclobutyl compounds that act as mechanism based inhibitors for MAO^{159} and for MSOX ${ }^{183,184}$. However, it is important to note that a cyclopropyl group blocks hydride transfer, as cyclopropylidene imines are very strained, and facilitates electron transfer, as cyclopropyl groups greatly stabilize adjacent positive charge. Less strained cyclic substrates and inhibitors have failed to give the ring opening products. ${ }^{185-187}$ With the latter compounds, the lack of the ring-opening product is consistent with a non-radical mechanism.

To date, monitoring flavin reduction by substrate has failed to show any visible flavin radical spectrum in MTOX ${ }^{158,162}$, MSOX 181,188, trimethylamine oxidase ${ }^{189}$, lysinespecific histone demethylase- $1^{190}, \mathrm{MAO}^{161,191}$, or any of the flavin-dependent amine oxidases. In many of these cases, deuterium isotope effects have shown that CH bond cleavage is partially or completely rate-limiting. Therefore, if an aminium radical is
utilized, its formation must be reversible and energetically unfavorable, but not ratelimiting.

Neither proton nor hydrogen transfer from 5-9 to $\mathbf{5 - 6}{ }^{-{ }^{\bullet}}$ can be modeled computationally as these would involve electronic excited states, so theoretical calculations cannot directly calculate a ${ }^{15} \mathrm{k}$ value. To get around this problem, some simpler reactions of 5-9 not complicated by electronic excited states were studied. To model proton transfer from 5-9, the reaction of 5-9 with ammonia was chosen, and transition structure 5-16 was located (Onsager/UB3LYP/6-31+G**) for the formation of $\mathbf{5 - 1 0} / \mathrm{NH}_{4}{ }^{+}$. It is unclear how closely $\mathbf{5 - 1 6}$ would resemble a transition structure for proton transfer from 5-9 to 5-6* (or sarcosine cation radical to flavin semiquinone), but 5-16 has the virtue of being a tractable model that could also model proton transfer from 5-9 to an active-site base. Modeling hydrogen transfer from 5-9 is more difficult, and can only be done with a radical that is sufficiently electronegative to maintain radical character in the presence of 5-9. For this purpose, a chlorine atom was chosen, and transition structure 5-17 was located for the hydrogen transfer affording N methyliminium cation $/ \mathrm{HCl}$. This transition state is notably early, as would also be expected for the downhill hydrogen transfer from $\mathbf{5 - 9}$ to $\mathbf{5 - 6}^{-{ }^{-}}$.

Scheme 5-7

For the calculated transition structures 5-16 and 5-17, the predicted ${ }^{15} \mathrm{~N}$ kinetic isotope effect (including a tunneling correction) was 0.9963 and 0.9962 , respectively. These modestly inverse isotope effects may be understood as resulting from a strengthening of bonding to the nitrogen atom as proton or hydrogen transfer proceeds, as evidenced by an overall decrease in the C-N bond distances. Multiplying these kinetic isotope effects by the predicted equilibrium isotope effect for formation of 5-9 from Table 5-1 gives 0.9941 and 0.9940 , respectively. Despite the simplicity of the models, both are in remarkable agreement with experiment.

An analogous analysis can be carried out for the deuterium isotope effect.
Combining predicted H/D isotope effects for 5-16 and 5-17 of 4.02 and 2.38, respectively (including the Wigner tunneling correction), with the equilibrium isotope effect of 1.38 for formation of $\mathbf{5 - 9}$ gives 5.55 and 3.28, respectively. As discussed above,
these predictions with a minimal tunneling correction are likely lower bounds and cannot be considered inconsistent with the experimental H/D isotope effect of about 7.0.

An occasionally proposed mechanism, related to the electron-transfer mediated mechanisms, is rate-limiting abstraction of a hydrogen atom from the substrate, forming a carbon radical. ${ }^{182,192}$ This mechanism is not directly calculable because the product is an electronic excited state; in the calculational model, it is downhill from $\mathbf{5 - 6 - 5 - H \cdot} \cdot+$ 5-10 to 5-6-5-H $\mathrm{H}^{-}+\mathrm{N}$-methyliminium cation, and a combined ground-state calculation must give the latter as a hydride transfer instead of a hydrogen transfer. To model this process, a transition structure was located for hydrogen abstraction from dimethylamine by methyl radical (see Appendix). The predicted ${ }^{15} \mathrm{~N}$ and H / D isotope effects for this process are 0.9985 and 8.98 , respectively. Both isotope effects are somewhat higher than observed experimentally, and the lower-bound nature of the H/D isotope effect prediction adds significance to its being larger than that observed experimentally. While the simplicity of the calculational model in this case makes it difficult to reach a firm conclusion on the direct hydrogen-transfer mechanism, the isotope effects cannot be said to provide support for the mechanism as in the cases above. In addition, considering the energetic preference for $\mathbf{5 - 6}-5-\mathrm{H}^{-}+N$-methyliminium cation over $\mathbf{5 - 6}-5-\mathrm{H} \bullet+\mathbf{5 - 1 0}$, and a presumed greater difficulty for the enzyme to stabilize the latter neutral molecules over the former charged species, the calculated energetics add weight against a direct hydrogen transfer from starting amine.

Overall, this analysis of the isotope effects and the close correspondence of predicted and experimental ${ }^{15} \mathrm{~N}$ kinetic isotope effects appears to support rate-limiting
proton or hydrogen transfer after an initial electron-transfer. However, it will be seen that the results provide equal support for a hydride-transfer mechanism.

Hydride Transfer. A concerted hydride transfer is the simplest proposed mechanism for flavin-dependent amine oxidation, and is frequently accepted as the chemical mechanism for the thoroughly studied D-amino acid oxidase. ${ }^{160}$ This mechanism is most consistent with the lack of visible intermediate flavin species during sarcosine oxidation, ${ }^{162}$ as it requires no intermediates. The absence of an observable intermediate does not exclude covalent-adduct and electron-transfer mechanisms, as intermediates could be too short-lived to be observed, but it does weigh against such mechanisms, particularly since the mechanisms involve intermediate flavin species prior to the rate-limiting CH bond cleavage.

The evaluation of the hydride-transfer mechanism here is based on the comparison of the experimental ${ }^{15} \mathrm{~N}$ isotope effect of $0.994-0.995$ versus those predicted for model transition structures 5-7 and 5-8. The ${ }^{15} \mathrm{~N}$ isotope effects predicted for 5-7 and 5-8 are notably inverse at 0.992 and 0.993 , respectively. At first glance, these inverse isotope effects may seem surprising, since the nitrogen is undergoing a substantial bonding change in the process. However, heavy-atom isotope effects associated with π bonding changes depend on the nature of the bonding change. When there is little change in total π-bond order, the isotope effect is very small. For example, the central carbons of a diene in a Diels-Alder reaction do not exhibit a significant ${ }^{13} \mathrm{C}$ isotope effect. ${ }^{193}$

The agreement of the predicted ${ }^{15} \mathrm{~N}$ isotope effects for hydride-transfer mechanisms with experiment is striking. Considering the experimental uncertainty discussed above, the agreement must be considered at least as good as that for the electron-transfer mechanisms. It may be argued that the agreement is of greater significance in the case of the hydride-transfer mechanisms, as 5-7 and 5-8 are straightforward models for hydride transfer while the prediction of isotope effects for electrontransfer mechanisms was necessarily a contrived process. However, the observed ${ }^{15} \mathrm{~N}$ isotope effect can clearly be taken as supporting either mechanism.

Although the energetics for the calculational model mechanisms are not directly related to those for possible enzyme-catalyzed mechanisms, some comment can be made on the energetic feasibility of the hydride transfer versus alternative possibilities. The barriers associated with 5-7 and 5-8 in free solution are $10-15 \mathrm{kcal} / \mathrm{mol}$ higher than those for the enzymatic reaction, but a direct uncatalyzed hydride transfer should occur at an observable rate at ambient temperature and should be reasonably facile at elevated temperature. The hydride transfer should be readily catalyzed by an enzyme by hydrogen bonding or proton transfer to N^{1}, and the greatly decreased gas-phase barrier for 5-8 suggests that proton transfer ought to be most effective in a non-polar pocket. Consistent with such a model, many flavoproteins oxidases have a positively charged residue or the positive end of a helix near the flavin $\mathrm{N}^{1} .{ }^{194,195}$ The enzyme could also ease the hydride transfer by electrostatically stabilizing the incipient iminium ion. Alternatively, if the flavin is distorted away from planarity by the enzyme, this should facilitate the hydride transfer, just as it facilitates electron transfer. In products $\mathbf{5 - 6}-5-\mathrm{H}^{-}$and $\mathbf{5 - 6}-1,5-\mathrm{H}_{2}$, the
flavin rings are bent approximately 20° from planarity (the $\mathrm{C}^{4}-\mathrm{N}^{5}-\mathrm{C}^{6}$ angles are approximately 160°) while the starting flavin is planar, so enzymes that pre-bend the flavin will lower the barrier to hydride transfer. Overall, the calculated facility of the reaction in free solution and the expected ease of its catalysis support the viability of the hydride-transfer mechanism.

Electron transfer to form $\mathbf{5 - 6} \mathbf{- 0} / \mathbf{5}-\mathbf{9}$ is predicted to have a higher barrier in free solution than hydride transfer. In the actual mechanism, this electron transfer would necessarily precede a yet higher barrier for rate-limiting proton or hydrogen transfer to account for the observed primary deuterium isotope effect. The combination of the calculated energetics and the primary H/D isotope effect thus adds to an energetic argument against the electron-transfer mechanism. However, it is impossible to dismiss the electron-transfer mechanism on this basis, as MTOX might promote electron transfer either by electrostatic stabilization of the charged intermediates or by flavin distortion.

Conclusions

The computational predictability of heavy-atom kinetic isotope effects has often allowed their detailed interpretation beyond conventional qualitative considerations. In the case of sarcosine oxidation by MTOX, the interpretation of the observed ${ }^{15} \mathrm{~N}$ kinetic isotope effect of approximately 0.994 based on calculated isotope effects is not unique. Both a direct hydride-transfer mechanism and reversible electron transfer followed by rate-limiting proton or hydrogen transfer can account for the observed isotope effect. However, the isotope effects predicted for models of mechanisms involving covalent adducts or concerted addition/elimination are significantly different from the
experimental value and thus strongly disfavor these mechanisms. In concert with the absence of observable intermediates and the poor calculated energetics for these mechanisms, consideration of concerted or covalent adduct mechanisms for sarcosine oxidation by MTOX can be discounted. The calculated energetics for model reactions add some support for the hydride-transfer mechanism, as the enzyme need only modestly lower the barrier for the reaction versus that in free solution. The electron-transfer mechanisms in contrast would require somewhat greater energies, and it would be surprising if this left a proton or hydrogen transfer step as rate-limiting.

CHAPTER VI

THEORETICAL ANALYSIS OF EXO SELECTIVE DIELS-ALDER REACTIONS OF

 VINYLAZEPINES, VINYLPIPERIDEINES, AND VINYLCYCLOALKENES*Diels-Alder reactions of vinylazepines with N-phenylmaleimide afforded exclusively the exo cycloadduct, while high endo stereoselectivity was observed, as previously reported, in analogous reactions of vinylpiperideines. This curious contrast was confirmed by x-ray analysis of cycloadducts not susceptible to epimerization. The stereoselectivity of Diels-Alder reactions of vinylazepines, vinylpiperideines, and vinylcycloalkenes exhibits surprising divergence depending on the detailed diene structure, and DFT calculations (Becke3LYP) were undertaken to shed light on these observations. The model calculations correctly predict the major stereoisomers in these reactions, though they tend to significantly underestimate the stereoselectivity. The results suggest some general considerations in predicting or controlling the stereochemistry of this class of Diels-Alder reactions.

Introduction

Diels-Alder reactions employing vinylcycloalkenes and related dienes provide a rapid entry into polycyclic structures. However, to fully take advantage of the power of these reactions, the synthetic chemist must be able to predict or control their stereoselectivity.

[^3]Only recently have reports describing Diels-Alder reactions of cyclic 2-(N-acylamino)-1,3-dienes appeared in the literature. Cha studied piperideine-derived enecarbamates and found these dienes react with ethyl acrylate with unusual meta regioselectivity and no endo/exo stereoselectivity. ${ }^{196}$ However, N-phenylmaleimide was found to afford exclusively the endo cycloadduct, a result later corroborated by Occhiato. ${ }^{197}$ Reactions of pyrollidine-derived 2-(N-acylamino)-1,3-dienes with N phenylmaleimide also exhibit exclusive endo selectivity. ${ }^{198,199}$ No studies on the sevenmembered azepine dienes have been reported.

In connection with synthetic studies relating to the synthesis of stenine, Sulikowski and Boren have observed surprising examples of exo selectivity as well as reversals of endo/exo stereoselectivity with changes in diene structures. ${ }^{200}$ The DielsAlder cycloaddition between 6-1 and N -phenylmaleimide gives 6-2 as the only observable cycloadduct, confirmed by single-crystal x-ray analysis.

In light of the opposite literature results with smaller rings, this was very surprising. In earlier studies, the stereochemistry of the cycloadducts derived from the Diels-Alder reaction of N-phenylmaleimide and cyclic 2-(N-acylamino)-1,3-dienes were assigned based on NMR analysis. In order to corroborate these structural assignments,
the cycloaddition of diene $\mathbf{6 - 3}$ with N -phenylmaleimide was studied. This afforded product 6-4, resulting from an endo cycloaddition followed by double bond migration, and was confirmed by X-ray analysis.

Double bond migration in the product enamides, as observed in 6-4 is presumably catalyzed by adventitious acid. This isomerization raised the concern that $\mathbf{6 - 2}$ might be the result of an initial endo cycloaddition followed by epimerization of the ring fusion carbon. This possibility was explored using diene 6-5. In this case the Diels-Alder cycloadduct includes an additional stereochemical marker center that is not epimerizable. Reaction of 6-5 with N -phenylmaleimide afforded only 6-6, established as exo by X-ray analysis.

Vinyl azepine 6-5 reacted with ethyl acrylate to provide a mixture of isomers, presumably consisting of regio- and stereoisomers as reported by Cha when utilizing a piperidine derived diene analogous to 6-5. ${ }^{196}$ In contrast the doubly activated dienophile
dimethyl fumarate reacted with vinyl azepine 6-1 to provide a single Diels-Alder adduct 6-7. In this case the methyl carboxylate group closest to the ring fusion carbon adopts an exo orientation and the second carboxylate group occupies an endo orientation.

The striking reversal of exo/endo stereoselectivity between azepene-derived 2-(N-acylamino)-1,3-dienes and their smaller-ring congeners is unusual. Quite a few exoselective Diels-Alder reactions are known, but they tend to involve recognizable structural motifs. For example, exocyclic s-cis dienophiles of all types tend to be exoselective. ${ }^{201-205}$ Preferential exo cycloaddition is often observed in the reaction of cyclopentadiene with α-substituted dienophiles. ${ }^{206-208}$ The unique sterics of metal carbene dienophiles also result in exo selectivity. ${ }^{209-211}$

The Diels-Alder reactions of vinylcycloalkenes and cyclic 2-(N-acylamino)-1,3dienes, as in 6-8, would appear to compose a motif in which the endo/exo stereoselectivity is highly variable. While 1-vinylcyclohexene 6-9 and the silyloxy derivative 6-10 afford endo cycloadducts, ${ }^{212,213}$ Danishefsky obtained the exo cycloadduct from a reaction of the dimethyl derivative $11,{ }^{214}$ and Corey observed exo selectivity in a reaction of $\mathbf{6 - 1 2} .{ }^{213}$ Others have reported low endo selectivity of the reaction of diene 6-13 and congeners. ${ }^{215-217}$ In these examples and those above,
seemingly minor changes in the structure of the "spectator" ring lead to reversed stereochemistry.

6-8 $\mathrm{X}=\mathrm{C}$ or N

6-9 $X=H$
6-10 X=OTBS

6-11

6-12

6-15

6-13

6-14

This has led us to a broader study of endo/exo stereoselectivity with vinylcycloalkenes. The theoretical investigation here provides insight into these results as well as observations of exo selectivity in related Diels-Alder reactions.

Results and Discussion

To gain insight into stereoselectivity with this class of dienes, the model reactions of $\mathbf{6 - 9}, \mathbf{6 - 1 1}, \mathbf{6 - 1 3}, \mathbf{6 - 1 4}$, and $\mathbf{6 - 1 5}$ with maleimide were studied in Becke3LYP calculations employing a 6-31G* basis set. Isotope effects have supported the accuracy of transition structure geometries obtained from this level of calculation for simple Diels-Alder reactions. ${ }^{26}$ This study was complicated by multiple possible reactive conformations, particularly with 6-15. Molecular dynamics / simulated annealing was used to identify candidate conformations, and notably found structures for 6-15 corresponding to the chair, boat, and twist-chair conformations of cycloheptane. ${ }^{218}$ The
possible reaction pathways were then explored systematically. This process led to a total of 36 transition structures for the five reactions.

Figures 6-1 and 6-2 show selected low-energy transition structures for these reactions, along with relative free-energy barriers at $25^{\circ} \mathrm{C}$ (the free energy was estimated as $\Delta \mathrm{E}-\mathrm{T} \Delta \mathrm{S}$ by including zero-point energies and entropies based on the unscaled vibrational frequencies). Complete structures are given in the appendix. In each case, the calculations correctly predict the experimentally observed major isomer. However, they underpredict the degree of selectivity compared to the experimental examples.

Recent work by Paddon-Row and Sherburn suggested the use of MP2 singlepoint energies on the Becke3LYP structures to more accurately predict endo stereoselectivity in Diels-Alder reactions. ${ }^{219}$ When this procedure is applied to the reactions 6-9, 6-11, and 6-13, the MP2/6-31G*//B3LYP/6-31G* free energies correctly predict the endo stereoselectivity with $\mathbf{6 - 9}$ (by $1.2 \mathrm{kcal} / \mathrm{mol}$), but they also predict endo stereoselectivity for 6-11 and 6-13 by 0.3 and $1.2 \mathrm{kcal} / \mathrm{mol}$, in contrast to experimental observations with 6-11 and 6-12 and in contrast to the B3LYP/6-31G*//B3LYP/6-31G* results in Figures 6-1 and 6-2. It is best to keep in mind that any feasible theoretical calculation of relative energies for systems this large will have associated with it some "uncertainty." Considering this uncertainty, along with the structural differences between the experimental and theoretical examples, the agreement of experiment and the B3LYP predictions is quite reasonable. The calculations provide a model that may be examined to analyze the factors affecting the stereoselectivity, and the agreement of
predicted major product with experiment suggests that this model adequately represents the major stereochemistry-determining factors.

As a starting point for understanding these reactions, exo transition structures strongly favor "axial attack" on the six-membered ring dienes (Figure 6-1). By axial attack, we mean that the incipient b-b' bond in structures 6-16, 6-17, and 6-20-6-25 would initially be in an axial position on a chair conformation of the bystander ring. An example is the $1.6 \mathrm{kcal} / \mathrm{mol}$ advantage for $\mathbf{6 - 1 6}$ over $\mathbf{6 - 1 7}$. Similar preferences of 1.6-2.0 $\mathrm{kcal} / \mathrm{mol}$ are seen with the exo transition structures derived from 6-11, 6-13, and 6-14. This appears analogous to the well-known predilection axial alkylation of cyclohexanone enolates. One generally expects axial attack to be more hindered, but when steric effects are small, axial attack has the advantage of resulting in an initial chair conformation for the bystander ring. ${ }^{20,221}$

The endo transition structures derived from 6-9, 6-11, 6-13, and 6-14 also favor an axial attack, but the preference is decreased compared to the exo. For example, 6-18 is favored over $\mathbf{6 - 1 9}$ by $0.6 \mathrm{kcal} / \mathrm{mol}$. For the endo pathways, axial attack is sterically hindered by an incipient 1,3-diaxial interactions ($\mathbf{6 - 1 8}$). The equatorial attack remains disfavored in the calculations here for all of the six-membered ring dienes. However, the predicted energy difference is small $(0.1-0.6 \mathrm{kcal} / \mathrm{mol})$ and within the likely uncertainty in the calculations. Equatorial attack might be expected to be favored for more sterically demanding dienophiles.

Figure 6-1. Transition structures for the reaction of 6-9 with maleimide. Energies are relative to isomeric transition structures, in $\mathrm{kcal} / \mathrm{mol}$. Most hydrogens have been removed for clarity.

Figure 6-2. Select low-energy transition structures for reaction of several dienes with maleimide. Energies are relative to isomeric transition structures, in $\mathrm{kcal} / \mathrm{mol}$.

Exo axial attack also faces an incipient 1,3-diaxial interaction but it has the advantage of placing the imide ring away from the sterics of the spectator ring. When the sterics are increased, as with $\mathbf{6 - 1 1}$, the endo axial approach is hindered and the exo axial attack unsurprisingly becomes favored (compare 6-20 versus 6-21). A more surprising example is the reaction of $\mathbf{6 - 1 3}$. In the endo axial transition structure $\mathbf{6 - 2 2}$, the cyclohexadiene-like ring is very nonplanar and the axial hydrogen shown has a stronger steric interaction with the dienophile than in any of the analogous structures resulting in a favored exo approach 6-23.

In the transition structures derived from $\mathbf{6 - 1 4}$, the piperideine ring and its carbomethoxy substituent have relatively little steric influence on the approaching dienophile, allowing a normal endo stereoselectivity. A surprising observation is that the plane of the carbamate nitrogen in $\mathbf{6 - 2 4}$ is twisted by 38° relative to the plane of the diene. It might have been expected that the carbamate would try to align the nitrogen lone pair with the diene π orbitals in order to maximize donation to the diene. In the predicted conformation, the nitrogen will have a negligible activating effect. This is consistent with the moderate reactivity of the dienes, and explains the meta regioselectivity observed by Cha for these reactions. ${ }^{196}$

The best structures derived from 6-15, such as 6-26 and 6-27, all involve a decidedly non-planar chair-like conformation of the azapine ring with the carbomethoxy group twisted well away from the plane of diene. For the seven-membered ring, there is apparently no longer a stereoelectronic effect favoring "axial" attack on the pseudo-chair - in fact the structures analogous to $\mathbf{6 - 1 8}, \mathbf{6 - 2 0}, \mathbf{6 - 2 2}$, and $\mathbf{6 - 2 4}$ suffer from a severe steric
interaction with the seven-membered ring and are $4 \mathrm{kcal} / \mathrm{mol}$ higher in energy. Endo attack on the other face of the diene, as in 6-26, is better but is still hindered by interaction with the carbomethoxy group. As with the piperideine analogs, the plane of the carbamate nitrogen in $\mathbf{6 - 2 6}$ is twisted relative to the plane of the diene, but now by 56°. This positions the carbomethoxy group to block one face of the diene. With the highly non-planar seven-membered ring blocking the other, the exo pathway becomes favored by a substantial margin.

Conclusions

Diels-Alder reactions of vinylazepines and vinylpiperideines fit in with the reactions of vinylcycloalkenes in that the group, as a whole, exhibits highly variable stereoselectivity. This stereoselectivity depends on the detailed structure of the diene, and will likely depend on the dienophile as well, so that generalizations regarding the selectivity of these reactions are not yet apparent. Nonetheless, the results here suggest some general considerations in predicting or controlling the stereochemistry of this class of Diels-Alder reactions. To counteract the normal endo preference with simple dienes built from five- and six-membered rings, substituents that maximize a 1,3-diaxial interaction with the incoming dienophile should most readily result in exo selectivity. In analogy with the 6,6-dimethyl derivative 6-11, we would predict that axial substituents in the 4-position of vinylcyclohexene would result in exo product formation. Axial substituents in the 3 or 5 positions would likely exert less effect. The greater nonplanarity with seven-membered can readily lead to steric prohibition of the endo
pathway. This presents interesting opportunities for control of stereoselectivity in DielsAlder reactions involving dienes with bystander ring structures.

CHAPTER VII

EXPERIMENTAL SECTION

Theoretical Methods for the Swain-Schaad Relationship

All structures and energies were obtained using standard procedures in Gaussian98 or Gaussian03. ${ }^{222}$ Unless otherwise noted, structures were fully optimized in B3LYP calculations employing a 6-31G* basis set. Unrestricted calculations were employed for open-shell structures. Vibrational frequency analyses were carried out on all stationary points.

Isotope effect calculations made use of a modified version of the program QUIVER. Frequencies for B3LYP/6-31G* calculations were scaled by 0.9614 . For each of the reactions given, $H / D, H / T$, and D / T kinetic isotope effects were calculated for all C-H positions. In addition, for almost all of the reactions, the $\mathrm{H} / \mathrm{D}, \mathrm{H} / \mathrm{T}$, and D / T kinetic isotope effects were also calculated for the reverse reaction. For example, in the DielsAlder reaction, kinetic isotope effects were calculated for both the forward reaction from 1,3-butadiene and ethylene and the reverse (retro) Diels-Alder reaction for cleavage of cyclohexene.

A series of simple unix shell routines and awk programs were used to ease dealing with the large number of isotope effects. These are listed in Appendix A.

Each of the reactions below is given a title and this title is also used in a later section containing relevant calculated geometries.

Experimental Section for the Reaction of Oxidosqualene Cyclase (OSC)

Bromohydrin of squalene. The procedure used for the synthesis of \pm oxidosqualene was slightly modified from the procedure of Scott. ${ }^{122} 6 \mathrm{~L}$ of THF was added to a 12L 3-neck round bottom flask equipped with a mechanical stirrer in an ice bath, flushed with nitrogen and allowed to cool for 30 minutes. 83 g of squalene (Acros) was added to the reaction vessel at once. 1.5 L of water was added and the reaction allowed to stir for 10 minutes. 500 ml of water was added slowly until the mixture became cloudy, stirring was continued for 15 minutes. 43.4 g (1.2 eq) of NBS (Acros, if necessary recrystallized from water) was added to the reaction over a period of 40 minutes. The reaction was allowed to stir at $0^{\circ} \mathrm{C}$ for 25 minutes. The reaction was checked by TLC in 100:8 hexanes/EtOAc for conversion to the bromohydrin. 2L of water was added to quench the reaction and the reaction mixture was extracted with two 250 ml portions of hexanes. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed under reduced pressure . The reaction was repeated two more times and the crude product combined. The reaction gives unreacted squalene due to insolubility in the solvent system, and several other impurities which are assumed to be undesired isomers of the target bromohydrin. The crude product was purified using flash silica gel chromatography (or by MPLC) in a mixed solvent system of pure hexanes to remove unreacted squalene and then followed by 100:4 hexanes/EtOAc. Several columns in 100:4 hexanes/EtOAc were required to give 54.3 g of pure bromohydrin.
\pm Oxidosqualene from the bromohydrin. 4L of methanol was added to a 3-neck flask equipped with a stirrer and purged with N_{2} at room temperature. 54.3 g of the bromohydrin was added to the flask and allowed to stir for 20 minutes. 20 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added in one portion and the reaction allowed to stir at room temperature for 12 hours. The reaction progress was monitored by TLC in 100:8 hexanes/EtOAc. The reaction was quenched with 2 L of water. The reaction mixture was extracted with hexanes and the combined organic dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to give 38.1 g of pure \pm oxidosqualene.

Cyclization of oxidosqualene (100% conversion reaction). Four jars of Fleishman's yeast (452 g) is slowly stirred into 500 mls dibasic potassium phosphate buffer, $\mathrm{pH}=7.4$, until completely homogenous. The yeast mixture was cooled on an ice bath to approximately $10^{\circ} \mathrm{C}$. The yeast was lysed in $\sim 100 \mathrm{ml}$ aliquots with a bead beater (Biospec Products Inc.) using 0.5 mm glass beads. Each batch of yeast was lysed twice for 90 s , and cooled back to $10^{\circ} \mathrm{C}$ each time. The yeast lysate was centrifuged at 6000 rpm on an SLA3000 rotor for 15 minutes. The lysate ($\mathrm{pH}=5.8-6.1$) was decanted from the pellet into the reaction flask. The reaction flask was prepared by adding 10 mls Triton X-100 to 500 mls of dibasic potassium phosphate buffer, $\mathrm{pH}=6.4$. The mixture was sonicated for 10 minutes, then 2.0 g of \pm oxidosqualene was added and the mixture was continuously sonicated for 10 minutes. The oxidosqualene solution is placed in a 3necked round bottom flask and warmed to $37^{\circ} \mathrm{C}$ while stirring under N_{2} for one hour. The yeast lysate mixture is added. Dibasic potassium phosphate buffer, $\mathrm{pH}=6.4$, is added until the total reaction volume was 1 L . The reaction is stirred at $37^{\circ} \mathrm{C}$ under N_{2}
for 24 hours. The reaction progress is checked by TLC in 1:1 hexanes/ether and visualized using iodine or anisaldehyde stains. The reaction is quenched with 1 L of ethanol and allowed to sit for several hours. The precipitate is centrifuged at 6,000 r.p.m. for 15 minutes on an SLA3000 rotor. The supernant is combined and stored. The pellets are washed twice with hexanes. The combined organic was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed under reduced pressure to give a crude oil. A silica gel column was ran in dichloromethane/hexanes to purify the oxidosqualene and lanosterol from the reaction mixture. The extent of reaction was determined by measuring the amount of (S)-2,3-oxidosqualene left at the end of the reaction. This was determined by examination of the ${ }^{1} \mathrm{H}$ NMR in d_{6}-benzene of the diasteriotopic methyl groups at $\delta 1.11$ and $\delta 1.16$ of the R and S isomers of oxidosqualene using the chiral shift reagent, europium tris[3-heptafluoropropylhydroxymethylene] camphorate as described below. After the reaction was determined to be greater than 99% complete, the lanosterol was further purified by additional silica gel chromatography using the dichloromethane/hexanes solvent system. Approximately 900 mgs of pure lanosterol was recovered from each reaction.

Cyclization of oxidosqualene (partial conversion reaction). The reaction was performed exactly as above with the following changes: 2 jars of Fleishman's yeast (226 g), 10-12 $\mathrm{g} \pm$ oxidosqualene, oxidosqualene, and Triton $\mathrm{X}-100$ at pH of 6.2 . Reactions were taken to $20-40 \%$ conversion.

Chiral shift study used to measure percent conversion. A ${ }^{1} \mathrm{H}$ NMR of 30 mgs of reisolated oxidosqualene was measured in d_{6}-benzene. A minimal amount of the chiral
shift reagent Europium tris[3-heptafluoropropylhydroxymethylene] camphorate was added to the d_{6}-benzene. The ratio or R and S enantiomers of oxidosqualene was determined by examination of the ${ }^{1} \mathrm{H}$ NMR in d_{6}-benzene of the diasteriotopic methyl groups at $\delta 1.11$ and $\delta 1.16$ of the R and S isomers. The ratio of the R and S enantiomers of oxidosqualene was measured using the peak heights for each methyl group which corresponded well with one another. This method of measurement was also verified by analyzing standard oxidosqualene mixtures of known R and S content. The percent conversion could then be determined from equation $7-1$, assuming (R)-2,3 oxidosqualene is completely unreactive in the mixture.
\%conversion=(S enantiomer peak height/R enantiomer peak height)-100
NMR study to measure the solubility of + oxidosqualene in water. $5 \mu \mathrm{~L} \pm$ oxidosqualene (. 011 mmols), $5 \mu \mathrm{~L}$ DMF (. 008 mmols), and $35 \mu \mathrm{~L}$ Triton $\mathrm{X}-100$ were placed in $5 \mathrm{mls}_{2} 0$. The sample was shaken and ${ }^{1} \mathrm{H}$ NMR was taken at 500 MHz . The dimethyl formamide was assumed to be 100% soluble in the $\mathrm{D}_{2} \mathrm{O}$ and the aldehyde peak was used as an internal standard to compare to the methine peak on C3 of oxidosqualene. This resulted in 19% solubility of \pm oxidosqualene. A similar mixture was prepared in an identically and sonicated two times for 30 seconds. Comparison of the aldehyde and C3 methine peaks showed 100% solubility of \pm oxidosqualene. The NMR tube containing the sonicated solution was heated at $37^{\circ} \mathrm{C}$ to mimic reaction conditions. NMRs were taken at 1 hour and 24 hours and show 100% oxidosqualene solubility.

Acetylation of lanosterol. 3 mls of pyridine were placed in a 3-necked flask equipped with a magnetic stirrer and $\mathrm{N}_{2} .3 .008 \mathrm{~g}$ of lanosterol was added slowly while stirring. 12 mls of acetic anyhydride was then added and the reaction was slowly heated for 3 hours. The reaction stirred at room temperature for 5 more hours until the reaction was complete by TLC. The reaction was quenched with 30 mls of water and the precipitate filtered. The filtrate was extracted twice with ether, dried the organics with sodium sulfate, and evaporated solvent. 2.0 g of pure material was recovered. The material was recrystallized in 1:1 ethyl acetate methanol. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched literature values. ${ }^{223}$

Trifluoroacetylation of lanosterol. 1.02 g of lanosterol was added to 10 mls $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 3-neck round bottom flask equipped with a magnetic stirrer and $\mathrm{N}_{2} .350 \mu \mathrm{~L}$ pyridine and $50 \mu \mathrm{~L}$ trifluoroacetic anhydride were added to the flask. The reaction was stirred at room temperature overnight. The reaction was quenched with 20 mls water. The water layer was extracted two times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with water, sodium bisulfate, sodium carbonate, and water. The organic was dried with sodium sulfate and filter. After evaporation of the solvent .8882 g of solid was recovered, which was the trifluoroacetyl lanosterol derivative as shown by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR in CDCl_{3}. $\left(\mathrm{mp}=98-100^{\circ} \mathrm{C}\right)$

Pyridinium chlorochromate (PCC) oxidation of lanosterol to lanosterone. 510 mgs of lanosterol was placed in $30 \mathrm{mls} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a round bottom flask. 590 mgs of PCC was added at once to the reaction and the solution stirred vigorously at room temperature. After one hour the reaction was incomplete and 50 mgs of PCC was added.

After 3 hours the reaction was complete. The solid was filtered, and the liquid layer was run through silica gel using ether as the eluent. The solvent was evaporated to give 492 mgs of lanosterone as a solid. ${ }^{13} \mathrm{C}$ NMR in d_{8}-THF. $\delta 214.73\left(\mathrm{C}_{3}\right), 136.2\left(\mathrm{C}_{8}\right), 134.6$ $\left(\mathrm{C}_{9}\right), 131.32\left(\mathrm{C}_{25}\right), 126.19\left(\mathrm{C}_{24}\right), 52.25\left(\mathrm{C}_{5}\right), 51.60\left(\mathrm{C}_{17}\right), 50.99\left(\mathrm{C}_{14}\right), 47.90\left(\mathrm{C}_{4}\right)$, $45.52\left(\mathrm{C}_{13}\right), 37.94\left(\mathrm{C}_{10}\right), 37.46\left(\mathrm{C}_{22}\right), 37.42\left(\mathrm{C}_{20}\right), 37.07\left(\mathrm{C}_{1}\right), 35.09\left(\mathrm{C}_{2}\right), 32.18\left(\mathrm{C}_{12}\right)$, $31.99\left(\mathrm{C}_{15}\right), 29.21\left(\mathrm{C}_{16}\right), 27.42\left(\mathrm{C}_{7}\right), 26.84\left(\mathrm{C}_{28}\right), 26.31\left(\mathrm{C}_{30}\right), 25.94\left(\mathrm{C}_{23}\right), 24.92$ $\left(\mathrm{C}_{26}\right), 22.07\left(\mathrm{C}_{29}\right), 21.85\left(\mathrm{C}_{6}\right), 20.47\left(\mathrm{C}_{11}\right), 19.43\left(\mathrm{C}_{19}\right), 19.24\left(\mathrm{C}_{21}\right), 18.13\left(\mathrm{C}_{27}\right)$, $16.62\left(\mathrm{C}_{18}\right) \mathrm{d}_{8}$-THF referenced to $\delta 67.57$.

Reaction of impure lanosterone sample with tetracyanoethylene (TCNE). 103 mgs of lanosterone sample containing 5\% impurity from oxidosqualene cyclase was placed in CDCl_{3} in a 5 mm NMR tube. 5 mgs of TCNE was added and the reaction monitored by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. After 24 hours the impurity still remained. An additional 5 mgs TCNE was added and allowed to react for 24 hours. The impurity was still present by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis. The addition was repeated again. The impurity was still present by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and UV after 72 hours.

Reaction of impure lansoterone sample with N-phenyl triazoline dione (PTAD). 100 mgs of lanosterone sample was placed in an NMR tube in CDCl_{3}. PTAD was slowly added ($5 \mathrm{mgs}, 10 \mathrm{mgs}, 15 \mathrm{mgs}, 18 \mathrm{mgs}$) until solution remained bright pink. ${ }^{1} \mathrm{H}$ NMR was taken after every addition. The reaction was allowed to sit overnight at room temperature. The solution color cleared to slightly yellow. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR showed that the cyclic diene peaks of agnosterone remained after the reaction. Only the straight
chain alkene of lanosterone and agnosterone were affected by the reagent. The reaction was also performed in a dry ice/acetone bath with similar results.

PCC on alumina oxidation of lanosterol to lanosterone. 1 g of PCC was placed in 3 mls water and slowly heated until dissolved. 4 g of alumina was added to the mixture. The water was evaporated and the solid dried under reduced pressure. 126 mgs of lanosterol was added to $2 \mathrm{mls}_{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text { and stirred under } \mathrm{N}_{2} . ~ .125 \mathrm{~g} \text { of the PCC-Alumina }}$ solid was added to the reaction mixture. The solution was stirred at room temperature for 3 hours until the disappearance of lanosterol by TLC (100:8 hexanes/ethyl acetate). The mixture was ran through a silica gel plug in ether, and the solvent evaporated. 125.5 mgs of solid was recovered and analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and UV. The spectral data was consistent with the formation of lanosterone and approximately 4% of the agnosterone side product.

PCC oxidation in sodium acetate of lanosterol to lanosterone. 4 mgs of sodium acetate was placed in a round bottom flask in $2 \mathrm{mls} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ equipped with $4 \AA$ í molecular sieves, under $\mathrm{N}_{2} .125 \mathrm{mgs}$ of lanosterol was added, and allowed to stir until soluble. 97 mgs of PCC was added and the reaction stirred at room temperature for 5 hours until disappearance of starting material by TLC (100:8 hexanes/ethyl acetate). The reaction mixture was ran through a silica gel plug in ether, and the solvent evaporated. 129.1 mgs of solid was recovered and analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and UV. The spectral data was consistent with the formation of lanosterone and approximately 4% of the agnosterone impurity.

Jones oxidation of lanosterol to lanosterone. $86 \mathrm{mgs}^{\mathrm{mg}} \mathrm{CrO}_{3}$ was added to .07 mls of distilled water and stirred at room temperature. . 4 mls of sulfuric acid was slowly added dropwise. 125 mgs of lanosterol was added to .8 mls of acetone in a round bottom equipped with N_{2}. The chromic acid solution was slowly dripped into the reaction. The reaction was stirred at room temperature for one hour and quenched with $5 \mathrm{mls} 5 \%$ NaHCO_{3}. The reaction mixture was extracted three times with ether. The combined organic layers were washed with water, saturated NaCl , and dried over sodium sulfate. The solvent was evaporated, and the solid dried under reduced pressure. 52 mgs of solid was recovered and analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and UV. The spectral data was consistent with the formation of lanosterone and approximately 4% of the agnosterone side product. (Loss of product was probably due to initial insolubility of lanosterol in acetone, however the reaction was not optimized because the final product still contained the agnosterone impurity).

Collins oxidation of lanosterol to lanosterone. 0.3 mls of pyridine was added to 5 $\mathrm{mls} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a round bottom flask equipped with $4 \AA$ í sieves and $\mathrm{N}_{2} .187 \mathrm{mgs} \mathrm{CrO}_{3}$ was added to the solution and stirred at room temperature for 10 minutes. The reaction was cooled in an ice bath to $\sim 10^{\circ} \mathrm{C}$. 125.6 mgs of lanosterol in 3 mls of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added to the reaction. The reaction was allowed to stir overnight and slowly reach room temperature. The reaction mixture was ran through a silica gel plug in ether, and the solvent evaporated. 125 mgs of solid was recovered and analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and UV. The spectral data was consistent with the formation of lanosterone (the reaction only went to 10% conversion based upon comparison of the ${ }^{1} \mathrm{H}$ NMR peaks of
the starting alcohol and product ketone peaks) and approximately 3% of the agnosterone side product.

Parikh-Doering oxidation of lanosterol to lanosterone. 0.45 mls pyridine was placed in $2.1 \mathrm{mls} \mathrm{CCl}_{4}$ and stirred in an ice bath. 250 mgs of chlorosulfonic acid was added slowly dropwise. The reaction was stirred for 5 minutes, 2 mls water added, and the solid filtered. 125 mgs of lanosterol was added to .75 mls DMSO and .7 mls triethyl amine and allowed to stir at room temperature. 56 mgs of the $\mathrm{SO}_{3} \cdot$ pyridine salt in .75 mls DMSO was added to the reaction. After 30 minutes of stirring at room temperature, TLC indicated a significant amount of the starting material was still present. Another batch of salt was made and added to the reaction. The reaction was allowed to stir overnight and quenched with $5 \% \mathrm{Na}_{2} \mathrm{HCO}_{3}$. The solid filtered and the filtrate extracted three times into ether. The combined organics were dried and evaporated. The recovered solid was analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and UV. The spectral data was consistent with the formation of lanosterone and approximately 1% of the agnosterone side product. (The impurity may be artificial since the amount of agnosterone is based upon an increase in the diene peaks of the cylic alkene protons in the commercial lanosterol starting material compared to the product lanosterone. Commercial lanosterol contains about 8% agnosterol impurity and the final product had 9.1% based on ${ }^{1} \mathrm{H}$ NMR. However, this method was abandoned due to the poor yield of only 9% conversion of lanosterol to the corresponding ketone.)

Swern oxidation of lanosterol to lanosterone. 1.5 mls of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a 3-neck flask equipped with a stir bar and N_{2} in a dry ice acetone bath (approximately -60
${ }^{\circ} \mathrm{C}$). Freshly distilled oxalyl chloride (.2 mls) was added via syringe and the reaction allowed to stir for 30 minutes. Dried DMSO (.33 mls) was added via syringe dropwise and the reaction allowed to stir for 3 minutes. Lanosterol (831 mgs) was placed in 15 $\mathrm{mls} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added at once to the reaction. The reaction was allowed to stir for 20 minutes. 1.36 mls of triethyl amine was slowly added via syringe and the reaction allowed to stir for 20 minutes. The reaction progress was monitored by TLC in 100:8 Hexanes/EtOAc. The reaction was quenched with 10 mls water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed 3 times with $1 \% \mathrm{HCl}, 2$ times with water, 2 times with $\mathrm{Na}_{2} \mathrm{CO}_{2}$, and 2 times with NaCl . The methylene chloride was then dried with MgSO_{4}, filtered, and the solvent evaporated. The lanosterone was purified by silica gel chromatography in $1 \% \mathrm{EtOAc} /$ Hexanes to give 588.5 mgs of pure lanosterone. Methods for lysing yeast cells. For all of the lysis methods dry Fleishman's yeast was mixed with 100 mM dibasic potassium phosphate buffer, $\mathrm{pH}=7.4$, in a ratio of .9 1.0 g of yeast per ml of buffer unless otherwise indicated. This was homogenized by stirring at $37{ }^{\circ} \mathrm{C}$. After lysis, racemic oxidosqualene was then added and sonicated into solution with 1% by volume of buffer Triton X-100 and allowed to react for 24 hours, unless otherwise indicated in the procedure. The reactions were then checked by TLC in 1:1 hexanes/ether. When possible the lysis was also checked by a Bradford assay for protein content. This was followed by the standard work-up procedure used to isolate the crude oxidosqualene and lanosterol from the reaction solution as described above for the conversion of oxidosqualene to lanosterol. The reactivity was then determined by the ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} by comparing the amount of oxidosqualene versus lanosterol.

Duplicate reactions were also performed using dibenzyl ether as a standard to monitor the consumption of oxidosqualene. Sonication. The mixture was continuously sonicated for 60 minutes each in a cold water apparatus and the temperature kept below $20^{\circ} \mathrm{C}$. If the temperature increased above $20^{\circ} \mathrm{C}$ the sonication was discontinued, the mixture cooled on an ice bath to about $7-10^{\circ} \mathrm{C}$ and then sonication continued. The effectiveness of sonication was checked by a Bradford assay and the pH of the solution which was between 5.8 and 6.1 for batches that gave high substrate turnover. Chemical Autolysis. 22.5 grams of Fleishman's yeast was placed in 100 mls of toluene and $100 \mu \mathrm{~L}$ \pm oxidosqualene was added to the mixture (sonication was not required because of the solubility of oxidosqualene in toluene). The reaction was monitored periodically by TLC in 1:1 hexanes/ether. After 48 hours there was no indication by TLC analysis that lanosterol had been formed. This method resulted in no substrate turnover. Freezing. 22.5 g Fleishman's yeast was suspended in a solution of 100 mls of 100 mM dibasic potassium phosphate buffer, $\mathrm{pH}=7.4$. The yeast suspension was frozen with liquid nitrogen for 5 minutes and warmed to a liquid in a warm water bath for 15 minutes. This cycle was repeated 6 times. The cell walls were centrifuged and the protein content measured using the method of Bradford. The lysate was used in the normal reaction conditions and the reaction worked up after 24 hours. This method resulted in no substrate turnover according to TLC and ${ }^{1} \mathrm{H}$ NMR analysis. Grinding dry yeast. 22.5 g Fleishman's yeast was ground to a powder with a mortar and pestle. This was placed in a solution of 100 mls of 100 mM dibasic potassium phosphate buffer, $\mathrm{pH}=7.4$, and 100 $\mu \mathrm{L} \pm$ oxidosqualene with 1% Triton $\mathrm{X}-100$ that had previously been sonicated. The
reaction percent conversion was monitored by TLC and ${ }^{1} \mathrm{H}$ NMR. This method resulted in no substrate turnover. French Press. Fleishman's yeast was suspended in 100 mM dibasic potassium phosphate buffer, $\mathrm{pH}=7.4$. The suspension was cooled on an ice bath to approximately $5-10^{\circ} \mathrm{C}$. The culture was lysed on a French press under 20,000 p.s.i in 35 ml aliquots. The suspension was briefly sonicated for 30 seconds. The suspension was then centrifuged and the lysate subjected to the standard reaction conditions and work-up. This resulted in a yield of 100% conversion to lanosterol. Enzymatic lysis with lyticase. 25 g of Fleishman's yeast was suspended in 100 mls of 100 mM dibasic potassium phosphate buffer, $\mathrm{pH}=7.4$. A 20 mM stock of DTT (dithiothreitol) was added to the solution to bring the final DTT concentration to 4 mM . The solution was stirred for one hour. The yeast solution was frozen with liquid nitrogen and rapidly warmed in warm water for 15 minutes. $50 \mu \mathrm{~L}$ of a $1 \mathrm{mg} / 250 \mu \mathrm{~L}$ stock solution of Lyticase (a total of 500 units) was added to the yeast suspension and incubated for 1 hour. The solution was sonicated 5 times for 10 seconds. The final pH was 5.89. I spun down the cell walls. Aliquots were taken and a Bradford assay performed. $400 \mu \mathrm{~L}$ of Triton X-100 and $50 \mu \mathrm{~L}$ \pm oxidosqualene were added, sonicated for 1 minute and let stir at room temperature. After the routine work-up the conversion of lanosterol was very low (less than 5\%).

NMR Method for Collection of ${ }^{13}$ C NMR Data on Lanosterone

Six samples of lanosterone were prepared from oxidosqualene cyclase reactions taken to 98,35 , and 27% conversion of the (S)-2,3-oxidosqualene for runs 1,2 , and 3 , respectively, and 99 and 20% conversion for runs 4 and 5. Samples for NMR analysis for runs 1,2 , and 3 were prepared using 183 mgs of lanosterone $/ 5 \%$ agnosterone in d_{8} -

THF in a 5 mm NMR tube. NMR samples for runs 4 and 5 were prepared using 300 mgs of pure lanosterone. Samples were all prepared using the same method of slightly heating lanosterol in $300 \mu \mathrm{Ld}_{8}$-THF in a vial until soluble, placing the viscous mixture in the NMR tube, and washing the vial with d_{8}-THF and adding to the tube until the total sample height is 5 cm . The samples were then centrifuged to collect any dust or paramagnetic impurities at the bottom of the tube. Samples 1-3 were prepared from the same batch of synthesized \pm oxidosqualene starting material and 4-5 were made from a different batch.

To eliminate possible integration variations, a T_{1} determination was performed using the inversion-recovery method for each of the NMR samples. The ${ }^{13} \mathrm{C}$ spectra were acquired on an Inova 500 NMR and a Unity 500 NMR at 125.896 MHz . Data sets were collected one fid at a time immediately after one another alternating low and high conversion samples. The samples were acquired with inverse gated ${ }^{1} \mathrm{H}$ decoupling, with an acquisition time of 6 s (number of points=376176), and delays of 34 s which were equal to $5 \mathrm{X}_{1}$ between calibrated $\pi / 2$ pulses. The sweep width of 31348 Hz was set to center the peaks on the spectral window and optimize the number of data points collected.

A script was developed to consistently level, phase, and integrate each fid independently. This was necessary to remove any errors from working with a large number of acquired spectra. Integrations were determined using a constant region for each peak in the data set that was five times the peak width at half height on each side of
the peak (the largest half height of the two samples was used for both). A zeroth order baseline correction was applied, but in no case was a first order (tilt) correction applied.

Determination of KIEs for OSC

The product KIEs were determined from the measured enhancements using equation 7-2.

$$
\begin{equation*}
K I E=\frac{\log \left(1-F_{1}\right)}{\log \left[1-\left(F_{1} \frac{R_{p}}{R_{0}}\right)\right]} \tag{7-2}
\end{equation*}
$$

The low conversion reaction was used as the fractional conversion F (this assumes the high conversion reaction is complete). $\mathrm{R}_{\mathrm{p}} / \mathrm{R}_{0}$ represent the ratio of integrations for each of the peaks of the low conversion reaction $\left(\mathrm{R}_{\mathrm{p}}\right) /$ high conversion reaction $\left(\mathrm{R}_{0}\right)$.

Theoretical Methods for the Sharpless Asymmetric Epoxidation

Structures for the titanium dimer complex, the monomeric and dimeric precatalyst complexes, various transition states of the titanium dimer complex involving a variety of substrates, and various epoxidations were calculated in mPW1K, B3LYP, BP86, and B3PW91 with a variety of basis sets using Gaussian 03. ${ }^{222}$ A vibrational frequency analysis was performed on all stationary points. To allow for solvation effects, structures were also optimized using Onsager and PCM solvent models for dichloromethane. PCM solvent models were also used for single point energies on gas phase and solution phase optimized models. Kinetic isotope effects were calculated based on the Onsager solvent-model structures from the scaled (0.9614) frequencies at 0 ${ }^{\circ} \mathrm{C}$ using the statistical mechanics/conventional transition state theory formulation of

Bigeleisen and Mayer. ${ }^{25}$ Tunneling corrections were applied using the one-dimensional Wigner model. ${ }^{147}$

Theoretical Methods for MTOX

The mechanisms were explored using the parent alloxazine as a model for FAD and using dimethylamine as a model for the N-methyl amino acid substrates of MTOX. (The pKa 's of the $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$and $\mathrm{MeNH}_{2}{ }^{+} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$are 10.64 and 10.01, respectively, and the calculated methyl-group C-H bond strengths for $\mathrm{Me}_{2} \mathrm{NH}$ and sarcosine are 88.6 and $89.2 \mathrm{kcal} / \mathrm{mol}$, respectively.) Ground-state and transition structures were fully optimized in B3LYP/6-31+G** calculations using Gaussian 03. ${ }^{222}$ Unrestricted calculations (UB3LYP) were employed for odd-electron species. A vibrational frequency analysis was performed on all stationary points. To allow for solvation effects, structures were also optimized using an Onsager solvent model for water with singlepoint energies calculated using a PCM solvent model and Bondi atomic radii. Equilibrium and kinetic isotope effects were calculated based on the Onsager solventmodel structures from the scaled (0.9614) frequencies at $25^{\circ} \mathrm{C}$ using the statistical mechanics/conventional transition state theory formulation of Bigeleisen and Mayer. ${ }^{25}$ Tunneling corrections were applied using the one-dimensional Wigner model. ${ }^{147}$

Theoretical Methods for Diels-Alder Reactions

Diels-Alder reactions were studied in Becke3LYP calculations employing a 631G* basis set were carried out using Gaussian 98. Molecular dynamics / simulated annealing using the program Cerius 2 was used to identify candidate conformations, corresponding to the chair, boat, and twist-chair conformations of cycloheptane. The
possible reaction pathways were then explored systematically. This process led to a total of 36 transition structures for the five reactions.

CHAPTER VIII

CONCLUSIONS

Several physical organic techniques have been applied to a series of reactions in biological and organic chemistry. A new methodology has been developed for the simultaneous measurement of ${ }^{13} \mathrm{C}$ KIEs at natural abundance in large systems containing many isotopically sensitive positions. Theoretical studies have been used to predict experimentally measured KIEs, make predictions on the validity of a widely used experimental probe for relating isotopomers (the Swain-Schaad relationship), and have successfully predicted selectivity and reactivity in the Sharpless epoxidation and DielsAlder reactions. The techniques developed for experimental and theoretical study will have a wide range of application in the study of reaction mechanisms.

The boundary limits set upon the Swain-Schaad relationship will provide a valuable gauge for the validity of experimentally observed KIE ratios for many researchers. In addition, reaction optimization and NMR techniques have been developed for the measurement of precise KIEs for the mechanism of OSC. The measured KIEs suggest a mechanism for concerted closure of the ABC rings of the terpene system. A model has been developed for the Asymmetric sharpless epoxidation that accounts for the high selectivities of a diverse range of subtrates. The sources for high selectivity and ligand accelerated catalysis have been identified. KIE predictions have aided in the interpretation of KIEs for flavin dependent methyl amine oxidase reaction that discount a mechanism for covalent adduct formation and suggest a hydride transfer mechanism. Studies on the selectivity of Diels-Alder reactions of dienes with
bystander rings explains the surprising exo selectivity observed in some of these reactions.

In conclusion, an ensemble of techniques has been used to probe the fine details of a variety of reaction mechanisms. Novel methodologies have been developed with application in a wide variety of mechanistic studies.

REFERENCES

1. Lowry, T.H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, Third Edition ed.; Harper Collins Publishers: New York, NY, 1987.
2. Hehre, W. J. Practical Strategies for Electronic Structure Calculations; Wavefunction: Irvine, CA, 1995.
3. Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley-Interscience: New York, NY, 2001.
4. Kohen, A.; Limbach, H-H. Isotope Effects in Chemistry and Biology; CRC Press: Boca Raton, FL, 2006.
5. Melander, L.; Saunders, W. H., Jr. Reaction Rates of Isotopic Molecules; John Wiley \& Sons: New York, NY, 1979.
6. Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 6679-6685.
7. Nowlan, D. T.; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J. Am. Chem. Soc. 2003, 125, 15902-15911.
8. Singleton, D. A.; Merrigan, S. R.; Kim, B. J.; Beak, P.; Phillips, L. M.; Lee, J. K. J. Am. Chem. Soc. 2000, 122, 3296-3300.
9. Frantz, D. E.; Singleton, D. A. J. Am. Chem. Soc. 2000, 122, 3288-3295.
10. Singleton, D. A.; Hang, C. J. Am. Chem. Soc. 1999, 121, 11885-11893.
11. Meyer, M. P.; DelMonte, A. J.; Singleton, D. A. J. Am. Chem. Soc. 1999, 121, 10865-10874.
12. Singleton, D. A.; Szymanski, M. J. J. Am. Chem. Soc. 1999, 121, 9455-9456.
13. Singleton, D. A.; Schulmeier, B. E. J. Am. Chem. Soc. 1999, 121, 9313-9317.
14. DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907-9908.
15. Frantz, D. E.; Singleton, D. A.; Snyder, J. P. J. Am. Chem. Soc. 1997, 119, 33833384.
16. Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117, 9357-9358.
17. Ralph, E. C.; Hirschi, J. S.; Anderson, M. A.; Cleland, W. W.; Singleton, D. A.; Fitzpatrick, P. F. Biochemistry 2007, 46, 7655-7664.
18. Jones, W. D. Accts. Chem. Res. 2003, 36, 140-146.
19. Schramm, V. L. Meth. Enzym. 1999, 308, 301-355.
20. Cleland, W. W. Arch. Biochem. Biophys. 2005, 433, 2-12.
21. Nowlan, D. T., III; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 6190-6191.
22. Ussing, B. R.; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 2888-2899.
23. Singleton, D. A.; Hang, C. J. Org. Chem. 2000, 65, 7554-7560.
24. Lee, J. K.; Bain, A. D.; Berti, P. J. J. Am. Chem. Soc. 2004, 126, 3769-3776.
25. Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 15, 261-267.
26. Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 99849985.
27. Saettel, N. J.; Wiest, O.; Singleton, D. A.; Meyer, M. P. J. Am. Chem. Soc. 2002, 124, 11552-11559.
28. Wright, S. K.; DeClue, M. S.; Mandal, A.; Lee, L.; Wiest, O.; Cleland, W. W.; Hilvert, D. J. Am. Chem. Soc. 2005, 127, 12957-12964.
29. Swalina, C.; Pak, M. V.; Chakraborty, A.; Hammes-Schiffer, S. J. Phys. Chem. A 2006, 110, 9983-9987.
30. Wang, Q.; Hammes-Schiffer, S. J. Chem. Phys. 2006, 125, 18410-1 -.18410-12.
31. Kim, S. Y.; Hammes-Schiffer, S. J. Chem. Phys. 2003, 119, 4389-4398.
32. Pu, J.; Gao, J.; Truhlar, D. G. Chem. Rev. 2006, 106, 3140-3169.
33. Gao, J.; Truhlar, D. G. Ann. Rev. Phys. Chem. 2002, 53, 467-505.
34. Bell, R. P. The Tunneling Effect in Chemistry; Chapman \& Hall: London, 1980.
35. Saunders, M.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1989, 111, 89898994.
36. Singleton, D. A.; Merrigan, S. R.; Liu, J.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385-3386.
37. Caldin, E. F. Chem. Rev. 1969, 69, 135-156.
38. Glickman, M. H.; Wiseman, J. S.; Klinman, J. P. J. Am. Chem. Soc. 1994, 116, 793-794.
39. Garcia-Garibay, M. A.; Gamarnik, A.; Bise, R.; Pang, L.; Jenks, W. S. J. Am. Chem. Soc. 1995, 117, 10264-10275.
40. Basran, J.; Sutcliffe, M. J.; Scrutton, N. S. Biochemistry 1999, 38, 3218-3222.
41. Doll, K. M.; Bender, B. R.; Finke, R. G. J. Am. Chem. Soc. 2003, 125, 1087710884.
42. Klinman, J. P. Pure App. Chem. 2003, 75, 601-608.
43. Masgrau, L.; Basran, J.; Hothi, P.; Sutcliffe, M. J.; Scrutton, N. S. Arch. Biochem. Biophys. 2004, 428, 41-51.
44. Sikorski, R. S.; Wang, L.; Markham, K. A.; Rajagopalan, P. T. R.; Benkovic, S. J.; Kohen, A. J. Am. Chem. Soc. 2004, 126, 4778-4779.
45. Francisco, W. A.; Knapp, M. J.; Blackburn, N. J.; Klinman, J. P. J. Am. Chem. Soc. 2002, 124, 8194-8195.
46. Swain, C. G.; Stivers, E. C.; Reuwer, J. F., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1958, 80, 5885-5893.
47. Streitwieser, A., Jr.; Hollyhead, W. B.; Pudjaatmaka, A. H.; Owens, P. H.; Kruger, T. L.; Rubenstein, P. A.; MacQuarrie, R. A.; Brokaw, M. L.; Chu, W. K. C.; Niemeyer, H. M. J. Am. Chem. Soc. 1971, 93, 5088-5096.
48. Saunders, W. H., Jr. J. Am. Chem. Soc. 1985, 107, 164-169.
49. Kreevoy, M. M.; Konasewich, D. E. J. Phys. Chem. 1970, 74, 4464-4472.
50. Lehrmann, G.; Quinn, D.; Cordes, E. H. J. Am. Chem. Soc. 1980, 102, 24912492.
51. Julin, D. A.; Kirsch, J. F. Biochemistry 1989, 28, 3825-3833.
52. Yang, D. Y.; Shih, Y.; Liu, H. W. J. Org. Chem. 1991, 56, 2940-2946.
53. Zimmerman, M. P.; Djerassi, C. J. Am. Chem. Soc. 1991, 113, 3530-3533.
54. Sampson, N. S.; Knowles, J. R. Biochemistry 1992, 31, 8488-8494.
55. Rising, K. A.; Schramm, V. L. J. Am. Chem. Soc. 1997, 119, 27-37.
56. Capponi, M.; Gut, I. G.; Hellrung, B.; Persy, G.; Wirz, J. Can. J. Chem. 1999, 77, 605-613.
57. Lewandowicz, A.; Schramm, V. L. Biochemistry 2004, 43, 1458-1468.
58. Northrop, D. B. Biochemistry 1975, 14, 2644-2651.
59. Koch, H. F.; Dahlberg, D. B. J. Am. Chem. Soc. 1980, 102, 6102-6107.
60. Ryerson, C. C.; Ballou, D. P.; Walsh, C. Biochemistry 1982, 21, 1144-1151.
61. Miller, S. M.; Klinman, J. P. Biochemistry 1983, 22, 3091-3096.
62. Rendina, A. R.; Hermes, J. D.; Cleland, W. W. Biochemistry 1984, 23, 62576262.
63. Washabaugh, M. W.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 683-692.
64. Sweet, W. L.; Blanchard, J. S. Biochemistry 1991, 30, 8702-8709.
65. Tipton, P. A. Biochemistry 1993, 32, 2822-2827.
66. Argyrou, A.; Washabaugh, M. W. J. Am. Chem. Soc. 1999, 121, 12054-12062.
67. Karsten, W. E.; Hwang, C.-C.; Cook, P. F. Biochemistry 1999, 38, 4398-4402.
68. Agrawal, N.; Hong, B.; Mihai, C.; Kohen, A. Biochemistry 2004, 43, 1998-2006.
69. Lewis, E. S.; Robinson, J. K. J. Am. Chem. Soc. 1968, 90, 4337-4344.
70. Grant, K. L.; Klinman, J. P. Biochemistry 1989, 28, 6597-6605.
71. Jonsson, T.; Edmondson, D. E.; Klinman, J. P. Biochemistry 1994, 33, 1487114878.
72. Braun, J.; Limbach, H.-H.; Williams, P. G.; Morimoto, H.; Wemmer, D. E. J. Am. Chem. Soc. 1996, 118, 7231-7232.
73. Amin, M.; Price, R. C.; Saunders, W. H., Jr. J. Am. Chem. Soc. 1988, 110, 40854086.
74. Amin, M.; Price, R. C.; Saunders, W. H., Jr. J. Am. Chem. Soc. 1990, 112, 44674471.
75. Cha, Y.; Murray, C. J.; Klinman, J. P. Science 1989, 243, 1325-1330.
76. Rucker, J.; Cha, Y.; Jonsson, T.; Grant, K. L.; Klinman, J. P. Biochemistry 1992, 31, 11489-11499.
77. Alston, W. C., II; Kanska, M.; Murray, C. J. Biochemistry 1996, 35, 1287312881.
78. Bahnson, B. J.; Colby, T. D.; Chin, J. K.; Goldstein, B. M.; Klinman, J. P. Proc. Nat. Acad. Sci. 1997, 94, 12797-12802.
79. Kohen, A.; Klinman, J. P. Accts. Chem. Res. 1998, 31, 397-404.
80. Kohen, A.; Cannio, R.; Bartolucci, S.; Klinman, J. P. Nature 1999, 399, 496-499.
81. Bigeleisen, J. J. Chem. Phys. 1949, 17, 675-678.
82. Wolfsberg, M. Accts. Chem. Res. 1972, 5, 225-233.
83. Stern, M. J.; Vogel, P. C. J. Am. Chem. Soc. 1971, 93, 4664-4675.
84. Albery, W. J.; Knowles, J. R. J. Am. Chem. Soc. 1977, 99, 637-638.
85. Cui, Q.; Karplus, M. J. Am. Chem. Soc. 2002, 124, 3093-3124.
86. Kohen, A.; Jensen, J. H. J. Am. Chem. Soc. 2002, 124, 3858-3864.
87. Swain, C. G.; Stivers, E. C.; Reeuwer, J. F., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1958, 80, 5885-5893.
88. Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem. 2000, 39, 2812-2833.
89. Matsuda, S. P. T. Natural Product Reports 2003, 20, 304-317.
90. Woodward, R. B.; Bloch, K. J. Am. Chem. Soc. 1953, 75, 2023-2024.
91. Stork, G.; Burgstahler, A. W. J. Am. Chem. Soc. 1955, 77, 5068-5077.
92. Maudgal, R. K.; Tchen, T. T.; Bloch, K. J. Am. Chem. Soc. 1958, 80, 2589-2590.
93. Robustell, B.; Abe, I.; Prestwich, G. D. Tett. Lett. 1998, 39, 957-960.
94. Robustell, B. J.; Abe, I.; Prestwich, G. D. Tett. Lett. 1998, 39, 9385-9388.
95. Corey, E. J.; Virgil, S. C.; Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Singh, V.; Sarshar, S. J. Am. Chem. Soc. 1995, 117, 11819-11820.
96. Corey, E. J.; Matsuda, S. P. T. J. Am. Chem. Soc. 1991, 113, 8172-8174.
97. Corey, E. J.; Russey, W. E.; Ortiz de Montellano, P. R. J. Am. Chem. Soc. 1966, 88, 4750-4751.
98. Corey, E. J.; Russey, W. E. J. Am. Chem. Soc. 1966, 88, 4751-4752.
99. Corey, E. J.; Lin, K.; Jautelat, M. J. Am. Chem. Soc. 1968, 90, 2724-2726.
100. Xiao, X. Y.; Sen, S. E.; Prestwich, G. D. Tett. Lett. 1990, 31, 2097-2100.
101. Corey, E. J.; Virgil, S. C.; Liu, D. R.; Sarshar, S. J. Am. Chem. Soc. 1992, 114, 1524-1525.
102. Corey, E. J.; Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1277-1288.
103. Corey, E. J.; Staas, D. D. J. Am. Chem. Soc. 1998, 120, 3526-3527.
104. Van Tamelen, E. E.; Freed, J. H. J. Am. Chem. Soc. 1970, 92, 7206-7207.
105. Van Tamelen, E. E.; Leopold, E. J.; Marson, S. A.; Waespe, H. R. J. Am. Chem. Soc. 1982, 104, 6479-6480.
106. Medina, J. C.; Kyler, K. S. J. Am. Chem. Soc. 1988, 110, 4818-4821.
107. Hoshino, T.; Sakai, Y. Tett. Lett. 2001, 42, 7319-7323.
108. Crosby, L. O.; Van Tamelen, E. E.; Clayton, R. B. J. Chem. Soc.: Chem. Comm. 1969, 532-533.
109. Van Tamelen, E. E.; Hanzlik, R. P.; Sharpless, K. B.; Clayton, R. B.; Richter, W. J.; Burlingame, A. L. J. Am. Chem. Soc. 1968, 90, 3284-3286.
110. Van Tamelen, E. E.; Sharpless, K. B.; Hanzlik, R. P.; Clayton, R. B.; Burlingame, A. L.; Wszolek, P. C. J. Am. Chem. Soc. 1967, 89, 7150-7151.
111. Van Tamelen, E. E.; Willett, J. D.; Schwartz, M.; Nadeau, R. G. J. Am. Chem. Soc. 1966, 88, 5937-5938.
112. Van Tamelen, E. E.; Willett, J. D.; Clayton, R. B.; Lord, K. E. J. Am. Chem. Soc. 1966, 88, 4752-4754.
113. Corey, E. J.; Cheng, H. Tett. Lett. 1996, 37, 2709-2712.
114. Joubert, B. M.; Hua, L.; Matsuda, S. P. T. Org. Lett. 2000, 2, 339-341.
115. Meyer, M. M.; Segura, M. J. R.; Wilson, W. K.; Matsuda, S. P. T. Angew. Chem. 2000, 39, 4090-4092.
116. Hess, B. A., Jr.; Smentek, L. Org. Lett. 2004, 6, 1717-1720.
117. Hess, B. A., Jr. Org. Lett. 2003, 5, 165-167.
118. Hess, B. A., Jr. J. Am. Chem. Soc. 2002, 124, 10286-10287.
119. Gao, D.; Pan, Y.-K.; Byun, K.; Gao, J. J. Am. Chem. Soc. 1998, 120, 4045-4046.
120. Rajamani, R.; Gao, J. J. Am. Chem. Soc. 2003, 125, 12768-12781.
121. Thoma, R.; Schulz-Gasch, T.; D'Arcy, B.; Benz, J.; Aebi, J.; Dehmlow, H.; Hennig, M.; Stihle, M.; Ruf, A. Nature 2004, 432, 118-122.
122. Hoshino, T.; Williams, H. J.; Shishido, K.; Scott, A. I. J. Labelled Compounds and Radiopharmaceuticals 1990, 28, 1285-1292.
123. Hoshino, T.; Williams, H. J.; Chung, Y.; Scott, A. I. Tetrahedron 1991, 47, 59255932.
124. MatriCal.
www.matrical.com/Literature/Yeast\ Lysis\ Application\ Note.pdf. last visited July 2006.
125. Xu, S.; Norton, R. A.; Crumley, F. G.; Nes, W. D. J. of Chrom. 1988, 452, 377398.
126. Lautzenheiser, A. M.; LeQuesne, P. W. Tett. Lett. 1969, 207-210.
127. Rosecke, J.; Konig, W. A. Phyt. 1999, 52, 1621-1627.
128. Boar, R. B.; Lewis, D. A.; McGhie, J. F. J. Chem. Soc., Per. Trans. 1 1973, 1583-1588.
129. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.
130. Finn, M. G. S., K. B. Asymmetric Synthesis; Academic Press New York: 1986; Vol. 5.
131. Johnson, R. A. S., K. B. Comprehensive Organic Synthesis; Pergamon Press: New York, 1991; Vol. 7.
132. Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem. in English 1995, 34, 1059-1070.
133. Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922-1925.
134. Woodard, S. S.; Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 106113.
135. Burns, C. J.; Martin, C. A.; Sharpless, K. B. J. Org. Chem. 1989, 54, 2826-2834.
136. Sharpless, K. B. Chemtech 1985, 15, 692-700.
137. Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 113-126.
138. Williams, I. D.; Pedersen, S. F.; Sharpless, K. B.; Lippard, S. J. J. Am. Chem. Soc. 1984, 106, 6430-6431.
139. Carlier, P. R.; Sharpless, K. B. J. Org. Chem. 1989, 54, 4016-4018.
140. McKee, B. H.; Kalantar, T. H.; Sharpless, K. B. J. Org. Chem. 1991, 56, 69666968.
141. Corey, E. J. J. Org. Chem. 1990, 55, 1693-1694.
142. Joergensen, K. A.; Wheeler, R. A.; Hoffmann, R. J. Am. Chem. Soc. 1987, 109, 3240-3246.
143. Wu, Y.-D.; Lai, D. K. W. J. Am. Chem. Soc. 1995, 117, 11327-11336.
144. Singleton, D. A.; Merrigan, S. R.; Liu, J.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385-3386.
145. Takeya, T. H., C.; Singleton, D. A. 2005 unpublished results.
146. Cui, M.; Adam, W.; Shen, J. H.; Luo, X. M.; Tan, X. J.; Chen, K. X.; Ji, R. Y.; Jiang, H. L. J. Org. Chem. 2002, 67, 1427-1435.
147. Bell, R. P. TheTunnel Effect in Chemistry; Chapman \& Hall: New York, NY, 1980.
148. Settembre, E. C.; Dorrestein, P. C.; Park, J.; Augustine, A. M.; Begley, T. P.; Ealick, S. E. Biochemistry 2003, 42, 2971-2981.
149. Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J. R.; Cole, P. A.; Casero, R. A. Cell 2004, 119, 941-953.
150. Mattevi, A.; Vanoni, M. A.; Todone, F.; Rizzi, M.; Teplyakov, A.; Coda, A.; Bolognesi, M.; Curti, B. Proc. Natl. Acad. Sci. USA 1996, 93, 7496-7501.
151. Trickey, P.; Wagner, M. A.; Jorns, M. S.; Mathews, F. S. Structure 1999, 7, 331345.
152. Binda, C.; Newton-Vinson, P.; Hublek, F.; Edmondson, D. E.; Mattevi, A. Nature Structural Biology 2002, 9, 22-26.
153. Binda, C.; Coda, A.; Angelini, R.; Federico, R.; Ascenzi, P.; Mattevi, A. Structure 1999, 7, 265-276.
154. Stavropoulos, P.; Blobel, G.; Hoelz, A. Nat. Struct. Mol. Biol. 2006, 13, 626-632.
155. Pawelek, P. D.; Cheah, J.; Coulombe, R.; Macheroux, P.; Ghisla, S.; Vrielink, A. EMBO J. 2000, 19, 4204-4215.
156. Kurtz, K. A.; Rishavy, M. A.; Cleland, W. W.; Fitzpatrick, P. F. J. Am. Chem. Soc. 2000, 122, 12896-12897.
157. Koyama, Y.; Ohmori, H. Gene 1996, 181, 179-183.
158. Khanna, P.; Schuman Jorns, M. Biochemistry 2001, 40, 1451-1459.
159. Scrutton, N. S. Nat. Prod. Rep. 2004, 21, 722-730.
160. Fitzpatrick, P. F. Bioorg. Chem. 2004, 32, 125-139.
161. Miller, J. R.; Edmondson, D. E. Biochemistry 1999, 38, 13670-13683.
162. Ralph, E. C.; Fitzpatrick, P. F. Biochemistry 2005, 44, 3074-3081.
163. Ralph, E. C.; Hirschi, J. S.; Anderson, M. A.; Cleland, W. W.; Singleton, D. A.; Fitzpatrick, P. F. Biochemistry In Press.
164. Fu, Y., Liu, L., Yu, H.-Z., Wang, Y.-M., Guo, Q.-X. J. Am. Chem. Soc. 2005, 127, 7227-7234.
165. Smith, E. T., Davis, C. A., Barber, M. J. Anal. Biochem. 2003, 323, 114-121.
166. Wagner, M. A.; Trickey, P.; Chen, Z.-W.; Mathews, F. S.; Jorns, M. S. Biochemistry 2000, 39, 8813-8824.
167. Brown, L. E.; Hamilton, G. A. J. Am. Chem. Soc. 1970, 92, 7225-7227.
168. Kim, J.-M.; Bogdan, M. A.; Mariano, P. S. J. Am. Chem. Soc. 1993, 115, 1059110595.
169. Kim, J.-M.; Hoegy, S. E.; Mariano, P. S. J. Am. Chem. Soc. 1995, 117, 100-105.
170. Kurtz, K. A.; Fitzpatrick, P. F. J. Am. Chem. Soc. 1997, 119, 1155-1156.
171. Binda, C.; Li, M.; Hubalek, F.; Restelli, N.; Edmondson, D.; Mattevi, A. Proc. Nat. Acad. Sci. USA 2003, 100, 9750-9755.
172. Rabenstein, D. L.; Mariappan, S. V. S. J. Org. Chem. 1993, 58, 4487-4489.
173. Pehk, T.; Kiirend, E.; Lippmaa, E.; Ragnarsson, U.; Grehn, L. J. Chem. Soc. 1997, Perkin Trans. 2, 445-450.
174. Ralph, E. C., Anderson, M. A., Cleland, W. W., Fitzpatrick, P. F. Biochemistry 2006, 45, 15844-15852.
175. Lu, D.-h., Maurice, D., Truhlar, D. G. J. Am. Chem. Soc. 1990, 112, 6206-6214.
176. Meyer, M. P., DelMonte, A. J., Singleton, D. A. J. Am. Chem. Soc. 1999, 121, 10865-10875.
177. DelMonte, A. J., Haller, J., Houk, K. N., Sharpless, K. B., Singleton, D. A., Strassner, T., Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907-9908.
178. Beno, B. R., Houk, K. N., Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 99849985.
179. Edmondson, D. E., Binda, C., Mattevi, A. Neurotoxicology 2004, 25, 63-72.
180. Trickey, P., Basran, J., Lian, L.-Y., Chen, Z., Barton, J. D., Sutcliffe, M. J., Scrutton, N. S., Mathews, F. S. . Biochemistry 2000, 39, 7678-7688.
181. Zhao, G.; Song, H.; Chen, Z.; Mathews, S.; Jorns, M. S. Biochemistry 2002, 41, 9751-9764.
182. Rigby, S. E.; Hynson, R. M.; Ramsay, R. R.; Munro, A. W.; Scrutton, N. S. J. Biol. Chem. 2005, 280, 4627-4631.
183. Chen, Z. W.; Zhao, G.; Martinovic, S.; Jorns, M. S.; Mathews, F. S. Biochemistry 2005, 44, 15444-15450.
184. Zhao, G.; Qu, J.; Davis, F. A.; Jorns, M. S. Biochemistry 2000, 39, 14341-14347.
185. Rimoldi, J. M., Puppali, S. G., Isin, E., Bissel, P., Khalil, A., Castagnoli Jr., N. Bioorg. Med. Chem. 2005, 13, 5808-5813.
186. Wang, X., Silverman, R. B. Bioorg. Med. Chem. 2000, 8, 1645-1651.
187. Wang, X.; Silverman, R. B. J.Org.Chem. 1998, 63, 7357-7363.
188. Wagner, M. A.; Jorns, M. S. Biochemistry 2000, 39, 8825-8829.
189. Jang, M. H., Basran, J., Scrutton, N. S., Hille, R. J. Biol. Chem. 1999, 274, 13147-13154.
190. Forneris, F.; Binda, C.; Vanoni, M. A.; Mattevi, A.; Battaglioli, E. FEBS Lett. 2005, 579, 2203-2207.
191. Nandigama, R. K.; Miller, J. R.; Edmondson, D. Biochemistry 2001, 40, 1483914846.
192. Bannister, A. J.; Schneider, R.; Kouzarides, T. Cell 2002, 109, 801-806.
193. Singleton, D. A., Schulmeier, B. E., Hang, C., Thomas, A. A., Leung, S.-W., Merrigan, S. R. . Tetrahedron 2001, 57, 5149-5160.
194. Massey, V.; Ghisla, S.; Moore, E. G. J.Biol.Chem. 1979, 254, 9640-9650.
195. Fraaije, M. W.; Mattevi, A. TIBS 2000, 25, 126-132.
196. Ha, J. D.; Kang, C. H.; Belmore, K. A.; Cha, J. K. J. Org. Chem. 1998, 63, 38103811.
197. Occhiato, E. G.; Trabocchi, A.; Guarna, A. Org. Lett. 2000, 2, 1241-1242.
198. Luker, T.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 8131-8140.
199. Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803-805.
200. Boren, B.; Hirschi, J. S.; Reibenspies, J. H.; Tallant, M. D.; Singleton, D. A.; Sulikowski, G. A. J. Org. Chem. 2003, 68, 8991-8995.
201. Barluenga, J.; Canteli, R.-M.; Florez, J.; Garcia-Granda, S.; Gutierrez-Rodriguez, A.; Martin, E. J. Am. Chem. Soc. 1998, 120, 2514-2522.
202. Fotiadu, F.; Pardigon, O.; Buono, G.; Le Corre, M.; Hercouet, A. Tett. Lett. 1999, 40, 867-870.
203. Pyne, S. G.; Dikic, B.; Gordon, P. A.; Skelton, B. W.; White, A. H. Austral. J. Chem. 1992, 46, 73-93.
204. Roush, W. R.; Koyama, K. Tett. Lett. 1992, 33, 6227-6230.
205. Roush, W. R.; Reilly, M. L.; Koyama, K.; Brown, B. B. J. Org. Chem. 1997, 62, 8708-8721.
206. Essers, M.; Wibbeling, B.; Haufe, G. Tett. Lett. 2001, 42, 5429-5433.
207. Furukawa, J.; Kobuke, Y.; Fueno, T. J. Am. Chem. Soc. 1970, 92, 6548-6553.
208. Maruoka, K.; Imoto, H.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 1211512116.
209. Powers, T. S.; Jiang, W.; Su, J.; Wulff, W. D.; Waltermire, B. E.; Rheingold, A. L. J. Am. Chem. Soc. 1997, 119, 6438-6439.
210. Sabat, M.; Reynolds, K. A.; Finn, M. G. Organomet. 1994, 13, 2084-2087.
211. Weyershausen, B.; Nieger, M.; Doetz, K. H. J. Org. Chem. 1999, 64, 4206-4210.
212. Martin, J. G.; Hill, R. K. Chem. Rev. 1961, 61, 537-562.
213. Ge, M.; Stoltz, B. M.; Corey, E. J. Org. Lett. 2000, 2, 1927-1929.
214. Yoon, T.; Danishefsky, S. J.; de Gala, S. Angew. Chem. 1994, 106, 923-925.
215. Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Bruno, G.; Caruso, F.; Giannetto, P. Tet.: Asymm. 2001, 12, 2901-2908.
216. Rosillo, M.; Casarrubios, L.; Dominguez, G.; Perez-Castells, J. Tett. Lett. 2001, 42, 7029-7031.
217. Schuster, T.; Kurz, M.; Goebel, M. W. J. Org. Chem. 2000, 65, 1697-1701.
218. Hendrickson, J. B. J. Am. Chem. Soc. 1967, 89, 7036-7043.
219. Jones, G. A.; Paddon-Row, M. N.; Sherburn, M. S.; Turner, C. I. Org. Lett. 2002, 4, 3789-3792.
220. House, H. O.; Tefertiller, B. A.; Olmstead, H. D. J. Org. Chem. 1968, 33, 935942.
221. House, H. O.; Umen, M. J. J. Org. Chem. 1973, 38, 1000-1003.
222. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. Gaussian Software; Gaussian, Inc.: Wallingford, CT, 2004.
223. Emmons, G. T.; Wilson, W. K.; Schroepfer, G. J., Jr. Mag. Res. in Chem. 1989, 27, 1012-1024.

APPENDIX A

Theoretical calculations: The Normal Range for Secondary Swain-Schaad

 Exponents Without Tunneling or Kinetic Complexity-Appendix Material
Program progqD

Generates input for quiver from Gaussian output file, using scaling and temperature as command-line parameters. Automatically generates data for each position in a molecule

Requires:
progq1bD (see below)
quivDFTauto.exe (modified version of QUIVER ${ }^{3}$, source code available on request)
\#!/bin/bash
echo $\$ 2$ > scaling
echo $\$ 3>$ temperature
awk '/l101/,/Initial/ \{print \}' $\$ 1>$ temp19
awk '/Standard orientation/,/Rotational/ \{print \}' \$1> temp20
awk '/ 0 / \{print \}' temp20 > temp21
awk '/ $0 \quad /\{\mathrm{k}=\$ 1 ; \operatorname{ar}[\mathrm{k}]=\$ 0 ; \mathrm{if}(\mathrm{k}>\mathrm{i}) \mathrm{i}=\mathrm{k}\}$ END $\{$ for $(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++$) print ar[j]\}' temp21 > temp22
awk -f progq1bD temp $22>\$ 1 . q 1$
awk '/NIm/,/@/ \{print\}' \$1>temp23

```
awk 'BEGIN {i=99999997} /,/II/0/ { sub(^\IV,ORS "XXX" i ORS,$0); i++; print}'
temp23 > temp24
awk '/XXX999999/,/XXX10000/ {print}' temp24 > temp25
awk '! /XXX/ {sub(" ","",$0); gsub(",",ORS,$0); printf("%s",$0)} END {print " "}'
temp25 > $1.q2
cp -f $1.q1 temp.q1
cp -f $1.q2 temp.q2
rm -f temp.qout
./quivDFTauto.exe
cp-f temp.qout $1.qout
awk '/S2/ {print $2}' temp.qout
awk '/FREQ/ && / -/ {print $3}' temp.qout
echo $1 $2 $3 >> latest
awk '/S2/ {print $2}' temp.qout >> latest
if (test -a killtemps) then
rm -f temp19 temp20 temp21 temp22 temp23 temp24 temp25
fi
```


Program progq1bD

Awk program called by progqD to generate temp.q1, the key input file read by quivDFTauto.exe. Remove comment marks to generate tritium data. Requires:

File temp22 (generated by progqD)

File temp19 (generated by progqD)
File scaling (generated by progqD, based on parameter supplied when progqD is run)

File temperature (generated by progqD, based on parameter supplied when progqD is run)

BEGIN \{OFS=",";numatoms=0; numCH=0; numH=0

```
    getline < "temp19"
    getline < "temp19"
    getline < "temp19"
    str=$0}
/ 0 /{
    k=$1
    atn[k]=$2
    ar[k]=$0
    if (k>numatoms) numatoms=k
    if (atn[k]==1) {atw[k]=1;numH++}
    if (atn[k]==3) atw[k]=7;
    if (atn[k]==5) atw[k]=10;
    if (atn[k]==6) atw[k]=12;
    if (atn[k]==8) atw[k]=16;
    if (atn[k]==7) atw[k]=14;
    if (atn[k]==9) atw[k]=19;
```

```
    if (atn[k]==14) atw[k]=28;
    if (atn[k]==16) atw[k]=32;
    if (atn[k]==17) atw[k]=35
    if ((atn[k]==1)|(atn[k]==6)) numCH++
    }
END {
    str="title: " str
    print str
    printf(" ")
    print numH+1
    print "parent"
    str = " " numatoms
    print str
    for (i=1;i<=numatoms;i++) ar[i]=substr(ar[i],32,45)
    for (i=1;i<=numatoms;i++) print ar[i]
    for (i=1;i<numatoms;i++) {printf(atw[i]);printf(",")}
    print atw[numatoms]
    getline < "scaling"
    if (($1>0.01) && ($1<100.)) {print $1}
    else print " 0.9614"
print " 1"
getline < "temperature"
```

```
    if (($1>0.1)&& ($1<10000.)) {print $1}
        else print " 298.15"
    for (j=1;j<=numatoms;j++) {
        if (atw[j]==1) {
            print "D"
            atw[j]=2
            for (i=1;i<numatoms;i++) {printf(atw[i]);printf(",")}
            print atw[numatoms]
# print "T"
# atw[j]=3
# for (i=1;i<numatoms;i++) {printf(atw[i]);printf(",")}
# print atw[numatoms]
        atw[j]=1
        }
        }
    printf(" ")
    print numH
    for (j=1;j<=2*numH;j++) {
        printf(" 1 ")
        print j+1
        }
}
```


Program progS2

This awk program takes as input a list of positions/molecules along with the reduced isotopic partition function [(S2/S1)F] that is output from QUIVER, and generates a list of SSEs for all non-degenerate combinations of exchange reactions.

Requires: S2List
S2List is a text file formatted with the $1^{\text {st }}, 4^{\text {th }}, 7^{\text {th }}$, etc lines having a title, the $2^{\text {nd }}$, $5^{\text {th }}, 8^{\text {th }}$, etc lines containing (S2/S1)F for a D substitution, and the $3^{\text {rd }}, 6^{\text {th }}, 9^{\text {th }}$, etc lines containing (S2/S1)F for a T substitution.

BEGIN $\{\mathrm{n}=1$
do \{
getline < "S2List"
$\mathrm{S}[\mathrm{n}, 1]=\$ 0$
getline < "S2List"
$\mathrm{S}[\mathrm{n}, 2]=\$ 1$
getline < "S2List"
$\mathrm{S}[\mathrm{n}, 3]=\$ 1$
if (oldline==\$0) \$0=""
oldline $=\$ 0$
n++
\}
while (length $(\$ 0)>0)$
n--

```
#for (i=1;i<n;i++) {
# printf(S[i,1])
# printf(" ")
# printf(S[i,2])
# printf(" ")
# print S[i,3]
# }
}
END {
for (i=1;i<n;i++) {
    for (j=1;j<n;j++) {
        if (i!=j) {
# print i,j
# printf(S[i,2])
# printf(" ")
# printf(S[i,3])
# printf(" ")
# printf(S[j,2])
# printf(" ")
# printf(S[j,3])
# printf(" ")
```

```
khkt=S[i,3]/S[j,3]
khkd=S[i,2]/S[j,2]
kdkt=khkt/khkd
if (kdkt!=1) {
    SSE=log(khkt)/log(kdkt)
        if ((SSE>4.5) && (khkt>1.10)) {
            print S[i,1]," to ",S[j,1]
            printf(SSE)
            printf(" ")
            print khkt
            }
        }
}
# printf(S[i,2])
# printf(" ")
# print S[i,3]
        }
    }
}
```


Expanded view of distribution of Swain-Schaad Exponents

This view still does not include some extreme SSEs for $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{T}}$ near unity. The SSEs near unity ranged as high as 2100 and as low as -296 .

Reactions Studied for KIEs / Key to Theoretical Structures for KIEs

Each of the reactions below is given a title and this title is also used in a later section containing relevant calculated geometries.

For each of the reactions given, H/D, H/T, and D/T kinetic isotope effects were calculated for all C-H positions. In addition, for almost all of the reactions, the H/D, H / T, and D / T kinetic isotope effects were also calculated for the reverse reaction. For example, in the Diels-Alder reaction, kinetic isotope effects were calculated for both the forward reaction from 1,3-butadiene and ethylene and the reverse (retro) Diels-Alder reaction for cleavage of cyclohexene.

Example of Substitutions for KIEs

Examples of Reactions for KIEs

diimide

hydride transfer

hydrogen transfer

1,3 H transfer

1,4 H transfer

carbene insertion

carbene rearrangement

Diels-Alder parent

hydrogen transfer ethylene / methyl

1,5-sigmatropic parent

H to H transfer vinyl

H to H transfer Cl

H to H transfer COOH

$\mathrm{S}_{\mathrm{N}} 2 \mathrm{CHO}$

1,3-H transfer

1,4-H transfer

carbene insertion $\mathrm{MeCH}+\mathrm{HCCMe}$
carbene insertion $\mathrm{MeCH}+\mathrm{HCN}$

Theoretical Structures for KIEs

The section here includes geometries for all transition structures. The titles for the structures refer back to the drawing in the previous section. Many simple starting structures and product structures have not been included as these can likely be reproduced very rapidly without ambiguity by the computationally proficient. Relatively complex structures were included, particularly to show the conformation calculated. Conformations were generally chosen for convenience, and little effort was made to ensure that the lowest-energy conformations were located.

