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ABSTRACT 

 

Generation of an Integrated Karyotype of the Honey Bee (Apis mellifera L.) by Banding 

Pattern and Fluorescent In Situ Hybridization. (December 2007) 

Gildardo Aquino Perez, B.S. Universidad Autónoma Chapingo;  

M.S., Colegio de Postgraduados,  

Texcoco, Estado de México, México 

Chair of Advisory Committee: Dr. J. Spencer Johnston  

 

To enhance the scientific utility and practical application of the honey bee 

genome and assign the linkage groups to specific chromosomes, I identified 

chromosomes and characterized the karyotype of the sequenced strain DH4 of the honey 

bee. The primary analysis of the karyotype and ideogram construction was based on 

banding and Fluorescence In Situ Hybridization (FISH) for rDNA detection.  FISH 

confirmed two locations for the NOR on telomeric regions of chromosomes 6 and 12 

plus an additional less frequent signal on chromosome 1, all three of which were 

confirmed with silver staining (AgNO3). 4’6-diamidino-2phenylindole (DAPI), and C-

Banding methods were used to construct the primary ideograms that served as a basis to 

further identify the chromosomes and locate important structures. The primary map was 

compared with Giemsa banding, AgNO3-banding, Trypsin banding, and R-banding. The 

karyotype of the honey bee was established as two metacentric chromosomes (1 and 10), 

two submetacentric with ribosomal organizer (6 and 12), four submetacentric 

heterochromatic chromosomes (16, 15, 4 and 13), four euchromatic subtelocentric 

chromosomes (2, 8, 11 and 14) and four acrocentric chromosomes (3, 5, 7 and 9). In situ 

nick-translation banding methods were used to verify the heterochromatin distribution. 

The cytogenetic maps of the honey bee karyotype represented in the ideograms were 

subsequently used to place 35 mapped BACs (Solignac et. al. 2004) of Solignac’s BAC 

library. As the BACs hybridized to multiple sites, the mapping was based on strength 

and frequency of the signals. Location and position of the BACs was compared with 
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those published in the different version of Map Viewer of the NCBI and BeeBase web 

sites. 10 BACs were confirmed with the last version of Map Viewer V4, 12 BACs were 

mapped based on high frequency and agreement with the earlier version of Map Viewer. 

14 BACs were mapped as confirmed based on moderate frequency of the signal and 

agreement with the last version of MVV, most of these BACs hits as a secondary signal.  
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CHAPTER  I 

 

INTRODUCTION 

 
1Based on the small genome and the impact of the honey bee in the human life 

and activities, the National Human Genome Research Institute (NHGRI) selected the 

honey bee as a high priority organism for sequencing (Evans and Gundersen-Rindal, 

2003).  Complete sequencing of the genome was carried out by the Human Genome 

Sequencing Center at Baylor College of Medicine (BCM-HGSC) supported by the 

Honey Bee Genome Sequencing Project (HBGSP), and the last version of the sequence 

(Amel_4.0) was released in March 2006 (HBGSP, 2006).  The sequence is currently 

available at the National Center for Biotechnology Information (NCBI) and BeeBase-

TAMU web sites (HBGSP, 2006).  Amel_4.0 is primarily based on a whole genome 

shotgun (WGS) assembly strategy.  The final assembly is partialy supported by the 

physical BACs because of instability of the clones used (HBGSP, 2006, Supplementary 

Notes and Methods). The availability of a cytogenetic map based on a karyotype 

characterization is vital to integrate information generated for the genome project and 

enhance the reliability and robustness of the different maps [recombinational maps based 

on RAPDs by Hunt and Page (1995), microsatellites by Solignac et al. (2004) and the 

sequence map (HBGSP, 2006)] now available. Although the sequence was assembled 

with the aid of mapped molecular markers, the order and location of the markers on a 

physical cytogenetic map are yet to be established. The molecular cytogenetic 

characterization and identification of chromosomes are an important and necessary parts 

of a complete genome project, and have been carried out in this study.  

Currently, molecular cytogenetic mapping and chromosome identification 

without a traditional karyotype characterization have been carried out in insect species 

and plants with a small genome and correspondingly small chromosomes (Guzzo et al., 

2000; Cheng et al., 2002; Kim, et al., 2003; Jiang and Gill, 2006; Shoguchi et al., 2004, 
                                                 
This dissertation follows the style of Cytogenetic and Genome Research. 
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2005 and 2007).  Small chromosomes usually exhibit little information in metaphase 

chromosomes banding; they usually are very highly packed. Even so, the availability of 

this resource is invaluable.  It is important to correlate the morphology of the karyotype 

with the available genetic and physical maps in order to increase the accuracy, and 

diagnostic value with regard to chromosomal abnormalities (Taucher et al., 1996). 

Chromosomes structures are landmarks that unambiguously can track the molecular 

markers and determine the final and correct organization and order in the maps 

(Shoguchi et al., 2005). Chromosomal banding patterns and in situ hybridization of 

fluorescently labeled DNA (FISH) provide additional landmarks for preparation of 

cytological maps. The importance of banding and physical chromosome markers 

generated interest in producing specific chromosome band probes to overcome 

limitations in resolution of M-FISH and SKY (Liehr and Clausen 2002) to detect subtle 

rearrangements in the chromosomes.   

The centromeres, nucleolus organizers (NORs), banding patterns and 

constrictions have been the most reliable cytogenetic markers. They help not only to 

oriente and validate the physical and genetic maps, they also provide important 

background information. The centromere, heterochromatin bands and telomeres have a 

definitive influence on recombination and gene expression.  They are related not only to 

phylogenetics but also to the ontogenetic history of the organism (Sullivan et al., 2001; 

Straub and Becker 2007).  Knowledge of the cytogenetic map becomes invaluable to 

study the interaction of the macro and micro-organization of the genome and understand 

its consequences in characteristics of interest such as productivity, evolution, disease 

resistance, and fitness improvement (Sumner 2003).  It is general knowledge that 

imprinting, an extremely important mechanism, is dependant on heterochromatin and 

chromosome banding.  Related with heterochromatin and chromosome banding are gene 

and chromosome inactivation, as in the X chromosome in mammals and marsupials, sex 

determination in insects [coccids and some parasitic wasp (Nur 1980, Herrick and Seger, 

1999)], and gene regulation and expression in plants (Baroux et al., 2002; de la Casa-

Esperon and Sapienza, 2003), animals (Chandra and Brown 1975; O’Neil et al., 2000; 
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Killian et al., 2001), and other insects (Lloyd, 2002; de la Casa-Esperon and Sapienza, 

2003; Field et al., 2004).  In mammals, banding patterns have a remarkable importance 

because imprinting appears to rely on differential chromatin structure. Aberrant 

imprinting has been implicated in various human cancers and, in a number of cloned 

mammals, potentially limits the usefulness of somatic nuclear transfer (Lloyd et al., 

2002).  

Knowledge of the banding distributions on chromosomes of the honey bee is 

considered particularly important to address questions about gene regulation and 

expression in caste determination and division of labor (Drupeau, 2006).  In social 

insects such as honey bee, the imprinting mechanism is thought to be related to the gene 

expression that determines caste and social organization (Queller, 2003).  Support of this 

hypothesis relies on the existent literature on the genes that reside in constitutive and 

facultative heterochromatin and the regulation of these genes by juxtaposition (Tulin et 

al., 1998), heterochromatic gene expression (Schulze et al., 2006; Shi et al., 2006), and 

position of the genes in relation to heterochromatin (Dimitri, 1995; Gvozdev et al., 1999; 

Tulin et al., 1998; Schotta et al., 2003).  Cis and trans influences of heterochromatin, and 

in ON and OFF regulation of advancing and retiring heterochromatinization have also 

reported (Dimitri et al., 1995; Gvozdev et al., 1999; Roshchina et al., 2005).  An 

imprinting and banding relationship has been documented in Prader-Willi and Angelman 

syndromes (Lalande, 1997), mosaics and imprinting polymorphisms (Jinno et al., 1994). 

In Drosophila the relation between heterochromatin banding, imprinting and gene 

silencing is very well documented (Tulin et al., 2002, Yasuhara and Wakimoto, 2006). 

It is well known that adult worker honeybees typically shift from working in the 

hive to foraging for nectar and nurses activities (HBGPC, 2006).  Genomics and 

proteomics related to these changes have been documented (Corona et al., 1999; Evans 

and Wheeler, 1999, 2000; Chan et al., 2006; Adam et al., 2006), and hypotheses about 

the possible mechanism of social behavior include chromosome organization (Robinson 

and Ben-Shahar, 2002). The latter suggest “evolution via gene duplication and 

diversification that result in changes in protein coding or regulatory sequence”.  It is 
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probable that those changes are based, at least in part, on genes expression regulated by 

heterochromatin plasticity.  

It isn’t enough to know the genome at the molecular and recombination level; it 

is important to know the structure and organization of the genome at the cytological 

level and know the macro organization of the heterochromatin in the honey bee genome.  

Knowledge of the location and position of the genes or gene clusters on morphologically 

different chromosomes and different region of the chromosome helps to understand the 

function and expression pattern of those genes. For example, the major royal jelly 

(MRJP) cluster, a cluster of genes that encodes for protein substances responsible for 

castes differentiation (Drapeau et al, 2006) was assigned a subtelomeric position in 

chromosome 11 in the Map Viewer of NCBI, although the genomic clone (57E10) that 

carries this cluster was mapped on chromosome 4 in this study.  This cluster, whether on 

chromosome 11 or 4, is located in an overlapping facultative band region, suggesting 

heterochromatin band regulation. Thus, the cytogenetic characterization of the honey bee 

genome through the banding pattern of the karyotype can easily be justified.  

Cytological characterization of the banding pattern of chromosomes also helps 

with the mapping and assembly, detecting regions of conflict between the genetic and 

physical maps.  Included are large repetitive sequence regions that in cytogenetic studies 

(and depending on staining method) are detected as dark bands. In the current physical 

and genetic maps, these region are detected as gaps, due to absence or reduced levels of 

recombination or because repetitive sequence are usually difficult to clone and sequence 

(Adams et al., 2000; Hosking et al., 2000; Topp and Dawe 2006). Many times, repetitive 

fragments are cloned as part of large unique sequences; in other cases those fragments 

integrate into a chimeric clone that detrimentally influence the mapping process 

(Yasuhara, et al., 2003; HBGPC, 2006) and reduce the reliability of those maps. Linkage 

maps and cytogenetic maps can help to reduce those problems; however, the resolution 

of linkage maps is frequently lower than the cytogenetic map, and frequently are non 

linear due to the inherent problem of differential recombination rates between gene rich 

and gene poor region, between C/G rich and A/T rich regions and at the cytogenetic 
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level, between heterochromatin and euchromatin (Kim et al., 2005b; Granau et al., 

2006). The literature in this subject is vast, one of the most recently reviews is Corradini 

et al. (2007). It is very well documented that recombination in euchromatin is higher 

than in heterochromatin. The low rate of recombination in heterochromatin is not only 

because the tightly packed nature but also for the frequent inverted repeat that prevent 

the recombination, most of these inversion are derived from mobile elements. The rate 

varies greatly with the structure and composition of heterochromatin, while transposable 

elements have contributed to the plasticity of heterochromatin by stimulating 

chromosome rearrangement or gene transfer into a particular environment (Yasuhara et 

al., 2003; Fu et al., 2002; Corradini et al., 2007).  Physical maps potentially have a very 

high level of resolution because they are based on overlapping clonal relationships, 

which enable effective usage of cloned libraries for sequencing, molecular analysis and 

comparative studies.  However, increasing kinds of evidence suggest a poor relationship 

of the physical map with linkage maps.  When this relationship fails, physical maps 

become a fragmented collection of ordered sequences (Kim, 2003). A cytogenetic map 

alone is limited in utility because of the resolution; and that limitation is greatest for 

small chromosomes and genomes. However molecular cytogenetics resolution assisted 

by FISH typically will exceed the resolution of linkage maps in large, low-

recombination regions (Kim, 1993).  

Cytogenetic maps based on karyotype characterization (arm ratio, position of 

constrictions, banding pattern) that are enriched with FISHed molecular markers enable 

comparative studies, detection of changes in chromosomal structures, patterns in mitosis 

and meiosis, and provides elements to assess recombination and physical map 

relationships (Kim, 1993; Harper and Cande, 2000). Fluorescence in situ hybridization 

(FISH) has become the most reliable technique for physical mapping.  However its 

resolution is limited by the size of the probes. With use of antibodies, detection is 

possible for fragments as small as 5 KB, but with the consequently annoying background 

(Bentley, 1990). Probes of 1-3 KB long, in some cases < 1 KB, have been detected but 

the frequency of detection and reproducibility is very low (Jiang and Gill, 2006).  In 
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general, FISH cannot resolve signal separation beyond 130 KB (0.2-3 µm) in interphase 

nuclei (G2) and 1Mb (0.4µm) in metaphase chromosomes (Bentley, 1990, Cheng et al., 

2002).  Using two-color FISH to metaphase chromosomes; the resolution between 

signals cannot be increased beyond 750 kb (Bentley, 1990). However, with fiber-FISH 

the resolution can be increased (to 3.21 kb/µm in rice chromosome analysis Cheng et al., 

2002). Detection and correct location of probes can also be affected by the size and 

phase of the chromosomes, as well as occurrence of repetitive DNA in the probes and 

genomes, all of which necessitate high levels of assessment (Cheng et al., 2002; Jiang 

and Gill, 2006).  

Currently, FISH techniques have been diversified to fit almost every necessity.  

FISH has been used to determine chromosomes number and structure (Davison et al., 

2002; Kearney 2006; Jiang and Gill 2006), changes in ploidy and introgression (Dong et 

al., 2001; Eastmond et al., 1995), genome evolution (Tönnies et al., 2001; Wienberg, 

2005), transgenesis and dynamics of mobile elements (Dong et al., 2001; Krustaleva and 

Kik, 2001), karyotyping and chromosome identification (Geigl et al., 2006), changes in 

chromosome structure and abnormalities (Boggs and Chinault, 1997; Sloter et al., 2000; 

Natarajan and Boei, 2003), microbiology detection (Moter and Göbel, 2000; Bottari et 

al., 2006), DNA-peptide association detection (Bottari et al., 2006), chromosome 

banding (Liehr et al. 2006), and genetic improvement (Oleszczuk et al., 2002). Ciona 

intestinalis has very small chromosomes and a small genome, and its sequencing maps 

and scaffold alignments are supported by FISH landed BACs (Shoguchi et al., 2005 and 

2007). The FISH procedure has been routinely used to verify the genome sequence maps 

in human and Drosophila (The International Human Genome Mapping Consortium 

2001), to characterize the genes of Drosophila that resides in heterochromatin regions 

(Rossi et al., 2007), to map genome heterochromatin sequencing (Hosking et al., 2002), 

and to determine structural chromosome organization using mobile elements (Yan et al., 

2002), to detect and differentiate of sex chromosomes, as in several species of 

Lepidoptera (Traut et al., 1999). In Aedes aegypti, FISH is used to integrate the genetic 

linkage groups and the physical maps (Brown, 2001; Sallam et al., 2005; Severson et al., 
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2004),  In Bombyx mori FISH is applied to assign the small, holocentric chromosomes to 

linkages groups using a BAC library (Yoshido et al., 2005) and comparative analysis 

(Yasucochi et al., 2006).  

In the honey bee, FISH of repetitive sequence has been used to characterize 

ribosomal organizer regions (Beye and Moritz, 1993), centromeres (Beye and Moritz, 

1994), different honey bee chromosomes types (Beye and Moritz, 1995), and telomeres 

(Sahara et al., 1999; Frydrychová et al., 2004). FISH to metaphase chromosomes and to 

small chromosomes in some insects has been a big challenge.  However in some dipteran 

that form polytene chromosomes, including many Drosophilidae and mosquitoes, and in 

some Lepidoptera species, the polytene chromosomes have been successfully used for 

FISH.  In insects having small chromosomes and genomes but no polytene 

chromosomes, FISH to mitotic prophase and meiotic chromosomes without the benefit 

of a reliable karyotype has been used with limited success.  Chromosome identification 

can be a limiting factor, especially in those cases where the linkage map and physical 

map are still incomplete. In the latter case, the combination of banding pattern and FISH 

could be a solution to improve the reliability and agreement between the 

recombinational and physical map. This approach has been routinely used in the study of 

chromosome abnormalities in animals.  Giemsa staining and C-banding are frequently 

used in FISH experiments, and this technique could be used to provide chromosome 

identification and karyotype characterization in the honey bee, and to support the 

previously mentioned maps.   

Any approach that differentially characterizes the structure and organization in a 

small chromosome is of potential value for the study of the honey bee.  In situ 

incorporation of labeled dUTP-biotin or dUTP-digoxigenin on spread chromosomes by 

polymerase I can be produced whereever a nick is induced by DNase I.  When this 

incorporation is followed by subsequent development of signals using fluorochromes, 

the process is known as nick banding or mapping of hypersensitive sites in the 

chromatin. This technique was developed and extensively used during the 1980 and 

1990 decades and differs from the more recently developed FISH-banding.  The latter 
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uses chromosome microdisection and PCR to obtain probes, subsequently performing 

FISH on chromosomes spreads. FISH banding is considerably more expensive than in 

situ nick banding, although the increased cost of FISH banding is certainly justified in 

detection of human chromosome abnormalities (Liehr and Claussen, 2002; Liehr et al., 

2002 and 2006).  Here we show the value of nick banding with the small chromosomes 

of the honey bee, compare that to other banding approaches and suggest that the insights 

gained hemake this method of general utility for other organisms with small 

chromosomes. 
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CHAPTER II 

 

CHARACTERIZATION OF THE KARYOTYPE OF DRONES OF STRAIN DH4 

OF Apis mellifera L. 

 

Introduction 

 

The honeybee is an important model organism to study social behavior, 

communication, response strategies against parasitism and diseases, responses to 

disasters, and medical applications of royal jelly (RJ) in cancer and neurological 

disturbances. Because of that importance the honey bee genome was selected for 

sequencing [The Honey Bee Genome Sequencing Consortium (HBGSC), 2006].  As part 

of that effort, the complete karyotype of the sequenced strain was produced and the 

banding patterns (position of heterochromatin), centromere position, and other 

chromosomal landmarks were described.  The goal was to make it possible to 

subsequently locate on the karyotype the molecular markers generated for the honey bee 

genome sequence project.  

The chromosomes of the honey bee have been studied since 1901, when the 

haploid chromosome number was established, n = 16 (Fahrenhorst, 1977; Beye and 

Moritz, 1994).  The haplo-diploid chromosome numbers were confirmed by Hoshiba 

(1978) and Hoshiba et al. (1981).  Karyology studies were published for A. mellifera 

(Hoshiba and Kusanagi, 1978; Hoshiba 1984 a and b; Hoshiba and Imai, 1993; Hoshiba 

and Okada 1986; Stanimirovic et al., 2005) and for the related genera Bombus (Hoshiba, 

1995) and Melipona (Rocha and Pompolo, 1998; Rocha et al., 2002; and 2003). Based 

on arm-length ratio, Hoshiba and Kusangi (1978) classified honey bee chromosomes 

into 8 metacentric and 8 submetacentric chromosomes. Later, Hoshiba (1984a), using 

the Sumner et al. (1972) C- banding method and Levan et al. (1964) chromosome 

classification, reported that the karyotype of honey bee consists of 4 metacentrics 
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(chromosomes 1-4) and 12 submetacentric or subtelocentric chromosomes.   C-bands 

were found in all chromosomes except 1 and 9.  Hoshiba and Okada (1986) reported the 

same karyotype for Apis cerana and A. mellifera ligustica, with one difference, 

presumably associated with ribosomal DNA sequence (NOR), in A. cerana chromosome 

2.  In all prior studies, chromosomes 1 and 16 were the only ones consistently and 

correctly identified; the rest of the chromosomes usually were classified in groups based 

on similarity of characteristics, such as banding pattern and centromere position.   

Analyses of the prior chromosome classifications demonstrated inconsistencies 

among the classification schemes (Beye and Moritz, 1994, 1995). Attempting to 

overcome those difficulties, Beye and Moritz (1993, 1994, and 1995) carried out a series 

of studies using molecular markers, including rDNA, telomeric (Alu I) and centromeric 

(Ava I) sequence probes. According to Beye and Moritz (1993), rDNA probes from 

pD103 clone coding for 28S, 18S, 5.8S and 2S of Drosophila melanogaster (Tautz et al., 

1988) tag two chromosomes at telomeric positions, no chromosome classification was 

given in this study. A honey bee centromere-specific probe isolated by CsCl-

bisbenzimide gradient and cloned in E. coli using the pUC19 vector, tagged the 

centromere position in at least 14 chromosomes, in this study two metacentric, four sub-

metacentric, two subtelocentric and eight telocentric chromosomes were classified (Beye 

and Moritz, 1994). Later, Beye and Moritz (1995) using the repetitive sequence Alu I 

[Alu I family from pSAM clone containing telomeric repeats (Tares, 1993)] identified 

telomeric positions in 11 of the 16 chromosomes. In the same study, Beye and Moritz 

(1995) combined the three probes to classify the chromosome set of honey bee into three 

groups; the first and third group included the largest and the four shortest chromosomes, 

respectively.  The remaining eight chromosomes were in the second group. They also 

described chromosomes individually and characterized the karyotype based on positive 

signals for the three probes. Since the description was based on position of the probes, 

the classification based on arm ratio was not clear. Using the ideogram provided, the 

probable classification is, one metacentric (C1), three sub-metacentric (C2, C6, C5), five 

sub-telocentric (C4, C8, C11-C13) and seven telocentric (C3, C9, C10, C13-C16) 
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chromosomes. The signal at centromeric and telomeric positions was very 

heterogeneous. The probe used for centromeric detection is not specific for this 

structure, since the signals comes from constitutive heterochromatin which is probably 

not only present in pericentromeric heterochromatin but in several other parts of the 

chromosomes as well.  Additionally, there are at least two chromosomes with low or no 

pericentromeric heterochromatin (Hoshiba, 1984a) and others with only one whose 

positions varies, thus identification of the centromere with repetitive elements from 

constitutive heterochromatin is inaccurate. They also used a cocktail with all the probes 

mixed, but they did not use different labels for the probes in order to identify each probe.  

Because the ideogram, karyotype characterization and chromosome identification were 

based on metaphase and overlapped chromosomes; therefore, it is difficult to contrast the 

banding with the signals of the probes. Besides, the probes used by Beye and Moritz 

(1995) were not available to repeat the experiment in the present study.  Stanimirovic et 

al. (2005), worked with different ecotypes of A. mellifera carnica from Yugoslav regions 

using trypsin-giemsa banding (GTG), and described chromosome length and banding 

pattern differences between ecotypes. However, the studies were for comparative 

purposes and lack a complete karyotype characterization.  

For the reasons given above, it was not possible to use the heretofore described 

karyotypes to locate the molecular markers generated for the honey bee genome 

sequence project. Even so, the published results were a very good starting point and 

were used as such to help generate a correct and complete karyotypic characterization of 

honey bee chromosomes. In this study we present the karyotype characterization based 

on a large number of cells of the sequenced DH4 strain of European honey bee; and we 

describe banding patterns generated for BaOH2 (C-banding; Sumner, 1972), DAPI 

banding, AgNO3 NOR banding pattern (Howell and Black 1980), Giemsa banding, and 

trypsin banding (Seabright, 1971; Stanimirovic et al., 2005). The resulting cytogenetic 

map is used to locate some of the BAC-DNA generated by the Solignac (2004) library.  

Those same BACs were used to support the recombination map sequence utilized in the 

reconstruction of the completed honey bee genome. 
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Material and Methods 

 

Animals 

All drones used in this study come from the DH4 queen. Drones from that same 

queen were used to construct the physical genomic sequence. The DH4 drones were 

obtained from Danny Weaver of BeeWeaver Apiaries, Navasota TX.  Individual drones 

were collected in the morning, placed in tubes and transported to the Insect Genetics 

Laboratory in the Department of Entomology, Texas A&M University, without any 

specific pre-treatment.  

 

Chromosome preparation  

Testes were obtained from white-eye DH4 pupae drones by dissections that were 

carried out in physiological saline supplemented with 5% sucrose and 0.01 % colchicine. 

Washed and cleaned testes were placed into 1.5mL plastic tubes containing fresh 

supplemented physiological solution and incubated at 36oC for 35-40 min. Following 

incubation, testes were washed with double distilled water three times before incubation 

in double distilled water, for 7 minutes or until the follicles show a grainy appearance.  

The testes were next sucked in and out (aspirated) with an insulin 1mL syringe. The 

resulting macerate was centrifuged 3 min at 3000rpm, the pellet was dissolved in 

Methanol:Acetic Acid (3:1) for 30 min and centrifuged for three times. This final cell 

solution was examined for chromosomes before being applied onto RITE-ON Micro 

slides. From 5 to 8 µL per slides was applied on each slide. Before the applied fixative 

solution evaporates, one drop of additional fresh fixer was applied on the slides to 

remove debris. It was very difficult to get consistently good chromosomal preparations, 

although it was possible to obtain 40 to 60 slides with only one pair of testes. Slide 

preparations were dried overnight and treated with an alcohol series (70%, 80% 100%) 

then stored at -80oC. The chromosome preparations eventually used for banding studies 

were more than 2 years old. When a slide preparation was required for use, it was placed 
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in cold alcohol series and fixed with a drop of Methanol:Acetic Acid (3:1) and let dry at 

room temperature 30 min to 2 hours, and finally were placed on a hot plate at 52oC 

overnight.  

 

Giemsa-banding (G) 

The slides were equilibrated in 2xSSC buffer for 20 min at 65oC, and then the 

slides were incubated in Giemsa stain [2 mL of Gurr’s Giemsa Improved R66 (BDH) in 

50 mL of buffer] dissolved in Gurr buffer pH 6.8 for 45 min at room temperature (RT). 

The slides were finally briefly washed in distilled water and allowed to drain until dried. 

Once dry, slides were mounted in Kleermount® xylene solution permanent mounting 

media. ISCN (2005) identifies this method as G. 

 

C-banding (CBG) 

The method of Sumner (1972) with some modification for chromosomes fixed 

with methanol:acetic acid (3:1) was used. The slides were predigested in 0.2N 

hydrochloric acid for 20 min, then washed with ddH2O before applying a 5% 

Ba(OH)2.8H2O solution and incubating for 3 min at 45oC. The slides were then washed 

in 2xSSC buffer for 20 min at 65oC and stained in Giemsa as specified in the Giemsa 

banding protocol. The stained slides were briefly washed in distilled water, blotted, dried 

and mounted in Kleermount® xylene solution permanent mounting media. ISCN (2005) 

identifies this method as CBG. 

 

Trypsin-banding (GTG) 

Denatured slides were equilibrated for 5 min in PBS pH 6.8 before incubation in 

0.25 % trypsin (Trypsin-EDTA, SIGMA cat T4174) for 15 sec and stainied according to 

Seabright (1971) and Sumner (1994). The stain utilized was the same as specified for G- 

and C-banding. After air drying, slides were mounted in Kleermount® xylene solution 

permanent mounting media. ISCN (2005) identifies this method as GTG.  
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R-banding (RHG) 

The slides were incubated in 1M NaH2PO4 solution pH 5.5 for 20 min at 88oC, 

washed with pre-warmed distilled water at 36oC and equilibrated with Gurr buffer before 

staining with Giemsa solution according to Sumner (1994). After air drying, slides were 

mounted in Kleermount® xylene solution permanent mounting media. ISCN (2005) 

identifies this method as RHG. 

 

Nucleolus organizer (AgNO3-NOR) 

The methods of Howell and Black (1980) and Bilinski and Bilinska (1996) gave 

very good results. The first was preferred because that technique does not include any 

additional staining, renders better resolution in old chromosome preparations of honey 

bee, and allows analysis of the banding pattern generated by AgNO3.  Briefly, 4 g of 

silver nitrate dissolved in 8 mL of deionized mili-Q water as aqueous solution, and 2 % 

of gelatin U.S.P. G-7 (Fisher cat # 383309) as colloidal developer were utilized.  Just 

before use, 200 µL of developer and 400 µL of aqueous solution were mixed in a 1.5 mL 

plastic tube. Immediately 100 µL of the mixed solution was applied to the slides and 

covered with a 22x40mm plastic coverglass. Each slide with its coverglass was placed 

on a hot plate at 70oC and held there until the solution turned golden-brown. Then, the 

slide was rinsed off and washed with deionized water; air dried and mounted in 

Kleermount® xylene solution permanent mounting media. ISCN (2005) identifies this 

method as AgNO3-NOR.  

 

DAPI-banding and FISH hybridization  

To correct imprecision because of variation in size of the chromosomes in 

different stages of prophase of mitosis and meiosis, rDNA was used as marker in the 

DAPI banding technique. According to Beye and Moritz, (1993), rDNA tags 

chromosomes 4 and 11. Because the RNA marker used by Beye and Moritz (1993, 1994, 

and 1995) was not available for this work, we used the clone BDG-512 carrying a 
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plasmid p3629 with a 1750pb insert of S. cerevisiae 18S rDNA kindly provided by Dr. 

P. Klein of the Institute for Plant Genomics and Biotechnology at Texas A&M 

University. Conventional DNA hybridization was performed based on Pinkel et al. 

(1986), Beye and Moritz (1995) and Sahara et al. (1999). Detection, enhancing and 

postwashing was done according to Schubert et al., (2001).  Bovine Serum Albumin 

(BSA, protease free, Jackson Immuno Research cat 001-000-162) and Normal Goat 

Serum (NGS, Roche cat 03117839001) were used instead of Boehringer blocking 

reagents, as the former protocol recommend.      

Slides treated for fluorescence hybridization (FISH) detection were 

counterstained. The slides were briefly equilibrated in 4xSCC plus 0.2% Tween 20,  then 

250µL of 5µg/mL of 4’ 6-diamidino-2phenylindole (DAPI, Sigma, Cat# D-9542) in 

McIlvaine’s buffer (9 mM citric acid, 80 mM Na2HPO4·H2O, 2.5 mM MgCl2, pH 7.0) 

was applied and the slide incubated for 30 min at room temperature. After a brief wash 

in 4xSCC plus 0.2% Tween-20, 25 µL of home-prepared antifade solution was applied 

to slides. The antifade was prepared following Trask (1980) recommendations. The 

slides were stored at -20oC for a week before microscope analysis.  

 

Microscope analysis  

The slides treated for G-, C-, R-, NOR-, and trypsin banding were examined with 

a light Zeiss microscope equipped with phase contrast and pictures were taken with a 

Nikon Coolpix 45000 adapted camera (Edmund Scientific). The DAPI stained slides 

were examined with a motorized epi-florescence microscope Olympus AX-70 and 

pictures were digitalized with a Peltier-cooled 1.3 M pixel Sensys camera (Roper 

Scientific) and MacPro v. 4.2.3 digital image system (Applied Imaging Corp., Santa 

Clara Cal., USA) located in the Laboratory for Plant Molecular Cytogentics, Soil and 

Crop Science Texas AM University. The pictures from DAPI staining were converted to 

black and white negatives using the Irfanview V3.98 (Irfan Skiljan, 2006) program in 

order to reveal the banding pattern. In the rest of the banding treatments, the pictures 

were contrast enhanced in the same program and processed in Adobe Photoshop V 6.0.  
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Data recording and analysis 

The data recording was based on prophase, where, even given the instability 

across prophase, the banding pattern is clear and measurable. Different stages of 

prophase for DAPI staining where determined by visual characteristics following the 

general observation of Kireeva et al. (2004). Thus, four stages were considered, 

prophase I (early prophase), prophase II (middle prophase), prophase III (Late prophase) 

and prophase IV (Pre-metaphase). The banding recording for DAPI experiments were 

based on the bands of prophase I (early prophase) and prophase II (middle prophase). 

Measurements were made whern the bands were clearly distinguished and separated, and 

it was possible to measure from the telomere of the short arm to the telomere of the long 

arm. Beginning at the telomere of the short arm, the start of each band and the end of the 

band were measured, obtaining a couple of values for each band, which values 

represented the range and length of the band. Using only prophase I and prophase II, the 

bands were arrayed in rows by chromosome and columns by similar range, using the 

length and the middle point of the range. Prophase III and prophase IV were includeded 

in the band sorting.  Typically, when several bands were fused, the measurement of the 

end or start of one band matched with the end or starti of the bands in the chromosomes 

where there was no overlap. The coincidences allowed location of the block at the 

correct position. These same block were further subdivided into the correspondent bands 

whenever evidence of the fused bands were clearly observed as the slight constrictions 

that delimiting the edges. When subdivision was not possible, the band was considered 

as a block in the correspondent stage of prophase, which was frequently the case for late 

prophase and prophase IV.  This procedure not only helped to sort the bands, it also 

verified the chromosome identifications. 

Subsequently the measurements sorted by phase, to see if bands are consistent 

through the phases, appear several times in a single stage of prophase or appear (five 

times) in all stages.  When a band was present only one to three times in all stages of 

prophase, it was considered a possible artifact. However, if the three bands appear in a 
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single stage of prophase, it was considered enough to include it in the map.  When a 

band was present only once at every stages of prophase it also was mapped, because 

overlapped bands in late prophase typically showed evidence of that band. 

