
CYBERNETIC AUTOMATA: AN APPROACH FOR THE

REALIZATION OF ECONOMICAL COGNITION FOR

MULTI-ROBOT SYSTEMS

A Dissertation

by

NEBU JOHN MATHAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2008

Major Subject: Electrical Engineering

CYBERNETIC AUTOMATA: AN APPROACH FOR THE

REALIZATION OF ECONOMICAL COGNITION FOR

MULTI-ROBOT SYSTEMS

A Dissertation

by

NEBU JOHN MATHAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Deepa Kundur
Takis Zourntos

Committee Members, Nancy M. Amato
Karen L. Butler-Purry
Scott L. Miller

Head of Department, Costas N. Georghiades

May 2008

Major Subject: Electrical Engineering

iii

ABSTRACT

Cybernetic Automata: An Approach for the Realization of Economical

Cognition for Multi-Robot Systems. (May 2008)

Nebu John Mathai, B.A.Sc., University of Toronto;

M.Eng., University of Toronto

Co–Chairs of Advisory Committee: Dr. Deepa Kundur
Dr. Takis Zourntos

The multi-agent robotics paradigm has attracted much attention due to the

variety of pertinent applications that are well-served by the use of a multiplicity of

agents (including space robotics, search and rescue, and mobile sensor networks). The

use of this paradigm for most applications, however, demands economical, lightweight

agent designs for reasons of longer operational life, lower economic cost, faster and

easily-verified designs, etc.

An important contributing factor to an agent’s cost is its control architecture.

Due to the emergence of novel implementation technologies carrying the promise of

economical implementation, we consider the development of a technology-independent

specification for computational machinery. To that end, the use of cybernetics toolsets

(control and dynamical systems theory) is appropriate, enabling a principled specifi-

cation of robotic control architectures in mathematical terms that could be mapped

directly to diverse implementation substrates.

This dissertation, hence, addresses the problem of developing a technology-

independent specification for lightweight control architectures to enable robotic agents

to serve in a multi-agent scheme. We present the principled design of static and dy-

namical regulators that elicit useful behaviors, and integrate these within an overall

architecture for both single and multi-agent control. Since the use of control theory

can be limited in unstructured environments, a major focus of the work is on the

iv

engineering of emergent behavior.

The proposed scheme is highly decentralized, requiring only local sensing and

no inter-agent communication. Beyond several simulation-based studies, we provide

experimental results for a two-agent system, based on a custom implementation em-

ploying field-programmable gate arrays.

v

To my family and my teachers

vi

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Takis Zourntos and Dr. Deepa Kundur,

whose instruction, mentorship, and cultivation of creativity have been essential to my

development as a scholar and a teacher. I could not have asked for better mentors:

their friendship and genuine concern for their students make me very fortunate to

have been under their guidance.

I would also like to thank the members of my committee, Dr. Nancy Amato, Dr.

Karen Butler-Purry, and Dr. Scott Miller, for the care with which they went over

this work, providing invaluable feedback.

I thank Dr. N. Sivakumar who served to increase my level of mathematical

maturity and literacy.

During my studies at Texas A&M University, I had the privilege of serving as a

lecturer; this experience helped to refine my pedagogical approach and discover the

joy of teaching. In addition to my advisors who have supported these endeavors, I

would like to thank Dr. Prasad Enjeti and Dr. Costas Georghiades for providing

me with several invaluable teaching opportunities. I am grateful for Dr. Enjeti’s

mentorship, advice, and concern for my development as an academic. I’d also like to

acknowledge Dr. Robert Nevels, Dr. Narasimha Reddy, and Dr. Chanan Singh for

their roles in obtaining my first two positions.

The friends I made at Texas A&M certainly made for interesting times. In

particular, Johnny Lee was always quick to lend a hand, whether in helping me sort

out pressing affairs in College Station while I was in Canada, or by serving as co-pilot

for an impromptu New Mexico expedition.

I thank the Natural Sciences and Engineering Research Council of Canada for

its generous support via the NSERC PGS-D Scholarship.

vii

My family has always been there to support me in my various endeavors. Their

presence has made these endeavors meaningful—I shall be ever-thankful for this. My

father, Kalladal John Mathai, inspired me to embark on this journey. I am an engineer

and a good teacher by his example. My mother, Elizabeth John Mathai, cultivated a

love for education in our house. My brother, Binu Samuel John Mathai, has always

served as a most trusted—and capable—consigliere. I was very fortunate to have

my family expanded during the course of my doctoral studies to include M. Joppan,

Gracykutty Joppan, and Josen Joppan. I would like to thank them for entrusting me

with Preetha, my love (who provided a vital spark that inspired vector field design).

And finally—but certainly not least (except in size at this point!)—to my dearest

Maria: when you can read this, you should know that your smiles carried me through

the final leg of this journey.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Multi-agent robotic systems 1

B. Technology-independent computation 5

C. Cybernetics . 7

D. Contributions of this dissertation 10

II PRELIMINARIES . 12

A. Background . 12

1. Agents . 12

2. Dynamical systems and control theory 14

a. Static versus dynamical control schemes 15

3. Embodiment and situatedness 16

B. Previous work on robot control architectures 17

C. Previous work on multi-agent systems 24

1. Explicit coordination 24

2. Implicit coordination 25

D. Perspective on our work 26

III PROBLEM FORMULATION AND TOOLSETS 28

A. Introduction . 28

B. Preliminaries . 29

1. The world and objects therein 29

2. Agent frame of reference 31

C. Formulation . 31

1. Autonomous navigation 32

a. Exploration with obstacle avoidance 32

b. Target tracking with obstacle avoidance 33

2. Organization with respect to other agents 33

a. Flocking . 34

b. Static organization 35

3. Remarks . 36

D. Proposed toolset . 37

1. Desired characteristics 37

2. Automata theory . 38

ix

CHAPTER Page

3. Computational intelligence 40

4. Cybernetics tools . 41

IV STATIC SCHEMES FOR AGENT BEHAVIOR 42

A. Introduction . 42

B. Describing perception . 44

1. Sensors . 44

2. Actuators . 45

3. Plant model for perception 46

C. Regulating perception . 49

1. An analytic approach 50

2. Vector field design: a graphical approach 51

a. An unsatisfactory solution 51

b. A better solution 53

D. Synthesis of taxis behaviors 55

1. Unconstrained, biased taxis 58

a. Qualitative structure of p̂ 58

b. Construction of an analytic form for p̂ 60

c. Derivation of the actuation command 63

2. Taxis with constrained translational motion 64

a. Qualitative structure of p̂ 64

b. Construction of an analytic form for p̂ 65

c. Derivation of the actuation command 67

d. Taxis by reverse-only motion 68

3. Taxis with constrained rotational motion 68

E. Synthesis of non-taxis behaviors 70

1. Anti-taxis . 71

2. Parking . 73

F. Summary of vector fields 74

G. Simulation results . 74

H. Discussion . 78

V DYNAMIC CONTROL SCHEMES FOR NAVIGATION 87

A. Introduction . 87

B. Preliminaries . 87

1. Loosened coupling between sensing and action 87

2. Unifying taxis and obstacle avoidance 89

a. Obstacle sensors 89

b. Disturbances . 91

x

CHAPTER Page

C. Controller synthesis . 93

1. Derivation of virtual control, s! 93

2. Backstepping setup 95

3. Stabilization . 96

D. Properties . 97

1. Structure . 97

a. Neural structure 98

2. Scalability . 99

3. Singularity . 101

4. Relaxation of stability 102

E. Simulation results . 102

F. Weak emergence of satisficing intelligence 108

VI INTEGRATED CONTROL ARCHITECTURES FOR

SINGLE-AGENT SYSTEMS . 111

A. Introduction . 111

1. Integration of behaviors 112

B. Machine organization . 113

1. Hierarchy . 113

a. The proposed architecture 115

2. Layering of behaviors 117

C. Static schemes for single agent systems 119

1. Obstacle avoidance . 119

2. Searching . 124

a. Design of a reference oscillator for searching . . . 125

3. Integration . 128

VII INTEGRATED CONTROL ARCHITECTURES FOR

MULTI-AGENT SYSTEMS . 132

A. Introduction . 132

1. The “nearest neighbor” agent sensor 132

2. Outline . 133

B. Regulating inter-agent boundaries 134

C. Flocking . 135

1. Action superposition 138

2. Action multiplexing 140

D. Self-organization: passive coordinated deployment 140

E. An integrated architecture 145

F. Discussion . 152

xi

CHAPTER Page

1. Implementation of behaviors 153

2. Flocking . 155

3. Self-organization . 157

VIII COMPARISONS WITH OTHER SCHEMES 159

A. Introduction . 159

B. Taxis in an obstacle-free environment 160

1. Constrained target sensing 161

2. Algorithms compared 161

a. Braitenberg vehicle 3a (Bra3a) 163

b. Brooks-Matarić “homing” behavior (BroMat) . . 164

c. Borenstein-Koren virtual force field (BorKor) . . 165

d. Unconstrained taxis (uc) 167

3. Methodology and performance metrics 168

4. Results . 169

C. Navigation: taxis with obstacle avoidance 170

1. Algorithms compared 170

a. Braitenberg vehicle 3c (Bra3c) 176

b. Matarić’s “avoid-everything-else” behavior (Mat) 177

c. A dithered virtual force field method (BorKor-d) 177

2. Methodology . 178

3. Results . 179

D. Discussion . 180

IX EXPERIMENTAL VALIDATION 189

A. Introduction . 189

1. Methodology . 189

B. Testbed setup . 191

1. Chassis and electromechanical subsystems 191

2. Sensors . 193

a. Obstacle sensing 193

b. Target and agent sensing 193

3. Actuators . 194

4. Computational substrate 196

a. Control hardware 196

5. Integrated vehicle . 197

C. Experiments . 197

xii

CHAPTER Page

X CONCLUSION . 200

A. Summary of the work . 200

B. Future work . 201

1. Extending vector field design 201

2. Improved perception 202

3. Machine “introspection” 203

4. Inter-agent communication 203

REFERENCES . 205

APPENDIX A . 219

APPENDIX B . 220

VITA . 223

xiii

LIST OF TABLES

TABLE Page

I Summary of toolset considerations. 41

II Summary of reference vector fields for taxis. 75

III Summary of reference vector fields for non-taxis behaviors. 76

IV Quantities used in the dynamical control scheme. 100

V Computations performed by the dynamical control scheme. 100

VI A hierarchy of behaviors for navigation. 114

VII Correspondence between the behaviors of a software-based scheme

and our scheme. 154

VIII Five different initial conditions for the agent were used in the

comparison of taxis algorithms. 168

IX Summary of algorithm performance characteristics for obstacle-

free taxis: d = 4, ψ = 0. 171

X Summary of algorithm performance characteristics for obstacle-

free taxis: d = 4, ψ = 3
4π. 173

XI Summary of algorithm performance characteristics for obstacle-

free taxis: d = 4, ψ = 4
3π. 174

XII Summary of algorithm performance characteristics for obstacle-

free taxis: d = 8, ψ = 4
5π. 175

XIII Summary of algorithm performance characteristics for obstacle-

free taxis: d = 8, ψ = 3
2π. 176

XIV Summary of algorithm performance characteristics: taxis with

obstacle avoidance. The dash (−) indicates that the algorithm

did not converge, that is, the agent was unable to circumnavigate

the obstacle. 184

xiv

TABLE Page

XV Summary of accompanying video files. 219

xv

LIST OF FIGURES

FIGURE Page

1 An agent (composed of sensors, S, actuators, A, and computa-

tional hardware, C) coupled to an environment, E. 2

2 Overview of a general multi-agent robotics application. 4

3 Hardware topology of a dynamical system; D represents a memory block. 6

4 An agent, M , coupled to the environment, E. 17

5 Classification of embodied control schemes. 19

6 A control scheme that uses n processing steps to process sensor

data and generate an action. Each step requires the others and

can not, in isolation, control the agent. 21

7 A subsumption architecture with n primitive controllers. Each

controller has access to the sensors and actuators and hence can,

in isolation, control the agent. Higher-level controllers influence

the operation of lower ones via tuning channels (shown by diago-

nal arrows). The action selection subsystem enforces the scheme’s

policy on how the individual controller outputs determine the

overall action of the agent. 22

8 The world and objects therein: Mi and Mj are agents, trying to

get to a common target of interest, T , in an environment with

obstacles, Ω1, Ω2, and Ω3. Agent Mi senses the displacement to

agent Mj as liMj
, and the displacement to T as liT 30

9 The autonomous navigation problem. (1) An agent (in red) lo-

cated in a region where it can not perceive the target, executes

an approximation of a space-filling curve which eventually enters

a region within sensing range of T . (2) The agent navigates to

T , executing a collision-free path about the obstacles, Ω1, . . . , Ω7,

and (3) eventually reaches T . 32

xvi

FIGURE Page

10 An agent, M , to which a local coordinate system has been at-

tached. The agent is sensing a target of interest, T , whose instan-

taneous position with respect to M ’s local frame of reference is

η(t). 44

11 Top-view of a simple unicycle (in grey) to which a local l1 − l2
coordinate system has been attached. The directions of positive

v and ω are indicated by red arrows. The unicycle’s position and

orientation with respect to a global x1 − x2 coordinate system

(unattached to the unicycle) are denoted by x and ψ. 46

12 The agent at time t (shown in red with its local coordinate sys-

tem), and at time t + h (in blue). Also illustrated are the cor-

responding displacements to the target T (η(t) and η(t + h), re-

spectively), and the displacement, b, and angle, δψ, between the

two frames of reference. 48

13 A candidate vector field that globally asymptotically stabilizes

η = 0. 52

14 Behaviors specified by the reference vector field of Figure 13. 53

15 Vector field for unconstrained taxis. 54

16 Behavior specified by the reference vector field of Figure 15. 54

17 Key manifolds and their behavioral implications. 56

18 The influence of flow curvature on behavior. Flow c is circular,

while the flows denoted by the subscripts + and − denote flows

whose radii are increasing or decreasing, respectively. 57

19 Vector field for unconstrained taxis with forward bias. 59

20 Behavior ‘c’ specified by the reference vector field of Figure 19

that biases forward motion. 59

21 Candidates for f(·) in (4.32). 61

22 Behavior of an agent engaging in taxis by forward-only motion. . . . 64

23 Vector field for taxis by forward motion. 65

xvii

FIGURE Page

24 Candidates for f(·) in (4.43). 67

25 Behavior of an agent engaging in taxis by reverse-only motion. 68

26 Vector field for taxis by reverse motion. 69

27 Vector field for taxis with a rotational bias. 70

28 Vector field for asymptotic anti-taxis. 72

29 Vector field for rotational anti-taxis. 72

30 Vector field for parking. 73

31 Setup for simulations. 77

32 Simulation results for the unconstrained taxis behavior showing

the agent’s trajectory for four cases. The reference vector field for

unconstrained taxis is shown in the center with annotations that

correspond to the simulated trajectories. 79

33 Simulation results for the unconstrained taxis with forward bias

behavior showing the agent’s trajectory for two representative

cases, and the associated reference vector field. 80

34 Simulation results for the constrained taxis by forward motion be-

havior showing the agent’s trajectory for two representative cases,

and the associated reference vector field. 81

35 Simulation results for the constrained taxis by reverse motion be-

havior showing the agent’s trajectory for two representative cases,

and the associated reference vector field. 82

36 Simulation results for the asymptotic anti-taxis behavior show-

ing the agent’s trajectory for two representative cases, and the

associated reference vector field. 83

37 Simulation results for the rotational anti-taxis behavior showing

the agent’s trajectory for two representative cases, and the asso-

ciated reference vector field. 84

xviii

FIGURE Page

38 Simulation results for the parking behavior showing the agent’s

trajectory for two representative cases, and the associated refer-

ence vector field. 85

39 The structure of a dynamical controller. 88

40 Specification of an obstacle sensor. 90

41 The function sΩ : rΩ "→ [0, 1] is: (a) 0 for rΩ ≤ rmin
Ω , (b) mono-

tonically increasing for rmin
Ω ≤ rΩ ≤ rmax

Ω , and (c) 1 for rΩ ≥ rmax
Ω . . . 91

42 Revised controller motif with track and suppression channels. The

designer must design C so that the tracking objective (i.e., impos-

ing desirable characteristics on the agent’s perception of the world,

s) can be accomplished in the face of disturbances, d, perturbing

C’s action, a, upon P . 93

43 Definitions of the pul : R "→ R and sat : R "→ R functions, pa-

rameterized by the constant l1 > 0. 95

44 Structure of the dynamical controller. 97

45 Neural aspects of the controller’s structure. 99

46 Patched controller; C is the dynamical controller of Figure 44 and

C! implements (5.27). 101

47 Simulation results for the dynamical controller with no relaxation

of stability (κ1 = 0); no obstacles are present. 103

48 Simulation of the dynamical controller with κ1 = 0; the agent is

impeded by a small ball. 103

49 Simulation of the dynamical controller with relaxed stability (κ1 <

0) for the obstacle-free case. 104

50 Simulation of the dynamical controller with κ1 < 0; the agent is

able to avoid a small ball placed in its path. 105

51 Simulation of the dynamical controller with κ1 < 0; the agent is

able to avoid a bigger ball placed in its path. 105

xix

FIGURE Page

52 Simulation of the dynamical controller with κ1 < 0; the agent is

able to circumnavigate a small wall in its path. 106

53 Simulation of the dynamical controller with κ1 < 0; the agent is

able to circumnavigate a big wall in its path. 106

54 Simulation of the dynamical controller with κ1 < 0; the agent is

able to circumnavigate a bigger wall in its path. 107

55 Simulation of the dynamical controller with κ1 < 0; the wall is

too big for the agent to circumnavigate. 107

56 Recursive development of our hierarchical control architecture. 116

57 The architecture of a general layered controller at the i-th level

of hierarchy, Ci. Elementary controllers, Rb
a, that realize various

basis behaviors are grouped according to whether they address

concurrent goals (in which case they have different superscripts)

or exclusive goals (in which case they have different superscripts). . . 118

58 Agent setup with front and rear obstacle sensors. 119

59 Development of a reactive control architecture for single agent

systems. 121

60 An Archimedean spiral (also known as an arithmetic spiral). Suc-

cessive crossings of this curve across the g1 axis (and, more gen-

erally, across any ray emanating from the spiral’s origin) are sep-

arated by ρ. 125

61 The trajectory of a vehicle starting at the origin, under (6.12) and

v(t) ≡ 0.1. 127

62 The vector field structure of oscillator (6.13). 129

63 A controller integrating taxis with an open-loop search behavior. . . 130

64 An example of basic obstacle avoidance. 130

65 An example of searching and taxis, both with obstacle avoidance. . . 131

xx

FIGURE Page

66 The agent sensor of M returns a measurement of the displacement,

lj, to the closest agent, Mj. 133

67 The “social boundaries” of agent Mi: the inclusion zone, Zi is

shown in blue, while the exclusion zone, Ze, is shown in yellow.