\author{

Ene parent
 Transition structure
 $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-196.442366879$
 | Zero-point correction $=$ | 0.131631 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy= | 0.137354 |
| Thermal correction to Enthalpy $=$ | 0.138298 |
| Thermal correction to Gibbs Free Energy= | 0.103261 |
 Sum of electronic and zero-point Energies= $\quad-196.310736$
 Sum of electronic and thermal Energies $=\quad-196.305013$
 Sum of electronic and thermal Enthalpies= -196.304069
 Sum of electronic and thermal Free Energies= -196.339106
 E (Thermal) CV S
 KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN TOTAL
 $86.191 \quad 22.008 \quad 73.742$
 C,0,-0.5852780839,-1.0523817846,-0.935826532
 С,0,0.7736717605,-1.3377341093,-0.7095797417
 H,0,-1.3350689033,-1.6178847332,-0.3898477575
 H,0,-0.9013024189,-0.7501527025,-1.9302263758
 H,0,1.0316117204,-2.158183975,-0.0411495589
 Н,0,1.4871786958,-1.1724047524,-1.5155556557
 С,0,-1.0902329631,0.8423876633,-0.1512798443
 C,0,-0.3376474896,0.875657077,1.0144210331
 C,0,1.0766017385,0.8446903465,0.9165908203

}

H,0,-2.174895384,0.7767908667,-0.1005071739
Н,0,-0.7188615874,1.3783788745,-1.0224234237
H,0,-0.797260592,0.5152426348,1.9353495713
H,0,1.6587575209,0.7751668542,1.836069729
H,0,1.1863054956,-0.2830280307,0.2470467892
Н,0,1.540845678,1.5003598068,0.1752894438

Ene M1
 Transition structure
 $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-235.755333052$

Zero-point correction $=0.160066$ (Hartree/Particle)
Thermal correction to Energy= 0.167284
Thermal correction to Enthalpy= 0.168228
Thermal correction to Gibbs Free Energy= 0.129552
Sum of electronic and zero-point Energies= -235.595267
Sum of electronic and thermal Energies= -235.588049
Sum of electronic and thermal Enthalpies $=\quad-235.587105$
Sum of electronic and thermal Free Energies $=\quad-235.625781$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	104.972	27.359	81.399
C,0,-0.8693300863,-1.4052042827,-0.9146173357			
C,0,0.485497422,-1.656947073,-0.6349201625			
C,0,-1.456890321,0.5035524887,-0.1134024857			
C,0,-0.6666804654,0.5665129266,1.023897444			
C,0,0.7521007434,0.5744227752,0.9291890945			
H,0,-1.6297276543,-1.976378353,-0.3903633308			
H,0,-1.1567429187,-1.0966019221,-1.9153035606			
H,0,0.7333262394,-2.4674644884,0.0499081147			
H,0,1.2217098488,-1.4939595959,-1.4210319692			
H,0,-2.5327136513,0.3778954093,-0.0147828367			
H,0,-1.1582589084,1.0404968531,-1.0089577244			
H,0,-1.0940958817,0.1864058704,1.952649943			
H,0,1.2768788667,0.4701658515,1.8826027723			
H,0,0.8431424552,-0.5937482123,0.3049252216			
C,0,1.4929964447,1.4831869704,-0.047711943			
H,0,2.5302377946,1.1531950645,-0.1750003539			
H,0,1.0267	385221,1.489915	227,-1.0379041334	

H,0,1.5133428628,2.5169347682,0.3186501882
Product structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-235.851630630$

Zero-point correction $=$	0.166361
Thermal correction to Energy $=$	0.174262
Thermal correction to Enthalpy= $=$	0.175206
Thermal correction to Gibbs Free Energy $=$	0.134008
Sum of electronic and zero-point Energies $=$	-235.685270
Sum of electronic and thermal Energies=	-235.677368
Sum of electronic and thermal Enthalpies=	-235.676424
Sum of electronic and thermal Free Energies=	-235.717623

	E (Thermal)	CV		S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	109.351	27.514	86.710	

C,0,-1.1218612905,-1.3948908679,-0.7047626166
C,0,0.254030209,-2.0308058105,-0.9243237328
C,0,-1.0623523444,0.113205054,-0.3802786822
C,0,-0.4109203404,0.4079993076,0.9455251713
C,0,0.6613951554,1.1699117584,1.1954991857
H,0,-1.6417588531,-1.916518192,0.1113569783
H,0,-1.7399762261,-1.5373376286,-1.6012119236
H,0,0.1660780742,-3.1014853367,-1.141702522
H,0,0.7748749437,-1.56132955,-1.7683954654
H,0,-2.0920133035,0.5017690795,-0.3609530193
Н, $0,-0.5515800888,0.6389359274,-1.1957936515$
Н,0,-0.890182151,-0.0758269274,1.7993222562
Н,0,0.979384614,1.2603435273,2.2351810966
Н, $0,0.8893889673,-1.9160145744,-0.0391320918$
C,0,1.498169841,1.9419432067,0.2134238155
H,0,2.5488368416,1.6250750337,0.2622615679
H,0,1.1607422549,1.823045685,-0.8197016424
Н,0,1.4854375459,3.0151670656,0.448269572

Ene M2

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-235.757484026$

Zero-point correction $=$	0.159697
(Hartree/Particle)	
Thermal correction to Energy $=$	0.167003
Thermal correction to Enthalpy $=$	0.167947
Thermal correction to Gibbs Free Energy=	0.129095
Sum of electronic and zero-point Energies=	-235.597787
Sum of electronic and thermal Energies=	-235.590481
Sum of electronic and thermal Enthalpies=	-235.589537
Sum of electronic and thermal Free Energies=	-235.628389

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	104.796	27.632	81.770

C,0,-0.900380591,-1.1817795293,-1.3757920997
С, $0,0.4591634336,-1.4332103208,-1.1294939308$
С,0,-1.4572097202,0.7065582743,-0.5099676553
C,0,-0.6946529424,0.7183308617,0.6461660741
С,0,0.7232958808,0.722947631,0.55088166
H,0,-1.6489902476,-1.7701799862,-0.8535428876
H,0,-1.2092167015,-0.8416031667,-2.3597617609
H,0,0.7282110166,-2.2604165668,-0.4731820119
H,0,1.1828444051,-1.2328413366,-1.9185236706
H,0,-2.5382926582,0.6045620355,-0.4522281431
H,0,-1.1065398162,1.2661167805,-1.3743009124
H,0,-1.1388556217,0.3224774941,1.5617647392
C,0,1.5901288627,0.6418476227,1.7969819261
H,0,0.8257566061,-0.3888221988,-0.155633641
H,0,1.1291106784, 1.3907421365,-0.2174467654
H,0,2.5991815714,0.2881415518,1.5570682859
H,0,1.6931112792,1.6218799082,2.2799874924
H,0,1.1616099469,-0.0482238891,2.5331434291

Product structure

$\mathrm{E}($ RB+HF-LYP $)=-235.853950792$

Zero-point correction $=$	0.166102 (Hartree/Particle)
Thermal correction to Energy $=$	0.174040
Thermal correction to Enthalpy $=$	0.174985
Thermal correction to Gibbs Free Energy=	0.134118
Sum of electronic and zero-point Energies=	-235.687849

Sum of electronic and thermal Energies $=$	-235.679910
Sum of electronic and thermal Enthalpies $=$	-235.678966
Sum of electronic and thermal Free Energies $=$	-235.719833

E (Thermal) CV
KCAL/MOL
TOTAL
CAL/MOL-KELVIN
CAL/MOL-KELVIN

E (Thermal) CV
S

	KCAL/MOL	CAL/MOL-KELVIN	
TOTAL	104.738	27.595	595 82.7
C,0,-0.4591360334, -1.0545423044,-1.3424194851			
C,0,0.8822011566,-1.4262473317,-1.1187433253			
C, $0,-0.8551858781,0.8284790492,-0.5754997541$			
C,0,-0.1371102604,0.8178090436,0.6198487912			
C, $0,1.2788537399,0.7580564171,0.4964579699$			
H,0,-1.237586418,-1.5882713346,-0.8025314086			
H,0,-0.7555383216,-0.7508952127,-2.3429921238			
H,0,1.0917507729,-2.2594068584,-0.449815618			
H,0,1.6045643498,-1.3026961133,-1.9240637323			
H,0,-1.9435510101, $0.8271943279,-0.553814507$			
H,0,-0.4330702204, 1.3669952521,-1.4211017245			
C,0,-0.7846030361,0.3184827116,1.8891453032			
H, $0,1.8740008312,0.6721649759,1.407500033$			
H,0,1.3554410717,-0.3678918952,-0.1626905848			
H,0,1.7422338199,1.4125181578,-0.245155232			
H,0,-0.4173033967,0.8626436009,2.767134579			
H,0,-1.8740423564,0.4216069803, 1.8572593206			
H,0,-0.5570172526,-0.7461873927,2.0575339997			
Product structure			
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-235.853126112$			
Zero-point correction=			0.166305 (Har
Thermal correction to Energy= 0.			0.174054
Thermal correction to Enthalpy= 0.			0.174998
Thermal correction to Gibbs Free Energy=			
Sum of el	tronic and zero-p	int Energies=	gies $=\quad-235$
Sum of el	tronic and therm	Energies=	$\mathrm{s}=\quad-235$
Sum of el	tronic and therm	Enthalpies=	ies= -235.
Sum of el	tronic and therm	Free Energies=	ergies $=\quad-235$

E (Thermal) CV S
KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN
$\begin{array}{llll}\text { TOTAL } & 109.220 & 27.691 & 85.013\end{array}$

C,0,-0.5746402889,-0.9739050708,-1.1711241081
С, $0,0.8258518819,-1.5817059311,-1.2908680739$
С, $0,-0.5726643243,0.5072184552,-0.7312570527$
C,0,-0.0042904265,0.7592966696,0.650650947

```
C,0,1.1189821225,1.4626285546,0.8311657373
H,0,-1.1764541395,-1.5677749511,-0.4703192525
H,0,-1.0874290714,-1.0414281591,-2.1397168235
H,0,0.776285694,-2.6288668691,-1.6104988824
H,0,1.4299905056,-1.0361555733,-2.0265866613
H,0,-1.6092040797,0.8760581265,-0.7624581675
H,0,-0.0085605991,1.0944070173,-1.4672911774
C,0,-0.7783157144,0.1923894614,1.8171000183
H,0,1.5241103547,1.6520690167,1.8225676871
H,0,1.3607027206,-1.5435027563,-0.3356299814
H,0,1.6735172089,1.8790422651,-0.0064488904
H,0,-0.3175685881,0.4581854484,2.7734376811
H,0,-1.8121791807,0.5650253751,1.8204598478
\(\mathrm{H}, 0,-0.8427503276,-0.902591774,1.768479813\)
```


Ene M4

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-235.755177739$

Zero-point correction $=$	0.159766 (Hartree/Particle)
Thermal correction to Energy $=$	0.166974
Thermal correction to Enthalpy= $=$	0.167918
Thermal correction to Gibbs Free Energy=	0.129401
Sum of electronic and zero-point Energies $=$	-235.595411
Sum of electronic and thermal Energies=	-235.588204
Sum of electronic and thermal Enthalpies=	-235.587260
Sum of electronic and thermal Free Energies=	-235.625777

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	104.778	27.539	81.067

C,0,-0.5102275836,-1.3736336111,-0.6338664373
С,0,0.8496662303,-1.6710964874,-0.4216368531
C,0,-0.9658371487,0.6119386794,0.0592253685
C, $0,-0.217305465,0.5814967215,1.2331413601$
C,0,1.19606768,0.5150162394,1.1980023801
H,0,-1.2592082021,-1.8951627233,-0.0443318908
H,0,-0.8424620909,-1.1009295672,-1.6308495544
H,0,1.1029310959,-2.4848989179,0.25751762

```
H,0,1.546750364,-1.5512368797,-1.2498671318
H,0,-2.0464893978,0.5211179855,0.1742614682
С,0,-0.5498868878,1.4170629145,-1.1586637398
H,0,-0.7123933757,0.187174683,2.1212027004
H,0,1.7226276564,0.3794761808,2.1429857665
H,0,1.2831203072,-0.6183320575,0.4914609612
H,0,1.7343600969,1.1713345728,0.5126159011
H,0,-1.1419590273,1.1412666045,-2.0380480888
H,0,-0.707258226,2.4896248841,-0.9818552822
H,0,0.5051198484,1.2758584971,-1.41230494
```

Product structure
$\mathrm{E}($ RB+HF-LYP $)=-235.846428757$

Zero-point correction $=$	0.166319
(Hartree/Particle)	
Thermal correction to Energy $=$	0.173983
Thermal correction to Enthalpy= $=$	0.174928
Thermal correction to Gibbs Free Energy=	0.135113
Sum of electronic and zero-point Energies $=$	-235.680110
Sum of electronic and thermal Energies=	-235.672445
Sum of electronic and thermal Enthalpies=	-235.671501
Sum of electronic and thermal Free Energies=	-235.711316

	E (Thermal)	CV		S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	109.176	27.739	83.797	

C,0,-0.6885960852,-1.2406610462,-0.4847024256
C,0,0.715743547,-1.7814849085,-0.7758328241
С,0,-0.7463117837,0.2510605391,-0.0589828127
C,0,-0.0759825523,0.4484638184,1.2824193588
C,0,0.9034981993,1.3030542629,1.5824037828
Н,0,-1.1483665009,-1.8448829052,0.309894512
H,0,-1.3229435671,-1.3714731463,-1.372049521
H,0,0.6780035357,-2.8529840766,-1.0030387813
H,0,1.1743956538,-1.2805451988,-1.6356277371
H,0,-1.8156962203,0.4726054629,0.0946537365
С,0,-0.2402556612,1.1958987953,-1.1560413973
Н,0,-0.4587781099,-0.1985024041,2.0750510399
$\mathrm{H}, 0,1.3117978109,1.3631891285,2.5878929932$
H,0,1.3815149172,-1.6422387768,0.0832496133

```
H,0,1.3350047341,1.9777405349,0.84788229
Н,0,-0.7731630054,1.0119610368,-2.0961100325
Н,0,-0.4004637996,2.2437514362,-0.8794236323
H,0,0.8301205684, 1.0633901426,-1.3479565716
```


Ene M5

Transition structure

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-235.759340710$

Zero-point correction $=$	0.159700 (Hartree/Particle)
Thermal correction to Energy $=$	0.166910
Thermal correction to Enthalpy=	0.167854
Thermal correction to Gibbs Free Energy=	0.129335
Sum of electronic and zero-point Energies $=$	-235.599641
Sum of electronic and thermal Energies=	-235.592431
Sum of electronic and thermal Enthalpies=	-235.591486
Sum of electronic and thermal Free Energies=	-235.630006

	E (Thermal)	CV		S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	104.738	27.590	81.071	

C,0,-0.0828619959,-1.157795185,-0.9651527441
С,0,1.2797094859,-1.4310029238,-0.7411728408
С,0,-0.6537039939,0.7150789964,-0.0996412351
C,0,0.1206396227,0.6899240047,1.0547823004
С, $0,1.532092555,0.6876640338,0.9571644306$
H,0,-0.8320664345,-1.7489397347,-0.4454044103
H,0,-0.3988729574,-0.8071730185,-1.9436789604
H,0,1.5425521609,-2.2813328679,-0.1122477008
H,0,1.9908469152,-1.2335841644,-1.5426264341
C,0,-2.1638836998,0.6654344083,-0.0647426021
Н,0,-0.239260929,1.2720994647,-0.9408952333
Н,0,-0.3331967531,0.2853741809,1.9616165954
H,0,2.1147939486,0.5802509774,1.8721722683
H,0,1.6616917612,-0.4256757542,0.2284914336
H,0,1.9909649363,1.3755183418,0.2427707318
H,0,-2.5741694864,0.2108400932,-0.9742307867
H,0,-2.5224832856,0.0835107726,0.7923308466
H,0,-2.5927517206,1.6732917022,0.0142777962

Sum of electronic and thermal Energies $=$	-235.672856
Sum of electronic and thermal Enthalpies $=$	-235.671911
Sum of electronic and thermal Free Energies $=$	-235.712681

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	104.892	27.237 81	1.867
C,0,-0.7865994095,-0.5855888911,-1.0030541449			
C,0,0.567975808,-0.9055853194,-0.7686053967			
C,0,-1.3040470064,1.2551981608,-0.1598980054			
C,0,-0.5108392677,1.3042119533,0.981317996			
C, $0,0.8981585733,1.3030458112,0.814523189$			
H,0,-1.5454106175,-1.1679633883,-0.4848674882			
H,0,-1.0831219473,-0.2725237771,-2.0004327756			
C,0,0.9294761547,-2.0529625176,0.1603578541			
H,0,1.2628805691,-0.7303112339,-1.5918599437			
H,0,-2.3844364006,1.1637577641,-0.0694977147			
H,0,-0.9835175454,1.8247823927,-1.0301521496			
H,0,-0.9214418789,0.9234808882,1.91687777			
H,0,1.5269319432,1.2349868995,1.7029904069			
H,0,0.9972543426,0.1989345668,0.121823488			
H,0,1.3105589446, $1.9815933031,0.0623893654$			
H,0,1.9846767115,-2.023017161,0.4558821895			
H,0,0.3263059594,-2.0139691038,1.0768658336			
H,0,0.7445708051,-3.0296663335,-0.3078679336			

Product structure

$\mathrm{E}($ RB+HF-LYP $)=-235.848308453$


```
C,0,-0.929262261,0.9159915296,-0.3671992684
C,0,-0.4536992782,1.5016309828,0.9353550673
C,0,0.4955752147,2.4288697739,1.0697504727
H,0,-1.2989384159,-1.0812632261,0.3939100382
H,0,-1.272586974,-0.9742529394,-1.3595785665
C,0,0.8218433443,-2.6163010711,-0.5389625475
H,0,1.2110193469,-0.6336091289,-1.3118007679
H,0,-1.99470252,1.1582215487,-0.4984943916
H,0,-0.3958482141,1.3902149014,-1.2021447471
H,0,-0.9437816131,1.1146318983,1.8316915067
H,0,0.7886897184,2.8137241847,2.0430915464
H,0,1.198164686,-0.7225816849,0.4402438778
H,0,1.0139160341,2.8441496978,0.2074691058
H,0,1.8731391466,-2.9260807159,-0.5494623586
H,0,0.3407869961,-3.1017268315,0.3193640977
H,0,0.3495970314,-3.0104793466,-1.4475324339
Ene M8
Transition structure
E}(\textrm{RB}+HF-LYP)=-235.75677313
\begin{tabular}{lcc} 
Zero-point correction \(=\) & 0.159723 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.166864 \\
Thermal correction to Enthalpy= & 0.167808 \\
Thermal correction to Gibbs Free Energy= & 0.129389 \\
& \\
Sum of electronic and zero-point Energies \(=\) & -235.597050 \\
Sum of electronic and thermal Energies= & -235.589909 \\
Sum of electronic and thermal Enthalpies= & -235.588965 \\
Sum of electronic and thermal Free Energies= & -235.627384
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 104.709 & 27.476 & 80.860
\end{tabular}
C,0,-0.4114832273,-0.945063594,-0.5614092424
C,0,0.9528697337,-1.197925801,-0.3072796442
C,0,-0.9405411082,0.9457447261,0.3796497034
C,0,-0.1115652347,0.9666000695,1.4881890072
C,0,1.2916206964,0.9862295452,1.3004084958
Н,0,-1.1299905316,-1.5036104161,0.0348527321
```

```
C,0,-0.8796050329,-0.6125469644,-1.9639734821
H,0,1.2101648204,-2.003072709,0.3810608741
H,0,1.6579565167,-1.0749317395,-1.1304974208
H,0,-2.0159080598,0.8313873809,0.4980683315
H,0,-0.644169897,1.501708294,-0.5070987862
H,0,-0.4974656115,0.5768074433,2.4308488025
H,0,1.9383201231,0.9081642721,2.1745391467
H,0,1.3727896759,-0.1471278719,0.5849050655
H,0,1.6894279301,1.6585307161,0.5364337639
H,0,-0.9716910363,-1.5294917367,-2.5629611454
H,0,-1.8557372302,-0.1149443788,-1.9767600501
H,0,-0.1614716615,0.0383528577,-2.4769003404
Product structure
E}(\mathrm{ RB+HF-LYP })=-235.84910449
Zero-point correction= . }165874\mathrm{ (Hartree/Particle)
Thermal correction to Energy= . }17366
Thermal correction to Enthalpy= . }17460
Thermal correction to Gibbs Free Energy= . }13434
Sum of electronic and zero-point Energies= -235.683231
Sum of electronic and thermal Energies= -235.675439
Sum of electronic and thermal Enthalpies= -235.674495
Sum of electronic and thermal Free Energies= -235.714764
\begin{tabular}{cccc} 
& E(Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
& 108.977 & 27.897 & 84.753
\end{tabular}
C,0,-0.4504199646,-0.7349761767,-0.5050764629
С,0,0.9808267268,-1.2746297471,-0.6307105288
C,0,-0.4734265828,0.7014451598,0.0712381823
C,0,0.042346107,0.8049510235,1.4806738436
C,0,1.0684618782,1.5584801543,1.878855488
Н,0,-0.9967914414,-1.3818734522,0.1989729673
C,0,-1.1802324915,-0.7867974003,-1.8545910538
H,0,0.9814651002,-2.3091148231,-0.9940876582
H,0,1.5621625038,-0.6720670957,-1.3413000076
H,0,-1.5132203803,1.0628984995,0.0460347895
H,0,0.1042906663,1.3667664417,-0.5858452263
H,0,-0.4867042158,0.2013952456,2.2216082226
H,0,1.3868780979,1.5920978357,2.9175653836
```

```
H,0,1.504900282,-1.2501639324,0.3303463872
H,0,1.6279484775,2.1769072224,1.1794128523
H,0,-1.1967667207,-1.8065577791,-2.2569817149
H,0,-2.2180882238,-0.4441923575,-1.763722286
H,0,-0.6814081849,-0.1469338855,-2.59434052
```


Product structure
 $\mathrm{E}($ RB+HF-LYP $)=-235.847588180$

Zero-point correction=	.166069 (Hartree/Particle)
Thermal correction to Energy $=$.173813
Thermal correction to Enthalpy $=$.174757
Thermal correction to Gibbs Free Energy=	.134544
Sum of electronic and zero-point Energies=	-235.681519
Sum of electronic and thermal Energies=	-235.673775
Sum of electronic and thermal Enthalpies=	-235.672831
Sum of electronic and thermal Free Energies=	-235.713044

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	109.069	27.798	84.636

C, $0,-0.4327771254,-0.6255130616,-0.8582185575$
С, $0,0.9895713702,-1.1959488121,-0.9416586854$
С,0,-0.4354099121,0.8531386078,-0.3858407701
C, $0,0.0760215285,1.0825047705,1.0117608167$
C, $0,1.1565886739,1.7999149483,1.3246192306$
C,0,-1.3414648394,-1.5176236414,0.0013014
H,0,-0.8499845819,-0.6173519624,-1.8761100143
H,0,0.9792180205,-2.2190777783,-1.3360232037
Н,0,1.6236209509,-0.5893789027,-1.5997374666
H,0,-1.4683524541,1.2280356134,-0.4529833285
H,0,0.1608681718, 1.4498605107,-1.0888917027
Н,0,-0.4987322144,0.6253470205,1.8183115184
H,0,1.4758308394,1.9390440688,2.3543358947
H,0,1.4657719115,-1.2199235609,0.0454782171
H,0,1.7620185085,2.2827638091,0.5595673
H,0,-1.4077826174,-2.5268568358,-0.4218393427
H,0,-0.9580004319,-1.617597047,1.0238561006
H,0,-2.3596542778,-1.1137018044,0.0622554219

Ene F1

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-295.667825057$


```
C,0,0.2553826893,-0.4198928974,-1.5607475415
C,0,0.9210620449,0.402552864,-0.6665175084
C,0,0.9797805566,0.0035368361,0.6918856099
H,0,-2.0635562611,0.4853727595,-1.3395086637
H,0,-1.9694168343,-1.3355805486,-1.3619541785
H,0,-2.0885745597,0.4434945066,1.117932029
H,0,-1.8689938998,-1.3749075596,1.100226916
H,0,0.1090028081,-0.0905501951,-2.585894756
H,0,0.3476110764,-1.4979330979,-1.4502380345
H,0,1.0035625263,1.4701255356,-0.8666390447
F,0,1.4893537365,0.9144416338,1.5843940097
H,0,-0.309172033,-0.1576144442,0.8993430451
H,0,1.3319612546,-1.00392925,0.9325820968
Product structure
E}(\textrm{RB}+HF-LYP)=-295.765589508
Zero-point correction= 0.130398 (Hartree/Particle)
Thermal correction to Energy= 0.137582
Thermal correction to Enthalpy= 0.138526
Thermal correction to Gibbs Free Energy= 0.098995
\begin{tabular}{lc} 
Sum of electronic and zero-point Energies \(=\) & -295.635191 \\
Sum of electronic and thermal Energies= & -295.628007 \\
Sum of electronic and thermal Enthalpies \(=\) & -295.627063 \\
Sum of electronic and thermal Free Energies= & -295.666594
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 86.334 & 24.674 & 83.200
\end{tabular}
C,0,-1.7290529407,-0.325012492,-0.9041582928
С,0,-2.1847607325,-0.5972384557,0.5320773558
С,0,-0.2154395433,-0.5334080327,-1.1239399585
C,0,0.642925332,0.451278478,-0.3773560027
C,0,1.5291172061,0.1035256936,0.5482289966
Н, \(0,-1.9937492926,0.7032768239,-1.1873793518\)
H,0,-2.2737642125,-0.9825721076,-1.5944453014
H,0,-3.2617188192,-0.4288871367,0.6441362321
H,0,-1.9785427735,-1.6357460615,0.8205397116
H,0,-0.0035166737,-0.44946147,-2.1997331659
Н, \(0,0.0565688612,-1.5580517626,-0.8347970465\)
```

H,0,0.5270702034,1.5098083762,-0.60715116
F,0,2.2882922859,1.011784623,1.1993459834
H,0,-1.6651023085,0.0530181322,1.2441664431
H,0,1.7413885133,-0.9123175468,0.8714371974

Ene F3

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-295.679317772$

Zero-point correction=	0.123665 (Hartree/Particle)
Thermal correction to Energy $=$	0.130180
Thermal correction to Enthalpy=	0.131125
Thermal correction to Gibbs Free Energy=	0.093702
Sum of electronic and zero-point Energies $=$	-295.555652
Sum of electronic and thermal Energies=	-295.549137
Sum of electronic and thermal Enthalpies $=$	-295.548193
Sum of electronic and thermal Free Energies $=$	-295.585616

	E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	81.689	24.652	78.762

C,0,-1.6108277433,-0.550672141,-0.4052218976
С,0,-1.6317276633,-0.5411495247,1.0033133374
С,0,0.3361427213,-0.5600135028,-1.1562461058
C, $0,0.9932448778,0.2390886494,-0.2354589139$
C, $0,1.0850016272,-0.1338983985,1.1245157753$
H,0,-1.9233232758,0.3474699743,-0.9314119987
H,0,-1.8515292521,-1.4729847492,-0.9271148859
H,0,-2.0090091286,0.344033728,1.5128147941
Н,, ,-1.8055572444,-1.4766765591,1.5327462438
H,0,0.1917237563,-0.1895215063,-2.1670185053
H,0,0.5015191844,-1.6294032721,-1.0748937742
F,0,1.015096507,1.5760449951,-0.4904273801
H,0,1.4946497143,0.6040897469,1.8129053104
H,0,-0.197951751,-0.2823696516,1.3551275207
H,0,1.432606516,-1.1491731613,1.3152785438

$\begin{array}{llll}\text { TOTAL } & 86.227 & 24.724 & 81.563\end{array}$
C, $0,-1.3683079687,0.1708522924,-0.5659286959$
$\mathrm{C}, 0,-1.808033974,-0.0764307353,0.8797126918$
C, $0,0.1337475353,-0.0376287898,-0.7952884554$
$\mathrm{C}, 0,1.0070089676,0.9159090333,-0.0270659665$
$\mathrm{C}, 0,1.9323617404,0.5493820413,0.8574284886$
$\mathrm{H}, 0,-1.6223776968,1.1931066718,-0.8775162517$
$\mathrm{H}, 0,-1.9058315168,-0.5060034011,-1.2415892265$
$\mathrm{H}, 0,-2.8915703103,0.0453397303,0.9817488854$
$\mathrm{H}, 0,-1.5480316411,-1.0934107879,1.1887537489$
H,0,0.3459526951,0.0656626227,-1.8706833205
F,0,0.4525313822,-1.356694921,--0.4508062962
H,0,0.8367580017,1.9699085374,--0.248336015
$\mathrm{H}, 0,2.5390911278,1.2823214095,1.3811720418$
$\mathrm{H}, 0,-1.3200781793,0.6183618233,1.5713482028$
$\mathrm{H}, 0,2.1126472759,-0.4975353668,1.0792102248$

Ene F5
Transition structure
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-295.672683889$

Zero-point correction $=$	0.124038 (Hartree/Particle)
Thermal correction to Energy=	0.130478
Thermal correction to Enthalpy=	0.131422
Thermal correction to Gibbs Free Energy=	0.094177

Sum of electronic and zero-point Energies $=$	-295.548646
Sum of electronic and thermal Energies=	-295.542206
Sum of electronic and thermal Enthalpies $=$	-295.541262
Sum of electronic and thermal Free Energies $=$	-295.578507

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	81.876	24.420	78.388

C,0,-1.4517376985,-0.2882374689,-0.0678816653
С,0,-1.4842247925,-0.2656912571,1.3384165271
C,0,0.4885149558,-0.2615891717,-0.818522607
C,0,1.1456121942,0.5622761717,0.0812391887
C,0,1.2084633423,0.1462512611,1.4355490206

```
H,0,-1.752175328,0.5982401585,-0.619954596
H,0,-1.6793195172,-1.2179913659,-0.5829261877
H,0,-1.8629722296,0.6234898354,1.8404095718
H,0,-1.6541949071,-1.1951309627,1.8797220584
F,0,0.2911048668,0.1757314108,-2.0942142463
H,0,0.6217171269,-1.3407176255,-0.7901088623
H,0,1.1927348065,1.62245763,-0.1629818923
H,0,1.637470759,0.8428212959,2.1552710327
H,0,-0.0706843109,0.0141012047,1.6857612976
H,0,1.5077117924,-0.8869100776,1.62993301
```

Product structure
$\mathrm{E}($ RB + HF-LYP $)=-295.766239643$
Zero-point correction $=0.130116$ (Hartree/Particle)
Thermal correction to Energy=
0.137284
Thermal correction to Enthalpy $=\quad 0.138228$
Thermal correction to Gibbs Free Energy= 0.098963
Sum of electronic and zero-point Energies= -295.636124
Sum of electronic and thermal Energies $=\quad-295.628955$
Sum of electronic and thermal Enthalpies= -295.628011
Sum of electronic and thermal Free Energies= -295.667277

	E(Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	86.147	24.973	82.642

C,0,-1.3430977946,-0.0728708598,-0.2488275369
С,0,-1.7735948506,-0.3678578313,1.1907175471
С, $0,0.1488919337,-0.2964293023,-0.5016722718$
C, $0,1.0405512799,0.6729466216,0.2167565859$
C,0,1.9159339304,0.3342362011,1.1625246716
H,0,-1.5878032361,0.9633944554,-0.5166339835
H,0,-1.8904379225,-0.7159633823,-0.949049211
H,0,-2.850196423,-0.2090366498, 1.3124105041
H,0,-1.558912842,-1.407826374,1.4661064204
F,0,0.3645958233,-0.1434975172,-1.883729019
H,0,0.4243753764,-1.3276959967,-0.2413648958
H,0,0.9192675919,1.715955747,-0.0772677316
H,0,2.5259848156,1.0751016062,1.6720358954
H,0,-1.2533917135,0.2788064609, 1.9053024078

H,0,2.0576449515,-0.7014071883,1.46502779

Sum of electronic and thermal Enthalpies $=$	-295.533968
Sum of electronic and thermal Free Energies $=$	-295.571653

Product structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-295.760517564$


```
C,0,0.7339099221,-0.3294519121,-1.0280648769
C,0,1.6330693628,0.6233817455,-0.2843595499
C,0,2.5716339177,0.2729093808,0.5959902927
H,0,-1.0186615889,0.9631772419,-1.0668361667
H,0,-1.3600963347,-0.7221624117,-1.4497950934
F,0,-2.5680817212,-0.0749016086,0.7636824065
H,0,-1.0043316083,-1.3493553211,0.9446830465
H,0,0.9278049415,-0.2396533499,-2.1065571601
H,0,0.9828337533,-1.3634894733,-0.75351339
H,0,1.4817627858,1.682435218,-0.503734483
H,0,3.1938878577,1.010958139,1.0950138425
H,0,-0.6735779548,0.354255314,1.3364681453
H,0,2.7595951686,-0.7695102798,0.8465884682
```


Ene F8

```
Transition structure
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-295.670416425\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.123551 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.130041 \\
Thermal correction to Enthalpy= \(=\) & 0.130985 \\
Thermal correction to Gibbs Free Energy= & 0.093567 \\
& \\
Sum of electronic and zero-point Energies \(=\) & -295.546865 \\
Sum of electronic and thermal Energies= & -295.540376 \\
Sum of electronic and thermal Enthalpies \(=\) & -295.539431 \\
Sum of electronic and thermal Free Energies \(=\) & -295.576849
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 81.602 & 24.604 & 78.753
\end{tabular}
C,0,-1.1656997484,-0.0629808816,-0.3253491609
C,0,-1.1351269716,0.087243825,1.0662833934
С,0,0.8347539192,0.1354014425,-1.1050237969
С,0,1.4924551029,0.8888798033,-0.1469119062
C,0,1.5786932347,0.4035645365,1.1804526264
H,0,-1.5700680138,0.695200012,-0.987204648
F,0,-1.3830511441,-1.3208287417,-0.8155203545
H,0,-1.487918086,1.0365653547,1.4654739368
H,0,-1.3819053967,-0.7908025431,1.6593100993
```

```
H,0,0.6726840154,0.5369737222,-2.1031172599
H,0,0.8930886092,-0.9491607865,-1.0625116715
H,0,1.592206441,1.9629303257,-0.3077019613
H,0,2.0180377503,1.044700723,1.9446935589
H,0,0.2575646474,0.2907807544,1.396837727
H,0,1.8233171094,-0.6523812417,1.3171964752
Product structure
E}(\textrm{RB}+HF-LYP)=-295.76829113
Zero-point correction= 0.130128 (Hartree/Particle)
Thermal correction to Energy=}0.13725
Thermal correction to Enthalpy= 0.138200
Thermal correction to Gibbs Free Energy= 0.098968
Sum of electronic and zero-point Energies= -295.638163
Sum of electronic and thermal Energies= -295.631035
Sum of electronic and thermal Enthalpies= -295.630091
Sum of electronic and thermal Free Energies= -295.669323
```

	E(Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN

C,0,-0.9328111518,0.051650396,-0.3821037412
С,0,-1.4116092365,-0.2455562716,1.0283811203
С, $0,0.5668186211,-0.1783912072,-0.6043792765$
C, $0,1.4371517065,0.8144517091,0.1161539914$
C,0,2.3487292739,0.5098032634,1.0407363897
H,0,-1.1932061368,1.0823111693,-0.6620125258
F,0,-1.6222609139,-0.7917528516,-1.2665398244
H,0,-2.4929046933,-0.0936848605,1.1035222493
H,0,-1.1891987295,-1.2858031655,1.2915346493
H,0,0.7420028227,-0.111292569,-1.6874197244
H,0,0.8173279649,-1.2020979458,-0.2993773173
H,0,1.2940950518,1.8613060172,-0.1588365439
H,0,2.9539846007,1.2738312613,1.5212222058
H,0,-0.9126144299,0.4079314551,1.7509068294
H,0,2.5311864952,-0.518473036,1.3465876948

Product structure

$\mathrm{E}($ RB+HF-LYP $)=-309.847902399$

C,0,-0.1046729257,1.020909569,0.1023878427
C,0,-0.8722033506,-0.2789453303,-0.2019827247
O,0,-3.2871718294,-0.422950279,-0.2380137831
$\mathrm{C}, 0,-2.2623499508,-0.2658060203,0.3881406917$
$\mathrm{H}, 0,-0.1441941312,1.2271369631,1.1817910045$
$\mathrm{H}, 0,-0.6048072368,1.862832129,-0.3923481217$
$\mathrm{H}, 0,-0.9520788897,-0.4531963624,-1.2803920992$
$\mathrm{H}, 0,-2.2950159599,-0.0887375325,1.4896148762$
$\mathrm{C}, 0,1.3703297337,0.9734711575,-0.3510663725$
$\mathrm{C}, 0,2.1982396741,-0.0208104252,0.4173698146$
$\mathrm{C}, 0,2.8262394148,-1.0744522265,-0.1071349835$
$\mathrm{H}, 0,1.7980896203,1.9781067126,-0.2197816783$
$\mathrm{H}, 0,1.4192554733,0.7485436788,-1.4243939913$
$\mathrm{H}, 0,2.269114476,0.155316308,1.4929448341$
$\mathrm{H}, 0,3.412200738,-1.755591677,0.5042665884$
$\mathrm{H}, 0,-0.3248068494,-1.1258209144,0.2390738089$
$\mathrm{H}, 0,2.7861218215,-1.2911874193,-1.1729505669$

Diimide 1
Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-189.219728915$

Zero-point correction=
0.078051 (Hartree/Particle)

Thermal correction to Energy= 0.082607

Thermal correction to Enthalpy= 0.083551

Thermal correction to Gibbs Free Energy= 0.051195
Sum of electronic and zero-point Energies= $\quad-189.141678$
Sum of electronic and thermal Energies= $\quad-189.137122$
Sum of electronic and thermal Enthalpies= $\quad-189.136178$
Sum of electronic and thermal Free Energies $=\quad-189.168534$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	51.836	15.514	68.098

$\mathrm{N}, 0,1.4148863681,0.5993302128,0.2879016053$
$\mathrm{N}, 0,1.4148863681,-0.5993302128,0.2879016053$
H,0,0.3603824733,-0.988848978,0.073340944
H, $0,0.3603824733,0.988848978,0.073340944$
C, $0,-1.2432414884,-0.6874107666,-0.2529759437$
С,0,-1.2432414884,0.6874107666,-0.2529759437
Н, $0,-1.2188179174,1.2427938233,-1.1884052288$
H,0,-1.5863202026,-1.2427957049,0.6176087102

```
H,0,-1.2188179174,-1.2427938233,-1.1884052288
```

H,0,-1.5863202026,1.2427957049,0.6176087102

Diimide 2
Transition structure
E(RB+HF-LYP $)=-288.442825095$

Zero-point correction $=$	0.069741 (Hartree/Particle)
Thermal correction to Energy=	0.075014
Thermal correction to Enthalpy $=$	0.075958
Thermal correction to Gibbs Free Energy=	0.041115
Sum of electronic and zero-point Energies=	-288.373084
Sum of electronic and thermal Energies=	-288.367811
Sum of electronic and thermal Enthalpies=	-288.366867
Sum of electronic and thermal Free Energies=	-288.401710

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	47.072	17.852	73.335

$\mathrm{N}, 0,1.769500113,0.3144688262,0.0502353909$
$\mathrm{N}, 0,1.7410513847,-0.8738856631,0.1645616354$
H,0,0.6482472545,-1.2526425825,-0.0260072206
H,0,0.7208207024,0.7075955977,-0.2159105019
C,0,-0.8638428008,-0.9583942844,-0.4229208374
С, $0,-0.9013563084,0.4163159531,-0.4202857924$
Н, $0,-0.9458423181,1.0281856657,-1.3186290964$
H,0,-1.2944398415,-1.499754968,0.415841449
H,0,-0.8247897202,-1.4741862166,-1.3784388366
F,0,-1.3651846562,1.0732433722,0.6754227557

Product structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-177.819641142$

Zero-point correction $=$	0.044283 (Hartree/Particle)
Thermal correction to Energy=	0.047630
Thermal correction to Enthalpy=	0.048574
Thermal correction to Gibbs Free Energy=	0.019927

Sum of electronic and zero-point Energies=	-177.775358
Sum of electronic and thermal Energies=	-177.772011
Sum of electronic and thermal Enthalpies $=$	-177.771067
Sum of electronic and thermal Free Energies=	-177.799714

| | E (Thermal) | CV |
| :--- | :---: | :---: |\quad S

Diimide 3

Transition structure
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-264.427583183$

Zero-point correction $=0.081771$ (Hartree/Particle)
Thermal correction to Energy= 0.087423
Thermal correction to Enthalpy= 0.088367
Thermal correction to Gibbs Free Energy= 0.052967
Sum of electronic and zero-point Energies= -264.345813
Sum of electronic and thermal Energies= $\quad-264.340160$
Sum of electronic and thermal Enthalpies= -264.339216
Sum of electronic and thermal Free Energies= -264.374616

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	54.859	19.579	74.506

$\mathrm{N}, 0,1.7852025589,0.2835982442,0.0441393729$
$\mathrm{N}, 0,1.7433824169,-0.9038550468,0.160129684$
H,0,0.6113857082,-1.2550892252,-0.0607923532
H,0,0.7432755789,0.6868122095,-0.2400606682
C,0,-0.8343008073,-0.9491090242,-0.4535397375
С,0,-0.8983877564,0.4380963888,-0.4180884634
Н, $,--0.9007481809,1.0367350346,-1.3257059445$

```
H,0,-1.3160978547,-1.5261751506,0.3365480767
H,0,-0.8123262032,-1.4320874519,-1.4277041334
O,0,-1.3848086958,1.1663989017,0.641389909
H,0,-1.5509829302,0.5664868004,1.386481558
Product structure
E}(\textrm{RB}+HF-LYP)=-153.80567985
Zero-point correction= 0.056745 (Hartree/Particle)
Thermal correction to Energy= 0.060349
Thermal correction to Enthalpy= 0.061293
Thermal correction to Gibbs Free Energy= 0.032304
Sum of electronic and zero-point Energies= -153.748935
Sum of electronic and thermal Energies= -153.745331
Sum of electronic and thermal Enthalpies= -153.744386
Sum of electronic and thermal Free Energies= -153.773375
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 37.870 & 11.341 & 61.012
\end{tabular}
C,0,0.0708017736,-1.1415112323,-0.4281588326
C,0,0.1228431933,0.1905834246,-0.3777731373
H,0,0.4091900241,0.7997123359,-1.2305728458
H,0,-0.2168468962,-1.7458561842,0.4295106893
H,0,0.319610864,-1.6623777921,-1.3450454477
O,0,-0.1580580448,0.9865375235,0.6924573076
H,0,-0.4093594346,0.4217882994,1.442040963
Diimide 4
Transition structure
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-244.568270074\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.094738 (Hartree/Particle) \\
Thermal correction to Energy= & 0.100583 \\
Thermal correction to Enthalpy= & 0.101528 \\
Thermal correction to Gibbs Free Energy= & 0.065799
\end{tabular}
```

Sum of electronic and zero-point Energies=	-244.473532
Sum of electronic and thermal Energies=	-244.467687
Sum of electronic and thermal Enthalpies $=$	-244.466742
Sum of electronic and thermal Free Energies $=$	-244.502471

	E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	63.117	20.593	75.198

$\mathrm{N}, 0,1.7934136618,0.3020507235,0.0721032075$
$\mathrm{N}, 0,1.7753151378,-0.888003961,0.1961559567$
H,0,0.650293888,-1.2576418465,-0.0533206055
H,0,0.7512959075,0.6701519778,-0.2400071515
C, $0,-0.7945589869,-0.9974075666,-0.4565034451$
C, $0,-0.9049858155,0.3916714653,-0.4522710079$
H,0,-0.8803077684,0.9351506033,-1.3956433779
H,0,-1.2633480682,-1.56446174,0.3484367178
H,0,-0.7711634311,-1.5042681392,-1.4185565146
$\mathrm{N}, 0,-1.5133403468,1.1098182778,0.5922815449$
H,0,-1.177348047,2.0604565935,0.702542171
Н,0,-1.4998728369,0.6279738766,1.4854105149

Product structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-133.942723524$

Zero-point correction $=$	0.069229
(Hartree/Particle)	
Thermal correction to Energy $=$	0.073111
Thermal correction to Enthalpy=	0.074055
Thermal correction to Gibbs Free Energy=	0.044598
Sum of electronic and zero-point Energies $=$	-133.873495
Sum of electronic and thermal Energies=	-133.869613
Sum of electronic and thermal Enthalpies=	-133.868668
Sum of electronic and thermal Free Energies=	-133.898125

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	45.878	12.684	61.998

C,0,0.0468077806,-1.1835049579,-0.4518879544
С,0,0.1106967589,0.1526935086,-0.3924747329
Н,0,0.3818604485,0.7275855106,-1.2766745525

```
H,0,-0.2147669374,-1.7890951614,0.4129363744
H,0,0.2847954446,-1.7064420678,-1.3707682588
N,0,-0.056793169,0.9475208195,0.7444874608
H,0,-0.4911314984,1.8461662112,0.5693686962
H,0,-0.5082325113,0.4740084666,1.5199016384
```


Diimide 5

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-228.536016371$

Zero-point correction $=$	0.106133 (Hartree/Particle)
Thermal correction to Energy $=$	0.112150
Thermal correction to Enthalpy=	0.113094
Thermal correction to Gibbs Free Energy $=$	0.076924
Sum of electronic and zero-point Energies $=$	-228.429883
Sum of electronic and thermal Energies=	-228.423867
Sum of electronic and thermal Enthalpies $=$	-228.422923
Sum of electronic and thermal Free Energies=	-228.459092

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	70.375	20.752	76.125

N,0,1.77625832,0.3274453283,-0.0436258289
N,0,1.8095085826,-0.8675077082,0.0249892189
H,0,0.7388922,-1.2862694188,-0.1294989237
H,0,0.6977586935,0.6670946228,-0.2440148962
C, $0,-0.8397751368,-1.0389786334,-0.4108718115$
С,0,-0.905904255,0.3406355521,-0.4196510488
Н,0,-0.9286560076,0.8440731743,-1.3877537145
H,0,-1.157680761,-1.5960195278,0.4700366921
Н,0,-0.838113351,-1.5973219418,-1.3449630878
C,0,-1.4119439938,1.145841792,0.7584920626
H,0,-1.2418028895,0.6163839082,1.7024910865
H,0,-2.4930017821,1.3191286448,0.6671628131
H,0,-0.9320241066,2.1283749339,0.829181087

Product structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-117.907556191$

Diimide 6

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-648.811689592$

Zero-point correction= 0.069051 (Hartree/Particle)
Thermal correction to Energy= 0.074531
Thermal correction to Enthalpy= 0.075475
Thermal correction to Gibbs Free Energy= 0.039481
Sum of electronic and zero-point Energies= -648.742638
Sum of electronic and thermal Energies $=\quad-648.737158$
Sum of electronic and thermal Enthalpies= $\quad-648.736214$
Sum of electronic and thermal Free Energies= -648.772208
E (Thermal) CV S

	KCAL/MOL	CAL/MOL-KELVIN	
TOTAL	46.769	18.511	51175
N,0,2.0496815114,0.0202962666,-0.147847522			
N,0,2.0033088207,-1.171697977,-0.0565320106			
H,0,0.9256708261,-1.5353966513,-0.257675157			
H,0,1.0256796546,0.4346075444,-0.4054058988			
C,0,-0.6184754451,-1.2068153268,-0.6529726009			
C,0,-0.6168228415,0.1674802578,-0.6423848256			
H,0,-0.6217875318,0.7634353346,-1.5499366678			
H,0,-1.0305296296,-1.768204144,0.1811141231			
H,0,-0.5727285386,-1.7165484201,-1.6132657248			
$\mathrm{Cl}, 0,-1.2167910227,1.0657605131,0.7557629772$			
Product structure			
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-538.185384426$			
Zero-point correction=			0.042848 (H)
Thermal correction to Energy= 0.04			
Thermal correction to Enthalpy= 0.0			
Thermal correction to Gibbs Free Energy=			
Sum of electronic and zero-point Energies=			
Sum of electronic and thermal Energies=			
Sum of electronic and thermal Enthalpies=			
Sum of electronic and thermal Free Energies=			
E (Thermal) KCAL/MOL		CV	
		CAL/MOL-KELVIN	
TOTAL	29.106	10.686	68663
C,0,0.1629950205,-1.4953263903,-0.721891416			
С,0,0.2171303129,-0.1690991125,-0.7142263122			
H,0,0.5105930862, $0.4331714645,-1.5665583503$			
H,0,-0.1352398235,-2.0723367748,0.1472377474			
Н,0,0.4242317162,-2.0359874097,-1.6268622211			
Cl,0,-0.1811962929,0.8036297492,0.6860523055			

Diimide 7

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-187.955071993$

Zero-point correction $=$	0.053358
(Hartree/Particle)	
Thermal correction to Energy $=$	0.057917
Thermal correction to Enthalpy= $=$	0.058861
Thermal correction to Gibbs Free Energy=	0.026743
Sum of electronic and zero-point Energies=	-187.901714
Sum of electronic and thermal Energies=	-187.897155
Sum of electronic and thermal Enthalpies=	-187.896211
Sum of electronic and thermal Free Energies=	-187.928329

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	36.343	15.435	67.597

N,0,-1.3713819618,0.5940061932,-0.0062890624
$\mathrm{N}, 0,-1.3649080751,-0.6087443458,-0.0055245499$
H,0,-0.307205955,-0.986882211,-0.0008465872
H,0,-0.3178276608,0.9835226373,-0.0021538701
C,0,1.3645017724,-0.6080461566,0.0060787776
C,0,1.3578569247,0.6227085508,0.0057288694
H,0,1.7137073295,1.6340661334,0.0061482863
H,0,1.7312043616,-1.6155138567,0.0087015755

Diimide 8

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-287.162458705$

Zero-point correction $=0.047031$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.052419$
Thermal correction to Enthalpy= 0.053363
Thermal correction to Gibbs Free Energy= 0.018427
Sum of electronic and zero-point Energies= -287.115427
Sum of electronic and thermal Energies $=\quad-287.110040$
Sum of electronic and thermal Enthalpies $=\quad-287.109096$

Sum of electronic and thermal Free Energies= -287.144032

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	32.893	17.659	73.529

N,0,-1.7616420347,1.0051727105,-0.0103180457
N,0,-1.7720422296,-0.2006549135,-0.0087480867
H,0,-0.7310044625,-0.5919734015,-0.0027624793
Н,0,-0.7242981325,1.3805486953,-0.0053521449
С,0,0.9853678979,-0.2266347454,0.0052481041
С,0,1.0174146309,0.9982131648,0.003697917
H,0,1.3269861169,2.0218185717,0.0034888212
F, $0,1.4274901283,-1.4523876624,0.0093791782$

Product structure
 $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-176.536264188$

Zero-point correction=	0.019324 (Hartree/Particle)
Thermal correction to Energy $=$	0.022866
Thermal correction to Enthalpy $=$	0.023810
Thermal correction to Gibbs Free Energy=	0.000494
Sum of electronic and zero-point Energies $=$	-176.516940
Sum of electronic and thermal Energies=	-176.513398
Sum of electronic and thermal Enthalpies $=$	-176.512454
Sum of electronic and thermal Free Energies $=$	-176.535770

KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN

	14.348	9.952	49.073

С,0,-0.0049329975,0.0955344893,-0.0003904296
C,0,-0.0440282613,1.295329315,-0.0032170302
Н,0,-0.0769891064,2.3591935156,-0.0055421846
F,0,0.0411951844,-1.1893751491,0.0030207715

Diimide 9

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-227.279567409$

Zero-point correction $=$	0.081933 (Hartree/Particle)
Thermal correction to Energy $=$	0.088021
Thermal correction to Enthalpy $=$	0.088966
Thermal correction to Gibbs Free Energy $=$	0.052632
Sum of electronic and zero-point Energies $=$	-227.197635
Sum of electronic and thermal Energies=	-227.191546
Sum of electronic and thermal Enthalpies $=$	-227.190602
Sum of electronic and thermal Free Energies $=$	-227.226935

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	55.234	20.290	76.470

N,0,-1.7182715666,1.1563741855,-0.0411757079
$\mathrm{N}, 0,-1.7823840183,-0.0426454334,-0.0463362579$
H,0,-0.7393289411,-0.4710929045,-0.0205933244
Н,0,-0.6185138628,1.4687069287,-0.011810181
C,0,0.9530944512,-0.2118617887,0.0239621825
C,0,0.9544323863,1.0247824915,0.0277107125
H,0,1.4109540167,1.9963919164,0.0423414478
C,0,1.4043975005,-1.6162306716,0.0317933874
H,0,2.4999431324,-1.665450164,0.0597252217
H,0,1.062618714,-2.1500932487,-0.8622526619
H,0,1.0173700075,-2.15470398,0.9043755632

Product structure

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-116.653269770$

Zero-point correction= 0.055722 (Hartree/Particle)
Thermal correction to Energy= 0.059719
Thermal correction to Enthalpy $=\quad 0.060663$
Thermal correction to Gibbs Free Energy= 0.031494
Sum of electronic and zero-point Energies= -116.597548
Sum of electronic and thermal Energies $=\quad-116.593551$
Sum of electronic and thermal Enthalpies= -116.592606
Sum of electronic and thermal Free Energies $=\quad-116.621776$
E (Thermal) CV S


```
H,0,0.434649421,1.5232449111,-2.0316114163
H,0,0.3392800057,-0.9145236987,-2.2780130251
H,0,-0.5568642087,-2.3532708935,-0.5412959721
H,0,-1.4247096623,-1.4619072626,1.5716711437
```


Product structure

$\mathrm{E}($ RB+HF-LYP $)=-234.648294877$

Zero-point correction=	0.146984 (Hartree/Particle)
Thermal correction to Energy $=$	0.152474
Thermal correction to Enthalpy $=$	0.153418
Thermal correction to Gibbs Free Energy=	0.118347
Sum of electronic and zero-point Energies=	-234.501311
Sum of electronic and thermal Energies=	-234.495821
Sum of electronic and thermal Enthalpies=	-234.494877
Sum of electronic and thermal Free Energies=	-234.529948

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	95.679	21.315	73.813

C,0,1.4539342258,0.2823307983,0.2601012361
C,0,0.7778967647,0.7133646104,-1.0192310828
С,0,-0.5071286843,0.4678283532,-1.2949165728
С,0,-1.443993221,-0.2389630193,-0.3450502502
С, $0,-0.8626994246,-0.3328364416,1.0751290489$
C, $0,0.6155149913,-0.745482954,1.0374591752$
H,0,-0.9491876243,0.6468284288,1.5656859495
H,0,1.0102382363,-0.8646621786,2.0540121336
H,0,-1.4467830712,-1.0398396086,1.67710689
H,0,0.7018876464,-1.7256554554,0.5478842249
H,0,-2.4118308883,0.2812017268,-0.3237010196
H,0,1.6448595667,1.1665292589,0.8895673784
H,0,2.445816756,-0.1329407698,0.033297565
H,0,1.3892658409, 1.2488779772,-1.7451495848
H,0,-0.9218399904, 0.7901860431,-2.249693662
H,0,-1.663574384,-1.2479735045,-0.7299592013

Hydride transfer parent

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-237.200483851$

Zero-point correction $=$	0.068672
(Hartree/Particle)	
Thermal correction to Energy $=$	0.074596
Thermal correction to Enthalpy=	0.075540
Thermal correction to Gibbs Free Energy=	0.039795
Sum of electronic and zero-point Energies=	-237.131812
Sum of electronic and thermal Energies=	-237.125888
Sum of electronic and thermal Enthalpies=	-237.124944
Sum of electronic and thermal Free Energies=	-237.160689

Sum of electronic and thermal Energies $=$	-276.418268
Sum of electronic and thermal Enthalpies $=$	-276.417324
Sum of electronic and thermal Free Energies=	-276.456514

O,0,1.5072750923,0.800915039,0.6963539154

```
C,0,1.4625462466,-0.4837219446,0.6037642984 Li,0,0.2601874012,1.8944105934,0.1038121395 O,0,-0.7439331815,0.7792503854,-0.9056022209
C,0,-0.7607573051,-0.4610988683,-0.7340084425
H,0,2.2712874718,-0.9950082786,0.0475766912
H,0,1.118654749,-1.0657119623,1.4796421184
H,0,-0.7918734182,-1.1544100766,-1.5878885518
Н, \(0,0.4583793154,-0.8135741033,-0.2018919009\)
F,0,-1.5727199175,-0.9585473196,0.2673973925
```

Hydride transfer hydroxy
Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-312.430995167$

Zero-point correction=
Thermal correction to Energy=
0.074927 (Hartree/Particle)

Thermal correction to Enthalpy= 0.082150

Thermal correction to Gibbs Free Energy= 0.043456
Sum of electronic and zero-point Energies $=\quad-312.356069$
Sum of electronic and thermal Energies $=\quad-312.348845$
Sum of electronic and thermal Enthalpies $=\quad-312.347901$
Sum of electronic and thermal Free Energies $=\quad-312.387540$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	51.550	23.030	83.427

O,0,1.7348430939,0.8641433254,-0.2111972128
C,0,1.7634525699,-0.3778302632,-0.1772657587
Li,0,0.2187996963,1.8943263051,-0.1100246758
O,0,-1.116397246,0.7965018451,-0.2627499069
C, $0,-1.0183222865,-0.5191974492,-0.3005593599$
H,0,2.1346103215,-0.9548896603,-1.039106913
H,0,1.6423268811,-0.9277626761,0.768825078
H,0,-1.5906015515,-1.0118378421,-1.1118351029
H,0,0.0911210172,-0.8542709623,-0.5157178484
O,0,-1.3382094197,-1.1738835312,0.9246284675
H,0,-1.6465288832,-0.4461446143,1.489408743

Hydride transfer amino

Starting structure A (H2COLiNH2)
 $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-178.047613865$

Zero-point correction=	0.059650 (Hartree/Particle)
Thermal correction to Energy $=$	0.064205
Thermal correction to Enthalpy=	0.065149
Thermal correction to Gibbs Free Energy=	0.033259
Sum of electronic and zero-point Energies $=$	-177.987963
Sum of electronic and thermal Energies=	-177.983409
Sum of electronic and thermal Enthalpies=	-177.982465
Sum of electronic and thermal Free Energies=	-178.014355

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	40.289	14.703	67.120

Li,0,0.3667756997,1.3425594764,0.7611101686
O,0,0.4675285684,0.7415367537,-0.8575466268
C,0,-0.0652998516,-0.4520767743,-0.53641906
$\mathrm{H}, 0,-1.0256758256,-0.6789923091,-1.0466039794$
Н,0,0.6096908777,-1.3177280735,-0.7072235345
N,0,-0.3933164188,-0.4801390657,0.9917549784
H,0,0.1060365383,-1.2366170983,1.4582507897
H,0,-1.3855931953,-0.6532008724,1.148848744

Starting structure B (H2NCH2OH)
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-171.067828272$

Zero-point correction $=$	0.069852 (Hartree/Particle)
Thermal correction to Energy=	0.073848
Thermal correction to Enthalpy=	0.074792
Thermal correction to Gibbs Free Energy=	0.044771

Sum of electronic and zero-point Energies= -170.997976
Sum of electronic and thermal Energies= -170.993980
Sum of electronic and thermal Enthalpies= $\quad-170.993036$
Sum of electronic and thermal Free Energies= -171.023058

Product structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-499.438328959$
Zero-point correction $=\quad 0.022739$ (Hartree/Particle)
Thermal correction to Energy= 0.026341
Thermal correction to Enthalpy= 0.027285
Thermal correction to Gibbs Free Energy $=\quad-0.001801$
Sum of electronic and zero-point Energies= -499.415590
Sum of electronic and thermal Energies= -499.411988
Sum of electronic and thermal Enthalpies= -499.411044
Sum of electronic and thermal Free Energies $=\quad-499.440130$

	E (Thermal)		CV	S	
	KCAL/MOL		CAL/MOL-KELVIN		CAL/MOL-KELVIN
TOTAL		16.529	8.923	61.217	
1	6	0	1.125607	0.000000	-0.018024
2	1	0	1.627936	0.954928	0.041819
3	1	0	1.627954	-0.954919	0.041819
4	17	0	-0.588796	0.000000	0.001442

Hydrogen Transfer F

Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-179.554361424$
Zero-point correction= 0.068463 (Hartree/Particle)
Thermal correction to Energy= 0.073880
Thermal correction to Enthalpy= 0.074824
Thermal correction to Gibbs Free Energy= 0.039463
Sum of electronic and zero-point Energies= -179.485898
Sum of electronic and thermal Energies $=\quad-179.480482$
Sum of electronic and thermal Enthalpies= $\quad-179.479538$
Sum of electronic and thermal Free Energies= $\quad-179.514899$
$\begin{array}{lcl}\text { E (Thermal) } & \text { CV } & \text { S } \\ \text { KCAL/MOL } & \text { CAL/MOL-KELVIN } & \text { CAL/MOL-KELVIN }\end{array}$
$\begin{array}{llll}\text { TOTAL } & 46.360 & 15.980 & 74.423\end{array}$
C, $0,1.8206572415,-0.0444371713,0.5784628515$
C,0,-0.8724062221,0.0099821189,0.3210507628
$\mathrm{H}, 0,2.1386972396,0.8708149353,0.0795710973$
$\mathrm{H}, 0,-1.2371639557,0.9225092096,0.8034938554$
$\mathrm{H}, 0,-1.2708203136,-0.9060877798,0.7689206418$
$\mathrm{H}, 0,2.1051426496,-0.9517127632,0.0458748394$
$\mathrm{H}, 0,2.0565215159,-0.068467941,1.6426691035$
F, $,-1.1018792466,0.0396897771,-1.0268053699$
$\mathrm{H}, 0,0.4350299667,-0.0175333407,0.5036371061$

Product structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-139.064265819$

Zero-point correction $=\quad 0.024911$ (Hartree/Particle)
Thermal correction to Energy= 0.027941
Thermal correction to Enthalpy= 0.028885
Thermal correction to Gibbs Free Energy= 0.002160
$\begin{array}{lc}\text { Sum of electronic and zero-point Energies= } & -139.039355 \\ \text { Sum of electronic and thermal Energies= } & -139.036325 \\ \text { Sum of electronic and thermal Enthalpies= } & -139.035381 \\ \text { Sum of electronic and thermal Free Energies= } & -139.062105\end{array}$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	17.533	7.476	56.246

C,0,0.086609912,-0.013367299,0.6518025741
Н,0,-0.0976848041,0.9352586981,1.1457864208
Н,0,-0.1333181194,-0.971682273,1.1112668319
F,0,-0.0320729499,0.0129585965,-0.6853187441

Hydrogen Transfer methyl
Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-119.649088486$

Zero-point correction $=\quad 0.104011$ (Hartree/Particle)

Thermal correction to Energy $=$	0.110090
Thermal correction to Enthalpy $=$	0.111034
Thermal correction to Gibbs Free Energy $=$	0.074623
Sum of electronic and zero-point Energies=	-119.545078
Sum of electronic and thermal Energies=	-119.538999
Sum of electronic and thermal Enthalpies=	-119.538054
Sum of electronic and thermal Free Energies=	-119.574466

Product structure
 $\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-79.1578680889$


```
C,0,0.0660189543,-0.0153756853,0.7926232635
H,0,0.036753617,0.9027792469,1.3708327455
H,0,0.0025216021,-0.9518796296,1.3377096266
C,0,-0.0361956658,0.0130466116,-0.6930796667
H,0,-1.0859917538,0.0386250973,-1.0375791443
H,0,0.4503070802,0.8995766764,-1.1182664823
H,0,0.4174697238,-0.8751269489,-1.1499583265
```


Hydrogen Transfer CHO

Transition structure

```
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-193.654991301\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.085329 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.091699 \\
Thermal correction to Enthalpy= \(=\) & 0.092643 \\
Thermal correction to Gibbs Free Energy= & 0.054321 \\
& \\
Sum of electronic and zero-point Energies \(=\) & -193.569663 \\
Sum of electronic and thermal Energies= & -193.563292 \\
Sum of electronic and thermal Enthalpies \(=\) & -193.562348 \\
Sum of electronic and thermal Free Energies= & -193.600670
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 57.542 & 19.946 & 80.655
\end{tabular}
C,0,2.1334763617,0.1928548208,1.0097271611
C, \(0,-0.5709835794,0.2282428579,0.7059312453\)
H,0,2.4773893222,1.1221218199,0.5588368163
H,0,-0.8546255579,1.1417203637,1.2346931372
Н,0,-0.8652621707,-0.6852427678,1.2256871541
H,0,2.4245971299,-0.7114474528,0.4788154784
Н,0,2.232854818,0.1435789256,2.0924294602
C,0,-0.9095370278,0.2192869789,-0.7348582648
H,0,0.7040172317,0.2304527618,0.7974320727
O,0,-1.1414141918,-0.7875559359,-1.3804839407
H,0,-0.9053917653,1.2169558918,-1.2288234425
```


TOTAL	61.753	23.073	85.707

$$
\begin{aligned}
& \mathrm{C}, 0,2.2808935492,-0.0486731078,1.2650812469 \\
& \mathrm{C}, 0,-0.4106221981,0.0432552997,0.9991113327 \\
& \mathrm{H}, 0,2.6228068907,0.867166848,0.78558894488 \\
& \mathrm{H}, 0,-0.6940888047,0.9451197367,1.5386048524 \\
& \mathrm{H}, 0,-0.7281284221,-0.8806695949,1.4823256257 \\
& \mathrm{H}, 0,2.5607486352,-0.9644268806,0.7468194574 \\
& \mathrm{H}, 0,2.4245188115,-0.0761886499,2.3441378671 \\
& \mathrm{C}, 0,-0.7236515781,0.1245164134,-0.4461662673 \\
& \mathrm{H}, 0,0.88372931,0.0018939869,1.104199947 \\
& \mathrm{O}, 0,-0.7036934422,-1.1023884369,-1.0404158964 \\
& \mathrm{O}, 0,-0.9294090462,1.1437493704,-1.0752344026 \\
& \mathrm{H}, 0,-0.8844851519,-0.938374546,-1.9846326802
\end{aligned}
$$

Product structure
 $\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-228.416663658$

Zero-point correction=	0.048369 (Hartree/Particle)
Thermal correction to Energy $=$	0.052589
Thermal correction to Enthalpy $=$	0.053533
Thermal correction to Gibbs Free Energy $=$	0.021541
Sum of electronic and zero-point Energies $=$	-228.368294
Sum of electronic and thermal Energies=	-228.364075
Sum of electronic and thermal Enthalpies $=$	-228.363131
Sum of electronic and thermal Free Energies $=$	-228.395122

	E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	33.000	14.157	67.331

C,0,0.0847560212,0.0136725708,1.4039069963
H,0,0.1580829556,0.9319749259,1.9718589017
H,0,0.0742897795,-0.9447033911,1.9088043132
C,0,0.0020785837,0.1038226043,-0.0369263681
O,0,-0.0843492981,-1.1173302993,-0.6377312039
O,0,0.0069865869,1.1480620499,-0.6732610669
H,0,-0.1344786751,-0.9380965902,-1.5946088176

Hydrogen Transfer NH2

Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-135.679752216$

Zero-point correction $=$	0.093544
(Hartree/Particle)	
Thermal correction to Energy $=$	0.099481
Thermal correction to Enthalpy= $=$	0.100425
Thermal correction to Gibbs Free Energy=	0.064339
Sum of electronic and zero-point Energies $=$	-135.586209
Sum of electronic and thermal Energies=	-135.580271
Sum of electronic and thermal Enthalpies=	-135.579327
Sum of electronic and thermal Free Energies=	-135.615413

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	62.425	18.685	75.949

C,0,1.9153342326,-0.0459979852,0.5971868104
C,0,-0.8325619921,0.0086178921,0.3644606346
H,0,2.2490228635,0.8701280417,0.1096316723
H,0,-1.1423239976,0.9020988993,0.9157597074
Н, $0,-1.1753702383,-0.8923502219,0.8830465639$
H,0,2.2155033886,-0.9559141306,0.0772886178
H,0,2.1089051682,-0.068538123,1.6693188362
N,0,-1.3132418274,0.0420560228,-0.9864403676
H,0,0.439801027,-0.0167531683,0.4758980864
$\mathrm{H}, 0,-1.0148397968,-0.7753201128,-1.5128312096$
Н,0,-0.9846390661,0.8665372144,-1.4829143713

Product structure

$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-95.1956111322$

Zero-point correction $=\quad 0.050512$ (Hartree/Particle)
Thermal correction to Energy= 0.053878
Thermal correction to Enthalpy= 0.054822
Thermal correction to Gibbs Free Energy= 0.027361
Sum of electronic and zero-point Energies= -95.145099
Sum of electronic and thermal Energies $=\quad-95.141733$

Sum of electronic and thermal Enthalpies $=$	-95.140789
Sum of electronic and thermal Free Energies $=$	-95.168250

	E (Thermal)	CV
KCAL/MOL	CAL/MOL-KELVIN	S
CAL/MOL-KELVIN		
TOTAL	33.809	9.685

Hydrogen Transfer OH
Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-155.538214245$

C,0,1.8720018157,-0.0329410566,0.5827556791
C,0,-0.8497092488,0.0040626502,0.3388352975
H,0,2.1794159167,0.8205569017,-0.0208149973
H,0,-1.1815123891,0.9002053956,0.8676490771
H,0,-1.2183941316,-0.9101878996,0.8260428842
H,0,2.1809824572,-0.9948753579,0.1728808504
H,0,2.0867992046,0.0786603508,1.6454936609
O,0,-1.2039748686,0.1261000382,-1.006400834
H,0,0.4373877982,-0.0238367452,0.483775006

```
Product structure
E}(\textrm{UB}+HF-LYP)=-115.052032509
```

Zero-point correction $=0.037513$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.040788$
Thermal correction to Enthalpy $=\quad 0.041732$
Thermal correction to Gibbs Free Energy= 0.014552
Sum of electronic and zero-point Energies= $\quad-115.014520$
Sum of electronic and thermal Energies $=\quad-115.011244$
Sum of electronic and thermal Enthalpies= $\quad-115.010300$
Sum of electronic and thermal Free Energies $=\quad-115.037481$

	E (Thermal)	CV	
	SV		
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	25.595	8.882	57.206

C,0,0.1337811195,0.0161968209,0.6776672252
Н,0,-0.0106970243,0.9713401067,1.1689759573
H,0,-0.1201347704,-0.903988955,1.2013471778
O,0,-0.0836864587,0.0806492482,-0.6736486303
H,0,-0.0023632523,-0.8097260625,-1.0471374436

Hydrogen Transfer phenyl

Transition structure

HtPh.log
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-311.391722803$

Zero-point correction $=$	0.157473 (Hartree/Particle)
Thermal correction to Energy=	0.166261
Thermal correction to Enthalpy=	0.167205
Thermal correction to Gibbs Free Energy=	0.121305

Sum of electronic and zero-point Energies $=\quad-311.234250$
Sum of electronic and thermal Energies $=\quad-311.225462$
Sum of electronic and thermal Enthalpies= -311.224518
Sum of electronic and thermal Free Energies= -311.270418

	E (Thermal)	CV		S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	104.330	32.211	96.605	

C,0,2.6905719998,-0.0910984524,2.3091339844
С,0,-0.0187858628,-0.0343044436,1.932695896
Н,0,3.031459979,0.8274106495,1.8341993287
H,0,-0.3165450295,0.8621356503,2.4830525934
H,0,-0.349769683,-0.9382955252,2.4507759395
H,0,2.9977506421,-1.003451433,1.8005282578
H,0,2.8045381305,-0.1131047172,3.3917808741
С, $0,-0.3442129622,-0.0024227834,0.4897292788$
H,0,1.2421545408,-0.0604424457,2.0913660341
C,0,-0.5006339545,-1.1924177347,-0.244636778
C,0,-0.7620209434,-1.1640282696,-1.6128823411
С,0,-0.8715807635,0.0570338827,-2.2831098897
С, $0,-0.7175404464,1.2484174981,-1.5696132445$
С,0,-0.4561895631,1.2180881931,-0.2014022066
Н,0,-0.419407673,-2.1474728007,0.2700067563
H,0,-0.8844721821,-2.0967165106,-2.1578462941
H,0,-1.0780130583,0.0799708958,-3.3497342473
Н, $0,-0.8051771389,2.2039207762,-2.0807108246$
H,0,-0.3401635522,2.1504381192,0.3470933867

Product structure
 $\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-270.915143405$

Zero-point correction $=\quad 0.114949$ (Hartree/Particle)
Thermal correction to Energy= 0.120619
Thermal correction to Enthalpy= 0.121563
Thermal correction to Gibbs Free Energy= 0.085280
Sum of electronic and zero-point Energies $=\quad-270.800194$
Sum of electronic and thermal Energies= -270.794525
Sum of electronic and thermal Enthalpies $=\quad-270.793580$
Sum of electronic and thermal Free Energies $=\quad-270.829864$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	75.689	22.920	76.364

$\mathrm{C}, 0,0.2895567016,-0.0479380233,2.3840475789$
$\mathrm{H}, 0,0.3750233208,0.8684543759,2.9590673872$
$\mathrm{H}, 0,0.3406753921,-0.9868060124,2.9259340029$
$\mathrm{C}, 0,0.1199147672,-0.0198635413,0.9879269677$
$\mathrm{C}, 0,0.0079389669,-1.2227617655,0.2283121726$
$\mathrm{C}, 0,-0.1591705278,-1.1889170205,-1.1470212729$
$\mathrm{C}, 0,-0.2219299024,0.036720002,-1.8260249813$
$\mathrm{C}, 0,-0.1143114424,1.234177027,-1.1037466439$
$\mathrm{C}, 0,0.0530270884,1.2127014578,0.271807649$
$\mathrm{H}, 0,0.0558555738,-2.1759399293,0.7492495783$
$\mathrm{H}, 0,-0.2421614158,-2.1196084657,-1.7026094946$
$\mathrm{H}, 0,-0.3529413986,0.0583999211,-2.9041502238$
$\mathrm{H}, 0,-0.1624412526,2.1865400531,-1.625704974$
$H, 0,0.1358358717,2.144251241,0.8264049031$

Hydrogen Transfer SH
Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-478.521038103$

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.075508 (Hartree/Particle)

Thermal correction to Gibbs Free Energy= 0.081644 0.082588
0.045134

Sum of electronic and zero-point Energies= -478.445531
Sum of electronic and thermal Energies= -478.439394
Sum of electronic and thermal Enthalpies= -478.438450
Sum of electronic and thermal Free Energies $=\quad-478.475904$

	E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	51.233	19.152	78.829

C,0,2.2239613494,-0.1378964423,0.9785359283
С,0,-0.4767150066,-0.0659084882,0.7411197267
H,0,2.5644862762,0.6936251349,0.3623301831
H,0,-0.772210409,0.8011633113,1.3350113551
H,0,-0.8360361723,-0.9937815505,1.1915144266
H,0,2.5181330662,-1.1170150716,0.6008405855
H,0,2.4056832327,-0.0041925877,2.0446663147
S,0,-1.033070454,0.1853133083,-0.9528165348

Hydrogen Transfer ethylene / methyl
Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-118.402067297$

C,0,0.8494122797,0.2919527368,-0.0531029254
С, $0,-1.7941454343,0.3811797585,-0.5087732821$
H,0,1.4113051623,1.1189619157,-0.4824457999
H,0,-2.1478142064,1.3120879161,-0.0640953543
H,0,-2.1886866892,-0.5051732167,-0.0104047127

C, $0,1.3234892918,-0.7225974725,0.6499546738$
H,0,-1.9170909765,0.3503870823,-1.5919835767
H,0,-0.4917177927,0.3547261636,-0.2953545343
H,0,0.6750068716,-1.5065163373,1.0394016727
H,0,2.3864608074,--0.8276836603,0.8764115078
Product structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-77.9012082789$

Zero-point correction $=\quad 0.036732$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.039827$
Thermal correction to Enthalpy= 0.040771
Thermal correction to Gibbs Free Energy= 0.014245
Sum of electronic and zero-point Energies= -77.864477
Sum of electronic and thermal Energies $=\quad-77.861381$
Sum of electronic and thermal Enthalpies= $\quad-77.860437$
Sum of electronic and thermal Free Energies $=\quad-77.886963$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	24.992	8.279 55.8	
C,0,-0.20	902302,0.51428	169,-0.4662045403	
H,0,0.269	410402,1.400555	856,-0.8654296187	
C,0,0.089	01,-0.45344970	,0.3653101391	
H,0,-0.61	665084,-1.2564	2048,0.5987228166	
H,0,1.059	62494,-0.50910	$796,0.8720732094$	

Carbene rearrangement NH_{2}

Starting structure
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-133.893986316$

Zero-point correction= 0.068058 (Hartree/Particle)
Thermal correction to Energy= 0.072051
Thermal correction to Enthalpy= 0.072995
Thermal correction to Gibbs Free Energy= 0.043147
Sum of electronic and zero-point Energies $=\quad-133.825928$

Transition structure
 $\mathrm{E}($ RB+HF-LYP $)=-133.839596518$

Zero-point correction $=0.063779$ (Hartree/Particle)
Thermal correction to Energy= 0.067665
Thermal correction to Enthalpy= 0.068609
Thermal correction to Gibbs Free Energy= 0.039137
Sum of electronic and zero-point Energies= $\quad-133.775817$
Sum of electronic and thermal Energies $=\quad-133.771932$
Sum of electronic and thermal Enthalpies $=\quad-133.770988$
Sum of electronic and thermal Free Energies= -133.800460

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	42.460	12.253	62.029

C,0,0.4558930656,-0.2897118584,-0.063608664
С, $0,0.4851259425,1.1079380218,-0.0808906985$
Н, $,--0.4050654775,1.7612928696,-0.1168720582$
H,0,1.4370404395, 1.6076795118,-0.2440199556
H,0,0.9614194298,0.3340648772,0.9361725929
N,0,-0.7444065526,-0.8984560451,0.0431632881
H,0,-1.6342998232,-0.418641256,-0.0934077618
Н,0,-0.7943627485,-1.9045606672,0.0829803412

Sum of electronic and thermal Free Energies= -177.719540

Ring Opening Cyclobutene

Starting structure
 $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-155.973264129$

Zero-point correction $=\quad 0.086940$ (Hartree/Particle)
Thermal correction to Energy= 0.090747
Thermal correction to Enthalpy= 0.091691
Thermal correction to Gibbs Free Energy= 0.061984
Sum of electronic and zero-point Energies= $\quad-155.886324$
Sum of electronic and thermal Energies= -155.882517
Sum of electronic and thermal Enthalpies= $\quad-155.881573$
Sum of electronic and thermal Free Energies $=\quad-155.911280$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	56.944	13.118	62.524

C,0,-0.4963173616,0.1304776409,0.9188563975
C,0,0.9449714671,0.1575242429,0.4415400291

```
C,0,0.6348452531,-0.1038831795,-0.8360157581
C,0,-0.8601883363,-0.1765364066,-0.5801407939
Н,0,1.2248580545,-0.2252808688,-1.7410846358
H,0,1.8817716603,0.3307633082,0.9653680569
H,0,-0.753554974,-0.6664463372,1.6275987429
H,0,-0.8928240121,1.0781159392,1.3040583823
H,0,-1.4704008925,0.5909341869,-1.0722833063
H,0,-1.3297159701,-1.1535800146,-0.749096488
```

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-155.916553181$

Zero-point correction $=$	0.084220 (Hartree/Particle)
Thermal correction to Energy=	0.087974
Thermal correction to Enthalpy=	0.088918
Thermal correction to Gibbs Free Energy=	0.059215

Sum of electronic and zero-point Energies= $\quad-155.832334$

Sum of electronic and thermal Energies= $\quad-155.828579$
Sum of electronic and thermal Enthalpies= $\quad-155.827635$
Sum of electronic and thermal Free Energies= $\quad-155.857338$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	55.204	13.257	62.514

C,0,-0.684113, $0.7370775114,-0.012016761$
С, $, 0,0.684113,0.7183733853,-0.16543077$
H,0,-1.343499,1.5775005413,0.2002538616
H,0,1.343499, 1.4831760751,-0.5734093627
C,0,1.063876,-0.6054201694,0.2044798402
C, $0,-1.063876,-0.6368152659,-0.0530273856$
H,0,1.887022,-1.1422739095,-0.2800861471
Н,0,0.860769,-0.9462514395,1.2127907114
H,0,-1.887022,-1.0415175475,0.5463324375
H,0,-0.860769,-1.2099264885,-0.9499110427

Product structure
$\mathrm{E}($ RB+HF-LYP $)=-155.986483953$

Ring Opening Oxetane

Starting structure

$\mathrm{E}($ RB+HF-LYP $)=-191.864472004$

Zero-point correction= 0.062986 (Hartree/Particle)
Thermal correction to Energy= 0.066563
Thermal correction to Enthalpy= 0.067507
Thermal correction to Gibbs Free Energy= 0.037616
Sum of electronic and zero-point Energies= -191.801486
Sum of electronic and thermal Energies= -191.797909
Sum of electronic and thermal Enthalpies= -191.796965
Sum of electronic and thermal Free Energies= $\quad-191.826856$
E (Thermal) CV S
KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN
$\begin{array}{llll}\text { TOTAL } & 41.769 & 11.753 & 62.910\end{array}$

$$
\begin{aligned}
& \mathrm{C}, 0,-0.5234589755,0.1126439807,0.8335744246 \\
& \mathrm{C}, 0,0.9380215762,0.1587468967,0.4497576184 \\
& \mathrm{C}, 0,0.5367602783,-0.1056071832,-0.8003056494 \\
& \mathrm{O}, 0,-0.8335446152,-0.1751398783,-0.5844784251 \\
& \mathrm{H}, 0,0.9457028419,-0.2574348593,-1.7936261849 \\
& \mathrm{H}, 0,1.8703891283,0.3293929763,0.9647030931 \\
& \mathrm{H}, 0,-0.8569959528,-0.7151588744,1.4668220351 \\
& \mathrm{H}, 0,-0.9986763695,1.0496176184,1.1397700951
\end{aligned}
$$

Transition structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-191.823277952$

Zero-point correction $=\quad 0.060525$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.064068$
Thermal correction to Enthalpy= 0.065012
Thermal correction to Gibbs Free Energy= 0.035025
Sum of electronic and zero-point Energies= -191.762753
Sum of electronic and thermal Energies= $\quad-191.759210$
Sum of electronic and thermal Enthalpies= -191.758266
Sum of electronic and thermal Free Energies $=\quad-191.788253$

E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	40.203	11.417
		63.114

Product structure
$\mathrm{E}($ RB+HF-LYP $)=-191.909327451$

Ring Opening Oxetane F1

Starting structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-291.100996089$


```
C,0,-0.2758529318,-0.1587173013,0.5519627718
O,0,-0.6029625447,-0.4036709018,-0.8602839309
C,0,0.7747106427,-0.3856383721,-1.0704610747
C,0,1.1831930291,-0.0887387455,0.1676616908
H,0,1.1819516349,-0.6308109714,-2.04497606
H,0,2.1150965518,0.04395584,0.6933554875
H,0,-0.6034622431,-1.0145252457,1.1490010783
F,0,-0.8846877807,0.9588126783,1.0211011793
Transition structure
E(RB+HF-LYP) = -291.054148995
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.052758 (Hartree/Particle) \\
Thermal correction to Energy= & 0.057034 \\
Thermal correction to Enthalpy= & 0.057979 \\
Thermal correction to Gibbs Free Energy= & 0.025595
\end{tabular}
Sum of electronic and zero-point Energies= -291.001391
Sum of electronic and thermal Energies= -290.997114
Sum of electronic and thermal Enthalpies= -290.996170
Sum of electronic and thermal Free Energies= -291.028554
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 35.790 & 14.061 & 68.158
\end{tabular}
C,0,0.8428078614,-0.2449634251,-0.1750415619
C,0,0.3467843527,1.0948484108,-0.1910687961
C,0,-1.0011702956,0.8005430587,-0.2283517953
O,0,-1.1841233713,-0.4635964627,-0.4072343692
H,0,-1.8609032355,1.4717470148,-0.1172855046
H,0,0.9055338218,1.9822730089,-0.4598549581
H,0,1.5558315542,-0.6617856487,-0.8939953432
F,0,0.8602214798,-0.9984478823,0.9217537421
Product structure
E}(\mathrm{ RB +HF-LYP })=-255.219533173
```

Zero-point correction=
Thermal correction to Energy=
0.078465 (Hartree/Particle) 0.083725

Thermal correction to Enthalpy $=$	0.084670
Thermal correction to Gibbs Free Energy $=$	0.050019
Sum of electronic and zero-point Energies=	-255.141068
Sum of electronic and thermal Energies=	-255.135808
Sum of electronic and thermal Enthalpies=	-255.134863
Sum of electronic and thermal Free Energies=	-255.169514

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	52.539	17.656	72.929

C,0,-0.5986753619,-0.0327694964,1.6947340263
С,0,0.6441815977,-0.0222128873,1.1883832853
C, $0,1.0331999814,0.0053701573,-0.2222074154$
C,0,0.2474511887,0.0252239059,-1.3026367984
H,0,2.0987287785,0.0107204672,-0.4384285027
H,0,1.4818787777,-0.0354019256,1.8844419479
H,0,-0.7560934587,-0.053914962,2.7691234776
H,0,-1.4814663678,-0.0211703245,1.0666156057
H,0,0.5999207736, $0.0454868116,-2.3289644534$
F,0,-1.0999903265,0.022289984,-1.2336029624

Ring Opening Oxetane F2

Starting structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-291.100996089$


```
C,0,-0.2758529318,-0.1587173013,0.5519627718
O,0,-0.6029625447,-0.4036709018,-0.8602839309
C,0,0.7747106427,-0.3856383721,-1.0704610747
C,0,1.1831930291,-0.0887387455,0.1676616908
H,0,1.1819516349,-0.6308109714,-2.04497606
H,0,2.1150965518,0.04395584,0.6933554875
H,0,-0.6034622431,-1.0145252457,1.1490010783
F,0,-0.8846877807,0.9588126783,1.0211011793
Transition structure
E}(\textrm{RB}+HF-LYP)=-291.07259731
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.053633 (Hartree/Particle) \\
Thermal correction to Energy= & 0.057666 \\
Thermal correction to Enthalpy= & 0.058610 \\
Thermal correction to Gibbs Free Energy= & 0.026627
\end{tabular}
Sum of electronic and zero-point Energies= -291.018964
Sum of electronic and thermal Energies= -291.014931
Sum of electronic and thermal Enthalpies= -291.013987
Sum of electronic and thermal Free Energies= -291.045970
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
E (Thermal) \\
KCAL/MOL \\
36.186
\end{tabular} & \begin{tabular}{c} 
CVL/MOL-KELVIN \\
CAL
\end{tabular} \\
TOTAL & SAL/MOL-KELVIN
\end{tabular}
```

Thermal correction to Enthalpy $=$	0.084306
Thermal correction to Gibbs Free Energy $=$	0.049631
Sum of electronic and zero-point Energies=	-255.139670
Sum of electronic and thermal Energies=	-255.134299
Sum of electronic and thermal Enthalpies=	-255.133355
Sum of electronic and thermal Free Energies=	-255.168030

E (Thermal) CV
KCAL/MOL
TOTAL
CAL/MOL-KELVIN CAL/MOL-KELVIN

```
C,0,-0.1778024719,0.4211677206,1.0959821327
С,0,1.258957148,0.4809827845,0.6019134354
С,0,0.9642745088,0.1379663968,-0.6603629778
C, \(0,-0.5247855541,0.1297283712,-0.4020789274\)
Н, \(0,1.5491629347,-0.0219610748,-1.5610225705\)
H,0,2.1841341482,0.7513388463,1.1040377442
H,0,-0.4117742085,-0.4299611083,1.7437815816
H,0,-0.6026769698,1.3347350332,1.530515984
Н,0,-1.0935880816,0.9253613241,-0.8985503016
F,0,-1.194346623,-1.0642871843,-0.6368316017
```


Transition structure

```
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-255.133731373\)
Zero-point correction \(=0.076377\) (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.080852\)
Thermal correction to Enthalpy= 0.081796
Thermal correction to Gibbs Free Energy= 0.049086
Sum of electronic and zero-point Energies= -255.057354
Sum of electronic and thermal Energies \(=-255.052879\)
Sum of electronic and thermal Enthalpies= -255.051935
Sum of electronic and thermal Free Energies \(=\quad-255.084646\)
```


Ring Opening Cyclobutene F out

Starting structure
 $\mathrm{E}($ RB+HF-LYP $)=-255.204418390$

Zero-point correction $=\quad 0.079507$ (Hartree/Particle)
Thermal correction to Energy= 0.083946
Thermal correction to Enthalpy= 0.084890
Thermal correction to Gibbs Free Energy= 0.052264
Sum of electronic and zero-point Energies= -255.124911
Sum of electronic and thermal Energies= -255.120472
Sum of electronic and thermal Enthalpies= -255.119528
Sum of electronic and thermal Free Energies $=\quad-255.152155$

C,0,1.2780861544,-0.3141019917,0.5664374305
С,0,0.924454999,1.0096632941,0.1912885187
C,0,-0.4480724558,1.053346804,0.2884200295
С, $0,-0.8700468793,-0.3074135396,0.1698777807$
$\mathrm{H}, 0,-1.0937063723,1.8969617175,0.5333535208$
$\mathrm{H}, 0,1.6144960792,1.7713327776,-0.1724120258$
$\mathrm{H}, 0,2.1252844949,-0.8465869423,0.1228083282$
$\mathrm{H}, 0,0.9995006709,-0.6693816605,1.5512522638$
$\mathrm{H}, 0,-1.7243106494,-0.6413805053,0.7854561764$
$\mathrm{~N}, 0,-0.7219343608,-1.0223617754,-1.090407835$
$\mathrm{H}, 0,-0.549077979,-2.0102730929,-0.9115107327$
$\mathrm{H}, 0,-1.6251766289,-0.9931072664,-1.5722352422$

Product structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-211.344427059$

Zero-point correction $=$	0.103759 (Hartree/Particle)
Thermal correction to Energy=	0.109337
Thermal correction to Enthalpy=	0.110281
Thermal correction to Gibbs Free Energy=	0.075508

Sum of electronic and zero-point Energies $=\quad-211.240669$
Sum of electronic and thermal Energies= -211.235090
Sum of electronic and thermal Enthalpies= -211.234146
Sum of electronic and thermal Free Energies= $\quad-211.268919$

E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	68.610	20.130

Ring Opening Cyclobutene NH_{2} out

Starting structure	
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-211.317745678$	
Zero-point correction=	0.104320
(Hartree/Particle)	
Thermal correction to Energy=	0.109308
Thermal correction to Enthalpy $=$	0.110252
Thermal correction to Gibbs Free Energy=	0.076792
Sum of electronic and zero-point Energies=	-211.213426
Sum of electronic and thermal Energies=	-211.208438
Sum of electronic and thermal Enthalpies=	-211.207494
Sum of electronic and thermal Free Energies=	-211.240953

	E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	68.592	18.167	70.421

C,0,-0.1763838443,0.4496782216,1.1043676376
C, $0,1.2638947851,0.5397464673,0.6288826589$
C, $0,0.9817456556,0.231866532,-0.644563762$
C, $0,-0.5275587685,0.1311569262,-0.3953513041$
H,0,1.5877687276,0.1149836941,-1.5409160195
H,0,2.1833880931,0.7920136733,1.1513619933
H,0,-0.4021428814,-0.3809281859,1.7837300597
$\mathrm{H}, 0,-0.6222658429,1.3641885737,1.5162700371$
H,0,-1.1005798372,0.9381926382,-0.8689537875
N,0,-1.2577051425,-1.1120156333,-0.614316415
Н,0,-1.3978743761,-1.2611354368,-1.613039465
H,0,-0.6945448532,-1.8978944061,-0.2882492957

Transition structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-211.282760449$

Zero-point correction=
0.101848 (Hartree/Particle)

Thermal correction to Energy=
0.106755

Thermal correction to Enthalpy=
0.107699

Thermal correction to Gibbs Free Energy=
0.074422

Sum of electronic and zero-point Energies $=\quad-211.180913$

Sum of electronic and thermal Energies $=$	-211.176005
Sum of electronic and thermal Enthalpies $=$	-211.175061
Sum of electronic and thermal Free Energies $=$	-211.208338

Product structure
 $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-211.342271322$

Zero-point correction $=0.102799$ (Hartree/Particle)
Thermal correction to Energy=
Thermal correction to Enthalpy= 0.108833
0.109777

Thermal correction to Gibbs Free Energy=
0.073887

Sum of electronic and zero-point Energies= -211.239473
Sum of electronic and thermal Energies $=\quad-211.233439$
Sum of electronic and thermal Enthalpies= -211.232494
Sum of electronic and thermal Free Energies $=\quad-211.268385$
$\begin{array}{lcl}\text { E (Thermal) } & \text { CV } & \text { S } \\ \text { KCAL/MOL } & \text { CAL/MOL-KELVIN } & \text { CAL/MOL-KELVIN }\end{array}$
$\begin{array}{llll}\text { TOTAL } & 68.294 & 20.964 & 75.537\end{array}$
С,0,-0.9485187338,-0.0724190497,2.0162185425
C,0,0.2858468234,-0.116762966,1.4890193519
С, $0,0.6735990749,0.0931003314,0.095320972$
C,0,-0.1412688137,-0.0645959905,-0.9685738599

```
H,0,1.7136109155,0.3676105909,-0.0851780315
H,0,1.1156198766,-0.3237575328,2.1666179694
Н,0,-1.1191836009,-0.2845382667,3.0673109178
H,0,-1.8263174278,0.1753238433,1.423534942
\(\mathrm{N}, 0,0.2198599088,0.0708831805,-2.303521395\)
H,0,-1.165458726,-0.4027836146,-0.8268861479
Н, \(0,-0.5301665605,0.3174147655,-2.9362149062\)
H,0,1.0549260572,0.6186139994,-2.4764450181
```

Ring Opening Cyclobutene CHO in

Starting structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-269.290051383$

Zero-point correction $=$	0.096247
(Hartree/Particle)	
Thermal correction to Energy $=$	0.101939
Thermal correction to Enthalpy $=$	0.102883
Thermal correction to Gibbs Free Energy=	0.066831
Sum of electronic and zero-point Energies $=$	-269.193805
Sum of electronic and thermal Energies=	-269.188112
Sum of electronic and thermal Enthalpies $=$	-269.187168
Sum of electronic and thermal Free Energies=	-269.223221

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	63.968	19.762	75.879

C,0,0.0907326413,0.7088689799,1.2810212264
С, $, 0,1.5552217252,0.6554465766,0.897944535$
C, $0,1.3146129993,0.4167620645,-0.3981248141$
С,0,-0.2045276056,0.3940077539,-0.2417224904
H,0,1.9432386969,0.271393275,-1.2720583792
H,0,2.4636357225,0.7780272748,1.4813522147
H,0,-0.2581048296,-0.0477209516,1.9955879031
H,0,-0.2897639126,1.6868239407,1.5968224427
H,0,-0.7707334407,1.1587478626,-0.783397087
C,0,-0.8360406083,-0.958402896,-0.4678591403
O,0,-1.7826685354,-1.1700675924,-1.1928357379
Н,0,-0.3469188649,-1.7868255355,0.0968229101

Sum of electronic and thermal Free Energies $=\quad-269.242884$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	63.964	21.595	78.328

C,0,-0.2133244954,0.3762388075,2.1219449112
C,0,0.9389082492,0.0267032971,1.5320715965
C,0,1.2957212676,0.2649397925,0.1312932199
C, $0,0.5096242041,0.1465264184,-0.9621592021$
H,0,2.3309055741,0.5690294116,-0.0309296903
H,0,1.7234158228,-0.4203198833,2.1437287399
H,0,-0.3903929055,0.1751516541,3.1746127335
$\mathrm{H}, 0,-0.9978544103,0.9021600961,1.5853696135$
H,0,0.9045347607,0.418352047,-1.9387754381
C,0,-0.8519191427,-0.4108796217,-0.9890345308
O,0,-1.5552775943,-0.3969770108,-1.9856595703
H,0,-1.2024485845,-0.8897294013,-0.0534253648

Ring Opening Cyclobutene CHO out

Starting structure

$\mathrm{E}($ RB+HF-LYP $)=-269.290051383$

C,0,0.0907326413,0.7088689799,1.2810212264
С,0,1.5552217252,0.6554465766,0.897944535
C,0,1.3146129993,0.4167620645,-0.3981248141
С, $0,-0.2045276056,0.3940077539,-0.2417224904$

```
H,0,1.9432386969,0.271393275,-1.2720583792
H,0,2.4636357225,0.7780272748,1.4813522147
H,0,-0.2581048296,-0.0477209516,1.9955879031
H,0,-0.2897639126,1.6868239407,1.5968224427
H,0,-0.7707334407,1.1587478626,-0.783397087
C,0,-0.8360406083,-0.958402896,-0.4678591403
O,0,-1.7826685354,-1.1700675924,-1.1928357379
H,0,-0.3469188649,-1.7868255355,0.0968229101
Transition structure
E(RB+HF-LYP})=-269.241026006
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.093754 (Hartree/Particle) \\
Thermal correction to Energy= & 0.099370 \\
Thermal correction to Enthalpy= & 0.100314 \\
Thermal correction to Gibbs Free Energy= & 0.064535
\end{tabular}
Sum of electronic and zero-point Energies= -269.147272
Sum of electronic and thermal Energies= -269.141656
Sum of electronic and thermal Enthalpies= -269.140712
Sum of electronic and thermal Free Energies= -269.176491
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TA. & 62.356 & 19.793 & 75.304
\end{tabular}
C,0,1.8138335855,-0.0241049745,-0.0409088388
С, \(0,1.4412689884,1.3169834391,-0.3798566148\)
C,0,0.0766676732,1.3332136494,-0.2771223972
C,0,-0.2999323303,-0.0579960466,-0.3376300261
Н, \(0,-0.5975746336,2.1760237819,-0.1366312526\)
H,0,2.1164907793,2.0910084964,-0.7402469862
Н,0,2.6197197576,-0.5609865227,-0.5506589451
H,0,1.6063269225,-0.3953277177,0.9555344139
C,0,-1.377010083,-0.6299480884,0.4921248126
H,0,-0.0745944652,-0.6302453779,-1.2332836344
О,0,-1.7167323367,-1.8003885055,0.4724605893
H,0,-1.8654766695,0.0937475106,1.1859600759
Product structure
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-269.313571604\)
```

Zero-point correction $=$	0.095357
(Hartree/Particle)	
Thermal correction to Energy $=$	0.101879
Thermal correction to Enthalpy= $=$	0.102823
Thermal correction to Gibbs Free Energy=	0.064876
Sum of electronic and zero-point Energies $=$	-269.218214
Sum of electronic and thermal Energies=	-269.211693
Sum of electronic and thermal Enthalpies=	-269.210748
Sum of electronic and thermal Free Energies=	-269.248696

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	63.930	21.773	79.867

C,0,-0.8998947018,-0.0347750315,2.5072945105
C, $0,0.3355833243,-0.1309782304,1.9934367401$
C,0,0.6913197415,0.0152209693,0.5830201968
C,0,-0.1350907927,-0.065996685,-0.4808588197
H,0,1.7482863449,0.1972249493,0.3808880442
H,0,1.1686426046,-0.3118150138,2.671168054
H,0,-1.0777298861,-0.161282458,3.5708393497
H,0,-1.7680644262,0.1859618605,1.8919034603
C,0,0.3720409605,0.123474775,-1.8433685092
Н,0,-1.1963034194,-0.2823265349,-0.382533783
O,0,-0.3156702562,0.0762415962,-2.8476108283
H,0,1.4667796404,0.3206296426,-1.9085232095

Ring Opening Cyclobutene CCH in
Starting structure
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-232.111798845$

Zero-point correction $=\quad 0.096007$ (Hartree/Particle)
Thermal correction to Energy= 0.101729
Thermal correction to Enthalpy= 0.102673
Thermal correction to Gibbs Free Energy= 0.067139
Sum of electronic and zero-point Energies $=\quad-232.015792$
Sum of electronic and thermal Energies $=\quad-232.010070$
Sum of electronic and thermal Enthalpies= -232.009126

Sum of electronic and thermal Free Energies= -232.044660

Transition structure

C,0,1.3336626399,0.0054712782,0.8733700939
C,0,0.8993462876,1.3137823471,0.4995201827
C,0,-0.4672837346,1.2576577111,0.5100865137
C,0,-0.8029145778,-0.1458194572,0.411141346
H,0,-1.1916014639,2.0577225246,0.6559330109
H,0,1.5492731949,2.1379746525,0.2078318267
H,0,2.2158872913,-0.4741529626,0.4411065192
H,0,1.0434415628,-0.3892932498,1.8395939354

```
H,0,-1.6214164345,-0.532707143,1.0333549613
C,0,-0.6263585832,-0.9196635818,-0.7763724262
C,0,-0.5843759341,-1.6115264528,-1.7712199615
H,0,-0.5080407381,-2.1989548898,-2.656974745
```


Product structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-232.133862331$

Zero-point correction $=$	0.095198 (Hartree/Particle)
Thermal correction to Energy $=$	0.101684
Thermal correction to Enthalpy $=$	0.102628
Thermal correction to Gibbs Free Energy $=$	0.064993
Sum of electronic and zero-point Energies $=$	-232.038664
Sum of electronic and thermal Energies=	-232.032179
Sum of electronic and thermal Enthalpies $=$	-232.031234
Sum of electronic and thermal Free Energies=	-232.068869

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	63.808	22.952	79.210

C,0,-0.1446830128,0.1127691488,1.923935983
C,0,1.041896893,0.28121796,1.3165910382
C,0,1.3435325627,0.2329582471,-0.1115956662
C,0,0.5305158541,0.0109815315,-1.1736385477
H,0,2.3901748879,0.402990667,-0.3574738777
H,0,1.9091987355,0.4811054989, 1.945215112
H,0,-0.2210322962,0.1765970137,3.0057823281
H,0,-1.0577103071,-0.0894472766,1.3762079123
H,0,0.9847268824,0.0214183907,-2.1636038385
C, $0,-0.8650744254,-0.2381190117,-1.1584054564$
C,0,-2.0562848537,-0.4572610096,-1.2218538221
H,0,-3.1047760096,-0.6479454901,-1.2563288101

Ring Opening Cyclobutene CCH out
Starting structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-232.111798845$

Zero-point correction $=$	0.096007 (Hartree/Particle)
Thermal correction to Energy $=$	0.101729
Thermal correction to Enthalpy $=$	0.102673
Thermal correction to Gibbs Free Energy=	0.067139
Sum of electronic and zero-point Energies=	-232.015792
Sum of electronic and thermal Energies=	-232.010070
Sum of electronic and thermal Enthalpies=	-232.009126
Sum of electronic and thermal Free Energies=	-232.044660

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	63.836	21.063	74.788

C,0,0.0467408834,0.7671381944,1.2008147071
C,0,1.4785423416,0.8367624537,0.7076800565
С,0,1.1800735511,0.5133655393,-0.5556561126
С,0,-0.3263484339,0.4195412306,-0.3013343547
Н,0,1.7583595835,0.3630211565,-1.4625351176
H,0,2.4077366876,1.0757261193,1.2175308773
Н,0,-0.1768807008,-0.0401397496,1.9058748329
H,0,-0.3927475691,1.7003440473,1.5736729357
Н,0,-0.8976082831,1.2277533268,-0.7782272815
С, $0,-0.9794716145,-0.8596727306,-0.5486339448$
C, $0,-1.5182930753,-1.9212787931,-0.7560255456$
Н,0,-1.9863216327,-2.8618402658,-0.9373850824

Transition structure
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-232.066629347$

Zero-point correction= 0.093404 (Hartree/Particle)
Thermal correction to Energy= 0.099104
Thermal correction to Enthalpy= 0.100048
Thermal correction to Gibbs Free Energy= 0.064495
Sum of electronic and zero-point Energies= -231.973225
Sum of electronic and thermal Energies $=\quad-231.967526$
Sum of electronic and thermal Enthalpies $=\quad-231.966581$
Sum of electronic and thermal Free Energies= -232.002134
E (Thermal) CV S
KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN

TOTAL	62.189	21.148	74.827

C,0,1.8256153689,-0.2023995244,-0.1163938903	
C,0,1.4725469829,1.1381164238,-0.4757198	757198483
C,0,0.108602798,1.1810736315,-0.3760541838	
C,0,-0.2960318889,-0.2061095117,-0.4167358872	
H,0,-0.5574355586,2.0279579585,-0.2260395257	
H,0,2.1558636132, 1.903895032,-0.8399586017	
H,0,2.639049585,-0.7489447205,-0.6044835314	
H,0,1.6069447538,-0.5501071395,0.88638941	
C,0,-1.3492106174,-0.7431309304,0.377586173	
H,0,-0.0814218455,-0.7575844958,-1.3266217892	
C,0,-2.2226766174,-1.2111096951,1.0772726467	
H,0,-2.9960767048,-1.613858997,1.6909839776	
Product structure	
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-232.134646228$	
Zero-point correction= 0.094	0.094704 (Hartree/Particle)
Thermal correction to Energy= 0.	0.101370
Thermal correction to Enthalpy= 0 .	0.102314
Thermal correction to Gibbs Free Energy=	$\mathrm{gy}=0.064638$
Sum of electronic and zero-point Energies=	gies $=\quad-232.039942$
Sum of electronic and thermal Energies=	$s=\quad-232.033276$
Sum of electronic and thermal Enthalpies=	ies= -232.032332
Sum of electronic and thermal Free Energies=	Ergies $=\quad-232.070008$

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TA.	63.611	23.311	79.297

С,0,-1.0984400815,-0.0505667168,2.3963569883
С,0,0.1456201806,-0.2056727519,1.918959382
C,0,0.5731233435,-0.0149463179,0.533427426
C,0,-0.22465175,-0.1046904912,-0.5545369171
H,0,1.6293328126,0.1976369527,0.3779264455
H,0,0.9372555213,-0.4789224038,2.6164042995
H,0,-1.32727793,-0.2317216199,3.4422186818
H,0,-1.9234599573,0.2738960219,1.7671733816
C, $0,0.2196016058,0.1124329286,-1.8842567794$
Н,0,-1.2740086689,-0.3708556933,-0.4310500678
C,0,0.5640057249,0.2902448493,-3.0324983552
Hydride transfer vinyl
Starting structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-200.073572989$

Zero-point correction $=$	0.075264 (Hartree/Particle)
Thermal correction to Energy $=$	0.081222
Thermal correction to Enthalpy=	0.082166
Thermal correction to Gibbs Free Energy=	0.046156
Sum of electronic and zero-point Energies=	-199.998309
Sum of electronic and thermal Energies=	-199.992351
Sum of electronic and thermal Enthalpies=	-199.991407
Sum of electronic and thermal Free Energies=	-200.027417

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	50.967	18.826	75.789

Li,0,-2.7716979081,-0.923215899,-0.3773468898
O,0,-1.4950543002,-0.0041473245,-0.073972061
C,0,-0.3255648243,0.6937079746,0.1455571988
С,0,0.8481337924,-0.2296974767,0.3850609217
H,0,-0.0740897885,1.360735384,-0.7023462274
H,0,-0.4190392429,1.3592231545,1.03005886488
С,0,1.9937675222,-0.2204338134,-0.2979463137
H,0,0.6986880119,-0.9572827512,1.1858847061
H,0,2.8055923131,-0.910939642,-0.0803422124
H,0,2.1663578907,0.4896300405,-1.105468814
Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-314.597858322$
Zero-point correction= 0.103199 (Hartree/Particle)
Thermal correction to Energy= 0.111593
Thermal correction to Enthalpy= 0.112538
Thermal correction to Gibbs Free Energy= 0.069468

Sum of electronic and zero-point Energies $=$	-314.494660
Sum of electronic and thermal Energies=	-314.486265
Sum of electronic and thermal Enthalpies=	-314.485321
Sum of electronic and thermal Free Energies $=$	-314.528391

Product structure

$\mathrm{E}($ RB+HF-LYP $)=-191.911973361$

C, $0,0.2084864657,0.4431322996,-0.5848198941$ C,0,-0.223096475,-0.2967512055,0.6166744303 Н, 0,0.5319512923,-0.2015068533,-1.4338177075 C,0,-0.210632507,-1.6343050435,0.6455170947
H,0,-0.5469694518,0.3016723025,1.4651128988
H,0,-0.5234234972,-2.2006340152,1.5177100322
H,0,0.117638535,-2.2117875462,-0.2170588683
Hydride transfer fluoromethyl
Starting Material
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-261.225123623$

Zero-point correction $=$	0.063589
(Hartree/Particle)	
Thermal correction to Energy $=$	0.069374
Thermal correction to Enthalpy=	0.070318
Thermal correction to Gibbs Free Energy $=$	0.034506
Sum of electronic and zero-point Energies $=$	-261.161535
Sum of electronic and thermal Energies=	-261.155750
Sum of electronic and thermal Enthalpies $=$	-261.154805
Sum of electronic and thermal Free Energies=	-261.190618

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	43.533	17.541	75.374

Li,0,0.7173818404,2.9890563378,-0.438856923
O,0,0.5257904847,1.398408121,-0.5123502883
C, $0,0.3625901845,0.033964459,-0.5753430225$
С,0,-0.4717749984,-0.4573506842,0.6068830166
H,0,-0.1466202932,-0.2867939668,-1.5043755757
H,0,1.3264452957,-0.5099951702,-0.5506593835
H,0,-1.4754460078,-0.0132621287,0.5766713593
H,0,0.0120598129,-0.1740184834,1.5509030616
F,0,-0.6021999248,-1.8477829868,0.5726215166
Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-375.748308447$

Zero-point correction $=$	0.090368 (Hartree/Particle)
Thermal correction to Energy $=$	0.098204
Thermal correction to Enthalpy $=$	0.099149
Thermal correction to Gibbs Free Energy $=$	0.057637
Sum of electronic and zero-point Energies $=$	-375.657941
Sum of electronic and thermal Energies $=$	-375.650104
Sum of electronic and thermal Enthalpies $=$	-375.649160
Sum of electronic and thermal Free Energies $=$	-375.690672

| | E (Thermal)
 KCAL/MOL | | CV | | CAL/MOL-KELVIN | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | CAL/MOL-KELVIN

Product structure

$\mathrm{E}($ RB+HF-LYP $)=-253.049209577$

Zero-point correction $=0.048711$ (Hartree/Particle)
Thermal correction to Energy= 0.053131
Thermal correction to Enthalpy= 0.054076
Thermal correction to Gibbs Free Energy= 0.021639
Sum of electronic and zero-point Energies= -253.000499
Sum of electronic and thermal Energies $=\quad-252.996078$
Sum of electronic and thermal Enthalpies= -252.995134
Sum of electronic and thermal Free Energies $=-253.027570$
E (Thermal)
CV
S

	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	33.340	12.899	68.268

O,0,0.197374724,1.6917594735,-0.6624942139
C, $0,0.2205259379,0.4860662631,-0.5846175768$
С,0,-0.2552406157,-0.2697414517,0.645429058
Н, $, 0,0.5918430861,-0.1639118396,-1.4069606793$
H,0,-1.3102748111,-0.0349596986,0.8370167146
H,0,0.3337188744,0.0395320303,1.5185888905
F,0,-0.1095552083,-1.6302983498,0.4429377664

Hydride transfer hydroxymethyl
Starting Material
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-237.200600893$

Zero-point correction $=0.075278$ (Hartree/Particle)
Thermal correction to Energy= 0.081562
Thermal correction to Enthalpy= 0.082507
Thermal correction to Gibbs Free Energy= 0.045900
Sum of electronic and zero-point Energies= -237.125323
Sum of electronic and thermal Energies $=\quad-237.119038$
Sum of electronic and thermal Enthalpies= -237.118094
Sum of electronic and thermal Free Energies $=-237.154701$

	E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	51.181	19.482	77.046

Li,0,0.6005707824,3.0322022378,-0.4925866411
O,0,0.4712991639, 1.4368431136,-0.5398225157
C, $0,0.3650080387,0.0639748328,-0.5804046869$
С,0,-0.4275720324,-0.4655520236,0.6174368975
H,0,-0.1437028221,-0.2886001343,-1.497759684
H,0,1.3540559895,-0.4324356347,-0.5693006837
H,0,-1.4295443675,-0.0046117549,0.6102382146
H,0,0.0796175463,-0.1483422747,1.5440684927
O,0,-0.5060422861,-1.887723424,0.5247829322
H,0,-1.0088097537,-2.2061112866,1.2886369874
Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-351.726284404$

Zero-point correction=	0.102010 (Hartree/Particle)
Thermal correction to Energy $=$	0.110363
Thermal correction to Enthalpy $=$	0.111307
Thermal correction to Gibbs Free Energy=	0.068951
Sum of electronic and zero-point Energies=	-351.624274
Sum of electronic and thermal Energies=	-351.615922
Sum of electronic and thermal Enthalpies $=$	-351.614977
Sum of electronic and thermal Free Energies $=$	-351.657334

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	69.254	27.937	89.146

C,0,1.8304836562,-0.0582420071,-0.2314008794
O,0,1.9261473463,1.2194754184,-0.1726609571
Li,0,0.580173326,2.3587568209,-0.3690610923
O,0,-0.8139183808,1.2793690243,-0.5163135091
C,0,-0.7643642441,-0.0105139953,-0.4959829659
С,0,-1.3380256544,-0.7225893287,0.7260075391
Н,0,2.1928205508,-0.5793237581,-1.1373770135
H,0,1.9844528581,-0.6492241415,0.6905031818
H,0,-0.9802300689,-0.5540619929,-1.4366714436
H,0,0.5115805342,-0.3744290973,-0.3914428826
H,0,-2.4309929916,-0.5747501705,0.719896463
Н,0,-0.9381718728,-0.2413850632,1.6321961096
O,0,-0.9931377904,-2.0986864541,0.644530853
H,0,-1.4012709346,-2.5562881605,1.393885605

Product structure

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-229.029276725$

Zero-point correction $=$	0.060492 (Hartree/Particle)
Thermal correction to Energy=	0.065438
Thermal correction to Enthalpy=	0.066382
Thermal correction to Gibbs Free Energy=	0.032974

Sum of electronic and zero-point Energies $=\quad-228.968785$

Sum of electronic and thermal Energies $=$	-228.963839
Sum of electronic and thermal Enthalpies $=$	-228.962895
Sum of electronic and thermal Free Energies $=$	-228.996303

Li,0,0.8646589695,2.6723733618,-0.4701098013
O,0,0.5682196077,1.1018262617,-0.6100904193
C, $0,0.3160598388,-0.244219665,-0.729294866$
C,0,-0.4119812116,-0.8083044238,0.43228664
H,0,-0.2825212084,-0.4734839543,-1.6335597884
Н,0,1.2498101837,-0.8305434408,-0.8453616077
C,0,-1.0006957945,-1.2592604499,1.3878526187
Н,0,-1.5273197417,-1.6569955521,2.2249077981Transition structure
HydCCH.log
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-313.340920211$

Zero-point correction $=$	0.077796 (Hartree/Particle)
Thermal correction to Energy $=$	0.085651
Thermal correction to Enthalpy=	0.086595
Thermal correction to Gibbs Free Energy $=$	0.045486
Sum of electronic and zero-point Energies $=$	-313.263124
Sum of electronic and thermal Energies=	-313.255270
Sum of electronic and thermal Enthalpies $=$	-313.254325
Sum of electronic and thermal Free Energies=	-313.295434

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	53.747	26.710	86.520

C,0,1.8467367985,-0.275980478,-0.2792113249
O,0,1.9133230452,0.9984029403,-0.2533492156
Li,0,0.5481211845,2.1420632814,-0.3017477426
O,0,-0.8015765451,1.0463612716,-0.6138784064
C, $0,-0.7693034815,-0.2480983156,-0.5737035728$
C,0,-1.318910356,-0.9324671083,0.6011761439
H,0,2.2458043591,-0.8145586625,-1.1588183404
H,0,1.9468640697,-0.8412335167,0.6658838843
Н,0,-0.9956370338,-0.7896863369,-1.511625925
H,0,0.507913573,-0.6112194019,-0.484638368
C,0,-1.7695049939,-1.4989247963,1.5701441567
Н, $0,-2.1773883249,-1.9947814325,2.4218305357$

Product structure

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-190.645525699$
Zero-point correction $=\quad 0.037218$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.041498$
Thermal correction to Enthalpy= 0.042442
Thermal correction to Gibbs Free Energy= 0.011294

Sum of	ronic and zero	Energies=	-190.608308
Sum of el	tronic and therm	Energies=	-190.604028
Sum of el	ctronic and therm	Enthalpies=	-190.603084
Sum of e	tronic and therm	Free Energie	-190.634232
	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-K	VIN CAL/MO
TOTAL	26.040	13.127	65.557

O,0,1.617793823,-0.4040720503,0.
C,0,0.7254509956,0.4203125412,0.
C,0,-0.6840199097,0.085819343,0.
Н,0,0.9403267097,1.5070452759,0.
C,0,-1.8697707819,-0.154676674,0.
H,0,-2.9126391177,-0.3832001353,0.