To allow comparisons between chromosomes at different mitotic phases and 

between the different chromosomes in each stage, relative values (position relative to 

total chromosome length) were used to locate the bands and all other characteristic of the 

karyotype of the honey bee. To assign a relative size to each chromosome, we 

considered the haploid complement total 100%.  To locate chromosome characteristics, 

each chromosome's total length was considered 1.0, and a fraction of this number was 

used to locate the positions of characters of interest on that chromosome (ISCN, 2005). 

Since the banding and chromosome size throughout prophase is variable, large 

sample sizes, and a step-by-step process in chromosome classification and identification 

were carried out. In each step a file of data was generated to improve the chromosome 

classification and identification in the next step. For the final file, the data was sorted 

according to length, arm ratio and band position.  

   

Results 

 

Data description 

The BDG-512 yeast rDNA clone consistently hybridized at a telomeric position 

in the short arm of two chromosomes. These chromosomes, when classified by size, 

were assigned the numbers 6 and 12; this result was used for all subsequent chromosome 

classification and identification. To obtain the ultimate karyotypic description of honey 

bee chromosomes, a step-by-step procedure was used. Three reasons obligated us to 

follow this procedure.  First, it was very difficult to identify individually the 

chromosomes in the absence of a prior, correct description of the karyotype.  Second, the 

irregular morphology at prophase and the very heterochromatic and reduced size of the 

chromosomes at metaphase changes the morphology. Third and most problematic was 

that during the mapping process additional information became available.  The new 
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information frequently contradicted our current results, obligating us to reanalyze our 

data. For example, Baudry et al. (2004) using half-tetrad analysis concluded that 

chromosomes 2 and 4 are telocentric - a result that was not confirmed in the third 

iteration of analysis of our data.  The Honeybee Genome Sequencing Consortium 

(HBGSC), states that the genome of the honey bee chromosomes is arranged in 15 

telocentric and one metacentric chromosome (HBGSC, 2006). However, the 

supplementary information of that same publication states that there are probably three 

metacentric chromosomes instead of two - again a result that was not confirmed in the 

third iteration of our data.   

As evidence of improved, repeatable chromosomal identification, we briefly 

compared 3 data files (also called trials) obtained during this process.  Compared were 

file 1 (21 cells analyzed), file 2 (60 cells analyzed) and file 3 (166 cells analyzed). File 2 

was produced using the arm ratios, total length and band position information gleaned 

from File 1.  File 3 took into account the conclusions from the analysis of File 2. And, 

finally, to generate the ideogram for the honey bee karyotype, a fourth file was generated 

which was the file 3 improved. File 3 was three times reviewed to verify the new 

published information, including that in Baudry et al. (2004) and HBGSC (2006).  File 3 

consisted of measurements from 166 cells and 2656 chromosomes read from 18 slides 

that came from testes of a single drone. A complementary file from five banding 

methods (BaOH2-C-banding, trypsin-banding, AgNO3-NOR-banding, giemsa-banding 

and R-banding) consisted of measurement of bands from 54 cells on 15 slides, with at 

least three pictures per slides. The slides also came from a single drone - but a different 

individual than was used for DAPI experiments. The two drones were from the DH4 

queen and were collected in the same day and hour.  When completed, files 1, 2, and 3, 

without the complementary file, were used to show the improvement in the chromosome 

classification. In this comparative study only mitotic chromosomes were used because 

the size of the chromosomes was more measurable and resolution of banding pattern was 

better than in meiotic and metaphase chromosomes.  
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Overall, the haploid size of the genome was assumed to be 100%, the average 

chromosome size was 6.25% and individual sizes ranged from 12.15 % to 3.5 % 

depending on the chromosome and phase (Table 1). Absolute values (µm) were used to 

express general comparisons among trials and stages of prophase. Comparison among 

chromosomes and their characteristics were expressed in relative values.  Only when 

necessary were absolute values reported.   

 

Table 1. Mean and standard deviation for chromosome length (µm and %) and arm ratio 
for different data files. The means represent the average size of all chromosomes. There 
are two independent comparisons; one between the three files (Trials) and the other 
between stages of prophase (prophase I - prophase IV).   

Length (Rel) 

Absolute 
Length 
(µm) 

Standard 
Deviation 

Relative 
Length 

(%) 
Standard 
Deviation 

Arm 
Ratio 

Standard 
Deviation N 

Files (Trials) 
Trial-1 2.453a 1.029 6.231a 1.855 2.860b 1.520 337 
Trial-2 2.288b 1.083 6.257a 1.900 2.278a 1.378  960 
Trial-3 2.114c 0.982 6.241a 2.097 3.201c 1.363 2657 

Stages of prophase 
Prophase-I 3.366a 1.535 6.268a 2.465 3.292d 1.641 407 
Prophase-II 2.485b 0.973 6.234a 2.118 3.114c 1.546 945 
Prophase-III 2.024c 0.741 6.239a 2.003 2.956b 1.326 1563 
Prophase-IV 1.640d 0.566 6.250a 1.861 2.822a 1.366 1036 
Tukey’s test: Means for groups in homogeneous subsets are displayed.  These are based on Type III 
Sum of Squares. The group sizes are unequal and the harmonic mean of the group sizes is used. Type 
I error levels are not guaranteed to equal α = 0.05. 
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Fig. 1. Standard deviation for three files and stages of prophase. (a) Standard deviation for relative 
length (%), absolute length (µm), and arm ratio for balanced (solid lines) and unbalanced (dotted 
lines) data. for a balanced data set with sample size N = 21 cells (4 Prophase I, 5 Prophase II, 8 
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variance component of error for three files (trials), (e) per chromosome coefficients of 
variation. 
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A nested analysis of variance for arm ratio finds highly significant differences 

across trials, stage of prophase; and chromosomes but no higher order effects (Table 2). 

  

Files comparisons 

Phase and file (trial) are not correlated to relative chromosome length (-0.008, p 

< 0.601 and 0.021, p < 0.138), but are correlated with absolute length and arm ratio (r = - 

0.121, r = - 0.487, p < 0.000 and r = 0.273, r = -0.088 p < 0.000 respectively). Because 

the later trials include more early phases, where chromosomes are longer, the 

correclation makes it difficult to demonstrate the expected improvment in the data in the 

successive data files Fig. 1a, b. However,  the model R-square fit is clearly better for the 

third trial Fig. 1C) and the mean square error (Variance (Error) Component) is 

significantly reduced for all but the absolute length, as expected (Fig. 1d),   

 

Table 2. Analysis of variance (ANOVA) for arm ratio. ANOVA assuming that each trial 
variable is nested under the model Yijk = µ + Trial(αi) + Chromosome (βj) + Phase (γk) +  βj(i) + 
βi(j) + βj(i*j) + Eijk    

Dependant variable:  
Arm Ratio 
Source 

Type III 
Sum of 
Squares df Mean Square F Sig. 

Corrected Model 4920.624 191 25.762 24.129*** 0 
Trial 549.0978 2 274.549 257.146*** 1.3E-106 
Phase 24.62773 3 8.209 7.689*** 4.02E-05 
Chromosome 879.2951 15 58.620 54.904*** 5.4E-152 
Error 4923.054 4611 1.068   
Chromosome(Trial*Phase) 695.9451 90 7.733 0.777 NS 2.74 
Chromosome(Trial)  982.8938 30 32.763 1.789 NS 19.4 
Chromosome(Phase) 962.6656 45 21.393 0.384 NS 3.06 

 

 

The improvement of the arm ratio in each chromosome is shown in Fig. 1e. 

Clearly, all chromosomes show a reduced coefficient of variation in the last file (Trial-3) 

compared with the previous ones. The highest coefficients of variation suggest that 

chromosomes 6, 9, 10 and 11 were the most difficult chromosomes to identify, while 1, 
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2, 8 and 13 were the most consistently identified. An unexpected result is the 

consistently high variability observed in the short chromosomes 13-16; some 

characteristics of these chromosomes explain this variability. The presence of a 

euchromatic band in the p arm of C14, the loss of a telomeric satellite in the p arm in 

C15, which with a centromere-like structure in the middle of the C15 not only add 

variation but also make this chromosome more metacentric and easy confounded with 

C10.  The variation of C16 comes from difficulty identifying the centromere because 

most of the short arm of C16 is heterochromatic from early prophase. Variation in the 

arm ratio for C4, C8, and C11 comes from the euchromatic band in the short arm. In C2, 

variation is explained by the presence of two additional centromere-like structures, one 

of at a sub-telomeric position. Examples of these characteristics can be observed in the 

karyograms of Fig. A.1. 

Variation in the lengths of the chromosomes was affected by the presence of 

structures such as the constrictions in the large arms of chromosomes 3, 4, 5, 7, 8, 9 and 

13, missing fragments in C1, and satellites in the short arms of chromosomes C3, C5, 

C11 and C15, some of which can be observed in Fig. A.1.       

 
Chromosome condensation  

Although later paragraphs explain how the different kinds of chromatin were 

determined, the result first mentioned refers to DAPI staining method that later will be 

compared against Ba(OH)2, a more specific method for constitutive heterochromatin.  

The relative length of chromosomes, short and long arms were negatively correlated 

with heterochromatin content (r = -0.329, -0.248, -0.321; p < 0.000 respectively), which 

means more heterochromatin equates to shorter chromosomes and arms. However, the 

same variables (length of chromosomes and arms) were positively correlated with 

number of bands (r = 0.437, 0.246, and 0.446, p < 0.0001 respectively). The 

pericentromeric heterochromatin was negatively correlated with length of chromosomes 

and arms (r = -0.530, and -0.521; p < 0.000 respectively). Also negatively correlated 

were long and short arms length and amount of constitutive heterochromatin (r = -0.514 
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and -0.271, p = 0.000 respectively). The above correlations are explained by the 

progressive condensation and heterochromatinisation during successive prophase stages. 

The correlation also occurs because as the arms become shorter more heterochromatin is 

detected. DAPI in later stages of the honey bee prophase does not differentiate clearly 

between different kind of heterochromatin and Ba(OH)2 does.  This difference identifies 

the facultative heterochromatin that was positively correlated with the total length, short 

arm and long arm length (r = 0.270, 0.084, and 0.293; p < 0.000 respectively). Thus, 

condensation seems to be significantly influenced by facultative and constitutive 

heterochromatin of the chromosome during prophase.  

 

General karyotype description  

To facilitate reading, the chromosomes and stages of prophase will be 

subsequently shortened to the letter C and P followed by an Arabic number for each 

chromosome and a roman number for each stages of prophase, for example 

chromosomes 1 and 7, will be referred as C1 and C7 and PI, PII, PIII, and PIV will 

reference prophase I, prophase II, prophase III and prophase IV, respectively.  

As explained in detail in appendix A.2, the arm ratio and the length of the 

chromosomes decrease through prophase, except for C1, C6, C8, C10 that shows not 

significative changes through stages of prophase in arm ratio (Fig. 2b and 2a). The short 

and long arms (Fig. 2c) condense at similar rates, except for C13, C15 and C16, which 

exhibit more variable condensation in the short arm in successive stages of prophase.    

Overall, the ratio of the long arm to the short arm decreases in most chromosomes (table 

1), simply because the long arm condenses more than the short arm during successive 

stages of prophase.  The decrease is seen for all chromosomes except 1 and 10, although 

the variation is sufficiently high that the change is significant only for chromosomes 2, 

3, 4 and 16.  The exceptional chromosomes, 1 and 10, are metacentric, and both arms 

condense at similar rates agree with the arm ratio approximately 1 throughout (Fig. 2a). 
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Fig. 2. Means of (a) Arm ratio, (b) chromosome, (c) short and (d) long arm length of individual 
chromosome at four stages of prophase , and stained with DAPI.  
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The chromosomes can be classified either statistically using the means of the length and 

arm ratio or the Levane’s (1964) nomenclature. Using the last mentioned, the 

chromosomes can be classified in three groups: two metacentrics, six submetacentrics, 

and eight subtelocentrics chromosomes (Table 3). Using the arm ratio, the chromosomes 

can be ranked from most consistently metacentric to most telocentric, with the 

chromosomes assigned into 10 groups: chromosomes 1 and 10 (Group 1), 12 and 6 

(Group 2), 15 and 16 (Group 3), 4 and 13 (Group 4), 14, 8 and 11 (Group 5), 14, 8, 11, 

and 2 (Group 6), 8, 11 and 2 (Group 7), 9 and 7 (Group 8), 5 (Groups 9) and 3 (Group 

10). Using this grouping and Levane’s classification, an empirical grouping can be 

generated as is shown in the Table 3 and Fig. 3. Combaning the two methods, a 

subsequent empirical grouping eliminates the confusing overlapping of the Tukey’s 

grouping and the chromosome heterogeneity of the Levane’s (1964) classification. Thus 

chromosomes 1 and 10 are not significantly different and according to the Levan et al. 

(1964) are classified as metacentric. C6 and C12 are also not significantly different and 

are grouped as submetacentric (Sub-Metacentric-A).  Chromosomes 4, 13, 15 and 16 are 

sub-metacentric (Sub-Metacentric-B). In the same way the sub-telocentric 

chromosomes, 14, 8, 11, 2, 9, 7, 5, and 3 were separated into two groups based on arm 

ratio. Perhaps this grouping has no meaning, but it is important to mention that the Sub-

Metacentric-A group contains the chromosomes with the ribosomal signal, C6 and C12. 

The Sub-Metacentric-B grouping contains the highly heterochromatic chromosomes; the 

Sub-Telocentric-A groups contain the most euchromatic C2, C8, C11, and C14. The last 

group contains the chromosomes that can be considered acrocentric. If a telocentric 

chromosome exists, it should be C3 - in the early stages of prophase, the arm ratio is 

very close to the threshold value (arm ratio = 7) given by Levan et al. (1964). Although 

C9 seems to be less telomeric than C3, a visual inspection suggests that the C9 could be 

also telomeric. Thus, C9 and C3 could be considered the most acrocentric chromosome 

of the honey bee karyotype. A number of the chromosomes are categorized into different 

groupings as prophase progresses (Fig. 3). As can be observed in the Fig. 3, the 
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chromosome classification is influenced by the stages of the prophase, however in the 

late prophase and pro-metaphase, the chromosome classification stabilizes.  

 

Table 3. Chromosome classification based on arm ratio. Shown are means and standard 
deviations of arm ratio, Tukey’s means comparison (α = 0.05) with different letters assigned to 
significantly different means, Levan et al. (1964) chromosome classification and empirical 
groupings shown as different colors. 

Chrom 
osome 

Standard 
Deviation 

Chromosome Groups and Classification  Chromosome 
Classification 
(Levan et al., 1965) 

Metacen 
tric 

Sub-Meta 
centric-A 

Sub-Meta 
centric-B 

Sub-Telo 
centric-A 

Sub-Telo 
centric- B 

1 0.1930 1.241a     Metacentric 

10 0.2369 1.430a     Metacentric 

12 0.7358  2.559b    Sub-Metacentric 

6 0.6404  2.651bc    Sub-Metacentric 

16 0.9194   2.809bcd   Sub-Metacentric 

15 0.8047   2.862cd   Sub-Metacentric 

4 0.7403   2.919cde   Sub-Metacentric 

13 0.8856   2.974de   Sub-Metacentric 

14 1.0235    3.189ef  Sub-Telocentric 

8 0.9767    3.412fg  Sub-Telocentric 

11 1.0473    3.447fg  Sub-Telocentric 

2 1.1222    3.697g  Sub-Telocentric 

9 1.1187     4.047h Sub-Telocentric 

7 1.1130     4.234h Sub-Telocentric 

5 1.1125     4.539i Sub-Telocentric 

3 1.5657     5.207j Sub-Telocentric 

 

 

Chromosome banding  

The chromosomes stained by with the different band techniques show no 

significant differences in relative chromosome size and arm ratio (Table 4). The 

variation in arm ratio observed among four of the six treatments and during prophase are 

due to unbalanced number of observations for the different treatments and stages of 

prophase; however the relative length were homogeneous through the groups (Fig. 4a), 
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and the final chromosome classification based on length and arm ratio was not affected 

because of that variation (Fig. 4b). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Average length and arm ratio of honey bee chromosomes. Means comparison for two 
independent source of variation, methods of staining and stages of prophase based on Tukey’ 
significance (α = 0.05). 

Band 
Method 

Absolute 
Length 

Standard 
Deviation 

Relative 
Length 

Standard 
Deviation 

Arm 
Ratio 

Standard 
Deviation N 

Banding Methods 
AgNO3- 3.128a 1.064 6.25  a 2.32 3.40  b 1.67 192 
Giemsa 3.656b 1.298 6.25  a 2.05 3.10  a 1.20 160 
R-Banding 2.209bc 1.508 6.25  a 2.31 3.32  b 1.41 112 
C-Banding 2.645cd 1.041 6.25  a 2.27 3.41  b 1.35 208 
Trypsin 3.391e 1.140 6.25  a 2.33 3.37  b 1.33 192 
DAPI 2.397f 0.352 6.24  a 2.06 3.16  ab 1.37 2658 

Stages of prophase 
Prophase I 3.163a 0.444 6.276a 0.764 3.572a 0.968 833 
Prophase II 2.481b 0.367 6.229a 0.631 3.364a 0.799 1488 
Prophase III 1.968c 0.283 6.240a 0.488 3.118b 0.618 865 
Prophase IV 1.570d 0.603 6.242a 1.040 3.030c 1.316 336 
Tukey’s test: Means for groups in homogeneous subsets are displayed.  These are based on Type III 
Sum of Squares. The group sizes are unequal and the harmonic mean of the group sizes is used. Type 
I error levels are not guaranteed to equal α = 0.05. 
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Fig. 3. Chromosome classification at different stages of prophase. The number inside the bars 
represent the chromosome number, the colored numbers represent chromosomes that change its 
classification during prophase. 
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Band data was obtained and organized only after the objective of classifying the 

chromosome as nearly correctly as possible was met.  As the number of the band was 

vary variable among staining methods as well as whitin and between the stages of the 

prophase, the number of bands read was not representative to determinate the banding 

number in honey bee chromosomes. Therefore, cells were sorted by phase, to see if 

bands are consistent through the phases as explained in materials and methods. The 

sample size for the DAPI band technique was large enough to detail the analysis and to 
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Fig. 4. Means of (a) Relative length and (b) arm ratio of chromosomes of honey bee stained with 
six methods. The lines above the bars represent the standard deviations.  
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construct an ideogram for each stage of prophase.  For the rest of the banding techniques 

an ideogram was constructed using the relative length means of the bands.  

The fewest bands were observed in R-banding, while the largest number of band 

was observed with giemsa-banding and DAPI-banding (Table 5).  The number of giemsa 

and DAPI bands was not significantly different from the number of band shown by 

trypsin-banding. Although the number of bands produced with C-banding is low (zero, 

one, or two total), additional and differentially stained C-bands were obtained with the 

Ba(OH)2 method, which later will be considered as C-facultative heterochromatin bands. 

In early prophase, the number of readable bands in DAPI method was larger than in later 

stages of prophase, except for C6, C7, C12, and C13 (Fig. 5a), where the number of 

bands read was similar in PII to PIV. As earlier explained, the banding data from all 

DAPI stained chromosomes was used to order the bands.  When the bands were sorted, 

the total number of the bands increased and this total was similar through the different 

phases, which highlights the importance of sorting the bands (Fig. 5b). 

 

 

Table 5. Means of number of bands read per staining method and stage of prophase for DAPI 
method 

Band Method Num. of Bands Phase Num. of DAPI - Bands 
R-band (RHG)* 2.20 a Prophase I 3.20 d 
DAPI 2.27 a Prophase II 2.62 c 
C-band (CBG) 2.69 b Prophase III 2.42 b 
AgNO3-NOR 3.12 c Prophae IV 2.026a 
Trypsin (GTG) 3.33 cd Turkey’s Means comparison, a)  Based on Type III Sum 

of Squares, b) The group sizes are unequal. α = .05. Giemsa (G) 3.43 d 
* Abreviation nomenclature  recommended by ISCN (2005): RHG  

 

 

Grouping the banding techniques by affinity for euchromatin or heterochromatin 

(Sumner, 1994), the results of banding number; read and sorted, per chromosomes are 

plotted in two groups (Fig. 6). Euchromatin detecting methods, R-banding, AgNO3, and 

trypsin (sometimes used for euchromatin reference) are plotted against DAPI (Fig. 6a). 

In a second grouping, C-Banding, G-Banding is plotted against DAPI banding (Fig. 6c).  
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The plot of number of bands read in three of the methods (C-, G- and DAPI) gives a 

consistent pattern in most chromosomes, although C-band show more bands than 

giemsa; while giemsa shows more bands than DAPI (Fig. 6c). Exceptions are C3 and 

C4, where the numbers of DAPI bands were a little more than for giemsa but 

significantly less than for C-banding. In C7, more bands were read in giemsa (Fig. 6c). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Number of bands detected in honey bee chromosomes using DAPI staining method at 
four stages of prophase. (a) Number of bands read and (b) number of sorted bands. 
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Fig. 6. Number of bands detected in honey bee chromosomes. (a and c) number of bands read, 
(b and d) number of bands detected (sorted) stained with different methods. 
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Comparing the banding of AgNO3-NOR, R-banding and trypsin-banding (Fig. 6a 

and 6b), it was noticed that the number of bands read were less variable among those 

three methods than when they were sorted. Consistently fewer R-bands and DAPI-bands 

were read, which remained true when they were sorted. Trypsin-banding resulted in the 

largest number of read and ordered bands. Even thouhg AgNO3-banding produced a 

large number of read bands; AgNO3 banding resulted in fewer sorted bands than any 

other method except R-Bands. Chromosomes 4, 7, 10, 11, and 14 produced 

proportionally less R-bands, with the fewest observed in C7.  

When the bands were sorted, 9 chromosomes, 1-4, 8-9, 12 and 15, show 

consistently less bands with C-banding than with giemsa and DAPI, while C7, C11, C14 

and C16 show more C-bands than giemsa and DAPI. C6 showed equal number of C-

bands and giemsa bands, while chromosome 5 presented equal numbers of C- and DAPI 

bands but more than with giemsa (Fig. 6c and 6d). C3 was the only chromosome with 

equal numbers of C-, giemsa and DAPI bands - a result that was initially expected for all 

chromosomes.  

 

Heterochromatin content 

In the following, C-bands and constitutive heterochromatin will be considered 

equivalent.  When constitutive heterochromatin was detected by DAPI, we will refer to 

that as a DAPI-C band or DAPI constitutive heterochromatin. However, in later stages 

the heterochromatin detected by DAPI is significantly larger than earlier stages; the 

diference was further considered as DAPI facultative heterochromatin. The most 

approximate content of that heterochromatin will be based on the difference with 

Ba(OH)2 method. In general, the C-banding technique produced a banding pattern that 

was similar to G- and DAPI-banding. C-banding based on Ba(OH)2.8H2O is specific for 

constitutive heterochromatin, which were mostly detected in the pericentromeric region, 

but also produced additional bands that were considered as C-facultative 

heterochromatin bands. Almost all chromosomes show evidence of pericentromeric 

constitutive heterochromatin bands. However, C8, C11, C14 show very low frequency of 
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this band suggesting that pericentromeric heterochromatin might be absent in these 

chromosomes (Fig. 7a). Except for C1 and C10, all chromosomes show evidence of 

pericentromeric heterochromatin in the first bands. C1 and C10 show evidence of 

pericentromeric heterochomatin at bands 5 and 3 respectively (Fig. 7a). Additional 

constitutive heterochromatin bands were located in C1, C2, C7, C10, C13 and C15 (Fig. 

7b).  Except in C1, these non-pericentromeric bands were observed less frequently than 

the pericentromeric bands.  The very low frequency of C-band or constitutive 

heterochromatin in C8, C11 and C14 explain the high frequent euchromatic appearance 

of these chromosomes, consequently they showed the lowest content of constitutive 

heterochromatin, but with relatively more facultative heterochromatin (Fig. 8a). 

Facultative heterochromatin in this study is scored as the difference between total 

heterochromatin (total bands produced by Ba(OH)2 method) and C-Bands.   The two 

kinds of heterochromatin can also be detected if the DAPI stained heterochromatin is 

considered (Fig. 8 b and 8c).  DAPI- heterochromatin seems to be a more reliable way to 

detect the facultative heterochromatin than Ba(OH)2. This assumption is based on the 

observation that, in early prophase, DAPI detects approximately the same C-banding 

pattern as Ba(OH)2, in later stages (PII and PIV), DAPI stains additional bands,  

classified as facultative heterochromatin, mainly because they show high variability and 

dynamics during the stages of prophase. Thus, DAPI banding information was used to 

estimate facultative heterochromatin, called DAPI-facultative heterochromatin. To 

differentiate it from the facultative heterochromation stained by Ba(OH)2. Although, 

most of the unspecific C-bands match with the DAPI bands, we separate the two kind of 

heterochromatin because the difference shows additional facultative heterochromatin 

bands that were important to help characterize some of the chromosomes (Table 6). 

DAPI-facultative heterochromatin was obtained by subtracting the total heterochromatin 

stained by DAPI from the constitutive heterochromatin stained by Barium hydroxide. 

DAPI-especific facultative heterochromatin was estimated subtracting the DAPI-

facultative heterochromatin to the Ba(OH)2-facultative heterochromatin. 
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Chromosomes C3, C8, C11 and C14 have the highest content of DAPI-

Facultative heterochromatin (Fig. 8a and 8c).  Chromosomes C1, C6 and C7 do not 

contain DAPI-especific facultative heterochromatin (arrows in the Fig. 8c), while C8, 

C11, and C14 contain significant amounts (Fig. 8c).  All the same chromosomes contain 

the largest amount of facultative heterochromatin as estimated by both barium hydroxide 

and DAPI methods, while C4 and C10 contains the least amount of these kinds of 

heterochromatin (Fig. 8a and 8c). Additional information comparing heterochromatin 

using DAPI data is presented in the Table 6.  Chromosomes C8, C11 and C14 are 

consistently grouped as having less content of DAPI-C heterochromatin but higher 

DAPI-facultative and DAPI specific heterochromatin; C10, C9, C13, C15, and C16 are 
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characterized as very heterochromatic and are grouped together by total DAPI 

heterochromatin and DAPI-C heterochromatin 

 

Table 6. Heterochromatin content in honey bee chromosomes based on Ba(OH)2 and DAPI 
staining methods. Means comparisons (Tukey’s test; α = 0.05) for relative heterochromatin 
content. 

Chro
moso
me 

Total of DAPI-
Heterochromat
in 

Chro
moso
me 

Total DAPI 
Facultative 
Heterochromat
in 

Chro
moso
me 

DAPI-C- 
Band 

Chro
moso
me 

DAPI-
Specific 
Heterochroma
tin 

1 0.333 a 1 0.095 A 11 0.024 a 1 -0.057 a 
11 0.417 b 10 0.137 Ab 8 0.036 b 6 -0.010 ab 

3 0.427 b 6 0.157 Bc 14 0.111 c 7 -0.002 ab 
2 0.428 b 13 0.163 Bc 3 0.190 d 2 0.017 bc 
5 0.434 bc 4 0.174 Bcd 5 0.224 e 13 0.032 bcd 
8 0.436 bc 2 0.178 Bcd 1 0.238 f 12 0.037 bcd 
4 0.454 bcd 7 0.186 Bcd 2 0.250 g 10 0.061 cdef 
6 0.458 bcd 15 0.190 Bcd 4 0.280 h 5 0.069 cdef 

14 0.461 bcd 12 0.195 Cde 7 0.283 h 15 0.076 def 
7 0.469 bcd 5 0.210 Cde 12 0.294 i 3 0.093 ef 

12 0.489 cde 9 0.224 Def 6 0.301 j 16 0.093 ef 
10 0.506 de 3 0.237 Efg 9 0.315 k 9 0.096 f 

9 0.533 ef 16 0.250 G 16 0.339 l 4 0.106 f 
13 0.542 ef 14 0.350 H 10 0.369 n 14 0.117 fg 
15 0.566 f 11 0.392 H 15 0.376 o 8 0.170 gh 
16 0.589 f 8 0.401 H 13 0.378 o 11 0.181 h 

Mean 0.4714   0.2213   0.2505   0.0674  
Tukey’s test: Means for groups in homogeneous subsets are displayed.  These are based on Type III 
Sum of Squares. The group sizes are unequal and the harmonic mean of the group sizes is used. Type 
I error levels are not guaranteed to equal α = 0.05. 
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Description of the chromosomes 

The information from DAPI stained preparations was classified in four phases 

according to length and configuration of spermatogonial mitotic chromosomes. Length, 

arm ratio, and the range (the point where the band start and the point where the band 

ends) of the bands were measured. With that information the ideograms were 

constructed. Individual chromosome ideograms where compared through the four phases 

in DAPI experiments to verify consistency in the banding pattern.  The bands were 

classified following the general rules of ISCN (2005) for human chromosomes. Bands 

that appeared in very close proximity that overlapped in the later stages were considered 

as members of a single band or as sub-bands. In the case of pericentromeric 

heterochromatin, decimal numbers were used to separate overlapped bands. Because the 

limits of most of the bands are not very well defined and the euchromatin is 

consequently diffuse, band classification focused on the heterochromatin banding of 

DAPI and was compared with C-banding. This banding classification was subsequently 

compared with the rest of the banding techniques ideograms. In the Fig. 9, PI, PII, PIII 

and PIV stand for the stages of prophase, the letters D, C, G, T, nr, and R refers to 

DAPI- (Fig. A.1), C-Ba(OH)2- (Fig. A2), giemsa- (Fig. A.3),  AgNO3-NOR- (Fig. A.4), 

R- (Fig A.5), and trypsin- (Fig. A.6) banding methods respectively. The added number 

represents the chromosome number. Complete ideograms, karyograms and karyotypes 

are presented in the appendix Figs. A.1-A.6, comparative ideograms are found in the 

Fig. 9.  

The position of the centromere and bands vary a little among phases.  This was in 

part due to the unbalanced number of preparations from different stages of prophase in 

the experiments and the condensation pattern of the chromosomes. With the exception of 

C2, C4 and C15, for giemsa and AgNO3-NOR banding, none of these differences are 

statistically significant and the positions of the chromosomes in the karyotype were not 

affected.  
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 The results for Ba(OH)2 are presented with two kind of bands, the properly 

called C-band, which is the strongest stained band observed, and the unspecific C-bands, 

which are lightly stained. In the Fig. 9, the C-bands are colored deep blue while the 

unspecific C-bands are colored light blue. The degree of transparency is used in all cases 

to indicate the frequency at which the bands occurred. To facilitate the chromosome 

description, DAPI, C-, G- and T- banding will be treated as heterochromatin-related 

banding techniques and AgNO3-NOR and R-Banding will be considered as 

euchromatin-related banding techniques.  Because the ideogram is based on frequency of 

the bands and not intensity of staining, the resultant ideograms could appear more 

heterochromatic when the chromosome carries many low frequency bands.  This is 

potentially a problem with C8, C11 and C14. The gradient of colors is utilized to correct 

this problem. Because of the variation and dynamics in the chromosome condensation 

and heterochromatinization (as mentioned above and more detailed discussed in A-3), 

bands often could not be matched among stages of prophase or methods of staining.  

Wherever possible, a very light line is drawn to show banding correspondence.      

Chromosome 1 (C1). This is the largest chromosomes of the honey bee 

karyotype, and together with C10, belongs to the metacentric group. C1 consistently 

presented 11 bands in all heterochromatin banding techniques. The heterochromatic 

banding techniques resulted in similar banding patterns, except for the pericentromeric 

band that is not consistently stained by giemsa and trypsin. Consistently, a pair of bands 

was observed in DAPI, trypsin and giemsa, giving bands that in later stages of prophase 

are usually observed as a single band in the DAPI technique (Fig. 9a). This result has a 

particular meaning in terms of the chromosome organization, because it suggests that 

some special genetic information could be present between these facultative 

heterochromatin bands. AgNO3-NOR and R-Banding (with some variation) match the 

most euchromatic regions between bands; particularly the inter-bands between q42 and 

q41, q41 and q31, q31 and q22, p31 and p41. With some frequency, AgNO3-NOR, R-

banding and the rDNA marker all detect a NOR region in the euchromatic region of the 

short arm, which NOR region corresponds approximately to inter-band between p31 and 
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p21 bands. A gold-green circle marks the euchromatic band delimited by the end of band 

q13 and the start of the band q21.  This region (referred to as A.2) is one of the points 

where condensation forces meet, making this band alternately variable in size.   