Agent Mi senses Mj with respect to Mi’s local li1 − li2 coordinate

system, and strives to maintain Mj within the inclusion zone (i.e.,

at a distance, rA, where rA,min < rA < rA,max). 135

68 A regulation scheme to maintain social boundaries. 136

69 A regulation scheme for flocking using action superposition. The

yellow-highlighted RT and RA blocks realize target tracking and

agent tracking, respectively. The social boundary regulator is

shown highlighted in dark blue; the summation is done at the

output of this regulator. 137

70 The result of simulating six agents under the scheme of Figure 69. . . 138

71 A regulation scheme for flocking using action superposition. The

social boundary regulator has been split into two (highlighted

by the two dark blue boxes), and the superposition with target

tracking is done in between the two halves. 139

72 The result of simulating six agents under the scheme of Figure 71. . . 140

73 A regulator for flocking; action multiplexing. 141

74 The result of simulating six agents under the scheme of Figure 73. . . 141

75 The result of simulating six agents under the scheme of Figure 73

with obstacles. 142

76 The case of a hexagonal formation of agents about a target. 143

77 Under the coordinated deployment behavior, the agent (shown

as a red triangle at the origin of the l1 − l2 coordinate system)

attempts to regulate sA to within the grey regions (which are

sectors of width 2δC > 0 offset by θC > 0 with respect to sT).

The blue shaded region indicates the range of the agent sensor. . . . 145

xxi

FIGURE Page

78 A regulator for self-organization (highlighted in dark blue). A

regulator for taxis is also instantiated to bring the agent to the

target; once there, taxis will disengage, and self-organization will

take over. 146

79 Self-organization of a single group of twelve agents. 146

80 Self-organization of twelve agents divided into two groups. 147

81 Self-organization of one group of thirteen agents. 147

82 Self-organization of twenty six agents, divided into two groups.

Note the emergence of a symmetric final formation. In the final

configuration, all agents except for four are stable in a static for-

mation; the four that are not stationary, oscillate about stationary

positions. 148

83 An integrated controller for a multi-agent scheme that includes

flocking, self-organization about a target waypoint, and obstacle

avoidance. 149

84 Two groups of agents (twenty-six in total) flock to the target and

self-organize about it. The final configuration is mostly stationary

(i.e., most of the agents are at rest), with isolated subgroups of

agents occasionally moving about to re-organize. 150

85 A groups of twenty-six agents flock to the target and self-organize

about it, navigating past two obstacles. 151

86 This simulation uses the same initial group configuration as Fig-

ure 85, but with the obstacles repositioned near the target to con-

strain that area. The collective self-organizes into a configuration

that is distorted by the obstacles. 152

87 Constrained target sensing. The target sensor takes the actual

displacement to the target, η, and returns a vector, s, constrained

to one of n directions (shown in red). 162

xxii

FIGURE Page

88 The target sensor model used for the simulations of all algorithms

in this section. The target sensor is a memoryless system that

measures the displacement from the agent to the target, η, con-

strains the direction (from θ to θ′ through Q), and returns a vector

to the target that is either in polar form, (ρ, θ′), or rectangular

form, s. The blocks “rect2pol” and “pol2rect” effect the conver-

sions between rectangular and polar coordinates. 162

89 Braitenberg vehicle 3a. Information from the target sensors (in

red) are mapped directly to the motor actuators (in blue). The

mapping is “inhibitory” so that when the target is near the sensor,

the motors are actuated to a lesser degree than when the target

is far from the sensor. The effect of this mapping is that the agent

engages in taxis, coming to rest at the target. 163

90 The underlying “rotate-and-go” motion controller used in Brooks’

subsumption scheme. The “turn” module is first engaged to cause

the agent to align with a desired heading; while rotating, the “for-

ward” motion block is inhibited. Upon aligning with the com-

manded heading, the forward block is engaged, and the agent

moves forwards. 165

91 Our implementation of Brooks-Matarić homing behavior. The red

arrows indicate transitions caused by arrival at the target. 165

92 The underlying motion controller used in the scheme of Borenstein

and Koren. 167

93 The agent was placed d units away from the target, with an ori-

entation of ψ radians with respect to the target. 169

94 Path length versus the number of distinct target sensor directions

(n) for the Braitenberg vehicle 3a (Bra3a), Brooks-Matarić hom-

ing (BroMat), Borenstein-Koren virtual force field (BorKor), and

unconstrained taxis (uc) algorithms; d = 4 and ψ = 0. 171

xxiii

FIGURE Page

95 Path length versus the number of distinct target sensor directions

(n) for the Braitenberg vehicle 3a (Bra3a), Brooks-Matarić hom-

ing (BroMat), Borenstein-Koren virtual force field (BorKor), and

unconstrained taxis (uc) algorithms; d = 4 and ψ = 3
4π. Note the

high degree of insensitivity to n of unconstrained taxis. 172

96 Path length versus the number of distinct target sensor directions

(n) for the Braitenberg vehicle 3a (Bra3a), Brooks-Matarić hom-

ing (BroMat), Borenstein-Koren virtual force field (BorKor), and

unconstrained taxis (uc) algorithms; d = 4 and ψ = 4
3π. 173

97 Path length versus the number of distinct target sensor directions

(n) for the Braitenberg vehicle 3a (Bra3a), Brooks-Matarić hom-

ing (BroMat), Borenstein-Koren virtual force field (BorKor), and

unconstrained taxis (uc) algorithms; d = 8 and ψ = 4
5π. 174

98 Path length versus the number of distinct target sensor directions

(n) for the Braitenberg vehicle 3a (Bra3a), Brooks-Matarić hom-

ing (BroMat), Borenstein-Koren virtual force field (BorKor), and

unconstrained taxis (uc) algorithms; d = 8 and ψ = 3
2π. 175

99 A reactive scheme for obstacle avoidance based on Braitenberg

vehicle “3c.” The vehicle engages in taxis when the obstacle sensor

(in orange) is not stimulated; when stimulated by an obstacle, the

vehicle stops and rotates until the stimulation ceases. 177

100 Our implementation Matarić’s avoid-everything-else behavior. The

red arrow indicates a transition caused by arrival at the target. . . . 178

101 Paths executed by the agent around obstacle formation ‘A.’ 180

102 Paths executed by the agent around obstacle formation ‘B.’ 180

103 Paths executed by the agent around obstacle formation ‘C.’ 181

104 Paths executed by the agent around obstacle formation ‘D.’ The

BorKor-d method failed to circumnavigate the obstacle. 181

105 Paths executed by the agent around obstacle formation ‘E.’ Only

cr and Mat enabled the agent to avoid the obstacle. 182

xxiv

FIGURE Page

106 Paths executed by the agent around obstacle formation ‘F.’ Only

cr and Mat enabled the agent to avoid the obstacle. 182

107 Paths executed by the agent around obstacle formation ‘G.’ Only

cr and Mat enabled the agent to avoid the obstacle. 183

108 Paths executed by the agent around obstacle formation ‘H’ (note:

this concave obstacle was created by adding two horizontal exten-

sions on the top and bottom of formation ‘E’). Only cr enabled

the agent to avoid the obstacle. 183

109 Path executed by the agent around obstacle formation ‘I’ (note:

this concave obstacle was created by lengthening the two horizon-

tal extensions of obstacle ‘H’) under control of ‘cr.’ The obstacle

is sufficiently concave as to cause ‘cr’ to fail to circumnavigate it. . . 184

110 The omni-directional obstacle sensor measures the displacement,

f i for i ∈ {1, 2, 3}, from the obstacles (numbered 1, 2 and 3 in

the figure) surrounding an agent (in red) to the agent, sums them

(while attenuating their magnitudes so that closer obstacles yield

longer vectors), and returns the resultant vector, f r. 186

111 A comparison of cr and Mat (both using monocular obstacle sen-

sors), and the virtual force field method using an omni-directional

sensor (omni). The path lengths executed by the agent for each

of these cases were 21.77, 11.85, and 9.16 respectively. 187

112 The chassis used for our experimental testbed with an outline of

the key electromechanical subsystems. 192

113 Pulse width modulated scheme for obstacle sensor data read-out.

The width of the pulse is directly proportional to the distance to

the closest obstacle in front of it. 193

114 Hardware used to read obstacle sensor data. 194

115 Hardware for target sensor data conversion. 195

116 Pulse width modulation scheme for the drive motor power elec-

tronics and steering servomotors. 195

xxv

FIGURE Page

117 Hardware approximation of a hysteresis function. 196

118 Hardware approximation of a leaky integrator. 197

119 Top view of agent. 198

120 Side view of agent. 199

121 Front view of agent. 199

122 The robot communication problem from the perspective of agent M . 204

123 Overview of the simulation environment used in this work. The

dark grey blocks indicate software that was written as part of the

work of this dissertation, while the black boxes indicate third-

party software and libraries. 220

124 Structure of the testbench. 221

1

CHAPTER I

INTRODUCTION

Significant developments in artificial intelligence . . .must await computers

of an entirely different sort, of which the only existing prototype is the

little-understood human brain. (Hubert Dreyfus [1])

By analogy with the evolution of natural intelligence, we believe that in-

crementally solving the control and perception problems of an autonomous

mobile mechanism is one of the best ways of arriving at general artificial

intelligence. (Hans P. Moravec [2])

In this work, we are concerned with the design of lightweight control architectures

to endow robotic agents with various cognitive faculties to operate as part of a multi-

agent scheme. To that end, we employ tools from cybernetics to specify technology-

independent computational primitives. In this chapter we provide a brief primer on

multi-agent robotic systems, the notion of technology-independent computation, and

our justification for the use of cybernetics toolsets. We conclude with an overview of

the contributions of this dissertation.

A. Multi-agent robotic systems

An agent is a computational system that is coupled to another system, the environ-

ment, via sensors (from which information about the environment is determined) and

actuators (with which the agent is able to effect change on the environment) [3, 4].

The general structure of an agent is shown in Figure 1. Robotic agents are mechatronic

The journal model is IEEE Transactions on Automatic Control.

2

systems—artifacts integrating the electronic with the mechanical. In the setup of Fig-

ure 1, hardware that performs and measures mechanical work typically occupy the

actuators and sensors,1 while the computation is almost exclusively done with some

form of electronic hardware (e.g., general-purpose computers such as microprocessors

and microcontrollers, or special-purpose computers realized via field-programmable

gate arrays (FPGAs), full-custom digital circuits, or analog circuits) and is interfaced

to the sensors and actuators via electronic signaling.

S

A

C E

Fig. 1. An agent (composed of sensors, S, actuators, A, and computational hardware,

C) coupled to an environment, E.

There are a diversity of robotic schemes, which reflects the variety of environ-

ments where they have found application. Highly structured environments (e.g., an

industrial manufacturing plant) require robotic systems that are capable of faithfully

reproducing a script of action given to it; the design objectives for such systems do

not extend to endowing faculties of autonomy. On the other hand, unstructured en-

vironments with very little a priori information (e.g., unknown terrains that need to

be traversed and explored) require agents with cognitive faculties that enable them to

satisfice [5, 6], that is, achieve tolerable (and not necessarily optimal) solutions using

the limited resources they have, within an acceptable time-frame (where “acceptable”

1Examples of actuators include motors, engines and solenoids. Examples of sensors
include accelerometers and gyroscopes (often realized via micro-electromechanical
systems (MEMS) hardware), in addition to devices that measure physical phenomena
such as sound, light, pressure, chemical concentration, etc.

3

depends on the faculties the agent is endowed with, as well as the application space).

The field of autonomous mobile robotics deals with the latter type of environment.

Improving the sensing and computational resources of a robot can compensate

for the lack of structure in an environment. For example, giving an autonomous

mobile agent:

• sensors with sufficiently long range

• artificial vision

• a global map of the terrain and knowledge of its position with respect to this

map (e.g., via a global positioning system)

and a sophisticated computer to fuse the high-quality information provided by these

sensory faculties, would enable the agent to, in effect, perceive the underlying struc-

ture of a complex environment and plan a goal-directed strategy. However, the use of

such highly capable agents is often not practical. Rather, many pertinent application

spaces and the paradigm of multi-agent robotic systems require lightweight robotic

agents—agents that are constrained in terms of economic cost, energy consumption,

computational resources, size, mass, and time to act.

Multi-agent robotic systems—using several, possibly lightweight, agents instead

of a single highly competent one—enable a diverse array of applications, such as

robotic exploration (including space robotics, search and rescue, and other scientific

and security-related uses) and mobile sensor networks. These applications are well-

served by the benefits of:

• parallelism and distributed computation

• robustness to individual agent failure

• spatially-distributed sensing and actuation

4

that arise from the use of a multiplicity of agents to attack a problem. A proto-

typical example of such an application is shown in Figure 2. Aerial vehicles (which

may or may not be autonomous) execute a coarse survey of a broad area, “mark-

ing” regions of interest (target waypoints) with a beacon (shown in green). Ground-

based autonomous robotic agents (shown in red) then navigate, through a potentially

obstacle-ridden environment, to the target waypoints where they self-organize into

a structure that covers an area about the waypoint to conduct a finer search for

phenomena of interest.

The use of agents with simpler, more easily characterized, verifiable and imple-

mented functionality also confers benefits from a design perspective. To minimize the

economic cost of a multi-agent scheme, it is important that the complexity of each

agent be constrained. Moreover, in mobile sensor network applications (where long

operational life is necessary) and robotic exploration problems (where the agent must

be able to maneuver effectively through challenging and inaccessible environments),

low agent complexity (e.g., in terms of compactness and energy usage) is demanded.

Fig. 2. Overview of a general multi-agent robotics application.

5

B. Technology-independent computation

It is often not enough to simply scale down an agent by paring away its sensors and

actuators; the design of economical computation must also be addressed.

Generally, the need for lightweight computation suggests the use of special-

purpose computers, as in the case of using a digital signal processor over a general-

purpose one to implement numerically-intensive algorithms. Taking this idea of

application-specific hardware to the extreme, we are led to custom realizations where

the operations required by the algorithm are mapped as directly as possible to the

computing primitives provided by the implementation technology.