Hydride transfer CHO
Starting structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-235.999860619$

Zero-point correction $=\quad 0.050509$ (Hartree/Particle)
Thermal correction to Energy= 0.056415
Thermal correction to Enthalpy= 0.057360
Thermal correction to Gibbs Free Energy= 0.020652
Sum of electronic and zero-point Energies= -235.949351
Sum of electronic and thermal Energies $=\quad-235.943445$
Sum of electronic and thermal Enthalpies $=\quad-235.942501$
Sum of electronic and thermal Free Energies= -235.979209

	E(Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN

Li,0,0.780009203,2.8826809454,-0.3614948178
O,0,0.5558874791,1.2949095074,-0.4745020444
C, $0,0.3653861294,-0.0546728643,-0.570556587$
С,0,-0.461532332,-0.6172962213,0.586918463
H,0,-0.1564183275,-0.3619003852,-1.4998334404
Н,0,1.3140225318,-0.6316919868,-0.5713311861
O,0,-0.8331422102,-1.7660310814,0.6855139086

Sum of electronic and zero-point Energies $=$	-227.781458
Sum of electronic and thermal Energies=	-227.777259
Sum of electronic and thermal Enthalpies $=$	-227.776315
Sum of electronic and thermal Free Energies $=$	-227.807733

	E (Thermal)	CV	S
KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	25.960	12.125	66.125

O,0,0.2784019322,1.5999624886,-0.6101721598
C,0,0.2143606913,0.3922258125,-0.6174880955
С,0,-0.2145937643,-0.3920459447,0.6183244463
H,0,0.4561540455,-0.2327419596,-1.501264359
O,0,-0.2781796422,-1.5999238437,0.6093193142
H,0,-0.4565339272,0.2313535934,1.5030690194

Hydride transfer ethyl

Starting structure

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-201.311181415$

Zero-point correction $=\quad 0.099115$ (Hartree/Particle)
Thermal correction to Energy= 0.105571
Thermal correction to Enthalpy= 0.106515
Thermal correction to Gibbs Free Energy= 0.069599
Sum of electronic and zero-point Energies= -201.212067
Sum of electronic and thermal Energies= -201.205610
Sum of electronic and thermal Enthalpies $=\quad-201.204666$
Sum of electronic and thermal Free Energies= -201.241583

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	66.247	20.648	77.698

Li,0,0.4351862763,3.1196925426,-0.5237845105
O,0,0.3998221313,1.5198272983,-0.5459046804
C,0,0.3693983831,0.143084802,-0.5649476152
C,0,-0.407224349,-0.4499470902,0.6219032471
H,0,-0.0900286094,-0.2387033048,-1.5006719045
Н,0,1.3937296392,-0.2841992924,-0.5426447789
Н,0,-1.4235302598,-0.0327559185,0.6085420746

```
H,0,0.0633262447,-0.0958359232,1.5507316632
C,0,-0.4645271332,-1.9805681543,0.6109626587
Н,0,-1.0257686936,-2.3717315827,1.4677376563
H,0,-0.9497185834,-2.3531117471,-0.3004224229
H,0,0.5419729777,-2.4167755913,0.647808944
```

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-315.836891393$
Zero-point correction $=0.126140$ (Hartree/Particle)
Thermal correction to Energy= 0.134688
Thermal correction to Enthalpy= 0.135632
Thermal correction to Gibbs Free Energy= 0.092847
Sum of electronic and zero-point Energies $=-315.710751$
Sum of electronic and thermal Energies $=\quad-315.702203$
Sum of electronic and thermal Enthalpies $=\quad-315.701259$
Sum of electronic and thermal Free Energies= -315.744045

	E(Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	84.518	29.038	90.051

C,0,1.9223207485,0.041393794,-0.248810848
O,0,1.94666875,1.3052296297,-0.1990373419
Li,0,0.5416295315,2.4147109225,-0.3591595098
O,0,-0.7927887647,1.3006896549,-0.4936711407
C,0,-0.7302605782,-0.0042779925,-0.4705845574
С,0,-1.3585053105,-0.7216002258,0.7314913268
Н,0,2.2297131658,-0.4785908101,-1.1732816017
H,0,2.0781141041,-0.546464605,0.6733606674
$\mathrm{H}, 0,-0.9777628495,-0.5168017378,-1.4259412413$
H,0,0.4870970865,-0.3441944158,-0.3847878568
H,0,-2.4307249872,-0.4803969573,0.7235271864
Н,0,-0.9484295258,-0.2775617724,1.6480216904
С,0,-1.1608549868,-2.2391276089,0.7216410664
Н,0,-1.6589396208,-2.710475752,1.5758469558
H,0,-1.5731857212,-2.6877355685,-0.1906499806
Н,0,-0.0980093661,-2.5075932255,0.7706286441

Sum of electronic and thermal Free Energies= -195.218780

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TA.	75.364	20.751	75.436

$\mathrm{C}, 0,1.7215745505,-0.7184054766,0.2150221785$
$\mathrm{C}, 0,1.2849791163,0.4715798196,-0.2220701224$
$\mathrm{C}, 0,-0.0276958641,1.0836243571,0.0179779103$
$\mathrm{C}, 0,-1.2306122912,0.485499835,0.0881513581$
$\mathrm{C}, 0,-1.5469604282,-0.9703024334,-0.0978189151$
$\mathrm{H}, 0,-0.7389268246,-1.501641085,-0.6092377511$
$\mathrm{H}, 0,2.7211370929,-1.0715429789,-0.0235636954$
$\mathrm{H}, 0,1.1164229708,-1.3635481141,0.8448315327$
$\mathrm{H}, 0,1.9800439725,1.0891352481,-0.7939937637$
$\mathrm{H}, 0,-0.0104768943,2.1701260176,0.1119198792$
$\mathrm{H}, 0,-2.0897668808,1.1297156426,0.2760489392$
$\mathrm{H}, 0,-2.4693492318,-1.0918336783,-0.6792478407$
$\mathrm{H}, 0,-1.716794704,-1.4723876626,0.8656682433$

Transition structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-195.248154656$

Zero-point correction=	0.110650 (Hartree/Particle)
Thermal correction to Energy $=$	0.115272
Thermal correction to Enthalpy= $=$	0.116217
Thermal correction to Gibbs Free Energy=	0.083370
Sum of electronic and zero-point Energies=	-195.137504
Sum of electronic and thermal Energies=	-195.132882
Sum of electronic and thermal Enthalpies=	-195.131938
Sum of electronic and thermal Free Energies=	-195.164785

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	72.335	17.717	69.132

C,0,1.3094993097,-0.9066451629,-0.0233218711
С,0,1.2116227678,0.5080950078,-0.0116824184
C,0,-0.0001330572,1.1843187667,0.1519350468
С, $0,-1.2117427273,0.5078111123,-0.0115899684$
С,0,-1.3092883978,-0.9069519077,-0.023222054

```
H,0,0.0001216371,-1.2018322249,-0.5085693353
H,0,2.1818873826,-1.3291605205,-0.5262895044
H,0,1.0687190157,-1.4589758059,0.8846903842
H,0,2.0459297361,1.0946725711,-0.3966171341
H,0,-0.0002625969,2.2702342252,0.0918861611
H,0,-2.0462166831,1.0941931142,-0.3964607921
H,0,-2.1816156533,-1.3296712028,-0.5261238656
H,0,-1.0683102098,-1.4592270546,0.8847716772
```

H to H transfer F
Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-140.222799622$

Zero-point correction=	0.037186 (Hartree/Particle)
Thermal correction to Energy $=$	0.040694
Thermal correction to Enthalpy $=$	0.041638
Thermal correction to Gibbs Free Energy=	0.013133
Sum of electronic and zero-point Energies=	-140.185613
Sum of electronic and thermal Energies=	-140.182106
Sum of electronic and thermal Enthalpies $=$	-140.181162
Sum of electronic and thermal Free Energies=	-140.209667

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	25.536	9.829	59.994

H,0,2.2568468587,-0.0589800297,0.8001053963
C,0,-0.028894632,-0.0094315884,0.5579855226
Н,0,-0.3482238973,0.9089288311,1.0580383859
Н,0,-0.3845998817,-0.9317919572,1.0250349552
F,0,-0.2958004393,0.0196979835,-0.7724928807
H,0,1.3115486661,-0.0388491653,0.7213440531

H to H transfer Cl
Transition structure
$\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-500.596121394$

Zero-point correction $=$	0.035890 (Hartree/Particle)
Thermal correction to Energy=	0.039474
Thermal correction to Enthalpy=	0.040418
Thermal correction to Gibbs Free Energy=	0.010724

Sum of electronic and zero-point Energies $=$	-500.560231
Sum of electronic and thermal Energies $=$	-500.556648
Sum of electronic and thermal Enthalpies $=$	-500.555704
Sum of electronic and thermal Free Energies $=$	-500.585398


```
H,0,-0.1565031373,1.1748659509,1.5756170982
H,0,-0.140232413,-0.6553946591,1.5394960992
C,0,-0.1508962543,0.2800885288,-0.4161225592
H,0,1.4119014183,0.3033685649,1.160072282
O,0,-0.4256589665,-0.7153378821,-1.0578371851
H,0,-0.083705156,1.2742228242,-0.9090384515
H to H transfer methyl
Transition structure
E(UB+HF-LYP) =-80.3188703623
Zero-point correction= 0.072790 (Hartree/Particle)
Thermal correction to Energy= 0.076976
Thermal correction to Enthalpy= 0.077920
Thermal correction to Gibbs Free Energy= 0.048078
Sum of electronic and zero-point Energies= -80.246081
Sum of electronic and thermal Energies= -80.241894
Sum of electronic and thermal Enthalpies= -80.240950
Sum of electronic and thermal Free Energies= -80.270793
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 48.303 & 13.026 & 62.809
\end{tabular}
H,0,2.2626903445,-0.0608594992,0.9381627611
С,0,-0.0215260504,-0.0119324929,0.6867432166
H,0,-0.2950816434,0.8895781975,1.2390379066
Н, \(0,-0.3301696437,-0.9214494886,1.2064575578\)
С,0,-0.2907315638,0.0199935649,-0.7977218762
Н,0,1.3401395972,-0.0412716604,0.8514344145
H,0,-1.3709007417,0.0446484692,-1.0037804911
H,0,0.1506163858,0.906570005,-1.2667789366
Н,0,0.1162513866,-0.8655824554,-1.2986612548
H to H transfer \(\mathrm{NH}_{2}\)
Transition structure
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-96.3519378151\)
```



```
H,0,2.4289667664,-0.1354415131,1.5436288518
C,0,0.1694073618,0.0303433111,1.3097766366
H,0,-0.0607655251,0.9478989925,1.8468050745
H,0,-0.1657409782,-0.8818046705,1.8022456047
C,0,-0.1314518794,0.1139913864,-0.1416932398
H,0,1.4695957218,-0.0633896766,1.4145377928
O,0,-0.1139418882,-1.1103000619,-0.7319649459
O,0,-0.337277514,1.1377782252,-0.7602060129
H,0,-0.2900336611,-0.9530966235,-1.6783500342
H to H transfer vinyl
Transition structure
E}(\textrm{UB}+HF-LYP)=-118.40133453
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
    0.077958 (Hartree/Particle)
                                0.082636
Thermal correction to Gibbs Free Energy= 0.051632
Sum of electronic and zero-point Energies= -118.323377
Sum of electronic and thermal Energies= -118.318699
Sum of electronic and thermal Enthalpies= -118.317754
Sum of electronic and thermal Free Energies= -118.349702
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 51.855 & 15.725 & 67.240
\end{tabular}
H,0,2.4221288508,0.5484089971, 1.5044123148
C,0,0.1561931642,0.3436572834,1.0747779634
H,0,-0.2380095307,1.210024159,1.6136969291
Н, \(0,-0.0897491298,-0.5894102936,1.5885936387\)
C,0,-0.1254542753,0.3358726207,-0.3714555583
\(\mathrm{H}, 0,1.3842112773,0.4631443622,1.2662765946\)
C,0,-0.4181945946,-0.7591820288,-1.0880231576
Н, \(0,-0.0621439863,1.2970246355,-0.8822911913\)
\(\mathrm{H}, 0,-0.6015341608,-0.7101761211,-2.1576010013\)
H,0,-0.4901690862,-1.7411029911,-0.6248827696
```


Sum of electronic and thermal Free Energies $=\quad-79.043726$

$\mathrm{S}_{\mathrm{N}} 2 \mathrm{~F}$
Transition structure$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-338.766217399$
$\begin{array}{lr}\text { Zero-point correction }= & 0.031856 \text { (Ha } \\ \text { Thermal correction to Energy }= & 0.036122\end{array}$

Thermal correction to Enthalpy= 0.037066

Thermal correction to Gibbs Free Energy= 0.004769
Sum of electronic and zero-point Energies $=\quad-338.734361$
Sum of electronic and thermal Energies $=\quad-338.730095$
Sum of electronic and thermal Enthalpies= -338.729151
Sum of electronic and thermal Free Energies= $\quad-338.761448$

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	22.667	13.110	67.975

C,0,0.,-0.2580633299,-0.0000036696
F,0,0.,-0.3793127739,1.758424892
F,0,0.,-0.3792864602,-1.7584352451
F,0,0.,1.0995524715,0.0000169796
H,0,0.953574741,-0.7600995788,-0.0000188104
H,0,-0.953574741,-0.7600995788,-0.0000188104

$\mathrm{S}_{\mathrm{N}} 2 \mathrm{Cl}$

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-699.128053288$

Zero-point correction $=$	0.029654 (Hartree/Particle)
Thermal correction to Energy $=$	0.034294
Thermal correction to Enthalpy $=$	0.035238
Thermal correction to Gibbs Free Energy $=$	0.001476
Sum of electronic and zero-point Energies $=$	-699.098399
Sum of electronic and thermal Energies $=$	-699.093759
Sum of electronic and thermal Enthalpies $=$	-699.092815

Sum of electronic and thermal Free Energies= -699.126577

\author{
E (Thermal) CV S
 KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN
 $\begin{array}{llll}\text { TOTAL } & 21.520 & 14.493 & 71.058\end{array}$
 ```
C,0,0.,-0.6476547133,-0.0000175139
 F,0,0.,-0.7669713688,1.7421121126
 F,0,0.,-0.7668949068,-1.7421467092
 Cl,0,0.,1.173828013,0.0000265443
 H,0,0.9606934125,-1.1321757308,-0.0000174007
 H,0,-0.9606934125,-1.1321757308,-0.0000174007

``` \\ \section*{\(\mathrm{SN}_{\mathrm{N}} 2 \mathrm{OH}\)}
}

\section*{Transition structure}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-314.747049209\)

Zero-point correction \(=0.043542\) (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.048370\)
Thermal correction to Enthalpy= 0.049314
Thermal correction to Gibbs Free Energy= 0.016039
Sum of electronic and zero-point Energies \(=\quad-314.703507\)
Sum of electronic and thermal Energies \(=\quad-314.698680\)
Sum of electronic and thermal Enthalpies= \(\quad-314.697735\)
Sum of electronic and thermal Free Energies \(=\quad-314.731010\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 30.352 & 15.204 & 70.032
\end{tabular}

C, \(0,-0.0271781278,-0.2403407456,-0.1417203578\)
F, \(0,-0.2441710747,-0.6707522089,1.8216096479\)
F,0,0.109653503,-0.1518204318,-1.7585781304
O,0,0.1660043355,1.1158404822,0.1320898293
H,0,0.7909132826,-0.9121269501,0.0684524839
H,0,-1.0332987042,-0.6243113459,-0.0700352352
H,0,0.2880776495, 1.4549126777,-0.7720973932

\section*{\(\mathrm{S}_{\mathrm{N} 2}\) F2}
```

Transition structure
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-438.017759293$

```
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.024203 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.028896 \\
Thermal correction to Enthalpy= & 0.029840 \\
Thermal correction to Gibbs Free Energy \(=\) & -0.003850 \\
& \\
Sum of electronic and zero-point Energies= & -437.993556 \\
Sum of electronic and thermal Energies= & -437.988864 \\
Sum of electronic and thermal Enthalpies= & -437.987920 \\
Sum of electronic and thermal Free Energies= & -438.021610
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
& 18.132 & 15.175 & 70.907
\end{tabular}

C,0,-0.1938947239,-0.1153921808,0.0000068718
F,0,-0.3101465083,-0.1849071652,1.7131746301
F,0,-0.3101218831,-0.1848925725,-1.713188011
F,0,-0.1422584892,1.2326988798,0.0000057838
F,0,1.0162357291,-0.7118966608,0.000006283
H,0,-1.1200112931,-0.6666692466,-0.00002944047
\(\mathrm{S}_{\mathrm{N} 2} \mathrm{CCH}\)
Transition structure
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-315.675117330\)

Zero-point correction \(=\quad 0.047457\) (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.053209\)
Thermal correction to Enthalpy= 0.054153
Thermal correction to Gibbs Free Energy= 0.018663
Sum of electronic and zero-point Energies \(=\quad-315.627660\)
Sum of electronic and thermal Energies \(=\quad-315.621908\)
Sum of electronic and thermal Enthalpies= -315.620964
Sum of electronic and thermal Free Energies= \(\quad-315.656454\)

\(\mathrm{S}_{\mathrm{N}} 2 \mathrm{Me}\)
Transition structure

\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-278.846168872\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.066905 (Hartree/Particle) \\
Thermal correction to Energy= & 0.072259 \\
Thermal correction to Enthalpy= & 0.073204 \\
Thermal correction to Gibbs Free Energy= & 0.038082
\end{tabular}
Sum of electronic and zero-point Energies= -278.779264
Sum of electronic and thermal Energies \(=\quad-278.773910\)
Sum of electronic and thermal Enthalpies= -278.772965
Sum of electronic and thermal Free Energies= -278.808087
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 45.343 & 16.674 & 73.919
\end{tabular}
C,0,-0.0001344892,0.3332688649,0.
F,0,1.827799309,0.3469884829,0.
F,0,-1.8182433903,0.5346960804,0.
C,0,-0.0191038852,-1.175368995,0.
H,0,0.0190705031,0.8825023239,0.9264025443
H,0,0.0190705031,0.8825023239,-0.9264025443
H,0,0.5195062474,-1.551881853,0.8771613836
H,0,0.5195062474,-1.551881853,-0.8771613836
H,0,-1.0477265239,-1.5438012312,0.

\section*{1,3-H transfer}
Transition structure
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-118.402472002\)
Zero-point correction \(=\quad 0.084530\) (Hartree/Particle)
Thermal correction to Energy= 0.088664
Thermal correction to Enthalpy= 0.089608
Thermal correction to Gibbs Free Energy= 0.058642
Sum of electronic and zero-point Energies= \(\quad-118.317942\)
Sum of electronic and thermal Energies \(=\quad-118.313808\)

Sum of electronic and thermal Enthalpies= \(\quad-118.312864\)
Sum of electronic and thermal Free Energies= \(\quad-118.343830\)
\begin{tabular}{lcr}
\multicolumn{2}{c}{ E(Thermal) } & CV \\
KCAL/MOL & CAL/MOL-KELVIN & SAL/MOL-KELVIN \\
TOTAL & 55.638 & 13.701
\end{tabular}

\section*{1,4-H transfer}

Transition structure
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-157.743533561\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.114499 (Hartree/Particle) \\
Thermal correction to Energy= & 0.119207 \\
Thermal correction to Enthalpy= & 0.120151 \\
Thermal correction to Gibbs Free Energy= & 0.087120
\end{tabular}

Sum of electronic and zero-point Energies= \(\quad-157.629034\)
Sum of electronic and thermal Energies \(=\quad-157.624326\)
Sum of electronic and thermal Enthalpies= -157.623382
Sum of electronic and thermal Free Energies= \(\quad-157.656413\)
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCAL/MOL & CAL/MOL-KELVIN & N CAL/MOL-KELVIN \\
\hline TOTAL & 74.804 & 17.308 69 & 69.520 \\
\hline C, \(0,-0.62\) & 824022,-1.2707 & 5141,0.1871223783 & \\
\hline H,0,-0.64 & 305316,-1.554430 & 4795,1.2424296685 & \\
\hline H,0,0.7020 & 432038,-1.0204 & 789,-0.0666964341 & \\
\hline H,0,-1.00 & 6791343,-2.0623 & 6375,-0.4638644536 & \\
\hline C,0,-1.03 & 704169,0.1664 & 339,-0.1170509 & \\
\hline
\end{tabular}
```

H,0,-1.2864617941,0.2598813594,-1.1818013476
H,0,-1.9156732725,0.4993641428,0.4493686821
C,0,0.2246621284,1.0139241285,0.1945726251
H,0,0.1958306908,2.0002547166,-0.2854945845
H,0,0.2926235212,1.1851702425,1.2766198074
C,0,1.3978666408,0.1524373255,-0.2605163147
H,0,2.3087605587,0.1619858419,0.3387564383
H,0,1.6021310577,0.1584829505,-1.3340845088
Carbene insertion MeCH + HCCH
Transition structure
E(RB+HF-LYP) = -155.790636814

Zero-point correction $=$	0.075519	(Hartree/Particle)
Thermal correction to Energy $=$	0.081343	
Thermal correction to Enthalpy $=$	0.082287	
Thermal correction to Gibbs Free Energy $=$	0.047189	
Sum of electronic and zero-point Energies=	-155.715118	
Sum of electronic and thermal Energies=	-155.709294	
Sum of electronic and thermal Enthalpies=	-155.708349	
Sum of electronic and thermal Free Energies=	-155.743448	

	E (Thermal)	CV	S
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
	51.044	18.559	73.871

C,0,1.0464878972,0.7841499597,0.0301519099
$\mathrm{H}, 0,0.8379994859,1.0583193713,1.0796033107$
С, $0,1.6722968559,-0.5660840374,-0.0306369387$
H,0,-0.22915564,0.9394481901,-0.6315807841
H,0,1.6302816106,-1.0185450502,-1.0265011653
H,0,2.7355547437,-0.3092457912,0.1485916143
H,0,1.3967585336,-1.3054746205,0.7330224131
С,0,-1.1419827927,0.3153156665,-0.2260084488
C,0,-2.134661911,-0.2919337562,0.1112026517
H,0,-3.0242790299,-0.813189095,0.3886095664

```



\section*{Equilibrium Isotope Effects}

H/D, H/T, and D/T EIEs were calculated for all possible exchange reactions for each of the positions marked L in the following section.

\section*{Structures and positions for isotopic substitutions}


+

\(\mathrm{L}_{5}=\mathrm{N}\)
\(\mathrm{L}_{6}=\mathrm{H}\) \(\xrightarrow{H} \underset{L_{7}}{\mathrm{H}} \underset{\sim}{\mathrm{H}} \underset{\sim}{\mathrm{H}} \mathrm{H}\)














\section*{Reduced Isotope Partition Functions}

\section*{As defined by Bigeleisen. All values refer to 298.15 with a scaling of 0.9614.}

CH2NH on C cis to H L1
(S2/S1)F for D: 9.98931380
(S2/S1)F for T: 24.61556800
ethanol on CH3 L2
(S2/S1)F for D: 11.23244600
(S2/S1)F for T: 28.90200100

CH2NH on C trans to H L3
(S2/S1)F for D: 10.86705000
(S2/S1)F for T: 27.70878000

H2CO L4
(S2/S1)F for D: 9.22257340
(S2/S1)F for T: 22.00684600

HCN L5
(S2/S1)F for D: 8.55551670
(S2/S1)F for T: 20.16525800
acetylene L6
(S2/S1)F for D: 8.33861990
(S2/S1)F for T: 19.49756900
ethane L7
(S2/S1)F for D: 11.35717500
(S2/S1)F for T: 29.32040900
ethylene L8
(S2/S1)F for D: 10.48420400
(S2/S1)F for T: 26.39263900
methane L9
(S2/S1)F for D: 10.54520100
(S2/S1)F for T: 26.43556700
methanol on C near OH L10
(S2/S1)F for D: 11.56723400
(S2/S1)F for T: 30.04333400
methanol on C anti OH L11
(S2/S1)F for D: 12.36982500
(S2/S1)F for T: 33.06375600
methylamine on C between NH2 L12
(S2/S1)F for D: 11.10932000
(S2/S1)F for T: 28.37066200
methylamine on C near lp L13
(S2/S1)F for D: 11.89774100
(S2/S1)F for T: 31.29708800
Me2O L14
(S2/S1)F for D: 12.33320000
(S2/S1)F for T: 32.94756600
MeCCH on Me L15
(S2/S1)F for D: 11.12361300
(S2/S1)F for T: 28.49350800
MeCCH on CCH L16
(S2/S1)F for D: 8.09842850
(S2/S1)F for T: 18.75378600
MeCHO on CHO L17
(S2/S1)F for D: 9.72271930
(S2/S1)F for T: 23.70070100
mecho on me in plane L18
(S2/S1)F for D: 11.39375400
(S2/S1)F for T: 29.49934400
meCHO on Me out of plane L19
(S2/S1)F for D: 10.53080400
(S2/S1)F for T: 26.40325200
MeCl L20
(S2/S1)F for D: 11.86430600
(S2/S1)F for T: 31.19814900

MeF L21
(S2/S1)F for D: 12.08409000
(S2/S1)F for T: 31.97354000
allene L22
(S2/S1)F for D: 9.68865810
(S2/S1)F for T: 23.67677600
cyclopropane L23
(S2/S1)F for D: 11.52570800
(S2/S1)F for T: 30.05111400
propane on central L24
(S2/S1)F for D: 12.14925300
(S2/S1)F for T: 32.24141500
propane on methyl anti L25
(S2/S1)F for D: 11.27709100
(S2/S1)F for T: 29.04665700
propane on methyl gauche L26
(S2/S1)F for D: 11.25780600
(S2/S1)F for T: 28.96212700
propene trans L27
(S2/S1)F for D: 10.56399800
(S2/S1)F for T: 26.68980800
propene cis L28
(S2/S1)F for D: 10.43217600
(S2/S1)F for T: 26.20980100
propene gem L29
(S2/S1)F for D: 11.01288700
(S2/S1)F for T: 28.28171300
propene on methyl in plane L30
(S2/S1)F for D: 11.41465800
(S2/S1)F for T: 29.54998800
propene on methyl out of plane L31
(S2/S1)F for D: 10.93246900
(S2/S1)F for T: 27.80095500

FCHO on C L32
(S2/S1)F for D: 11.20391300
(S2/S1)F for T: 29.02885500
HCO 2 H on C L33
(S2/S1)F for D: 11.34046200
(S2/S1)F for T: 29.49542000
HCONH2 on C L34
(S2/S1)F for D: 10.64988500
(S2/S1)F for T: 26.95325100
butadiene on cis L35
(S2/S1)F for D: 10.38139500
(S2/S1)F for T: 26.04233500
butadiene on trans L36
(S2/S1)F for D: 10.53524500
(S2/S1)F for T: 26.60197300
butadiene on C2 L37
(S2/S1)F for D: 11.17548200
(S2/S1)F for T: 28.87202100
CH3CHO on CHO L38
(S2/S1)F for D: 9.72271930
(S2/S1)F for T: 23.70070100
CH3CHO on CH3 L39
(S2/S1)F for D: 11.39375400
(S2/S1)F for T: 29.49934400
Fluoroethylene on trans L40
(S2/S1)F for D: 10.45169300
(S2/S1)F for T: 26.32860800
Fluoroethylene on cis L41
(S2/S1)F for D: 10.15651100
(S2/S1)F for T: 25.29065200
fluoroethylene gem L42
(S2/S1)F for D: 11.69656200
(S2/S1)F for T: 30.84094300
vinyl alcohol gem L43
(S2/S1)F for D: 12.01520100
(S2/S1)F for T: 32.00788800
vinyl alcohol cis L44
(S2/S1)F for D: 9.85391310
(S2/S1)F for T: 24.24066600
vinyl alcohol trans L45
(S2/S1)F for D: 10.27456400
(S2/S1)F for T: 25.72119900
vinyl amine gem L46
(S2/S1)F for D: 11.63387800
(S2/S1)F for T: 30.56820700
vinyl amine cis L47
(S2/S1)F for D: 9.92335080
(S2/S1)F for T: 24.47700100
vinyl amine trans L48
(S2/S1)F for D: 10.26523800
(S2/S1)F for T: 25.68848500
vinyl chloride gem L49
(S2/S1)F for D: 11.29843600
(S2/S1)F for T: 29.37720700
vinyl chloride cis L50
(S2/S1)F for D: 10.45295100
(S2/S1)F for T: 26.31484300
vinyl chloride trans L51
(S2/S1)F for D: 10.37763500
(S2/S1)F for T: 26.05134700
FCCH L52
(S2/S1)F for D: 8.23273590
(S2/S1)F for T: 19.20120400
FCH2OH L53
(S2/S1)F for D: 13.51755000
(S2/S1)F for T: 37.43580100

HOCH2OH L54
(S2/S1)F for D: 13.70721500
(S2/S1)F for T: 38.19580900
benzene L55
(S2/S1)F for D: 11.34713000
(S2/S1)F for T: 29.54327900
toluene para L56
(S2/S1)F for D: 11.30138300
(S2/S1)F for T: 29.38099000
toluene meta L57
(S2/S1)F for D: 11.31808900
(S2/S1)F for T: 29.43823600
toluene ortho L58
(S2/S1)F for D: 11.34918600
(S2/S1)F for T: 29.54848700
toluene methyl a L59
(S2/S1)F for D: 11.51253900
(S2/S1)F for T: 29.91538700
toluene methyl b L60
(S2/S1)F for D: 10.97890900
(S2/S1)F for T: 27.97188300
toluene methyl c L61
(S2/S1)F for D: 11.07628000
(S2/S1)F for T: 28.32313200
cyclopropene olefinic L62
(S2/S1)F for D: 8.99056380
(S2/S1)F for T: 21.47031300
cyclopropene allylic L63
(S2/S1)F for D: 11.40696700
(S2/S1)F for T: 29.56563200
propynal CCH L64
(S2/S1)F for D: 8.33190520
(S2/S1)F for T: 19.47881000
propynal CHO L65
(S2/S1)F for D: 10.10252400
(S2/S1)F for T: 25.05261800
methoxide L66
(S2/S1)F for D: 7.40414850
(S2/S1)F for T: 15.90746400
PhF para L67
(S2/S1)F for D: 11.37286500
(S2/S1)F for T: 29.64645400
PhF meta L68
(S2/S1)F for D: 11.40118900
(S2/S1)F for T: 29.74390800
PhF ortho L69
(S2/S1)F for D: 11.11037000
(S2/S1)F for T: 28.70990500
butenyne CCH L70
(S2/S1)F for D: 8.12032560
(S2/S1)F for T: 18.82399100
butenyne gem L71
(S2/S1)F for D: 11.00331500
(S2/S1)F for T: 28.27461400
butenyne trans L72
(S2/S1)F for D: 10.63499400
(S2/S1)F for T: 26.95270200
butenyne cis L73
(S2/S1)F for D: 10.55525600
(S2/S1)F for T: 26.66136800
pyridine para L74
(S2/S1)F for D: 11.39688500
(S2/S1)F for T: 29.71975200
pyridine meta L75
(S2/S1)F for D: 11.28530200
(S2/S1)F for T: 29.32463200
pyridine ortho L76
(S2/S1)F for D: 11.89014300
(S2/S1)F for T: 31.53703000
isobutene vinylic L77
(S2/S1)F for D: 10.56533200
(S2/S1)F for T: 26.69773000
isobutene Me out of plane L78
(S2/S1)F for D: 10.93920300
(S2/S1)F for T: 27.82332300
isobutene Me in plane L79
(S2/S1)F for D: 11.51776600
(S2/S1)F for T: 29.93644600
enolate trans L80
(S2/S1)F for D: 8.81703140
(S2/S1)F for T: 20.80308500
enolate cis L81
(S2/S1)F for D: 8.68624110
(S2/S1)F for T: 20.35571200
enolate gem L82
(S2/S1)F for D: 8.27919880
(S2/S1)F for T: 18.81913300
allyl alcohol vinylic trans L83
(S2/S1)F for D: 10.60966700
(S2/S1)F for T: 26.85045900
allyl alcohol vinylic cis L84
(S2/S1)F for D: 10.45682200
(S2/S1)F for T: 26.29683400
allyl alcohol vinylic gem L85
(S2/S1)F for D: 10.97664700
(S2/S1)F for T: 28.16502700
allyl alcohol allylic a L86
(S2/S1)F for D: 12.37261100
(S2/S1)F for T: 33.05222900
allyl alcohol allylic b L87
(S2/S1)F for D: 12.04154200
(S2/S1)F for T: 31.80610500
allyl alcoxide vinylic trans L88
(S2/S1)F for D: 9.51438420
(S2/S1)F for T: 23.04544400
allyl alcoxide vinylic cis L89
(S2/S1)F for D: 9.78487150
(S2/S1)F for T: 23.96727300
allyl alcoxide vinylic gem L90
(S2/S1)F for D: 10.21658800
(S2/S1)F for T: 25.43298300
allyl alcoxide allylic a L91
(S2/S1)F for D: 8.70207620
(S2/S1)F for T: 20.01930600
allyl alcoxide allylic b L92
(S2/S1)F for D: 7.99892980
(S2/S1)F for T: 17.76692000
CH2OH cation cis L93
(S2/S1)F for D: 10.91182900
(S2/S1)F for T: 27.87812400
CH 2 OH cation trans L94
(S2/S1)F for D: 11.45934400
(S2/S1)F for T: 29.85934900
CH3CHOH cation on carbonyl L95
(S2/S1)F for D: 11.75066400
(S2/S1)F for T: 30.95630000
CH3CHOH cation in plane L96
(S2/S1)F for D: 11.79572200
(S2/S1)F for T: 30.98856500
CH 3 CHOH cation out of plane L97
(S2/S1)F for D: 9.83754230
(S2/S1)F for T: 24.01934800
allyl cation central L98
(S2/S1)F for D: 12.04119800
(S2/S1)F for T: 32.05848400
allyl cation in L99
(S2/S1)F for D: 10.61918100
(S2/S1)F for T: 26.86754600
allyl cation out L100
(S2/S1)F for D: 10.56078000
(S2/S1)F for T: 26.67770100
HCCCH2plus on CH L101
(S2/S1)F for D: 8.31502530
(S2/S1)F for T: 19.34686900
HCCCH2plus on CH2 L102
(S2/S1)F for D: 9.48370930
(S2/S1)F for T: 22.98520300
isopropyl cation central L103
(S2/S1)F for D: 11.16698000
(S2/S1)F for T: 28.82138700
isopropyl cation me in plane L104
(S2/S1)F for D: 11.89894800
(S2/S1)F for T: 31.36653500
isopropyl cation me out A L105
(S2/S1)F for D: 10.33822500
(S2/S1)F for T: 25.75057500
isopropyl cation me out B L106
(S2/S1)F for D: 8.00188040
(S2/S1)F for T: 18.00015000
methyl radical L107
(S2/S1)F for D: 8.1902535
(S2/S1)F for T: 18.85199
ClCH 2 rad L 108
(S2/S1)F for D: 8.77216
(S2/S1)F for T: 20.797

FCH2 rad L109
(S2/S1)F for D: 9.38221590
(S2/S1)F for T: 22.75027200
Et rad on CH2 L110
(S2/S1)F for D: 8.6766
(S2/S1)F for T: 20.42639
Et rad methyl CH aligned L111
(S2/S1)F for D: 9.99312130
(S2/S1)F for T: 24.48734600
OHCCH2 \(\operatorname{rad} \mathrm{A}\) L112
(S2/S1)F for D: 9.28982
(S2/S1)F for T: 22.40377
OHCCH2 rad B L113
(S2/S1)F for D: 9.40651710
(S2/S1)F for T: 22.77148700
CH2NH2 rad on CH L114
(S2/S1)F for D: 9.50909700
(S2/S1)F for T: 23.12280100
CH2OH rad A L115
(S2/S1)F for D: 9.8096
(S2/S1)F for T: 24.1808
CH2OH rad B L116
(S2/S1)F for D: 9.200649
(S2/S1)F for T: 22.0907
HSCH2 rad A L117
(S2/S1)F for D: 8.83227
(S2/S1)F for T: 20.94207
HSCH2 rad B L118
(S2/S1)F for D: 8.58325390
(S2/S1)F for T: 20.13665100
allyl rad A L119
(S2/S1)F for D: 9.80262310
(S2/S1)F for T: 24.11804800
allyl rad B L120
(S2/S1)F for D: 9.76251
(S2/S1)F for T: 23.9502
propargyl radical L121
(S2/S1)F for D: 8.881399
(S2/S1)F for T: 21.0764
propargyl radical CCH L122
(S2/S1)F for D: 8.09842850
(S2/S1)F for T: 18.75378600
vinyl radical CH L123
(S2/S1)F for D: 8.07593
(S2/S1)F for T: 18.46506
vinyl radical CH2 A L124
(S2/S1)F for D: 9.36263500
(S2/S1)F for T: 22.57454700
vinyl radical CH2 B L125
(S2/S1)F for D: 8.40980060
(S2/S1)F for T: 19.44304700
FCCH3 carbene in plane L126
(S2/S1)F for D: 10.78732700
(S2/S1)F for T: 27.30948600
FCCH3 out of plane L127
(S2/S1)F for D: 9.90894470
(S2/S1)F for T: 24.26

Studies on the Mechanism of the Sharpless Asymmetric Epoxidation-Origin of Ligand Accelerated Catalysis-Appendix Material

\section*{Theoretical Calculations}

\section*{Calculations on crystal structure derivative}

Description: The calculational model is a bridged titanium dimer complex with two methoxide bystander alcohols attached to each titanium, and a diamide ethylene glycol used as the complexing ligand. The model is derived from the published crystal structure by Sharpless and Lippard of a similar titanium dimeric complex. The phenyl amide of the original structure was truncated to the amide in the calculational model, similarly the isopropyl bystander alcohols were changed to methoxides for simplicity.


Table of Crystal Structure Bond Lengths
\begin{tabular}{|l|c|c|}
\hline Distances of x-ray structure & 2.21 & 1.91 \\
\hline Optimization B3LYP/SB lanl2dz & 2.43 & 1.89 \\
\hline Optimization B3PW91/SBlanI2dz & 2.40 & 1.88 \\
\hline Optimization B3PW91/SB 6-31G* Ti & 2.39 & 1.88 \\
\hline Optimization B3PW91/SB & 2.39 & 1.88 \\
\hline Optimization \(\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}\) lanI2dz & 2.29 & 1.87 \\
\hline Optimization \(\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}\) & 2.30 & 1.87 \\
\hline Optimization \(\mathrm{mPW} 1 \mathrm{~K} / 6-31 \mathrm{G}^{* *}\) lanl2dz & 2.29 & 1.87 \\
\hline Optimization \(\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB} 6-31 \mathrm{G}^{*}\) on Ti & 2.31 & 1.87 \\
\hline Optimization \(\mathrm{mPW} 1 \mathrm{~K} / \mathrm{SB}\) diffuse on O & 2.31 & 1.87 \\
\hline
\end{tabular}
*Dative bonding distances could be shorter in crystal structure model because of the steric bulk of the diphenyl amide which was converted to the amide for calculational simplicity.

Optimization B3LYP/SB lanl2dz B3LYP/6-31G* on CHNO and lanl2dz on Ti File name: (cs2B3LYPTibasissettest.log)

SCF Done: \(\mathrm{E}(\) RB+HF-LYP \()=-1710.59461252 \quad\) A.U. after 8 cycles
\begin{tabular}{cccccc}
1 & 1 & 0 & -1.511925 & -3.526653 & -2.778643 \\
2 & 6 & 0 & -1.627601 & -2.440437 & -2.899503 \\
3 & 8 & 0 & -0.758766 & -1.752988 & -2.024521 \\
4 & 22 & 0 & -0.805003 & -1.473816 & -0.232822 \\
5 & 8 & 0 & -0.514853 & -3.147274 & 0.365334 \\
6 & 6 & 0 & -0.816307 & -4.028900 & 1.416332 \\
7 & 8 & 0 & 0.990882 & -0.678066 & -0.125023 \\
8 & 22 & 0 & 0.804763 & 1.473824 & -0.231743 \\
9 & 8 & 0 & 0.757162 & 1.754901 & -2.023130 \\
10 & 6 & 0 & 1.623133 & 2.447949 & -2.896617 \\
11 & 8 & 0 & -0.991014 & 0.678065 & -0.123282 \\
12 & 6 & 0 & -2.292968 & 1.121347 & 0.172962 \\
13 & 6 & 0 & -3.086545 & 1.631969 & -1.044587 \\
14 & 8 & 0 & -4.282501 & 1.875495 & -0.923862 \\
15 & 8 & 0 & -2.666691 & -1.214957 & -0.044401 \\
16 & 6 & 0 & -2.990444 & -0.133475 & 0.771478 \\
17 & 6 & 0 & -2.317066 & -0.396100 & 2.121645 \\
18 & 8 & 0 & -1.254459 & -1.035142 & 2.117404 \\
19 & 6 & 0 & 2.292921 & -1.121720 & 0.170079 \\
20 & 6 & 0 & 3.085804 & -1.630980 & -1.048519 \\
21 & 8 & 0 & 4.282039 & -1.873758 & -0.929065 \\
22 & 6 & 0 & 2.990845 & 0.132315 & 0.769776 \\
23 & 8 & 0 & 2.666521 & 1.214897 & -0.044424 \\
24 & 6 & 0 & 2.318517 & 0.393098 & 2.120790
\end{tabular}
\begin{tabular}{rrrrrr}
25 & 8 & 0 & 1.255736 & 1.031847 & 2.118270 \\
26 & 7 & 0 & 2.867797 & -0.120906 & 3.237883 \\
27 & 8 & 0 & 0.515727 & 3.146772 & 0.368422 \\
28 & 6 & 0 & 0.819830 & 4.026837 & 1.420012 \\
29 & 7 & 0 & -2.865225 & 0.116657 & 3.239840 \\
30 & 7 & 0 & -2.369408 & 1.805632 & -2.178340 \\
31 & 7 & 0 & 2.367732 & -1.804376 & -2.181718 \\
32 & 1 & 0 & -1.367543 & 1.638153 & -2.220011 \\
33 & 1 & 0 & -3.739701 & 0.620354 & 3.214859 \\
34 & 1 & 0 & -2.844383 & 2.191070 & -2.982677 \\
35 & 1 & 0 & -2.265929 & 1.947135 & 0.897424 \\
36 & 1 & 0 & -4.072796 & 0.025655 & 0.844864 \\
37 & 1 & 0 & -2.380204 & 0.025837 & 4.122445 \\
38 & 1 & 0 & 2.266228 & -1.948379 & 0.893576 \\
39 & 1 & 0 & 4.073236 & -0.026985 & 0.842076 \\
40 & 1 & 0 & 1.365821 & -1.637006 & -2.222536 \\
41 & 1 & 0 & 2.842278 & -2.188602 & -2.986887 \\
42 & 1 & 0 & 3.742418 & -0.624282 & 3.211516 \\
43 & 1 & 0 & 2.383585 & -0.031221 & 4.121046 \\
44 & 1 & 0 & 1.378006 & 2.184420 & -3.933090 \\
45 & 1 & 0 & 1.506254 & 3.533391 & -2.770123 \\
46 & 1 & 0 & 2.667409 & 2.175631 & -2.697817 \\
47 & 1 & 0 & 0.066322 & 4.824178 & 1.461105 \\
48 & 1 & 0 & 0.837229 & 3.496626 & 2.379905 \\
49 & 1 & 0 & 1.803339 & 4.487073 & 1.252832 \\
50 & 1 & 0 & -0.060394 & -4.823996 & 1.456960 \\
51 & 1 & 0 & -0.835383 & -3.499407 & 2.376594 \\
52 & 1 & 0 & -1.798376 & -4.492059 & 1.248756 \\
53 & 1 & 0 & -2.671070 & -2.167704 & -2.697044 \\
54 & 1 & 0 & -1.384373 & -2.172223 & -3.935220
\end{tabular}

Optimization B3PW91/SBlanl2dz: B3PW91/6-31G* on CHNO and lanl2dz on Ti File name: (cs2BPlanl631G*.log)

SCF Done: \(\mathrm{E}(\) RB+HF-PW91 \()=-1710.00598760\) A.U. after 10 cycles
\begin{tabular}{lccccc}
1 & 1 & 0 & -1.498744 & -3.374505 & -3.011111 \\
2 & 6 & 0 & -1.646786 & -2.288145 & -2.936793 \\
3 & 8 & 0 & -0.744847 & -1.735921 & -2.012412 \\
4 & 22 & 0 & -0.789661 & -1.473778 & -0.225725 \\
5 & 8 & 0 & -0.472214 & -3.142019 & 0.355267 \\
6 & 6 & 0 & -0.753883 & -4.033315 & 1.392676 \\
7 & 8 & 0 & 0.994244 & -0.664037 & -0.113604
\end{tabular}
\begin{tabular}{lccrcc}
8 & 22 & 0 & 0.788069 & 1.470464 & -0.209870 \\
9 & 8 & 0 & 0.723967 & 1.763847 & -1.992501 \\
10 & 6 & 0 & 1.597545 & 2.397844 & -2.890534 \\
11 & 8 & 0 & -0.995084 & 0.661908 & -0.097764 \\
12 & 6 & 0 & -2.294791 & 1.090538 & 0.195757 \\
13 & 6 & 0 & -3.084027 & 1.613731 & -1.013160 \\
14 & 8 & 0 & -4.279610 & 1.852569 & -0.893070 \\
15 & 8 & 0 & -2.651456 & -1.235377 & -0.065613 \\
16 & 6 & 0 & -2.986882 & -0.176818 & 0.763043 \\
17 & 6 & 0 & -2.310492 & -0.450315 & 2.102339 \\
18 & 8 & 0 & -1.242576 & -1.077539 & 2.078767 \\
19 & 6 & 0 & 2.296186 & -1.097837 & 0.162187 \\
20 & 6 & 0 & 3.076001 & -1.604578 & -1.059911 \\
21 & 8 & 0 & 4.273284 & -1.841092 & -0.952649 \\
22 & 6 & 0 & 2.994128 & 0.160794 & 0.741731 \\
23 & 8 & 0 & 2.650924 & 1.231600 & -0.067879 \\
24 & 6 & 0 & 2.331424 & 0.414193 & 2.091902 \\
25 & 8 & 0 & 1.263665 & 1.041921 & 2.089456 \\
26 & 7 & 0 & 2.884702 & -0.093398 & 3.205193 \\
27 & 8 & 0 & 0.480005 & 3.130823 & 0.398035 \\
28 & 6 & 0 & 0.774080 & 4.005393 & 1.446519 \\
29 & 7 & 0 & -2.851787 & 0.039777 & 3.229128 \\
30 & 7 & 0 & -2.361932 & 1.806793 & -2.135051 \\
31 & 7 & 0 & 2.346105 & -1.784011 & -2.178939 \\
32 & 1 & 0 & -1.358168 & 1.645690 & -2.171039 \\
33 & 1 & 0 & -3.732657 & 0.530818 & 3.217727 \\
34 & 1 & 0 & -2.831211 & 2.202822 & -2.936377 \\
35 & 1 & 0 & -2.279771 & 1.904210 & 0.935020 \\
36 & 1 & 0 & -4.071367 & -0.023078 & 0.835136 \\
37 & 1 & 0 & -2.354926 & -0.048838 & 4.104204 \\
38 & 1 & 0 & 2.286949 & -1.921813 & 0.890021 \\
39 & 1 & 0 & 4.079189 & 0.005794 & 0.800736 \\
40 & 1 & 0 & 1.342860 & -1.619987 & -2.207627 \\
41 & 1 & 0 & 2.811085 & -2.164099 & -2.990397 \\
42 & 1 & 0 & 3.765273 & -0.584295 & 3.176727 \\
43 & 1 & 0 & 2.397444 & -0.018101 & 4.086880 \\
44 & 1 & 0 & 1.420180 & 2.015215 & -3.903832 \\
45 & 1 & 0 & 1.426635 & 3.483544 & -2.888467 \\
46 & 1 & 0 & 2.641745 & 2.200895 & -2.616262 \\
47 & 1 & 0 & 0.090478 & 4.864106 & 1.412148 \\
48 & 1 & 0 & 0.672298 & 3.504641 & 2.417741 \\
49 & 1 & 0 & 1.803532 & 4.378325 & 1.352979 \\
50 & 1 & 0 & -0.058925 & -4.882411 & 1.347335 \\
51 & 1 & 0 & -0.658591 & -3.543921 & 2.370428 \\
& & & & & \\
\hline
\end{tabular}
\begin{tabular}{cccccc}
52 & 1 & 0 & -1.778168 & -4.419207 & 1.294524 \\
53 & 1 & 0 & -2.681824 & -2.087700 & -2.633437 \\
54 & 1 & 0 & -1.475320 & -1.841704 & -3.925090
\end{tabular}

Optimization B3PW91/SB 6-31G* Ti: B3PW91/6-31G* on all atoms File name: (cs2BP631G*allatoms.log)

SCF Done: E(RB+HF-PW91) \(=-1710.00610799\) A.U. after 9 cycles
\begin{tabular}{cccccc}
1 & 1 & 0 & -1.487877 & -3.351021 & -3.039787 \\
2 & 6 & 0 & -1.626866 & -2.264049 & -2.956646 \\
3 & 8 & 0 & -0.727523 & -1.728087 & -2.021423 \\
4 & 22 & 0 & -0.770848 & -1.484851 & -0.232118 \\
5 & 8 & 0 & -0.427163 & -3.152306 & 0.334094 \\
6 & 6 & 0 & -0.658636 & -4.059959 & 1.369788 \\
7 & 8 & 0 & 1.002172 & -0.650642 & -0.125159 \\
8 & 22 & 0 & 0.767669 & 1.481918 & -0.204377 \\
9 & 8 & 0 & 0.694868 & 1.777752 & -1.986693 \\
10 & 6 & 0 & 1.554750 & 2.439028 & -2.878669 \\
11 & 8 & 0 & -1.004304 & 0.648965 & -0.094345 \\
12 & 6 & 0 & -2.308367 & 1.058994 & 0.207072 \\
13 & 6 & 0 & -3.109089 & 1.579664 & -0.995645 \\
14 & 8 & 0 & -4.307903 & 1.798472 & -0.870877 \\
15 & 8 & 0 & -2.635065 & -1.269320 & -0.065209 \\
16 & 6 & 0 & -2.980977 & -0.219203 & 0.770203 \\
17 & 6 & 0 & -2.296950 & -0.493436 & 2.105712 \\
18 & 8 & 0 & -1.220218 & -1.105482 & 2.075131 \\
19 & 6 & 0 & 2.308546 & -1.070370 & 0.152330 \\
20 & 6 & 0 & 3.094980 & -1.564029 & -1.070931 \\
21 & 8 & 0 & 4.294027 & -1.790589 & -0.963058 \\
22 & 6 & 0 & 2.989756 & 0.192371 & 0.739466 \\
23 & 8 & 0 & 2.633491 & 1.264310 & -0.063167 \\
24 & 6 & 0 & 2.325467 & 0.430794 & 2.091934 \\
25 & 8 & 0 & 1.248176 & 1.042280 & 2.094842 \\
26 & 7 & 0 & 2.889992 & -0.070699 & 3.202092 \\
27 & 8 & 0 & 0.443640 & 3.137100 & 0.407527 \\
28 & 6 & 0 & 0.704961 & 4.016362 & 1.460772 \\
29 & 7 & 0 & -2.843078 & -0.021615 & 3.237579 \\
30 & 7 & 0 & -2.392937 & 1.790925 & -2.118158 \\
31 & 7 & 0 & 2.367647 & -1.743516 & -2.191752 \\
32 & 1 & 0 & -1.386451 & 1.648114 & -2.155631 \\
33 & 1 & 0 & -3.729427 & 0.459646 & 3.232413 \\
34 & 1 & 0 & -2.868333 & 2.192446 & -2.913189 \\
35 & 1 & 0 & -2.300799 & 1.869608 & 0.949920 \\
& & & & & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
36 & 1 & 0 & -4.066840 & -0.081175 & 0.847995 \\
37 & 1 & 0 & -2.348058 & -0.120552 & 4.112697 \\
38 & 1 & 0 & 2.307110 & -1.898417 & 0.875652 \\
39 & 1 & 0 & 4.076485 & 0.051666 & 0.798421 \\
40 & 1 & 0 & 1.361739 & -1.595718 & -2.216361 \\
41 & 1 & 0 & 2.833737 & -2.126152 & -3.001449 \\
42 & 1 & 0 & 3.775764 & -0.551975 & 3.169572 \\
43 & 1 & 0 & 2.408820 & 0.003846 & 4.087279 \\
44 & 1 & 0 & 1.316943 & 2.135620 & -3.906250 \\
45 & 1 & 0 & 1.430942 & 3.527958 & -2.795195 \\
46 & 1 & 0 & 2.600458 & 2.182605 & -2.666402 \\
47 & 1 & 0 & -0.102114 & 4.757744 & 1.532393 \\
48 & 1 & 0 & 0.782650 & 3.477080 & 2.413146 \\
49 & 1 & 0 & 1.648340 & 4.550310 & 1.281057 \\
50 & 1 & 0 & 0.165243 & -4.784669 & 1.417354 \\
51 & 1 & 0 & -0.739169 & -3.544604 & 2.335224 \\
52 & 1 & 0 & -1.591382 & -4.611094 & 1.186380 \\
53 & 1 & 0 & -2.662337 & -2.059025 & -2.656953 \\
54 & 1 & 0 & -1.445938 & -1.810022 & -3.939365
\end{tabular}

Optimization B3PW91/SB B3PW91/6-31G* on CHNO SDD on Ti File name: (cs2BPSDD631G*.log)

SCF Done: \(\mathrm{E}(\) RB+HF-PW91 \()=-1710.00610837\) A.U. after 9 cycles
\begin{tabular}{cccccc}
1 & 1 & 0 & -1.485631 & -3.352024 & -3.039005 \\
2 & 6 & 0 & -1.626613 & -2.265499 & -2.953460 \\
3 & 8 & 0 & -0.726456 & -1.729685 & -2.018774 \\
4 & 22 & 0 & -0.772830 & -1.484280 & -0.229532 \\
5 & 8 & 0 & -0.431227 & -3.151544 & 0.338749 \\
6 & 6 & 0 & -0.664191 & -4.057334 & 1.375814 \\
7 & 8 & 0 & 1.000965 & -0.652426 & -0.120857 \\
8 & 22 & 0 & 0.770385 & 1.480739 & -0.201076 \\
9 & 8 & 0 & 0.698116 & 1.777411 & -1.983516 \\
10 & 6 & 0 & 1.560851 & 2.437579 & -2.873704 \\
11 & 8 & 0 & -1.002748 & 0.650103 & -0.092998 \\
12 & 6 & 0 & -2.307301 & 1.062552 & 0.202883 \\
13 & 6 & 0 & -3.103053 & 1.584161 & -1.002723 \\
14 & 8 & 0 & -4.301651 & 1.806041 & -0.881129 \\
15 & 8 & 0 & -2.637277 & -1.265289 & -0.069522 \\
16 & 6 & 0 & -2.984266 & -0.214223 & 0.764193 \\
17 & 6 & 0 & -2.305471 & -0.488901 & 2.102282 \\
18 & 8 & 0 & -1.229445 & -1.102409 & 2.075725 \\
19 & 6 & 0 & 2.307988 & -1.073848 & 0.151302
\end{tabular}
\begin{tabular}{rrrrrr}
20 & 6 & 0 & 3.091113 & -1.565625 & -1.074954 \\
21 & 8 & 0 & 4.290647 & -1.791342 & -0.970439 \\
22 & 6 & 0 & 2.991843 & 0.187328 & 0.738524 \\
23 & 8 & 0 & 2.636020 & 1.260168 & -0.063152 \\
24 & 6 & 0 & 2.329553 & 0.426303 & 2.091900 \\
25 & 8 & 0 & 1.253750 & 1.040429 & 2.096395 \\
26 & 7 & 0 & 2.894024 & -0.077131 & 3.201169 \\
27 & 8 & 0 & 0.446707 & 3.135826 & 0.411457 \\
28 & 6 & 0 & 0.706965 & 4.013639 & 1.466276 \\
29 & 7 & 0 & -2.854881 & -0.015999 & 3.232064 \\
30 & 7 & 0 & -2.384141 & 1.789996 & -2.124481 \\
31 & 7 & 0 & 2.361278 & -1.744086 & -2.194224 \\
32 & 1 & 0 & -1.376980 & 1.650181 & -2.157905 \\
33 & 1 & 0 & -3.741213 & 0.465251 & 3.223869 \\
34 & 1 & 0 & -2.856317 & 2.195015 & -2.919688 \\
35 & 1 & 0 & -2.301355 & 1.873422 & 0.945460 \\
36 & 1 & 0 & -4.070163 & -0.074253 & 0.838137 \\
37 & 1 & 0 & -2.363389 & -0.116016 & 4.109046 \\
38 & 1 & 0 & 2.308098 & -1.903304 & 0.873040 \\
39 & 1 & 0 & 4.078447 & 0.045145 & 0.796021 \\
40 & 1 & 0 & 1.354913 & -1.598100 & -2.216666 \\
41 & 1 & 0 & 2.826035 & -2.126057 & -3.005020 \\
42 & 1 & 0 & 3.779721 & -0.558488 & 3.167908 \\
43 & 1 & 0 & 2.414487 & -0.000804 & 4.087090 \\
44 & 1 & 0 & 1.329149 & 2.129433 & -3.901258 \\
45 & 1 & 0 & 1.433602 & 3.526474 & -2.795119 \\
46 & 1 & 0 & 2.606119 & 2.184787 & -2.655056 \\
47 & 1 & 0 & -0.106659 & 4.746954 & 1.546413 \\
48 & 1 & 0 & 0.796532 & 3.471577 & 2.416009 \\
49 & 1 & 0 & 1.643796 & 4.557375 & 1.281795 \\
50 & 1 & 0 & 0.165261 & -4.774946 & 1.433344 \\
51 & 1 & 0 & -0.757503 & -3.539179 & 2.338581 \\
52 & 1 & 0 & -1.590562 & -4.617004 & 1.186106 \\
53 & 1 & 0 & -2.661865 & -2.062981 & -2.651384 \\
54 & 1 & 0 & -1.448402 & -1.809074 & -3.935550
\end{tabular}

Optimization mPW1K/SB lan12dz: mPW1K/6-31G* on CHNO lan12dz on Ti File name: (cs2MPW1Klanl631G*.log)

SCF Done: \(\mathrm{E}(\) RmPW+HF-PW91 \()=-1709.48273454\) A.U. after 10 cycles
\begin{tabular}{llllll}
1 & 1 & 0 & -0.891656 & -3.009940 & -3.517271 \\
2 & 6 & 0 & -1.362313 & -2.177698 & -3.036901 \\
3 & 8 & 0 & -0.553859 & -1.699069 & -1.996071
\end{tabular}
\begin{tabular}{cccccc}
4 & 22 & 0 & -0.676526 & -1.537252 & -0.190220 \\
5 & 8 & 0 & -0.168800 & -3.194492 & 0.314252 \\
6 & 6 & 0 & -0.287863 & -4.118373 & 1.359368 \\
7 & 8 & 0 & 1.046719 & -0.599615 & -0.042423 \\
8 & 22 & 0 & 0.671796 & 1.532353 & -0.232430 \\
9 & 8 & 0 & 0.550991 & 1.643634 & -2.042224 \\
10 & 6 & 0 & 1.359285 & 2.092309 & -3.093580 \\
11 & 8 & 0 & -1.051613 & 0.599188 & -0.060259 \\
12 & 6 & 0 & -2.387477 & 0.881372 & 0.258142 \\
13 & 6 & 0 & -3.206211 & 1.434048 & -0.887116 \\
14 & 8 & 0 & -4.419220 & 1.511015 & -0.789808 \\
15 & 8 & 0 & -2.586950 & -1.434552 & -0.115631 \\
16 & 6 & 0 & -2.972918 & -0.443451 & 0.802408 \\
17 & 6 & 0 & -2.239996 & -0.767354 & 2.097438 \\
18 & 8 & 0 & -1.128457 & -1.328089 & 1.961835 \\
19 & 6 & 0 & 2.382248 & -0.872772 & 0.285115 \\
20 & 6 & 0 & 3.202156 & -1.457227 & -0.843406 \\
21 & 8 & 0 & 4.415061 & -1.531427 & -0.742734 \\
22 & 6 & 0 & 2.967148 & 0.466755 & 0.792744 \\
23 & 8 & 0 & 2.582141 & 1.431804 & -0.153034 \\
24 & 6 & 0 & 2.232898 & 0.826714 & 2.077462 \\
25 & 8 & 0 & 1.121509 & 1.383425 & 1.925094 \\
26 & 7 & 0 & 2.755595 & 0.529604 & 3.225996 \\
27 & 8 & 0 & 0.163575 & 3.203038 & 0.225006 \\
28 & 6 & 0 & 0.281576 & 4.155768 & 1.244015 \\
29 & 7 & 0 & -2.763870 & -0.438266 & 3.236681 \\
30 & 7 & 0 & -2.516564 & 1.825643 & -1.959339 \\
31 & 7 & 0 & 2.513606 & -1.878647 & -1.904973 \\
32 & 1 & 0 & -1.553755 & 1.758700 & -2.106922 \\
33 & 1 & 0 & -3.652161 & 0.161003 & 3.109837 \\
34 & 1 & 0 & -2.971884 & 2.324916 & -2.788983 \\
35 & 1 & 0 & -2.420754 & 1.584337 & 0.897363 \\
36 & 1 & 0 & -3.911147 & -0.388087 & 0.935165 \\
37 & 1 & 0 & -2.320571 & -0.673088 & 4.181798 \\
38 & 1 & 0 & 2.414858 & -1.557595 & 0.943767 \\
39 & 1 & 0 & 3.905241 & 0.415136 & 0.927962 \\
40 & 1 & 0 & 1.550952 & -1.815868 & -2.055361 \\
41 & 1 & 0 & 2.969772 & -2.400906 & -2.719872 \\
42 & 1 & 0 & 3.644006 & -0.072965 & 3.116863 \\
43 & 1 & 0 & 2.311327 & 0.790741 & 4.163723 \\
44 & 1 & 0 & 0.837569 & 1.949942 & -4.038814 \\
45 & 1 & 0 & 1.579575 & 3.149917 & -2.956251 \\
46 & 1 & 0 & 2.289447 & 1.526075 & -3.103483 \\
47 & 1 & 0 & -0.271514 & 5.052460 & 0.968413 \\
& & & & &
\end{tabular}
\begin{tabular}{rrrrrr}
48 & 1 & 0 & -0.123640 & 3.749445 & 2.169554 \\
49 & 1 & 0 & 1.331669 & 4.406488 & 1.386720 \\
50 & 1 & 0 & 0.265497 & -5.022410 & 1.109504 \\
51 & 1 & 0 & 0.116406 & -3.686336 & 2.273606 \\
52 & 1 & 0 & -1.338105 & -4.365024 & 1.507946 \\
53 & 1 & 0 & -2.318810 & -1.975111 & -3.516475 \\
54 & 1 & 0 & -0.839622 & -2.061795 & -3.985206
\end{tabular}

Optimization mPW1K/SB: mPW1K/6-31G* on CHNO SDD on Ti File name: (cs2MPW1kSDD631G*.log)

SCF Done: E(RmPW+HF-PW91) = -1709.99272373 A.U. after 10 cycles
\begin{tabular}{cccccc}
1 & 1 & 0 & 1.354768 & 2.929167 & -3.452750 \\
2 & 6 & 0 & 1.463929 & 1.933671 & -3.020571 \\
3 & 8 & 0 & 0.551183 & 1.767802 & -1.981898 \\
4 & 22 & 0 & 0.617362 & 1.541612 & -0.208980 \\
5 & 8 & 0 & 0.043242 & 3.124682 & 0.361230 \\
6 & 6 & 0 & 0.049235 & 4.023432 & 1.414493 \\
7 & 8 & 0 & -1.054878 & 0.533398 & -0.092668 \\
8 & 22 & 0 & -0.617262 & -1.541158 & -0.182612 \\
9 & 8 & 0 & -0.548738 & -1.797130 & -1.951841 \\
10 & 6 & 0 & -1.459971 & -2.019805 & -2.981222 \\
11 & 8 & 0 & 1.055025 & -0.532368 & -0.083165 \\
12 & 6 & 0 & 2.383448 & -0.818134 & 0.197067 \\
13 & 6 & 0 & 3.200786 & -1.262193 & -1.008113 \\
14 & 8 & 0 & 4.406711 & -1.358635 & -0.903779 \\
15 & 8 & 0 & 2.487713 & 1.505623 & -0.094570 \\
16 & 6 & 0 & 2.938843 & 0.510102 & 0.738356 \\
17 & 6 & 0 & 2.239392 & 0.724614 & 2.064118 \\
18 & 8 & 0 & 1.117806 & 1.227261 & 2.021994 \\
19 & 6 & 0 & -2.383762 & 0.823756 & 0.180727 \\
20 & 6 & 0 & -3.200395 & 1.242203 & -1.034079 \\
21 & 8 & 0 & -4.406577 & 1.339139 & -0.933139 \\
22 & 6 & 0 & -2.938240 & -0.493759 & 0.748133 \\
23 & 8 & 0 & -2.487029 & -1.504921 & -0.065775 \\
24 & 6 & 0 & -2.238020 & -0.682429 & 2.077510 \\
25 & 8 & 0 & -1.116751 & -1.186282 & 2.045125 \\
26 & 7 & 0 & -2.812381 & -0.254138 & 3.198143 \\
27 & 8 & 0 & -0.047055 & -3.115680 & 0.415106 \\
28 & 6 & 0 & -0.058168 & -3.995446 & 1.484322 \\
29 & 7 & 0 & 2.814042 & 0.318893 & 3.192864 \\
30 & 7 & 0 & 2.498687 & -1.546261 & -2.111391 \\
31 & 7 & 0 & -2.497163 & 1.505822 & -2.141647
\end{tabular}
\begin{tabular}{rrrrrr}
32 & 1 & 0 & 1.489399 & -1.528076 & -2.129979 \\
33 & 1 & 0 & 3.740796 & -0.060301 & 3.198935 \\
34 & 1 & 0 & 2.996995 & -1.925040 & -2.894263 \\
35 & 1 & 0 & 2.462307 & -1.620361 & 0.934656 \\
36 & 1 & 0 & 4.025739 & 0.478027 & 0.812612 \\
37 & 1 & 0 & 2.313300 & 0.388566 & 4.059140 \\
38 & 1 & 0 & -2.463785 & 1.640685 & 0.901867 \\
39 & 1 & 0 & -4.025117 & -0.460950 & 0.822141 \\
40 & 1 & 0 & -1.487909 & 1.486826 & -2.158980 \\
41 & 1 & 0 & -2.994873 & 1.867139 & -2.933087 \\
42 & 1 & 0 & -3.738953 & 0.125536 & 3.196822 \\
43 & 1 & 0 & -2.311511 & -0.306772 & 4.065536 \\
44 & 1 & 0 & -1.283281 & -1.310943 & -3.790479 \\
45 & 1 & 0 & -1.339443 & -3.031896 & -3.369740 \\
46 & 1 & 0 & -2.480306 & -1.894446 & -2.620703 \\
47 & 1 & 0 & 0.925361 & -4.454439 & 1.595470 \\
48 & 1 & 0 & -0.317504 & -3.482858 & 2.410929 \\
49 & 1 & 0 & -0.785690 & -4.788760 & 1.306579 \\
50 & 1 & 0 & -0.939682 & 4.471106 & 1.524200 \\
51 & 1 & 0 & 0.321447 & 3.531039 & 2.348347 \\
52 & 1 & 0 & 0.764671 & 4.823178 & 1.217649 \\
53 & 1 & 0 & 2.482911 & 1.811981 & -2.655088 \\
54 & 1 & 0 & 1.278185 & 1.192219 & -3.797967
\end{tabular}

Optimization mPW1K/6-31G** lan12dz: mPW1K/6-31G** on CHNO lan12dz on Ti File name: (cs2MPlanl613G**.log)

SCF Done: \(\mathrm{E}(\) RmPW+HF-PW91 \()=-1709.53432199 \quad\) A.U. after 15 cycles
\begin{tabular}{cccccc}
1 & 1 & 0 & -1.384845 & -2.902443 & -3.453604 \\
2 & 6 & 0 & -1.489969 & -1.917398 & -2.997433 \\
3 & 8 & 0 & -0.563184 & -1.772930 & -1.968254 \\
4 & 22 & 0 & -0.626689 & -1.532730 & -0.189429 \\
5 & 8 & 0 & -0.060843 & -3.121042 & 0.392327 \\
6 & 6 & 0 & -0.077411 & -3.995707 & 1.465649 \\
7 & 8 & 0 & 1.053983 & -0.535512 & -0.083583 \\
8 & 22 & 0 & 0.626808 & 1.533088 & -0.187090 \\
9 & 8 & 0 & 0.563696 & 1.774732 & -1.965791 \\
10 & 6 & 0 & 1.490896 & 1.922437 & -2.994165 \\
11 & 8 & 0 & -1.053795 & 0.535659 & -0.082330 \\
12 & 6 & 0 & -2.380391 & 0.833895 & 0.188516 \\
13 & 6 & 0 & -3.187521 & 1.272910 & -1.025170 \\
14 & 8 & 0 & -4.393231 & 1.380456 & -0.926068 \\
15 & 8 & 0 & -2.497844 & -1.488186 & -0.094194
\end{tabular}
\begin{tabular}{rrrrrr}
16 & 6 & 0 & -2.948064 & -0.487300 & 0.733678 \\
17 & 6 & 0 & -2.252111 & -0.703770 & 2.060458 \\
18 & 8 & 0 & -1.130030 & -1.204788 & 2.017542 \\
19 & 6 & 0 & 2.380384 & -0.834085 & 0.187734 \\
20 & 6 & 0 & 3.188274 & -1.270846 & -1.026256 \\
21 & 8 & 0 & 4.393992 & -1.378006 & -0.926880 \\
22 & 6 & 0 & 2.947503 & 0.486118 & 0.735824 \\
23 & 8 & 0 & 2.497841 & 1.488585 & -0.090457 \\
24 & 6 & 0 & 2.250342 & 0.699929 & 2.062412 \\
25 & 8 & 0 & 1.128215 & 1.200858 & 2.019398 \\
26 & 7 & 0 & 2.824453 & 0.297044 & 3.191771 \\
27 & 8 & 0 & 0.061539 & 3.121042 & 0.396233 \\
28 & 6 & 0 & 0.078644 & 3.993972 & 1.470989 \\
29 & 7 & 0 & -2.827275 & -0.303016 & 3.190053 \\
30 & 7 & 0 & -2.478129 & 1.538987 & -2.126706 \\
31 & 7 & 0 & 2.479344 & -1.535604 & -2.128412 \\
32 & 1 & 0 & -1.470521 & 1.503942 & -2.140700 \\
33 & 1 & 0 & -3.753842 & 0.071655 & 3.195448 \\
34 & 1 & 0 & -2.973367 & 1.905724 & -2.914780 \\
35 & 1 & 0 & -2.460541 & 1.642257 & 0.919493 \\
36 & 1 & 0 & -4.035325 & -0.444328 & 0.802360 \\
37 & 1 & 0 & -2.325018 & -0.380896 & 4.052503 \\
38 & 1 & 0 & 2.460101 & -1.643811 & 0.917261 \\
39 & 1 & 0 & 4.034708 & 0.443148 & 0.805312 \\
40 & 1 & 0 & 1.471733 & -1.500834 & -2.142583 \\
41 & 1 & 0 & 2.974923 & -1.900956 & -2.916911 \\
42 & 1 & 0 & 3.751012 & -0.077645 & 3.197327 \\
43 & 1 & 0 & 2.321258 & 0.373006 & 4.053847 \\
44 & 1 & 0 & 1.318766 & 1.166104 & -3.760236 \\
45 & 1 & 0 & 1.386373 & 2.909119 & -3.446929 \\
46 & 1 & 0 & 2.504833 & 1.809287 & -2.611839 \\
47 & 1 & 0 & -0.899240 & 4.464722 & 1.581173 \\
48 & 1 & 0 & 0.328401 & 3.473265 & 2.395784 \\
49 & 1 & 0 & 0.816337 & 4.779489 & 1.301332 \\
50 & 1 & 0 & 0.901725 & -4.463550 & 1.577171 \\
51 & 1 & 0 & -0.330748 & -3.477263 & 2.390739 \\
52 & 1 & 0 & -0.812222 & -4.783307 & 1.293166 \\
53 & 1 & 0 & -2.504076 & -1.806009 & -2.615026 \\
54 & 1 & 0 & -1.317968 & -1.158296 & -3.760798 \\
& & & & &
\end{tabular}

Optimization mPW1K/SB 6-31G* on Ti: mPW1K/6-31G* on all atoms File name: (cs2MPW1K631G*allatoms.log)

SCF Done: \(\mathrm{E}(\mathrm{RmPW}+\mathrm{HF}-\mathrm{PW} 91)=-3292.22953431 \quad\) A.U. after 9 cycles
\begin{tabular}{cccccc}
1 & 1 & 0 & -1.504986 & -3.066902 & -3.253128 \\
2 & 6 & 0 & -1.576935 & -2.019153 & -2.957382 \\
3 & 8 & 0 & -0.646460 & -1.739855 & -1.960039 \\
4 & 22 & 0 & -0.703128 & -1.505183 & -0.190065 \\
5 & 8 & 0 & -0.250899 & -3.117044 & 0.394663 \\
6 & 6 & 0 & -0.371689 & -4.017604 & 1.439021 \\
7 & 8 & 0 & 1.027050 & -0.597256 & -0.082795 \\
8 & 22 & 0 & 0.702975 & 1.504902 & -0.185738 \\
9 & 8 & 0 & 0.645049 & 1.745171 & -1.955060 \\
10 & 6 & 0 & 1.574595 & 2.036220 & -2.949933 \\
11 & 8 & 0 & -1.027186 & 0.596947 & -0.080708 \\
12 & 6 & 0 & -2.341854 & 0.951784 & 0.181258 \\
13 & 6 & 0 & -3.125341 & 1.412447 & -1.040810 \\
14 & 8 & 0 & -4.325503 & 1.573159 & -0.950217 \\
15 & 8 & 0 & -2.568273 & -1.367153 & -0.084157 \\
16 & 6 & 0 & -2.968385 & -0.338517 & 0.735151 \\
17 & 6 & 0 & -2.287846 & -0.575967 & 2.066834 \\
18 & 8 & 0 & -1.192365 & -1.132694 & 2.037832 \\
19 & 6 & 0 & 2.341868 & -0.952934 & 0.177285 \\
20 & 6 & 0 & 3.124781 & -1.409413 & -1.046723 \\
21 & 8 & 0 & 4.324994 & -1.570384 & -0.957222 \\
22 & 6 & 0 & 2.968596 & 0.335546 & 0.735128 \\
23 & 8 & 0 & 2.568116 & 1.366798 & -0.080704 \\
24 & 6 & 0 & 2.288626 & 0.568682 & 2.067879 \\
25 & 8 & 0 & 1.193174 & 1.125559 & 2.041250 \\
26 & 7 & 0 & 2.851639 & 0.121263 & 3.186846 \\
27 & 8 & 0 & 0.251816 & 3.115242 & 0.404092 \\
28 & 6 & 0 & 0.374113 & 4.012455 & 1.451171 \\
29 & 7 & 0 & -2.850300 & -0.132248 & 3.187535 \\
30 & 7 & 0 & -2.398907 & 1.636363 & -2.141078 \\
31 & 7 & 0 & 2.397851 & -1.629698 & -2.147383 \\
32 & 1 & 0 & -1.392870 & 1.553244 & -2.151969 \\
33 & 1 & 0 & -3.755444 & 0.295588 & 3.182751 \\
34 & 1 & 0 & -2.870464 & 2.009975 & -2.942336 \\
35 & 1 & 0 & -2.390796 & 1.768333 & 0.905569 \\
36 & 1 & 0 & -4.052388 & -0.247570 & 0.803459 \\
37 & 1 & 0 & -2.359399 & -0.216463 & 4.057945 \\
38 & 1 & 0 & 2.391223 & -1.771894 & 0.898838 \\
39 & 1 & 0 & 4.052630 & 0.244423 & 0.802678 \\
40 & 1 & 0 & 1.391841 & -1.546354 & -2.157612 \\
41 & 1 & 0 & 2.869054 & -2.000440 & -2.950179 \\
42 & 1 & 0 & 3.756711 & -0.306698 & 3.180172 \\
& & & & & \\
\hline 1
\end{tabular}
\begin{tabular}{rrrrrr}
43 & 1 & 0 & 2.361161 & 0.202581 & 4.057768 \\
44 & 1 & 0 & 1.377835 & 1.421938 & -3.828821 \\
45 & 1 & 0 & 1.500550 & 3.086690 & -3.235376 \\
46 & 1 & 0 & 2.585248 & 1.833372 & -2.597490 \\
47 & 1 & 0 & -0.540051 & 4.600745 & 1.542245 \\
48 & 1 & 0 & 0.556658 & 3.494147 & 2.392840 \\
49 & 1 & 0 & 1.201942 & 4.697711 & 1.263289 \\
50 & 1 & 0 & 0.543644 & -4.604303 & 1.528657 \\
51 & 1 & 0 & -0.555588 & -3.502490 & 2.382184 \\
52 & 1 & 0 & -1.198038 & -4.704000 & 1.248806 \\
53 & 1 & 0 & -2.587029 & -1.817771 & -2.602528 \\
54 & 1 & 0 & -1.379341 & -1.396636 & -3.830271
\end{tabular}

Optimization mPW1K/SB diffuse on O : mPW1K/6-31G* on CHN 6-31+G* on O and SDD on Ti
File name: (cs2MPdiffuse.log)
SCF Done: \(\mathrm{E}(\) RmPW+HF-PW91 \()=-1710.01789671\) A.U. after 10 cycles
\begin{tabular}{cccccc}
1 & 1 & 0 & -1.290859 & -3.014930 & -3.407200 \\
2 & 6 & 0 & -1.441359 & -2.006401 & -3.019447 \\
3 & 8 & 0 & -0.541552 & -1.759159 & -1.984679 \\
4 & 22 & 0 & -0.616735 & -1.541053 & -0.209858 \\
5 & 8 & 0 & -0.043867 & -3.123247 & 0.360644 \\
6 & 6 & 0 & -0.062604 & -4.045263 & 1.394417 \\
7 & 8 & 0 & 1.057218 & -0.533546 & -0.089182 \\
8 & 22 & 0 & 0.616215 & 1.539541 & -0.184772 \\
9 & 8 & 0 & 0.536460 & 1.788988 & -1.955860 \\
10 & 6 & 0 & 1.431035 & 2.099303 & -2.978177 \\
11 & 8 & 0 & -1.057537 & 0.531542 & -0.079079 \\
12 & 6 & 0 & -2.385419 & 0.817369 & 0.204846 \\
13 & 6 & 0 & -3.199573 & 1.278578 & -0.995356 \\
14 & 8 & 0 & -4.404253 & 1.413605 & -0.877915 \\
15 & 8 & 0 & -2.487529 & -1.507031 & -0.100006 \\
16 & 6 & 0 & -2.942022 & -0.515644 & 0.735935 \\
17 & 6 & 0 & -2.247729 & -0.736338 & 2.064450 \\
18 & 8 & 0 & -1.124702 & -1.236302 & 2.024451 \\
19 & 6 & 0 & 2.385941 & -0.823893 & 0.186610 \\
20 & 6 & 0 & 3.198025 & -1.261717 & -1.023767 \\
21 & 8 & 0 & 4.403317 & -1.396136 & -0.911773 \\
22 & 6 & 0 & 2.942638 & 0.499196 & 0.741420 \\
23 & 8 & 0 & 2.486723 & 1.505422 & -0.075920 \\
24 & 6 & 0 & 2.250170 & 0.695683 & 2.074725
\end{tabular}
\begin{tabular}{rrrrrr}
25 & 8 & 0 & 1.127358 & 1.196681 & 2.045936 \\
26 & 7 & 0 & 2.833250 & 0.275916 & 3.193469 \\
27 & 8 & 0 & 0.047597 & 3.113033 & 0.413770 \\
28 & 6 & 0 & 0.072453 & 4.018430 & 1.462003 \\
29 & 7 & 0 & -2.828930 & -0.337709 & 3.191762 \\
30 & 7 & 0 & -2.506225 & 1.532298 & -2.107892 \\
31 & 7 & 0 & 2.502390 & -1.496645 & -2.138832 \\
32 & 1 & 0 & -1.496899 & 1.497453 & -2.130668 \\
33 & 1 & 0 & -3.757755 & 0.037025 & 3.194778 \\
34 & 1 & 0 & -3.000854 & 1.923665 & -2.887293 \\
35 & 1 & 0 & -2.463018 & 1.612851 & 0.950096 \\
36 & 1 & 0 & -4.029359 & -0.488692 & 0.808576 \\
37 & 1 & 0 & -2.334730 & -0.416116 & 4.061151 \\
38 & 1 & 0 & 2.465600 & -1.633319 & 0.916443 \\
39 & 1 & 0 & 4.030080 & 0.471482 & 0.812031 \\
40 & 1 & 0 & 1.493173 & -1.459746 & -2.159504 \\
41 & 1 & 0 & 2.995857 & -1.870178 & -2.927624 \\
42 & 1 & 0 & 3.762031 & -0.098889 & 3.187909 \\
43 & 1 & 0 & 2.340737 & 0.338620 & 4.065075 \\
44 & 1 & 0 & 1.283459 & 1.415788 & -3.814798 \\
45 & 1 & 0 & 1.258461 & 3.119432 & -3.324323 \\
46 & 1 & 0 & 2.458531 & 2.009617 & -2.626404 \\
47 & 1 & 0 & -0.877887 & 4.552122 & 1.507929 \\
48 & 1 & 0 & 0.243713 & 3.511714 & 2.412485 \\
49 & 1 & 0 & 0.868234 & 4.748280 & 1.305377 \\
50 & 1 & 0 & 0.891099 & -4.573612 & 1.431644 \\
51 & 1 & 0 & -0.236713 & -3.554791 & 2.352882 \\
52 & 1 & 0 & -0.853766 & -4.777573 & 1.226350 \\
53 & 1 & 0 & -2.466941 & -1.908160 & -2.664542 \\
54 & 1 & 0 & -1.277352 & -1.292431 & -3.827088
\end{tabular}

\section*{Predicted KIEs for Various Epoxidations}

Optimization of the Shi Epoxidation in mPW1K/SB
\begin{tabular}{lc} 
Zero-point correction= & 0.481971 (Hartree/Particle) \\
Thermal correction to Energy= & 0.507939 \\
Thermal correction to Enthalpy \(=\) & 0.508884 \\
Thermal correction to Gibbs Free Energy= & 0.425263 \\
Sum of electronic and zero-point Energies= & -1342.618329 \\
Sum of electronic and thermal Energies= & -1342.592361 \\
Sum of electronic and thermal Enthalpies= & -1342.591417 \\
Sum of electronic and thermal Free Energies= & -1342.675038
\end{tabular}

Total
\begin{tabular}{ccc} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
318.737 & 101.442 & 175.995
\end{tabular}

C,0,1.0852579557,-2.8208055362,-0.9245015584
C, \(0,1.5728885254,-2.4122334223,0.3215335188\)
C,0,2.9392181113,-2.1520299654,0.4518278461
С,0,3.7897917057,-2.2800703828,-0.6295807678
C,0,3.2917185615,-2.6793823262,-1.8599731274
C, \(0,1.9377410504,-2.9501031418,-2.0033482081\)
C,0,0.71846576,-2.2695964306,1.481289154