Chromosome 2 (C2).  This chromosome is the least heterochromatic of the 

heterochromatic chromosomes; R-banding confirms the relatively euchromatic condition 

of this chromosome. In the early stage of prophase using the DAPI method, C2 shows a 

double band in the short arm, which doublet is quickly lost in later stages of prophase 

(Fig. 9). A distinctive characteristic, this chromosome presents two additional 

centromere-like constrictions, one at telomeric, 0.35 of the p arm and another at 0.8 in 

the q arm. Variation associated with these constrictions make C2 characterization 

difficult. Size and the pericentromeric heterochromatin are the most reliable 

characteristic for correct identification. In general, DAPI, C-Banding, giemsa, and 

trypsin show great similarity in banding patterns. DAPI and giemsa show that bands p4 

and p5 are double bands like those described in C1, but fail to stain the pericentromeric q 

arm heterochromatin identified by DAPI and C-Banding, although it could be possible 

that the last result is a consequence of variation in the measurements.  R-Banding 

matches euchromatic bands at q5 and the inter-band between q3 and q4, and q31 and 

q21. Contrasting the R-banding against the heterochromatin banding techniques, C-, 

DAPI- and G- banding, it seems that chromosome 2 is highly banded but euchromatic in 

appearance as in R-banding. This pattern fits with what is seen in C8, C11 and C14, with 

the exception that, at pre-metaphase and sometimes late prophase, C2 can be visualized 

as heterochromatic. 

Chromosome 3 (C3).   C3 is one of the most acrocentric chromosomes.  In the 

early stages, its arm ratio is closet to the telocentric classification value (observed arm 

ratio 6.4, expected telomeric arm ratio 7.0) given by Levan et al. (1964). C3 frequently is 

confounded with C5 because both carry a large constriction after the pericentromeric 

heterochromatin in the long arm. However, C5 consistently carries this constriction 

immediately after pericentromeric band; while C3 carries this constriction after the q12 

band. Chromosome 7 carries a similar constriction but it is less frequently observed. One 
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distinctive characteristic of chromosome 3, which is shared with chromosomes 8 and 11, 

is the large infrequently observed heterochromatic region between q12 and q31 bands 

(Fig. A.1.3, circle in the karyogram). DAPI consistently stained 10 bands; C-, G- and 

trypsin- stained 8 bands. The banding pattern among the different techniques was a little 

different.  DAPI band q22 is apparently not present in G-banding and band q53 

apparently is not detected in C-banding. One telomeric band in the long arm in G- and 

trypsin-band methods was not recorded in DAPI banding.  A match with R-Bands was 

found in the inter-band between q23 and q31, with another match between the bands q31 

and q41 and one more that matched between the low frequency bands q51 and q52. 

Chromosome 4 (C4).  C4 is sub-metacentric and considered in the group of 

heterochromatic chromosomes due to the low frequency large band q31 that together 

with bands q32 and q21 gives the heterochromatic appearance when all bands were 

present. In some cases this chromosome was observed to be completely heterochromatic 

- even in the early stages of the prophase. Trypsin and giemsa show similar banding 

patterns.  DAPI and giemsa show consistently 8 bands. C- stained 6 bands, and trypsin 

10 bands. The large DAPI band q31 seems to be composed of two bands; this is 

confirmed by C- and trypsin band techniques, and by giemsa, which only stained the 

distal band.  One short band between the inter-band of q21 and q12.2 is stained only by 

G-banding and detected as a euchromatic region by R-Banding. Ba(OH)2 does not stain 

the DAPI and G-band positive telomeric band.  R-Banding detects the low frequency 

DAPI band q31 and the subtelomeric euchromatic band of q41 as euchromatic. The 

circles show one of the variations in the position of band q22, which suggest that the 

region between q21 and these q22 is the point of separation between the condensation 

forces coming from pericentromeric and q3 region (Fig. 9).   

Chromosome 5 (C5). DAPI-, C-, G- and trypsin banding showed similar numbers 

of bands for chromosome 5, and there is general concordance for DAPI-Bands through 

the different stages of prophase.  However, some bands become more distal at pre-

metaphase possibly due to the irregular condensation of this chromosome or some 

imprecision on the measurements.  As in C3, C5 shows a large overlapped region (q3) 
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composed of three bands at the distal end of the long arm. As heretofore described for 

heterochromatinization and condensation, circles show bands that are variable in the 

position (q21 and q22). Arrows show the possible movements of band q31 and the 

pericentromeric region (Fig. 9). Band q33 is observed in DAPI-, G- and trypsin banding 

but is absent in C-banding. Bands q22 and q21 appear more distal in C-, G- and trypsin, 

than in DAPI, and seem to be pulled toward q31. An additional band was found in 

trypsin between q12.2 and q21. There are two R-bands that match regions of q31 and 

q22; q31 is a low frequency DAPI band and the euchromatic region of q22 is below the 

heterochromatic band and circled in the DAPI maps. One R-band matches the 

euchromatic region (below q21) that in C- and G- appears as low frequency 

heterochromatic bands. G- and R-Banding confirm that band p12 is composed of two 

bands, which stained by C- and DAPI- would be p12.1 and p12.2. AgNO3-NOR and R-

banding show similar results.     

Chromosome 6 (C6). This chromosome carries a NOR region on the distal region 

of the short arm, and is most similar in size to chromosome 8, but morphologically is 

similar to chromosome 4.  C6 was frequently confounded with 4 when the rDNA marker 

was omitted. C6 and C12 are highly variable in size and morphology through the 

different stages of prophase, thus the use of rDNA as marker was required to identify 

these two chromosomes. Except for a telomeric band q32, the DAPI banding pattern 

through the different stages is in good agreement with C-Banding (Fig. 9f).  Bands q21 

and q31 appear as low frequencies C-bands; R-Banding confirms that assignment. R-

Banding shows short euchromatic regions in the inter-bands between q21 and q31, and 

q12.2 and q21. AgNO3-NOR show better fit with the euchromatic band shown by C-

banding technique than with any DAPI-Band. C-banding detected that the constitutive 

heterochromatin of the short arm is composed of two bands, one of which, p12 (p12.2), 

is detected by G-band; but this last technique fails to detect the pericentromeric 

heterochromatin (p12.1). In general, G- and trypsin banding look different, but detect 

approximately the same pattern as DAPI- and C-Banding. The circles and ovals mark the 

observed variation in the DAPI euchromatic regions.  Relatively low variation in the 



 

 

42

position of the heterochromatic bands suggests that the three heterochromatic bands 

detected play similar roles in the condensation of this chromosome (Fig. 9f).    

Chomosome 7 (C7). C7 is the second sub-telocentric, very heterochromatic and 

relative easily to band. DAPI at prophase II-IV and C-banding heavily stains the long 

arm of this chromosome. C-banding stains three additional constitutive stain 

heterochromatin bands at positions q32, q31 and a small unspecificlow frequency band 

at q21. With some little variation, G- and trypsin stain the same pattern. The region 

between q31 and q33 was stained and scored as heterochromatin by DAPI, as 

euchromatic with one short C-band by Ba(OH)2, and as euchromatic by R-banding.  That 

region includes the heterochromatic specific facultative DAPI band, q32. The 

euchromatic region between q21 and q31 matches an R-band. The circles, ovals and 

arrows suggest the pattern of condensation and heterochromatinization of this 

chromosome.   

Chromosome 8 (C8). This is a euchromatic chromosome, which when the central 

heterochromatin band is early-condensed, can be confounded with C9 and C6.  

Otherwise it could be confounded with chromosome 11, which shares many 

characteristics. In general, C- and DAPI- banding show a similar pattern except for the 

pericentromeric region and a band q32 which are not clearly detected by Ba(OH)2. DAPI 

showed this chromosome as very euchromatic.  Most of DAPI bands were low 

frequency, which means that in most of the cases they were not deeply stained or not 

stained at all. C-banding only detected, at very low frequency, the pericentromeric band 

of the short arm and an additional band that seems to be close to the q41. G-banding 

detected pericentromeric banding as did DAPI, but showed an additional band at a more 

distal position, which according to DAPI nomenclature, is part of the p12 band. This 

latter was also detected with trypsin, which in general matched DAPI and C-banding on 

the long arm. R-banding showed a low frequency euchromatic band on the short arm 

where C- banding failed to stain. R-Banding also stained 75% of the long arm as 

euchromatic at different levels, just as DAPI did for low frequency heterochromatin, 

which makes this chromosome look euchromatic. AgNO3-NOR match the euchromatic 



 

 

43

regions presented by C-Banding, except in the short arm. In general, AgNO3-NOR and 

R-Banding also suggest that C8 is very euchromatic.  The circles and band q21 show 

some evidence of the condensation pattern of this chromosome.  Little effect is observed 

from the centromeric region.  

Chromosome 9 (C9). Chromosome 9 is the third most acrocentric of the 

karyotype of honey bee. It is very heterochromatic, as R-banding and C-Banding 

confirm. Its configuration is similar to that of C7 allowing confusion between these two 

chromosomes. The data for DAPI-banding produced 7 bands but the centromere split the 

pericentromeric region to give 8 bands. Except for band q32, the agreement in banding 

pattern is good between C-Banding and trypsin, both of which produced 6 bands.  Band 

q32 was detected by trypsin but not by Ba(OH)2, while q33 was detected by DAPI-, C- 

Ba(OH)2 , and G-Banding but not by trypsin.  Bands q31 and q21, which are a little 

skewed toward a distal position compared to the position displayed by other methods, 

are stained as three very short bands by giemsa. In DAPI and C-banding, q21 is a large 

band, but giemsa stained it in two short bands. DAPI also stained the q12.2 band, which 

is not stained by G-, C- and trypsin- banding; the last technique stained only part of 

q12.1. AgNO3-NOR showed a similar pattern to trypsin, and different from the R-

banding pattern, which detected as euchromatin the region of band q33.  The q31-q41 

region consists of very large overlapping bands that include q32 and q33 bands. The 

euchromatic region between q21 and q31 matches perfectly with the R-band. The circles 

and ovals suggest that q31 and q21 positions are affected by the condensation in both 

direction, q21 was consistently pulled toward the centromere except in PIV, q31 and q32 

were pulled toward centromere in PII but then toward the telomere in PIII and PIV.   

Chromosome 10 (C10). C10 is the second metacentric chromosome, and 

frequently appeared as the most heterochromatic chromosome. Whenever the central 

heterochromatin was deeply stained, C10 was easily confounded with C8 and 11. When 

the low frequency heterochromatic band p21 was deeply stained, the metacentric 

configuration was lost; thus a sub-metacentric or sub-telocentric chromosome 

configuration was initially assumed. In those cases, chromosome 10 was classified by 
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elimination, after chromosomes 7, 8, 9, 11 and 12 were identified.  Sometimes the p12 

band is lost and the appearance of the chromosome could be that of chromosome 15. 

DAPI-banding of C10 is in very good agreement with C-banding and (for the large arm) 

trypsin banding (Fig 9j), although for the short arm, the pericentromeric band was not 

trypsin stained. G- Banding showed that bands q21 and q12.2 are composed of two 

bands. In the short arm, G-banding detected correctly the band p21, but showed an 

additional band that matches with the euchromatic band between p12 and p21. AgNO3-

NOR and R-Banding stained the short arm of C10 as very euchromatic, leaving as 

heterochromatin just the q21 band and a very short fragment of pericentromeric 

heterochromatin (p12) that C-banding detected as low and high frequency C-bands, 

respectively. The euchromatic region between q12.2 and q21 matches only the R-band in 

the large arm - a result that is not in agreement with the pattern shown in AgNO3-NOR 

banding.  

Chromosome 11 (C11).  C11 is the second most euchromatic chromosome, and 

is morphologicaly similar to C8 and C14.  Occasionally, DAPI stained deeply the 

pericentromeric region and the short arm. In those cases, the appearance can be 

confounded with C12 or C10.  As was true for C8 and C14, the usual configuration of 

C11 is a “V”, which suggests an acrocentric morphology. As in C8 and C14, this 

chromosome, carries a euchromatic fragment at a distal position on the short arm which, 

when completely unstained, is difficult to detect. When the same fragment is deeply 

stained, the configuration changes and chromosome identification become complicated; 

in those cases the intensity of the staining can be used as a reference. DAPI and giemsa 

detected 6 bands; C-Banding and trypsin detected 7 (Fig. 9k). The pericentromeric band 

is infrequently stained as a C-band.  More frequently stained is a C-band that is a very 

short distance from the pericentromeric band, the latter seems to be the only specific C-

band in chromosome 11. A second short and low frequency C-band was detected by 

Ba(OH)2 in the euchromatic DAPI–region of q13 band. This infrequently observed band 

was produced by condensation in late prophase and pre-metaphase. A region of 

overlapping bands q21 to q31 agreed with the four separated unspecific C-bands, and 
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frequently were G-banding and trypsin stained. Thus, the pattern shown by trypsin- was 

in very good agreement with DAPI and C-banding. Surprisingly, R-banding stained all 

the overlapping regions including the low frequency C-band. Even so, we can say that 

R-banding showed a very euchromatic chromosome. It is possible that the result for this 

chromosome comes from difficulties with the staining procedure, and that chromosome 

11 requires a stronger treatment to detect the correct R-banding pattern. However, an In 

Situ Nick translation banding (chapter III) shows a similar pattern. The DAPI 

euchromatic region is only partially labeled by prolonged incubation, indicating that this 

region is hardly accessed by nick translation. The ovals suggest the condensation pattern 

for this chromosome.     

Chromosome 12 (C12). C12 carries the nucleolus organizer at the telomeric 

region of the short arm. This chromosome was heavily stained and similar in size to C11, 

C13 and C14, and can be confounded with any of the latter.  A total of 6 bands were 

detected by DAPI, trypsin, G- and C-banding. The pattern, although a little offset in C-

banding, basically was the same (Fig. 9l).  C- and G-banding detected one additional 

band in the DAPI euchromatic region between q12.3 and q21; however, band 12.2 was 

absent with both staining methods, which suggest that q21 could be shifted to a distal 

position in G- and trypsin banding methods.  R-banding stained the inter-bands between 

q21 and q22 as well as between q21 and q12.3. Another low frequency R-band was 

detected between the region of q12.2 and q12.3, which was classified as a low frequency 

DAPI band and unspecific C-band. The region stained by AgNO3 as the NOR-region 

was stained by R-banding as a large euchromatin band; that same region was frequently 

stained by giemsa in a series of short bands.   

Chromosome 13 (13). Chromosome 13 is very heterochromatic and almost sub-

metacentric according to Levan et al. (1967) nomenclature.  A distinctive characteristic 

that C13 shared with C14 and C15 is the high frequency telomeric heterochromatic band 

in the long arm, which can be used to identify this chromosome. Trypsin stained 7 

bands; all other heterochromatin-detection techniques stained 5 bands. The banding 

patterns of DAPI, trypsin and C-Banding are in good agreement, although G-banding did 
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not detect the q22 and q12.1 bands (Fig. 9m). In addition, G-banding detected a very 

infrequently stained band close to the centromere, and a high frequency band a more 

distal region, both in the short arm.  Ba(OH)2 detected C-heterochromatic bands q31 and 

q22, although less frequently than the C-pericentromeric band.  R-banding detected the 

euchromatic region between q12.2 and q22, which matched approximately the 

euchromatic region of C-banding.  This euchromatic region included two unspecific C-

bands that correspond to bands q21 and q12.2.  Band q31, and a euchromatic region 

below that, were infrequently detected.  The same low frequency C-banding was 

obtained for the short arm and pericentromeric region, and show chromosome 13 as 

euchromatic. This was unexpected.  Technical problems could be involved because 

DAPI, trypsin and C-banding show C13 as very heterochromatic.  

Chromosome 14 (C14). Chromosome 14 was the third-most euchromatic 

chromosome. Except for giemsa that detected 5 bands, all banding techniques for 

heterochromatin detected 6 bands. This chromosome, like C8 and C11, showed many 

low frequency bands that could be confused as heterochromatic. DAPI, C-banding and 

with some little deviation, trypsin banding are in good agreement. According to the 

Ba(OH)2 result, the pericentromeric heterochromatin was very short, and shorter in the 

short arm (Fig. 13). DAPI-, C- and trypsin- detected a large euchromatic band in the 

distal position of the short arm. R-banding detected most of this same region as 

euchromatic.  R-banding stained a large euchromatic region in the long arm which 

includes q12.1 and most of q21.  Band q22 was stained as a low frequency euchromatin 

region by R-banding, in agreement with early results that showed heterochromatin bands 

in the large arm of C14 are low frequency. The result obtained with R-banding is 

considered good because the chromosome is confirmed as euchromatic.   

Chromosome 15. C15 belongs among heterochromatic chromosomes.  Its 

distinctive characteristic is the distal low frequency C-band. Except for giemsa that 

detected 6 bands, all heterochromatin banding techniques detected four bands. C15 is the 

only chromosome whose classification, as sub-telocentric or metacentric remains 

problematic.  One explanation is that the short arm was frequently lost, whereupon the 
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chromosome assumes the appearance of a metacentric chromosome.  In those cases, 

because of configuration, chromosome 15 can be misclassified as chromosome 10.  

DAPI and C-banding patterns were approximately similar. G- and trypsin-banding failed 

to detect the pericentromeric band q12.1 in the long arm; however, the centromere's 

position was a little shifted compared to the position obtained by DAPI and C-banding 

(Fig 9o).  The distal half of band q21 and band q31 were detected as low frequency C-

bands by Ba(OH)2, and detected as euchromatic bands by R-banding; the infrequent 

band q12.2 was detected as euchromatic by R- and C-banding techniques.  

Chromosome 16. C16 is the smallest chromosome and classified as very 

heterochromatic in all stages of prophase. Apparently most of its heterochromatin is 

DAPI specific stained.  The trypsin method supports this observation, while Ba(OH)2 

and giemsa show a very unstained chromosome (Fig. 9q). Except for trypsin that shows 

6 bands, most techniques stain only four bands. DAPI- and C-banding are in good 

agreement. Giemsa presented the best banding pattern of this chromosome, showing the 

three bands in the long arm, but fails to stain the p-pericentromeric heterochromatin. 

However, the large euchromatic band matches with the large central euchromatic region 

of DAPI-banding. This last characteristic makes this chromosome more euchromatic 

than C13 and C15. However, given the unspecific C-bands in the Ba(OH)2 method, the 

heterochromatic condition of this chromosome detected by DAPI is supported.  

Fortunately the low frequency and light staining differentiate this region from the 

euchromatic one, which consistently is the most strongly stained.    
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Fig. 9. Comparative ideograms and banding classification of chromosomes of honey bee 
stained with DAPI (D), Ba(OH)2 (C), giemsa (G), trypsin (T), AgNO3 (nr), and R-
banding (R) at different stages of prophase: prophase I (PI), prophase II (PII), prophase 
(PIII), and prophase IV (PIV). The numbers after the letters indicate the chromosome 
number. The bands are classified based on nomenclature of human chromosomes ISCN 
(2005), however because of the irregularities in the boundaries and overlapping 
bandings, the classification was focused on heterochromatic bands only. The 
pericentromeric region was differentially classified using decimal numbering, for the 
short arms of the chromosomes 4 – 16,  as only one band was read for pericentromeric 
region the decimal numbering was omitted but they should be referred as decimal 
identification. In chromosome 12, an overlapped band, q13.1 was left unlabeled. The 
ovals and circles on some ideograms indicate the variation in the length of the 
euchromatin bands because of the effect of the condensation and heterochromatinization 
of the chromosome. These bands suggest some forces (indicated by arrows) are 
modifying its size and their position and affecting the position of some bands as in 
chromosome 5, 7, and 9.  This phenomenon was described earlier. The circles and 
arrows indicate only examples since the phenomena can be observed in almost all 
chromosomes but less evident.          
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 Fig. 9. Continued 
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Discussion 

 

The data suggests that chromosome condensation takes place in individual 

chromosome fashion, influenced by the banding pattern that affects the length of 

chromosomes and arm ratio.  Observed variation in condensation could be due to the 

variable chromatin domains, proteins, and nucleotide composition in these domains. 

Although chromosome length reveals a definite pattern of reduction of chromosome 

size, that reduction is nonlinear throughout all prophase, but linear during the period 

studied, similar result has bee found in Kireeva et al. (2004) and Maddox et al. (2006); 

the arm ratio reveals chromosome specific variation as previously determined in 

mammals (Hiraoka et al., 1989; Li et al., 1998).  For example C5, C7 and C12 show a 

gradual decrease in the arm ratio from PI to PIV, which means that the arms shorten 

similarly throughout; while chromosomes 6, 8, 9, 11, 13 and 14 showed a gradual 

reduction beginning with PII, but with the arm ratio consistently lower in PI than in PII 

(Fig. 2a). The banding patterns also show chromosome specific patterns of condensation.  

For example, heterochromatinization progresses from preexisted heterochromatin in 

some cases.  In other cases preexisting heterochromatin can work as a barrier to the 

heterochromatinization process, as happened with the pericentromeric heterochromatin 

of the short arm of the C1.    

 
Some bands show variation in size that implies a differential nucleotide 

composition that may influence condensation through the prophase. Thus, in this process 

the different kinds of heterochromatin play different roles. Constitutive heterochromatin 

usually has been assigned a protective role and are responsible for genes silencing and 

cell differentiation (Claussen, 2005; Lakhotia, 2004), with facultative heterochromatin 

controling gene expression and cell differentiation (Chadwick and Willard, 2004) 

through epigenetic control by methylation and acetylation (H3 and H4) of some histones 

and HP1 protein distribution (Maison et al., 2002; Spector, 2003; Grewal and Moazed, 

2003; Lakhotia, 2004; Grewal and Rice 2004; Lamb et al., 2007). Euchromatin houses 



 

 

52

middle expressed genes and house-keeping genes (Holmquist, 1992; Claussen, 2005, 

Lamb et al., 2007). Based on this general frame regarding heterochromatin function, 

distribution of nucleotide domains and heterochromatin content is an important 

characteristic for architectural of the chromosomes, gene distribution and genes 

expression (Millot et al., 1996; Festenstein et al., 1996; Cuvier et al., 2002; Maizon and 

Almouzni, 2004). 

Based on DAPI and C-Banding staining, the genome of honey bee contains 47 ± 

11.5 % heterochromatin, of which 25 ± 11.12  % is constitutive and 22 ± 10.4 % is 

facultative; 7% of facultative heterochromatin is DAPI specific stained and 15 % of that 

is C- and DAPI stained. Only 3.5 % of the constitutive heterochromatin occurs in low 

frequency C-bands, which means that the (A/T) rich regions should be lower than 21.5 

% in the remaining mostly pericentromeric heterochromatin. Assuming that constitutive 

heterochromatin is mostly repetitive sequence, the estimated A/T content of the 

heterochromatin is considerable higher than the 8% to 10% estimated by Cot-1 and Cot-

2 analysis (Crain et al., 1976). The heterochromatin content estimated in this experiment 

is similar to the 36% reported in the section “Genetic and Physical Maps and 

Chromosome Organization” (HBSCP, 2006), but is different from the percentage in the 

sequenced genome, which is reported to be 67% (A/T) rich, however this latter value is 

for the sequenced portion of the genome and not specific for heterochromatin as we 

estimated. As in the plant, Arabidopsis thaliana (Stack et al., 1974; Freansz et al., 2000) 

and mammals (Berríos et al., 1999), the heterochromatin in honey bee chromosomes is 

distributed mainly in pericentromeric heterochromatin and knobs, and located in the 

peripheral nucleus, where multiple overlapping bands suggest its systematic regulatory 

function though epigenetic regulation. With the exception of the short arms of C1, C6, 

C12, these overlapping bands were detected in pericentromeric heterochromatin of all 

chromosomes; and all chromosomes presented a second region of overlapped bands in a 

subtelomeric position. In most of these chromosome some low frequency of constitutive 

heterochromatin was detected.      
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Heterochromatin may also function as a barrier for further 

heterochromatinisation, as happens in the short arm of C1, C6 and C12. Grewal and Jia 

(2007) and Maison and Almouzni (2004) mention that the boundaries of constitutive 

heterochromatin can be delimited by inverted repeats (IR).  Some sequences recruit a 

specific protein system that prevents heterochromatin propagation (Thon et al., 2002).  

Heterochromatin boundaries are sometimes related to the positive interaction of 

heterochromatin with polymerase III (Pol III) and transcriptions factors that facilitate the 

transcription of the genes are located in these boundaries (Noma et al., 2006).  The 

heterochromatin boundaries of Saccharomyces pombe, for example, usually are occupied 

by tRNA clusters (Grewal and Jia, 2007) and micro RNAs (Maison and Almouzni, 

2004), which possibly function to demarcate the limits of heterochromatin domains 

under the model of “Loops Domains” of genome organization (Ostashevski, 1998; 

Labrador et al., 2002; Grewal and Jia, 2007).  Pericentromeric heterochromatin is 

observed in the short arm of chromosomes with a sub-telomeric unstained band, such as 

in C2, C4, C6, C8, C10, C11, C12, and C14.  The latter showed size stablity through 

prophase as has been observed in prophase chromosomes of yeast. There is evidence that 

the ribosomal cluster in chromosomes 6 and 12 might be a heterochromatin barrier in the 

honey bee genome. A similar pattern of distribution and function of pericentromeric 

heterochromatin is observed in Arabidopsis thaliana (Luo et al., 2004).  Pericentromeric 

heterochromatin of the short arm of C1 can also be considered in the same model, 

although the presumed NOR region is not at the heterochromatin boundary.  It will, 

therefore, be important to identify the content, and study the structure and organization 

of, the pericentromeric boundaries of C1.  

Location of pericentromeric heterochromatin also determines the chromosome 

distribution in the nucleus (Berríos et al., 1999; Carvalho et al., 2001). When 

pericentromeric heterochromatin is present, chromosomes are located in the nuclear 

periphery; when pericentromeric heterochromatin is diffuse or absent, the chromosomes 

tends to be located in the central region of the nucleus. This difference has a particular 

significance for C8, C11, C14 and maybe C4 as it was characterized in this study. 
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Regulation related to heterochromatin may be particularly important in the case of C11, 

in which the large cluster of major royal jelly family proteins (MRJP) and the yellow 

family genes (gene related to the pigmentation in Drosophila and many flies) are located 

(Drupeau et al., 2006).  According to NCBI, these clusters are located at distal regions 

that match a short overlapping region between q21 and q31.  This suggests the most 

probable position of the major royal jelly family proteins is band q23, a low frequency 

band (C- and DAPI facultative heterochromatin) that matches with an AgNO3-NOR 

band and the large R- euchromatic band of C11. The position of the MRJP cluster in a 

consistently facultative heterochromatin band is important because Royal Jelly genes are 

temporally expressed and restricted to some organs like mushroom bodies of the honey 

bee brain of workers in the first week after emergence (Kurcharski and Maleszka, 1998). 

MRJP are highly but temporally expressed genes that are essential for castes 

differentiation in the honey bee society (Drupeau et al., 2006). Therefore, the location 

fits exactly with the model that the location of the genes and the distribution of the 

facultative and constitutive heterochromatin is not random (Berríos et al., 1999), and 

supports the idea that heterochromatin has an important function in gene expression and 

cell differentiation (Grewal and Jia., 2007; Yasuhara and Wakimoto et al., 2006).  

Corradini et al. (2007) published a list of 450 predicted genes whose function and 

expression is associated with heterochromatin. Most of these genes are classified as non-

essential or required in specific steps of cell division, DNA repair, chromosome 

segregation, chromosome condensation, metabolism and cell interaction. Some highly 

expressed ribosomal protein-coding genes are located between constitutive 

heterochromatin (Marygold et al., 2005), and these genes characteristically have short 

overall size and short introns.  Konev et al. (2003) mention that heterochromatin harbors 

important genes for viability and fertility as well as important genes for kinetochore 

formation, sister-chromatid cohesion, and disjunction of achiasmate chromosomes.   

Heterochromatin is also an important target of mobile elements (transposon and 

retrotransposons) which implies a protective function in Drosophila. Large essential 

genes are also located in those regions; the explanation of this is heterochromatin 
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protects regions differentially targeted by transposable elements (Corradini et al., 2007).  

That the MRJP is in the facultative heterochromatin of C4, the NORs are in the 

boundaries of pericentromeric heterochromatin of C6 and C12, and the apparent static 

pericentromeric heterochromatin is in the short arm of chromosomes all suggest the 

important role of heterochromatin in the honey bee genome. Therefore it is important to 

study and clarify the importance of heterochromatin and its role in gene regulation and 

expression in the honey bee. The irregular banding pattern of the honey bee offers an 

advantage in the study of the role of gene organization in the genome. It is particularly 

tempting to propose to use honey bee chromosomes to study the CpG methylation 

system and imprinting mechanism that underlie castes differentiation.  It has been 

proposed that the imprinting mechanism in honey bees is different and does not involve 

repetitive DNA (Wang et al., 2006).  However, in our study, the facultative 

heterochromatin seems to be important in gene regulation and differentiation, as shown 

by its plasticity.         

The karyotype of honey bee analyzed in this study is characterized by two 

metacentric chromosomes (C1 and C10), two sub-metacentric and ribosomal organizer 

carrier chromosomes (C6 and C12), four sub-metacentric and heterochromatic 

chromosomes (C16, C15, C4 and C13), four euchromatic and sub-telocentric 

chromosomes (C2, C8, C11 and C14) and four acrocentric chromosomes (C3, C5, C7 

and C9). This above grouping is different from that previously published by Hoshiba and 

Okada (1986), who classified the honey bee karyotype in four metacentric and 12th 

submentacentric chromosomes. It is also different from the karyotype described by Beye 

and Moritz (1995) who classified the chromosomes as one metacentric, with the rest 

classified based on the size; and with eleven chromosomes which are about 0.5 times 

larger than the fourth group of remaining chromosomes. Beye and Moritz assigned the 

rDNA region to chromosomes 4 and 11, but recognized that chromosome 12 carries a 

weak signal, which is in agreement with our results. The difference was that the signal 

on chromosome 11 was rarely observed. However, the different clones used for NOR-
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detection can explain the difference, although it should be taken into account that our 

results were verified with AgNO3 staining.   

Baudry et al. (2004) estimated the centromere location using half tetrad analysis 

for three linkage groups (I, II, and IV) and determined that linkage group I is metacentric 

and corresponds to C1. Linkage group II was estimated to be telocentric but was not 

assigned to any particular chromosome.  The result of Baudry et al. (2004) could be 

correct if Linkage group II refers to C2.  In C2 blocks heterochromatin are not restricted 

to pericentromeric heterochromatin. There are two blocks of heterochromatin, detectable 

in early prophase (Fig. A.1.1) and mapped as a single band in this study. If we assume 

that these bloks are pericentromeric, this suggest that Baudry et al. (2004) could be 

correct and C2 could be telocentric.  However, the occurrence of relic constriction 

between these blocks of heterochromatin suggests the occurrence of a pseudo-

centremere or neocentremere. Some observations suggest that the constriction is not the 

centromere since the blocks are distinguishable only in early prophase and always 

appear as a tightly packed block, Additionally the constriction is always stained rather 

than unstained as expected of a functional centromere.  Rather than marking a telomeric 

centromere, the heterochromatin appears as expected of the pericentromeric 

heterochromatin of the short arm of C2. Mitotic and meiotic anaphase analysis is 

required to verify the centromere position and clarify the kind of constrictions located in 

C2.  It could be also be that Baudry's linkage group II refers to C3.  In linkage group IV 

the centromere was estimated to be telomeric; Beye et al. (1996) assigned that linkage 

group to C8.  However, it is difficult to confirm this result in their paper, thus we cannot 

determinate the chromosome equivalence in our maps.  
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CHAPTER III 

 

MAPPING 35 CLONES FROM SOLIGNAC’S BAC LIBRARY ON THE 

KARYOTYPE OF HONEY BEE 

 

Introduction 

 

Historically, the honey bee (Apis mellifera) has been economically important in 

agriculture because of honey, wax, pollination (Michener, 2000) and many derivatives 

(Mizrahi and Lensky, 1997).  The consequences and behavioral implications of the 

social condition of this insect (eusociality) have been intensively studied to obtain 

strategies for control and management of diseases, and parasites, and for possible 

strategic applications in human societies (Seeley, 1989; Kaufman et al., 2002; Seeley 

and Visscher; 2004, Robinson et al., 2005).  Evolutionarily significance genetic change 

in the eusocial, haplo/diploid honey bee has been determined based on genomic 

similarities; thus 60% of the genes involved in the immune system are orthologues to 

other sequenced insects, such as Drosophila and Anopheles; the other 40% could be 

related to the demands of eusociality (Evans et al., 2006; Gregory et al., 2005).  Some of 

the genes that are unique to the bee could be related to social behavior and 

haplodiploidy, and these could provide the foundation for understanding the role of 

genome structure and function in haplodiploidy and social evolution (Evans et al., 2006). 

With the publication of honey bee genome sequence, all these areas have been strongly 

supported (HBGSP, 2006).  

A number of studies provided genetic information important for the honey bee 

genome sequencing project.  Genetic linkage groups were established in the honey bee 

based on randomly amplified polymorphic DNA (RAPD) scored for haploid males.  The 

map covered 3110 cM distributed in 26 linkage groups, and showed for the first time, a 

very high recombination rate 52 kb/cM in honey bee (Hunt and Page, 1995). A second 

map, based on simple sequence repeats (SSr's or microsatellites) isolated from genomic 
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DNA or from bacterial artificial chromosomes (BACs) was developed (Solignac et al., 

2003); this map resulted in twenty-four linkage groups spanning 4061 cM in total 

(Solignac et al., 2004). A genetic and physical relationship of 44kb/cM was estimated, 

which estimate was 15% shorter than that estimated by Hunt and Page (1995). 