Practical sequential algorithms (e.g., finite state automata, software algorithms)

can be expressed as dynamical systems of the form:

x(t + 1) = f
(
x(t), u(t)

)
y(t) = g

(
x(t), u(t)

) (1.1)

where the time variable, t, belongs to a countable ordered set, and the state, x, evolves

in a countable state space. Similarly, continuous-time continuous-valued computing

systems (i.e., analog computers) can be described by systems of the form:

ẋ = f
(
x(t), u(t)

)
y(t) = g

(
x(t), u(t)

) (1.2)

where the time, t, is a real variable, and the state, x, evolves in a real-valued state

space (i.e., a subset ofRn). Systems of either type can be directly mapped to hardware

of the form shown in Figure 3; for (1.1) D consists of clocked multi-bit registers and

f and g are Boolean functions, whereas for (1.2) D consists of n integrators and f

and g are general functions.

In formulating a control scheme for lightweight robotic agents, we are interested

6

D

u

x
y

f (). g ().

Fig. 3. Hardware topology of a dynamical system; D represents a memory block.

in a technology-independent specification of computational hardware, that is, one

that is not tied to a specific hardware realization (e.g., a software algorithm is not a

technology-independent scheme since it is predicated on the use of a general-purpose

digital computer). Owing to the convergence of previously-disparate fields of science

and engineering (such as chemistry, biology, electrical and mechanical engineering) as

witnessed by the rise of nanotechnology, systems biology, and artificial life, the use of

exotic, non-electronic2 implementation media is foreseeable.

Of particular interest to us (and of more immediate use) is the potential for

implementation via custom analog systems, due to:

• the plethora of innate physical characteristics that can be exploited to obtain

low-cost computational primitives (e.g., Kirchoff’s current law can be exploited

to realize addition “for free”)

• the reduced wiring complexity (e.g., for a 50 dB signal-to-noise ratio, an analog

system requires one or two wires to convey signals, whereas a digital system

requires eight)

2For example, technology based on the use of chemical reaction systems [7, 8, 9,
10, 11]. Attempts to synthesize wet artificial life [12] and the work of systems biolo-
gists [13] in uncovering the regulatory circuits accomplished by biochemical reaction
systems demonstrate that astonishing algorithmic and regulatory processes can be
realized by non-traditional substrates.

7

• the ability to fine-tune the hardware at a very low level (for VLSI realizations,

which are preferable [14])

An excellent overview of the relative merits of analog and digital implementations of

computation can be found in [15, 16]; in general, analog systems confer their greatest

advantage for processing that requires moderate signal-to-noise ratios—levels relevant

to robotic control where noisy, nonlinear sensors practically restrict the fidelity of

measurements of environmental data. Recent results from the field of neuromorphic

engineering [17, 18, 19, 20, 21] demonstrate the efficacy of analog processing systems

from the perspective of functionality and economy of implementation.

Inspired by this, we consider control architectures that are amenable to ana-

log implementation, noting that an analog-amenable specification is simultaneously

amenable to custom digital implementation (via discretization or digital redesign

methods); however, although a software-based specification can be mapped to a cus-

tom digital implementation, it is not necessarily possible to map software to analog (at

least, not directly3). Hence, we need a principled means of synthesizing technology-

independent computation. Connectionist [22] and empirical [23] methods of realizing

analog computation exist; however, the lack of a rigorous synthesis methodology is a

drawback from a conservative engineering point of view.

C. Cybernetics

The history of artificial automata can be extended back to the fourth century BC,

at the very least. In the medieval period we have reports of designs or implementa-

tions of programmable automata by al-Jazari (thirteenth century), da Vinci (fifteenth

3The “directness” of the mapping from system specification to implementation
technology is a crucial element of good hardware engineering methodology to ensure
that the design is verifiable throughout the design and implementation process.

8

century) and Vaucanson4 (eighteenth century). These automata were programmable,

being able to execute a script of action; however, they were not autonomous.

The early twentieth century saw the advent of cybernetics, a mathematical sci-

ence that sought to understand the origins of autonomy in teleological (i.e., goal-

driven) artifacts.5 Practitioners of the field produced some of the first examples of

autonomous robots and other teleological mechanisms, including the “turtles” of Wal-

ter [24, 25], Theseus the mouse of Shannon [26], the “moth/bedbug” of Wiener [27],

and the Homeostat of Ashby [3]. The vision of cybernetics was far more grand, how-

ever: the field was about the design of artificial brains, with abstract concepts of

intelligence amplification6 and even applications to government and control of na-

tional economies [29]. So where did cybernetics go? In short, though the interest in

cybernetics did not die out, it did diminish with the rise of the modern digital com-

puter and connectionism in the 1950s and 1960s. However, before waning it produced

two very important offspring that have flourished: the modern field of control theory,

and the inspiration behind the behavior-based paradigm of robotics.

The object of cybernetic inquiry was the engine of autonomy and goal-directedness

in living organisms and machines, believing that the “stuff” of brains was the regu-

lator. Yet, a glance at modern robotics work shows that regulation is not generally

used as a motif for computation; rather, the paradigm of the programmed computer

(and its custom analog, finite state machines) is dominant, with connectionism being

used to a lesser extent. But should the role of cybernetics in robotics just be that

of inspiration? We answer this to the contrary: cybernetics in this work offers both

4The work of Vaucanson influenced the Jacquard loom which in turn influenced
Babbage’s analytical engine (nineteenth century).

5The precursors of the field stretch back through Maxwell and Watt to Heron of
Alexandria and Ktesibios in antiquity.

6Intelligence amplifiers—theoretical constructs proposed in [28]—are analogous to
electrical power amplifiers, with “intelligence” being the input and output.

9

inspiration and a science of synthesis.

Albus states:

“the same type of anatomical components which are used in the lower and

mid levels of the control hierarchy to produce sensory interactive motor

behavior may . . . be used at the upper levels of the same hierarchy to plan

and solve problems.” [30]

This insight underlies the philosophy on the synthesis of artificial brains in this work:

the use of control systems (traditionally restricted to the regulation of “low-level”

activities) as a computational paradigm for all orders of agent behavior. To be sure,

our motivation for adopting cybernetics stems not from a desire to resurrect an old,

but venerable, line of inquiry. Rather it is based on engineering considerations:

• in contrast to connectionism (which generally relies on an iterative, empirical

methodology), control theory provides a rigorous toolset for principled synthesis

• the continuous methods of control theory are an appealing match to a physical

environment which is, at practical scales of perception, continuous [31]

• the tool is based on the language of dynamical systems theory, and as such it

offers a mechanism to realize technology-independent specifications of compu-

tational machinery

Hence, this work is concerned with synthesizing the brains for cybernetic machines—

autonomous robots; to that end, we employ cybernetic language and tools (dynamical

systems and control theory) to perform this synthesis in a principled and technology-

independent fashion.

10

D. Contributions of this dissertation

Chapter II provides an overview of background information pertaining to multi-agent

robotic systems, dynamical systems and control theory. A survey of relevant liter-

ature is also presented. In chapter III we formulate the problem addressed by this

dissertation, and provide a discussion regarding our choice of cybernetics toolsets.

Next we deal with the design of elementary behaviors for our proposed scheme

using cybernetics tools. Chapter IV presents a principled approach, grounded in dy-

namical systems theory, of synthesizing static (i.e., memoryless) behaviors. A novel

visual tool—vector field design—is developed to aid the intuition as well as providing

a rigorous basis for developing static couplings between sensing and actuation. Chap-

ter V describes a control-theoretic approach to synthesizing behavior where sensation

and actuation are decoupled through the interposing of a dynamical system. We high-

light the weak emergence of satisficing intelligence—a key aspect of this controller.

Chapter VI presents an integrated control architecture for single agent systems

using the elementary behaviors synthesized in chapter IV. The development of agent

control architectures to enable collectives of agents to engage in useful multi-agent

behaviors is then described in chapter VII. We highlight the engineering of weakly

emergent behavior in these two chapters, and present a new scheme for inducing a

collective of passively interacting agents to self-organize into a formation that covers

a target.

Simulation results generated by our custom verification environment were used

to characterize and illustrate the behaviors manifest by our robotic control schemes

in a virtual planar environment. In chapter VIII, we study the performance of the

navigation algorithms developed through our cybernetic approach with various other

schemes found in the literature. Beyond simulation, however, since embodiment and

11

situatedness are central to our paradigm, chapter IX presents the design of a physical

two-agent testbed and the associated experimental results that help to validate our

approach.

We conclude the dissertation with some remarks on areas of future work.

12

CHAPTER II

PRELIMINARIES

Given an organism, its environment is defined as those variables whose

changes affect the organism, and those variables which are changed by

the organism’s behaviour . . . [The] organism and its environment form a

single state-determined system . . . (W. Ross Ashby [3])

A. Background

1. Agents

An agent is a computational system coupled to an environment via sensors and actu-

ators. Some examples of agents in general include human beings employed in a task,

software agents (e.g., processes running on single computers, or across networks of

computers), robotic agents (i.e., agents which are coupled to a physical environment),

and, relevant to our work, mobile robots (agents that can change their position in a

physical environment).

In this work we consider the design of cognitive faculties for autonomous robots,

i.e., those faculties that enable an agent to derive, on its own, how to actuate change

to the environment to achieve the design objectives of the agent. In particular, we

consider autonomous robots with bounded resources (lightweight agents), constrained

by:

• limited knowledge of the environment, including:

– no a priori global information, such as a map of the environment

– limited sensing radius

– no knowledge of absolute position in space

13

• limited communications range

• bounded computational resources

and so invoke Simon’s concept of satisficing [5, 6] intelligence. Cognitive systems, in

this sense, are systems that satisfice, forgoing optimality (which is often unachievable

or impractical) to achieve tolerable solutions using whatever constrained resources

they have in a timely fashion.

A multi-agent system (MAS) is a collection of agents; in particular, a multi-agent

robotic system or multi-robot system (MRS) is a collection of robotic agents [32]. Con-

sider a MRS consisting of autonomous robots. A decentralized MRS is one where the

source of each agent’s autonomy lies purely within the agent itself and whatever local

information it senses (precluding, for example, a central remote controller transmit-

ting commands to agents). A trivial example of a multi-agent system is one where

the agents are “asocial,” having no knowledge of other agents and operating as lone,

isolated agents, unable to interact with others due to this ignorance.

Beyond this degenerate case, we can consider two agents, M and N , in more

sophisticated schemes [33]. We define a passive interaction between M and N as an

awareness on the part of M of an effect that N has on the environment that is purely

a function of N ’s existence in the environment. That is, in a passive interaction N

does not “decide” to exchange information to M . Rather, M by virtue of its sensory

faculties is able to determine various aspects pertaining to N purely by virtue of

N ’s existence. We say that N actively interacts with M if N “decides” to exchange

information with M . That is, the information interchange occurs due to:

• N ’s actuation of change in the environment, expecting M to sense this change

• M ’s capacity to sense the changes induced by M ’s action, understanding that

M actuated the change intentionally

14

The multi-agent extensions developed in this work (in chapter VII) are concerned

with the design of lightweight cognitive faculties for mobile robotic agents, using

passive interactions to achieve useful collective behaviors.

2. Dynamical systems and control theory

Our approach is cybernetic in the sense that we consider the agent and the envi-

ronment to be coupled dynamical systems, where the cognitive faculties of the agent

attempt to control (or regulate) the time evolution of various aspects of the environ-

ment [3, 34]. As such, concepts from dynamical systems theory figure prominently.

Suppose a system can be in any one of a number of states, and let its instan-

taneous state, x(t), belong to the state space, X (the instantaneous time, t, being a

member of some totally ordered time set, T). The evolution of x(t) through X as a

function of time is specified mathematically by a dynamical system. Let f : X → X .

If X ⊂ Rn and t ∈ T ⊂ R, then the ordinary differential equation:

ẋ = f(x) (2.1)

specifies a continuous-time continuous-valued dynamical system. When T is equipo-

tent to the set of integers, Z, then the iterated map:

x(t + 1) = f
(
x(t)

)
(2.2)

specifies a discrete-time dynamical system (common state spaces for discrete-time

dynamical systems include Rn and Zn). Given a system initially in state x0 at time

t0, i.e., x(t0) = x0, the trajectory of a dynamical system is the function x(t) satisfying

this initial condition and the equations of motion of the system (i.e., either (2.1) or

(2.2)). In general, beyond linear dynamical systems, it is not easy to arrive at an

analytically-tractable expression for the trajectory of a dynamical system. To analyze

15

the behavior of general systems, the qualitative theory of dynamical systems [35, 36]

is used.

In this work, we use ordinary differential equations to specify continuous-time

dynamical systems. For discrete-time systems we note that, beyond the specification

of system equations of motion by iterated maps, digital redesign methods [37, 38]

can be used to transform a continuous-time dynamical system to its corresponding

discrete-time variant.

a. Static versus dynamical control schemes

Consider the following dynamical system with input, a, output, s, and state, η:

P :

 η̇ = p(η, a)

s = q(η, a)
(2.3)

called a plant. Suppose we have some criterion we wish to impose on the time evolu-

tion of η. For example, if X is the state space of η, suppose we wish to ensure that

lim
t→∞

η(t) ∈ X ! ⊂ X , where X ! specifies a subspace of desirable plant states. The

problem, then, is to specify a system, C, called the controller, that when coupled to

P causes η to evolve as desired.

A variety of rigorous techniques exist to synthesize C; these form the corpus of

control theory [39, 40]. Generally, C can be of two types:

• a static controller (dealt with in chapter IV), which is a memoryless system of

the form:

C : a = g(s) (2.4)

• a dynamical controller (dealt with in chapter V), which refers to a dynamical

16

system of the form:

C :

 ζ̇ = f(ζ, s)

a = g(ζ, s)
(2.5)

3. Embodiment and situatedness

An agent’s embodiment [41, 42] concerns the details of how it is coupled to the envi-

ronment. The term is often used to differentiate embodied schemes of control from

disembodied ones. In the former case, the details of the:

• sensors conveying information from the environment to the agent

• actuators conveying information from the agent to the environment

are important and are considered in formulating the control scheme. With the latter,

the details of embodiment are abstracted away, and the control scheme operates on

abstracted symbols and representations. The details of embodiment ultimately phys-

ically “ground” discussions of the system’s behavior with respect to the environment,

that is, they enable one to cast the operation of the controller with respect to the

environment.

The situatedness [43] of an agent refers to the influence of the environment’s dy-

namics on the agent.1 Whereas the details of embodiment account for the information

flow between the agent and the environment, the situatedness of an agent relates to

how the environment evolves when the agent actuates change. An agent whose control

scheme accounts for situatedness can often exploit the details of situatedness—i.e.,

the dynamics of the environment—to realize complex behaviors.

1As Arkin [44] puts it, situatedness is “... a strong two-way coupling between an
organism and its environment.”

17

M
a

s
E

Fig. 4. An agent, M , coupled to the environment, E.

Consider the situation shown in Figure 4 where:

M :

 ζ̇ = f(ζ, s)

a = g(ζ, s)
(2.6)

specifies the agent, M , and:

E :

 η̇ = p(η, a)

s = q(η, a)
(2.7)

specifies the environment, E. The embodiment of M concerns the sensory channel,

s, the actuation channel, a, and their relation to the dynamics of M . Situatedness,

on the other hand, refers to the dynamical structure of E and how the sensory and

actuation channels are related to it. Note that by coupling M and E, the overall

dimension of the composite state space,

[
η

ζ

]
, is increased; this suggests a greater

behavioral richness that can arise when agents are situated—a richness that can be

exploited.

B. Previous work on robot control architectures

The control of mobile robotic agents is a problem with solutions from many disciplines.

This survey focuses on control architectures to enable robots to deal, in real-time,

with unknown environments using local information. Although the field of machine

planning [45, 46] has developed a prolific array of powerful algorithms and techniques

18

for robotic motion planning, the frequent requirement for a priori information of the

environment precludes its use in our application.

A plethora of diverse robot control architectures exist; we separate them into

two broad classes:

• disembodied control (including deliberative or planner-based control [30, 47])

• embodied control (including reactive and behavior-based control [47])

Disembodied control is rooted in the physical symbol system hypothesis which

states:

“[a] physical symbol system has the necessary and sufficient means for

general intelligence action.” [48]

The idea here is that the cognition underlying machine actions can be realized by

the execution of algorithmic processes that involve symbolic manipulation of an

abstracted representation of the physical world (e.g., planning algorithms such as

searches over a space of candidate solutions). These control architectures generally

belong to the field of core AI [49] in computer science (often, somewhat disparagingly,

referred to as “Good Old-Fashioned Artificial Intelligence”, or GOFAI [50]), and as

such, generally use the constructs of automata theory [51] for synthesis and analy-

sis. In this work we do not consider disembodied controllers on pragmatic grounds

(regardless of our attitude towards this hypothesis) since the use of automata theory

effectively restricts our implementation choice to digital hardware.2

Motivated by problems with the real-time performance of robots based on core

AI techniques in complex dynamic environments [22], embodied approaches to control

2Although the work of [52] seems to suggest that, in principle, any Turing machine
may be realized by an analog R3 dynamical system.