C,0,-0.6464984133,-2.1422181493,1.482822678
С,0,-1.4891160353,-2.3703850119,2.6876905521
O,0,-1.8409447643,-0.2837862477,-0.8536943635
C, \(0,-1.6822389881,0.7806937826,0.0445751467\)
C, \(0,-2.8966429636,0.6774422294,0.9639766384\)
O,0,-3.6150584782,-0.4337054615,0.4775143735
C,0,-3.2238779853,-0.6208851342,-0.8525128442
С,0,-0.3391186824,0.7394783684,0.7813243522
C, \(0,0.8323816701,0.8303342674,-0.1922290828\)
C,0,0.632508831,1.9576675105,-1.1943249276
C,0,-0.796061559,2.1813093679,-1.6273415458
О,0,-1.7376373903,2.0224643678,-0.5965004427
O,0,2.0183060807,1.1919245822,0.4498101884
C, \(0,2.2384442696,2.5846649843,0.2639396332\)
O,0,1.1436895475,3.0546350831,-0.4885690324
C, \(0,2.2559893824,3.3025985294,1.589281902\)
С,0,3.5304938273,2.7541592453,-0.5123594672
O,0,-0.3471589098,1.5274164736,1.8319125047
O,0,-0.1958970989,-0.2929785491,1.7582134072
C, \(0,-3.3830195823,-2.0740214804,-1.2195993816\)
С,0,-4.0016628274,0.2823592453,-1.7940680413
H,0,-4.4380898727,-2.3357594699,-1.2313481508
H,0,-2.9683467264,-2.2581443933,-2.2077245173
H,0,-2.8838036414,-2.7106798487,-0.4950752373
H,0,-5.0599154115,0.034948722,-1.7463946207
H,0,-3.8692598706,1.3259469576,-1.5255077211
H,0,-3.6559058111,0.1447144657,-2.8167254667
H,0,3.0948815477,2.9540520146,2.1879918453
H,0,2.3607337179,4.3738645501,1.4296892233
H,0,1.3295486862,3.0936417397,2.1129964178
H,0,4.3558951268,2.30679459,0.037075118
H,0,3.4616607512,2.262988914,-1.4808537551
H,0,3.7422491199,3.8098445711,-0.6677651102
H,0,-3.4783309133,1.5950247908,0.901258091
H,0,-2.6089925784,0.497998631,1.9928103494
Н,0,0.9653097994,-0.1294115859,-0.6850168219
H,0,1.2348058407,1.7687211117,-2.0899983332
Н,0,-1.0241286567,1.4938427402,-2.4431652573
H,0,-0.9113912025,3.1992347363,-1.987798711
Н,0,-2.4031844565,-1.7871415196,2.6272442746
H,0,-1.7713982204,-3.4230218696,2.7489053155
H,0,-0.9554291491,-2.1051403969,3.5969321256
H,0,3.3233255605,-1.8226128785,1.4059457317
H,0,4.8413801334,-2.0642094815,-0.5142170536

\title{
Optimization of the Epoxidation by Oxaziridine in mPW1K/SB
}

\(\mathrm{E}(\) RmPW + HF-PW91 \()=-953.999074076\)
Zero-point correction \(=0.228679\) (Hartree/Particle)
Thermal correction to Energy= 0.243350
Thermal correction to Enthalpy= 0.244294
Thermal correction to Gibbs Free Energy= 0.186598
Sum of electronic and zero-point Energies= -953.770395
Sum of electronic and thermal Energies= -953.755724
Sum of electronic and thermal Enthalpies= -953.754780
Sum of electronic and thermal Free Energies= -953.812476

Total
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
152.704 & 51.936 & 121.432
\end{tabular}
```

C,0,0.5898483158,-2.1423987205,-1.5353422369
C,0,0.7631139847,-2.1917015959,-0.1739072467
O,0,-0.0386782871,-0.3729729647,-0.885761886
C,0,0.8246971973,0.7145525554,-1.1121447909
N,0,-0.2769585682,1.5152696168,-0.8065800749
S,0,-0.4023016729,1.8638448227,0.8066953287
O,0,-0.1713599744,3.2842005736,0.9770500671
O,0,0.3661008206,0.9410471367,1.6335818018
C,0,-0.5773921694,-2.6227670277,-2.320231211
С,0,-0.2967464718,-2.5985997096,0.7859715877
C,0,2.0691776353,-1.837657638,0.4467344373
C,0,-2.1197596079,1.5543298545,1.0821865277
H,0,1.4631187291,-1.8769815314,-2.1190795248
H,0,1.1260437944,0.8051412713,-2.1532944145
H,0,1.6752977084,0.7208926463,-0.4334747113
H,0,-0.7780615388,-1.9402038329,-3.142936062
H,0,-1.480248548,-2.7020940108,-1.7237744211
H,0,-0.3645478655,-3.6031835346,-2.7501329296
H,0,0.0077257971,-3.5044541931,1.3127401292
H,0,-1.2568272722,-2.7816561859,0.3164022487
H,0,-0.412177069,-1.8106266755,1.5301367845
H,0,1.9285632237,-1.0087150539,1.1421225147
H,0,2.8218852655,-1.5670068448,-0.289821366
H,0,2.4455154225,-2.6837146758,1.0242161806
H,0,-2.3381900733,1.8325217071,2.1089482364
H,0,-2.3190366291,0.5013687448,0.9171562072
H,0,-2.6941321469,2.1654152659,0.3944898242

```

\section*{Optimization of MCPBA Epoxidation in mPW1K/SB}

\(\mathrm{E}(\) RmPW + HF-PW91 \()=-382.612246132\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.121958 \\
(Hartree/Particle) \\
Thermal correction to Energy= & 0.130302 \\
Thermal correction to Enthalpy \(=\) & 0.131246 \\
Thermal correction to Gibbs Free Energy= & 0.088426 \\
Sum of electronic and zero-point Energies \(=\) & -382.490288 \\
Sum of electronic and thermal Energies= & -382.481944 \\
Sum of electronic and thermal Enthalpies= & -382.481000 \\
Sum of electronic and thermal Free Energies= & -382.523820
\end{tabular}
Total
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
81.766 & 27.880 & 90.124
\end{tabular}
C,0,-1.812045772,0.41058385,-0.4440962856
C,0,-1.5258361455,1.0869359064,0.6989237104
H,0,-1.8440799508,0.7156947076,1.6600942605
H,0,-1.0723680904,2.0658324741,0.6757718831
С,0,2.3643688503,-0.1782042998,-0.1433544882

O,0,2.0244258426,0.8658674463,-0.691305424
H,0,3.409462502,-0.5119589296,-0.1726704752
O,0,1.5894777274,-0.9605602737,0.4915053943
O,0,-0.0125856944,-0.1462628756,0.3641251417
H,0,0.503677399, \(0.5317038828,-0.1570778251\)
Н,0,-1.5333540647,0.8581720036,-1.3896852138
С, \(0,-2.5601200748,-0.8683744588,-0.500894922\)
H,0,-2.7149650373,-1.281799338,0.4919830915
H,0,-3.5324952601,-0.7121808484,-0.9705153431
H,0,-2.0189882313,-1.5976252471,-1.0999965044

\section*{Table of Energies}
\begin{tabular}{|l|c|r|c|c|}
\hline & opt & opt+zpe & \begin{tabular}{c} 
Single \\
point+zpe
\end{tabular} & pcm+zpe \\
\hline RevIs1 & -1761.3424 & 1760.8177 & -1760.8903 & -1760.9055 \\
\hline Revis1d & -1761.3415 & 1760.8169 & -1760.8895 & -1760.9043 \\
\hline RevIs2 & -1761.3401 & 1760.8155 & -1760.8882 & -1760.9016 \\
\hline RevIs3 & -1761.3411 & 1760.8164 & -1760.8899 & -1760.9035 \\
\hline Revis3b & -1761.3411 & 1760.8168 & -1760.8898 & -1760.9029 \\
\hline Is1 & -1761.3388 & 1760.8142 & -1760.8880 & -1760.9013 \\
\hline Is3 & -1761.3383 & 1760.8134 & -1760.8872 & -1760.9012 \\
\hline Is3b & -1761.3402 & 1760.8156 & -1760.8889 & -1760.9013 \\
\hline Is4 & -1761.3401 & 1760.8155 & -1760.8882 & -1760.9016 \\
\hline Is4b & -1761.3398 & 1760.8150 & -1760.8884 & -1760.9007 \\
\hline revis1trans & -1800.6554 & 1800.1020 & -1800.1773 & -1800.1927 \\
\hline revis1dtrans & -1800.6545 & 1800.1010 & -1800.1763 & -1800.1912 \\
\hline revis3trans & -1800.6547 & 1800.1014 & -1800.1774 & -1800.1907 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|c|c|} 
& & - \\
is3btrans & -1800.6528 & 1800.0994 & -1800.1754 & -1800.1879 \\
\hline revis1cis & -1800.6531 & 1800.0996 & -1800.1750 & -1800.1890 \\
\hline revis3cis & -1800.6519 & 1800.0983 & -1800.1747 & -1800.1880 \\
\hline is3bcis & -1800.6517 & 1800.0981 & -1800.1742 & -1800.1859 \\
\hline revis1meooh & -1643.4145 & 1642.9764 & -1643.0401 & -1643.0573 \\
\hline revis1meoohc & -1643.4035 & 1642.9656 & -1643.0293 & -1643.0471 \\
\hline revis3meooh & -1643.4119 & 1642.9736 & -1643.0377 & -1643.0532 \\
\hline revis3meoohb & -1643.4125 & 1642.9742 & -1643.0379 & -1643.0548 \\
\hline is3bmeooh & -1643.4139 & 1642.9758 & -1643.0399 & -1643.0549 \\
\hline
\end{tabular}

\section*{Table of Relative Energies}
\begin{tabular}{|l|r|r|r|r|}
\multicolumn{5}{l}{ opt } \\
\multicolumn{1}{l}{ opt+zpe } & \multicolumn{3}{l}{\begin{tabular}{l} 
pingle \\
point
\end{tabular}} \\
\hline Revls1 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Revls2 & 1.43 & 1.33 & 1.29 & 2.43 \\
\hline Revls3 & 0.81 & 0.76 & 0.25 & 1.27 \\
\hline Is1 & 2.23 & 2.16 & 1.44 & 2.65 \\
\hline Is3 & 2.57 & 2.67 & 1.92 & 2.70 \\
\hline Is3b & 1.35 & 1.31 & 0.86 & 2.62 \\
\hline Is4 & 1.43 & 1.33 & 1.29 & 2.43 \\
\hline Is4b & 1.62 & 1.68 & 1.18 & 3.03 \\
\hline is3btrans & 1.65 & 1.59 & 1.17 & 3.00 \\
\hline is3bcis & 0.92 & 0.95 & 0.49 & 1.92 \\
\hline is3bmeooh & 0.39 & 0.37 & 0.14 & 1.53 \\
\hline revis1dtrans & 0.61 & 0.57 & 0.60 & 0.93 \\
\hline revis1meoohc & 6.92 & 6.74 & 6.78 & 6.40 \\
\hline revis3trans & 0.43 & 0.35 & -0.05 & 1.25 \\
\hline revis3cis & 0.74 & 0.82 & 0.16 & 0.58 \\
\hline revis3meooh & 1.64 & 1.76 & 1.53 & 2.57 \\
\hline revis3meoohb & 1.22 & 1.36 & 1.38 & 1.58 \\
\hline revis3b & 0.78 & 0.53 & 0.29 & 1.64 \\
\hline is3c & 2.57 & 2.67 & 1.92 & 2.72 \\
\hline
\end{tabular}

\section*{Table of Bond Lengths}
\begin{tabular}{l}
\multicolumn{3}{l}{\begin{tabular}{l} 
bond \\
lengths \\
alpha \\
carbon
\end{tabular}} & \multicolumn{3}{l}{ beta carbon } & co-Ti \\
\hline
\end{tabular}

\section*{Theoretical Structures with propenol as allyl alcohol}

\section*{Revls1}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards allyl alkoxide.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis 1optfreq)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.34236086\)
Zero-point correction \(=\quad 0.524707\) (Hartree/Particle)
Thermal correction to Energy= 0.563280

Thermal correction to Enthalpy= 0.564224

Thermal correction to Gibbs Free Energy= 0.452092
Sum of electronic and zero-point Energies= \(\quad-1760.817654\)
Sum of electronic and thermal Energies \(=\quad-1760.779081\)
Sum of electronic and thermal Enthalpies= \(\quad-1760.778136\)
Sum of electronic and thermal Free Energies \(=\quad-1760.890269\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 353.464 & 136.073 & 236.003
\end{tabular}

C,0,-3.2348429649,2.6471095045,-1.3348854216
C,0,-2.0485746258,3.1609314221,-0.9510256651
С, \(0,-0.7638797998,2.7918032721,-1.6270667161\)
O,0,-0.8142586147,1.477571641,-2.0725409205
Ti,0,-1.16969768,0.094657531,-0.9535688115
O,0,-2.437061494,1.2566597853,-0.0448921848

O,0,0.4298231847,0.5492885683,0.1896437427
Ti,0,1.9055925113,-0.7927566849,-0.3151143659
O,0,0.5904517619,-1.5213467261,1.7917816724
C, \(0,0.3311472584,-0.4545026718,2.2981730132\)
O,0,-0.0349947109,-0.2955807751,3.5508477846
O, \(0,-2.0055963811,-1.0313244367,-2.1018392938\)
C,0,-1.4515159116,-2.2431771409,-2.5139089337
С, \(0,0.0566750195,-2.1021464274,-2.3958912321\)
O,0,0.2471681213,-1.3232705153,-1.2424285611
O,0,-2.1065332993,-0.3021166319,0.7109964215
С,0,-3.3079686379,-0.9394435358,1.1263909841
С,0,-2.9491909423,-2.4082579122,1.3065243373
С, \(, 0,0.5375491645,0.8325315278,1.541488092\)
C,0,2.0265315286,1.1786648957,1.7073850824
C,0,2.2551158709,2.5827781715,1.1681144036
O,0,1.5077934747,3.4988550526,1.39278035
O,0,2.7084254472,-2.3541448736,-0.0591372965
C,0,3.0119074344,-3.2801512239,0.9270117357
O,0,2.7235311593,0.1936523009,1.0523903036
O,0,2.7314152641,-0.1585410204,-1.74627715
C,0,4.0665859267,0.0733237419,-2.0632495525
С,0,-4.421677178,-0.7955948912,0.1040458528
C,0,-3.7097117009,-0.3073507158,2.4478116847
O,0,3.3712551268,2.6968306409,0.4737379566
H,0,-1.8083996385,-3.0504462656,-1.8688606267
H,0,-1.7549456479,-2.46719733,-3.537560121
H,0,0.4692940222,-1.5729490053,-3.2559135314
H,0,0.5620120751,-3.062749334,-2.2965995574
H,0,-0.5856624677,3.4534815897,-2.4804147899
H,0,0.0628748632,2.930568088,-0.9282091929
H,0,-2.0050214157,3.8587558733,-0.1264755482
H,0,-4.1492336961,2.9254638222,-0.835671057
H,0,-3.3137700377,2.0083562425,-2.2011012747
H,0,2.297252366,1.2165861906,2.7687854453
H,0,-0.134272358,1.6198183688,1.8697312375
H,0,3.666352746,-4.0487330884,0.514712564
H,0,2.1057034841,-3.7537012131,1.3041117953
H,0,3.5244426111,-2.7951533959, 1.7592912266
H,0,4.1251201947,0.5302394561,-3.0509451824
H,0,4.6258052258,-0.8638395218,-2.0767696944
H,0,4.5193848345,0.7441362496,-1.3329930068
C,0,3.6415690023,3.9938775697,-0.0260814897
C,0,-0.0784452618,-1.4710588039,4.3462546525
Н,0,-4.6094228579,-0.7770767224,2.8437487272
\[
\begin{aligned}
& \text { H, } 0,-3.9030896308,0.7535536596,2.3047468334 \\
& \mathrm{H}, 0,-2.9108946621,-0.4111403238,3.1798637046 \\
& \mathrm{H}, 0,-3.7926217326,-2.9528440294,1.7300871598 \\
& \mathrm{H}, 0,-2.093139289,-2.5187117552,1.9678178289 \\
& \mathrm{H}, 0,-2.694724019,-2.8577992964,0.3489318771 \\
& \mathrm{H}, 0,-5.2871648505,-1.3722536064,0.4291756621 \\
& \mathrm{H}, 0,-4.1025586715,-1.162117588,-0.8684519504 \\
& \mathrm{H}, 0,-4.7185097565,0.2447694215,0.0025796268 \\
& \mathrm{H}, 0,-0.3346808393,-1.1393724581,5.3446893736 \\
& \mathrm{H}, 0,-0.8323218961,-2.1554411249,3.9700570726 \\
& \mathrm{H}, 0,0.8888354215,-1.9645353858,4.3430572348 \\
& \text { H,0,4.5954284046,3.920664154,-0.5340070292 } \\
& \text { H,0,2.8655251974,4.3016568113,-0.7211558906 } \\
& \mathrm{H}, 0,3.6950409671,4.7133358793,0.7860776085
\end{aligned}
\]

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.890285300\)
File: revis1energy
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on Ti=-1760.905502680 File: revis1PCM

\section*{Revis1d}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards bystander alcohols.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (revis1doptfreq)
\[
\mathrm{E}(\text { RmPW+HF-PW91 })=-1761.34145204
\]
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.524525 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.563246 \\
Thermal correction to Enthalpy \(=\) & 0.564190 \\
Thermal correction to Gibbs Free Energy= & 0.451450 \\
Sum of electronic and zero-point Energies= & -1760.816928 \\
Sum of electronic and thermal Energies= & -1760.778206 \\
Sum of electronic and thermal Enthalpies= & -1760.777262 \\
Sum of electronic and thermal Free Energies= & -1760.890002
\end{tabular}

Total
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
353.442 & 136.242 & 237.282
\end{tabular}

C,0,-2.6244436038,3.1766905868,-1.4712682543
С,0,-1.3243872799,3.3865246694,-1.1821350581
С,0,-0.2214909451,2.6817571002,-1.9126220521
O,0,-0.6267229386,1.4055690991,-2.2737675369
\begin{tabular}{l} 
Ti, \(0,-1.2257211578,0.2018435927,-1.0550968019\) \\
\(\mathrm{O}, 0,-2.1401846658,0.1200271206,0.6673119611\) \\
\(\mathrm{C}, 0,-3.4379364271,-0.2050423996,1.1513466022\) \\
\(\mathrm{C}, 0,-3.6022143593,0.5108270544,2.4809592387\) \\
\(\mathrm{O}, 0,-2.1180916943,1.6825476803,-0.1502711201\) \\
\(\mathrm{O}, 0,0.482752994,0.3292322689,0.0079919071\) \\
\(\mathrm{C}, 0,0.7050535207,0.5427543253,1.3560473035\) \\
\(\mathrm{C}, 0,2.2455696008,0.5652240739,1.4684601662\) \\
\(\mathrm{O}, 0,2.694061591,-0.5030365868,0.7401981245\) \\
\(\mathrm{~T}, 0,1.6510515976,-1.2619599624,-0.6136779556\) \\
\(\mathrm{O}, 0,2.4815784283,-0.7606038591,-2.0784262622\) \\
\(\mathrm{C}, 0,3.7477467641,-0.361624204,-2.499922906\) \\
\(\mathrm{O}, 0,-2.3679882181,-0.754948173,-2.0864461741\) \\
\(\mathrm{C}, 0,-2.0853738464,-2.0504153595,-2.5226061549\) \\
\(\mathrm{C}, 0,-0.5725787169,-2.1924775467,-2.5302449475\) \\
\(\mathrm{O}, 0,-0.1479999549,-1.4649586754,-1.405777091\) \\
\(\mathrm{O}, 0,2.1209765701,-2.9642928286,-0.4186773557\) \\
\(\mathrm{C}, 0,2.2481103386,-3.9466921325,0.5507894605\) \\
\(\mathrm{C}, 0,-3.438602796,-1.7162125609,1.3357141948\) \\
\(\mathrm{C}, 0,-4.5347603206,0.2033465415,0.1836383507\) \\
\(\mathrm{C}, 0,0.2698633632,-0.6897665418,2.108807412\) \\
\(\mathrm{O}, 0,0.0062338679,-0.4769526324,3.3809501901\) \\
\(\mathrm{C}, 0,-0.2419468076,-1.6311412348,4.1698897823\) \\
\(\mathrm{O}, 0,0.2736321849,-1.7769851951,1.5839908408\) \\
\(\mathrm{C}, 0,2.7743486041,1.8877539257,0.9428651663\) \\
\(\mathrm{O}, 0,3.4284594874,2.045183265,-0.0455401098\) \\
\(\mathrm{H}, 0,-2.5316742292,-2.7755541056,-1.8370211431\) \\
\(\mathrm{H}, 0,-2.5094813297,-2.2140585324,-3.514217957\) \\
\(\mathrm{H}, 0,-0.1428618537,-1.7462023561,-3.4280869192\) \\
\(\mathrm{H}, 0,-0.2457186926,-3.2296550695,-2.4595112778\) \\
\(\mathrm{H}, 0,0.0492479565,3.24155276,-2.8131307974\) \\
\(\mathrm{H}, 0,0.6703793391,2.6334365092,-1.2840587609\) \\
\(\mathrm{H}, 0,-1.0571081675,4.0838541953,-0.4001006065\) \\
\(\mathrm{H}, 0,-3.4044420096,3.696406286,-0.9381888087\) \\
\(\mathrm{H}, 0,-2.9184214164,2.5467218587,-2.2964738717\) \\
\(\mathrm{H}, 0,2.5477797083,0.4966019209,2.5180684927\) \\
\(\mathrm{H}, 0,0.2170846804,1.436690584,1.7352444195\) \\
\(\mathrm{H}, 0,2.7460915935,-4.8170278043,0.1219981787\) \\
\(\mathrm{H}, 0,1.2708441682,--4.2495794667,0.9269458257\) \\
\(\mathrm{H}, 0,2.8450492392,-3.5818114055,1.3883556885\) \\
\(\mathrm{H}, 0,3.6607267864,0.1255891674,-3.4705803793\) \\
\(\mathrm{H}, 0,4.4004490376,-1.2297999988,-2.6010321566\) \\
\(\mathrm{H}, 0,4.1767122688,0.3376469672,-1.7852279442\) \\
\(\mathrm{H}, 0,-4.5656329274,0.2755046966,2.9318604052\) \\
\hline
\end{tabular}
```

H,0,-3.5414968189,1.5866251445,2.3300273415
H,0,-2.8128857803,0.2190280202,3.1713952543
H,0,-4.3662196016,-2.0378788524,1.8083201638
H,0,-2.6028826504,-2.0303521894,1.956490456
H,0,-3.3501838793,-2.2153546833,0.3730976427
H,0,-5.4964080269,-0.141522583,0.5625549877
H,0,-4.3678085216,-0.236746369,-0.7964235081
H,0,-4.5722628845,1.2843342287,0.07921611
H,0,-0.380738776,-1.2701087065,5.1813273007
H,0,-1.1353950634,-2.1418735062,3.82468692
H,0,0.6026460207,-2.3118045978,4.1189392492
O,0,2.4089112745,2.8824492827,1.7538257959
C,0,2.8586125866,4.1704421221,1.375872698
H,0,2.4887130011,4.8490824737,2.1352272476
H,0,3.9439031097,4.1988542512,1.3372341176
H,0,2.4663565814,4.4424246515,0.3996576212

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on Ti -1760.889537020
File: revis1denergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.904329040\) File: revis1denergyPCM

\section*{Revls2}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards allyl alkoxide.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (revis2optfreq)
\[
\mathrm{E}(\mathrm{RmPW}+\mathrm{HF}-\mathrm{PW} 91)=-1761.34007531
\]
\begin{tabular}{lc} 
Zero-point correction= & 0.524547 (Hartree/Particle) \\
Thermal correction to Energy= & 0.563304 \\
Thermal correction to Enthalpy= & 0.564248 \\
Thermal correction to Gibbs Free Energy= & 0.451133 \\
Sum of electronic and zero-point Energies \(=\) & -1760.815528 \\
Sum of electronic and thermal Energies= & -1760.776772 \\
Sum of electronic and thermal Enthalpies= & -1760.775827 \\
Sum of electronic and thermal Free Energies= & -1760.888942
\end{tabular}

\section*{Total}
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
353.478 & 136.116 & 238.070
\end{tabular}

C,0,1.342628362,3.2939283443,-1.2171972594
C,0,2.1092609413,3.5776711728,-0.1444090367
C,0,1.6061626785,3.4220222073,1.2597660427
O,0,0.7455048687,2.3389610216,1.3457122242
Ti,0,1.1907107779,0.6647208739,0.8092034627
O,0,2.255068995,-0.2549748582,-0.5346327544

\footnotetext{
C,0,3.5833757699,-0.7280246814,-0.7141898781 C,0,3.84243423,-0.75756144,-2.210710876 O,0,2.1430746886,1.4937682899,-0.6788846747 O,0,-0.4524037882,0.2817846034,-0.2636071258 C, \(0,-0.5923790882,-0.1192318006,-1.5834214601\) C,0,-0.1518713566,-1.5587756009,-1.6741589909 O,0,0.1804988832,-1.9405482421,-2.8887568029 Ti,0,-1.7165187965,-0.8194723689,0.9260043585 O,0,-2.6436295145,-0.76973686,-0.6980005004
C, \(0,-2.1147200163,-0.1135396075,-1.7829195651\) С,0,-2.5595049067,1.3347811632,-1.9307033183 O,0,-3.6451645064,1.6208258785,-1.2392324448 O,0,2.2679512134,0.2246345062,2.2165703504 C,0,1.8711754342,-0.6683730748,3.2098779279 C,0,0.3516423973,-0.6663686885,3.233992184 O,0,-0.0179228413,-0.5375815323,1.8846647154 O,0,-2.6969263141,0.2691235037,1.916688298 C,0,-4.0660699948,0.4060932867,2.1278652013 O, \(0,-2.2021936254,-2.4299699534,1.4852393854\) C, \(0,-2.3212026856,-3.7438475943,1.0564475002\) С,0,3.5962907903,-2.1316197364,-0.1254231569 C,0,4.6043435382,0.1494470512,-0.0119024803 O,0,-1.9851654688,2.1207380027,-2.6379047679 O,0,-0.198911658,-2.291800242,-0.7157334992 H,0,2.2414328041,-1.6710342439,2.9775162332 H,0,2.2853214884,-0.3706783415,4.1749542094 H,0,-0.031295898,0.1910319133,3.7887018107 H,0,-0.0654763968,-1.5790171671,3.659213181 H,0,2.4532665538,3.2926232263,1.9398957246 H,0,1.0781814156,4.3271666882,1.5752757361 H,0,3.1233973168,3.9251168351,-0.287003928 H,0,1.7230906304,3.4155514226,-2.2186149456 H,0,0.3043264696,3.0192055091,-1.11589436
H,0,-2.3856110075,-0.6132381229,-2.7191559224
Н,0,-0.0595646962,0.5195412804,-2.2811398546
Н,0,-2.8710539955,-4.3196400436,1.8013563441
H,0,-1.338853279,-4.1937392468,0.9160260935
H,0,-2.8631477525,-3.7868219414,0.110602324
H,0,-4.2470051031,1.3016838911,2.7218446713
Н,0,-4.4580551214,-0.4574477139,2.6678659235
H,0,-4.5899706064,0.497123677,1.1765174958
С,0,-4.0958068378,2.9591451094,-1.3497032031
C,0,0.4698549558,-3.320673688,-3.0518654256
Н,0,4.835006286,-1.1530159138,-2.4237642579
}
\(\mathrm{H}, 0,3.7732913868,0.2492170129,-2.6171052565\)
\(\mathrm{H}, 0,3.1042313041,-1.3792545393,-2.7142523093\)
\(\mathrm{H}, 0,4.5583571023,-2.6094835172,-0.3087669296\)
\(\mathrm{H}, 0,2.8130050598,-2.7424106733,-0.5695962158\)
\(\mathrm{H}, 0,3.42925655513,-2.0894295439,0.9484200084\)
\(\mathrm{H}, 0,5.5956142615,-0.2890840768,-0.1232624644\)
\(\mathrm{H}, 0,4.3746199704,0.2315114905,1.047220897\)
\(\mathrm{H}, 0,4.6159573967,1.1449636494,-0.4477565695\)
\(\mathrm{H}, 0,-4.9917825742,3.0186664714,-0.7440360165\)
\(\mathrm{H}, 0,-3.3398945772,3.6441898525,-0.976798436\)
\(\mathrm{H}, 0,-4.3170680059,3.2035508577,-2.3848035551\)
\(\mathrm{H}, 0,0.6828811404,-3.4530122765,-4.1052911403\)
\(\mathrm{H}, 0,1.331049894,-3.599819581,-2.4526873737\)
\(\mathrm{H}, 0,-0.3838612032,-3.9231053866,-2.7558783078\)

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.888227590\)
File: revis2energy
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.901629560\) File: revis2PCM

\section*{Revls3}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to alkoxide, closest to alkoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards t-butoxide.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis3optfreq)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.34107234\)
Zero-point correction \(=\quad 0.524625\) (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.563347\)
Thermal correction to Enthalpy= 0.564291
Thermal correction to Gibbs Free Energy= 0.451384
Sum of electronic and zero-point Energies= \(\quad-1760.816448\)
Sum of electronic and thermal Energies \(=\quad-1760.777726\)
Sum of electronic and thermal Enthalpies= \(\quad-1760.776782\)
Sum of electronic and thermal Free Energies \(=\quad-1760.889688\)
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 353.505 & 136.135 & 237.631
\end{tabular}

C,0,-4.01887952,1.9489502209,-1.1046873274
С,0,-3.1099734611,2.0559660239,-2.0956250873
С,0,-1.7169647683,2.5596634173,-1.8739931084

O,0,-1.2291207863,2.1873976662,-0.6303430297
Ti,0,-1.4351594578,0.5537752548,0.1864943582
O,0,-2.0522462422,-1.1690018149,-0.377786196
C, \(0,-2.9534362452,-2.2102103866,-0.0335528601\)
C, \(0,-3.5423345813,-2.7422401776,-1.3283770609\)
O,0,-2.8731875958,0.2311571153,-1.0635970045
O,0,0.4203631519,0.0724952413,-0.4976874622
C,0,1.2227656886,0.866925073,-1.3052724268
С, \(0,1.5240121688,2.1266649255,-0.5332048617\)
O,0,1.6203080327,2.0969532592,0.6726764034
Ti,0,1.5347891935,-0.4507153657,1.1679448278
O,0,2.8500136352,-0.3410277758,-0.1476067172
C,0,2.5376555292,0.0788318708,-1.4150139694
C, \(0,2.3328376044,-1.031020545,-2.4342627366\)
O,0,2.6607442637,-2.229300379,-1.9906818143
O,0,-2.4593427134,1.0329937202,1.612839831
C,0,-1.9568137029,1.1168525822,2.909102426
C, \(0,-0.8754063621,0.0576475769,3.0252470022\)
O,0,-0.2671428894,0.0496553298,1.7628434848
O,0,1.3875172377,-2.202678222,1.3904142045
C,0,2.321045241,-3.2299221723,1.4934941944
O,0,2.5034262441,0.0418006843,2.5735331011
C,0,3.4312385368,1.0035781338,2.9462897125
С,0,-2.0893943612,-3.2667701291,0.6407816057
С,0,-4.0450458909,-1.7232255603,0.8998756151
O,0,1.932010869,-0.8087782371,-3.5457824381
O,0,1.743573787,3.1898153838,-1.2709167222
H,0,-1.5332277169,2.1105977767,3.0763624434
H,0,-2.7573407917,0.96107201,3.6347352105
H,0,-1.3054443005,-0.9255682901,3.2248010697
H,0,-0.1431179823,0.2820619204,3.7999765115
Н,0,-1.700663355,3.6513216965,-1.9527146236
H,0,-1.0762315815,2.1806058095,-2.6749144562
H,0,-3.385606577,1.7783975661,-3.1036027456
H,0,-5.0135201933,1.5845825455,-1.30768964
Н,0,-3.8039196878,2.2690950138,-0.0964747567
H,0,3.3267589885,0.7160060368,-1.8288584215
H,0,0.7883743849,1.0726067,-2.2789514303
H,0,3.8868529375,0.7198129546,3.8954715168
H,0,2.9540241301,1.9766941727,3.0607879489
H,0,4.2156646474,1.0874719161,2.1925406196
C,0,2.0702283559,4.3772508152,-0.5630429347
H,0,1.8025933014,-4.1885581297,1.4678105504
H,0,2.8694324077,-3.1551994618,2.4342293801
```

H,0,3.0293978659,-3.1865151059,0.6662688559
C,0,2.4763706571,-3.2824929525,-2.9192761344
H,0,-4.1857561966,-3.5993355992,-1.1331809756
H,0,-2.7457491387,-3.0503455798,-2.0027467317
H,0,-4.1264024108,-1.9673247832,-1.8189633848
H,0,-2.7003943404,-4.125522495,0.9182884995
H,0,-1.6178588519,-2.8674440131,1.5358741689
H,0,-1.3012939017,-3.5989620492,-0.0309702982
H,0,-4.7252510333,-2.5430262014,1.1282315899
H,0,-4.6099801318,-0.9182999993,0.4366678676
H,0,-3.6275664443,-1.3492140637,1.831379702
H,0,2.2170291041,5.1383070186,-1.3192063815
H,0,1.2554897246,4.6487996903,0.101152073
H,0,2.9774954406,4.234895282,0.0163732598
H,0,2.7899006228,-4.184309901,-2.4076332826
H,0,1.4319364092,-3.3525647421,-3.2092378259
H,0,3.0797551981,-3.1180033232,-3.8076058172

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.889892540\)
File: revis3energy
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.903478790\) File: revis3PCM

\section*{Revls3b}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to alkoxide, closest to alkoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards bystander alcohols.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis3boptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.42719890\)
Zero-point correction=
0.524305 (Hartree/Particle)

Thermal correction to Energy= 0.563208

Thermal correction to Enthalpy=
0.564152

Thermal correction to Gibbs Free Energy=
0.450034

Sum of electronic and zero-point Energies= -1760.816806
Sum of electronic and thermal Energies= \(\quad-1760.777904\)
Sum of electronic and thermal Enthalpies \(=\quad-1760.776960\)
Sum of electronic and thermal Free Energies \(=\quad-1760.891078\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 353.418 & 136.301 & 240.182
\end{tabular}

С,0,-4.0102970674,1.9007056776,-1.1164761924
С,0,-3.0953949399,2.0073495997,-2.1019621532
С,0,-1.7105252704,2.5331165429,-1.8763186211
O,0,-1.2191883617,2.1732339495,-0.6312420174
Ti,0,-1.4216705416,0.551299697,0.2114785936

```

H,0,-2.6781287687,-3.0902201825,-1.9512866413
H,0,-4.0722240301,-2.0203665251,-1.7824177721
H,0,-2.623447789,-4.1452287514,0.9609685739
H,0,-1.5703277037,-2.8694190497,1.5921251843
H,0,-1.2244036968,-3.5909178324,0.0265766426
H,0,-4.6693054823,-2.5830765075,1.1744848858
H,0,-4.5806320104,-0.9650451502,0.4633922612
H,0,-3.5911973613,-1.363109602,1.8630928192
H,0,2.272326462,5.0858120515,-1.4342579834
H,0,1.2961796528,4.6542407334,-0.0049688564
H,0,3.0167052,4.2307648897,-0.058475072
C,0,1.8893081975,-1.8350149408,-4.424722851
H,0,1.678615402,-1.3514432416,-5.3712207361
H,0,2.7812122657,-2.4502661126,-4.5027416142
H,0,1.0536686466,-2.4600681165,-4.1229187015

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.889827740\) File: revis3bfreqenergyPCM

PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.902893900\) File: revis3bfreqenergyPCM

\section*{Revis4}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to alkoxide, closest to alkoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards t-butoxide.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (revis4optfreq)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.34047987\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.524277 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.563108 \\
Thermal correction to Enthalpy= & 0.564052 \\
Thermal correction to Gibbs Free Energy= & 0.450195 \\
Sum of electronic and zero-point Energies= & -1760.816203 \\
Sum of electronic and thermal Energies= & -1760.777372 \\
Sum of electronic and thermal Enthalpies= & -1760.776428 \\
Sum of electronic and thermal Free Energies= & -1760.890285
\end{tabular}
Total 353.356
\begin{tabular}{cl} 
CV & S \\
Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
136.262 & 239.634
\end{tabular}

C,0,2.8110945962,2.6976160918,1.2679479051
C,0,3.2654362922,2.6800332663,-0.0026601232
C,0,2.3420724178,2.7739107505,-1.1821133615
O,0,1.1589704153,2.0879512361,-0.9300363397
Ti,0,1.2496545804,0.2991980403,-0.4931921391

O,0,1.9987366476,-0.8934540691,0.8127234771
C,0,3.0130185993,-1.8499008621,1.0624167273 C,0,3.4201837092,-1.708287753,2.5188028098
O,0,2.6331352743,0.7613806784,0.7775456058
O,0,-0.4974954666,0.4971293622,0.4614948746
C,0,-1.1893430931,1.6697809916,0.7368835883
C,0,-1.6105823257,2.2570341402,-0.5860733112
O,0,-1.7531556191,3.5600866736,-0.596184845
Ti, \(0,-1.8290924135,-0.7952645925,-0.4834249553\)
O,0,-2.9497076277,0.1389694442,0.6807653424
C,0,-2.4667226242,1.1767825732,1.4363515009
C,0,-2.0959511005,0.8200504469,2.8675861262
О,0,-2.4469849188,-0.4013124081,3.2196919251
O,0,2.1672191218,-0.2315787863,-1.9729663663
С, \(0,1.5193927611,-0.8075100051,-3.0645670881\)
С,0,0.3695572609,-1.6291603275,-2.5070881696
O,0,-0.1080866494,-0.8679845824,-1.4309110343
O,0,-1.7069652878,-2.3629704877,0.3318571951
С,0,-2.6448901873,-3.1865307562,0.9476596414
O,0,-2.982076446,-1.1349228402,-1.7902547742
C,0,-3.946773751,-0.5046762946,-2.5625210579
С,0,2.3536843759,-3.2005128273,0.8161763223
С,0,4.2033284659,-1.6550074797,0.1416831546
O,0,-1.5518218105,1.6045477046,3.5984335266
O,0,-1.8639300024,1.5313294141,-1.5211936394
H,0,1.1352898597,-0.0234056689,-3.722596565
H,0,2.2166219179,-1.4222410186,-3.6369880607
H,0,0.7169645881,-2.5956351767,-2.1392606301
H,0,-0.422002733,-1.7967520428,-3.2368298743
H,0,2.8400082622,2.3593337829,-2.0623406125
H,0,2.1142677004,3.8230160323,-1.3965204875
H,0,4.3246322706,2.5713700139,-0.1904995147
H,0,3.4871908223,2.6323102088,2.1047569508
H,0,1.7728727987,2.8852434873,1.4888899545
H,0,-3.197131665,1.9892981148,1.5113047139
H,0,-0.6248357773,2.373834274,1.3398445703
H,0,-4.4969056467,-1.2510262756,-3.1363417318
H,0,-3.4874198105,0.2030683151,-3.2523215312
H,0,-4.6498779684,0.0353308703,-1.9264781209
Н,0,-3.2084663476,-2.6287745286,1.6954283949
H,0,-2.1295504786,-4.0147361507,1.4342886012
Н, \(0,-3.3392687559,-3.5929793126,0.2100654588\)
C,0,-2.1023471911,-0.7653312342,4.5442835464
С,0,-2.1950853228,4.1257355643,-1.8216999958
```

H,0,4.1737305595,-2.4497493783,2.7820919319
H,0,2.555959295,-1.8433107096,3.1665772911
H,0,3.8285601222,-0.7155948599,2.6935685333
H,0,3.0380231715,-4.0048389845,1.0849367378
H,0,2.0871035235,-3.3113286351,-0.2329290268
H,0,1.4476249188,-3.2957803656,1.4105507133
H,0,4.9331825323,-2.4458959853,0.3117890739
H,0,4.6780887344,-0.6958434386,0.3326924182
Н, 0,3.8916784986,-1.6777899241,-0.8992599775
H,0,-2.4636953812,-1.7781132806,4.6747285367
H,0,-1.0252679337,-0.7252677432,4.6788299409
Н, $0,-2.5737824552,-0.0964726702,5.2588513072$
H,0,-2.248233921,5.1933577212,-1.649178828
H,0,-1.4854221055,3.8998488882,-2.6115654239
Н, $0,-3.1715762764,3.7332143683,-2.0892988119$

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence \(\mathrm{qz}) / / \mathrm{MPW} 1 \mathrm{~K} / 6-31 \mathrm{G}^{*}\) on CHO SDD on \(\mathrm{Ti}=-1761.41392185\)
File: revis4energy
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1761.42669638\)
File: revis4PCMsp

\section*{Is1}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to alkoxide, closest to bystander alcohols. Bystander carbonyl closest to tbutoxide, carbonyl points away from catalyst.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (is1optfreq)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.33880038\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.524581 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.563347 \\
Thermal correction to Enthalpy= & 0.564292 \\
Thermal correction to Gibbs Free Energy= & 0.450905 \\
Sum of electronic and zero-point Energies \(=\) & -1760.814219 \\
Sum of electronic and thermal Energies= & -1760.775453 \\
Sum of electronic and thermal Enthalpies= & -1760.774509 \\
Sum of electronic and thermal Free Energies= & -1760.887895
\end{tabular}
E (Thermal) CV S
\(\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol-Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) \(353.506 \quad 136.231 \quad 238.642\)

C,0,-3.6515451072,2.6029876934,0.0745204568
C, \(0,-2.9147265661,2.7973917332,1.1875731378\)
С,0,-1.4402123065,3.0564342399,1.1483617203

O,0,-0.8150576745,2.3334020459,0.1429749575
Ti,0,-1.1672675363,0.6186274666,-0.41588156
O,0,0.3912262184,-0.0420651633,0.6704147598
C,0,1.0373146458,0.5507585226,1.741747026
C,0,1.0875920461,-0.2987539064,2.9955621214
O,0,0.437290898,-1.4392408313,2.8958618754
O,0,-1.8135978672,0.9884768397,-2.0798578517
С,0,-1.3988751942,0.3402478217,-3.2394242281
C, \(0,0.0343881285,-0.098476483,-3.0143372136\)
O,0,0.0937611825,-0.4452895616,-1.6536224058
Ti,0,1.6881067153,-1.0001411454,-0.6604573389
O,0,1.4134369326,-2.7104337939,-0.3210801711
С,0,1.9702974939,-3.9373727976,-0.6551905883
O,0,-2.2249098445,-0.8279692106,0.2427739782
C, \(0,-3.2316739845,-1.7509431678,-0.1421778405\)
C,0,-4.236713764,-1.1233174347,-1.0901193971
O,0,-2.8393353932,0.7879281682,0.5602004264
O,0,2.8682757368,-0.4059579803,0.6645923429
C,0,2.4769398342,0.7771685337,1.2448114375
C,0,2.3604599263,1.8075085028,0.1458968845
O,0,2.4534386317,3.0571322152,0.5239911184
O,0,2.8245811055,-1.1463625807,-2.0233796825
C,0,3.9476819257,-0.5119314235,-2.5341689166
O,0,2.1348784902,1.4500635694,-0.9905952488
O,0,1.6666393784,0.071395492,3.9820240292
C,0,-3.9093472782,-2.2164017727,1.1347516146
С,0,-2.4875279362,-2.896432561,-0.8143203096
H,0,-2.0395103831,-0.5261439033,-3.4284261767
H,0,-1.4811455475,1.0098501385,-4.0975099286
H,0,0.7270706733,0.7220714758,-3.2044349939
H,0,0.3155609326,-0.9458628326,-3.638545037
H,0,-1.2543453775,4.1238179304,0.9898106558
\(\mathrm{H}, 0,-1.017814541,2.8122843827,2.1275916317\)
H,0,-3.3949072139,2.7759711994,2.1559240106
H,0,-4.7130148614,2.4238585647,0.1413805109
Н,0,-3.2235490925,2.6772399841,-0.9138394823
H,0,3.1376886285,1.1033997414,2.0462388971
Н, \(, 0.0 .5718656804,1.494480054,2.0235446083\)
Н,0,1.1778062549,-4.6458624407,-0.8985527113
H,0,2.5406618988,-4.3311211192,0.1868189042
H,0,2.6339224275,-3.8391161558,-1.5160897144
H,0,4.4742370611,-1.1874285582,-3.2091798493
H,0,4.6229097826,-0.2234644582,-1.7270833797
H,0,3.6655380832,0.3845840781,-3.087082971
\[
\begin{aligned}
& \mathrm{C}, 0,2.1767842983,4.0245581899,-0.482475599 \\
& \mathrm{C}, 0,0.4880499133,-2.2534209703,4.0527140819 \\
& \mathrm{H}, 0,-4.6838910144,-2.9503942739,0.9148990073 \\
& \mathrm{H}, 0,-4.3645266362,-1.3685083093,1.6423513894 \\
& \mathrm{H}, 0,-3.1796140284,-2.6672973719,1.8043655639 \\
& \mathrm{H}, 0,-3.180129935,-3.7028199721,-1.0546959337 \\
& \mathrm{H}, 0,-1.7113870135,-3.280414269,-0.156257341 \\
& \mathrm{H}, 0,-2.0119804502,-2.5582061661,-1.7325943843 \\
& \mathrm{H}, 0,-4.9394037333,-1.8820044231,-1.4329457466 \\
& \mathrm{H}, 0,-3.7381095273,-0.6912276417,-1.9537545118 \\
& \mathrm{H}, 0,-4.7917240092,-0.3332555894,-0.5912248834 \\
& \mathrm{H}, 0,-0.0832594031,--3.1416042773,3.8128022346 \\
& \mathrm{H}, 0,1.5165625602,-2.5127849013,4.2869355067 \\
& \mathrm{H}, 0,0.051771817,-1.7354036445,4.9023039957 \\
& \mathrm{H}, 0,2.2907709034,4.98787362,-0.0010982963 \\
& \mathrm{H}, 0,2.8816693621,3.9238515884,-1.3022723056 \\
& \mathrm{H}, 0,1.1634759548,3.8882764905,-0.8466548434
\end{aligned}
\]

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.887992720\)
File: islenergy
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.901282910\) File: is 1 PCM

\section*{Is2}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to alkoxide, closest to bystander alcohols. Bystander carbonyl closest to tbutoxide, carbonyl points away from catalyst.


\section*{Is3}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to bystander alcohols. Bystander carbonyl closest to allyl alkoxide, carbonyl points directly away from catalyst in between allyl alkoxide and bystander alcohols (not towards either).


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (is3optfreqenergyPCMesters)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.33826056\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.524863 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.563572 \\
Thermal correction to Enthalpy= \(=\) & 0.564516 \\
Thermal correction to Gibbs Free Energy= & 0.451576 \\
Sum of electronic and zero-point Energies \(=\) & -1760.813398 \\
Sum of electronic and thermal Energies= & -1760.774688 \\
Sum of electronic and thermal Enthalpies \(=\) & -1760.773744 \\
Sum of electronic and thermal Free Energies= & -1760.886685
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 353.647 & 136.192 & 237.704
\end{tabular}

C,0,3.6604592026,2.4072103593,-0.7270514614
С,0,2.6272937845,3.0642860999,-0.1620795421
C, \(0,1.3033569635,3.2059761215,-0.8500803031\)
O,0,1.0010164678,2.05353525,-1.562962779
Ti,0,1.0678060277,0.3685745389,-0.904773986
O,0,-0.372380662,0.6348636857,0.4779796203
C,0,-0.3259803619,0.5904284276,1.861572946
C,0,-0.6019063148,1.9110418692,2.5529025468
O,0,-0.6229092935,2.0003009866,3.7507665093
O,0,1.6376387574,-0.5176841229,-2.387951505
C,0,0.739883195,-0.7912178377,-3.420917361
C,0,-0.5665860888,-1.2098945961,-2.770708032
O,0,-0.6752162946,-0.3970215081,-1.6300767014
Ti,0,-2.1339885349,-0.0661001709,-0.3738934149
O,0,-2.937137203,1.3796827254,-0.9822169907
С,0,-4.1061564534,1.7302206051,-1.6441894503
O,0,1.9942722507,-0.7221646241,0.4154461999
C,0,3.0296547531,-1.701532478,0.3815194817
C,0,4.1988351443,-1.277900999,-0.4905298448
O,0,2.5991312283,0.9150710981,0.1589701382
O,0,-2.5147284268,-0.1360355068,1.4478298256
C,0,-1.445950229,-0.3879632319,2.2766006622
C,0,-0.980438554,-1.8008379545,2.0086349319
О,0,-0.5349596497,-2.4277856611,3.0785368913
```

O,0,-3.2305983856,-1.3368192999,-0.9540349771
C,0,-3.7860769948,-2.5494163768,-0.5732711304
O,0,-1.0386451989,-2.2854043521,0.904509659
O,0,-0.8205053579,2.9249492144,1.7343920055
C,0,3.4787877866,-1.8951689532,1.8198316977
C,0,2.3978071608,-2.9667554792,-0.182648669
H,0,0.5923106561,0.1086657939,-4.0232938893
H,0,1.1352397327,-1.5762222155,-4.06808218
H,0,-0.534750946,-2.2540616663,-2.4577033201
H,0,-1.4214060929,-1.0691955954,-3.4311451881
H,0,1.3335303402,4.0549678658,-1.5406086418
H,0,0.5242981559,3.4045297591,-0.1157538774
H,0,2.7434473453,3.4968566805,0.8221060852
H,0,4.6090470557,2.3191351549,-0.2221999297
H,0,3.5998147906,2.0350405838,-1.7383204632
H,0,-1.6962135577,-0.2671981969,3.3290120298
H,0,0.6512175084,0.2526610858,2.2098879666
H,0,-3.8658640767,2.342594119,-2.5135328759
H,0,-4.7502212736,2.307306199,-0.9801939828
H,0,-4.646215386,0.8413284088,-1.9743612018
C,0,-1.1405088651,4.1502249984,2.369535722
H,0,-4.6860304491,-2.7390159718,-1.1590895025
Н, $0,-4.0515788236,-2.5308648336,0.4845654137$
H,0,-3.0805558335,-3.3630777913,-0.7399770664
С,0,-0.1581997614,-3.7854324953,2.9127188131
H,0,4.2548592835,-2.6568779188,1.8856059557
H,0,2.640787079,-2.1983549104,2.4456053958
H,0,3.8750659324,-0.9611316868,2.2136241558
H,0,3.0877744986,-3.8054770343,-0.0906396447
H,0,2.1586204955,-2.8252356493,-1.2339461803
H,0,1.4771647189,-3.2067307385,0.3435359816
H,0,4.918001828,-2.0949518007,-0.5434096191
H,0,4.6963525341,-0.4055742603,-0.0758888423
H,0,3.8603730808,-1.0495206558,-1.4980470094
H,0,0.0210288544,-4.16357679,3.9116744707
H,0,-0.9563567204,-4.3418994966,2.4306412786
H,0,0.7447158053,-3.8615189031,2.3159454156
H,0,-1.3016067809,4.8625681522, 1.5694494711
H,0,-2.0405658992,4.0408998098,2.9670732555
H,0,-0.3264809478,4.4719851703,3.013204037

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.887220320\)
File: is3optfreqenergyPCMesters

PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.901201950\)
File: is3optfreqenergyPCMesters

\section*{Is3b}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to bystander alcohols. Bystander carbonyl closest to alkoxide, carbonyl points down directly down from catalyst in between alkoxide and bystander alcohols (not towards either).


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (is3bfreq)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.34021144\)
Zero-point correction \(=\quad 0.524653\) (Hartree/Particle)
Thermal correction to Energy=
0.563534

Thermal correction to Enthalpy= 0.564479

Thermal correction to Gibbs Free Energy= 0.450663
Sum of electronic and zero-point Energies= \(\quad-1760.815559\)
Sum of electronic and thermal Energies= \(\quad-1760.776677\)
Sum of electronic and thermal Enthalpies= \(\quad-1760.775733\)
Sum of electronic and thermal Free Energies \(=\quad-1760.889549\)
E (Thermal) CV S
\(\mathrm{KCal} / \mathrm{Mol} \quad \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} /\) Mol-Kelvin
\begin{tabular}{|c|c|c|}
\hline Total & & \\
\hline \multicolumn{3}{|l|}{C,0,3.5267839197,2.3804019383,-1.0030238714} \\
\hline \multicolumn{3}{|l|}{C,0,2.4049576828,3.0242987801,-0.6214363912} \\
\hline \multicolumn{3}{|l|}{C,0,1.1428806658,2.9739499274,-1.4273561776} \\
\hline \multicolumn{3}{|l|}{O,0,0.9726042697,1.7045324528,-1.9749865511} \\
\hline \multicolumn{3}{|l|}{Ti,0,1.0410536774,0.1720305359,-1.0245097323} \\
\hline \multicolumn{3}{|l|}{O,0,-0.3749243065,0.6780206952,0.3104636727} \\
\hline \multicolumn{3}{|l|}{C,0,-0.3021764133,0.846886038,1.679568549} \\
\hline \multicolumn{3}{|l|}{C,0,-0.4396595301,2.3028496898,2.077662598} \\
\hline \multicolumn{3}{|l|}{O,0,-0.4822717536,3.2421760445,1.3367034987} \\
\hline \multicolumn{3}{|l|}{O,0,1.5915062276,-0.9715001658,-2.3306130662} \\
\hline \multicolumn{3}{|l|}{C,0,0.6760137874,-1.4312108188,-3.278209991} \\
\hline \multicolumn{3}{|l|}{C,0,-0.6169069976,-1.7210363603,-2.538665500} \\
\hline \multicolumn{3}{|l|}{O,0,-0.7197227444,-0.6952433152,-1.5837896683} \\
\hline \multicolumn{3}{|l|}{Ti,0,-2.1603367457,-0.1058915608,-0.4069008966} \\
\hline \multicolumn{3}{|l|}{O,0,-2.8988667868,1.2509709168,-1.2465459758} \\
\hline \multicolumn{3}{|l|}{C,0,-4.0594391745,1.5901865839,-1.9266623028} \\
\hline \multicolumn{3}{|l|}{O,0,1.9845160978,-0.6950425299,0.449494111} \\
\hline \multicolumn{3}{|l|}{C,0,3.0823409946,-1.5907346694,0.5754976106} \\
\hline \multicolumn{3}{|l|}{C,0,4.2150116207,-1.2552502227,-0.3799631138} \\
\hline \multicolumn{3}{|l|}{O,0,2.5080508258,0.9282949786,-0.0005546494} \\
\hline \multicolumn{3}{|l|}{O,0,-2.5321704459,0.1573610588,1.4029428194} \\
\hline \multicolumn{3}{|l|}{C,0,-1.464981822,0.0073548165,2.2548297519} \\
\hline \multicolumn{3}{|l|}{C,0,-1.0505744501,-1.4467681177,2.2173411522} \\
\hline \multicolumn{3}{|l|}{O,0,-0.5991069065,-1.9069782224,3.3665789383} \\
\hline \multicolumn{3}{|l|}{O,0,-3.3168327802,-1.406416617,-0.7592850645} \\
\hline \multicolumn{3}{|l|}{C,0,-3.9336387328,-2.5089115783,-0.1886753285} \\
\hline \multicolumn{3}{|l|}{O,0,-1.145188357,-2.100791364,1.2071294704} \\
\hline \multicolumn{3}{|l|}{O,0,-0.4777457962,2.4113671011,3.4038847458} \\
\hline \multicolumn{3}{|l|}{C,0,3.5528062872,-1.5002506993,2.017111504} \\
\hline \multicolumn{3}{|l|}{C,0,2.5326600506,-2.9742593133,0.2541577207} \\
\hline \multicolumn{3}{|l|}{H,0,0.514083837,-0.6584981336,-4.0339193555} \\
\hline \multicolumn{3}{|l|}{H,0,1.0609585317,-2.3233144708,-3.7759370543} \\
\hline \multicolumn{3}{|l|}{H,0,-0.5659733379,-2.6797821681,-2.020869385} \\
\hline \multicolumn{3}{|l|}{H,0,-1.4826109683,-1.7243638274,-3.1998606854} \\
\hline \multicolumn{3}{|l|}{H,0,1.1923122536,3.7058920863,-2.2394065958} \\
\hline \multicolumn{3}{|l|}{H,0,0.295319464,3.226399659,-0.7936263739} \\
\hline \multicolumn{3}{|l|}{H,0,2.39367284,3.5879923953,0.300780537} \\
\hline \multicolumn{3}{|l|}{H,0,4.4294679976,2.4326739671,-0.415532603} \\
\hline \multicolumn{3}{|l|}{H,0,3.5837207677, 1.8772027784,-1.9561933004} \\
\hline \multicolumn{3}{|l|}{H,0,-1.7020056121,0.3015423377,3.2755128429} \\
\hline \multicolumn{3}{|l|}{H,0,0.6604569432,0.5019816374,2.0640353423} \\
\hline & 81,2.0 & ,-2.887583 \\
\hline
\end{tabular}
```

H,0,-4.6305791808,2.3155248397,-1.3469766322
H,0,-4.678786476,0.7081288243,-2.0985376203
C,0,-0.5895492691,3.7313486397,3.9046989325
H,0,-4.8385112586,-2.7519688886,-0.7467042622
H,0,-4.205558493,-2.3005820454,0.8472519329
H,0,-3.268668222,-3.3722811526,-0.2060127634
C,0,-0.2421317607,-3.2800812551,3.403206771
H,0,4.386551158,-2.1778467629,2.1974669609
H,0,2.7440968184,-1.7565965976,2.7003016785
H,0,3.8765241888,-0.4847865401,2.2377759591
H,0,3.2799387453,-3.7375203171,0.4696205214
H,0,2.2641365528,-3.0318053645,-0.7981127743
H,0,1.6418521463,-3.1793602718,0.8424654338
H,0,4.9850051207,-2.0227141096,-0.3052098605
H,0,4.6589589836,-0.2943112725,-0.1347086428
H,0,3.8544711712,-1.228396593,-1.4054526114
H,0,-0.6087562692,3.637417932,4.9837879299
H,0,0.2601952157,4.3313404465,3.5912256722
H,0,-1.5031300863,4.1975696233,3.5470491756
H,0,0.0147128706,-3.4884500006,4.4345084498
H,0,-1.0787682954,-3.8957826602,3.0866597815
H,0,0.608004728,-3.4707259098,2.7574612203

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.888913520\)
File: is3benergy
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.901328890\) File: is 3 bPCM

\section*{Is4}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to bystander alcohols. Bystander carbonyl closest to alkoxide, nonligating carbonyl points points away from catalyst.


\footnotetext{
C,0,0.4607864106,0.8041049494,1.8651450083
С,0,0.8016968858,0.1770530548,3.2030950334
O,0,0.8845386913,-1.1408835969,3.1702873677
O,0,-1.6876139089,-0.9301135262,-2.060458983
C, \(0,-0.8505288408,-1.5611300526,-2.9804262716\)
C,0,0.5269137869,-0.9475950479,-2.812888494
O,0,0.6692303092,-0.7667248033,-1.4249590202
Ti,0,2.1749410276,-0.1681228404,-0.3313189414 O,0,2.9903658467,-1.6590791032,0.1292924044
С,0,4.1667935435,-2.3463691118,-0.1366955924
O,0,-2.0219061133,0.9255491274,-0.0983729309
C,0,-3.1510037871,1.5825233538,-0.6659725149
С,0,-4.2859899451,0.6183779316,-0.964570009
O,0,-2.4735759552,-0.4132559147,0.9515514357
C,0,-3.591044284,2.6309781313,0.3411688127
С,0,-2.6570480177,2.2213670805,-1.9562465272
O,0,2.6189580643,1.0545315989,1.0028802174
C,0,1.5806772023,1.8011994519,1.5101753946
C, \(0,1.0760761862,2.6992854192,0.4037775346\)
О,0,0.6394244491,3.8696029491,0.820820266
O,0,3.2172661425,0.408807355,-1.6464286561
C,0,3.7579035328,1.5712872498,-2.1767276676
O,0,1.0888004074,2.3431505895,-0.7497644514
O,0,0.9675107427,0.8395264138,4.1909890793
H,0,-0.8083779647,-2.6337674984,-2.7705024687
H,0,-1.2293370057,-1.4226271817,-3.9949019818
H,0,0.5883730391,0.0247480786,-3.3022131753
H,0,1.3175947753,-1.588060511,-3.2022295648
H,0,-3.009128665,-3.1248485389,-0.5028641708
Н,0,-2.1846410521,-4.1472661786,0.6684699879
H,0,-4.1587012601,-2.3647248415,1.474275977
H,0,-2.9381099921,-1.2626337196,3.2780516409
H,0,-1.335333415,-1.8461038218,2.5675581728
H,0,1.8718811882,2.3874161193,2.3796709857
H,0,-0.5039204395,1.3015323474,1.9818541685
H,0,3.939681976,-3.3905140879,-0.3521441647
H,0,4.8258046176,-2.3057721145,0.7309478
H,0,4.6843547318,-1.9114298315,-0.993274029
H,0,3.0239980939,2.0874859791,-2.7949961795
H,0,4.6237815396, 1.3233522407,-2.7912574682
H,0,4.0736035818,2.2431775755,-1.3776103501
C,0,0.1931062928,4.7730231104,-0.1777577238
C,0,1.2489443599,-1.7531049502,4.3949381251
H,0,-4.4395561183,3.1998496558,-0.037275395
}
```

H,0,-2.7775124794,3.3229744036,0.553761881
H,0,-3.8823481225,2.1511215871,1.2734368752
H,0,-3.4416150337,2.8388540182,-2.3931724511
H,0,-2.3758002191,1.4489899063,-2.6671303765
H,0,-1.7860797731,2.8450865664,-1.7687042614
H,0,-5.0954569931,1.1593578313,-1.453874718
H,0,-4.6680746519,0.1769722972,-0.0481937426
H,0,-3.948050291,-0.1734058906,-1.6281317031
H,0,1.28777852,-2.8158311746,4.1902995933
H,0,2.2196287899,-1.3920514274,4.7213369731
H,0,0.513710684,-1.5358363907,5.1649394415
H,0,-0.0027928999,5.7055778614,0.3369428827
H,0,0.9601363551,4.9078263927,-0.9344850163
H,0,-0.7131646363,4.4040751813,-0.646359348

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1761.41305795\)
File: is4energy
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-\)-1761.42628262 File: is 4 PCMsp

\section*{Is4b}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to bystander alcohols. Bystander carbonyl closest to alkoxide, carbonyl points points down directly down from catalyst in between alkoxide and bystander alcohols (not towards either).


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (is4boptfreq)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1761.33978389\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.524810 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.563433 \\
Thermal correction to Enthalpy= \(=\) & 0.564377 \\
Thermal correction to Gibbs Free Energy= & 0.451487 \\
Sum of electronic and zero-point Energies \(=\) & -1760.814974 \\
Sum of electronic and thermal Energies= & -1760.776351 \\
Sum of electronic and thermal Enthalpies \(=\) & -1760.775406 \\
Sum of electronic and thermal Free Energies \(=\) & -1760.888297
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 353.560 & 136.041 & 237.599
\end{tabular}

C,0,2.3169188543,2.5959556573,-1.7145348539
C,0,3.1445832739,1.6884034417,-2.2699358373
C,0,2.6304700858,0.5338595829,-3.0761543368
O,0,1.4243962855,0.0819113833,-2.5617058443
Ti,0,1.2127488098,-0.4113913531,-0.8325624229
O,0,2.4324123039,1.0295038856,-0.3622430947
O,0,-0.4461877093,0.5435555127,-0.2876812576
\begin{tabular}{l} 
Ti, \(0,-2.0404446681,-0.7514698869,-0.6185430361\) \\
\(\mathrm{O}, 0,-3.0153303021,-2.1736915631,-0.1997228124\) \\
\(\mathrm{C}, 0,-3.6171322267,-2.8069853983,0.8780565013\) \\
\(\mathrm{O}, 0,2.0482249195,-2.0400839273,-0.9872101777\) \\
\(\mathrm{C}, 0,1.3835413027,-3.0223558825,-1.7226671682\) \\
\(\mathrm{C}, 0,-0.0580774567,-3.0282104396,-1.2483408469\) \\
\(\mathrm{O}, 0,-0.3717743844,-1.67189542,-1.0494353888\) \\
\(\mathrm{O}, 0,1.9899379728,-0.094908613,0.9170487745\) \\
\(\mathrm{C}, 0,3.1177810576,-0.5327618017,1.6671665309\) \\
\(\mathrm{C}, 0,2.7366317217,-1.890412284,2.239786066\) \\
\(\mathrm{C}, 0,-0.671342631,1.5480856009,0.6341528918\) \\
\(\mathrm{C}, 0,-1.8625741778,1.0445276553,1.4749166255\) \\
\(\mathrm{C}, 0,-1.3506713054,-0.0457011142,2.3905166458\) \\
\(\mathrm{O}, 0,-1.2201757124,-1.1832387121,2.0123354304\) \\
\(\mathrm{C}, 0,-1.0074397995,2.8580227691,-0.0508424478\) \\
\(\mathrm{O}, 0,-0.9226031017,3.077090331,-1.2240940139\) \\
\(\mathrm{O}, 0,-1.3783769686,3.7689438273,0.846291155\) \\
\(\mathrm{O}, 0,-2.7145756211,-0.3066883655,-2.17797456\) \\
\(\mathrm{C}, 0,-3.8256832676,-0.5347827858,-2.9780240412\) \\
\(\mathrm{O}, 0,-2.7519806734,0.4784835913,0.594262335\) \\
\(\mathrm{C}, 0,4.3635156398,-0.6627746453,0.8080289285\) \\
\(\mathrm{C}, 0,3.3265834443,0.4915042971,2.7693425094\) \\
\(\mathrm{O}, 0,-1.0620810919,0.3758493751,3.6067680015\) \\
\(\mathrm{H}, 0,1.4221842036,-2.7792951838,-2.788446607\) \\
\(\mathrm{H}, 0,1.8582510703,-3.9939929931,-1.5723062581\) \\
\(\mathrm{H}, 0,-0.1575866014,-3.5547139168,-0.2986458181\) \\
\(\mathrm{H}, 0,-0.734007899,-3.4788735669,-1.9742973265\) \\
\(\mathrm{H}, 0,3.3718624568,-0.2706736228,-3.0734082015\) \\
\(\mathrm{H}, 0,2.4854717488,0.835524822,-4.1177808098\) \\
\(\mathrm{H}, 0,4.2146027815,1.7840860649,-2.1446137699\) \\
\(\mathrm{H}, 0,2.7108849691,3.4199671776,-1.14047505\) \\
\(\mathrm{H}, 0,1.2512041397,2.5690718458,-1.8856496891\) \\
\(\mathrm{H}, 0,-2.3068742865,1.8472685574,2.0602959927\) \\
\(\mathrm{H}, 0,0.2123185617,1.7205642578,1.2532520735\) \\
\(\mathrm{H}, 0,-3.5080817894,-0.6671146101,-4.0120135393\) \\
\(\mathrm{H}, 0,-4.5013813618,0.3191736205,-2.9278542259\) \\
\(\mathrm{H}, 0,-4.3593880989,-1.4291586206,-2.6522068005\) \\
\(\mathrm{H}, 0,-2.8720322061,-3.3097313917,1.4938254376\) \\
\(\mathrm{H}, 0,-4.3308364865,-3.5463896523,0.513548481\) \\
\(\mathrm{H}, 0,-4.1469615681,-2.0819434119,1.4976333557\) \\
\(\mathrm{C}, 0,-0.5760895741,-0.6030197079,4.5110992403\) \\
\(\mathrm{C}, 0,-1.696694724,5.0438084298,0.3172290979\) \\
\(\mathrm{H}, 0,4.1685433805,0.2143036211,3.4028286198\) \\
\(\mathrm{H}, 0,2.4358800542,0.5674089694,3.3923506212\) \\
\hline
\end{tabular}
```

H,0,3.5251892326,1.4695127956,2.3352589607
H,0,3.5177371454,-2.2479340276,2.9105035129
H,0,2.6038239036,-2.6075753482,1.4343125586
H,0,1.8049057412,-1.8236117953,2.7966833375
H,0,5.1749822701,-1.0679949989, 1.4119846986
H,0,4.6685846695,0.30542492,0.4208345875
H,0,4.1807237168,-1.3376663984,-0.0244769828
H,0,-0.4865046398,-0.1020027204,5.4671739696
H,0,-1.2721303269,-1.4337440406,4.5789299338
$\mathrm{H}, 0,0.391399614,-0.9716703769,4.1862031304$
H,0,-1.974211633,5.6563926076,1.1665956658
H,0,-0.8374889533,5.4691587722,-0.1938071474
H,0,-2.5227635648,4.9675452309,-0.3837940199

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.888406440\)
File: is4benergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1760.900673540\) File: is4benergyPCM

\section*{Theoretical Structures with trans butenol as allyl alcohol}

\section*{Revls1trans}

Description: Gives correct enantiomer using trans butenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards allyl alkoxide.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis 1 transbutfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1800.74613352\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.553470 (Hartree/Particle) \\
Thermal correction to Energy= & 0.593777 \\
Thermal correction to Enthalpy= & 0.594721 \\
Thermal correction to Gibbs Free Energy= & 0.478554 \\
Sum of electronic and zero-point Energies= & -1800.101963 \\
Sum of electronic and thermal Energies= & -1800.061656 \\
Sum of electronic and thermal Enthalpies= & -1800.060712 \\
Sum of electronic and thermal Free Energies= & -1800.176879
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 372.601 & 141.634 & 244.493
\end{tabular}

C,0,-2.6552750908,3.6198692452,-0.0099614865
C,0,-1.3850251977,3.5900065519,0.4472180723
С,0,-0.2096650609,3.2857971804,-0.4308401099
O,0,-0.5393800318,2.3223491744,-1.3759042899
Ti,0,-1.1983434212,0.7049174724,-0.8942225289
O,0,-2.2401405248,-0.1467457657,0.518339844
C,0,-3.5510443666,-0.6585714391,0.713990303

С, \(0,-3.8811957347,-0.4826135425,2.1861610695\)
O,0,-2.2012605772,1.6166048408,0.4965609851
O,0,0.439099407,0.3243681414,0.2262883839
C, \(0,0.5844990651,0.0403367175,1.5742758946\)
C,0,2.1107886603,-0.0203158485,1.75554444607
O,0,2.5867133859,-0.7974915542,0.7292653051
Ti,0,1.6003994723,-0.9829289618,-0.8529847817
O,0,2.5788621842,-0.0382366513,-1.9866087113
C,0,3.9408154341,-0.0007370818,-2.2715984255
O,0,-2.2136299014,0.3431700193,-2.3518631701
C, \(0,-1.9253064968,-0.6922167937,-3.2402177508\)
C,0,-0.4288627972,-0.9427046291,-3.1582472507
O,0,-0.1110455967,-0.7445110252,-1.8042459465
O, \(0,2.0257082484,-2.6548812425,-1.2673105192\)
С, \(0,2.0839687041,-3.9345624399,-0.7370907917\)
С,0,-3.4682106601,-2.1330696057,0.3429334226
С,0,-4.5780624832,0.0420347186,-0.1566808438
C,0,0.0905640134,-1.3645781419,1.8071176097
O,0,-0.2562748369,-1.6157319768,3.050837138
С,0,-0.5642657439,-2.9673774574,3.3568104148
O,0,0.1230089003,-2.1911539919,0.9259863742
C,0,2.6469045968,1.4031944573,1.7755431523
O,0,3.7446548869,1.5562100472,1.0602484719
C,0,4.2938719951,2.8613874159,1.0675935134
O,0,2.132518372,2.2842290324,2.413933603
H,0,-2.4783990221,-1.5905501107,-2.9525175115
H,0,-2.2300687274,-0.416825718,-4.2509668101
Н, \(0,0.1223059446,-0.2215546638,-3.7632599915\)
H,0,-0.1537769313,-1.9495989667,-3.4722764146
H,0,0.1174242723,4.1932128756,-0.9477504903
H,0,0.6218154155,2.9462104107,0.1887454546
H,0,-1.1885420109,3.826790225,1.4847842213
C, \(0,-3.828349224,4.0002681198,0.8192864017\)
Н, \(0,-2.8272042251,3.4404058784,-1.0631990702\)
H,0,2.3660159552,-0.4505389973,2.7306177181
H,0,0.0966997259,0.7636323708,2.2209046654
H,0,2.560333797,-4.6035920895,-1.4544170376
Н, \(0,1.0837876671,-4.30719243,-0.5172850752\)
H,0,2.667831536,-3.9380978093,0.1846381909
H,0,4.1346557901,0.8012221719,-2.9836731661
Н,0,4.2663008197,-0.9455263365,-2.7104977899
H,0,4.5145063724,0.1831869041,-1.3631351107
Н,0,-4.8624781977,-0.8961014377,2.4163803763
Н,0,-3.8778829858,0.574823078,2.4408606502
```

H,0,-3.1373734568,-0.9822364309,2.8042699494
H,0,-4.4145916795,-2.6286906039,0.5581066621
H,0,-2.6773013923,-2.6280925893,0.9007961608
H,0,-3.2516426288,-2.2477527014,-0.7171840975
H,0,-5.5514331382,-0.4289872143,-0.0232850043
H,0,-4.2989133597,-0.0148082514,-1.2054836854
H,0,-4.6614216607,1.0890799774,0.1187547443
H,0,-0.7542771771,-2.9901145362,4.4226427256
H,0,-1.4446967329,-3.2888854776,2.8093929183
H,0,0.2719809163,-3.6120426181,3.1031282057
H,0,5.1935317196,2.8054039354,0.4670481839
H,0,3.5935687862,3.5699334134,0.6344944953
H,0,4.5297410488,3.171391798,2.0816971182
H,0,-4.6351616582,3.2777955091,0.7124011097
H,0,-3.5666665736,4.0719041491,1.8724763849
H,0,-4.2197557888,4.9664742999,0.4953045063

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.177299210\)
File: revis1transbutfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.192663520\) File: revis1transbutfreqenergyPCM

\section*{Revls1dtrans}

Description: Gives correct enantiomer using trans butenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards bystander alcohols.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis1dtransbutfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1800.65446342\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.553415 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.593787 \\
Thermal correction to Enthalpy \(=\) & 0.594731 \\
Thermal correction to Gibbs Free Energy= & 0.478449 \\
Sum of electronic and zero-point Energies \(=\) & -1800.101048 \\
Sum of electronic and thermal Energies= & -1800.060677 \\
Sum of electronic and thermal Enthalpies \(=\) & -1800.059732 \\
Sum of electronic and thermal Free Energies= & -1800.176014
\end{tabular}

Total
E (Thermal) CV S
\begin{tabular}{ccc}
\(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) & \(\mathrm{Cal} /\) Mol-Kelvin \\
372.607 & 141.725 & 244.735
\end{tabular}

C, \(0,-2.5941897943,3.2400526248,-1.3688250951\)
С,0,-1.2743524121,3.3896821161,-1.1144547495
С,0,-0.2110491708,2.6818130733,-1.8969979967
O,0,-0.6415619998,1.417113228,-2.2682364285
Ti,0,-1.2353919999,0.2008182214,-1.0591294759
O,0,-0.147069432,-1.4581409832,-1.4238693945
C, \(0,-0.5584355284,-2.170619888,-2.5627148864\)

C,0,-2.0718809881,-2.0349369309,-2.5674124607
О,0,-2.3653455704,-0.748895773,-2.1117623833
O,0,-2.1584645536,0.0940333281,0.6493859474
C, \(,,-3.4492723741,-0.2666193114,1.1235303531\)
C, \(0,-4.5456486953,0.086636955,0.1344534255\)
O,0,-2.1136777351,1.6765950112,-0.1307107293
O,0,0.4746155706,0.3191931184,0.0048720907
Ti,0,1.6472677422,-1.2576445093,-0.6217078859 O,0,2.1055922952,-2.961287679,-0.4173862538
C,0,2.2205939943,-3.9452835847,0.5519175559
C,0,-3.6550306418,0.4649797898,2.4390496787
С,0,-3.4055301581,-1.7738609808,1.3339577516
C,0,0.6970319222,0.5466850723,1.3502381655
C,0,0.2589755045,-0.6753478186,2.1189197077
O,0,0.2564573976,-1.7703901979,1.6123374899
C,0,2.2374093364,0.5688536199,1.4623944096
C,0,2.7703677386,1.8876397946,0.9317749992
O,0,2.4056806443,2.8875234326,1.7368812056
C,0,2.8634141963,4.171584773,1.355519587
O,0,2.6842342808,-0.5030861669,0.7385271576
O,0,2.4892726927,-0.7598888111,-2.0821608548
С,0,3.7727487545,-0.4064471689,-2.4919278168
O,0,0.0006364505,-0.4401230398,3.3892226337
C,0,-0.2463805861,-1.5804213025,4.1978298434
O,0,3.4278368242,2.0384997195,-0.0554691823
H,0,-2.5219876103,-2.7741566797,-1.8993661096
H,0,-2.4851193877,-2.1833980124,-3.5660697769
H,0,-0.1220995179,-1.7093110969,-3.449715148
H,0,-0.2279123923,-3.2074468068,-2.5042638104
H,0,0.035832603,3.2544172144,-2.7966804433
H,0,0.7027163121,2.611988579,-1.3028594001
Н,0,-0.9644859909,4.0562176761,-0.3196316306
С,0,-3.6627434692,3.9997339348,-0.6676451835
H,0,-2.8882962053,2.6329311434,-2.2144835808
H,0,2.5399086646,0.5039029427,2.5121338614
H,0,0.2095170724,1.4458294207,1.717768623
H,0,2.720147644,-4.8165701261,0.1268556646
H,0,1.238606845,-4.2452423281,0.9177318302
H,0,2.8100279812,-3.583130564,1.3958553017
H,0,3.7136720439,0.0691224248,-3.4704259202
H,0,4.4002271823,-1.2952567729,-2.5718220277
H,0,4.2143294466,0.2897786739,-1.7817721405
H,0,-4.6150823984,0.2039792696,2.8831495795
Н,0,-3.6286034845,1.5396704848,2.2717834049
\[
\begin{aligned}
& \mathrm{H}, 0,-2.8644927071,0.2116965217,3.1432695379 \\
& \mathrm{H}, 0,-4.3326591761,-2.1173450166,1.7923126687 \\
& \mathrm{H}, 0,-2.573507711,-2.0517439141,1.9762750932 \\
& \mathrm{H}, 0,-3.2810874397,-2.2857739255,0.3820066643 \\
& \mathrm{H}, 0,-5.5039379746,-0.2687501494,0.5119621449 \\
& \mathrm{H}, 0,-4.3560288042,-0.3740463569,-0.8315863576 \\
& \mathrm{H}, 0,-4.6072584695,1.1622054038,-0.0007290292 \\
& \mathrm{H}, 0,-0.3780795998,-1.2030936497,5.2043117415 \\
& \mathrm{H}, 0,-1.1433534051,-2.0941200608,3.8664421731 \\
& \mathrm{H}, 0,0.5957893415,-2.2645687557,4.1527381871 \\
& \mathrm{H}, 0,2.4946729709,4.8551157,2.1110858636 \\
& \mathrm{H}, 0,3.9489959872,4.1941048251,1.3205339943 \\
& \mathrm{H}, 0,2.4760717607,4.4419634027,0.3769030283 \\
& \mathrm{H}, 0,-4.4798504289,3.3453351972,-0.3729485465 \\
& \mathrm{H}, 0,-3.2808195677,4.4960803473,0.2215995314 \\
& \mathrm{H}, 0,-4.0811198208,4.7580733219,-1.3320761978
\end{aligned}
\]

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.176349210\)
File: revis1dtransbutfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.191188150\) File: revis1dtransbutfreqenergyPCM

\section*{Revls3trans}

Description: Gives incorrect enantiomer using trans butenol as substrate. Coordinating carbonyl cis to allyl alkoxide, closest to allyl alkoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards t-butoxide.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (revis3transbutoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1800.74401052\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.553336 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.593779 \\
Thermal correction to Enthalpy= & 0.594723 \\
Thermal correction to Gibbs Free Energy= & 0.477749 \\
Sum of electronic and zero-point Energies= & -1800.101405 \\
Sum of electronic and thermal Energies= & -1800.060962 \\
Sum of electronic and thermal Enthalpies= & -1800.060018 \\
Sum of electronic and thermal Free Energies= & -1800.176992
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 372.602 & 141.612 & 246.194
\end{tabular}

C,0,-4.0395344116,1.984810594,-1.1432406887
C, \(0,-3.1039408689,2.0374252298,-2.1157893422\)
С,0,-1.7096951951,2.5386655138,-1.8943960485
O,0,-1.2233417136,2.1814781533,-0.6435661595
Ti,0,-1.4334073793,0.550788128,0.1711486328
O,0,-0.2722931743,0.0768566466,1.7651771192
C,0,-0.8955509797,0.0771904656,3.0198732648
\(\mathrm{C}, 0,-1.9991978453,1.1113160101,2.8860554741\)
\(\mathrm{O}, 0,-2.4858304706,1.0125155521,1.5849573434\)
\(\mathrm{O}, 0,-2.0296328466,-1.1773849191,-0.414740185\)
\(\mathrm{C}, 0,-2.9131464457,-2.2320703626,-0.0669983299\)
\(\mathrm{C}, 0,-3.9352314285,-1.7923304257,0.9634007514\)
\(\mathrm{O}, 0,-2.8477537869,0.2231200077,-1.0938219477\)
\(\mathrm{O}, 0,0.4309940691,0.0675550472,-0.4913106417\)
\(\mathrm{Ti}, 0,1.5367899979,-0.4220596771,1.1900774085\)
\(\mathrm{O}, 0,2.5033485081,0.0895280386,2.5910883959\)
\(\mathrm{C}, 0,3.4381713025,1.050850756,2.9465324569\)
\(\mathrm{C}, 0,-3.5916275751,-2.6990426032,-1.3430734615\)
\(\mathrm{C}, 0,-2.0100039406,-3.3226321174,0.492528871\)
\(\mathrm{C}, 0,1.2362859016,0.8523607011,-1.3042246756\)
\(\mathrm{C}, 0,2.5517900087,0.0622570545,-1.3967835561\)
\(\mathrm{C}, 0,2.3472276465,-1.0634848314,-2.3984451113\)
\(\mathrm{O}, 0,1.9616597742,-0.8572113273,-3.5183839325\)
\(\mathrm{C}, 0,1.5311587371,2.1206117955,-0.5440336164\)
\(\mathrm{O}, 0,1.7519833266,3.1775754538,-1.2895375397\)
\(\mathrm{C}, 0,2.0691163261,4.372723843,-0.5903692305\)
\(\mathrm{O}, 0,1.6201489775,2.1018478136,0.6629063073\)
\(\mathrm{O}, 0,2.8584516633,-0.3382532364,-0.1216651305\)
\(\mathrm{O}, 0,1.3796632087,-2.1688460416,1.443639366\)
\(\mathrm{C}, 0,2.2930026704,-3.2126669078,1.5540594427\)
\(\mathrm{O}, 0,2.65480995533,-2.2575070504,-1.9291197933\)
\(\mathrm{C}, 0,2.4658564079,-3.3253401083,-2.8396969576\)
\(\mathrm{H}, 0,-1.5993613626,2.1147773662,3.0546121977\)
\(\mathrm{H}, 0,-2.8038123805,0.9403161472,3.6038500441\)
\(\mathrm{H}, 0,-1.3049727951,-0.9149081411,3.2195031922\)
\(\mathrm{H}, 0,-0.1780543825,0.3219426061,3.8024033711\)
\(\mathrm{H}, 0,-1.6851880247,3.6290411586,-1.9849967819\)
\(\mathrm{H}, 0,-1.0681196759,2.1461914247,-2.6883009053\)
\(\mathrm{H}, 0,-3.3722839721,1.7436883274,-3.1223204741\)
\(\mathrm{C}, 0,-5.4432903342,1.5506541773,-1.3607153262\)
\(\mathrm{H}, 0,-3.777925386,2.3206175007,-0.1481900472\)
\(\mathrm{H}, 0,3.34323588966,0.6916766634,-1.817642757\)
\(\mathrm{H}, 0,0.806276875,1.0473865455,-2.2821580971\)
\(\mathrm{H}, 0,3.8874993245,0.7840194415,3.9036395499\)
\(\mathrm{H}, 0,2.9695816967,2.0306339305,3.0378002337\)
\(\mathrm{H}, 0,4.2265498336,1.1111205521,2.1945092067\)
\(\mathrm{H}, 0,1.7541537691,-4.1604117721,1.5634404138\)
\(\mathrm{H}, 0,2.8623817038,--3.1267581372,2.4813434129\)
\(\mathrm{H}, 0,2.9845993232,-3.2057862795,0.7116739814\)
\(\mathrm{H}, 0,-4.2111753334,-3.5736117517,-1.1480604852\)
\(\mathrm{H}, 0,-2.8435728258,-2.9603353051,-2.0888887913\)
```

H,0,-4.2163886054,-1.906956195,-1.7481971361
H,0,-2.6077068722,-4.1853120717,0.786890016
H,0,-1.4597394583,-2.9623614943,1.3588172648
H,0,-1.2862559181,-3.6367807564,-0.2561837865
H,0,-4.6235813951,-2.6104154386,1.1728760372
H,0,-4.5028758618,-0.9418893725,0.5958570347
H,0,-3.4542993389,-1.4986543482,1.8932505125
H,0,2.2154645853,5.127961695,-1.3524357
H,0,1.2498075951,4.6454852996,0.0676441779
H,0,2.9744804571,4.2402357529,-0.00568233
H,0,2.7606285347,-4.2216750691,-2.3076164334
H,0,1.4238429228,-3.3861625208,-3.1403370032
H,0,3.0814558592,-3.1864912778,-3.7240402801
H,0,-5.7245979191,0.7869332049,-0.6376803824
H,0,-6.1246040688,2.3915882535,-1.2185737876
H,0,-5.5921398794,1.1524686883,-2.3618866277

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.177381210\)
File: revis3transbutoptfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.190674520\) File: revis3transbutoptfreqenergyPCM

\section*{Is3btrans}

Description: Gives incorrect enantiomer using trans butenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to bystander alcohols. Bystander carbonyl closest to alkoxide, carbonyl points down directly down from catalyst in between alkoxide and bystander alcohols (not towards either).


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (is3btransbutoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1800.65279643\)
\begin{tabular}{lc} 
Zero-point correction= & 0.553372 (Hartree/Particle) \\
Thermal correction to Energy= & 0.593967 \\
Thermal correction to Enthalpy= & 0.594911 \\
Thermal correction to Gibbs Free Energy= & 0.477205 \\
Sum of electronic and zero-point Energies \(=\) & -1800.099425 \\
Sum of electronic and thermal Energies= & -1800.058829 \\
Sum of electronic and thermal Enthalpies= & -1800.057885 \\
Sum of electronic and thermal Free Energies= & -1800.175591
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 372.720 & 141.883 & 247.734
\end{tabular}

C,0,3.7021277737,1.8881888597,-1.6514881256
С,0,2.4851696844,2.4697063456,-1.7230725772
С,0,1.3875869931,1.9733135386,-2.6165869826
O,0,1.2839667872,0.5857040064,-2.5467530879
Ti,0,1.2165060975,-0.3615072326,-1.0172560889
O,0,2.5291545015,0.8559792654,-0.2653672624
O,0,-0.3711519424,0.6020579365,-0.2332164731
Ti,0,-2.0413122314,-0.5221247327,-0.7194456535
O,0,-3.128859505,-1.9149918365,-0.5402884731

C,0,-3.788366526,-2.6601440305,0.4255533188
O,0,1.9256869175,-1.9316966904,-1.6118249419
С,0,1.1396799866,-2.7796138042,-2.3939808217
C,0,-0.2446254726,-2.8019941536,-1.7703899814
О,0,-0.458183845,-1.4876005196,-1.3229227264
O,0,1.9461234099,-0.4357529916,0.7890262095
C,0,2.9779512999,-1.1749115688,1.4326100024
C,0,2.3832704013,-2.5469495267,1.7191705984
C,0,-0.4778605348,1.3898212798,0.8962450675
C, \(0,-1.7017354812,0.8368972008,1.6622320935\)
С,0,-1.2708563427,-0.4239412127,2.3784996556
O,0,-1.2194108497,-1.4896176835,1.8170901377
C,0,-0.6840882475,2.8512484389,0.5523811433
O,0,-0.8527726006,3.5604536884,1.6670593244
C, \(0,-1.0457158901,4.9507843252,1.4810122866\)
O,0,-0.6753214623,3.3353565153,-0.5423028076
O,0,-2.6909350924,0.2452750456,-2.1637096724
C,0,-3.8307977151,0.2217043889,-2.9556168046
O,0,-2.6439750174,0.4946780891,0.7239690775
C, \(0,4.2145181785,-1.3215272904,0.5637147332\)
C,0,3.3077235789,-0.4315855002,2.7158278125
O,0,-0.9683479162,-0.2318735832,3.6487570984
C,0,-0.6011622737,-1.3822773182,4.3926929946
Н, \(0,1.0878481625,-2.3917032383,-3.4144159683\)
H,0,1.5791212021,-3.778295427,-2.4285042516
H,0,-0.2811020323,-3.4746541109,-0.9126076894
H,0,-1.014508538,-3.0998676474,-2.481349342
H,0,1.596684492,2.2568534765,-3.6524862819
H,0,0.4453908907,2.4305217195,-2.3230777403
H,0,2.286945305,3.3550192595,-1.1332107874
C,0,4.8343375256,2.4284796649,-0.8539887424
H,0,3.907293286,1.0413184349,-2.2936654981
H,0,-2.0790823109,1.559596014,2.3834208206
H,0,0.4289947793,1.3289326932,1.5017760329
H,0,-3.5442418001,0.242580818,-4.0069558556
H,0,-4.4484177316,1.0952861093,-2.7461186003
H,0,-4.4159096685,-0.679557679,-2.764964005
H,0,-4.6277327018,-3.1871007269,-0.0294117662
Н,0,-4.1669494061,-2.0096835428,1.2153377368
H,0,-3.1146600002,-3.3913573447,0.8716301257
H,0,4.0748886619,-0.9563804686,3.2841432072
H,0,2.4200263144,-0.3344349507,3.3392839249
H,0,3.670064275,0.5677400415,2.4826187946
H,0,3.0638634712,-3.1324599932,2.3372831498
\(\mathrm{H}, 0,2.2128313282,-3.0779276132,0.7855266425\)
\(\mathrm{H}, 0,1.4299164929,-2.453578982,2.2334518173\)
\(\mathrm{H}, 0,4.9410939157,-1.9515958712,1.075988829\)
\(\mathrm{H}, 0,4.6699372854,-0.3543447792,0.374980445\)
\(\mathrm{H}, 0,3.9612912523,-1.7845420897,-0.3865226206\)
\(\mathrm{H}, 0,-1.166584612,5.3684067949,2.4733358949\)
\(\mathrm{H}, 0,-0.1853278379,5.3923365908,0.9858701526\)
\(\mathrm{H}, 0,-1.9317155065,5.1347416834,0.8801173575\)
\(\mathrm{H}, 0,-0.5164802207,-1.0523625527,5.4209082795\)
\(\mathrm{H}, 0,-1.3627696722,-2.1507437567,4.2996762945\)
\(\mathrm{H}, 0,0.3487990226,-1.7747708434,4.0449573317\)
\(\mathrm{H}, 0,5.3096390438,1.6473546325,-0.2647941086\)
\(\mathrm{H}, 0,5.5971485993,2.8404902727,-1.5173395723\)
\(\mathrm{H}, 0,4.5047960685,3.2156171629,-0.1797600807\)

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.175434550\)
File: is3btransbutenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.187883020\)
File: is3btransbutenergyPCM

\section*{Theoretical Structures with cis butenol as allyl alcohol}

\section*{Revls1cis}

Description: Gives correct enantiomer using cis butenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards allyl alkoxide.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis 1 cisbutfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1800.65166028\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.553581 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.594094 \\
Thermal correction to Enthalpy= & 0.595038 \\
Thermal correction to Gibbs Free Energy= & 0.477698 \\
Sum of electronic and zero-point Energies \(=\) & -1800.098079 \\
Sum of electronic and thermal Energies= & -1800.057566 \\
Sum of electronic and thermal Enthalpies= & -1800.056622 \\
Sum of electronic and thermal Free Energies= & -1800.173962
\end{tabular}

Total
E (Thermal) CV S
\(\begin{array}{ccc}\mathrm{KCal} / \mathrm{Mol} & \mathrm{Cal} / \text { Mol-Kelvin } & \text { Cal/Mol-Kelvin } \\ 372.800 & 141.695 & 246.963\end{array}\)
C,0,3.7352302792,1.8698136302,-1.7065003662
C,0,2.4887172211,2.39624777,-1.7320789269
C,0,1.4186456913,1.9474309839,-2.6871709911
O,0,1.1600932373,0.5853938878,-2.5312572991
Ti, \(0,1.1540569626,-0.3654323737,-1.0067137682\)
O,0,2.5226372706,0.8233510192,-0.3093097038

O,0,-0.4175026001,0.5761980912,-0.1741738093
Ti,0,-2.0974802127,-0.5277358469,-0.6522698541
O,0,-3.1798746726,-1.9233403337,-0.4649619503
C, \(0,-3.8313920078,-2.6749294298,0.5012408802\)
O,0,1.8565248097,-1.9383029131,-1.6108674326
C,0,1.057669863,-2.7708474308,-2.3960608162
C,0,-0.3168474399,-2.8036143751,-1.7515550874
O,0,-0.5239700307,-1.4962114495,-1.2825848169
O,0,1.926565014,-0.4349422468,0.7776126877
C, \(0,2.9598153846,-1.1632336944,1.4296543605\)
C,0,2.3850072782,-2.5464912564,1.7030944984
C, \(0,-0.5104214732,1.3799620816,0.9436603654\)
C,0,-1.7368573029,0.8476590747,1.7179065845
С,0,-1.3094065047,-0.4124832662,2.4378715685
O,0,-1.2806818591,-1.4834246191,1.884928464
C, \(0,-0.6832355154,2.838969014,0.5713350519\)
O,0,-0.9283568985,3.5672756726,1.6585603013
C, \(0,-1.0816917451,4.9575725599,1.4380249896\)
O,0,-0.5785071216,3.3051222516,-0.5262853095
O,0,-2.760003608,0.2401194773,-2.0902897346
С,0,-3.8627097354,0.1569166017,-2.9288049002
O,0,-2.6854921626,0.5066048887,0.7858398226
C, \(0,4.2102386518,-1.2803693494,0.5769345789\)
С,0,3.2617271837,-0.4226671467,2.7215744251
O,0,-0.9756939308,-0.2142181099,3.6995202055
C,0,-0.5999059885,-1.3641117724,4.440125013
Н, \(0,0.9880512661,-2.3638978141,-3.4084037268\)
H,0,1.4956840464,-3.7689465411,-2.4566650917
H,0,-0.338543621,-3.4896714425,-0.9039075803
H,0,-1.0969412207,-3.0928181394,-2.455091963
H,0,1.7341565979,2.1261048743,-3.7190984124
H,0,0.5076574767,2.5112504932,-2.5044822315
H,0,2.2437804568,3.1976645861,-1.0515255969
H,0,4.4313946941,2.2665652111,-0.9796863425
C,0,4.2828819618,0.8761281586,-2.667871184
H,0,-2.1038757571,1.5788152049,2.4356131347
H,0,0.3976865814,1.3129688977,1.547891628
Н, \(0,-3.5325681039,0.1546731272,-3.9676409157\)
Н,0,-4.5138033529,1.0173638116,-2.7732087134
H,0,-4.4295761671,-0.7552256769,-2.7345522255
H,0,-4.6694289691,-3.2054047797,0.0478713324
H,0,-4.2107169737,-2.028959979,1.2942098783
Н,0,-3.1519726366,-3.4035336018,0.9429262443
H,0,4.0290937027,-0.9393976635,3.2969976578
```

H,0,2.3647614747,-0.3424314478,3.3340191659
H,0,3.612754489,0.5832395036,2.4990961195
H,0,3.072737069,-3.1267807702,2.3182237151
H,0,2.2234752889,-3.0722781766,0.7650878434
H,0,1.4300000549,-2.4711870843,2.2180757894
H,0,4.9355760196,-1.9124317472,1.0886463073
H,0,4.6577002007,-0.303723361,0.4128373555
H,0,3.9743931422,-1.730928969,-0.384071879
H,0,-1.2770959957,5.3920356999,2.4110474781
H,0,-0.1759995398,5.3778306064,1.0096941166
H,0,-1.9120359145,5.1456520583,0.7635327971
H,0,-0.4601941736,-1.0244821276,5.4591049307
H,0,-1.3823163491,-2.1157541242,4.3925640564
H,0,0.3231998185,-1.7830667263,4.052975736
H,0,4.7780882232,0.0629821474,-2.1407502943
H,0,3.5115427677,0.4507601422,-3.301557853
H,0,5.035555405,1.3570632593,-3.2966343072

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.174222290\)
File: revis1cisbutfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.185808550\)
File: revis1cisbutfreqenergyPCM

\section*{Revls3cis}

Description: Gives incorrect enantiomer using cis butenol as substrate. Coordinating carbonyl cis to alkoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards bystander alcohols.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis3cisbutoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1800.65194556\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.553656 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.593975 \\
Thermal correction to Enthalpy= & 0.594919 \\
Thermal correction to Gibbs Free Energy= & 0.478563 \\
Sum of electronic and zero-point Energies= & -1800.098289 \\
Sum of electronic and thermal Energies= & -1800.057970 \\
Sum of electronic and thermal Enthalpies= & -1800.057026 \\
Sum of electronic and thermal Free Energies= & -1800.173383
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 372.725 & 141.456 & 244.893
\end{tabular}

C,0,3.1614769882,1.9000025689,1.8480552919 C,0,2.0376920013,2.5710009643,1.0700912249 O,0,3.6720466277,2.9083771088,2.7032046883 Ti,0,4.9868172112,4.2871470949,2.8462044308 Ti,0,2.850633658,6.7573960021,3.1839775977 O,0,1.353824775,6.0944139409,2.5036267983 С,0,0.0212607142,6.489476334,2.5676574384 O,0,6.4257342142,4.7154126257,3.8861571134 C,0,7.1199947825,3.9649070905,4.8311715884 С,0,6.854471103,2.4924313229,4.6836922488 С,0,7.234971907,1.7753692963,3.5992731098 Н,0,7.0040623139,0.7186608679,3.595553828 O,0,4.1015431573,5.8781108332,1.9486365503 C, \(0,4.2886489073,6.0022540441,0.5654939264\) C,0,5.6365098569,5.3505049786,0.3111233446 O,0,5.7323985687,4.2694658494,1.1839936097 O,0,5.2261440551,2.4547650505,3.4224532992 O,0,3.786515553,5.2138290825,4.1945708295 C,0,4.1669196979,5.7025194194,5.4351630518 C,0,5.1595171726,6.8107018332,5.1890412617 O,0,5.0537263328,7.5183970903,4.2132340612 С,0,2.617895871,0.7961388927,2.7386133224 O,0,2.8396440929,8.4219581143,2.5604391243 C,0,3.2888862849,9.6907298798,2.8948379374 O,0,2.3624319773,7.1036407517,4.9524946479 C,0,2.8852656563,6.3590124526,5.9776808111 C,0,1.98479142,5.2498234428,6.4989411145 O,0,0.7670083225,5.2695478958,5.992635326
C,0,-0.0894058201,4.2404420947,6.4533461737
O,0,2.3639732325,4.4530165785,7.3157656582 O,0,6.057903366,6.9755056644,6.1321073062
C,0,6.9742380236,8.0431080548,5.9340515687
H,0,6.4433084037,6.0598856939,0.5144541542
H,0,5.7334165222,5.012815433,-0.7226325045
H,0,3.4891263628,5.474265787,0.0433356425
H,0,4.2643712661,7.0508915196,0.2700464886 H,0,8.1897772026,4.1643359002,4.7196805927
\(\mathrm{H}, 0,6.8442541117,4.2866922848,5.8371081829\)
H,0,6.3799259053,1.9779251014,5.5054841305
C,0,8.0231450646,2.2781239876,2.4452456344
H,0,3.1170596179,6.9841645325,6.8468682237
H,0,4.5540172585,4.9372939729,6.1022212656
H,0,2.8391720488, 10.4240193189,2.2245569771
H,0,4.3735912643,9.7522667425,2.8075713732
```

H,0,3.0080768056,9.9359582384,3.9204143563
H,0,-0.5940947342,5.7637296192,2.0354287605
H,0,-0.1120602426,7.4676347665,2.1017756051
H,0,-0.3109957403,6.5439554633,3.6044937754
H,0,2.1783889955,-0.0010795773,2.1400432154
H,0,1.8557205392,1.1924034042,3.406852675
H,0,3.4206060916,0.3797580885,3.3431216667
H,0,1.5055964642,1.8330104278,0.4701435969
H,0,2.435407694,3.334912514,0.405293128
H,0,1.3356504959,3.0473403021,1.7503818507
H,0,3.7705882562,0.6611129144,0.2069136183
H,0,5.0012329176,0.8472077536,1.4616143565
H,0,4.6837041345,2.1733481285,0.3443380013
H,0,7.6340016085,8.0260375007,6.7925333382
H,0,7.5332245283,7.8864889543,5.0166697308
Н,0,6.4451739075,8.9896791548,5.878346959
H,0,-1.0363631071,4.3989178452,5.9517810271
H,0,0.3184183376,3.2665863884,6.1980014505
H,0,-0.213393544,4.300504603,7.5310114135
H,0,8.967642841,1.7332717222,2.3874576571
H,0,7.4880044675,2.1055449743,1.5133022795
H,0,8.2289454729,3.3414728769,2.5128057825

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.174741740\)
File: revis3cisbutoptfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.188027030\) File: revis3cisbutoptfreqenergyPCM

\section*{Is3bcis}

Description: Gives incorrect enantiomer using cis butenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to bystander alcohols. Bystander carbonyl closest to alkoxide, carbonyl points down directly down from catalyst in between alkoxide and bystander alcohols (not towards either).