Additional mitochondrial and microsatellite data (Franck et al., 2001) and expressed 

sequence tag data (EST) from a honey bee cerebral library were available (Whitfield et 

al., 2002) along with a BAC library in which quality of reads was tested with sequence 

tagged sites (STS) (Tomkins et al., 2002), and gave results similar to those from the 

cerebral (honey bee brain) cDNA library generated by Whitfield et al. (2002). Finally a 

relatively small honey bee genome size of 270 Mb was estimated. With this information, 

the complete sequencing of the honey bee genome was initially proposed and the Honey 

Bee Genome Sequencing Project (HBGSP) subsequently conducted by a consortium 

lead by the Human Genome Sequencing Center at Baylor College of Medicine (BCM-

HGSC). The sequence project was authorized based on the small genome and the impact 

of the honey bee on human activities (Evans and Gundersen-Rindal, 2003).  

In the present genomic sequence release version 4 (Amel_4.0), the genome of the 

honey bee is arranged in 16 chromosomes plus a mitochondrial chromosome (HBGSPC, 

2006) that includes 626 scaffolds of which 81.6% are oriented (Solignac et al., 2007). 

Release version 4 includes information from 2,032 mapped genetic markers and 3,136 

STS covering 231 Mb of the 236 Mb estimated sequencable genome.  Given the 264 Mb 

total genome size estimated by cytometry (HBGSPC, 2006), 79% (186 Mb) of the 

genome is assembled and currently placed on the 16 chromosomes.  The physical 

sequence assembly was aided by the STS information from the two available genetic 

maps, but mostly by the Solignac et al. (2004) map whose markers were isolated from 

their own BAC libraries. The genome sequence in Amel_4.0 was primarily based on 

whole genome shotgun (WGS) reads, because the physical map based on BACs libraries 

(CHORI-224 constructed by Baylor’s College of Medicine) failed to co-assembly 

correctly with WGS (HBGSPC, 2006, Supplementary Notes and Methods).  Given the 

failure of agreement between the WGS assembly and the map based on complete BAC 
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sequencing and BAC end sequencing, it became problematic to FISH the CHORI-224 

BACS to chromosomes of the sequenced honey bee strain.  The decision was made, 

therefore, by members of the honey bee sequencing consortium, that the better option for 

verifying the physical sequence map using fluorescence in situ hybridization was the 

Solignac BAC library.  

Fluorescence In Situ Hybridization (FISH) has become one of the most reliable 

techniques for physical mapping. However its resolution is limited by the size of the 

probes and detection of these probes, which detection even with use of antibodies is 

difficult for fragments smaller than 5 kb.  Detection of smaller probes, even when 

possible, is limited by a consequent annoying background (Bentley, 1990; Liehr and 

Claussen 2002). Probes of 1-3 kb (and in some cases < 1 kb) have been detected, but the 

frequency of detection and reproducibility is very low (Jiang and Gill, 2006). FISH 

further cannot resolve signals separated by less than 130 kb (0.2-3 µm) in the interphase 

nucleus (G2) and 1Mb (0.4µm) in metaphase chromosomes (Bentley, 1990, Cheng et al., 

2002).  With two or several-color FISH, the resolution cannot be increased beyond 

signals separated by 750 kb or less on metaphase chromosome (Bentley, 1990), while 

signals with 3.21 kb/µm of separation can be resolved with Fiber-FISH (Cheng et al., 

2002). In pachytene chromosomes of plants the resolution is on the order of 2-5 Mbp - 

10 times higher than in metaphase chromosomes (Kim et al., 2003). Detection and 

correct location can be affected not only by the size of probes and phase of the 

chromosomes, but also by the occurrence of repetitive DNA in the probes and genomes 

(Levsky and Singer, 2003). Probes containing repetitive DNA require high levels of 

assessment (Cheng et al., 2002; Jiang and Gill, 2006). Even with these limitations, FISH 

is currently a powerful tool for chromosomal identification, especially for small 

chromosomes (Jiang and Gill, 2006). Because of its versatility in combinatorial 

experiments using multicolor FISH or multi-probes cocktails, FISH is invaluable for 

genome mapping verification and extremely useful in genomic disease diagnostics in 

mammals (Davison et al., 2002; Kearney, 2006). Citing a few examples, in sorghum 

FISH has successfully been used for integrated karyotyping of landed BACs (Kim et al., 
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2002), chromosome morphology (Kim et al., 2005a), molecular cytogenetic map (Kim et 

al., 2005b) and chromosome identification and nomenclature (Kim et al., 2005c). In 

parasites such as Ciona intestinalis with very small chromosomes and genome, the 

sequencing maps and scaffold alignments has been supported by FISHing landed BACs 

(Shoguchi et al., 2005, 2007). That same procedure is routinely used to verify the 

genome sequence maps in human and Drosophila (The International Human Genome 

Mapping Consortium 2001), to characterize the genes of Drosophila that resides in 

heterochromatin regions (Rossi et al., 2007), to map genome heterochromatin 

sequencing (Hosking et al., 2002), and to study the structural chromosome organization 

based on mobile elements (Yan et al., 2002). In Aedes aegypti, FISH is used to integrate 

the genetic linkage groups and the physical maps (Brown et al., 2001, Sallam et al., 

2005, Severson et al., 2004).  In Bombyx mori FISH is applied to assign the small and 

holocentric chromosomes to linkages groups (Yoshido et al., 2005) and for comparative 

analyses (Yasucochi et al., 2006). In honey bee, FISH of repetitive sequence have been 

used to characterize the ribosomal organizer (Beye and Moritz, 1993) and centromere 

(Beye and Moritz, 1994).  FISH has also been used to characterize the honey bee 

chromosomes (Beye and Moritz, 1995) and telomeric region (Sahara et al., 1999 and 

Frydrychová et al., 2004). Here, FISH was used to confirm the identity of the sixteen 

chromosomes of honey bee DH4 drones and karyotype based on 35 BACs provided by 

Michel Solignac and his colleagues (The Laboratory of Evolution, Genomes and 

Speciation, CNRS, Gif sur Yvette cedex F 91198, France).   

 

Material and Methods 

 

Biological materials 

Drones for chromosome preparation from the DH4 strain queen were kindly 

provided by Danny Weaver of BeeWeaver Apiaries. Workers bees and drone pupae for 

genomic DNA extraction were obtained from Dr. Tania Pankiw, Department of 

Entomology, TAMU. BACs were selected and provided by Michel Solignac and his 
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colleagues [The Laboratory Evolution, Genomes and Speciation, CNRS, Gif sur Yvette 

cedex F 91198, France (Table 1)]. Ribosomal DNA (rDNA) inserted in the Plasmid 

p3629 carrying S. cerevisiae 1750pb of 18S rDNA and cloned in DH5α E. coli strain 

was kindly provided by Dr. P. Klein, Institute for Plant Genomics and Biotechnology, 

TAMU, and used as rDNA marker.  

 

Chromosome preparation   

Chromosome slides were prepared according to the procedure of Mandrioli and 

Manicardi (2003) with a modification consisting of dissection and incubation of testes in 

physiological solution (Sahara et al., 1999) and distilled water as hypotonic solution. 

After dissection and incubation, follicles were disaggregated, and the cell suspension 

centrifuged at 1000g for 3 min. After discarding the supernatant, 200 mL of Carnoy’s 

fixative solution (Methanol: Acetic acid 3:1) was added and the mixture incubated at 

room temperature for 30 min, then re-centrifuged at 100g for 3 min. The procedure was 

repeated several times until the sample slides prepared with material remaining in the 

pellet were clean, without significant loss of chromosomes and cells. A pair of testes 

from one drone was enough to obtain 40 to 60 slides, which were stored at -80oC until 

further use. For slide preparation, a light microscope, Zeiss (Model 039539-47 16 90-

0000/09) equipped with phase contrast (47 3356-9901) and objectives Plan apo 25/0.65 

and Apo 40/0.95 was used.  

When slides were older than a year, a re-hydratation in TC-100 (Sigma, Cat# 

T3160) culture media complemented with 5% of fetal bovine serum (FBS, Sigma, Cat# 

F-6178) for 35 min at 36oC was applied then re-fixed in Carnoy’s solution. The slides in 

Carnoy’s solution were kept on a hotplate at 52oC overnight, and formaldehyde 

pretreated according to Anamthawat-Jónsson (2001). 
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DNA extraction and labeling 

Genomic DNA was extracted from ground thorax and legs of honey bee workers 

following the procedure of Aljanabi and Martinez (1997), followed by phenol 

purification (Phenol:Chloroform:Isoamyl Alcohol 25:24:1 saturated with 10mM Tris 

adjusted to pH 8.0 and 1 mM of EDTA). Cot-1 DNA was prepared following the Zwick 

et al. (1997) protocol. As needed for probe preparation (below), genomic DNA was 

autoclaved for 7 min to obtain 50 to 100 bp fragments. BAC-DNA was extracted by 

alkaline lysis and purified with DNeasy spin columns (Qiagen, Valencia, Calif.) 

following the vendor directions. BAC-DNA was labeled by standard procedure using a 

Biotin- and Dig-Nick Translation Mix kit (Roche Diagnostic GmbH, Indianapolis, Ind., 

U.S.A., Cat# 11 745 824 910 and Cat# 11 745 816 910). Once the labeling reaction was 

completed and blocked, QIAquick nucleotide removal kit (Qiagen, Cat# 28306) was 

used for further purification, and ethanol precipitation for probe drying, were carried out. 

Before final drying of the BAC-DNA, 300x of Salmon testes DNA (Sigma D-7656) and 

150x of honey bee Cot-1 or autoclaved genomic honey bee DNA were added. The dried 

labeled probes were dissolved in TE solution, adjusting the concentration to 10 ng of 

labeled probes per µL of solution. DNA labeled probes was stored at -80oC.  

 

In situ hybridization 

The general procedure followed was as described in Kim et al. (2003) with some 

modification based on Pinkel et al. (1986), Beye and Moritz (1995) and Sahara et al. 

(1999). Modifications to the Kim et al. (2003) procedure consisted of RNase incubation 

reduced from 45 min to 30 min with the temperature for denaturation increased to 75oC 

for 3 min, and hybridization incubation time increased to 36 hours. After incubation, the 

slides were rinsed twice at 40oC for 3min in 2xSCC, once at 36oC in 50% formamide 

(Sigma, St Louis Mo, USA, Cat# F7503) for 10 min, twice at 36oC 2xSCC, and once 

with 4xSCC plus 0.2% Tween 20 (Sigma, P9415) at 37oC, and held at room temperature 

in 4xSCC plus 0.2% Tween-20, for 5 min. The slides were blocked for 30 min with 

250µL of 5% non fat milk dissolved in 4xSCC plus 2% Tween-20. The signals were 
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detected with a solution containing 7 -15 µg of both CyTM3-conjugate Streptavidin 

(Jackson ImmunoResearch, Cat# 016-160-084) and Fluorescein (FITC)-conjugated IgG 

fraction monoclonal mouse anti-digoxigenin (Jackson ImmunoResearch, Cat# 200-092-

156) diluted in 100-150 µL of TNT buffer (100mM Tris-HCl pH7.5, 150mM NaCl, 

0.5% BSA). Following incubation for 30 min at 37oC, the slides were rinsed three times 

at 37oC in 4xSCC plus 0.2% Tween-20 for 3 min each. After blocking with 250 mL of 

TNB buffer containing 0.5% (v/v) of NGS and 0.5% BSA for 10 min at 36oC, the signals 

were enhanced with a mix containing 10 µg of FITC-conjugated affinity pure goat 

antimouse IgG (H+L) (Jackson ImmunoResearch, Cat# 115-095-003), and 10µg of 

Biotinylated antistreptavidin (Ambion, Cat# BA-0500) or Cy3 conjugated 

antistreptavidin (Ambion, Cat# BA-0500) diluted in 100-150µL of TNB for 30 min at 

37oC. After the slides were rinsed in TNB three times for 3 min each at the same 

temperature with gently shaking, 250 mL of TNB buffer containing 0.05% BSA was 

added to the slides, incubated for 10 min at 37oC, following which 100-150 µL 

containing 10µg of CyTM3-conjugate Streptavidin and 10µg of FITC antimouse was 

added. After incubating at 37oC for 30 min, the slides were washed four times, 3 min 

each, with TNB in a shaking water bath at the same temperature. Following an alcohol 

series (70%, 85%, and 100%) and air-drying, the slides was kept at room temperature in 

a dark dried chamber for c.a. 30 min before counterstaining.  After the slides were 

briefly equilibrated in 4xSCC plus 0.2% Tween-20, 250µL of 5µg/mL of 4’ 6-

diamidino-2 phenylindole (DAPI, Sigma, Cat# D-9542) in McIlvaine’s (9 mM citric 

acid, 80 mM Na2HPO4·H2O, 2.5 mM MgCl2, pH 7.0) was applied and incubated for 30 

min at room temperature. After a brief wash in 4X SCC plus 0.2% Tween-20, 25 µL of 

home-prepared antifade solution was applied to each slide following the Trask (1980) 

recommendations.  

 

Slide observation 

The slides were analyzed under an epi-florescence microscope AX-70 and a 

Peltier-cooled 1.3 M pixel Sensys camera (Roper Scientific) and MacPro v. 4.2.3 digital 
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image system (Applied Imaging Corp., Santa Clara, Cal., USA) equipped with 4',6-

diamidino-2-phenylindole (DAPI), fluorescein isothiocyanate (FITC), and Cy3 filter sets 

located at New Beasley Laboratory on Agronomy Road, College Station, TX, which also 

serves as TAES Laboratory for Plant Molecular Cytogenetics. 

As the identity of the different honey bee chromosomes is not available and the 

location of the BACs in the current physical and genetics map is not consistent, the 

images were processed to obtain black and white pictures to identify a priori the 

chromosomes. Signals were mapped on the previously constructed ideograms of the 

honey bee karyotype. 

 

Results 

 

Strength and frequency of the signals  

Most of BACs hybridized on several sites on different chromosomes, which was 

expected since the physical maps displayed on Map Viewer also gave several locations 

and position of BACs in the different versions of AmelMap3 (NCBI: http://www.ncbi. 

nlm.nih.gov/mapview/map_search.cgi?taxid=7460&query=AJ509637&qchr=&advsrch=

off&neighb=off). Many secondary signals were not discarded because they consistently 

co-hybridized with other BACs on several chromosomes, indicating some synteny 

between these BACs. When considerable data were available, histograms for each BAC 

was constructed to identify the chromosomes with the most frequent signal or signals 

(Fig. 10a, 10c); for those chromosomes that had signals at high frequency, a histogram 

was constructed to identify the position of the signals (Fig. 10b, 10d). When double or 

triple signals were detected, confirmatory checks back to the original pictures was 

carried out; if the multiple signals were confirmed in several pictures, the signals were 

considered as multiples. If not, the more frequent signal was mapped; the others signals 

appear on the list of table A.1. The location and position of BACs were cross tested by 

individual, triple or combinatorial experiments (Table 7, last column).  For example, to 

confirm the position of 6F1, 2D1 was utilized; for 36H10 and 5G9, 8H7 was included; 
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they also were tested in a triple cocktail mix. In the examples shown in Fig. 11, where 

the location and frequency of BACs expected on C1 and C10 were plotted, the 

experiment consisted of all mapped BACs, except 6H3 and 56F6, which were tested in a 

separated experiment where 8H8 and 4E8 were included as markers. The experiments 

consisted of three treatments in three replicates.  Each treatment consisted of a different 

label for every BAC in the mix, thus in one treatment BAC “X” was labeled with 

digoxigenin and detected with FITC (green), in the second treatment the same BAC was 

labeled with biotin and detected with Cy3 (red), in the third treatment a mix of 

Digoxigenin and Biotin labeled probes of the same BAC was added. In the Fig. 11b, a 

triple cocktail combination experiment that included 6B9, 8H7, and 6G8 was mapped to 

verify the position of these BACs on C10 and C11. Most of the triple experiments were 

designed based on the location displayed on Map Viewer (MVV). For example, MVV1 

set the position for 8H7, 5G9 and 36H10 on C13, MVV2 and MVV3 mapped them on 

C10. A previous experiment confirmed the location of 8H7 on C10, thus the 

chromosome to be tested was C10 and the definitive test marker was 8H7. One triple 

experiment was designed for each chromosome.  

The position and locations here reported can be affected by several factors: (a) 

when probe hybridization was in constitutive heterochromatin, the signal usually was 

very weak, (b) when probe hybridization occurred in facultative heterochromatin the 

strength and the position were affected by the level of the condensation and 

heterochromatinization, (c) when the probe hybridization occurred in a euchromatic 

region, usually the strength and frequency of the signal was high and very consistent, but 

the position were variable according to the condensation and proximity of a 

heterochromatin band. Therefore, metaphase chromosomes seem to be the most reliable 

phase to determine the position of the markers; however, very few hybridizations can be 

obtained from metaphase chromosomes.  Due to the condensation of the metaphase 

chromosome, metaphase provides very limited resolution for chromosome identification. 

In fact, the most of the useful signals were obtained in early stages of mitotic 

chromosomes (Fig. 12a to 12d and Fig. 13). However, considerable hybridization was 



 

 

66

also observed on prophase meiotic chromosomes (Fig. 12e and 12f). Usually meiotic 

chromosomes were clearly differentiated because of their smaller size, being very 

condensed and heterochromatic. In contrast, mitotic chromosomes were considerably 

larger and morphologically better defined, allowing better characterization and 

identification and better location of signals.  Evidence relating the most important and 

frequent signals are shown on individual mitotic chromosome figures accompanied with 

a black and white version alongside the Ba2OH (C-banding) and DAPI ideogram in Fig. 

14. The final map is also accompanied by the C-banding ideograms where all the 

important signals of the worked BACs are represented (Fig. 15). 

 

Table 7. List of the Solignac BACs worked with Fluorescence In Situ Hybridization (FISH). The 
column Experiment type indicates: I-individual experiment, T- cocktail containing three BACs, 
M-cocktail containing more than 3 BACs  

ID References MAP VIEWER 
(NCBI V2) V1 

MAP VIEWER (NCBI V3) V2/V3 MAP VIEWER 
(NCBI) V4 Experim

ent type Locus Am Accession  
number Clones Relative

Position
Chromo

some 
Relative
Position

Chromo
some 

Relative
Position 

Chromo
some 

Relative 
Position  

Chromo
some 

A113 059 AJ509290 1A8, 0.1969 2 0.572 6 
No 

match NM 
0.210, 

NP 
16, NP T 

Ap225 223 AJ509454 97B3 0.5006 10 0.5 5 0.5312 5 0.4526 5.0 ITM 

Ac005 403 AJ509634 1F2 0.1980 NP 0.8676 1 
0.757, 
0.8676 1 

0.755, 
0.865 

1 M 

Ac011 406 AJ509637 1F6 0.1105 8 Tel 9 Tel 9 
0.024, 

NP 
9 and 
Np 

TM 

Ac012 407 AJ509638 1C6 0.4836 2 0.5714 6 0.4167 6 0.4757 6 T 
Ac033 411 AJ509642 2D1 0.3720 2 0.772 2 0.772 2 0.1860 2 TM 
Ac062 417 AJ509648 2B11 0.9159 3 0.1136 2 0.1136 2 NP NP T 
Ac092 430 AJ509661 3F5 0.4447 2 0.7045 2 0.7045 2 0.2683 2 T 

Ac101 435 AJ509666 3H8 0.3289 11 
0.642, 

NP 
7 and 
NP 0.7142 7 

0.025, 
NP 

9 and 
NP 

T 

Ac127 444 AJ509675 4E8 0.0075 1 1tel 1 1tel 1 0.995 1 M 

Ac129 445 AJ509676 
4G8 or 

5E2 0.7174 13 0.36667 13 0.3666 13 
3 NP NP TM 

Ac139 450 AJ509681 5E2 0.0082 12 tel 4 tel 4 
Tel, NP 4 and 

NP 
TM 

Ac140 451 AJ509682 5E2 0.316 15 0.5 15 0.5 15 0.3509 15 TM 
Ac141 452 AJ509683 5E2 0.316 15 0.55 15 0.55 15 0.3509 15.0 TM 
Ac149 455 AJ509686 5B10 0.37612 6 0.6364 3 0.6364 3 0.3542 3 T 
Ac157 458 AJ509689 5G9 0.13398 13 0.846 10 0.8518 10 0.1333 10 T 
Ac158 459 AJ509690 6F1 0.2693 6 0.7667 13 0.7667 13 0.7731 13 T 
Ac159 460 AJ509691 5B10 0.18583 8 0.8518 9 0.8518 9 0.125 9 T 
Ac172 464 AJ509695 6B8 0.9627 12 tel 4 tel 4 0.8579 4 ITM 
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Table 7. (Continued) 

ID References MAP VIEWER 
(NCBI V2) V1 

MAP VIEWER (NCBI V3) V2/V3 MAP VIEWER 
(NCBI) V4 Experim

ent type Locus Am Accession  
number Clone Relative

Position
Chromo

some 
Relative
Position

Chromo
some 

Relative
Position 

Chromo
some 

Relative 
Position  

Chromo
some 

Ac179 467 AJ509698 6B9 0.8822 11 0.8387 11 0.80645 11 0.191 11 ITM 
Ac184 469 AJ509700 6G8 0.4402 6 0.5758 3 0.6061 3 0.3958 3 ITM 
Ac191 470 AJ509701 6D11 0.14587 1 0.86765 1 0.8971 1 0.8911 1 M 

Ac193 471 AJ509702 7B4 0.7877 1 0.2353 1 
0.2206 
0.9559 1 

0.205 
and 

0.945 

1 T 

Ac203 474 AJ509705 7B4 0.2166 8 0.7586 9 0.7586 9 0.175 1 T 
Ac216 480 AJ509711 8H7 0.6892 13 0.3333 10 0.4074 10 0.5 10 ITM 
Ac217 481 AJ509712 8H8 NP 1 0.3864 2 0.3864 NP 0.5742 2 ITM 

Ac303 488 AJ509719 49H2 0.9421 9 or 6 
No 

Match NM 
No 

Match NP 
0.375 

and NP 
7 and 
NP 

TM 

Ac306 490 AJ509721 26F7 0.6936 3 0.2954 2 
0.2727 
0.4773 2 

0.4733 
and 

0.7176 

2 I 

Ag005
a 491 AJ509722 56F6 0.60407 1 0.3971 1 0.4117 1 

0.37 1 IM 

Ag005
d 493 AJ509724 35D9 0.4529 14 

No 
Match NM 0.8064 4 

0.2111 4 T 

Ag016 496 AJ509727 44B2 0.023 8 
No 

Match NM 
0.9643 
0.9643 9 

Tel 9 T 

Al007 500 AJ509731 11A3 0.3301 3 0.7954 2 0.7954 2 
0.1846 
and NP 

2 and 
NP 

IT 

Al082 506 AJ509737 82B7 0.640 2 0.2286 6 0.2286 6 0.3204 6 T 
Av006 507 AJ509738 6H3 0.3721 10 0.625 5 0.59375 5 0.5914 5 M 
ANTP 550 AJ276511 22F1 0.4669 14 0.4187 16 0.4187 NP 0.5333 16 ITM 
RJP57

-1 552 Z26318 57E10 0.1869 16 0.1333 11 0.1833 11 
0.8111 11 T 

Ac051 
(d) 415 AJ509646 2G7  

0.3007 15 

0.6542 15 

0.62 and  
0.8 

15.0 0.1754 
and 

2807 

15 I 

Av036
D 510 AJ509741 36H10 

0.3662 13 
0.5926 10 

0.62963/
C10 

10 0.2987 10 T 

Ag011 495 AJ509726 37D2 
0.60245 11 

NM NM 
0.3571/

C7 
7 0.4878 7 T 

Al011 502 AJ509737 11G6 0.228 6 0.228 6 0.3721 10 0.314 6 I 
- - - 8A2 NP NP NP NP NP NP NP NP M 
- - - rDNA NP NP NP NP NP NP   ITM 
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Table 6 lists the 35 BACs worked, with all information about their identification 

(locus, Am, and accession number), location (chromosomal) and position (place in the 

chromosome) through the different versions of genome assembly (Amel). In Table 8 and 

Table A.1, the information obtained for the listed 35 BACs, which includes 

chromosomal location and position on the chromosome, is compared with those 

positions given in Table 7. There have been four version of the Map viewer (MVV1 to 

MVV4); each of these positions and chromosome locations were compared against the 

Fig. 10. Examples of count plots and histograms for detecting location and position of the 
BACs on the chromosomes of honey bee. The chromosome location was determined with 
count plots (a and c) and the position on the chromosome was determined with the histogram 
(b and d). (a-b) 6B9, (c-d) 6G8  
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position and location obtained using FISH. To compare the position of BACs using 

FISH with that shown in map viewer, a one sample T-test for significance (*) or non-

significance (NS) was used. When no significant difference (NS) was obtained the 

position of the BAC was marked with a √ symbol indicating a match with NCBI Map 

Viewer. The same check mark was used to indicate the match with a chromosome.  The 

obtained score was not used to confirm or suggest the location and position of the 

signals; it was used as reference in some cases when that information was insufficient, as 

was the case with 36H10 and 5G9.  
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Fig. 11. Examples of plots to map the BACs in chromosomes of honey bee. (a) BACs hitting 
on chromosome 1, and (b) 6B9, 8H7 and 6G8 on chromosome 11 and 10.   
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a b 

c d 

e f 

Fig. 12. Examples of FISH experiments for mapping 35 BACs of Soliganc library. (a) FISH of 
11A3 in individual experiment and (b) black and white (BW) of same picture with numbered 
chromosomes, (c) FISH of 6B8 showing 6 of the hybridization sites (d) BW of the same picture, 
(e) hybridization of meiotic chromosomes, rDNA (C1, C6 and C12), 8H8 (C1), 6H3 (C3, C7), 
49H2 (C11), 5E2 (C6, C7, C14, C15, 6G8 (C7) and (f) BW of the same picture. 
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Fig. 13. Examples of FISH experiments for mapping 35 BACs of Soliganc library for multiple 
experiments. (a) Prophase III (Late prophase), 6D11 (C1), 6B9 (C3, C11), 8A2 (C4, C8), 6B8 
(C3, C5, C11, C14), (b) BW of the same picture, (c) Prophase III, 6B8 (C4, C6, C12, C14, 6B9 
(C3, C13), 2D1 (C2, C9), (d) BW of the same picture, (e) Hybridization of 1C6 (green), 1A8 
(Greenish red), and 82B7 (red) in prophase II chromosomes, (f) BW of the same picture. 

a b 

c d 

e f f 
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Mapped signals 

146 signals were recorded from the 35 FISHed BACs in individual, triple and 

multiple experiments. On average 4 signals per BAC was obtained; 21 of the signals hit 

in doublets and two triplets (49H2 on C11 and 6H3 in C1). C11 showed the highest rate 

of doublets, in which 1F6, 3H8, 49H2, 6B8, 6B9 and 5E2 hybridized in two or three 

places. Hybridization with 8H7 and 6G8 resulted in double signals in C10, with 6H3, 

97B3, and 5E2 on C7 and 3H8 and 1F6 on C8. Thus, the BACs 1F6, 3H8, 6B8, 6H3, 

97B3, and 5E2 hybridized in several places on the same chromosomes (Table A.1).  The 

rDNA markers on chromosomes 6 and 12 were confirmed.  Less frequently observed, 

but also consistent, was an rDNA marker on C1, which was scored together with six 

BACs places - two for 1F2 and one for 56F6, 6D11, 7B4 and 4E8. The number of places 

hit, the BACs whose places were confirmed, and those places that are suggested as the 

most probable hybridization sites are listed in Table 8, and the maps are shown in Fig. 

14.       

The next set of information obtained is summarized in the Table 8 and Figs. 14 -

16, where the chromosomes and position is displayed by BAC and by group depending 

on the coincidence with the MVV information.  Seven BACs, 4E8, 56F6, 7B4, 6D11 

(C1), 11G6 (C5), 11A3 (C3), 26F7 (C4), hybridized on a single place. Of the four BACs 

that hit on C1, BAC 56F6 showed the most consistent and strongest signal.  The other 

three along with 1F2 showed very weak signal, the exception being the most distal signal 

of 1F2. The heterochromatic (facultative) state of the bands where the hybridization 

occurred could explain the weak signals observed (Fig. 14a).  BACs 1F2 (C1), 37D2 (C7 

and C11), 44B2 (C8 and C11), 6F1 (C6 and C11), and 8A2 (C4 and C8) all hybridized 

on two places. With the exception of 8A2 that showed very high frequency on C4, the 

rest of the BACs resulted in a similar frequency between signals.  BACs 2B11 (C1, C2 

and C9), 5B10 (C2, C6 and C14), 5G9 (C4, C6 and C10), and 57E10 (C4, C12 and C16) 

all hybridized on three chromosomes.  Only 5B10 can be placed on C6 using the 

frequency of the signal (16/33).  BACs with 4 signals were 1F6, 35D9, 36H10, 3F5, and 
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8H8. Using the frequency of the signal, C8 is the most probable carrier of 1F6.  In the 

same way, with 72 hits in 93 cells analyzed, we can say that 8H8 is on C1.  BACs with 5 

signals are 22F1 and 49H2, which are located on C16 and C11; while among BACs with 

six signals, 1A8 and 1C6 occur on C2, 6B8 on C14, and 6G8 on C5 and C7.  BAC 3H8, 

cannot be clearly placed because the frequency of 3H8 hits are not different between 5 

different chromosomes, and the positions obtained are significantly different from those 

places given in MVV versions.  BACs with 7 signals are 2D1, 6B9, 82B7, 8H7 and 

97B3, which are located on C2, C3, C2, and C10 respectively; only 97B3 cannot be 

place clearly by frequency, although C7 have the highest frequency with two 

hybridization sites on that chromosome.  BACs 6B8, 6H3, and 5E2 hit on more than 7 

chromosomes when no DNA blocker was added, and under some combinations, these 

BACs hit on almost all chromosomes. Even so, using the frequency between signals, 

6H3 can be placed on C7, 5E2 on C14 and C15; 6B8 cannot be clearly placed, but the 

most probable position seems to be C14. However, when 6B8 is combined with 6B9, the 

most frequent hit is to C11, and as in C14, the hits are on a euchromatic region. 

Therefore 6B8 can be mapped in both chromosomes.  In Fig. 12c six chromosomes are 

marked for the 6B8 BAC. Many of the placed BACs that are assigned by frequency are 

not in agreement with the MVV maps.  In those cases the golden green color on the 

maps indicates that it is a suggested place. 
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Table 8. Mapped signals, places confirmed, places suggested, and places for secondary signals 
for 35 FISHed BACs 

Chromo 
Some 

Num 
BACs 
places 

confirmed 

Num of 
BACs 
places 

suggested 

Secondary 
signals 

Total 
number of 

signals 
mapped 

BACs places 
confirmed BACs places suggested

1 5 1 0 7 56F6, 6D11, 1F2, 
7B4, 4E8 8H8, rDNA 

2 4 3 1 8 2D1, 82B7, 8H8, 3F5 1A8, 1C6, 2B11 
3 0 2 2 4  6B9, 11A3 
4 2 3 3 8 5E2, 6B8 8A2, 26F7, 49H2 
5 1 2 1 4 6H3 6G8, 11G6 
6 2 2 5 9 87B2, 1C6, rDNA 5B10, 1A8 
7 2 2 3 8 3H8, 37D2 6H3, 97B3 
8 0 2 6 8  1F6, 44B2 
9 0 0 3 3   

10 3 0 2 5 5G9, 36H10, 8H7  
11 1 2 10 13 6B9 6F1, 49H2 
12 0 0 5 5 rDNA  
13 0 0 2 2   
14 0 2 1 3  6B8, 5E2 
15 1 0 1 2 5E2  
16 1 2 1 4 22F1 57E10, 35D9 

Total 22 23 47 91 22 BACs plus rDNA 23 BACs plus rDNA 
 

 

In summary, 22 BACs can be placed by frequency of their signal and match with 

the last version of MVV (Red color), 10 BACs (1F2, 22F1, 2D1, 4E8, 56F6, 6D11, 7B4, 

82B7, 8H7, and 5E2 on C15) can be placed as confirmed, and 12 BACs can be placed as 

suggested (golden green) (11A3, 1A8, 1C6, 1F6, 26F7, 5B10, 6B8, 6B9, 6G8, 6H3, 

8H8, and 5E2 on C14).  Most of the BACs of this last group (suggested) presented a 

second and less frequent signal that coincides with the last version of MVV; they have 

been grouped separately and mapped as confirmed as well. BACs 11A3 and 6B9 hit no 

matches with the mapped location in MVV.  BAC 1A8 has no MVV identity, and two 

BACs, 1F2 and 5E2, have two places and more than two places in MVV. Of these 22 

BACs, 1A8, 1C6, 26F7, 6B8, 6H3, and 5E2 on C14 were poorly qualified with low 
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agreement score with the MVV maps. That means that 16 of 35 BACs were 

unambiguously placed by the FISH experiments, they are: 1F2, 22F1, 2D1, 4E8, 56F6, 

6D11, 7B4, 82B7, 8H7, 11A3, 1F6, 5B10, 6B9, 6G8, 8H8, and 5E2 on C15 (Table 8 and 

Fig. 15). However, 1A8 and 1C6 are clearly in synteny with 87B2 (Fig. 18a), which 

matches with MVV with a high score and high frequency.  BAC 2D1 also was 

unambiguously mapped in the first group of 10 BACs.  This BAC (2D1) was used as a 

marker to determine the position of 3F5 and 2B11, which were found in synteny in C2 

and C6 (Fig 18b). In the same way using 6B9 as marker, BACs 3H8 and 37D2 were 

placed on C7 and C11 (Fig 18c); however only the signals on C7 were mapped because 

the signals on this chromosome are clearer and stronger. Thus 1C6, 1A8, 3F5, 2B11, 

3H8 and 37D2 can be considered as unambiguously mapped. These last six BACs will 

be further re-examined following other grouping, which will confirm this result.  If these 

BACs can be considered as unambiguously mapped, adding these BACs to the 16 

previously mentioned, brings to 22 the number of BACs unambiguously mapped.     