19

were developed to produce more reactive systems where the mechanisms underlying

the machine’s goal-directedness were closely “grounded” to physical details of the

agents embodiment (i.e., its coupling to the environment via sensors and actuators)

and situatedness within the physical environment. A statement of this point of view

is the physical grounding hypothesis :

“. . . to build a system that is intelligent it is necessary to have its repre-

sentations grounded in the physical world.” [53]

echoing earlier cybernetic points of view [3] (which themselves were preceded by earlier

works in biology). Figure 5 presents a tree that classifies the major themes in the

design of embodied cognition relevant to our work; the contribution of the proposed

research to the field, cybernetic automata, is shown in perspective to other paradigms.

embodied control

reactive systems

subsumption formal design

automata
approaches

connectionist
approaches

cybernetic
automata

situated
automata

Fig. 5. Classification of embodied control schemes.

Often taking a dynamical systems approach to modeling and understanding the

20

embodiment of an agent within an environment, the historical antecedents of embod-

ied control lie in cybernetics. Beyond the theoretical work regarding the underly-

ing mechanisms of goal-directed machines and animals developed by researchers like

Ashby, Wiener, and Shannon, the artificial turtles of Walter [24] provided some of

the first physical examples of simple, reactive autonomous mobile robots. Taking an

experimental approach, Walter investigated the emergence of behaviors reminiscent

of living organisms that arose from basic reactive setups (e.g., static, feedforward

connections from sensors to actuators). Adding feedback connections to introduce

memory [25] resulted in elementary learning behavior. Continuing this empirical line

of inquiry, the biological cyberneticist Braitenberg developed a series of thought ex-

periments [54] to investigate the origin of decussations3 in vertebrates. These thought

experiments (virtual constructions of simple machines) were developed more fully

in [55] to show how an array of seemingly sophisticated behavior can emerge from

simple connections between sensory organs and motor organs.

The next phase of development contributed insights pertaining to the structural

properties of cognition. Arbib’s work mated cybernetics and core AI with obser-

vations about the anatomy of brains and nervous systems, suggesting an approach

that emphasized the “parallel activity of a multitude of operations within an ar-

ray of interacting data and control schemes relevant to action” [56]. These insights

into brain-like machine structure—hierarchical organization and layering of different

control schemes—were further developed by Albus [30] who emphasized:

• the difference between planning algorithms and goal-seeking behavior in organ-

isms

3A decussation is a set of nerve fibers connecting one side of the body and the op-
posite side of the brain. Braitenberg was interested in the influence of the connection
topology on an organism’s movement in response to stimuli.

21

• the importance of sensing and reacting in real-time interactions with an envi-

ronment, as opposed to planning

• a hierarchical structure for cognition based on control loops closed by feedback

from the environment

Contemporary to these developments was Minsky’s society of mind theory which held:

“. . . each mind is made of many smaller processes . . . each [process] by

itself can only do some simple thing that needs no mind or thought at all.

Yet when we join these [processes] in societies—in certain very special

ways—this leads to true intelligence.” [57]

These insights were seminal to the subsequent prolific output in embodied control

schemes.

The subsumption architecture [58] of Brooks is based on a set of elementary

computational primitives that realize various levels of competence—behaviors that are

germane to the agent’s overall goals. The units do not serve in a chain of command,

like that illustrated in Figure 6, and do not require other primitives to handle sensing

and action. Rather, each primitive has access to the agent’s sensors and actuators

sensor
data

actuator
commandsf

1
...f

2
f
n

Fig. 6. A control scheme that uses n processing steps to process sensor data and gen-

erate an action. Each step requires the others and can not, in isolation, control

the agent.

and so can, individually, serve as a controller for the agent. To realize the overall

control scheme, the primitives are organized in a layered architecture, as shown in

Figure 7. With this topology, higher-levels controllers endow the agent with skills

22

f
1

actuator
commands

sensor
data

...

f
2

f
n

action
selection

Fig. 7. A subsumption architecture with n primitive controllers. Each controller has

access to the sensors and actuators and hence can, in isolation, control the

agent. Higher-level controllers influence the operation of lower ones via tuning

channels (shown by diagonal arrows). The action selection subsystem enforces

the scheme’s policy on how the individual controller outputs determine the

overall action of the agent.

23

while subsuming the competencies provided by lower-level controllers (the upper levels

are also able to influence the behavior of lower ones).

With the “society of minds” approach where several concurrent control mecha-

nisms operate, a natural problem that arises is how to produce the overall action of

the controller—action selection problem. If the controllers were all disjoint, dealing

with separate problems and using separate actuators, the actuation signals could be

output separately to the relevant actuators; however, in general, this is not possible.

Brooks’ initial solution was to hardcode a priority scheme, while Arkin’s solution in

early versions of the AuRA architecture [59] was to superpose (i.e., linearly sum) the

outputs of each controller to produce a resultant action. Since it is not necessarily true

that various controllers can have their outputs superposed or concatenated to create

an overall actuator command, in [60] Maes considers an alternative approach based

on a network of inhibitory and excitatory processes that work to produce a coherent

resultant action. In this case, the action selection mechanism is a dynamic process

evolving in the robot (as a function of its stimuli) that selects actions based on its

state. Later versions of AuRA [61] used a hybrid approach of combining disembodied

planning algorithms from core AI (to achieve action selection) with an underlying

reactive controller (for real-time response).

Both Brooks and Arkin used finite state automata to realize their architectures.

Beer’s approach of computational neuroethology [62], on the other hand, mated dy-

namical systems theory [63] with ethological studies of animal behavior [22], and

applied connectionist methods [64, 65] as a synthesis toolset. Tilden’s work using

nervous nets [23, 66] was an empirical continuation of Beer’s work, developing very

economical controllers.

Contemporary to the development of the subsumption architecture, the situ-

ated automata approach of Rosenschein and Kaelbling [67, 68, 69, 70] introduced a

24

methodology for formal specification of reactive agents with provable properties, in

contrast to other heuristic and empirical methods. This approach is based on model-

ing the agent and the environment by discrete dynamical systems (automata) coupled

to one another. Agent design then becomes the synthesis of an automaton to influ-

ence the time-evolution of the environment automaton. The methodology provided

tools (design languages) for a designer to specify characteristics of the environment

and the agent (e.g., its goals) at a high-level which could then be compiled down to

digital hardware realizations.

C. Previous work on multi-agent systems

The work on multi-robot control architectures [33] can be divided into two major

classes:

• schemes involving explicit coordination, that is, active inter-agent interaction

• schemes involving implicit coordination, that is, passive inter-agent interaction

1. Explicit coordination

The former class is out of the scope of the proposed research, since the work of this

proposal seeks a fully decentralized scheme with no requirements for active commu-

nications. However, we note some of the important contributions within this class,

including:

• ACTRESS [71], a deliberative scheme where agents make heavy use of commu-

nications (e.g., for negotiation) to coordinate

• GOFER [72], a deliberative scheme using a centralized task planner and sched-

uler for coordination

25

• ALLIANCE [73], a behavior-based approach where agents use broadcast com-

munications to inform other agents of their actions

Many of the control-theoretic works on the state agreement, consensus, and forma-

tion control problems [74, 75, 76, 77, 78] also fall within this class, as they require

knowledge of the state of other agents. By contrast, [79] presents a scheme for forma-

tion control that involves minimal communications—agents periodically broadcast a

message which enables the group to derive the status of the formation. Leonard [80]

proposes a scheme for the cooperative control of mobile sensor networks based on the

use of a centralized controller that uses information communicated by the agents to

compute and communicate back a coordination signal.

2. Implicit coordination

Implicit coordination schemes use information about other agents passively sensed

from the environment. This passive information can be in a variety of forms. For

example, in Walter’s empirical work (described in [33]), agents were mounted with

lights and endowed with light sensors. Hence, the interactions were passive as the

agents could not modulate the lights, for example; however, they still formed a basis

for interaction, as other agents could sense these lights and react based on this per-

ception. Another example is that of stigmergy [81], whereby the actions of an agent

produce a change in the environment, which in turn is sensed by other agents which

respond. In this manner, agents have a basis to coordinate. Stigmergy is observed

in the natural world (e.g., insect colonies); the principle has been applied to mobile

robots (e.g., [82]).

Reynolds’ pioneering computer graphics work on behavioral models for the an-

imation of bird flocking [83] provides an illustration of how superposition of simple

behaviors such as:

26

• obstacle avoidance

• maintaining proximity to neighboring agents

• matching the velocity of neighboring agents

can lead to emergent behavior of the group as a whole.

Inspired by ethology, Matarić [84, 85] proposed the concept of basis behaviors :

“basis behaviors are stable, prototypical interactions between agents and

the environment that evolve from the interaction dynamics and serve as

a substrate for more complex interactions.” [85]

and presented a scheme based on superposition, to compose more complex group-level

behavior, akin to Reynolds, but with an expanded repertoire of primitives.

In [86] Arkin presented a scheme for inter-agent cooperation based on agents

being able to sense the presence of other agents, noting the emergence of phenomena

such as the “recruitment” of multiple agents to work on a task. The relationship

between inter-agent interactions in multi-agent robotic systems is further investigated

in [87], with the observation that:

• in tasks with little passive interaction, the introduction of communications fac-

ulties improve performance

• in tasks where passive interactions exist, the introduction of further communi-

cation does not improve performance

D. Perspective on our work

The literature indicates a gap that this work seeks to address. First, note that the sit-

uated automata approach uses a discrete-time discrete-valued dynamical model of the

27

environment, from which a corresponding automaton is synthesized using automata-

theoretic toolsets. This naturally begs the complementary use of continuous-time

continuous-valued dynamical systems-based models of the environment, with corre-

sponding control-theoretic means of rigorously synthesizing an analog automaton to

regulate it.

We note that our work is not a conventional control-theoretic work. Our di-

vergence from control theory is our focus on an overall control architecture for the

agent. We use dynamical systems theory as a language to describe agents and their

environments, and use control theory as a synthesis toolset to design basis behaviors.

To realize the overall control scheme for an agent, however, we do not just mate a

control algorithm with a robotic body. Rather, we develop an integrated architec-

ture that stitches our elementary behaviors together to engineer the emergence of

useful behavior. Hence, in this respect, we provide a cybernetic alternative to the

connectionist and automata-theoretic approaches that exist in the literature. To our

knowledge this combination of architectural insights with control-theoretic tools to

engineer emergent behavior is a novel contribution to the field.

28

CHAPTER III

PROBLEM FORMULATION AND TOOLSETS

Be like the ant, consider her ways, and be wise: though having no ruler

over her, neither anyone to guide her, she provides her bread in the summer

and gathers her food in the harvest. (The Proverbs of Solomon)

A. Introduction

As discussed in the overview of literature in the previous chapter, approaches in

robotic control can be broadly divided into embodied and disembodied ones; this

work—a cybernetic behavior-based approach to robot cognition—belongs within the

former class. The hallmarks of the cybernetic approach are an emphasis on embod-

iment and situatedness in grounding the formulation of artificial brains consistent

with physical reality. In this work, embodiment enters through our use of realistic

sensor and actuator models, while situatedness derives from:

• our modeling of how the agent’s actuation influences the evolution of the envi-

ronment

• a consideration of which competencies are required for real-world applications

The later forms the topic of this chapter.

Search and rescue, and robotic exploration in general, are applications that are

well-served by lightweight robotic agents with bounded resources, in contrast to a

single “heavier” agent with greater resources [73, 80, 88]. The use of mobile sensor

networks for such applications have been proposed in [89]. Our goal in this work

is to develop a control architecture to serve as the robotic substrate underlying a

mobile sensor network (i.e., the mobility management faculties) or an autonomous

29

multi-agent exploration system. In the following, we present a formulation of the

competencies expected of such a substrate.

B. Preliminaries

1. The world and objects therein

Let W ⊂ R2 represent a planar world. Consider a point object, X, in this world,

and let T denote a time set. The position of X with respect to an absolute global

coordinate system imposed on W is given by a map from T into W . We will denote

this map by:

gX : T →W (3.1)

and refer to the value of the map at time t, gX(t) as the instantaneous position of X.

Further, we define the set of positions gX(T) ⊂W (i.e., the image of T under (3.1))

as the path1 of X through W . If X is static with respect to the global coordinate

system, then the path of X is a singleton set and there is no confusion in referring

to:

• the map gX(·)

• X’s instantaneous position gX(t)

• X’s path

as simply gX On the other hand if X moves with respect to the global coordinate

system, then the various separate notations are needed. For a continuous-time system

we have T = [0,∞) ⊂ R, whereas for a discrete-time system, T = {0, 1, . . . } ∼ Z
(where A ∼ B denotes the existence of a bijection between the sets A and B). In the

following we consider continuous-time systems.

1Also known as the trace of gX(·) [90].

30

Figure 8 illustrates various objects (or features) in such a world at time t; the

global coordinate system is referenced to the axes g1 and g2. Mi and Mj represent

H
T

1

2

l
2
i

l
1
i

M
i

l
2
j

l
1
j

M
j

g
1

g
2

g
H

l
M
(t)
j

i

g
T

l
T
(t)i

g
M
(t)

i
3

Fig. 8. The world and objects therein: Mi and Mj are agents, trying to get to a

common target of interest, T , in an environment with obstacles, Ω1, Ω2, and

Ω3. Agent Mi senses the displacement to agent Mj as liMj
, and the displacement

to T as liT .

agents i and j, respectively, of a group of NM < ∞ agents. Since mobile agents can

change their position in W , the corresponding path of a mobile agent Mj, gMi
, can

have cardinality greater than 1.

We define an obstacle as a closed subset of W within which an agent can not

be located (i.e., ∀i, gMi
(T) can not intersect an obstacle). Given a set of NΩ < ∞

obstacles in W , we denote the j-th obstacle by Ωj.

We also define T , the target way-point, which is static with respect to the global

coordinate system, and hence its corresponding path, gT , is a singleton set.

31

2. Agent frame of reference

As we will later specify, we desire agents in W to operate in a decentralized manner

with only local information about their environments—that is, each agent observes

the world with respect to a local frame of reference using sensors with limited sensing

distance. Consider a local coordinate system attached to Mi such that Mi is at the

origin. We orient the local axes of agent Mi as follows:

• the positive li1 axis, {(li1, li2) ∈W : li1 > 0, li2 = 0}, points in the forward direction

of Mi

• the negative li1 axis, {(li1, li2) ∈W : li1 < 0, li2 = 0}, points in the reverse direction

of Mi

• the positive li2 axis, {(li1, li2) ∈W : li1 = 0, li2 > 0}, is on the left side of Mi

• the negative li2 axis, {(li1, li2) ∈W : li1 = 0, li2 < 0}, is on the right side of Mi

Analogous to (3.1), we use:

lX : T →W (3.2)

to denote the position of an object X with respect to the local coordinate system of

Mi. Figure 8 illustrates the local coordinate systems for two agents and some sample

local observations.

C. Formulation

Here we formulate the competencies expected of a robotic substrate to serve in our

application space. We are concerned with synthesizing the cognitive faculties that

must be endowed in an individual agent so that a set of these agents can:

1. autonomously navigate to a target waypoint, T

32

2. self-organize to cover a region about T

1. Autonomous navigation

Figure 9 illustrates the general setup of the problem of autonomous navigation through

an obstacle ridden environment.

T1

11 2

3

3
7

5

642

Fig. 9. The autonomous navigation problem. (1) An agent (in red) located in a re-

gion where it can not perceive the target, executes an approximation of a

space-filling curve which eventually enters a region within sensing range of T .

(2) The agent navigates to T , executing a collision-free path about the obsta-

cles, Ω1, . . . , Ω7, and (3) eventually reaches T .