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (is3bcisbutoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1800.65166006\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.553579 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.594093 \\
Thermal correction to Enthalpy= & 0.595038 \\
Thermal correction to Gibbs Free Energy= & 0.477695 \\
Sum of electronic and zero-point Energies= & -1800.098081 \\
Sum of electronic and thermal Energies= & -1800.057567 \\
Sum of electronic and thermal Enthalpies= & -1800.056622 \\
Sum of electronic and thermal Free Energies= & -1800.173965
\end{tabular}

Total
E (Thermal) CV S
\begin{tabular}{ccc}
\(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & \(\mathrm{Cal} /\) Mol-Kelvin \\
372.799 & 141.695 & 246.969
\end{tabular}

C,0,-4.0257963493,-1.7932611411,0.2614093946
C,0,-2.8505657497,-2.4499007722,0.4001168717
C,0,-1.9700881496,-2.8274810343,-0.7578453916
O,0,-1.5910670642,-1.6940277348,-1.4775197652
Ti,0,-1.2070891704,-0.0606877461,-0.8347829634
O,0,-2.4831323349,-0.3700360614,0.5965102247
O,0,0.4323193121,-0.6153955419,0.1919429285
Ti,0,2.0513976421,-0.3033798637,-1.0534012089
O,0,3.2435236577,0.7289147224,-1.8704621214
C,0,4.1294428297,1.7688361449,-1.6325244663
\begin{tabular}{l}
\(\mathrm{O}, 0,-1.9073888867,0.9761540779,-2.1640399892\) \\
\(\mathrm{C}, 0,-1.2303618978,1.050926538,-3.3821813869\) \\
\(\mathrm{C}, 0,0.2458806089,1.2030820529,-3.06073613\) \\
\(\mathrm{O}, 0,0.4533149809,0.3890742474,-1.935350434\) \\
\(\mathrm{O}, 0,-1.5912491054,1.1541118998,0.6356296763\) \\
\(\mathrm{C}, 0,-2.4160509971,2.2934153303,0.8474384444\) \\
\(\mathrm{C}, 0,-1.7028511468,3.4552908205,0.1692271768\) \\
\(\mathrm{C}, 0,0.6960432291,-0.6344274848,1.5463084975\) \\
\(\mathrm{C}, 0,2.0889590664,0.0179955687,1.6915200448\) \\
\(\mathrm{C}, 0,1.906564263,1.5145760775,1.5650577054\) \\
\(\mathrm{O}, 0,1.8396823008,2.0596522041,0.4917838801\) \\
\(\mathrm{C}, 0,0.6872075554,-2.045836623,2.0986115716\) \\
\(\mathrm{O}, 0,1.0984226971,-2.0489633125,3.3648946934\) \\
\(\mathrm{C}, 0,1.106421542,-3.3149587884,3.9991348679\) \\
\(\mathrm{O}, 0,0.3279601208,-3.0292893126,1.518267469\) \\
\(\mathrm{O}, 0,2.3504371053,-1.8591256032,-1.8193420515\) \\
\(\mathrm{C}, 0,3.2612760748,-2.468342222,-2.6709395647\) \\
\(\mathrm{O}, 0,2.8480565471,-0.4112272102,0.6310894848\) \\
\(\mathrm{C}, 0,-3.8033263907,2.1199253769,0.2560192521\) \\
\(\mathrm{C}, 0,-2.4978017098,2.4944429644,2.3512855421\) \\
\(\mathrm{O}, 0,1.8253382402,2.1380896535,2.7256799742\) \\
\(\mathrm{C}, 0,1.6899895727,3.5491432555,2.6748595718\) \\
\(\mathrm{H}, 0,-1.3979047215,0.1328573858,-3.9517178701\) \\
\(\mathrm{H}, 0,-1.6011131147,1.8924022995,-3.9705638307\) \\
\(\mathrm{H}, 0,0.4882705573,2.2339487536,-2.7995601799\) \\
\(\mathrm{H}, 0,0.8835668647,0.8931339037,-3.888043671\) \\
\(\mathrm{H}, 0,-2.5017616021,-3.5058813731,-1.4312271469\) \\
\(\mathrm{H}, 0,-1.0824271991,-3.3352852311,-0.3899274312\) \\
\(\mathrm{H}, 0,-2.52781196,-2.7446549484,1.3872172048\) \\
\(\mathrm{H}, 0,--5.5842826873,-1.5710675572,1.1608754703\) \\
\(\mathrm{C}, 0,-4.6882785035,-1.4519280347,-1.025512255\) \\
\(\mathrm{H}, 0,2.5434212089,-0.2207391374,2.6511368031\) \\
\(\mathrm{H}, 0,-0.0622380576,-0.0737641981,2.0984959827\) \\
\(\mathrm{H}, 0,2.7264961195,-3.0037146898,-3.4555187443\) \\
\(\mathrm{H}, 0,3.8692633423,-3.1826862919,-2.115451047\) \\
\(\mathrm{H}, 0,3.9176614051,-1.727512502,-3.1307284016\) \\
\(\mathrm{H}, 0,4.8911740482,1.7856253089,-2.4127409263\) \\
\(\mathrm{H}, 0,4.617963111,1.6390236541,-0.665846994\) \\
\(\mathrm{H}, 0,3.6068035544,2.7250818179,-1.631150646\) \\
\(\mathrm{H}, 0,-3.0934041735,3.3734616494,2.5953318076\) \\
\(\mathrm{H}, 0,-1.5022532834,2.6224026944,2.7738784529\) \\
\(\mathrm{H}, 0,-2.9558747127,1.6241280802,2.8174263201\) \\
\(\mathrm{H}, 0,-2.2081209805,4.3938339144,0.3971110734\) \\
\(\mathrm{H}, 0,-1.7006803269,3.310075628,-0.9084136015\) \\
\hline
\end{tabular}
```

H,0,-0.6702222355,3.5210314909,0.5042948358
H,0,-4.3629252816,3.0472900494,0.3756467
H,0,-4.3415663281,1.3235143905,0.7629841075
H,0,-3.7384910015,1.8881810251,-0.8042887998
H,0,1.466149055,-3.1396061483,5.0058929264
H,0,0.105282765,-3.736347123,4.021846427
H,0,1.7660475423,-3.9989775078,3.4730197302
H,0,1.7387362093,3.8861088789,3.7030936356
H,0,2.4963230944,3.9846955918,2.0921811794
H,0,0.7385154058,3.8260041364,2.2326183836
H,0,-5.0074371994,-0.411538698,-1.0300914209
H,0,-4.0353334893,-1.6111192118,-1.8774388282
H,0,-5.58524409,-2.0638109302,-1.144721246

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.175434550\)
File: is3bcisbutenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1800.187883020\) File: is3bcisbutenergyPCM

\section*{Theoretical Structures with methyl peroxide and propenol}

\section*{Revls1meooh}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards allyl alkoxide. Methyl peroxide points toward bystander ring system.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis1meoohoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1643.49545068\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.438113 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.472823 \\
Thermal correction to Enthalpy \(=\) & 0.473767 \\
Thermal correction to Gibbs Free Energy= & 0.369429 \\
Sum of electronic and zero-point Energies= & -1642.976381 \\
Sum of electronic and thermal Energies= & -1642.941671 \\
Sum of electronic and thermal Enthalpies= & -1642.940727 \\
Sum of electronic and thermal Free Energies= & -1643.045065
\end{tabular}
Total 296.701
\begin{tabular}{cl} 
CV & S \\
Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
120.082 & 219.597
\end{tabular}

C,0,-2.8010500262,3.4849302615,-0.1305419039
C, \(0,-1.5548411572,3.6568403164,0.3557630817\)
С,0,-0.3308259019,3.3946507424,-0.4673072745
O,0,-0.5723701781,2.3714439984,-1.3754649022

Ti,0,-1.1403049384,0.7368666232,-0.8400412986 O,0,-2.084402113,-0.1231619415,0.6535135923 С,0,-3.3907301487,-0.6195398533,0.6248218085 Н, \(0,-3.9055309193,-0.3492402572,1.5447902692\) O,0,-2.2017419508,1.6256676755,0.5217202386 O,0,0.5236964031,0.4035109275,0.2345315044 C,0,0.6606255737,0.0715210419,1.5753679082 C,0,2.1829864524,-0.0261096802,1.7564104198 O,0,2.6492353752,-0.7864849248,0.712764812
Ti,0,1.6491610795,-0.951805373,-0.8601139687
O,0,2.6274232566,-0.0073400634,-1.992223934
C,0,3.9859046237,0.0358094775,-2.2900258198
O,0,-2.2719682619,0.263273779,-2.1754985274
C,0,-2.0370377282,-0.844081347,-2.9910901507
C, \(0,-0.5296250084,-1.0191633866,-3.0685134293\)
O,0,-0.0768497059,-0.6968164972,-1.7792327765
O,0,2.0641122439,-2.6204805962,-1.3006573606
С,0,2.1356277507,-3.8973176509,-0.7646902435
H,0,-3.3311674573,-1.7068328566,0.5524367957
H,0,-3.9423595682,-0.2374679958,-0.2316350818
C,0,0.1213581044,-1.3248971048,1.7520184986
О,0,-0.3045269466,-1.6029969049,2.9610418017 С, \(0,-0.7347161712,-2.9382646784,3.1785538064\) O,0,0.17836252,-2.1258031131,0.845539031
C,0,2.7450877967,1.3872850487,1.8098878674
O,0,3.8696342496,1.5244550872,1.1338240024
С,0,4.444846252,2.8176926425,1.1758621878
O,0,2.2281288447,2.2718423662,2.4406824598
H,0,-2.4980671776,-1.7319955875,-2.5497869118
H,0,-2.4760340198,-0.6859548736,-3.9771664011
H,0,-0.0914637723,-0.3239330835,-3.7858385454
H,0,-0.2365258063,-2.0343377257,-3.3348906004
H, \(0,-0.0437530853,4.2989779863,-1.0122736704\)
H,0,0.4992732302,3.1348507655,0.1932357877
H,0,-1.41726514,3.986275518,1.3762106035
H,0,-3.6674227263,3.6725669029,0.4831243189
H,0,-2.968496955,3.2275402792,-1.1649737679
H,0,2.4280175547,-0.4852933378,2.721105585
H,0,0.1880012468,0.7852279244,2.243097788
Н,0,2.5997477714,-4.5691600038,-1.4873404179
H,0,1.1406946555,-4.2711344509,-0.523561879
H,0,2.7368279172,-3.8943713453,0.1458413752
H,0,4.170319087,0.8387422195,-3.0034787004
H,0,4.3103374907,-0.9076542494,-2.7325697035
\[
\begin{aligned}
& \mathrm{H}, 0,4.5679670646,0.2208664905,-1.3870579864 \\
& \mathrm{H}, 0,-1.0481460138,-2.9802350253,4.2140823413 \\
& \mathrm{H}, 0,-1.5636732203,-3.1770623544,2.5194031154 \\
& \mathrm{H}, 0,0.0804144176,-3.6326218978,2.9973861616 \\
& \mathrm{H}, 0,5.3585009722,2.7523638411,0.5977796741 \\
& \mathrm{H}, 0,3.7702632271,3.5473110341,0.7370216326 \\
& \mathrm{H}, 0,4.6608369371,3.1069212104,2.2005347872
\end{aligned}
\]

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.040146270\)
File: revis1meoohfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.057337680\)
File: revis1meoohtfreqenergyPCM

\section*{Revls1meoohc}

Description: Gives correct enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards allyl alkoxide. Methyl peroxide points toward coordinating carbonyl.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (revis1meoohcoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1643.40346554\)
\begin{tabular}{lc} 
Zero-point correction= & 0.437826 (Hartree/Particle) \\
Thermal correction to Energy= & 0.472824 \\
Thermal correction to Enthalpy= & 0.473768 \\
Thermal correction to Gibbs Free Energy= & 0.367125 \\
Sum of electronic and zero-point Energies= & -1642.965639 \\
Sum of electronic and thermal Energies= & -1642.930642 \\
Sum of electronic and thermal Enthalpies= & -1642.929698 \\
Sum of electronic and thermal Free Energies= & -1643.036341
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & \(\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}\) \\
\hline Total & 296.701 & 120.291 & 224.449 \\
\hline C, \(0,-4\) & 27523,1.92 & 356,-0.22091 & \\
\hline C, \(0,-3\) & 46382,2.594 & 80118,0.16489 & \\
\hline C,0,-2 & 68116,2.63433 & 31093,-0.6774 & \\
\hline O,0,-1 & 757237,1.437 & 244702,-1.37077 & 397 \\
\hline Ti,0,-1 & 463301,-0.15 & 9928452,-0.526063 & 34453 \\
\hline O,0,-0 & 848701,-1.227 & 147263,-1.431293 & 359 \\
\hline C,0,-0 & 24735,-1.8931 & 087126,-2.59820 & 066 \\
\hline C,0,-2 & 496494,-2.27273 & \(3112,-2.3203632\) & \\
\hline O,0,-2 & 174059,-1.202 & 6697833,-1.6268 & 4203 \\
\hline O,0,-2 & 633546,-1.0309 & 067879,1.169129 & 371 \\
\hline O,0,-3 & 173307,0.533 & 578022,0.726495 & 107 \\
\hline O,0,0. & 438566,0.3305 & 96674,0.3408074 & \\
\hline Ti,0,1 & \(3441,-0.707317\) & 79397,-0.90279 & \\
\hline O,0,0. & 43377,-2.010 & \(14439,1.4162270\) & \\
\hline C,0,0. & 38061,-1.085 & 419046,2.177858301 & 012 \\
\hline O,0,0. & 41325,-1.250 & 248254,3.47342 & \\
\hline C,0,0. & 21615,-2.589 & 117148,3.9366972 & 001 \\
\hline C,0,-2 & 828284,-0.752 & 795958,2.508103 & 7715 \\
\hline C, \(0,0\). & 658766,0.3648 & 90477,1.621195 & \\
\hline C,0,2. & 40608,0.8014 & 76953,1.3846205 & \\
\hline C,0,1. & 786363,2.2979 & 1124,1.12097613 & \\
\hline O,0,1. & 25283,3.0432 & \(774,1.7588140528\) & \\
\hline O,0,2. & 74383,0.0799 & 48432,0.347720 & \\
\hline O,0,1. & 607661,0.3435 & 29752,-2.308603 & 802 \\
\hline C,0,2. & 83152,0.8383 & 49855,-2.9275456 & \\
\hline
\end{tabular}
```

O,0,2.374087835,-2.1385139963,-1.3447105781
C,0,3.066540283,-3.2040651652,-0.7967205073 O,0,2.8095395056,2.6876095763,0.1671915009 C,0,2.812055265,4.0796520734,-0.0972622866
Н,0,-1.7894609607,-1.6372019522,3.0018452073
Н,0,-3.0706277632,-0.3316694756,3.0350365573
Н,0,-1.3594717752,-0.0994751601,2.5119191367
H,0,-2.3241265284,-3.1781993017,-1.7118571126
H,0,-2.8196282444,-2.445917328,-3.2462446836
H,0,-0.7615257335,-1.2082639604,-3.4445527716
H,0,-0.1892199947,-2.7554130927,-2.791630704
H,0,-2.0751894861,3.464715916,-1.3879914404
H,0,-1.1479210287,2.795342227,-0.0483514823
H,0,-3.2392443181,3.1151717696,1.1127068734
H,0,-5.232828038,1.882238698,0.4081303908
Н,0,-4.4227089907,1.4564152824,-1.1914001413
H,0,2.6063412474,0.6738259495,2.3098461994
H,0,0.1360887272,1.1317767348,2.2589336538
H,0,3.6098608442,-3.7270897532,-1.584092064
H,0,2.3843505622,-3.9061931443,-0.3168799635
H,0,3.785083445,-2.8498681083,-0.0550663704
H,0,2.5581819229, 1.5288337467,-3.7207953668
H,0,3.4240750344,0.0234558521,-3.3659427367
H,0,3.4694317942,1.3650497894,-2.2054903099
H,0,0.4562536081,-2.5319987653,5.0084325965
H,0,-0.1652476219,-3.2149531101,3.481753892
H,0,1.5799260298,-2.9834224467,3.6976714832
H,0,3.5454291218,4.2284433721,-0.8800900679
H,0,1.8300580553,4.4023110281,-0.4309070874
H,0,3.0854144239,4.6369112319,0.794244805

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.029344400\)
File: revis1meoohcfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.047135660\) File: revis1meoohcfreqenergyPCM

\section*{Revis3meooh}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to alkoxide, closest to butoxide. Bystander carbonyl closest to bystander
alcohols, carbonyl points towards bystander alcohols. Methyl peroxide points toward bystander ring system.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (revis3meoohoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1643.49154376\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.438306 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.473001 \\
Thermal correction to Enthalpy= & 0.473945 \\
Thermal correction to Gibbs Free Energy= & 0.369736 \\
Sum of electronic and zero-point Energies \(=\) & -1642.973577 \\
Sum of electronic and thermal Energies= & -1642.938881 \\
Sum of electronic and thermal Enthalpies= & -1642.937937 \\
Sum of electronic and thermal Free Energies= & -1643.042146
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 296.813 & 120.039 & 219.326
\end{tabular}

C,0,-3.9966284599,1.7908976021,-1.2419928954
C,0,-3.0331295958,2.0146428644,-2.1596085725

C,0,-1.7122047745,2.6321020229,-1.8142067256 O,0,-1.2609812365,2.2153606143,-0.5693973548 Ti,0,-1.3993611373,0.5420794109,0.1622705598 O,0,-0.2279579514,0.1260856705,1.7544263684 С, \(0,-0.8790472892,-0.0239288379,2.9878543802\) C,0,-2.0858656452,0.8909323543,2.8833892218 O,0,-2.5327151921,0.8162975978,1.565546677 O,0,-1.9549042323,-1.2131959732,-0.4186798663 C,0,-2.9461040678,-2.0191542053,0.1496451307
Н, \(0,-3.6115349086,-1.4397441037,0.7865780476\)
O,0,-2.7581913195,0.168544849,-1.1554298746
O,0,0.4540063782,0.1110198892,-0.5152966699
Ti,0,1.5706465049,-0.4008980843,1.158999745
O,0,2.5591483299,0.0708657329,2.5568506142
C,0,3.5010787494,1.0182110883,2.9305430711
H,0,-3.5171594457,-2.5014110175,-0.6408331362
H,0,-2.4448927373,-2.7826004803,0.7455692018
C, \(0,1.2586329663,0.901362549,-1.3237495528\)
C, \(, 2.2 .5669327959,0.1001475058,-1.433826704\)
С,0,2.3376317488,-1.0134909556,-2.4438758847
O,0,1.9598886568,-0.7874487741,-3.5626691462
C,0,1.5676403874,2.1569721043,-0.5483544532
O,0,1.7651625401,3.228054219,-1.280070791
C, \(0,2.096625618,4.4121984982,-0.5679307015\)
O,0,1.6807220313,2.1181520921,0.6557462559
O,0,2.87945937,-0.3154029829,-0.1651615317
O,0,1.3778151548,-2.1457676419,1.392517119
C,0,2.2731290319,-3.2083812785,1.4742756534
O,0,2.6097136858,-2.217707198,-1.9810968119
C,0,2.3822925445,-3.2758373898,-2.8949669171
H,0,-1.802372731,1.9203145509,3.1181354343
H,0,-2.8801174745,0.5921383521,3.5697437398
H,0,-1.1809026868,-1.065273605,3.1116784844
H,0,-0.2120521559,0.2465810849,3.8057941102
H,0,-1.8025950793,3.7228764656,-1.814177747
H,0,-0.9883803032,2.3802512597,-2.5932835892
H,0,-3.2073532452,1.7448268039,-3.1917167677
H,0,-4.9366860061,1.3460559787,-1.5264774876
H,0,-3.8867714215,2.0997755852,-0.2134502461
H,0,3.3610031988,0.7250765688,-1.8559576496
H,0,0.8236800714,1.1098269816,-2.2969065358
H,0,3.9337530051,0.740331745,3.8920890466
H,0,3.0434705941,2.0031881197,3.0210707478
H,0,4.3003879902,1.0720831268,2.1896979849

H,0,1.716721792,-4.1456505388,1.4793192066
H,0,2.8587895736,-3.1448847215,2.3931097039
H,0,2.950516104,-3.2013781632,0.6205935615
H,0,2.2155165563,5.1823742278,-1.3196757604
H,0,1.296463287,4.6672490342,0.1199736655
H,0,3.0201822119,4.2738770791,-0.0138993487
H,0,2.6541527999,-4.1826933457,-2.3686520985
H,0,1.3364054507,-3.3038268104,-3.1863802305
Н, \(0,2.9952869672,-3.1511955214,-3.7831566806\)
Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.037709010\)
File: revis3meoohoptfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.053237760\)
File: revis3meoohoptfreqenergyPCM

\section*{Revis3meoohb}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to alkoxide, closest to butoxide. Bystander carbonyl closest to bystander alcohols, carbonyl points towards bystander alcohols. Methyl peroxide points toward bystander carbonyl.


Optimization: MPW1K/6-31G* on CHO and SDD on Ti File name: (revis3meoohboptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1643.41254935\)
\begin{tabular}{lc} 
Zero-point correction= & 0.438329 \\
(Hartree/Particle) \\
Thermal correction to Energy= & 0.473019 \\
Thermal correction to Enthalpy= & 0.473963 \\
Thermal correction to Gibbs Free Energy= & 0.369714 \\
Sum of electronic and zero-point Energies= & -1642.974221 \\
Sum of electronic and thermal Energies= & -1642.939531 \\
Sum of electronic and thermal Enthalpies= & -1642.938587 \\
Sum of electronic and thermal Free Energies= & -1643.042836
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 296.824 & 120.032 & 219.411
\end{tabular}

C,0,4.5787353589,-0.9461945576,-0.7440060279
С,0,3.7613055263,-2.0120208334,-0.6165376246
C,0,2.801332388,-2.1743663637,0.5243029309
O,0,2.2242185417,-0.9655749992,0.8872908293
Ti,0,1.7107213019,0.3937147846,-0.2299762288
Ti,0,-1.4232691986,1.1217377658,0.3750050201
О,0,-1.9135804895,1.9863423127,-1.0938923571
С,0,-3.150196195,2.355262481,-1.6166321073
O,0,0.4167705565,1.7832229289,0.4651155246
C,0,0.9443589907,3.0767445961,0.6093293446
C,0,2.3923268737,2.8435360684,1.0009175965
O,0,2.82582797,1.7305616527,0.2851227254
O,0,1.5547936569,0.7246931052,-2.1237305722
O,0,2.807716701,-0.3947324405,-1.5999446983
O,0,-0.1617046471,-0.3991350818,-0.2747673546
С,0,-0.5841398207,-1.5696426049,0.3420687463
С,0,-0.3996341547,-1.3787633628,1.8260443669
O,0,-0.5447478738,-0.283641636,2.3209844458
C,0,0.7582057943,0.077676079,-3.0724524917
O,0,-2.2017215377,2.0563086337,1.6654970861
C,0,-2.7210546171,1.9094786371,2.9434165684
O,0,-2.5746856781,-0.3499603767,0.3548047546
C, \(0,-2.0962792212,-1.6035446976,0.0752907352\)
C, \(0,-2.3114936318,-2.0656362177,-1.3584348518\)
O,0,-3.2151467426,-1.3568887892,-2.0080045734

> C, \(0,-3.4739195953,-1.7817142889,-3.3341797509\)
> \(\mathrm{O}, 0,-1.7335214907,-3.0106561851,-1.8273049349\)
> \(\mathrm{O}, 0,-0.1539623754,-2.4747846364,2.5026907176\)
> \(\mathrm{C}, 0,-0.0118984877,-2.3169287367,3.9081087637\)
> \(\mathrm{H}, 0,0.4704596579,-0.9193593375,-2.7469637408\)
> \(\mathrm{H}, 0,-0.1403523527,0.6797225277,-3.2065338886\)
> \(\mathrm{H}, 0,1.30236838809,0.015372017,-4.0126129906\)
> \(\mathrm{H}, 0,2.4684258683,2.6439230914,2.0732288565\)
> \(\mathrm{H}, 0,3.0162593045,3.7079303114,0.7683734725\)
> \(\mathrm{H}, 0,0.8742982008,3.5988828017,-0.3457014004\)
> \(\mathrm{H}, 0,0.3852448176,3.6337659411,1.3604823603\)
> \(\mathrm{H}, 0,3.324205783,-2.5936251611,1.3896936706\)
> \(\mathrm{H}, 0,2.0365929361,-2.9032023751,0.2428559202\)
> \(\mathrm{H}, 0,3.8001052806,-2.8008264533,-1.3548751788\)
> \(\mathrm{H}, 0,5.2607699364,-0.8687941153,-1.5752661666\)
> \(\mathrm{H}, 0,4.6178847046,-0.1647888529,0.000079951\)
> \(\mathrm{H}, 0,-2.576824995,-2.3613519721,0.7052287446\)
> \(\mathrm{H}, 0,-0.0831561608,-2.4588144084,-0.028349044\)
> \(\mathrm{H}, 0,-3.2280213573,2.828776388,3.2375592787\)
> \(\mathrm{H}, 0,-1.9270696682,1.6995127479,3.6598685823\)
> \(\mathrm{H}, 0,-3.4402970392,1.0894192995,2.9683797211\)
> \(\mathrm{H}, 0,-3.0031022261,2.8158096028,-2.5935670278\)
> \(\mathrm{H}, 0,-3.6434797782,3.0760278203,-0.9622657559\)
> \(\mathrm{H}, 0,-3.7928793487,1.4816937813,-1.7276813029\)
> \(\mathrm{H}, 0,0.1845657644,-3.3086763248,4.2956105505\)
> \(\mathrm{H}, 0,0.8167215744,-1.649502561,4.1234604091\)
> \(\mathrm{H}, 0,-0.923975298,-1.912910993,4.3368162882\)
> \(\mathrm{H}, 0,-4.2358766272,-1.1123002914,-3.7142900208\)
> \(\mathrm{H}, 0,-2.5733673209,-1.714969287,-3.9379174002\)
> \(\mathrm{H}, 0,-3.8286969402,-2.8084684339,-3.3432854707\)

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.037941380\)
File: revis3meoohboptfreqenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.054818770\) File: revis3meoohboptfreqenergyPCM

\section*{Is3bmeooh}

Description: Gives incorrect enantiomer using propenol as substrate. Coordinating carbonyl cis to t-butoxide, closest to bystander alcohols. Bystander carbonyl closest to
alkoxide, carbonyl points down directly down from catalyst in between alkoxide and bystander alcohols (not towards either).


Optimization: MPW1K/6-31G* on CHO and SDD on Ti
File name: (is3bmeoohoptfreqenergyPCM)
\(\mathrm{E}(\) RmPW + HF-PW91 \()=-1643.49298357\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.438088 (Hartree/Particle) \\
Thermal correction to Energy= & 0.472959 \\
Thermal correction to Enthalpy= & 0.473903 \\
Thermal correction to Gibbs Free Energy= & 0.369102 \\
Sum of electronic and zero-point Energies= & -1642.975791 \\
Sum of electronic and thermal Energies= & -1642.940920 \\
Sum of electronic and thermal Enthalpies= & -1642.939976 \\
Sum of electronic and thermal Free Energies= & -1643.044776
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 296.786 & 120.297 & 220.571
\end{tabular}

C,0,3.8058988375,1.5503833228,-1.6497551847
C,0,2.7398333558,2.3727815585,-1.7345709548
C, \(0,1.5234867532,2.0255337098,-2.536787271\)

O,0,1.2885115145,0.6539886829,-2.4792818862
Ti,0,1.1495319771,-0.270933932,-0.9378508886 O,0,2.5529476853,0.8474230619,-0.202379456
O,0,-0.4170386803,0.721633591,-0.2040700228
Ti, \(0,-2.0994835482,-0.4455341853,-0.6599117857\)
O,0,-3.2117313828,-1.8275468577,-0.5419648758
C,0,-3.8703258336,-2.6114956196,0.3923966448
O,0,1.8826317962,-1.8737351787,-1.3887958222
C,0,1.1353632151,-2.8095746718,-2.1051464148
C,0,-0.2804157477,-2.7543865768,-1.5609193104
O,0,-0.5144140441,-1.3927631771,-1.3056180887
O,0,1.8217268792,-0.2983951125,0.9198458767
C,0,2.8759902166,-1.0984370599,1.3713464381
H,0,2.4486812002,-1.9360809912, 1.9244529892
C,0,-0.54491965,1.5027663783,0.9296148882
C,0,-1.727304822,0.8813355856,1.7010324541
C,0,-1.2310693184,-0.4352616543,2.2513934772
O,0,-1.2503145279,-1.4309086834,1.5635757909
C,0,-0.8173331373,2.951504721,0.5772972141
O,0,-1.1438676913,3.6398294833,1.6683384276
C,0,-1.387984129,5.0201361613,1.465574742
O,0,-0.7144684948,3.4425327999,-0.5093115585
O,0,-2.7366686171,0.347765192,-2.0932180488
C,0,-3.8020278966,0.2629594437,-2.9774539116
O,0,-2.7007224531,0.5989147992,0.7742907771
H,0,3.4588576578,-1.4960575375,0.5437790117
H,0,3.5179516423,-0.5205835729,2.0338360887
O,0,-0.7755179866,-0.3909537105,3.481684415
C,0,-0.2655521651,-1.6082112316,4.0052905655
H,0,1.1432277802,-2.5476352423,-3.1661844201
H,0,1.5675985125,-3.8055730836,-1.9943241616
H,0,-0.3620631954,-3.3100369119,-0.6256772338
H,0,-1.012199601,-3.1458577073,-2.2666084756
H,0,1.6711367607,2.3169739436,-3.5811315146
H,0,0.6608650519,2.5701822004,-2.155095833
H,0,2.742464866,3.3111363406,-1.1975537923
H,0,4.6713590982,1.8166192902,-1.064596912
H,0,3.8609444826,0.6460484775,-2.2359479831
H,0,-2.0783321137,1.5302317237,2.5010379226
H,0,0.3704314663,1.4840049391,1.5261733947
Н,0,-3.4273657267,0.2095057889,-3.9997158895
H,0,-4.4321572568,1.1475993863,-2.884097806
H,0,-4.4035410725,-0.6243010514,-2.7721287182
H,0,-4.6713327067,-3.1679640769,-0.0953467867
```

H,0,-4.3039493631,-1.9887228909,1.1765647707
H,0,-3.1823248309,-3.3205469254,0.8534569668
H,0,-1.6399076007,5.4223489324,2.4394527303
H,0,-0.5022500133,5.5092974308,1.0699634841
H,0,-2.2106595605,5.1614471059,0.7707330374
H,0,0.0731361993,-1.377601588,5.0075539708
H,0,-1.0470491039,-2.3619321679,4.03128078
H,0,0.5582083221,-1.9640946524,3.3956321486

```

Single point energy: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.039927720\)
File: is3bmeoohenergyPCM
PCM solvent calculation in dichloromethane: MPW1K/6-31+G** on CHO, Ti SDD (split valence qz)//MPW1K/6-31G* on CHO SDD on \(\mathrm{Ti}=-1643.054895570\)
File: is3bmeoohenergyPCM

\section*{titButRevls1}
\begin{tabular}{lc} 
Frequency \\
B3LYP/gen (titButRevIs1) \\
\(\mathrm{E}(\) RB+HF-LYP) \(=-1682.63625650\) \\
& \\
Zero-point correction= & 0.450616 (Hartree/Particle) \\
Thermal correction to Energy= & 0.486938 \\
Thermal correction to Enthalpy= & 0.487882 \\
Thermal correction to Gibbs Free Energy= & 0.381154 \\
Sum of electronic and zero-point Energies= & -1682.185640 \\
Sum of electronic and thermal Energies= & -1682.149319 \\
Sum of electronic and thermal Enthalpies= & -1682.148375 \\
Sum of electronic and thermal Free Energies= & -1682.255103
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 305.558 & 129.918 & 224.628
\end{tabular}
\begin{tabular}{llllll}
1 & 6 & 0 & -3.170501 & 2.739015 & -1.409490 \\
2 & 6 & 0 & -1.956509 & 3.226179 & -1.033524 \\
3 & 6 & 0 & -0.674192 & 2.815966 & -1.713506
\end{tabular}
\begin{tabular}{cccccc}
4 & 8 & 0 & -0.758653 & 1.456964 & -2.142559 \\
5 & 22 & 0 & -1.175691 & 0.090240 & -0.983544 \\
6 & 8 & 0 & -2.418156 & 1.317892 & -0.096154 \\
7 & 8 & 0 & 0.483743 & 0.480371 & 0.171437 \\
8 & 22 & 0 & 1.934673 & -0.879744 & -0.356299 \\
9 & 8 & 0 & 0.337446 & -1.403301 & 2.211143 \\
10 & 6 & 0 & 0.218932 & -0.217513 & 2.461392 \\
11 & 8 & 0 & -0.189928 & 0.249576 & 3.674208 \\
12 & 8 & 0 & -2.037919 & -1.031906 & -2.152044 \\
13 & 6 & 0 & -1.518242 & -2.320056 & -2.507881 \\
14 & 6 & 0 & 0.008756 & -2.229069 & -2.398184 \\
15 & 8 & 0 & 0.230477 & -1.399888 & -1.241098 \\
16 & 8 & 0 & -2.132076 & -0.272852 & 0.720659 \\
17 & 6 & 0 & -3.394814 & -0.862747 & 1.166468 \\
18 & 6 & 0 & -3.036874 & -2.322621 & 1.514563 \\
19 & 6 & 0 & 0.603431 & 0.912320 & 1.515094 \\
20 & 6 & 0 & 2.132085 & 1.161148 & 1.666406 \\
21 & 6 & 0 & 2.490932 & 2.511622 & 1.032974 \\
22 & 8 & 0 & 1.785619 & 3.504720 & 1.096665 \\
23 & 8 & 0 & 2.637565 & -2.483764 & 0.058955 \\
24 & 6 & 0 & 2.931785 & -3.207468 & 1.255039 \\
25 & 8 & 0 & 2.770430 & 0.064431 & 1.058434 \\
26 & 8 & 0 & 2.849937 & -0.338377 & -1.807687 \\
27 & 6 & 0 & 4.262611 & -0.271451 & -2.043173 \\
28 & 6 & 0 & -4.474739 & -0.805752 & 0.076819 \\
29 & 6 & 0 & -3.821179 & -0.075075 & 2.415655 \\
30 & 8 & 0 & 3.706254 & 2.511204 & 0.429505 \\
31 & 1 & 0 & -1.910810 & -3.074343 & -1.811445 \\
32 & 1 & 0 & -1.841302 & -2.578355 & -3.524085 \\
33 & 1 & 0 & 0.442382 & -1.737930 & -3.278138 \\
34 & 1 & 0 & 0.482547 & -3.208046 & -2.258689 \\
35 & 1 & 0 & -0.481796 & 3.447165 & -2.595392 \\
36 & 1 & 0 & 0.168602 & 2.943595 & -1.022011 \\
37 & 1 & 0 & -1.887120 & 3.929745 & -0.207008 \\
38 & 1 & 0 & -4.077796 & 3.050870 & -0.904099 \\
39 & 1 & 0 & -3.276638 & 2.101048 & -2.280000 \\
40 & 1 & 0 & 2.413294 & 1.227615 & 2.730252 \\
41 & 1 & 0 & 0.009662 & 1.806946 & 1.711561 \\
42 & 1 & 0 & 3.622670 & -4.023738 & 1.014631 \\
43 & 1 & 0 & 2.012172 & -3.621047 & 1.683110 \\
44 & 1 & 0 & 3.396833 & -2.536290 & 1.987600 \\
45 & 1 & 0 & 4.427524 & 0.066787 & -3.072200 \\
46 & 1 & 0 & 4.718629 & -1.260455 & -1.909214 \\
47 & 1 & 0 & 4.723152 & 0.437799 & -1.346026 \\
& & & & &
\end{tabular}
\begin{tabular}{lllrrr}
48 & 1 & 0 & 3.829098 & 3.417962 & 0.085636 \\
49 & 1 & 0 & -0.345366 & -0.535960 & 4.234296 \\
50 & 1 & 0 & -4.734047 & -0.498520 & 2.850114 \\
51 & 1 & 0 & -4.006883 & 0.969031 & 2.147824 \\
52 & 1 & 0 & -3.027121 & -0.098113 & 3.168689 \\
53 & 1 & 0 & -3.904963 & -2.824388 & 1.957980 \\
54 & 1 & 0 & -2.204536 & -2.357891 & 2.222527 \\
55 & 1 & 0 & -2.741661 & -2.869327 & 0.613419 \\
56 & 1 & 0 & -5.381787 & -1.308614 & 0.431747 \\
57 & 1 & 0 & -4.130071 & -1.296490 & -0.836807 \\
58 & 1 & 0 & -4.719079 & 0.232478 & -0.161357
\end{tabular}
```

B3LYP/gen solvent= CH2Cl2 (RevIs1PCMND)
PCM= -1682.65344272
B3PW91/gen solvent=CH2Cl2 (RevIs1PCMNDBP)
PCM= -1682.08458334
B3LYP/gen solvent= CH2Cl2 (titButRevIs1IPCMLanl2dz)
IPCM= -1672.67727922
B3PW91/6-31G* solvent = CH2 Cl
PCM= -3264.81538608

```

\section*{TitButRevls1 Onsager (solRevls1)}
- optimized from titButRevIs1/gen (geom above)

B3LYP/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{a} 0=6.09\)
SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1682.63643712 \quad\) A.U. after 9 cycles
\begin{tabular}{cccccc}
1 & 6 & 0 & -3.172853 & 2.754208 & -1.376836 \\
2 & 6 & 0 & -1.955743 & 3.234077 & -1.001543 \\
3 & 6 & 0 & -0.677994 & 2.829934 & -1.693988 \\
4 & 8 & 0 & -0.763899 & 1.474194 & -2.133458 \\
5 & 22 & 0 & -1.177604 & 0.098224 & -0.983233 \\
6 & 8 & 0 & -2.414310 & 1.320149 & -0.081706 \\
7 & 8 & 0 & 0.483794 & 0.478506 & 0.170537 \\
8 & 22 & 0 & 1.931870 & -0.880504 & -0.364163 \\
9 & 8 & 0 & 0.346034 & -1.422266 & 2.187865
\end{tabular}
\begin{tabular}{rrrrrr}
10 & 6 & 0 & 0.224688 & -0.239862 & 2.453403 \\
11 & 8 & 0 & -0.182696 & 0.213019 & 3.670841 \\
12 & 8 & 0 & -2.041698 & -1.015317 & -2.159718 \\
13 & 6 & 0 & -1.524756 & -2.302501 & -2.521794 \\
14 & 6 & 0 & 0.002708 & -2.214505 & -2.414838 \\
15 & 8 & 0 & 0.228416 & -1.391311 & -1.254882 \\
16 & 8 & 0 & -2.128075 & -0.279002 & 0.719004 \\
17 & 6 & 0 & -3.391098 & -0.869943 & 1.165321 \\
18 & 6 & 0 & -3.034110 & -2.332969 & 1.500708 \\
19 & 6 & 0 & 0.605128 & 0.900199 & 1.517661 \\
20 & 6 & 0 & 2.133428 & 1.150475 & 1.667949 \\
21 & 6 & 0 & 2.489876 & 2.505440 & 1.043386 \\
22 & 8 & 0 & 1.781818 & 3.496274 & 1.108744 \\
23 & 8 & 0 & 2.635340 & -2.486924 & 0.042363 \\
24 & 6 & 0 & 2.926251 & -3.213052 & 1.238242 \\
25 & 8 & 0 & 2.772770 & 0.059088 & 1.050064 \\
26 & 8 & 0 & 2.849286 & -0.332755 & -1.814086 \\
27 & 6 & 0 & 4.264308 & -0.249793 & -2.027486 \\
28 & 6 & 0 & -4.473761 & -0.802552 & 0.079159 \\
29 & 6 & 0 & -3.811541 & -0.091085 & 2.421697 \\
30 & 8 & 0 & 3.708340 & 2.512672 & 0.445051 \\
31 & 1 & 0 & -1.916928 & -3.059583 & -1.828192 \\
32 & 1 & 0 & -1.850007 & -2.556246 & -3.538589 \\
33 & 1 & 0 & 0.435098 & -1.720007 & -3.293644 \\
34 & 1 & 0 & 0.475231 & -3.194978 & -2.281142 \\
35 & 1 & 0 & -0.492636 & 3.468470 & -2.572199 \\
36 & 1 & 0 & 0.169632 & 2.953103 & -1.007684 \\
37 & 1 & 0 & -1.880538 & 3.927445 & -0.167024 \\
38 & 1 & 0 & -4.076739 & 3.061353 & -0.862563 \\
39 & 1 & 0 & -3.284987 & 2.126362 & -2.253965 \\
40 & 1 & 0 & 2.416806 & 1.209050 & 2.731593 \\
41 & 1 & 0 & 0.009391 & 1.791552 & 1.722627 \\
42 & 1 & 0 & 3.626072 & -4.022351 & 1.000031 \\
43 & 1 & 0 & 2.006862 & -3.636064 & 1.657236 \\
44 & 1 & 0 & 3.379424 & -2.540805 & 1.977120 \\
45 & 1 & 0 & 4.441490 & 0.114438 & -3.045780 \\
46 & 1 & 0 & 4.726113 & -1.238552 & -1.911281 \\
47 & 1 & 0 & 4.710438 & 0.445284 & -1.307034 \\
48 & 1 & 0 & 3.829365 & 3.422775 & 0.109552 \\
49 & 1 & 0 & -0.336434 & -0.577333 & 4.224709 \\
50 & 1 & 0 & -4.723171 & -0.516657 & 2.856433 \\
51 & 1 & 0 & -3.997184 & 0.955237 & 2.162747 \\
52 & 1 & 0 & -3.014957 & -0.120965 & 3.171715 \\
53 & 1 & 0 & -3.902852 & -2.837813 & 1.939098 \\
& & & & &
\end{tabular}
\begin{tabular}{llllll}
54 & 1 & 0 & -2.202727 & -2.375308 & 2.209369 \\
55 & 1 & 0 & -2.738522 & -2.871788 & 0.594912 \\
56 & 1 & 0 & -5.381166 & -1.305135 & 0.433361 \\
57 & 1 & 0 & -4.133042 & -1.288301 & -0.838656 \\
58 & 1 & 0 & -4.716022 & 0.237948 & -0.151260
\end{tabular}

B3LYP/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (RevIs1PCMbND) PCM=-1682.65268803

B3PW91/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (RevIs1PCMbBPNODIS)
PCM=-1682.08381029
titButRevIs1 B3LYP/6-31G* (RevIs1631G) (from RevIs1geom)
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-3265.53321734\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.450558 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.486864 \\
Thermal correction to Enthalpy= & 0.487808 \\
Thermal correction to Gibbs Free Energy= & 0.381408 \\
Sum of electronic and zero-point Energies \(=\) & -3265.082659 \\
Sum of electronic and thermal Energies= & -3265.046353 \\
Sum of electronic and thermal Enthalpies= & -3265.045409 \\
Sum of electronic and thermal Free Energies= & -3265.151809
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 305.512 & 129.926 & 223.937
\end{tabular}
\begin{tabular}{cccccc}
1 & 6 & 0 & -3.180253 & 2.824402 & -1.252826 \\
2 & 6 & 0 & -1.969177 & 3.293605 & -0.850087 \\
3 & 6 & 0 & -0.681107 & 2.908519 & -1.534629 \\
4 & 8 & 0 & -0.761082 & 1.594357 & -2.031957 \\
5 & 22 & 0 & -1.182499 & 0.161708 & -0.965436 \\
6 & 8 & 0 & -2.429616 & 1.321303 & -0.003426 \\
7 & 8 & 0 & 0.478997 & 0.490185 & 0.210095 \\
8 & 22 & 0 & 1.924282 & -0.862412 & -0.401916 \\
9 & 8 & 0 & 0.414200 & -1.549737 & 2.042112 \\
10 & 6 & 0 & 0.266496 & -0.403648 & 2.415475 \\
11 & 8 & 0 & -0.141916 & -0.075198 & 3.657381 \\
12 & 8 & 0 & -2.055968 & -0.881844 & -2.191020 \\
13 & 6 & 0 & -1.561820 & -2.138862 & -2.610752 \\
14 & 6 & 0 & -0.035074 & -2.084489 & -2.492852 \\
15 & 8 & 0 & 0.207989 & -1.338211 & -1.307010
\end{tabular}
\begin{tabular}{rrrrrr}
16 & 8 & 0 & -2.138402 & -0.311199 & 0.719680 \\
17 & 6 & 0 & -3.370624 & -0.931073 & 1.140198 \\
18 & 6 & 0 & -3.006327 & -2.407891 & 1.379552 \\
19 & 6 & 0 & 0.621329 & 0.810900 & 1.566848 \\
20 & 6 & 0 & 2.149297 & 1.045412 & 1.721394 \\
21 & 6 & 0 & 2.493942 & 2.443403 & 1.184878 \\
22 & 8 & 0 & 1.802817 & 3.426058 & 1.360570 \\
23 & 8 & 0 & 2.641282 & -2.474106 & -0.097702 \\
24 & 6 & 0 & 3.020553 & -3.262700 & 1.004373 \\
25 & 8 & 0 & 2.780387 & 0.006478 & 1.046921 \\
26 & 8 & 0 & 2.798596 & -0.222465 & -1.825084 \\
27 & 6 & 0 & 4.164121 & -0.067229 & -2.144205 \\
28 & 6 & 0 & -4.470098 & -0.813597 & 0.079644 \\
29 & 6 & 0 & -3.790001 & -0.246974 & 2.447256 \\
30 & 8 & 0 & 3.670746 & 2.484079 & 0.532425 \\
31 & 1 & 0 & -1.968346 & -2.930103 & -1.962856 \\
32 & 1 & 0 & -1.880179 & -2.344087 & -3.641505 \\
33 & 1 & 0 & 0.407086 & -1.559533 & -3.350507 \\
34 & 1 & 0 & 0.414125 & -3.083204 & -2.419595 \\
35 & 1 & 0 & -0.478743 & 3.596394 & -2.371699 \\
36 & 1 & 0 & 0.152268 & 3.005817 & -0.825549 \\
37 & 1 & 0 & -1.906899 & 3.967286 & 0.001444 \\
38 & 1 & 0 & -4.091285 & 3.118187 & -0.743176 \\
39 & 1 & 0 & -3.283688 & 2.222846 & -2.149071 \\
40 & 1 & 0 & 2.433099 & 1.053824 & 2.787231 \\
41 & 1 & 0 & 0.029628 & 1.682340 & 1.856252 \\
42 & 1 & 0 & 3.811713 & -3.959447 & 0.699653 \\
43 & 1 & 0 & 2.164992 & -3.838431 & 1.377885 \\
44 & 1 & 0 & 3.396753 & -2.622556 & 1.813090 \\
45 & 1 & 0 & 4.249657 & 0.401210 & -3.132459 \\
46 & 1 & 0 & 4.669411 & -1.042339 & -2.171208 \\
47 & 1 & 0 & 4.657631 & 0.571111 & -1.401000 \\
48 & 1 & 0 & 3.790335 & 3.414328 & 0.260800 \\
49 & 1 & 0 & -0.271897 & -0.913477 & 4.140926 \\
50 & 1 & 0 & -4.684751 & -0.720910 & 2.867145 \\
51 & 1 & 0 & -4.006002 & 0.809347 & 2.262578 \\
52 & 1 & 0 & -2.982360 & -0.305011 & 3.184137 \\
53 & 1 & 0 & -3.867535 & -2.941225 & 1.798699 \\
54 & 1 & 0 & -2.164600 & -2.496132 & 2.071950 \\
55 & 1 & 0 & -2.724558 & -2.892915 & 0.439487 \\
56 & 1 & 0 & -5.362453 & -1.356262 & 0.411790 \\
57 & 1 & 0 & -4.136011 & -1.231817 & -0.873050 \\
58 & 1 & 0 & -4.738405 & 0.233962 & -0.079146 \\
& & & & &
\end{tabular}

B3LYP/6-31G* solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (RevIs1631GPCMND)
PCM \(=-3265.54623420\)

\section*{titButRevIs1 B3PW91/gen (BPfreqRevIs1)}

BPfreqRevIs1.log
\(\mathrm{E}(\) RB+HF-PW91 \()=-1682.06795861\)
Zero-point correction= 0.452324 (Hartree/Particle)
Thermal correction to Energy= 0.488586
Thermal correction to Enthalpy= 0.489530
Thermal correction to Gibbs Free Energy= 0.382342
Sum of electronic and zero-point Energies= \(\quad-1681.615635\)
Sum of electronic and thermal Energies= \(\quad-1681.579373\)
Sum of electronic and thermal Enthalpies= \(\quad-1681.578429\)
Sum of electronic and thermal Free Energies \(=\quad-1681.685617\)
\begin{tabular}{lccccc}
\multicolumn{6}{c}{\begin{tabular}{c} 
E (Thermal) \\
KCAL/MOL
\end{tabular}} \\
TOTAL & & \multicolumn{3}{c}{ CAL/MOL-KELVIN } & CAL/MOL-KELVIN \\
& & 306.592 & \multicolumn{2}{c}{129.416} & 225.596 \\
1 & 6 & 0 & -3.203528 & 2.639268 & -1.450213 \\
2 & 6 & 0 & -1.996647 & 3.155471 & -1.097153 \\
3 & 6 & 0 & -0.719650 & 2.739832 & -1.773738 \\
4 & 8 & 0 & -0.800105 & 1.378452 & -2.172199 \\
5 & 22 & 0 & -1.180028 & 0.050546 & -0.968094 \\
6 & 8 & 0 & -2.416559 & 1.283630 & -0.099633 \\
7 & 8 & 0 & 0.474792 & 0.518700 & 0.145079 \\
8 & 22 & 0 & 1.923428 & -0.855467 & -0.326429 \\
9 & 8 & 0 & 0.431478 & -1.376896 & 2.107420 \\
10 & 6 & 0 & 0.269084 & -0.207991 & 2.408034 \\
11 & 8 & 0 & -0.119716 & 0.196052 & 3.641086 \\
12 & 8 & 0 & -2.032551 & -1.117692 & -2.089243 \\
13 & 6 & 0 & -1.492975 & -2.393474 & -2.428272 \\
14 & 6 & 0 & 0.027245 & -2.273184 & -2.314705 \\
15 & 8 & 0 & 0.225959 & -1.429828 & -1.172597 \\
16 & 8 & 0 & -2.112827 & -0.246474 & 0.758624 \\
17 & 6 & 0 & -3.367270 & -0.839400 & 1.203847 \\
18 & 6 & 0 & -2.999839 & -2.286289 & 1.570338 \\
19 & 6 & 0 & 0.590379 & 0.949853 & 1.482431 \\
20 & 6 & 0 & 2.108761 & 1.238266 & 1.625243 \\
21 & 6 & 0 & 2.427924 & 2.588501 & 0.983263
\end{tabular}
\begin{tabular}{rrrrrr}
22 & 8 & 0 & 1.712108 & 3.570337 & 1.076387 \\
23 & 8 & 0 & 2.691084 & -2.418756 & 0.109348 \\
24 & 6 & 0 & 3.056765 & -3.093726 & 1.304055 \\
25 & 8 & 0 & 2.767768 & 0.155278 & 1.031278 \\
26 & 8 & 0 & 2.793979 & -0.361043 & -1.815120 \\
27 & 6 & 0 & 4.191558 & -0.350339 & -2.097204 \\
28 & 6 & 0 & -4.440156 & -0.808340 & 0.113676 \\
29 & 6 & 0 & -3.806875 & -0.042334 & 2.436084 \\
30 & 8 & 0 & 3.617749 & 2.605304 & 0.343218 \\
31 & 1 & 0 & -1.874250 & -3.148667 & -1.726629 \\
32 & 1 & 0 & -1.807308 & -2.668899 & -3.442846 \\
33 & 1 & 0 & 0.454446 & -1.783594 & -3.198783 \\
34 & 1 & 0 & 0.520767 & -3.240424 & -2.162640 \\
35 & 1 & 0 & -0.534641 & 3.355403 & -2.668260 \\
36 & 1 & 0 & 0.126097 & 2.885144 & -1.089139 \\
37 & 1 & 0 & -1.931826 & 3.886548 & -0.294045 \\
38 & 1 & 0 & -3.302629 & 1.971468 & -2.299923 \\
39 & 1 & 0 & 2.388356 & 1.325072 & 2.688762 \\
40 & 1 & 0 & -0.032842 & 1.821561 & 1.693488 \\
41 & 1 & 0 & 3.830600 & -3.834767 & 1.072498 \\
42 & 1 & 0 & 2.186340 & -3.601089 & 1.734387 \\
43 & 1 & 0 & 3.446966 & -2.373184 & 2.033226 \\
44 & 1 & 0 & 4.333954 & -0.066794 & -3.145872 \\
45 & 1 & 0 & 4.623216 & -1.344858 & -1.928664 \\
46 & 1 & 0 & 4.698198 & 0.376088 & -1.451732 \\
47 & 1 & 0 & 3.716427 & 3.513824 & 0.001156 \\
48 & 1 & 0 & -0.225758 & -0.613087 & 4.175491 \\
49 & 1 & 0 & -4.721810 & -0.465106 & 2.866203 \\
50 & 1 & 0 & -3.995171 & 0.997391 & 2.153608 \\
51 & 1 & 0 & -3.020155 & -0.053522 & 3.196580 \\
52 & 1 & 0 & -3.869577 & -2.794584 & 2.002105 \\
53 & 1 & 0 & -2.181091 & -2.306213 & 2.294498 \\
54 & 1 & 0 & -2.680422 & -2.835043 & 0.679321 \\
55 & 1 & 0 & -5.340650 & -1.320647 & 0.471199 \\
56 & 1 & 0 & -4.084584 & -1.303633 & -0.793638 \\
57 & 1 & 0 & -4.698368 & 0.223955 & -0.135309 \\
58 & 1 & 0 & -4.113036 & 2.952714 & -0.948835
\end{tabular}

B3PW91/6-31G* solvent= \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (RevIs1PCMNDBPBP631G) PCM \(=-3264.81791034\)

\section*{titButRevIs1 Onsager (BPsolRevIs1)}

B3PW91/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{a} 0=5.78\)
SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{PW} 91)=-1682.06823348\) A.U. after 7 cycles
\begin{tabular}{cccccc}
1 & 6 & 0 & -3.226316 & 2.661530 & -1.368752 \\
2 & 6 & 0 & -2.019235 & 3.175558 & -1.012628 \\
3 & 6 & 0 & -0.745542 & 2.784423 & -1.709908 \\
4 & 8 & 0 & -0.822121 & 1.434123 & -2.144788 \\
5 & 22 & 0 & -1.184339 & 0.075262 & -0.968143 \\
6 & 8 & 0 & -2.420218 & 1.278779 & -0.060854 \\
7 & 8 & 0 & 0.475660 & 0.536615 & 0.140374 \\
8 & 22 & 0 & 1.916970 & -0.847460 & -0.339251 \\
9 & 8 & 0 & 0.490744 & -1.425695 & 2.008319 \\
10 & 6 & 0 & 0.295861 & -0.277381 & 2.368309 \\
11 & 8 & 0 & -0.103712 & 0.055822 & 3.615781 \\
12 & 8 & 0 & -2.035513 & -1.068952 & -2.115464 \\
13 & 6 & 0 & -1.504163 & -2.345753 & -2.462528 \\
14 & 6 & 0 & 0.016577 & -2.237494 & -2.343766 \\
15 & 8 & 0 & 0.218788 & -1.404621 & -1.195121 \\
16 & 8 & 0 & -2.100687 & -0.272065 & 0.756791 \\
17 & 6 & 0 & -3.350708 & -0.873871 & 1.205388 \\
18 & 6 & 0 & -2.974107 & -2.320730 & 1.562502 \\
19 & 6 & 0 & 0.593058 & 0.923503 & 1.491668 \\
20 & 6 & 0 & 2.109741 & 1.221294 & 1.636676 \\
21 & 6 & 0 & 2.415605 & 2.588337 & 1.025559 \\
22 & 8 & 0 & 1.691427 & 3.561692 & 1.139388 \\
23 & 8 & 0 & 2.704321 & -2.412326 & 0.056874 \\
24 & 6 & 0 & 3.070497 & -3.120050 & 1.232385 \\
25 & 8 & 0 & 2.775444 & 0.158124 & 1.014431 \\
26 & 8 & 0 & 2.778987 & -0.332446 & -1.829405 \\
27 & 6 & 0 & 4.181034 & -0.300953 & -2.084362 \\
28 & 6 & 0 & -4.426967 & -0.842682 & 0.118855 \\
29 & 6 & 0 & -3.789653 & -0.086817 & 2.443894 \\
30 & 8 & 0 & 3.606223 & 2.631515 & 0.386797 \\
31 & 1 & 0 & -1.892796 & -3.103663 & -1.767949 \\
32 & 1 & 0 & -1.817541 & -2.611612 & -3.480090 \\
33 & 1 & 0 & 0.450071 & -1.744399 & -3.222951 \\
34 & 1 & 0 & 0.502436 & -3.209616 & -2.197914 \\
35 & 1 & 0 & -0.570242 & 3.425587 & -2.588484 \\
36 & 1 & 0 & 0.104309 & 2.914965 & -1.027466 \\
37 & 1 & 0 & -1.951634 & 3.885571 & -0.191078 \\
38 & 1 & 0 & -3.328533 & 2.014770 & -2.234269 \\
39 & 1 & 0 & 2.392296 & 1.285031 & 2.701117 \\
40 & 1 & 0 & -0.040458 & 1.778018 & 1.738319 \\
& & & & & \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
41 & 1 & 0 & 3.840584 & -3.857954 & 0.979212 \\
42 & 1 & 0 & 2.199627 & -3.635047 & 1.652362 \\
43 & 1 & 0 & 3.466222 & -2.421044 & 1.979283 \\
44 & 1 & 0 & 4.340613 & -0.001919 & -3.126570 \\
45 & 1 & 0 & 4.621840 & -1.292471 & -1.920262 \\
46 & 1 & 0 & 4.667340 & 0.422350 & -1.419705 \\
47 & 1 & 0 & 3.695428 & 3.549614 & 0.068790 \\
48 & 1 & 0 & -0.192159 & -0.778609 & 4.113609 \\
49 & 1 & 0 & -4.699131 & -0.518715 & 2.876163 \\
50 & 1 & 0 & -3.987093 & 0.953022 & 2.168525 \\
51 & 1 & 0 & -2.999332 & -0.096885 & 3.200548 \\
52 & 1 & 0 & -3.841306 & -2.836704 & 1.989901 \\
53 & 1 & 0 & -2.157404 & -2.341020 & 2.288916 \\
54 & 1 & 0 & -2.649497 & -2.862754 & 0.669264 \\
55 & 1 & 0 & -5.325105 & -1.357915 & 0.477728 \\
56 & 1 & 0 & -4.073487 & -1.334196 & -0.791290 \\
57 & 1 & 0 & -4.688512 & 0.189758 & -0.126134 \\
58 & 1 & 0 & -4.133268 & 2.956184 & -0.851628
\end{tabular}

\section*{titButRevIs1 B3PW91/6-31G* (BPRevIs1631G)}
\(\mathrm{E}(\) RB+HF-PW91 \()=-3264.80663946\)
\begin{tabular}{lc} 
Zero-point correction= & 0.451808 (Hartree/Particle) \\
Thermal correction to Energy= & 0.488115 \\
Thermal correction to Enthalpy \(=\) & 0.489059 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.382118 \\
Sum of electronic and zero-point Energies= & -3264.354832 \\
Sum of electronic and thermal Energies= & -3264.318525 \\
Sum of electronic and thermal Enthalpies \(=\) & -3264.317580 \\
Sum of electronic and thermal Free Energies= & -3264.424521
\end{tabular}
\begin{tabular}{cccccc} 
& & E (Thermal) & \multicolumn{2}{c}{ CV } & S \\
& \multicolumn{8}{c}{ KCAL/MOL } & \multicolumn{2}{c}{ CAL/MOL-KELVIN } & CAL/MOL-KELVIN \\
TOTAL & \multicolumn{2}{c}{306.297} & \multicolumn{2}{c}{129.603} & 225.076 \\
1 & 6 & 0 & -3.233714 & 2.700531 & -1.307806 \\
2 & 6 & 0 & -2.033846 & 3.215097 & -0.933001 \\
3 & 6 & 0 & -0.749069 & 2.834171 & -1.615466 \\
4 & 8 & 0 & -0.812648 & 1.512256 & -2.074613 \\
5 & 22 & 0 & -1.184857 & 0.118576 & -0.956730 \\
6 & 8 & 0 & -2.435549 & 1.273413 & -0.017089 \\
7 & 8 & 0 & 0.469848 & 0.547266 & 0.178390 \\
8 & 22 & 0 & 1.918068 & -0.836207 & -0.359777 \\
9 & 8 & 0 & 0.558359 & -1.509120 & 1.904573
\end{tabular}
\begin{tabular}{rrrrrr}
10 & 6 & 0 & 0.333920 & -0.396607 & 2.340968 \\
11 & 8 & 0 & -0.071998 & -0.163332 & 3.595421 \\
12 & 8 & 0 & -2.041913 & -0.980331 & -2.133902 \\
13 & 6 & 0 & -1.532776 & -2.236391 & -2.511811 \\
14 & 6 & 0 & -0.012620 & -2.158444 & -2.383328 \\
15 & 8 & 0 & 0.207319 & -1.378546 & -1.222843 \\
16 & 8 & 0 & -2.115414 & -0.298135 & 0.757040 \\
17 & 6 & 0 & -3.339521 & -0.909129 & 1.192307 \\
18 & 6 & 0 & -2.964388 & -2.364213 & 1.500793 \\
19 & 6 & 0 & 0.606623 & 0.856329 & 1.531758 \\
20 & 6 & 0 & 2.123036 & 1.140673 & 1.683520 \\
21 & 6 & 0 & 2.416540 & 2.544697 & 1.147104 \\
22 & 8 & 0 & 1.707608 & 3.506742 & 1.353856 \\
23 & 8 & 0 & 2.721792 & -2.399140 & -0.049985 \\
24 & 6 & 0 & 3.161814 & -3.166878 & 1.033246 \\
25 & 8 & 0 & 2.783284 & 0.123360 & 1.019538 \\
26 & 8 & 0 & 2.730611 & -0.235558 & -1.827714 \\
27 & 6 & 0 & 4.076332 & -0.126254 & -2.209812 \\
28 & 6 & 0 & -4.427667 & -0.855329 & 0.122630 \\
29 & 6 & 0 & -3.780348 & -0.176019 & 2.459194 \\
30 & 8 & 0 & 3.567644 & 2.617538 & 0.464108 \\
31 & 1 & 0 & -1.934928 & -3.015374 & -1.846226 \\
32 & 1 & 0 & -1.839717 & -2.476049 & -3.539019 \\
33 & 1 & 0 & 0.429217 & -1.652239 & -3.252526 \\
34 & 1 & 0 & 0.450803 & -3.148051 & -2.278959 \\
35 & 1 & 0 & -0.563610 & 3.503850 & -2.471445 \\
36 & 1 & 0 & 0.088517 & 2.962809 & -0.916088 \\
37 & 1 & 0 & -1.981189 & 3.920551 & -0.106526 \\
38 & 1 & 0 & -4.148510 & 2.988874 & -0.800858 \\
39 & 1 & 0 & -3.326804 & 2.064960 & -2.182308 \\
40 & 1 & 0 & 2.403348 & 1.167258 & 2.751080 \\
41 & 1 & 0 & -0.021595 & 1.693922 & 1.845623 \\
42 & 1 & 0 & 3.962407 & -3.842061 & 0.704202 \\
43 & 1 & 0 & 2.339530 & -3.768051 & 1.440971 \\
44 & 1 & 0 & 3.549594 & -2.515429 & 1.827789 \\
45 & 1 & 0 & 4.130245 & 0.292761 & -3.222459 \\
46 & 1 & 0 & 4.562416 & -1.111636 & -2.209495 \\
47 & 1 & 0 & 4.616824 & 0.535848 & -1.521712 \\
48 & 1 & 0 & 3.656221 & 3.550912 & 0.198242 \\
49 & 1 & 0 & -0.134208 & -1.029981 & 4.036964 \\
50 & 1 & 0 & -4.678401 & -0.637663 & 2.885436 \\
51 & 1 & 0 & -3.999907 & 0.869873 & 2.225935 \\
52 & 1 & 0 & -2.983274 & -0.198532 & 3.209144 \\
53 & 1 & 0 & -3.830445 & -2.892395 & 1.915971 \\
& & & & &
\end{tabular}
\begin{tabular}{lllrrr}
54 & 1 & 0 & -2.144860 & -2.413495 & 2.223298 \\
55 & 1 & 0 & -2.645859 & -2.882040 & 0.590911 \\
56 & 1 & 0 & -5.314093 & -1.397292 & 0.471206 \\
57 & 1 & 0 & -4.078961 & -1.308340 & -0.808971 \\
58 & 1 & 0 & -4.710849 & 0.180185 & -0.083022
\end{tabular}

B3PW91/6-31G* solvent= \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (BPRevIs1631GPCMND)
PCM \(=--3264.81988195\)

\section*{titButRevIs1methyl}
(titButRevIs1 with trans-2-buten-1-ol as substrate)

\section*{B3LYP/gen}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1721.94893753\) A.U. after 33 cycles


C,2.710 045,-1.4200470657,-3.0399789964
C,3.105901,-1.0176710657,-1.7999009964
C,2.676868,-1.7120200657,-0.5307279964
O,1.316775,-2.1384310657,-0.62 88099964
Ti,-0.033154,-0.9631440657,-1.0439929964
O,1.208923,-0.086197 0657,-2.2682689964
O,0.377855,0.1926629343,0.6111310036
Ti,-0.971772,- 0.3253280657,2.0726310036
O,-1.486226,2.2521919343,0.4854570036
C,--0.2 99172,2.4882999343,0.3510210036
O,0.175463,3.6927229343,-0.0742189964
O,-1.177181,-2.1181110657,-1.8980179964
C,-2.462561,-2.4632440657,-1.3 652489964
C,-2.358371,-2.3475080657,0.1602840036

O,-1.524205,-1.191820 0657,0.3709330036 O,-0.378428,0.7440509343,-2.0052349964 C,-0.976434,1 .1878039343,-3.2641759964 C,-2.414177,1.5979079343,-2.8821289964 C, \(0.824403,1.5314709343,0.7278130036\) C,1.087162,1.6807859343,2.2550580036 C ,2.438772,1.0440759343,2.6023160036 O,3.427924,1.1112559343,1.89192900 36 O,-2.55993,0.0941649343,2.8089410036 C,-3.279127,1.2848079343,3.131 8260036 O,-0.00576,1.0773659343,2.9039510036 O,-0.419967,-1.7893460657, 2.9611730036 C,-0.292578,-2.0332370657,4.3680410036 C,-0.986837,0.075 7819343,-4.3222669964 С,-0.154618,2.3999889343,-3.7319679964 O,2.44620 5,0.4345239343,3.8150420036 Н,-3.216722,-1.7645140657,-1.7547049964 H, -2.730144,-3.4795470657,-1.6808219964 H,-1.865629,-3.2271910657,0.5928 650036 H,-3.332888,-2.2039820657,0.6421690036 H,3.301476,-2.5989750657,-0.3410069964 H,2.797452,-1.0313430657,0.3213010036 H,3.791627,-0.177 5590657,-1.7044109964 H,2.073951,-2.2990840657,-3.1190189964 H,1.16088 6,2.7445149343,2.5353890036 H,1.716109,1.7192719343,0.1269170036
H,-4. 083524,1.0342709343,3.8331290036
H,-3.709653,1.7254129343, 2.2257750036
H,-2.601521,2.0120759343,3.5960490036
H,0.07962,-3.0538360657,4.51122 00036
H,-1.267001,-1.9308390657,4.8621860036
H,0.414486,-1.3201500657, 4.8069340036
H,3.354146,0.0911139343,3.9301430036
H,-0.606383,4.259724 9343,-0.2231829964
H,-0.584877,2.8330659343,-4.6423139964
H,0.875026,2 .0934859343,-3.9363309964
Н,-0.133386,3.1665889343,-2.9509389964
H,-2. 920593, 2.0337899343,-3.7514669964
H,-2.404774,2.3307109343,-2.07089999 64
Н,-2.985122,0.7264139343,-2.5468039964
Н,-1.47818,0.4380909343,-5.2 326489964
H,-1.519056,-0.8048240657,-3.9549099964
H,0.034364,-0.222707 0657,-4.5700529964
C,3.183868,-0.7988950657,-4.3183349964

\author{
H,2.339136,- 0.5553370657,-4.9720229964 \\ H,3.752986,0.1176259343,-4.1344569964 \\ H,3.8 26112,-1.4999610657,-4.8699299964
}

B3LYP/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
PCM \(=-1721.96307723\)

\section*{Onsager}

B3LYP/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{a} 0=6.00\)
SCF Done: E(RB+HF-LYP) \(=-1721.94917928\)
C,2.7142356303,-1.4101804169,-3.0471566329
С,3.1077771469,-1.0112884871,-1.805152807
C,2.6830437441,-1.71 33376184,-0.5386532133
O,1.3230102405,-2.1416244721,-0.6340422865
Ti,- 0.0295245046,-0.9672430042,-1.0444498173
O,1.2075618716,-0.0850811142, -2.2662758953
O,0.3850610678,0.1847028708,0.6140180843
Ti,-0.973656562 6,-0.321595152,2.0700638849
O,-1.4877976069,2.2281503619,0.502549203
C ,-0.303749674,2.4752487974,0.3573847685
O,0.1584040204,3.6807106893,-0 .0734813884
O,-1.1739099671,-2.1247128453,-1.8957986169
C,-2.464080170 2,-2.4576449799,-1.368334165
C,-2.3661978198,-2.3400316941,0.157577784 9
O,-1.5242282465,-1.1911329314,0.3708026542
O,-0.3823573484,0.7394905 898,-2.000452209
C,-0.9782619774,1.1882547592,-3.2598508437
C,-2.41477 08823,1.6015370715,-2.8768592702
C, \(0.8275265289,1.5254317646,0.72905513\)
C, \(1.0930924354,1.6756476378,2.2554240852\)
C,2.4443802064,1.0384883978,2.601609592
O,3.4314103154,1.0978250509,1.8880729981
O,-2.5620266334, 0.0992530031,2.8081817393
C,-3.2833664163,1.2930983665,3.1143371595
O, 0.0005813006,1.0719606134,2.9062206137
O,-0.4308211488,-1.7889987617,2 .9631620194
C,-0.2944226173,-2.0092477365,4.3724893608
С,- \(-0.9916835038,0.077708672,-4.3192196373\)
С,-0.153026338,2.3987434427,-3.7250612646
O ,2.4556170383,0.4372629505,3.8193706038
Н,-3.2110541217,-1.7536838113, -1.7622569995
Н,-2.7391669324,-3.4723629743,-1.6830859408
```

H,-1.8826878 437,-3.223177694,0.5938439175
H,-3.3420529867,-2.1882202703,0.63445745 04
Н,3.3095904761,-2.600402164,-0.3555867984
H,2.8049336919,-1.0370423 873,0.3166386167
H,3.7892401589,-0.1681698886,-1.706152365
H,2.0817696 855,-2.2915607851,-3.1301481629
H,1.1668415054,2.7393835144,2.53547703 95
H,1.7159710397,1.7170096598,0.1247131644
H,-4.0964197726,1.04839367 37,3.8079022234
H,-3.7024839019,1.7286955728,2.2007086758
H,-2.6106982 486,2.022917142,3.5817751664
Н,0.0772425108,-3.0280996263,4.5308807638
H,-1.2654852333,-1.8971780169,4.8717372231
H,0.4162626144,-1.29023308 12,4.7958086976
H,3.3643354565,0.0952113011,3.9321462373
H,-0.62697105 01,4.2432814076,-0.2211961291
Н,-0.5823679246,2.834860742,-4.634216605 8
H,0.875666942,2.0902415427,-3.9308168461
Н,-0.1293651427,3.163959356,-2.9428299765
Н,-2.9196961399,2.0400963005,-3.745580119
H,-2.40355719 31,2.3335846307,-2.0649741127
H,-2.9882664575,0.7311753685,-2.54277282 2
H,-1.4788207617,0.4439521492,-5.2301623212
Н,-1.5294185606,-0.800848 8465,-3.9548863871
Н,0.0285163346,-0.2253734484,-4.5653882012
C,3.1841 441094,-0.7805053588,-4.3226240377
H,2.3379369671,-0.5372067252,-4.974 4456789
Н,3.7497037148,0.1373486636,-4.1350155342
H,3.8286030122,-1.47 60956156,-4.8784998734
B3LYP/gen solvent= $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
PCM=-1721.96311489

```

\section*{B3PW91/gen (BPfreqRevis1methyl)}

SCF Done: \(\mathrm{E}(\) RB+HF-PW91 \()=-1721.36713565\) A.U. after 32 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.480751 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.518632 \\
Thermal correction to Enthalpy \(=\) & 0.519576 \\
Thermal correction to Gibbs Free Energy= & 0.409031 \\
Sum of electronic and zero-point Energies \(=\) & -1720.886384 \\
Sum of electronic and thermal Energies= & -1720.848504 \\
Sum of electronic and thermal Enthalpies= & -1720.847559
\end{tabular}

Sum of electronic and thermal Free Energies \(=-1720.958105\)
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV S & \\
\hline & KCAL/MOL & CAL/MOL-KELVIN & N CAL/MOL-KELVIN \\
\hline TOTAL & 325.447 & 134.873 & 32.662 \\
\hline \multicolumn{4}{|l|}{C,-3.4612579124,2.2671 070365,-1.1379408942} \\
\hline \multicolumn{4}{|l|}{C,-2.2890269124,2.8293270365,-0.7351098942} \\
\hline \multicolumn{4}{|l|}{C,-0.9 961539124,2.6490490365,-1.4821058942} \\
\hline \multicolumn{4}{|l|}{O,-0.9126019124,1.3354840365,-2.0 192558942} \\
\hline \multicolumn{4}{|l|}{Ti,-1.0565399124,-0.1281289635,-0.9299738942} \\
\hline \multicolumn{4}{|l|}{O,-2.4171759124, \(0.8354820365,0.0697111058\)} \\
\hline \multicolumn{4}{|l|}{O,0.5429180876,0.4985380365,0.1927151058} \\
\hline \multicolumn{4}{|l|}{Ti ,2.1653100876,-0.5992379635,-0.4186938942} \\
\hline \multicolumn{4}{|l|}{O,0.8705080876,-1.5511309635, 1.9615511058} \\
\hline \multicolumn{4}{|l|}{C,0.5233560876,-0.4592599635,2.3757121058} \\
\hline \multicolumn{4}{|l|}{O,0.0975290876, -0.2465589635,3.6434761058} \\
\hline \multicolumn{4}{|l|}{O,-1.7531669124,-1.3144289635,-2.1373888942} \\
\hline \multicolumn{4}{|l|}{C,-1.0393129124,-2.4646979635,-2.5848868942} \\
\hline \multicolumn{4}{|l|}{C, \(0.4487840876,-2.131163\) 9635,-2.4756818942} \\
\hline \multicolumn{4}{|l|}{O,0.5479530876,-1.3662639635,-1.2670508942} \\
\hline \multicolumn{4}{|l|}{O,-1.886 3199124,-0.7113039635,0.7783791058} \\
\hline \multicolumn{4}{|l|}{C, -3.0212809124,-1.5260759635,1.188 8411058} \\
\hline \multicolumn{4}{|l|}{C,-2.4112279124,-2.9028499635,1.4983931058} \\
\hline \multicolumn{4}{|l|}{C,0.6321400876,0.81 67130365,1.5631701058} \\
\hline \multicolumn{4}{|l|}{C,2.0933140876,1.3216320365,1.7092351058} \\
\hline \multicolumn{4}{|l|}{C,2.183 7120876,2.7581010365,1.1949481058} \\
\hline \multicolumn{4}{|l|}{O,1.3361850876,3.6080830365,1.405215 1058} \\
\hline \multicolumn{4}{|l|}{O,3.1941330876,-2.0489639635,-0.1634858942} \\
\hline \multicolumn{4}{|l|}{C,3.6983920876,-2.7942 439635,0.9341501058} \\
\hline \multicolumn{4}{|l|}{O,2.8909130876,0.4118340365,1.0057381058} \\
\hline \multicolumn{4}{|l|}{O,2.87632 30876,0.1654310365,-1.8771748942} \\
\hline \multicolumn{4}{|l|}{C,4.2348450876,0.4654450365,-2.188022 8942} \\
\hline \multicolumn{4}{|l|}{C,-4.0803009124,-1.6363069635,0.0908011058} \\
\hline \multicolumn{4}{|l|}{C,-3.5924709124,-0.872 6149635, 2.4515581058} \\
\hline \multicolumn{4}{|l|}{O,3.3298290876,3.0143010365,0.5263571058} \\
\hline \multicolumn{4}{|l|}{Н,-1.290 9879124,-3.3223319635,-1.9446748942} \\
\hline \multicolumn{4}{|l|}{Н,-1.3307659124,-2.7016709635,-3.6 159958942} \\
\hline \multicolumn{4}{|l|}{H,0.7796900876,-1.5115939635,-3.3186908942} \\
\hline \multicolumn{4}{|l|}{H,1.0822090876,-3 .0240489635,-2.4124368942} \\
\hline \multicolumn{4}{|l|}{H,-0.9225289124,3.3680890365,-2.3131418942} \\
\hline \multicolumn{4}{|l|}{H ,-0.1512079124,2.8328480365,-0.8065298942} \\
\hline \multicolumn{4}{|l|}{H,-2.2765639124,3.4700780365,0.1454601058} \\
\hline H,-3.4620 & 9124,1.68027603 & 5,-2.0549768942 & \\
\hline
\end{tabular}
\(\mathrm{H}, 2.3872100876,1.3538290365,2.7721081058\)
\(\mathrm{H},-0.1105869124,1.5568910365,1.8683361058\)
\(\mathrm{H}, 4.5177970876,-3.4335799635,0.5854311058\)
\(\mathrm{H}, 2.9086190876,-3.4200739635,1.3641941058\)
\(\mathrm{H}, 4.0730720876,-2.1118889635,1.7071461058\)
\(\mathrm{H}, 4.2749080876,0.9024930365,-3.1919548942\)
\(\mathrm{H}, 4.8423830876,-0.4480499635,-2.1664098942\)
\(\mathrm{H}, 4.6355700876,1.1824480365,-1.4625448942\)
\(\mathrm{H}, 3.2782300876,3.9554200365,0.2738841058\)
\(\mathrm{H}, 0.1381810876,-1.1097869635,4.0960001058\)
\(\mathrm{H},-4.4177229124,-1.4687129635,2.8570321058\)
\(\mathrm{H},-3.9599869124,0.1297420365,2.2153671058\)
\(\mathrm{H},-2.8136739124,-0.7799769635,3.2147401058\)
\(\mathrm{H},-3.1840099124,-3.5720149635,1.8940241058\)
\(\mathrm{H},-1.6079549124,-2.8142809635,2.2345681058\)
\(\mathrm{H},-1.9926879124,-3.3486059635,0.5911431058\)
\(\mathrm{H},-4.8991869124,-2.2794429635,0.4324311058\)
\(\mathrm{H},-3.6515929124,-2.0562139635,-0.8223368942\)
\(\mathrm{H},-4.4835329124,-0.6494119635,-0.1462038942\)
\(\mathrm{C},-4.7755309124,2.4975680365,-0.4659288942\)
\(\mathrm{H},-5.2877999124,1.5505160365,-0.2660278942\)
\(\mathrm{H},-4.6553889124,3.0311550365,0.4816681058\)
\(\mathrm{H},-5.4366829124,3.0895820365,-1.1139978942\)

B3PW91/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
PCM \(=-1721.38065588\)
B3PW91/6-31G* solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
\(\operatorname{PCM}=-3304.12568103\)

\section*{Onsager}
solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{a} 0=6.09\)
SCF Done: E(RB+HF-PW91) = -1721.36739682
C,-3.4719808388,2.2669472256,- 1.1282563655
C,-2.2997588205,2.8307955808,-0.7272883178
C,-1. \(0087383667,2.657797724,-1.4794351082\)
О,-0.920840437,1.3463545339,-2.0213031514
Ti,-1.0575604732,-0.1207264828,-0.9344584315
O,-2.4162867234,0.8364165 122,0.0707363525
O,0.5448053335,0.5114347702,0.1832738025
Ti,2.1619626 758,-0.6044736755,-0.4119259434
O,0.893989363,-1.545710743,1.920433478 5
A.U. after 8 cycles

C, \(0.5330564294,-0.4648266065,2.3536348288\)
O,0.102739276,-0.276590689 7,3.6215017158
O,-1.7521770194,-1.3047651249,-2.1454018376
C, -1.044717 2347,-2.4635418285,-2.5797155879
C,0.4453619599,-2.1398138328,-2.46690 43811
O,0.5454195712,-1.364777558,-1.2653094622
O,-1.8793007086,-0.711 5356927,0.7736235419
C,-3.0139898415,-1.5249000405,1.1912502988
C,-2.4 \(016188962,-2.8980221899,1.5117833623\)
С, \(0.6334951383,0.8209916665,1.5560800348\)
C,2.0937390975,1.3280184821,1.7045291216
С,2.1830101235,2.7645 343746,1.1912459947
O,1.3333748967,3.6132816206,1.3967327167
O,3.19345 07206,-2.0537539285,-0.1575234471
C,3.6816186528,-2.8097207264,0.94009 82897
O,2.8934001251,0.4198277042,1.0005060514
O,2.8794726121,0.150472 5822,-1.8755151682
C,4.2419459686,0.459354521,-2.1562190786
C,-4.07169 98877,-1.6457179113,0.0932762851
C,-3.5867552115,-0.862915795,2.448481 1085
O,3.3326069296,3.0245619979,0.5284938284
H,-1.3051537075,-3.31418 31726,-1.9337349369
H,-1.3333005394,-2.7075149905,-3.6101229459
H,0.78 45388947,-1.5305068806,-3.3142338532
H,1.0718450333,-3.0368529919,-2.3 929490945
H,-0.9409114751,3.3800082064,-2.3083798969
Н,-0.1623780281,2 .8429023405,-0.8059398635
Н,-2.2862287893,3.4677873337,0.1559571779
H, -3.4741437184,1.6830604631,-2.0472212967
H,2.3865141775,1.3594260432,2 .7677438895
H,-0.1122201962,1.5550685658,1.8681529961
H,4.4952538982,- \(3.4578447993,0.5937753189\)
H,2.8820065001,-3.4274750958,1.363300163
H,4 . \(0603100333,-2.135651197,1.7184152407\)
H,4.3016903315,0.8982396605,-3.1 587146405
H,4.8549417763,-0.4504755877,-2.1228128722
H,4.6233992287,1. 1775317036,-1.4213364106
H,3.2781997526,3.9661448378,0.2785482828
H,0. \(1474115711,-1.1454244983,4.0630416675\)
Н,-4.4094951783,-1.458697401,2.8 59105761
Н,-3.9583596048,0.1360602289,2.2048434548
H,-2.8083632097,-0. 76144636,3.2108647898
Н,-3.1746827733,-3.5662998961,1.9080212527
Н,-1. \(6027048113,-2.8035519959,2.2519233277\)
\(\mathrm{H},-1.9776084746,-3.3486722405,0.6094908855\)
\(\mathrm{H},-4.8931743774,-2.2812799424,0.4424302544\)
\(\mathrm{H},-3.6442518501,-2.0793187876,-0.8140084906\)
\(\mathrm{H},-4.4715238072,-0.6606897716,-0.1568236778\)
\(\mathrm{C},-4.784310399,2.4895928933,-0.4500751094\)
\(\mathrm{H},-5.2914680815,1.5397462521,-0.2505451639\)
\(\mathrm{H},-4.6630318856,3.0210854484,0.4984702669\)
\(\mathrm{H},-5.4511379036,3.0800589102,-1.0937049644\)

B3PW91/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
PCM \(=-1721.38069749\)

B3PW91/6-31G* solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
\(\mathrm{PCM}=-3304.12297058\)

\section*{titButIs3b}

\section*{B3LYP/gen}
\(\mathrm{B} 3 \mathrm{LYP} /\) gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
\(\mathrm{PCM}=-1682.65255947\)

B3PW91/6-31G* solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
\(\mathrm{PCM}=-3264.81382852\)

\section*{Onsager}

B3LYP/gen solvent \(=\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{a} 0=6.20\)
SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1682.63662677\)
C,3.6516992216,2.4693021845,-0.1855743377
C,2.5399607537,3.0711362626,0.3192296407
C, 1.3010189396,3.3121183411,-0.5056817217
O,1.0998551744,2.2313606426,-1.4220184962
Ti,1.0919277763,0.4652800006,-0.9345846495
O,-0.4508066471,0.6558914711,0.4119972119
C,-0.4065393882,0.5022542692,1.8154365512
C,-0.6991508967,1.8220589528,2.5263476682
O,-0.8071379909,2.9215065017,2.0231674261
O,1.6985677906,-0.2703038144,-2.5104923086
C, \(0.8000344568,-0.4445729717,-3.6132242947\)
C,-0.5305434411,-0.9412993501,-3.0359299291
O,-0.6732831826,-0.2326914813,-1.7887099473
Ti,-2.1809421806,0.0002313487,-0.550886547
A.U. after 11 cycles
\(\mathrm{O},-3.0730042683,1.4920617149,-1.0010987067\)
\(\mathrm{C},-4.4423075658,1.8125098654,-1.2481709583\)
\(\mathrm{O}, 1.8753251344,-0.8563465616,0.3336700445\)
\(\mathrm{C}, 2.9586156864,-1.8449720289,0.280692247\)
\(\mathrm{C}, 4.1144237892,-1.3967109536,-0.6266574491\)
\(\mathrm{O}, 2.5187803715,0.8402644157,0.3402049148\)
\(\mathrm{O},-2.5475519043,-0.4179486325,1.2448637413\)
\(\mathrm{C},-1.4935564727,-0.5790027158,2.1563260442\)
\(\mathrm{C},-0.8822451994,-1.973125311,2.0176718392\)
\(\mathrm{O},-0.1679744483,-2.3125966315,3.1298922145\)
\(\mathrm{O},-3.2425260247,-1.2952990736,-1.2214281907\)
\(\mathrm{C},-3.7312907113,-2.5709989404,-0.8063537186\)
\(\mathrm{O},-0.9894936835,-2.7019081259,1.0497506069\)
\(\mathrm{O},-0.792408576,1.6229644341,3.8784472092\)
\(\mathrm{C}, 3.4331089923,-2.0298526358,1.730561864\)
\(\mathrm{C}, 2.2944335726,-3.1214302463,-0.2747810414\)
\(\mathrm{H}, 0.6640471637,0.5212918211,-4.119060118\)
\(\mathrm{H}, 1.2254670622,-1.1603314283,-4.3284131182\)
\(\mathrm{H},-0.4996666369,-2.0170593681,-2.824330979\)
\(\mathrm{H},-1.3784179836,-0.7310692529,-3.6973378228\)
\(\mathrm{H}, 1.3996490452,4.242795819,-1.0868512254\)
\(\mathrm{H}, 0.4260935558,3.4043043645,0.1462104487\)
\(\mathrm{H}, 2.5165639281,3.3715520639,1.3646191037\)
\(\mathrm{H}, 3.7373022047,2.2419856529,-1.2426058465\)
\(\mathrm{H},-1.8412467484,-0.4575058719,3.1879991259\)
\(\mathrm{H}, 0.5873256617,0.1652864317,2.1364234531\)
\(\mathrm{H},-4.4877635201,2.6358123977,-1.9705169617\)
\(\mathrm{H},-4.9250922885,2.129495564,-0.3154246619\)
\(\mathrm{H},-4.9746997758,0.9425322265,-1.6533189738\)
\(\mathrm{H},-0.9586181569,2.5018139287,4.270688599\)
\(\mathrm{H},-4.7120500549,-2.7445719546,-1.2651504889\)
\(\mathrm{H},-3.8197042385,-2.5937186344,0.2856909915\)
\(\mathrm{H},-3.0400107229,-3.3607031691,-1.1215284112\)
\(\mathrm{H}, 0.2222602699,-3.190659028,2.9537210191\)
\(\mathrm{H}, 4.2094308759,-2.8009198886,1.7910307757\)
\(\mathrm{H}, 2.5956067598,-2.3213601559,2.3725478681\)
\(\mathrm{H}, 3.8420448928,-1.088379495,2.1101353973\)
\(\mathrm{H}, 3.0051988282,-3.9555554808,-0.2427058528\)
\(\mathrm{H}, 1.9885214822,-2.9618733381,-1.3131635726\)
\(\mathrm{H}, 1.4075575348,-3.3865931674,0.3075701588\)
\(\mathrm{H}, 4.8668260697,-2.192434785,-0.6738482658\)
\(\mathrm{H}, 4.5849932391,-0.4941673069,-0.2295749703\)
\(\mathrm{H}, 3.7537776114,-1.1920602418,-1.6375949707\)
\(\mathrm{H}, 4.5302164512,2.3107154068,0.4298354432\)

B3LYP/gen solvent= \(=\mathrm{CH} 2 \mathrm{Cl} 2\)
PCM \(=-1682.65197655\)

\section*{B3PW91/gen}

SCF Done: \(\mathrm{E}(\) RB+HF-PW91 \()=-1682.06734612\) A.U. after 31 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.452299 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.488661 \\
Thermal correction to Enthalpy \(=\) & 0.489605 \\
Thermal correction to Gibbs Free Energy= & 0.382168 \\
Sum of electronic and zero-point Energies \(=\) & -1681.615047 \\
Sum of electronic and thermal Energies= & -1681.578685 \\
Sum of electronic and thermal Enthalpies= & -1681.577741 \\
Sum of electronic and thermal Free Energies= & -1681.685178
\end{tabular}
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 306.639 & 129.658 & 226.121
\end{tabular}

C,3.8788619662,1.8661010188,-0.7734190301
C,2.881732966 2,2.6910370188,-0.3574250301
C,1.6310639662,2.9075500188,-1.1616940301
O,1.2816279662,1.7114700188,-1.8517920301
Ti,1.0844629662,0.103676018 8,-1.0124140301
O,-0.3280570338,0.7640180188,0.3084089699
C,-0.2354470 338,0.8592980188,1.7077179699
C,-0.3121040338,2.3070680188,2.173251969 9
O,-0.3134380338,3.3030280188,1.4821419699
O,1.4998999662,-1.00434598 12,-2.4169720301
C, \(0.5327039662,-1.2353519812,-3.4402340301\)
C,-0. 81660 10338,-1.4200939812,-2.7459370301
O,-0.7871990338,-0.4927349812,-1.652 4160301
Ti,-2.1781230338,0.2060780188,-0.4654290301
O,-2.8401040338,1. 7001540188,-1.1886000301
C,-4.1376000338,2.1676180188,-1.5316760301
O, 1.7954499662,-1.0112819812,0.4760269699
C,2.7558009662,-2.1072789812,0 .5596999699
C,3.8897219662,-1.9689999812,-0.4596220301
O,2.6059129662, 0.5354320188,0.1170019699
O,-2.5130950338,0.2260120188,1.3814379699
C, \(-1.4446420338,0.0340220188,2.2595569699\)
C,-1.0594480338,-1.4388759812, 2.2952839699

B3PW91/gen solvent=CH2Cl2
PCM \(=-1682.08305821\)

B3PW91/6-31G* solvent=CH2Cl2
PCM \(=-3264.81527330\)

\section*{Onsager}

B3PW91/solvent \(=\mathrm{CH} 2 \mathrm{Cl} 2 \mathrm{a} 0=6.09\)
SCF Done: E(RB+HF-PW91) = -1682.06772284
A.U. after 7 cycles

\(\mathrm{H},-4.4109847747,2.5488621688,-2.1253579938\)
\(\mathrm{H},-4.8848909694,2.1199360151,-0.4592881665\)
\(\mathrm{H},-4.9137519087,0.874529563,-1.7420181985\)
\(\mathrm{H},-0.9094985855,2.6771760006,4.1542788904\)
\(\mathrm{H},-4.7764999995,-2.7243164902,-1.1178700602\)
\(\mathrm{H},-3.9205797504,-2.4994283986,0.4422977955\)
\(\mathrm{H},-3.128098267,-3.376066491,-0.8910771626\)
\(\mathrm{H}, 0.140140251,-3.1307808366,2.9600321318\)
\(\mathrm{H}, 4.2985387948,-2.6250277016,1.9185256593\)
\(\mathrm{H}, 2.6787438136,-2.1703047582,2.5007710951\)
\(\mathrm{H}, 3.8828852528,-0.9120335263,2.1653903257\)
\(\mathrm{H}, 3.0942760882,-3.9032034623,-0.034811797\)
\(\mathrm{H}, 2.0393357862,-2.982656887,-1.1343098396\)
\(H, 1.491857329,-3.3466109164,0.5116708043\)
\(H, 4.8962356882,-2.1371188001,--0.5768970557\)
\(H, 4.5954928597,-0.4259295543,-0.1992387771\)
\(H, 3.7528825918,-1.1955418079,-1.5638895586\)
\(H, 4.5014547947,2.345671037,0.2592394562\)