Considering matches with the last version of MVV and moderate frequency or 

secondary signals (Table 8); several other BACs can be placed, such as 1C6, 1A8, 

36H10, 37D2, 3F5, 3H8, 5G9, 6B8, 6B9, 6H3, 82B7, 8H8, 5E2, and 97B3. Of this 

group, the BACs 1A8, 1C6, 6B8, 6B9, 6H3, 8H8, 5E2 were mapped in other 

chromosomes as suggested because of the high frequency of the signals on those 

chromosomes.  In each case, the mapped position of BACs in this group is found as a 

secondary signal. The most important characteristic of these BACs is that their hit 

frequency cannot define clearly their position, but the chromosomes match with the last 

versions of MVV.  Because of that match, these BACs are mapped as confirmed and 

listed in the Table 8. Of these same BACs, only 1A8 and 97B3 were mapped as 

suggested because even if one ignores the low hybridization rate, the highest frequency 

hit was on a different chromosome than in MVV4.  The main disadvantage of this 

second group of BACs is the similar hybridization rate on the different chromosomes 

where they hit. For example, 36H10 occurs on C4 (0.604), 7 (0.874), 8 (0.574) and 10 

(0.521) at frequencies of 7/20, 5/20, 2/20, and 4/20 respectively.   Even though C4 is hit 
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at the highest frequency, it is not significantly different from the frequency of the signals 

on C7 and C10. MVV2, MVV3 and MVV4 placed this BAC on C10 at 0.592, 0.629, and 

0.2987 relative units respectively.  Therefore with matches for places on MVV2 and 

MVV3 and chromosome matches for MVV2, MVV3 and MVV4, the most probable 

position of 36H10 is C10 at 0.584.   On the other hand, the position in C4 is on a very 

low frequency facultative band while in C10 it is on constitutive heterochromatin, which 

suggests that the correct place is C4, and this position was mapped as a suggested place.  

In several cases, such as 6B8 and 6B9, the signal was very weak or very low in 

frequency (C4, 18/93 and C11, 14/93 respectively) compared with the first signal 

mapped (C14, 28/93 and C3, 80/93 respectively).  BAC 97B3 was expected on C10 

(MVV1) and C5 (MVV2-MVV4) at a position between 0.45 (MVV4) to 0.53 (MVV1).  

Compared with the rest of the locations where this BAC hybridized, the position 0.525 

on C7 resulted in the highest frequency.  The match to the MVV position was a 

compelling reason to map this BAC on C7 as a confirmed. Using this procedure the 

BACs of this group was mapped as confirmed (red mark) or suggested (Table 8 and Fig. 

16).     
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Fig. 14. Map references of 35 BACs of Soliganc library by chromosomes. (a) C1, (b) C2, (c) C3, (d) C4, (e) C5, (f) C6, (g) C7, 
(h), C8, (i) C9, (j) C10, (k) C11, (l) C12, (m) C13, (n) C14, (o) C15, and (p) C16. The green color in the pictures comes from 
digoxigenin / FITC system, red from biotin/Cy3 system and yellow, greenish red, reddish green colors come from probes 
combination labeled with dig/FITC and biotin/Cy3. In the last column are the map ideogram of the chromosomes holding the 
signals detected, the red color indicates that the signal has some coincidence with some version of the NCBI Map Viewer 
(MVV), golden green color indicates that there is not complete agreement with the MVVs maps but high frequency of 
hybridization suggest that place is correct, the green color indicates secondary signals and signals with no agreement with 
MVV. Beside the color scheme, the ideogram of BaOH2-C-band and DAPI-band are shown to indicate the characteristic of the 
region where the BAC was placed. The positions indicated in the figures are approximate because they represent a mean with a 
standard deviation as shown in the table A.1, in addition to this variation, the natural variation of position caused by the band 
dynamics in the chromosomes through prophase may affect the position of the BACs on the chromosomes. The position 
related to the bands of reference, may have some variation because the DAPI ideogram used as reference is of prophase I, 
therefore, the BACs location in later stages can be slightly different. To reduce this potential problem, a black and white 
version of the picture of the chromosome is presented beside the colored. Additional information about the FISHed BACs is 
provided. In the first columns of the table are the identification references of each BAC, in the fourth column the number of 
cell recorded with the signal and in the last row of each table the chromosome and position are given.   
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( a ) ID References Freq 56f6 rDNA/8H8/1F2/4E8 8H8 6H3/rDNA/8H8/6H3 Chromosome 1 rDNA/6B8/6D11/1F2 

Ac217 8H8 AJ509712 72 (93) 

   

  

  

 

 

  

Ag005a 56F6 AJ509722 16 (20) 

Ac005 1F2 AJ509634 38(58) 

 rDNA/8H8/6D11 56F6/7B4/4E8 6H3/8H8/49H2 rDNA/6B8/6D11 

Ac127 4E8 AJ509675 20(58) 

          

Ac193 7B4 AJ509702 7(10) 

Av006 6H3 AJ509738 27(93) 

Ac191 6D11 AJ509701 18(34) 

NCBI Location: Chrom. Num  (Locations) 1 (0.6, 0.37), 1/2 (np, 0.57), 
1 (0.14, 0.89) 

np1/2 (np, 0.57), Np/1 (np, 
0.75 and 0.86)1 (0.0075, 

0.995) 

1/2 (np, 0.57), 1 (0.0075, 
0.995),  1 and 8/1 and 9 
(0.78 and 0.21/ 0.2 and 

0.94), 1 (0.6, 0.37   

Np, 10/5 (0.37, 0.59), 1/2 (np, 
0.57),  9 or 6/np (0.94, np) 

Np, 12/4 (0.96, 0.85), 1 (0.14, 
0.89), Np/1 (np, 0.75 and 0.86) 

 
( b ) ID References Freq 2D1 2B11 2D1 3F5 1F6 2D1 2D1 6B8 Chromosome 2 

Ac033 2D1 AJ509642 44/69 

     
    

 

Ac062 2B11 AJ509648 6(22) 

Ac092 3F5 AJ509661 8(22) 

Ac011 1F6 AJ509637 4(34) 

Ac172 6B8 AJ509695 12(34) 

     
  

6B8/1F6   

Ac217 8H8 AJ509712 15(93) 

NCBI Location: Chrom. Num . (Locations) 2 (0.37, 0.18) 3/ np (0.91, np); 2 (0.44, 0.7,  0.26) 8/9 (0.11, np) 12/14 (0.96, 0.85) 

8H8 
3F5 
6B8 
2D1 
8H8 
2B11 

4E8 
 
1F2 
7B4 
1F2 
6D11 
 
 
 
 
 
8H8 
 
rDNA 
 
56F6 
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( c ) ID References Freq 11A3 6B9 35D9 97B3 97B3 Chromosome 3 

Al007 11A3 AJ509731 10(15) 

 

 

 

 

 
 
 

 

 

  

 

  

 

Ac179 6B9 AJ509698 80(93) 

Ag005d 35D9 AJ509724 4(17) 

Ap225 97B3 AJ509454 14(93) 

NCBI Location: Chrom. Num . (Locations) 3/2/np(0.33,0
.18 and np) 

11(0.88, 
0.19) 14/4(0.45, 0.21) 10/5(0.5, 

0.45) 
10/5(0.5, 

0.45) 

 
 
 

( d ) ID References Freq 49H2 8H7/36H10 36H10 57E10 26F7 8A2 6B8 Chromosome 4 

Ac172 6B8 AJ509695 18(93) 

  
  

  

  
 

 
 

 

RJP57-1 57E10 Z26318 9(12) 

Av036D 36H10 AJ509741 7(18) 

Ac303 49H2 AJ509719 13(93) 

- 8A2 - 29(64) 

Ac306 26F7 AJ509721 8(12) 

 Np(0.375) 13/10(0.69,0.5) 13/10(0.62, 0.3) 16/11(0.19,0.81) 3/2(0.69,0.47 
and 0.71) 

? 12/4(0.96,0.85)

 
 
 

11A3 

97B3 

35D9 

6B9 

8A2 
 
49H2 
36H10 
26F7 
8H7 
57E10 
6B8 
 

Fig. 14. (Continued) 
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( e ) ID References Freq 6G8 6H3 6G8/49H2/5E2 49H2 11G6 Chromosome 5 

Ac172 6B8 AJ509695 nd 

    

   
 

   

  
  

Ac184 6G8 AJ509700 32(64) 

 
Av006 6H3 AJ509738 42(74) 

 
Ac303 49H2 AJ509719 13(93) 

 
Al011 11G6  AJ509733 nd 

 NCBI Location: Chrom. Num . 
(Locations) 6/3 10/5 6/3,  9/6,  4/12/15 9/6/no placed 5/8 

 
 

( f ) ID References Freq rDNA/2D1 5B10 rDNA/97B3 6B8 1A8 3F5/2D1 5G9 Chromosome 6 

Ac159 5B10 AJ509691 16(26
) 

      
   
 

 
 

   

Ap225 97B3 AJ509454 nd 

Ac172 6B8 AJ509695 3(12) 

Ac033 2D1 AJ509642 7(69) 

  
Ac092 3F5 AJ509661 6(18) 

 NCBI Location: Chrom. Num . 
(Locations) 2 6/3 10/5 12/4 2/6/nm 2/2, 2/2 13/10 

 
 
 
 
 
 

6H3 
 
11G6 
49H2 
6G8 

97B3 
 
1C6 
2D1 
5B10 
5G9 
87B2 
3F5 
1A8 
 
rDNA 
6B8 
rDNA 

Fig. 14. (Continued) 



 

 

81

 
( g ) ID references Freq 6G8 8H7 6H3 22F1/97B3 22F1/97B3 22F1/97B3/6H3 Chromosome 7 

Av006 6H3 AJ509738 48(148) 

 
      

  
 
 

  

Ac184 6G8 AJ509700 27(64) 

  Ap225 97B3 AJ509454 31(93) 

 ANTP 22F1 AJ276511 31(102) 

     
 

 
 

Ac216 8H7 AJ509711 6(64) 

NCBI Location: Chrom. Num  
(Locations) 6/3 13/10 10/5 14/16; 10/5 14/16; 10/5 14/16; 10/5; 10/5

 
( k ) ID References Freq 6G8/1F6 11G6 6F1 1F6/49H2 6B8 5E2 6B9 Chromosome 11 

Ac184 6G8 AJ509700 Nd 

  
6G8                

  
Al011 11G6 AJ509733 nd 

Ac158 6F1 AJ509690 4(8) 

Ac011 1F6 AJ509637 8(32) 

   
1F6              

Ac303 49H2 AJ509719 15(30) 

Ac172 6B8 AJ509695 55(148) 

Ac179 6B9 AJ509698 14(124) 

Ac139 5E2 AJ509681 11(85) 6/3 (0.61/0.39); 
8/9 (0.1,Tel) 5/8 (0.14, 0.86) 6/13 (0.81) 8/9 (0.1,Tel); 9/6 

(0.375) 12/4 (tel) 132/4 (tel) 11 (.838, 
0.191) 

 

6H3 
8H7 
97B3 
22F1 
6H3 
6G8 

6B8 
49H2 
6B9 
5E2 
11G6 
 6F1 
49H2 
6B8 
6B9 
1F6 
 
 
1F6 

Fig. 14. (Continued) 
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( i ) ID References Freq 5E2 49H2 Chromosome 9 

Ac129 
 

4G8 or 
5E2 AJ509676 nd 

 

 

Ac303 49H2 AJ509719 15(64) 

NCBI Location: Chrom. Num . 
(Locations 12/4(0.008) 9/6/nm (0.9421) 

 
( j ) ID References Freq 8H7/6G8 36H10/8H7 5G9 Chromosome 10 8H7 

Ac184 6G8 AJ509700 10(77) 

 

  

Ac216 8H7 AJ509711 34(74) 

 

 

8H7/6G8 C13: 8H7 

Ac157 5G9 AJ509689 4(10) 

    
  

Av036
D 

36H10 AJ509741 4(18) 

NCBI Location: Chrom. Num . 
(Locations 

13/10 (0.4); 6/3 
(0.57,0.39) 

13/10 (0.62, 
0.29) 

13/10(0.846) 
13/10 (0.84,0.13) 13/10 (0.62,0.29)

 
( l ) ID References Freq rDNA/5E2 rDNA/6H3 rDNA/6B8/6B9 Chromosome 12 

Ac172 6B8 AJ509695 17(148) 

  

 

Ac179 6B9 AJ509698 22(124) 

   
Av006 6H3* AJ509738 15(220) 

NCBI Location: Chrom. Num . 
(Locations 12/4(0.0082,tel) 10/5(0.37,0.59) 12/4(0.96,0.85)11/

11(0.83,0.19) 

 ( h) ID Reference Freq 1F6 8A2 44B2 2D1/1F6 Chromosome 8 

Ac011 1F6 AJ509637 16(64) 

   

  

 
- 8A2 - nd 

Ag016 44B2 AJ509727 6(9) 

Ac193 7B4 AJ509702 7(10) 

 
Ac033 2D1 AJ509642 8(93) 
Ap225 97B3 AJ509454 nd 

NCBI Location: Chrom. Num  
(Locations 8/9 (0.02, np) ? 8/9(0.02, tel) 2 (0.18,  0.77); 

8/9 (0.02, np) 

49H2 
 
 
 
 
 
 
 
 
5E2

36H10 
8H7 

5G9 
6G8 
8H7 

 
6H3 
6B8 
6B9 
5E2 
6B8 
 
 
 
 
 
rDNA 

Fig. 14. (Continued) 

44B2 
8A2 
1F6 
2D1 
 
1F6 
44B2 
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( m ) ID References Freq 8H7 97B3 Chromosome 13 

Ac216 8H7 AJ509711 nd 

  

  

Ap225 97B3 AJ509454 16(96)

 
 NCBI Location: Chrom. Num . 

(Locations 13/10(0.33,0.69) 10/5(0.45,0.53) 

 
( n ) ID References Freq 22F1 5E2/22F1 6B8 Chromosome 14 

ANTP 22F1 AJ276511 37(102) 

  

 

Ac140 5E2 AJ509682 17(85) 

    Ac172 6B8 AJ509695 46(148) 

NCBI Location: Chrom. Num .  
(Locations 14/16(0.41,0.53) 12/15(0.008,0.5) 12/4(0.85,tel) 

 
( o ) ID References Freq 5E2 Chromosome 15 

Ac140 5E2 AJ509682 

36(85) 

  

Ac141 5E2 AJ509683 

NCBI Location: Chrom. Num . 
(Locations 12/4/15(0.0082,0.35) 

   
( q ) ID References  Freq 22F1  35D9/22F1/57E10 Chromosome 16 

ANTP 22F1 AJ276511 32(102) 
   

  

    
NCBI Location: Chrom. 

 Num . (Locations) 14/16 (0.46,0.53) 

 
 
 

8H7 
97B3 

5E2 
22F1 
6B8 

5E2a 

5E2b 

22F1 
57E10 
22F1 
 
 
35D9 

Fig. 14. (Continued) 
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Fig. 15. Position of the signals on the chromosomes represented by the Ba2OH-C-banding 
ideogram (up), and map location with BAC names (down), Group 1. Frequency and match with 
last version of MVV, the scales of ideograms are for prophase I. 
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Fig. 16. Position of the signals on the chromosomes represented by the Ba2OH-C-banding 
ideogram (up), and map location with BAC names (down). Group 2. Only matches with last 
version of MVV, the scales of ideograms are for prophase I. 
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Fig. 17. Position of the signals on the chromosomes represented by the Ba2OH-C-banding 
ideogram (up), and map location with BAC names (down), Group 3. Matches with earlier MVV 
or no matches, the scales of ideograms are for prophase I. 
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BACs 35D9, 44B2, 49H2, 6F1, 57E10, 11G6, and 2B11 could not be placed by 

either of the last two ways because of the low frequency of hybridization and lack of 

match or very low score obtained. When a match with some location or position was 

obtained, it was only with an earlier version of MVV.  With this information, 35D9 can 

be placed on C16 (0.254) using only the frequency (8/20), 44B2 was placed on C8 

(0.843) using frequency (6/20) and position match with MVV3, and chromosome 

number match with MVV1. 49H2 could be placed on C4 (0.58) and C11 (0.912) using 

only frequency (15/64). For the signal on C11, the position match (0.9421) with MVV1 

was considered even though no chromosome match was observed.  BAC 6F1 that hit on 

chromosome 6 (0.639) and 11 (0.674), was expected on C6 (MVV1) or 13 (MVV2 to 

MVV4) at position 0.269, 0.766, 0.773 respectively.  A clearer signal was recorded on 

C11 at 0.639, which could be the correct location, thus, 6F1 could be located on C11 

(Fig. 14k). 57E10, BAC containing the Major Royal Jelly Protein (MRJP) cluster, was 

expected on C16 (MVV1) or C11 (MVV2-MVV4) at position 0.452 (MVV1), 0.183 and 

0.8064 (MVV3) or 0.811 and 0.211 (MVV4); the most frequent signal for this BAC was 

obtained on C4 and C16 at 0.477 and 0.697 with frequency of 9/20 and 8/20 

respectively. Some matches for position was obtained for C16 with MVV1, however the 

strongest signal was located on C4 (Fig 18d); thus 57E10 could not be clearly placed but 

can be mapped on both C4 and C16. BAC 11G6 was tested in a single individual 

experiment, and a single hybridization site was obtained on C5 at position 0.663. The 

11G6 BAC was not cross tested with the position of other BACs and the hybridization 

was on a metaphasic chromosome only; this BAC was expected on C10 (MVV3), or C6 

(MVV1, MVV2, MVV4) at 0.228 (MVV1 and MVV2), 0.314 (MVV4) and 0.372 

(MVV3). Therefore, we cannot determine accurately the location and position of this 

BAC. 2B11 was expected on C3 (MVV1), C2 (MVV2 and MVV3) and was not placed 

in MVV4.  With very few hybridizations obtained (only 6 cells in 3 slides) this BAC hits 

on C1, C2 and C9; at position 0.189, 0.465 and 0.527 respectively, which are very 

different to the expected positions (0.9159 or 0.1136). However, this BAC was tested 
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with 2D1 and 3F5, which hybridize on their expected chromosomes and locations, 

giving very good definition of the location of this BAC on C2 at 0.465. In summary, in 

this last group, only BACs 35D9, 44B2, and 2B11 can be placed with some accuracy; 

they can be observed in the Table 9 and Fig. 17. 

 

Table 9. Number of BAC signals observed in the FISH experiments, location and position on the 
chromosome grouped by coincidences with the different versions of NCBI Map Viewer. Group 1 
(Frequency and match with last version of MVV), Group 2 (Moderate frequency and matches 
with last version of MVV), and Group 3 (Matches with earlier MVV or no Matches). Bold letter 
indicates confirmed positions, the rest are suggested positions     

BAC Num of 
Signals 

Double 
signals 

Triple 
signals

Single 
signal 

Chrom. 
with 

double 
signal 

Frequency and 
Match with last 
version of MVV 

Matches with last 
version of MVV 

Matches with 
earlier MVV or no 

Matches 
Chromo

some 
BAC 

Position
Chromos

ome 
BAC 

Position 
Chromos

ome 
BAC 

Position

1A8 6   6  2 0.374 6 0.319   

11A3** 1   1  3 0.824     

1C6 6   6  2 0.789 6 0.758   

1F2* 2 1  1 1 1 0.795, 
0.869     

1F6** 4 2  2 11, 8 8 0.769, 
0.508     

22F1* 5 1  4 16 16 0.651     

26F7 1   1  4 0.534     

2B11 3   3      2 0.465 

2D1* 7 1  6 2 2 0.661     

35D9 4   4      16 0.254 

36H10 4   4    10 0.584   

37D2 2   2    7 0.658   

3F5 4   4    2 0.844   

3H8 6 2  4 11, 8   7 0.21   

44B2 2   2 11     8 0.843 

49H2 5 1  4 11     4 and 11 0.58 and 
0.912 

4E8* 1   1  1 0.943     

56F6* 1   1  1 0.228     

5B10** 3   3  6 0.652     

 



89 
 

 

 
Table 9. (continued) 

BAC Num of 
Signals 

Double 
signals 

Triple 
signals

Single 
signal 

Chrom. 
with 

double 
signal 

Frequency and 
Match with last 
version of MVV 

Matches with last 
version of MVV 

Matches with 
earlier MVV or no 

Matches 
Chromo

some 
BAC 

Position
Chromos

ome 
BAC 

Position 
Chromos

ome 
BAC 

Position

5G9 3   3    10 0.285   

6B8 8 3  5 11, 12, 
14 14 0.54, 

0.852 4 0.425   

6B9** 7 1  6 11 3 0.921 11 0.905   

6D11* 1   1  1 0.774     

6F1 2   2      11 0.639 

6G8** 6 1  5 10 5 0.469, 
0.429     

6H3 10 1 1 8 7, 1 7 0.572, 
0.779 5 0.543   

7B4* 2   2  1 0.21 or 
0.799     

82B7* 7   7  2 0.476 6 0.45   

8A2 2   2  4 0.456     

8H7* 7 1  6 10 10 0.49, 
0.808     

8H8** 4 1  3 4 1 0.404 2 0.596   

97B3 7 2  5 3, 7   7 0.525   

57E10. 3   3      11 and 
16 

.477 and 
0.697 

5E2* 10 3  7 11, 7, 9 15 0.559 4 0.618   

5E2 10 3  7 11, 7, 9 14 0.893     

11G6 1   1      5 0.663 

Average 4.294 1.5 1 3.647        

35 BACs 147 21 1 125  23      

 

 

Synteny and chromosome morphology 

Several problems were faced with the provided BACs, (a) some of them, such as 

8A2 do not have a recognizable identification or accession number and locus number, 

(b) others, as 49H2, are still not correctly placed in the MVV, or (c) were placed in the 

early version but these places have been changed through the different version of MVV, 
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as is the case of the majority of the BACs. In the last version, many major changes were 

made.  For example, 1A8, 1C6 and 87B2 (BACs that occur in synteny) were placed on 

C2 in map MVV1, and on C6 in MVV2 and MVV 3.  In the last version (MVV4) 1A8 

and 1C6 appear on C16 while 87B2 remains in C6. We observed these three BACs in C2 

and C6 in the same order on each chromosome, but no signal that calls our attention was 

observed on C16.  Another earlier mentioned problem was the multiple signals, 

especially in 6H3, 6B8, 6B9, 8H8, 5E2, 97B3, 8H7, 6G8, 3H8, 1A8 and 1C6. The most 

dramatic situation is 5E2 that appears in almost all chromosomes, but with almost all 

signals very weak and low in frequency except for that in C15.  MVV also shows several 

accession numbers placed in several chromosomes including C4, C12, C13, C15 and 

additional places still not mapped (Tables 7 and A.1). The 8H8 BAC mapped on C1 

(MVV1) and C2 (MVV2-MVV4) at 0.386 (MVV1-MVV3) and 0.574 (MVV4) and 6B9 

mapped invariably on chromosome 11 between 0.806 (MVV3) and 0.882 (MVV1) and 

0.191 (MVV4) and hybridized consistently on C1 (8H8) and C3 (6B9) at 0.404 and 

0.921 respectively. These places are supported by 72 and 80 cells of the 93 observed 

respectively. However, 8H8 also shows a weak signal on C2 (0.596) and C4 (0.528 and 

0.814) in 9 and 16 cells respectively of 93 analyzed.  6B9 appears in low frequency on 

C11 and C12 apparently in synteny with 6B8 (Figs. 14k and 14l). 6B8 hits on several 

chromosomes, particularly on C2, C4, C11, C12 and C14, (Fig. 12b, 13a and Fig. 14). 

The last three chromosomes show double signals (not all mapped) - one characteristic of 

these signals is that the most frequent signal occurs on a low frequency band and the less 

frequent signal occurs on more heterochromatic band.  

When 8H8 and 6H3 are FISHed without sheared genomic DNA or with Cot-1, 

multiple signals are observed in almost all chromosomes, hybridizing preferably on 

constitutive heterochromatin.  Most of the signals of 6H3 hybridize at telomeric regions 

of almost all chromosomes; particularly consistent are the telomeric regions of C1, C3, 

C6 and C12 (Fig. 14a, 14c, 14f, 14l). However, these locations were not consistently 

observed when the 6H3 BAC was FISHed alone; in that a case, 6H3 hybridizes to C3 

(0.488), C5 (0.542) and C7 (0.572 and 0.779) (Fig 14e and 14g). The distal position on 
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C7 falls on a low frequent constitutive band (q31), which is a variable position band. As 

the double signal was not clearly confirmed in the pictures, we assume that the distal 

position is correct and the proximal is one of the places influenced by the band position. 

It is important to add that C3, C5 and C7 are very similar in morphology and usually the 

BACs that hit on one of these chromosomes hit also at least in one of the other two, as is 

the case of 6G8 and 97B3 (Fig 14c, 14e, and 14g).  

22F1 has been placed on C14 (MVV1) and C16 (MVV2 and MVV4) between 

0.418 (MVV2 and MVV3) and 0.533 (MVV4), the signal was frequent (31/102) and 

strong in C7 but weak on C14 (37/102) and C16 (32/102) (Figs 14g, 14n, 14p). In both 

C14 and C16, the signal occurred close to a euchromatic band but near a 

heterochromatic band; while the signal on C7 occurred on a constitutive 

heterochromatin. BACs 22F1 and 5E2 apparently hybridize in two locations on C14, 

both in overlapping bands. BAC 6B8, however, although at a low hybridization 

frequency, produces a signal that is strong and double; the proximal is much more 

frequent (28/93) and apparently occurs on a euchromatic band of C14. Curiously, double 

hybridization sites and strong secondary signals were also observed for some of the 

BACs that hit on C11 (BACs 1F6, 6B8, 6B9, 3H8, and 49H2) and C8 (1F6, 44B2, and 

3H8). Clearly, 6B8 hybridizes on C11 and C14 and 1F6 and 3H8 hybridize on C11 and 

C8. In fact, these three chromosomes have been grouped together using the arm ratio and 

heterochromatin content (Fig. 18).  

Earlier it was mentioned that 1C6, 1A8, and 82B7 occur in synteny on C2 and C6. 

2D1, 3F5 and 2B11 also occur on both chromosomes. On C2, they occur in the order 

p|Cen|q:2B11:2D1:3F5 while in C6 they occur p:rDNA:6B8:2D1:rDNA|Cen|q:3F5:3F5:2D1 

(Fig. 22a), although the signals of 6B8 and 2D1 on C6 were neither easily observed nor 

frequently analyzed, they show strong signals in those position when rDNA was not present 

in the cocktail. Close analysis of the hybridization pattern of rDNA on C6 (Fig. 14f, 14l) 

reveals at least three rows of spots. The distal two are very much closer to each other than 

the more proximal.  It is within this region that the signal for 6B8 and 2D1 hits. In chapter I, 

it was pointed out that giemsa and trypsin differentially stained this region while C- and 
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DAPI show this region as heterochromatic (Fig. 18f).  On the other hand, R-banding 

suggests a large euchromatic region in that area.  

The BACs 37D2, 3H8 and 6B9 were also combined in one experiment with weak 

and irregular but consistent signals. 3H8 presented a single couplet signal on C7 (0.21) 

and two on C11 (0.174 and 0.512), 37D2 hybridized in a single couplet signal on C7 

(0.737) and C11 (0.822). 6B9 was consistent in position on C3, C11, and C12. However, 

3H8 clearly hybridized at two positions on C8 (0.166 and 0.389 respectively) (Fig. 18b). 

The signals for 3H8 on C8 are seen in each arm.  The signal in the long arm was mapped 

close to 1F6 in C11. Significant portions of the sequence in BAC 3H8 and BAC 1F6 on 

C8 appear duplicated in inverted directions around the centromere on C11 (Fig. 22c). 

Unfortunately, we did not run an experiment that includes 1F6 and 3H8 to verify this 

result. Apparently 3H8 is consistently located on pericentromeric heterochromatin of the 

short arm of the three chromosomes, but it is strongest on C7, on a band that is 

consistently stained as constitutive heterochromatin, contrary to C8 and C11 where the 

band DAPI stains as constitutive heterochromatin, while Ba2OH stained the bands on C8 

and C11 as low frequency C-bands (Fig. 18h and 18k). This result suggests that BAC 

3H8 carries some repetitive sequence common between those three chromosomes and 

the repeat sequence occurs more frequently interspersed in C7 than in C8 and C11.   
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ID References  Chromosome 2 Chromosome 6 Chromosome 2 Chromosome 6 Chromosome 2 Chromosome 6 C2 and C6 
(a) Experiment for Chromosome 2           

   

 

   

 
Ac012 407 AJ509638 1C6 
A113 059 AJ509290 1A8 
Al082 506 AJ509737 82B7 

(b) Experiment for Chromosome 6 

  

Ac033 411 AJ509642 2D1 
Ac092 430 AJ509661 3F5 
Ac062 417 AJ509648 2B11 
Ac17
2 464 AJ50969

5 6B8 1C6/1A8/82B7 2D1/3F5/2B11 

(c) ID References   Position Chromosomes 
3 and 7 

Chromosomes 
8 and 11 Chromosomes 11 Chromosome 8/Chromosome 7/Chromosome 11 

Ag011 37D2 AJ509726 
C7=0.658 

C11 = 0.727 
 

    
 
  

    

Ac101 3H8  AJ509666 
C7 = 0.21 
C11 = 0.64 
C8 = 0.17, 0.38 

 
Ac1
79 6B9  AJ509698 C11 = 0.536 

 11/7 (0.602, 0.48), 11/7/np (0.32, 0.714, 0.025, np) 

97B3 
 
2D1 
5B10 
5G9 
3F5 
1A8 
 
 
rDNA 
6B8
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1A8 
82B7 
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Fig. 18. Cases of BACs synteny on the chromosomes of honey bee. Result comes from cocktails containing three BACs. (a) C2 testing 
1C6, 1A8, and 82B7, (b) C6 using 2D1, 3F5, and 2B11, and (c) C7 using 37D2, 3H8, and 6B9. The colors in the pictures are under the 
same indication as Fig. 3. 
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49H2 is another BAC showing scattered hybridization; especially significant 

signals were on C11 (0.32, 0.635, and 0.912), C4 (0.58), C8 (0.505), and C9 (0.957). 

Because of low frequency of the first signal on C11 and the single signal on C8, they 

were not mapped. The two remaining signals on C11 together with the signals of 6B8 

and 6B9 apparently show a reversal of the order (Fig. 19a) that suggests a chromosome 

re-arrangement within C11 and between C11 and C12 (Fig. 19b). Additionally, 6B9 and 

6B8 at distal positions on C11 are apparently linked with 5E2, which appeared in the 

most proximal position - an order that seems to be syntenic to the arrangement observed 

in C12 (Fig. 19b).  

BACs 6G8, 97B3 and 8H7 were expected to hybridize on C6 and C3 (between 

0.444 and 0.606), on C10 and C5 (between 0.5 and 0.53), and on 13 and 10 (between 

0.333 and 0.689) according to MVV1 and MVV2-MVV4 respectively. BACs 97B3 and 

8H7 were confirmed on C7 and C10 respectively, and 6G8 was located on C5. 

Secondary signals were also consistently found on C4, C5, C7, and C10. Because of low 

frequency of 97B3 and 6G8 on C4 (6/93 and 2/64 respectively) they were not mapped. 

Even so, the positions of these signals show some relationship between C4, C7, C10, and 

C13. BACs C10, 8H7 and 6G8 showed double signals and 97B3 did the same on C7. 

6G8 and 8H7 in C10 occur in the order 6G8:8H7 in the proximal position and 

97B3:8H7:6G8 in the distal region. These two blocks are separated by 0.295 relative 

units. In C7 the order 97B3:8H7 is detected in the distal signal while the order 

6G8:97B3 was proximally detected.  These two blocks are separated by 0.199 relative 

units (Table 10). The pair 97B3:8H7 appeared at similar distances on C4, C7, C10 and 

C13. The block 6G8:8H7 on C10 suggest some kind of duplication and inversion, which 

apparently involved the pair 97B3:8H7 of C7. On C4 the three BACs are also detected, 

although the order is not the same probably due to imprecision in the measurements. 