As illustrated, the agent requires two basic skills:

• the ability to search for a target

• the ability to engage in taxis behavior to track the target

constrained by the requirement for obstacle avoidance.

a. Exploration with obstacle avoidance

Exploration (or searching) is behavior that increases the agent’s chance of coming

within sensing range of the target. Let tf > 0, ∆ = [0, tf] ⊂ T be an interval in time,

33

and rT,max be the maximum distance from the target from which the target can still

be sensed by an agent. Recall that the set B(g!; r) is the set of points, g, such that

||g − g!||2 < rT . A search strategy for T is the selection of a path, g(∆), such that:

g(∆) ∩B(gT ; rT,max) -= ∅ (3.3)

Let g(0) the the initial position of the agent. A useful characteristic of a search

strategy is when:

rS(t) := ||g(t)− g(0)||2 (3.4)

is a monotonic increasing function of t,∀t ∈ ∆. This indicates that the search strategy

is an unbiased search about the agent’s initial position. Finally, a viable search

strategy must satisfy the constraint of obstacle avoidance:

g(∆) ∩ (∪NΩ
j=1Ωj

)
= ∅ (3.5)

b. Target tracking with obstacle avoidance

Let tf > te > 0, and rT,min > 0 specify the desired proximity from T we wish the

agent to reach. Then we can specify target tracking as the determination of a path,

g(T), such that,

g
(
[te, tf]

) ∈ B(gT ; rT,min) (3.6)

Again, a viable path must be collision-free and satisfy:

g
(
[0, tf

]
) ∩ (∪NΩ

j=1Ωj

)
= ∅ (3.7)

2. Organization with respect to other agents

Autonomous navigation faculties are important; however, in a multi-robot system

the agents are not intended to be single entities achieving their goals in isolation.

34

Rather, they are to be components of an overall group with group-level objectives.

Specifically, in a sensor network we require the group to:

• maintain network connectivity (i.e., a communications channel for the sensor

network)

• maintain network coverage (i.e., be distributed spatially to increase the set of

points in W from which the network can be accessed)

Moreover, we desire these group-level properties to be present both:

• while agents are navigating to the target

• when agents have arrived at the target

Since we are concerned with mobile robotic control, we re-cast these goals pertaining

to network-level properties to goals of spatial organization since motion through space

and sensing of spatial characteristics (e.g., displacements) are more elementary forms

of information (and more readily accessible) to a lightweight mobile robot.

a. Flocking

Flocking [83] is a behavior where agents move as a collective, maintaining proximity

to other agents in addition to achieving their individual goals. This behavior can be

helpful to (roughly) synchronize the arrival of the collective of agents to the target, as

well as to ensure that agents that can not detect the target (e.g., due to an obstacle

that obscures the target, due to failure of target sensors, or due to agents getting

trapped in concave obstacle formations) have a secondary reference to track (in this

case, neighboring agents). In cases where the target waypoint is out of detection

range, flocking also enables “swarm”-like [91] searching of the territory wherein each

agent engages in searching while maintaining the flocking conditions (3.8) and (3.9).

35

Let Tf be a closed, connected subset of T . We formulate flocking as the compo-

sition of the following three objectives that a group of agents strive to satisfy during

the time interval Tf :

• (safety) maintaining a collision-free path:

(∀i ∈ {1, . . . , NM})

[gMi
(Tf) ∩ (∪NΩ

j=1Ωj) = ∅]
(3.8)

• (social goal) maintaining bounded proximity to other agents:

(∀i ∈ {1, . . . , NM})(∀t ∈ Tf)

upper bound:

(∃j ∈ {1, . . . , NM}, j -= i

)
(||gMj

(t)− gMi
(t)||2 < rA,max

)

lower bound:

(∀k ∈ {1, . . . , NM}, k -= i

)
(||gMj

(t)− gMi
(t)||2 > rA,min

)

(3.9)

• (group goal) navigating to, and reaching, some region about the target way-

point, T :

(∀rT,ref > 0)(∀i ∈ {1, . . . , NM})

[∃∆ ⊂ Tf , ∆ is connected, max(∆) = max(Tf)]

[gMi
(∆) ⊂ B(gT ; rT,ref)]

(3.10)

b. Static organization

Having arrived at the target, the agents must organize into a network that maintains

connectivity and coverage. In terms of spatial distribution, this is none other than

maintaining the social goal of flocking (3.9).

36

3. Remarks

We note that the formulations in this section were made with respect to the global

frame of reference. This was done to specify the problem in general terms, so as to

be applicable to a variety of solution strategies (e.g., planning algorithms [45, 46]).

The proposed research addresses the problem of how to endow a set of homoge-

neous, lightweight, mobile sensor nodes with correspondingly lightweight cognition to

cope with an unknown environment. We make the following assumptions to constrain

our solution in line with this theme:

Assumption 1 (No global knowledge). Agents do not have a priori knowledge

(e.g., maps) of the locations of any features of W.

Assumption 2 (Local sensing). Agents can only sense the position of features

within a finite detection radius (specific to the feature under consideration) of the

agent.

Assumption 3 (Local frame of reference). The sensed position of any feature is

with respect to the agent’s own local coordinate system.

Assumption 4 (Decentralization). There is no centralized coordinating controller—

agent’s must make decisions autonomously using the information that’s locally avail-

able.

Assumption 5 (No communications). There is no communication channel avail-

able to the agent to engage in active interactions with other agents.

In subsequent chapters, we will develop a solution that uses local strategies in

line with the assumptions made here.

37

D. Proposed toolset

We require tools to develop the algorithms that will realize the cognitive faculties

of the agent. As illustrated in Figure 1, an agent is a system that is coupled to an

environment via sensors and actuators. Cognitive faculties, in this sense, refer to

some set of operators and dynamical processes that, based on:

• the internal state of the agent

• the perceived state of the environment (as determined by sensed measurements,

s, of E)

provides a specification for how the agent should actuate change to the environment

via a.

We identify three major classes of algorithm development tools:

• automata theory

• computational intelligence methods

• cybernetic tools based on control theory

In the following, we describe the characteristics desired in a good toolset and then

discuss our choice of toolset.

1. Desired characteristics

Rigor Although the design of machines with well-characterized behavior is the

hallmark of the engineering approach to system development (versus an empirical

approach), in applications where human lives are involved (e.g., search and rescue,

land-mine cleanup), funding is limited (e.g., ventures by public agencies including

national security and “Big Science”), and windows of opportunity are limited (e.g.,

38

oceanic or space exploration), the need for a correctly behaving system is paramount.

Hence, we want algorithm development toolsets that are rigorous, enabling:

• the quantitative analysis of the world

• the quantitative specification of our objectives

• the synthesis of a corresponding algorithm based on the above analyses

• the ability to prove that the synthesized algorithm operating in the world will

achieve the above objectives

Amenable to economical implementation Due to the applications we are

targeting, the cost of individual agents is an important factor as mentioned in the

Introduction of this proposal. Thus, to facilitate the goal of lightweight agents, the

algorithms we synthesize must be amenable to realization on economical implemen-

tation technologies, such as analog electronics, and customizable technologies, such

as digital hardware.

Direct mapping to an implementation substrate Analogous to our interest

in algorithms with provable properties, we also want a toolset that can be directly

mapped onto an implementation substrate to ensure that a robust design methodology

can be developed where the algorithm and its implementation can be easily verified

to be equivalent.

2. Automata theory

The sequential automata tools of computer science involve the specification of algo-

rithms as sequential (discrete-time) processes that manipulate discrete-valued quanti-

ties. Examples of such formulations are finite state automata, or sequential algorithms

39

for the various other classes of discrete automata [51]. The toolset is a very mature

one with a long history of successful application to diverse areas; as a consequence

there are many methodological tools available to help the designer, including design

libraries, high-level specification languages, and verification tools.

With respect to the rigorous specification of behaviors for robotic agents, the

work of Rosenschein and Kaelbling [67, 68, 69, 70] on the formal synthesis of automata

based on discrete dynamical models of the environment illustrates the formal power

of automata-theoretic tools. Moreover, automata-theoretic algorithms can be directly

mapped to custom digital hardware. However, at the same time, direct maps between

an algorithmic specification using automata theory and an analog implementation are

generally not possible.2

In [93], Lumelsky cites two reasons to motivate continuous feedback-control based

approaches to navigation. First, he mentions that the translation of continuous real-

world phenomena to discrete structures (e.g., graphs) can be sensitive to approxi-

mation error, resulting in unacceptable planning choices. He further states that the

approximation process itself can have high computational costs with non-intuitive

results, degrading real-time performance. In the literature of the burgeoning fields

of unconventional, natural, and organic computing, one occasionally finds views sug-

gesting the automata-theoretic paradigm may not necessarily be the most natural

means of realizing robotic control architectures:

“Any robot relying on a discrete representation for its successful func-

tioning may become brittle, with small errors causing the robot’s beliefs

2Moore [52] and Sato [92] have obtained interesting results suggesting that a Turing
machine, and other automata, can be embedded in the smooth flow of a R3 dynamical
system—enabling analog circuit implementations. However, these methods require
the development of a switching map (which essentially realizes the algorithmic control
flow) for which a synthesis method is not provided.

40

about the world to diverge from reality.” [31]

These views are usually based on the view that the physical world is dynamically

complex, with a multitude of parallel processes interacting on different time scales,

and question the “fit” of automata-based algorithms to real-world environments.

We do note, however, that concurrent sequential automata have been used by

Brooks, Arkin, and others to realize robotic control architectures. Hence, we do not

discount the utility of sequential automata as a mechanism for specifying cognitive

systems (i.e., we do not enter the debate as to whether sequential automata is in-

herently applicable or inapplicable to robot cognition). Rather, we are motivated to

look elsewhere for a paradigm that has more diverse implementation options.

3. Computational intelligence

Computational intelligence methods mimic the phenomena of nature to solve prob-

lems. For example, evolutionary computing utilizes ideas culled from the develop-

ment of an organism’s genome over several generations. Connectionist methods, on

the other hand, use an underlying biomimetic template framework of a computa-

tional system modeled on the brains of organisms and combine this with a learning

procedure.

Economic implementations of systems designed in this paradigm are possible

via analog hardware. However, as computational intelligence tools use some form of

evolution or training over time and are generally empirical, the synthesis procedure is

not very direct. It is unclear as to whether rigorous statements can be made about the

characteristics of the resulting systems (e.g., along the lines of sequential automata).

Hence, we do not consider computational intelligence toolsets to be in line with our

needs.

41

4. Cybernetics tools

Given a dynamical systems model of the environment, and a specification of how the

environment states should evolve, control-theoretic tools generally offer a means of

synthesizing a corresponding controller. These controllers have provable properties

(owing to the grounding of control theory in dynamical systems theory, analysis,

algebra, geometry, etc.), and can be directly mapped to analog electronic hardware,

and, via digital redesign methods, digital hardware.

Table I provides a summary of the discussion of this section.

Table I. Summary of toolset considerations.

automata-theoretic tools computational intelligence cybernetic tools

rigorous? yes not yet yes

analog? not practical yes yes

direct map? yes yes yes

42

CHAPTER IV

STATIC SCHEMES FOR AGENT BEHAVIOR

Yet to be written is the book, much larger in size, that shall show how all of

the organism’s exteriorly-directed activities—its “higher” activities—are

all similarly regulatory . . . (W. Ross Ashby [34])

A. Introduction

The behavior-based paradigm for multi-agent systems (succinctly summarized in [94])

involves:

• the design of low-level elementary behaviors that couple an agent’s sensory

faculties to its actuators

• the design of integrated control architectures that employ these basis behaviors

in a scheme where the various behaviors are selected in response to environ-

mental stimuli

• the use of several of these agents in schemes that exploit their collective behavior

This work addresses all three aspects of the paradigm. In this chapter and the next,

we present the design of elementary behaviors for autonomous navigation using cy-

bernetic tools culled from control theory and the theory of dynamical systems to

approach this synthesis in a principled manner.

Our perspective throughout this work is that behaviors spring from an agent’s

regulation of its perception1 of the environment, that is:

1We hence associate behavior with sensor output regulation [95].

43

an agent acts to effect change in the world in order to cause its sensory

perception of the world to evolve in a desirable manner.

Embodiment and situatedness, hence, figure prominently in our philosophy: the de-

tails of embodiment are required in order to specify the sensory and actuation faculties

of the agent, and the details of the agent’s situatedness specify how the environment

reacts to the agent’s actions and, more broadly, govern the context for what “desir-

able” means.

In this chapter, we will be concerned with direct couplings from sensor informa-

tion to actuator commands via static maps2—representing the extreme case of purely

reactive3 robotic control. In line with the important role played by embodiment and

situatedness, we first describe the sensory and actuation faculties that couple the

agent to the world. This enables us to derive a model describing how the agent’s

perception of the world evolves as a function of its actuation. The model of agent

perception forms the basis for synthesizing static control laws to realize various behav-

ioral modes. For this synthesis, we present the use of a novel visual tool—vector field

design—that appeals to the intuition while enabling mathematically rigorous speci-

fications. Simulation results illustrating the nature of these behaviors are presented

before concluding the chapter.

2That is, memoryless systems. Structural speaking, these are systems where there
are only feedforward paths from sensation to actuation.

3“Reactive” is often loosely applied to a variety of robotic control schemes, includ-
ing those in which state machines—dynamical systems—mediate between sensation
and actuation. Hence, we emphasize the pure reactivity that the feed-forward maps
of our work realize.

44

B. Describing perception

Since we associate agent behavior with regulation of perception, we need a model

that describes the temporal evolution of the agent’s sensory perception of the world

as a function of the agent’s actions. In this section, we discuss the sensori-motor

embodiment [41] of our prototypical agent, and derive a model of agent perception

useful for autonomous navigation.

1. Sensors

T

l
2

l
1

M
(t)

Fig. 10. An agent, M , to which a local coordinate system has been attached. The

agent is sensing a target of interest, T , whose instantaneous position with

respect to M ’s local frame of reference is η(t).

Figure 10 illustrates an agent in a planar environment. Its sensors give the agent

a measurement, s, of the relative position, η, of a target of interest with respect to

the agent’s local frame of reference. Practical sensors, however, are non-ideal devices

which measure physical quantities subject to various forms of distortion. We first set

a minimum standard on the fidelity we expect from our sensory apparatus.

Definition 1 (Measurement Functions). The map σ : R→ R is a measurement

function if it is a bounded, continuous, bijection such that ∀x ∈ R, sgn
(
σ(x)

)
=

sgn(x).

Consider the situation of Figure 10, where η =

 η1

η2

 denotes the position of

45

the target, T , with respect to the agent’s local l1 − l2 coordinate system. Let S
be a compact subset of R2 that contains 0. We specify the target sensor, S, as a

memoryless system that returns its measurement of the target position, s =

 s1

s2

 ∈
S:

s = σ(η) :=

 σ1(η1)

σ2(η2)

 (4.1)

where σ1 and σ2 are arbitrary measurement functions.

2. Actuators

In developing basic behaviors for navigation, we assume that low-level motor con-

trollers exist with sufficient competence to physically realize these velocity commands4

(e.g., by dealing with physical issues such as actuator dynamics). For the develop-

ment we present, we deal with kinematic models [46] for vehicles, which abstract away

low-level concerns pertaining to vehicle dynamics.

One such kinematic model for wheeled vehicles is that of the simple unicycle

whose motion is described by its signed translational speed, v, and its signed rotational

speed, ω. This model can be used to describe the kinematics of differential-drive

vehicles and model car-like ones. Figure 11 illustrates a unicycle with respect to a

global frame of reference. The trajectory executed this vehicle with respect to this

frame is described by:

ẋ = v

 cos(ψ)

sin(ψ)

ψ̇ = ω

(4.2)

Let the compact set A ⊂ R2 contain 0. We specify our actuator, A, as a

4That is, the low-level motor controller operates on a faster time scale than the
controllers which regulate agent behavior.

46

x
2

x
1

x

l
2

l
1

ω ψ

v

Fig. 11. Top-view of a simple unicycle (in grey) to which a local l1 − l2 coordinate

system has been attached. The directions of positive v and ω are indicated by

red arrows. The unicycle’s position and orientation with respect to a global

x1− x2 coordinate system (unattached to the unicycle) are denoted by x and

ψ.

memoryless system that is driven by the actuation signal a:

a =

 av

aω

 ∈ A (4.3)

where av and aω are independent motion commands for translation and rotation,

respectively. It instantaneously achieves this commanded velocity in the physical

environment so that: v

ω

 = a (4.4)

We note that this specification models the set of lower-level controllers as an identity

operator; we appeal to the time-scale separation between the behavioral controllers

we discuss in this chapter and the lower-level controllers to justify this.

3. Plant model for perception

Given the aforementioned details of embodiment, we can now derive our model of

agent perception, P , relating the time-evolution of the agent’s sensory perception of

47

the world, s, to the agent’s actuation command, a.

Let η(t) be the displacement from the agent to a target of interest at time t.