B3PW91/gen solvent \(=\mathrm{CH} 2 \mathrm{Cl} 2\)
PCM=-1682.08248988

\section*{titButIs3bmethyl}
(titButIs3b with trans-methyl-2-buten-1-ol as substrate)

\section*{B3LYP/gen}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1721.94893754\) A.U. after 32 cycles
Zero-point correction \(=\quad 0.478822\) (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.516958\)
Thermal correction to Enthalpy= 0.517902
Thermal correction to Gibbs Free Energy= 0.406492
Sum of electronic and zero-point Energies= \(\quad-1721.470116\)
Sum of electronic and thermal Energies \(=\quad-1721.431980\)
Sum of electronic and thermal Enthalpies= \(\quad-1721.431036\)
Sum of electronic and thermal Free Energies \(=\quad-1721.542445\)
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 324.396 & 135.651 & 234.481
\end{tabular}

С,3.8279399745,1.8845890073,-0.6691849526
C ,2.7565589745,2.6238590073,-0.2652749526

C, 1.5514579745,2.8853720073,-1.1346449526
O,1.1792169745,1.7004990073,-1.8480919526
Ti,0.9423489745, 0.0744820073,-1.0457039526
O,-0.4925110255,0.7237210073,0.2817530474
C,- \(-0.3983010255,0.8330180073,1.6862830474\)
C,-0.4884860255,2.2901110073,2.1358110474
O,-0.4878330255,3.2794400073,1.4327710474
O,1.3594999745,-1.0174879927,-2.4712199526
C,0.3906699745,-1.2382689927,-3.504600952 6
C,-0.9682470255,-1.4186589927,-2.8183899526
O,-0.9449240255,-0.49087 49927,-1.7152009526
Ti,-2.3432610255,0.1589410073,-0.4954209526
O,-3.0 568060255,1.6535710073,-1.1827519526
C,-4.3730540255,2.1084220073,-1.5 004899526
O,1.5965769745,-1.1022999927,0.4258890474
C,2.5195889745,-2. 2358489927,0.5307370474
C,3.6524699745,-2.1678859927,-0.5044959526
O,2 .4524739745,0.4696210073,0.1196800474
O,-2.6655060255,0.1218400073,1.3 583460474
C,-1.5963950255,-0.0081169927,2.2556680474
C,-1.1777060255,- 1.4730069927,2.3773950474
O,-0.4365490255,-1.6832169927,3.5061540474
O ,-3.5889000255,-1.0848239927,-0.8832329526
C,-4. \(2279820255,-2.17894199\) 27,-0.2252349526
O,-1.4431460255,-2.3586119927,1.5875370474
O,-0.53310 80255,2.3647740073,3.5037660474
C,3.0727919745,-2.2003779927,1.9645260 474
C,1.6390399745,-3.4784719927,0.2863530474
H,0.3728869745,-0.364190 9927,-4.1699669526
H,0.6701399745,-2.1226079927,-4.0917399526
H,-1. 085 5300255,-2.4332509927,-2.4183929526
Н,-1.8071030255,-1.1995149927,-3.4 882779526
H,1.7725069745,3.6717010073,-1.8732999526
H,0.7090409745,3.2 167110073,-0.5197419526
H,2.7668319745,3.0758040073,0.7253950474
H,3.8 321579745,1.4936420073,-1.6845899526
H,-1.8721960255,0.3509990073,3.25 35070474
H,0.5604269745,0.4346890073,2.0418070474
H,-4.3166960255,2.77 35160073,-2.3697799526
Н,-4.7879820255,2.6651270073,-0.6513649526
H,-5 .0286220255,1.2597050073,-1.7324859526
Н,-0.5762890255,3.3163150073,3. 7197050474
H,-5.2396170255,-2.2978679927,-0.6309119526
Н,-4.2773370255,-1.9825159927,0.8517930474

Н,-3.6604820255,-3.1015919927,-0.390967952 6
H,-0.1789050255,-2.6252469927,3.4954770474
H,3.7306789745,-3.0569539 927,2.1510420474
H,2.2522519745,-2.2201449927,2.6892010474
H,3.6409959 745,-1.2783019927,2.1203740474
H,2.2279339745,-4.3896799927,0.44596304 74
H,1.2687409745,-3.4770919927,-0.7432779526
H,0.7771889745,-3.488070 9927,0.9590050474
H,4.2818389745,-3.0608199927,-0.4131209526
H,4.27279 69745,-1.2854039927,-0.3356749526
H,3.2462659745,-2.1230309927,-1.5176 559526
C,5.0755479745,1.6992660073,0.1404890474
H,5.3721959745,0.64572 00073,0.1724750474
H,5.9087879745,2.2561300073,-0.3109759526
H,4.94391 09745,2.0513720073,1.1683660474
B3LYP/gen solvent=CH2Cl2
PCM \(=-1721.96208805\)

\section*{Onsager}

B3LYP/gen solvent \(=\mathrm{CH} 2 \mathrm{Cl} 2 \mathrm{a} 0=6.22\)
SCF Done: E (RB+HF-LYP \()=-1721.94933645\)
C,3.8452691622,1.8723618269,-0.6498247747
C,2.7735052358,2.6125792701,-0.2482850604
C, 1.5777440282,2.8893865627,-1.1262960026
O,1.1925448339,1.7096266122,-1.8416731615
Ti, \(0.9475345291,0.0791669727,-1.0507115776\)
O,-0.4984223089,0.7257757443,0.2698510733
С,- \(-0.4056721984,0.8450226056,1.6738840762\)
C,- \(-0.4979574196,2.304551162,2.1144661175\)
O,-0.5163638603,3.2893891917,1.4051499699
O,1.3680790907,-1.0037137234,-2.4822058287
C,0.4015695571,-1.2304732682,-3.5150049255
C,-0.9573756518,-1.4164806179,-2.8302036976
O,-0.9412612052,-0.4852929576,-1.7302327182
Ti,-2.3406475724,0.1529447827,-0.5082565542
O,-3.0724065302,1.6385920384,-1.2038148334
С,-4.4075353602,2.0883751893,-1.433752552
O,1.5831207075,-1.1058036463,0.4195111243
C,2.5048839809,-2.2413524588,0.5322316142
C,3.6391367514,-2.18039057,-0.5016714785
O,2.4489290234,0.4633513168,0.1242472099

> O,-2.6692725647,0.1215946959,1.34289718
> C,-1.6041728458,0.0072900596,2.2483144536
> C,-1.1814038987,-1.4543798072,2.3923907721
> O,-0.4442367725,-1.6436976482,3.5259547914
> O,-3.5786164744,-1.1037253899,-0.8905294654
> C,-4.1866606834,-2.2093657011,-0.22241935
> O,-1.441124494,-2.3511116004,1.6131584495
> O,-0.5233772644,2.3861336345,3.4820345229
> C,3.0550973667,-2.2009867308,1.9666382608
> C,1.6209278448,-3.4822696217,0.2917346894
> H,0.3796266975,-0.3575959564,--4.1820985503
> H,0.6854749057,-2.1145179345,--4.1006400578
> H,-1.0691258642,-2.4307142118,-2.4276662451
> H,-1.796634504,-1.2042447005,-3.5021039297
> H,1.8150107052,3.6714667187,-1.8644955723
> H,0.7353669278,3.2335660685,-0.5183549393
> H,2.7788385175,3.0566681646,0.7459413348
> H,3.8552023128,1.4886759023,-1.6681153483
> H,-1.8871525519,0.3788895732,3.2394734316
> H,0.55256349,0.449082229,2.0329804789
> H,-4.401572583,2.7996585681,-2.267898651
> H,-4.7920308385,2.592611539,--0.5383451645
> H,-5.0621896629,1.2427815516,-1.6810009801
> H,-0.5649443733,3.3382894074,3.6954112381
> H,-5.1874651969,-2.372493096,-0.6401260865
> H,-4.2588693645,-1.9969678232,0.8503323939
> H,-3.5837511675,-3.1135900832,-0.3621093895
> H,-0.1783868539,-2.5835845946,3.5320939989
> H,3.7132966596,--3.0563596688,2.156381177
> H,2.233753008,-2.2201056489,2.6904218675
> H,3.6224688489,-1.2784132989,2.1217447624
> H,2.2067228237,--4.3939636785,0.4588429004
> H,1.2544912603,-3.4862252033,,-0.7394044741
> H,0.75737355444,--3.4851709734,0.9621738567
> H,4.2659587777,-3.0743441692,-0.4051760484
> H,4.2620254494,--1.2991246014,--0.336246554
> H,3.2347070431,--2.1389213785,--1.5157046915
> C,5.084412498,1.672436619,0.1686682013
> H,5.3762565244,0.6174038159,0.1920249011
> H,5.9242117216,2.2295988464,--0.2699632774
> H,4.9459130358,2.01441275663,1.1989179447

B3PW91/6-31G* solvent=CH2Cl2
PCM \(=-3304.12122286\)

\section*{B3PW91/gen}

SCF Done: \(\mathrm{E}(\) RB+HF-PW91 \()=-1721.36623720\) A.U. after 31 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.480557 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.518661 \\
Thermal correction to Enthalpy \(=\) & 0.519605 \\
Thermal correction to Gibbs Free Energy= & 0.407737 \\
Sum of electronic and zero-point Energies \(=\) & -1720.885681 \\
Sum of electronic and thermal Energies= & -1720.847576 \\
Sum of electronic and thermal Enthalpies= & -1720.846632 \\
Sum of electronic and thermal Free Energies= & -1720.958500
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 325.465 & 135.172 & 235.446
\end{tabular}

C,3.7662940584,1.9109021423,-0.7087829891
C,2.6903950584,2 .6331921423,-0.2915529891
С,1.4649120584,2.8503241423,-1.1351169891
O, 1.1382750584,1.6636661423,-1.8536589891
Ti,0.9349570584,0.0520961423,- 1.0286709891
О,-0.4835689416,0.7113691423,0.2948850109
C,-0.3894839416, \(0.8078691423,1.6936570109\)
C,-0.4771609416,2.2548211423,2.1601090109
O ,-0.5051919416,3.2510241423,1.4699140109
O,1.3480870584,-1.0447118577, -2.4436839891
C,0.3756120584,-1.2815968577,-3.4599869891
С,-0. 96829594 16,-1.4748978577,-2.7579709891
О,-0.9401119416,-0.5452788577,-1.666516 9891
Ti,-2.3302999416,0.1515771423,-0.4780359891
O,-2.9964999416,1.646 9371423,-1.1950729891
C,-4.2915359416,2.1111681423,-1.5503999891
O,1.6 346210584,-1.0760008577,0.4545370109
C,2.5850080584,-2.1787138577,0.54 60460109
C,3.6847090584,-2.0936568577,-0.5149159891
O,2.4373410584,0.4 841791423,0.1194980109
O,-2.6630499416,0.1589521423,1.3692560109
C,-1. 5942089416,-0.0225688577,2.2485900109
C,-1.2037689416,-1.4936778577,2. 3014540109
O,-0.5028059416,-1.7865118577,3.4292220109
O,-3.6164349416, -1.0429778577,-0.8623579891
C,-4.3125409416,-2.0923158577,-0.207322989 1

B3PW91/gen solvent=CH2Cl2
PCM \(=-1721.37890681\)

B3PW91/6-31G* solvent=CH2Cl2
PCM \(=-3304.12351023\)

\section*{Onsager}

B3PW91 solvent \(=\mathrm{CH} 2 \mathrm{Cl} 2 \mathrm{a} 0=5.87\)

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{PW} 91)=-1721.36673090\)
C,3.7721822081,1.8606777365,-0.8357304929
C ,2.692170689,2.6035642663,-0.4679628013
C, 1.466716234,2.7602900112,-1. 3253552899
O,1.1406506602,1.5271139674,-1.9611220621
Ti,0.9408378425,- 0.0233964025,-1.0229665523
O,-0.4799169525,0.739528574,0.2437126882
C, \(-0.3878445559,0.9316064886,1.6330621729\)
C,-0.4689389046,2.4061701753,2 .0030039316
O,-0.5061993013,3.3554684229,1.2496897718
O,1.3529500933,- 1.2133934566,-2.3604849394
C, \(0.3755632801,-1.5467157228,-3.3429286201\)
C,-0.9597976583,-1.6988859399,-2.6148434125
O,-0.936350645,-0.68154904 52,-1.6053407324
Ti,-2.3251429317,0.1156234201,-0.4834338156
O,-2.9784 959309,1.5475473874,-1.3377483075
C,-4.2853548049,1.9880029684,-1.6744 330979
O,1.6378468709,-1.0402998488,0.5361780398
C,2.5908729497,-2.132 7819814,0.7107272473
С,3.695510325,-2.1186195378,-0.3482419892
O,2.439 5987158,0.4922481607,0.0903296346
O,-2.6714378378,0.305542707,1.351944 5869
C,-1.6008080558,0.1493965952,2.2365837979
C,-1.2313173767,-1.3239 626746,2.3362795952
O,-0.5687784978,-1.6069889158,3.4853754283
O,-3.63 2366492,-1.0858030089,-0.77886247
С,-4.3250004625,-2.0840674912,-0.045 9029903
О,-1.4803082313,-2.156004808,1.4846790544
O,-0.464945223,2.549 6995778,3.3604196613
C,3.1677601128,-1.9723952658,2.1204488341
C,1.744 7893217,-3.4089942951,0.5809208265
H,0.31966709,-0.734525222,-4.081158 3662
H,0.6662772356,-2.4712710245,-3.8586233651
H,-1.0404150603,-2.675 4841376,-2.1220124117
Н,-1.8190909269,-1.5629913788,-3.2812504583
H,1. \(639437562,3.5146859397,-2.1093501063\)
H,0.6196872166,3.089129462,-0.713 6509674
H,2.7136773021,3.139255467,0.4803414864
H,3.7605918782,1.38484 24734,-1.8150887176
Н,-1.8467058908,0.5244514358,3.2364824646
H,0.5636 6031,0.5404960002,2.0181123222
H,-4.2346619305,2.5775335664,-2.5974014 005
Н,-4.685681938,2.6192568241,-0.8714189935
A.U. after 8 cycles

> \begin{tabular}{l} \(\mathrm{H},-4.9547047886,1.1314932185,-1.826367095\) \\ \(\mathrm{H},-0.506066304,3.5090027429,3.5289486224\) \\ \(\mathrm{H},-5.3124300888,-2.2415804457,-0.4964517807\) \\ \(\mathrm{H},-4.4422325118,-1.7654597532,0.9969047009\) \\ \(\mathrm{H},-3.764983638,-3.0253313237,-0.0650304953\) \\ \(\mathrm{H},-0.3340249318,-2.552754736,3.447844386\) \\ \(\mathrm{H}, 3.8609025931,-2.7883621486,2.3529246034\) \\ \(\mathrm{H}, 2.3636434731,-1.970583348,2.8633935949\) \\ \(\mathrm{H}, 3.7043684091,-1.0220275282,2.1956383951\) \\ \(\mathrm{H}, 2.3608776797,-4.2879116965,0.8028809521\) \\ \(\mathrm{H}, 1.3573012471,-3.4988909475,-0.4381187757\) \\ \(\mathrm{H}, 0.8946131477,-3.3884152126,1.267773332\) \\ \(\mathrm{H}, 4.3512662528,-2.9840118899,-0.2001686178\) \\ \(\mathrm{H}, 4.2936702424,-1.2094622615,-0.2648682298\) \\ \(\mathrm{H}, 3.2667260085,-2.1667830247,-1.3523812658\) \\ \(\mathrm{C}, 5.038200033,1.7781909436,-0.046043498\) \\ \(\mathrm{H}, 5.3795052281,0.7430231321,0.0529258725\) \\ \(\mathrm{H}, 5.83900\) \\ \(\mathrm{H}, 4.914679,294619.3328148007,-0.554715018\) \\ \hline \end{tabular}

B3PW91/gen solvent=CH2Cl2
PCM \(=-1721.37895026\)

\section*{titButRevIs2methyl}

\section*{B3LYP/gen}

B3PW91/6-31G* solvent=CH2Cl2
\(\operatorname{PCM}=-3264.81171686\)

\section*{B3PW91/gen}

SCF Done: \(\mathrm{E}(\) RB+HF-PW91 \()=-1721.36405313\) A.U. after 32 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.479645 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.517367 \\
Thermal correction to Enthalpy \(=\) & 0.518311 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.410227 \\
Sum of electronic and zero-point Energies= & -1720.884409 \\
Sum of electronic and thermal Energies= & -1720.846686 \\
Sum of electronic and thermal Enthalpies \(=\) & -1720.845742 \\
Sum of electronic and thermal Free Energies= & -1720.953826
\end{tabular}
\begin{tabular}{ccccc} 
& E (Thermal) & CV & S & \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN
\end{tabular}

C,3.0667969854,-0.290277073,-2.0782590474
C,2. 5875829854,-1.364791073,-2.7660930474
C,1.9876919854,-2.573955073,-2.0 884070474
O,1.1933559854,-2.181044073,-0.9713990474
Ti,-0.1485320146,- 0.930469073,-1.0801790474
O, \(0.9804859854,0.034316927,-2.3533960474\)
O,0 .3603839854,0.179483927,0.5460459526
Ti,-0.7218480146,-0.496268073,2.1 617209526
O,0.0291399854,-1.908480073,2.9833099526
C,0.3413129854,-2.1 \(23349073,4.3660699526\)
O,-1.4291060146,-1.989892073,-1.8924270474
C,-2. 5821980146,-2.463594073,-1.1880930474
C,-2.2037150146,-2.548915073,0.2 967889526
O,-1.3732080146,-1.392323073,0.5124669526
O,-0.6335580146,0. 754369927,-2.0159810474
С,-1.3104550146,1.174827927,-3.2429480474
C,-2 .7743820146,1.400495927,-2.8133290474
C,0.7419379854,1.538861927,0.648 8559526
C,1.1919049854,1.658552927,2.1314139526
C,2.6116439854,1.08919 6927,2.2634009526
O,3.4872859854,1.246605927,1.4294059526
C,-0.4692700 146,2.437158927,0.4303339526
O,-1.6247740146,2.120426927,0.6431969526
O,-0.1013730146,3.690489927,0.0387359526
O,-2.2515820146,-0.187558073, 3.0566049526
C,-3.0112620146,0.961286927,3.4381869526
O,0.2280469854,0 .970738927,2.8932959526
C,-1.2123500146,0.115384927,-4.3497430474
C,-0 .6409150146,2.490980927,-3.6711900474
O,2.8185679854,0.431210927,3.431 4919526
H,-3.4128530146,-1.756687073,-1.3285670474
Н,-2.8838870146,-3. \(440938073,-1.5870670474\)
Н,-1.6170740146,-3.451676073,0.5074449526
Н,-3 .0760750146,-2.518642073,0.9603589526
H,1.3702059854,-3.133732073,-2.8 065000474
H,2.6558549854,-1.376779073,-3.8528260474
H,3.0474699854,-0. 314909073,-0.9908760474
H,1.2439129854,2.714482927,2.4423299526
H,1.54 \(07319854,1.791186927,-0.0506330474\)
\(\mathrm{H},-3.7266790146,0.669967927,4.2156849526\)
\(\mathrm{H},-3.5523360146,1.361677927,2.5740219526\)
\(\mathrm{H},-2.3390200146,1.735281927,3.8285649526\)
\(\mathrm{H}, 0.7681199854,-3.126753073,4.4731669526\)
\(\mathrm{H},-0.5669240146,-2.049075073,4.9772789526\)
\(\mathrm{H}, 1.0690289854,-1.376642073,4.7029219526\)
\(\mathrm{H}, 3.7475539854,0.128535927,3.4016149526\)
\(\mathrm{H},-0.9246510146,4.214004927,-0.0161160474\)
\(\mathrm{H},-1.1401400146,2.912625927,-4.5512510474\)
\(\mathrm{H}, 0.4099819854,2.309096927,-3.9142030474\)
\(\mathrm{H},-0.6828690146,3.221904927,-2.8571230474\)
\(\mathrm{H},-3.3487670146,1.824138927,-3.6456290474\)
\(\mathrm{H},-2.8234040146,2.086329927,-1.9624110474\)
\(\mathrm{H},-3.2343800146,0.452581927,-2.5185100474\)
\(\mathrm{H},-1.7613040146,0.458311927,-5.2345530474\)
\(\mathrm{H},-1.6353300146,-0.833699073,-4.0124720474\)
\(\mathrm{H},-0.1671110146,-0.046691073,-4.6249710474\)
\(\mathrm{C}, 3.7196719854,0.898567927,-2.7121570474\)
\(\mathrm{H}, 4.7768679854,0.955898927,-2.4192520474\)
\(\mathrm{H}, 3.6620169854,0.860535927,-3.8045860474\)
\(\mathrm{H}, 3.2419719854,1.824009927,-2.3714470474\)
\(\mathrm{H}, 2.7741399854,-3.255504073,-1.7281150474\)
titButIs2b
B3LYP/gen
SCF Done: E(RB+HF-LYP) \(=-1682.63009029\) A.U. after 11 cycles

\section*{titButIs3}

\section*{B3LYP/gen}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1682.63472965\)
A.U. after 1 cycles

Zero-point correction= 0.450880 (Hartree/Particle)

Thermal correction to Energy= 0.487235

Thermal correction to Enthalpy= 0.488180

Thermal correction to Gibbs Free Energy= 0.380579
Sum of electronic and zero-point Energies \(=\quad-1682.183849\)
Sum of electronic and thermal Energies= \(\quad-1682.147494\)

Sum of electronic and thermal Enthalpies= \(\quad-1682.146550\)
Sum of electronic and thermal Free Energies= \(\quad-1682.254151\)
\begin{tabular}{cccc} 
& E(Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 305.745 & 129.961 & 226.465
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Number
\end{tabular}}} & Atomic & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 22 & 0 & -1.106969 & -0.628355 & -0.777052 \\
\hline 2 & 8 & 0 & -1.739660 & -0.182311 & -2.449270 \\
\hline 3 & 8 & 0 & 0.642904 & -0.143501 & -1.785725 \\
\hline 4 & 6 & 0 & -0.868939 & -0.278925 & -3.584135 \\
\hline 5 & 6 & 0 & 0.491499 & 0.282665 & -3.154789 \\
\hline 6 & 8 & 0 & -1.875226 & 0.897865 & 0.240237 \\
\hline 7 & 8 & 0 & -1.145004 & -2.456130 & -0.931284 \\
\hline 8 & 8 & 0 & -2.562668 & -0.754441 & 0.521008 \\
\hline 9 & 6 & 0 & -1.439690 & -3.365569 & 0.130476 \\
\hline 10 & 6 & 0 & -2.687511 & -2.935756 & 0.860760 \\
\hline 11 & 6 & 0 & -3.757236 & -2.391198 & 0.219301 \\
\hline 12 & 22 & 0 & ) 2.174752 & -0.091066 & -0.553907 \\
\hline 13 & 8 & 0 & 2.556955 & 0.687160 & 1.111902 \\
\hline 14 & 8 & 0 & 0.465057 & -0.571207 & 0.551565 \\
\hline 15 & 6 & 0 & 1.518265 & 0.997173 & 2.004151 \\
\hline 16 & 6 & 0 & 0.465419 & -0.160374 & 1.906376 \\
\hline 17 & 8 & 0 & 3.178502 & 1.070004 & -1.497915 \\
\hline 18 & 8 & 0 & 3.098717 & -1.622801 & -0.708313 \\
\hline 19 & 6 & 0 & 0.878238 & 2.330452 & 1.625945 \\
\hline 20 & 8 & 0 & 0.960259 & 2.875805 & 0.541450 \\
\hline 21 & 6 & 0 & 0.873986 & -1.260449 & 2.886380 \\
\hline 22 & 6 & 0 & 4.453593 & -1.967658 & -1.003054 \\
\hline 23 & 8 & 0 & 0.961424 & -2.504082 & 2.341892 \\
\hline 24 & 6 & 0 & -2.935479 & 1.886367 & -0.000094 \\
\hline 25 & 6 & 0 & 3.666355 & 2.404177 & \(-1.348485\) \\
\hline 26 & 8 & 0 & 0.176165 & 2.858703 & 2.671133 \\
\hline 27 & 8 & 0 & 1.090650 & -1.044649 & 4.065080 \\
\hline 28 & 6 & 0 & -3.384201 & 2.360050 & 1.391421 \\
\hline 29 & 6 & 0 & -2.254350 & 3.014545 & -0.801001 \\
\hline 30 & 6 & 0 & -4.114868 & 1.300124 & -0.791059 \\
\hline 31 & 1 & 0 & -0.775523 & -1.334789 & -3.873152 \\
\hline 32 & 1 & 0 & -1.294478 & 0.281670 & -4.426142 \\
\hline
\end{tabular}
\begin{tabular}{lllrrr}
33 & 1 & 0 & 0.504326 & 1.378750 & -3.184063 \\
34 & 1 & 0 & 1.313671 & -0.100330 & -3.769410 \\
35 & 1 & 0 & -1.573238 & -4.369514 & -0.303181 \\
36 & 1 & 0 & -0.591908 & -3.403577 & 0.821984 \\
37 & 1 & 0 & -2.709912 & -3.051110 & 1.942273 \\
38 & 1 & 0 & -4.646290 & -2.096170 & 0.765271 \\
39 & 1 & 0 & -3.800496 & -2.344160 & -0.863438 \\
40 & 1 & 0 & 1.886095 & 1.069359 & 3.034088 \\
41 & 1 & 0 & -0.531468 & 0.188299 & 2.203895 \\
42 & 1 & 0 & 4.466671 & -2.924240 & -1.538039 \\
43 & 1 & 0 & 5.021782 & -2.072079 & -0.070489 \\
44 & 1 & 0 & 4.921621 & -1.195417 & -1.626246 \\
45 & 1 & 0 & 1.245432 & -3.086148 & 3.074270 \\
46 & 1 & 0 & 4.634023 & 2.489112 & -1.856775 \\
47 & 1 & 0 & 3.780452 & 2.636548 & -0.283700 \\
48 & 1 & 0 & 2.960408 & 3.114779 & -1.792822 \\
49 & 1 & 0 & -0.221565 & 3.689274 & 2.345793 \\
50 & 1 & 0 & -4.139324 & 3.150289 & 1.310050 \\
51 & 1 & 0 & -2.529454 & 2.743953 & 1.957181 \\
52 & 1 & 0 & -3.811346 & 1.521051 & 1.949515 \\
53 & 1 & 0 & -2.952471 & 3.849854 & -0.932069 \\
54 & 1 & 0 & -1.960364 & 2.646797 & -1.788597 \\
55 & 1 & 0 & -1.358806 & 3.375541 & -0.288383 \\
56 & 1 & 0 & -4.841015 & 2.095235 & -0.997169 \\
57 & 1 & 0 & -4.611314 & 0.514876 & -0.216289 \\
58 & 1 & 0 & -3.771806 & 0.882353 & -1.740511
\end{tabular}

\section*{titButIs 4}

\section*{B3LYP/gen}

SCF Done: \(E(\) RB + HF-LYP \()=-1682.63492063\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.450543 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.487034 \\
Thermal correction to Enthalpy \(=\) & 0.487978 \\
Thermal correction to Gibbs Free Energy= & 0.379972 \\
Sum of electronic and zero-point Energies \(=\) & -1682.184378 \\
Sum of electronic and thermal Energies= & -1682.147887 \\
Sum of electronic and thermal Enthalpies \(=\) & -1682.146943 \\
Sum of electronic and thermal Free Energies= & -1682.254948
\end{tabular}

E (Thermal) CV S

\section*{KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN \\ TOTAL 305.618 \\ \(129.992 \quad 227.317\)}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|r|}{Atomic} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 22 & 0 & -1.083739 & -0.833242 & -0.401056 \\
\hline 2 & 8 & 0 & -1.729452 & -0.977889 & -2.136805 \\
\hline 3 & 8 & 0 & 0.672670 & -1.078912 & -1.482676 \\
\hline 4 & 6 & 0 & -0.947196 & -1.756311 & -3.051600 \\
\hline 5 & 6 & 0 & 0.504711 & -1.291025 & -2.902004 \\
\hline 6 & 8 & 0 & -1.879177 & 0.959835 & -0.164904 \\
\hline 7 & 8 & 0 & -1.343065 & -2.591088 & 0.075777 \\
\hline 8 & 8 & 0 & -2.457653 & -0.357407 & 0.922073 \\
\hline 9 & 6 & 0 & -2.995374 & 1.733087 & -0.721980 \\
\hline 10 & 6 & 0 & -2.623794 & -3.111220 & 0.425384 \\
\hline 11 & 6 & 0 & -3.258069 & -2.274684 & 1.510759 \\
\hline 12 & 6 & 0 & -2.533492 & -1.702936 & 2.510373 \\
\hline 13 & 22 & 0 & 2.213794 & -0.386517 & -0.466669 \\
\hline 14 & 8 & 0 & 2.617908 & 1.068041 & 0.651155 \\
\hline 15 & 8 & 0 & 0.502150 & -0.250461 & 0.723329 \\
\hline 16 & 6 & 0 & 1.606792 & 1.751590 & 1.346497 \\
\hline 17 & 6 & 0 & 0.551750 & 0.686186 & 1.784838 \\
\hline 18 & 8 & 0 & 3.164423 & 0.221333 & -1.869722 \\
\hline 19 & 8 & 0 & 3.171812 & -1.792324 & 0.105839 \\
\hline 20 & 6 & 0 & 0.947907 & 2.788551 & 0.439042 \\
\hline 21 & 8 & 0 & 0.989424 & 2.799891 & -0.776375 \\
\hline 22 & 8 & 0 & 1.368199 & 0.718945 & 4.064078 \\
\hline 23 & 6 & 0 & 0.985096 & 0.063950 & 3.112483 \\
\hline 24 & 6 & 0 & 4.555352 & -2.149271 & 0.059793 \\
\hline 25 & 6 & 0 & 3.622345 & 1.479241 & -2.370143 \\
\hline 26 & 8 & 0 & 0.270527 & 3.724002 & 1.168229 \\
\hline 27 & 8 & 0 & 0.862178 & -1.290334 & 3.148955 \\
\hline 28 & 6 & 0 & -3.403488 & 2.729426 & 0.374679 \\
\hline 29 & 6 & 0 & -2.398834 & 2.444302 & -1.953051 \\
\hline 30 & 6 & 0 & -4.174990 & 0.835853 & -1.124049 \\
\hline 31 & 1 & 0 & -1.033038 & -2.821109 & -2.792207 \\
\hline 32 & 1 & 0 & -1.317670 & -1.607528 & -4.074094 \\
\hline 33 & 1 & 0 & 0.679724 & -0.342605 & -3.422785 \\
\hline 34 & 1 & 0 & 1.222975 & -2.036452 & -3.261757 \\
\hline 35 & 1 & 0 & -3.276318 & -3.124076 & -0.460126 \\
\hline 36 & 1 & 0 & -2.497037 & -4.153098 & 0.758628 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
37 & 1 & 0 & -4.336785 & -2.137765 & 1.476742 \\
38 & 1 & 0 & -3.019618 & -1.110499 & 3.278028 \\
39 & 1 & 0 & -1.469608 & -1.885456 & 2.613956 \\
40 & 1 & 0 & 2.005883 & 2.259038 & 2.232015 \\
41 & 1 & 0 & -0.435851 & 1.140182 & 1.938590 \\
42 & 1 & 0 & 4.637986 & -3.241732 & 0.084314 \\
43 & 1 & 0 & 5.077971 & -1.730378 & 0.928535 \\
44 & 1 & 0 & 5.020191 & -1.769058 & -0.858295 \\
45 & 1 & 0 & 2.894661 & 1.888903 & -3.079621 \\
46 & 1 & 0 & 4.581365 & 1.330969 & -2.880042 \\
47 & 1 & 0 & 3.743382 & 2.183454 & -1.539676 \\
48 & 1 & 0 & -0.149277 & 4.325811 & 0.523581 \\
49 & 1 & 0 & 1.168874 & -1.557420 & 4.037907 \\
50 & 1 & 0 & -4.195501 & 3.397602 & 0.017683 \\
51 & 1 & 0 & -2.543309 & 3.333837 & 0.680455 \\
52 & 1 & 0 & -3.768444 & 2.187258 & 1.252412 \\
53 & 1 & 0 & -3.136466 & 3.135816 & -2.377373 \\
54 & 1 & 0 & -2.126719 & 1.706825 & -2.712966 \\
55 & 1 & 0 & -1.500530 & 3.005754 & -1.680447 \\
56 & 1 & 0 & -4.965290 & 1.452896 & -1.567325 \\
57 & 1 & 0 & -4.579409 & 0.323210 & -0.247872 \\
58 & 1 & 0 & -3.855205 & 0.090801 & -1.856074 \\
---------------------------------------------------
\end{tabular}

\section*{titButIs4b}

\section*{B3LYP/gen}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1682.63506859 \quad\) A.U. after 19 cycles
Zero-point correction= 0.450680 (Hartree/Particle)
Thermal correction to Energy= 0.487061
Thermal correction to Enthalpy= 0.488005
Thermal correction to Gibbs Free Energy= 0.380703
Sum of electronic and zero-point Energies= \(\quad-1682.184389\)
Sum of electronic and thermal Energies \(=\quad-1682.148008\)
Sum of electronic and thermal Enthalpies= \(\quad-1682.147063\)
Sum of electronic and thermal Free Energies \(=\quad-1682.254366\)
E (Thermal) CV S
TOTAL
\begin{tabular}{cccc} 
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
305.635 & 129.969 & 225.836
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Center & \multicolumn{2}{|l|}{Atomic} & Atomic & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline Number & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & -2.398223 & -0.786363 & 2.964059 \\
\hline 2 & 6 & 0 & -3.160928 & -1.663566 & 2.257817 \\
\hline 3 & 6 & 0 & -2.566443 & -2.815737 & 1.484597 \\
\hline 4 & 8 & 0 & -1.318324 & -2.441753 & 0.905116 \\
\hline 5 & 22 & 0 & -1.078342 & -0.933935 & -0.115358 \\
\hline 6 & 8 & 0 & 0.487258 & 0.033864 & 0.737617 \\
\hline 7 & 6 & 0 & 0.518944 & 1.283195 & 1.397717 \\
\hline 8 & 6 & 0 & 0.865559 & 1.097935 & 2.873884 \\
\hline 9 & 8 & 0 & 1.144542 & 2.302425 & 3.463407 \\
\hline 10 & 8 & 0 & -1.701647 & -1.635191 & -1.720137 \\
\hline 11 & 6 & 0 & -0.917214 & -2.689124 & -2.294850 \\
\hline 12 & 6 & 0 & 0.541799 & -2.218847 & -2.284824 \\
\hline 13 & 8 & 0 & 0.691528 & -1.523402 & -1.027376 \\
\hline 14 & 22 & & \(0 \quad 2.220045\) & -0.526831 & -0.282074 \\
\hline 15 & 8 & 0 & 3.139149 & -1.650958 & 0.766757 \\
\hline 16 & 6 & 0 & 4.502952 & -2.056055 & 0.895171 \\
\hline 17 & 8 & 0 & -1.908897 & 0.823790 & -0.481016 \\
\hline 18 & 6 & 0 & -3.042869 & 1.337495 & -1.256561 \\
\hline 19 & 6 & 0 & -4.207682 & 0.337767 & \(-1.306543\) \\
\hline 20 & 8 & 0 & -2.433045 & -0.053840 & 1.000670 \\
\hline 21 & 6 & 0 & -3.461957 & 2.646641 & -0.569047 \\
\hline 22 & 6 & 0 & -2.466355 & 1.585682 & -2.664838 \\
\hline 23 & 8 & 0 & 2.626792 & 1.227984 & 0.268440 \\
\hline 24 & 6 & 0 & 1.603589 & 2.114893 & 0.634631 \\
\hline 25 & 6 & 0 & 0.964688 & 2.733908 & -0.609483 \\
\hline 26 & 8 & 0 & 0.281944 & 3.875900 & -0.299001 \\
\hline 27 & 8 & 0 & 3.212157 & -0.454192 & -1.783161 \\
\hline 28 & 6 & 0 & 3.703887 & 0.544647 & -2.678108 \\
\hline 29 & 8 & 0 & 1.018690 & 2.281498 & -1.736775 \\
\hline 30 & 8 & 0 & 0.856392 & 0.053616 & 3.490815 \\
\hline 31 & & 0 & -1.025382 & -3.598493 & -1.687001 \\
\hline 32 & 1 & 0 & -1.268888 & -2.896995 & -3.313736 \\
\hline 33 & 1 & 0 & 0.746869 & -1.518027 & -3.102263 \\
\hline 34 & 1 & 0 & 1.249546 & -3.053745 & -2.342461 \\
\hline 35 & 1 & 0 & -3.264616 & -3.132292 & 0.695807 \\
\hline 36 & 1 & 0 & -2.395968 & -3.681625 & 2.143024 \\
\hline 37 & 1 & 0 & -4.243148 & -1.552182 & 2.242689 \\
\hline 38 & , & 0 & -2.860068 & 0.027353 & 3.513280 \\
\hline 39 & 1 & 0 & -1.325381 & -0.913408 & 3.065268 \\
\hline 40 & 1 & 0 & 1.985852 & 2.921755 & 1.269053 \\
\hline 41 & 1 & 0 & -0.462054 & 1.773084 & 1.342809 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
42 & 1 & 0 & 4.531293 & -3.065017 & 1.321580 \\
43 & 1 & 0 & 5.033762 & -1.369023 & 1.565496 \\
44 & 1 & 0 & 4.997531 & -2.059909 & -0.084287 \\
45 & 1 & 0 & 2.983576 & 0.713516 & -3.486262 \\
46 & 1 & 0 & 4.654302 & 0.203357 & -3.104812 \\
47 & 1 & 0 & 3.853603 & 1.484409 & -2.134508 \\
48 & 1 & 0 & -0.132076 & 4.183707 & -1.128491 \\
49 & 1 & 0 & 1.327823 & 2.105960 & 4.402524 \\
50 & 1 & 0 & -4.273101 & 3.133686 & -1.122192 \\
51 & 1 & 0 & -2.611969 & 3.334577 & -0.510319 \\
52 & 1 & 0 & -3.804330 & 2.438187 & 0.449289 \\
53 & 1 & 0 & -3.223987 & 2.058845 & -3.300803 \\
54 & 1 & 0 & -2.165283 & 0.635898 & -3.114498 \\
55 & 1 & 0 & -1.588046 & 2.236259 & -2.615197 \\
56 & 1 & 0 & -5.019180 & 0.755062 & -1.913955 \\
57 & 1 & 0 & -4.586269 & 0.144795 & -0.299688 \\
58 & 1 & 0 & -3.882689 & -0.605636 & -1.751392
\end{tabular}

\section*{titButRevIs3}
freq not done

\section*{TitButRevIs1withmethylbutenol (structure for KIE's for geraniol)}

\section*{B3LYP/gen}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1761.25883156 \quad\) A.U. after 32 cycles


C,2.788395307,-1.3578843 078,-3.0311078188
C,2.9805383617,-0.9150098506,-1.7484952438
C,2.62114 92329,-1.6906399649,-0.5008173684
O,1.238188695,-2.0673583226,-0.50834 28149
Ti,-0.1091819311,-0.8980568399,-0.9286907737
O,1.1282975845,-0.0 397137351,-2.1611753398
O,0.2962923315,0.2760541765,0.7162001348
Ti,-1 .0422580876,-0.2278548379,2.1854767999
O,-1.5156842896,2.3864920858,0. 5602716119
C,-0.3213122041,2.5880144013,0.4387109464
O,0.1916773985,3. 7786248832,0.0162418364
O,-1.2669229597,-2.0527539578,-1.7745501444
C, \(-2.5563191212,-2.3743403832,-1.2380224921\)
C,-2.4501302013,-2.254006258 7,0.2871397709
O,-1.6018715645,-1.108463052,0.4928629653
O,-0.45863835 09,0.7995172523,-1.9029301674
C,-1.0566589852,1.2346989134,-3.16373748 57
C,-2.5058145877,1.6080376654,-2.7875982794
C, \(0.7746149957,1.6033201581,0.8255806512\)
C, 1.0428596033,1.7521983509,2.3513558002
C,2.38122641 32,1.0852448881,2.6948610561
O,3.3665051499,1.1204916456,1.9766244106
O,-2.6276925161,0.2287936201,2.9059031654
C,-3.3168296339,1.4448171483, 3.2006882185
O,-0.0605196229,1.1724969427,3.0042460002
O,-0.517713008 7,-1.6876318817,3.0984307245
C,-0.4203911585,-1.9188269876,4.509651747 1
C,-1.0326831981,0.1298674327,-4.2292327904
C,-0.2586822464,2.4668685 634,-3.6203591381
O,2.3817871063,0.4862020955,3.9126706748
H,-3.300637 7268,-1.6654030407,-1.628416564
H,-2.8417321968,-3.3875912619,-1.54853 73664
Н,-1.9695669336,-3.1388373694,0.7233169636
H,-3.4232851597,-2.09 66130378,0.7676841256
H,3.2195657131,-2.6106164447,-0.4187642814
H,2.8 277780105,-1.073603161,0.3816960775
H,3.5251276897,0.0140450797,-1.602 4943316
H,1.1392082333,2.8144817805,2.6297874744
H,1.6720262374,1.7645 53916,0.225441564
Н,-4.1423394754,1.2268895618,3.888172806
H,-3.714452 7869,1.8875130672,2.2809172437
H,-2.6260838981,2.1562998198,3.67003315 6
Н,-0.0853896424,-2.9496656647,4.6705843013
Н,-1.397886934,-1.7771595 173,4.9878701687
\(\mathrm{H}, 0.303775578,-1.2251647577,4.951865385\)
\(\mathrm{H}, 3.2807071211,0.1186079464,4.0235603065\)
\(\mathrm{H},-0.5728244926,4.3664280889,-0.1416046644\)
\(\mathrm{H},-0.6874849965,2.8915051066,-4.5353959472\)
\(\mathrm{H}, 0.7799367145,2.1835637026,-3.8129796519\)
\(\mathrm{H},-0.2629829241,3.2335842159,-2.8391750582\)
\(\mathrm{H},-3.015629542,2.0470568301,-3.6534797645\)
\(\mathrm{H},-2.5173531564,2.3262254196,-1.9632903582\)
\(\mathrm{H},-3.0581128967,0.7173692555,-2.4717868939\)
\(\mathrm{H},-1.5381032767,0.482246244,-5.135915361\)
\(\mathrm{H},-1.5358017105,-0.769831158,-3.8667301929\)
\(\mathrm{H},-0.0019261209,-0.1300055712,-4.4809626567\)
\(\mathrm{C}, 2.1911173525,-2.6973611603,-3.3705488308\)
\(\mathrm{H}, 2.89314472,-3.268104689,-3.9950091077\)
\(\mathrm{H}, 1.935158684,-3.280837558,-2.486003448\)
\(\mathrm{H}, 1.2729216091,-2.5678601555,-3.9569269694\)
\(\mathrm{C}, 3.2471173727,-0.5231697483,-4.1969880325\)
\(\mathrm{H}, 3.6045446396,0.460082036,-3.8803465388\)
\(\mathrm{H}, 4.0591476329,-1.033560402,-4.7348815529\)
\(\mathrm{H}, 2.4314002568,-0.37852\)
\(85513,-4.9156301617\)

\section*{TitButRevIs 1 withmethylbutenolBP (structure for KIE's for geraniol)}

\section*{B3PW91/gen}

SCF Done: E(RB+HF-PW91) = -1760.66346368 A.U. after 33 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.508868 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.548354 \\
Thermal correction to Enthalpy \(=\) & 0.549299 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.435287 \\
Sum of electronic and zero-point Energies \(=\) & -1760.154596 \\
Sum of electronic and thermal Energies= & -1760.115109 \\
Sum of electronic and thermal Enthalpies= & -1760.114165 \\
Sum of electronic and thermal Free Energies= & -1760.228177
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \multicolumn{2}{c}{ S } & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 344.098 & 140.546 & 239.958
\end{tabular}

C,2.7781048004,-1.3776 281001,-3.0157823509
C,2.9620465043,-0.9275052696,-1.7361664879
C,2.58 91667794,-1.6929033002,-0.4916443072
O,1.2161318901,-2.0775565012,-0.5 182783103

Ti,-0.1092753355,-0.8917699087,-0.9274637821
O,1.1296891909, -0.0392261624,-2.1497900566
O,0.3516095483,0.2541746244,0.7133784893
T i,-1.0258326011,-0.1975997258,2.1628570265
O,-1.5825001237,2.166192266 6,0.6707064949
С,- \(-0.4239321843,2.4934827795,0.4821264571\)
O,-0.06008325 96,3.7280715298,0.0612995859
O,-1.2821713801,-2.0267535198,-1.76586906 54
C,-2.5659007519,-2.3339852877,-1.2279909114
C,-2.456142766,-2.19393 89531,0.2904818239
O,-1.6064655738,-1.0546278882,0.4750016504
O,-0.416 5230631,0.8138551577,-1.8964214362
C,-1.0019681518,1.2352165297,-3.160 7236774
C, \(-2.44380731,1.6293786334,-2.8011647259\)
C, \(0.7581158431,1.6000373199,0.8050970535\)
C, 1.0537102693,1.7708630428,2.3195232391
С,2.41493 99967,1.1517834866,2.6366676143
O,3.3908825795,1.2527160162,1.91384715 96
O,-2.5842469449,0.2290367627,2.9486276794
C,-3.2698502905,1.4182457 202,3.3091381547
O,-0.0168787572,1.1725753183,2.9939401601
O,-0.519287 9865,-1.6795233489,3.0385998755
C,-0.4861995505,-1.9520472967,4.437079 7501
C,-0.9878695913,0.1185797616,-4.2059122893
C,-0.1915623334,2.4473 247634,-3.631688957
O,2.4492203389,0.5234126676,3.8325016651
Н,-3.3081 142259,-1.6271498351,-1.6259824383
Н,-2.8576503293,-3.3496014686,-1.52 48572938
H,-1.9769216438,-3.0741581454,0.7375481043
H,-3.4265039994,-2 .0263297362,0.7731601688
H,3.1951296735,-2.6063502534,-0.3909929195
H, 2.7748916856,-1.0653524283,0.388199991
H,3.514608635,-0.0021567639,-1. 5919019131
H,1.1287389942,2.8397034517,2.5822805936
H,1.6201891446,1.8 \(196469811,0.1718297204\)
Н,-3.9763402278,1.1927761784,4.1166226134
Н,-3. 8198736458,1.8150383937,2.4484497252
Н,-2.5516926912,2.17287347,3.6528 037791
Н,-0.1863847676,-2.9958186367,4.5829238542
Н,-1.4773545841,-1.7 945000707,4.8808849187
H,0.2378367074,-1.2933286272,4.9300635266
H,3.3 \(630937631,0.1947947793,3.9269340642\)
H,-0.8853929988,4.2380127627,-0.04 090112
Н,-0.6061530599,2.8553203136,-4.5603973656
\(\mathrm{H}, 0.8463323935,2.1505135791,-3.8057956142\)
\(\mathrm{H},-0.1995950583,3.229723774,-2.8665741005\)
\(\mathrm{H},-2.9454612748,2.0502892456,-3.6802767191\)
\(\mathrm{H},-2.4538376131,2.3704460361,-1.9974803497\)
\(\mathrm{H},-3.0051970976,0.7532483223,-2.4633232576\)
\(\mathrm{H},-1.4836692201,0.4648351365,-5.1199176124\)
\(\mathrm{H},-1.5045667095,-0.7690609613,-3.8322141716\)
\(\mathrm{H}, 0.0407514765,-0.1585509221,-4.4467893097\)
\(\mathrm{C}, 2.1742668902,-2.7102323068,-3.3494000123\)
\(\mathrm{H}, 2.8881720741,-3.3018156798,-3.9400621967\)
\(\mathrm{H}, 1.8823668862,-3.2724558526,-2.4619094117\)
\(\mathrm{H}, 1.2780892203,-2.5801137973,-3.9684044266\)
\(\mathrm{C}, 3.2576361474,-0.5586975436,-4.1789269634\)
\(\mathrm{H}, 3.6223895804,0.4227773831,-3.8655470615\)
\(\mathrm{H}, 4.0709360362,-1.0823433653,-4.7015362817\)
\(\mathrm{H}, 2.4540200044,-0.4114005645,-4.9101204675\)

\section*{titButRevIs3methylcalcfc}
(titButRevIs3 with trans-2-buten-1-ol as substrate)

\section*{B3LYP/gen}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1721.94604294\) A.U. after 6 cycles

\title{
Nitrogen Isotope Effects on Flavoprotein Catalyzed \(N\) Demethylation Reactions: Sarcosine Oxidation by N Methyltryptophan Oxidase-Appendix Material
}

\section*{Theoretical Structures}

All structures were fully optimized in B3LYP/6-31+G** calculations using default procedures and parameters in Gaussian 03. (1) Optimizations were carrier out either in the gas phase or employing an Onsager (dipole) solvent model using an a0 radius derived from a volume calculation on the gas phase structure. Vibrational frequency analyses were carried out on all stationary points.
1. Gaussian 03, Revision B.04, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.

Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.

Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

\section*{Gas-Phase Structures}

\section*{dimethylamine}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-135.181274470\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.092339 \\
(Hartree/Particle) \\
Thermal correction to Energy= & 0.096742 \\
Thermal correction to Enthalpy= \(=\) & 0.097687 \\
Thermal correction to Gibbs Free Energy= & 0.066876 \\
Sum of electronic and zero-point Energies \(=\) & -135.088935 \\
Sum of electronic and thermal Energies= & -135.084532 \\
Sum of electronic and thermal Enthalpies= & -135.083588 \\
Sum of electronic and thermal Free Energies= & -135.114399
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 60.707 & 13.913 & 64.846
\end{tabular}
\(\mathrm{N}, 0,-0.2524541214,0.4359469667,0.2875782358\)
H,0,-0.3063004494,0.5280079417,1.2976324969
C,0,1.1416377674,0.4600970976,-0.1405059379
C,0,-0.967593225,-0.7605619182,-0.1416933076
H,0,-1.0336581663,-0.769374814,-1.235788817
H,0,-0.4898371035,-1.7078220855,0.1720790802
Н,0,-1.9881163149,-0.7412888921,0.2527008463

\author{
H,0,1.1831164846,0.5135220972,-1.2345408939 \\ H,0,1.6330367406,1.3543531135,0.2547393486 \\ H,0,1.7246704008,-0.4262372061,0.1733257616
}

\section*{Alloxazine Model for FAD (6)}
fadNeutralSMfreq
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-754.210014565\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.156272 (Hartree/Particle) \\
Thermal correction to Energy= & 0.167457 \\
Thermal correction to Enthalpy= & 0.168401 \\
Thermal correction to Gibbs Free Energy= & 0.118663 \\
Sum of electronic and zero-point Energies \(=\) & -754.053742 \\
Sum of electronic and thermal Energies= & -754.042558 \\
Sum of electronic and thermal Enthalpies= & -754.041614 \\
Sum of electronic and thermal Free Energies= & -754.091352
\end{tabular}
\begin{tabular}{cccl} 
& E(Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 105.081 & 45.067 & 104.683
\end{tabular}
\begin{tabular}{cccccc}
1 & 6 & 0 & -2.866381 & 1.342617 & -0.000638 \\
2 & 6 & 0 & -1.648856 & 0.630120 & -0.000332 \\
3 & 6 & 0 & -1.677961 & -0.791073 & 0.000270 \\
4 & 6 & 0 & -2.902371 & -1.476866 & 0.000714 \\
5 & 6 & 0 & -4.084341 & -0.747569 & 0.000364 \\
6 & 6 & 0 & -4.072453 & 0.661823 & -0.000384 \\
7 & 7 & 0 & -0.465250 & -1.444931 & 0.000324 \\
8 & 6 & 0 & 0.744775 & -0.802116 & -0.000153 \\
9 & 6 & 0 & 0.657152 & 0.661015 & -0.000255 \\
10 & 7 & 0 & -0.460558 & 1.322410 & -0.000532 \\
11 & 6 & 0 & 1.962098 & 1.401472 & 0.000189 \\
12 & 7 & 0 & 3.050024 & 0.548707 & -0.000998 \\
13 & 6 & 0 & 3.054775 & -0.870428 & -0.000363 \\
14 & 7 & 0 & 1.831716 & -1.522104 & -0.000342 \\
15 & 8 & 0 & 2.068136 & 2.614994 & 0.001536 \\
16 & 8 & 0 & 4.124846 & -1.452771 & 0.000155 \\
17 & 1 & 0 & -2.917730 & -2.563112 & 0.001241 \\
18 & 1 & 0 & -0.425602 & -2.459443 & 0.000229 \\
19 & 1 & 0 & 3.966918 & 0.983228 & 0.000480 \\
20 & 1 & 0 & -5.032340 & -1.276667 & 0.000743 \\
21 & 1 & 0 & -5.008938 & 1.209353 & -0.000628 \\
22 & 1 & 0 & -2.816315 & 2.426293 & -0.001234
\end{tabular}

\section*{Hydride Transfer Transition Structure (7)}
fadhydrideneutral
\(\mathrm{E}(\) RB+HF-LYP \()=-889.346959236\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.246238 \\
(Hartree/Particle) \\
Thermal correction to Energy= & 0.262579 \\
Thermal correction to Enthalpy \(=\) & 0.263523 \\
Thermal correction to Gibbs Free Energy= & 0.202248 \\
Sum of electronic and zero-point Energies \(=\) & -889.100721 \\
Sum of electronic and thermal Energies= & -889.084380 \\
Sum of electronic and thermal Enthalpies \(=\) & -889.083436 \\
Sum of electronic and thermal Free Energies= & -889.144711
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 164.771 & 63.519 & 128.965
\end{tabular}

C,0,-2.4625969713,-0.4190239012,-2.0745807466
С, \(0,-1.4309887502,0.0383763432,-1.2447982434\)
С,0,-0.6624805231,1.1518899706,-1.6472208776
С,0,-0.9382083544,1.7886311584,-2.8657232597
C,0,-1.9600451716,1.3135151835,-3.6836064021
C,0,-2.723878881,0.2052407548,-3.2916680746
\(\mathrm{N}, 0,0.3590203416,1.5875570994,-0.8107162169\)
C,0,0.5598431457,1.0741321798,0.4512378192
С,0,-0.2435797422,-0.0506122463,0.8182965156
N,0,-1.1869359995,-0.6058185373,-0.0097083675
C,0,-0.068341483,-0.5903530644,2.1560190854
\(\mathrm{N}, 0,0.8711691027,0.1014627812,2.9059241304\)
C,0,1.6544907789,1.2072025563,2.4878042709
N,0,1.4518707188,1.6779702067,1.2083665606
O,0,-0.6303028937,-1.6064387238,2.5851032326
O,0,2.4685291472,1.6796687194,3.2712581197
C,0,0.1238943844,-2.8292046069,-0.3539119313
N,0,1.2260932655,-2.2985137879,0.2265074911
C,0,2.374369522,-1.7955946606,-0.5157651006
H,0,2.9280509852,-1.0860900373,0.1017619957
H,0,1.3418734437,-2.4580500595,1.220065366
H,0,0.1442296801,-2.9460309397,-1.4346259687
H,0,-0.439982752,-3.5494898668,0.2317181384
H,0,-0.9537941093,-1.7066751584,-0.1641689549
H,0,-0.3435648484,2.6469389454,-3.1669016721

\author{
H,0,0.8741448087,2.4325341026,-1.0262830627 \\ H,0,1.0341760975,-0.2232213965,3.8521677912 \\ Н,0,-2.1645152742,1.8108944147,-4.6265163602 \\ H,0,-3.5255042856,-0.158253064,-3.9262467681 \\ H,0,-3.0584353664,-1.2637164958,-1.7412719379 \\ H,0,3.0442577495,-2.612258579,-0.8161873562 \\ H,0,2.029864114,-1.2762241684,-1.4135155452
}

\section*{FADH \({ }^{-}\)Model (6-5 \({ }^{-}\))}

FADHanion
\(\mathrm{E}(\) RB + HF-LYP \()=-754.899901275\)
\begin{tabular}{lc} 
Zero-point correction= & 0.165890 (Hartree/Particle) \\
Thermal correction to Energy= & 0.177628 \\
Thermal correction to Enthalpy= & 0.178572 \\
Thermal correction to Gibbs Free Energy= & 0.127942 \\
Sum of electronic and zero-point Energies= & -754.734011 \\
Sum of electronic and thermal Energies= & -754.722273 \\
Sum of electronic and thermal Enthalpies= & -754.721329 \\
Sum of electronic and thermal Free Energies= & -754.771959
\end{tabular}

Total
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
111.463 & 47.718 & 106.560
\end{tabular}

C,0,-2.1006447046,-0.9953941469,-2.1644954979
C,0,-1.0206606083,-0.6070391693,-1.3618750731
C,0,-0.2670128756,0.5415758866,-1.7390151716
C,0,-0.6187013036,1.2497688415,-2.8867004461
C,0,-1.6916415649,0.8356798926,-3.6956436014
C,0,-2.4292887729,-0.287956603,-3.330825591
N,0,0.8409969115,0.8981386755,-0.9510779025
C,0,0.9143961063,0.4811506483,0.3910276018
C, \(0,0.164022379,-0.6288042863,0.7418472914\)
N,0,-0.6093514097,-1.3161708175,-0.2425667582
C,0,0.1876761705,-1.0788082523,2.0832576439
\(\mathrm{N}, 0,1.0367678951,-0.314581569,2.8900630365\)
C, \(0,1.801851213,0.806086214,2.4979480824\)
N,0,1.7051956536,1.2010873768,1.1934936078
O,0,-0.4607960118,-2.0485121017,2.5453340665
O,0,2.5062049596,1.3661660692,3.3550209174
H,0,-0.0384664019,2.1291905031,-3.1584240573
H,0,1.2581438869,1.8068232722,-1.1069500193
H,0,1.108205261,-0.5855863394,3.8618445372
H,0,-1.9393069359,1.3963447368,-4.5925601216
H,0,-3.2654924927,-0.620389003,-3.940489834
Н,0,-2.679907417,-1.8688160224,-1.8735193501
Н,0,-1.2616870697,-1.9756686991,0.1647236586

\section*{FADH \({ }^{+}\)Model ( \(6-1-H^{+}\))}
fadhydrideSMfreq
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-754.572674508\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.169109 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.180545 \\
Thermal correction to Enthalpy= \(=\) & 0.181489 \\
Thermal correction to Gibbs Free Energy= & 0.131382 \\
Sum of electronic and zero-point Energies \(=\) & -754.403566 \\
Sum of electronic and thermal Energies= & -754.392130 \\
Sum of electronic and thermal Enthalpies= & -754.391186 \\
Sum of electronic and thermal Free Energies= & -754.441293
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 113.293 & 46.420 & 105.459
\end{tabular}
\begin{tabular}{cccrcc}
1 & 7 & 0 & -1.867152 & -1.418983 & -0.000646 \\
2 & 6 & 0 & -0.682086 & -0.775296 & -0.000095 \\
3 & 6 & 0 & -0.629631 & 0.658769 & -0.000050 \\
4 & 6 & 0 & -1.921787 & 1.427867 & 0.000213 \\
5 & 7 & 0 & -3.064909 & 0.612670 & 0.001123 \\
6 & 6 & 0 & -3.137660 & -0.764652 & -0.000009 \\
7 & 7 & 0 & 0.503612 & 1.313344 & -0.000266 \\
8 & 6 & 0 & 1.679082 & 0.635549 & -0.000230 \\
9 & 6 & 0 & 1.711967 & -0.793366 & 0.000124 \\
10 & 7 & 0 & 0.483512 & -1.441016 & 0.000172 \\
11 & 6 & 0 & 2.922686 & -1.491966 & 0.000479 \\
12 & 6 & 0 & 4.102893 & -0.759118 & 0.000288 \\
13 & 6 & 0 & 4.096542 & 0.655552 & -0.000186 \\
14 & 6 & 0 & 2.903093 & 1.349320 & -0.000418 \\
15 & 8 & 0 & -1.990566 & 2.631217 & -0.000045 \\
16 & 8 & 0 & -4.150771 & -1.416634 & -0.000459 \\
17 & 1 & 0 & 2.941717 & -2.578024 & 0.000877 \\
18 & 1 & 0 & 0.484002 & -2.458547 & -0.000010 \\
19 & 1 & 0 & -3.960076 & 1.096084 & 0.000963 \\
20 & 1 & 0 & 5.050893 & -1.287453 & 0.000531 \\
21 & 1 & 0 & 5.038762 & 1.192627 & -0.000334 \\
22 & 1 & 0 & 2.859980 & 2.433083 & -0.000683 \\
23 & 1 & 0 & -1.940613 & -2.432486 & -0.000688
\end{tabular}

\section*{Hydride Transfer Transition Structure (8)}
fadhydride.log
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-889.737479702\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.258069 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.274934 \\
Thermal correction to Enthalpy= & 0.275878 \\
Thermal correction to Gibbs Free Energy= & 0.212894 \\
Sum of electronic and zero-point Energies= & -889.479411 \\
Sum of electronic and thermal Energies= & -889.462546 \\
Sum of electronic and thermal Enthalpies= & -889.461602 \\
Sum of electronic and thermal Free Energies= & -889.524586
\end{tabular}
\begin{tabular}{cccl} 
& E(Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 172.523 & 65.024 & 132.561
\end{tabular}

C,0,1.5806451346,1.1960833902,2.5566024586
C,0,0.6784471288,0.5996209165,1.6597453812
C,0,-0.1019574571,-0.4913302858,2.1026947857
C,0,0.0212981159,-0.9829603924,3.405632853
С,0,0.9327508216,-0.3868499193,4.2714569958
C,0,1.7114549167,0.7036207776,3.8484548295
\(\mathrm{N}, 0,-1.035249559,-1.0358210088,1.2070393825\)
C,0,-1.2250226357,-0.4930461436,-0.0148146124
С,0,-0.4144496496,0.5710536062,-0.4367065169
N,0,0.5675345226,1.1074898358,0.3546654992
C,0,-0.6425482332,1.1646353562,-1.761437706
\(\mathrm{N}, 0,-1.729255343,0.6216413502,-2.4654196507\)
C,0,-2.5666670751,-0.4027483281,-2.067916431
N,0,-2.2403850023,-0.9448623113,-0.8042131916
O,0,-3.4967465302,-0.8317463523,-2.7112511741
O,0,0.0589556106,2.0324065625,-2.2558965574
C,0,2.6189671011,0.4769494631,-1.0920044008
N,0,2.0500730525,-0.3834776482,-1.9853703882
C,0,2.2635956933,-1.8274777337,-1.9690949783
H,0,1.6979384713,0.0233907887,-2.8444319372
H,0,3.3315267676,0.0276251909,-0.3987482162
H,0,2.8856044219,1.4590572642,-1.484539025
H,0,1.6600325834,0.9388075011,-0.261725385
Н,0,-0.5890119503,-1.8191289071,3.7357646338
Н,0,-1.6466351424,-1.7723123865,1.5397757322
H,0,-1.9368393831,1.0351711468,-3.3697834643

\author{
H,0,1.0327307604,-0.765035365,5.2833124916 \\ H,0,2.409156291,1.1688774687,4.536340772 \\ H,0,2.1603935796,2.0490736357,2.2184169438 \\ H,0,1.4412478935,-2.3293875605,-2.4824410182 \\ H,0,3.2039057671,-2.0938126433,-2.4680997767 \\ H,0,2.3063279248,-2.1818258101,-0.9364217577 \\ H,0,-2.8821574926,-1.6658777689,-0.4928256491
}

\section*{\(\mathrm{FADH}_{2}\) Model (6-1,5- \(\mathrm{H}_{2}\) )}


\author{
H,0,1.1203903042,-0.6763688558,3.8729439994 \\ H,0,-1.9459098547,1.3327980253,-4.6442803877 \\ H,0,-3.2580722904,-0.6813344464,-3.9728835681 \\ H,0,-2.6816081812,-1.8992288895,-1.8904973792 \\ H,0,2.2267901856,1.9227780463,0.9747395224 \\ Н,0,-1.3127723439,-1.9534885751,0.1779477665
}

\section*{FAD Radical Anion Model ( \(6^{-0}\) )}

FADHanion
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-754.899901275\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.165890 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.177628 \\
Thermal correction to Enthalpy= & 0.178572 \\
Thermal correction to Gibbs Free Energy= & 0.127942 \\
Sum of electronic and zero-point Energies= & -754.734011 \\
Sum of electronic and thermal Energies= & -754.722273 \\
Sum of electronic and thermal Enthalpies= & -754.721329 \\
Sum of electronic and thermal Free Energies= & -754.771959
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 111.463 & 47.718 & 106.560
\end{tabular}

C,0,-2.1006447046,-0.9953941469,-2.1644954979
C, \(0,-1.0206606083,-0.6070391693,-1.3618750731\)
С, \(0,-0.2670128756,0.5415758866,-1.7390151716\)
С,0,-0.6187013036,1.2497688415,-2.8867004461
С,0,-1.6916415649,0.8356798926,-3.6956436014
C,0,-2.4292887729,-0.287956603,-3.330825591
\(\mathrm{N}, 0,0.8409969115,0.8981386755,-0.9510779025\)
C,0,0.9143961063,0.4811506483,0.3910276018
C,0,0.164022379,-0.6288042863,0.7418472914
N,0,-0.6093514097,-1.3161708175,-0.2425667582
C, \(0,0.1876761705,-1.0788082523,2.0832576439\)
\(\mathrm{N}, 0,1.0367678951,-0.314581569,2.8900630365\)
C,0,1.801851213,0.806086214,2.4979480824
\(\mathrm{N}, 0,1.7051956536,1.2010873768,1.1934936078\)
O,0,-0.4607960118,-2.0485121017,2.5453340665
O,0,2.5062049596,1.3661660692,3.3550209174
Н, \(0,-0.0384664019,2.1291905031,-3.1584240573\)
H,0,1.2581438869, 1.8068232722,-1.1069500193
```

H,0,1.108205261,-0.5855863394,3.8618445372
H,0,-1.9393069359,1.3963447368,-4.5925601216
H,0,-3.2654924927,-0.620389003,-3.940489834
H,0,-2.679907417,-1.8688160224,-1.8735193501
Н,0,-1.2616870697,-1.9756686991,0.1647236586

```

\section*{Dimethylamine cation radical (9)}

\author{
catradMe2NHBB.log \\ \(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-134.881527902\)
}

Zero-point correction=
0.090195 (Hartree/Particle)

Thermal correction to Energy=
0.095366

Thermal correction to Enthalpy=
0.096310

Thermal correction to Gibbs Free Energy=
0.061776

Sum of electronic and zero-point Energies= -134.791333
Sum of electronic and thermal Energies \(=\quad-134.786162\)
Sum of electronic and thermal Enthalpies= \(\quad-134.785218\)
Sum of electronic and thermal Free Energies= -134.819752
\begin{tabular}{cccl} 
& E(Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 59.843 & 14.926 & 72.683
\end{tabular}
\[
\begin{aligned}
& \mathrm{C}, 0,-0.0540337838,0.1969409484,1.2794181655 \\
& \mathrm{~N}, 0,0.0985455112,-0.4385787099,-0.0010231804 \\
& \mathrm{C}, 0,-0.0389972887,0.2074378457,-1.2778707858 \\
& \mathrm{H}, 0,-0.5331370498,1.1696791095,1.1695419224 \\
& \mathrm{H}, 0,0.9489269902,0.3298883334,1.7247765844 \\
& \mathrm{H}, 0,-0.615402575,-0.4614931962,1.9529114432 \\
& \mathrm{H}, 0,0.3312132732,-1.4352978557,-0.0043425884 \\
& \mathrm{H}, 0,0.7919385246,-0.0897507984,-1.9303454639 \\
& \mathrm{H}, 0,-0.9645874651,-0.1582654989,-1.7574902689 \\
& \mathrm{H}, 0,-0.0905838411,1.2890181111,-1.1571736435
\end{aligned}
\]

\section*{FADH radical model (6-5-H')}
fadhRad
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-754.814268013\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.167424 (Hartree/Particle) \\
Thermal correction to Energy= & 0.179053 \\
Thermal correction to Enthalpy= & 0.179997 \\
Thermal correction to Gibbs Free Energy= & 0.128964
\end{tabular}
\begin{tabular}{lc} 
Sum of electronic and zero-point Energies \(=\) & -754.646844 \\
Sum of electronic and thermal Energies= & -754.635215 \\
Sum of electronic and thermal Enthalpies \(=\) & -754.634271 \\
Sum of electronic and thermal Free Energies= & -754.685304
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 112.358 & 47.208 & 107.409
\end{tabular}

C,0,-2.0938048185,-1.0122534887,-2.1798290893
C,0,-1.1410113745,-0.4749973482,-1.3048990236
С,0,-0.3839867253,0.6609606816,-1.6890787307
С,0,-0.6006344958,1.2339768678,-2.94628678
С,0,-1.5516820439,0.6914454157,-3.8100980367
C,0,-2.2982860328,-0.4307510744,-3.4283324298
\(\mathrm{N}, 0,0.5564819772,1.1733085169,-0.7979773468\)
C,0,0.8009443643,0.6389795781,0.4506802896
C, \(0,0.0265632616,-0.4985182123,0.8056120762\)
N,0,-0.8999750509,-1.0173468096,-0.051036912
C,0,0.2229605498,-1.1191337848,2.0993147216
\(\mathrm{N}, 0,1.1904344113,-0.4813841824,2.8468232763\)
C,0,1.9493975771,0.6597579607,2.4609147567
\(\mathrm{N}, 0,1.7102624399,1.2009240353,1.2113072229\)
O,0,-0.4138112137,-2.1093006215,2.4752359319
O,0,2.7713477112,1.1040199242,3.2477382108
H,0,-0.0212290134,2.1040928274,-3.2413909159
H,0,1.1094091035,1.9838053221,-1.0492159027
H,0,1.3909160045,-0.8520987288,3.7687527777
H,0,-1.7097870778,1.1457508383,-4.7826138154
H,0,-3.03743574,-0.8507000665,-4.1021422699
H,0,-2.6665085036,-1.8825822561,-1.8724253158
Н,0,-1.4088447676,-1.8313328515,0.2834420939

\section*{Methylaminomethyl radical (10)}

\author{
CH2NHMeRad \\ \(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-134.523651710\)
}

Zero-point correction=
0.076124 (Hartree/Particle)

Thermal correction to Energy= 0.080454

Thermal correction to Enthalpy=
0.081398

Thermal correction to Gibbs Free Energy=
0.050063

Sum of electronic and zero-point Energies= \(\quad-134.447528\)
Sum of electronic and thermal Energies \(=\quad-134.443198\)
Sum of electronic and thermal Enthalpies= \(\quad-134.442254\)

Sum of electronic and thermal Free Energies= \(\quad-134.473589\)
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 50.486 & 12.680 & 65.950
\end{tabular}

C,0,0.4771563034,-0.8264594675,0.7511798402
H,0,0.4699836932,-0.8140368428,1.8436469712
H,0,1.5247053313,-0.8606420365,0.4162426054
H,0,-0.0170150817,-1.7507547264,0.4162420493
\(\mathrm{N}, 0,-0.1995682627,0.3456622097,0.2474457901\)
C,0,-0.3445632031,0.5968017548,-1.1000212942
\(\mathrm{H}, 0,-0.5791865231,1.0031796434,0.908117794\)
Н, \(0,-0.8607546894,1.4908717542,-1.4157636766\)
Н,0,0.0636865366,-0.1103069663,-1.8075575495

\section*{N-Methyl iminium cation}
dimethyliminiumcationBB
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-134.312028036\)
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-134.311962252\)
Zero-point correction \(=0.082747\) (Hartree/Particle)
Thermal correction to Energy= 0.086793

Thermal correction to Enthalpy=
0.087737

Thermal correction to Gibbs Free Energy=
0.057682

Sum of electronic and zero-point Energies= \(\quad-134.229281\)
Sum of electronic and thermal Energies \(=\quad-134.225235\)
Sum of electronic and thermal Enthalpies= -134.224291
Sum of electronic and thermal Free Energies \(=\quad-134.254346\)
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 54.463 & 12.464 & 63.256
\end{tabular}

N,0,-0.2156722128,0.,0.3755577341
H,0,-0.4671624946,0.,1.3665735719
C, \(0,1.2305582032,0 ., 0.0833396765\)
C,0,-1.1664018712,0.,-0.4802927984
H,0,-2.1985419416,0.,-0.1396609073
H,0,-0.9358577313,0.,-1.542969319
Н, \(0,1.3816977047,0 .,-0.9956578048\)

\section*{FAD-4a adduct model (11)}
fad-5H-4aNMe2Rot2B3BB
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-889.390539936\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.252420 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.268204 \\
Thermal correction to Enthalpy= & 0.269149 \\
Thermal correction to Gibbs Free Energy= & 0.210039 \\
Sum of electronic and zero-point Energies \(=\) & -889.138120 \\
Sum of electronic and thermal Energies= & -889.122336 \\
Sum of electronic and thermal Enthalpies= & -889.121391 \\
Sum of electronic and thermal Free Energies= & -889.180501
\end{tabular}
\begin{tabular}{lcl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 168.301 & 63.043
\end{tabular}\(\quad 124.408\)
```

H,0,0.4358612658,-2.614903678,3.1008806487
H,0,-1.2444880823,-2.0674871788,1.3161065453
H,0,-2.2993695776,1.4117748067,-2.9036424869
Н,0,2.1018085208,-1.6617384663,4.6847461475
H,0,2.9465855468,0.6574334571,4.3429578685
H,0,2.1534572095,2.0032940733,2.4162996998
H,0,0.4411689469,-0.6890779396,-3.2286566837
H,0,1.7530012532,-1.6834753997,-2.5633359841
H,0,0.1048449884,-1.9207643691,-1.9847134301
H,0,0.6184675273,2.1171542984,0.4264248621

```

\section*{Elimination Transition Structure with Methoxide Base (12a)}
fadnubasetsBB
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1005.00387434\)
\begin{tabular}{lc} 
Zero-point correction= & 0.297243 (Hartree/Particle) \\
Thermal correction to Energy= & 0.317464 \\
Thermal correction to Enthalpy= & 0.318408 \\
Thermal correction to Gibbs Free Energy= & 0.246798 \\
Sum of electronic and zero-point Energies \(=\) & -1004.706631 \\
Sum of electronic and thermal Energies= & -1004.686410 \\
Sum of electronic and thermal Enthalpies= & -1004.685466 \\
Sum of electronic and thermal Free Energies= & -1004.757076
\end{tabular}

Total
\begin{tabular}{ccl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
199.212 & 76.507 & 150.716
\end{tabular}

C,0,3.0473026071,1.228247757,1.1585602044
C,0,2.0993817905,0.3273763728,0.653699305
C,0,2.4353389131,-0.4134302113,-0.4975349071
С,0,3.6668925482,-0.2582467711,-1.1341646933
C,0,4.5987607098,0.6412637675,-0.6184394258
C,0,4.2823340649,1.3789952452,0.5288527078
N,0,1.4805441658,-1.3441248993,-0.9608915279
C,0,0.2332192096,-1.4101306979,-0.4734953922
С,0,-0.2527909752,-0.4018932748,0.4927681276
\(\mathrm{N}, 0,0.8821178818,0.0741062226,1.2673824775\)
C,0,-1.2616212523,-1.0418654073,1.4567474529
N,0,-2.0418389126,-2.0551203958,0.9100193686
C,0,-1.84802872,-2.6861064681,-0.3025588987
N,0,-0.6508730197,-2.3327311087,-0.9461401375
\(\mathrm{N}, 0,-1.1044645351,0.6631275447,-0.2274547892\)
```

C,0,-0.6541479247,1.0054427653,-1.5859137706 O,0,-1.4223117108,-0.648264415,2.5943480264 O,0,-2.5959887021,-3.5210587869,-0.7742989304
C,0,-1.2708070542,1.8628340981,0.5707612495
О,0,-2.6902365115,3.4236814855,-0.9729287218
H,0,-1.9779025926,2.6153623805,-0.1003460529
H,0,-1.7741707041,1.6576923933,1.5194840635
H,0,-0.3322811633,2.4191933673,0.7431940035
Н,0,3.8909260334,-0.8361469379,-2.0274880945
Н, $0,1.7675760014,-1.9887523335,-1.6877615258$
Н,0,-2.8442283848,-2.3648680943,1.4476973851
H,0,5.5569074744,0.7692696441,-1.1098373718
H,0,5.0000288981,2.0859578643,0.9326428002
H,0,2.8056418536,1.8103038725,2.0428958754
H,0,-0.6748292985,0.1253337039,-2.2367535816
H,0,-1.367531032,1.7385391868,-1.9713985828
H,0,0.3514960679, 1.4565481185,-1.6156082822
H,0,-0.4748008511,-2.8642551149,-1.7917239518
H,0,0.6127702553,0.6593885851,2.0494233456
C,0,-4.0073707627,3.5694850142,-0.5651338031
H,0,-4.6562591361,3.80296941,-1.4316246158
Н,0,-4.4288589602,2.6448299896,-0.1158411732
H,0,-4.1553670515,4.3851330144,0.1707860873

```

\section*{Elimination Transition Structure with Methylamine Base (12b)}
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-L Y P)=-985.593595068\)
\begin{tabular}{lc} 
Zero-point correction= & 0.323371 (Hartree/Particle) \\
Thermal correction to Energy= & 0.344788 \\
Thermal correction to Enthalpy= & 0.345733 \\
Thermal correction to Gibbs Free Energy= & 0.271039 \\
Sum of electronic and zero-point Energies \(=\) & -985.270224 \\
Sum of electronic and thermal Energies= & -985.248807 \\
Sum of electronic and thermal Enthalpies= & -985.247862 \\
Sum of electronic and thermal Free Energies= & -985.322556
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 216.358 & 79.680 & 157.205
\end{tabular}

N,0,-0.5504235623,-2.4467003652,-0.6451749824
C,0,0.3690584156,-1.5109332692,-0.271509303
С,0,0.0300930786,-0.5753877313,0.7036352531

C,0,-1.2067183495,-0.7215844629,1.4547446929
\(\mathrm{N}, 0,-2.035308551,-1.7609971351,1.0316082426\)
C,0,-1.8062409923,-2.6235697192,-0.0208873543
\(\mathrm{N}, 0,0.9823280427,0.3124045628,1.1683110885\)
C, \(0,2.2889021037,0.296775682,0.6679004983\)
C,0,2.6043485934,-0.5927126677,-0.3793849363
N,0,1.5873447702,-1.4677180792,-0.8555298434
C,0,3.8850052358,-0.625747633,-0.9243176046
C,0,4.8736568579,0.2249537834,-0.4242123736
C,0,4.5720861743,1.1000662192,0.6223093582
C,0,3.2868269683,1.1380112186,1.1661596344
N,0,-1.3963257751,0.8210068866,-0.7652952505
C,0,-1.1436321642,2.0094872088,-0.146643832
О,0,-1.4971634883,0.0137081608,2.3917394959
O,0,-2.5750026177,-3.4811769178,-0.3973645469
C,0,-0.8613185773,0.7131933651,-2.1073498993
N,0,-3.2536018176,3.7117173507,-0.7831326529
C,0,-4.5126438381,3.0141580192,-0.4399132342
H,0,-2.087185397,2.7703000367,-0.5055178004
H,0,-1.3404185686,1.9908941979,0.9323465835
H,0,-0.2321457288,2.56378625,-0.4275440712
H,0,4.1127444354,-1.3170965117,-1.7313165942
H, \(0,1.8472383859,-2.1627404402,-1.5437391415\)
H,0,-2.9222897865,-1.870857804, 1.5118127057
H,0,5.8712246809,0.1975045942,-0.8481071936
H,0,5.337729408,1.7579172269,1.0195006862
H,0,3.0526051554,1.8206097644,1.9777774251
H,0,-0.8399076233,-0.3310212887,-2.4296563773
Н,0,-1.5559875925,1.2244996241,-2.7928130896
H,0,0.1301612079,1.1736535885,-2.2362432025
H,0,-0.356481091,-3.1274342946,-1.3705950052
H,0,0.7769896967,0.7572057947,2.0555841231
H,0,-5.3946007623,3.6324082585,-0.6344093426
H,0,-4.5821051872,2.0967829503,-1.028170316
H,0,-4.4918671012,2.7459242391,0.6181788184
Н,0,-3.1252522417,4.5512342549,-0.2198257586
Н,0,-3.2377558273,3.9979269925,-1.7609536528

\section*{Concerted addition / elimination transition structure (15)}
fadnubBB
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-889.315160596\)
Zero-point correction \(=\quad 0.244922\) (Hartree/Particle)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.261228 \\
Thermal correction to Enthalpy= \(=\) & 0.262173 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.201517 \\
Sum of electronic and zero-point Energies \(=\) & -889.070239 \\
Sum of electronic and thermal Energies= & -889.053932 \\
Sum of electronic and thermal Enthalpies \(=\) & -889.052988 \\
Sum of electronic and thermal Free Energies= & -889.113643
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 163.923 & 63.639 & 127.659 \\
\hline N,0,1. & 80492,-1.636 & 1443,-0.118336 & 87 \\
\hline C, \(0,0\). & 886925,-0.928 & 11736,-0.186420 & \\
\hline C, \(0,0\). & 82054,0.3799 & 1857,-0.67826507 & 714 \\
\hline C,0,1. & 63081,1.0085 & 05545,-1.07008432 & \\
\hline N,0,2. & 993038,0.1646 & 96095,-0.9669794 & \\
\hline C, \(0,2\). & 557526,-1.106 & 1996,-0.455374 & \\
\hline N,0,-0 & 680731,1.110 & 396503,-0.761350 & 6451 \\
\hline C, \(0,-1\) & 013311,0.420 & 041711,-0.519761 & 5564 \\
\hline C, \(0,-1\) & 655466,-0.909 & 293731,-0.03869 & 8391 \\
\hline N,0,-0 & 439725,-1.54 & 4692054,0.17503 & 8772 \\
\hline C, \(0,-3\) & 030739,-1.572 & 010881,0.213436 & 538 \\
\hline C,0,-4 & 273052,-0.90979 & 91531,-0.0065656 & 423 \\
\hline C, \(0,-4\) & 092566,0.407 & 554845,-0.48389 & 245 \\
\hline C, \(0,-3\) & 917926,1.061 & 045697,-0.740159 & 819 \\
\hline N,0,1. & 56263,1.13380 & 8443,1.753324709 & \\
\hline C, \(0,0\). & 85935,2.16379 & \(8623,1.5865006597\) & \\
\hline O,0,1. & 609207,2.14672 & 49412,-1.47956668 & 852 \\
\hline O,0,3. & 601338,-1.765 & 408164,-0.320359 & \\
\hline C, \(0,0\). & 87503,0.1321 & 62431,2.7116517 & \\
\hline H,0,-0 & 850145,2.280 & 726283,2.3594368 & \\
\hline H,0,0. & 673743,3.1140 & 98579,1.3266671 & \\
\hline H,0,-0 & 214561,1.955 & 121466,0.5805736 & 202 \\
\hline H,0,-3 & 770241,-2.59 & 969361,0.585361 & \\
\hline H,0,-0 & 414823,-2.4982 & 272798,0.5011971 & \\
\hline H,0,3. & 30812,0.5934 & 6184,-1.1869231025 & \\
\hline H,0,-5 & 083452,-1.420 & 4701737,0.191458 & \\
\hline H,0,-5 & 044078,0.922 & 294387,-0.658327 & 2279 \\
\hline H,0,-3 & 760364,2.079 & 797016,-1.113371 & 2405 \\
\hline H,0,1. & 46946,-0.783 & 47456,2.5924552505 & \\
\hline H,0,0. & 222421,0.4981 & 90321,3.7336153 & \\
\hline H,0,-0 & 248394,-0.1267 & 968997,2.671449 & 8636 \\
\hline H,0,1. & 97571,-2.578 & 403687,0.24976759 & \\
\hline
\end{tabular}

\section*{Methyl Amine}

MeNH2B3BB
\(\mathrm{E}(\) RB+HF-LYP \()=-95.8718478880\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.064040 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.067473 \\
Thermal correction to Enthalpy= & 0.068418 \\
Thermal correction to Gibbs Free Energy= & 0.041109 \\
Sum of electronic and zero-point Energies= & -95.807808 \\
Sum of electronic and thermal Energies= & -95.804374 \\
Sum of electronic and thermal Enthalpies= & -95.803430 \\
Sum of electronic and thermal Free Energies= & -95.830739
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 42.340 & 9.602 & 57.475
\end{tabular}

C,0,-0.0105459784,-0.0196992013,-0.0074570607
H,0,0.0098560045,-0.0093250496, 1.0867355191
H,0,1.0278692014,-0.0093250622,-0.3529531639
H,0,-0.4657882924,-0.9707472029,-0.3293618426
N,0,-0.6858054955,1.1912891398,-0.4849374515
H,0,-0.7015824407,1.2279536831,-1. 4993528968
H,0,-1.6474644009,1.2279536948,-0.1616732304

\section*{Dimethylammonium cation}
dimethylammoniumBB
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-135.548840373\)
Zero-point correction= 0.108075 (Hartree/Particle)
Thermal correction to Energy=
0.112581

Thermal correction to Enthalpy=
0.113525

Thermal correction to Gibbs Free Energy=
0.082328

Sum of electronic and zero-point Energies= -135.440766
Sum of electronic and thermal Energies= -135.436259
Sum of electronic and thermal Enthalpies=
-135.435315
Sum of electronic and thermal Free Energies= \(\quad-135.466513\)
E (Thermal) CV S

Total
\begin{tabular}{ccl}
\(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & \(\mathrm{Cal} /\) Mol-Kelvin \\
70.646 & 14.342 & 65.661
\end{tabular}

C,0,0.0216412827,-0.0374834372,--0.1078065733
N,0,-0.0158630221,0.0274752804,1.3998950969
H,0,0.9437129202,0.0002100215,1.7603037218
C,0,-0.7176009469,1.2429206025,1.9559985295
H,0,-0.4720386072,-0.8171746274,1.7603033781
H,0,-1.0037854197,-0.05168896677,-0.477156064
H,0,0.5466570035,0.8434595179,-0.4771556876
H,0,0.5459266706,--0.9455721038,--0.4069022686
H,0,-0.6905937935,1.1961423897,3.0450594421
H,0,-0.1977565984,2.1328263344,1.601108647
H,0,-1.748203962,1.2376749965,1.6011082706

\section*{Structures Using Onsager Solvent Model}

\section*{dimethylamine}

Onsager/B3LYP/6-31+G**
dimethylamineOnsgr
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-135.181685500\)
Zero-point correction \(=0.092337\) (Hartree/Particle)
Thermal correction to Energy= 0.096743

Thermal correction to Enthalpy=
0.097687

Thermal correction to Gibbs Free Energy=
0.066868

Sum of electronic and zero-point Energies= -135.089349
Sum of electronic and thermal Energies \(=\quad-135.084942\)
Sum of electronic and thermal Enthalpies= \(\quad-135.083998\)
Sum of electronic and thermal Free Energies= \(\quad-135.114818\)
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 60.707 & 13.916 & 64.865
\end{tabular}
\(\mathrm{N}, 0,-0.2546458931,0.4397370623,0.2857115686\)
H,0,-0.3037410074,0.5235891374,1.2971520533
C, \(0,1.1416431946,0.4589733501,-0.1400850858\)
C,0,-0.9666223277,-0.7611270345,-0.1412686012
H,0,-1.0338265441,-0.7722486851,-1.2355205193
Н,0,-0.4851027304,-1.7050843122,0.1734831921

\author{
Н, \(0,-1.9864609076,-0.7455456905,0.2552733592\) \\ H,0,1.1856886155,0.5122366331,-1.2342744715 \\ H,0,1.6359017893,1.3507950307,0.2573084977 \\ H,0,1.7199368348,-0.428979443,0.17471903
}

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G=-135.189498748

\section*{Alloxazine Model for FAD (6)}

\author{
fadSMNeuOnsgr
}

Onsager/B3LYP/6-31+G**
E(RB+HF-LYP \()=-754.223336827\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.156236 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.167331 \\
Thermal correction to Enthalpy \(=\) & 0.168276 \\
Thermal correction to Gibbs Free Energy= & 0.118849 \\
Sum of electronic and zero-point Energies= & -754.067101 \\
Sum of electronic and thermal Energies= & -754.056005 \\
Sum of electronic and thermal Enthalpies= & -754.055061 \\
Sum of electronic and thermal Free Energies= & -754.104487
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) \\
\hline Total & 105.002 & 44.890 & 104.026 \\
\hline \multicolumn{4}{|l|}{C,0,-2.8802120529,1.3466455782,0.} \\
\hline \multicolumn{4}{|l|}{С,0,-1.6529846992,0.6380629057,0.} \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.6786206664,-0.7903413381,0\).} \\
\hline \multicolumn{4}{|l|}{C, \(0,-2.8966279582,-1.4838956779,0\).} \\
\hline \multicolumn{4}{|l|}{C, 0,-4.0802828443,-0.7577342764,0.} \\
\hline \multicolumn{4}{|l|}{C,0,-4.0764159202,0.6569900216,0.} \\
\hline \multicolumn{4}{|l|}{N,0,-0.4588812648,-1.4357190895,0.} \\
\hline \multicolumn{4}{|l|}{C,0,0.7433060241,-0.794316704,0.} \\
\hline \multicolumn{4}{|l|}{C,0,0.6546476606,0.659927072,0.} \\
\hline \multicolumn{4}{|l|}{N,0,-0.4734540428,1.3221749209,0.} \\
\hline \multicolumn{4}{|l|}{C,0,1.9494822131,1.3981283353,0.} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,3.0387198815,0.5421047758,0\).} \\
\hline \multicolumn{4}{|l|}{C,0,3.0473644631,-0.8775216604,0.} \\
\hline \multicolumn{4}{|l|}{N,0,1.8431306282,-1.5254201878,0.} \\
\hline \multicolumn{4}{|l|}{O,0,2.0875113822,2.6135175349,0.} \\
\hline \multicolumn{4}{|l|}{O,0,4.1439731926,-1.4375593317,0.} \\
\hline \multicolumn{4}{|l|}{H,0,-2.9132308446,-2.5699681629,0.} \\
\hline \multicolumn{4}{|l|}{H,0,-0.4247100906,-2.4515671434,0.} \\
\hline
\end{tabular}

Н,0,3.9512120737,0.9807308337,0.
H,0,-5.0279452124,-1.2873745698,0.
Н,0,-5.0198259461,1.1922816675,0.
Н, \(0,-2.8419203115,2.4305832775,0\).
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G=-754.261223663

\section*{Hydride Transfer Transition Structure (7)}
fadHydrideNeuOnsgr


Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-889.356443368\)
Zero-point correction=
0.245574 (Hartree/Particle)

Thermal correction to Energy=
0.262078

Thermal correction to Enthalpy=
0.263022

Thermal correction to Gibbs Free Energy=
0.200939

Sum of electronic and zero-point Energies= -889.110870
Sum of electronic and thermal Energies=
-889.094365
Sum of electronic and thermal Enthalpies= -889.093421
Sum of electronic and thermal Free Energies=
-889.155504
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 164.457 & 63.627 & 130.666
\end{tabular}

C,0,1.5363019479,1.2046320592,2.5608675541
C,0,0.6572502644,0.6137601936,1.6418522669
С, \(0,-0.0740648211,-0.5303713251,2.0241830739\)
C,0,0.0835151284,-1.0682639867,3.3089192879
C, \(0,0.9726301247,-0.4782759925,4.2028019247\)
C,0,1.7022278085,0.6608935381,3.8305747752
N,0,-0.9520555396,-1.0937031447,1.0996218317
C,0,-1.2082225872,-0.5291422142,-0.1226887966
\(\mathrm{C}, 0,-0.4157466852,0.6036075347,-0.4828629704\)
\(\mathrm{~N}, 0,0.5231429645,1.1691739162,0.3473374564\)
\(\mathrm{C}, 0,-0.6649888529,1.2025116042,-1.7802581775\)
\(\mathrm{~N}, 0,-1.7063707444,0.5945047847,-2.4734906277\)
\(\mathrm{C}, 0,-2.4941800435,-0.5004693446,-2.0480658047\)
\(\mathrm{~N}, 0,-2.1932812405,-1.0601653446,-0.8360212483\)
\(\mathrm{O}, 0,-3.4006432354,-0.8875088483,-2.7904698409\)
\(\mathrm{O}, 0,-0.0109325126,2.1254610037,-2.285113234\)
\(\mathrm{C}, 0,2.5876246239,0.5308659958,-1.0671163706\)
\(\mathrm{~N}, 0,1.9035424828,-0.3448748722,-1.8429520074\)
\(\mathrm{C}, 0,1.9262182189,-1.7896848936,-1.6486835662\)
\(\mathrm{H}, 0,1.5174813991,0.0113251168,-2.7078776136\)
\(\mathrm{H}, 0,3.2635749056,0.1047488641,-0.328394717\)
\(\mathrm{H}, 0,2.8734906686,1.4719834869,-1.5303139903\)
\(\mathrm{H}, 0,1.5509542871,1.1641352271,-0.1900226614\)
\(\mathrm{H}, 0,-0.4770852378,-1.9548991375,3.5930165692\)
\(\mathrm{H}, 0,-1.5501970033,-1.8652414826,1.3680292554\)
\(\mathrm{H}, 0,-1.9283357392,0.9765328905,-3.3843462715\)
\(\mathrm{H}, 0,1.1030056131,-0.9073077601,5.190952757\)
\(\mathrm{H}, 0,2.3943384699,1.1167624296,4.5304299526\)
\(\mathrm{H}, 0,2.0859325299,2.0912833068,2.258938893\)
\(\mathrm{H}, 0,1.0187470113,-2.2309030931,-2.065452855\)
\(\mathrm{H}, 0,2.8030725823,-2.2427942079,-2.1287011046\)
\(\mathrm{H}, 0,1.9613902768,-2.0141692716,-0.5802006277\)

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**= -889.404088608

\section*{FADH \({ }^{-}\)Model (6-5H \({ }^{-}\))}

FADHanionPCMonOnsgr
Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-754.915956018\)
Zero-point correction \(=\quad 0.165867\) (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.177612\)
Thermal correction to Enthalpy= 0.178557
Thermal correction to Gibbs Free Energy= 0.127993
Sum of electronic and zero-point Energies= -754.750089
Sum of electronic and thermal Energies= -754.738344
Sum of electronic and thermal Enthalpies= \(\quad-754.737399\)
Sum of electronic and thermal Free Energies= \(\quad-754.787963\)
E (Thermal) CV S
\(\begin{array}{lccl} & \mathrm{KCal} / \mathrm{Mol} & \mathrm{Cal} / \text { Mol-Kelvin } & \mathrm{Cal} / \text { Mol-Kelvin } \\ \text { Total } & 111.454 & 47.733 & 106.420\end{array}\)

C,0,-2.1024404572,-0.9989414919,-2.1855455741
C, \(0,-1.0418715563,-0.5908219322,-1.3716168961\)
C,0,-0.2988128542,0.5519807151,-1.741566069
С,0,-0.6246977945,1.249378876,-2.9034034365
С, \(0,-1.6796268524,0.8221775268,-3.7225994324\)
C,0,-2.4174897361,-0.3027773721,-3.3600291112
\(\mathrm{N}, 0,0.7926557332,0.938050416,-0.9195431104\)
C,0,0.8763672448,0.5064988864,0.3980011295
C,0,0.1221837449,-0.6102596942,0.7527222432
\(\mathrm{N}, 0,-0.6359655741,-1.3085317557,-0.2314565686\)
C,0,0.1881462388,-1.0740894373,2.0847399374
N,0,1.0602741255,-0.3159124264,2.8861044896
C,0,1.8303640176,0.787106623,2.4898116654
\(\mathrm{N}, 0,1.7043783758,1.2038014881,1.2108648342\)
O,0,-0.4251975548,-2.0542850336,2.5828294964
O,0,2.5832937361,1.3138057491,3.356166707
H,0,-0.0435699585,2.126919081,-3.1785803047
H,0,1.2171479943,1.8388619641,-1.0934902141
H,0,1.1497320336,-0.6136624696,3.8470544699
H,0,-1.9144195307,1.3656846588,-4.6317351313
H,0,-3.23541234,-0.6459264937,-3.9854256546
H,0,-2.6751833629,-1.8801100044,-1.9064692112
H,0,-1.3251948816,-1.9313027111,0.1718021685
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-755.005678873\)

\section*{FADH \({ }^{+}\)Model ( \(6-1-H^{+}\))}
fadhydrideSMPCMonOnsgr
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-754.708146579\)
\begin{tabular}{lllrrr}
1 & 7 & 0 & -1.871374 & -1.424591 & -0.000102 \\
2 & 6 & 0 & -0.682254 & -0.769794 & -0.000035 \\
3 & 6 & 0 & -0.629220 & 0.659374 & -0.000052 \\
4 & 6 & 0 & -1.915107 & 1.424639 & 0.000109 \\
5 & 7 & 0 & -3.054115 & 0.606077 & 0.000242 \\
6 & 6 & 0 & -3.129234 & -0.774961 & -0.000233
\end{tabular}
\begin{tabular}{lllrrr}
7 & 7 & 0 & 0.509567 & 1.317411 & -0.000037 \\
8 & 6 & 0 & 1.679724 & 0.642656 & -0.000014 \\
9 & 6 & 0 & 1.711176 & -0.793556 & 0.000008 \\
10 & 7 & 0 & 0.481775 & -1.436353 & 0.000006 \\
11 & 6 & 0 & 2.918447 & -1.495382 & 0.000027 \\
12 & 6 & 0 & 4.100656 & -0.764159 & 0.000037 \\
13 & 6 & 0 & 4.098096 & 0.654149 & 0.000022 \\
14 & 6 & 0 & 2.909147 & 1.352118 & -0.000003 \\
15 & 8 & 0 & -2.006756 & 2.631367 & -0.000123 \\
16 & 8 & 0 & -4.160651 & -1.404168 & 0.000086 \\
17 & 1 & 0 & 2.940195 & -2.581654 & 0.000040 \\
18 & 1 & 0 & 0.485713 & -2.455404 & 0.000026 \\
19 & 1 & 0 & -3.948419 & 1.085856 & 0.000307 \\
20 & 1 & 0 & 5.048122 & -1.294758 & 0.000060 \\
21 & 1 & 0 & 5.044937 & 1.183498 & 0.000032 \\
22 & 1 & 0 & 2.872286 & 2.435841 & -0.000013 \\
23 & 1 & 0 & -1.933131 & -2.439289 & -0.000111
\end{tabular}