Something interesting is that the size of the fragment occupied by these three BACs in 

C7 is approximately double of that in C4, while in C10 the fragment occupied is double 

that in C7 (Table 10 and Fig. 19c). A progressive increase of separation between 6G8 

and 97B3 is also apparently observed between C4, C7 and C10. Except for the proximal 
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position in C7 and distal position in C10, all sites where these blocks occur, are 

constitutive heterochromatic, and the chromosomes are themselves classified as 

heterochromatic (Fig. 14d, 14g, 14j and 14m).  

In summary, the tested Solignac’s selected BACs using FISH show a significant 

level of chimerics which explains not only the variation in the different versions of 

MapViewer, but also the multiple FISH signals and interaction between BACs when 

they are used in cocktail. The source of this chimerics may not be only from defective 

BACs, but also the natural occurrence of repeat sequences - especially in the 

heterochromatin of the genome of honey bee. The discussion addresses this possibility. 
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Fig. 19. Cases of synteny of the Solignac BACs in honey bee chromosomes. Map 
illustration showing the order of (a) 49H2, 6B8 and 6B9 on C11, (b) 5E2 and 6B8 and 6B9 
in C11 and C12, (c) order in proportional scale of the BACs 8H7, 97B3 and 6G8 on C4, 
C7, C10, and C13. 



 

 

96

Table 10. Approximate relative distances between pairs of BACs in four chromosomes 
of honey bee 

Separation between C4 C7 C10 C13 
97B3-8H7 0.11 0.029 0.023 0.025 
6G8-97B3 0.022 (x) 0.031 (2x) 0.078 (3x) - 
6G8-8H7 0.132 (2x) 0.259 (3x) 0.073/0.07 (x) - 
Proximal-Distal - 0.199 0.295 - 

 
 

Discussion 

 

The genome assembly Amel 4.0 released by Baylor College of Medicine on 

March 10, 2006, was qualified as being pure whole genome shotgun (WGS) (HBGSC, 

2006 Sup), because the BAC library (CHORI-224; bacpac.chori.org/bee1224.htm) had 

little positive effect on the WGS. According to HBGSC (2006 Sup) CHORI-224 showed 

significant deletions and instability that tended to produce smaller inserts and novel re-

arrangements that were detrimental to the assembly. The worked Solignac BACFISH 

experiments suggest similar problems. This problem has been previously found in BAC 

clones based on E. coli of organism with high frequency of tandem repeats, and small 

genomes, BACs from these kinds of genomes, with some frequency, experience 

instability and rearrangements (Song et al., 2001). Some information is available 

showing that chromosomal regions with long inverted repeats and AT-rich regions 

produce the same problem in large insert libraries, which are more stable in yeast 

(YACs), as demonstrated with DNA from different mammals species (Kouprina and 

Larionov, 1999; Kouprina et al., 2003) and plants (Song et al., 2003). Perhaps, the 

instability of the honey bee BACs, which are based on E. coli, comes from similar 

characteristics of the genome. Characteristics of the honey bee genome including A/T 

rich genome [67% according to HBGSC (2006)], presence of large blocks of 

heterochromatin and large content of facultative heterochromatin could explain the BAC 

problem. The large content of facultative heterochromatin, which agrees with the 

observation that the honey bee genome is organized in different arrangements of 
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interspersed repeats (Crain et al., 1976), could be affecting the stability of the inserts in 

the BACs.    

The FISH results show that only 5 (15%) of 35 BACs hybridize in a single site. 

Six (17 %) of the BACs hybridize on two sites, which means that no more that one third 

of the tested BACs produce reliable signal for mapping. A high percentage of the BACs 

(20%, 7 BACs) hybridize on more than 7 hybridization sites.  Many of these signals 

occur in synteny on some chromosomes, which suggest a very high degree of chimerism, 

deletions or rearrangements in those clones. The site where the signals occur affects 

hybridization and visualization of the signals. Thus, most of the signals mapped (22 of 

35) to euchromatic or facultative heterochromatic bands. These mapped signals were 

considered as the primary and most important signal. Secondary signals usually occurred 

on constitutive or highly frequent facultative heterochromatin, which suggest that these 

hybridizations come from repetitive sequences. These results also suggest that the 

genome of honey bee is rich in repetitive sequence that is widely distributed along the 

genome. However, the karyotype of early stages of prophase suggests that the honey bee 

genome is not highly heterochromatic from a cytogenetics point of view. This apparent 

contradiction can be explained by the possibility that the repetitive sequences are 

variable in amount and concentrated not only in the constitutive heterochromatin bands 

but also interspersed or distributed as scrambled repeats in the facultative 

heterochromatin (CSHL/WUGSC/PEB Arabidopsis Sequencing Consortium, 2000; 

Gilbert et al., 2003). Unlike constitutive heterochromatin, facultative heterochromatin is 

not characterized by repetitive sequences but shares with the first many characteristics 

which make possible the temporal and spacial flexibility in condensation that finally 

terminates in the epigenetic control of gene expression (Grewal and Moazed, 2003; 

Gilbert et al., 2003). Scramble repeats are characteristic of mobile elements 

(CSHL/WUGSC/PEB Arabidopsis Sequencing Consortium, 2000). Interspersion and 

scrambling of DNA sequence binding factors (Grewal and Rice, 2004) are characteristic 

of facultative heterochromatin euchromatin bands - characteristics that are important in 

the heterochromatinisation spreading process during gene silencing, epigenetic 
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expression and condensation (Millot et al., 1996; Grewal and Moazed, 2003). The FISH 

experiments of the worked BACs demonstrate that some DNA fragments are represented 

in several BACs sequences, and occur in several chromosomes at similar separation or at 

proportional multiples of that separation distance (Fig. 19). One interpretation of this 

result is that mobile elements have been modeling the organization of the genome of 

honey bee. The occurrence of these secondary hybridizations on heterochromatin, 

support this possibility.  

Many mechanisms can alter genome size - including polyploidy, fixation of 

accessory chromosomes or large duplications (John and Miklos, 1988), expansions of 

satellite DNA or transposable elements (TE) (San Miguel et al., 1998), and 

“spontaneous” loss of nonessential DNA (Petrov 1996, Petrov et al., 2000).  These 

changes can act to model the genome to produce the most advantageous structural 

arrangements in each species. The interaction between satellite DNA (heterochromatin) 

and transposable elements has a deep impact on the genome organization (Biémont and 

Vieira, 2005).  Some of these changes include induction of mutations, disruption of 

regulatory gene functions and triggering of chromosomal rearrangements (Biémont and 

Vieira, 2006). Although their harmful effect is very well documented, some of the TEs 

are used as vector elements and as regulators of genes in genetics improvements 

(Biémont and Vieira, 2006).  In humans it has been documented that TEs may have 

reshaped the genome by ectopic rearrangements, creating new genes, and modifying and 

shuffling existing genes (Lander et al., 2001). The role of TEs, that is in some way 

regulated via hypermethylation (O’Donnell and Boeke, 2007), suggests, "Recombination 

between LTRs is an efficient way to counteract retrotransposon expansion, at least 

among certain grasses” (Moffat, 2000) and insects (Burnette et al., 2005). Recently 

Lowe et al. (2007) suggested that mobile elements may have played a larger role than 

previously recognized in shaping the landscape of gene regulation during mammalian 

evolution; since mobile elements exist, they are constantly selected to become adapted to 

the genome, especially when they occur close to regulatory genes. Thus, cytogenetics 

characteristics of honey bee chromosomes (plasticity of the heterochromatin, banding 
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size variation) and frequency and distribution of the hybridization sites, suggest that 

deletions, duplications and transposition of repetitive elements has played an important 

role in modeling of honey bee genome. In small genomes, this fact has a particular 

importance because apparently the interactive mechanism of TE, satellites and 

regulatory genes, can drive the organism to an increase of recombination rate and faster 

replication (Moffat, 2000; Schön and Martens, 2002). However, TEs usually insert in 

areas of lower recombination rate, heterochromatic regions; and their presence by itself 

negatively recombination (Rizzon et al., 2002) because they disrupt colinearity and may 

occur as inverted sequences (Charlesworth, 1994).  In Caenorhabditis elegans 

accumulation of TEs (DNA-based elements) correlated positively with the 

recombination rate but not with the amount of LTR and non-LTR retrotransposons 

(RNA-based elements) (Duret et al., 2000; Rizzon et al., 2002). The role of TEs on 

recombination rate is, therefore unclear, since they correlate negatively with 

recombination rate in most of the genomes analyzed (Gorelick, 2003), including 

Arabidopsis thaliana (Wright et al., 2003) and maize (Fu et al., 2002). The contradictory 

effect of TEs on genomes in different species may relate to distribution, density and 

effect of TEs on regulatory genes and may not be directly related with other factors that 

are associated with recombination rate (Rizzon et al., 2002; Wright et al., 2003). Some 

studies report that crossing over is significantly correlated with the density of single 

repeats and the CpG ratio, but not with genes, pseudogenes, transposable elements, or 

dispersed repeats (Drouaud et al., 2006).  Dimitri (1997) reported gene-containing 

heterochromatin regions harbor several retro-element clusters with no repetitive 

satellites, which suggests their function is regulatory gene expression (Mendstrand et al., 

2005; Nishihara et al., 2006). Besides, many of the transposon-like elements, such as 

helitron rolling-circle elements in maize, are responsible for copying various genes 

segments into new location in the genome of maize (Messing and Dooner, 2006), results 

that support the role of TEs in genome remodeling.  The honey bee is an organism with 

little diversity of TEs, and it is not clear what role mariner transposition plays in this 

relatively small genome with its very high recombination rate (Beye et al., 2006).  Much 
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of the repetitive DNA of the honey bee remains unsequenced and 3 % of the clonable 

sequence is still waiting for screening (HBGSC, 2006).  Transposable elements (TEs) 

are widely distributed in organisms in which they have been scored. Gains and losses of 

TEs copies associated with small and large genomes, and the formation of solo-LTRs as 

a result of unequal homologous recombination are the main events that are continuously 

shaping the genomes, and can explain the difference in genome size between some 

organisms such as Drosophila and Anopheles (Biemont and Vieira 2005).  Evidently, 

although the number of different types of TE elements is restricted in the honey bee, 

they have had a major role in the relatively small genome of the honey bee. 

Thus the proposed chimerism in the mapped BACs, can also be considered as 

evidence of transpositions that have lead to deletions, inversion and translocations, 

mutations and other chromosomal rearrangements in honey bee, as has been mentioned 

for yeast (Kim et al., 1998) and Drosophila (Biemont and Vieira 2005).  The occurrence 

of rearrangements of the FISHed BACs, such as the duplications and inverted order seen 

for 49H2, 6B8, 6B9 and 5E2 on chromosomes 11 and 12, as well as for 8H7, 97B3 and 

6G8 in chromosomes 4, 7, 10 and 13, might be explained by the TE modeling 

hypothesis.  In both cases the pair 6B8/6B9 on C11 and C12 are frequently observed 

with 8H7/97B3 - not only in the chromosomes mentioned, but also on other 

chromosomes (Fig. 17a).  As additional information, we can add that, in the first case 

mentioned, one euchromatic and one heterochromatic chromosome is involved, with 

clear participation of their constitutive heterochromatin regions; in the second example, 

four heterochromatic chromosomes and their heterochromatic regions are involved.  

It may be a weakness of this transposition hypothesis that, in the last version of 

the genome map of the honey bee, almost no diversity of transposable elements has been 

detected. Only the Mariner family transposon has been confirmed as present. Further, 

little evidence of active retrotransposable elements were detected.  Little cytological 

evidence of structural rearrangement polymorphisms among honey bee chromosomes 

has been detected because of the haploid nature of the material analyzed.  However, 

frequent chromosome breakage, especially in C1, C2, C5, C11, C10 and C15 (all in the 
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most heterochromatic arm) and apparently non homologous pairing between 

chromosomes has been observed, and suggests the possibility of chromosome 

rearrangements that need to be studied in the queen meiosis. Breakage and 

rearrangements can be also related to TEs.  Fragile chromosomes sites, are related to 

genomic disorders in humans and other mammals because they are related to 

chromosomal rearrangements through nonallelic homologous recombination (NAHR) 

and to non homologous end-joining (NHEJ) that are responsible for recurrent and 

nonrecurrent rearrangements, respectively (Lupski and Stankiewicz, 2005). These TE 

and fragile regions usually are located in constitutive heterochromatin, which in case of 

Drosophila heterochromatin, harbor several regulatory genes that are frequently 

surrounded by a cluster of retroelements. Although, it is not clear that the honey bee 

genome harbors active retrotransposable elements, there is evidence for active non-LTR 

retroelements and for a high number of eroded LTR and non-LTR retroelements in the 

genome of honey bee, suggesting that some times in the past, the honeybee genome 

harbored many retrotransposons (HBGSC, 2006).  

Using FISH, Liehr et al. (2001) mapped in humans chromosomes. 10 mariner 

transposon-like ESTs and demonstrated that their location correlates with chromosomal 

fragile sites.  Notable is the similarity between the result of that study and that observed 

in this work. Four EST mariner markers gave multiple signals; some chromosomes such 

as HS17q12 showed four signals. In some chromosomes the signal was weak and in 

others strong, with cross hybridization to others chromosomes such as HS5q13. The high 

hybridization sites and variation in the strength of the signals can be explained by the 

promiscuous behavior of members of the mariner family. Its transposase can mobilize 

complete or defective copies of marinar elements (Lampe et al., 2003). Mariner TE also 

is related to (T/A) nucleotide duplication which are typical of mariner elements, and 

which are not typically tightly clustered (Ebert et al., 1995) - a characteristic observed in 

the honey bee genome.  However, in some species such as Ceratitis capitata, marinar 

TEs can invade new sites and may accumulate in high density in T/A rich regions (Torti 

et al., 2000). There is evidence that mariner TEs induce chromosome rearrangement, 
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gene duplication and chimerism (Gueiros-Filho and Beverley, 1997). Thus, mariner 

transposon seems to be a very good candidate responsible for multiple hits and synteny 

of the signals of the worked BACs.  Also, they explain at least in part the behavior of the 

BAC 6H3, whose hybridization is altered by the presence of other BACs in the 

hybridization cocktail. Therefore, it is suggested that Mariner fragments have been 

causing instability honey bee genome and in the BAC libraries, complicating thereby the 

BAC-FISH mapping and the assembly of the honey bee genome. Recently mariner has 

been associated with high rate of interchange of nuclear and mitochondrial genomes in 

honey bee (Pamilo et al., 2007).   

The major royal jelly protein (MRJP) cluster was expected on chromosome 11, 

where NCBI-MVV has it mapped.  However, 57E10, that carries the marker that 

identifies this cluster, was BAC-mapped onto C4 and C16. A very infrequent signal, 

which was not mapped, is present in the subteleomeric euchromatic region of the short 

arm of C14.  It is clear that the signal on C4 is located in a large euchromatic region 

while in C16 it is in a region that is heterochromatic.  The signal on C14 is very 

infrequent but, when present, was on the subtelomeric p arm of C14.  This region was 

frequently de-attached and observed as a minichromosome. Nevertheless, it is clear that 

the MRJP cluster is mainly mapped on chromosome 4 and chromosome 14 but not in 

C11.    
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CHAPTER IV 

 

IN SITU NICK-TRANSLATION BANDING IN DH4 HONEY BEE DRONES 

CHROMOSOMES 

 

Introduction 

 

Although banding techniques based on aceto-carmin dye were earlier used by 

Barbara McClintock to study the heritability of constitutive heterochromatin (nodes) in 

maize in 1931, it was in the 1960s that Torbjörn Oskar Caspersson began studies 

showing the use of chromosome banding as valuable tool in chromosome 

characterization in human diseases (Caspersson, 1989).  However, it was not until the 

1970s that the formal introduction of chromosome banding techniques provided not only 

a very powerful tool for chromosome identification (de la Torre and Sumner, 1994), 

structure and organization, but also as means to improved our knowledge about 

evolution and, more recently, genome mapping (Yang et al., 2000; Gartler, 2006).  In 

that decade, there were also experiments with high resolution banding.  Early prophase 

chromosomes, or chemicals that keep the metaphasic chromosomes relaxed (Yunis 

1981), were used along with nuclease and restriction endonuclease to produce nick 

banding (Sahasrabuddhe et al., 1978).  It was only after molecular techniques improved 

during the 1980s that restriction endonuclease (REs) banding for chromosome 

characterization was extended to plants (Olszewska et al., 1999), insects (Bianchi et al., 

1985), fish (Abuin eta al., 2007; Leitão et al., 2004, 2006) amphibians and reptiles. In 

general, REs such as AluI, RsaI, MboI, HaeIII, AcoRII, produce C-like patterns. When in 

situ nick translation and biotinylated label is incorporated into DNase I treated 

chromosomes, R-banding pattern is obtained (Bickmore and Craig, 1997).   

DNase I hypersensivity and nick banding associated with that hypersensitivity 

has been used to map active genes on fixed chromosomes, and study imprinting 

differences between active or inactive X chromosome in mammals (Gait et al., 1982; 
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Karen et al., 1983,1984), although often with contradictory results (Murer-Orlando and 

Peterson, 1985).  While Nick banding can be applied with other endonucleases, such as 

Eco R1 and Pvu II for example, the nick translation system ordinarily uses DNase I to 

characterize human chromosomes (Bullerdiek et al., 1985, 1986), C-banding in 

mammals (Adolph, 1988), G- or R- banding (Adolph and Hameister, 1985), 

chromosome mapping (Karem et al., 1984), and to differentiate facultative and 

constitutive heterochromatin (Sperling et al., 1985).  DNase I is also used to measure 

methylation level on chromosomes (Jablonka et al., 1985; Loebel and Johnston, 1993; 

Olszewska et al., 1999), show regionalization of sex chromosomes (Richler et al., 1987), 

and for gene detection (Kamissago et al., 1999).  Because of the difficulty controlling the 

enzyme (temperature and time) activity, the consistency and reproducibility of this 

method were quickly seriously questioned (Bickmore and Craig, 1997).  It was shown 

that the banding pattern produced by restriction enzymes is not exactly related to the 

distribution of the enzyme’s recognition sequence on the chromosome, because the 

banding is affected by several factors, such as the distribution of recognition sites, 

accessibility (de la Torre and Sumner, 1994, Bickmore and Craig, 1997), and enzyme 

concentration (Adolph and Hameister, 1985).  Even so, based on agreement of RE 

banding with FISH experiments (Chaves et al., 2002) the technique is still used in 

karyotypes with chromosomes that are difficult to identify, as in Ostreidae (Leitão et al., 

2006).  Endonuclease chromosome banding using Eco RI, HaeIII, and Tru9I, by Lorite 

et al. (1999a), and nick translation banding based on DNAase I sensitivity in Tapinoma 

nigerrimum (Hymenoptera, Formicidae) by Lorite et al. (1999b) have been reported. In 

the aphid Megoura viciae, the sensitivity of DNase I (Manicardi et al., 1998) as well as 

imprinting of the paternal chromosome set in holocentric chromosomes of Planococcus 

citri (Bongiorni et al., 1998) has been tested. Non-uniform DNase I sensitivity in 

different chromosome domains has been found, and in consequence, no correlation with 

the traditional banding pattern was observed.  Instead, a preference of DNase I for 

heterochromatic regions was described (Lorite et al., 1999b).  A more sophisticated 

technology, so-called FISH banding (Liehr et al., 2006) or IPM-FISH [IRS-PCR 
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multiplex FISH based on interspersed polymerase chain reaction (Aurich-Costa et al., 

2001 cited by Jiang and Katz, 2002)] has been created to characterize the R-banding-like 

pattern for diagnostic uses in humans (Jiang and Katz, 2002). In an attempt to reproduce 

GTG-like banding, Spectral Color Banding (SCAN) has been developed (Senger et al., 

1998) based on microdissection libraries.  In the present study we applied two-color nick 

translation banding to support the different banding patterns generated previously in 

honey bee chromosomes.  In order to reduce ambiguous results, we collected data from 

different cells, at different stages of prophase, and constructed an ideogram with early, 

middle and late-digested bands and compare that with C- and R- banding.  Chromosome 

spreads on slides were treated with Roche nick translation kit at two different incubation 

times using two detection systems, Digoxigenin-FITC and Biotin-Cy3.  The resultant 

nick bands were then compared to bands produced by other methods.  

 

Materials and Methods 

 

Chromosome preparation  

Drones from DH4 strain queen were kindly provided for chromosome 

preparations by Danny Weaver of BeeWeaver Apiaries. Chromosome slides were 

prepared according to the procedure of Mandrioli and Manicardi (2003) with 

modifications consisting of dissection and incubation of testes in physiological solution 

(Sahara et al., 1999) and distilled water as hypotonic solution. Follicles were 

disaggregated, and the cell suspension centrifuged at 1000g for 3 min. After discarding 

the supernatant, 200 mL of Carnoy’s fixative solution (Methanol: Acetic acid 3:1) was 

added, and the resultant mixture incubated at room temperature for 30 min and re-

centrifuged at 100g for 3 min. The procedure was repeated until the sample slides were 

clean, without significant lost of chromosomes and cells. The slides were scanned with a 

Zeiss binocular stereoscopy, and for slide preparation, a light microscope, Zeiss (Model 

039539-47 16 90-0000/09) equipped with phase contrast (47 3356-9901) and Plan apo 

25/0.65 and Apo 40/0.95 objectives. When slides were more than a year old, a re-
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hydratation  in TC-100 (Sigma, Cat# T3160) culture media complemented with 5 to 7% 

of fetal bovine serum (FBS, Sigma, Cat# F-6178) for 35 min at 36oC was applied , then 

the material on the slide was re-fixed in Carnoy’s solution.  

 

Digestion and labeling 

In a preliminary experiment, several incubation times were tested, 30, 45, 60, 90 

and 120 min. To support the period of times selected (45 and 90 min) for the formal 

experiment, the effect of those incubation times is described first.  

The slides where equilibrated in a diluted TE solution pH 7.5 (0.5 ddH2O: 0.5 

TE), then treated with 40 µL of nick translation mix dilution containing 4 µL of DIG-

Nick  (Cat# 1 745 816) or Biotin-Nick Translation Mix (Cat# 1 745 824, Roche 

Diagnostic GmbH, Penzberg, Germany). The volume was determined for an area of 

24x24mm. The slides were covered with a plastic cover slides, and incubated at 15oC in 

a humidity chamber for 45 min. The slides were briefly washed with diluted TE solution 

and drained before applying a new nick translation mix dilution with a different label, 

and incubated at the same time and temperature. Two series of slides were prepared; one 

starting with DIG-Nick mix and the other with Biotin-Nick mix.  After the first period of 

45 min, those slides treated with Biotin-Nick mix were treated with DIG-Nick mix and 

visa versa. After the second incubation, the slides were placed in a slide jar containing 

50 mL of 0.5M EDTA (Ethylendiaminetetraacetic acid) pH 8.0 at 52oC for 5 min and 

allowed to cool 10 min, after which they were washed three times in 2xSCC at 36oC 

followed by an alcohol series dehydratation. After several hours of air-drying at room 

temperature, the slides were processed for signal detection following the procedure used 

for Fluorescence In Situ Hybridization (FISH), as described in the chapter II.  Briefly, 

after incubation, the slides were rinsed twice at 40oC for 3min in 2xSCC, once at 36oC in 

50% formamide (Sigma, St Louis Mo, USA, Cat# F7503) for 10 min, twice at 36oC 

2xSCC, and once with 4xSCC plus 0.2% Tween® 20 (Sigma, P9416) at 37oC, and cool 

at room temperature in 4xSCC plus 0.2% Tween 20 for 5 min. The slides were blocked 

for 30 min with 250µL of 5% nonfat milk dissolved in 4xSCC plus 0.2% Tween 20. The 
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signals were detected with a mix solution containing 7 -15 µg of both CyTM3-conjugate 

Streptavidin (Jackson ImmunoResearch, Cat# 016-160-084) and Fluorescein (FITC)-

conjugated IgG fraction monoclonal mouse anti-digoxigenin (Jackson ImmunoResearch, 

Cat# 200-092-156) diluted in 100-150 µL of TNT buffer (100mM Tris-HCl pH7.5, 

150mM NaCl, 0.5% BSA). Following incubation for 30 min at 37oC, the slides were 

rinsed three times at 37oC in 4xSCC plus 0.2% Tween 20 for 3 min each. The slides 

were next briefly equilibrated in 4xSCC plus 0.2% Tween 20. Subsequently, 250µL of 

5µg/mL of 4’ 6-diamidino-2phenylindole (DAPI, Sigma, Cat# D-9542) in McIlvaine’s 

buffer (9 mM citric acid, 80 mM Na2HPO4·H2O, 2.5 mM MgCl2, pH 7.0) was applied 

to the slides and incubated for 30 min at room temperature.  After a brief wash in 4xSCC 

plus 0.2% Tween 20, 25 µL of home-prepared antifade solution was applied to slides 

following Trask (1980) recommendations.  

 

Slide observation 

Slides were analyzed under an epi-florescence microscope AX-70 with a Peltier-

cooled 1.3 M pixel Sensys camera (Roper Scientific) and a MacPro v. 4.2.3 digital 

image system (Applied Imaging Corp., Santa Clara, Cal., USA) equipped with 4',6-

diamidino-2-phenylindole (DAPI), fluorescein isothiocyanate (FITC), and Cy3 filter sets 

located at New Beasley Laboratory on Agronomy Rd y Laboratory, which also serves as 

the TAES Laboratory for Plant Molecular Cytogenetics.          

 

Results 

 

All chromosomes showed very good labeling. Clear and strong signals were 

obtained in pre-metaphase and metaphase chromosome; however banding was produced 

only in earlier prophase chromosomes. In metaphase chromosomes, a significant result 

was the even nick translation activity that digested and labeled heterochromatin and 

euchromatin equally (Fig 20a). Frequently, the nick translation activity starts in the 

center and spreads evenly to the outside of the cell, suggesting that remaining 
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cytoplasmic components initiate the nick translation system from that point. It was 

frequently observed, in interphase nuclei and metaphase chromosomes, which nick 

translation labeled evenly and preferentially, the periphery of nuclei or chromosomes 

(Fig. 20b and 20c). Prophase chromosomes were differential banded.  When overly 

digested (120 min), the heterochromatin was deeply stained than euchromatin (Fig 20d). 

Reducing the digestion time (45 and 90 min) improved the differential banding between 

heterochromatin and euchromatin (Fig 20e and 20f). 

Based on the preliminary results, 90 min of incubation was chosen for in situ 

nick translation banding. The slides that began with biotin-Cy3 label develop the first 

band (red) (Fig. 21a-21d) better than the second band (green) labeled with the DIG-FITC 

system applied 45 min after the biotin. The positions of green bands were confirmed in 

complementary experiments when Biotin-Cy3 was applied after 45 min of incubation in 

DIG-FITC (Fig. 21e and 21f).  Bands labeled in the middle of the experimental period 

were usually labeled with the two haptens, biotin-Cy3 and Dig-FITC giving a yellow, 

greenish-red or reddish-green color (Fig. 21a-21f). The banding staining was not 

homogenous, mainly because the digestion seems to depend on the prophase stage. 

Therefore, data were recorded from a sample of 12 cells and the ideogram was 

constructed with the average frequency of the bands. For this the pictures were 

converted to black and white, to enhance the DAPI banding pattern, and facilitate 

chromosome identification based on the previously constructed DAPI and C-banding 

ideograms. 
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Fig. 20. Preliminary test with in situ biotin-nick translation mix kit (Roche Applied 
Science) on honey bee chromosomes at 15oC and developed with streptavindin-Cy3 
conjugate.  Incubation times were: (a) 30 min, (b) 60 min, and (c) 120 min on metaphase 
chromosomes; (e) 120 min, (f) 45 min, and (g) 90 min on prophase chromosomes.   

a b 

e f 

c d 



 

 

110

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 
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c d 

Fig. 21. Banding evidence obtained from use of the biotin and digoxigenin nick 
translation mix (Roche Applied Science) on prophase chromosomes of honey bee. (a-d) 
first period treated with biotin nick translation mix and the second period with 
digoxigenin nick translation mix, (e-f) first period treated with digoxigenin nick 
translation mix and the second period with biotin nick translation mix. The experiment 
was carried out at 15oC, and 45 min in each period. The signals were developed with 
streptavidin-Cy3 conjugate and anti-Dig-FITC conjugate.    
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Ideogram description 

The color bars in the nick-banding ideogram represent the type of band, which 

were semi-qualitatively classified as early digested (red), intermediate digested (yellow) 

and late digested (green) (Fig. 22a). The early nick-bands refer to bands that were 

completely digested in the first 45 min of incubation and develop just one color. The 

yellow or intermediate bars represent intermediate bands whose color comes from the 

combination of the red from Cy3 and the green from FITC. The green bars represent the 

late bands, which were labeled in the second period of incubation only.  The color of the 

late band is green if the last incubation was performed with Dig-FITC, or red if the last 

incubation was carried out with Biotin-Cy3.  Each type of band is represented based on 

its frequency.  Thus the most frequently observed bands are deeply colored, and the low 

frequency bands are lightly colored.  Chromosome 1 (C1), for example, showed 10 nick 

bands, six of them (red) are early nick-bands, one is an intermediate nick band (yellow) 

and three are later nick bands (green). The most distal (p42) and the most proximal 

(interband between p12.2 and p21) red bands in the p arm, as well as the last distal band 

in the q arm (inter-band between q41 and q42) are high frequency bands - the red bar is 

darker than the rest of the red bars - an indication that those bands are prone to attack by 

the nick translation system, while the centromeric band of C1 is the lightest red colored 

band, indicating that band was a less prone to attack by the nick translation system.  

When the nick-ideogram is compared with DAPI and C-band ideograms, some 

variation in the position of the centromere is observed, which suggests an effect on the 

measurements, mainly due to variation in the stage of prophase and dynamics of the 

heterochromatization and condensation of the chromosomes. Even so, some interesting 

results can be highlighted from ideogram comparisons.  Except for the centromeric 

bands, most of the nick bands match inter-bands of the DAPI- and C-bands (Fig. 22b). 

Except in C10, C11, C13, and C14, the nick translation mix labelled all pericentromeric 

heterochromatin.  However, the frequency at which they were labeled was low.  The C- 

band ideogram was used to determine the kind of heterochromatin in the bands.  Dark 
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blue represents the C-band (constitutive heterochromatin).  These differ in the frequency 

observed as indicated by the level of the blue; the brighter blue represents secondary 

bands that in most of the cases match with a lower frequent DAPI band; thus those 

secondary bands, together with DAPI-bands that do not match with C-bands, are 

considered facultative heterochromatic bands. Based on that simple classification, most 

of the earlier nick-bands match with inters- or euchromatic bands and most of the 

intermediate and later nick-band coincides with facultative heterochromatin bands.  

Some low frequency C-bands, such as those in C7 and C13 coincide with an early and 

low frequency nick-band, as in C7 (q32) and C13 (q22), or with a late nick band, as in 

C13 (q31) and C10 (q12.2) (Fig. 22b) – a result that is in agreement with the assumption 

that constitutive heterochromatin is strongly but evenly attacked by DNase I throughout 

the cell division. C3, C7 and C10 are three chromosomes that, according to the 

karyotype characterization (Chapter I) and BAC-FISH experiment (Chapter II), are 

closely related. It is important to mention that C15 and C16 did not show intermediate 

and early bands; all bands were late bands, as expected of chromosomes with 

consititutive heterochromatin, but no facultative heterochromatin.. Nick translation 

consistently and incorporated biotin or digoxigenin early on the distal region of q arms 

of 10 chromosomes and late in C2.  
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Fig. 22. Comparative nick translation banding pattern with Ba(OH)2-C- and DAPI- banding. 
(a) Nick-Banding ideogram and an example of two karyograms from which the data was 
collected and upon which the construction was based. The colored bar at the top of the graphic 
indicates the type of band, while the level of the color within the bar indicates the frequency at 
which the bands were observed. The red color represent the first band digested (early band), 
the yellow color represents the bands that were being digested when the new hapten was 
added, producing a band that was either green / red or yellow.  These bands were classified as 
intermediate.  The green color represents bands that were labeled only in the second period of 
incubation. (b) A comparison between the nick-banding ideogram (midlle), DAPI- (left), and 
C-banding (right), (c) A comparison between the nick-banding ideogram (middle), C-banding 
(left), and R-banding (right).  C-banding was based on Ba2OH (Sumner, 1972) and R-banding 
following the procedure of Sumner (1994).      
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An overall comparison between the nick-banding and R-banding ideogram, 

shows that most of the bands are R-banding regions (Fig. 22c). However, in 9 

chromosomes (C1-C4, C6, C8, C10, C11, and C14) at least one nick-band matched 

unstained R-bands (circled in golden green ovals), and in most of the cases matched 

facultative heterochromatin bands.  It is important to mention that these same nick-bands 

are low frequency and usually late-digested. Thus it seems that nick translation may 

digests the facultative heterochromatin late (Fig 23).  It is of note that the nick bands 

located immediately after the centromeric band on C8, C11 and C14 are similar, late 

digested, low frequency bands on chromosomes that are morphologically and 

euchromatically similar. Therefore, it seems that the DAPI and C- banding inter-bands 

(euchromatic) are first attacked, followed by the facultative heterochromatin, which 

usually increased in frequency as the incubation time was progressing. Constitutive 

heterochromatin did not show a very clear tendency, but in general increased in the 

intermediate period of incubation (Fig. 23). 
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Discussion 

 

It was clear that metaphase chromosomes are of limited to use for nick-banding 

characterization of honey bee karyotype, leaving the prophase chromosomes which, 

even given the variability, are a very good alternative, since early, mid and late prophase 

have different sensitivities to DNase I.  A similar result was reported by Raman et al. 