Consider an infinitesimal increment in time, h, during which the agent applies the

actuation:

a =

 av

aω

 (4.5)

and recall our assumption that the lower-level motor controllers have the competence

to achieve commanded velocities instantaneously. From the kinematics of a simple

unicycle (4.2), we obtain the change in orientation of the agent:

δψ := ψ(t + h)− ψ(t) = aωh (4.6)

Moreover, from Figure 12, we see that during time interval h the agent translates to

a new location whose displacement from its original position is:

b = vh

 cos(δψ)

sin(δψ)

 (4.7)

With respect to the agent’s frame of reference at time t, the displacement to the

target is:

c = η(t)− b (4.8)

Since the frame of reference at time t + h been rotated by δψ, we obtain η(t + h), the

displacement from the target to the agent—with respect to the frame of reference at

time t + h)—by computing:

η(t + h) = M(−δψ)c (4.9)

48

where:

M(z) =

 cos(z) − sin(z)

sin(z) cos(z)

 (4.10)

is the two-dimensional rotation matrix.5

l
2

l
1T

(t)

l
1

(t+h)

b

l
2

δ
ψ

ηη

ηη

Fig. 12. The agent at time t (shown in red with its local coordinate system), and at

time t + h (in blue). Also illustrated are the corresponding displacements to

the target T (η(t) and η(t + h), respectively), and the displacement, b, and

angle, δψ, between the two frames of reference.

Now we take the limit:

η̇ = lim
h→0

1
h

[
η(t + h)− η(t)

]
= lim

h→0

1
h

[
M(−δψ)

(
η(t)− b)− η(t)

]
= lim

h→0

d
dh

[
M(−δψ)

(
η(t)− b)− η(t)

]
=

 −av + η2aω

−η1aω

(4.11)

leading to the model:

P :

η̇ = p(η, a) := Υ(η)a

s =

 σ1(η1)

σ2(η2)

 (4.12)

5That is, for x ∈ R2, y = M(φ)x is the vector that results from rotating x by φ
in a counter-clockwise sense about the origin.

49

where:

Υ(η) =

 −1 η2

0 −η1

 (4.13)

and σ1 and σ2 are arbitrary measurement functions.

C. Regulating perception

Armed with our model of agent perception,6 (4.12), we are now in a position to

synthesize our computational machinery, that is, the controllers to regulate this per-

ception.

The goal of a taxis behavior is for the agent to reach the target; hence the agent

must act to regulate its perception of the target (corresponding to it’s displacement to

the target) so that this perception converges to the sensation s = 0—that the agent

is at the target.7 We emphasize that from the agent’s point of view, it is striving to

regulate its sensory perception of the world (s) to a desirable level (0).

With respect to the plant model (4.12), our task is to develop a feedback law

that specifies the actuation, a(η), such that the resulting closed loop system:

η̇ = p
(
η, a(η)

)
:= p̂(η) (4.14)

has a single globally asymptotically stable equilibrium point at η = 0:

p̂(η) = 0⇐⇒ η = 0 (4.15)

lim
t→∞

η(t) = 0 (4.16)

By regulating the agent’s perception to bring η to 0, this actuation law will serve to

6We will refer to this model as the plant model.
7Recall that s(η) = η = 0⇐⇒ η = 0 by definition of the measurement functions

relating s to η.

50

bring the agent to the target.

In the following we present two approaches to synthesize controllers to this end.

1. An analytic approach

Using the methodology of Lyapunov synthesis, we consider the positive definite Lya-

punov function candidate:

V :=
1

2
ηT η (4.17)

with time derivative:

V̇ = ηT η̇ = ηT p(η, a) (4.18)

Since we only have access to the measured plant state, s, we set:

a = − 1

s1

 −s1 −s2

0 −1

 s, (4.19)

(when s1 -= 0) which makes:

V̇ = −
(

η1s1 +
η1

s1
s2
2

)
< 0, η -= 0 (4.20)

since sgn(s1) = sgn(σ1(η1)) = sgn(η1) and sgn(s2) = sgn(σ2(η2)) = sgn(η2). Thus,

by Lyapunov’s stability theorem,8 (4.19.) can be used to asymptotically stabilize the

state η = 0 of P—as long as s1 -= 0.

However, this restriction is unsatisfactory since:

• it precludes cases where the agent may need to enter a configuration that is at

right angles to the target (since η1 = s1 = 0 for these cases)

• there is nothing particularly special about this orientation that should preclude

tracking (i.e., the agent knows where the target is, and so ought to be able to

8Theorem 4.1 of [96].

51

reach it)

2. Vector field design: a graphical approach

To synthesize a better controller, we note that our goal is to design a(η) so that the

right-hand side vector field9 of the closed-loop plant equations (4.12), p(η, a), has

desirable properties. Hence, we can consider designing such a desirable vector field

directly; if p̂ denotes the designed candidate vector field, we then need only solve

p(η, a) = p̂(η) for a to obtain our control law. Since visualizations of mathematical

abstractions often aid the intuition, we present the use of a visual aids for designing

desirable vector fields.

We first identify the qualitative properties required of p̂ =

 p̂1 : R2 → R
p̂2 : R2 → R

.

As with our earlier controller synthesis, we require (4.15)-(4.16). Additionally, to

facilitate the design of a control law that is compatible with the plant (e.g., to prevent

the singularity that arose in our earlier synthesis), we require that the structure of p̂

be consistent with the plant model, in the sense:

(∀η =

 η1

η2

 ∈ R2 : η1 = 0
)(

p̂2(η) = 0
)

(4.21)

a. An unsatisfactory solution

To highlight the need for this last requirement (4.21), consider a scheme that strives

to regulate its perception of the target by bringing η to 0 in the most direct fashion

possible. Figure 13(a) illustrates the qualitative properties of a vector field for just

9A n-dimensional vector field is a map f : Rn → Rn. When used as the right
hand side of an ordinary differential equation (e.g., ẋ = f(x), x ∈ Rn) the vector
field specifies how the states, x(t), evolve in time (i.e., how the trajectory x(t) “flows”
through the state space Rn with respect to time). Hence, the vector field describes
the qualitative behavior of the system.

52

such a scheme: from any point in the state space, the flow is directly towards η = 0.

This qualitative structure can be realized by the vector field of the stable linear

system:

p̂ = −Kη (4.22)

where K ∈ R2x2, K > 0, illustrated in Figure 13(b).

η
1

η
2

d

c

ab

(a) Qualitative structure.

η
1

η
2

(b) −Kη, K > 0

Fig. 13. A candidate vector field that globally asymptotically stabilizes η = 0.

With (4.22) the first two requirements (4.15) and (4.16) are satisfied. This can

be plainly seen from a plot of the vector field −Kη, shown in Figure 13(b), since all

vectors at every element in the state space point to the origin. However, notice that

the vectors along the η2 axis point directly towards the origin—i.e., they have a non-

zero η2 component. This shows—visually—that requirement (4.21) is not satisfied by

our candidate p̂. Consequently, if we attempt to design a control law for P we will

encounter the impossible task of reconciling the plant model (4.12), for which η̇2 = 0

when η1 = 0, with the reference vector field (4.22), for which η̇2 = 0 only when η2 = 0.

53

To understand the practical reason underlying the problem here, consider the

behaviors that the vector field implies. Point a in Figure 13(a) corresponds to the

agent perceiving the target in front of it; hence the flow from a to the origin indicates

that the action implied by the vector field causes the agent to close in on the target by

moving forward towards it, as shown in Figure 14(a). Similarly, the flow from point

b (which corresponds to the target being behind the agent) to the origin closing in

on the target while maintain it’s back to the target, as shown in Figure 14(b). Now,

recall that all points along the η2 axis (not including the origin) correspond to the

target being to either the right or left of the agent. Hence, the flow from c or d to the

origin corresponds to the agent maintaining its perpendicular orientation with respect

to the target while moving towards it as illustrated in Figures 14(c) and 14(d). This

is clearly incompatible with the differential drive vehicle kinematics discussed in the

previous section—the vehicle simply can not slide sideways. Hence constraint (4.21)

arises due to constraints imposed by our agent’s embodiment.

T

(a)

T

(b)

T

(c)

T

(d)

Fig. 14. Behaviors specified by the reference vector field of Figure 13.

b. A better solution

Graphically speaking for any viable reference vector field, p̂, the requirements for

taxis, (4.15) and (4.16), demand that all flows eventually lead to a single equilibrium

at the origin. At the same time, the structure of our plant model (4.12) demands (via

requirement (4.21)) that p̂ have only horizontal vectors along the η2 axis. Figure 15(a)

illustrates the qualitative structure of such a viable candidate.

54

The behavior this vector field implies is intuitively appealing. Some representa-

tive cases are shown in Figure 16. Trajectories flow to the η1 axis, indicating that the

agent acts to bring the target in front of (Figure 16(c)) or behind (Figure 16(d)) the

agent; once this is achieved, the agent then closes in on the target (Figure 16(a) and

Figure 16(b), respectively).

η
1

η
2

ab

d c

(a) Qualitative structure.

scaled vfield by .65
font 18
in Maple, right click
on figure and
export to EPS

(b) Vector field of (4.23).

Fig. 15. Vector field for unconstrained taxis.

T

(a)

T

(b)

T

(c)

T

(d)

Fig. 16. Behavior specified by the reference vector field of Figure 15.

The qualitative structure of the flow of Figure 15(a) can be realized by the vector

55

field:

p̂ :

 η1

η2

 "→
 −sgn(η1) + sgn+(η1)|η2|

−sgn(η2)|η1|

 (4.23)

as illustrated in Figure 15(b).

Now, setting:

p(η, a) = p̂(η) (4.24)

we can easily (i.e., without inducing singularities) solve for a:

a =

 sgn(η1)

sgn+(η1)sgn(η2)

 =

 sgn(s1)

sgn+(s1)sgn(s2)

 (4.25)

(recall σ1 and σ2 are measurement functions that preserve the signum of their argu-

ments).

D. Synthesis of taxis behaviors

Thus far we have introduced the concept of vector field design as a promising method-

ology to develop static control laws for taxis behavior, applying it to the synthesis of

the unconstrained taxis behavior of (4.25). The basic method is:

1. identify the qualitative structure of a vector field, compliant with (4.15), (4.16),

and (4.21), that can be used to induce the agent to execute some desirable mode

of behavior

2. arrive at a specific analytically-tractable expression for a vector field with this

structure

3. set p̂ as the right-hand side of the plant model (4.12) and solve for the actuation

law, a

56

In this section and the next, we develop several additional behaviors using vector

field design. This will serve to demonstrate the intuition behind the tool, as well as

produce a repertoire of reactive behaviors for use in chapters VI and VII. Before

proceeding, however, in order to aid subsequent development, we make some remarks

regarding how the structure of the vector field relates to agent behavior.

Figure 17 illustrates two key manifolds in the sensory state space:

L− = {η : η1 < 0, η2 = 0}
L+ = {η : η1 > 0, η2 = 0}

(4.26)

and the actions that result when the sensor state is controlled to flow along these

manifolds. When on L− (i.e., when the target is behind the agent), if the sensor

state flows towards the origin, then the agent is engaged in target tracking via reverse

motion. For flows on L− away from the origin, the agent is engaged in anti-taxis via

forward motion. When on L+ (i.e., when the target is in front of the agent), if the

sensor state flows towards the origin, then the agent is engaged in target tracking

via forward motion. For flows on L+ away from the origin, the agent is engaged in

anti-taxis via reversal.

taxis; reverse taxis; forward

anti-taxis; forward anti-taxis; reverse

L
-

L
+

Fig. 17. Key manifolds and their behavioral implications.

With this, we can start our sketch of the visual characteristics of a candidate

vector field by specifying how the agent should behave when it perceives the target

57

either in front of or behind the agent. But what about the rest of the sensory state

space? With target tracking or evasion, at least, regulation is a matter of bringing

states from any point in the state space to one of the key manifolds, L+ or L−.10 Now,

how should these states flow to the manifolds? One way is by the use of curved flows,

contrived to push states in a desirable manner. However, what is the relationship

between the geometry of a flow and the resulting agent behavior? Figure 18 illustrates

this relationship with respect to circular flows.

η
1

η
2

f
+

r
-

f
-

r
+

c

Fig. 18. The influence of flow curvature on behavior. Flow c is circular, while the flows

denoted by the subscripts + and − denote flows whose radii are increasing or

decreasing, respectively.

Consider the clockwise circular flow c which can be realized by the vector field:

p̂ :

 η1

η2

 "→
 η2

−η1

 (4.27)

Setting (4.12) and (4.27) equal, we obtain aω = 1, and av = 0; hence, a circular flow

corresponds to the agent rotating on the spot. Since f+ and r+ are expanding, they are

crossing circles of increasing radius (which corresponds to distance from the target) as

10Recall, as per (4.21), we can not bring states to the origin via the η2 axis.

58

they flow, indicating anti-taxis. With f+, since η1 < 0, the agent is moving away from

the target with its back to the target (and hence moving forwards). Whereas, with

r+, the agent is facing the target while moving away (and hence moving in reverse).

Similar arguments demonstrate that f− corresponds to taxis by forward motion, and

r− corresponds to taxis by reverse motion.

We have only presented a limited set of flow primitives to construct a vector field;

however, as we will see in the remainder, these primitives can be “stitched” together

in a variety of ways to realize a single composite vector field structure, enabling the

specification of a remarkable diversity of behaviors.

1. Unconstrained, biased taxis

Suppose we wish to design a taxis behavior which, although unconstrained, is biased

towards moving forwards toward the target (e.g., for agents which have the capability

to reverse, but prefer — as most car drivers — forward motion where possible).

a. Qualitative structure of p̂

Consider the vector field of Figure 19(a). The flow from a and b correspond to the

agent closing in on the target by executing a straight line moving forwards (as in

Figure 16(a)) or in reverse (as in Figure 16(b)). State trajectories from all other

points (i.e., any state where η2 -= 0) tend to flow towards L+ (i.e., where the target is

ahead of the agent) and from there to the desired η = 0 state. Figure 20 illustrates

the actions of an agent that is regulating its sensor output according to these behav-

ioral specifications. The agent reverses until it it senses the target at an angle of π
2

(corresponding to a vector field trajectory hitting the η2 axis from the left, like for

example, at point c2), moves to bring the target in front of the agent (corresponding

to trajectories flowing towards the η1 axis), and then closes in on the target.

59

η
1

η
2

3.375x3.375 bbox
18 pt labels

b a
c

1

c
2

c
3

X
+

Y
+

X
-

Y
-

(a) Qualitative structure.

scaled vfield by .65
font 18

(b) Specific realization with
f(·) := sgn(·).

Fig. 19. Vector field for unconstrained taxis with forward bias.

T

c
1

c
2

c
3

Fig. 20. Behavior ‘c’ specified by the reference vector field of Figure 19 that biases

forward motion.

60

b. Construction of an analytic form for p̂

We first divide the sensor state space into six subspaces:

X+ = {η : η1 ≤ 0, η2 > 0} Y+ = {η : η1 ≥ 0, η2 > 0}
L− = {η : η1 < 0, η2 = 0} L+ = {η : η1 > 0, η2 = 0}
X− = {η : η1 ≤ 0, η2 < 0} Y− = {η : η1 ≥ 0, η2 < 0}

(4.28)

and address the construction of the vector field within each.

Within X+, rather than bring all flows towards L− and from thence to the origin

by reversing, we require clockwise rotation of the flow towards Y+ where taxis by

forward motion is engaged; this represents a bias in favor of taxis by forward motion.

Hence, the flow geometry must either be that of a circle (for zero translational motion)

or a contracting spiral (for reverse taxis motion). Accordingly, let f(η1) be a function

that, for η1 < 0, is non-positive. Then we can propose:

p̂ =

 −f(η1) + η2

−η1

 , η ∈ X+ ∪ Y+ (4.29)

for X+. Within Y+, we require clockwise rotation of the flow with taxis; hence, the

flow geometry must be that of a contracting spiral. If we stipulate that for η1 > 0,

f(η1) must be positive, we can continue to use (4.29) within Y+.

Within X− ∪ Y− notice that the flow geometry has the same structure as for

X+ ∪ Y+ but with a counter-clockwise sense of rotation. This suggests:

p̂ =

 −f(η1)− η2

+η1

 , η ∈ X− ∪ Y− (4.30)

61

Finally, for L− ∪ L+ we have:

p̂ =

 −η1

0

 , η ∈ L− ∪ L+ (4.31)

Now, we must resolve (4.29)-(4.31) into a unified single expression. To do so,

note that the function sgn(η2) can be used to test for whether we are in:

• X+ ∪ Y+ (for which sgn(η2) = +1)

• L− ∪ L+ (for which sgn(η2) = 0)

• X− ∪ Y− (for which sgn(η2) = −1)

This suggests the analytic form:

p̂ :

 η1

η2

 "→
 −f(η1) + η2sgn(η2)

−η1sgn(η2)

 =

 −f(η1) + |η2|
−η1sgn(η2)

 (4.32)

where f(·) is of one of the forms shown in Figure 21.

f

x

(a)

f

x

(b)

Fig. 21. Candidates for f(·) in (4.32).

