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ABSTRACT 

 

Analysis of Linear Elasticity and Non-Linearity Due to Plasticity and Material Damage 

in Woven and Biaxial Braided Composites. (December 2007) 

Deepak Goyal, B.E. (Hons.), Panjab University, Chandigarh, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John D. Whitcomb 

 

 Textile composites have a wide variety of applications in the aerospace, sports, 

automobile, marine and medical industries. Due to the availability of a variety of textile 

architectures and numerous parameters associated with each, optimal design through 

extensive experimental testing is not practical. Predictive tools are needed to perform 

virtual experiments of various options. The focus of this research is to develop a better 

understanding of linear elastic response, plasticity and material damage induced non-

linear behavior and mechanics of load flow in textile composites.  

Textile composites exhibit multiple scales of complexity. The various textile 

behaviors are analyzed using a two-scale finite element modeling. A framework to allow 

use of a wide variety of damage initiation and growth models is proposed. Plasticity 

induced non-linear behavior of 2x2 braided composites is investigated using a modeling 

approach based on Hill’s yield function for orthotropic materials. The mechanics of load 

flow in textile composites is demonstrated using special non-standard postprocessing 

techniques that not only highlight the important details, but also transform the extensive 

amount of output data into comprehensible modes of behavior. 

The investigations show that the damage models differ from each other in terms 

of amount of degradation as well as the properties to be degraded under a particular 

failure mode. When compared with experimental data, predictions of some models 

match well for glass/epoxy composite whereas other’s match well for carbon/epoxy 
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composites. However, all the models predicted very similar response when damage 

factors were made similar, which shows that the magnitude of damage factors are very 

important. 

Full 3D as well as equivalent tape laminate predictions lie within the range of the 

experimental data for a wide variety of braided composites with different material 

systems, which validated the plasticity analysis. Conclusions about the effect of fiber 

type on the degree of plasticity induced non-linearity in a ±25˚ braid depend on the 

measure of non-linearity.  

Investigations about the mechanics of load flow in textile composites bring new 

insights about the textile behavior. For example, the reasons for existence of transverse 

shear stress under uni-axial loading and occurrence of stress concentrations at certain 

locations were explained.  
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NOMENCLATURE 

 

1 = Local fiber direction of the tow 

2,3 = Local transverse directions of the tow 

E11 = Longitudinal tensile modulus of the tow  

E22 = Transverse tensile modulus of the tow in the 2 direction 

E33 = Transverse tensile modulus of the tow in the 3 direction 

G12 = Shear moduli of the tow in the 12 plane 

G13 = Shear moduli of the tow in the 13 plane 

G23 = Shear moduli of the tow in the 23 plane 

υ12,υ13, υ23 = Poisson’s ratios of the tow 

S11 = uni-axial tensile strength in the 1 direction 

S22 = uni-axial tensile strength in the 2 direction 

S33 = uni-axial tensile strength in the 3 direction 

S11
C = uni-axial compressive strength in the 1 direction 

S22
 C = uni-axial compressive strength in the 2 direction 

S33
 C = uni-axial compressive strength in the 3 direction 

S12 = uni-axial tensile strength in the 12 plane 

S13 = uni-axial tensile strength in the 13 plane 

S23 = uni-axial tensile strength in the 23 plane 

Vfo = overall fiber volume fraction of the composite 

Vft = Fiber volume fraction in the tow 

•  =  Volume averaged variable is defined as 
1

V

dV
V

• = •∫ , where •  is the 

variable of interest 
 



 ix

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

NOMENCLATURE..................................................................................................  viii 

TABLE OF CONTENTS ..........................................................................................  ix 

LIST OF FIGURES...................................................................................................  xiii 

LIST OF TABLES ....................................................................................................  xviii 

1. INTRODUCTION...............................................................................................  1 

  1.1.  Introduction to Textile Composites......................................................  1 
  1.2.  Definition of Geometric Parameters of Textiles ..................................  5 
  1.3. Statement of Objectives .......................................................................  10 

2. REVIEW OF THE STATE OF KNOWLEDGE ................................................  12 

  2.1.  Multiscale Analysis of Textile Composites .........................................  12 
  2.2.  Simple versus Full 3D Models .............................................................  13 
  2.3.  Progress in Development of Simple Models........................................  14 

 2.4.  Progress in Development of Full 3D Finite Element Models ..............  15 
 2.5.  Progressive Failure Analyses ...............................................................  18 
 2.6.  Modeling Plasticity in Textiles ............................................................  19 
 2.7.  Post Processing Techniques .................................................................  21 
 2.8.  Modeling the Effect of Irregularity in Textile Architecture ................  23 
 2.9.  Experimental Characterization ............................................................  24 
 2.10. Summary .............................................................................................  26 

3. SCOPE OF RESEARCH ....................................................................................  27 

 3.1.  Linear Elastic Analysis of Stress Concentrations in 2x2 Braided 
Composites ...........................................................................................  27 

 3.2. Effect of Assumed Damage Model on Predicted Damage Evolution  
in Textile Composites...........................................................................  30 

 3.3.  Plasticity Induced Non-Linearity in 2x2 Braided Composites.............  31 
 3.4.  Mechanics of Load Flow in Textile Composites .................................  33 
 3.5.  Summary ..............................................................................................  35 

             



 x

 Page 

4. THEORY AND EQUATIONS ...........................................................................  36 

 4.1.  Equations of Equilibrium .....................................................................  37  
 4.2.  Kinematics (Strain-Displacement Relations) .......................................  37 
 4.3.  Constitutive Relations ..........................................................................  37  
 4.4.  Boundary Conditions............................................................................  38 
 4.5.  Statement of Virtual Work Principle....................................................  39 
 4.6.  Virtual Work Statement: Discrete Form ..............................................  40 
 4.7.  Boundary Conditions for Periodic Microstructures ............................  42 
 4.8.  Theory and Equations for Damage Initiation and Progression ............  43 
  4.8.1.   Failure criteria .........................................................................  44 
  4.8.2.   Property degradation scheme ...................................................  45 
 4.9.  Theory and Equations for Plasticity Analysis ......................................  47
  4.9.1. Strain decomposition .................................................................  47 
  4.9.2. Stress-strain relationship ............................................................  48 
  4.9.3. Incompressibility condition........................................................  49 
  4.9.4. Effective stress and plastic strain rate ........................................  49 
  4.9.5. Yield criterion ............................................................................  51 
  4.9.6. Normality condition ...................................................................  51 
  4.9.7. Consistency condition ................................................................  52 
  4.9.8. Isotropic hardening.....................................................................  54
 4.10. Summary .............................................................................................  55 

5. LINEAR ELASTIC ANALYSES OF STRESS CONCENTRATIONS IN  
2X2 BRAIDED COMPOSITES .........................................................................  56 

 5.1.  Configurations ......................................................................................  57 
 5.2.  Analysis of Stress Contours in the Tows of Different Braids ..............  60 
 5.3.  Comparison of Severity of Stresses in Braids and Tape Laminates.....  62  
 5.4.  Effect of Braid Angle on Stress Peaks ................................................  66 
 5.5.  Effect of Waviness Ratio on Stress Peaks ...........................................  70 
 5.6.  Summary ..............................................................................................  73 

6. EFFECT OF ASSUMED DAMAGE MODEL ON PREDICTED DAMAGE 
EVOLUTION IN TEXTILE COMPOSITES .....................................................  74 

 6.1.  Damage Mechanisms in Textile Composites .......................................  75 
 6.2.  Failure Criteria for Tows and Matrix ...................................................  78 
 6.3.  Framework for Implementation of Different Damage Models ............  79 
  6.3.1. Existing property degradation schemes......................................  80 
  6.3.2. Framework for common implementation of different property 

degradation schemes ................................................................  83 
  6.3.3. Comparison of different property degradation models using  

common framework .................................................................  87 



 xi

    Page 

 6.4.  Configurations ......................................................................................  88 
 6.5.  Results and Discussion.........................................................................  92 
  6.5.1. Effect of assumed damage model...............................................  92 
  6.5.2. Effect of tweaking the property degradation models .................  97 
  6.5.3. Detailed damage analysis ...........................................................  103 
   6.5.3.1. Percentage damaged volume of different  

components versus applied strain.............................................  103 
              6.5.3.2. Stress volume distribution plots .................................  108 
 6.6. Summary ................................................................................................  113 

7. PLASTICITY INDUCED NON-LINEARITY IN 2x2 BRAIDED  
COMPOSITES ....................................................................................................  114 

 7.1  Modeling Approach for Plasticity Induced Non-Linearity in 2x2  
Braided Composites .............................................................................  116 

  7.1.1. Two scale modeling approach....................................................  116 
            7.1.1.1. First scale: Fiber/Matrix unit cell ..................................  116 
                          a. Theory.......................................................................  116 
                          b. Configurations ..........................................................  118 
             7.1.1.2. Second scale: Tow architecture scale...........................  122    
                          a. Theory.......................................................................  122
                          b. Configurations ..........................................................  123 
  7.1.2. Equivalent tape laminates...........................................................  124 
 7.2.  Results and Discussion.........................................................................  125 
  7.2.1. Validation of the full 3D and equivalent tape analysis .............  125 
  7.2.2. Comparison of the performance of braids with equivalent  

tape laminates of same fiber volume fraction ..........................  132 
  7.2.3. Effect of fiber properties on plastic behavior of 2x2 biaxial  

braided composites ......................................................................  135 
   7.2.3.1. Effect of fiber properties on macroscopic non-linear  

behavior .......................................................................................  135 
           7.2.3.2. Effect of fiber properties on elastic and plastic stress 

distributions..................................................................  139 
           7.2.3.3. Effect of fiber properties on plastic zone sizes and  

locations .......................................................................  141 
 7.3. Summary ................................................................................................  143  

8. MECHANICS OF LOAD FLOW IN TEXTILE COMPOSITES ......................  145 

 8.1  Configurations ......................................................................................  146 
 8.2.  Description of Postprocessing Techniques ..........................................  150 



 xii

           

    Page 

 8.3.  Results and Discussion.........................................................................  153 
  8.3.1. Analysis of a plain weave...........................................................  153 
            8.3.1.1. Fx load flow in a plain weave .......................................  153 
            8.3.1.2. Fz load flow in a plain weave........................................  159 
            8.3.1.3. Variation of σxx average stress in a plain weave ..........  161 
            8.3.1.4. Correlation between stress resultants & stress  

concentrations...............................................................  164 
            8.3.1.5. Load flow in a plain weave under the application of  

in-plane shear stress .....................................................  167 
            8.3.1.6. Typical stress volume distribution in the warp tow  

of a plain weave............................................................  170 
  8.3.2. Effect of Textile Architecture on Stress Resultants ...................  173 
  8.3.3. Effect of Damage on Load Flow in a Plain Weave....................  179 
  8.3.4. Effect of Plasticity on Load Flow in a Plain Weave ..................  187 
 8.4. Summary ...............................................................................................  193 

9. CONCLUSIONS AND FUTURE WORK .........................................................  195 

 9.1  Conclusions ..........................................................................................  195 
  9.1.1. Linear elastic analyses of stress concentrations in braided  

composites ................................................................................  195 
  9.1.2. Damage initiation and progression in textile composites...........  195 
  9.1.3. Plasticity induced non-linearity in braided composites..............  196 
  9.1.4. Mechanics of load flow in textile composites ............................  197 
 9.2.  Future Work .........................................................................................  198 
  

REFERENCES..........................................................................................................  200 

VITA .........................................................................................................................  206 



 xiii 

LIST OF FIGURES 

 

                                                                                                                                       Page 
 
Figure 1.1. Aircraft horizontal stabilizer ...................................................................  1 

Figure 1.2. Idealized schematics of woven preforms without matrix pockets .........  2 

Figure 1.3. Architecture of a bumpy weave ..............................................................  3 

Figure 1.4. Architecture of braided composites ........................................................  3 

Figure 1.5. Schematic of knitted tows.......................................................................  4 

Figure 1.6. Twill weave.............................................................................................  6 

Figure 1.7. A 2x2 braid .............................................................................................  6 

Figure 1.8.  Geometry of a typical tow .....................................................................  7 

Figure 1.9. Flattened and lenticular cross-sections in typical finite elements  
of textiles .................................................................................................  8 

Figure 1.10. Simple and symmetric stacking sequences ...........................................  9 

Figure 2.1. Multiscale Analysis.................................................................................  12 

Figure 2.2. Three-dimensional stress state in the tows and matrix of 5 harness  
satin weave ..............................................................................................  15 

Figure 2.3. Multi-point constraint relations ..............................................................  17 

Figure 2.4. Deviation of the measured response from a linear elastic estimate  
for 2x2 biaxial braids subjected to uni-axial tension in longitudinal  
direction...................................................................................................  20 

Figure 2.5. Stress contours and stress volume distribution for a tapered plate  
under uniaxial tensile loading .................................................................  22 

Figure 2.6. Tow stress resultants for plain weave in a linear elastic analysis ...........  23 

Figure 3.1. An equivalent tape laminate model ........................................................  28 

Figure 4.1. Procedure for predicting damage initiation and progression ..................  43 

Figure 4.2. Flow chart for finite element implementation of damage analysis.........  46 

Figure 4.3. Schematic of stress-strain curve for a material with plastic yielding .....  48 

Figure 4.4. Direction of plastic flow is normal to the yield surface at the load  
point.........................................................................................................  52 

Figure 5.1. Microstructure of a 2x2 braid .................................................................  57 



 xiv

              Page 

Figure 5.2. Typical finite element model (matrix transparent to reveal  
architecture), quarter of unit cell .............................................................  58 

Figure 5.3. Three-dimensional stress state in the +θ tow for ±25˚ braid with  

WR =1/3 ..................................................................................................  61 

Figure 5.4. Effect of braid angle on σ33 stress concentration in the +θ tow..............  61 

Figure 5.5. Volume distribution of σ33 in ±30˚ braid tow .........................................  62 

Figure 5.6. Comparison of stress volume distribution in a ±45˚ braid with that  
in an equivalent tape laminate .................................................................  64 

Figure 5.7. Effect of braid angle on σ22 and σ13 volume distribution........................  67 

Figure 5.8. Effect of braid angle on σ22 and σ13 volume distribution when <σij>  
in the tow are matched ...........................................................................  68 

Figure 5.9. Phase shift in the tow of a braid..............................................................  70 

Figure 5.10. Effect of waviness ratio on stress volume distribution .........................  71 

Figure 5.11. Variation of peaks with waviness ratio ±45˚ braid under <σxx> =1 .....  72 

Figure 6.1. Damage mechanisms in woven composites............................................  76 

Figure 6.2. Schematic of different damage modes in the tow of textile composites  77 

Figure 6.3. Finite element model of plain weave (E-glass/Vinyl ester  

configuration) ..........................................................................................  91 

Figure 6.4. Finite element model of plain weave (Graphite/epoxy configuration)...  91 

Figure 6.5. Finite element model of twill weave ......................................................  92 

Figure 6.6. Predicted and experimental stress-strain behavior of E-glass/Vinyl  
ester plain weave configuration...............................................................  93  

Figure 6.7. Predicted and experimental stress-strain behavior of Graphite/Epoxy  
plain weave configuration .......................................................................  94 

Figure 6.8. Predicted and experimental stress-strain behavior of Graphite/Epoxy  
twill weave configuration........................................................................  96 

Figure 6.9. Predicted and experimental stress-strain behavior of E-glass/Vinyl  
ester plain weave configuration. Predictions using different property 
degradation models, when damage factors were made similar,  
are shown.................................................................................................  101 



 xv

Page 

Figure 6.10. Predicted and experimental stress-strain behavior of Graphite/Epoxy  
plain weave configuration. Predictions using different property  
degradation models, when damage factors were made similar, are  
shown ...................................................................................................  102 

Figure 6.11. Predicted stress-strain response of Graphite/Epoxy plain weave  
composite using Whitcomb’s property degradation.............................  104 

Figure 6.12. Variation of damaged volume at different strain levels in the 
Graphite/Epoxy plain weave composite...............................................  104 

Figure 6.13. Damage evolution in matrix .................................................................  107 

Figure 6.14. σxx stress volume distribution in the warp tow at various strain levels  109 

Figure 6.15. σxx stress volume distribution in the fill tow at various strain levels....  110 

Figure 6.16. σxx stress volume distribution in the matrix at various strain levels .....  111 

Figure 7.1. Effective stress versus effective plastic strain for the EPON 9504 resin  118 

Figure 7.2. Effective stress versus effective plastic strain curves for the tow ..........  121 

Figure 7.3. Predicted versus measured response for various carbon/EPON 9504  
braids subjected to uni-axial tension in longitudinal direction ...............  126 

Figure 7.4. Predicted versus measured response for E-glass/EPON 9504 ±25˚  
braid subjected to uni-axial tension in longitudinal direction .................  128 

Figure 7.5. Comparison of elastic extrapolation with one of the test data for a ±45˚  
S-glass/EPON 9504 braid subjected to uni-axial tension in longitudinal 
direction...................................................................................................  130 

Figure 7.6. Predicted versus measured response for ±45˚ S-glass/EPON 9504  
braid subjected to uni-axial tension in longitudinal direction .................  130 

Figure 7.7. Comparison of predicted response by equivalent tape laminate versus 
full 3D model for ±45˚ S-Glass/EPON braid under uni-axial tension in 
longitudinal direction ..............................................................................  131 

Figure 7.8. Comparison of predicted performance of different braids with  
equivalent tape laminates for carbon/EPON 9504 material system........  133 

Figure 7.9. Comparison of predicted performance of ±25˚ braid with an equivalent 
tape laminates for E-glass/EPON 9504 material system.........................  134 

Figure 7.10. Predicted effect of fiber properties on plasticity induced non-linearity  
in a ±25˚ braid subjected to uni-axial tension in longitudinal direction..  136 

Figure 7.11. Variation of secant and tangent moduli with applied load ...................  138 

Figure 7.12. Effect of fiber type on elastic stress distributions.................................  140 



 xvi

              Page 

Figure 7.13. Effect of fiber type on plastic stress distributions.................................  140 

Figure 7.14. Development of plastic zone size .........................................................  142 

Figure 8.1. FE meshes and comparable regions for different weave architectures...  147 

Figure 8.2. Stress resultants at cross-section abcd ....................................................  150 

Figure 8.3. Meshes used for convergence study .......................................................  152 

Figure 8.4. Variation in relative material areas of fill tow and matrix pockets at  
different cross-sections along the applied load direction ........................  154 

Figure 8.5. Fx load distribution in warp/fill & matrix ..............................................  155 

Figure 8.6. Comparison of Fx load flow in different configurations ........................  156 

Figure 8.7. Variation of Fx for the Carbon/EPON plain weave configuration .........  158 

Figure 8.8.  Variation of Fz in plain weave configurations with different material 
systems .................................................................................................  160 

Figure 8.9. Load flow direction in warp tow with the coordinate system for stress 
transformation ......................................................................................  161 

Figure 8.10. Variation of area of fill tow along the applied load directions .............  162 

Figure 8.11. Refined mesh that was used to calculate the variation of average 
stress .....................................................................................................  162 

Figure 8.12. Variation of average stress in plain weave configurations with  
different material systems ....................................................................  163 

Figure 8.13. Stress contours for σxx and σxz ..............................................................  165 

Figure 8.14. Comparison of bending moment in PW warp tow and in curved beam 166 

Figure 8.15. Variation of load flow in warp tow of a plain weave ...........................  167 

Figure 8.16. Variation of Fy in a plain weave ...........................................................  168 

Figure 8.17. Variation of normalized average σxy in a plain weave .........................  168 

Figure 8.18. σ12 stress contours in a plain weave under the application of unit  
in-plane shear stress ............................................................................  170 

Figure 8.19. Normalized stress contours in the warp tow of a plain weave. ............  171 

Figure 8.20. Stress volume distribution in warp tow ...............................................  172 

Figure 8.21. Effect of weave architecture on Fx distribution in the warp tow..........  174 

Figure 8.22. Effect of weave architecture on Fz distribution in the warp tow..........  174 
            



 xvii

   Page 

Figure 8.23. Effect of weave architecture on variation of moments in the warp tow 175 

Figure 8.24. Variation of  y

x
R  for warp, fill and matrix ............................................  176 

Figure 8.25. The σ11 contours in comparable regions of the warp tow for different 
architectures .........................................................................................  177 

Figure 8.26. The σ11 contours in the warp tow of the stiffened matrix twill weave 
configuration ........................................................................................  178 

Figure 8.27. Stress-strain response of S2-glass/SC15 plain weave under uni-axial  
tensile load............................................................................................  179 

Figure 8.28. Effect of damage on variation of Fx in the plain weave .......................  182 

Figure 8.29. Damage initiation and progression in the plain weave .........................  183 

Figure 8.30. Effect of damage on variation of normalized Fz in the warp tow ........  184 

Figure 8.31. Effect of damage on σxx volume distribution in the warp tow..............  185 

Figure 8.32. Effect of damage on σxx contours in warp tow .....................................  186 

Figure 8.33. Plasticity induced non-linear stress-strain response of S2-glass/ 
SC15 plain weave under uni-axial tensile load ....................................  187 

Figure 8.34. Effect of plasticity on the variation of Fx in the plain weave...............  189 

Figure 8.35. Effect of plasticity on the variation of average σxx in the plain weave.  190 

Figure 8.36. Effect of plasticity on the variation of Fz in the warp tow ...................  191 

Figure 8.37. Effect of plasticity on σxx volume distribution in the plain weave .......  192 



 xviii 

LIST OF TABLES 

 

                                                                                                                                  Page 

Table 5.1. Severity of stresses in braid as compared to an equivalent tape laminate  65 

Table 6.1. Degradation factors for engineering elastic properties of the tow ...........  85 

Table 6.2. Degradation factors for engineering elastic properties of the matrix ......  86 

Table 6.3. Elastic and strength properties of tows and matrices ...............................  89 

Table 6.4. Geometric parameters of the analyzed configurations.............................  89 

Table 6.5. Degradation factors, when made similar, for engineering elastic  
properties  of the tow...............................................................................  98 

Table 6.6. Degradation factors, when made similar, for engineering elastic  
properties of the matrix ...........................................................................  99 

Table 6.7. Percentage damaged volume of different components at different  
strain levels..............................................................................................  106 

Table 7.1. Constituent and tow properties.................................................................  119 

Table 7.2. Geometric parameters for various configurations....................................  124 

Table 8.1. Material properties ...................................................................................  149 

 



 

 

1 

1. INTRODUCTION 

 

1.1. Introduction to Textile Composites 

Composite materials have found a wide variety of applications in aerospace, 

automobile, sports, and marine industry for the past three decades because of their high 

specific strength and stiffness as compared to conventional metals/alloys [1]. The Air 

Force requirement for lightweight, high performance vehicles subjects materials to 

extreme service. Textile composites offer unique combinations of properties that cannot 

be obtained using conventional tape laminates. High speed textile preform 

manufacturing, and increased damage tolerance due to the tow interlacing are the 

primary advantages of textile composites [1].  Also, there is the potential for large 

reductions in part count due to the ability to create complex preforms. They can be mass 

produced and are cost-effective as compared to conventional tape laminates. Textile 

composites are being used in applications ranging from prostheses for amputees to 

shrouds to capture debris from a failed engine.   

 

Figure 1.1. Aircraft horizontal stabilizer (www.braider.com). 
 
____________ 
This dissertation follows the style of Journal of Composites Part A.
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Figure 1.2. Idealized schematics of woven preforms without matrix pockets  
(HS means Harness Satin). 
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Figure 1.3. Architecture of a bumpy weave. 
 
 
 
 
 
 

     

(a) a 2x2 biaxial braid                                    (b) a 2D triaxial braid 

 

Figure 1.4. Architecture of braided composites. 
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Figure 1.5. Schematic of knitted tows. 
 

 

Figure 1.1 shows a successful application of braided composites (an aircraft 

horizontal stabilizer). There are a number of textile manufacturing techniques available 

to make fiber performs. The dominant forms of textile manufacturing techniques can be 

classified into braiding, weaving and knitting. They all share the characteristic that fiber 

tows are interlaced to create a preform that is impregnated with resin to make a 

composite.  Figure 1.2 shows some of the possible idealized weave architectures and 

Fig. 1.3 shows an actual weave architecture.  Figure 1.4 shows architectures of two types 

of braids: a 2x2 biaxial braid and a 2D triaxial braid.  Figure 1.5 illustrates a knitted tow 

architecture. Both the weaves and the braids can exhibit high performance. The extreme 

amount of undulation in the knit makes for a very flexible preform, but the performance 

tends to be low. Hence, in terms of architecture, the focus of this research is on weaves 

and 2x2 biaxial braided composites. To facilitate discussion in the following chapters, 

the important geometric parameters and tow architecture of woven and braided 

composites are discussed below. 
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1.2. Definition of Geometric Parameters of Textiles 

Textile composites have complex microstructure characterized by tow undulation 

and interlacing. The tow consists of thousands of fibers. The tows are interlaced with 

each other to obtain a mat and the mats are stacked on the top of each other in some kind 

of stacking sequence to obtain thickness. The mats are impregnated with the matrix to 

make the textile composite.  

The woven structure is characterized by the orthogonal interlacing of two sets of 

tows called the warp and the fill tows. The fill tows run perpendicular to the direction of 

the warp tows. Plain weave, twill weave, 4-harness satin, 5-harness satin, 8-harness satin 

and basket weave are the dominant forms of woven architectures and are shown in Fig. 

1.2. In all the cases, the tows have both the undulated and straight regions except for the 

case of the plain weave with lenticular cross-section in which the entire length of the tow 

of both fill and warp tows is undulated. But in the case of other weaves, the tows have 

some straight region before starting to undulate. 

A 2x2 braid structure is formed by mutually intertwining or twisting two or more 

sets of tows (yarns) about each other (Fig. 1.7). The braid we are studying here can be 

specified as a “2x2 biaxial ±θ braid”. The numbers 2x2 mean that two +θ tows pass over 

and under two –θ tows and vice versa. Biaxial means that the tows run in two directions 

(if there are tows in axial direction also, then the resulting structure is called a triaxial 

braid), θ is the braid angle and it can vary from 15° to 75° [1]. Unlike woven 

composites, the +θ and –θ tows of a braid are not orthogonal to each other, except for a 

±45° braid. A careful examination of the tow architecture of a twill weave and 2x2 

biaxial braid (see Figs. 1.6-1.7) reveals that a ±45° 2x2 biaxial braid is geometrically 

indistinguishable from a 2x2 twill rotated by 45°.  Both configurations have orthogonal 

tows. 
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          Figure 1.6. Twill weave.                                Figure 1.7. A 2x2 braid. 

 

 

The idealized architectures of woven composites and 2x2 braids are shown in 

Figs. 1.2 and 1.7 respectively. The matrix pockets have been removed to show the 

architecture clearly. As is obvious from the figures, there is a repeated pattern of 

interlacing. In micromechanics this is referred to as “periodicity”. The unit cell of a 

periodic microstructure is the smallest region that can produce the whole structure by 

spatially translating its copies without the use of rotation or reflection.  

Figure 1.8 shows a typical tow taken out of the braid microstructure of Fig. 1.7. 

Note that xyz are the local directions for the braid tow in Fig. 1.8 and XYZ are the global 

directions for the braid in Fig. 1.7. The x is the direction along the +θ tow and X is the 

longitudinal direction. In Fig 1.8, h is the mat thickness and λ is the wavelength of the 

wavy region. The waviness ratio is defined herein as h/λ. This tow has straight as well as 

undulated regions. Here the straight and undulated regions cannot be separated by planes 

parallel to YZ plane except for the ±45° braid. This is due to the fact that the braid tows 

are not orthogonal to each other (except for the ±45º braid). Hence different fibers in a  
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Figure 1.8.  Geometry of a typical tow. 

 

 

 

single tow do not have the same phase angle. This means that the different fibers of the 

tow do not uniformly undulate and straighten at the same x coordinate. The phase of a 

fiber running at the edge of the tow is not the same as that of a fiber running in the 

middle of the tow. This phase shift is tan( )yφ θ= ∗ , where θ is the braid angle. Since the 

tows are not orthogonal to each other for braids, this causes the tow cross-section to vary 

in an unusual fashion. This is illustrated in Fig. 1.8, which shows the cross-sections at 

different points along the towpath. Since the phase shift depends on the braid angle, θ, 

this causes the material architecture of braids with different braid angles to be different. 

It should be noted that unlike braids, since the interlaced tows of woven composites are 

always orthogonal to each other, the phase shift is zero and hence their cross-section 

shape does not change along the towpath. The shown braid tow in Fig 1.8 has an 

idealized lenticular cross-section in the straight region. In reality, the cross-section of the 

tow varies anywhere from lenticular to flattened to elliptical. Moreover, the cross-section 
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shape can be different at different places. The effect of heterogeneity was analyzed by 

Whitcomb et al. in ref. [2] and it was showed that the behavior can be reasonably 

predicted by average parameters. The curved portion of the cross-section can be defined 

by a simple sinusoidal function of the form 

0
0

2 ( )
cos

4

s sh
z z

π

λ

+ 
= + 

 
                                          (1.1) 

where s = x or y, s0 and z0 are offsets, h is the model thickness, and λ is the 

wavelength of the wavy region as shown in Fig. 1.8. Tows with flattened and lenticular 

cross-sections are shown in typical finite elements in Fig. 1.9. 
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Figure 1.9. Flattened and lenticular cross-sections in typical finite elements of textiles. 
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The tow volume fraction (VT) in the model and fiber volume fraction (Vft) in the 

tow determine the overall fiber volume fraction (Vfo) as follows: 

fo T fT
V V V= ×                                                        (1.2) 

Depending upon the requirement, any number of mats can be stacked on the top 

of each other. If braid mats are spatially translated in a direction perpendicular to the 

plane of the mat, and stacked on top of each other, we obtain a simple stacking of mats. 

In this case, the undulation of the tows is in phase for all the mats. If the mats are mirror 

images of each other at each mat interface, then the resulting sequence is called a 

symmetric stacking. Both simple and symmetric stacking of mats is shown in Fig. 1.10. 

 

 

 

 

Simple Stacking Symmetric Stacking  
 

Figure 1.10. Simple and symmetric stacking sequences. 
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1.3. Statement of Objectives 

The goal of this work is to understand linear and non-linear behaviors of textile 

composites. To reach that goal, this work involves conducting linear elastic stress 

analysis, plasticity and material damage induced nonlinearity, and using special 

techniques for understanding the mechanics of load flow in woven and biaxial braided 

composites. There are four primary objectives:  

1) Predict the stress distribution in braided composites, analyze the sensitivity of 

predicted stress concentrations to various design parameters (braid angle, waviness ratio) 

and compare the stress distribution with equivalent tape laminates.  

2) Understand the non-linear behavior of textile composites due to damage 

initiation and progression. Present a framework to allow use of a variety of damage 

initiation and growth models. Use this framework to predict the damage initiation and 

growth in plain weave and twill weave composites using different damage models. 

Compare these predictions with available experimental data. Compare the salient 

features and predictions of different damage models with each other. 

3) Understand the plasticity induced non-linear behavior of textile composites. 

Validate the plasticity analysis by comparing the finite element predictions with 

experimental data for a wide variety of braided composites with different material 

systems. Compare the predictions of equivalent tape laminates with full 3D finite 

element analysis and experimental data. Analyze the effect of fiber properties on 

plasticity induced non-linearity in braided composites using different measures of 

plasticity.  

4) Understand mechanics of load flow using non-standard post-processing 

techniques. In particular, two techniques: stress resultants along the length of the tow 

and stress volume distribution in the tow, will be used to highlight the important details 

as well as to transform the massive amount of linear elastic, plasticity and damage 

analyses output data into comprehensible modes of behavior. 
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 The following chapters will begin with a review of the literature that is relevant 

to this work. Then the scope of the research will be described. That will be followed by 

procedure, results and discussion. 
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2. REVIEW OF THE STATE OF THE KNOWLEDGE 

 

The following subsections summarize the state of the art in analytical and 

experimental investigation of textile composites. First, the multiscale challenges inherent 

in predicting the behavior of textile composites will be described. Then, the analytical 

methods for describing the behavior of textile composites will be reviewed. Research 

efforts in developing simple as well as full 3D finite element models, and advantages 

and limitations of the various methods, will be discussed. Finally, progress in 

experimental characterization of textile composites will be reviewed.   