(1988) for meiotic chromosomes of mouse. As pointed out here in chapters II and III, the 

chromosomes of honey bee can be grouped by similar morphology, size and banding 

pattern as well as by molecular markers (Chapter III). Some of these groups also show 

similarities in nick-banding pattern.  This similarity was seen for euchromatic 

chromosomes (C8, C11 and C14), nucleolus organizer carriers (C6 and C12), acrocentric 
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Fig. 23. Number of bands of honey bee chromosomes digested by the nick translation 
mix (Roche Diagnostic GmbH, Penzberg, Germany) system. Centromere bands 
(blue line), constitutive heterochromatin bands (golden green line), facultative 
heterochromatin bands (yellow line) and inter-bands or euchromatic bands of honey bee 
chromosomes.   
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and heterochromatic chromosomes (C3, C5, C7, and C9), and sub-metacentric and 

heterochromatic chromosomes (C16, C15, C13), which confirm the bona fide of the 

karyotype of honey characterization given in previous chapters. Nick-banding also 

confirms the chromatic nature of the bands detected; and suggest, to a very good 

approximation, the structure and organization in cytogenetic terms, of the honey bee 

genome. The nick banding technique, as carried out in this work, clarifies many of the 

inconsistencies and contradictory results reported earlier, and demonstrates the 

usefulness of this procedure to characterize the honey bee karyotype. One inconsistency 

was the incorporation of haptens in heterochromatin when incorporation was expected 

only in euchromatin and transcriptionally active regions such as rDNA - a result earlier 

reported by Adolph and Hameister (1985). Here we show that euchromatin, facultative 

heterochromatin and constitutive heterochromatin are differentially attacked by DNase I 

under the nick translation system.  The activity is dependant on the stage of the 

chromosomes, which agrees with the result reported by Sentis et al. (1990) in Baetica 

ustalata. Thus, Gross and Garrard (1988) mention that a variety of functional sequences 

are associated with DNase I hypersensitive sites, such as the centromere, silencers, 

recombination sequences, replication origins, upstream activation sequences (UASs), 

promoter elements and transcription terminators.  However, trans-acting factors and 

epigenetic determinants, such as DNA methylation, looping sequence composition, 

alternative conformation, and protein composition (Gross and Garrard, 1988) modify the 

detection of these sites (Foster and Bridger, 2005). These properties can be utilized in 

chromosome characterization, especially in karyotypes with small chromosomes and 

irregular banding, whose metaphase chromosomes are poorly known.            

Pericentromeric heterochromatin was attacked differentially among 

chromosomes - especially in the intermediate period. A similar pattern of incorporation 

of biotinylated dUTP in C- bands was produced after increasing the concentration of 

DNase I from 50ng/mL to 100 ng/mL in Megoura viciae (Manicardi et al., 1998) and 

Tapinoa nigerrimun (Lorite, et al., 1999).  Incorporation of labeled nucleotides in 

constitutive heterochromatin is a general characteristic of DNase I at high concentration 
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or with a long time of digestion (de la Torre et al., 1992, de la Torre and Sumner, 1994).   

Many that have examined the DNase I activity in a nick translation system in metaphase 

chromosomes explain the apparently random DNase I activity in terms of patterns of 

replication and pachytene chomomeres distribution on chromosomes (Manicardi et al., 

1998; Lorite et al., 1999). However, Paul (1987) mention that active genes are more 

prone to DNase I digestion because they are less protected over the entire region; 

hypersensitive sites are more frequently observed 5’ to the start of a transcription 

sequence.  In some genes the hypersensitive sites can be determined by non histone 

proteins such as βA-globin (Emerson etal., 1985; Elgin, 1984), and by altered 

conformation of the DNA strand (Elgin, 1984) in genes other than β-interferon (Zinn and 

Maniatis, 1986).  Hypersensitive sites and transcriptional regulation have been 

successfully correlated with active proteins in the Drosophila glue protein gene 

(Shermoen and Beckendorf, 1982), mouse (Senear and Palmiter, 1983) and chicken 

(Kaye et al., 1986), but not in others (Murray and Kenard 1984).  Hypersensitive sites 

also correlate with recombination hot spots in some genes, such as the HIS4 locus in 

Saccharomices cereviceae (Fan and Petes, 1996) and in meiotic chromosomes of mouse 

(Raman et al., 1988). Hypersensitive sites can also be induced by external factors, as in 

maize, in which the induced sites include TATAA and CAAT sequences (Paul et al., 

1987). Tuan and London (1984) found that hypersensitive DNase sites correlate with 

(Ts)28, (C-A)15(T-A)6 sequences.  Taken together, these observations suggest that DNase 

I has a preference for regions rich in T/A nucleotides, although not to specific sequences, 

which would explain the tendency of DNase I to induce nicks in the DNA located in 

constitutive heterochromatin, allowing thereby polymerase I incorporation of labeled 

nucleotide during the repair process. The low frequency of C-labeled bands and the 

consistency of attack with the different incubation times at the concentration analyzed (c. 

a. 1 ng of DNase I per 10µL of nick translation mix; Roche Applied Science, 2006, 

Nonradioactive In Situ Hybridization Application Manual) suggest that high A/T 

sequence attracts DNase I action, while the highly protected chromatin slows the activity 

relative to less protected regions.  Sentis et al. (1990) found this result for constitutive 
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heterochromatin and facultative heterochromatin. Thus, the strong signal of restriction 

bands at higher concentration, higher time of incubation and higher working temperature 

suggest that the accessibility of the DNA in constitutive heterochromatin can be 

enhanced by reducing the resistance provided by protein protection and tightly packaged 

chromatin (Gross and Garrard, 1988; Sumner et al., 1994). Interesting and comparative 

results are described by Crawford et al. (2006) and Sabo et al. (2006) in two very elegant 

experiments for DNase I mapping. The authors show that the lowest number of DNase I 

hypersensitive sites was located on gene poor regions with highest level of conservation. 

Those gene poor regions could be facultative and constitutive heterochromatin regions.   

In the test of this hypothesis on the honey bee, Figs. 20a-20d shows that the nick system 

did not distinguished between bands in metaphase chromosome regions and interphase 

nuclei; both evenly incorporate the hapten, dUTP-biotin or dUTP-digoxigenein. The 

relatively external location of the signals in both structures could be explained by the 

hypothesis that repetitive sequence or A/T rich sequences can usually located in the bend 

of loops (SAR: scaffold associated region) and external bends (Ostashevsky 1998) of 

DNA in metaphase chromosomes (Saitoh and Laemmli, 1994; Ostashevsky 1998) and 

that heterochromatin usually is located in the periphery of the nucleus (Ferreira et al., 

1997; Carvalho et al., 2001; Cremer and Cremer, 2001; Foster and Bridger, 2005; 

Meaburn and Mistelli, 2007).   This would explain our result about the peripheral 

location of the signals in the nucleus and metaphase chromosome. It would also explain 

the differential incorporation of labeled dUTP in prophase chromosomes.  An interaction 

between time, temperature and concentration of DNase I in optimization of the banding 

pattern and improvement of banding resolution is expected.  That interaction would be 

desirable to define in future experiments.  
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CHAPTER V 

 

CONCLUSIONS AND FUTURE WORK 

 

The karyotype of the honey bee is analyzed in this study.  The karyotype is 

characterized by two metacentric chromosomes (1 and 10), two submetacentric, 

ribosomal organizer carrier chromosomes (6 and 12), four submetacentric, 

heterochromatic chromosomes (16, 15, 4 and 13), four euchromatic, subtelocentric 

chromosomes (2, 8, 11 and 14) and four acrocentric chromosomes (3, 5, 7 and 9). The 

above 5 groups are based on arm ratio and are statistically supported. 

The reduction in size of chromosomes during prophase results from condensation 

in several specific spots on the chromosomes. These usually are pericentromeric and 

subtelomeric regions -particularly in overlapping bands close to subtelomeric regions, 

although other bands sometimes play an important role in this process. Condensation can 

take place at the same or at different time, and can be synchronized or not. Analyzing the 

condensation pattern in general terms, it seems there exists a unique condensation and 

heterochromatization program for each chromosome. Part of the variation in the 

chromosome size, arm ratio and band position is explained by this phenomenon.  This 

can be seen in fig. 26 (a and b) where alternation of periods of high variability and low 

variability in length of the chromosomes and arms is observed. 

Chromosomes 1, 6 and 7 do not contain DAPI specific facultative 

heterochromatin, while chromosomes 8, 11, and 14 contain a significant proportion of 

this kind of heterochromatin. The latter, chromosomes 8, 11 and 14, are consistently 

grouped as chromosomes with less DAPI-C heterochromatin but higher DAPI-

facultative and DAPI specific heterochromatin; chromosomes 10, 9, 13, 15, and 16 are 

characterized as very heterochromatic chromosomes and are grouped together by total 

DAPI heterochromatin and DAPI-C heterochromatin. Based on DAPI and C-Banding 

staining, the genome of honey bee contains 47 ± 11.5 % heterochromatin, of which 25 ± 
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11.12  % is constitutive and 22 ± 10.4 % is facultative; 7% of facultative 

heterochromatin is DAPI-specific stained and 15 % of that is C- and DAPI stained. Only 

3.5 % of the constitutive heterochromatin occurs in low frequency C-bands, which 

means that A+T richness should be lower than 21.5 % in the remaining, mostly 

pericentromeric heterochromatin. 

As the BACs hybridized to multiple sites, assignment of the signal to the 

cytomolecular map was based on strength and frequency of the signals.  The location 

and position of the BACs was compared with those published in the different version of 

Map Viewer at the NCBI and BeeBase web sites. The cytomolecular position of 22 

BACs was well supported by data: 10 were confirmed with the last version of Map 

Viewer V4, with the chromosome number and position on the chromosome perfect 

matches to the cytomolecular map, 12 BACs were mapped using the high frequency of a 

signal and coincidence of chromosome or position with some of the early versions of 

Map Viewer, 11 BACs were mapped as suggested places based on a low frequency of 

the signal and coincidence with chromosome or position in earlier versions of Map 

Viewer, 2 BACs were placed with no coincidence with Map Viewer. Only seven BACs, 

4E8, 56F6, 7B4, 6D11 (C1), 11G6 (C5), 11A3 (C3), 26F7 (C4), hybridized at a single 

place. The secondary signals usually hit constitutive heterochromatin, and in some cases, 

occurred on facultative heterochromatin. Many of the primary and secondary signals 

show some degree of synteny in different chromosomes, including 6B8/6B9 on 

chromosomes 3, 11, and 12, and 8H7/97B3 on chromosomes C4, C7, C10, and C13. 

The interphase nucleus, prophase and metaphase chromosomes were differentially 

labeled by nick banding. Prophase chromosomes show a consistent and useful banding 

pattern that agrees with the banding pattern generated by C-, DAPI- and R- banding. C- 

and DAPI inter-bands were more frequently early digested than were facultative and 

constitutive heterochromatin. Constitutive heterochromatin was accessible to DNase I 

activity throughout the time of incubation tested.  However, the low frequency of these 

bands suggests that the DNA is less accessible than that it is in facultative and 

euchromatin bands.  
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 Important advances in the karyotype characterization, chromosome 

identification, and FISH mapping of the honey bee have been carried out in the present 

study. However, additional studies are necessary not only to confirm the results and 

improve the maps but also to extend these studies into new areas.  For this, there is a 

need to generate additional molecular resources for molecular mapping. It is important to 

identify additional cloned DNA markers specific for each honey bee chromosome and 

especially to identify unique sequence clones detectable by FISH techniques. Primers 

developed from sequence information, BACs and cosmid libraries, EST and STS from 

the Solignac (2004) and Hunt and Page (1995) publications can be used to generate a 

small library whose function will be chromosome identification and mapping reference 

points. Given the problems with known BACs libraries, an alternative of interest would 

be to generate this resource using individual chromosome microdisection and FISH-

banding technology. 

FISH-banding technology also can be used to generate and characterize the 

described heterochromatin classification and confirm the mapping location, based on the 

hypothesis that highly repetitive DNA equates to constitutive heterochromatin and 

middle repetitive heterochromatin equates to facultative heterochromatin. For highly 

repetitive sequences, Beye and Moritz (1994) is a very good reference, however libraries 

for this kind of marker can also be generated by re-association kinetics (Vogel et al., 

1990; Bishop et al., 1994; Araya et al., 1997; Fisher et al., 1998); chromatin immuno-

precipitation with antibodies against several histones modifications followed by ChIP-

PCR kit (Biocompare Cat# IP-PCR-NFkb) is also a good alternative to quick and more 

specific heterochromatin amplification  (Yang et al., 2005). The main goal would be to 

obtain at least two specific late prophase and metaphase FISHable markers for each 

chromosome of the honey bee, with additional markers that can be used as references for 

mapping and positional cloning protocols. Interspersed markers based on LTR and 

mariner-like elements could support the mapping and positional cloning, since these 

elements appear widely distributed, and are most of the time, in synteny. Especially 
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important is the ribosomal organizer (NOR), since accumulated evidences suggest that 

the ribosomal genes are not only localized in the traditionally described NOR but also 

scattered throughout the genome - a distribution that is shaped by transposable elements 

(Datson and Murray 2006). In summary, I propose for future work, to use molecular 

resources and available FISH technology to: (a) generate or prescreen existing BAC-

library for markers useful for specific chromosome identification, (b) generate a highly 

and middle repetitive sequence clone library for chromosome FISH that serves as a 

reference for future gene mapping and positional cloning, and (c) generate for the same 

purpose sequences for FISH of mobile elements. Reaching these three goals would 

complete the foundation upon which the genome resources and sequence map of honey 

bee could rest and be fruitful exploited. 

In order to confirm and accumulate evidences about the role of Mariner 

transposon-like elements in the organization of the genome of honey bee, it is important 

to map extensively and systematically these elements using specific TE probes (Reiter et 

al., 1999). Several techniques have been used in mammals (Reiter et al., 1999; Wilson et 

al., 2007), plants (Jacobs et al., 2004) and insects (Russel and Shukle, 1997) to reach this 

objectives, for example, PCR assisted by terminal inverted repeats as primers (Reiter et 

al., 1999; Datson and Murray, 2006), STS and EST (Liehr et al., 2001; Wilson et al., 

2007) and PRINS (Reiter et al., 1999). It is now known that mariner elements are 

extensively represented in the honey bee genome with low divergence from the 

consensus sequence (HBGPC,2006). Thus, PRINS and the conserved sequence of the 

mariner transposase gene can be a good reference to generate the necessary probes. 

Specific kits for large fragment amplification with low levels of replication error are now 

available; therefore, clones based on PCR amplification could be a good choice for 

producing mariner probes.    

Another chromosome characteristic that needs to taken into account is the 

multiple constrictions, probably inactive centromeres or neocentromeres located in 

chromosome 2. Apparently, these centromere-like constrictions also are present in 

chromosome 4, 10, 13 and 15. It would be desirable to specifically map those structures, 
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since they apparently are correlated with secondary signals of the BACs mapped here. 

Confirmation of those chromosomes structures would explain difficulties with 

identification of chromosomes 2, 4 and 10, and would support karyological studies about 

honey bee phylogeny and dynamics of africanization of European honey bees.  

Banding patterns, transposon-like markers, and chromosome structures have 

been used in many organisms to study genetic profiles, and have been used for genetic 

improvement and characterization of the dynamics of the evolution of the organisms. 

Documentation of changes in the chromosome structure and morphology, which are 

based on chromosome molecular markers, have still not been used in the africanization 

problem of the honey bee; this field could be well supported by improved honey bee 

karyotype characterization and enriched cyto-molecular maps.  Such changes, if 

demonstrated would be key to understanding widespread expression array differences 

between European and Afrinized bees.   
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Fig. A.1. Ideogram (a), chromosome spread (b), and karyogram (c) of honey bee 
karyotype stained with 4’ 6-diamidino-2phenylindole (DAPI). (A.1.1) Prophase I (PI) 
with landmarks: the break point in C1 (arrow), C2 shows three constrictions - the distal 
and proximal ones are the possible neocentromeres (arrow head), C3, C5 and C11 each 
show a satellite band that is frequently lost (circle), C14 shows the large p-euchromatic 
band where a FISH signal of 57E10 (Royal Jelly marker) was frequently observed, 
which frequently de-attached and was lost or observed as a mini-chromosome, arrows 
on cC3, C5, C7 and C9 show the large constrictions in these chromosomes, and the 
oval on C13 shows the distal C-band. (A.1.2) Prophase II (PII). The same 
characteristics are highlighted on the chromosomes but the frequency at which they 
were observed was lower, although the banding provides added contrast, the increased 
number of bands makes the correct identification of each chromosome difficult, the 
most heterochromatic chromosomes at this stage were C9, C10 and C13; in the 
ideograms C8, C11 and C14 seem to be very heterochromatic because of the relatively 
large number of the bands, but the light blue color indicates that those bands are 
infrequently observed. (A.1.3) Prophase III or late prophase (PIII). Most of the 
chromosomes have a reduced number of bands, but the bands are larger: C1, C2, C3, 
C7 are better banded at this stage. The smallest chromosomes (13-15) are poorly 
banded at this stage but the patterns more contrasting. Additional karyograms are 
added to show the variability in the chromosomes at this stage. (A.1.4) Prophase IV or 
Pre-Metaphase (PIV), the banding at this stage is poorly represented: In most of the 
cases the bands are few because the small bands have overlapped  and provide few 
contrasting patterns. The banding pattern observed at this stage are the probable 
banding pattern at metaphase, however, the high condensation of the metaphase 
chromosomes reduces the frequency of bands observed at metaphase, even so, some 
chromosomes can be identified with some frequency as C1, C3, C5, C7, the rest of 
chromosomes are very difficult to identify, the most difficult are C6, C10 and C12; 
notice the configuration of C10, which is like a sub-acrocentric chromosome. In a very 
few cases, the sizes of the chromosomes are useful for chromosome identification at 
PIV.  These ideograms were constructed with 11 prophase I, 37 prophase II, 68 
prophase III and 50 pre-metaphase spreads 
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Fig. A.2. Ideogram (a), chromosome spread (b), and karyogram (c) of the honey bee 
karyotype stained with Ba(OH)2 after the method of Sumner (1972). Notice the 
variation in the chromosome staining, which is dependant on the chromosome stage - 
the earlier the prophase the better contrast in the band staining. Notice that C8, C11 
and C14 are the most euchromatic chromosomes because of the shorter and lower 
frequency  pericentromeric heterochromatin band. Chromosomes 1, 2, 7 10 and 13 
seems to be the most heterochromatic. They usually show no pericentromeric 
constitutive heterochromatin. As in DAPI-banding, notice the p-euchromatic band on 
C4, C6, C8, C11, C12 and C14. This ideogram was constructed based on 3 prophase I, 
4 prophase II, 4 prophase III, and 2 pre-metaphase spreads.     
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Fig. A.3. Ideogram (a), chromosome spread (b), and karyogram (c) of the honey bee 
karyotype stained with giemsa. The banding generated by giemsa was not clear enough 
to construct a highly detailed map. The banding seems to be similar to that generated by 
Ba(OH)2 and DAPI. One distinctive characteristic was that most of the bands are 
doublets. In some cases, as in C1, C3, C6, C11, and C16, the pericentromeric bands 
were not clearly stained. In this experiment, pre-metaphase and metaphase 
chromosomes were not clearly banded. This ideogram was constructed based on 2 
prophase I, 2 prophase II, 6 prophase III, and 0 pre-metaphase. 
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Fig. A.4. Ideogram (a), chromosome spread (b), and karyogram (c) of the honey bee 
karyotype stained with AgNO3 after the method of Howell and Black (1980). The main 
purpose of this method is to detect the nucleolus organizer (NOR). As in the FISH 
method, sometimes many places are observed as in this case on chromosomes 1, 6, 7, 
8, 9, 11, 12 and 14.  However, the strong and consistent signals are only on C1, C6, and 
C12.  The banding pattern, although characteristic for this method, does not have 
complete correspondence with other methods. This ideogram was constructed with 5 
prophase I, 6 prophase II, 2 prophase III, and 0 prophase IV 
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Fig. A.5. Ideogram (a), chromosome spread (b), and karyogram (c) of the honey bee 
karyotype stained with giemsa after the method of Sumner (1993) to detect the R-
banding. The banding produced by this method is very good, the problem is the 
chromosome classification, because the bands generated are not completely 
correspondent to the DAPI and BaOH2 inter-bands. The reason was that, contrary to 
other methods, the metaphase and pre-metaphase chromosomes were better banded 
because they tolerate better the conditions of the procedure. However, sometimes the 
C-band was not completely digested and was also differentially stained as in C3, and 
C9. This ideogram was constructed based on 0 prophase I, 2 prophase II, 5 prophase 
III, and 0 pre-metaphase spreads. 
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Fig A.6. . Ideogram (a), chromosome spread (b), and karyogram (c) of the honey bee 
karyotype stained with giemsa after the method of Seabright (1971) for trypsin-banding 
method. As the giemsa staining, this method did not produce a clear banding pattern in 
all chromosomes, the banding was dependant on the stages of prophase and highly 
variable. In consequence, the number of bands detected was higher than with any other 
method. Better banding was obtained in early prophase (PI and PII). Notice that 
pericentromeric band is not clearly contrasted. This banding pattern seems to be 
characteristic for each chromosome, but it is difficult to compare it with other methods 
because of their very low correspondence. Since the bands are very variable and 
numerous, it requires a very high number of spread to provide confidence in this 
banding pattern. The ideogram was constructed based on 2 prophase I, 5 Prophase 2, 5 
prophase III, and 0 prophase IV.   
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A.2 

GENERATION OF AN INTEGRATED KARYOTYPE OF THE HONEY BEE 

(Apis mellifera L.) BY BANDING PATTERN AND FLUORESCENT IN SITU 

HYBRIDIZATION: ADDITIONAL OBSERVATION ABOUT CHROMOSOME 

CONDENSATION DURING PROPHASE 

 

Introduction 

 

Chromosomes are visible rod-like structures consisting of tightly coiled DNA 

and supporting proteins called chromatin. Found in the cell nucleus of plants and 

animals, chromosomes condense to maximum levels during cell division in order to 

facilitate reproduction and cell division. The chromosomes differentiate in characteristic 

domains in the form of chromosome bands.  These bands reflect nucleotide composition 

and condensation can be enhanced in cytogenetic preparations with staining techniques 

(Craig and Bickmore, 1993). Thus staining can differentiate chromosome domains. 

Called nodes in the early literature (McClintock, 1931), these domains were renamed as 

positive heterochromatin (chromosome regions stained) or negative heterochromatin 

(chromosome region not stained) (Takehisa, 1976). And, although the term 

heterochromatin (positive) and euchromatin (negative) was recognized by Heitz in 1928 

(Sumner, 2003), it was in the 1960s that banding techniques and the banding concept 

was developed by T. Caspersson (Caspersson, 1989). Since chromosome banding 

demonstrated consistency, it was confidently used for chromosome classification and 

identification - especially for clinical uses (Caspersson, 1989). Given the clinical and 

other uses of banding, , a common banding nomenclature was necessary. Several 

nomenclatures and definitions were used before the one agreed upon as the International 

Standard Chromosome Nomenclature (ISCN) in 1981 (ISCN, 1981).  

Since its creation in 1976, the ISCN recognized difficulties in the chromosome 

and banding classification due to the variability in the resolution and dynamics of  

banding during prophase (ISCN, 2005). These problems were also detected by the 
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different banding techniques, making it necessary to periodically review and update the 

chromosome and banding classification (ISCN, 2005). Coincidently, in the decade of 

1970s, the variation and dynamics of chromosome banding were intensively studied, 

especially in mammals (Sen and Sharma, 1985; ISCN, 2005) and sporadically in insects 

(Belmont et al., 1989) and plants (Takehisa, 1976).  

Chromosome banding during the progression of prophase is seen not only as a 

reduction of the number of bands and growth of heterochromatin bands, but also as 

variation and reorganization during condensation, and specially in R-bands (Craig and 

Bickmore, 1993). In Vicia faba, it heterochromatin bands become euchromatic twice 

during mitotic prophase, but the number of bands remain unchanged or reduce gradually 

in number (Takehisa, (1976). Human chromosomes, show the appearance and 

disappearance of bands reported in V. faba also show variation in the size of the bands. 

The relative positions of bands were in agreement with the ISCN nomenclature, but the 

size of bands differed during the different stages of prophase. Something interesting was 

an intercalated euchromatic band that was present within an otherwise heterochomatic 

region. Observed at different prophase stages, band dynamics was considered important 

for detection of abnormalities (Richer et al., 1983). Thus there are bands that fuse during 

prophase and become thicker and darker; there are inter-bands or heterochromatic bands 

that retain their size during prophase and throughout condensation (Sen and Sharma 

1985).  

The appearance and disappearance of bands is a common phenomenon during 

condensation stages of prophase and is part of the dynamics of the chromosome. R-

bands are the most dynamics in this process (Craig and Bickmore, 1997). Condensation 

and decondensation of the chromosomes are not random events. They start on discrete 

sites, which depend on the kind of chromatin and the original location of the 

chromosome in the nucleus.  Elongation can be bidirectional or not (Hiraoka et al., 1989; 

Li et al., 1998). The total number of bands depends on the degree of resolution.  The 

maximum band number depends on visualization of the chromosomes during the early 

stages of prophase; the number at any given stage, however, depends on the dynamics in 
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band evolution in R-banding regions, methods of staining, and differentiation of the 

cells.  Thus “although homologous chromosomes are similarly shaped, they rarely have 

exactly the same banding patterns or lengths” and this dynamic has important 

implications in gene expression and DNA replication and is described by as the foci 

factories model  (Cook, 1995; Chuang and Belmont, 2005). 

The primary function of the chromosome condensation is to reduce the size of 

the chromosomes to facilitate the proper separation and segregation of sister chromatids 

(Belmont, 2006). However, facilitating the genome reprogramming at certain 

development stages is seen as an additional function of heterochromatin banding in 

eukaryotic cells (Belmont, 2006). Condensation of the chromosome in mitotic prophase 

is mostly linear (Belmont, 2006); but condensation is not a continuous event (Kireeva et 

al., 2004). Several pauses, separated by plateau phases, can be observed during this 

process, and the relative position of the chromosomal markers can be modified (Kireeva 

et al., 2004; Maddox et al., 2006). Prophase of human chromosomes can be divided in 

four stages separated by three specific structural transitions represented by pauses 

(Kireeva et al., 2004). The second transition separates the early prophase and the middle 

prophase, the third separates the late prophase and metaphase (Kireeva et al., 2004). 

Based on micromechanics of chromatin, and chromosomes studies (Marko and 

Poirier, 2003), Belmont (2002) developed a hierarchical folding model for chromosome 

structure. The model assumes that condensation of mitotic chromosomes is not a 

continuous event, but rather depends on a large number of local interactions. There are 

dynamics in the protein assembly distribution, where histone modification (Ito, 2007) 

and specific DNA sequences called scaffold associated regions (SAR), related to bands 

or chromosome domains (Hart and Laemmli, 1998), play an important role in 

chromosome condensation and chromosome morphology during cell division (Belmont, 

2002).   Given the emerging evidence that the micromechanics of chromosomes is 

important in gene expression (Hart and Laemmli, 1998; Belmont et al., 1999; Belmont, 

2002, Nowak and Corces, 2004; Ito, 2007) and epigenetically regulated (Nowak and 
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Corces, 2004), even in insects (Bongiorni et al., 2007), we compare here the banding 

patterns in different prophase stages in the fully sequenced strain of the honey bee. 

 

Materials and Methods 

 

The method for preparing chromosomes spreads and DAPI staining has been 

described in previous chapters. The basic staining technique was DAPI and the stages of 

prophases were determined following the general observation of Kireeva et al. (2004). 

Adjustments from absolute to relative length were and confidence intervals for the mean 

of the chromosome bands were determined as described in chapter I. The data file was 

that used in the final karyotype description.  

 

Ordering of bands 

The bands of the prophase I (early prophase) and prophase II (middle prophase) 

where ordered by similar size and position, using the middle point of each band. Each 

band was first quantified by taking the distance from the telomere of the short arm to the 

start point of the band. The end point of the band was similarly measured and the 

midpoint and range determined. Once sorted into bands with similar midpoint and range, 

the number of band was generated. Prophase III (Late prophase) and prophase IV (pre-

metaphase) bands were ordered following the band dimensions obtained from Prophase I 

and II. As bilateral and unilateral growing of some bands in the later stages of prophase 

were detected, some adjustments were necessary. When unilateral growth, one side of 

the band was generally approximately constant and that value was used as reference to 

place the band. When several bands were fused or bilateral growing was observed, the 

measure of the first and last band matched with the end and start of external band, these 

values were used to place the block. When the block terminates into euchromatic bands, 

the blocks were placed using the most proximal bands as reference.   

In order to validate the criteria used to sort the bands, more than five 

chromosomes from five different spreads must present evidence of the number of bands 
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determined for early prophase. To validate a new band, the band must be detected in 

more than three chromosomes, in a new location, with no evidence of overlap when first 

detected, although in the subsequent stages they may appear fused or engulfed a 

proximal band. The sorting procedure used usually accommodates automatically the new 

bands, therefore, the criteria mentioned was used as a reference to verify a chromosome 

band once mapped on the ideogram.  When a band forms by fusion of  one or more 

bands, it usually shows  slight constrictions that delimiting the edges.,  Once the bands 

are sorted and assigned, means, standard deviation and confidence of intervals for the 

start and end point of each bands was calculated and these statistics used to map the 

bands and obtain the ideogram. Addition of the start and end point of each band 

completed their characterization.. 

Analysis of the band of two randomly selected chromosomes shows the dynamic 

position of bands and the condensation pattern in the selected chromosomes. Since all 

chromosomes show that characteristic, the result for the two chromosomes used as 

example can be extended to the rest of the chromosomes. To further support the banding 

dynamics hypothesis, the map location of the Solignac BAC 1F2 (Acc # AJ509634) 

(Solignac et al., 2004) on chromosome 1 is described in detail. 

 

Result and Discussion 

 

Plots of the sorted data by phase and cell, shows three different patterns of 

condensation, the exponential pattern best fits early prophase (Prophase I) and the end of 

the pre-metaphase (Prophase IV), with a linear fit from prophase II to the first half of 

pre-metaphase (Fig. A.2.1). These patterns suggest that the chromosomes condense 

exponentially in early prophase and again immediately before metaphase.  During the 

majority of the time, between early prophase and metaphase, condensation takes place in 

a linear fashion with several pauses indicated by several plateau throughout that period.  

This temporal change in the banding pattern is very important because it 

describes, in some detail, the dynamics of chromosome condensation and 
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heterochromatinization.  The banding pattern dynamics during prophase best fit a cubic 

model (y = α + β1x + β2x2 + β3x3 + e) (Table A.2.1).  Short arms consistently fit less well 

to any model because of their relatively high variability. However, the larger the short 

arm, the better the fit as is seen for chromosomes 1, 2, 4, 6, 10, and 12. The least squares 

estimates for the all tested model (α, βi) are specific for each arm and chromosome (Fig. 

A.2.1).  

 

 
Table A.2.1. Parameter estimates and fit (R-square) for different descriptive models of 
honey bee chromosome size reduction through the prophase. 

Model Variable α β1 β2 β3 R 
R-

Square 

Linear 
 

Length 3.290 -0.936   0.936 0.876 
Long Arm 2.435 -0.930   0.930 0.864 
Short Arm 0.856 -0.938   0.938 0.878 

Logarithmic 
 

Length 5.153 -0.983   0.983 0.966 
Long Arm 3.867 -0.985   0.985 0.969 
Short Arm 1.288 -0.958   0.958 0.917 

Cubic 
 

Length 4.013 -3.786 6.159 -3.398 0.982 0.964 
Long Arm 3.006 -3.834 6.189 -3.370 0.980 0.960 
Short Arm 1.008 -3.548 5.919 -3.405 0.973 0.946 
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Fig. A.1.1. Trend lines for total length (●), long arm (▲) and short arm (■) for (a) chromosome 
1 and (b) chromosome 7. The doted bars in the graphs represents confidence intervals at that 
stage of prophase for each variable. 
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The absolute and relative length of chromosomes and their arms at all stages 

were negatively correlated with total heterochromatin content (r = -0.329, -0.248, -0.321; 

p < 0.000 respectively) and with the amount of pericentromeric heterochromatin (r = -

0.530, and -0.521; p < 0.000 respectively). However, the same variables (length of 

chromosomes and arms) were positively correlated with number of bands (r = 0.437, 

0.246, and 0.446, p < 0.0001 respectively). More heterochromatin equates to shorter 

chromosomes and arms, and yet shorter chromosomes have smaller numbers of discrete 

bands of heterochromatin. This seeming contradiction reflects the different effect of 

constitutive and facultative heterochromatin.  Long and short arm lengths were 

negatively correlated with constitutive heterochromatin amount (r = -0.514 and -0.271, p 

= 0.000 respectively), and positively correlated with facultative heterochromatin amount 

(r = 0.084, and 0.293; p < 0.000 respectively). Thus chromosome condensation is 

significantly and inversely influenced by facultative and constitutive heterochromatin 

during prophase. Most of the constitutive heterochromatin in honey bee chromosomes is 

located in the pericentromeric region, which showed little growth during prophase. 