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-754.708146579\)

\section*{Hydride Transfer Transition Structure (8)}
fadhydrideCatOnsgr

\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-889.742198383\)
Zero-point correction=
Thermal correction to Energy=
0.258017 (Hartree/Particle)

Thermal correction to Enthalpy= 0.274901

Thermal correction to Gibbs Free Energy=
0.275845

Sum of electronic and zero-point Energies \(=\quad-889.484181\)
Sum of electronic and thermal Energies= -889.467298
Sum of electronic and thermal Enthalpies= -889.466354
Sum of electronic and thermal Free Energies \(=\quad-889.529507\)
\[
\text { E (Thermal) } \quad \text { CV } \quad \mathrm{S}
\]
\begin{tabular}{lccc} 
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & \(\mathrm{Cal} /\) Mol-Kelvin \\
Total & 172.503 & 65.023 & 132.918
\end{tabular}

C, \(0,1.5736323168,1.2065311811,2.5492247163\) C,0,0.6769466772,0.6113329106,1.6458366328 C,0,-0.0730000708,-0.509406207,2.0688416606 C,0,0.0733322993,-1.0312013059,3.3571202141 С,0,0.9800523286,-0.4359431648,4.2288396272 C,0,1.7281666528,0.6843947171,3.8266456602
N,0,-1.0011163196,-1.0547255996,1.1662515654
C,0,-1.2114661305,-0.4916692797,-0.0398907439
С,0,-0.4264960484,0.5981105514,-0.4454431529
\(\mathrm{N}, 0,0.5543163308,1.1374216951,0.3487333922\)
C,0,-0.6720258908,1.2074117481,-1.7557723326
N,0,-1.7569474223,0.6568427821,-2.4599890704
C,0,-2.5794697573,-0.3829058595,-2.0715385964
N,0,-2.2294292237,-0.9481034044,-0.8310855137
O,0,-3.5194879225,-0.7959117931,-2.7160928818
O,0,0.0016044526,2.1005067493,-2.2476589571
C,0,2.6068295574,0.4770346252,-1.079135855
\(\mathrm{N}, 0,2.0511571577,-0.4306757926,-1.932632038\)
C,0,2.2523738358,-1.8747116697,-1.821668155
H,0,1.7296138453,-0.0788943841,-2.8264478109
H,0,3.3099250354,0.0674992691,-0.3519514264
H,0,2.8782293955, 1.4368149852,-1.5198416115
H,0,1.6445223171,0.9698933489,-0.2722546078
Н,0,-0.5082093257,-1.8936174628,3.6713616093
H,0,-1.5747410365,-1.8295393323,1.4803854469
H,0,-1.9712871937,1.0751678052,-3.3590457192
H,0,1.1053159145,-0.8419125151,5.2270864307
H,0,2.4267461669,1.142171947,4.5186859389
H,0,2.1367035849,2.076165782,2.2255405068
H,0,1.4262197916,-2.4032115987,-2.3011792569
H,0,3.1910223411,-2.1789888547,-2.300686004
H,0,2.2938370666,-2.1604707398,-0.7684610424
H,0,-2.8439484248,-1.6970251462,-0.5304841429
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-889.856939442\)

\section*{\(\mathrm{FADH}_{2}\) Model (6-1,5-H2)}

FADH2PCMonOnsgr
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-755.428943518\)
Zero-point correction \(=0.178946\) (Hartree/Particle)
Thermal correction to Energy= 0.191255
Thermal correction to Enthalpy= 0.192200
Thermal correction to Gibbs Free Energy= 0.140447
Sum of electronic and zero-point Energies= -755.249997
Sum of electronic and thermal Energies= \(\quad-755.237688\)
Sum of electronic and thermal Enthalpies= \(\quad-755.236744\)
Sum of electronic and thermal Free Energies= \(\quad-755.288496\)
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 120.015 & 49.641 & 108.922
\end{tabular}

C,0,-2.110473447,-1.0234700309,-2.1903197814
C,0,-1.0500459648,-0.6050948046,-1.3857037145
С, \(0,-0.3182497191,0.5360585748,-1.7706809243\)
С, \(0,-0.6426229796,1.2287296572,-2.9309740734\)
С,0,-1.7000065913,0.7922237896,-3.7399869624
С,0,-2.4310139993,-0.3325433505,-3.365470154
\(\mathrm{N}, 0,0.7762710546,0.9540599225,-0.9467088672\)
C,0,0.8278329582,0.4946900456,0.3482983463
C,0,0.1116981083,-0.6085714883,0.7253907164
\(\mathrm{N}, 0,-0.6520630364,-1.3112459992,-0.2333777919\)
C,0,0.180209904,-1.0893157341,2.072715233
\(\mathrm{N}, 0,1.0517029519,-0.3567945589,2.9094663212\)
C, \(0,1.8136465004,0.742100603,2.5741457015\)
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-755.470453917\)

\section*{FAD Radical Anion Model ( \(6^{-0}\) )}
fadRadAnionPCMonOnsgr
Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-754.300146470\)
Zero-point correction \(=\quad 0.153264\) (Hartree/Particle)
Thermal correction to Energy= 0.164664
Thermal correction to Enthalpy=
0.165608

Thermal correction to Gibbs Free Energy=
0.114976

Sum of electronic and zero-point Energies= -754.146883
Sum of electronic and thermal Energies= -754.135482

Sum of electronic and thermal Enthalpies= -754.134538
Sum of electronic and thermal Free Energies=
-754.185170
\begin{tabular}{cccl} 
& E(Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 103.328 & 46.149 & 106.564
\end{tabular}

C,0,-2.1070029886,-1.0067268869,-2.1909100408
C,0,-1.1508144293,-0.4980585924,-1.2762596887
C,0,-0.3955500525,0.642124216,-1.6937771769
C,0,-0.5926253291,1.226447865,-2.9462723401
C, \(0,-1.5452883021,0.6966965669,-3.8221074199\)
C, \(0,-2.3008097248,-0.4222795597,-3.4377747791\)
\(\mathrm{N}, 0,0.5437580254,1.1369672906,-0.7879133798\)
C,0,0.7567008953,0.5804577749,0.4497290388
C,0,-0.0432659313,-0.5529252202,0.7775946715
\(\mathrm{N}, 0,-0.9814681243,-1.0922462501,-0.0578422561\)
C,0,0.1892922812,-1.1326495365,2.0864938463
\(\mathrm{N}, 0,1.1844490575,-0.4601927585,2.8154079139\)
C,0,1.9399943343,0.6589326323,2.4306222786
N,0,1.6982437894,1.1761204734,1.2032281671
O,0,-0.3688101753,-2.115490104,2.6084996408
O,0,2.7834053117,1.0998532545,3.2470248021
H,0,-0.0030826314,2.09343985,-3.2367038965
H,0,1.1103158256,1.941275764,-1.0225371125
H,0,1.3769934425,-0.8346872586,3.7341559008
H,0,-1.6965639151,1.1527254192,-4.7951214677
H,0,-3.0400387679,-0.8319795059,-4.1195148855
H,0,-2.6830488002,-1.8723363162,-1.8786675349
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**= -754.396111232

\section*{Dimethylamine cation radical (9)}
catradMe2NHOnsgr
Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-134.881818979\)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.090218 (Hartree/Particle)
0.095366
0.096310
\begin{tabular}{lc} 
Thermal correction to Gibbs Free Energy \(=\) & 0.061937 \\
Sum of electronic and zero-point Energies \(=\) & -134.791601 \\
Sum of electronic and thermal Energies \(=\) & -134.786453 \\
Sum of electronic and thermal Enthalpies \(=\) & -134.785509 \\
Sum of electronic and thermal Free Energies= & -134.819882
\end{tabular}
\begin{tabular}{lccl} 
& E (Thermal & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 59.843 & 14.896 & 72.344
\end{tabular}

C,0,-0.0436337216,0.2003014433,1.280174069
N,0,0.1072734138,-0.4335567792,-0.0009756587
C,0,-0.0564290691,0.2029969324,-1.2792184427
H,0,-0.4585692766,1.2009423726,1.1670038884
H,0,0.9474524998,0.2548765037,1.7641472472
H,0,-0.6714821535,-0.4280223474,1.9261041744
H,0,0.3543311448,-1.42741396,-0.0032959872
\(\mathrm{H}, 0,0.7952581678,-0.051146716,-1.9245760195\)
H,0,-0.9545207124,-0.2145481583,-1.7674387001
Н,0,-0.1630068221,1.2804195056,-1.1608487499
PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-134.995699532\)

\section*{FADH radical model (6-5-H')}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{fadhRadPCMonOnsgr} \\
\hline \multicolumn{4}{|l|}{Onsager/B3LYP/6-31+G**} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{E}(\mathrm{UB}+\) HF-LYP \()=-754.828689553\)} \\
\hline \multicolumn{2}{|l|}{Zero-point correction=} & \multicolumn{2}{|r|}{0.167439 (Hartree/Particle)} \\
\hline Therm & rrection to Ene & \multicolumn{2}{|l|}{\(=\quad 0.178977\)} \\
\hline Therm & rrection to Ent & \multicolumn{2}{|l|}{py= 0.179921} \\
\hline Therm & rrection to Gib & \multicolumn{2}{|l|}{Free Energy= 0.129194} \\
\hline Sum of & tronic and zer & -point Energies= & -754.661251 \\
\hline Sum of & tronic and the & mal Energies= & -754.649713 \\
\hline Sum of & tronic and the & mal Enthalpies= & -754.648768 \\
\hline \multicolumn{4}{|l|}{Sum of electronic and thermal Free Energies= -754.69949} \\
\hline & E (Thermal) & CV & S \\
\hline & \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 112.310 & 47.036 & 106.764 \\
\hline
\end{tabular}
```

C,0,-2.1029033613,-1.0163471194,-2.1900712962
С,0,-1.1485365198,-0.4794137163,-1.311405279
С,0,-0.3895109703,0.6568975549,-1.6922793793
C,0,-0.5992843669,1.2367383428,-2.94774025
C,0,-1.5484511609,0.6961806414,-3.8116547846
C, $0,-2.3002874514,-0.4300928906,-3.4332733024$
N,0,0.551536477,1.1635237765,-0.7911439635
C,0,0.7923274858,0.6297382273,0.449348964
C,0,0.0199500212,-0.5049301085,0.8039297278
N,0,-0.908580753,-1.0217866983,-0.0593230394
C,0,0.2225550152,-1.1156527778,2.0936257838
N,0,1.1967106828,-0.4671270483,2.8375039634
C,0,1.9523835407,0.6691182027,2.4514439995
$\mathrm{N}, 0,1.7144991626,1.2021877169,1.2169755788$
O,0,-0.3923536753,-2.1068069233,2.509966905
O,0,2.780864323,1.1050349306,3.2604745742
H,0,-0.0204448505,2.1068904881,-3.2436709674
H,0,1.1023556166, 1.9745256136,-1.0466652414
H,0,1.3925769523,-0.8417594219,3.7564244087
Н,0,-1.7085189423,1.1484646873,-4.7846007186
H,0,-3.0368269101,-0.8424965853,-4.1143968533
H,0,-2.6800647813,-1.8865424027,-1.8910841993
H,0,-1.4257746462,-1.8359088043,0.260828861

```

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-754.865306675\)

\section*{Methylaminomethyl radical (10)}

CH2NHMeRadPCMonOnsgr
Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-134.524516376\)
Zero-point correction=
Thermal correction to Energy=
0.076163 (Hartree/Particle)

Thermal correction to Enthalpy= 0.080480

Thermal correction to Gibbs Free Energy= 0.050115
Sum of electronic and zero-point Energies= -134.448353
Sum of electronic and thermal Energies \(=\quad-134.444037\)
Sum of electronic and thermal Enthalpies= \(\quad-134.443092\)
Sum of electronic and thermal Free Energies \(=-134.474401\)
\begin{tabular}{lcl} 
E (Thermal) & CV & S \\
KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin
\end{tabular}
\begin{tabular}{llll} 
Total & 50.502 & 12.657 & 65.894
\end{tabular}
\[
\begin{aligned}
& \mathrm{C}, 0,0.4773733738,-0.8268354451,0.7517585966 \\
& \mathrm{H}, 0,0.4697200888,-0.8135802736,1.8436232482 \\
& \mathrm{H}, 0,1.5248781096,-0.8601420504,0.4177377898 \\
& \mathrm{H}, 0,-0.0175344784,-1.7506543607,0.4177372335 \\
& \mathrm{~N}, 0,-0.1994392299,0.3454387219,0.2459092564 \\
& \mathrm{C}, 0,-0.3447680609,0.5971565795,-1.099553336 \\
& \mathrm{H}, 0,-0.5788306185,1.0025631854,0.9075851783 \\
& \mathrm{H}, 0,-0.8612641112,1.4917540866,-1.4140076702 \\
& \mathrm{H}, 0,0.0634737655,-0.1099384331,-1.8072721381
\end{aligned}
\]

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**=-134.531335624

\section*{N-Methyl iminium cation}

MeNCH2cationOnsgr
Onsager/B3LYP/6-31+G**
E(RB+HF-LYP \()=-134.310357811\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.082363 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.085833 \\
Thermal correction to Enthalpy= & 0.086777 \\
Thermal correction to Gibbs Free Energy= & 0.057792 \\
Sum of electronic and zero-point Energies= & -134.227995 \\
Sum of electronic and thermal Energies= & -134.224525 \\
Sum of electronic and thermal Enthalpies= & -134.223581 \\
Sum of electronic and thermal Free Energies= & -134.252565
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & Cal/Mol-Kelvin \\
\hline Total & 53.861 & 10.639 & 61.003 \\
\hline N,0,-0 & 525227,0.,0.37 & 54656262 & \\
\hline H,0,-0 & 041496,0.,1.3 & 6302555 & \\
\hline C,0,1. & 99555,0.,0.0 & 7423589 & \\
\hline C, \(0,-1\) & 892375,0.,-0. & 04249512 & \\
\hline H,0,-2 & 759429,0.,-0. & 398465621 & \\
\hline H,0,-0 & 147235,0.,-1.5 & 32214014 & \\
\hline H,0,1. & 28623,0.,-0.9 & 54058228 & \\
\hline H,0,1. & 2652,0.8928 & 6716,0.53200370 & \\
\hline H,0,1. & 2652,-0.8928 & 86716,0.5320037 & \\
\hline
\end{tabular}

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-134.412124784\)

FAD-4a adduct model (11)
fad-5H-4aNMe2Rot2PCMonOnsgr


Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\) RB+HF-LYP \()=-889.394470385\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.252323 \\
(Hartree/Particle) \\
Thermal correction to Energy= & 0.268129 \\
Thermal correction to Enthalpy= & 0.269073 \\
Thermal correction to Gibbs Free Energy= & 0.209849 \\
Sum of electronic and zero-point Energies \(=\) & -889.142148 \\
Sum of electronic and thermal Energies= & -889.126342 \\
Sum of electronic and thermal Enthalpies= & -889.125398 \\
Sum of electronic and thermal Free Energies= & -889.184621
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 168.253 & 63.011 & 124.647
\end{tabular}

C,0,-3.0236270803,0.9383264556,-0.8438527489
С,0,-1.8189836554,0.2782961232,-0.5814875852
С,0,-1.8512827765,-0.9717573995,0.0640298856
С,0,-3.0610006981,-1.5425604115,0.461085826
С,0,-4.257167003,-0.8746600412,0.1978776848
С, \(0,-4.2347992687,0.3606028104,-0.4592025812\)
N,0,-0.6225667473,-1.645280689,0.2261343557
C,0,0.5821297605,-1.0864605059,0.0144336531
C,0,0.5556399823,0.439952234,-0.1219095577
\(\mathrm{N}, 0,-0.5645640335,0.7524991393,-0.9741989754\)
C, \(0,1.8304652515,0.9323681382,-0.8268153956\)
\(\mathrm{N}, 0,2.8975422288,0.0797348155,-0.7325964003\)
C,0,2.8661454795,-1.2860118499,-0.3261875972
N,0,1.6464918059,-1.8467951444,-0.0357661298
\(\mathrm{N}, 0,0.4248720367,1.035210025,1.2323925066\)
\(\mathrm{C}, 0,1.4040462813,0.6115515042,2.233912326\)
\(\mathrm{O}, 0,1.9017081138,2.0430100229,-1.3376831708\)
\(\mathrm{O}, 0,3.9264203911,-1.8962277162,-0.3040237471\)
\(\mathrm{C}, 0,0.2221078515,2.4861913487,1.2568348164\)
\(\mathrm{H}, 0,-0.5732197294,2.7742345515,0.5682178151\)
\(\mathrm{H}, 0,-0.1016707208,2.7621338146,2.2643248462\)
\(\mathrm{H}, 0,1.1279049835,3.0602304462,1.0052171597\)
\(\mathrm{H}, 0,-3.0641819767,-2.5040328426,0.9677885061\)
\(\mathrm{H}, 0,-0.6258907186,-2.6497970409,0.3657843062\)
\(\mathrm{H}, 0,3.7917300561,0.4113816411,-1.0775477109\)
\(\mathrm{H}, 0,-5.1999989005,-1.3131516498,0.5061669724\)
\(\mathrm{H}, 0,-5.1637363733,0.8833529847,-0.6624082648\)
\(\mathrm{H}, 0,-3.0094154954,1.9019598415,-1.3455847766\)
\(\mathrm{H}, 0,2.4178806712,1.0126503893,2.0574501592\)
\(\mathrm{H}, 0,1.0673117845,0.9705643909,3.2105055778\)
\(\mathrm{H}, 0,1.4649207744,-0.4775033449,2.2873688961\)
\(\mathrm{H}, 0,-0.5111341764,1.6511109024,-1.4376979989\)

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-889.431167990\)

\section*{Elimination Transition Structure with Methoxide Base (12a)}

FadnuadductOMePCMonOnsgrTS

\(\begin{array}{lc}\text { Onsager/B3LYP/6-31+G** } \\ \mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1005.02265242 \\ & \\ \text { Zero-point correction }= & 0.295844 \text { (Hartree/Particle) } \\ \text { Thermal correction to Energy= } & 0.316457 \\ \text { Thermal correction to Enthalpy }= & 0.317401 \\ \text { Thermal correction to Gibbs Free Energy= } & 0.245636 \\ \text { Sum of electronic and zero-point Energies= } & -1004.726808 \\ \text { Sum of electronic and thermal Energies= } & -1004.706196 \\ \text { Sum of electronic and thermal Enthalpies= } & -1004.705251 \\ \text { Sum of electronic and thermal Free Energies= } & -1004.777016\end{array}\)
\begin{tabular}{lcc} 
E (Thermal) & CV & CVI/Mol \\
KCal/Mol-Kelvin & Cal/Mol-Kelvin
\end{tabular}

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**=-1005.02263231

\section*{Elimination Transition Structure with Methylamine Base (12b)}
nuAdductElimTSMeNH2PCMOnonsgr


Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-985.598013430\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.323808 (Hartree/Particle) \\
Thermal correction to Energy= & 0.345157 \\
Thermal correction to Enthalpy= & 0.346101 \\
Thermal correction to Gibbs Free Energy= & 0.272058 \\
Sum of electronic and zero-point Energies= & -985.274206 \\
Sum of electronic and thermal Energies= & -985.252856 \\
Sum of electronic and thermal Enthalpies= & -985.251912 \\
Sum of electronic and thermal Free Energies= & -985.325956
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 216.589 & 79.588 & 155.837
\end{tabular}
\(\mathrm{N}, 0,-0.5016647524,-2.5077148836,-0.6569610924\)
C,0,0.376868501,-1.5309977076,-0.2835678661
С,0,0.0216084954,-0.6485548549,0.7394931215
С,0,-1.1656218563,-0.9099660381,1.5414765935
N,0,-1.9524482827,-1.9764456407,1.0993043625
C,0,-1.7097854826,-2.7903292942,0.013395805
\(\mathrm{N}, 0,0.9558556015,0.2466526171,1.2196807675\)
C,0,2.2364652367,0.3357948379,0.6629169143
С,0,2.5544219285,-0.4872140175,-0.4355856058
N,0,1.5666024486,-1.4012399333,-0.9030832898
C,0,3.8062787627,-0.4197101753,-1.0409195317
C,0,4.763770941,0.4706852477,-0.5501890042
С,0,4.4602404385,1.2819077124,0.546685867
C,0,3.203828024,1.2165588568,1.1522119166
\(\mathrm{N}, 0,-1.4708203158,0.702238727,-0.6244325012\)
\(\mathrm{C}, 0,-1.2133064073,1.8999028886,-0.0004720444\)
\(\mathrm{O}, 0,-1.451538048,-0.255617151,2.5361901545\)
\(\mathrm{O}, 0,-2.4321617406,-3.6956234987,-0.3498869091\)
\(\mathrm{C}, 0,-0.9820314919,0.6319983226,-1.98637595\)
\(\mathrm{~N}, 0,-3.0540568139,3.8618492666,-0.9010237587\)
\(\mathrm{C}, 0,-4.4489476956,3.4284835991,-0.6815056606\)
\(\mathrm{H}, 0,-2.0295994065,2.698667756,-0.4440754586\)
\(\mathrm{H}, 0,-1.4458918509,1.8874783649,1.0697181526\)
\(\mathrm{H}, 0,-0.2557282859,2.3984096809,-0.2323651164\)
\(\mathrm{H}, 0,4.0334942963,-1.0551952669,-1.8927943808\)
\(\mathrm{H}, 0,1.8191952227,-2.020421177,-1.663175282\)
\(\mathrm{H}, 0,-2.8173311812,-2.1477742006,1.6001696694\)
\(\mathrm{H}, 0,5.7358123735,0.5320678862,-1.0264325187\)
\(\mathrm{H}, 0,5.1998755143,1.9772937004,0.9288384785\)
\(\mathrm{H}, 0,2.9663766227,1.8567153477,1.9968514503\)
\(\mathrm{H}, 0,-0.9926690132,-0.3986396047,-2.3498179673\)
\(\mathrm{H}, 0,-1.6935757933,1.1816692657,-2.6231913091\)
\(\mathrm{H}, 0,0.0094499355,1.0844910827,-2.1398618507\)
\(\mathrm{H}, 0,-0.3048693382,-3.133280032,-1.4295750036\)
\(\mathrm{H}, 0,0.74142855512,0.6917509899,2.1038655102\)
\(\mathrm{H}, 0,-5.1748595478,4.1975412815,-0.966315624\)
\(\mathrm{H}, 0,-4.6410498064,2.5279642736,-1.2693079848\)
\(\mathrm{H}, 0,-4.5853931861,3.1879780617,0.3752623507\)
\(\mathrm{H}, 0,-2.8324987611,4.69053382,-0.3508099632\)
\(\mathrm{H}, 0,-2.8895795991,4.1039366312,-1.8771878608\)

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-985.708625232\)

\section*{N5 Adduct Structure (13)}

NNadductPCMonOnsgr


Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-889.356736098\)
Zero-point correction \(=0.253205\) (Hartree/Particle)
\begin{tabular}{lc} 
Thermal correction to Energy \(=\) & 0.269035 \\
Thermal correction to Enthalpy= \(=\) & 0.269979 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.210107 \\
Sum of electronic and zero-point Energies \(=\) & -889.103531 \\
Sum of electronic and thermal Energies= & -889.087701 \\
Sum of electronic and thermal Enthalpies \(=\) & -889.086757 \\
Sum of electronic and thermal Free Energies= & -889.146629
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 168.822 & 62.612 & 126.012
\end{tabular}

\footnotetext{
С, \(0,-2.8048761325,0.5096887101,-0.9814224523\)
С, \(0,-1.6140106598,0.0551630963,-0.3998677522\)
С,0,-1.5601451118,-1.2211505146,0.1898078858
С,0,-2.7191598662,-2.0088435896,0.2329077313
C,0,-3.9106684331,-1.5270697891,-0.3072391487
C,0,-3.9584312613,-0.2720811006,-0.9271280305
N,0,-0.3344403098,-1.6691879117,0.6932916103
C,0,0.8525671822,-1.0763715612,0.2967503633
С,0,0.7858700068,0.2327684027,-0.2228807529
N,0,-0.4625960929,0.9246755755,-0.3431360836
C,0,1.9996180405,0.8023316437,-0.7441668702
\(\mathrm{N}, 0,3.0996257025,-0.0526384081,-0.606287199\)
C,0,3.1255517035,-1.3406104699,-0.0412160764
N,0,1.9444795364,-1.8444115919,0.4077059562
\(\mathrm{N}, 0,-0.7187077656,1.9430260046,0.7376185837\)
C, \(0,-0.1589222716,3.2747343238,0.331915682\)
O,0,2.1631717655,1.9286425665,-1.2418804217
O,0,4.2158946465,-1.9420123339,-0.003112287
C,0,-0.3233958595,1.5361918276,2.1263656417
Н,0,-0.6456687556,2.3164529665,2.8175775379
H,0,-0.8151610308,0.5939657008,2.3663585511
H,0,0.7590723888, 1.4201166149,2.1543325659
H,0,-2.6869520081,-2.9871199738,0.705419279
H,0,-0.2471716379,-2.6396622041,0.9670950034
H,0,3.9831574763,0.3161896176,-0.9322731816
H,0,-4.8089480134,-2.1331229203,-0.2470977238
Н, \(0,-4.8856364118,0.0935769873,-1.3547416016\)
H,0,-2.8191035995,1.4797883276,-1.471695604
Н,0,-0.6107134429,3.5461942547,-0.6206983452
H,0,-0.4125039869,4.0026829464,1.104555023
H,0,0.9156528619,3.1706208176,0.1939927099
H,0,-1.7410666521,2.02852345,0.7298100579
}

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-889.403859870\)

\section*{N5 Adduct Elimination Transition Structure (14)}

NNelimTSPCMonOnsgr


PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\) RB+HF-LYP \()=-889.374434337\)
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-985.598013430\)
Zero-point correction \(=0.323808\) (Hartree/Particle)
Thermal correction to Energy= 0.345157
Thermal correction to Enthalpy= 0.346101
Thermal correction to Gibbs Free Energy= 0.272058
Sum of electronic and zero-point Energies= -985.274206
Sum of electronic and thermal Energies= -985.252856
Sum of electronic and thermal Enthalpies= -985.251912
Sum of electronic and thermal Free Energies \(=\quad-985.325956\)
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 216.589 & 79.588 & 155.837 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,-0.5016647524,-2.5077148836,-0.6569610924\)} \\
\hline \multicolumn{4}{|l|}{C,0,0.376868501,-1.5309977076,-0.2835678661} \\
\hline \multicolumn{4}{|l|}{C,0,0.0216084954,-0.6485548549,0.7394931215} \\
\hline \multicolumn{4}{|l|}{C,0,-1.1656218563,-0.9099660381,1.5414765935} \\
\hline \multicolumn{4}{|l|}{N,0,-1.9524482827,-1.9764456407,1.0993043625} \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.7097854826,-2.7903292942,0.013395805\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,0.9558556015,0.2466526171,1.2196807675\)} \\
\hline \multicolumn{4}{|l|}{C,0,2.2364652367,0.3357948379,0.6629169143} \\
\hline \multicolumn{4}{|l|}{C, \(0,2.5544219285,-0.4872140175,-0.4355856058\)} \\
\hline \multicolumn{4}{|l|}{N,0,1.5666024486,-1.4012399333,-0.9030832898} \\
\hline
\end{tabular}
\(\mathrm{C}, 0,3.8062787627,-0.4197101753,-1.0409195317\)
\(\mathrm{C}, 0,4.763770941,0.4706852477,-0.5501890042\)
\(\mathrm{C}, 0,4.4602404385,1.2819077124,0.546685867\)
\(\mathrm{C}, 0,3.203828024,1.216558568,1.1522119166\)
\(\mathrm{~N}, 0,-1.4708203158,0.702238727,-0.6244325012\)
\(\mathrm{C}, 0,-1.2133064073,1.8999028886,-0.0004720444\)
\(\mathrm{O}, 0,-1.451538048,-0.255617151,2.5361901545\)
\(\mathrm{O}, 0,-2.4321617406,-3.6956234987,-0.3498869091\)
\(\mathrm{C}, 0,-0.9820314919,0.6319983226,-1.98637595\)
\(\mathrm{~N}, 0,-3.0540568139,3.8618492666,-0.9010237587\)
\(\mathrm{C}, 0,-4.4489476956,3.4284835991,-0.6815056606\)
\(\mathrm{H}, 0,-2.0295994065,2.698667756,-0.4440754586\)
\(\mathrm{H}, 0,-1.4458918509,1.8874783649,1.0697181526\)
\(\mathrm{H}, 0,-0.2557282859,2.3984096809,-0.2323651164\)
\(\mathrm{H}, 0,4.0334942963,-1.0551952669,-1.8927943808\)
\(\mathrm{H}, 0,1.8191952227,-2.020421177,-1.663175282\)
\(\mathrm{H}, 0,-2.8173311812,-2.1477742006,1.6001696694\)
\(\mathrm{H}, 0,5.7358123735,0.5320678862,-1.0264325187\)
\(\mathrm{H}, 0,5.1998755143,1.9772937004,0.9288384785\)
\(\mathrm{H}, 0,2.9663766227,1.8567153477,1.9968514503\)
\(\mathrm{H}, 0,-0.9926690132,-0.3986396047,-2.3498179673\)
\(\mathrm{H}, 0,-1.6935757933,1.1816692657,-2.6231913091\)
\(\mathrm{H}, 0,0.00944999355,1.0844910827,-2.1398618507\)
\(\mathrm{H}, 0,-0.3048693382,-3.133280032,-1.4295750036\)
\(\mathrm{H}, 0,0.7414285512,0.6917509899,2.1038655102\)
\(\mathrm{H}, 0,-5.1748595478,4.1975412815,-0.966315624\)
\(\mathrm{H}, 0,-4.6410498064,2.5279642736,-1.2693079848\)
\(\mathrm{H}, 0,-4.5853931861,3.1879780617,0.3752623507\)
\(\mathrm{H}, 0,-2.8324987611,4.69053382,-0.3508099632\)
\(\mathrm{H}, 0,-2.8895795991,4.1039366312,-1.8771878608\)

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**=-889.374434337

Concerted addition / elimination transition structure (15)


Onsager/B3LYP/6-31+G**
E(RB+HF-LYP \()=-889.323140728\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.244968 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.261258 \\
Thermal correction to Enthalpy= & 0.262203 \\
Thermal correction to Gibbs Free Energy= & 0.201442 \\
Sum of electronic and zero-point Energies= & -889.078173 \\
Sum of electronic and thermal Energies= & -889.061882 \\
Sum of electronic and thermal Enthalpies= & -889.060938 \\
Sum of electronic and thermal Free Energies= & -889.121699
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 163.942 & 63.488 & 127.881
\end{tabular}
\(\mathrm{N}, 0,1.687686364,-1.6636540008,-0.1218151605\)
C, \(0,0.5172909904,-0.9505518665,-0.1959627861\)
C,0,0.4898509071,0.3718220592,-0.664424906
C,0,1.7670802148,0.9972796317,-1.0359810637
N,0,2.8889643495,0.144613301,-0.9358409634
C,0,2.9406744624,-1.1329928522,-0.43721708
N,0,-0.6499928568,1.1060166876,-0.7417389974
C, \(0,-1.8429920345,0.4179385115,-0.5145106881\)
C,0,-1.8768402725,-0.9185345113,-0.0543973478
N,0,-0.6359644296,-1.5572370332,0.1508113095
С, \(0,-3.0785185777,-1.5870917579,0.1831421068\)
C, \(0,-4.2824686658,-0.9190502351,-0.0327295896\)
С,0,-4.2759092668,0.407412752,-0.4894903413
С, \(0,-3.0733603541,1.0645814761,-0.7294467642\)
\(\mathrm{N}, 0,1.2255783127,1.2060151445,1.7544917388\)
C,0,0.2722083263,2.1908318434,1.5917794841
O,0,1.9198798627,2.1387232108,-1.4429685891
O,0,3.9672524877,-1.7817012481,-0.3018462943
C,0,0.8513547696,0.1768192145,2.7036802487
```

H,0,-0.5022168895,2.2759451839,2.3734496656
H,0,0.702992455,3.1638077875, 1.3256458482
H,0,-0.3548855215,1.9503803514,0.5978554467
H,0,-3.0754790272,-2.6154704643,0.5359566157
H,0,-0.6383136358,-2.5193822721,0.4660395783
H,0,3.7835040194,0.5750651387,-1.131452529
Н,0,-5.2207282893,-1.4313572318,0.1512003745
H,0,-5.2165516798,0.9212019182,-0.659662903
H,0,-3.0505748624,2.0892579996,-1.0862052907
H,0,1.5123550434,-0.6918321882,2.609703408
H,0,0.9695470946,0.5536065362,3.733967271
Н,0,-0.1968236419,-0.16428838,2.6215602573
H,0,1.7081068521,-2.6154128595,0.2239021038

```

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-889.372291214\)

\section*{Methyl Amine}

MeNH2PCMOnOnsgr
Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\) RB+HF-LYP \()=-95.8728272351\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.064091 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.067517 \\
Thermal correction to Enthalpy \(=\) & 0.068462 \\
Thermal correction to Gibbs Free Energy= & 0.041160 \\
Sum of electronic and zero-point Energies \(=\) & -95.808736 \\
Sum of electronic and thermal Energies= & -95.805310 \\
Sum of electronic and thermal Enthalpies \(=\) & -95.804366 \\
Sum of electronic and thermal Free Energies= & -95.831667
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 42.368 & 9.549 & 57.460
\end{tabular}

C,0,-0.0096240992,-0.0166616027,-0.006805194
H,0,0.0108728194,-0.0118649523,1.0877658484
H,0,1.0291795437,-0.0118649648,-0.3523379453
H,0,-0.4701735501,-0.9619932286,-0.3324626869
N,0,-0.680674157,1.2000730704,-0.4813090488
H,0,-0.7060361797,1.220205834,-1.4972918182
H,0,-1.647005779,1.2202058456,-0.1665592821

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G** \(=-95.8823274193\)

\section*{Dimethylammonium cation}


PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**=-135.549595166

\section*{Proton transfer from N-methyliminium cation (16)}
```

Onsager/B3LYP/6-31+G**
E}(\textrm{UB}+HF-LYP)=-191.47649058
Zero-point correction= 0.125721 (Hartree/Particle)
Thermal correction to Energy= 0.132926
Thermal correction to Enthalpy= 0.133870
Thermal correction to Gibbs Free Energy= 0.093525
Sum of electronic and zero-point Energies= -191.350769
Sum of electronic and thermal Energies= -191.343565
Sum of electronic and thermal Enthalpies= -191.342621
Sum of electronic and thermal Free Energies= -191.382966
Total 83.412 22.980 84.914
E (Thermal) CV S
C,0,-1.8401033217,-0.7285420883,0.0149993847
N,0,-0.9859006688,0.39048659,-0.3466630977
C,0,0.1071983001,0.8141203189,0.3901223458
Н,0,-1.8251720871,-0.8625637148,1.0979377865
H,0,-1.5006393283,-1.6546164381,-0.4675730731
H,0,-2.8624785302,-0.524446902,-0.313658981
H,0,-1.0888222505,0.7566936828,-1.2884686574
H,0,1.1757746694,0.1455648055,0.1139447108
H,0,0.4150588911,1.8329260629,0.1413350132
H,0,-0.0110351306,0.6422292824,1.4630436739
$\mathrm{N}, 0,2.492082644,-0.4984039264,-0.1048922577$
H,0,2.7098706398,-0.5517061598,-1.1006654464
H,0,3.2209564474,0.0528387942,0.3503136398

```

\section*{Hydrogen transfer from N-methyliminium cation (17)}
Onsager/B3LYP/6-31+G**
\(\mathrm{E}(\mathrm{UB}+\mathrm{HF}-\mathrm{LYP})=-595.016267136\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.085071 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.090719 \\
Thermal correction to Enthalpy= & 0.091663 \\
Thermal correction to Gibbs Free Energy= & 0.055639 \\
Sum of electronic and zero-point Energies \(=\) & -594.931196 \\
Sum of electronic and thermal Energies= & -594.925548 \\
Sum of electronic and thermal Enthalpies= & -594.924604 \\
Sum of electronic and thermal Free Energies= & -594.960628
\end{tabular}
\begin{tabular}{cccl} 
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 56.927 & 18.951 & 75.820
\end{tabular}

C,0,-1.9803291504,-0.6618518578,0.0843745462
N,0,-0.9321582569,0.1020906104,-0.3808102588
C,0,0.1818677836,0.5607522214,0.3255901137
H,0,-1.9080573744,-1.0217310411,1.1100648786
Н,0,-2.3592364662,-1.402619369,-0.6890633329
H,0,-2.9738081081,-0.0715788929,-0.0787548547
H,0,-1.0298910415,0.4251299495,-1.3581977406
H,0,1.2244145522,0.1178000503,-0.0208859093
H,0,0.3633589966, 1.6132843956,0.0539539017
Н, \(0,0.096870123,0.3666161242,1.3947445225\)
Cl,0,3.586927942,0.1906488095,0.2268591335

\section*{Table of Energies}

Gas Phase Energies B3LYP/6-31+G**
\begin{tabular}{|c|c|c|c|}
\hline STRUCTURE & Energy & ZPE & Energy + ZPE \\
\hline Dimethylamine & -135.1813 & 0.092352 & -135.088924 \\
\hline Alloxazine Model for FAD (6) & -754.21 & 0.156272 & -754.053742 \\
\hline FADH \({ }^{+}\)Model ( \(6-1-\mathrm{H}^{+}\)) & -754.5727 & 0.169109 & -754.403566 \\
\hline Hydride Transfer Transition Structure (7) & -889.347 & 0.246238 & -889.100721 \\
\hline Hydride Transfer Transition Structure (8) & -889.7375 & 0.258069 & -889.479411 \\
\hline complex FADHMeNCH2+ & -889.3713 & 0.253563 & -889.117691 \\
\hline N -Methyl iminium cation & -134.3096 & 0.082373 & -134.227206 \\
\hline FADH \({ }^{-}\)Model ( \(6-5 \mathrm{H}^{-}\)) & -754.8999 & 0.16589 & -754.734011 \\
\hline \(\mathrm{FADH}_{2}\) Model ( \(6-1,5-\mathrm{H}_{2}\) ) & -755.4254 & 0.179059 & -755.24636 \\
\hline Dimethylamine cation radical (9) & -134.8815 & 0.090195 & -134.791333 \\
\hline FAD Radical Anion Model ( \(6^{-}\)) & -754.2883 & 0.153184 & -754.135105 \\
\hline FADH radical model (6-5-H*) & -754.8143 & 0.167424 & -754.646844 \\
\hline Methylaminomethyl radical (10) & -134.5237 & 0.076124 & -134.447528 \\
\hline FAD-4a adduct model
(11) & -889.3905 & 0.25241994 & -889.13812 \\
\hline
\end{tabular}

\section*{Energies of Structures using Onsager Solvent Model}

PCM/B3LYP/6-31+G**//Onsager/B3LYP/6-31+G**
\begin{tabular}{|c|c|c|c|}
\hline STRUCTURE & Energy & ZPE & Energy+ZPE \\
\hline Dimethylamine & -135.1895 & 0.092337 & -135.0971617 \\
\hline \begin{tabular}{c} 
Alloxazine Model for \\
FAD (6)
\end{tabular} & -754.2612 & 0.156236 & -754.1049877 \\
\hline FADH \(^{+}\)Model (6-1-H
\end{tabular} ) \(\quad-754.7081 ~ 0.169054 ~--754.5390926\).
\begin{tabular}{|c|l|l|l|} 
N5 Adduct Structure (13) & -889.4039 & 0.253205 & -889.1506549 \\
\hline \begin{tabular}{c} 
N5 Adduct Elimination \\
Transition Structure (14)
\end{tabular} & -889.3744 & 0.245137 & -889.1292973 \\
\hline Methyl ammonium & -96.35716 & 0.079363 & -96.27779299 \\
\hline \begin{tabular}{c} 
Elimination Transition \\
Structure with (12b) \\
Methylamine Base (12
\end{tabular} & -985.7086 & 0.323808 & -985.3848172 \\
\hline \begin{tabular}{c} 
Concerted addition / \\
elimination transition \\
structure (15)
\end{tabular} & -889.3723 & 0.244968 & -889.1273232 \\
\hline \begin{tabular}{c} 
Elimination Transition \\
Structure with Methoxide \\
Base (12a)
\end{tabular} & -1005.023 & 0.295844 & -1004.726788 \\
\hline Methanol & -115.7452 & 0.051228 & -115.6939812 \\
\hline
\end{tabular}

\section*{Theoretical calculations: Exo Selective Diels-Alder Reactions of Vinylazepines. Origin of Divergent Stereoselectivity in Diels-Alder Reactions of Vinylazepines, Vinylpiperideines, and Vinylcycloalkenes-Appendix Material}

Theoretical Structures
A. Endo, Azapene in chair, dienophile coming in from face opposite carbamate, OMe away from diene, file sevdatsaendofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-993.996197909 \quad\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.340532 (Hartree/Particle) \\
Thermal correction to Energy= & 0.360568 \\
Thermal correction to Enthalpy= & 0.361512 \\
Thermal correction to Gibbs Free Energy= & 0.292111 \\
Sum of electronic and zero-point Energies= & -993.655666 \\
Sum of electronic and thermal Energies= & -993.635630 \\
Sum of electronic and thermal Enthalpies= & -993.634686 \\
Sum of electronic and thermal Free Energies= & -993.704087
\end{tabular}

\section*{KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN \\ TOTAL 226.260 \\ \(76.230 \quad 146.067\)}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 6 & 0 & 0.668658 & 1.860265 & 1.928827 \\
\hline 2 & 6 & 0 & -0.111717 & 0.635187 & 1.499330 \\
\hline 3 & 6 & 0 & 0.331927 & -0.351492 & 0.612472 \\
\hline 4 & 7 & 0 & 1.502740 & -0.149114 & -0.189516 \\
\hline 5 & 6 & 0 & 1.679201 & 1.100711 & -0.952271 \\
\hline 6 & 1 & 0 & 0.046108 & 2.417112 & 2.639860 \\
\hline 7 & 10 & 0 & 1.529464 & 1.493112 & 2.513704 \\
\hline 8 & 10 & 0 & -0.767438 & 0.269534 & 2.279160 \\
\hline 9 & 10 & 0 & 2.366797 & 0.882456 & -1.768698 \\
\hline 10 & 6 & 0 & -0.433740 & -1.507727 & 0.398537 \\
\hline 11 & 6 & 0 & -1.614997 & -1.788969 & 1.086185 \\
\hline 12 & 6 & 0 & -2.402284 & -3.043135 & 0.803357 \\
\hline 13 & 1 & 0 & 0.712870 & 1.361056 & -1.391854 \\
\hline 14 & 1 & 0 & -0.159123 & -2.142204 & -0.439591 \\
\hline 15 & 1 & 0 & -1.697468 & -1.428397 & 2.108801 \\
\hline 16 & 1 & 0 & -1.971634 & -3.884782 & 1.363076 \\
\hline 17 & 1 & 0 & -3.447672 & -2.942363 & 1.110627 \\
\hline 18 & 1 & 0 & -2.395105 & -3.295340 & -0.259945 \\
\hline 19 & 6 & 0 & 2.488814 & -1.111925 & -0.122084 \\
\hline 20 & 8 & 0 & 2.417466 & -2.154521 & 0.503863 \\
\hline 21 & 8 & 0 & 3.580422 & -0.754384 & -0.852255 \\
\hline 22 & 6 & 0 & 4.638620 & -1.721769 & -0.846512 \\
\hline 23 & 1 & 0 & 4.299908 & -2.670438 & -1.271364 \\
\hline 24 & 1 & 0 & 5.428453 & -1.287960 & -1.461338 \\
\hline 25 & 6 & 0 & 1.173238 & 2.845231 & 0.861065 \\
\hline 26 & 6 & 0 & 2.204544 & 2.274218 & -0.117390 \\
\hline 27 & 1 & 0 & 0.317682 & 3.230956 & 0.297684 \\
\hline 28 & 1 & 0 & 1.621068 & 3.697538 & 1.388464 \\
\hline 29 & 1 & 0 & 3.111209 & 1.952604 & 0.413216 \\
\hline 30 & 1 & 0 & 2.510019 & 3.069472 & -0.810360 \\
\hline 31 & 6 & 0 & -2.897152 & -0.087150 & 0.559975 \\
\hline 32 & 6 & 0 & -2.195589 & 1.130841 & 0.649869 \\
\hline 33 & 6 & 0 & -1.917205 & 1.597396 & -0.736891 \\
\hline 34 & 7 & 0 & -2.329766 & 0.554836 & -1.573789 \\
\hline 35 & 6 & 0 & -3.088476 & -0.404208 & -0.885854 \\
\hline 36 & 8 & 0 & -3.747469 & -1.281432 & -1.408544 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 37 & 8 & 0 & -1.446111 & 2.651726 & -1.130049 \\
\hline 38 & 1 & 0 & -2.331639 & 0.632901 & -2.582485 \\
\hline 39 & 1 & 0 & -3.645699 & -0.417089 & 1.269697 \\
\hline 40 & 1 & 0 & -2.313268 & 1.863570 & 1.437773 \\
\hline 41 & 1 & 0 & 4.997133 & -1.897757 & 0.170917 \\
\hline
\end{tabular}
B. Exo, Azapene in chair, dienophile coming in from face opposite carbamate, OMe away from diene, file sevdatsaexofreq.log

\section*{B3LYP/6-31G*}

SCF Done: E(RB+HF-LYP) \(=-993.996921444\) A.U. after 1 cycles


Standard orientation:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & X Y & Z \\
\hline 1 & 60 & \(0-0.304402\) & 2.003414 & -1.140465 \\
\hline 2 & 60 & 00.192653 & 0.618448 & -0.778896 \\
\hline 3 & 60 & \(0-0.593063\) & -0.395740 & -0.220337 \\
\hline 4 & 70 & \(0-1.898149\) & -0.093698 & 0.294084 \\
\hline 5 & 60 & \(0-2.063763\) & 0.999429 & 1.265067 \\
\hline 6 & 10 & \(0 \quad 0.528908\) & 2.545820 & -1.595665 \\
\hline 7 & 0 & \(0-1.065332\) & 1.882624 & -1.929115 \\
\hline 8 & 10 & \(0 \quad 0.985456\) & 0.265509 & -1.429882 \\
\hline 9 & 10 & \(0-2.955691\) & 0.782373 & 1.853182 \\
\hline 10 & 6 & \(0-0.068147\) & -1.673996 & 0.022712 \\
\hline 11 & 6 & \(0 \quad 1.227944\) & -2.055064 & -0.303028 \\
\hline 12 & 6 & \(0 \quad 1.781332\) & -3.406308 & 0.056727 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
13 & 1 & 0 & -1.205774 & 0.962593 & 1.947136 \\
14 & 1 & 0 & -0.664276 & -2.345443 & 0.636153 \\
15 & 1 & 0 & 1.704128 & -1.582477 & -1.158891 \\
16 & 1 & 0 & 1.640047 & -4.107251 & -0.777761 \\
17 & 1 & 0 & 2.857008 & -3.346408 & 0.251727 \\
18 & 1 & 0 & 1.281454 & -3.826673 & 0.936016 \\
19 & 6 & 0 & -2.965895 & -0.807507 & -0.205992 \\
20 & 8 & 0 & -2.888944 & -1.716205 & -1.012422 \\
21 & 8 & 0 & -4.142989 & -0.365912 & 0.317244 \\
22 & 6 & 0 & -5.299636 & -1.075953 & -0.146266 \\
23 & 1 & 0 & -5.240008 & -2.133552 & 0.124028 \\
24 & 1 & 0 & -6.147166 & -0.601633 & 0.350435 \\
25 & 1 & 0 & -5.395194 & -0.992948 & -1.231876 \\
26 & 6 & 0 & -0.881481 & 2.887752 & -0.021311 \\
27 & 6 & 0 & -2.177569 & 2.386744 & 0.624691 \\
28 & 1 & 0 & -0.113697 & 3.034394 & 0.749288 \\
29 & 1 & 0 & -1.064507 & 3.881377 & -0.449141 \\
30 & 1 & 0 & -2.988017 & 2.357925 & -0.115535 \\
31 & 1 & 0 & -2.488360 & 3.097884 & 1.402287 \\
32 & 6 & 0 & 2.357415 & -0.536389 & 0.970584 \\
33 & 6 & 0 & 1.835791 & 0.748243 & 0.748491 \\
34 & 6 & 0 & 2.812630 & 1.503197 & -0.094343 \\
35 & 7 & 0 & 3.794545 & 0.571611 & -0.452122 \\
36 & 6 & 0 & 3.664150 & -0.631363 & 0.260942 \\
37 & 8 & 0 & 4.478934 & -1.535804 & 0.255670 \\
38 & 8 & 0 & 2.793863 & 2.671689 & -0.434104 \\
39 & 1 & 0 & 4.611571 & 0.806096 & -1.000055 \\
40 & 1 & 0 & 2.186861 & -1.140416 & 1.850617 \\
41 & 1 & 0 & 1.223140 & 1.295234 & 1.450762 \\
--------------------------------------------------------1
\end{tabular}
C. Endo, Azapene in chair, dienophile coming in from face toward carbamate, OMe away from diene, file sevdatsbendofreq.log


SCF Done: \(\mathrm{E}(\) RB+HF-LYP \()=-994.002206198 \quad\) A.U. after 1 cycles


Standard orientation:

\begin{tabular}{cccccccc}
9 & 1 & 0 & H & -3.366765 & 0.171624 & -1.583233 \\
10 & 6 & 0 & C & 0.840783 & -0.136986 & -1.627194 \\
11 & 6 & & 0 & C & 2.101032 & -0.756327 & -1.675411 \\
12 & 6 & 0 & C & 3.226582 & -0.159558 & -2.481450 \\
13 & 1 & 0 & H & -2.373340 & -1.187138 & -2.112560 \\
14 & 1 & 0 & H & 0.731726 & 0.850508 & -2.067803 \\
15 & 1 & 0 & H & 2.123207 & -1.840726 & -1.593891 \\
16 & 1 & 0 & H & 3.311912 & 0.916793 & -2.311157 \\
17 & 1 & 0 & H & 4.187504 & -0.613425 & -2.220907 \\
18 & 1 & 0 & H & 3.059754 & -0.332385 & -3.554043 \\
19 & 6 & 0 & C & -1.461696 & 1.421638 & -0.359559 \\
20 & 8 & 0 & O & -0.485049 & 2.087743 & -0.062383 \\
21 & 8 & 0 & O & -2.732069 & 1.902677 & -0.306566 \\
22 & 6 & 0 & C & -2.834896 & 3.265683 & 0.128890 \\
23 & 1 & 0 & H & -2.286134 & 3.930280 & -0.543442 \\
24 & 1 & 0 & H & -3.901167 & 3.494561 & 0.107501 \\
25 & 1 & 0 & H & -2.439593 & 3.377131 & 1.141710 \\
26 & 6 & 0 & C & -2.462085 & -2.670269 & 0.254278 \\
27 & 6 & 0 & C & -3.318456 & -1.476254 & -0.182946 \\
28 & 1 & 0 & H & -2.280175 & -3.331501 & -0.605471 \\
29 & 1 & 0 & H & -3.032113 & -3.261369 & 0.982309 \\
30 & 1 & 0 & H & -3.568988 & -0.857363 & 0.688234 \\
31 & 1 & 0 & H & -4.268583 & -1.842457 & -0.595489 \\
32 & 6 & 0 & C & 2.720809 & -0.758627 & 0.435482 \\
33 & 6 & 0 & C & 1.650172 & -1.232978 & 1.230211 \\
34 & 6 & 0 & C & 1.063864 & -0.057159 & 1.947554 \\
35 & 7 & 0 & N & 1.783297 & 1.051108 & 1.503873 \\
36 & 6 & 0 & C & 2.831153 & 0.717802 & 0.642680 \\
37 & 8 & 0 & O & 3.643436 & 1.499735 & 0.184845 \\
38 & 8 & 0 & O & 0.154615 & -0.026284 & 2.758507 \\
39 & 1 & 0 & H & 1.449302 & 1.998205 & 1.625312 \\
40 & 1 & 0 & H & 3.616580 & -1.328103 & 0.218072 \\
41 & 1 & 0 & H & 1.635212 & -2.203946 & 1.710978 \\
-----------------------------------------------------
\end{tabular}
D. Exo, Azapene in chair, dienophile coming in from face toward carbamate, OMe away from diene, file sevdatsbexofreq.log

B3LYP/6-31G*
SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-994.002849254\) A.U. after 16 cycles
Zero-point correction \(=0.340139\) (Hartree/Particle)
Thermal correction to Energy= 0.360227
\begin{tabular}{lc} 
Thermal correction to Enthalpy \(=\) & 0.361171 \\
Thermal correction to Gibbs Free Energy= & 0.291429 \\
Sum of electronic and zero-point Energies \(=\) & -993.662710 \\
Sum of electronic and thermal Energies= & -993.642623 \\
Sum of electronic and thermal Enthalpies= & -993.641679 \\
Sum of electronic and thermal Free Energies= & -993.711420
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 226.046 & 76.373 & 146.784
\end{tabular}

Standard orientation:

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 29 & 1 & 0 & H & -2.127146 & 3.728117 & 0.693741 \\
\hline 30 & 1 & 0 & H & -3.516086 & 1.833655 & -0.067031 \\
\hline 31 & 1 & 0 & H & -3.884669 & 2.271104 & 1.598452 \\
\hline 32 & 6 & 0 & C & 2.102825 & -0.760155 & -0.735079 \\
\hline 33 & 6 & 0 & C & 1.408359 & 0.412478 & -1.059396 \\
\hline 34 & 6 & 0 & C & 2.378350 & 1.551573 & -0.996268 \\
\hline 35 & 7 & 0 & N & 3.574098 & 0.999468 & -0.519336 \\
\hline 36 & 6 & 0 & C & 3.524352 & -0.401922 & -0.467820 \\
\hline 37 & 8 & 0 & O & 4.477087 & -1.124322 & -0.237287 \\
\hline 38 & 8 & 0 & O & 2.214640 & 2.725195 & -1.273294 \\
\hline 39 & 1 & 0 & H & 4.427031 & 1.531033 & -0.408143 \\
\hline 40 & 1 & 0 & H & 1.845241 & -1.749886 & -1.083659 \\
\hline 41 & 1 & 0 & H & 0.565120 & 0.451945 & -1.734033 \\
\hline
\end{tabular}
E. Endo, Azapene in boat, dienophile coming in from face toward carbamate, OMe away from diene, file sevdtsaendofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-993.998930180 \quad\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction= & 0.340287 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360260 \\
Thermal correction to Enthalpy \(=\) & 0.361204 \\
Thermal correction to Gibbs Free Energy= & 0.292577 \\
Sum of electronic and zero-point Energies= & -993.658643 \\
Sum of electronic and thermal Energies= & -993.638670 \\
Sum of electronic and thermal Enthalpies \(=\) & -993.637726 \\
Sum of electronic and thermal Free Energies= & -993.706353
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 226.067 & 76.379 & 144.438
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & Atomic & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & Type & X Y & Z \\
\hline 1 & 60 & 1.190641 & -2.161641 & -1.163871 \\
\hline 2 & 60 & 0.099419 & -1.743927 & -0.206265 \\
\hline 3 & 60 & ) 0.310242 & -0.678331 & 0.698574 \\
\hline 4 & 70 & ) 1.489481 & 0.116143 & 0.560337 \\
\hline
\end{tabular}
\begin{tabular}{cccrcc}
5 & 6 & 0 & 2.841940 & -0.504309 & 0.629453 \\
6 & 1 & 0 & 0.790607 & -2.866593 & -1.902011 \\
7 & 1 & 0 & 1.518541 & -1.281015 & -1.725048 \\
8 & 1 & 0 & -0.512317 & -2.559209 & 0.173245 \\
9 & 1 & 0 & 3.396533 & -0.243610 & -0.278178 \\
10 & 6 & 0 & -0.697531 & -0.286033 & 1.599996 \\
11 & 6 & 0 & -1.922937 & -0.918092 & 1.715701 \\
12 & 6 & 0 & -3.025238 & -0.377037 & 2.581226 \\
13 & 1 & 0 & 3.374450 & -0.044269 & 1.468664 \\
14 & 1 & 0 & -0.558455 & 0.652883 & 2.126676 \\
15 & 1 & 0 & -2.013795 & -1.956927 & 1.418036 \\
16 & 1 & 0 & -2.672809 & 0.461916 & 3.190188 \\
17 & 1 & 0 & -3.850894 & 0.002859 & 1.965725 \\
18 & 1 & 0 & -3.425796 & -1.150322 & 3.248020 \\
19 & 6 & 0 & 1.397639 & 1.487803 & 0.414997 \\
20 & 8 & 0 & 0.370829 & 2.143878 & 0.384021 \\
21 & 8 & 0 & 2.633727 & 2.038762 & 0.310964 \\
22 & 6 & 0 & 2.638989 & 3.459340 & 0.110447 \\
23 & 1 & 0 & 3.692166 & 3.739018 & 0.063134 \\
24 & 1 & 0 & 2.142140 & 3.969121 & 0.939747 \\
25 & 6 & 0 & 2.388492 & -2.805847 & -0.434456 \\
26 & 6 & 0 & 2.818627 & -2.021811 & 0.817650 \\
27 & 1 & 0 & 2.147463 & -3.836430 & -0.144161 \\
28 & 1 & 0 & 3.228038 & -2.869741 & -1.138659 \\
29 & 1 & 0 & 3.830644 & -2.327453 & 1.109593 \\
30 & 1 & 0 & 2.170313 & -2.269940 & 1.666138 \\
31 & 6 & 0 & -1.500753 & -1.101196 & -1.390093 \\
32 & 6 & 0 & -2.652355 & -0.843509 & -0.634698 \\
33 & 6 & 0 & -2.892769 & 0.610331 & -0.597297 \\
34 & 7 & 0 & -1.838724 & 1.181936 & -1.334480 \\
35 & 6 & 0 & -0.986006 & 0.232890 & -1.878382 \\
36 & 8 & 0 & -0.022301 & 0.460440 & -2.588351 \\
37 & 8 & 0 & -3.803802 & 1.236528 & -0.081529 \\
38 & 1 & 0 & -1.592038 & 2.160975 & -1.274794 \\
39 & 1 & 0 & -1.384132 & -1.969196 & -2.029789 \\
40 & 1 & 0 & -3.446173 & -1.544300 & -0.413240 \\
41 & 1 & 0 & 2.132189 & 3.717030 & -0.823025 \\
-------------------------------------------------
\end{tabular}
F. Exo, Azapene in boat, dienophile coming in from face toward carbamate, OMe away from diene, file sevdtsaexofreq.log

B3LYP/6-31G*
SCF Done: \(\mathrm{E}(\) RB+HF-LYP \()=-993.999726704\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.339957 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360106 \\
Thermal correction to Enthalpy \(=\) & 0.361050 \\
Thermal correction to Gibbs Free Energy= & 0.291244 \\
Sum of electronic and zero-point Energies= & -993.659769 \\
Sum of electronic and thermal Energies= & -993.639621 \\
Sum of electronic and thermal Enthalpies= & -993.638676 \\
Sum of electronic and thermal Free Energies= & -993.708483
\end{tabular}
\begin{tabular}{cccc} 
& E(Thermal) & CV & \multicolumn{1}{c}{ S } \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 6 & 0 & -0.600097 & 2.303756 & -0.244426 \\
\hline 2 & 6 & 0 & 0.111075 & 1.148942 & 0.414129 \\
\hline 3 & 6 & 0 & -0.609703 & 0.007070 & 0.788938 \\
\hline 4 & 7 & 0 & -1.975591 & -0.089305 & 0.368722 \\
\hline 5 & 6 & 0 & -2.992886 & 0.876028 & 0.856193 \\
\hline 6 & 1 & 0 & 0.130022 & 3.004317 & -0.658780 \\
\hline 7 & 1 & 0 & -1.187644 & 1.920595 & -1.088086 \\
\hline 8 & 1 & 0 & 0.975436 & 1.405554 & 1.021809 \\
\hline 9 & 10 & 0 & -3.575432 & 1.226495 & -0.001675 \\
\hline 10 & 6 & 0 & 0.008051 & -1.122936 & 1.348796 \\
\hline 11 & 6 & 0 & 1.374659 & -1.222554 & 1.553927 \\
\hline 12 & 6 & 0 & 2.032747 & -2.478042 & 2.049420 \\
\hline 13 & 1 & 0 & -3.689008 & 0.346636 & 1.518488 \\
\hline 14 & 1 & 0 & -0.592908 & -2.023188 & 1.447752 \\
\hline 15 & 1 & 0 & 1.947215 & -0.311353 & 1.704084 \\
\hline 16 & 1 & 0 & 1.402918 & -3.357303 & 1.878606 \\
\hline 17 & 1 & 0 & 2.997594 & -2.629735 & 1.552447 \\
\hline 18 & 1 & 0 & 2.234719 & -2.407325 & 3.127787 \\
\hline 19 & 6 & 0 & -2.317529 & -1.082359 & -0.522332 \\
\hline 20 & 8 & 0 & -1.539775 & -1.857628 & -1.053953 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
21 & 8 & 0 & -3.656706 & -1.087647 & -0.752018 \\
22 & 6 & 0 & -4.095091 & -2.070967 & -1.700277 \\
23 & 1 & 0 & -5.174837 & -1.936625 & -1.776784 \\
24 & 1 & 0 & -3.618848 & -1.912366 & -2.671336 \\
25 & 1 & 0 & -3.857713 & -3.078541 & -1.349377 \\
26 & 6 & 0 & -1.554854 & 3.027743 & 0.734152 \\
27 & 6 & 0 & -2.388054 & 2.067445 & 1.605255 \\
28 & 1 & 0 & -0.982976 & 3.692038 & 1.393996 \\
29 & 1 & 0 & -2.222734 & 3.673199 & 0.149021 \\
30 & 1 & 0 & -3.221007 & 2.618519 & 2.058757 \\
31 & 1 & 0 & -1.782893 & 1.695044 & 2.439869 \\
32 & 6 & 0 & 1.996578 & -0.910328 & -0.693446 \\
33 & 6 & 0 & 1.410612 & 0.285848 & -1.125516 \\
34 & 6 & 0 & 2.481820 & 1.338778 & -1.132089 \\
35 & 7 & 0 & 3.610138 & 0.727470 & -0.579058 \\
36 & 6 & 0 & 3.430301 & -0.657887 & -0.407481 \\
37 & 8 & 0 & 4.309756 & -1.434620 & -0.080007 \\
38 & 8 & 0 & 2.424097 & 2.494284 & -1.510058 \\
39 & 1 & 0 & 4.504777 & 1.188953 & -0.484766 \\
40 & 1 & 0 & 1.641649 & -1.903146 & -0.927458 \\
41 & 1 & 0 & 0.605087 & 0.342740 & -1.845188
\end{tabular}
G. Endo, Azapene in twist, dienophile coming in from face toward carbamate, OMe away from diene, file sevdtsbendofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(E(R B+H F-L Y P)=-993.997848671 \quad\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.340081 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360194 \\
Thermal correction to Enthalpy \(=\) & 0.361138 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.291434 \\
Sum of electronic and zero-point Energies \(=\) & -993.657768 \\
Sum of electronic and thermal Energies= & -993.637655 \\
Sum of electronic and thermal Enthalpies \(=\) & -993.636711 \\
Sum of electronic and thermal Free Energies= & -993.706415
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 226.025 & 76.460 & 146.705
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 6 & 0 & 1.009617 & -2.691505 & -0.107611 \\
\hline 2 & 6 & 0 & -0.042539 & -1.754526 & -0.675211 \\
\hline 3 & 6 & 0 & 0.139155 & -0.427304 & -1.092109 \\
\hline 4 & 7 & 0 & 1.409526 & 0.205878 & -0.907268 \\
\hline 5 & 6 & 0 & 2.593748 & -0.536255 & -1.378169 \\
\hline 6 & 1 & 0 & 0.498018 & -3.377376 & 0.579100 \\
\hline 7 & 1 & 0 & 1.366423 & -3.331589 & -0.932906 \\
\hline 8 & 1 & 0 & -0.832456 & -2.291126 & -1.191331 \\
\hline 9 & 1 & 0 & 2.241528 & -1.164651 & -2.201270 \\
\hline 10 & 6 & 0 & -0.934494 & 0.320289 & -1.604047 \\
\hline 11 & 6 & 0 & -2.226357 & -0.186465 & -1.740250 \\
\hline 12 & 6 & 0 & -3.349786 & 0.670719 & -2.266025 \\
\hline 13 & 1 & 0 & 3.309279 & 0.174654 & -1.796252 \\
\hline 14 & 1 & 0 & -0.783441 & 1.387817 & -1.731483 \\
\hline 15 & 1 & 0 & -2.334378 & -1.249085 & -1.941912 \\
\hline 16 & 1 & 0 & -3.303991 & 0.723227 & -3.362885 \\
\hline 17 & 1 & 0 & -4.327450 & 0.257820 & -1.998879 \\
\hline 18 & 1 & 0 & -3.300329 & 1.686235 & -1.865610 \\
\hline 19 & 6 & 0 & 1.525994 & 1.394770 & -0.221965 \\
\hline 20 & 8 & 0 & 0.608825 & 2.049250 & 0.243974 \\
\hline 21 & 8 & 0 & 2.829780 & 1.769476 & -0.128443 \\
\hline 22 & 6 & 0 & 3.046888 & 3.002647 & 0.571580 \\
\hline 23 & 1 & 0 & 4.126251 & 3.158380 & 0.551895 \\
\hline 24 & 1 & 0 & 2.530848 & 3.827424 & 0.073367 \\
\hline 25 & 1 & 0 & 2.689593 & 2.929236 & 1.601914 \\
\hline 26 & 6 & 0 & 2.213697 & -2.076040 & 0.626378 \\
\hline 27 & 6 & 0 & 3.245939 & -1.402149 & -0.290714 \\
\hline 28 & 1 & 0 & 1.844791 & -1.367329 & 1.371569 \\
\hline 29 & 1 & 0 & 2.712827 & -2.872937 & 1.191491 \\
\hline 30 & 1 & 0 & 3.869675 & -2.155610 & -0.791668 \\
\hline 31 & 1 & 0 & 3.919905 & -0.787345 & 0.316209 \\
\hline 32 & 6 & 0 & -1.688030 & -1.483013 & 0.893729 \\
\hline 33 & 6 & 0 & -2.738749 & -0.746141 & 0.328536 \\
\hline 34 & 6 & 0 & -2.721109 & 0.624572 & 0.927825 \\
\hline 35 & 7 & 0 & -1.607191 & 0.642680 & 1.769909 \\
\hline 36 & 6 & 0 & -0.975987 & -0.597509 & 1.863648 \\
\hline 37 & 8 & 0 & -0.052501 & -0.858834 & 2.614704 \\
\hline 38 & 8 & 0 & -3.493005 & 1.548627 & 0.756506 \\
\hline 39 & 1 & 0 & -1.208564 & 1.493480 & 2.143965 \\
\hline 40 & 1 & 0 & -1.689032 & -2.554808 & 1.045773 \\
\hline
\end{tabular}
```

41 1 0 0 0

```
H. Exo, Azapene in boat, dienophile coming in from face opposite carbamate, OMe away from diene, file sevdtsbexofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-993.989360530 \quad\) A.U. after 1 cycles


Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 6 & 0 & 0.201358 & -2.091083 & -1.119885 \\
\hline 2 & 6 & 0 & -0.209250 & -0.680320 & -0.775472 \\
\hline 3 & 6 & 0 & 0.683528 & 0.236653 & -0.203539 \\
\hline 4 & 7 & 0 & 2.022610 & -0.146356 & 0.149809 \\
\hline 5 & 6 & 0 & 2.392976 & -1.423945 & 0.814218 \\
\hline 6 & 1 & 0 & -0.568089 & -2.556317 & -1.740795 \\
\hline 7 & 1 & 0 & 1.113351 & -2.031646 & -1.733724 \\
\hline 8 & 10 & 0 & -0.966274 & -0.242643 & -1.415049 \\
\hline 9 & 1 & 0 & 3.047567 & -1.995736 & 0.146216 \\
\hline 10 & 6 & 0 & 0.258666 & 1.538811 & 0.117456 \\
\hline 11 & 6 & 0 & -0.991860 & 2.050492 & -0.200209 \\
\hline 12 & 6 & 0 & -1.418624 & 3.430628 & 0.219594 \\
\hline 13 & 1 & 0 & 2.992104 & -1.170039 & 1.694095 \\
\hline 14 & 1 & 0 & 0.905353 & 2.134601 & 0.755014 \\
\hline 15 & 1 & 0 & -1.494243 & 1.668867 & -1.085980 \\
\hline 16 & 1 & 0 & -0.897899 & 3.755017 & 1.126979 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
17 & 1 & 0 & -1.191118 & 4.154827 & -0.574987 \\
18 & 1 & 0 & -2.498705 & 3.468326 & 0.394165 \\
19 & 6 & 0 & 3.041701 & 0.711584 & -0.227554 \\
20 & 8 & 0 & 2.911995 & 1.774776 & -0.805907 \\
21 & 8 & 0 & 4.251477 & 0.204432 & 0.133751 \\
22 & 6 & 0 & 5.370195 & 1.026867 & -0.225951 \\
23 & 1 & 0 & 6.249312 & 0.489212 & 0.131788 \\
24 & 1 & 0 & 5.418039 & 1.163039 & -1.309387 \\
25 & 1 & 0 & 5.299042 & 2.007631 & 0.251359 \\
26 & 6 & 0 & 0.468717 & -2.991673 & 0.103034 \\
27 & 6 & 0 & 1.210789 & -2.285188 & 1.249013 \\
28 & 1 & 0 & -0.486223 & -3.381661 & 0.471991 \\
29 & 1 & 0 & 1.051758 & -3.861028 & -0.226260 \\
30 & 1 & 0 & 1.604263 & -3.041168 & 1.939680 \\
31 & 1 & 0 & 0.527507 & -1.669797 & 1.844720 \\
32 & 6 & 0 & -2.317553 & 0.604499 & 0.971931 \\
33 & 6 & 0 & -1.918628 & -0.711751 & 0.697649 \\
34 & 6 & 0 & -2.928077 & -1.319679 & -0.221476 \\
35 & 7 & 0 & -3.796240 & -0.276760 & -0.562035 \\
36 & 6 & 0 & -3.577581 & 0.868262 & 0.224815 \\
37 & 8 & 0 & -4.300999 & 1.847305 & 0.241344 \\
38 & 8 & 0 & -3.008306 & -2.465376 & -0.625851 \\
39 & 1 & 0 & -4.612294 & -0.398832 & -1.146777 \\
40 & 1 & 0 & -2.113310 & 1.148190 & 1.883441 \\
41 & 1 & 0 & -1.396192 & -1.353057 & 1.390651 \\
-----------------------------------------------------
\end{tabular}
I. Endo, Azapene in chair, dienophile coming in from face opposite carbamate, OMe toward diene, file seveatsaendofreq.log

\section*{B3LYP/6-31G*}

SCF Done: E(RB+HF-LYP) = -993.996921254 A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.340268 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360358 \\
Thermal correction to Enthalpy \(=\) & 0.361302 \\
Thermal correction to Gibbs Free Energy= & 0.291637 \\
Sum of electronic and zero-point Energies= & -993.656653 \\
Sum of electronic and thermal Energies= & -993.636564 \\
Sum of electronic and thermal Enthalpies= & -993.635619 \\
Sum of electronic and thermal Free Energies= & -993.705284
\end{tabular}
\[
E \text { (Thermal) } \quad \text { CV } \quad S
\]

\section*{KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN \\ TOTAL \\ 226.128 \\ 76.298 \\ 146.622}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{Atomic} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & -0.781630 & -1.801342 & 1.918746 \\
\hline 2 & 6 & 0 & -0.054023 & -0.554616 & 1.459627 \\
\hline 3 & 6 & 0 & -0.475394 & 0.301368 & 0.435525 \\
\hline 4 & 7 & 0 & -1.534687 & -0.084546 & -0.448318 \\
\hline 5 & 6 & 0 & -1.516712 & -1.396401 & -1.119126 \\
\hline 6 & 10 & 0 & -0.210612 & -2.231042 & 2.750939 \\
\hline 7 & 1 & 0 & -1.736377 & -1.463596 & 2.357443 \\
\hline 8 & 1 & 0 & 0.484491 & -0.065425 & 2.261844 \\
\hline 9 & 1 & 0 & -0.494888 & -1.591559 & -1.453428 \\
\hline 10 & 6 & 0 & 0.225511 & 1.488228 & 0.169360 \\
\hline 11 & 6 & 0 & 1.300608 & 1.939952 & 0.935167 \\
\hline 12 & 6 & 0 & 2.020038 & 3.220637 & 0.594996 \\
\hline 13 & 1 & 0 & -2.154028 & -1.296423 & -1.998811 \\
\hline 14 & 1 & 0 & 0.000643 & 2.001191 & -0.762598 \\
\hline 15 & 1 & 0 & 1.300033 & 1.692077 & 1.993978 \\
\hline 16 & 1 & 0 & 1.481698 & 4.075964 & 1.026331 \\
\hline 17 & 1 & 0 & 3.036461 & 3.232902 & 0.999604 \\
\hline 18 & 1 & 0 & 2.095897 & 3.368013 & -0.485196 \\
\hline 19 & 6 & 0 & -2.683328 & 0.666117 & -0.588409 \\
\hline 20 & 8 & 0 & -3.628828 & 0.352697 & -1.291342 \\
\hline 21 & 8 & 0 & -2.647732 & 1.802468 & 0.154445 \\
\hline 22 & 6 & 0 & -3.818211 & 2.622540 & 0.038903 \\
\hline 23 & 1 & 0 & -3.631746 & 3.482139 & 0.684234 \\
\hline 24 & 1 & 0 & -3.967248 & 2.944974 & -0.994984 \\
\hline 25 & 1 & 0 & -4.706936 & 2.079566 & 0.371396 \\
\hline 26 & 6 & 0 & -1.066907 & -2.921707 & 0.903492 \\
\hline 27 & 6 & 0 & -2.017841 & -2.546055 & -0.238906 \\
\hline 28 & 1 & 0 & -0.119152 & -3.273729 & 0.484344 \\
\hline 29 & 1 & 0 & -1.502054 & -3.761489 & 1.460770 \\
\hline 30 & 1 & 0 & -2.158652 & -3.424846 & -0.882006 \\
\hline 31 & 1 & 0 & -3.010277 & -2.280603 & 0.150112 \\
\hline 32 & 6 & 0 & 2.141294 & -0.947923 & 0.873279 \\
\hline 33 & 6 & 0 & 2.756862 & 0.310424 & 0.730139 \\
\hline 34 & 6 & 0 & 3.083999 & 0.505020 & -0.713312 \\
\hline 35 & 7 & 0 & 2.479152 & -0.573997 & \(-1.373454\) \\
\hline 36 & 6 & 0 & 2.058458 & -1.566292 & -0.480790 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
37 & 8 & 0 & 1.723813 & -2.691484 & -0.809364 \\
38 & 8 & 0 & 3.730669 & 1.382570 & -1.250782 \\
39 & 1 & 0 & 2.600019 & -0.747277 & -2.362971 \\
40 & 1 & 0 & 2.227591 & -1.590535 & 1.739968 \\
41 & 1 & 0 & 3.394168 & 0.769783 & 1.475642 \\
----------------------------------------------------------------
\end{tabular}
J. Exo, Azapene in chair, dienophile coming in from face toward carbamate, OMe toward diene, file seveatsbexofreq.log
B3LYP/6-31G*


SCF Done: E(RB+HF-LYP) = -994.003022199 A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.339982 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360090 \\
Thermal correction to Enthalpy \(=\) & 0.361034 \\
Thermal correction to Gibbs Free Energy= & 0.291336 \\
Sum of electronic and zero-point Energies \(=\) & -993.663040 \\
Sum of electronic and thermal Energies= & -993.642932 \\
Sum of electronic and thermal Enthalpies \(=\) & -993.641988 \\
Sum of electronic and thermal Free Energies= & -993.711687
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 225.960 & 76.442 & 146.693
\end{tabular}

Standard orientation:

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2 & 6 & 0 & C & -0.119578 & 1.115864 & 0.509839 \\
\hline 3 & 6 & 0 & C & -0.698644 & -0.112941 & 0.847878 \\
\hline 4 & 7 & 0 & N & -2.074881 & -0.332079 & 0.516991 \\
\hline 5 & 6 & 0 & C & -3.088146 & 0.448786 & 1.244838 \\
\hline 6 & 1 & 0 & H & -0.207440 & 3.037441 & -0.394673 \\
\hline 7 & 1 & 0 & H & -1.304515 & 1.872862 & -1.112535 \\
\hline 8 & 1 & 0 & H & 0.723501 & 1.436862 & 1.116753 \\
\hline 9 & 1 & 0 & H & -2.764828 & 0.501892 & 2.290830 \\
\hline 10 & 6 & 0 & C & 0.047484 & -1.180306 & 1.369204 \\
\hline 11 & 6 & 0 & C & 1.418441 & -1.131194 & 1.584011 \\
\hline 12 & 6 & 0 & C & 2.203489 & -2.319738 & 2.063918 \\
\hline 13 & 1 & 0 & H & -4.017749 & -0.122111 & 1.203214 \\
\hline 14 & 1 & 0 & H & -0.453677 & -2.143204 & 1.443960 \\
\hline 15 & 1 & 0 & H & 1.870120 & -0.165848 & 1.798148 \\
\hline 16 & 1 & 0 & H & 3.201235 & -2.332433 & 1.612300 \\
\hline 17 & 1 & 0 & H & 2.342844 & -2.272364 & 3.153139 \\
\hline 18 & 1 & 0 & H & 1.694550 & -3.260723 & 1.829467 \\
\hline 19 & 6 & 0 & C & -2.500531 & -1.166367 & -0.490187 \\
\hline 20 & 8 & 0 & O & -3.666843 & -1.377054 & -0.772538 \\
\hline 21 & 8 & 0 & O & -1.451857 & -1.726662 & -1.154322 \\
\hline 22 & 6 & 0 & C & -1.831312 & -2.633738 & -2.200014 \\
\hline 23 & 1 & 0 & H & -0.893168 & -2.988365 & -2.628971 \\
\hline 24 & 1 & 0 & H & -2.408210 & -3.470414 & -1.797274 \\
\hline 25 & 1 & 0 & H & -2.430460 & -2.122781 & -2.957999 \\
\hline 26 & 6 & 0 & C & -2.078046 & 2.767449 & 0.691045 \\
\hline 27 & 6 & 0 & C & -3.314497 & 1.857131 & 0.681092 \\
\hline 28 & 1 & 0 & H & -1.745177 & 2.942527 & 1.723928 \\
\hline 29 & 1 & 0 & H & -2.366282 & 3.747479 & 0.290482 \\
\hline 30 & 1 & 0 & H & -4.118593 & 2.326178 & 1.264226 \\
\hline 31 & 1 & 0 & H & -3.689217 & 1.760914 & -0.346669 \\
\hline 32 & 6 & 0 & C & 1.336619 & 0.422586 & -1.030603 \\
\hline 33 & 6 & 0 & C & 2.053752 & -0.694192 & -0.581210 \\
\hline 34 & 6 & 0 & C & 3.442362 & -0.262684 & -0.262081 \\
\hline 35 & 7 & 0 & N & 3.446786 & 1.131958 & -0.418587 \\
\hline 36 & 6 & 0 & C & 2.264095 & 1.599862 & -1.004096 \\
\hline 37 & 8 & 0 & O & 2.076928 & 2.740028 & -1.384542 \\
\hline 38 & 8 & 0 & O & 4.403055 & -0.929653 & 0.076944 \\
\hline 39 & 1 & 0 & H & 4.273320 & 1.702857 & -0.302492 \\
\hline 40 & 1 & 0 & H & 0.537253 & 0.387025 & -1.757486 \\
\hline 41 & 1 & 0 & H & 1.857079 & -1.719800 & -0.858285 \\
\hline
\end{tabular}
K. Endo, Azapene in boat, dienophile coming in from face toward carbamate, OMe toward diene, file sevetsaendofreq.log

B3LYP/6-31G*
SCF Done: E(RB+HF-LYP) = -993.996668846 A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.339918 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360126 \\
Thermal correction to Enthalpy \(=\) & 0.361070 \\
Thermal correction to Gibbs Free Energy= & 0.291310 \\
Sum of electronic and zero-point Energies= & -993.656751 \\
Sum of electronic and thermal Energies= & -993.636543 \\
Sum of electronic and thermal Enthalpies= & -993.635599 \\
Sum of electronic and thermal Free Energies= & -993.705359
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 225.982 & 76.571 & 146.822
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 6 & 0 & 1.769193 & -1.839427 & -1.084385 \\
\hline 2 & 60 & 0 & 0.644932 & -1.616219 & -0.100770 \\
\hline 3 & 60 & 0 & 0.619892 & -0.457042 & 0.707324 \\
\hline 4 & 7 & 0 & 1.598569 & 0.554462 & 0.480451 \\
\hline 5 & 60 & 0 & 3.054737 & 0.246602 & 0.560216 \\
\hline 6 & 1 & 0 & 1.515453 & -2.662164 & -1.762701 \\
\hline 7 & 10 & 0 & 1.873126 & -0.946496 & -1.708829 \\
\hline 8 & 10 & 0 & 0.264266 & -2.518855 & 0.371459 \\
\hline 9 & 10 & 0 & 3.471764 & 0.864697 & 1.362189 \\
\hline 10 & 6 & 0 & -0.425086 & -0.245426 & 1.631291 \\
\hline 11 & 6 & 0 & -1.453885 & -1.138165 & 1.864103 \\
\hline 12 & 6 & 0 & -2.625638 & -0.803688 & 2.742859 \\
\hline 13 & 1 & 0 & 3.528559 & 0.583675 & -0.367890 \\
\hline 14 & 1 & 0 & -0.494340 & 0.736176 & 2.089815 \\
\hline 15 & 1 & 0 & -1.298615 & -2.190025 & 1.652389 \\
\hline 16 & 1 & 0 & -2.484166 & 0.161466 & 3.240465 \\
\hline 17 & 1 & 0 & -3.546597 & -0.726049 & 2.150590 \\
\hline 18 & 1 & 0 & -2.781859 & -1.572083 & 3.509970 \\
\hline 19 & 6 & 0 & 1.342202 & 1.900066 & 0.288167 \\
\hline 20 & 8 & 0 & 2.222467 & 2.736140 & 0.186601 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
21 & 8 & 0 & 0.021614 & 2.190132 & 0.214474 \\
22 & 6 & 0 & -0.266809 & 3.574884 & -0.029526 \\
23 & 1 & 0 & -1.355048 & 3.651080 & -0.001305 \\
24 & 1 & 0 & 0.179619 & 4.207020 & 0.741802 \\
25 & 1 & 0 & 0.116605 & 3.880894 & -1.006540 \\
26 & 6 & 0 & 3.103870 & -2.151415 & -0.374388 \\
27 & 6 & 0 & 3.372086 & -1.224133 & 0.823625 \\
28 & 1 & 0 & 3.114984 & -3.193274 & -0.029514 \\
29 & 1 & 0 & 3.915765 & -2.057655 & -1.106933 \\
30 & 1 & 0 & 2.812296 & -1.565338 & 1.702683 \\
31 & 1 & 0 & 4.431932 & -1.281613 & 1.099274 \\
32 & 6 & 0 & -1.120132 & -1.531172 & -1.240064 \\
33 & 6 & 0 & -2.270266 & -1.500604 & -0.442830 \\
34 & 6 & 0 & -2.904306 & -0.175848 & -0.554017 \\
35 & 7 & 0 & -2.067337 & 0.563298 & -1.411763 \\
36 & 6 & 0 & -1.013007 & -0.185736 & -1.917900 \\
37 & 8 & 0 & -0.194861 & 0.194316 & -2.734493 \\
38 & 8 & 0 & -3.938532 & 0.243080 & -0.060893 \\
39 & 1 & 0 & -2.211205 & 1.539406 & -1.627935 \\
40 & 1 & 0 & -0.790727 & -2.406574 & -1.788391 \\
41 & 1 & 0 & -2.832625 & -2.354011 & -0.089156
\end{tabular}
L. Exo, Azapene in boat, dienophile coming in from face toward carbamate, OMe toward diene, file sevetsaexofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(E(R B+H F-L Y P)=-993.999567679 \quad\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.339846 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360037 \\
Thermal correction to Enthalpy \(=\) & 0.360982 \\
Thermal correction to Gibbs Free Energy= & 0.291124 \\
Sum of electronic and zero-point Energies \(=\) & -993.659721 \\
Sum of electronic and thermal Energies= & -993.639530 \\
Sum of electronic and thermal Enthalpies= & -993.638586 \\
Sum of electronic and thermal Free Energies= & -993.708443
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 225.927 & 76.550 & 147.027
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 60 & 0 & -0.851644 & 2.253418 & -0.423899 \\
\hline 2 & 60 & 0 & -0.099581 & 1.187196 & 0.331183 \\
\hline 3 & 60 & 0 & -0.769125 & 0.027000 & 0.748597 \\
\hline 4 & 70 & 0 & -2.118329 & -0.155123 & 0.311177 \\
\hline 5 & 60 & 0 & -3.191010 & 0.772016 & 0.750430 \\
\hline 6 & 10 & 0 & -0.148203 & 2.965368 & -0.864075 \\
\hline 7 & 10 & 0 & -1.391646 & 1.781657 & -1.253997 \\
\hline 8 & 1 & 0 & 0.719614 & 1.533482 & 0.956841 \\
\hline 9 & 10 & 0 & -3.843347 & 0.238695 & 1.453092 \\
\hline 10 & 6 & 0 & -0.110202 & -1.023290 & 1.410207 \\
\hline 11 & 6 & 0 & 1.247562 & -1.021871 & 1.684072 \\
\hline 12 & 6 & 0 & 1.960183 & -2.196484 & 2.289733 \\
\hline 13 & 10 & 0 & -3.803818 & 1.011341 & -0.124380 \\
\hline 14 & 10 & 0 & -0.664006 & -1.948114 & 1.553813 \\
\hline 15 & 1 0 & 0 & 1.753721 & -0.067399 & 1.797755 \\
\hline 16 & 1 0 & 0 & 1.396647 & -3.125607 & 2.154056 \\
\hline 17 & 10 & 0 & 2.954838 & -2.314233 & 1.844807 \\
\hline 18 & 1 0 & 0 & 2.108127 & -2.042899 & 3.368117 \\
\hline 19 & 6 & 0 & -2.522375 & -1.171901 & -0.523533 \\
\hline 20 & 8 & 0 & -3.683169 & -1.383100 & -0.827347 \\
\hline 21 & 8 & 0 & -1.473401 & -1.895792 & -1.001782 \\
\hline 22 & 6 & 0 & -1.847482 & -2.966743 & -1.881121 \\
\hline 23 & 1 & 0 & -0.910894 & -3.450094 & -2.162370 \\
\hline 24 & 1 & 0 & -2.506585 & -3.675295 & -1.372687 \\
\hline 25 & 1 & 0 & -2.359269 & -2.579789 & -2.766095 \\
\hline 26 & 6 & 0 & -1.874764 & 2.987713 & 0.476466 \\
\hline 27 & 6 & 0 & -2.662655 & 2.048232 & 1.409805 \\
\hline 28 & 1 & 0 & -1.361974 & 3.739834 & 1.088876 \\
\hline 29 & 1 & 0 & -2.569460 & 3.537028 & -0.171742 \\
\hline 30 & 1 & 0 & -2.046236 & 1.776968 & 2.275172 \\
\hline 31 & 1 & 0 & -3.530291 & 2.583047 & 1.814867 \\
\hline 32 & 6 & 0 & 1.976956 & -0.791603 & -0.553367 \\
\hline 33 & 6 & 0 & 1.327022 & 0.327943 & -1.087185 \\
\hline 34 & 6 & 0 & 2.320984 & 1.455516 & -1.111312 \\
\hline 35 & 7 & 0 & 3.456266 & 0.967475 & -0.458749 \\
\hline 36 & 6 & 0 & 3.368719 & -0.414078 & -0.208109 \\
\hline 37 & 8 & 0 & 4.280585 & -1.102435 & 0.214738 \\
\hline 38 & 8 & 0 & 2.203233 & 2.574989 & -1.572590 \\
\hline 39 & 1 & 0 & 4.309120 & 1.500092 & -0.351971 \\
\hline 40 & 1 & 0 & 1.717377 & -1.823610 & -0.737004 \\
\hline
\end{tabular}
```

41 1 1 0 0 0.557210

```
M. Endo, Azapene in boat, dienophile coming in from face opposite carbamate, OMe toward diene, file sevetsbendofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-993.984911557 \quad\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.339849 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360059 \\
Thermal correction to Enthalpy \(=\) & 0.361004 \\
Thermal correction to Gibbs Free Energy= & 0.291249 \\
Sum of electronic and zero-point Energies= & -993.645062 \\
Sum of electronic and thermal Energies \(=\) & -993.624852 \\
Sum of electronic and thermal Enthalpies \(=\) & -993.623908 \\
Sum of electronic and thermal Free Energies= & -993.693663
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
& 225.941 & 76.681 & 146.811
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & X Y & Z \\
\hline 1 & 6 & \(0-0.470122\) & -2.106214 & 1.768498 \\
\hline 2 & 60 & \(0-0.062130\) & -0.690159 & 1.472039 \\
\hline 3 & 60 & \(0-0.649124\) & 0.054084 & 0.455670 \\
\hline 4 & 70 & \(0-1.706273\) & -0.510385 & -0.338792 \\
\hline 5 & 6 & \(0-1.650230\) & -1.839517 & -1.001868 \\
\hline 6 & 10 & \(0-0.025059\) & -2.433715 & 2.713683 \\
\hline 7 & 10 & \(0-1.560741\) & -2.099746 & 1.925056 \\
\hline 8 & 10 & \(0 \quad 0.467434\) & -0.149894 & 2.241472 \\
\hline 9 & 0 & \(0-1.795009\) & -1.677061 & -2.075676 \\
\hline 10 & 6 & \(0-0.207860\) & 1.355535 & 0.157965 \\
\hline 11 & 6 & \(0 \quad 0.755477\) & 2.050397 & 0.912232 \\
\hline 12 & 6 & \(0 \quad 1.022808\) & 3.509510 & 0.596423 \\
\hline 13 & 1 & \(0-2.513301\) & -2.422329 & -0.661033 \\
\hline 14 & 1 & \(0-0.553459\) & 1.802016 & -0.770581 \\
\hline 15 & 1 & \(0 \quad 0.764609\) & 1.830662 & 1.979406 \\
\hline 16 & 1 & \(0 \quad 0.162238\) & 4.120981 & 0.895194 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
17 & 1 & 0 & 1.897075 & 3.882778 & 1.139750 \\
18 & 1 & 0 & 1.207387 & 3.659010 & -0.470298 \\
19 & 6 & 0 & -2.923176 & 0.123873 & -0.479317 \\
20 & 8 & 0 & -3.839319 & -0.322600 & -1.148420 \\
21 & 8 & 0 & -3.003516 & 1.285735 & 0.219574 \\
22 & 6 & 0 & -4.260239 & 1.965170 & 0.094022 \\
23 & 1 & 0 & -4.157645 & 2.871776 & 0.692080 \\
24 & 1 & 0 & -4.464738 & 2.215602 & -0.950254 \\
25 & 1 & 0 & -5.076241 & 1.345538 & 0.475269 \\
26 & 6 & 0 & -0.132327 & -3.128092 & 0.658088 \\
27 & 6 & 0 & -0.353303 & -2.603257 & -0.769873 \\
28 & 1 & 0 & 0.915528 & -3.428499 & 0.746241 \\
29 & 1 & 0 & -0.743491 & -4.024081 & 0.825733 \\
30 & 1 & 0 & 0.491434 & -1.983348 & -1.076996 \\
31 & 1 & 0 & -0.356030 & -3.455823 & -1.459949 \\
32 & 6 & 0 & 2.481228 & -0.265558 & 1.002813 \\
33 & 6 & 0 & 2.487015 & 1.099182 & 0.641547 \\
34 & 6 & 0 & 2.707815 & 1.150700 & -0.856981 \\
35 & 7 & 0 & 2.661039 & -0.171830 & -1.281447 \\
36 & 6 & 0 & 2.688829 & -1.082518 & -0.198386 \\
37 & 8 & 0 & 2.888479 & -2.279481 & -0.320446 \\
38 & 8 & 0 & 2.888712 & 2.121062 & -1.566426 \\
39 & 1 & 0 & 2.860297 & -0.450476 & -2.233432 \\
40 & 1 & 0 & 2.701421 & -0.668614 & 1.982073 \\
41 & 1 & 0 & 3.012119 & 1.844180 & 1.232447 \\
\(------------------------------------------------\quad\)
\end{tabular}
N. Exo, Azapene in twist, dienophile coming in from face opposite carbamate, OMe toward diene, file sevetsbexofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-993.990039733\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction= & \(0.339940(\) Hartree/Particle \()\) \\
Thermal correction to Energy= & 0.360142 \\
Thermal correction to Enthalpy \(=\) & 0.361086 \\
Thermal correction to Gibbs Free Energy= & 0.291223 \\
Sum of electronic and zero-point Energies= & -993.650100 \\
Sum of electronic and thermal Energies= & -993.629898 \\
Sum of electronic and thermal Enthalpies= & -993.628954 \\
Sum of electronic and thermal Free Energies= & -993.698816
\end{tabular}
E (Thermal) CV S

\section*{KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN \\ TOTAL 225.992 \\ 76.601 \\ 147.038}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|r|}{Atomic} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & 0.236392 & -2.107554 & -1.152843 \\
\hline 2 & 6 & 0 & -0.125917 & -0.699144 & -0.750060 \\
\hline 3 & 6 & 0 & 0.782669 & 0.120932 & -0.066145 \\
\hline 4 & 7 & 0 & 2.075555 & -0.376623 & 0.311449 \\
\hline 5 & 6 & 0 & 2.322965 & -1.670272 & 0.996956 \\
\hline 6 & 1 & 0 & -0.516642 & -2.498261 & -1.841641 \\
\hline 7 & 1 & 0 & 1.184584 & -2.058039 & -1.709801 \\
\hline 8 & 1 & 0 & -0.821878 & -0.181538 & -1.400004 \\
\hline 9 & 1 & 0 & 2.833886 & -1.449387 & 1.940643 \\
\hline 10 & 6 & 0 & 0.415227 & 1.414499 & 0.347362 \\
\hline 11 & 6 & 0 & -0.781925 & 2.030667 & 0.011197 \\
\hline 12 & 6 & 0 & -1.153089 & 3.394668 & 0.525715 \\
\hline 13 & 1 & 0 & 3.032860 & -2.245653 & 0.392514 \\
\hline 14 & 1 & 0 & 1.059032 & 1.906222 & 1.072970 \\
\hline 15 & 1 & 0 & -1.254659 & 1.751812 & -0.927640 \\
\hline 16 & 1 & 0 & -0.666333 & 3.610765 & 1.482981 \\
\hline 17 & 1 & 0 & -0.844355 & 4.168419 & -0.191193 \\
\hline 18 & 1 & 0 & -2.237328 & 3.482667 & 0.648979 \\
\hline 19 & 6 & 0 & 3.235949 & 0.308895 & 0.009144 \\
\hline 20 & 8 & 0 & 4.344690 & -0.073816 & 0.342825 \\
\hline 21 & 8 & 0 & 3.017284 & 1.434257 & -0.714992 \\
\hline 22 & 6 & 0 & 4.206578 & 2.161413 & -1.052676 \\
\hline 23 & 1 & 0 & 3.861601 & 3.030183 & -1.614860 \\
\hline 24 & 1 & 0 & 4.740370 & 2.474693 & -0.151501 \\
\hline 25 & 1 & 0 & 4.874538 & 1.549492 & -1.664594 \\
\hline 26 & 6 & 0 & 0.392128 & -3.090826 & 0.028295 \\
\hline 27 & 6 & 0 & 1.069909 & -2.492575 & 1.273130 \\
\hline 28 & 1 & 0 & -0.597950 & -3.470888 & 0.304072 \\
\hline 29 & 1 & 0 & 0.969649 & -3.956976 & -0.317965 \\
\hline 30 & 1 & 0 & 0.366060 & -1.881795 & 1.849617 \\
\hline 31 & 1 & 0 & 1.366122 & -3.308853 & 1.943353 \\
\hline 32 & 6 & 0 & -1.924652 & -0.733590 & 0.612924 \\
\hline 33 & 6 & 0 & -2.258263 & 0.576269 & 0.983623 \\
\hline 34 & 6 & 0 & -3.453878 & 0.987168 & 0.196995 \\
\hline 35 & 7 & 0 & -3.694463 & -0.066881 & -0.701429 \\
\hline 36 & 6 & 0 & -2.911452 & -1.190472 & -0.413024 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 37 & 8 & 0 & -3.034420 & -2.287151 & -0.926204 \\
\hline 38 & 8 & 0 & -4.114559 & 2.007488 & 0.264372 \\
\hline 39 & 1 & 0 & -4.480517 & -0.083485 & -1.337618 \\
\hline 40 & 1 & 0 & -1.484094 & -1.466472 & 1.270772 \\
\hline 41 & 1 & 0 & -2.072385 & 1.024915 & 1.949206 \\
\hline
\end{tabular}
O. Exo, Azapene in chair, dienophile coming in from face opposite carbamate, OMe toward diene, file sevexocsfreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-993.998488912 \quad\) A.U. after 1 cycles