2.1. Multiscale Analysis of Textile Composites 
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Figure 2.1. Multiscale Analysis. 
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Textile composites exhibit multiple scales of complexity. The major scales are 

the fiber/matrix scale, the tow architecture scale, the "laminate scale" (i.e. multi-layered 

textiles), and the structural scale [2]. Fiber/matrix and tow architecture scales are 

illustrated in Fig. 2.1. There is a very large literature on analysis at the fiber/matrix scale 

[3-5], but not much for plasticity and damage, which is the focus of this study. One of 

the main works left to be done is to tailor the techniques already present in the literature 

to account for plasticity and material damage induced non-linearity. 

Accounting for the tow architecture scale presents severe challenges even for 

highly idealized cases. Compared to modeling of tape laminates [6-10], there has been 

relatively little effort for textile composites. For damage modeling of textiles, a common 

strategy for designers is to use laminated plate theory after knocking down the properties 

by certain factors. Obviously, this does not lead to fundamental understanding that could 

guide optimal design of the material. The following will review the wide range of 

analyses that have been developed. 

2.2. Simple versus Full 3D Models 

Most of the predictive models of textile composites can be categorized as either 

1) very simple due to assuming isostrain or isostress or a combination of both, 2) a 

hybrid of strength of materials and piecewise isostrain or isostress assumptions or, 3) full 

three dimensional finite element modeling. The first two categories have close ties to 

laminated plate theory. There are also some hybrid approaches, such as the binary model 

developed by Cox et al. [11]. For certain engineering moduli, all of these approaches 

have been shown to give similar trends. For others, either the predictions of the 

engineering properties differ, or an estimate is not even provided by the simpler 

analyses. Whitcomb et al. [12] showed that the ability of the "enhanced laminate theory" 

models to predict in-plane extensional modulus for a plain weave was related to two 

simplifying assumptions that introduced canceling errors. 

Simple models involve simplifying assumptions concerning geometric modeling 

of the tow path and boundary conditions.  These models vary in terms of the accuracy of 

the assumed displacement or stress field. Nevertheless, simple models do offer some 
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significant insights into the behavior of textiles. However, one can not obtain detailed 

information like the microscopic stress distribution or the modes of failure. The insights 

obtained from full 3D models or the experiments can be utilized to refine and modify 

simpler models and make them more robust. The simpler models will be discussed first, 

and then the full 3D models will be reviewed.  

2.3. Progress in Development of Simple Models 

Ishikawa and Chou [13] pioneered the development of simple 1-D models based 

on lamination theory to predict thermo-elastic properties. The 1-D crimp model 

accounted for fiber undulation, but the mosaic model did not [13-15]. The basic strategy 

of the 1-D crimp model was extended to 2-D by Naik, Shembekar and Ganesh [16-17]. 

The translation to 2-D was accomplished by volume averaging in each subregion using 

isostrain or isostress assumptions and then combining the homogenized subregions… 

again using isostress or isostrain assumptions. They developed the so called the parallel-

series (PS) model and the series-parallel (SP) model depending on assembling the 

elements first in parallel or in series respectively. Hahn and Pandey [18] extended the 

above 2-D models to a 3-D thermo-elastic model that models the undulation of fibers in 

both directions along with a sinusoidal cross-section shape of the tows.  The condition of 

isostrain was applied, whose accuracy still remains to be verified through experiments. It 

should be noted that if both the matrix and the tows are isotropic, a model based on 

isostrain conditions throughout the unit cell would predict no effect due to the undulation 

of the fiber, which is obviously incorrect. Verpoest [19] used the principle of minimum 

total complementary energy to develop a model for predicting the full set of 3D 

engineering moduli. 

A few important observations can be made from the various efforts in using 

simple models. The first is that if the goal is to just predict engineering moduli of 

undamaged materials, the existing suite of simple models is probably sufficient. The 

reason is that in reality, comparatively flat weaves are used and their moduli are 

dominated by quite simple physics. Unfortunately, the accuracy of some of the simple 

models appears to be a result of fortuitous cancellation of errors rather than good 
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approximation of the physics [12].  Whitcomb and Tang [20] showed that all of the 3D 

engineering moduli can be predicted quite accurately even for very wavy weaves if the 

behavior of the undulated regions is described adequately. They also showed that some 

of the most popular approximations appear to have little physical basis.    

2.4 Progress in Development of Full 3D Finite Element Models 

Although moduli can be predicted fairly easily, prediction of the local stress state 

is not so easy.  Figure 2.2 shows the predicted 3 dimensional stress state in the tows and 

matrix for a 5-harness satin when 1% uniaxial tensile strain was applied. The stress state 

is fully 3D even for the simplest loading. The interpretation of these stress states is a  
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Figure 2.2. Three-dimensional stress state in the tows and matrix of 5 harness satin 
weave (Applied load is <εxx> =1%). 
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difficult job because the stresses can be so localized that the scale is small compared to 

the size of the fibers in the tow.  The real tow architecture has more chaotic geometry 

than idealized textile geometry that will further increase the complexity of the stress 

state. Prediction of the three-dimensional stress state, effect of textile design on damage 

initiation and growth, non-linearity due to plasticity, and coupling of these phenomena 

requires a much more detailed description of the textile architecture than the simple 

models can possibly provide. Fortunately, the rapid increase in easily accessible 

computational power has made 3D analyses much more practical. 

Some of the earliest 3D models of woven composites were developed by 

Paumelle et al. [21-22] and Whitcomb et al. [12, 23-24]. More recently Kuhn et al. [25-

26], and Ji and Kim [27] have developed models for woven composites. These efforts 

predicted not only effective macroscopic moduli, but also local stress concentrations that 

could lead to premature failure. Geometric and material nonlinearities (including failure) 

were included in the work by Blackketter [28], Whitcomb [29], and Kollegal and 

Sridharan [30]. Gibson and Guan [31] examined the viscoelastic response of a woven 

composite. Most of the 3D models in the literature are for plain weave composites. The 

reason is that it is by far the simplest of the weaves, so mesh generation is relatively 

simple and the computational requirements are quite small, at least for linear analysis. 

However, there are exceptions. Whitcomb et al. [20, 23-24, 32] has also published 

results for 4, 5, and 8-harness satin weaves, twill weave and 2x2 braids. D’Amato [33] 

developed a model for triaxial braids. Naik [34] also developed models for braids. 

Analysis of textile composites can require large finite element models. 

Fortunately, the periodicity can be exploited that reduces the analysis region to just a 

small unit cell of the microstructure. A unit cell is a region that can produce the whole 

microstructure by spatially translating its copies. The computational cost can be reduced 

further by exploiting symmetries within the textile unit cell. Unfortunately, the boundary 

conditions for partial unit cell models are much more complicated and not intuitive like 

they are for the full unit cell. For example, Fig. 2.3 shows the slave/master face pairs for 
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a 2x2 biaxial braid [32]. Refs. [35-36] describe systematic procedures for deriving these 

complex boundary conditions for partial unit cell models.  

 

 
 

 

X

X

X
, braid angleθ

3

1

2

Region A  and A : 

 = 










u1 , ,−  + 

1

2
a

a X2

b
X2 X3  − 











u1 , , + 

1

2
a

a X2

b
X2 X3  〈  〉  

∂

∂

X1
u1 a

 
 = 











u2 , ,−  + 

1

2
a

a X2

b
X2 X3  − 











u2 , , + 

1

2
a

a X2

b
X2 X3  〈  〉  

∂

∂

X2
u1 a

 
 = 











u3 , ,−  + 

1

2
a

a X2

b
X2 X3











u3 , , + 

1

2
a

a X2

b
X2 X3  

Region D and D : 

 
 = 











u1 , ,

a X2

b
−X2 X3 −











u1 , ,−

a X2

b
X2 X3  

 = 










u2 , ,

a X2

b
−X2 X3 −











u2 , ,−

a X2

b
X2 X3  

 = 










u3 , ,

a X2

b
−X2 X3











u3 , ,−

a X2

b
X2 X3  

. 

. 
etc 

 
 

Figure 2.3. Multi-point constraint relations.  A finite element mesh of the full unit cell is 
shown.  The half unit cell model is the region in which the matrix packets are shown 

transparent.  Multipoint constraints are imposed on the paired regions. 
 

 

 

Mesh generation is one of the major challenges for the analyst. It is impractical to 

perform parametric study using 3D models unless the model itself is defined 

parametrically. That is, there must be a way to vary the characteristics of the tow 

architecture with the specification of only a few parameters. Tang used this technique 

very effectively in ref. [20], where results were generated for hundreds of different 

weave configurations.  
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2.5 Progressive Failure Analyses 

One higher level challenge is the prediction of non-linearity caused by damage 

initiation and progression in textile composites. Using 3D finite element analyses, the 

failure can be predicted in two ways for textile composites. One involves a discrete 

modeling of damage and other involves accounting for damage in a homogenized way in 

which the modulus or strength properties are degraded whenever some damage is 

detected. An accurate modeling of geometry, implementation of a reasonable failure 

criteria and a property degradation model are prerequisites for this type of modeling 

approach. 

 There have been a few attempts in discrete modeling of damage [37]. Most of the 

efforts have been in homogenized modeling of damage. Various researchers have 

proposed different damage models. Most of these models are similar in the sense that 

they degrade the stiffness coefficient or increase the compliance coefficients of the tows 

and matrix after a failure criterion detects the occurrence of a damage mode. These 

models differ from each other in various ways. The models basically differ in what 

degradation factors [37] they use for degrading the properties under a particular failure 

mode. Secondly, some degrade only the diagonal entries in compliance or stiffness 

matrix and some affect the off-diagonal terms also [28, 37-43]. Another difference 

between damage models is whether the matrix, which is isotropic initially, is considered 

anisotropic or not after damage. Some of the models are based on the experimental 

observations while some have theoretical basis. A comparison of some of the damage 

models available in the literature will be provided here. The damage model given in ref. 

[28] has been widely used to predict initiation and growth of damage by many 

researchers [28, 38-40]. Whitcomb and Chapman [40] proposed a property degradation 

model based on the Blackketter et al.’s [28] model. This was a combination of the 

method used by Blackketter et al. [28], Stanton and Kipp [41] and Whitcomb and 

Srirengan [37]. The model involved increasing the compliance coefficients of the tows 

and matrix when a certain failure mode was detected. Also the matrix, if isotropic before 

failure, was treated as anisotropic after damage. Whitcomb and Chapman’s [40] model is 
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similar to the model given by Blackketter el al. [28] except for a few differences like the 

degradation factors are different in the two models. Both models affect diagonal entries 

in the compliance matrix. Zako et al. [42] developed an anisotropic damage constitutive 

equation based on damage mechanics. Different damage modes were considered in the 

tows. The degradation factors were calculated from a damage tensor. This model 

inherently affects the off-diagonal terms also. An anisotropic damage model was 

considered for tows, and an isotropic damage model was considered for the matrix. 

Some questions arise about the selection of an isotropic damage model for the matrix 

because the matrix can behave anisotropically after damage has occurred. Tamma et al. 

[43] proposed a damage model in which they provided physical explanation of what 

properties should be degraded under a particular failure mode. They considered the 

degradation of off-diagonal terms also. Anisotropic damage models were proposed both 

for the tows and for the matrix. Recently Sankar et al. [44] developed a direct 

micromechanics method (DMM), which does not make any assumptions based upon 

homogenized properties. Failure envelopes for a plain-weave textile composite were 

developed and any arbitrary loading including the moments can be applied to their 

detailed 3D finite element model. The method employed was used to develop 

phenomenological failure criteria for textile composites. A drawback is that their method 

considers only damage initiation with no regard to damage progression. 

2.6 Modeling Plasticity in Textiles 

 Figure 2.4 shows the experimental stress–strain data for ±45˚ and ±25˚ 

VARTM manufactured [45] carbon/epoxy braids subjected to uni-axial tension in the 

longitudinal direction. The figure shows that the response is highly non-linear. At 2% 

strain, the ±45˚ braid composite has lost 76% of its initial tangent tensile modulus and 

±25˚ braid has lost 78% of its initial tangent modulus. Similarly, considerable plasticity 

induced non-linearity has been measured in S2-glass/SC-15 plain woven composites also 

[46]. The non-linear response shown by these textiles could be due to geometric (caused 

by tow interlacing and tow waviness) or material non-linearity (due to plasticity or 

progressive damage). The effect of geometric nonlinearity in woven composites has 



 

 

20 

been previously examined by the Whitcomb et al. [29].  It was found that the effect of 

geometric nonlinearity by itself is negligible, but becomes noticeable when coupled with 

material nonlinearity due to progressive damage, especially under compressive loading 
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conditions. In this work, non-linearity in textiles due to material damage as well as due 

to plasticity will be considered. Plasticity induced non-linearity is considered because 

the resins systems typically used in textiles shows considerable plastic behavior. A few 

researchers have studied the nonlinear behavior of textile composites. Most of the efforts 
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were concerned very little with inelastic behavior due to plastic deformation, and none 

of them was devoted to understanding plasticity-induced nonlinearity in braided 

composites. Efforts in modeling the non-linear behavior due to material damage have 

been discussed earlier. Below, some efforts to model plasticity in textiles are reviewed. 

The Hill’s yield function [47-49] has been successfully used by many researchers 

for modeling fibrous composites [50-51]. Ishikawa et al. [52] studied the material and 

geometric nonlinear properties using simple crimp and bridging models. The nonlinear 

off-axis behavior induced by the pure shear was considered for both fill tows and matrix 

pockets by Hahn and Tsai [53]. Blackketter et al. [54] investigated the inelastic behavior 

of the fiber tows using an invariant-based plastic flow rule. Dasgupta et al. [55] 

examined the nonlinear behavior of a plain weave by considering the nonlinear behavior 

of the matrix surrounding the fiber tows and Tsai-Hill type failure in the transverse tows.  

Kollegal and Sridharan [30] conducted strength predictions of plain weave by including 

both geometric and material nonlinear analysis. A micro-model based on Aboudi's 

method of cells [56] was used to consider the plastic deformation of the tows.  

2.7 Post Processing Techniques 

Three-dimensional analysis produces a tremendous amount of information. 

Sometimes it is useful to post process the details to obtain a “bigger picture” 

interpretation. For example, Fig. 2.5 show stress contours and a stress vs. volume plot 

for a tapered plate under uni-axial tensile loading. The stress volume distribution plot 

reveals how much volume of the plate is subjected to the highest stresses, something that 

is hard to find just by looking at the stress contours that give only the surface 

information. Two non-conventional techniques will be utilized in this work to analyze 

the wealth of raw numerical information provided by non-linear finite element analysis 

of textile composites.  The first technique is a stress versus volume distribution plot [57], 

which will be useful in assessing whether a local stress concentration is so localized that 

slight yielding will eliminate the high stress. The other technique is calculation of stress 

resultants as shown in Fig. 2.6. In approximate models the components of the textile are 

treated as simple structural elements like rods or beams and stress resultants are used to  
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(a) Stress contours  
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(b) Stress volume distribution 
 

 
Figure 2.5. Stress contours and stress volume distribution for a tapered plate 

under uniaxial tensile loading. 
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describe the load flow. Stress resultants obtained from refined models are much more 

reliable than those obtained by using a simplified model. These kind of non-standard 

post processing techniques do not exist in literature. 
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Figure 2.6. Tow stress resultants for plain weave in a linear elastic analysis 
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2.8 Modeling the Effect of Irregularity in Textile Architecture  

Periodic analysis is generally used in the modeling of textile composites. This is 

obviously an approximation since in reality there are irregularities due to variations in 

tow geometric properties such as waviness, cross-section shape, and fiber volume 

fraction. A few researchers have considered variation of the tow architecture in a 

specimen. Aggarwal [58] predicted the effects of tow misalignment caused by the 

manufacturing process or forcing the fabrics to conform to molds. No detailed 3D 
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analysis was developed and only the effects on stiffness were predicted. Lee et al. [59] 

and Bednarcyk et al. [60] also investigated the effects of irregularity of the 

microstructure. However, there was no attempt to model the actual wavy shape of the 

tows. Whitcomb et al. [2] considered the effect of variation in braid parameters on the 

progressive failure behavior of a 2x2 braided composite laminate. A bottom-up multi-

scale finite element modeling approach was employed that sequentially considered the 

fiber/matrix scale, the tow architecture scale and the laminate scale. Full 3D analysis was 

used to obtain effective 3D moduli for a variety of perturbations from a reference 

configuration. Then these effective properties were assigned to random locations in a 

macroscopic model of a uniaxial specimen. It was shown that various perturbations 

produced close response to the reference model [2] and response of the reference model 

can be predicted by using average parameters. Based on these observations average 

parameters will be considered in this work and no attempt will be made to model the 

irregularities that exist in the textile microstructures. 

2.9 Experimental Characterization  

Most of the experimental work has been focused on measuring the strength and 

the stiffness, particularly for the use of validating the analytical and the numerical 

models. For example, Dadkah et al. [61] and Falzon [62] measured the mechanical 

properties of two-dimensional braided composites under tensile, compressive and shear 

loading. The effect of fiber damage and tow waviness was also measured.  

Due to their inherent weakness in the thickness direction, laminated fiber 

reinforced composites are susceptible to large delamination damage as well as splitting 

when subjected to transverse loading and microbuckling under in-plane compressive 

loading [63]. Various researchers have made efforts to compare the mechanical 

performance of two dimensional textile composites with those that have been reinforced 

in the third direction also. Due to very complex geometry, modeling of these three 

dimensional textile composites has been very limited and mainly experiments have 

dominated this area. Hosur et al. [63] attempted to improve the transverse strength by 

providing discrete 3D reinforcement in the form of pins and stitching the laminate in the 
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thickness direction. The effectiveness of the 3D reinforcement was compared with 2D- 

laminates, which did not have reinforcement in the thickness direction.  

Takatoya and Susuki [64] characterized the fundamental properties of 3-D textile 

composites and compared them with those of two-dimensional laminated composites of 

the same resin system. Abot and Daniel [65] investigated the through-thickness 

deformation and failure of woven fabric composites. Elastic properties and strengths for 

moderately thick composites was measured and compared with equivalent tape 

laminates. Fedro and Willden [66] also compared experimentally the mechanical 

performance of the 2-D triaxially braided and the 3-D braided carbon/epoxy composites 

with those made from prepreg materials. In general, it has been seen that the third 

direction reinforcement improves the out of plane properties and impact damage 

tolerance but decreases the in-plane properties [66]. Baucom & Zikry [67] furthered the 

experimental research by investigating the effects of reinforcement geometry on damage 

tolerance in 2D and 3D woven fabric-reinforced composites. The enhanced damage 

tolerance of the 3D systems was attributed to unique energy absorption mechanisms, 

which involve the crimped portion of z-tows. 

A very challenging area is the fatigue behavior of textile composites. Except for 

very little modeling [68], almost all of the work in this area has been experimental. 

Kelkar et al. [68] manufactured biaxial braided composites with different braid angles 

using vacuum assisted resin transfer modeling (VARTM). Static tension and tension-

tension fatigue tests were performed to measure strength. It was concluded that the 

Sigmoidal function accurately represents the stress-fatigue life curve (S-N Diagram) of 

braided composites. Quaresimin et al. [69] studied the variation of crack density under 

fatigue loading of twill weave specimens. 

In contrast to results from static testing, the effects of low energy impact damage 

in a fatigue environment were found to be the critical element leading to failure of 

woven fabric composites [70]. Other tests involved measuring the influence of 

temperature on fatigue resistance of plain weave woven CFRP [71] and investigating the 
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fracture behavior of woven composites containing various cracks geometries in terms of 

notched strengths [72].  

All of the above work was mainly focused on characterizing macroscopic 

properties. There has been very little work in microscopic damage characterization that 

could give insights to researchers to develop and compare predictive models. Some work 

done by Quaresimin and Ricotta [69] involved identifying the main fatigue damage 

mechanisms like transverse matrix cracking, layer delamination and fiber failure by 

means of microscopic observation. Also, the crushing appearance and failure modes in 

the crushing zones for two-dimensional triaxially braided composite were examined by 

optical microscopy by Chiu et al. [73]. However, the microscopic damage initiation and 

progression observations, both under static and fatigue loading are far from sufficient to 

give confidence in modeling.  

2.10 Summary  

There has been very little detailed analysis of non-linearity induced by resin 

plasticity and material damage in textile composites. Non-standard techniques to obtain 

a bigger picture are almost non-existent in the literature. Based on these observations, 

the scope of this research is discussed in the next chapter. 
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3. SCOPE OF RESEARCH 

 

Due to the availability of a variety of textile architectures and numerous 

parameters associated with each, optimal design through extensive experimental testing 

is not practical. Predictive tools are needed to perform virtual experiments of various 

options. Virtual experiments would include various linear and non-linear analyses. 

Fortunately, the increase in computational power that is readily available is making 

detailed three-dimensional finite element analyses practical. One of the weak links in 

developing these models has been the difficulty in creating a finite element model. For 

this reason, initial efforts focused on the plain weave composite. However, tools and 

techniques have improved and now 3D models have been developed for a variety of 

textiles. The goal of this work is to understand linear and non-linear behaviors of textile 

composites. To achieve that, different analyses like linear stress analysis, plasticity and 

material damage induced non-linearity are proposed for various woven and braided 

composites. Also, the mechanics of mechanics of load flow in textile composites will be 

understood using novel post processing.  

Linear stress analysis is helpful in gaining some insights about the textile 

behavior. For example, the effect of various parameters on various in plane and out of 

plane moduli can be investigated, locations of potential damage spots can be found.  But 

textile composites show considerable non-linear response. The non-linear response could 

be due to geometric (caused by tow interlacing and tow waviness) or material non-

linearity (due to plasticity or progressive damage). This work investigates the linear 

elastic as well as non-linear behaviors of textile composites. A variety of textile 

composites like plain weave, twill weave, satin weaves and different braids are analyzed. 

Below, different proposed analyses for these textile configurations are discussed. 

3.1. Linear Elastic Analysis of Stress Concentrations in 2x2 Braided Composites 

The fact that tows are interlaced, have undulating and straight regions, and are 

not orthogonal to each other, causes a complex load path and complex three dimensional 
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stress distributions even for simple uni-axial loading. A significant concern is whether 

some stress concentrations appear only due to the peculiarities of a particular geometric 

approximation. Also, an intuitive understanding of why stress concentrations occur will 

allow one to attempt to design away or at least reduce the magnitudes.  

Various parameters like type of loading, material properties, braid angle and 

waviness ratio affect the stress distributions in braids. The sensitivity of peaks to braid 

angle and waviness ratio will be studied. Detailed three dimensional (3D) finite element 

models will be analyzed to determine the effect of these parameters on stress 

distributions in braids. Tape laminates are widely used and their analysis can be easily 

performed and understood by engineers. Unlike tapes, much of the manufacturing can be  

 

 

 

 
Figure 3.1. An equivalent tape laminate model 

(VT is the combined volume fraction of +θ and –θ tows in the braid model). 

 

 



 

 

29 

automated for braids, so braids have the potential for low cost as compared to tapes. The 

stress concentrations in braid will be compared with an equivalent tape laminate model. 

An equivalent tape laminate configuration, as shown in Fig. 3.1, consists of two 

unidirectional laminas (with properties of the tow) in the +θ and –θ directions and a third 

lamina of matrix to account for matrix pockets in the braid. The layer thicknesses in the 

laminate model are consistent with the tow and matrix volume fractions in the full 3D 

model. This will be useful to find out the severity of the peaks in braids as compared to 

those in an equivalent tape laminate.  

Various techniques are used to process the stress distribution data. Stress 

contours give some surface information about stress distributions. Of course, much of 

the information is not seen in the contour plots. Stress volume distribution plots are used 

to characterize the extent of high stress regions. It will be shown that even for simple 

uni-axial loading, the stress state in braids is fully three-dimensional. The location and 

magnitude of peak stresses in the tow are predicted. The effect of braid angle on the 

magnitude of stress concentrations will be investigated. Effect of braid angle constitutes 

two parts: One is called orientation effect and the other is called phase shift effect herein. 

The orientation effect is due to the fact that the braid tows are oriented at angles of ±θ to 

the longitudinal direction. This effect of orientation can easily be eliminated by 

normalizing with laminate theory results. The other effect is due to the fact that, the 

material architecture of braids with different braid angles is different, because the tow 

shape of different braids is different due to phase shift in the undulation (see section 1.2 

for details). By matching the loading that a tow of different braids experiences, the 

orientation effect will be eliminated and the effect of phase shift on stress distribution 

will be investigated. Finally the variation of stress peaks with waviness ratio (a measure 

of crimp in tows) will be analyzed. 

In summary, the goal of this part of the research will be to perform linear elastic 

stress analyses and to predict the stress distribution in the tow of a braid, analyze the 

sensitivity of predicted stress concentrations to various design parameters (braid angle, 

waviness ratio) and compare the stress distribution with an equivalent tape laminate. 
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3.2. Effect of Assumed Damage Model on Predicted Damage Evolution in Textile 

Composites 

When excessive load or fatigue cycles are applied, damage initiates and grows in 

textile composites. To exploit the full potential of these materials, it is necessary to 

understand how damage initiates and progresses. The knowledge of the stress state that 

exists both in tows and matrix is required to be able to predict potential damage 

locations. Detailed 3D finite element models with refined meshes are required to 

determine the stress distribution and failure behavior.  

Using the finite element models, the stress distribution can be predicted both in 

the tows and in the matrix. Although the moduli predictions are simple, prediction of the 

stress state is difficult as a full three dimensional stress state exists in the matrix as well 

as in the tows even for simple uni-axial loading. Hence the stress analysis tends to be 

complex. Prediction of accurate stress states is critical to predict damage initiation and 

progression.  

Prediction of an accurate stress state is the first step of the challenge. The next 

one is utilizing this information to predict the damage evolution. Prediction of failure 

response is more challenging both in terms of computational time and modeling. As 

discussed earlier, various researchers have proposed different damage models. A damage 

model degrades the properties by a certain amount when a failure criterion detects 

occurrence of damage. Most of the models are similar in the sense that they either 

degrade the stiffness coefficients or increase the compliance coefficients of the tows and 

matrix after a failure criterion detects the occurrence of a damage mode. These models 

differ from each other in various ways. The models basically differ in terms of the 

degradation factors used for changing the stiffness or compliance coefficients. Secondly, 

some degrade only the diagonal entries in the compliance or stiffness matrix and some 

affect the off-diagonal terms also [28, 38-43]. Another difference between damage 

models is whether the matrix, which was isotropic initially, is considered anisotropic or 

not after damage. Some of the models are based on experimental observations while 
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some have only a theoretical basis. A comparison of some of the damage models 

available in the literature will be provided.  

This work has two goals. One is to present a framework to allow use of a wide 

variety of damage initiation and growth models. Some of the damage models available 

in the literature and their salient feature will be compared. All the models will have a 

common implementation in terms of degradation of engineering properties to do a 

meaningful comparison of different models. The second goal is to predict the damage 

initiation and growth in woven composites using different damage models. The stress 

strain curves under uni-axial tensile loading will be predicted. Investigations will include 

analysis of a glass/epoxy and carbon/epoxy plain weave, and a carbon/epoxy twill 

weave. A comparison of predictions of stress-strain curves using different damage 

models will be shown. The finite element predictions for all these configurations will be 

compared with the experimental data. The reasons for differences or similarities between 

the predictions of different damage models will be explored.  

3.3 Plasticity Induced Non-Linearity in 2x2 Braided Composites  

Figure 2.4 shows the experimental stress–strain data for ±45˚ and ±25˚ VARTM 

manufactured [45] carbon/epoxy braids subjected to uni-axial tension in the longitudinal 

direction. The figure shows the response is highly non-linear. The non-linear response 

shown by these braids could be due to geometric (caused by tow interlacing and tow 

waviness) or material non-linearity (due to plasticity or progressive damage). In this 

work, non-linearity due to the material elastic damage and plasticity will be studied 

separately. 

This part of the study investigates plasticity-induced nonlinearity in braided 

composites. There are several reasons for this effort. Firstly, conventional matrix 

materials, e.g. polymers and metals, used to make textile composites exhibit significant 

inelastic response. Secondly, due to fiber tow interlacing and undulation, the local stress 

concentrations are significant [74] and could cause matix/tow yielding at low overall 

stress level. Although such plastic deformation may be contained by the surrounding 

elastic material, it could be significant in cyclic loading situations.  
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In this analysis, the effect of plastic deformation on the stress-strain behavior of 

braided composites will be analyzed using finite element modeling. As illustrated in Fig. 

2.1, a two scale modeling approach [47] will be used. The first scale, which is called the 

fiber/matrix scale herein, predicts the effective elastic and plastic properties of the tow 

from the properties of the constituent fiber and resin. The second scale, which is called 

the tow architecture scale herein, models the braided composite unit cell and utilizes the 

properties predicted by the first scale for the tow. Plastic deformation at both the scales 

will be modeled by using Hill's yield function [48] for an orthotropic material. A two-

step procedure [47] will be used to determine the orthotropic parameters in the yield 

function for the tow. First, the effective stress/effective plastic strain relationships under 

various loading conditions will be obtained by micromechanics analysis of the 

fiber/matrix unit cell. Then the orthotropic parameters of the tow will be found such that 

all these effective stress versus effective plastic strain curves collapse into a narrow band 

around a single curve. A Matlab® [75] optimization utility will be used to determine the 

orthotropic parameters of the tow, which are material parameters in the Hill’s yield 

function [48] for orthotropic materials. This will involve solving non linear least square 

problems using the lsqnonlin function. The narrow band will then be curve fitted to find 

parameters in an equation called the master curve [76] equation. The master curve 

equation is used to fit the yield stress versus effective plastic strain data. This master 

curve for the tow will then be used at the tow architecture scale to predict the plastic 

deformation of braided composites.  

This modeling approach will be used to predict the behaviors of 2x2 braided 

composites consisting of AS4 carbon fiber [1] reinforced EPON 9504 epoxy [77] resin, 

E-glass fiber [1] reinforced EPON 9504 epoxy resin and S-glass fiber [1] reinforced 

EPON 9504 epoxy resin. The predicted stress-strain response for ±25˚, ±30˚ and ±45˚ 

carbon/EPON, ±25˚ E-glass/EPON and ±45˚ S-glass/EPON braids will be compared 

with the experimental data to validate the analysis. 

If one is only interested in the macroscopic stress-strain response, it might be 

worthwhile to analyze an equivalent tape laminate (Fig. 3.1) also which requires only 3 
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elements and much less computational time. The predictions of equivalent tape 

laminates will be compared with the full 3D finite element models and experimental data 

as well. The tape analysis will also be helpful in comparing the performance of braided 

composites with tape laminates. 

In this work, the effect of fiber properties on the plastic behavior of braided 

composites will also be analyzed. Plasticity induced non-linearity in 2x2 braids under the 

application of in-plane tensile loading will be analyzed. The two material systems, E-

glass/EPON 9540 epoxy and AS4 carbon/EPON 9504 epoxy will be analyzed. Both 

have the same resin but different fibers so that the effect of fiber properties on the 

behavior of the braid could be examined. The effect of fiber material will be studied for 

a ±25˚ braid under uniaxial tensile load along the longitudinal direction. 

 The macroscopic stress-strain response only gives a quantitative measure of 

averaged behavior. To obtain insights about the potential damage spots, the effect of 

plastic deformation on local stress distributions will also be investigated. Development 

of the plastic zone at different load levels will be analyzed. The difference in stress 

distribution and plastic zone size due to change in fiber properties will also be discussed.  

In summary, this part of the research will focus on the following: 

1. Validation of the elasto-plastic analysis by comparing the finite element 

predictions with experimental data. 

2. Comparison of the predictions of equivalent tape laminates with full 3D finite 

element analysis and experimental data. 