However the location of the bands reveal that the reduction of chromosome length is 

influenced by this region and by sub-telomeric regions.  

To explain the condensation pattern observed, honey bee chromosomes, C1 and 

C7 will be used as examples. In Fig.s A.2.2 and A.2.3, the start and the end of bands in 

C1 and C7 are graphed by phase in two directions; from the distal band (telomeric) to 

the centromere in the short arm and from the centromere to the distal band (telomeric) in 

the long arm.  The first band (p42, Fig. A.2.2a), in the sub-telomeric region of the short 

arm of C1, grew in both directions throughout the stages of prophase. The next band 

(p41, Fig. 4b) also grew in both directions. Band p31 grew in both directions, but at a 

very low rate (Fig. A.2.2c). Bands, p41 and p31, apparently change position toward the 

telomere; while band p21 is pulled toward the centromere (Fig. A.2.2d and e). The 

pericentromeric band p12.1 does not show visible change, and even seems to be pulled a 

little toward the adjacent q12.1 band that shows a very low growth rate in both 
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directions. Thus the euchromatic region next to p12.1 seems to experience condensation 

without significant heterochromatinization.  

The forces that act between centromeric and telomeric regions can be observed 

even more clearly in the long arm of the C1, where the end of the pericentromeric band 

q13 and the start of the band q21 (Fig. A.2.2f) show evidence of opposite forces acting 

between them, with consequent expansion of the band  toward the centromere and  

toward the telomere, an effect also observed for bands q41 and q42 (Fig. A.2.2h) and 

q22 and q31 (Fig. A.2.2g). In chromosome 7, a highly banded chromosome, band q31 

experiences the action of opposite forces – one that comes from the pericentromeric 

band (Fig. A.2.3a and b) and bands q21 (Fig. A.2.3c), and the other  from the telomeric 

and sub-telomeric band q31.  An adjacent band q32 grew a little in both directions but 

narrows in the first three stages of prophase and finally increases in relative width in PIV 

(Fig. A.2.3d). The next band, q33b, is consistently pulled toward the telomeric region 

(Fig. A.2.3e). As in C1, the pericentromeric and telomeric regions of chromosome 7 do 

not show significant growth through prophase but seem to pull bands toward them.  

These results suggest that very strong condensation is taking place in those regions but is 

not accompanied by heterochromatinization, which explains the low growth and even 

reduction in size of some bands.  

The results further suggest that condensation and heterochromatinization are two 

different characteristics of the chromosomes that interact to reduce chromosomes size 

during prophase. Condensation occurs in specific spots on the chromosomes - usually 

the pericentromeric and sub-telomeric regions and the overlapping bands close to 

subtelomeric regions, although other bands may play an important role in this process. 

At least a portion  of the variation in the chromosome size, arm ratio and band position 

in prophase chromosomes is explained by this phenomenon, as shown in Fig. A.2.2, 

where alternating periods of high and low variability in chromosomal arm lengths are 

observed.   
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Fig. A.2.2. Start and end (range) of bands of chromosome 1 at fourth stages of prophase. 



 

 

171

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.3. Start and end (range) of bands of chromosome 7 at fourth stages of prophase. 
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Additional evidence of chromosomal dynamics is seen in the position of BAC 

1F2 in C1q. 1F2 is one of the few BACs for which hybridization in two places is 

confirmed, and data were collected from three of the four prophases. 1F2 hybridizes to 

both sides of band q31, which grows in both directions and is affected by the 

condensation and heterochromatinization occurring in subtelomeric and centromeric 

regions. It is clear in the ideograms that the position of the distal signal at band q41 

where the BAC was mapped, does not change in different stages of prophase. However, 

the more proximal signal apparently follows the position of q31 (Fig. A.2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.2.4. Relative position of IF2 at different stages of prophase on the DAPI- and the 
C-banding (C-) ideograms of C1 and. (a) Comparative ideograms showing the positions 
of IF2 signals during prophase (PII, PIII, and PIV), (b) graphic of bands q22 and q31 
showing the dynamics of these bands. (c) Relative position of 1F2 at different prophase 
stages.   
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Discussion 

 

The data suggests that chromosome condensation takes uniquely in each 

chromosome, influenced by the banding patterns that consequently affect the length of 

the chromosomes and their arm ratio.  The observed variation could be due to variable 

chromatin domains, and the nucleotide composition and proteins associated with these 

domains. Although chromosome length reveals a definite pattern of reduction of 

chromosome size, that reduction is nonlinear throughout prophase even though, the 

majority of the period between prophase I and prophase IV is linear with several pauses, 

which are vary in number and time between chromosomes, which agrees with 

observations by Belmont, (2006) and Kireeva et al. (2004).  Chromosomes 5, 7 and 12 

show a gradual decrease in arm ratio from PI to PIV, while the arm ratio  of 

chromosomes 6, 8, 9, 11, 13 and 14 is consistently lower in PI than in PII-P1V. Banding 

patterns also show chromosome specific patterns of condensation (Figs. 4 and 5). In 

agreement with observations of Hiraoka et al. (1989) and Li et al. (1998), they banding 

patterns often progress from preexisted heterochromatin.  In other cases preexisting 

heterochromatin can work as a barrier to the heterochromatinisation, as happened with 

the pericentromeric heterochromatin of the short arm of the C1.  Some bands show 

variation in size that implies a particular condensation behavior through prophase.  For 

example, band q21 of C6 and q31 in C1 remain almost static through prophase; while 

bands q3 and q2 of C7 are very active and increase in size throughout prophase. Other 

bands, such as q13 in C11 are not visible until later stages of prophase, while others, 

such as q21 of C12 experience reduction. The entire chromosome banding pattern shows 

that there are a fixed number of bands that serves as condensation and 

heterochromatinisation spots. Usually these bands are formed from one, two or several 

overlapping bands. Consistently, with some little variation in the frequency of the 

observed bands, the pericentromeric heterochromatin of the long arm, q12.1 and q12.2 

of all chromosomes seems to be the primary spots of condensation and 
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heterochromatinisation. The honey bee chromosomes except for C10 and C15 showed at 

least two centers of condensation and heterochromatinisation. The second center is 

usually a middle band or several distal bands (Table A.1.1).  However there are some 

singlet bands that work as centers, including q31 in C2 and C3 and q21 in C6. The single 

and overlapping bands that experience growth or reduction could be considered 

regulatory heterochromatin bands that could function in gene expression - silencing 

genes when they propagate and activating genes when the recede (Grewal and Jia., 

2006).  

These and other examples show that condensation of the chromosome can be expected to 

be variable and chromosome specific, and that the constitutive and facultative 

heterochromatin banding reflects this individuality. Physical evidence that condensation 

of heterochromatin is complex and dynamic; the process is similar to that earlier 

mentioned by Richer et al. (1983), Sen and Sharma (1985), and Craig and Bickmnore, 

(1993).  That complexity explains indirectly how it is possible that an alteration in 

control of the heterochromatinization in pre-existent bands will lead to abnormalities. In 

humans, aberrant DNA methylation in the 2q14.2 band alters the pattern of histone 

modification and leads to cancer (Smith and Costello, 2006).  In mammals in general, 

IGF2 gene expression is controlled by chromosome modeling, and heterochromatin 

silencing can as a consequence result in multiple diseases, such as breast and prostate 

cancer (The National Cancer Institute Breast and Prostate Cancer Cohort Consortium, 

2005).  Alteration of heterochromatin modification in bands surrounding the IGF2 gene 

is characteristic of the loss of imprinting that leads to Wilms Tumor in children 

(Ravenel, 2001), or to important effect on meat production indomestic animals (Nezer et 

al., 1999). In honey bee this heterochromatin plasticity could be related to systematic 

change of specialization in workers throughout their lives Queller (2003).  

It is generally accepted that heterochromatin protein (HP), a variant of  H2A and 

H3 histones (Malik and Henikoff, 2003) has an important role not only in 

heterochromatinization (HP1) but also in epigenetic silencing of gene expression (H3 

methylation / acetylation) and centromere function (CenH3s variants) (Malik and 
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Henikoff, 2003, Maizon and Almouzni, 2004), although not specifically chromosome 

banding.  Molecular evidence of heterochromatin function has been reported in plants 

(Houben et al., 1999) and animals (Maddox et al., 2006).  There is also evidence that 

certain segments of the chromosomes with different sequences and protein systems are 

involved in heterochromatin formation.  Variation in that composition will shape 

different heterochromatin domains (Dietzel and Belmont, 2001). It is possible that an 

irregular distribution of these domains disrupts banding pattern morphology at later 

stages of prophase and metaphase, making chromosome characterization and 

identification difficult. Thus, the use of the prophase chromosomes, a large number of 

chromosome spreads, and several different banding techniques is justified and necessary 

in small chromosomes with irregularly banded chromosomes. 

The entire chromosome banding pattern shows that there are a fixed number of 

bands that serves as condensation and heterochromatinization sites. Usually these bands 

are formed from one, two or several overlapping bands. Consistently, with some little 

variation in the frequency of the observed bands, the pericentromeric heterochromatin of 

the long arm, q12.1 and q12.2 of all chromosomes seems to be the primary center of 

condensation and heterochromatinization. The honey bee chromosomes except for C10 

and C15 showed at least two centers of condensation and heterochromatization. The 

second center is usually a middle band or several distal bands (Table A.1.2).  However 

there are some singlet bands that work as centers, including q31 in C2 and C3 and q21 in 

C6. The single and overlapping bands that experience growth or reduction could be 

considered regulatory heterochromatin bands that function in gene expression - silencing 

genes when they propagate and activating genes when they recede (Grewal and Jia., 

2006).  
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Table A.1.2.  Bands that apparently serving as center of heterochromatinization and 
condensation in the honey bee chromosomes 

Bands Chromosomes 
q21-q22 1, 12, 14 and 16 
q21-q31 11 and 13 
q31-q32 4, 6 and 8 
q31-q33 5, 7 and 9 
q41-q42 1, 2 and 8 

q51-q52-q53 2 and 3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

177

Table A.1. Summary of data for location, position, and comparisons with the location and position in the different version of 
NCBI-Map Viewer 

 Chromosome and 
Position 

Significance for Matching 
Position  

Expected 
Chromosome 

Locatio 
Match for Position Match for 

chromosome Frequ
ency Score

BAC Chro Pos Std 
Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4

11A3 3 0.824 0.0113 5 0.33 *** 0.795 NS 0.795 NS 
0.1846 
and 
NP 

3 2 2
2 
and 
NP 

 √ √  √    √√ 5 

1A8 1 0.242 0.024 4 0.197 NS 0.572 ****   0.211 2 6  
16 
and 
NP 

√   √      2 

1A8 2 0.374 0.108 14 0.197 *** 0.572 ****   0.211 2 6  16  √   √    √√ 4 
1A8 3 0.472 0.068 4 0.197 *** 0.572 NS   0.211 2 6  16  √        1 
1A8 6 0.319 0.093 9 0.197 *** 0.572 ****   0.211 2 6  16    √  √   √√ 4 
1A8 7 0.612 0.076 4 0.197 *** 0.572 NS   0.211 2 6  16  √        1 
1A8 8 0.534 0.083 5 0.197 *** 0.572 NS   0.211 2 6  16  √        1 
1C6 1 0.545 0.193 4 0.484 NS 0.571 NS 0.417 NS 0.476 2 6 6 6  √ √ √      3 
1C6 2 0.789 0.127 10 0.484 *** 0.571 *** 0.417 *** 0.476 2 6 6 6 √    √    √√ 4 
1C6 3 0.825 0.107 4 0.484 **** 0.571 **** 0.417 **** 0.476 2 6 6 6          0 
1C6 6 0.758 0.160 4 0.484 **** 0.571 **** 0.417 **** 0.476 2 6 6 6      √ √ √ √ 4 
1C6 7 0.904 0.053 4 0.484 **** 0.571 **** 0.417 **** 0.476 2 6 6 6          0 
1C6 8 0.703 0.154 5 0.484 **** 0.571 **** 0.417 **** 0.476 2 6 6 6          0 

1F2 1 0.795 0.091 21 0.198 **** 0.868 ** 0.757 NS 
0.755 
and 
NP 

1 1 1 1   √ √ √ √ √ √ √ 7 

1F2 1 0.869 0.073 17 0.198 **** 0.868 NS 0.868 NS 0.865 1 1 1 1   √ √ √ √ √ √ √ 7 

1F6 11a 0.883 0.0375 4 0.111 **** 1E-
04 **** 1E-

04  
0.024 
and 
NP 

8 9 9
 10 
and 
NP 

         0 

1F6 8a 0.508 0 16 0.89 **** 1E-
04 **** 1E-

04  
0.024 
and 
NP 

8 9 9
 10 
and 
NP 

    √    √√√ 4 
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Table A.1. (Continued) 

 Chromosome and 
Position 

Significance for Matching 
Position  

Expected 
Chromosome 

Locatio 
Match for Position Match for 

chromosome Frequ
ency Score

BAC Chro Pos Std 
Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4

1F6 8b 0.77 0.0757 8 0.89 **** 1E-
04 **** 1E-

04  
0.024 
and 
NP 

8 9 9
 10 
and 
NP 

    √    √√ 3 

1F6 11a 0.291 0.0127 4 0.111 * 1E-
04  1E-

04  
0.024 
and 
NP 

8 9 9
 10 
and 
NP 

√         1 

22F1 2 0.667 0.667 2 0.467 NS 0.419 NS 0.419 NS 0.533 14 16 NP 16 √ √ √ √      4 

22F1 7 0.609 0.051 31 0.467 *** 0.419 *** 0.419 *** 0.533 14 16 NP 16         √√ 2 

22F1 14 0.552 0.0858 22 0.467 NS 0.419 NS 0.419 NS 0.533 14 16 NP 16 √ √ √ √ √    √√ 7 

22F1 16a 0.651 0.0793 37 0.467 NS 0.419 NS 0.419 NS 0.533 14 16 NP 16 √ √ √ √ √ √  √ √√√ 10 

22F1 16b 0.884 0.884 10 0.467 *** 0.419 *** 0.419 *** 0.533 14 16 NP 16      √  √ √ 3 

26F7 4 0.539 0.090 8 0.694 NS 0.295 *** 0.273 *** 
0.4733 
and 
0.7176

3 2 2 2 √        √ 2 

2B11 1 0.189 0.017 2 0.916 **** 0.114 * 0.114 * NP 3 2 2 NP          0 

2B11 9 0.465 0.332 2 0.916 *** 0.114 *** 0.114 *** NP 3 2 2 NP          0 

2B11 2a 0.527 0.155 2 0.916 *** 0.114 *** 0.114 *** NP 3 2 2 NP      √ √   2 

2D1 2 0.662 0.0169 20 0.372 **** 0.772 NS 0.772 NS 0.186 2 2 2 2  √ √  √ √ √ √ √√ 8 

2D1 3 0.3 0.071 6 0.372 NS 0.772 **** 0.772 **** 0.186 2 2 2 2 √         1 

2D1 5 0.529 0.1075 4 0.372 NS 0.772 ** 0.772 ** 0.186 2 2 2 2 √         1 

2D1 6 0.687 0.078 7 0.372 **** 0.772 NS 0.772 NS 0.186 2 2 2 2  √ √       2 

2D1 8 0.831 0.0226 8 0.372 *** 0.772 NS 0.772 NS 0.186 2 2 2 2  √ √       2 

2D1 9 0.651 0.0989 24 0.372 **** 0.772 *** 0.772 *** 0.186 2 2 2 2         √√ 2 

2D1 2b 0.927 0.063 20 0.372 **** 0.772 **** 0.772 **** 0.186 2 2 2 2         √√ 2 

35D9 2 0.66 0.166 4 0.453 NS   0.806 ** 0.211 14 NP 4 4          0 
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Table A.1. (Continued) 

 Chromosome and 
Position 

Significance for Matching 
Position  

Expected 
Chromosome 

Locatio 
Match for Position Match for 

chromosome Frequ
ency Score

BAC Chro Pos Std 
Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4

35D9 3 0.759 0.024 7 0.453 ***   0.806 NS 0.211 14 NP 4 4   √      √√ 3 
35D9 6 0.9 0.191 2 0.453 ***   0.806 NS 0.211 14 NP 4 4   √       1 
35D9 16 0.254 0.0431 8 0.453 **   0.806 NS 0.211 14 NP 4 4         √√ 2 
36H10 4 0.604 0.123 7 0.366 ** 0.593 NS 0.63 NS 0.299 13 10 10 10   √      √ 2 
36H10 7(6) 0.847 0.117 5 0.366 *** 0.593 ** 0.63 * 0.299 13 10 10 10          0 
36H10 8 0.574 0.104 2 0.366 ** 0.593 NS 0.63 * 0.299 13 10 10 10   √       1 
36H10 10 0.584 0.115 4 0.366 **** 0.593 NS 0.63 NS 0.299 13 10 10 10  √ √   √ √ √  5 
37D2 7 0.658 0.110 4 0.602 NS   0.357 *** 0.488 11 NP 7 7 √      √ √ √ 4 
37D2 11 0.737 0.124 5 0.602 **   0.357 *** 0.488 11 NP 7 7     √    √ 2 
3F5 1 0.893 0.006 3 0.445 **** 0.705 **** 0.705 **** 0.268 2 2 2 2          0 
3F5 2 0.844 0.068 4 0.445 *** 0.705 NS 0.705 NS 0.268 2 2 2 2  √ √  √ √ √ √  6 
3F5 6 0.379 0.135 6 0.445 NS 0.705 *** 0.705 *** 0.268 2 2 2 2 √   √     √ 3 
3F5 9 0.666 0.064 5 0.445 NS 0.705 NS 0.705 NS 0.268 2 2 2 2 √ √ √       3 

3H8 7 0.21 0.103 5 0.329 NS 0.643 **** 0.714 ****
0.025 
and 
NP

11 7 7
9 
and 
NP 

√     √ √ √  4 

3H8 11 0.174 0.062 5 0.329 **** 0.643 *** 0.714 *** 
0.025 
and 
NP

11
7 
and 
NP

7
9 
and 
NP 

√    √   √  3 

3H8 11 0.512  5 0.329 **** 0.643 *** 0.714 *** 
0.025 
and 
NP

11
8 
and 
NP

7
9 
and 
NP 

√ √   √     3 

3H8 8 0.166  5 0.329 **** 0.643 *** 0.714 *** 
0.025 
and 
NP

11
7 
and 
NP

7
9 
and 
NP 

          

3H8 8 0.389  5 0.329 **** 0.643 *** 0.714 *** 
0.025 
and 
NP

11
8 
and 
NP

7
9 
and 
NP 

√         1 

3H8 15 0.704 0.157 4 0.329 *** 0.643 NS 0.714 NS 
0.025 
and 
NP

11
9 
and 
NP

7
9 
and 
NP 

 √ √       2 
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Table A.1. (Continued) 

 Chromosome and 
Position 

Significance for Matching 
Position  

Expected 
Chromosome 

Locatio 
Match for Position Match for 

chromosome Frequ
ency Score

BAC Chro Pos Std 
Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4

44B2a 8 0.843 0.093 6 0.023 ****   0.964 NS Tel 8 NP 9 9   √  √    √ 3 
44B2b 11 0.32 0.084 3 0.023 ***   0.964 ** Tel 8 NP 9 9 √         1 

49H2 4 0.58 0.097 13 0.942 ****     
0.375 
and 
NP

6 NP NP 
7 
and 
NP 

        √√ 2 

49H2 8 0.505 0.051 2 0.942 ****     
0.375 
and 
NP

6 NP NP 
7 
and 
NP 

         0 

49H2 9 0.957 nd nd 0.942      
0.375 
and 
NP

6 NP NP 
7 
and 
NP 

         0 

49H2 11a 0.912 0.107 9 0.942 NS     
0.375 
and 
NP

6 NP NP 
7 
and 
NP 

√        √√ 3 

49H2 11b 0.635 0.066 6 0.942 ****     
0.375 
and 
NP

6 NP NP 
7 
and 
NP 

        √ 1 

4E8. 1 0.943 0.077 20 1 NS 1  1  0.995 1 1 1 1 √ √ √ √ √ √ √ √ √ 9 
56F6 1 0.228 0.076 16 0.397 NS 0.412 *** 0.412 *** 0.37 1 1 1 1 √ √ √ √ √ √ √ √ √ 9 
5B10 2 0.66 0.060 4 0.376 *** 0.636 NS 0.636 NS 0.354 6 3 3 3  √ √       2 
5B10 6 0.652 0.099 16 0.376 ** 0.636 NS 0.636 NS 0.125 6 3 3 3  √ √  √    √√ 5 
5B10 14 0.676 0.019 3 0.376 * 0.636 NS 0.636 NS 0.125 6 3 3 3  √ √       2 
5G9 4 0.496 0.109 3 0.133 * 0.846 * 0.852 ** 0.13 13 10 10 10          0 
5G9 6 0.473 0.164 3 0.133 * 0.846 *** 0.852 *** 0.13 13 10 10 10          0 
5G9 10 0.285 0.226 4 0.133 NS 0.846 **** 0.852 **** 0.13 13 10 10 10 √     √ √ √ √ 5 
6B8 2 0.251 0.041 12 0.963 *** 0.001 * 0.001 * 0.858 12 4 4 4          0 
6B8 4 0.425 0.0424 18 0.963 NS 0.999 *** 0.999  0.858 12 4 4 4 √   √  √ √ √ √ 6 
6B8 11a 0.588 0.1273 41 0.963 *** 0.001 *** 0.001 *** 0.858 12 4 4 4         √√√ 3 
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Table A.1. (Continued) 

 Chromosome and 
Position 

Significance for Matching 
Position  

Expected 
Chromosome 

Locatio 
Match for Position Match for 

chromosome Frequ
ency Score

BAC Chro Pos Std 
Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4

6B8 11b 0.974 0.039 14 0.963 NS 0.999 NS 0.999 NS 0.858 12 4 4 4 √ √ √ √      4 
6B8 12a 0.92 0.072 15 0.963 NS 0.001 *** 0.001 *** 0.858 12 4 4 4 √    √     2 
6B8 12b 0.59 0.184 2 0.963 *** 0.001 *** 0.001 *** 0.858 12 4 4 4     √     1 
6B8 14a 0.54 0.082 28 0.963 *** 0.001 *** 0.001 *** 0.858 12 4 4 4         √√ 2 
6B8 14b 0.852 0.105 18 0.963 *** 0.999 *** 0.999 *** 0.858 12 4 4 4    √      1 
6B9 1 0.646 0.041 3 0.882 ** 0.839 ** 0.806 ** 0.191 11 11 11 11          0 
6B9 3 0.921 0.0286 80 0.882 NS 0.839 NS 0.806 NS 0.191 11 11 11 11 √ √ √ √     √√√ 7 
6B9 7 0.505 0.077 3 0.882 ** 0.839 ** 0.806 ** 0.191 11 11 11 11          0 
6B9 12 0.811 0.1076 22 0.882 NS 0.839 NS 0.806 NS 0.191 11 11 11 11 √ √ √ √     √√ 6 
6B9 15 0.763 0.093 2 0.882 ** 0.839 * 0.806 NS 0.191 11 11 11 11   √ √      2 
6B9 11a 0.905 0.121 11 0.882 NS 0.839 NS 0.806 * 0.191 11 11 11 11 √ √  √ √ √ √ √  7 
6B9 11b 0.583 0.085 3 0.882 * 0.839 * 0.806 * 0.191 11 11 11 11     √ √ √ √  4 
6D11 1 0.774 0.095 18 0.146 **** 0.868 NS 0.897 ** 0.891 1 1 1 1  √  √ √ √ √ √  6 
6F1 6 0.639 0.396 4 0.269 *** 0.767 NS 0.767 NS 0.773 6 13 13 13  √ √ √ √     4 
6F1 11 0.674 0.063 4 0.269 *** 0.767 NS 0.767 NS 0.773 6 13 13 13  √ √       2 
6G8 4 0.405 0.064 2 0.44 NS 0.576 *** 0.606 **** 0.396 6 3 3 3 √   √      2 
6G8 5 0.469 0.0156 32 0.44 NS 0.576 NS 0.606 *** 0.396 6 3 3 3 √ √  √     √√√ 6 
6G8 5 0.429 0.1471 6 0.44 NS 0.576 *** 0.606 **** 0.396 6 3 3 3 √   √ √     3 
6G8 7 0.495 0.0064 27 0.44 NS 0.576 NS 0.606 * 0.396 6 3 3 3 √ √  √     √√ 5 
6G8 10a 0.42 0.055 5 0.44 NS 0.576 *** 0.606 *** 0.396 6 3 3 3 √   √      2 
6G8 10b 0.886 0.167 5 0.44 **** 0.576 ** 0.606 NS 0.396 6 3 3 3   √       1 
6H3 3 0.489 0.0134 17 0.372 **** 0.625 ** 0.594 NS 0.591 10 5 5 5          0 
6H3 5 0.543 0.0205 16 0.372 *** 0.625 NS 0.594 NS 0.591 10 5 5 5  √ √ √  √ √ √ √ 7 
6H3 6 0.971 0.043 20 0.372 **** 0.625 *** 0.594 **** 0.591 10 5 5 5         √ 1 
6H3 12 0.993 0.026 15 0.372 **** 0.625 *** 0.594 **** 0.591 10 5 5 5          0 
6H3 16 0.575 0.372 15 0.372 NS 0.625 NS 0.594 NS 0.591 10 5 5 5 √ √ √ √      4 
6H3 1a 0.074 0.058 39 0.372 **** 0.625 **** 0.594 **** 0.591 10 5 5 5         √ 1 
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Table A.1. (Continued) 

 Chromosome and 
Position 

Significance for Matching 
Position  

Expected 
Chromosome 

Locatio 
Match for Position Match for 

chromosome Frequ
ency Score

BAC Chro Pos Std 
Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4

6H3 1b 0.169 0.117 13 0.372 ** 0.625 **** 0.594 **** 0.591 10 5 5 5          0 
6H3 1c 0.903 0.041 37 0.372 **** 0.625 ** 0.594 ** 0.591 10 5 5 5         √ 1 
6H3 7a 0.572 0.0339 26 0.372 *** 0.625 NS 0.594 NS 0.591 10 5 5 5  √ √ √     √√ 5 
6H3 7b 0.78 0.0955 22 0.372 **** 0.625 NS 0.594 NS 0.591 10 5 5 5  √ √ √     √√ 5 
7B4 1 0.21 0.101 7 0.788 **** 0.235 NS 0.221 NS 0.175 1 1 1 1  √ √ √ √ √ √ √ √√ 9 

7B4 9 0.75 0.113 3 0.788 NS 0.235 **** 0.221 **** 0.205, 
0.945 1 1 1 1 √         1 

82B7 1 0.441 0.199 4 0.64 NS 0.229 * 0.229 * 0.205, 
0.946 2 6 6 6 √         1 

82B7 2 0.476 0.122 11 0.64 *** 0.229 **** 0.229 **** 0.32 2 6 6 6 √   √ √   √ √√ 6 
82B7 3 0.469 0.140 4 0.64 *** 0.229 * 0.229 * 0.32 2 6 6 6 √         1 
82B7 6 0.45 0.103 5 0.64 ** 0.229 *** 0.229 *** 0.32 2 6 6 6 √   √  √ √ √  5 
82B7 7 0.545 0.103 4 0.64 NS 0.229 *** 0.229 *** 0.32 2 6 6 6 √         1 
82B7 8 0.653 0.105 5 0.64 NS 0.229 ** 0.229 ** 0.32 2 6 6 6 √         1 
82B7 11 0.413 0.089 2 0.64 * 0.229 * 0.229 * 0.32 2 6 6 6          0 
8A2 4 0.456 0.096 29                    √√√ 3 

8A2 8 
(11) 0.65 0.151 7                    √ 1 

8H7 4 0.538 0.046 11 0.689 ** 0.333 *** 0.407 ** 0.5 13 10 10 10    √     √ 2 
8H7 5 0.685 0.113 6 0.689 NS 0.333 ** 0.407 *** 0.5 13 10 10 10 √         1 
8H7 6 0.542 0.123 4 0.689 NS 0.333 * 0.407 NS 0.5 13 10 10 10 √  √ √      3 
8H7 7 0.753 0.115 6 0.689 ** 0.333 **** 0.407 *** 0.5 13 10 10 10          0 
8H7 8 0.74 0.1662 3 0.689 NS 0.333 * 0.407 NS 0.5 13 10 10 10 √  √       2 
8H7 10a 0.490 0.055 7 0.689 NS 0.333 * 0.407 NS 0.5 13 10 10 10 √  √ √  √ √ √  6 
8H7 10 0.808 0.106 27 0.689 **** 0.333 **** 0.407 **** 0.5 13 10 10 10      √ √ √ √√ 5 
8H8 1 0.405 0.0106 72 0.386 NS 0.386 NS 0.386 NS 0.574 1 2 NP 2 √ √ √ √ √    √√√ 8 
8H8 2 0.596 0.085 9 0.386 * 0.386 * 0.386 * 0.574 1 2 NP 2    √  √ √ √  4 
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Table A.1.  (Continued) 

 Chromosome and 
Position 

Significance for Matching 
Position  Expected 

Chromosome Locatio Match for Position Match for 
chromosome Frequ

ency Score
BAC Chro Pos Std Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 
8H8 4a 0.528 0.121 6 0.386 NS 0.386 NS 0.386 NS 0.574 1 2 NP 2          0 
8H8 4b 0.814 0.106 16 0.386 *** 0.386 ** 0.386 ** 0.574 1 2 NP 2          0 
97B3 1 0.143 0.078 19 0.501 **** 0.367 **** 0.531 **** 0.453 10 5 5 5         √ 1 
97B3 3 0.606 0.1372 14 0.501 NS 0.5 NS 0.531 NS 0.453 10 5 5 5 √ √ √      √ 4 
97B3 4 0.427 0.0707 6 0.501 NS 0.5 NS 0.531 * 0.453 10 5 5 5 √ √  √      3 
97B3 10 0.785 0.082 16 0.501 **** 0.5 **** 0.531 **** 0.453 10 5 5 5     √    √ 2 
97B3 6 (3a) 0.914 0.044 10 0.501 **** 0.5 **** 0.531 **** 0.453 10 5 5 5         √ 1 
97B3 7a  0.525 0.065 22 0.501 NS 0.5 NS 0.531 NS 0.453 10 5 5 5 √ √ √ √     √√ 6 
97B3 7b 0.723 0.035 9 0.501 **** 0.5 **** 0.531 **** 0.453 10 5 5 5          0 
57E10 4 0.477 0.122 9 0.187 *** 0.133 *** 0.183 *** 0.811 16 11 11 11         √ 1 
57E10 16 0.698 0.0431 8 0.453 **   0.806 NS 0.211 16 11 11 11 √  √      √ 3 
57E10 12 1 . 3 0.187 *** 0.133 *** 0.183 *** 0.811 16 11 11 11           

5E2 2 0.848 0.071 5 0.717 * 0.367 *** 0.55 ** 3NP 
12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15          0 

5E2 3 0.923 0.101 10 8E-04 **** 1 NS 1 ** Tel and 
NP 

12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15  √  √     √ 3 

a5E2 4 0.618 0.078 5 0.316 **** 0.555 * 0.555 NS 0.351
12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15   √   √ √ √  4 

5E2 11 0.761 0.1803 11 0.717 NS 0.367 *** 0.55 * 0.351
12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15 √        √ 2 

5E2 12 0.727 0.056 5 0.717 NS 0.367 *** 0.55 * 0.351
12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15 √    √     2 
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Table A.1. (Continued) 

 Chromosome and 
Position 

Significance for Matching 
Position  Expected 

Chromosome Locatio Match for Position Match for 
chromosome Frequ

ency Score
BAC Chro Pos Std Dev N MV1  MV2  MV3  MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 MV1 MV2 MV3 MV4 

5E2 15 0.559 0.0632 19 0.316 NS 0.5 NS 0.5 NS 0.351
12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15 √ √ √  √  √ √ √√ 8 

5E2 9 
(11b) 0.234 0.124 3 0.008 **** 0.636 **** 0.376 NS 0.351

12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15   √ √      2 

5E2 14 
(15b) 0.893 0.0179 17 0.717 * 0.367 **** 0.55 **** 0.351

12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15         √√ 2 

5E2 9 (7a) 0.94 0.076 5 8E-04 ****( 1 NS 1 ** 0.351
12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15  √        1 

5E2 7b 0.513 0.154 5 0.717 NS 0.367 NS 0.55 NS 0.351
12 
and 
15 

4 and 
15 

4 and 
15 

4 and 
15 √ √ √ √      4 

rDNA 1 0.314 0.0196 77                      
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