Standard orientation:

\begin{tabular}{rrrrrc}
13 & 6 & 0 & -0.206153 & -1.585289 & 0.271644 \\
14 & 1 & 0 & -0.786268 & -2.167257 & 0.984928 \\
15 & 6 & 0 & -0.697027 & -0.311253 & -0.054950 \\
16 & 6 & 0 & -2.010994 & 1.241896 & 1.425682 \\
17 & 1 & 0 & -1.126898 & 1.198072 & 2.072548 \\
18 & 1 & 0 & -2.894610 & 1.098286 & 2.050139 \\
19 & 6 & 0 & -2.093565 & 2.591450 & 0.705898 \\
20 & 1 & 0 & -2.309583 & 3.365880 & 1.454385 \\
21 & 1 & 0 & -2.957569 & 2.563250 & 0.029241 \\
22 & 6 & 0 & -0.825127 & 2.980163 & -0.061705 \\
23 & 1 & 0 & -0.991713 & 3.952833 & -0.541348 \\
24 & 1 & 0 & 0.003109 & 3.136820 & 0.641295 \\
25 & 6 & 0 & -0.370530 & 2.000725 & -1.159695 \\
26 & 1 & 0 & 0.450364 & 2.472932 & -1.706403 \\
27 & 1 & 0 & -1.192146 & 1.868189 & -1.882839 \\
28 & 6 & 0 & 0.091335 & 0.619412 & -0.741683 \\
29 & 1 & 0 & 0.824002 & 0.185314 & -1.414405 \\
30 & 6 & 0 & 1.842173 & 0.791355 & 0.662937 \\
31 & 1 & 0 & 1.298815 & 1.426901 & 1.347072 \\
32 & 6 & 0 & 2.794820 & 1.417659 & -0.304788 \\
33 & 6 & 0 & -3.150527 & -0.473230 & 0.137675 \\
34 & 6 & 0 & -4.195585 & -2.091725 & -1.203820 \\
35 & 1 & 0 & -4.867580 & -1.364373 & -1.666975 \\
36 & 1 & 0 & -4.708746 & -2.560575 & -0.359966 \\
37 & 1 & 0 & -3.888334 & -2.845048 & -1.930452 \\
38 & 6 & 0 & 1.564398 & -3.396323 & 0.352010 \\
39 & 1 & 0 & 1.094291 & -3.718085 & 1.287519 \\
40 & 1 & 0 & 2.650257 & -3.369164 & 0.488851 \\
41 & 1 & 0 & 1.352625 & -4.158178 & -0.411259 \\
-----------------------------------------------1
\end{tabular}
P. Endo, Azapene in chair, dienophile coming in from face toward carbamate, OMe toward diene, file seveatsbendofreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-994.000282476\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.340043 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.360210 \\
Thermal correction to Enthalpy \(=\) & 0.361155 \\
Thermal correction to Gibbs Free Energy= & 0.291164 \\
Sum of electronic and zero-point Energies \(=\) & -993.660240 \\
Sum of electronic and thermal Energies= & -993.640072
\end{tabular}

Sum of electronic and thermal Enthalpies= -993.639128
Sum of electronic and thermal Free Energies= -993.709118
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 226.035 & 76.454 & 147.308
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|r|}{Atomic} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & C 1.645936 & -2.032797 & -0.847036 \\
\hline 2 & 6 & 0 & C 0.563942 & -1.677966 & 0.146827 \\
\hline 3 & 6 & 0 & C 0.515949 & -0.470617 & 0.859515 \\
\hline 4 & 7 & 0 & N 1.596847 & 0.454866 & 0.708171 \\
\hline 5 & 6 & 0 & C 2.931416 & 0.000696 & 1.145718 \\
\hline 6 & 1 & 0 & H 1.375617 & -2.987896 & -1.313057 \\
\hline 7 & 1 & 0 & H 1.651491 & -1.288974 & -1.652910 \\
\hline 8 & 1 & 0 & H 0.065621 & -2.522030 & 0.614057 \\
\hline 9 & 1 & 0 & H 2.790398 & -0.597919 & 2.053776 \\
\hline 10 & 6 & 0 & C -0.591600 & -0.138978 & 1.660729 \\
\hline 11 & 6 & 0 & C -1.691008 & -0.969191 & 1.845191 \\
\hline 12 & 6 & 0 & C -2.876721 & -0.537949 & 2.667260 \\
\hline 13 & 1 & 0 & H 3.492701 & 0.897590 & 1.410742 \\
\hline 14 & 1 & 0 & H -0.653143 & 0.882631 & 2.025788 \\
\hline 15 & 1 & 0 & H -1.532086 & -2.042553 & 1.791107 \\
\hline 16 & 1 & 0 & H -3.060047 & 0.535777 & 2.574338 \\
\hline 17 & 1 & 0 & H -3.790122 & -1.054639 & 2.357206 \\
\hline 18 & 1 & 0 & H -2.711061 & -0.772158 & 3.728449 \\
\hline 19 & 6 & 0 & C 1.493286 & 1.772774 & 0.309852 \\
\hline 20 & 8 & 0 & O 2.435056 & 2.543441 & 0.243290 \\
\hline 21 & 8 & 0 & O 0.221420 & 2.119443 & -0.003871 \\
\hline 22 & 6 & 0 & C 0.069272 & 3.475312 & -0.448191 \\
\hline 23 & 1 & 0 & H -1.005187 & 3.618144 & -0.575452 \\
\hline 24 & 1 & 0 & H 0.459830 & 4.174229 & 0.295092 \\
\hline 25 & 1 & 0 & H 0.593845 & 3.631892 & -1.394667 \\
\hline 26 & 6 & 0 & C 3.068105 & -2.152171 & -0.257795 \\
\hline 27 & 6 & 0 & C 3.702757 & -0.802801 & 0.095419 \\
\hline 28 & 1 & 0 & H 3.051809 & -2.801272 & 0.629673 \\
\hline 29 & 1 & 0 & H 3.701278 & -2.656835 & -0.998458 \\
\hline 30 & 1 & 0 & H 4.718697 & -0.967466 & 0.479204 \\
\hline 31 & 1 & 0 & H 3.802865 & -0.188804 & -0.808928 \\
\hline 32 & 6 & 0 & C - 1.329825 & -1.606550 & -1.092953 \\
\hline
\end{tabular}
\begin{tabular}{lllllrl}
33 & 6 & 0 & \(\mathrm{C}-2.426076\) & -1.307685 & -0.278616 \\
34 & 6 & 0 & C & -2.877661 & 0.080656 & -0.587054 \\
35 & 7 & 0 & N & -1.968265 & 0.557444 & -1.536695 \\
36 & 6 & 0 & C & -1.044612 & -0.408245 & -1.941344 \\
37 & 8 & 0 & O & -0.213847 & -0.261367 & -2.819049 \\
38 & 8 & 0 & O & -3.828238 & 0.701305 & -0.149272 \\
39 & 1 & 0 & H & -1.974276 & 1.502554 & -1.893160 \\
40 & 1 & 0 & \(\mathrm{H}-1.074192\) & -2.591327 & -1.462184 \\
41 & 1 & 0 & H & -3.138204 & -2.026620 & 0.105132
\end{tabular}

Piperidine transition structures
Table S2. Summary of Piperidine Transition Structures. \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Label & Endo & Exo & Axial Attack & Equatorial Attack & OMe Away & OMe Twrd & \[
\begin{aligned}
& \text { Energy + } \\
& \text { zpe } \\
& \text { (Hartrees) } \\
& \hline
\end{aligned}
\] & Erel kcal/ mol & S(298) \\
\hline A & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & & \[
954.379800
\] & 0.4 & 142.307 \\
\hline B & & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & \[
954.376286
\] & 2.6 & 142.389 \\
\hline C & \(\checkmark\) & & & \(\checkmark\) & \(\checkmark\) & & \[
954.380509
\] & 0.0 & 139.151 \\
\hline D & \(\checkmark\) & & & \(\checkmark\) & & \(\checkmark\) & \[
954.378522
\] & 1.2 & 140.825 \\
\hline E & & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \[
954.379719
\] & 0.5 & 141.822 \\
\hline F & & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & \[
954.379102
\] & 0.9 & 141.813 \\
\hline G & & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) & \[
954.376107
\] & 2.8 & 141.921 \\
\hline H & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & \[
954.378303
\] & 1.4 & 142.252 \\
\hline
\end{tabular}
A. Endo, axial attack of dienophile, OMe away from diene, file sixendocsfreq.log

B3LYP/6-31G*
SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-954.691200947 \quad\) A.U. after 1 cycles
Zero-point correction=
Thermal correction to Energy=
0.311401 (Hartree/Particle)

Thermal correction to Enthalpy=
0.330344

Thermal correction to Gibbs Free Energy= 0.263673
\begin{tabular}{lc} 
Sum of electronic and zero-point Energies \(=\) & -954.379800 \\
Sum of electronic and thermal Energies= & -954.360857 \\
Sum of electronic and thermal Enthalpies= & -954.359913 \\
Sum of electronic and thermal Free Energies \(=\) & -954.427528
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
CA2. & 207.294 & 71.609 & 142.307
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomi Тур}} & mic & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & C & -2.545407 & 1.171961 & -0.891170 \\
\hline 2 & 7 & 0 & N & -1.517515 & 0.111561 & -0.850950 \\
\hline 3 & 6 & 0 & C & -0.183065 & 0.548054 & -1.086283 \\
\hline 4 & 6 & 0 & C & 0.178707 & 1.843495 & -0.658186 \\
\hline 5 & 6 & 0 & C & -0.842803 & 2.865158 & -0.193157 \\
\hline 6 & 6 & 0 & C & -2.210791 & 2.253228 & 0.134611 \\
\hline 7 & 6 & 0 & C & -1.795618 & -1.147232 & -0.345840 \\
\hline 8 & 8 & 0 & O & -3.129445 & -1.324444 & -0.166036 \\
\hline 9 & 6 & 0 & C & -3.493722 & -2.604324 & 0.370126 \\
\hline 10 & 6 & 0 & C & C 0.795823 & -0.331591 & -1.585341 \\
\hline 11 & 6 & 0 & C & C 2.134159 & 0.013099 & -1.706424 \\
\hline 12 & 6 & 0 & C & C 3.171904 & -0.983380 & -2.143667 \\
\hline 13 & 8 & 0 & O & - -0.976674 & -2.015180 & -0.097684 \\
\hline 14 & 6 & 0 & C & C 1.528879 & 1.407871 & 0.952005 \\
\hline 15 & 6 & 0 & C & C 2.613365 & 0.636039 & 0.508008 \\
\hline 16 & 6 & 0 & C & C 2.476555 & -0.736580 & 1.045329 \\
\hline 17 & 7 & 0 & N & N 1.250943 & -0.738671 & 1.737276 \\
\hline 18 & 6 & 0 & C & C 0.661181 & 0.515763 & 1.799343 \\
\hline 19 & 8 & 0 & O & O 3.228379 & -1.689408 & 0.956847 \\
\hline 20 & 8 & 0 & O & - -0.355348 & 0.793177 & 2.412698 \\
\hline 21 & 1 & 0 & H & H 0.523928 & -1.373343 & -1.706400 \\
\hline 22 & 1 & 0 & H & H 1.016797 & 2.286437 & -1.185749 \\
\hline 23 & 1 & 0 & H & H 2.401585 & 1.053987 & -1.859864 \\
\hline 24 & , & 0 & H & H 3.583323 & 1.015797 & 0.214846 \\
\hline 25 & 1 & 0 & H & H 1.591640 & 2.462489 & 1.193062 \\
\hline 26 & 1 & 0 & H & H -0.956012 & 3.604333 & -1.001150 \\
\hline 27 & 1 & 0 & H & H -0.460528 & 3.421914 & 0.670138 \\
\hline 28 & 1 & 0 & H & H -2.189934 & 1.804806 & 1.131652 \\
\hline 29 & 1 & 0 & H & H -2.984963 & 3.030037 & 0.127210 \\
\hline 30 & 1 & 0 & H & H -3.514384 & \(4 \quad 0.719161\) & -0.701384 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 31 & 1 & 0 & H & -2.557611 & 1.589032 & -1.906814 \\
\hline 32 & 1 & 0 & H & -3.048962 & -2.749781 & 1.357871 \\
\hline 33 & 1 & 0 & H & -4.581935 & -2.585955 & 0.440427 \\
\hline 34 & 1 & 0 & H & -3.164091 & -3.408744 & -0.292103 \\
\hline 35 & 1 & 0 & H & 0.796589 & -1.583058 & 2.058588 \\
\hline 36 & 1 & 0 & H & 3.336857 & -0.910115 & -3.228374 \\
\hline 37 & 1 & 0 & H & 2.870434 & -2.006838 & -1.906347 \\
\hline 38 & 1 & 0 & H & 4.132968 & -0.802904 & -1.652615 \\
\hline
\end{tabular}
B. Exo, equatorial attack of dienophile, OMe away from diene, file sixexocsfreq.log

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-954.687737448 \quad\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.311451 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.330424 \\
Thermal correction to Enthalpy \(=\) & 0.331368 \\
Thermal correction to Gibbs Free Energy= & 0.263715 \\
Sum of electronic and zero-point Energies= & -954.376286 \\
Sum of electronic and thermal Energies= & -954.357313 \\
Sum of electronic and thermal Enthalpies= & -954.356369 \\
Sum of electronic and thermal Free Energies= & -954.424023
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \multicolumn{1}{c}{ S } \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 207.344 & 71.652 & 142.389
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & X Y & Z \\
\hline 1 & 60 & 2.073981 & -1.673701 & -0.521955 \\
\hline 2 & 70 & ) 1.950352 & -0.272641 & -0.077341 \\
\hline 3 & 60 & 0.675836 & 0.124137 & 0.426745 \\
\hline 4 & 60 & ) -0.253744 & -0.881238 & 0.757633 \\
\hline 5 & 60 & 0.113810 & -2.345169 & 0.900100 \\
\hline 6 & 60 & 01.590244 & -2.616367 & 0.578365 \\
\hline 7 & 60 & ) 3.042896 & 0.572839 & -0.019402 \\
\hline 8 & 80 & ) 4.150988 & -0.009645 & -0.550587 \\
\hline 9 & 60 & 0.3 .328247 & 0.809864 & -0.511188 \\
\hline 10 & 6 & 00.259273 & 1.467555 & 0.357463 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
11 & 6 & 0 & -1.035898 & 1.877093 & 0.645512 \\
12 & 6 & 0 & -1.479842 & 3.302366 & 0.463416 \\
13 & 8 & 0 & 3.047894 & 1.700948 & 0.439318 \\
14 & 6 & 0 & -2.127034 & 0.670033 & -0.963930 \\
15 & 6 & 0 & -3.490296 & 0.734453 & -0.380494 \\
16 & 7 & 0 & -3.752209 & -0.557760 & 0.114573 \\
17 & 6 & 0 & -2.789865 & -1.479843 & -0.305643 \\
18 & 6 & 0 & -1.681285 & -0.662720 & -0.893020 \\
19 & 8 & 0 & -4.261194 & 1.674352 & -0.302921 \\
20 & 8 & 0 & -2.870654 & -2.689146 & -0.186080 \\
21 & 1 & 0 & 0.930036 & 2.186080 & -0.096818 \\
22 & 1 & 0 & -1.054577 & -0.557062 & 1.410453 \\
23 & 1 & 0 & -1.830615 & 1.394442 & -1.708973 \\
24 & 1 & 0 & -1.024663 & -1.131016 & -1.614372 \\
25 & 1 & 0 & -0.543885 & -2.947152 & 0.261492 \\
26 & 1 & 0 & -0.113523 & -2.666668 & 1.924362 \\
27 & 1 & 0 & 2.215456 & -2.458388 & 1.465641 \\
28 & 1 & 0 & 1.733143 & -3.656054 & 0.262961 \\
29 & 1 & 0 & 3.112776 & -1.859130 & -0.778751 \\
30 & 1 & 0 & 1.473619 & -1.807128 & -1.431911 \\
31 & 1 & 0 & 5.588912 & 1.064127 & 0.519305 \\
32 & 1 & 0 & 6.113123 & 0.205377 & -0.967372 \\
33 & 1 & 0 & 5.175611 & 1.732214 & -1.077180 \\
34 & 1 & 0 & -4.641157 & -0.826112 & 0.515094 \\
35 & 1 & 0 & -0.870881 & 3.822707 & -0.283331 \\
36 & 1 & 0 & -1.391529 & 3.851129 & 1.411520 \\
37 & 1 & 0 & -2.531362 & 3.344153 & 0.160774 \\
38 & 1 & 0 & -1.621686 & 1.313413 & 1.367035 \\
---------------------------------------------------1
\end{tabular}
C. Endo, equatorial attack of dienophile, OMe away from diene, file Sul6njEn


SCF Done: \(E(\) RB+HF-LYP \()=-954.691958379 \quad\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.311449 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.330240 \\
Thermal correction to Enthalpy \(=\) & 0.331184 \\
Thermal correction to Gibbs Free Energy= & 0.265069 \\
Sum of electronic and zero-point Energies \(=\) & -954.380509 \\
Sum of electronic and thermal Energies= & -954.361719 \\
Sum of electronic and thermal Enthalpies \(=\) & -954.360774 \\
Sum of electronic and thermal Free Energies= & -954.426890
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 207.229 & 71.671 & 139.151
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & & Atomi & & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Typ & pe & X Y & Z \\
\hline 1 & 6 & 0 & & 0.685614 & 0.316993 & -1.823545 \\
\hline 2 & 6 & 0 & & 1.514371 & 1.348161 & -1.083422 \\
\hline 3 & 6 & 0 & & 2.662198 & 0.684835 & -0.618837 \\
\hline 4 & 6 & 0 & & 2.582692 & -0.732817 & -0.963858 \\
\hline 5 & 7 & 0 & & 1.345070 & -0.882188 & -1.639715 \\
\hline 6 & 8 & 0 & & 3.374524 & -1.642702 & -0.770829 \\
\hline 7 & 8 & 0 & & -0.363270 & 0.479673 & -2.426788 \\
\hline 8 & 6 & 0 & & 0.224364 & 1.853828 & 0.396582 \\
\hline 9 & 6 & 0 & C & -0.207404 & 0.613818 & 0.933557 \\
\hline 10 & 7 & 0 & N & -1.518769 & 0.182158 & 0.628006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 11 & 6 & 0 & C & -2.612492 & 1.179189 & 0.461202 \\
\hline 12 & 6 & 0 & C & -2.111912 & 2.611282 & 0.614008 \\
\hline 13 & 6 & 0 & C & -0.820215 & 2.779715 & -0.196473 \\
\hline 14 & 6 & 0 & C & -1.798511 & -1.142212 & 0.318002 \\
\hline 15 & 8 & 0 & O & -0.993861 & -2.051969 & 0.232128 \\
\hline 16 & 6 & 0 & C & 0.705467 & -0.231004 & 1.605172 \\
\hline 17 & 6 & 0 & C & 2.028284 & 0.089041 & 1.820245 \\
\hline 18 & 6 & 0 & C & 3.015982 & -0.901421 & 2.360023 \\
\hline 19 & 8 & 0 & O & -3.128338 & -1.305455 & 0.114576 \\
\hline 20 & 6 & 0 & C & -3.516692 & -2.634664 & -0.263117 \\
\hline 21 & 1 & 0 & H & 0.385254 & -1.239896 & 1.834650 \\
\hline 22 & 1 & 0 & H & 0.994416 & 2.352802 & 0.977389 \\
\hline 23 & 1 & 0 & H & 2.351761 & 1.122635 & 1.785306 \\
\hline 24 & 1 & 0 & H & 3.588609 & 1.139179 & -0.294854 \\
\hline 25 & 1 & 0 & H & 1.532295 & 2.363526 & -1.467524 \\
\hline 26 & 1 & 0 & H & -1.015702 & 2.508981 & -1.240681 \\
\hline 27 & 1 & 0 & H & -0.466289 & 3.816045 & -0.178924 \\
\hline 28 & 1 & 0 & H & -1.927768 & 2.850816 & 1.668773 \\
\hline 29 & 1 & 0 & H & -2.900237 & 3.286432 & 0.261054 \\
\hline 30 & 1 & 0 & H & -3.399946 & 0.956730 & 1.188204 \\
\hline 31 & 1 & 0 & H & -3.037244 & 1.045678 & -0.537167 \\
\hline 32 & 1 & 0 & H & -3.238689 & -3.352415 & 0.512642 \\
\hline 33 & 1 & 0 & H & -4.600155 & -2.594520 & -0.380066 \\
\hline 34 & 1 & 0 & H & -3.039783 & -2.921503 & -1.203658 \\
\hline 35 & 1 & 0 & H & 0.936888 & -1.781410 & -1.857310 \\
\hline 36 & 1 & 0 & H & 3.663703 & -1.267082 & 1.550309 \\
\hline 37 & 1 & 0 & H & 2.510201 & -1.775539 & 2.783435 \\
\hline 38 & 1 & 0 & H & 3.655671 & -0.455079 & 3.130446 \\
\hline
\end{tabular}
D. Endo, equatorial attack of dienophile, OMe toward diene, file Sul6njEnOrot

B3LYP/6-31G*
SCF Done: E(RB+HF-LYP) = -954.689699049 A.U. after 17 cycles
Zero-point correction \(=0.311177\) (Hartree/Particle)
Thermal correction to Energy= 0.330138
Thermal correction to Enthalpy= 0.331082
Thermal correction to Gibbs Free Energy= 0.264172
Sum of electronic and zero-point Energies= -954.378522
Sum of electronic and thermal Energies= -954.359561
Sum of electronic and thermal Enthalpies= -954.358617
Sum of electronic and thermal Free Energies= -954.425527
\begin{tabular}{cccc} 
& E (Thermal) & CV & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 207.165 & 71.831 & 140.825
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
r Type
\end{tabular}}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 6 & 0 & 1.423787 & -2.586746 & -0.099925 \\
\hline 2 & 6 & 0 & 0.269917 & \(-1.820200\) & 0.511065 \\
\hline 3 & 6 & 0 & 0.504142 & -0.483523 & 0.920281 \\
\hline 4 & 7 & 0 & 1.716604 & 0.117734 & 0.517296 \\
\hline 5 & 6 & 0 & 2.961700 & -0.696643 & 0.428777 \\
\hline 6 & 6 & 0 & 2.698013 & -2.181073 & 0.655177 \\
\hline 7 & 6 & 0 & -0.501556 & 0.239823 & 1.605281 \\
\hline 8 & 6 & 0 & -1.730976 & -0.280872 & 1.940807 \\
\hline 9 & 6 & 0 & -2.842308 & 0.566037 & 2.485664 \\
\hline 10 & 6 & 0 & 1.917760 & 1.438511 & 0.136214 \\
\hline 11 & 8 & 0 & 0.774982 & 2.147955 & 0.000599 \\
\hline 12 & 6 & 0 & 0.968701 & 3.510203 & -0.415127 \\
\hline 13 & 8 & 0 & 3.024295 & 1.896070 & -0.081810 \\
\hline 14 & 6 & 0 & -1.223152 & -1.711145 & -0.885532 \\
\hline 15 & 6 & 0 & -0.661223 & -0.665395 & -1.824413 \\
\hline 16 & 7 & 0 & -1.488859 & 0.434037 & -1.678129 \\
\hline 17 & 6 & 0 & -2.622959 & 0.164983 & -0.872683 \\
\hline 18 & 6 & 0 & -2.424150 & -1.195661 & -0.375524 \\
\hline 19 & 8 & 0 & 0.318703 & -0.738471 & -2.545723 \\
\hline 20 & 8 & 0 & -3.541796 & 0.950702 & -0.696598 \\
\hline 21 & 1 & 0 & -0.346833 & 1.300658 & 1.760538 \\
\hline 22 & 1 & 0 & -0.355497 & -2.398098 & 1.185029 \\
\hline 23 & 1 & 0 & -1.867874 & -1.353740 & 2.002077 \\
\hline 24 & 1 & 0 & -3.227751 & -1.751883 & 0.087031 \\
\hline 25 & 1 & 0 & -1.085882 & -2.755633 & -1.146805 \\
\hline 26 & 1 & 0 & 1.531404 & -2.325560 & -1.159649 \\
\hline 27 & 1 & 0 & 1.243721 & -3.665142 & -0.037272 \\
\hline 28 & 1 & 0 & 2.582642 & -2.400677 & 1.723985 \\
\hline 29 & 1 & 0 & 3.571394 & -2.741778 & 0.302655 \\
\hline 30 & 1 & 0 & 3.683891 & -0.300750 & 1.149927 \\
\hline 31 & 1 & 0 & 3.382567 & -0.538020 & -0.567715 \\
\hline 32 & 1 & 0 & 1.442048 & 3.547026 & -1.399452 \\
\hline 33 & 1 & 0 & -0.031887 & 3.942693 & -0.451177 \\
\hline 34 & 1 & 0 & 1.595062 & 4.047810 & 0.300968 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 35 & 1 & 0 & -1.333535 & 1.317069 & -2.143743 \\
\hline 36 & 1 & 0 & -3.600596 & 0.739291 & 1.708630 \\
\hline 37 & 1 & 0 & -2.475837 & 1.548915 & 2.800664 \\
\hline 38 & 1 & 0 & -3.336888 & 0.085579 & 3.338015 \\
\hline
\end{tabular}
E. Exo, axial attack of dienophile, OMe away from diene, file Sul6njEx

B3LYP/6-31G*


32 (0.2)
SCF Done: \(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-954.691178879\) A.U. after 17 cycles


Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 60 & 0 C & C -1.371337 & 0.603427 & -0.921278 \\
\hline 2 & 60 & 0 C & C -1.854974 & -0.715400 & -0.904729 \\
\hline 3 & 60 & 0 C & C -3.307365 & -0.679360 & -0.611650 \\
\hline 4 & 70 & 0 N & N -3.607447 & 0.672808 & -0.353252 \\
\hline 5 & 60 & 0 C & C -2.536784 & 1.512376 & -0.666227 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6 & 8 & 0 & O & -4.118867 & -1.587092 & -0.572023 \\
\hline 7 & 8 & 0 & O & -2.582166 & 2.729346 & -0.699025 \\
\hline 8 & 6 & 0 & C & -0.223738 & 1.036340 & 0.888376 \\
\hline 9 & 6 & 0 & C & 0.651177 & -0.066729 & 0.874638 \\
\hline 10 & 7 & 0 & N & 2.020619 & 0.164050 & 0.550263 \\
\hline 11 & 6 & 0 & C & 2.550977 & 1.491671 & 0.918657 \\
\hline 12 & 6 & 0 & C & 1.689789 & 2.582792 & 0.281981 \\
\hline 13 & 6 & 0 & C & 0.254317 & 2.468921 & 0.804832 \\
\hline 14 & 6 & 0 & C & 2.731599 & -0.697369 & -0.269684 \\
\hline 15 & 8 & 0 & O & 2.303505 & -1.715797 & -0.782132 \\
\hline 16 & 6 & 0 & C & 0.151890 & -1.374999 & 1.014705 \\
\hline 17 & 6 & 0 & C & -1.201637 & -1.661512 & 1.120999 \\
\hline 18 & 6 & 0 & C & -1.722590 & -3.070458 & 1.156465 \\
\hline 19 & 8 & 0 & O & 4.011736 & -0.273617 & -0.440160 \\
\hline 20 & 6 & 0 & C & 4.811354 & -1.120127 & -1.278823 \\
\hline 21 & 1 & 0 & H & 0.830736 & -2.199473 & 0.837126 \\
\hline 22 & 1 & 0 & H & -1.120174 & 0.910192 & 1.486460 \\
\hline 23 & 1 & 0 & H & -1.426334 & -1.553289 & -1.435118 \\
\hline 24 & 1 & 0 & H & -0.569798 & 0.955124 & -1.558266 \\
\hline 25 & 1 & 0 & H & 0.205793 & 2.895580 & 1.818541 \\
\hline 26 & 1 & 0 & H & -0.445885 & 3.058134 & 0.202059 \\
\hline 27 & 1 & 0 & H & 1.720982 & 2.464678 & -0.808840 \\
\hline 28 & 1 & 0 & H & 2.102246 & 3.572577 & 0.510353 \\
\hline 29 & 1 & 0 & H & 3.587116 & 1.550784 & 0.598288 \\
\hline 30 & 1 & 0 & H & 2.527128 & 1.577605 & 2.012852 \\
\hline 31 & 1 & 0 & H & 4.379756 & -1.192926 & -2.280259 \\
\hline 32 & 1 & 0 & H & 5.790880 & -0.642020 & -1.317143 \\
\hline 33 & 1 & 0 & H & 4.889728 & -2.123046 & -0.851700 \\
\hline 34 & 1 & 0 & H & -4.543876 & 1.008649 & -0.172647 \\
\hline 35 & 1 & 0 & H & -1.009830 & -3.775294 & 0.716240 \\
\hline 36 & 1 & 0 & H & -2.674411 & -3.142359 & 0.618553 \\
\hline 37 & 1 & 0 & H & -1.914584 & -3.382237 & 2.193074 \\
\hline 38 & 1 & 0 & H & -1.871415 & -0.920841 & 1.548498 \\
\hline
\end{tabular}
F. Exo, axial attack of dienophile, OMe toward diene, file Sul6njExOrot

B3LYP/6-31G*
SCF Done: E(RB+HF-LYP) = -954.690402930 A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & \(0.311300(\) Hartree/Particle \()\) \\
Thermal correction to Energy= & 0.330179 \\
Thermal correction to Enthalpy \(=\) & 0.331123
\end{tabular}

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.263743
-954.379102
-954.360224
-954.359280
-954.426660
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 207.190 & 71.528 & 141.813
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Center & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Atomic Number}} & & & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline Number & & & & & & X Y & Z \\
\hline 1 & 6 & 0 & 0 & C & 0.404122 & 2.601111 & 0.627329 \\
\hline 2 & 6 & 0 & 0 & C & -0.093744 & 1.186424 & 0.840340 \\
\hline 3 & 6 & 0 & 0 & & 0.776690 & 0.083747 & 0.947775 \\
\hline 4 & 7 & 0 & 0 & N & 2.143224 & 0.275187 & 0.596906 \\
\hline 5 & 6 & 6 & 0 & C & 2.692244 & 1.615207 & 0.875725 \\
\hline 6 & 6 & 6 & 0 & C & 1.857286 & 2.663419 & 0.138994 \\
\hline 7 & 6 & 6 & 0 & C & 0.279272 & -1.197751 & 1.242586 \\
\hline 8 & 6 & & & C & -1.073767 & -1.475989 & 1.362803 \\
\hline 9 & 6 & & 0 & C & -1.602476 & -2.869369 & 1.546358 \\
\hline 10 & 6 & 6 & 0 & C & 2.881769 & -0.514618 & -0.273545 \\
\hline 11 & 8 & 8 & 0 & O & 2.181097 & -1.568689 & -0.756862 \\
\hline 12 & 6 & 6 & 0 & C & 2.922731 & -2.415054 & -1.650071 \\
\hline 13 & 8 & 8 & 0 & O & 4.036195 & -0.283837 & -0.586032 \\
\hline 14 & 6 & 6 & 0 & C & -1.206262 & 0.579653 & -0.910284 \\
\hline 15 & 6 & 6 & 0 & C & -1.691720 & -0.733268 & -0.781546 \\
\hline 16 & 6 & 6 & 0 & C & -3.146910 & -0.677095 & -0.519795 \\
\hline 17 & 7 & 7 & 0 & N & -3.456661 & 0.692661 & -0.399300 \\
\hline 18 & 6 & 6 & 0 & C & -2.382953 & 1.504051 & -0.768360 \\
\hline 19 & 8 & 8 & & O & -3.955430 & -1.581691 & -0.405858 \\
\hline 20 & 8 & 8 & 0 & O & -2.429855 & 2.711307 & -0.919043 \\
\hline 21 & 1 & 1 & 0 & H & 0.966634 & -2.034559 & 1.187767 \\
\hline 22 & 1 & 1 & 0 & H & -0.990153 & 1.132873 & 1.450096 \\
\hline 23 & 1 & 1 & 0 & H & -1.247691 & -1.618289 & -1.213061 \\
\hline 24 & 1 & 1 & 0 & H & -0.401206 & 0.870471 & -1.573661 \\
\hline 25 & 1 & 1 & 0 & H & 0.328288 & 3.120788 & 1.594641 \\
\hline 26 & 1 & 1 & 0 & H & -0.274416 & 3.134791 & -0.047447 \\
\hline 27 & 1 & 1 & & H & 1.918475 & 2.464153 & -0.938648 \\
\hline 28 & 1 & 1 & 0 & H & 2.269495 & 3.666015 & 0.302455 \\
\hline 29 & 1 & 1 & 0 & H & 3.733412 & 1.613012 & 0.558413 \\
\hline
\end{tabular}
\begin{tabular}{llllrrr}
30 & 1 & 0 & H & 2.656998 & 1.782243 & 1.959305 \\
31 & 1 & 0 & H & 3.808158 & -2.819894 & -1.153948 \\
32 & 1 & 0 & H & 2.234645 & -3.216158 & -1.922623 \\
33 & 1 & 0 & H & 3.235127 & -1.858626 & -2.537253 \\
34 & 1 & 0 & H & -4.397239 & 1.039838 & -0.268116 \\
35 & 1 & 0 & H & -0.879084 & -3.624266 & 1.220914 \\
36 & 1 & 0 & H & -2.533560 & -3.001404 & 0.983558 \\
37 & 1 & 0 & H & -1.837530 & -3.056127 & 2.603818 \\
38 & 1 & 0 & H & -1.750038 & -0.689328 & 1.683058
\end{tabular}
G. Exo, equatorial attack of dienophile, OMe toward diene, file SuljenExOrot

B3LYP/6-31G*
SCF Done: E(RB+HF-LYP) \(=-954.687505873\) A.U. after 16 cycles
Zero-point correction \(=0.311399\) (Hartree/Particle)
Thermal correction to Energy= 0.330361
Thermal correction to Enthalpy= 0.331306
Thermal correction to Gibbs Free Energy= 0.263875
Sum of electronic and zero-point Energies= -954.376107
Sum of electronic and thermal Energies \(=\quad-954.357144\)
Sum of electronic and thermal Enthalpies= -954.356200
Sum of electronic and thermal Free Energies= -954.423631
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 207.305 & 71.585 & 141.921
\end{tabular}

Standard orientation:

\begin{tabular}{rrrrrr}
10 & 7 & 0 & -1.961878 & -0.513997 & 0.337753 \\
11 & 6 & 0 & -1.912063 & -1.916991 & 0.779161 \\
12 & 6 & 0 & -1.476188 & -2.808464 & -0.382737 \\
13 & 6 & 0 & -0.090100 & -2.384288 & -0.900704 \\
14 & 6 & 0 & -3.213181 & 0.075456 & 0.282390 \\
15 & 8 & 0 & -4.225736 & -0.430047 & 0.735032 \\
16 & 6 & 0 & -0.436619 & 1.367846 & -0.093650 \\
17 & 6 & 0 & 0.795281 & 1.899859 & -0.452595 \\
18 & 6 & 0 & 1.148601 & 3.339165 & -0.193085 \\
19 & 8 & 0 & -3.197377 & 1.276951 & -0.340734 \\
20 & 6 & 0 & -4.478664 & 1.918583 & -0.431234 \\
21 & 1 & 0 & -1.105021 & 1.989628 & 0.492121 \\
22 & 1 & 0 & 0.918996 & -0.496143 & -1.404519 \\
23 & 1 & 0 & 1.824645 & 1.328296 & 1.774054 \\
24 & 1 & 0 & 1.198669 & -1.238004 & 1.565600 \\
25 & 1 & 0 & 0.705970 & -2.960314 & -0.413732 \\
26 & 1 & 0 & 0.000931 & -2.623706 & -1.968280 \\
27 & 1 & 0 & -2.227588 & -2.722347 & -1.176825 \\
28 & 1 & 0 & -1.463997 & -3.857067 & -0.064933 \\
29 & 1 & 0 & -2.905229 & -2.174366 & 1.142795 \\
30 & 1 & 0 & -1.207977 & -1.995813 & 1.617191 \\
31 & 1 & 0 & -4.895255 & 2.094391 & 0.563730 \\
32 & 1 & 0 & -4.289489 & 2.863684 & -0.941577 \\
33 & 1 & 0 & -5.177017 & 1.305155 & -1.006041 \\
34 & 1 & 0 & 4.577603 & -0.508931 & -0.835572 \\
35 & 1 & 0 & 0.582394 & 3.748195 & 0.650704 \\
36 & 1 & 0 & 0.924501 & 3.951429 & -1.077835 \\
37 & 1 & 0 & 2.218975 & 3.444278 & 0.011787 \\
38 & 1 & 0 & 1.345136 & 1.442195 & -1.271297 \\
------------------------------------------------1
\end{tabular}
H. Endo, axial attack of dienophile, OMe toward diene, file SulnjEnOrot
\begin{tabular}{lc} 
B3LYP/6-31G* \\
E(RB+HF-LYP) \(=-954.689546581\) & \\
& 0.311244 (Hartree/Particle) \\
Zero-point correction= & 0.330276 \\
Thermal correction to Energy= & 0.331221 \\
Thermal correction to Enthalpy= & 0.263632 \\
Thermal correction to Gibbs Free Energy= & -954.378303 \\
Sum of electronic and zero-point Energies= & -954.359270 \\
Sum of electronic and thermal Energies= & -954.358326
\end{tabular}

Sum of electronic and thermal Free Energies= -954.425914
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
& 207.252 & 71.708 & 142.252
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|r|}{Atomic} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & -0.606419 & -1.122337 & 1.721702 \\
\hline 2 & 6 & 0 & -1.324258 & -1.827344 & 0.617835 \\
\hline 3 & 6 & 0 & -2.399170 & -1.024660 & 0.214885 \\
\hline 4 & 6 & 0 & -2.371581 & 0.228925 & 1.018797 \\
\hline 5 & 7 & 0 & -1.221877 & 0.126989 & 1.815732 \\
\hline 6 & 8 & 0 & -3.147458 & 1.166471 & 1.028089 \\
\hline 7 & 8 & 0 & 0.315399 & -1.510791 & 2.416912 \\
\hline 8 & 6 & 0 & 0.316508 & -1.737094 & -0.903053 \\
\hline 9 & 6 & 0 & 0.456393 & -0.350730 & -1.103346 \\
\hline 10 & 7 & 0 & 1.690815 & 0.257162 & -0.738732 \\
\hline 11 & 6 & 0 & 2.879661 & -0.612156 & -0.832740 \\
\hline 12 & 6 & 0 & 2.676106 & -1.845646 & 0.043924 \\
\hline 13 & 6 & 0 & 1.450610 & -2.629764 & -0.445050 \\
\hline 14 & 6 & 0 & 1.888078 & 1.494766 & -0.144320 \\
\hline 15 & 8 & 0 & 2.986141 & 1.956636 & 0.111387 \\
\hline 16 & 6 & 0 & -0.638347 & 0.405052 & -1.567826 \\
\hline 17 & 6 & 0 & -1.892851 & -0.141105 & -1.810357 \\
\hline 18 & 6 & 0 & -3.057722 & 0.723631 & -2.216109 \\
\hline 19 & 8 & 0 & 0.733567 & 2.143398 & 0.136632 \\
\hline 20 & 6 & 0 & 0.905196 & 3.441017 & 0.728698 \\
\hline 21 & 1 & 0 & -0.551953 & 1.484454 & -1.561476 \\
\hline 22 & 1 & 0 & -0.400396 & -2.230477 & -1.549273 \\
\hline 23 & 1 & 0 & -1.960390 & -1.178632 & -2.123258 \\
\hline 24 & 1 & 0 & -3.335828 & -1.383105 & -0.191513 \\
\hline 25 & 1 & 0 & -1.303812 & -2.908862 & 0.575462 \\
\hline 26 & 1 & 0 & 1.733908 & -3.265914 & -1.297604 \\
\hline 27 & 1 & 0 & 1.105549 & -3.311342 & 0.340948 \\
\hline 28 & 1 & 0 & 2.526848 & -1.526346 & 1.079939 \\
\hline 29 & 1 & 0 & 3.568869 & -2.481655 & 0.016419 \\
\hline 30 & 1 & 0 & 3.737994 & -0.020339 & -0.521413 \\
\hline 31 & 1 & 0 & 3.017154 & -0.896927 & -1.884281 \\
\hline 32 & 1 & 0 & 1.464995 & 4.100081 & 0.060304 \\
\hline 33 & 1 & 0 & -0.106362 & 3.818539 & 0.883082 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
34 & 1 & 0 & 1.439428 & 3.363633 & 1.678915 \\
35 & 1 & 0 & -0.923580 & 0.849144 & 2.456721 \\
36 & 1 & 0 & -2.997407 & 0.971167 & -3.285332 \\
37 & 1 & 0 & -3.080949 & 1.655586 & -1.644791 \\
38 & 1 & 0 & -4.011043 & 0.210889 & -2.054269
\end{tabular}

Vinylcyclohexene transition structures
\begin{tabular}{cccccc} 
& B3LYP & +zpe & E(rel) & S & E+zpe-TdelS(298) \\
Endo eq & -671.45587 & -671.20424 & 0.27 & 111.298 & 0.60 \\
Endo ax & -671.45591 & -671.20467 & 0.00 & 112.412 & 0.00 \\
Exo ax & -671.45472 & -671.20347 & 0.75 & 112.506 & 0.72 \\
Exo eq & -671.45183 & -671.20053 & 2.59 & 113.245 & 2.35
\end{tabular}

Endo Equatorial, File Cor1stEnB3


26 (0.6)
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-671.455874489\)

Zero-point correction \(=0.251639\) (Hartree/Particle)
Thermal correction to Energy= 0.264525

Thermal correction to Enthalpy= 0.265469

Thermal correction to Gibbs Free Energy=
0.212588

Sum of electronic and zero-point Energies= -671.204236 Sum of electronic and thermal Energies= -671.191349
Sum of electronic and thermal Enthalpies= -671.190405
Sum of electronic and thermal Free Energies=

E (Thermal) CV S
KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN
\begin{tabular}{llll} 
TOTAL & 165.992 & 51.696 & 111.298
\end{tabular}

\footnotetext{
C,0,-1.3135375692,2.2709202177,0.2289756968 C,0,-0.2592217294,1.38679845,0.847989214
C, \(0,-0.5239304984,0.1227221881,1.3605033224\)
С,0,-1.9389117278,-0.4415083448,1.3411169581
С,0,-2.8800358064,0.3069766788,0.3870196375
C,0,-2.7431293706,1.8219041658,0.5729038155
С,0,0.5314024886,-0.7094895584,1.7871774214
C,0,1.881467381,-0.3741892665,1.6719482534
H,0,2.6219170509,-1.1175219453,1.9553269697
Н,0,-1.9082529495,-1.5084947574,1.0882045133
C, \(0,1.3508737433,0.7234039986,-0.949450454\)
С, \(0,0.3148846806,-0.0078615619,-1.6943645522\)
N,0,0.5816517281,-1.3737337303,-1.4577650192
C,0,1.8010059512,-1.5711810889,-0.8104131072
С,0,2.2307107062,-0.1961494697,-0.3651377928
O,0,-0.5961980214,0.4090969356,-2.3927544856
O, \(0,2.3605408124,-2.6361228936,-0.6453784326\)
H,0,0.2865196606,-1.746726632,2.0109605087
H,0,0.6762223802,1.8658794379,1.1135101917
H,0,2.2001210925,0.6523817344,1.8282859704
H,0,3.2882317435,-0.0137483082,-0.2106789782
H,0,1.5321899253, 1.7741854426,-1.1276421209
H,0,-1.1927426355,2.2416972242,-0.8639617642
H,0,-1.1456732704,3.312231005,0.5336753279
H,0,-2.9776880175,2.0884303166, 1.6132371708
H,0,-3.4591022702,2.356623115,-0.0619292497
H,0,-3.913515405,-0.0148874597,0.5629501591
H,0,-2.634058907,0.0521186931,-0.651487481
H,0,0.0718077848,-2.1181795728,-1.9148018916
H,0,-2.3417501026,-0.385722971,2.364158676
}

Endo Axial, file Cor1stEnJB3


\section*{25 (0.0)}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-671.455911393\)
Zero-point correction \(=0.251247\) (Hartree/Particle)
Thermal correction to Energy= 0.264255

Thermal correction to Enthalpy= 0.265199

Thermal correction to Gibbs Free Energy=
0.211788

Sum of electronic and zero-point Energies= -671.204665
Sum of electronic and thermal Energies= -671.191657
Sum of electronic and thermal Enthalpies= -671.190713
Sum of electronic and thermal Free Energies \(=\quad-671.244123\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TA5.822 & 51.848 & 112.412
\end{tabular}

C,0,0.3548078275,0.0389565582,1.7079254611
C,0,1.3115016558,0.7849544586,0.8621054638
С,0,2.2283039529,-0.1179136283,0.3126251733
C, \(0,1.8969851545,-1.4835609276,0.848560823\)
N,0,0.692545852,-1.3180862361,1.5368300104
O,0,2.5098705588,-2.524352991,0.724925832
O,0,-0.5374080097,0.4461058405,2.4313253427
С, \(0,-0.2957322432,1.3185751425,-0.8912174704\)
С, \(0,-0.5798229577,0.0317649753,-1.3339449224\)
C,0,-1.9839134228,-0.5379714269,-1.1874398
С,0,-3.0568822964,0.5519461041,-1.0691757936
C,0,-2.6662368347,1.5634882831,0.0140847147
C,0,-1.3410731573,2.256253302,-0.3390185083
Н,0,-2.023155746,-1.1797927873,-0.2952394892
\(\mathrm{C}, 0,0.4593297092,-0.8195153878,-1.7613655368\)
\(\mathrm{C}, 0,1.8061911843,-0.466880712,-1.7311446991\)
\(\mathrm{H}, 0,2.5491095002,-1.2171712686,-1.9876517803\)
\(\mathrm{H}, 0,0.2103375608,-1.8683264038,-1.9185159175\)
\(\mathrm{H}, 0,0.61267522,1.7951576014,-1.2449996074\)
\(\mathrm{H}, 0,2.1060567562,0.5533744023,-1.9501386165\)
\(\mathrm{H}, 0,3.2634148382,0.1142656248,0.0912285217\)
\(\mathrm{H}, 0,1.4560275816,1.8478512836,0.9987449905\)
\(\mathrm{H}, 0,-1.5153180672,3.0394002864,-1.0955518099\)
\(\mathrm{H}, 0,-0.9444734506,2.7775650605,0.5412962379\)
\(\mathrm{H}, 0,-2.5547190479,1.047673007,0.9743632723\)
\(\mathrm{H}, 0,-3.4505228031,2.3187526232,0.1437222637\)
\(\mathrm{H}, 0,-4.0264178634,0.0942925011,-0.839622525\)
\(\mathrm{H}, 0,-3.1692645379,1.0658452202,-2.0347565843\)
\(\mathrm{H}, 0,0.2499627748,-2.0624589269,2.0595055394\)
\(H, 0,-2.1919855054,-1.1944278141,-2.0421733966\)

Exo Equatorial, file Cor1stExJB3

\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-671.451830213\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.251298 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.264391 \\
Thermal correction to Enthalpy= & 0.265335 \\
Thermal correction to Gibbs Free Energy= & 0.211529 \\
Sum of electronic and zero-point Energies= & -671.200532 \\
Sum of electronic and thermal Energies= & -671.187439 \\
Sum of electronic and thermal Enthalpies= & -671.186495 \\
Sum of electronic and thermal Free Energies= & -671.240302
\end{tabular}
\begin{tabular}{lll} 
E (Thermal) & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN
\end{tabular}
\(\begin{array}{llll}\text { TOTAL } & 165.908 & 51.863 & 113.245\end{array}\)
C,0,-0.7984027561,-0.1580688532,-0.9821458078
С,0,-1.187295406,1.1877665682,-0.966454972
С, \(0,-2.5544453845,1.2510143172,-0.3341270169\)
N,0,-2.8090734849,-0.043108407,0.1268489051
C,0,-1.8522730756,-0.968674583,-0.3354963513
O,0,-3.2915637307,2.2079118326,-0.2119526714
O,0,-1.9289778596,-2.1768878575,-0.1972689714
C,0,0.8193513131,-0.4412353469,0.8180403974
C,0,1.6753964184,0.5719638388,0.3991635353
С,0,3.0658136019,0.2279867493,-0.1147413061
С,0,3.1840367553,-1.2384561032,-0.5537841423
C,0,2.6800484064,-2.1689497145,0.5551470661
С,0,1.2020123658,-1.8992390863,0.8914375962
H,0,3.7997324183,0.4212705402,0.6825818325
C,0,1.2029984683,1.8950236004,0.2845241789
C,0,-0.1210670582,2.2580148283,0.5177337133
H,0,-0.4371014451,3.2800217512,0.3283262605
H,0,1.8492518549,2.6129778426,-0.2199616992
H,0,-0.056162608,-0.1671912945,1.3964009579
H,0,-0.9481891661,1.9030291462,-1.7426174424
H,0,-0.0927072136,-0.6171891405,-1.6586233874
H,0,0.5355510799,-2.4693387523,0.228879261
H,0,0.9718788392,-2.2720084423,1.8989532833
H,0,3.2946301197,-2.0084898623,1.4518528222
H,0,2.8106913722,-3.2195978149,0.2713550061
H,0,4.2266766676,-1.4680389271,-0.8039335119
H,0,2.5977006463,-1.3993276639,-1.4693935719
H,0,-3.6721064222,-0.3144603775,0.5784969045
H,0,-0.6841650184,1.7699242178,1.307770326
H,0,3.3351241001,0.8991085349,-0.9400375804

Exo Axial, File Cor1stExB3

\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.251247 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.264271 \\
Thermal correction to Enthalpy= & 0.265215 \\
Thermal correction to Gibbs Free Energy= & 0.211760 \\
Sum of electronic and zero-point Energies= & -671.203469 \\
Sum of electronic and thermal Energies= & -671.190445 \\
Sum of electronic and thermal Enthalpies= & -671.189501 \\
Sum of electronic and thermal Free Energies= & -671.242956
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCAL/MOL & CAL/MOL-KELVIN & - CAL/MOL-KELVIN \\
\hline TOTAL & 165.832 & 51.857 11 & 12.506 \\
\hline \multicolumn{4}{|l|}{C,0,-1.8558606173,1.3876715505,-0.6532203895} \\
\hline \multicolumn{4}{|l|}{С,0,-0.9843498842,0.1604641042,-0.7034396658} \\
\hline \multicolumn{4}{|l|}{C, \(0,-1.4013438941,-1.0946281608,-0.2727319924\)} \\
\hline \multicolumn{4}{|l|}{C,0,-2.755607145,-1.2649259583,0.4016841168} \\
\hline \multicolumn{4}{|l|}{C,0,-3.7316848128,-0.1213868432,0.0940380357} \\
\hline \multicolumn{4}{|l|}{C,0,-3.0497448571,1.2367864603,0.2990282297} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.5018119475,-2.1801037741,-0.2641266372\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,0.8388458416,-2.0663087503,-0.6097426796\)} \\
\hline \multicolumn{4}{|l|}{H,0,1.5024272811,-2.9179921088,-0.4897811074} \\
\hline \multicolumn{4}{|l|}{H,0,-2.6094723911,-1.3296306102,1.4913477273} \\
\hline \multicolumn{4}{|l|}{C,0,0.7771183518,0.4596910333,0.9063483316} \\
\hline \multicolumn{4}{|l|}{C,0,1.5878869907,-0.6800426494,0.8686615104} \\
\hline \multicolumn{4}{|l|}{C, \(0,2.8539445168,-0.3139557717,0.1438781502\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{N}, 0,2.6383632792,0.9788613514,-0.3442222925\)} \\
\hline \multicolumn{4}{|l|}{C,0,1.4622703918,1.5514731649,0.1733163151} \\
\hline \multicolumn{4}{|l|}{O,0,3.8572893372,-0.9771974274,-0.0217286944} \\
\hline
\end{tabular}
\(\mathrm{O}, 0,1.1250303208,2.7113655482,0.0136018841\)
\(\mathrm{H}, 0,-0.8254512282,-3.0900680925,0.2418365378\)
\(\mathrm{H}, 0,-0.1541974345,0.2152848231,-1.4010208817\)
\(\mathrm{H}, 0,1.631965549,-1.4356055754,1.6415153127\)
\(\mathrm{H}, 0,0.0241605694,0.6888398099,1.6466280337\)
\(\mathrm{H}, 0,-2.2218084714,1.5828272829,-1.6748753373\)
\(\mathrm{H}, 0,-1.2398654677,2.2576293045,-0.3926938992\)
\(\mathrm{H}, 0,-2.7059600454,1.3162539227,1.3404148518\)
\(\mathrm{H}, 0,-3.7581663099,2.0582113954,0.1407341821\)
\(\mathrm{H}, 0,-4.6211844144,-0.212296796,0.7285956757\)
\(\mathrm{H}, 0,-4.0754979488,-0.2002714934,-0.9469733464\)
\(\mathrm{H}, 0,3.331847231,1.5038093042,-0.8598763018\)
\(\mathrm{H}, 0,1.1420492217,-1.3814541616,-1.3955419937\)
\(\mathrm{H}, 0,-3.1859239676,-2.2293178643,0.1021011253\)

6,6-Dimethyl-1-vinylcyclohexene transition structures
\begin{tabular}{lccccc} 
& & & & \begin{tabular}{c} 
E+zpe- \\
TdelS(298)
\end{tabular} \\
& B3LYP & +zpe & E(rel) & S & The eq \\
Endo & -750.07929 & -749.77151 & 0.38 & 123.489 & 0.34 \\
Endo ax & -750.07978 & -749.77212 & 0.00 & 122.834 & 0.15 \\
Exo eq & -750.07554 & -749.76818 & 2.47 & 125.579 & 1.81 \\
Exo ax & -750.0788 & -749.77158 & 0.34 & 124.49 & 0.00
\end{tabular}

Endo Equatorial, File CorDanEnEqB3

\begin{tabular}{lc} 
Thermal correction to Enthalpy \(=\) & 0.324439 \\
Thermal correction to Gibbs Free Energy= & 0.265765 \\
Sum of electronic and zero-point Energies= & -749.771509 \\
Sum of electronic and thermal Energies= & -749.755796 \\
Sum of electronic and thermal Enthalpies= & -749.754851 \\
Sum of electronic and thermal Free Energies= & -749.813525
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 202.996 & 63.173 & 123.489
\end{tabular}

C,0,2.5412827191,0.0325593202,-0.5771591849
C, \(0,1.6372524222,0.927467453,-1.158645122\)
C,0,0.6621858544,0.1723729314,-1.9629938226
\(\mathrm{N}, 0,0.998333173,-1.1852829006,-1.7755999345\)
C,0,2.1957994648,-1.3456723902,-1.0778395988
O,0,-0.25158086,0.5696315778,-2.6684929744
O,0,2.7979301784,-2.3883423772,-0.920880838
C, \(0,2.1289597751,-0.215510454,1.4610342177\)
C,0,0.7877318384,-0.5906905398,1.5353903679
C,0,-0.2892502133,0.2155419062,1.101713242
C,0,-0.0177366596,1.490490238,0.6138271553
С, \(0,-1.0428439024,2.4005072851,-0.0109866708\)
C,0,-2.4761620915,1.9997189932,0.3618616915
C,0,-2.6480567516,0.4886835099,0.1927947846
С,0,-1.7258298592,-0.3492809669,1.1149034206
H,0,2.8824913722,-0.9442130988,1.747722056
С, \(0,-1.7985879868,-1.8150080653,0.6358271893\)
H,0,0.5844240063,-1.6358455463,1.7518103171
H,0,0.9107478588,1.9601489744,0.9170722209
H,0,2.4184421651,0.8162893787,1.6375508417
H,0,3.5812215933,0.2585317166,-0.3714263785
H,0,1.7744128838,1.9901160977,-1.3020360273
Н,0,-0.9384436319,2.3435901633,-1.1046953551
H,0,-0.834427603,3.4408986978,0.2697112657
H,0,-2.6940910139,2.2987265562,1.395229653
H,0,-3.1892709151,2.5346626044,-0.2763519804
H,0,-3.6888123929,0.1956304507,0.3824647902
H,0,-2.4315326299,0.2311500168,-0.8528069403
Н,0,0.5427440897,-1.9385997398,-2.2733192367
С,0,-2.2353390484,-0.2922042762,2.5769824422
H,0,-2.8472289792,-2.1318257825,0.5863080016
H,0,-1.3632058524,-1.9283885701,-0.3616050001
H,0,-1.2863681349,-2.5072264346, 1.3124819487

Endo Axial, file CorDanEnAxB3

\(\mathrm{E}(\) RB + HF-LYP \()=-750.079779291\)

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.307658 (Hartree/Particle)
0.323316 0.324260
0.265898
-749.772122
-749.756463
-749.755519
-749.813881
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 202.884 & 63.162 & 122.834
\end{tabular}

C,0,-1.0743615667,2.4217660506,-0.2981515308
С,0,-0.0670243346,1.4281319835,-0.8120532811
С,0,-0.3700527804,0.1160847539,-1.1634640196
C, \(0,-1.8055939408,-0.4413877934,-1.0485437526\)
С, \(0,-2.8184023449,0.7196363318,-0.8775640674\)
С,0,-2.3790919667,1.7598110955,0.1552501089
С,0,0.6861835439,-0.7515781851,-1.5251892262
C,0,2.027040049,-0.3753665014,-1.5656577995
C,0,2.5415061151,0.1554404649,0.4087504866
\(\mathrm{C}, 0,1.6165011156,1.0603838445,0.9398172519\)
\(\mathrm{C}, 0,0.7392263411,0.3426971192,1.8884895883\)
\(\mathrm{~N}, 0,1.1509957212,-1.0023575383,1.8282119009\)
\(\mathrm{C}, 0,2.309747103,-1.1752903204,1.0714475084\)
\(\mathrm{O}, 0,-0.1528941586,0.7608639867,2.6071595952\)
\(\mathrm{O}, 0,2.9595510383,-2.1974024298,0.9835603649\)
\(\mathrm{C}, 0,-1.9320810713,-1.422450909,0.1407427303\)
\(\mathrm{H}, 0,2.7733510614,-1.1352123729,-1.7805703451\)
\(\mathrm{H}, 0,0.4674061819,-1.8150015887,-1.5879628959\)
\(\mathrm{H}, 0,0.84802652,1.860238211,-1.2021605708\)
\(\mathrm{H}, 0,2.2990658144,0.6238340812,-1.8923868088\)
\(\mathrm{H}, 0,3.550755004,0.4134295517,0.109653876\)
\(\mathrm{H}, 0,1.7175341092,2.1357386525,0.9854815864\)
\(\mathrm{H}, 0,-1.2788534001,3.1437234058,-1.1066822583\)
\(\mathrm{H}, 0,-0.6351302038,3.0067752486,0.5194372849\)
\(\mathrm{H}, 0,-2.2257595815,1.2953669007,1.1344007262\)
\(\mathrm{H}, 0,-3.1571517274,2.5217244035,0.2833794687\)
\(\mathrm{H}, 0,-3.7945985252,0.2955445785,-0.6099215255\)
\(\mathrm{H}, 0,-2.9542955684,1.2204189509,-1.8477613375\)
\(\mathrm{H}, 0,0.75325493339,-1.7276125806,2.4098856089\)
\(\mathrm{C}, 0,-2.1661321152,-1.1947743777,-2.3496863215\)
\(\mathrm{H}, 0,-2.9393416509,-1.8567790569,0.1613180767\)
\(\mathrm{H}, 0,-1.2156164096,-2.2465838263,0.0544340552\)
\(\mathrm{H}, 0,-1.756882852,-0.9255474023,1.0994723533\)
\(\mathrm{H}, 0,-3.2147554411,-1.5143077511,-2.3151602195\)
\(\mathrm{H}, 0,-2.0368114687,-0.5533690231,-3.228827353\)
\(\mathrm{H}, 0,-1.555206765,-2.092191411,-2.4943987625\)

Exo Equatorial, file CorDanExEqB3

\(\mathrm{E}(\) RB+HF-LYP \()=-750.075543396\)
Zero-point correction= 0.307361 (Hartree/Particle)
\begin{tabular}{lc} 
Thermal correction to Energy= & 0.323264 \\
Thermal correction to Enthalpy \(=\) & 0.324208 \\
Thermal correction to Gibbs Free Energy= & 0.264542 \\
Sum of electronic and zero-point Energies= & -749.768182 \\
Sum of electronic and thermal Energies= & -749.752279 \\
Sum of electronic and thermal Enthalpies= & -749.751335 \\
Sum of electronic and thermal Free Energies= & -749.811001
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 202.851 & 63.350 & 125.579
\end{tabular}

C,0,0.669209049,-2.053400626,0.8192223317
C, \(0,0.3188830141,-0.5872085935,0.7822162812\)
C, \(0,1.1916533681,0.4330433428,0.4132921152\)
C,0,2.6107149841,0.1240181174,-0.1053186972
C,0,2.750084272,-1.3859528583,-0.4290405909
C,0,2.1739239208,-2.3016387261,0.652046081
C,0,0.7110893449,1.7617025908,0.4019210949
C,0,-0.6127815818,2.1056772436,0.6631947285
С,0,-1.6841290083,1.1330724853,-0.8920292797
C,0,-1.2940617009,-0.2081223308,-0.9942355093
C, \(0,-2.3464225834,-1.0599029223,-0.3984806919\)
N,0,-3.3016236427,-0.1662927618,0.1258578887
C,0,-3.0491690327,1.1548687263,-0.2530491814
O,0,-3.7870448583,2.1011872517,-0.0687231645
O,0,-2.4229003828,-2.27429979,-0.3403144846
C,0,3.6316839518,0.5356992354,0.9825493996
H,0,-0.9257838498,3.1395906543,0.5464472658
H,0,1.3443951814,2.5290813435,-0.0363009046
Н,0,-0.550898539,-0.3139800145,1.3687239854
H,0,-1.4455673463,1.8990745041,-1.6182242418
H,0,-0.5904472068,-0.6236679827,-1.7004760083
H,0,0.0970029889,-2.5811697296,0.0431238396
H,0,0.3110953568,-2.4792834183,1.765471829
H,0,2.68613183,-2.1214589744,1.6057805403
H,0,2.3554194993,-3.3522205286,0.3966265218
H,0,3.8112909342,-1.609531166,-0.5987511303
H,0,2.2357591224,-1.5943859052,-1.3787309701
Н,0,-4.1642814763,-0.4666243169,0.5595267353
H,0,-1.1817229193,1.5661246282,1.4143621889
C,0,2.935677946,0.9040840112,-1.3992531781
H,0,4.6565800627,0.3609342095,0.6319945219
H,0,3.5351703237,1.6000828568,1.2252875579

\author{
H,0,3.4886790361,-0.0262359404,1.9112721738 \\ H,0,3.9022615824,0.5728418983,-1.7978001031 \\ H,0,2.1776996418,0.7304450297,-2.1719288093 \\ H,0,3.0100075413,1.983694316,-1.2333184421
}

Exo Axial, File CorDanExAxB3


28 (0.0)
\(\mathrm{E}(\) RB + HF-LYP \()=-750.078803662\)
Zero-point correction= 0.307221 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.323070\)
Thermal correction to Enthalpy= 0.324014
Thermal correction to Gibbs Free Energy=
0.264865

Sum of electronic and zero-point Energies= -749.771582
Sum of electronic and thermal Energies= \(\quad-749.755734\)
Sum of electronic and thermal Enthalpies= \(\quad-749.754789\)
Sum of electronic and thermal Free Energies=
-749.813939
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 202.730 & 63.402 & 124.490
\end{tabular}

C,0,1.7869978957,1.8199883169,-0.0823412775
C,0,1.0933425536,0.776769617,0.7224698701
C,0,1.9115715158,-0.3308650759,0.7888502824
C,0,3.1826428005,-0.0224319208,0.0551970271
\(\mathrm{N}, 0,2.9718570195,1.2287531484,-0.5150976417\)
O,0,4.1771812112,-0.6938659013,-0.0607402997
O,0,1.4361592877,2.947550451,-0.3465140683
С, \(0,1.2570547244,-1.7577996856,-0.6961319649\)
С, \(0,-0.055664007,-1.9022535816,-0.3316011607\)

> C, \(0,-0.9794162299,-0.8483719403,-0.3567982252\) \(\mathrm{C}, 0,-0.563321919,0.3844676941,-0.8045238787\) \(\mathrm{C}, 0,-1.4306201424,1.622729285,-0.7887036904\) \(\mathrm{C}, 0,-2.5609634997,1.5082929107,0.2406147179\) \(\mathrm{C}, 0,-3.2740279915,0.1637762721,0.0444547949\) \(\mathrm{C}, 0,-2.3485545714,-1.0452913835,0.316641898\) \(\mathrm{H}, 0,1.948342462,-2.5663677916,-0.5526791381\)
> \(\mathrm{C}, 0,-2.1671612964,-1.2286934248,1.8416231822\)
> \(\mathrm{H}, 0,-0.3314383426,-2.8062503253,0.1764363978\)
> \(\mathrm{H}, 0,0.2416343527,0.4180233968,-1.5114846462\)
> \(\mathrm{H}, 0,1.9175308191,-1.0552614455,1.569506984\)
> \(\mathrm{H}, 0,0.3432915193,1.0503647795,1.4251675518\)
> \(\mathrm{H}, 0,-1.8646569368,1.7445577659,-1.7797308201\)
> \(\mathrm{H}, 0,-0.807870603,2.4884757546,-0.6078387028\)
> \(\mathrm{H}, 0,-2.1613851844,1.5844345998,1.2453415632\)
> \(\mathrm{H}, 0,-3.2609442689,2.3257504053,0.1093651349\)
> \(\mathrm{H}, 0,-4.1413558871,0.0864785339,0.6916144053\)
> \(\mathrm{H}, 0,-3.6279948864,0.1122942501,-0.9814114021\)
> \(\mathrm{H}, 0,3.6439115387,1.6976709881,-1.0826840829\)
> \(\mathrm{H}, 0,1.5425426591,-1.0621333036,-1.4591936277\)
> \(\mathrm{C}, 0,-3.038315794,-2.3038299598,-0.2578286499\)
> \(\mathrm{H}, 0,-3.1317559519,-1.3877459713,2.3128471821\)
> \(\mathrm{H}, 0,-1.5425164256,-2.087770635,2.0559053378\)
> \(\mathrm{H}, 0,-1.7078001146,-0.3580306499,2.2924034655\)
> \(\mathrm{H}, 0,-4.0314976926,-2.4012281533,0.169066909\)
> \(\mathrm{H}, 0,-3.1320891134,-2.226417148,-1.3347221086\)
> \(\mathrm{H}, 0,-2.4870553032,-3.2065162276,-0.0257295199\)

4-vinyl-1,2-dihydronaphthalene transition structures
\begin{tabular}{lccccc} 
& & & & \begin{tabular}{c} 
E+zpe- \\
TdelS(298)
\end{tabular} \\
Endo eq & -823.8863 & -823.61137 & 0.26 & 122.314 & 0.84 \\
+ndo ax & -823.88664 & -823.61177 & 0.00 & 123.352 & 0.28 \\
Endo & -823.61214 & -0.23 & 123.519 & 0.00 \\
Exo ax & -823.88678 & -823.635 & 1.85
\end{tabular}

Endo Equatorial, File Cor1stPhEnB3

\(\mathrm{E}(\) RB + HF-LYP \()=-823.886301994\)

Zero-point correction= 0.274937 (Hartree/Particle)
Thermal correction to Energy \(=\quad 0.289986\)
Thermal correction to Enthalpy= 0.290931
Thermal correction to Gibbs Free Energy= 0.232815
Sum of electronic and zero-point Energies \(=\quad-823.611365\)
Sum of electronic and thermal Energies \(=\quad-823.596316\)
Sum of electronic and thermal Enthalpies= -823.595371
Sum of electronic and thermal Free Energies \(=\quad-823.653487\)
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
TOTAL & KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
& 181.969 & 61.591 & 122.314
\end{tabular}

C,0,2.9792029192,0.2799987684,-0.1058985131
C,0,2.0900006699,1.1649333366,-0.7199506283
C,0,1.2855362423,0.4116877078,-1.7128643253
\(\mathrm{N}, 0,1.6677907542,-0.930658252,-1.5541725674\)
C,0,2.7774271265,-1.0751611227,-0.7153397488
O,0,0.468229895,0.8169070182,-2.5202598425
O,0,3.4102635672,-2.0976737712,-0.5435706136
C,0,2.24498791,-0.1934785485,1.9072156074
С, \(0,0.9362222837,-0.5972091973,1.6902262223\)
C,0,-0.0464130334,0.2337279004,1.1042645359
C,0,0.2814387001,1.5491034909,0.7653062629
C,0,-0.7203983131,2.4300172008,0.0618758435
C,0,-2.1381451644,2.1097996206,0.5618898444
C,0,-2.420194285,0.6272709035,0.4455798756
```

H,0,2.9705653715,-0.9211903774,2.2591220856
H,0,0.7140433583,-1.653740869,1.8083021254
H,0,1.0810601273,2.0378157474,1.3087142438
H,0,2.4767091914,0.8360798546,2.1586330013
H,0,3.9505943677,0.5421822304,0.2942811671
H,0,2.208883265,2.236329238,-0.8099853607
H,0,-0.6724021648,2.2420153803,-1.020345461
H,0,-0.481066225,3.4870010502,0.221223775
H,0,-2.23685792,2.424739354,1.6123460141
H,0,-2.8790294572,2.6811807809,-0.0083902869
H,0,1.3084499544,-1.676866452,-2.1344835073
C,0,-3.688722151,0.1550326766,0.104109377
C,0,-3.9444179359,-1.2122383234,-0.0018808092
C,0,-2.9136298467,-2.1243603442,0.2247766367
C,0,-1.6429533987,-1.6660188007,0.5654241159
C,0,-1.376677724,-0.2935985533,0.6960379348
H,0,-4.4850339181,0.870679795,-0.0878862804
H,0,-4.9371671129,-1.5611138518,-0.2729663168
H,0,-3.0938252871,-3.1914779741,0.1273181404
H,0,-0.8469905238,-2.3899324124,0.7093348912

```

Endo Axial, file Cor1stPhEnJB3

\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-823.886641911\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.274870 (Hartree/Particle) \\
Thermal correction to Energy= & 0.290005 \\
Thermal correction to Enthalpy= & 0.290949 \\
Thermal correction to Gibbs Free Energy= & 0.232340 \\
Sum of electronic and zero-point Energies= & -823.611772
\end{tabular}
\begin{tabular}{lc} 
Sum of electronic and thermal Energies \(=\) & -823.596637 \\
Sum of electronic and thermal Enthalpies \(=\) & -823.595693 \\
Sum of electronic and thermal Free Energies \(=\) & -823.654301
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 181.981 & 61.604 & 123.352
\end{tabular}

C,0,-0.8370076492,2.1226372946,-1.2727831913
С,0,0.1336340197,0.9853943881,-1.4429443343
C, \(0,-0.2136211469,-0.3178584478,-1.0844377494\)
С,0,-1.5434558383,-0.5659287106,-0.467824321
С, \(, 0,-2.3147458105,0.5216654639,0.0010780501\)
С, \(0,-1.7503599734,1.9240751664,-0.0560961512\)
C, \(0,0.7438052301,-1.3522942612,-1.2167016044\)
С,0,2.0122049382,-1.1556818631,-1.7421080876
C,0,2.0927011662,1.3105727671,-0.0901844079
C,0,1.528014902,1.1059097611,1.2703040561
\(\mathrm{N}, 0,1.9888449879,-0.1548554069,1.6783396076\)
C,0,2.9641501852,-0.6692339058,0.8196248514
C,0,2.9493131027,0.2423883738,-0.3716075791
O,0,0.839746147,1.8455123188,1.950265382
O,0,3.6513046547,-1.6483088431,1.0288567248
H,0,2.7286380463,-1.9712281141,-1.714243865
Н, \(0,0.5566491854,-2.2868933172,-0.6947579294\)
H,0,0.9053894992,1.1278593597,-2.1902516039
Н,0,2.1743476741,-0.4346036464,-2.5369365927
H,0,3.8287763768,0.2982663707,-1.0013535813
H,0,2.1526713065,2.3063966049,-0.5081579941
H,0,-1.4393425458,2.1893979932,-2.1952458899
Н,0,-0.301079187,3.0754298647,-1.1920151696
H,0,-1.1657460538,2.1182913986,0.8508584646
H,0,-2.5650817964,2.6569264837,-0.0732469378
H,0,1.7961609267,-0.5399512689, 2.5935496139
C,0,-3.5781264571,0.2795588239,0.5459227105
C,0,-2.0834569815,-1.8607147657,-0.3940409882
С, \(0,-4.0947365888,-1.0129883124,0.6324810883\)
H,0,-4.1644483275,1.121439939,0.9075866469
H,0,-5.081011622,-1.1780189367,1.0578153595
С,0,-3.3434338807,-2.0870634644,0.1546102519
H,0,-1.5256295183,-2.7017581541,-0.7947288864
H,0,-3.7398905988,-3.0978243818,0.1980186953

Exo Equatorial, file Cor1stPhExJB3

\(\mathrm{E}(\) RB+HF-LYP \()=-823.883134682\)
\begin{tabular}{lc} 
Zero-point correction= & 0.274473 (Hartree/Particle) \\
Thermal correction to Energy= & 0.289791 \\
Thermal correction to Enthalpy= & 0.290735 \\
Thermal correction to Gibbs Free Energy= & 0.231517 \\
Sum of electronic and zero-point Energies= & -823.608661 \\
Sum of electronic and thermal Energies= & -823.593344 \\
Sum of electronic and thermal Enthalpies= & -823.592400 \\
Sum of electronic and thermal Free Energies= & -823.651618
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 181.846 & 61.893 & 124.635
\end{tabular}

C,0,-0.5350595345,1.9611671503,0.4117000516
С,0,0.1477570511,0.6359541115,0.714275286
С,0,-0.5694242187,-0.5407232781,0.67883724
С, \(0,-1.9738381623,-0.4913949653,0.1797220144\)
C, \(0,-2.6846062268,0.7059148306,0.3175789547\)
С,0,-1.9824793917,1.9028104065,0.9323742266
C,0,0.0862464688,-1.7588251584,0.9150817694
C,0,1.4317557845,-1.8314608462,1.1377749937
C, \(0,1.5280837503,0.2212207615,-0.9790287752\)
С,0,2.1697915477,-0.9803493001,-0.7826203234
С,0,3.5420508621,-0.7046230057,-0.2564725038
\(\mathrm{N}, 0,3.59123242,0.6778167841,-0.0861147636\)
C,0,2.4667448567,1.3208814141,-0.5942738936
O,0,4.4319978202,-1.4765841143,0.0003283129
O,0,2.31407403,2.5163871395,-0.6683124675
H,0,1.9227098909,-2.7840842943,1.1923734322
H,0,-0.4483235638,-2.6726871125,0.7474052635
H,0,1.0220681603,0.6859332447,1.3297384264
H,0,1.9650577412,-1.8930616862,-1.2903702093
```

H,0,0.7356540831,0.4034420747,-1.666660863
H,0,-0.5498780287,2.1447424833,-0.6564579902
H,0,0.0136349752,2.7720034275,0.8673316379
H,0,-1.9761170393,1.8061145411,2.0145883476
H,0,-2.509531058,2.8138651083,0.677378836
H,0,4.3908113889,1.1612764738,0.2613594424
H,0,1.9604321888,-1.0309294251,1.6124124723
C,0,-3.997212791,0.7775415485,-0.1117289785
C,0,-2.6016403302,-1.5805239728,-0.4134452033
С,0,-4.616547967,-0.3189829927,-0.6862707376
H,0,-4.537599938,1.6974890136,-0.0002237701
H,0,-5.6337745604,-0.2483836583,-1.0166241175
C,0,-3.9142342394,-1.4977207833,-0.8413253259
H,0,-2.0668929856,-2.4963340805,-0.5597916612
H,0,-4.3797777534,-2.347843321,-1.2988554357

```

Exo Axial, File Cor1stPhExNJAxB3

\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-823.886781624\)
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.274647 (Hartree/Particle) \\
Thermal correction to Energy= & 0.289849 \\
Thermal correction to Enthalpy= & 0.290793 \\
Thermal correction to Gibbs Free Energy= & 0.232106 \\
Sum of electronic and zero-point Energies= & -823.612135 \\
Sum of electronic and thermal Energies= & -823.596932 \\
Sum of electronic and thermal Enthalpies= & -823.595988 \\
Sum of electronic and thermal Free Energies= & -823.654676
\end{tabular}
\begin{tabular}{lll} 
E (Thermal) & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN
\end{tabular}
\(\begin{array}{llll}\text { TOTAL } & 181.883 & 61.742 & 123.519\end{array}\)

transition structures from reaction of trimethylsiloxy hydroxy analog of 4-vinyl-1,2dihydronaphthalene (4-(1-trimethylsiloxyvinyl)-7-hydroxy-1,2-dihydronaphthalene) with N -phenylmaleimide

Exo equatorial, file TMSaexo

\section*{B3LYP/6-31G*}

SCF Done: \(\mathrm{E}(\) RB+HF-LYP \()=-1614.08212796 \quad\) A.U. after \(\quad 1\) cycles
\begin{tabular}{lc} 
Zero-point correction= & 0.465474 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.495754 \\
Thermal correction to Enthalpy \(=\) & 0.496698 \\
Thermal correction to Gibbs Free Energy= & 0.401492 \\
Sum of electronic and zero-point Energies= & -1613.616654 \\
Sum of electronic and thermal Energies= & -1613.586374 \\
Sum of electronic and thermal Enthalpies= & -1613.585430 \\
Sum of electronic and thermal Free Energies= & -1613.680636
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 311.090 & 116.636 & 200.379
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Number}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Atomic Type}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & & X Y & Z \\
\hline 1 & 6 & 0 & 0 & 4.915309 & -2.626979 & -0.276457 \\
\hline 2 & 6 & 0 & 0 & 4.746479 & -1.384385 & -0.890668 \\
\hline 3 & 6 & 0 & 0 & 2.700794 & -2.441758 & 0.702439 \\
\hline 4 & 6 & 0 & 0 & 3.885018 & -3.150896 & 0.509726 \\
\hline 5 & 6 & 0 & 0 & 3.569152 & -0.671479 & -0.694454 \\
\hline 6 & 6 & 0 & 0 & 2.527733 & -1.163291 & 0.116115 \\
\hline 7 & 8 & 0 & 0 & 6.090531 & -3.289991 & -0.489329 \\
\hline 8 & 6 & 0 & 0 & 1.574481 & -3.036932 & 1.517390 \\
\hline 9 & 6 & 0 & 0 & 0.231580 & -2.713972 & 0.848524 \\
\hline 11 & 6 & 0 & 0 & 1.243337 & -0.449881 & 0.366426 \\
\hline 12 & 6 & 0 & 0 & 1.053013 & 0.961457 & 0.200876 \\
\hline 13 & 6 & 0 & 0 & -0.221073 & 1.530945 & 0.216111 \\
\hline 14 & 8 & 0 & 0 & 2.113297 & 1.710558 & -0.214988 \\
\hline 15 & 14 & & 0 & 2.618981 & 3.261575 & 0.278598 \\
\hline 16 & 6 & 0 & 0 & 4.446638 & 3.286914 & -0.154078 \\
\hline 17 & 6 & 0 & 0 & 1.705271 & 4.596086 & -0.689605 \\
\hline 18 & 6 & 0 & 0 & 2.339681 & 3.443005 & 2.131878 \\
\hline
\end{tabular}
\begin{tabular}{lllrrr}
19 & 1 & 0 & 5.538907 & -0.993988 & -1.521360 \\
20 & 1 & 0 & 4.000721 & -4.132664 & 0.968159 \\
21 & 1 & 0 & 3.451960 & 0.283122 & -1.186595 \\
22 & 1 & 0 & 6.066944 & -4.134295 & -0.012339 \\
23 & 1 & 0 & 1.705321 & -4.119995 & 1.619224 \\
24 & 1 & 0 & 1.583654 & -2.617865 & 2.535261 \\
25 & 1 & 0 & 0.175442 & -3.229056 & -0.120350 \\
26 & 1 & 0 & -0.609890 & -3.082806 & 1.441253 \\
27 & 1 & 0 & -0.749656 & -0.751668 & 1.091624 \\
28 & 1 & 0 & -0.328915 & 2.584968 & -0.015597 \\
29 & 1 & 0 & -0.978593 & 1.145239 & 0.885558 \\
30 & 1 & 0 & 4.986744 & 2.485242 & 0.361491 \\
31 & 1 & 0 & 4.602747 & 3.155893 & -1.231204 \\
32 & 1 & 0 & 4.904399 & 4.241496 & 0.132656 \\
33 & 1 & 0 & 0.647595 & 4.674924 & -0.414654 \\
34 & 1 & 0 & 2.164158 & 5.576066 & -0.505899 \\
35 & 1 & 0 & 1.756958 & 4.406292 & -1.768130 \\
36 & 1 & 0 & 2.700447 & 4.418783 & 2.479857 \\
37 & 1 & 0 & 2.880050 & 2.669302 & 2.689377 \\
38 & 1 & 0 & 1.279613 & 3.368385 & 2.397745 \\
39 & 6 & 0 & -1.205748 & 0.599639 & -1.479864 \\
40 & 6 & 0 & -1.120466 & -0.787311 & -1.384048 \\
41 & 6 & 0 & -2.600578 & 0.996808 & -1.102731 \\
42 & 7 & 0 & -3.248396 & -0.180084 & -0.665341 \\
43 & 6 & 0 & -2.408521 & -1.312522 & -0.898799 \\
44 & 8 & 0 & -3.088964 & 2.109079 & -1.133937 \\
45 & 8 & 0 & -2.733841 & -2.471149 & -0.711226 \\
46 & 1 & 0 & -0.666032 & 1.214511 & -2.188198 \\
47 & 1 & 0 & -0.422262 & -1.434254 & -1.894865 \\
48 & 6 & 0 & -4.568841 & -0.230370 & -0.131400 \\
49 & 6 & 0 & -5.423023 & -1.292286 & -0.456069 \\
50 & 6 & 0 & -6.708536 & -1.333358 & 0.082756 \\
51 & 6 & 0 & -7.158572 & -0.319119 & 0.928709 \\
52 & 6 & 0 & -6.306899 & 0.741721 & 1.240754 \\
53 & 6 & 0 & -5.014181 & 0.787905 & 0.722106 \\
54 & 1 & 0 & -5.074898 & -2.081961 & -1.108635 \\
55 & 1 & 0 & -7.362440 & -2.163978 & -0.169188 \\
56 & 1 & 0 & -8.163819 & -0.353765 & 1.339682 \\
57 & 1 & 0 & -6.645460 & 1.539717 & 1.896189 \\
58 & 1 & 0 & -4.358624 & 1.616164 & 0.960897 \\
& & & & & \\
3 & 1 & 0 & 0
\end{tabular}

Exo axial, file TMSbexo

\section*{B3LYP/6-31G*}

SCF Done: E(RB+HF-LYP) = -1614.08526930 A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.465439 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.495662 \\
Thermal correction to Enthalpy \(=\) & 0.496606 \\
Thermal correction to Gibbs Free Energy= & 0.402508 \\
Sum of electronic and zero-point Energies \(=\) & -1613.619830 \\
Sum of electronic and thermal Energies= & -1613.589608 \\
Sum of electronic and thermal Enthalpies= & -1613.588664 \\
Sum of electronic and thermal Free Energies= & -1613.682761
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \multicolumn{1}{c}{ S } \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 311.032 & 116.662 & 198.045
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|r|}{Atomic} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & -5.170727 & -2.437519 & 0.143868 \\
\hline 2 & 6 & 0 & -5.097428 & -1.118261 & 0.596206 \\
\hline 3 & 6 & 0 & -2.749076 & -2.507414 & -0.035854 \\
\hline 4 & 6 & 0 & -3.993333 & -3.124940 & -0.161464 \\
\hline 5 & 6 & 0 & -3.858923 & -0.499136 & 0.715405 \\
\hline 6 & 6 & 0 & -2.660793 & -1.161377 & 0.389318 \\
\hline 7 & 8 & 0 & -6.408702 & -3.006217 & 0.033418 \\
\hline 8 & 6 & 0 & -1.481640 & -3.267832 & -0.353986 \\
\hline 9 & 6 & 0 & -0.360789 & -2.883062 & 0.616520 \\
\hline 10 & 6 & 0 & -0.223194 & -1.392587 & 0.702919 \\
\hline 11 & 6 & 0 & -1.315333 & -0.546306 & 0.569594 \\
\hline 12 & 6 & 0 & -1.068683 & 0.866956 & 0.484695 \\
\hline 13 & 6 & 0 & 0.227303 & 1.384363 & 0.555864 \\
\hline 14 & 8 & 0 & -2.098662 & 1.647478 & 0.071467 \\
\hline 15 & 14 & 0 & -2.306121 & 3.332892 & -0.081664 \\
\hline 16 & 6 & 0 & -4.135258 & 3.497660 & -0.472101 \\
\hline 17 & 6 & 0 & -1.884459 & 4.188687 & 1.543355 \\
\hline 18 & 6 & 0 & -1.265848 & 3.990806 & \(-1.508719\) \\
\hline 19 & 1 & 0 & -6.012923 & -0.595582 & 0.854501 \\
\hline 20 & 1 & 0 & -4.042273 & -4.161333 & -0.494503 \\
\hline 21 & 1 & 0 & -3.822061 & 0.518020 & 1.080142 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
22 & 1 & 0 & -6.309264 & -3.916823 & -0.285557 \\
23 & 1 & 0 & -1.664093 & -4.347611 & -0.326277 \\
24 & 1 & 0 & -1.156525 & -3.033460 & -1.378619 \\
25 & 1 & 0 & -0.578284 & -3.282707 & 1.621669 \\
26 & 1 & 0 & 0.594694 & -3.317939 & 0.303562 \\
27 & 1 & 0 & 0.702501 & -1.023970 & 1.123180 \\
28 & 1 & 0 & 0.382070 & 2.452372 & 0.456374 \\
29 & 1 & 0 & 0.945423 & 0.904030 & 1.208399 \\
30 & 1 & 0 & -4.399634 & 2.929708 & -1.370929 \\
31 & 1 & 0 & -4.755682 & 3.125506 & 0.351027 \\
32 & 1 & 0 & -4.406130 & 4.546230 & -0.645534 \\
33 & 1 & 0 & -0.826423 & 4.100275 & 1.810952 \\
34 & 1 & 0 & -2.118416 & 5.258446 & 1.473942 \\
35 & 1 & 0 & -2.473929 & 3.775284 & 2.370040 \\
36 & 1 & 0 & -1.504284 & 5.046086 & -1.693124 \\
37 & 1 & 0 & -1.482157 & 3.441139 & -2.432526 \\
38 & 1 & 0 & -0.187681 & 3.928176 & -1.324216 \\
39 & 6 & 0 & 1.159203 & 0.701925 & -1.223536 \\
40 & 6 & 0 & 1.088674 & -0.684278 & -1.346816 \\
41 & 6 & 0 & 2.560443 & 1.044560 & -0.803841 \\
42 & 7 & 0 & 3.208526 & -0.177684 & -0.537914 \\
43 & 6 & 0 & 2.361337 & -1.269861 & -0.920547 \\
44 & 8 & 0 & 3.042081 & 2.154565 & -0.684760 \\
45 & 8 & 0 & 2.685376 & -2.445219 & -0.871521 \\
46 & 1 & 0 & 0.628159 & 1.406354 & -1.851683 \\
47 & 1 & 0 & 0.380926 & -1.254814 & -1.928726 \\
48 & 6 & 0 & 4.532129 & -0.302644 & -0.024852 \\
49 & 6 & 0 & 5.378994 & -1.315558 & -0.493655 \\
50 & 6 & 0 & 6.669068 & -1.430969 & 0.022821 \\
51 & 6 & 0 & 7.131373 & -0.537885 & 0.990078 \\
52 & 6 & 0 & 6.286880 & 0.475220 & 1.446584 \\
53 & 6 & 0 & 4.989674 & 0.593078 & 0.950833 \\
54 & 1 & 0 & 5.021836 & -2.012280 & -1.240454 \\
55 & 1 & 0 & 7.316867 & -2.223515 & -0.342209 \\
56 & 1 & 0 & 8.140147 & -0.629177 & 1.383306 \\
57 & 1 & 0 & 6.634465 & 1.179284 & 2.197928 \\
58 & 1 & 0 & 4.340371 & 1.385002 & 1.303064 \\
----------------------------------------------- \\
& & & & & \\
\hline
\end{tabular}

Endo axial, file TMSbendo
B3LYP/6-31G*
SCF Done: E(RB+HF-LYP \()=-1614.08673957\) A.U. after 1 cycles
\begin{tabular}{lc} 
Zero-point correction \(=\) & 0.466237 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.496001 \\
Thermal correction to Enthalpy \(=\) & 0.496945 \\
Thermal correction to Gibbs Free Energy= & 0.405681 \\
Sum of electronic and zero-point Energies= & -1613.620503 \\
Sum of electronic and thermal Energies= & -1613.590738 \\
Sum of electronic and thermal Enthalpies \(=\) & -1613.589794 \\
Sum of electronic and thermal Free Energies= & -1613.681059
\end{tabular}
\begin{tabular}{cccc} 
& E (Thermal) & CV & \multicolumn{1}{c}{ S } \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 311.245 & 116.375 & 192.083
\end{tabular}

Standard orientation:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multicolumn{2}{|r|}{Atomic} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & Type & X Y & Z \\
\hline 1 & 6 & 0 & -4.161162 & 0.316846 & -1.583901 \\
\hline 2 & 6 & 0 & -3.310601 & 1.423946 & -1.611534 \\
\hline 3 & 6 & 0 & -3.052824 & -0.484500 & 0.425499 \\
\hline 4 & 6 & 0 & -4.032181 & -0.623268 & -0.558594 \\
\hline 5 & 6 & 0 & -2.327879 & 1.559741 & -0.638047 \\
\hline 6 & 6 & 0 & -2.155205 & 0.608534 & 0.383939 \\
\hline 7 & 8 & 0 & -5.106915 & 0.213483 & -2.565548 \\
\hline 8 & 6 & 0 & -2.946939 & -1.494420 & 1.545469 \\
\hline 9 & 6 & 0 & -2.562960 & -0.799779 & 2.856803 \\
\hline 10 & 6 & 0 & -1.367817 & 0.087508 & 2.660969 \\
\hline 11 & 6 & 0 & -1.145937 & 0.755528 & 1.472421 \\
\hline 12 & 6 & 0 & 0.094470 & 1.480205 & 1.319096 \\
\hline 13 & 6 & 0 & 1.037140 & 1.542468 & 2.360205 \\
\hline 14 & 8 & 0 & 0.416854 & 1.882560 & 0.080337 \\
\hline 15 & 14 & 0 & 1.535650 & 2.864282 & -0.764573 \\
\hline 16 & 6 & 0 & 0.541095 & 4.371565 & -1.307403 \\
\hline 17 & 6 & 0 & 3.014588 & 3.415238 & 0.262335 \\
\hline 18 & 6 & 0 & 2.072441 & 1.819935 & -2.223338 \\
\hline 19 & 1 & 0 & -3.432963 & 2.167198 & -2.392973 \\
\hline 20 & 1 & 0 & -4.712922 & -1.473083 & -0.515880 \\
\hline 21 & 1 & 0 & -1.690495 & 2.432380 & -0.666438 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
22 & 1 & 0 & -5.619121 & -0.597799 & -2.423179 \\
23 & 1 & 0 & -3.893496 & -2.034179 & 1.660891 \\
24 & 1 & 0 & -2.178408 & -2.242547 & 1.313802 \\
25 & 1 & 0 & -3.404027 & -0.187068 & 3.225716 \\
26 & 1 & 0 & -2.355110 & -1.541941 & 3.635183 \\
27 & 1 & 0 & -0.800201 & 0.339043 & 3.544444 \\
28 & 1 & 0 & 1.937463 & 2.116184 & 2.181483 \\
29 & 1 & 0 & 0.670492 & 1.602767 & 3.377730 \\
30 & 1 & 0 & -0.310916 & 4.090724 & -1.936877 \\
31 & 1 & 0 & 0.154398 & 4.931813 & -0.447751 \\
32 & 1 & 0 & 1.170269 & 5.055860 & -1.890559 \\
33 & 1 & 0 & 3.589090 & 2.554198 & 0.617678 \\
34 & 1 & 0 & 3.674407 & 4.017296 & -0.376461 \\
35 & 1 & 0 & 2.735287 & 4.040811 & 1.117963 \\
36 & 1 & 0 & 2.710446 & 2.396051 & -2.905224 \\
37 & 1 & 0 & 1.208695 & 1.458281 & -2.791914 \\
38 & 1 & 0 & 2.638034 & 0.949573 & -1.875068 \\
39 & 6 & 0 & 1.840671 & -0.329034 & 2.595871 \\
40 & 6 & 0 & 0.905857 & -1.331351 & 2.872805 \\
41 & 6 & 0 & 2.341282 & -0.567150 & 1.193069 \\
42 & 7 & 0 & 1.553062 & -1.584260 & 0.661817 \\
43 & 6 & 0 & 0.702109 & -2.145568 & 1.684490 \\
44 & 8 & 0 & 3.241839 & 0.025825 & 0.619661 \\
45 & 8 & 0 & 0.009388 & -3.134071 & 1.510224 \\
46 & 1 & 0 & 2.555189 & 0.045150 & 3.321916 \\
47 & 1 & 0 & 0.557153 & -1.656676 & 3.842797 \\
48 & 6 & 0 & 1.646331 & -2.089132 & -0.665969 \\
49 & 6 & 0 & 2.898533 & -2.321802 & -1.247519 \\
50 & 6 & 0 & 2.973962 & -2.814535 & -2.550092 \\
51 & 6 & 0 & 1.810889 & -3.090752 & -3.270422 \\
52 & 6 & 0 & 0.565339 & -2.861651 & -2.682956 \\
53 & 6 & 0 & 0.476985 & -2.355562 & -1.387306 \\
54 & 1 & 0 & 3.799907 & -2.108956 & -0.685618 \\
55 & 1 & 0 & 3.948498 & -2.989216 & -2.998118 \\
56 & 1 & 0 & 1.874450 & -3.480379 & -4.282799 \\
57 & 1 & 0 & -0.345992 & -3.070261 & -3.236817 \\
58 & 1 & 0 & -0.489109 & -2.165777 & -0.935360 \\
& & & & & \\
\hline
\end{tabular}

\section*{VITA}

Name: Jennifer Sue Hirschi

Address: Albert Einstein College of Medicine
1300 Morris Park Avenue
Forchheimer Building
Bronx, NY 10461
Email Address: jennifer.hirschi@gmail.com
Education: B.S., Chemistry, Southern Utah University, 1999. Ph.D., Chemistry, Texas A\&M University, 2007.```


[^0]:    This dissertation follows the style of the Journal of the American Chemical Society.

[^1]:    *Reprinted with permission from " The Normal Range for Secondary Swain-Schaad Exponents without Tunneling or Kinetic Complexity" by Hirschi, J and Singleton, D. A. 2005. Journal of the American Chemical Society, 127, 3294-3295, Copyright 2005 by American Chemical Society.

[^2]:    * Reprinted with permission from " Insights into the Mechanism of Flavoprotein-Catalyzed Amine Oxidation from Nitrogen Isotope Effects on the Reaction of $N$-Methyltryptophan Oxidase" by Ralph, E. C.; Hirschi, J. S.; Anderson, M. A.; Cleland, W. W.; Singleton, D. A.; Fitzpatrick, P. F. 2007, Biochemistry, 46, 7655-7664, Copyright 2007 by the American Chemical Society.

[^3]:    * Reprinted with permission from " Exo-Selective Diels-Alder Reactions of Vinylazepines. Origin of Divergent Stereoselectivity in Diels-Alder Reactions of Vinylazepines, Vinylpiperideines, and Vinylcycloalkenes" by Boren, B.; Hirschi, J. S.; Reibenspies, J. H.; Tallant, M. D.; Singleton, D. A.; Sulikowski, G. A. 2003, Journal of Organic Chemistry, 68, 8991-8995, Copyright 2003 by the American Chemical Society.