3. The effect of fiber type on plasticity induced non-linearity in ±25˚ braid. The 

effects are described in terms of 

• macroscopic stress-strain behavior 

• stress distribution plots 

• plastic zone plots 

3.4. Mechanics of Load Flow in Textile Composites 

The current 3D models of textile composites give much more information than 

the simple laminate theory models that were developed initially to understand the 
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behavior of textile composites. Simple models were based on intuition and provided 

behavior in terms of basic modes of deformation and load transfer. Simple models make 

many assumptions about the geometry and behavior and can not provide detailed 

information like the stress distribution in the tows and resin, effect of tow undulation or 

failure modes.  

The full 3D models attempt to model the geometry as truly as possible and the 

results are also obtained with a similar lack of bias. Though, full 3D models provide a 

wealth of raw numerical information, it is difficult to utilize all this information to 

develop an intuitive understanding of the textile behavior. For example, the stress 

contours for the 3D stress state in a 5 harness satin weave shown in Fig. 2.2 give many 

details, but no framework for interpretation. 

The focus of this part of the research is to massage the massive output data to 

understand mechanics of load flow in textile composites. Optimal use of rapidly 

improving 3D finite element models requires non-standard techniques to interpret the 

data.  In particular, techniques must be developed that not only highlight the important 

details, but also transform the massive amount of output data into comprehensible modes 

of behavior. This work will discuss two techniques.  

The first technique converts the 3D variation of a stress component into a stress 

versus volume distribution plot (e.g. Fig. 2.5). This plot reveals how much volume of the 

material has a stress magnitude larger than a particular value. The plot gives a measure 

of the non-uniformity of the stress distribution. This is especially useful for assessing 

whether a local stress concentration is so localized that slight yielding will eliminate the 

high stress. The other technique is calculation of stress resultants. In approximate models 

the components of the textile are treated as simple structural elements like rods or beams 

and stress resultants are used to describe the load flow. The fully three-dimensional 

finite element results can be postprocessed to obtain stress resultants, such as the axial 

force or moment in the tow. Fig. 2.6 illustrates typical results for an elastic analysis. It 

can be seen that both Fx and Fz have highest values where the tow undulation is 

maximum. Since these stress resultants are obtained from refined models, the results are 
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much more reliable than one could obtain by using a simplified model. It should be 

noted that these post processing techniques are not meant to eliminate the details. Instead 

a hierarchical strategy is proposed that allows interpretation of the predictions at 

different levels of detail. Also, by providing the “coarse level” interpretation of the 

results, a better basis is provided for evaluating and refining simpler models. These kind 

of post-processing are not available in commercial finite element programs. 

These techniques can be applied in various ways to investigate textile behavior. 

First of all, various studies for understanding the mechanics of load flow in a plain 

weave composite will be conducted. Then the effect of textile architecture on the load 

flow in equivalent regions of the tow will be examined. Then, the focus will be on 

describing the effect of plasticity and damage on the volume distribution of stresses and 

stress resultants in a plain weave composite. 

3.5. Summary 

Textile composites have found a wide variety of applications in different areas. 

Due to the availability of a variety of textile architectures and numerous parameters 

associated with each, optimal design through extensive experimental testing is not 

practical. Enough predictive tools are not available to perform virtual experiments of 

various options. This work will focus on understanding various linear and non-linear 

behaviors and mechanics of load flow in textile composites. 
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4. THEORY AND EQUATIONS 

 

In this work, the linear elastic as well as non-linear behaviors of textile 

composites were analyzed. The non-linear behavior can be caused by geometric non-

linearity (tow undulation) or material non-linearity (due to plasticity or damage). Here 

non-linear behavior due to plasticity and damage initiation and progression were 

analyzed. The theory of the analysis and equations involved are discussed below. The 

finite element formulation is also discussed below.  

For any boundary value problem, the following four sets of equations are 

necessary. 

1. Equations of equilibrium 

2. Kinematics (strain-displacement relations) 

3. Constitutive relations 

4. Boundary conditions 

The equations of equilibrium, kinematics and boundary conditions are the same 

for all the analyses conducted in this work. But the constitutive relations are quite 

different. Below, first the equations of equilibrium, kinematics and boundary conditions 

for any 3D analysis are discussed. Then the constitutive relations for linear elastic 

analysis and the finite element formulation are discussed. Later, the constitutive 

equations for damage initiation and progression as well as for plasticity are discussed. In 

the equations below, a repeated index is a dummy index and denotes summation and a 

non-repeated index denotes a free index. A comma denotes a partial derivative with 

respect the coordinate x. For example, let , and
i ij

aφ σ  be a scalar, vector and a tensor, 

respectively, then: 

, , ,, and iji
j i j ij j

j j j

a
a

x x x

σφ
φ σ

∂∂∂
= = =

∂ ∂ ∂
                               (4.1) 
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4.1. Equations of Equilibrium 

Considering a general 3D body with volume V bounded by the surface S, the 

static equilibrium equation can be written as  

, 0
ji j i

fσ + =                                                            (4.2)  

where fi are the body forces. In the absence of body moments, the conservation of 

angular momentum requires symmetry of the stress tensor, that is  

ji ij
σ σ=                                                               (4.3)  

4.2. Kinematics (Strain-Displacement Relations) 

In this work, infinitesimal strains were used and for infinitesimal strain, the 

strain-displacement relation is 

, ,

1
( )

2ij i j j i
u uε = +                                                     (4.4) 

4.3. Constitutive Relations 

For a linear elastic material, the stress-strain relationships for the material are 

given by Hooke’s Law: 

or

ij ijkl kl

ij ijkl kl

C

S

σ ε

ε σ

=

=
                                                     (4.5) 

 

where C is fourth order stiffness tensor and is inverse of fourth order compliance 

tensor S. If the components of 2nd order stress and strain tensors are written using 

Voight’s notation as: 
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then the stress-strain relationships can be written as 

or

i ij j

i ij j

C

S

σ ε

ε σ

=

=
                                                     (4.7) 

where and ij ijC S are the second order stiffness and compliance tensors 

respectively and are given as: 
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                                   (4.8) 

4.4. Boundary Conditions 

The traction boundary conditions are given as 

on Si ij jT nσ=                                                    (4.9) 

and the displacement boundary conditions are given as 

ˆˆ on S iu u=                                                      (4.10) 

where û  is the specified displacement on the boundary Ŝ . 

As discussed earlier in the introduction chapter, textile composites have periodic 

microstructure. Later, we will see that for analyses involving periodic microstructures, 

the periodic boundary conditions involving multi point constraint relationships were 

used.  
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4.5. Statement of Virtual Work Principle 

To obtain the statement of virtual work, equations of equilibrium are multiplied 

by an arbitrary virtual displacement, and are integrated over the volume to obtain the 

total virtual work for the body, 

,( ) 0ji j i i

V

f u dVσ δ+ =∫                                           (4.11) 

or 

, 0ji j i i i

V V

u dV f u dVσ δ δ+ =∫ ∫                     (4.12) 

The first term can be written as  

,( ), ( ),ji i j ji j i ji i j

V V V

u dV u dV u dVσ δ σ δ σ δ= +∫ ∫ ∫                    (4.13) 

The first term on the right hand side will be written as  

, ( ), ( ),ji j i ji i j ji i j

V V V

u dV u dV u dVσ δ σ δ σ δ= −∫ ∫ ∫                    (4.14) 

But, 

( ),ji i j ji i j

V S

u dV u n dSσ δ σ δ=∫ ∫             (4.15) 

Therefore Eqn. (4.12) can be written as 

( ),ji i j i i ji i j

V V S

u dV f u dV u n dSσ δ δ σ δ= +∫ ∫ ∫                         (4.16)   

Using Eqn. (4.9) 

( ),ji i j i i i i

V V S

u dV f u dV T u dSσ δ δ δ= +∫ ∫ ∫           (4.17) 

Now we will use infinitesimal strain-displacement relations to express ( ),i juδ  as: 

1 1
( ) ( )

2 2
ji i i

ij

j j j j

uu u u

x x x x

δ
δ δ δε

∂∂ ∂ ∂
= = + =

∂ ∂ ∂ ∂
                           (4.18) 

By inserting Eqn. (4.18) into Eqn. (4.17), the principle of virtual work statement is 

obtained as  

 ji ij i i i i

V V S

dV f u dV T u dSσ δε δ δ= +∫ ∫ ∫                    (4.19) 
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That is, the statement of the virtual work principle is  

int t 0ex
W W Wδ δ δ= + =                                         (4.20) 

where
ji ij

V

dVσ δε∫  is the internal virtual work and  i i i i

V S

f u dV T u dSδ δ− −∫ ∫ is the external 

virtual work. 

If Voigt notation is used for stresses and strains, then the virtual work statement can be 

written as: 

0,   1..3,  1..6k k i i i i

V V S

dV f u dV T u dS i kσ δε δ δ− − = = =∫ ∫ ∫             (4.21) 

4.6. Virtual Work Statement: Discrete Form 

One assumes a displacement field over the element in terms of nodal 

displacement
i

u
α . The subscript i denotes the coordinate directions and the superscript 

α =1..n where n is the number of nodes per element. 

The displacement can be expressed in terms of interpolation functions. 

i i
u N u

α α=                                                     (4.22) 

where N
α  are the interpolation functions. Equation (4.21) can be expressed in matrix 

form as 

{ } { } { } { } { } { }  T T T

V V S

dV q f dV q T dSδε σ δ δ= +∫ ∫ ∫                    (4.23) 

where { }q  is the vector of elemental nodal displacements and is given as: 

1 1 1
1 2 3 1 2 3{ } { , , , ............... , , , ............}q u u u u u u

α α α=                 (4.24) 

where the superscript α indicates the node number. In this work, 20 node hexahedral 

brick elements were used. Each node has three degrees of freedom, which are 

displacements 1 2 3, andu u u  along three coordinate directions.  

Substituting the stress-strain relation,{ } [ ]{ }Cσ ε= , in Eqn. (4.23) gives 

{ } [ ]{ } { } { } { } { }  T T T

V V S

C dV q f dV q T dSδε ε δ δ= +∫ ∫ ∫                (4.25) 

The strain vector { }ε  can be written as  
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{ } [ ]{ }B qε =                                                  (4.26) 

where [B] is defined by  
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 Using Eqn. (4.26), Eqn. (4.25) can be written as  

( [ ] [ ][ ] { } { } { }  )=0T T

V V S

q B C B dV q f dV T dSδ − +∫ ∫ ∫   (4.27) 

Since Eqn. (4.27) holds for any arbitrary nonzero selection of { }qδ , this equation 

becomes 

[ ] [ ][ ] { } { } { }  )T

V V S

B C B dV q f dV T dS= +∫ ∫ ∫                         (4.28) 

The finite element equations can be written as  

e e e[K ]{q }={F }                                                  (4.29) 

where the element stiffness matrix is 

e[K ]= [ ] [ ][ ]T

V

B C B dV∫                                            (4.30) 

and the element load vector is 

{ } { } { }  e

V S

F f dV T dS= +∫ ∫                                      (4.31) 

Assembling the element stiffness matrices and the load vector yields 

[K]{q}={F}                                                  (4.32) 
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where [K] is the global stiffness matrix,{q} is the global displacement vector, and {F}is 

the global load vector. 

This completes the theory and equations for the linear elastic analysis. 

4.7. Boundary Conditions for Periodic Microstructures  

For periodic structures, homogenized properties of the structure can be obtained 

by analyzing a representative volume element (RVE). The response of the RVE is 

volume averaged to obtain the effective properties. The periodic conditions state that the 

displacements of one unit cell differ from other unit cells only by a constant offset, 

which depends on the volume averaged displacement gradients [35-36]. Further, the 

strains and stresses are identical in all of the unit cells. This can be expressed as 

( ) ( ) (4.33)

( ) ( ) (4.34)

( ) ( ) (4.35)

i

i i

ij ij

ij ij

u
u x d u x d

x

x d x

x d x

α α α β

β

α α α

α α α

ε ε

σ σ

∂
+ = +

∂

+ =

+ =

 

where dβ is a vector of periodicity [35-36]. The vector of periodicity is a vector from a 

point in one unit cell to an equivalent point in an adjacent unit cell.  

If the RVE is a full unit cell, then boundary conditions can be obtained by 

exploiting periodicity. But, for textile composites, the number of degrees of freedom for 

a full unit cell model can be quite large. Tremendous savings can occur if we are able to 

reduce the size of the analysis region from a full unit cell to half or less. This is 

especially true for non-linear analyses like the problem at hand. Symmetry within the 

unit cell can be exploited to reduce the analysis region to part of the unit cell. The 

concept of Equivalent Coordinate Systems is useful in identifying the symmetries and 

constraint conditions [35-36]. Coordinate systems are equivalent if the geometry, spatial 

distribution of material, loading, and the various fields that describe the response (e.g., 

displacement, strains etc.) are identical in the two systems [35-36]. Some symmetries are 

destroyed by combined loading though. Periodicity and symmetry conditions were 

exploited to derive boundary conditions in this work. For the fiber/matrix scale, one-

fourth of the unit cell was analyzed for obtaining linear elastic properties of the tow. For 
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plastic properties combined loading were imposed on the fiber/matrix scale and hence, 

symmetries could not be exploited and only periodicity was used to analyze the full unit 

cell. For the tow architecture scale, periodicity as well as symmetry was used and the 

analysis region was reduced to one half of the unit cell for simple stacking and one 

fourth of the unit cell for symmetric stacking of the mats for braids. Depending upon the 

weave type, the analysis region was reduced to one half or smaller region of the unit cell. 

For plain weave, sometimes the analysis region could be reduced to as small as 1/32nd 

part of the full unit cell.  

4.8. Theory and Equations for Damage Initiation and Progression 

A classical approach as shown in Fig. 4.1 was adopted for predicting damage 

initiation and progression. A particular load is applied initially. The stresses were 

computed at all 27 Gauss quadrature points for all elements. The initial load is scaled   
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Figure 4.1. Procedure for predicting damage initiation and progression. 
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back or forth to the point of initial damage, which is defined by the load point when at 

least one Gauss quadrature point fails. The failure is determined by the evaluation of a 

damage criterion both for matrix and tows. When the stresses at any Gauss point 

exceeded the strength, the elastic properties at that Gauss point were degraded. After 

degrading the properties, the analysis was conducted again at the same load level to 

calculate redistributed stresses. This procedure was iterated until no further failure 

occurred and the model was in equilibrium. Then we go to the next load increment and 

repeat this procedure. This way, we are constantly moving in the load history and getting 

the stress-strain response of the composite as shown in Fig. 4.1. Note that a linear elastic 

analysis is conducted at each load step, and the properties at the Gauss quadrature points 

change during each iteration. The failure of any Gauss quadrature point is determined by 

pre-specified failure criteria. If any quadrature point fails, the constitutive matrix for that 

quadrature point is updated. The failure criteria and a typical property degradation model 

that were used are discussed below.  

4.8.1. Failure criteria  

Three dimensional heterogeneous FE models that consist of tows and matrix 

were employed. Tows and matrix were treated macroscopically as anisotropic and 

isotropic homogeneous bodies, respectively. The fibers are arranged uni directionally 

within lamina of the tape laminated composites, but they are in the form of fiber bundles 

in textile composites. The properties of the tow or fiber bundles were homogenized.  

For the fibers, one or more damage modes, such as fiber breaking and transverse 

cracking, can take place. These modes strongly affect the mechanical behavior of the 

structure. The anisotropic damage model for fibers and the isotropic damage model for 

matrix were utilized to simulate the microscopic damage propagation and thus to 

characterize the damage modes.  

Different failure criteria were used for transversely isotropic and isotropic 

materials. The maximum principal stress criterion is used for the matrix. The matrix is 

considered to be anisotropic after first failure is detected. For tows, the maximum stress 

criterion for anisotropic materials was used, which says that the failure occurs when any 
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of the stress components in the material coordinates exceeds its corresponding strength 

i.e. for tow, failure occurs when / 1ij ijSσ >  in the material coordinate system. 

4.8.2. Property degradation scheme 

Most of the property degradations models are common in the sense that they 

degrade the engineering properties whenever failure is detected at any quadrature point. 

If we relate the stresses and strains at any material point using the following compliance 

matrix, 

1312
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                        (4.36) 

Let E, G and ν be the original extensional moduli, shear moduli and Poisson’s ratio 

respectively and E,G and ν  are the degraded extensional moduli, shear moduli and 

Poisson’s ratio respectively. Also let ai (i = 1..9) are the damage factors, which specify 

the amount of degradation. Then a typical property degradation scheme will look like: 

11 11 1 22 22 2 33 33 3

12 12 4 23 23 5 13 13 6

12 12 7 23 23 8 13 13 9

/ , / , /

/ , / , /

/ , / , /

E E a E E a E E a

G G a G G a G G a

a a aυ υ υ υ υ υ

= = =

= = =

= = =

                        (4.37) 
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Figure 4.2. Flow chart for finite element implementation of damage analysis. 
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As an example, if a1 =8, that implies that the E11 modulus is decreased by a factor 

of 8 from its current value if the material point fails. Note that in this general framework, 

diagonal as well as non-diagonal entries of the compliance matrix can be affected 

independently. In this work, various property degradation schemes were implemented 

and analyzed. The details of property degradation models will be given in chapter VI. A 

flow chart showing finite element implementation of damage analysis is shown in Fig. 

4.2. 

4.9. Theory and Equations for Plasticity Analysis 

All the theory and equations involved in the plasticity analysis are discussed 

below.  

4.9.1. Strain decomposition  

Figure 4.3 shows a schematic of stress-strain curve which might be obtained 

from the uniaxial loading of a material. At a particular stress level σy at point A, the 

material yields and its modulus drops, the material starts to harden after this yielding. 

After the yield point, although the modulus of the material has decreased, the behavior is 

called hardening because the stress is increasing relative to perfectly plastic behavior 

[78].  

The perfect plastic behavior is also shown in Fig. 4.3 and in that case, the strain 

in the material will keep on increasing at the yield point without any increase in stress. In 

case the material is hardening and we start unloading lets say at a point B, the material 

will stop deforming plastically (assuming no time dependent phenomenon), and will 

show a linearly decreasing stress, whose slope would be the same as the loading curve. 

The slope of the unloading curve is the Young’s modulus E. When at point C, a state of 

zero stress is reached, we will have some permanent deformation in the material. The 

remaining strain is called plastic strain and the recovered strain is elastic strain [78]. 
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Figure 4.3. Schematic of stress-strain curve for a material with plastic yielding. 

 

 

The total strain in the material, at any point of loading is sum of elastic and 

plastic components, i.e.  

e pε ε ε= +                                                (4.38) 

This is called classical additive decomposition of plasticity [78] 

4.9.2. Stress-strain relationship 

It is obvious from Fig. 1 that the stress at any strain level ε is given by 

( )e pE Eσ ε ε ε= = −                                  (4.39) 

and the incremental stress-strain relationship is given by: 

( )e pd Ed E d dσ ε ε ε= = −                             (4.40) 
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In the textile composite analysis, the state of stress in the tows and matrix is fully 

3D, and the incremental stress strain relationship is written as: 

 ( )p

ij ijkl ij ij
d C d dσ ε ε= −                                    (4.41) 

where C is the fourth order stiffness tensor. 

4.9.3. Incompressibility condition 

Experiments have shown that the plastic deformation in any material takes place 

without volume change. Due to this, the sum of the normal plastic strain components is 

zero.i.e. 

11 22 33 0p p p p

kk
d d d dε ε ε ε= + + =                               (4.42) 

The deviatoric plastic tensor is defined as the plastic strain tensor minus the mean 

plastic strain or hydrostatic plastic strain tensor. Since the hydrostatic part is zero due to 

the incompressibility condition, the deviatoric plastic strain and plastic strain tensors are 

equal. 

4.9.4. Effective stress and plastic strain rate 

To identify at what stress level, the yielding will occur is straightforward in the 

case of monotonically increasing load in a uniaxial test. 

For example,  

 

If   < , the material is elastic

and if   , the material has yielded.

y

y

σ σ

σ σ≥                           (4.43) 

This relationship is not as simple for isotropic matrix that has a multi-axial stress 

state or for tows in textile composites, which are transversely isotropic and have a full 

3D stress state. In the case of an isotropic matrix, a whole range of yield criteria exists. 

The Von-Mises yield criterion is quite common and is based on the calculation of an 

effective stress, which is defined as follow [78]: 

2 2 2 2 2 2
11 22 33 12 23 31

3
( 2 2 2 )

2eσ σ σ σ σ σ σ= + + + + +                           (4.44) 
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Here σij are the components of 3D stress state in the matrix. The effective stress 

e
σ is a scalar quantity and its origin lies in the postulate that yielding occurs when 

material reaches a critical shear energy [78].  

Similarly, the state of plastic strain can be fully 3D and an effective plastic strain 

can be defined as [78]: 

1 2 2 3 3 1

2
( ) ( ) ( )

9
p p p p p p p

d d d d d d dε ε ε ε ε ε ε = − + − + −                            (4.45) 

If is the deviatoric stress tensor and is defined as

1

3
1

3

(because 0 from incompressibility)

ij

ij ij kk ij

p p p

ij ij kk ij

p p

ij kk

d d d

d d

σ

σ σ σ δ

ε ε ε δ

ε ε

′

′ = −

′ = −

= =

     (4.46) 

then the effective stress and effective plastic strain can be conveniently written as: 

3
.

2 ij ijσ σ σ′ ′=                                                               (4.47) 

2 2

3 3
p p p p p

ij ij ij ijd d d d dε ε ε ε ε′ ′= =                                      (4.48) 

It must be noted that, in the case of uniaxial loading, the effective stress can be 

shown to be equal to the uniaxial stress and the effective plastic strain to be equal to the 

uniaxial plastic strain. 

When stress and strain are fully 3D, the effective plastic strain can be calculated 

from the definition of plastic work. 

Based on increment of plastic work per unit volume, the effective stress, σ  and 

effective plastic strain, pε , are defined based on the increment of plastic work per unit 

volume [47-49] 

p p p

ij ijdW d dσ ε σ ε= =                                        (4.49) 

( )

p

ij ijp
d

d
σ ε

ε
σ σ

⇒ =                                               (4.50) 
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4.9.5. Yield criterion 

The Hill’s yield function [47-49] has been successfully used by many researchers 

for modeling fibrous composites [50-51, 54] and was used herein to describe the plastic 

behavior of fiber tow with matrix. Since matrix is elasto-plastic and a constituent in tow, 

the tow also behaves elasto-plastically.  

2 2 2 2 2 2
22 33 33 11 11 22 23 31 12

2
22 33 3

The yield function  for orthotropic materials can be described as:

( , ) ( ) ( ), where (4.51)

3
( ) ( ) ( ) 2 2 2

2

3 , (4.52)

1
( ) ( ) (

2

p p

y

h

h ij

f

f

F G H L M N

f

f F G

σ ε σ σ σ ε

σ σ σ σ σ σ σ σ σ σ

σ

σ σ σ σ

= −

 = − + − + − + + + 

=

= − + 2 2 2 2 2
3 11 11 22 23 31 12) ( ) 2 2 2

(4.53)

H L M Nσ σ σ σ σ σ − + − + + + 

yσ  is the yield stress. If the material is hardening, the yield stress is a function of 

effective plastic strain, .pε  

The F, G, H, L, M and N are orthotropic parameters. For the resin, which is 

isotropic, F = G = H = 1 and L = M = N = 3 and it can be shown that σ reduces to 

        ' '3
, which is the Von-Mises effective stress (see Eqn (4.47)).

2 ij ijσ σ σ=  

For the transversely isotropic tow, it can be shown that G = H and M = N [47-

49]. Without loss of generality, let L = 1. Therefore, only three orthotropic parameters, 

F, G and M, need to be determined by either experiment or micromechanics analysis.   

4.9.6. Normality condition 

 The normality condition enables us to determine the direction in which the 

plastic flow occurs. The associated flow rule states that the increment in plastic strain 

tensor is in a direction that is normal to the tangent to the yield surface at the point of 

load (see Fig. 4.4). 

 p

ij

ij

f
d dε λ

σ

∂
=

∂
                                          (4.54) 
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Here 
ij

f

σ

∂

∂
 gives the direction of the plastic strain increment and dλ  gives the 

magnitude of incremental plastic strain. dλ  is called the plastic multiplier or consistency 

parameter. 
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σ22

σ11

dεp
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Figure 4.4. Direction of plastic flow is normal to the yield surface at the load point. 

 

4.9.7. Consistency condition 

The requirement that the load point (see Fig. 4.4) has to stay on the yield surface 

is called the consistency condition [78]. The condition enables us to calculate the plastic 

multiplier or the magnitude of incremental plastic strain. 

The yield function has dependence on the current state of the stress and effective 

plastic strain (because the yield stress depends on plastic strain due to hardening). 

Equation 4.51 states that, 

( , ) ( ) ( )p p

y
f σ ε σ σ σ ε= −  
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The consistency condition is written for incremental changes in stress and 

effective plastic strain as: 

( , ) 0      (4.55)

0     (4.56)

0           (4.57)

p p

ij ij

p

ij p

ij

y

ij p

ij y p

f d d

f f
df d d

f f
d d

σ σ ε ε

σ ε
σ ε

σ
σ ε

σ σ ε

+ + =

∂ ∂
= + =

∂ ∂

∂∂ ∂
⇒ + =

∂ ∂ ∂

 

Substituting incremental stress-strain relationships ( )p

ij ijkl ij ijd C d dσ ε ε= −  from Eqn. 

(4.41) into the above equation, we obtain: 

( ) 0yp

ijkl ij ij p

ij y p

f f
C d d d

σ
ε ε ε

σ σ ε

∂∂ ∂
− + =

∂ ∂ ∂
                        (4.58)

 

This equation can be expanded as: 

( )[ ]{ } [ ]{ } 0

T

yp

ij ij p

ij y p

f f
C d C d d

σ
ε ε ε

σ σ ε

  ∂∂ ∂ 
− + = 

∂ ∂ ∂  
                 (4.59) 

Using associated flow rule p

ij

ij

f
d dε λ

σ

∂
=

∂
, from Eqn. (4.54), the above equation 

becomes:  

[ ]{ } [ ] 0

T

y

ij p

ij ij y p

f f f
C d C d d

σ
ε λ ε

σ σ σ ε

     ∂∂ ∂ ∂   
− + =     ∂ ∂ ∂ ∂       

           (4.60) 

Substituting the associated flow rule p

ij

ij

f
d dε λ

σ

∂
=

∂
from Eqn. (4.54), into Eqn. (4.50) 

for incremental plastic strain and effective stress 
( )

ijp p

ij
d d

σ
ε ε

σ σ
= , we obtain: 

( )
ijp

ij

f
d d

σ
ε λ

σ σ σ

∂
=

∂
                                             (4.61) 

It can easily be shown that the expression ij

ij

f
σ

σ

∂

∂
 is equal to the the following: 
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2
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3ij
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f
f

σ
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σ

∂
= =

∂
                                           (4.62) 

Substituting the above expression in to Eqn. (4.61), we obtain  

2

3
p

d d
σ

ε λ=                                                (4.63) 

Substituing this expression in Eqn. (4.60), the consistency condition becomes, 

2
[ ]{ } [ ] 0

3

T

y

ij

ij ij y p

f f f
C d C d d

σ σ
ε λ λ

σ σ σ ε

     ∂∂ ∂ ∂   
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                       (4.64) 

This gives,                   
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(4.65) 

The expression 

2
H=  is defined to be the hardening modulus.

3
y

y p

f σ
σ

σ ε

∂∂
−
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    (4.66) 

 

Hence dλ can be written as:             
{ } [ ]{ }

{ } [ ]{ }

T

T

n C d
d

H n C n

ε
λ =

+
                                    (4.67) 

 

{ }where n
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f

σ

 ∂ 
=  

∂  
                                                                                                   (4.68) 

 can be calculated from hardening law as shown below.y

p

σ

ε

∂

∂
 

4.9.8. Isotropic hardening 

 The yield stress is a function of the amount of plastic strain in the material. A 

power law [76] was used for hardening, which says that the yield stress is a function of 

effective plastic strain. 



 

 

55 

 
1

0

( )

1

p
p

y

n np

E

E

ε
σ ε

ε

σ

=

  
 +     

                                           (4.69) 

1

0

( )

1

p

y

np
n np

E

E

σ ε

ε
ε

σ

+

∂
⇒ =

∂
  
 +     

                                      (4.70) 

The Eqn. (4.69) is also called the master curve [76] equation and was used to 

define the hardening behavior. The E, n and σ0 (called master curve parameters herein) 

are constants, which were used to fit the yield stress versus effective plastic strain data. 

4.10. Summary 

The theory of the analysis and equations involved were discussed in this chapter. 

The necessary equations for any boundary value problem involve equations of 

equilibrium, kinematics (strain-displacement relations), constitutive relations and 

boundary conditions. In additions to these relations, constitutive equations for damage 

initiation and progression as well as for plasticity were discussed. 
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5. LINEAR ELASTIC ANALYSES OF STRESS  

CONCENTRATIONS IN 2X2 BRAIDED COMPOSITES 

 

The stress distribution in braided composites is complex even for simple uni-

axial loading. The interlacing of the tows creates a complex load path that results in full 

3D stress distributions. Various parameters like type of loading, material properties, 

braid angle (BA) and waviness ratio (WR) affect the stress distributions in braids. The 

sensitivity of peaks to braid angle and waviness ratio is studied here. Detailed three 

dimensional (3D) finite element models are analyzed to determine the effect of these 

parameters on stress distributions in braids. The stress concentrations in braid are 

compared with an equivalent tape laminate model to find out the severity of the stress 

peaks in braids as compared to those in an equivalent tape laminate. 

Various techniques are used to process the stress distribution data. Stress 

contours give some surface information about stress distributions. Of course, much of 

the information is not seen in the contour plots. Stress volume distribution plot is used to 

characterize the extent of high stress regions. It will be shown that even for simple uni-

axial loading, the stress state in braids is fully three-dimensional. The location and 

magnitude of peak stresses in the tow will be shown. Braid angle changes the magnitude 

of stress concentrations considerably. It will be shown that this is primarily because of 

the orientation effect which can be predicted by the laminate theory. By matching the 

loading that a tow of different braids experiences, this orientation effect is eliminated 

and the effect of braid angle due to phase shift on stress distribution will be compared. 

Finally, the variation of stress peaks with waviness ratio is studied.  

In summary, the goal of this linear elastic analysis is to predict the stress 

distribution in the tow of a braid, analyze the sensitivity of predicted stress 

concentrations to various design parameters (braid angle, waviness ratio) and compare 

the stress distribution with an equivalent tape laminate. 
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5.1. Configurations 

Figure 5.1 shows an idealized microstructure of a dry mat of a 2x2 braid. The 

effect of various parameters on the stress distributions in a symmetrically stacked braid 

was studied. The braid configurations were chosen for studying linear elastic stress 

distribution because due to phase shift, the architecture of braids is more complex and 

relatively fewer studies have been conducted for the braids as compared to weaves. The 

overall fiber volume fraction in the model was assumed to be 50%. The braid angle (BA) 

is the angle between the axis of the tow and the longitudinal direction of the braid and is 

shown in Fig. 5.1.  
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Figure 5.1. Microstructure of a 2x2 braid. 
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The range of braid angle considered in these studies was ±15˚ to ±65˚. The 

waviness ratio (WR) is a measure of undulation or crimp in the tows. It is defined as the 

ratio of the height h to the wavelength λ (Fig. 5.2). Very low (1/20, 1/9), moderate (1/6) 

and very high (1/3) waviness ratios were considered. Uni-axial loading was applied 

along the longitudinal direction (see Fig. 5.1). Note that in the following text, XYZ are 

the global directions and 123 are the material coordinates directions, such that “1” is 

along the fiber. The material coordinate and global directions are shown in Fig. 5.1. 

 

 

 

 

 

Figure 5.2. Typical finite element model (matrix transparent to reveal architecture), 
quarter of unit cell (see Fig. 5.1). 