The next result confirms the stabilizing property of a family of vector fields that

62

includes (4.32).11

Lemma 1. Consider the dynamical system η̇ = q(η) with right hand side:

q :

 η1

η2

 "→
 −f(η1) + g(η2)

−η1h(η2)

 (4.33)

where:

• sgn
(
f(x)

)
= sgn(x)

• g(x) = h(x) = 0 ⇐⇒ x = 0

• xh(x) = g(x)

The state η = 0 is globally asymptotically stable.

Proof. Let η =

 η1

η2

 and q =

 q1 : R2 → R
q2 : R2 → R

. Consider the continuously differ-

entiable, radially unbounded, positive definite function:

V (η) =
1

2
ηT η (4.34)

with derivative:

V̇ (η) = −η1f(η1) (4.35)

and the set:

S = {η : V̇ (η) = 0}

= {η : η1 = 0}
(4.36)

Since:

• (∀η ∈ S : η -= 0
)(

q1(η) -= 0
)

11We will take f(·) to be an odd function for clarity of the proof; however, we note
that the proof can be extended for the case where f(·) is 0 for negative arguments.

63

• q(η) = 0⇐⇒ η = 0

no solution can stay identically in S except for the solution η(t) ≡ 0. Hence, by the

theorem of Barbashin-Krasovskii-LaSalle, η = 0 is globally asymptotically stable.

c. Derivation of the actuation command

Setting (4.12) and (4.32) equal, we obtain:

a =

 f(η1)

sgn(η2)

 (4.37)

which, since we only have access to the measured plant state, we modify to:

a =

 f
(
σ1(η1)

)
sgn

(
σ2(η2)

)
 =

 f(s1)

sgn(s2)

 (4.38)

where σ1, σ2 are measurement functions. The next results confirms that this law

indeed stabilizes P .

Theorem 1. The plant model (4.12) under the feedback control of (4.38) has globally

asymptotically stable equilibrium η = 0.

Proof. Since sgn
(
σ(x)

)
= sgn(x) for any measurement function σ, (4.38) and (4.37)

are equivalent. Hence, setting h(x) = sgn(x) and g(x) = |x|, the result follows from

Lemma 1.

One of the simplest functions we can use for f(·) is sgn(·); Figure 19(b) illustrates

the corresponding vector field. This leads to the computationally simple actuation:

a =

 sgn(s1)

sgn(s2)

 (4.39)

64

2. Taxis with constrained translational motion

Constraints on the actions of an agent can be due to inherent limitations of the

agent (e.g., the inability of the vehicle to move in reverse, damage to the vehicle

preventing full use of actuators) or imposed by external phenomena (e.g., obstacles

in the agent’s path). Regardless, we desire the agent to accomplish its task (taxis)

in the face of these constraints. In the following we present the synthesis of control

laws that regulate perception, making due with constrained actuation.

a. Qualitative structure of p̂

From the behavioral modes of Figures 16 and 20, we can see that reverse motion is

often used as part of the overall motion towards the target. Precluded from such

reverse motion, however, an alternate regulation scheme is required. If the target is

somewhere to the front of the agent (i.e., η1 > 0) then clearly no reverse motion is

necessary. On the other hand, if the target is behind (i.e., η1 < 0) then the agent

should strive to steer its perception of the target away from the agent’s rear end and

towards its front; once target is in front, the agent can close in. Figure 22 illustrates

this desired behavior.

Ta

b c

Fig. 22. Behavior of an agent engaging in taxis by forward-only motion.

65

A candidate vector field should have flows emanating from the L− manifold (and

away12 from the origin), and entering the L+ manifold (and going towards the origin).

Figure 23(a) presents the qualitative structure of such a vector field.

η
1

η
2

a

b

c

(a) Qualitative structure.

scaled vfield by .65
font 18
in Maple, right click
on figure and
export to EPS

(b) Specific realization with
f(·) := | · |.

Fig. 23. Vector field for taxis by forward motion.

b. Construction of an analytic form for p̂

Analogous to section b, we divide the sensor state space into four subspaces:

X+ = {η : η1 ≤ 0, η2 ≥ 0} Y+ = {η : η1 ≥ 0, η2 ≥ 0}
X− = {η : η1 ≤ 0, η2 < 0} Y− = {η : η1 ≥ 0, η2 < 0}

(4.40)

and address the construction of the vector field within each.

Within X+ we require clockwise rotation of the flow with a constraint against

reversing; hence, the flow geometry must either be that of a circle or an expanding

12Although the goal is taxis, if the target is behind the agent and moving towards
the agent then reversal is occurring.

66

spiral (for forward motion). Let f(η1) be a function that, for η1 < 0, is either

identically equal to 0 or a positive function (for an expanding spiral). Then we can

propose:

p̂ =

 −f(η1) + η2

−η1

 , η ∈ X+ ∪ Y+ (4.41)

for X+. Within Y+ we require clockwise rotation of the flow with taxis; hence, the

flow geometry must be that of a contracting spiral. For η1 > 0, let f(η1) be an

positive function; then we can use (4.41) within Y+.

Within X− ∪ Y− the flow geometry has the same structure as for X+ ∪ Y+ but

with a counter-clockwise sense of rotation, suggesting:

p̂ =

 −f(η1)− η2

+η1

 , η ∈ X− ∪ Y− (4.42)

To resolve (4.41) and (4.42) into a unified single expression, we use sgn+(η2) to

test whether we are in:

• X+ ∪ Y+ (for which sgn+(η2) = +1)

• X− ∪ Y− (for which sgn+(η2) = −1)

leading to the analytic form:

p̂ :

 η1

η2

 "→
 −f(η1) + η2sgn+(η2)

−η1sgn(η2)

 =

 −f(η1) + |η2|
−η1sgn+(η2)

 (4.43)

where f(·) is of one of the forms shown in Figure 24.

67

f

x

(a)

f

x

(b)

Fig. 24. Candidates for f(·) in (4.43).

c. Derivation of the actuation command

Setting (4.12) and (4.43) equal gives:

a =

 f(η1)

sgn+(η2)

 (4.44)

which, since we only have access to the measured plant state, we modify to:

a =

 f
(
σ1(η1)

)
sgn+

(
σ2(η2)

)
 =

 f(s1)

sgn+(s2)

 (4.45)

where σ1, σ2 are measurement functions. A straightforward candidate for f(·) is | · |;
Figure 23(b) illustrates the corresponding vector field. This leads to the actuation:

a =

 |s1|
sgn+(s2)

 (4.46)

68

d. Taxis by reverse-only motion

For the complementary behavior of taxis via reverse-only motion (illustrated in Fig-

ure 25), by similar arguments to those in section a we obtain the vector field structure

of Figure 26(a). The flow is identical to that of Figure 23(a) but for a change of sense

in the rotation. Hence, negating vector field (4.43) we obtain:

p̂ :

 η1

η2

 "→
 f(η1)− η2sgn+(η2)

η1sgn(η2)

 =

 f(η1)− |η2|
η1sgn+(η2)

 (4.47)

(where, again, f(·) is of one of the forms shown in Figure 24), with the corresponding

actuation law:

a =

 −f(η1)

−sgn+(η2)

 (4.48)

Ta

b c

Fig. 25. Behavior of an agent engaging in taxis by reverse-only motion.

3. Taxis with constrained rotational motion

We can also consider the case where the agent is constrained to rotate in a specific

direction as it translates. This may occur due to damage to the vehicle (e.g., loss

of one motor of a differentially driven vehicle, or a servomotor in a steered one),

introducing a rotational bias to any translational motion.

Another more interesting case is that of foiling certain radar detection systems.

Suppose the agent is hostile to the target it is tracking, and suppose the target uses a

69

η
1

η
2

a

b

c

(a) Qualitative structure.

scaled vfield by .65
font 18
in Maple, right click
on figure and
export to EPS

(b) Specific realization with
f(·) := | · |.

Fig. 26. Vector field for taxis by reverse motion.

radar system to scan for whether the agent is moving towards the target. The agent

will be most prone to detection when its radial component of velocity towards the

target is higher. By executing a curved path towards the target, the radial component

of velocity is transferred to a tangential one. If this is done sufficiently, it is possible

for the radial component to become too small for a radar to detect (i.e., being less

than the minimum detectable velocity of the radar [97, 98]) with the agent escaping

detection.

Figure 27 illustrates two vector fields that simultaneously induce rotational and

translational motion for taxis. These vector fields have the qualitative structure of a

stable focus, hence we can propose the following analytic form for the vector field:

p̂ :

 η1

η2

 "→
 ±κη2 − f(η1)

∓κη1

 (4.49)

70

with the corresponding actuation law:

a =

 f(η1)

±κ

 (4.50)

where f(x) is an odd function of x such that sgn
(
f(x)

)
= sgn(x), and κ > 0.

η
1

η
2

(a) Taxis with a rotational
bias that induces positive
(counter-clockwise) rotation in
the agent.

η
1

η
2

(b) Taxis with a rotational
bias that induces negative
(clockwise) rotation in the
agent.

Fig. 27. Vector field for taxis with a rotational bias.

E. Synthesis of non-taxis behaviors

The control laws of the previous section bring the agent to the target; however, we

can consider behaviors that do differently.

71

1. Anti-taxis

To realize anti-taxis, i.e., motion away from a target of interest, we must propose a

vector field that takes η as far away as possible from 0. We can consider two classes

of such vector fields:

• ones that bring the flow in the anti-taxis sense asymptotically along the L− and

L+ manifolds of Figure 17 (call this asymptotic anti-taxis)

• ones that cause the flow to diverge in a radial unbounded manner via other

regions of the sensory state space (call this rotational anti-taxis, since flow

traversal of any manifold other than L− and L+ will induce some rotation)

Figure 28(a) illustrates a vector field for asymptotic anti-taxis. Note, that this

has the same structure as the vector field for biased unconstrained taxis, but with the

direction of flow reversed. We propose the analytic form:

p̂ :

 η1

η2

 "→
 sgn(η1)− |η2|

η1sgn(η2)

 (4.51)

(illustrated in Figure 28(b)). A vector field for rotational anti-taxis is shown in

Figure 29(a) with the analytic form:

p̂ :

 η1

η2

 "→
 sgn(η1)− |η2|

|η1|sgn(η2)

 (4.52)

(illustrated in Figure 29(b)). As with all the vector fields in this chapter, the cor-

responding actuation law can be easily derived by setting the analytic form of the

vector field equal to the right-hand side of (4.12).

72

(a)

scaled vfield by .65
font 18
in Maple, right click
on figure and
export to EPS

(b)

Fig. 28. Vector field for asymptotic anti-taxis.

(a)

scaled vfield by .65
font 18
in Maple, right click
on figure and
export to EPS

(b)

Fig. 29. Vector field for rotational anti-taxis.

73

2. Parking

Another useful behavior is that of “parking,” where the agent comes to a fixed distance

from the target (the “parking spot”) oriented towards the target, and sits there. This

can be realized by a vector field that stabilizes the non-zero equilibrium position

corresponding to the parking spot, as shown in Figure 30(a). If

 κ

0

 is the location

of the parking spot, then this behavior can be realized by the vector field:

p̂ :

 η1

η2

 "→
 η1 − κ

−η1sgn(η2)

 (4.53)

illustrated in Figure 30(b).

(a)

scaled vfield by .65
font 18
in Maple, right click
on figure and
export to EPS

(b)

Fig. 30. Vector field for parking.

74

F. Summary of vector fields

Tables II and III summarize the reference vector fields that we developed in this

chapter, which in turn give rise to behaviors when the corresponding control law

is derived13 and used to specify velocity commands for the agent. These behavioral

specifications give rise to purely reactive (static) laws requiring no memory and which

are amenable to very economical implementation requiring simple nonlinear functions.

G. Simulation results

In this section, we present simulations of the agent operating under the various control

laws of this chapter. Figure 31 illustrates the setup of the agent and target for the

simulations. In the figure (and for the subsequent simulation plots), the agent is

indicated in red and the target in green. Let a global frame of reference be fixed

to the target; the g1 − g2 axes denote a coordinate system imposed on this frame

of reference. Then gM(t) denotes the displacement from the target to the agent,

referenced to the global frame of reference. Also, let ψ(t) be the angle between the

agent’s frame of reference and the global one.

In the following, we will provide the agent’s initial conditions, gM(0) and ψ(0),

and present the trajectory that results from simulating the agent. We also illustrate

the reference vector field, p̂, that underlies the control law for each simulation. The

agent trajectories and the vector field are annotated so that the correspondence be-

tween agent behavior (as illustrated by its trajectory) and the vector field’s structure

can be understood.

The data for the simulations were obtained from a Simulink model simulated

13Setting p
(
η, a(η)

)
= p̂(η) and solving for a.

75

Table II. Summary of reference vector fields for taxis.

behavior desired vector field analytic form

p̂(η) p̂(η)

unconstrained

taxis

 −η1 + sgn+(η1)|η2|
−sgn(η2)|η1|

unconstrained

taxis

(forward bias)

 −sgn(η1) + |η2|
−η1sgn(η2)

forward-only

taxis

 −|η1|+ |η2|
−η1sgn(η2)

reverse-only

taxis

 |η1|− |η2|
η1sgn(η2)

76

Table III. Summary of reference vector fields for non-taxis behaviors.

behavior desired vector field analytic form

p̂(η) p̂(η)

anti-taxis

(asymptotic)

 sgn(η1)− |η2|
η1sgn(η2)

anti-taxis

(rotational)

 sgn(η1)− |η2|
|η1|sgn(η2)

parking

η →

 κ

0

 η1 − κ

−η1sgn(η2)

77

l
2

l
1

M

T g
1

g
2

g
M
(t)

ψ(t)

Fig. 31. Setup for simulations.

under Matlab. A custom animator (written in OpenGL by the author) was then used

to visualize the data as an animation of an agent moving through the environment.

The figures of the agent’s trajectories that we present in the following are time-lapsed

images captured from the animator.

For example, Figure 32 shows four simulated trajectories for an agent operating

under the unconstrained taxis law (4.25). In all four simulations, the agent (shown

as a cone) is placed “due south” of the target (shown as a torus). For case (a), the

agent is oriented such that the target is to its left, at an angle slightly (0.01 radians)

more than π
2 radians, while for case (b) it is at an angle slightly less than π

2 radians.

For cases (c) and (d), the target is to the right of the agent, making angles with the

target as in (a) and (b), respectively. As the figure illustrates, in all cases, the agent:

• starts at an initial orientation (indicated by annotations a1 though d1)

• translates (in reverse for cases (a) and (c), and forwards for cases (b) and

(d)) and rotates to bring the agent in alignment with the target (indicated by

annotations a2 through d2)

• translates (again, in reverse for cases (a) and (c), and forwards for cases (b)

78

and (d)) without rotating to close in on the target (indicated by annotations a3

through d3)

In a similar manner, Figures 33 to 38 present simulation results for the remaining

behaviors developed in this chapter.

H. Discussion

Structurally, the closest scheme to ours in the literature are the purely reactive Brait-

enberg vehicles [55]. Indeed, the work of this chapter can be viewed as a development

of a series of Braitenberg-class machines using a more mathematically rigorous ap-

proach, while retaining the sort of intuitiveness that made Braitenberg’s work so

influential. However, Braitenberg’s reactive schemes were not intended to serve in a

robotic control architecture, but rather to help explain the coupling between sensation

and actuation he observed in biological systems.

Matarić presents an outline of a design procedure14 for behaviors in [100] which

involves:

1. specifying the behavior’s qualitative characteristics in “observer space”

2. decomposing the behavior in terms of “observable, disjoint actions”

3. translating these disjoint actions into actuator inputs

This procedure is characteristic of a software-oriented approach, which differs from

our cybernetic one in two key respects:

14Interestingly, the behavior-based paradigm is viewed by some [99] as being an ex-
ample of a “dynamicist” (i.e., non-symbolicist) approach to cognition; however, a sur-
vey of the literature shows differently. In general, behavior-based robotics approaches
tend to use either symbolic processing (i.e., software or finite-state automata), or, to a
lesser extent, computational intelligence approaches (e.g., evolutionary computation,
connectionism, etc.). In this work, we do not necessarily subscribe to the dynamicist
position, however, since it is generally poorly-defined.

79

b3

b1 b2a1a2

a3

case (a) case (b)

d1d2

d3

c1 c2

c3

a1

c1 d1

b1

a2

c2 d2

b2

a3
c3

b3
d3

case (c) case (d)

agent

target

Fig. 32. Simulation results for the unconstrained taxis behavior showing the agent’s

trajectory for four cases. The reference vector field for unconstrained taxis

is shown in the center with annotations that correspond to the simulated

trajectories.