 

 

 

The material system used consists of AS4 carbon fibers and EPON epoxy resin. 

The material properties were taken from refs. [1, 45, 77]. The resin is isotropic with 
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E=2.96 GPa and υ=0.38. The fiber is transversely isotropic with the following 

properties: E11=227.53 GPa, E22=E33=16.55 GPa, G12=G13=24.82 GPa, G23=6.89 GPa, 

υ12=υ13=0.2, and υ23=0.25, where the “1” direction is along the longitudinal axis of the 

fiber. The symbols E, G and υ refer to extensional modulus, shear modulus and 

Poisson’s ratio respectively. The fibers were assumed to be arranged in a hexagonal 

array in the tow and the properties of the tow were calculated using finite element based 

micromechanics. The fiber fraction in the tow was assumed to be 0.69. The properties of 

the tow were determined to be: E11=157.9 GPa, E22=E33=9.088 GPa, G12=G13=4.839 

GPa, G23=3.276 GPa, υ12=υ13=0.251, υ23=0.4117. 

A typical finite element model used for the studies consists of 20-node brick 

elements and is shown in Fig. 5.2. This model is one-fourth of the unit cell and sufficed 

for analysis because periodicity of the microstructure and mirroring and rotational 

symmetries within the unit cell were exploited [35-36]. The boundary conditions consist 

of numerous multipoint constraint relations and are given in ref. [32]. A typical finite 

element model used in these studies consists of 1152 elements and 5008 nodes.  

An equivalent tape laminate model corresponding to each ±θ braid configuration 

was also used to compare with a braid. The stacking sequence for the laminate model is 

tow tow resin S[+θ /-θ /0 ]�  as shown in Fig. 3.1. In this laminate, four layers [two in +θ direction 

and two in –θ direction] have properties of the tow and the rest have properties of the 

matrix to account for matrix pockets in the braid model. The layer thicknesses were 

consistent with the tow and matrix volume fractions in the braid model. The laminate 

model was used to quantify the severity of the stresses in the braid as compared to 

stresses in a corresponding tape laminate. The same amount of load was applied to both 

the laminate and the braid.  

Numerous finite element analyses were performed to study the effect of braid 

angle and waviness ratio on the stress distribution in braids. The distribution in braids 

was compared with those in equivalent laminates also. The results are discussed below 

using various techniques. 
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5.2 Analysis of Stress Contours in the Tows of Different Braids 

Figure 5.3 shows the locations of peak stresses in the tow when unit uni-axial 

load (<σxx > = 1) along the longitudinal direction is applied to a ±25˚ braid with WR of 

1/3. Even for simple loading like this, a three dimensional stress state exists in the tow 

and any stress component could be critical, depending upon the allowables [79]. Figure 

5.3 shows the contours for all the six stress components with their respective ranges. The 

value of each stress component for an equivalent lamina is also given. For a lamina of an 

equivalent tape laminate, only in-plane stresses are non-zero and value of each stress 

component lies within the braid stress range. The out of planes stress values are zero 

because there are no free edge effects. Moreover, the in-plane stresses in the lamina of a 

tape laminate are constant, but the value of each stress component varies significantly in 

the braid tow.   

Three dimensional stress distributions exist for ±45˚ and ±65˚ braid tows (not 

shown in Fig. 5.3) also, but there are certain similarities and differences in the stress 

distributions as one changes the braid angle. The σ11 stress peaks in the tow are tensile 

for all the braid angles. In contrast, the peaks for σ22 are compressive for ±25˚ and tensile 

for ±45˚ and ±65˚, which is consistent with equivalent laminates. Figure 5.3 shows that 

σ13 is the only component whose peak extends through the thickness of the tow, as 

shown in Fig. 5.3. For the rest of the stress components the peaks are only on the surface 

of the tow. For all the braid configurations, there were significant tensile and 

compressive σ33 concentrations. However, for a ±65˚ braid, tensile peaks were much 

larger than the compressive peaks. Figure 5.4 shows the effect of braid angle on the σ33 

stress distribution. Braids with different braid angles were stressed at the same stress 

level (<σxx> = 1). It can be seen that the stress distribution differs considerably with 

braid angle. With increase in braid angle to ±65˚, the peak stresses changes from tension 

to compression in nature in the center portion of the tow. Also, the location of peak 

stresses changes from center portion of the tow to the edge of the tow. The magnitude of 

tensile peaks also changes from 0.22 to 0.367 when the braid angle is increased from 
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Figure 5.3. Three-dimensional stress state in the +θ tow for ±25˚ braid  
with WR =1/3 (<σxx> =1). 

 

 

 

 

Figure 5.4. Effect of braid angle on σ33 stress concentration in the +θ tow 
(Uni-axial loading (<σxx> = 1), WR=1/3). 
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±15˚ to ±65˚. The ±65˚ braid tow has a smaller tensile area, which is near its edges, but a 

larger tensile value than the others. In summary, the location and magnitude of peak 

stresses vary considerably with braid angle. 

5.3 Comparison of Severity of Stresses in Braids and Tape Laminates  

Stress contour plots shown in Figs. 5.3 and 5.4 give stress information only on 

the surface of the tow. To obtain internal information, one has to cut the tow and show 

more and more plots. The percentage of the tow having peak stress can be small enough 

not to be noticeable in the stress contours. Also, it is possible that peak stresses are 

hidden in the interior of the tow. One needs to determine what percentage of the tow 

exceeds a certain stress level. A volume distribution plot quantifies the percentage 

volume of the material that is stressed more than a particular value. Figure 5.5 shows a 

typical volume distribution plot of σ33 in the +θ tow of a ±30˚ braid with waviness ratio  

 

 

 
        

Figure 5.5. Volume distribution of σ33 in ±30˚ braid tow (Applied < σxx > = 1). 
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=1/3 when uni-axial load is applied. The σ33 in an equivalent lamina is also plotted. For 

the lamina, σ33 is zero. The σ33 in the braid was normalized by the applied stress. The 

figure shows that 18% (point C) of the volume of the tow has a tensile σ33. Point A, 

which is in the tensile region, indicates that 10% of the volume has a σ33 that is larger 

than 0.037 times the applied stress. Point B, which is in the compressive region, 

indicates that 24% of the volume has a compressive stress larger than 0.1 times the 

magnitude of the applied stress. One can use the information provided by a volume 

distribution plot in several ways. The percentage of the tow having larger stress than that 

in an equivalent lamina can be found. One can also find the percentage of the tow having 

tensile or compressive stress. The amount of the tow having stress larger than a 

particular value can also be found. For example, questions like, what percentage of the 

tow has a larger σ33 than 0.25 times the applied stress, can be answered.  

Tape laminates and braids have their own advantages and disadvantages in terms 

of ease and cost of manufacturing, engineering properties and ease of analysis. Analysis 

of tape laminates is easily understood by designers and engineers but tapes have the 

disadvantage of hand lay-up and high manufacturing cost. In contrast, analysis of braids 

is complicated but they have an edge in terms of manufacturing cost. Here the severity 

of stresses in braids as compared to those in equivalent tape laminates is discussed. 

Figure 5.6 shows the volume distribution of in-plane normal local stresses in the +θ tow 

of ±45˚ braid when unit uni-axial load along the longitudinal direction was applied 

(<σxx> = 1). The in-plane stresses were plotted, because out of plane stresses are zero for 

tape laminate. In both plots, the volume distribution curves correspond to five waviness 

ratios: 1/3, 1/4, 1/6, 1/9 and 1/20. The vertical straight line corresponds to the constant 

stress value in the +θ lamina of an equivalent tape laminate. The stresses shown in the 

figure are normalized with the corresponding absolute +θ lamina values. That is, the 

plots show σ11_tow / |σ11_lamina| and σ22_tow / |σ22_lamina|. There are several differences 

between the stress distribution in a braid tow and a lamina. Figure 5.3 showed that braid 

tows have a wide variation in in-plane stresses. In contrast, in-plane stresses in an  
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Figure 5.6. Comparison of stress volume distribution in a ±45˚ braid with that in an 
equivalent tape laminate. Normalized stress   ( tow lamina| |σ σ ) in the tow versus percentage 

volume of the tow exceeding a particular value is plotted. 
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equivalent lamina are constant. The volume of the tow that exceeds the value of stresses 

in a tape lamina is defined to the “severity” of stresses in a tow as compared to those in 

lamina. Figure 5.6(a) shows the volume distribution of σ11 for a ±45˚ braid tow for 

several waviness ratios. The figure shows that 19% of the tow (marked by arrow A) has 

larger σ11 than an equivalent lamina for WR =1/3 and the severity is maximum for this 

WR. When the waviness ratio is reduced to 1/20, the severity reduces to 11.5% (marked 

by arrow B). The σ11 severity is smallest for the smallest WR (1/20) in the considered 

range of WR (1/20 - 1/3). Figure 5.6(b) shows the volume distribution of σ22. The figure 

shows that 31% of the tow (marked by arrow A) has larger σ22 than an equivalent lamina 

for WR =1/3. When the waviness ratio is reduced to 1/20, the severity reduces to 19% 

(marked by arrow B). For all other waviness ratios considered, the severity lies in 

between the highest WR (1/3) and lowest WR (1/20) for both the in-plane stresses 

shown in Fig. 5.6. 

Figure 5.6 showed the stress distribution for ±45˚ braid only. The severity of 

stresses in ±25˚ and ±65˚ braids was also investigated. The results are tabulated in Table 

5.1. Table 5.1 shows the severity of stresses for the considered range of BA (±25˚- ±65˚) 

and WR (1/20-1/3).  

 

 

Table 5.1. Severity of stresses in braid as compared to an equivalent tape laminate (the 
“severity” of stresses in a tow is defined herein to be the volume of the tow that exceeds 

the value of stresses in a tape lamina). 

Range of Braid Angle = ±25˚ -  ±65˚, Range of Waviness Ratio = 1/20 – 1/3 

 % volume of tow having more severe stress than those in an equivalent lamina 

 WR =1/3 WR =1/6 WR =1/9 WR =1/20 

BA ±25˚ ±45˚ ±65˚ ±25˚ ±45˚ ±65˚ ±25˚ ±45˚ ±65˚ ±25˚ ±45˚ ±65˚ 

σ11 40 18.5 24.6 19.5 12.3 27.5 16 12.1 28.8 15 11.2 30 

σ22 45 31 27.3 38.5 21 31 36 18.5 30 36 18.2 29.5 

σ12 24.5 33 9.5 24.5 33 26.5 27.5 33.7 29.5 28 34 30 
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The severity decreases with a decrease in WR for ±25˚ and ±45˚ braids for both 

in-plane normal stresses. For ±65˚ braid, the severity increases with a decrease in WR 

for σ11, and remains almost constant for σ22. For σ12, the severity increases with a 

decrease in WR for all the braid angles. Overall, in this range of parameters, the 

maximum volume of the tow that could have more stresses than an equivalent lamina is 

40% for σ11, 45% for σ22 and 34% for σ12.  

5.4 Effect of Braid Angle on Stress Peaks  

Figure 5.7 shows the effect of braid angle on the σ22 and σ13 stress volume 

distributions. Braid angle affects other stress components too, but σ22 and σ13 are plotted 

in Fig. 5.7 because in the case of σ22, the difference between stress volume curves of 

different braids is large and in the case of σ13, the difference is small. The waviness ratio 

= 1/3 and a unit volume averaged stress of <σxx> was applied. Also shown are the values 

of equivalent tape laminates corresponding to each braid. Dotted lines are lamina stress 

values and are constant. There is wide variation in the stresses in the tow of all the 

braids. Figure 5.7(a) shows that as the braid angle changes, the σ22 stress distribution 

changes considerably. The ±15˚ braid tow has compressive stresses in more than 95% of 

its volume, whereas ±45˚and ±65˚ braid tows have only tensile stresses in their entire 

volume. The peak values of σ22 for ±15˚, ±45˚ and ±65˚ tows are -0.14, 0.4 and 1.5 

respectively. Figure 5.7(b) shows the variation for σ13. The laminate value is zero for all 

equivalent laminates in this case, but braids have wide variation. The wide variation in 

σ22 is mostly due to orientation effect and is expected based on the behavior of an 

equivalent laminate. The orientation effect is due to the fact that the braid tows are 

oriented at angles of ±θ to the longitudinal direction. This effect of orientation can easily 

be eliminated by normalizing with laminate theory results. The other effect is due to the 

fact that, the material architecture of braids with different braid angles is different, 

because the tow shape of different braids is different due to phase shift in the undulation. 

The orientation affects the volume distribution for all the stress components. Hence, a 

technique was used to eliminate the effect of orientation. By matching the loading that a 

tow of different braids experiences, the orientation effect is eliminated and the effect of  
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(b) σ13 volume distribution 

 
 

Figure 5.7. Effect of braid angle on σ22 and σ13 volume distribution  
(<σxx> = 1, WR = 1/3). 
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(b) σ13 volume distribution 

 

Figure 5.8. Effect of braid angle on σ22 and σ13 volume distribution when <σij> in the 
tow are matched (WR=1/3). 
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phase shift on stress distribution is investigated here. A volume averaged stress <σxx> = 

1 was applied on ±45˚ braid. The +45˚ braid tow experienced a certain amount of 

loading because of this. In particular, the tow was subjected to the following volume 

averaged stresses: <σ11> = 1.203, <σ22> = 0.087, <σ33> = -0.0026, <σ12> = -0.593, 

<σ23>=0 and <σ13>=0, where the “1” direction is along the axis of the braid tow. The 

same amount of multi-axial loading was applied on a +25˚ braid tow. This was made 

possible by applying multi-axial loading on the ±25˚ braid model. The same thing was 

done for other braid angles. Now the stress volume distribution in the different braids 

was compared. The stress volume distribution after matching the loading on tows of 

different braids is shown in Fig. 5.8. It is interesting to see that now the stress volume 

distribution curves lie very close to each other as compared to when the loading on tow 

was not matched (Fig. 5.7). The σ22 ranges from tensile to compressive for all the braids 

as shown in Fig. 5.8(a). The peak values of all the braids are also very close to each 

other for all the braids now. Similarly, volume distribution curves came closer for σ13 

stress also as shown in Fig. 5.8(b). The orientation effect could be similarly eliminated 

for other stress components also (figure not shown). The difference that still remains is 

attributed to the fact that the tow shape of different braids is different due to phase shift 

in the undulation. This phase shift is shown in Fig. 5.9. In this figure, x1x2x3 is the local 

coordinate system. Different fibers across the width of the tow start to undulate at 

different x distance, which means that they have different phase angle. The phase shift is 

given by Φ = x2*tan(2θ – 90°), where θ is the braid angle. Due to this, different fibers of 

the tow do not undulate and straighten at the same x coordinate. One fiber may have 

started undulating and another may not have yet started to undulate. The overall effect of 

this phase shift is different material architecture for different braids, which results in 

different stress distribution even if the loading on the tow of different braids was 

matched.  
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Figure 5.9. Phase shift in the tow of a braid. 

 

 

5.5. Effect of Waviness Ratio on Stress Peaks  

Figure 5.10 shows the effect of waviness ratio on the stress volume distribution 

for a ±45˚ braid. A unit uni-axial load (<σxx> = 1) was applied. Three different waviness 

ratios (1/3, 1/6 and 1/9) were used. The figure shows the stress volume distribution for 

all the stress components. It can be seen that for all the stress components, with an 

increase in waviness ratio the volume distribution curve tends to broaden in the 

horizontal direction. In other words, the severity of the peaks increases with an increase 

in waviness ratio for all the stress components. The effect of waviness ratio is more 

pronounced for out of plane stresses (σ33, σ23 and σ13) than for in-plane stresses (σ11, σ22 

and σ12).  

Figure 5.11 summarizes the effect of waviness ratio on the stress peaks. The 

figure shows the variation of normalized stress peak values with waviness ratio for all 

the six stress components. The peak values correspond to a particular percentage of the 

tow volume. For example, in Fig. 5.11(a), 5% of the tow volume had more severe  
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Figure 5.10. Effect of waviness ratio on stress volume distribution (BA = ±45˚). For all 
the cases, stress component is plotted along the horizontal and % volume of the tow is 

plotted along the vertical. Applied stress is <σxx> = 1. 
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Figure 5.11. Variation of peaks with waviness ratio ±45˚ braid under <σxx> =1. 
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stresses than the value plotted for all the stress components. Similarly, in Fig. 5.11(b), 

2% of the tow volume was chosen to find the value of peak stresses. The σij (where i, j 

=1, 2, 3) peak values were normalized with the peak values corresponding to a waviness 

ratio of 1/9. The results are for a ±45˚ braid under unit uni-axial load (<σxx>=1). It can 

be seen that the stress peaks increase linearly with an increase in waviness ratio (except 

for σ12 for which there is little variation). Again, it can be seen that the effect of 

waviness ratio is more pronounced on out of plane stresses as compared to in-plane 

stresses. Out of plane normal stress is most severely affected.  

5.6 Summary  

The tow stress state in 2x2 braids was investigated. The effect of various 

parameters on the stress state was studied. The following observations were made: 

• A complex stress state which is fully three-dimensional exists in the tow even for 

simple uni-axial loading. 

• In the considered range of parameters (WR =1/3 – 1/20, BA = ±25˚ - ±65˚), a 

considerable volume of the tow has higher magnitude of stresses than an 

equivalent lamina.  

• The wide variation in stress volume distribution with braid angle is due to simple 

orientation effects and can be eliminated by matching the loading on the tow. 

Some difference that still remains is attributed to the phase shift.  

• The severity of the stress peaks increases linearly with an increase in waviness 

ratio for all stress components (except for σ12, for which there is little variation). 
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6. EFFECT OF ASSUMED DAMAGE MODEL ON  

PREDICTED DAMAGE EVOLUTION IN TEXTILE COMPOSITES 

 

In the previous chapter, linear elastic behavior of braided composites was 

studied. When excessive load or fatigue cycles are applied, damage initiates and grows 

in textile composites. To exploit the full potential of these materials, it is necessary to 

understand the damage initiation and progression. The knowledge of the stress state that 

exists both in tows and matrix is required to be able to predict potential damage 

locations. Detailed 3D finite element models with refined meshes are necessary to 

determine the stress distribution and failure behavior of textiles.  

Using the finite element models, the stress distribution can be predicted both in 

the tows and in the matrix. Although the moduli predictions are simple, prediction of the 

stress state is difficult as a full three dimensional stress state exists in the matrix as well 

as in the tows even for simple uni-axial loading. Hence the stress analysis tends to be 

complex. Prediction of accurate stress states is critical to predict damage initiation and 

progression and is the first step of the challenge. The next one is utilizing this 

information to predict the damage evolution. A classical non-linear approach was 

adopted for predicting damage initiation and progression. A particular load is applied to 

the finite element model initially. The stresses were computed at each Gauss point 

within an element. If the stresses at any Gauss point satisfied a pre-selected failure 

criterion, the elastic properties at that Gauss point were degraded. After degrading the 

properties, the analysis was conducted again at the same load level to calculate 

redistributed stresses. This was iterated until no further failure occurred and the model 

was in equilibrium. The procedure for conducting damage initiation and progression 

using the finite element method was discussed in detail in the theory chapter earlier. A 

flow chart of the analysis was shown in Fig. 4.2. 

Prediction of failure response is challenging both in terms of computational time 

and modeling. Various researchers have proposed different damage models. Most of 

these models are similar in the sense that they degrade the engineering constants of the 
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tows and matrix after a failure criterion detects the occurrence of a damage mode. These 

models differ from each other in various ways. The models basically differ in terms of 

which property and how much of it they degrade under a particular failure mode. 

Secondly, a damage mode in a specific direction in a tow will affect the deformation in 

the other direction too, hence the Poisson’s ratios will change. Some of the models affect 

the off-diagonal compliance coefficients and some don’t. Another difference between 

damage models is whether the matrix, which was isotropic to start with, is considered 

anisotropic or not after damage. Some of the models are based on experimental 

observations while some have a theoretical basis. A comparison of some of the damage 

models available in the literature will be provided here.  

This part of the research has two goals. One is to present a common framework 

to allow use of a wide variety of damage initiation and growth models. Some of the 

damage models available in the literature and their salient features will be discussed. The 

second goal is to predict the damage initiation and growth in some woven composites 

using different damage models. The stress strain curves under uni-axial tensile loading 

will be predicted. Studies conducted include analysis of plain weave and twill weave 

with different material systems. These configurations were selected because the 

experimental stress-strain response, geometric parameters and material properties for 

these configurations were available in the literature [38-39,42]. A comparison of 

predictions of stress-strain curves using different damage models will be shown. All the 

predictions are also compared with experimental data.  

6.1. Damage Mechanisms in Textile Composites 

Different types of damage mechanisms can be present in textile composites under 

different types of loadings. The matrix and tows can develop transverse cracks. Different 

damage mechanisms seen in the tows are transverse cracking, inter and intra tow 

delamination, fiber buckling and fiber breakage etc. The resin rich areas can develop 

transverse matrix cracks independent of matrix cracks in the tows. Three main damage 

mechanisms observed experimentally under microscope by Quaresimin et al. [69] in 

twill weave composites  
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(a) Delamination 

 

 

(b) Transverse matrix crack 

 

Figure 6.1. Damage mechanisms in woven composites [69]. 
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(c) Fiber failure 

Figure 6.1. Continued. 
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Figure 6.2. Schematic of different damage modes in the tow of textile composites. 
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under fatigue loading are layer delaminations, transverse matrix cracking and fiber 

failure. These damage mechanisms are shown by micrographs in Fig. 6.1. It was 

observed by Quaresimin et al. [69] that all three damage mechanisms were present in 

various laminate sequences under different types of fatigue loadings, but the sequence of 

appearance was different [69]. Moreover, the laminate behavior was generally ruled by 

only one predominant mechanism.  

The schematic of different damage modes in the tow is shown in Fig. 6.2. The 

damage mode that takes place is the one in which a corresponding failure criterion gets 

satisfied. Failure criteria that were used are discussed later on. The damage modes in the 

tows can be classified into four types as shown in Fig 6.2.  The direction “1” is along 

the fiber direction and “2” and “3” are in plane and out of plane transverse directions 

respectively. The “1”, “2” and “3” are the principal coordinate axes of the tow, which 

is transversely orthotropic. In the finite element model, the material angles are constantly 

varying for the tow at different locations. Under failure mode 11, the fiber breakage 

occurs and this damage mode is generally caused by excessive σ11 stress in the tow. This 

failure mode generally is the cause of ultimate failure of the composite. Failure mode 22 

and 12 are the cause of transverse matrix cracking in the tows, which is generally one of 

early damage mechanisms seen in the tows. Failure mode 33 and 13 can be caused by 

either σ33 or σ13 stress components and can cause intra or inter laminar delaminations. 

The damage mode 23 caused by σ23 stress is also shown in Fig. 6.2.  

6.2. Failure Criteria for Tows and Matrix 

To determine which failure mode has occurred, a suitable failure criterion is 

necessary. The maximum principal stress criterion was used for the matrix. Depending 

upon the damage model, the matrix was considered to be isotropic or anisotropic at a 

material point where failure has occurred. For tows, maximum stress criterion for 

anisotropic materials was used, which says that the failure occurs when any of the stress 

components in the material coordinates exceeds its corresponding strength. If 
ij

σ  are the 
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stress components in the material coordinates of the tow and 
ij

S  are the corresponding 

strength values, then the failure criteria used in this work can be summarized as below: 

 

For isotropic matrix:

Max principal stress criterion

For transversely isotropic tow: Max stress criterion: 

             / 1  Failure mode  has occured

/ 1  Material point did not fail

ij ij

ij ij

S ij

S

σ

σ

>

≤

                 (6.1) 

The values of failure strengths for the matrix can be determined experimentally. 

It is relatively difficult to determine all of the six strength values for the tow. 

Experimental tests can be conducted for unidirectional lamina to determine different 

strength values for the tow. Chamis’s micromechanics strength formulae [80] can also be 

used to determine the strength properties of the tow. For the damage studies conducted 

here, the strength properties were taken from refs. [38-39,42]. 

6.3. Framework for Implementation of Different Damage Models 

  In the current damage initiation and progression scheme, the material properties 

are degraded every time a damage mode is determined to have occurred. The scheme 

that guides which material property and how much of it needs to be degraded for the 

failed material point under a particular failure mode is called the “property degradation 

model” herein.  

  Various researchers have proposed different property degradation models. A 

review of the state of the art in damage initiation and progression for textile composites 

was done in the literature review chapter earlier. In this chapter, the attention is on four 

different property degradation models given by Whitcomb et al. [40], Blackketter et al. 

[28], Tamma et al. [43] and Zako et al. [42]. These models have certain similarities and 

differences from each other. All the property degradation models are similar in the sense 

that they guide the amount of degradation under different failure modes for the tow and 

the matrix.  

  These models differ from each other in various ways. First of all, the damage 

models differ in their formulation. For example, some damage models increase 
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compliance coefficients and some decrease stiffness coefficients. Some follow a damage 

tensor approach. The models also differ in terms of which property and how much of it 

they degrade under a particular failure mode. Some damage models affect the off 

diagonal terms of compliance matrix and some do not. Another difference between 

damage models is whether a material point in the matrix, which was isotropic to start 

with, is considered anisotropic or not after damage. Below some formulations of damage 

models available in literature are discussed and then a convenient framework to allow 

implementation of wide variety of damage models in a common way is proposed. Using 

that framework, a comparison of different property degradation models is presented.  

6.3.1. Existing property degradation schemes 

  Four different damage models considered are given by Whitcomb et al. [40], 

Blackketer et al. [28], Tamma et al. [43] and Zako et al. [42]. In the following text, 

property degradation schemes of different models for tows as well as for matrix are 

discussed. The damage model given in ref. [28] has been widely used to predict 

initiation and growth of damage by many researchers [37-40]. This uses the following 

scheme for the tows. 
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where ijS  is the compliance tensor for the damage material point. In this scheme, the 

values of αi (i =1 to 6) is either 0.01 or 0.2 which means that the moduli are degraded to 

almost 1% or original or 20% of original value. Note that the values of parameters αi are 

different under different damage modes. The only reason behind choosing some of the 

values of αi to be 0.01 and not absolute 0 was to avoid numerical difficulties [28]. Shear 

moduli were not reduced more than 80% due to the assumption that some shear stiffness 

remained due to frictional resistance still present on the failure plane [28]. For the 

matrix, a maximum normal stress criteria was used and property reduction was the same 

under all the failure modes. Hence the matrix remains isotropic after failure, which is a 

questionable assumption. The tensile modulus was reduced to 1% of its original value 

and shear modulus was reduced to 20% of its original value.  

  Whitcomb and Chapman [40] proposed a property degradation model based on 

the Blackketter et al’s [28] model. This was a combination of the method used by 

Blackketter et al. [28], Stanton and Kipp [41] and Whitcomb and Srirengan [37]. The 

model involved increasing the compliance matrix entries in the following manner when 

a certain failure mode was detected 

 

,
, no sum on i, 1 i, j 6

,
i ii

ij

ij

b S i j
S

S i j

=  
= ≤ ≤ 

≠  
                      (6.3) 

 

Of course the factors bi were different under different failure modes. Also a matrix 

material point, if isotropic before failure, was treated as anisotropic after damage. 

Whitcomb et al.’s model is similar to the model given by Blackketter el al. in ref. [28] 

except that the degradation factors are different in the two models and treatment for the 

matrix’s degradation is different. These two models reduce only diagonal entries in the 

compliance matrix. Whether this changes the Poisson’s ratios or not, is not obvious at 

this point, but will become obvious later on when we discuss the common 

implementation scheme for different property degradation models. 
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  Tamma et al. [43] proposed a damage model in which they attempted to provide 

a physical explanation of what properties should be degraded under particular failure 

modes. They considered the degradation of Poisson’s ratio also. Anisotropic damage 

models were proposed both for the tows and for the matrix. The degradation equation 

can be defined as ED = (1-D)E, where E is modulus of the undamaged material, ED is the 

modulus of the damaged material and D is the degradation factor.  

 Zako et al. [42] developed a theoretical anisotropic damage constitutive equation 

based on damage mechanics. Different damage modes were considered in the tows. The 

degradation factors were calculated from a damage tensor. This model considers the 

degradation of Poisson’s ratios too such that the off-diagonal entries in the compliance 

matrix also get affected. An anisotropic damage model was considered for tows, and an 

isotropic damage model was considered for matrix. Some questions arise about the 

selection of an isotropic damage model for the matrix because the matrix can become 

anisotropic after damage. Their formulation has the following form: 

 

0 0

0 0

0 0

L

T

Z

D

D F D

D

 
 =  
  

                                                 (6.4) 

 

F can vary from 0 to 1 to allow different amount of degradation 

The parameters dL, dT and dZ are defined as follows [42]: 
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The damaged stiffness tensor then looks like below: 
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        (6.6) 

   

  Hence, in this case the stiffness coefficients are being decreased to take into 

account the effect of a failed material point. Moreover, the off-diagonal coefficients in 

stiffness matrix are also being affected. A change in off-diagonal coefficients of stiffness 

matrix causes a change in off-diagonal coefficients of compliance matrix too. This in 

contrast to Whitcomb et al. or Blackkketer et al.’s models, where compliance 

coefficients were increased and only diagonal entries were affected. Using these current 

schemes, it is not possible to compare the amount of degradation being done by different 

property degradation models under various failure models. Hence a common 

implementation of different property degradation models in terms of degradation in 

engineering elastic properties is proposed below. 

6.3.2. Framework for common implementation of different property degradation 

schemes 

  The compliance increase of Whitcomb and Blackketter and the stiffness decrease 

scheme of Zako ultimately affect the engineering elastic properties of the material. 

Hence in the common implementation scheme, the drop in engineering elastic properties 

under different failure modes and under different property degradation models was 

found out.  

  We know that the elements in compliance and stiffness tensors are functions of 

engineering moduli and can be written as: 
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, no sum on i, j, 1 i, j 6

( , , ), set of 9 equations

ij ij ij

ij ij ii ij ij

C d C

C C E G υ

= ≤ ≤

= →
                      (6.7) 

 

where ijC  is the damaged compliance tensor and is equal to (nosum on i,j)
ij ij

d C , where  

ij
C  is the original compliance tensor and 

ij
d  are the degradation factors. The 6x6 

compliance tensor has nine independent coefficients. There are 9 independent 

engineering elastic properties for an orthotropic material. The above set of 9 equations 

can be solved to find the degradation parameters for effective engineering moduli and 

Poisson’s ratios. The degradation factor (ai) for any engineering elastic property is 

defined as the original modulus (or Poisson’s ratio) divided by the damaged modulus (or 

Poisson’s ratio) and can be written as: 

 

1 11 11 2 22 22 3 33 33

4 12 12 5 23 23 6 13 13

7 12 12 8 23 23 9 13 13

/ , / , /

/ , / , /

/ , / , /

a E E a E E a E E

a G G a G G a G G

a a aυ υ υ υ υ υ

= = =

= = =

= = =

                             (6.8) 

 

  Similar methodology was applied also in the case of Zako’s stiffness increase 

scheme to find the degradation parameters for engineering properties.  

  For the common implementation scheme, the degradations parameters for 

engineering properties were found for different models and implemented in a common 

framework. The degradation factors were found for the tows as well as for matrix and 

are given in Tables 6.1 and 6.2. The “1” is the local fiber direction of the tow and “2” 

and “3” are the local transverse directions of the tow. As suggested by Zako et al. [42], a 

value of 0.99 was used for F for Zako’s model while calculating damage factors in 

Tables 6.1 and 6.2. 
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Table 6.1. Degradation factors for engineering elastic properties of the tow. 

 

Mode σ11 Mode σ22 Mode σ33

Whit Black Zako Tamma Whit Black Zako Tamma Whit Black Zako Tamma

E11 100 100 10,000 100 1* 1 1 1 1* 1 1 1

E22 8 100 1 1 8 100 10,000 100 1 1 1 1

E33 8 100 1 1 1 1 1 1 8 100 10,000 100
G12 8/3 100 2,550 100 8/3 5 2,550 100 1 1 1 1

G23 8/3 100 1 1 8/3 5 2,550 100 8/3 5 2,550 100

G13 8/3 100 2,550 100 1 1 1 1 8/3 5 2,550 100

υ12 100 100 100 100 1* 1 0.01 1 1* 1 1 1

υ23 8 100 1 1 8 100 100 100 1 1 0.01 1

υ13 100 100 100 100 1* 1 1 1 1* 1 0.01 1

*100 *100
if σ22  < 0 if σ33  < 0

Mode σ12 Mode σ23 Mode σ13

Whit Black Zako Tamma Whit Black Zako Tamma Whit Black Zako Tamma

E11 1* 1 1 2 1 1 1 1 1* 1 1 2

E22 8 100 10,000 100 8 100 10,000 100 1 1 1 1

E33 1 1 1 1 8 100 10,000 100 8 100 10,000 100
G12 8/3 100 2,550 100 8/3 100 2550 100 1 1 1 100

G23 1 1 2,550 100 8/3 100 10,000 100 1 1 2,550 100

G13 1 1 1 100 8/3 100 2,550 100 8/3 100 2,550 100

υ12 1* 1 0.01 2 1 1 0.01 1 1* 1 1 2

υ23 8 100 100 100 8 100 1 100 1 1 0.01 1

υ13 1* 1 1 2 1 1 0.01 1 1* 1 0.01 2

*100 *100
if σ11/S11 >0.5 if σ11/S11 >0.5  
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Table 6.2. Degradation factors for engineering elastic properties of the matrix. 

 

Whit Tamma Whit Tamma Whit Tamma Zako Black

E11 8 100 1 1 1 1 E11 10,000 100

E22 1 1 8 100 1 1 E22 10,000 100

E33 1 1 1 1 8 100 E33 10,000 100

G12 8/3 100 8/3 100 1 1 G12 10,000 5

G23 1 1 8/3 100 8/3 100 G23 10,000 5

G13 8/3 100 1 1 8/3 100 G13 10,000 5

υ12 8 100 1 1 1 1 υ12 1 100

υ23 1 1 8 100 1 1 υ23 1 100

υ13 8 100 1 1 1 1 υ13 1 100

Whit Tamma Whit Tamma Whit Tamma

E11 8 100 1 1 8 100

E22 8 100 8 100 1 1

E33 1 1 8 100 8 100

G12 8 100 1 100 1 100

G23 1 100 8 100 1 100

G13 1 100 1 100 8 100

υ12 8 100 1 1 8 100

υ23 8 100 8 100 1 1

υ13 8 100 1 1 8 100

Mode σ12 Mode σ23 Mode σ13

Mode σ11 Mode σ22 Mode σ33 All Modes
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6.3.3. Comparison of different property degradation models using common 

framework 

  Tables 6.1 and 6.2 can now be conveniently used to compare the amount of 

degradation under different property degradation models. The tables facilitate a 

comparison of the degradation factors for the tows as well as for the matrix under any 

failure mode.  

 The models differ from each other based on various things. First of all, different 

property degradation models sometimes degrade different engineering properties even 

under the same failure mode. For example, under failure mode σ11, Whitcomb and 

Blackketter’s models degrade all the 9 elastic properties, whereas Zako and Tamma’s 

models do not degrade E22, E33, G23 and υ23. The amount of degradation under one 

particular mode could also be different under different property degradation models. For 

example, under σ22 failure mode, G12 is degraded by 62.5%, 80%, 99.9% and 99% under 

Whitcomb, Blackketter, Zako and Tamma’s models respectively.  

 It must be noted that under most of the damage modes, the Poisson’s ratios υ12, 

υ13 and υ23 are also degraded. But a careful examination of Table 6.1 shows that 

degradation factors for υ12 & υ13 are the same as the degradation factors for E11, and the 

degradation factors for υ23 are the same as the degradation factors for E22 under all 

property degradation models but Zako’s. The equality between degradation factors for 

υ12 & υ13 and E11, and the equality between degradation factors for υ23 and E22 cause the 

off-diagonal coefficients of the compliance matrix to remain unchanged after damage. In 

the case of Zako’s model, the off-diagonal coefficients of the compliance matrix also get 

affected.  

 Whitcomb’s model is different from other’s in one more regard. Whitcomb’s 

model also degrades E11 modulus of the tow by 99% if the tow has failed under 

transverse compression. Whitcomb’s model also treats degradation of E11, υ12 and υ13 

differently if under σ12 or σ13 failure mode, σ11 stress has exceeded at least half the S11 

strength.  

 Last but a very important difference between different damage models is how 
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they handle the degradation of matrix elastic properties. Table 6.2 shows the degradation 

factors for the matrix. The table shows that Whitcomb and Tamma’s model degrade the 

properties differently under different failure modes, whereas Zako and Blackketter’s 

models degrade the properties by the same amount. An important consequence of this is 

that under Whitcomb and Tamma’s models a material point that was isotropic to start 

with, can become anisotropic, whereas in Zako and Blackketter’s models, all the matrix 

material points always remain isotropic. For the matrix failure, the maximum amount of 

degradation allowed by Whitcomb’s model is 87.5%, both Tamma & Blackketter’s 

model is 99% and by Zako’s model is 99.99%. 

6.4. Configurations 

Three textile configurations were considered. The studied configurations and 

geometric parameters were based on experimental data available in the literature [38-39, 

42]. One is plain weave consisting of E-glass and Vinyl ester. The other two are plain 

and twill weaves, both consisting of Graphite and Epoxy. Tows were assumed to be 

transversely isotropic and matrix to be initially isotropic. The elastic constants and 

ultimate strengths for these material systems were taken from ref. [38-39, 42] and are 

summarized in Table 6.3. The geometric parameters and fiber volume fractions for all 

the configurations are given in Table 6.4. Vft is fiber volume fraction in the tow. It 

should be noted that the overall fiber volume fraction of plain weave configuration with 

E-glass/Vinyl ester material system is just 22%, which is quite low.  
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 Table 6.3. Elastic and strength properties of tows and matrices [38-39, 42]. 

Tow Matrix Tow Matrix Tow Matrix

Graphite/ Epoxy Graphite/ Epoxy E-Glass/ Vinyl Ester

Epoxy Epoxy Vinyl Ester

E11 165 4.4 150 4.8 42.8 3.33
E22 = E33 9.95 4.4 10 4.8 12.22 3.33
G12 = G13 7.26 1.64 5.7 1.79 4.77 1.28

G23 3.9 1.64 3.4 1.79 4.87 1.28
υ12 = υ13 0.24 0.34 0.3 0.34 0.23 0.3
υ23 0.5 0.34 0.5 0.34 0.25 0.3

All Moduli in GPa

Tow Matrix Tow Matrix Tow Matrix

Graphite/ Epoxy Graphite/ Epoxy E-Glass/ Vinyl Ester

Epoxy Epoxy Vinyl Ester

S11 2550 36 2550 36 2042 88.26
S22 = S33 152 36 152 36 108.2 88.26
S12 = S13 97 36 97 36 121.6 88.26

S23 55 36 55 36 121.6 88.26

S11
C 2550 36 2550 36 2982 117.7

S22
C

 = S33
C

152 36 152 36 242.3 117.7
Ref: Blacketter et al. 1993
All Strengths in MPa

Ref: Zako et al. 2003 Ref: Blacketter et al. 1993

Ref: Riva et al. 1999 Ref: Zako et al. 2003 Ref: Riva et al. 2004

Plain Weave Twill Weave Plain Weave

Plain Weave Twill Weave Plain Weave

 

 

 

Table 6.4. Geometric parameters of the analyzed configurations [38-39, 42]. 

Configuration Material system WR Vft Vfo 

1. Plain weave Glass-Vinyl Ester 0.15 57% 22% 

2. Twill weave Graphite-Epoxy 0.08 70% 42% 

3. Plain weave Graphite-Epoxy 0.07 75% 48% 
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 The finite element models of the three configurations are shown in Figs. 6.3-6.5. 

All the meshes have 20 node solid brick elements. Each element contains 27 Gauss 

quadrature points. Figure 6.3 shows the finite element meshes for plain weave with E-

glass/Vinyl ester material system. This configuration has considerable gap between 

adjacent warp and fill tows, hence the overall fiber volume fraction is very low. This 

mesh is 1/16th of a unit cell of plain weave’s microstructure. Periodicity and symmetry 

with in the unit cell allowed the analysis this smaller region of the unit cell. Based on 

experimental configuration [42], the configuration is infinite in the in-plane directions 

and the top and bottom surfaces are free. So, essentially a lamina was analyzed. The 

mesh shown in Fig. 6.3 consists of 588 elements and 2907 nodes. Figure 6.4 shows the 

finite element mesh for plain weave configuration with Graphite/Epoxy material system. 

This mesh is 1/32nd region of the unit cell for symmetric stacking and contains 196 

elements and 1037 nodes. Figure 6.5 shows the finite element mesh for the twill weave 

configuration. The mesh is one-fourth of a unit cell for symmetric stacking of mats. It 

contains 480 elements and 2158 nodes. The meshes shown in Figs 6.4 and 6.5 were 

periodic in in-plane as well as in out-of-plane directions. A symmetric stacking of mats 

was considered. The boundary conditions for all the configurations involve multi-point 

constrain relations and are provided in ref. [35-36]. All the models were applied a uni-

axial tensile load along the warp direction. All the damage analyses were run on a dual 

core personal Pentium IV computer with 3.4 GHz processor. The runtime for the E-glass 

plain weave configuration was 6 hrs to go up 3% strain, the runtime for the Graphite 

plain weave configuration was 30 minutes to go up to 1.5% strain and it was 3 hours to 

go up to 2% strain for the twill weave configuration. The maximum strain level was 

selected based on the experimental data.  
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20 node
brick element

 

Figure 6.3. Finite element model of plain weave (E-glass/Vinyl ester configuration). 

 

 

 

 

Figure 6.4. Finite element model of plain weave (Graphite/Epoxy configuration). 
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Figure 6.5. Finite element model of twill weave. 

 

6.5. Results and Discussion 

The effect of assumed damage model on macroscopic stress-strain behavior of 

different woven composites was investigated. The effect of making the property 

degradation models similar to each other is also investigated. Finally, a detailed 

examination of the damage initiation and progression in a Graphite/Epoxy plain weave 

composite is performed. This is presented in terms of percentage damaged volume of 

different components versus applied strain and stress volume distribution plots. 

6.5.1. Effect of assumed damage model 

 In this work, a uni-axial tensile loading was applied on all the three 

configurations. Although Zako et al. proposed a different failure criterion in their work 

[42], it must be pointed out here that all the property degradations models used the same 

failure criterion so that the difference in predictions of different property degradation 

models can be reasonably compared. 
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Figure 6.6. Predicted and experimental stress-strain behavior of E-glass/Vinyl ester 
plain weave configuration. Predictions using different property degradation models are 

shown. 
 

 

 

 Figure 6.6 shows the stress-strain predictions for the first configuration i.e. plain 

weave with E-glass/Vinyl ester material system. The predictions using different property 

degradation models are shown and compared with the experimental data [42]. The 

experimental data shows a gradual drop in the modulus from 0.5% to 1.2% strain levels. 

Zako, Blackketter and Tamma’s model also accurately show failure initiation around 

0.8% strain whereas Whitcomb’s model shows a very small drop in modulus near that 

strain level. After the initial drop, the test shows that the stress in the material keeps on 

increasing with final failure at 2.2% strain. Zako’s model predicts final failure accurately 

around 2% strain. But Whitcomb, Blackketter and Tamma’s model do not predict final 

failure accurately. Tamma’s model predicts considerable modulus drop around 2.6% 
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strain level, but Blackketter and Whitcomb’s model are not able to capture the final 

failure at all in this case. In summary, Zako’s model’s predictions compares well with 

experimental data whereas the other three models do not. 
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Figure 6.7. Predicted and experimental stress-strain behavior of Graphite/Epoxy plain 
weave configuration. Predictions using different property degradation models are shown. 
 

 

 The second configuration is a plain weave with a Graphite/Epoxy material 

system. The experimental stress-strain data [39] and predictions using different property 

degradations are shown in Fig. 6.7. It can be seen that experiments predict the failure 

strain to be 1.29% and the strength to be 743 MPa. In this weave, there is not any 

significant loss of stiffness and the final failure is due to sudden breakage of fibers in the 

warp tow. The finite element predictions match well with test data for initial modulus. 

Whitcomb, Tamma and Blackketter’s models do not show any significant drop in 
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modulus till the final failure. Predictions of Whitcomb’s model match the best with the 

experimental data. The final failure predicted by Whitcomb’s model is around 1.25% 

strain and at a stress level of 700 MPa. Blackketter’s and Tamma’s model underpredict 

the failure stress and strain slightly. Both have very similar predictions with each other. 

These models predict the failure strain to be approximately 1.23% and failure stress to be 

around 650 MPa. Unlike for the previous configuration, Zako’s model gives the worst 

predictions for this configuration. Zako’s model predicts a considerable drop in stress 

level at very low strain levels of around 0.6%, and 0.9%. In summary, predictions of 

Whitcomb’s model match very well with the test data, predictions of Blackketter and 

Tamma’s models are very similar to each other and match reasonably well with the test 

data. Predicted stress strain curve with Zako’s property degradation model is very 

different from the test data.  

 Lastly, a twill weave with Graphite/Epoxy material system was considered. 

Figure 6.8 shows the stress-strain predictions for this weave. The figure shows 

experimental data, predictions of four property degradation models and two curves for 

Riva et al.’s [38] finite element predictions. One is their FE predictions with constant 

load step and the other using variable load step. Riva et al. used Blackketer’s property 

degradation model. The experimental data for this material system shows that there is 

not much loss of stiffness as the load increases. The final failure is a brittle failure with 

fiber breakage being the main event leading to the collapse of the composite. The 

experimental data shows that the failure strain of the composite is 1.35% and the 

strength is 810 MPa. Using four property degradation models, the predicted stress-strain 

curves lie on top of experimental data to start with. Predictions using Whitcomb, 

Blackketter and Tamma’s models show small reduction in stiffness from around 0.5% 

strain to 1.35% strain. At approximately 1.35% strain, all these three models predict a 

large drop in stress indicating final failure of the composite. All three models also 

predict a failure stress that matches very well with the experimental data. Zako’s 

property degradation model  
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Figure 6.8. Predicted and experimental stress-strain behavior of Graphite/Epoxy twill 
weave configuration. Predictions using different property degradation models and FE 

predictions by Riva et al. [38] are also shown. 
 

 

 

predicts a stress-strain response that shows large differences from the test data. This 

model predicts small drop in modulus around 0.6% strain and predicts the failure strain 

and stress to be 0.7% and 350 MPa respectively. Both failure strain and stress values 

show large differences from experimental data. Riva et al.’s [38] finite element model 

also predicts failure stress which is close to the test data but over predicts the failure 

strain, which could be due to the fact that the modulus is under predicted by their model 

to begin with. In short, Whitcomb, Blackketer and Tamma’s property degradation 

models predict the failure stress and strains that match well with the test data, where as 

Zako’s property degradation model considerably under predict failure stress and strain. 
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 In summary, predictions of property degradation models of Whitcomb, 

Blackketter and Tamma match well with the test data for woven composite 

configurations with Graphite/Epoxy material system and Zako’s model has poor 

predictions for this material system. In contrast, Zako’s model’s predictions match very 

well for S-glass/Vinyl ester material system configuration whereas other three models 

over predict failure stress and strain considerably for that material system. 

 To investigate the reasons for having different predictions with different property 

degradation models, below we investigate the effect of making some degradation 

parameters similar to each other.  

6.5.2. Effect of tweaking the property degradation models 

 In the previous section, it was seen that some property degradation models 

predict the damage initiation and progression behavior better for one material system 

and others predict better for the other material system. Below, some of the parameters in 

different property degradation models were tweaked so that the models are similar to 

each other. It must be noted that that the degradation parameters were made similar but 

not exactly the same.  

 Tables 6.5 and 6.6 show the tweaked property degradation models. Whitcomb’s 

model was chosen as reference property degradation models and the degradation 

parameters for others were made similar to Whitcomb’s model. The key features of the 

other property degradation models were not changed at all. For example, the particular 

elastic constants that a particular damage model degrades under a particular failure 

model were not altered, only the amounts of degradations were altered. 

 In Tables 6.5 and 6.6, the degradation parameters that are highlighted are exactly 

the same as the reference, which is Whitcomb’s model, whereas the degradations 

parameters that are not highlighted are not similar to the reference. Blackketter’s 

degradation parameters for the tow are very similar to the reference, except for the cases 

where the reference gives special allowance for the tow failure under transverse  
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Table 6.5. Degradation factors, when made similar, for engineering elastic properties of the tow. 

 

Mode σ11 Mode σ22 Mode σ33

Whit Black Zako Tamma Whit Black Zako Tamma Whit Black Zako Tamma

E11 100 100 8 100 1* 1 1 1 1* 1 1 1

E22 8 8 1 1 8 8 8 8 1 1 1 1

E33 8 8 1 1 1 1 1 1 8 8 8 8
G12 8/3 8/3 3.66 8/3 8/3 8/3 3.66 8/3 1 1 1 1

G23 8/3 8/3 1 1 8/3 8/3 3.66 8/3 8/3 8/3 3.66 8/3
G13 8/3 8/3 3.66 8/3 1 1 1 1 8/3 8/3 3.66 8/3

υ12 100 100 2.83 100 1* 1 0.35 1 1* 1 1 1

υ23 8 8 1 1 8 8 2.83 8 1 1 0.35 1

υ13 100 100 2.83 100 1* 1 1 1 1* 1 0.35 1

*100 *100
if σ22  < 0 if σ33  < 0

Mode σ12 Mode σ23 Mode σ13

Whit Black Zako Tamma Whit Black Zako Tamma Whit Black Zako Tamma

E11 1* 1 1 2 1 1 1 1 1* 1 1 2
E22 8 8 8 8 8 8 8 8 1 1 1 1

E33 1 1 1 1 8 8 8 8 8 8 8 8
G12 8/3 8/3 3.66 8/3 8/3 8/3 3.66 8/3 1 1 1 8/3

G23 1 1 3.66 8/3 8/3 8/3 8.00 8/3 1 1 3.66 8/3
G13 1 1 1 8/3 8/3 8/3 3.66 8/3 8/3 8/3 3.66 8/3

υ12 1* 1 0.35 2 1 1 0.35 1 1* 1 1 2

υ23 8 8 2.83 8 8 8 1 8 1 1 0.35 1

υ13 1* 1 1 2 1 1 0.35 1 1* 1 0.35 2

*100 *100
if σ11/S11 >0.5 if σ11/S11 >0.5  
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Table 6.6. Degradation factors, when made similar, for engineering elastic properties of the matrix. 

 

Whit Tamma Whit Tamma Whit Tamma Zako Black

E11 8 8 1 1 1 1 E11 8 8

E22 1 1 8 8 1 1 E22 8 8

E33 1 1 1 1 8 8 E33 8 8

G12 8/3 8/3 8/3 8/3 1 1 G12 8 8/3

G23 1 1 8/3 8/3 8/3 8/3 G23 8 8/3

G13 8/3 8/3 1 1 8/3 8/3 G13 8 8/3

υ12 8 8 1 1 1 1 υ12 1 8

υ23 1 1 8 8 1 1 υ23 1 8

υ13 8 8 1 1 1 1 υ13 1 8

Whit Tamma Whit Tamma Whit Tamma

E11 8 8 1 1 8 8

E22 8 8 8 8 1 1

E33 1 1 8 8 8 8

G12 8 8/3 1 8/3 1 8/3

G23 1 8/3 8 8/3 1 8/3

G13 1 8/3 1 8/3 8 8/3

υ12 8 8 1 1 8 8

υ23 8 8 8 8 1 1

υ13 8 8 1 1 8 8

All Modes

Mode σ12 Mode σ23 Mode σ13

Mode σ11 Mode σ22 Mode σ33
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compression, and considerably large tow tensile stress in conjunction with σ12 or σ13 

failure modes. As far as degradation parameters for matrix are concerned, Blackketter’s 

degradation parameters were reduced from 100 to 8 for the tensile moduli and from 5 to 

8/3 for shear moduli (see Table 6.6). For the matrix, Blackketter’s degradation 

parameters are still very different from the reference because Blackketter’s model 

changes the properties in a similar manner for all the failure modes for matrix.  

 As discussed in section 6.3.1, Zako’s formulation is basically different, hence 

Zako’s parameter’s were tweaked in a unique way. The value of F in Eqn. (6.4) was 

changed to be 0.6466, which gave E22 under σ22 failure mode as 8, which was a match. 

Using this technique, some other parameters like degradation for E33 under σ33 failure 

mode, degradation for E22 and E33 under σ23 failure mode etc also matched. Like 

Blackketter’s model, Zako’s model also considers the same amount of degradation of 

elastic properties under different failure modes for the matrix. For the matrix, Zako’s 

model was tweaked from a factor of 10,000 to a factor of 8 for all the tensile and shear 

moduli. Hence, whenever any failure mode occurred in the matrix, all the tensile and 

shear moduli of the matrix were degraded by 87.5% as compared to 99.99% earlier.  

 Lastly, Tamma’s factors were changed to match with the reference. In Tamma’s 

model, whenever a property is degraded, it is degraded by 99% of the original value. 

Tamma’s degradation parameters were tweaked to allow for smaller degradation to 

match with the reference. The amount of degradation was reduced from 99% to 87.5% 

(factors changed from 100 to 8) for the tensile moduli (except for E11 under σ11 failure 

mode, which was already a match) and from 99% to 62.5% (factors changed from 100 to 

8/3) for the shear moduli. This was done both for tows as well as for the matrix. The 

matched degradation parameters are shown in Tables 6.5 and 6.6 using highlighted 

areas. 

 Now we discuss how the predictions changed after the parameters in different 

property degradations models were tweaked to match with the reference. 
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Figure 6.9. Predicted and experimental stress-strain behavior of E-glass/Vinyl ester 
plain weave configuration. Predictions using different property degradation models, 

when damage factors were made similar, are shown. 
 

 

 

Figure 6.9 shows the stress-strain behavior of plain weave consisting of E-

glass/Vinyl ester material system after the degradation factors were tweaked. The 

predictions of different damage models are very similar to each other now. If we 

compare the predictions with the experiments, none of the predictions match well with 

the experimental data. Zako’s model, whose predictions matched well with the 

experimental data earlier (see Fig. 6.6), is not matching well anymore. 
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Figure 6.10. Predicted and experimental stress-strain behavior of Graphite/Epoxy 
plain weave configuration. Predictions using different property degradation models, 

when damage factors were made similar, are shown. 
 

 

Figure 6.10 shows the stress-strain predictions of all the models for 

Graphite/Epoxy plain weave composite when damage factors were made similar. In this 

case also, the predicted response with different property degradation models is very 

similar to each other. All the models predict the failure stress and strain very reasonably. 

The experimental data shows the failure strain to be 1.29% and strength to be 743 MPa.  

All four models predict the failure strain to be around 1.25% and the failure stress to be 

around 700 MPa. Unlike earlier (see Fig. 6.7), there is tremendous improvement in 

predictions with Zako’s damage model. Earlier Zako’s model predicted a considerable 

drop in stress level at very low strain level (around 0.6% strain) and final failure strain to 

be around 0.9%. After tweaking the damage factors, Zako’s model also predicted the 

final failure strain and stress very well. Though the Zako’s model still does not predict 
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the final failure as well as the other three models because predictions using the tweaked 

Zako’s model show that some load bearing capacity of the composite is still in tact (see 

the corresponding stress-strain curve around 325 MPa stress level in Fig. 6.10). 

In summary, when the degradation factors of different models were tweaked, we 

saw that the predictions of different damage models were very similar to each other and 

did not necessarily match well with the experimental data. The main conclusion from 

this exercise is that although different property degradation models may degrade 

different elastic properties under particular failure modes, failure initiation, progression 

and final failure predictions are quite sensitive to the amounts of degradation parameters. 

If the amounts of degradations are similar, predicted response is similar even when 

properties to be degraded are not exactly the same. 

6.5.3. Detailed damage analysis 

In the previous section, we discussed the macroscopic stress-strain behavior of 

the woven composites. In this section, a detailed examination of the damage initiation 

and progression in a Graphite/Epoxy plain weave composite is discussed. Whitcomb’s 

property degradation model is considered since that model yielded the most reasonable 

predictions for this particular composite. Below, a detailed examination is done in terms 

of % damaged volume at various strain levels, plots showing the failed locations and 

stress volume distribution plots. 

6.5.3.1. Percentage damaged volume of different components versus applied strain 

Figure 6.11 shows the macroscopic stress strain predictions for the configuration. 

The damage initiates at a strain level of around 0.62%. There is very little drop in Exx 

modulus of the composite till a strain level of 1.24%. After that, the composite suddenly 

fails and a large stiffness loss is observed. Below, we examine what failure modes are 

active and how the damage initiates and progresses. 
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Figure 6.11. Predicted stress-strain response of Graphite/Epoxy plain weave 

composite using Whitcomb’s property degradation. 
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(a) Damaged volume versus strain in the matrix 

Figure 6.12. Variation of damaged volume at different strain levels in the 
Graphite/Epoxy plain weave composite. 
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(b) Damaged volume versus strain in the fill tow 
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(c) Damaged volume versus strain in the warp tow 

 
Figure 6.12. Continued. 
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Figure 6.12 shows the variation of damaged volume versus the macroscopic 

strain level in different components of the composite. The damaged volume for the warp 

tow, fill tow and the matrix is shown separately in Figs. 6.12 (a), (b) and (c) respectively. 

Figure 6.12 (a) shows the variation of % damaged volume of the matrix versus applied 

macroscopic strain to the model. Failure mode σ33 causes some damage, but it can be 

seen that majority of the failure in matrix occurs due to σ11 failure mode. This implies 

the occurrence of transverse matrix cracks in the matrix pockets.  

 

 

Table 6.7. Percentage damaged volume of different components at different strain levels. 

Warp

Fill

% strain % of matrix 

level damaged

0.62 4

0.77 70

1 90
1.24 96

No damage until 1.24% strain
No damage until 1.24% strain

Matrix

 

 

 

 

Table 6.7 shows that at 0.62% strain, 4% of the matrix volume is damaged under 

σ11 stress. This increases to 70% and 90% at 0.77% and 1% strain levels respectively. At 

about 1.24% strain, 96% volume of the matrix is damaged. This means almost whole of 

the matrix is saturated with transverse matrix cracks and would have stopped supporting 

any load along the applied (longitudinal) direction. Figure 6.13 shows the damage 

locations in the matrix at different strain levels. The figure shows that the damage starts 

near thin matrix pockets and moves towards thicker material. 
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Applied strain = 0.62%
Damaged volume = 4%

Applied strain = 0.77%
Damaged volume = 70%

Applied strain = 1.0%
Damaged volume =90%

 

Figure 6.13. Damage evolution in matrix. 

 

 

For fill and warp tows, no damage starts until 1.24% strain. Figure 6.12(b) shows 

damaged volume under different failure modes as well as total damaged volume in the 

fill tow. Fig. 6.12 (b) shows that until 1.24% strain, the whole of the fill tow is intact and 

no damage has occurred. At a strain level of 1.24%, σ13, σ11 and σ12 failure modes come 

into play and damage the fill tow. The σ13 failure mode causes little damage (around 1% 

of the fill tow) whereas σ12 failure mode causes maximum damage (around 12%) of the 

fill tow. Almost 16% of the fill tow is damaged at 1.24% strain level. It should be noted 

that the % damaged volume caused by different damage modes might not add up to the 

total % damaged volume because multiple damage modes are sometimes active at the 
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same time (i.e. at a particular strain level). Figure 6.12(c) shows that for warp tow, only 

σ11 and σ12 failure modes cause considerable damage. Like fill tow, no damage is seen 

till 1.24% strain and after that σ11 damages 18% of the warp tow and σ12 damages more 

than 40% of the warp tow. Around 52% of the warp tow is damaged at 1.24% leading to 

the collapse of the composite. 

6.5.3.2. Stress volume distribution plots  

Figure 6.14 shows the σxx stress volume distribution in the warp tow at different 

strain levels. Figure 6.14(a) is for the absolute σxx stress distribution and shows that as 

the strain level increase from 0.62% to 1.24% strain, the average stress in the warp tow 

is also increasing. The stress volume distribution lines are also almost vertical meaning 

that a large volume of the tow has uniform stress state. As soon as the load level exceeds 

1.24% strain, global failure takes place, average stress in the warp tow drops 

considerably, and a wide variation in σxx distribution in the warp tow takes place. Figure 

6.14(a) shows that, at 1.27% and 1.5% strain levels, σxx stress range in the warp tow 

expands. In Fig. 6.14(b), the σxx stress is normalized by applied volume averaged stress 

to the model. From 0.62% to 1.24% strain levels, the stress distribution curves lie almost 

on top of each other suggesting almost a linear variation in the σxx stress. But as soon as 

the strain exceeds the failure strain of 1.24%, the curves flatten and vary considerably 

from the lower strain level curves. 

Figure 6.15 shows the σxx stress volume distribution in the fill tow throughout the 

load history. The σxx distribution in the fill tow is very similar to that in the warp in the 

sense that the most of the volume of the fill has uniform stress state. Also, the average 

stress keeps on increasing linearly until final failure has occurred. Before failure, the 

normalized stress magnitude is much less in the fill tow as compared to the warp tow. 

The normalized σxx in the warp is around 17 times that in fill tow and the warp modulus 

along the x direction (which is loading direction) is also around 17 times the fill tow 

modulus along that direction. Whether this observation is coincidental or not requires 

further study. 
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(a) Absolute stress is plotted 
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(b) Normalized (by volume averaged stress applied to the model) stress is plotted 

Figure 6.14. σxx stress volume distribution in the warp tow at various strain levels. 
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(a) Absolute stress is plotted 

 

0

10

20

30

40

50

60

70

80

90

100

-0.50 0.00 0.50 1.00 1.50 2.00 2.50

0.62%

0.77%

1.00%

1.24%

1.27%

1.50%

σxx

%
 V

ol
um

e

 

(b) Normalized (by applied volume averaged stress to the model) stress is plotted 

Figure 6.15. σxx stress volume distribution in the fill tow at various strain levels. 
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(a) Absolute stress is plotted 
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(b) Normalized (by volume averaged stress applied to the model) stress is plotted 

Figure 6.16. σxx stress volume distribution in the matrix at various strain levels. 
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(c) Narrower range (inset of (b) above) of normalized stress (only up to 0.1% strain) 
is plotted 

Figure 6.16. Continued. 

  

 Figure 6.16 shows the σxx volume distribution in the matrix. At 0.62% strain, 

very little (only 4%, see Fig. 6.13) of the matrix volume has damaged and the variation 

in the σxx stress is not much. After 0.77% strain when 70% of the matrix has damaged, 

the stress volume distribution curves show large variations in the stress state. Figure 

6.16(b) shows the variation of normalized σxx. Unlike warp and fill tows, the variation of 

σxx is not linear, so as strain increases from 0.62% to 1.24%, the curves do not lie on top 

of each other. This happens because of damage progressions in matrix from 0.62% to 

1.24% strain. Figure 6.16(c) shows that as the damage in matrix progresses, the load 

redistribution takes place and average stress is decreasing in the matrix. Also, the peak 

stress values in the matrix decrease as the strain increases from 0.62% to 1.24% strain 

due to damage progression in the matrix only. As soon as damage initiates in the warp 

and fill tows after 1.24% strain, the matrix again picks up load and normalized stress 

increases in the matrix as shown by Fig. 6.16(b). 



 

 

113 

6.6. Summary 

A framework to allow use of a wide variety of damage initiation and growth 

models was presented. Four different damage models in terms of degradation of 

engineering elastic properties were implemented. The models differ in terms of amount 

of degradation as well as the properties to be degraded under a particular failure mode. 

All the models degrade only diagonal terms in compliance matrix except for Zako’s 

model, which degrades off-diagonal terms also. Zako’s model gave fairly good 

predictions for Glass/Epoxy plain weave composite whereas other models predicted well 

for Graphite/Epoxy plain and twill weave composites. All the models predicted similar 

response when damage factors were made similar, which shows that the magnitude of 

damage factors are very important even when all the models do not degrade the same 

engineering properties under particular failure modes. Stress volume distribution plots 

for the warp, fill and matrix show that before the damage initiates, the average stress is 

uniform in most of the volume of the component. Damage initiation in any component 

increases the range of stress in that component considerably. 
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7. PLASTICITY INDUCED NON- 

LINEARITY IN 2x2 BRAIDED COMPOSITES 

 

  Braided composites show considerable non-linear stress-strain behavior, which 

could be due to geometric (caused by tow waviness) or material non-linearity (due to 

plasticity or progressive damage). The effect of material damage was studied in the 

previous chapter. In this chapter, plasticity-induced nonlinearity in braided composites is 

investigated. There are several reasons for this effort. Firstly, conventional matrix 

materials used to make textile composites exhibit significant inelastic response. 

Secondly, due to fiber tow interlacing and undulation, the local stress concentrations are 

significant [74] and could cause material yielding at low overall stress level. Although 

such plastic deformation may be contained by the surrounding elastic material, it could 

be significant in cyclic loading situations 

Figure 2.4 shows the experimental stress–strain data for ±45˚ and ±25˚ VARTM 

manufactured Carbon/Epoxy braids subjected to uni-axial tension in the longitudinal 

direction [45]. The figure shows the response is highly non-linear. At 1% strain, ±45˚ 

braided composite has lost 54% of its initial tangent tensile modulus and ±25˚ braid has 

lost 36% of its initial tangent modulus. At 2% strain, the ±45˚ braided composite has lost 

76% of its initial tangent tensile modulus and ±25˚ braid has lost 78% of its initial 

tangent modulus.  

The effect of plastic deformation on the stress-strain behavior of braided 

composites is analyzed using finite element modeling. As illustrated in Fig. 2.1, a two 

scale modeling approach [47] was used. The first scale, which is called the fiber/matrix 

scale herein, predicts the effective elastic and plastic properties of the tow from the 

properties of the constituent fiber and resin. The second scale, which is called the tow 

architecture scale herein, models the composite unit cell and utilizes the properties 

predicted by the first scale for the tow. The details of the two scale modeling approach 

will be given later. This modeling approach was used to predict the behavior of 2x2 

braided AS4, E-glass, and S-glass composites. The resin was EPON 9504 epoxy for all 
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the cases. The predicted stress-strain response for ±25˚, ±30˚ and ±45˚ carbon braids, 

±25˚ E-glass braid and ±45˚ S-glass braid will be compared with the experimental data 

to validate the analysis. These braid configurations were analyzed based on the available 

experimental data in literature [45, 81-82]. 

If one is only interested in the macroscopic stress-strain response, it might be 

worthwhile to analyze an equivalent tape laminate also, which requires only 3 elements 

and much less computational time. An equivalent tape laminate configuration, as shown 

in Fig. 3.1,  consists of two unidirectional laminas (with properties of the tow) in the +θ 

and –θ directions and a third lamina of matrix to account for matrix pockets in the braid. 

The predictions of equivalent tape laminates will be compared with the full 3D finite 

element models and experimental data as well. The tape analysis will also be helpful in 

comparing the performance of braided composites with tape laminates containing the 

same fiber volume fraction. 

The effect of fiber type on the plasticity induced non-linearity in ±25˚ 2x2 braids 

was also investigated. Two ±25˚ biaxial braided composites that used the same resin 

(EPON 9504) but different fibers (AS4 carbon and E-glass) were analyzed under 

uniaxial tensile loading. The resin was chosen to be the same so that the effect of fiber 

type on the degree of plasticity induced non-linearity could be characterized. First, the 

effect of fiber properties on the macroscopic stress-strain response will be investigated. 

The macroscopic stress-strain response only gives a quantitative measure of averaged 

behavior. To obtain insights about the potential damage spots, the effect of plastic 

deformation on local stress distributions will also be explored. Development of the 

plastic zone at different load levels will be analyzed. The difference in stress distribution 

and plastic zone size due to change in fiber properties will also be discussed. In 

summary, the effect of fiber type on the plasticity induced non-linearity in ±25˚ 2x2 

braids will be investigated using (a) macroscopic stress-strain behavior (b) stress 

distribution plots and (c) plastic zone plots. This chapter focuses on the following: 

1. Predicting the elasto-plastic behavior of biaxial braided composite using a two scale 

finite element modeling scheme.  
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2. Validation of the analysis by comparing the finite element predictions with 

experimental data. 

3. Comparison of the performance of equivalent tape laminates and braided composites 

of same fiber volume fraction. 

4. Effect of fiber type on the plasticity induced non-linearity in ±25˚ 2x2 braids 

7.1. Modeling Approach for Plasticity Induced Non-Linearity in 2x2 Braided 

Composites 

 The following sections describe the plasticity model used in the analyses, the two 

scale modeling approach, the equivalent tape laminate and the full 3D finite element 

models at both the scales, geometric parameters, constituent material properties and 

homogenized material properties of the tow. 

7.1.1. Two scale modeling approach 

 The finite element models were developed at two scales. The first scale is the 

fiber/matrix unit cell and the second scale is the tow architecture scale. This section 

describes the two scale modeling approach, geometric parameters, material properties, 

and the output at each scale.   

7.1.1.1 .First scale: Fiber/Matrix unit cell 

a. Theory 

 The top row in Fig. 2.1 is the first scale, which is the fiber/matrix unit cell. This 

scale is used to predict the properties of the tow. Typically, in braided composites, each 

tow consists of resin reinforced by thousands of fibers. In reality, the fibers are 

distributed irregularly throughout the resin. But here, a hexagonal arrangement of the 

fibers in the resin was assumed so that a representative volume element (RVE) can be 

chosen. The input data for the fiber-matrix scale are the fiber volume fraction and 

material properties of the fiber and the resin.  

  The RVE for the fiber/matrix scale is the full unit cell and is shown in Fig. 2.1. 

Periodic boundary conditions were used on all the faces of the unit cell [32, 35-36]. As 
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discussed earlier, the analysis region was the full unit cell and was not further reduced 

because combined loadings were considered at this scale. At this scale, a two step 

procedure was used. The first step was to impose a series of volume averaged strains on 

the fiber/matrix unit cell. Following the coordinate system for the fiber/matrix unit cell 

in Fig. 3, the various load cases that were considered are listed here.  
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                                                                      (7.1) 

 

  In each of these load cases, the load is applied incrementally and at each load 

step, the boundary value problem is solved to calculate the microscopic stress and strain 

fields. The microscopic fields are volume averaged to obtain macroscopic stresses, total 

strains, and plastic strains. Using Eqns. (4.52) and (4.50), the volume averaged effective 

stress and incremental effective plastic strains for the tow are related to the volume 

averaged stresses and incremental plastic strains as follows: 

( ) ( ) ( )
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   After solving the boundary value problem for all the load steps, ijσ and 

p

ijdε are known values but F, G, H, L, M and N are unknown parameters for the tow. 

If the correct orthotropic parameters F, G, H, L, M and N were known, the effective 

stress versus effective plastic strain for the different load cases would collapse into a 
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single curve. Hence the second step involves attempting to find the orthotropic 

parameters of the tow such that all these effective stress versus effective plastic strain 

curves collapse into a narrow band around a single curve. A Matlab® v6.5 [75] 

optimization utility was used to determine the orthotropic parameters of the tow. This 

involved solving a non linear least square problem using the lsqnonlin function. 

b. Configurations 

 Three different material systems were considered. The resin is the same for all 

the systems, but the fibers are different. The fibers are AS4 carbon, E-glass and S-glass. 

The dry fiber braid mats were manufactured by A & P Technology, Inc. [1]. The glass 

fibers are isotropic and the carbon fiber is transversely isotropic. All the fibers are  
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Figure 7.1. Effective stress versus effective plastic strain for the EPON 9504 resin. 
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Table 7.1. Constituent and tow properties. 

EPON Carbon E-Glass S-Glass Carbon/EPON E-Glass/EPON S-Glass/EPON
Resin Fiber Fiber Fiber Tow, Vft = 78% Tow, Vft = 78% Tow, Vft = 60%

E11 (GPa) 3.21 227.53 68.94 85.5 178.17 54.5 52.6

E22 (GPa) 3.21 16.55 68.94 85.5 11.01 21.84 12.2

Elastic υ12 0.38 0.2 0.22 0.2 0.236 0.249 0.264

Properties υ23 0.38 0.25 0.22 0.2 0.37 0.362 0.456
G12 (GPa) 1.16 24.82 28.25 35.6 7.15 7.41 4.16

G23 (GPa) 1.16 6.89 28.25 35.6 4.11 8.00 4.19

Master E (GPa) 2200 na na na 3000 4000 200
Curve σ0 (MPa) 235 na na na 258.45 300 140

Parameters n 0.3343 na na na 0.3262 0.3 0.57
Orthotropic F 1 na na na 0.48 0.48 0.45
Parameters G = H 1 na na na 1.0E-05 1.0E-05 1.0E-04

L 3 na na na 1 1 1
M = N 3 na na na 1.5 1.8 1

na   =   Not Applicable as fibers were assumed to be linear elastic

Predicted homogenized
properties of the tow

Constituent 
material properties
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assumed to be linearly elastic. The resin is EPON 9504 epoxy manufactured by 

Resolution Performance Products, Inc. [77] and utilized the curing agent EPICURE 

9551, which was 26% by weight [45]. The EPON 9504 resin is isotropic and elasto-

plastic. The initial modulus of the resin is 3.21 GPa and the Poisson’s ratio is 0.38 [45]. 

The effective stress versus effective plastic strain response of the EPON 9504 resin is 

shown in Fig. 7.1. This was curve fitted very closely using the master curve (Eq. (4.68)). 

The constituent material properties and master curve parameters are given in Table 7.1.  

For E-glass and carbon material systems, the fiber volume fraction in the tow was taken 

to be 78% and for S-glass material system the fiber volume fraction in the tow was taken 

to be 60%. 

  Figure 7.2 shows the effective stress versus effective plastic strain curves after 

they nearly collapsed into one single curve. It’s not possible to collapse these curves into 

a single curve because the constitutive model is only an approximation. Figure 7.2 shows 

effective stress-effective plastic strain curves for the tows consisting of different material 

systems. It can be seen that at 1.2% effective plastic strain level, the effective stress for 

the S-glass braid tow is considerably less than for the other two systems because the 

fiber volume fraction is much lower (60%) in the S-glass braid tow as compared to other 

two braid tows, which have higher (78%) fiber volume fraction. The collapsed data is 

fitted using the master curve. Figure 7.2 also shows the curve fits. This completes the 

analysis at the fiber/matrix scale. The constituent material properties, homogenized 

properties of the tow and master curve parameters for all the material systems are 

summarized in Table 7.1. 
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             (a) Carbon/EPON 9504 
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           (b) E-Glass/EPON 9504 

Figure 7.2. Effective stress versus effective plastic strain curves for the tow. 
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             (c) S-Glass/EPON 9504 

           Figure 7.2. Continued. 

 

   

7.1.1.2. Second scale: Tow architecture scale 

a) Theory 

 Figure 2.1 also shows the second scale, which is the tow architecture scale. The 

materials involved at this scale are homogenized tows and the neat resin. The output at 

the tow architecture scale is the stress-strain behavior of the braid, microscopic stress 

distributions and microscopic plastic strain distributions in the tow. The homogenized 

tow is transversely isotropic and the resin is typically isotropic. Both the tow and the 

resin are elasto-plastic. The output of the first scale (i.e. the tow elasto-plastic properties) 

is input at the tow architecture scale. The other inputs at the tow architecture scale are 

stacking sequence of mats, braid geometric parameters like braid angle, waviness ratio, 
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tow cross-section shape and tow volume fraction in the model. Based on experiments, a 

simple stacking was analyzed for the E-glass and carbon braids and a symmetric 

stacking was analyzed for the S-glass braid in this work. One half of the unit cell was 

taken to be the RVE for simple stacking and one-fourth of the unit cell was taken to be 

the RVE for symmetric stacking. A typical finite element model at the tow architecture 

scale is shown in Fig. 2.1. The boundary conditions for this finite element model are in 

terms of numerous multi-point constraint relationships and are given in ref. [32]. 

b) Configurations 

  Seven configurations (see Table 7.2) were analyzed at this scale. First five 

configurations were analyzed to validate the analysis and the last two configurations 

were analyzed to study the effect of fiber modulus on plastic behavior of 2x2 braids. 

  The material systems, braid angles, waviness ratios and fiber volume fractions 

for the first five configurations were chosen based on the experimental data [45, 81-82]. 

Three configurations that were used to validate the analysis are AS4 carbon/EPON 9504 

braids with braid angles ±25˚, ±30˚ and ±45˚ and waviness ratio of 1/6. The fourth 

configuration is an E-glass/EPON 9505 ±25˚ braid with waviness ratio 1/3.11. And the 

fifth configuration is an S-glass/EPON 9504 ±45˚ braid with waviness ratio of 1/9 (i.e. 

this braid was quite flat). All the geometric parameters including the tow fractions, fiber 

volume fraction in the tow and overall fiber volume fraction for these configurations are 

shown in Table 7.2. 

  Two additional configurations were used to analyze the effect of fiber type on 

plastic behavior of 2x2 braids. These are configuration #6 and #7. Configuration #6 

consists of AS4 carbon/EPON braid and the configuration #7 consists of E-glass/EPON 

braid. Both configurations have a braid angle of ±25˚, waviness ratio of 1/6, tow fraction 

of 63.6% and an overall fiber volume fraction of 50%. It should be noticed that both 

configurations have exactly the same geometric and material parameters except for the 

fiber properties, because one of the goals of plasticity analyses was to study the effect of 

elastic properties of the fiber on the elasto-plastic response of the braided composites. 
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Table 7.2. Geometric parameters for various configurations. 

Config. 

# 

Material System 
Braid 

Angle 
Waviness 

ratio 

% Fiber 

volume 

fraction in tow 

% Tow 

fraction 

% Overall fiber 

volume fraction 

1 ±25º 1/6 78 65.3 51 

2 ±30º 1/6 78 68 53 

3 

AS4/EPON 

±45º 1/6 78 66.8 52 

4 E-glass/EPON ±25º 1/3.11 78 63.7 50 

5 S-glass/EPON ±45º 1/9 60 80 48 

6 AS4/EPON ±25º 1/6 78 63.7 50 

7 E-glass/EPON ±25º 1/6 78 63.7 50 

 

  

   

The finite element model for a ±25˚ E-glass braid configuration is shown in Fig. 

2.1. The mesh used 20 node solid elements. Each element contains 27 Gauss quadrature 

points. The mesh has 256 elements and 1154 nodes. Uniaxial tensile loading along the 

longitudinal direction of the braid was considered by applying a non-zero volume 

averaged strain in the longitudinal direction ( 0.02
xx

ε = ) in small increments. The other 

volume averaged strains were allowed to vary such that the macroscopic loading was 

uniaxial….i.e. the only non zero volume averaged stress was
xx

σ . The output at the tow 

architecture scale is discussed in the results and discussion section. 

7.1.2. Equivalent tape laminates 

Equivalent tape laminate models (see Fig. 3.1) corresponding to each braid 

configuration were also analyzed. The stacking sequence for the tape laminate model is 

[+θtow/-θtow/0resin] with periodicity imposed on all the faces of the unit cell. In this 

laminate, two layers have properties of the tow and the third have properties of the 
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matrix to account for matrix pockets in the braid model. The layer thicknesses were 

determined by the tow/matrix volume fraction in the braid model. Note that the 

equivalent tape laminates do not consider any tow undulation. 

7.2. Results and Discussion 

 The results of the plasticity analysis at the tow architecture scale are discussed in 

the following sub-sections. First the analysis is validated by comparing the predicted 

macroscopic response of different carbon and glass braids with the experimental data. 

Then the predictions of equivalent tape laminates are compared with the experimental 

data and full 3D finite element predictions. Lastly, the effect of fiber properties on braid 

response is discussed in terms of macroscopic stress-strain response, stress distribution 

and plastic zone 

 It should be noted that in the macroscopic stress-strain predictions, the initial 

modulus of the braid and tape laminate configurations differed slightly from the 

experimental data. There can be various reasons for this. For example, damaged fibers 

during the braid manufacturing, variation in braid angle and waviness ratio throughout 

the microstructure etc. are potential causes for some degradation of properties and hence 

a lower initial modulus. In the results involving comparisons with the experimental data, 

predicted macroscopic stress-strain curves were normalized to match the initial modulus 

with the experimental data. Hence, those results show the relative changes in the moduli. 

7.2.1. Validation of the full 3D and equivalent tape analysis  

 The variation of volume averaged stress with volume averaged strain in the 

longitudinal direction for different braid configurations will be discussed in this section. 

To validate the analysis, the predicted plastic response is compared with experimental 

data.  

 First, carbon braid predictions are compared with the experimental data. Figure 

7.3 shows the predicted and experimentally measured [45] stress-strain response of 

different carbon braids subjected to uni-axial tensile loading along the longitudinal 

direction. Figure 7.3 also shows the linear elastic extrapolation for comparison purposes. 



 

 

126 

Experimental data shows that the behavior of all the braids is quite non-linear. Even 

before 0.5% applied strain, the linear elastic extrapolations differ considerably from the 

corresponding experimental values. Hence, linear elastic analysis can not be relied upon 

for predicting the behavior of these braids. Below, first the predictions of full 3D models 

and then the predictions of laminate models are compared with experimental data for 

carbon braids. 
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Figure 7.3. Predicted versus measured response [45] for various carbon/EPON 9504 
braids subjected to uni-axial tension in longitudinal direction. The predicted stress strain 

curves were normalized to match initial experimental moduli. 
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 For a ±25˚ braid, the measured secant modulus of the braid in the longitudinal 

direction is initially 55.3 GPa and it drops to 34 GPa at 2% strain. There was small error 

in the initial modulus predicted by the full 3D model, which was 54.86 GPa and hence 

the predicted stress-strain curve was normalized to match the initial modulus. Figure 7.3 

shows that the normalized full 3D predictions are reasonably close to the experimental 

data. The errors in the predicted volume averaged longitudinal stress at 1% and 2% 

strains are 10.2% and 13.5% respectively. Figure 7.3 also shows the experimental data 

for ±30˚ and ±45˚ carbon braids. For ±30˚ braid, the measured value for the secant 

modulus is 21 GPa at 2% strain, which is almost half the initial modulus. The 

experimental data shows that the initial modulus for ±45˚ braid (15.1 GPa) is quite low 

as compared to ±25˚ and ±30˚ braids. This is expected as the fibers are more off-axis. 

Like ±30˚ braid, at 2% strain level, this braid has also lost almost half of its initial 

modulus. Figure 7.3 compares the normalized full 3D finite element predictions with 

experimental data for ±30˚ and ±45˚ carbon braids also. For ±30˚ braid, the measured 

and predicted initial moduli were 39.8 GPa and 43.98 GPa respectively. And for ±45˚ 

braid, the measured and measured initial moduli were 15.1 GPa and 16.59 GPa 

respectively. Hence the predicted stress strain curves were normalized to match initial 

moduli. For the ±30˚ braid, the errors in the predicted stress levels are 12.2% and 18.1% 

at 1% and 2% strain, respectively. For the ±45˚ braid, the difference between predictions 

and experimental data is higher as compared to the other two braids. At 1% and 2% 

strain levels, the errors in predicted stress are 24% and 36% respectively. In all the 

carbon braid configurations, the stress level is under predicted. 

Figure 7.3 also compares predictions of equivalent tape laminates against 

experimental data and full 3D finite element predictions. The initial modulus of tape 

laminates equivalent to ±25˚, ±30˚ and ±45˚ braids were 59.13 GPa, 45.26 GPa and 

17.48 GPa respectively. The equivalent tape laminates had around 7-15% higher initial 

modulus than experimental data. This is expected because tape laminates have straight 

fibers and do not consider any tow undulation [32]. The tape laminate results were also 

normalized to match the initial experimental moduli and are shown in Fig. 7.3. At 1% 
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strain, the error in predicted stress level by equivalent tape laminates and experimental 

data is 8.4%, 12.8% and 22.3% for tapes equivalent to ±25˚, ±30˚ and ±45˚ braids. This 

error increases to 10.3%, 18.3% and 35.2% respectively at 2% strain. These errors in 

equivalent tape laminate predictions are not much different from the full 3D plasticity 

solution (At 2% strain, errors were 13.5%, 18.1% and 36% for ±25˚, ±30˚ and ±45˚ 

braids respectively). As a matter of fact, the equivalent tape laminate has less error as 

compared to full 3D plasticity solution for a ±25˚ braid.  

Next , a ±25˚ E-glass braid was used to validate the analysis. Figure 7.4 shows 

the predicted and measured response [82] of the configuration. It can be seen that this 

braid is also quite non-linear. The experimentally measured initial secant modulus is 20 
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Figure 7.4. Predicted versus measured response [82] for E-glass/EPON 9504 ±25˚ braid 
subjected to uni-axial tension in longitudinal direction. The predicted stress strain curves 

were normalized to match initial experimental moduli. 
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GPa and it drops to 16.15 GPa at 1% strain and 13.57 GPa at 2% strain. In this case also, 

the predicted response was normalized to match the initial modulus and is shown in Fig. 

7.4. The experimentally measured initial secant modulus is 20 GPa whereas the 

predicted initial elastic modulus using full 3D model was 22.7 GPa. The normalized 

predictions of full 3D analysis matched very well with the experimental data. The error 

in predicted stress level at 1% and 2% strain was just 5.5% and 6.4% respectively. 

Unlike carbon braids, the stress level is over-predicted in this case. Again, the linear 

elastic extrapolation differs considerably from the corresponding experimental values. 

There is 24% and 48% difference in the predicted stress level at 1% and 2% strain 

respectively by linear elastic extrapolation.  

Figure 7.4 also compares the predictions of an equivalent tape laminate with 

experimental data and full 3D analysis. The initial modulus of equivalent tape is 

25.77GPa. The equivalent tape has 29% higher initial modulus than the experiments. 

Hence the stress-strain predictions of the tape laminate were normalized to match the 

initial modulus. Like full 3D plasticity solution predictions, the equivalent tape also over 

predicts stress level at various strains. At 1% and 2% strain levels, the equivalent tape 

has 8% and 16% higher stress level than the experimental data. Recall that the full 3D 

plasticity solution over predict the stress level by 5.5% and 6.4% at 1% and 2% strain 

respectively. Hence in this case, the tape laminate prediction has higher errors than the 

full 3D solution.  

 The final configuration used to validate the analysis was a ±45˚ S-glass braid. 

This response of this configuration is extremely non-linear as shown by Fig 7.5. At 3% 

strain, the secant modulus drops to almost one fourth of its initial modulus of 10.2 GPa. 

Figure 7.6 shows the predicted and experimentally measured stress-strain response of 

this braid. Different experimental stress-strain curves correspond to eight tested 

specimens [81]. The response was predicted only up to 3% strain, since the analysis 

involves the assumption of small strains. In this case, the initial tensile modulus of finite 

element predictions matches well with the experimental data, so no normalization was  
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Figure 7.5. Comparison of elastic extrapolation with one of the test data [81] for a ±45˚ 
S-glass/EPON 9504 braid subjected to uni-axial tension in longitudinal direction. 

 
 

0.0E+00

3.0E+07

6.0E+07

9.0E+07

1.2E+08

1.5E+08

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

strain

st
re

ss
 (

P
a)

   
   

.

Predicted response 
with full 3D model

Experimental Data

Figure 7.6. Predicted versus measured response [81] for ±45˚ S-glass/EPON 9504 braid 
subjected to uni-axial tension in longitudinal direction. 
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Figure 7.7. Comparison of predicted response by equivalent tape laminate versus full 3D 
model for ±45˚ S-Glass/EPON braid under uni-axial tension in longitudinal direction. 

 

 

 

required. The predictions lie within the range of experimental data. This is an excellent 

agreement between predicted and measured response.  

 Figure 7.7 shows a comparison of predictions of the equivalent tape laminate 

with the full 3D model predictions for the ±45˚ S-glass. Generally speaking, the 

equivalent tape laminates have higher initial modulus than their braid counterparts 

because braids have undulating tows which causes them to lose some in-plane stiffness 

[32]. Since this braid is very flat, the initial modulus of tape laminate is very similar to 

that predicted by full 3D model. More importantly, not just the initial modulus but the 

macroscopic response at higher stress levels is also very similar. For example at 2% and 

3% strain, the difference in predicted stress levels by equivalent tape laminate model 

from full 3D model is less than 1%, which is exceptionally good from the standpoint of 

computational savings a simple tape laminate model offers. For example, the analysis of 
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full 3D braid model took 8 and a half hours on a supercomputer, whereas the equivalent 

tape laminate model took less than 2 minutes. Both full 3D and equivalent tape laminate 

predictions match very well with the experiments in this case and the tape laminate is 

extremely computationally efficient. 

 This completes the validation of the plasticity analysis for different braids. In 

summary, all the considered braids show quite non-linear response and a linear elastic 

extrapolation does not suffice. The plastic solution predictions agree reasonably well 

with the experiments for ±25˚ and ±30˚ carbon braids even at strains as high as 2% 

strain. For a ±45˚ carbon braid, the plastic solutions predictions show more deviation 

from the measured response. There is an excellent agreement between predicted and 

measured response both for a ±25˚ E-glass braid and a ±45˚ S-glass braid even at as high 

as 2% strain. Errors predicted by tape laminates are not very much different from those 

of full 3D models, but the tape laminate models are extremely computationally efficient  

 

7.2.2. Comparison of the performance of braids with equivalent tape laminates of 

same fiber volume fraction 

In this section we compare the performance of braids with equivalent tape 

laminates. The performance is compared in terms of initial modulus and degradation of 

modulus due to plastic deformation. Unlike the previous section, the original i.e. un-

normalized stress-stress response is compared here because that is the actual predicted 

response for these composites. 

First the carbon braid configurations are discussed. Figure 7.8 shows the 

comparison of predicted performance of braids versus tape laminates. The tapes have 

around 2-7% higher initial moduli because there is no undulation in the fiber tows. 

Figure 7.8 shows that equivalent tape laminates have higher secant modulus throughout 

the load history which shows that they have a better performance in terms of 

longitudinal modulus. A ±25˚ equivalent tape has around 11% higher secant modulus 

than the ±25˚ braid both at 1% and 2% strains. Both ±30˚ and ±45˚ equivalent tape 

laminates have around 2.5% higher secant moduli than their braid counterparts at both 



 

 

133 

 

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

0.00E+00 5.00E-03 1.00E-02 1.50E-02 2.00E-02

strain

st
re

ss
, P

a 
   

  .

Tape laminates

Braids

}25

} 30

} 45

 

Figure 7.8. Comparison of predicted performance of different braids with equivalent tape 
laminates for carbon/EPON 9504 material system. 

 

 

 

1% and 2% strain levels. At 2% strain, the secant modulus drop from initial modulus for 

equivalent tapes and their braid counterparts is 47% versus 45% for a ±25˚ 

configuration, 56.4% versus 56.5% for a ±30˚ configuration and 65.4% versus 66.4% for 

a ±45˚ configuration respectively. This shows that both braids and tapes have similar 

performance in terms of moduli degradation due to plasticity. 

Next, we compare the performance of equivalent tape laminate with the braid for 

±25˚ E-glass configuration. Figure 7.9 shows the un-normalized stress-strain response 

for the braid and the tape laminate, which has 12% higher initial modulus than its braid 

counterpart. Like carbon braids, throughout the load history, the equivalent tape laminate 

has higher secant modulus than its braid counterpart. The tape has 17% and 24% higher 
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secant modulus than the braid at 1% and 2% strain respectively. Also, in terms of drop in 

secant modulus from initial modulus, tape laminate performs better than the braid. The 

braid has 15% and 28% drop in secant modulus from its initial modulus at 1% and 2% 

strain levels as compared to 12% and 21% drop in secant modulus from its initial 

modulus for the tape laminate. Hence both in terms of secant modulus as well as 

degradation of secant modulus due to plastic deformation, the tape laminate performs 

better in this case. In contrast, in the case of an S-glass ±45˚ configuration, both tape and 

braid behave very similarly as shown by Fig. 7.7. 
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In summary, the tape laminates have better performance in terms of secant 

modulus at various stress levels. But as far as moduli degradation due to plasticity is 

concerned, the braids have comparable performance as compared to their tape laminate 

counterparts. 

7.2.3. Effect of fiber properties on plastic behavior of 2x2 biaxial braided 

composites 

 Two configurations (#6 which is ±25° carbon/EPON braid and the #7 which is 

±25° E-glass/EPON braid in Table 7.2) were used to study the effect of fiber properties 

on plastic behavior of ±25° braids. The effect of fiber properties on braid response is 

discussed in terms of macroscopic stress-strain response, stress distribution and plastic 

zone below. 

7.2.3.1. Effect of fiber properties on macroscopic non-linear behavior 

 In this section, the effect of fiber properties on the macroscopic response of the 

two braids is discussed. Macroscopic response is measured in terms of volume averaged 

variables. The non-linear behavior at the macroscopic scale was quantified using the 

following measures [83]: 

• Loss in secant modulus 

• Loss in tangent modulus 

• Amount of plastic strain 

• Energy dissipated during plastic deformation per unit energy supplied. 

  Let 
xx

σ ,
xx

ε , 
xx

σ∆  and 
xx

ε∆  be volume averaged stress, volume 

averaged strain, change in volume averaged stress, and change in volume averaged strain 

respectively in the longitudinal direction and let e
E

xx
 be the elastic tensile modulus. 

Loss in secant modulus can be calculated by the expression 

e e
E E

xx xx xx xx
σ ε − 

 
. Loss in tangent modulus can be calculated by the 
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expression e e
E E

xx xx xx xx
σ ε ∆ ∆ − 

 
. The plastic strain in the longitudinal 

direction can be calculated as p e
E

xx xx xx xx
ε ε σ= − . Relative energy dissipated 

during plastic deformation can be calculated by dividing the energy dissipated (the area 

between the loading-unloading curve) with the energy supplied (the area under the 

loading curve). 
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  Figure 7.10 shows the predicted stress-strain behavior for ±25˚ carbon/EPON 

9504 and ±25˚ E-glass/EPON 9504 braids with waviness ratio of 1/6. Both the elastic 

and plastic solution predictions are shown.  

 Let us first compare the drop in secant modulus for the carbon and glass braid at 

the same overall strain level using Fig. 7.10. At 2% strain, the carbon braid’s secant 

modulus drops from an initial value of 55.3GPa to 29Gpa (47% drop) whereas the E-

glass braid’s secant modulus drops from an initial value of 24.6 GPa to 18.7 GPa (24% 

drop). The drop in secant modulus for carbon braid is far more than for glass braid. 

Looking at these values, one is tempted to conclude that in terms of drop in modulus, the 

carbon braid has a greater degree of non-linearity than the glass-braid. But, this might 

not hold true if the behavior is compared at the same stress level. For these high 

performance materials, the structure is generally designed for load carrying capacity. 

Hence, below, we compare the braid behavior at the same stress level. 

 The data in Fig. 7.10 is now used to compare different measures of non-linearity 

at a stress level of 374 MPa, which is the overall stress in the glass braid at 2% applied 

strain. At this stress level, the carbon braid’s secant modulus drops by 22% from an 

initial value of 55.3 GPa and the E-glass braid’s secant modulus drops by 24% from an 

initial value of 24.6 GPa. The drop in tangent modulus is 46% and 43% for carbon braid 

and E-glass braid respectively. This implies that when the braids are compared at same 

stress level in terms of loss in moduli, the difference in behavior is very little. 

 Figure 7.11 shows the variation of normalized secant and tangent moduli with 

applied load level. Both moduli are normalized with respect to the initial moduli. The 

drop in secant modulus is greater for the glass braid than for the carbon braid. The 

difference in drop in secant modulus of two braids increases up to an applied stress level 

of approximately 200 MPa and then it starts to decrease. The glass braid also has a 

greater drop in tangent modulus than the carbon braid up to a stress level of 300 MPa, 

but after that the drop in modulus becomes greater for the carbon braid. The maximum 

difference between the drop in moduli of two material systems is approximately 38% for 

both secant and tangent measures in Fig. 7.11. 



 

 

138 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08 3.0E+08 3.5E+08 4.0E+08 4.5E+08

Applied stress

N
or

m
al

iz
ed

 M
od

ul
i  

   
   

  .

Carbon

Glass

SECANT

TANGENT

Drop

 

Figure 7.11. Variation of secant and tangent moduli with applied load. 

 

 

 

 The area under the loading-unloading curve in Fig. 7.10 is now used to calculate 

the energy dissipated per unit energy supplied when a stress level of 374 MPa is applied 

to both the material systems. It should be noted that the unloading lines are not actual 

simulations, but assumed lines drawn parallel to the elastic response lines. In reality, 

because of the complex stress distribution in the tows and matrix, the unloading response 

might not be exactly linear, but for these calculations a linear unloading response was 

assumed. For the carbon braid, the energy dissipated (area OADO) is 29% of energy 

supplied (area OAFO). For the glass braid, the energy dissipated (area OPQO) is 34% of 

energy supplied (area OPRO). By modulus drop and energy measures, the degree of 

non-linearity is not much different in the two braids. However, considerably more plastic 

strain is occurring in the glass braid (0.48% volume averaged effective plastic strain) as 
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compared to the carbon braid (0.19% volume averaged effective plastic strain) when 

loaded at the same stress level (=374 MPa). This shows that a glass braid might be more 

susceptible to fatigue damage than a carbon braid. 

 In summary, the conclusions about the effect of fiber type on the degree of 

plasticity induced non-linearity in a ±25˚ braid are not that easily drawn if we compare 

the behavior at the same stress level. They depend on the measure of non-linearity.  

7.2.3.2. Effect of fiber properties on elastic and plastic stress distributions 

  Figures 7.12 and 7.13 show the σ11, σ33 and σ13 stress distributions in the tow 

obtained by elastic and plastic solutions respectively for the carbon and glass braids. The 

stresses in both the figures are in the material coordinate system and correspond to 2% 

volume averaged strain <εxx>. The stresses are normalized by the volume averaged 

<σxx> stress at 2% strain level in each configuration. These results will be examined 

three ways. First, the effect of analysis type (elastic versus plastic) on the stress 

distributions in the tow is considered. In this comparison, the material system is kept the 

same (carbon or glass braid). Second, the effect of fiber type on stress distributions is 

discussed for the elastic analysis. And third, the effect of fiber type on stress 

distributions is discussed for the plastic analysis and is contrasted with the elastic 

analysis. In the later two comparisons, the analysis type is kept the same whereas the 

material systems are different. 

 First, the effect of analysis type (elastic versus plastic) on the stress distributions 

in the tow is considered. The goal is to determine how plastic deformation affects the 

stress distributions. The largest σ11 value increases by 40% for the carbon tow (compare 

Fig. 7.12(a) with 7.13(a) ) and 19% for the glass tow (compare Fig. 7.12(b) with 7.13(b)) 

due to plastic deformation. Similar trends with much higher intensity can also be seen 

for σ33, in which plastic deformation increases the largest value by 140% for carbon and 

118% for the glass braid tow from their respective elastic solutions. In contrast, plastic 

deformation reduces the σ13 peak value by 46% and 49% for the carbon and glass braid 

tows, respectively. Similar trends were seen by Whitcomb et al. [46] for a plain weave 

consisting of S2-glass/SC15 material system. A possible explanation is that the  
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Figure 7.12. Effect of fiber type on elastic stress distributions (applied strain <εxx>=2%, 
and stresses are normalized by <σxx> at 2% strain in each configuration). 
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Figure 7.13. Effect of fiber type on plastic stress distributions (applied strain <εxx>=2%, 
and stresses are normalized by <σxx> at 2% strain in each configuration). 
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plasticity is driven by the σ13 stress component. When yielding occurs, the local 

concentration of σ13 is reduced, but the resulting load redistribution increases other stress 

concentrations. Evaluation of this hypothesis will require further study. 

 The effect of fiber type on elastic stress distributions is investigated by 

comparing location and magnitudes of the largest stresses in carbon braid tow versus 

those in glass braid tow (See Fig. 7.12). The largest stress values are positive for σ11 and 

σ13 stress components and are negative for σ33 for both the materials. The locations of the 

largest stresses do not differ much for the two material systems, but the magnitudes are 

different. The carbon braid tow has 25% larger σ11 and 10% larger σ33  than the glass 

braid. In contrast, the carbon braid tow has a 33% lower σ13 than the glass tow.  

 Figure 7.13 shows the plastic stress distributions for carbon braid tow and E-

glass braid tows. Similar to the elastic case, the locations of largest stress values in the 

carbon braid tow and the glass braid tow are very similar to each other but the values are 

different. The carbon braid tow has 46% larger σ11 and 21% larger σ33 than the glass 

braid tow. For σ13, carbon braid tow has a 28% lower value than the glass braid tow. 

This shows that plastic deformation worsens the stress state in a carbon braid more than 

it does in a glass braid. 

7.2.3.3. Effect of fiber properties on plastic zone sizes and locations 

 The effect of fiber type on the development of the plastic zone in the tow as the 

load increases is discussed here. In this study, the plastic zone is defined to be the region 

of the tow that has exceeded 0.2% effective plastic strain. Figure 7.14 compares the 

development of the plastic zone in carbon braid tow with glass braid tow. The maximum 

load level max

xx
σ  is 374 MPa, which corresponds to the applied stress at 2% strain for the 

glass braid. The plastic zone sizes for the two material systems are compared at five load 

levels: 0.3 max

xx
σ , 0.4 max

xx
σ , 0.5 max

xx
σ , 0.6 max

xx
σ , and 0.7 max

xx
σ .  

Figure 7.14 shows that fiber type significantly affects the development of plastic 

zone in the braid tow. At an applied stress of 0.3 max

xx
σ , no plastic deformation has  
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Figure 7.14. Development of plastic zone size ( max

xx
σ  = 374 MPa). 

 

 

occurred in either carbon or glass tow. The plastic zone gradually develops for the glass 

tow as load increases from 0.3 max

xx
σ  to 0.7 max

xx
σ . At 0.7 max

xx
σ , the glass tow is 

completely saturated with plastic deformation. The carbon tow starts developing a 

plastic zone at an applied load level of 0.5 max

xx
σ . The plastic zone at any load level is 

considerably higher for the glass tow than for the carbon tow. Thus, the overall plastic 

strain p

xx
ε  in the glass braid is also expected to be more than in carbon braid. This is 

consistent with the observation of macroscopic stress-strain response in section 7.2.3.1 

above. The initiation locations of the plastic zone are slightly different for the two 

braids. For carbon tow, it is the edges of the region of the maximum undulation, marked 

by arrows in Fig. 7.14. For the glass tow, the initiation locations are at the beginning of 
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the undulation region (see arrows in figure). After the initiation, the plastic zone 

develops along both the edges of the tow, eventually growing into the center portion of 

the undulation region for both material systems. Since the plastic zone size is 

considerably larger for the glass tow than for the carbon tow, it is probable that the glass 

tow might be at a higher risk of initiating damage. The validation of this hypothesis 

requires further study. 

7.3. Summary 

 A two scale modeling approach was used to analyze plasticity induced non-

linearity in 2x2 braided composites. The analysis was validated by comparing the 

predicted response using elastic and plastic solutions with experimental data for carbon, 

E-glass and S-glass braids. Both experimental and analytical results showed that the 

braid is quite non-linear. The following conclusions can be drawn from the analysis: 

• Full 3D as well as tape laminate models predictions agree reasonably well with the 

experiments for ±25˚ and ±30˚ carbon braids even at 2% strain. For a ±45˚ carbon 

braid, predictions show more deviation from the measured response. An excellent 

match between measured and predicted response using a full 3D model was seen for 

a ±25˚ E-glass braid even at as high as 2% strain level. Full 3D as well as equivalent 

tape laminate predictions lie within the range of experimental data for the ±45˚ S-

glass braid even at as high as 3% strain 

• Predictions based on equivalent tape laminates are almost as accurate as the full 3D 

braid model predictions in terms of percentage modulus reductions, which shows 

that one can use much simpler equivalent tape laminate model to reasonably predict 

some aspects of the braid behavior and have significant computational time savings. 

• Equivalent tape laminates have higher secant modulus throughout the load history 

which shows that they have a better performance in terms of longitudinal modulus, 

but in terms of percentage moduli degradation due to plasticity, both braids and tapes 

have similar performance. 

• Conclusions about the effect of fiber type on the degree of plasticity induced non-

linearity in a ±25˚ braid depend on the measure of non-linearity. At same applied 
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stress, the degree of non-linearity is not much different in the two braids by modulus 

drop and energy measures. However, considerably more plastic strain occurs in the 

glass braid as compared to the carbon braid when loaded at the same stress level. 

• Plastic deformation increases the largest σ11 and σ33 values and reduces the largest σ13 

values in the tow. 

• Since the plastic zone size is considerably larger for the glass tow than for the carbon 

tow of a geometrically similar braid, the glass tow might be at a higher risk of 

initiating damage. 
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8. MECHANICS OF LOAD FLOW IN TEXTILE COMPOSITES 

 

The increase in computational power that is readily available is making detailed 

three-dimensional finite element analyses of textile composites practical. One of the 

weak links in developing these models has been the difficulty in creating a finite element 

model. For this reason, initial efforts focused on the plain weave composite [21-22, 24]. 

However, tools and techniques have improved and now 3D models have been developed 

for a variety of textiles (see Fig. 1.2). The current 3D models of textile composites make 

very fewer assumptions about the geometry and modes of deformation than the simple 

laminate theory models were developed as part of the early efforts [13-16]. The wealth 

of raw numerical information provided by the typical finite element analysis provides 

less basis for developing an intuitive understanding than the simpler models. The simple 

models represent the behavior in terms of a small number of basic modes of deformation 

and load transfer. Intuition is required to develop the models and the result is a 

framework for understanding the response. Since the finite elements models are based on 

very few assumptions and the results are also unbiased. For example, the stress contours 

in a 5 harness satin weave shown in Fig. 2.2 give many details, but no framework for 

interpretation. 

The thesis of this part of the research is to understand the mechanics of load flow 

in textile composites using special techniques. Optimal use of rapidly improving 3D 

finite element models requires non-standard techniques to interpret the data. In 

particular, techniques must be developed that not only highlight the important details, 

but also transform the massive amount of output data into comprehensible modes of 

behavior. We will discuss two techniques. The first technique is calculation of stress 

resultants that give forces and moments at any cross-section of the tow. The second 

technique converts the 3D variation of a stress component into a stress versus volume 

distribution plot. Both of the techniques will be described in detail. 

These techniques were applied in various ways to investigate textile behavior. 

First, the behavior of a plain weave was analyzed. How the load flows along the various 
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cross-sections of a plain weave and load distribution among warp, fill and matrix was 

investigated. It will be shown that in the warp tow, maximum axial and out of plane 

transverse stress resultants occur at the maximum undulation region. The reason for this 

will be discussed. The existence of out of plane transverse stress resultant will be 

explained by simple stress transformation. The location of stress concentrations will be 

correlated with stress resultants. Different architectures that were analyzed are Plain 

weave (PW), Twill weave, 4 Harness Satin weave (4HS), 5 Harness Satin weave (5HS) 

and 8 Harness Satin weave (8HS). Similar regions in these weaves were identified. The 

effect of tow architecture on the load flow in comparable regions of different weaves 

will be shown. The volume distribution plot will be used to show which stress 

components of a plain weave tow could initiate failure. Finally, the effect of material 

damage and plasticity on load flow in a plain weave will be investigated. 

It should be noted that these postprocessing techniques are not meant to eliminate 

the details. Instead a hierarchical strategy is proposed that allows interpretation of the 

predictions at different levels of detail. Also, by providing the “coarse level” 

interpretation of the results, a better basis is provided for evaluating and refining simpler 

models. 

8.1. Configurations  

Five different weave architectures that were analyzed are PW, Twill weave, 4HS, 

5HS and 8HS weaves. Their solid models and corresponding finite element models are 

shown in Fig. 1.2 and Fig. 8.1 respectively. Because the mats are symmetrically stacked, 

only one-half unit cells were modeled. By exploiting symmetries within these half unit 

cells, one could model smaller regions, but one half unit cells were typically employed 

here so that load flow and stress volume calculations could be conducted conveniently. 

Periodic boundary conditions were imposed on all the faces of the unit cell. The 

boundary conditions for different weave architectures are provided in detail in refs. [35-

36]. Some of the analyses for plain composites were also conducted for 1/32nd of the unit 

cell. This smaller unit cell was especially helpful to keep the runtimes low for plasticity 

and damage studies. 
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(a) Finite element meshes for half unit cells  

(comparable regions are marked by white boxes) 
 

Figure 8.1. FE meshes and comparable regions for different weave architectures 
(The matrix is shown transparent to reveal the architecture clearly). 
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(b) Comparable regions (without the matrix pockets)  
The layer of elements at x=0 is also shown detached to show gap between the tows 

 
Figure 8.1. Continued. 

 
 
 
 

The global coordinate system xyz (see Fig. 8.1) is shown for the twill weave and 

lies at a similar location on the white boxes for other weaves too. Notice that except for 

PW, all the weaves have wavy (undulating) as well straight regions. The geometric 

parameter h is the model thickness, and λ is the wavelength of the wavy region and was 

generally = 6 herein. Hence waviness ratio was 1/6. Limited analyses were also 

performed for plain weave configurations with higher waviness ratio. In those cases, the 

wavelength of the wavy region λ was 3. Comparable regions in different weaves were 

identified and are also shown in Fig. 8.1. Comparable regions contain only undulating 

portion of the warp tow and fill tows plus the matrix pockets. The comparable regions in 

different weaves are marked by white boxes. They contain the whole thickness (h) of the 

model and vary from x=0 to x= λ/2 and y= -λ/4 to y=λ/4 (see Fig. 8.1) in each weave. 

The comparable regions without the matrix pockets are shown in Fig. 8.1(b).  The 
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weaves consisted of S2 glass and SC-15 resin. To validate certain hypotheses, a limited 

number of studies were also conducted for Carbon/EPON 9504 material system. The 

material properties are given in Table 8.1. The fiber volume fraction in the tow was 

78%. The tow fraction in the model was 63.6%, hence the overall fiber volume fraction 

in each model was 50%. The strength values for the tow were obtained based on the 

analytical formulas given by Chamis [80]. A volume averaged stress <σxx>=1 was 

applied to each model, unless specified otherwise. 

 

 

Table 8.1. Material properties. 

Moduli (GPa) Tow* Matrix Tow* Matrix Strengths Tow*
& S2 Glass/ SC-15 Carbon/ EPON (MPa) S2 Glass/

Poisson's ratios SC-15 EPON SC-15

E11 75.92 2.82 178 3.21 S11 2861

E22 = E33 22.98 2.82 11 3.21 S22 = S33 53

G12 = G13 7.16 1.01 7.1 1.16 S12 = S13 48.3

G23 8.26 1.01 4.18 1.16 S23 31.2

υ12 = υ13 0.26 0.395 0.23 0.38 S11
C 2861

υ23 0.39 0.395 0.37 0.38 S22
C

 = S33
C

53

*Fiber volume fraction in tow = 78%
C = compressive

 

Tow* Matrix
S2 Glass/ SC-15

SC-15

Master E (GPa) 4819 2200

Curve σ0 (MPa) 155 146

Parameters n 0.38 0.42

F 0.48 1

Orthotropic G = H 1.0E-05 1

Parameters L 1 3

M = N 1.67 3     
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8.2. Description of Postprocessing Techniques 

In this section, two post processing techniques that are used to interpret the FE 

analysis data are discussed. The first technique converts the 3D variation of a stress 

component into a stress versus volume distribution plot. This kind of plot reveals how 

much volume of the material has a stress magnitude larger than a particular value. The 

plot gives a measure of the non-uniformity of the stress distribution. This is especially 

useful for assessing whether a local stress concentration is so localized that slight 

yielding will eliminate the high stress. This technique is used to obtain some valuable 

insights, which will be discussed in the results section. 

The other technique is the calculation of stress resultants. In approximate models, 

the components of the textile are treated as simple structural elements like rods or beams 

and stress resultants are used to describe the load flow. The fully three-dimensional   

finite   element   results can   be   post- processed to obtain stress resultants, such as the 
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Figure 8.2. Stress resultants at cross-section abcd. 
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axial force or moment acting at any cross-section of the tow or matrix. The concept is 

illustrated for a cross-section abcd of the warp tow in Fig. 8.2. The nodal forces on the 

nodes lying on cross-section abcd can be calculated during the finite element analysis. 

We used 20 node brick elements, therefore each element has 60 forces, 3 at each node in 

x, y and z direction. These are labeled as fx, fy and fz respectively and are shown in 

Fig.8.2 for one node. 

The forces Fx, Fy and Fz on a particular cross-section are simply the summation 

of all the nodal forces on that cross-section in the x, y and z directions respectively. At 

each cross-section, the moments about the cross-section centroid due to the nodal forces 

were calculated. The moments about the x, y, and z-axes are defined to be Rx, Ry, and 

Rz, respectively. Since stress resultants are obtained from full 3D models, the results are 

much more reliable than one could obtain by using a simplified model. Use of this 

technique to post process the finite element data will be shown in the results sections. It 

should be noted that cross-section abcd is the interface between two layers of elements. 

The magnitude of forces and moments acting on cross-section abcd calculated from the 

left layer of elements will not be equal to that calculated from the right layer because due 

to tow undulation, the stress state is different in the two layers of elements. But if the 

layer thickness is reduced, the difference between the forces on the left and right should 

decrease. The hypothesis was found to be true by considering meshes with different 

refinement. Figure 8.3 shows smaller regions of different meshes of a PW with 4, 12, 24 

and 48 cross-sections. The number of degrees of freedom for meshes with 4, 12, 24 and 

48 cross-sections are 2169, 16569, 63369 and 247689 respectively. The number of 

degrees of freedom is very small for 4 section meshes and is more than 100 times larger 

for the 48 section mesh. The maximum difference between Fx calculated from the left 

layer of elements and right layer of elements for the warp tow was 2.65, 1.38, 0.81 and 

0.46% for meshes with 4, 12, 24 and 48 cross-sections respectively. Hence, as the 

number of cross-sections increased, the difference between the magnitudes of forces 

calculated from the left and right layers of elements decreased. In the results that follow, 
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4 section meshes were used to keep the runtimes low. The average forces or stress 

resultants were used in the analyses and were calculated by averaging the magnitudes of 

forces from the left and right layers of elements. The maximum difference between the 

average forces calculated using 4 sections meshes and those calculated using 48 section 

meshes was less than 3%. 
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Figure 8.3. Meshes used for convergence study. 
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8.3. Results and Discussion 

Special post processing techniques were applied to investigate the mechanics of 

load flow in textile composites. Load flow and stress volume distribution plots were 

employed to understand the behavior of a plain weave. The effect of tow architecture on 

the load flow in comparable regions of different weaves was also investigated. Finally, 

the effect of damage and plasticity on load flow in a plain weave was investigated. The 

results are discussed below. 

8.3.1. Analysis of a plain weave 

First, a plain weave was analyzed for the load flow in the warp tow, fill tow and 

matrix pockets. The potential correlation between the stress concentrations and 

magnitudes of stress resultants in the warp tow was investigated. The behavior of plain 

weave under in-plane shear stress was also analyzed. Typical stress volume distributions 

in the tow of a plain weave were also examined. The results are discussed below. 

8.3.1.1. Fx load flow in a plain weave  

Uniaxial tensile load was applied to a PW along the x direction as indicated by 

the arrows in Fig. 8.4. Since the area of the cross-section is 3 and the applied volume 

averaged <σxx> was 1, the total Fx force at any cross sections of the model along the 

load direction (For e.g. sections AA and BB  in Fig. 8.4) was 3. This causes considerable 

Fx and Fz stress resultants, but the Fy stress resultants were negligibly small. Figure 8.5 

shows the Fx distribution in the warp tow, fill tow, matrix pockets and the total. The 

warp, fill and matrix do not have a uniform load flow, but the total load is always 

constant. Both the warp tow and matrix have a load peak where the crimp angle for the 

warp tow is maximum. The region where the crimp angle for the warp tow is maximum 

(section B in Fig. 8.4) is also called the maximum undulation region herein. The Fx in 

the warp tow increases by 23% from its value at x=0 and the corresponding peak in the 

matrix is around 8 times its value at x=0. In contrast, the fill tow has a dip and the load 

reduces by 86% at the maximum undulation of the warp tow.  
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Figure 8.4. Variation in relative material areas of fill tow and matrix pockets at different 
cross-sections along the applied load direction (warp tow area is constant). 



 

 

155 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3
x

F
x

Total

Warp

Fill

Matrix

 

      Cross-section CC  of Fig. 8.4 

 

  

z
x

h=
1

λ/2 = 3

warp Fill

Matrix

Crimp Angle θ

 

Figure 8.5. Fx load distribution in warp/fill & matrix. 

 

 

The load redistribution occurs because at different cross sections of the model 

along the x-direction, the relative material areas of fill tow and matrix pockets vary (see 

Fig 8.4). At x=3 (i.e. cross-section AA ), there is very little matrix pocket as compared to 

at x=1.5 (i.e. cross-section BB), where there is no fill tow material. The matrix has much 

less stiffness as compared to the transverse stiffness of the fill (E=3GPa for matrix 

versus Eyy=22GPa for fill tow). Depending upon the relative areas of matrix and fill tow  

at any cross-section, load will redistribute between warp, fill and matrix pockets. Hence 

the warp tow and matrix pick up the load at the maximum undulation region.  

This reasoning was validated by investigating a “stiffened matrix configuration” 

in which the matrix shown in Fig. 8.5 has the same properties as the transverse  
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Figure 8.6. Comparison of Fx load flow in different configurations. 
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properties of the tow. When the matrix is stiffened, the Fx in the warp tow decreases by 

7.7% (see Fig. 8.6 (a)) at the point of maximum undulation….in sharp contrast to the 

23% increase for the warp tow of regular matrix configuration. In Fig. 8.5, there are 

apparently two competing mechanisms. First is the load redistribution into the warp tow 

as fill tow is replaced by softer matrix. The second is load redistribution out of the warp 

tow because an inclined tow is not as stiff as a horizontal tow. In Fig. 8.5, the first is the 

dominant mechanism. When the matrix is stiffened, the first mechanism is virtually non-

existent and the second mechanism results in a reduction in Fx at x=1.5. If we increase 

the undulation angle (i.e. waviness) by decreasing the wavelength (λ), the load shedding 

mechanism should become more pronounced. Fig. 8.6(b) shows the variation of Fx for 

the PW with the smaller wavelength λ=3. In the case of warp tow of a PW with regular 

matrix, the load peak at the maximum undulation region dropped to 16.5% (as compared 

to 23% in the case of less wavy configuration) and in the case of stiffened matrix 

configuration, the load dip increased to 13.4% (as compared to 7.7% in the case of less 

wavy configuration). These observations are consistent with the proposed mechanisms. 

Next the effect of material system was studied to investigate if the above 

proposed hypotheses hold true in general or not. A plain weave configuration with 

Carbon/EPON material system was considered, since the carbon tow has considerably 

higher E11 moduli as compared to a glass tow. Table 8.1 shows that the E11 modulus for 

carbon tow was around 2.3 times the E11 modulus of glass tow, whereas the E22 modulus 

of the carbon tow was half that for the glass tow. The wavelength was kept the same 

(λ=6) as the original glass weave. 

Figure 8.7 shows the variation of Fx load for the carbon/EPON plain weave 

configuration. In this case, the percentage increase in Fx in warp tow at x=1.5 is just 

2.5% as compared to 23% in glass tow (see Fig. 8.5). The increase in Fx in the warp tow 

is little for the carbon weave, because the fill tow of the carbon weave carries only 7.2% 

of the total load as compared to fill tow of the glass weave, which carries 29% of the 

total load at x=0. So, the fill tow of the carbon weave has very little load to dump to the 
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warp or the matrix when the fill’s cross-sectional area decreases at maximum undulation 

region. The fill tow carries a considerably smaller share of the total load in carbon 

weave, which is due to a much larger difference in the warp and fill tow moduli along 

the load direction for that weave. The modulus ratio of warp tow and fill tow for the 

carbon weave along the load direction (E11_warp/E22_fill) is around 16, which is much 

higher than for the glass weave (the ratio is ~3.3 in that case). The matrix modulus is 

approximately the same in both the configurations. Due to this, the warp tow in glass 

weave carries 70% of the total load at x=0, whereas for carbon weave, the warp tow 

carries the majority (91%) of the load at x=0. Load carried by matrix at x=0, in both the 

configuration is very little (around 1% of the total).  
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Figure 8.7. Variation of Fx for the Carbon/EPON plain weave configuration. 
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8.3.1.2. Fz load flow in a plain weave 

Now the variation of Fz load at various cross-sections long the load direction is 

discussed. Figure 8.8 shows the distribution of the out of plane stress resultant Fz along 

the x direction both for Glass/SC-15 and for Carbon/EPON plain weaves. The existence 

and variation of Fz in plain weave can be approximately explained by a simple stress 

transformation. Let us assume that the only non-zero stress in the warp tow is σ11, which 

is the normal stress along the axis of the fibers (see Fig. 8.9). It is also assumed that σ11 

is constant throughout the warp tow. The average σ11 was approximated by dividing the 

Fx stress resultant at x=0 with the cross-sectional area of the warp tow.   

This simplified stress state was transformed to the global coordinate system xz. 

The transformed transverse shear stress is given by:  
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The transverse force Fz is simply
xz

Aσ .The Fz stress resultant obtained by this 

simple transformation is also plotted in Fig. 8.8 as a function of x. It can be seen that the 

simple formula predicts the trend reasonably well. The maximum difference between the 

finite element predictions and the simple stress transformation is around 18.5% (see Fig. 

8.8(a)) for the glass weave and very little (3.2% in Fig 8.8 (b)) for the carbon weave. A 

much better prediction for the carbon weave as compared to that for the glass weave by 

the simple formula is again due to the fact that in the carbon weave, the warp tow is the 

main load carrying component. Unlike Fx, whose variation is mainly governed by 

relative fill and matrix properties, the existence and variation of Fz is due to the warp 

tow undulation. Hence, the dip at maximum undulation should not disappear even in the 

case of a stiffened matrix configuration. Figure 8.8(a) shows that, in fact, is the case. 
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(a) S2-glass/SC15 configuration 
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(b) Carbon/EPON configuration 

 

Figure 8.8.  Variation of Fz in plain weave configurations with different material 
systems. 
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Figure 8.9. Load flow direction in warp tow with the coordinate system for stress 

transformation. 
 

 

8.3.1.3. Variation of σxx average stress in a plain weave  

Earlier we saw the variation of Fx stress resultant in the plain weave along the 

applied load direction. It must be noted that the relative areas of fill tow and matrix 

pockets do not stay constant at different cross-sections, hence the variation of average 

stress would be different from the variation of the Fx stress resultant. Here, this 

difference is investigated. Figure 8.10 shows fill areas for different cross-section 

locations along the applied load direction. The warp area at any cross-section is constant 

and is equal to 31.8% of the total. The sum of fill and matrix area is also constant 

(=62.8% of the total), but the relative areas of fill and matrix changes. It can be seen that 

maximum fill area is 50.8% of the total area of the cross-section and it deceases to 0% as 

we move to the maximum undulation region of the warp tow. To obtain a measure of 

average stress at different cross-sections, the Fx force shown in Fig. 8.5 was divided by 

the respective areas to obtain the variation of average stress along the x direction. It must 

be pointed out here that average stresses were calculated for the 24 section mesh (see 

Fig. 8.11) because there was a singularity in average stress in the fill tow at maximum 

undulation region of the warp.  Figure 8.12 shows the variation of normalized average  
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Figure 8.10. Variation of area of fill tow along the applied load directions. 
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Figure 8.11. Refined mesh that was used to calculate the variation of average stress.
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(a) S2-glass/SC15 configuration 
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(b) Carbon/EPON configuration 
 
 

Figure 8.12. Variation of average stress in plain weave configurations with different 
material systems ( xx_avg x xx_avg xx_avg xx_avg_@ x = -1.5σ = F /A and Normalizedσ =σ σ ). 
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σxx stress at different cross-sections. The σxx stress is normalized by the respective value 

at x = -1.5. The locations x = -1.5 and x=0 Fig. 8.12 correspond to cross-section A and B 

(in Fig. 8.11) respectively. Unlike the force Fx, the average stress is maximum at 

maximum undulation region (section B) for fill tow also. Since the fill area reduces to 

zero at section B, there is a sharp rise in average σxx at that section. Although the matrix 

area at section B is maximum, the average σxx for matrix still increases at that section, 

because the percentage increase in Fx at section B is greater than percentage increase in 

area of the matrix. The increase in average stress at maximum undulation region can 

potentially make that region very susceptible to damage. Figure 8.12 shows that these 

observations are valid for plain weaves with both the considered material systems.  

8.3.1.4. Correlation between stress resultants & stress concentrations 

A correlation exists between the variation of the stress resultants and the location 

of stress concentrations in the warp tow. Note that since the area of cross-section of the 

warp tow is constant along the length of the warp tow, the variation of stress resultants is 

the same as the variation of average forces in the warp tow. Therefore the stress 

concentrations have the same correlation with the average stresses too. The regions 

where stress is concentrated are the potential damage initiation spots. Figure 8.13 shows 

σxx and σxz stress contours for the warp tow of a plain weave and curved beam. The 

“curved beam configuration” has only the warp tow in space and was used to obtain 

insights about the behavior of the warp tow of a PW. In Fig. 8.13, the location of peak 

stresses is marked by arrows for both of the configurations.  

Figure 8.13(a) shows that for the warp tow, there is a large variation in σxx stress. 

The peak σxx occurs at the maximum undulation region, which is also the region of peak 

in Fx in the warp tow. The σxz stress is also non-uniform throughout the warp tow with a 

maximum at the maximum undulation region. This is also the region of the maximum 

Fz, as discussed earlier (Fig. 8.8). Hence, a correlation between the magnitudes of stress 

resultants and location of stress concentrations exists. The correlation between peak 

stress resultants and peak stresses was also observed for the stiffened matrix 

configuration. An investigation of plain weave configurations with truncated cross-
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section showed that these correlations are not due to peculiarities of the lenticular cross-

section shape.  
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Figure 8.13. Stress contours for σxx and σxz. 
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In the case of a curved beam, though Fx is constant, there is a wide variation in 

the σxx stress distribution. In a curved beam, the maximum stress exists in the region of 

zero crimp because that is the region of maximum bending moment. Variation of the Ry 

bending moment along the length of warp tow and curved beam is shown in Fig. 8.14. 

The warp tow has almost zero bending moment, whereas for the curved beam, the 

moment varies considerably as we move along different cross-sections of the beam. The 

bending moment is maximum at the zero crimp angle region (i.e. at x=0 and x=3) and 

zero at the maximum undulation (i.e. at x=1.5), which is expected. 
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Figure 8.14. Comparison of bending moment in PW warp tow and in curved beam. 

 

 

Non-zero bending moment in a curved beam causes almost a linear variation of 

the σxx stress whereas in the warp tow, the variation is not linear. The peak stress 

locations, magnitudes, stress resultants and bending moment are distinctly different in 

the warp tow of a plain weave as compared to in a curved beam. These results suggest 
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that one should be careful about approximating the tows as curved beams in approximate 

models. 

8.3.1.5. Load flow in a plain weave under the application of in-plane shear stress 

The behavior of a plain weave was also analyzed under the application of in-

plane shear load. A unit volume averaged in-plane shear stress was applied to a plain 

weave with S2-glass/SC15 material system. The mesh used for this study is shown in 

Fig. 8.11. The variation of different stress resultants Fx, Fy and Fz in the warp tow is 

shown in Fig 8.15. It can be seen that the only significant non-zero stress resultant is Fy 

and the other two resultants are relatively small. Unlike the uniaxial tensile loading, the 

Fz is almost zero in this case. 
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Figure 8.15. Variation of load flow in warp tow of a plain weave 
(applied stress is <σxy> = 1). 



 

 

168 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0

x

Fy

Fill

Warp

Matrix

Total

 

Figure 8.16. Variation of Fy in a plain weave (applied stress is <σxy> = 1). 
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Figure 8.17. Variation of normalized average σxy in a plain weave 
( xy_avg xy_avg xy_avg xy_avg_@ x = -1.5σ = Fy/A and Normalizedσ =σ σ ). 
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Since Fy is the significant stress resultant in this case, Fig. 8.16 shows the 

variation of Fy in the warp, fill tow and matrix. Like, the uni-axial tensile loading, in this 

case also, there is considerable variation in the load flow at different cross-sections of 

the weave along the x-direction. The plane x=0 is the maximum undulation region for 

the warp tow and the load reaches maximum value at this location for the warp tow as 

well as for the matrix. In contrast, the load drops in the fill tow at maximum undulation 

region. These variations in the load flow are similar to the load flow in the case of uni-

axial tensile loading and are again due to the difference in moduli of warp, fill tows and 

matrix and changing material areas of the matrix and fill tow at different cross-sections. 

Figure 8.17 shows the variation of normalized average σxy stress in matrix, warp 

and the fill tow. The stress was normalized by its respective value at x = -1.5 for 

different components. The average σxy in any component at a particular cross-section 

was obtained by dividing the stress resultant Fy with the area of the component at that 

cross-section. The normalized average σxy increases as we move toward the maximum 

undulation region (section B in Fig. 8.11). In this case also, there is a singularity in 

average σxy for the fill tow at x=0, because the fill area is almost zero at that location. 

Due to the presence of peak average stress at maximum undulation region, that region is 

prone to having high localized stresses also. Figure 8.18 shows that is actually the case. 

The figure shows the σ12 stress contours in the warp and fill tows weave. Figure 8.18 

shows that unlike uniaxial tensile loading, the stress distribution is the same in the warp 

and fill tows. Peak local stresses exist at the maximum undulation regions, the same 

place where maximum average stress exists in the warp and fill tows. This makes the 

maximum undulation region very susceptible to damage initiation under in-plane shear 

load too. 
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Figure 8.18. σ12 stress contours in a plain weave under the application of unit in-plane 
shear stress (peaks are marked by arrows). 

 

 

 

8.3.1.6. Typical stress volume distribution in the warp tow of a plain weave 

Here the stress distributions are analyzed using a stress volume distribution plot 

for the warp tow of a plain weave. A volume averaged stress <σxx>=304 MPa was 

applied to the plain weave model with S2-glass/SC15 material system. It caused a 

volume averaged strain of <εxx>=1%. Figure 8.19 shows the stress contours for different 

components in the warp tow of the plain weave. All the shown stresses are normalized 

by the respective strength values. Analysis of stress contours in the warp tow shows that 
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the peak σ11, σ22, σ33 and σ13 stress magnitudes are 0.46, 1.84, 1.27 and 1.7 times their 

corresponding strengths, respectively. This suggests that σ22 is the most critical 

component for failure initiation. Below we examine a stress volume distribution plot to 

obtain another perspective. 
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Figure 8.19. Normalized stress contours in the warp tow of a plain weave. Applied load 
is <σxx>=304 MPa and stresses are normalized by their corresponding strengths. 

 
 
 
 

Figure 8.20 shows the stress volume distribution in the warp tow. The 

distribution is shown for all six stress components. The stresses (σij) are normalized with 

their respective strengths (Sij). This plot reveals how much volume of the material has a 

stress magnitude larger than a particular value. Assuming a maximum stress failure 

criterion, one could also find how much volume exceeds a critical stress.  
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Figure 8.20 shows that only 1.2% of the volume has σ33 stress greater than S33. 

The σ22 peak value is 1.84S22, but less than 5% of the tow has σ22 greater than 1.03S22. 

Hence, these stress concentrations are so localized that slight yielding might eliminate 

the stress concentrations. In contrast, a considerable volume of the tow (about 19%) has 

σ13 greater than S13. This means that a considerable volume of the tow is highly stressed 

and might cause failure initiation under this mode. Thus, σ13 might be the most critical 

stress component unlike that which was initially suggested by analysis of stress contours.  
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Figure 8.20. Stress volume distribution in warp tow (Applied volume averaged 

<σxx>=304 MPa & the stress components are normalized by their corresponding 
strengths). 

 

 

 



 

 

173 

8.3.2. Effect of Textile Architecture on Stress Resultants 

Here the effect of weave architecture on the variation of stress resultants along 

the length of a warp tow was considered. To have meaningful comparisons, comparable 

regions were identified and analyzed. The comparable regions are shown in Fig. 8.1. 

Mesh refinement was the same for the different weave architectures. In this section, the 

variation of stress resultants is compared for the warp tow present in comparable 

regions. Meshes for different weave architectures are shown in Fig. 8.1. Figures 8.21, 

8.22 and 8.23 show the effect of weave architecture on the variation of stress resultants 

in the warp tow. 

In the comparable regions, all the weaves show a similar peak in Fx at the 

maximum undulation region (see Fig. 8.21). The distribution for PW and Twill is 

symmetric while for satin weaves, it is not. This is due to the fact that PW is symmetric 

and Twill weave is anti-symmetric whereas others are not (see Fig. 8.1(b)). The Fz 

distributions (see Fig. 8.22) are also very similar to each other for different weaves. 

Hence, in terms of Fx and Fz stress resultants, the global architecture has little effect on 

the warp tow in the local comparable regions. 

The observations are different in the case of moment distribution, which is shown 

in Fig. 8.23. If non-zero stress resultants Fx or Fz do not act through the center of the 

cross-section of the tow, then it will result in non-zero moment at that cross- section of 

the tow. All the architectures have non-zero out of plane bending moment Ry. But this 

out of plane bending is very small for all the cases as shown in Fig. 8.23. Twill and 4HS 

have significant non-zero in plane bending Rz and out of plane bending Rx. Although 

nodal forces in the y- and z directions contribute to the Rx moment, the nodal forces in 

the y-direction were negligibly small, hence their contribution to the Rx moment was 

also negligibly small. 
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Figure 8.21. Effect of weave architecture on Fx distribution in the warp tow. 
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Figure 8.22. Effect of weave architecture on Fz distribution in the warp tow. 
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Figure 8.23. Effect of weave architecture on variation of moments in the warp tow. 

 

 

The y offsets between the lines of action of stress resultants Fx and Fz and the xz 

plane are referred to as off

Fx
y  and off

Fz
y respectively herein. It must be noted that the 

moment is a combined measure of offsets and magnitude of the force stress resultants. 

The moment at any cross-section will be zero if either of those is zero.  Both off

Fx
y and 

off

Fz
y are non-zero at most of the warp tow cross-sections of the Twill and 4HS weaves. 

The existence of off

Fx
y only for Twill and 4HS weaves and not for others, can be explained 

by carefully examining the architecture of different weaves. Figure 8.1(b) shows the 

weave architectures in the comparable regions. For Plain, 5HS and 8HS weaves, y=0 is a 

plane of symmetry. For Twill weave, there is no symmetry about y=0. For 4HS, there is 

no symmetry about y=0 for half of the comparable region from x=1.5 to x=3. For the rest 

of the comparable region, the 4HS weave is symmetric about y=0.  

Now if we examine the cross-section of the twill model at x=3 (refer Fig. 8.1(b)), 

we can see that the left half has fill tow woven around the warp tow whereas the right  
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Figure 8.24. Variation of y

x
R for warp, fill and matrix. 

 

 

half has a gap (filled by matrix) between the fill and warp. This causes better 

reinforcement of the warp on the left half than on the right half. Hence, the right half of 

the warp tow has to take more Fx load than the left half. This causes Fx to shift to the 

right (positive y direction) for the warp tow cross-section at x=3. If this hypothesis is 

true, then the following should also be true for the Twill weave: 

• Warp tow should have negative y offset in Fx at cross-section x=0. 

• Fill tow should have opposite offsets in Fx as compared to warp tow offsets at each 

cross-section.  

• Offset in Fx for warp/fill tow should disappear for stiffened matrix configuration. 

Figure 8.24 shows that this is the case. In Fig. 8.24, the bending moment Rz for 

warp and fill tows of the Twill weave is shown. From x=0 to x=1.5, the warp tow has 

negative Rz due to the presence of gaps in warp and fill in the negative y direction. Also, 
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the variation of Rz is anti-symmetric about x=1.5 since the architecture of the twill 

weave is anti-symmetric. The fill tow has an opposite moment distribution as compared 

to the warp tow. Figure 8.24 also shows that Rz for the warp tow of a stiffened matrix 

configuration is very small. Since Fx for each cross-section is considerably large, off

Fx
y for 

the warp tow was calculated to be negligible for the stiffened matrix configuration.  
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Figure 8.25. The σ11 contours in comparable regions of the warp tow for different 

architectures. 
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The effect of offset of Fx on the location of σ11 stress concentrations was also 

examined. Figure 8.25 shows the σ11 contours in comparable regions of the warp tow for 

different architectures. For PW, 5HS and 8HS weaves the stress contours are symmetric 

about the plane y=0. The stress concentrations are located at the maximum undulation 

regions and near both edges of the tow. For the case of Twill and 4HS weaves, the stress 

contours are not symmetric. For Twill weave, the stress concentrations are shifted 

slightly, as indicated by arrows in Fig. 8.25. This shift in locations of stress 

concentrations might be caused by the Fx offset. Since there is negligible Fx offset for a 

stiffened matrix twill weave configuration, the σ11 stress contours are almost symmetric 

about y=0 plane as shown by Fig. 8.26. 
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Figure 8.26. The σ11 contours in the warp tow of the stiffened matrix twill weave 

configuration. 
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8.3.3. Effect of Damage on Load Flow in a Plain Weave 

So far we have investigated only the load flow if the composite is behaving linear 

elastically, but the textile composites show considerable non-linear response due to 

plasticity and material damage when static or fatigue load is applied. Here we investigate 

the effect of damage on the mechanics of load flow in a plain weave composite. The 

material system is kept to be S2-glass/SC15. The mesh used is shown in Fig. 8.27. The 

strength properties for the tow were obtained using Chamis’ micromechanics formulas 

[80] and are given in Table 8.1. Whitcomb et al.’s [40] property degradation model was 

used for this study. The details of property degradation model and failure criteria were 

given in chapter VI earlier and are not repeated here. A uniaxial tensile load along the x 

direction was applied until the woven composite failed.  
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Figure 8.27. Stress-strain response of S2-glass/SC15 plain weave  

under uni-axial tensile load. 
 
 

Section BSection A

X

Z

Y
X= -1.5

X=0



 

 

180 

 
 

Figure 8.27 shows macroscopic stress strain behavior of the weave along the 

applied load direction. A linear elastic extrapolation is also shown in the figure for 

comparison purposes. The secant modulus of the composite decreases gradually until 

1.48% strain. At that strain, the stress level drops by 24% from a linear elastic 

extrapolation. At 1.52% strain, the composite looses its load bearing capacity and the 

stress drops suddenly.  

Figure 8.28 shows the effect of damage on load flow in the warp, fill tow and the 

matrix. The Fx load is shown at different strain levels and the load is normalized by the 

applied volume averaged stress at any strain level. At 0.135%, the Fx load in the warp, 

fill and the matrix is same as the elastic solution predictions, because no damage has 

occurred in any of the components at that strain level. At 0.135% strain, load at x=0 

(section B in Fig. 8.27) increases in the warp tow and matrix pockets whereas it 

decreases in the fill tow due to reasons discussed earlier. As the load increases to 0.32% 

strain, a considerable drop in the load occurs in the fill tow. There is slight increase in 

the load in the matrix, and the majority of the load dropped by the fill is taken by the 

warp tow. Also, at this strain level, there is not as much variation in the load in the fill 

and warp tows (going from section A to section B of the mesh shown in Fig. 8.27). A 

considerable increase in the load in the warp and drop in the fill tow suggest occurrence 

of considerable damage in the fill tow. Figure 8.29 shows that in fact is the case. Figure 

8.29 shows damage initiation and progression in the fill tow, matrix and the warp tow at 

different strain levels. If the material point failed under any of the six failure modes, then 

it is shaded, otherwise not. Damage initiation takes place at 0.175% strain in the fill tow 

and all of the fill tow is damaged at 0.32% strain level. It must be pointed out here that 

the location of damage initiation is consistent with our earlier observations and 

discussion of peak average σxx stress in the fill tow. It was noted in Fig. 8.12 earlier that 

there is a singularity in average σxx in the fill tow at maximum undulation region, which 

makes that region very susceptible to damage. Figure 8.29 validates that hypothesis and 

shows that the damage, in fact, does initiate in the fill tow in that region. 
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The damage has not initiated in either matrix or the warp tow at 0.32% strain 

level. Note that even though, a considerable damage has taken place in the fill tow, it is 

still able to withstand some load along the x-direction, because in Fig. 8.29, the material 

point is shaded if any failure mode took place. For example, if some damage occurred 

along out of plane direction in the fill tow, it might still be able to withstand load along 

applied load direction. Hence the load in the fill does not completely drop down to zero 

in Fig. 8.28 at 0.32% strain. At this strain level, the load in the matrix increases from 

section A to B, as the area of the matrix increases from section A to B and no damage 

has occurred in the matrix at this strain level. Damage initiates at a strain level of 

0.465% and 0.81% in the matrix and warp tow respectively as shown by Fig. 8.29. At a 

strain level of 1.48%, a considerable damage has occurred in the matrix also. Hence, 

there is drop in the average load in the matrix. Although, there is considerable damage in 

the warp, its load bearing capacity is still in tact and load in the warp increases. But as 

soon as the strain level increases to 1.52%, the damage saturates in the warp tow as 

shown by Fig. 8.29. This causes a considerable load drop and load becomes quite non-

uniform in the warp, fill as well as matrix as seen in Fig. 8.28. An excellent agreement 

between the load flow variation and the occurrence of damage in the warp, fill and 

matrix shows that based on load flow calculations, an intuitive understanding can be 

developed about where and how damage could be progressing even without looking at 

detailed microscopic damage simulation data. 
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(a) Fx variation in the warp tow 
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(b) Fx variation in the fill tow and matrix 

Figure 8.28. Effect of damage on variation of Fx in the plain weave  
( x x xx model

Normalized F = F σ ). 
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Figure 8.29. Damage initiation and progression in the plain weave.
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Figure 8.30 shows the effect of damage on variation of normalized Fz in the warp 

tow. The variation is similar to the elastic case and exactly the same as linear elastic 

solution at 0.135% strain level because no damage has taken place in the weave. As the 

strain level increases, the maximum normalized Fz in the warp tow also increases 

because the average σxx stress also keeps increasing in the warp tow. Before the final 

failure, the variation in Fz is related to the amount of average stress in the warp tow in 

the fiber direction. 
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Figure 8.30. Effect of damage on variation of normalized Fz in the warp tow 
( z z xx model

Normalized F = F σ ). 
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Figure 8.31. Effect of damage on σxx volume distribution in the warp tow 

xx xx xx model
( Normalizedσ =σ σ ) . 

 

 

 

Now the effect of damage on the σxx stress contours and σxx stress volume 

distribution in the warp tow is discussed. Figure 8.31 shows the normalized σxx volume 

distribution in the warp tow. The stress is normalized with applied volume average stress 

<σxx> at different strain levels. At 0.135% strain, the stress volume distribution is the 

same as the linear elastic predictions. The σxx stress contours in the warp tow are shown 

in Fig. 8.32 and at 0.135% strain, the σxx stress contours are same as elastic solution. 

Stress peaks occur at the maximum undulation region and are marked by an arrow in the 

figure. As the strain increases to 0.32% and 1.48%, the average stress increases as shown 

in the stress volume distribution plot in Fig. 8.31. Since the load variation in the warp 

tow at these strain levels was little (see Fig. 8.28(a)), there is not much variation in the 

stress range too at these strain levels. However, as soon as the strain increases to 1.52%, 



 

 

186 

the warp tow has considerable damage, and the stress volume curve spreads out in 

horizontal direction (see Fig. 8.31), which indicates a wide variation in stress range. The 

σxx contours in Fig. 8.32 at 1.52% strain also show a wide variation in the stress and the 

stress range (-18.7 to 18.0) at that strain level is much larger as compared to the stress 

range at lower strain levels. 
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Figure 8.32. Effect of damage on σxx contours in warp tow. 
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8.3.4. Effect of Plasticity on Load Flow in a Plain Weave 

In this section, we investigate how plastic deformation affects the load flow in a 

plain weave when a uniaxial tensile load along the warp direction is applied. The effect 

of plasticity is investigated on variation of Fx, Fz, average σxx and stress volume 

distribution in a plain weave. For this study also, a plain weave with S2-glass/SC15 

configuration was chosen, the same configuration as used in the damage study earlier. 

The mesh is shown in Fig. 8.33. The plasticity analysis was based on a two scale 

modeling approach based on Hill’s yield criterion for orthotropic materials. The details 

of plasticity modeling were provided in chapter VII earlier. The elasto-plastic material 

properties for the SC15 resin and S2-glass/SC15 tow are given in Table 8.1. 
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Figure 8.33. Plasticity induced non-linear stress-strain response of S2-glass/SC15 plain 
weave under uni-axial tensile load. 
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Figure 8.33 shows the plasticity induced non-linear macroscopic stress-strain 

response of the plain weave. A linear elastic extrapolation and progressive damage 

simulations are also shown for comparison purposes. The figure shows that due to 

plastic deformation the Exx modulus of the weave starts decreasing from the very 

beginning and keeps decreasing gradually till 2% strain. The simulations were stopped at 

that strain level because infinitesimal strains were assumed in the analysis. The stress-

strain curve predicted by the plastic analysis lies above the damage simulation, which 

shows that the degradation of modulus predicted by plastic analysis is less than that 

predicted by damage analysis. At 1.48% strain level, the percentage loss in the stress 

level due to damage is 24% as compared to 14% due to plasticity. Damage simulation 

predicts that at a strain level of 1.52%, the woven composite collapses, whereas 

plasticity simulation does not predict failure.  

Figure 8.34 shows the effect of plasticity on the normalized Fx load flow in the 

warp tow, fill tow and the matrix at different strain levels. The Fx is normalized by 

applied volume averaged stress <σxx> to the model at various strain levels. The variation 

of Fx as predicted by a linear elastic analysis is also shown for comparison purposes. 

Unlike damage analysis predictions, at a low strain level of 0.1%, the plastic and elastic 

solution predictions for variation of normalized Fx are similar but not exactly the same. 

This is due to the fact that the matrix and tows are elasto-plastic in nature starting from 

very low strain levels, which causes yielding at as low as 0.1% strain. Elastic as well as 

plastic solution at 0.1% strain predict that as we go from x = -1.5 to x = 0, the Fx 

increases in the warp tow and matrix and it decreases in the fill. As discussed previously, 

this is due to changing relative material areas of the fill and matrix at different cross-

sections and relative difference in moduli of different components in the applied load 

direction. But when the load increases from 0.1% to 2% strain, the average load in the 

warp tow increases and in the fill tow decreases, suggesting occurrence of considerable 

yielding in the fill tow. Different load flow curves in Fig. 8.34 show that as the strain 

level increases to 2%, the variation in Fx along the x-direction has decreased 

considerably in the warp as well as the fill tow and the load flow is more uniform. The 
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figure also shows that the load flow in matrix is affected very little, suggesting little 

effect of plasticity on the load flow in the matrix. It should be noted that the total load in 

the plain weave is always constant at different strain levels, which is expected. 
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Figure 8.34. Effect of plasticity on the variation of Fx in the plain weave  

x x xx model
( Normalized F = F σ ) . 
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The variation of average σxx in the tows and matrix along the x-direction was also 

investigated. The average σxx stress in any component at a particular cross-section was 

obtained by dividing the normalized Fx with the area of the component at that cross-

section. It can be seen in Fig. 8.35 that the variation of σxx in the warp tow is exactly the 

same as the variation of Fx as the area of cross-section of of warp tow does not change  
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Figure 8.35. Effect of plasticity on the variation of average σxx in the plain weave 

xx_avg x xx model
( σ = F σ )A . 

 

 



 

 

191 

along x-direction. But the variation of σxx in the fill tow has considerably changed. The 

area of the fill tow at different cross-section decreases considerably as we move from x = 

-1.5 to x = 0 (see Fig. 8.10), reaching zero at x = 0. Hence, the stress in the fill tow 

increases sharply as we approach the cross-section at x = 0. Nevertheless, the plasticity 

does decrease the average stress level in the fill tow as the strain increases. The average 

stress in the matrix is almost unaffected and almost the same at different strain levels as 

well as at different cross-sections along the x-direction.  
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Figure 8.36. Effect of plasticity on the variation of Fz in the warp tow  

z z xx model
( Normalized F = F σ ) . 
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Figure 8.37. Effect of plasticity on σxx volume distribution in the plain weave 

xx xx xx model
( Normalizedσ =σ σ ) . 
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Figure 8.36 shows the variation of normalized Fz at different cross-sections of 

the warp tow along the applied load direction. At the low strain level of 0.1%, the 

variation is almost the same as the elastic solution. As the strain level increases, the 

maximum Fz in the warp tow also increases, which is due to the fact that the average σxx 

in the warp tow increases with an increase in strain level. As in the elastic case, the 

variation of Fz along different cross-sections is related to the amount of average stress in 

the warp tow in the fiber direction. 

Figure 8.37 shows normalized σxx stress volume distribution plot for the warp 

tow, fill tow and the matrix. The σxx was normalized by the applied volume averaged 

stress <σxx> at different strain levels. The distribution is consistent with the Fx load flow 

observations in Fig 8.34 in the sense that average σxx stress in the warp tow keeps on 

increasing as the strain level increases and the average σxx in the fill tow keeps on 

decreasing at different strain levels. The stress distribution in the matrix is pretty much 

unaffected.   

8.4. Summary  

Increase in computational power has made detailed three-dimensional finite 

element analyses practical, but special post-processing techniques are required to 

interpret the massive amount of output data. Use of non-standard post processing 

techniques brought new insights about the mechanics of load flow in textile composites. 

The main observations of this chapter are summarized as follows:   

• In the warp tow of a plain weave, maximum axial load occurs at the maximum 

undulation region. Two competing load redistribution mechanisms decide the 

relative amount of load flowing in warp, fill and matrix. Relative load flow also 

depends on the material system. Load redistribution in warp, fill and matrix occurs 

because the distribution of fill and matrix material around the warp tow varies along 

the warp tow path. 

• The existence and variation in transverse load can be explained by using a simple 

stress transformation.  
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• There is a correlation between the locations of stress concentrations and locations of 

peak stress resultants.  

• The increase in average stress at maximum undulation region can potentially make 

that region very susceptible to damage. This is especially true for the fill, which has a 

singularity in average stress in that region. 

• In the case of applied in-plane shear stress too, the load flow in the warp, fill and 

matrix is not uniform. The average shear stress is maximum for the warp, fill and the 

matrix in the maximum undulation region which potentially makes that region very 

susceptible to damage initiation under in-plane shear load too.  

• The stress state in the warp tow is non-uniform and fully three dimensional. Some 

stress concentrations might be so localized that slight yielding might significantly 

reduce those stress concentrations. Stress-volume distribution plot provided insights 

that stress contour plots could not, which changed some conclusions about the 

potential failure modes. 

• In comparable regions, all the weaves show a similar peak in the axial and transverse 

stress resultants at the maximum undulation region. 

• In contrast, significant differences in bending moments exist. The lack of symmetry 

in Twill and 4HS weaves causes offset of the stress resultants from the centroid of 

the tow cross-section.  

• An investigation of effect of damage on load flow in plain weave showed that the 

damage in fact does initiate in the fill tow in the maximum undulation region. 

Damage reduces the non-uniformity in the load flow in the warp and fill tows 

considerably, but the final failure causes a large variation in the load flow and stress 

distribution. 

• Plastic deformation also decreases the variation in load flow in the warp and fill 

tows. With an increase in applied load, the warp tow picks up the load shed by the 

fill tow, which suggests that considerable plastic deformation occurs in the fill tow. 
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9. CONCLUSIONS AND FUTURE WORK 

 

9.1. Conclusions 

Various linear elastic, plastic and damage behaviors of textile composites were 

studied. The following conclusions can be drawn from the studies conducted.  

9.1.1. Linear elastic analyses of stress concentrations in braided composites 

First the linear elastic behavior of 2x2 biaxial braided composites was analyzed. 

An investigation of the stress state in the tow of 2x2 braided composites showed that a 

complex stress state which is fully three-dimensional exists in the tow even for simple 

uni-axial loading. A comparison of the stress state in the tow with a lamina of an 

equivalent tape laminate showed that a considerable volume of the tow has more stresses 

than an equivalent lamina in the considered range of parameters (WR =1/3 – 1/20, BA = 

±25˚ - ±65˚). It was also observed that the wide variation in stress volume distribution 

with braid angle is due to simple orientation effects and can be eliminated by matching 

the loading on the tow. Some difference that still remains can be attributed to the phase 

shift of the braid tows. Finally, it was interesting to observe that the severity of the peak 

stresses increases linearly with an increase in waviness ratio for all stress components 

(except for σ12 for which there is little variation). 

9.1.2. Damage initiation and progression in textile composites 

Damage initiation and progression in woven composites was studied by using a 

framework that allowed use of a wide variety of damage initiation and growth models in 

a common way. Four different damage models in terms of degradation of engineering 

elastic properties were implemented. The models differ in terms of the amount of 

degradation as well as the properties to be degraded under a particular failure mode. All 

the models degrade only diagonal terms in the compliance matrix except for Zako’s 

model, which degrades off-diagonal terms also. Zako’s model gave fairly good 

predictions for Glass/Epoxy plain weave composite whereas other models predicted well 

for Graphite/Epoxy plain and twill weave composites. All the models predicted similar 
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response when damage factors were made similar, which shows that the magnitude of 

damage factors are very important even when all the models do not degrade the same 

engineering properties under particular failure modes. Stress volume distribution plots 

for the warp, fill and matrix show that before the damage initiates, the average stress is 

uniform in most of the volume of the component. Damage initiation in any component 

increases the range of stress considerably in that component. 

9.1.3. Plasticity induced non-linearity in braided composites 

  The plasticity induced non-linearity in 2x2 braided composites was analyzed 

using a two scale modeling approach. The analysis was validated by comparing the 

predicted response using elastic and plastic solutions with experimental data for carbon, 

E-glass and S-glass braids. Both experimental and analytical results showed that the 

braid is quite non-linear. The non-linear response could be predicted reasonably well for 

all the braids at as high as 2% strain. Full 3D as well as equivalent tape laminate 

predictions lie within the range of experimental data for almost all braid configurations 

with different material systems.  

  Equivalent tape laminate plastic analyses were performed and it was observed 

that their predictions are almost as accurate as the full 3D braid model predictions in 

terms of percentage modulus reductions, which shows that one can use much simpler 

equivalent tape laminate model to reasonably predict some aspects of the braid behavior 

and have significant computational time savings. A comparison of the performance of 

braided composites and equivalent tape laminates showed that tapes have a better 

performance in terms of longitudinal modulus, but in terms of percentage moduli 

degradation due to plasticity, both braids and tapes have similar performance.  

  Plastic deformation increases the largest σ11 and σ33 values and reduces the 

largest σ13 values in the tow, which suggest that the plastic deformation is probably 

being driven by the σ13 stress component. 

  The effect of fiber modulus on the plastic behavior of braided composite was 

analyzed for a ±25˚ braided configuration and it was concluded that the conclusions 

about the effect of fiber type on the degree of plasticity induced non-linearity in a ±25˚ 
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braid depend on the measure of non-linearity. By modulus drop and energy measures, 

the degree of non-linearity is not much different in the two braids with different fiber 

modulus. However, considerably more plastic strain occurs in the glass braid as 

compared to the carbon braid when loaded at the same stress level, which can potentially 

put the glass tow at a higher risk of initiating damage. 

9.1.4. Mechanics of load flow in textile composites 

Use of special post processing techniques brought new understandings about the 

mechanics of load flow in textile composites. The behavior of plain woven composite 

was investigated in detail and the reasons for the variation in load flow in the plain 

weave were explored. It was found that the load increases in the warp and decreases in 

the fill tow at the maximum undulation region. Load redistribution in warp, fill and 

matrix occurs because the distribution of fill and matrix material around the warp tow 

varies along the warp tow path. This hypothesis was validated by studying various other 

configurations. Relative load flow in the warp, fill and matrix also depends on the 

relative material properties of different components. The existence and variation in 

transverse load was explained by using a simple stress transformation.  

The reasons for stress concentrations to occur at certain preferable locations were 

also investigated. It was seen that a correlation between the locations of stress 

concentrations and locations of peak stress resultants exists. It was seen that under in-

plane tensile as well as under in-plane shear loading, the average stress is maximum in 

the warp, the fill, and the matrix at the maximum undulation region. Due to this, that 

region is very susceptible to initiating damage, especially in the fill, because the fill tow 

had a singularity in average stress in that region. It was very interesting to observe that 

the hypotheses proposed in linear elastic analysis were consistent with the damage 

initiation and progression study. The damage, in fact, did initiate in the maximum 

undulation region in the fill tow. 

 The stress distribution was also analyzed using stress volume distribution plots. 

It was observed that stress contours plots can sometimes give incorrect information 

about the most critical stress component. Some stress concentrations might be so 
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localized that slight yielding might significantly reduce those stress concentrations. The 

critical stress components are likely those which have the potential to fail a larger 

volume of the region.  

The effect of textile architecture on the load flow was investigated by identifying 

equivalent regions in different woven architectures. It was observed that in comparable 

regions, the force variation was very similar, but the moment distribution was not. The 

difference in bending moments was attributed to the lack of symmetry in Twill and 4HS 

weaves, which causes offset of the stress resultants from the centroid of the tow cross-

section thereby producing a non-zero bending moments only in those architectures.  

The effect of plasticity and material damage induced non-linearity was also 

studied for glass/epoxy plain weave composite. It was seen that both damage as well as 

plasticity increase the average load in the warp tow and reduce the average load in the 

fill tow. Also damage and plasticity remove the non-uniformity in the load flow at 

different cross-sections of the warp and fill tows. It was also observed that damage 

induced final failure of the composite causes a large variation in the load flow and stress 

distribution in the warp tow. 

9.2. Future Work 

A large number of linear elastic analyses have been conducted for the plain 

woven composites by various researchers. The analyses for the other complex textile 

architectures and non-linear analyses have been relatively limited in the literature. A 

variety of linear elastic as well as non-linear analyses of a variety of textile architectures 

have been performed in this work. Based on the investigations done in this work, the 

following studies can be performed in the future.  

• Analyses of textile composites that have reinforcement in the out of plane z direction 

have not been considered in this work. The mesh generation for 3D textile 

composites is quite challenging and has a lot of research potential.  

• In this work, though limited studies were conducted with truncated lenticular cross-

sections also, most of the modeling involved lenticular and flattened cross-sections 

for the tows. In reality, the cross-section shape of the tow varies anywhere from 
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lenticular to elliptical to flattened or to other non-uniform shapes. A thorough study 

to take into account the varying shape of the cross-section is required. Mesh 

generation is again a challenging task for this kind of work. 

• The next main task in the area of damage initiation and progression that is left to be 

done is to compare proposed damage models with the microscopic experimental data 

for damage. That will give researchers the opportunity to refine and validate damage 

models. 

• In this work, non-linearity due to the material elastic damage and plasticity were 

studied separately. In reality, the simultaneous occurrence of these phenomena is 

more likely and is recommended for future studies.  
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