80
a3

case (a)

b3

a3
a2

b2

a1

b1

b4

a4

a5
b5

a1

a2

a3 a4

a5

case (a)

b1
b2

b3b4

b5

case (b)

Fig. 33. Simulation results for the unconstrained taxis with forward bias behavior

showing the agent’s trajectory for two representative cases, and the associated

reference vector field.

81

a1

b1

a5

b5

a3

b3

a2

b2

a4

b4

case (a)

a1

a2
a3

a4

a5

case (b)

b1b1

b2b3

b4

b5

Fig. 34. Simulation results for the constrained taxis by forward motion behavior show-

ing the agent’s trajectory for two representative cases, and the associated

reference vector field.

82

case (a)

a1

a2a3

a4

a5

case (b)

b1

b2
b3

b4

b5

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

Fig. 35. Simulation results for the constrained taxis by reverse motion behavior show-

ing the agent’s trajectory for two representative cases, and the associated

reference vector field.

83a3

case (a)

a3

b3

a4

b4

a5

b5

a2

b2

a1
b1

case (a)

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

case (b)

Fig. 36. Simulation results for the asymptotic anti-taxis behavior showing the agent’s

trajectory for two representative cases, and the associated reference vector

field.

84

a3

case (a)

a3

b3

a4

b4

a2

b2

a1
b1

a1
a2

a3

a4

b1
b2

b3

b4

case (a)

case (b)

Fig. 37. Simulation results for the rotational anti-taxis behavior showing the agent’s

trajectory for two representative cases, and the associated reference vector

field.

85

a3

case (a)

a5

case (a)

a1

c1

c2

a2

a3

c3 d2

b2

b1

d1

a1

a2

a3

b1

b2

c1

c2

c3

d1

d2

case (a)

case (c) case (d)

case (b)

Fig. 38. Simulation results for the parking behavior showing the agent’s trajectory for

two representative cases, and the associated reference vector field.

86

• the description of behaviors from the vantage point of an external observer

• the explicit scripting of the actions that constitute the behavior

Our design approach, in comparison, views the design of behavior from an agent-

centric point of view. From this perspective, the target sensor presents the agent with

a signal (the agent’s “perception” of the target) and the behavior is specified (via a

vector field) in terms of:

• where we want this signal to go (e.g., does it converge to an equilibrium point,

does it go to infinity, etc.)

• the qualitative characteristics of how we want this signal to get there

Hence, in our methodology:

• at “design time” (i.e., when the vector field is constructed), we deal directly with

the low-level nature of the agent’s perception (i.e., the sensor output signal) and

the regulation of this perception—and not with abstractions concerning what

the sensor output signal means to an external observer, nor with the nature of

what the required actions of the agent are

• at “compile time,” we resolve the vector field with the plant model (that encap-

sulates the agent’s embodiment and situatedness) to obtain an actuation law

that specifies how to couple sensory inputs to actuator outputs

• at “run time,” sensor outputs flow to the actuator inputs in accordance with

this coupling

Hence, we do not design behaviors by scripting actions. Rather, we design a regulator

to steer perception; the behavior—the sequence of goal-directed actions executed by

the agent—emerges from this regulation of perception.

87

CHAPTER V

DYNAMIC CONTROL SCHEMES FOR NAVIGATION

A. Introduction

The reactive controllers we presented in chapter IV were purely reactive schemes

for taxis that tightly coupled sensing and action via a memoryless controller. In

this chapter we address two innovations [101, 102, 103] for an alternative dynamical

scheme for navigation:

• the introduction of dynamics into the controller, “loosening” (in a sense that

we will describe later) the coupling between sensing and action

• the use of a revised controller topology that enables a unified treatment of the

two basic competencies for navigation—target tracking and obstacle avoidance

B. Preliminaries

1. Loosened coupling between sensing and action

In the behavior-based robotics literature (e.g., [47]), a basic division is often made

between reactive and deliberative controllers. The distinction is imprecise and of-

ten specified in a very qualitative manner, with the difference being one mainly of

magnitude. That is, reactive controllers consist, essentially, of a more tighter cou-

pling between sensors and actuators, either via a static function (e.g., the schemes we

presented in chapter IV, Walter’s “turtles,” or Braitenberg’s vehicles) or small finite

state machines.1 In contrast, deliberative controllers employ state-based processing

1That schemes utilizing sets of small finite state machines, such as [58], are often
classified as being “reactive” highlights the unsatisfying nature of the distinction since
finite state machines are dynamical symbolic processors.

88

of sensory data (e.g., via larger state machines, symbolically processing abstracted

representations of sensor data) to derive actuation commands.

Looking at the distinction from a structural point of view, a deliberative con-

troller “loosens” the feed-forward coupling from sensation to actuation of a reac-

tive system by interposing a dynamical system between sensation and actuation—

actuation is buffered from sensation by this dynamical system.

Consider the situation shown in Figure 39, where:

P :

 η̇ = p(η, a)

s = q(η)
(5.1)

D : ζ̇ = f(ζ, s) (5.2)

R : a = g(ζ, s) (5.3)

In order to design such a dynamical scheme for a cybernetic agent, an important

question to ask is: why place a dynamical system between sensing and action? To

address this we can consider conventional dynamical control architectures (such as in

so-called deliberative control), or the piggy-backing of a deliberative controller on top

of a behavior-based one (“hybrid” control [61]). In these schemes, the deliberative

dynamics (in the form of a large state machine, possibly implemented via software and

a general-purpose computer, executing planning algorithms) often provide the agent

with faculties to make longer-term plans of action, rather than short-term reactions

to stimuli.

D R
C

Pa s

D R
C

Pa s

Fig. 39. The structure of a dynamical controller.

89

Following this motivation of achieving longer-term planning through the addition

of a more complex state-based process (a dynamical system), consider the use of the

linear time-invariant (LTI) filter, D:

D : ζ̇ = f(ζ, s) := Aζ + Bs (5.4)

where ζ ∈ Rnd and s ∈ Rne . Conceptually, if D was a low-pass filter, the controller

would be reactive to low-frequency longer-term trends in s, acting to filter out the

effect of spurious changes in s—changes due, say, to the agent making a series of non-

optimal actions (e.g., such as what would arise if it had to try out various options).

2. Unifying taxis and obstacle avoidance

The static schemes of chapter IV were solely concerned with target tracking; obstacle

avoidance was only discussed as a motivation for the constrained taxis controllers.

However, since autonomous navigation involves both target tracking and obstacle

avoidance, it is natural to ask whether these two skills could be dealt with in a

unified manner by the control scheme.

a. Obstacle sensors

One way to address obstacle avoidance would be to consider (in a manner analogous

to our development of the taxis plant model in chapter IV) an obstacle sensor that

returns obstacle position information, and develop a plant model for how this infor-

mation evolves in time as a function of the agent’s actuation. Combined with the

plant model for taxis, we could derive a composite plant model of the form:

η̇T = p(ηT , a)

η̇Ω = p(ηΩ, a)
(5.5)

90

where ηT and ηΩ correspond to the relative positions of the target and the obstacle

under consideration, respectively. Based on this model, we could then formulate and

attempt to solve the multivariable control problem of regulating ηT and ηΩ via a.

Based on the types of obstacle sensors commercially available that return scalar

measurements of obstacle distance2 within a detection sector about the agent, this

may not be practical. More advanced sensors, involving machine vision for example,

may make the problem of determining vector displacements more tractable, but this

takes us away from the scope of our work—cybernetic formulations of lightweight

cognition—and towards the design of advanced schemes for perception.3

M

Ω
1

s
Ω
f

Θ
Ω

f
Ω

2

Fig. 40. Specification of an obstacle sensor.

Now, let’s consider an alternative means to deal with scalar obstacle information.

Figure 40 shows an agent, M , with a short range sensor (with sensing range rmax
Ω) at

its front that points along the l1 axis of the agent’s local frame of reference. Let the

set Θf
Ω be a sector emanating from the agent’s position that contains the positive l1

2These transducers work by radiating a pulse of energy (e.g., ultrasound or infrared
light), and then measuring the time it takes for the reflection of the pulse to return
to a detector placed next to the source of the radiation. The distance to the object
that caused the reflection is proportional to the pulse’s transit time. Since source and
detector are often placed close together, this restricts obstacle distance information
to a relatively narrow sector ahead of the transducer.

3In addition to the increased complexity introduced by vision systems.

91

axis. Defining the set:

Wf := Θf
Ω ∩

(⋃
∀i

Ωi

)
(5.6)

we can specify the distance to the obstacle, rΩ, as:

rΩ = min
∀w∈Wf

||w||2 (5.7)

Since the information returned by the sensor is unlikely to be exactly equal to the

physical distance to an obstacle (due to nonlinear distortion, noise, etc.), we consider

an obstacle sensor measurement function, sΩ(·), with the properties illustrated in

Figure 41.

(a)

(b)

(c)

r
Ω
min0 r

Ω
max

r
Ω

s
Ω

1

0

Fig. 41. The function sΩ : rΩ "→ [0, 1] is: (a) 0 for rΩ ≤ rmin
Ω , (b) monotonically

increasing for rmin
Ω ≤ rΩ ≤ rmax

Ω , and (c) 1 for rΩ ≥ rmax
Ω .

b. Disturbances

Based on the obstacle sensor specified in the preceding section, we can consider a

reasonable safety mechanism for a robotic agent that attenuates translational mo-

tion when an obstacle is directly ahead. Given the function described in Figure 41,

this attenuation can by accomplished by multiplying the agent’s translational speed

92

command, av, with sΩ(rΩ).

Now, the question arises: what is effect of this distortion of the agent’s actuation

command? To address this, we appeal to the control-theoretic concept of a disturbance

which are:

“. . . by definition plant inputs . . . which cannot be manipulated by the

designer and are not completely known beforehand.” [104]

Hence, the presence of obstacles in the environment that can only be detected locally

can be viewed as introducing a disturbance in the agent’s actuation to the plant.

In [104], three basic attitudes toward dealing with disturbances in controller

design are outlined:

• disturbances are undesirable and so:

– they must be wholly rejected by cancellation

– if disturbances can not be canceled, they must be suppressed and quashed

to the greatest degree possible

• disturbances can be useful and, if so, should be exploited

Now, due to the assumptions we made in chapter III in which we precluded a priori

global knowledge of the environment, totally rejection is not always possible. Rather,

in this chapter we consider a means of suppressing disturbances. (A scheme that

exploits the information implied by disturbances will be considered in chapter VI.)

In the next section we present the derivation of a controller that concurrently

addresses the dual goals of navigation by tracking target position information and

suppressing obstacle information. To that end, we alter our dynamical regulator

motif (Figure 39) to that of Figure 42. Of note are the two channels into which

information from the environment enter the controller:

93

• the track channel, corresponding to target position information which the con-

troller attempts to regulate to 0

• the suppression channel, corresponding to the disturbing influence of obstacle

information on the agents actuation to the plant

Σ PC
a s

d
track channel

suppression channel

Fig. 42. Revised controller motif with track and suppression channels. The designer

must design C so that the tracking objective (i.e., imposing desirable charac-

teristics on the agent’s perception of the world, s) can be accomplished in the

face of disturbances, d, perturbing C’s action, a, upon P .

C. Controller synthesis

The formulation of Figure 42 presents the autonomous navigation problem as a multi-

variable feedback control problem in which the agent seeks to regulate its filtered

perception of the world in the face of disturbances due to the presence of obstacles.

We now provide the derivation of such a dynamical controller, using the nonlinear

control-theoretic toolsets of Lyapunov synthesis [96] and backstepping [105].

1. Derivation of virtual control, s!

We want to design a controller, R, to bring the states of D, ζ, to 0. From Figure 39,

we observe that that R can only actuate change, via a, to D indirectly through P ,

since s is a static function of η and not a. Let’s suppose (a la backstepping) that R

does have control over s and define s! as what R would set s to if it could—i.e., a

virtual control.

94

Define the Lyapunov function candidate:

Va := ζT Pζ (5.8)

where P T = P > 0 is a positive definite matrix (the superscripted T denotes the

transpose). Hence,

V̇a = ζ̇
T
Pζ + ζT P ζ̇ (5.9)

into which (5.4) can be substituted yielding:

V̇a = [Aζ + Bs]T Pζ + ζT P [Aζ + Bs] (5.10)

Let K0 be a matrix that makes Ā := A + BK0 Hurwitz, and define:

s!! =
κ1

2
S(BT Pζ) (5.11)

where:

S :

 x1

x2

 "→
 satl1(x1)

satl1(x2)

 (5.12)

and, as illustrated in Figure 43:

satl1(x) :=

−1, x ≤ −l1

1
l1
x, |x| < 1

+1, x ≥ +l1

(5.13)

Then setting:

s = s! = K0ζ + s!! (5.14)

and substituting this into (5.10) yields:

V̇a = ζT ĀPζ + ζT PĀζ − κ1ST (BT Pζ)BT Pζ (5.15)

95

Since Ā is Hurwitz, ∃Q > 0 such that

ζT ĀPζ + ζT PĀζ = −ζT Qζ (5.16)

Substituting this into (5.15) shows that V̇a is negative definite, making ζ = 0 an

asymptotically stable equilibrium point, as desired.

-1

-l1 l1

1

1/l1

satl1
(x)

pull1
(x)

x

Fig. 43. Definitions of the pul : R "→ R and sat : R "→ R functions, parameterized by

the constant l1 > 0.

2. Backstepping setup

As noted earlier, we have only indirect control over s—change actuated via a must be

integrated in P to influence η, which in turn influences s. The method of integrator

backstepping [105] addresses the problem of designing a for this case.

Let’s first define an error signal that we will attempt to control to 0:

ε := s− s! (5.17)

and compute:

ε̇ = ṡ− ṡ!

= ṡ−K0η − κ1
2 Γ(BT Pζ)BT P ζ̇

(5.18)

96

where:

Γ :

 x1

x2

 "→
 pull1(x1) 0

0 pull1(x2)

 (5.19)

and, as illustrated in Figure 43:

pull1(x) :=

0, x ≤ −l1

1
l1
, |x| < 1

0, x ≥ +l1

(5.20)

Expanding and simplifying we obtain:

ε̇ = ṡ− b(ζ, s) (5.21)

where:

b(ζ, s) = [K0 +
κ1

2
Γ(BT Pζ)BT P][Aζ + Bs] (5.22)

3. Stabilization

Now we address the simultaneous stabilization of the states ζ = 0 and ε = 0. The

idea here is that if ε → 0 then s → s!, our virtual control; further, we want to ensure

that in causing ε → 0, we still have ζ → 0.

Again resorting to Lyapunov synthesis, we propose the Lyapunov function can-

didate:

V := Va + εT ε (5.23)

and compute the derivative:

V̇ = V̇a − 2εT BT Pζ + 2εT ε̇

= V̇a − 2εT BT Pζ + 2εT
[
ṡ− b(ζ, s)

] (5.24)

Assume that s = η (i.e., the vector measurement function, σ, is an identity

97

transform). If this is the case, then ṡ = η̇ = Υ(η)a, which suggests setting:

a = Υ−1(s)
[
b(ζ, s) + BT Pζ − κ2

2
ε
]

(5.25)

leading to:

V̇ = V̇a − κ2||ε||2 (5.26)

which, recalling (5.15) regarding the negative definiteness of V̇a, is negative definite.

D. Properties

1. Structure

Σ

Σ

Σ

Σ

X

X

D

K
0

Y-1

S

s

aεε

b
Y-1

∫ ζζ

Fig. 44. Structure of the dynamical controller.

Figure 44 illustrates the structure of the controller derived in section C. A key

feature of this scheme (distinguishing it from the purely reactive scheme of chapter IV,

apart from the increased complexity) is the presence of memory in the form of the

dynamical element D (shown in blue). The output of D, ζ, strongly influences the

98

computation of the actuation signal; however, as the signal flow highlighted in yellow

indicates, there are feed-forward channels directly from sensing to actuation that

are not buffered by D. Hence, the scheme has both purely reactive and dynamical

attributes.

Another significant feature is the Υ−1 block (shown in green). Recall that Υ

describes the evolution of the agent’s perception of the environment as a function of

actuation, embedding knowledge of the agent’s embodiment and situatedness. The

presence of this static vestige of the plant model in the regulator reflects the cybernetic

internal model principle [106]:

“the best regulator of a system is one which is a model of that system in

the sense that the regulator’s actions are merely the system’s actions as

seen through a mapping . . . ”

a. Neural structure

Two blocks of interest are the pulse (Γ) and saturation (S) functions (shown in red)

which impart a quasi-neural characteristic to the topology. Figure 45 redraws the

controller structure, lumping the gains and summing junctions into a single signal

combining node to emphasize this neural structure. We can take the view that the

scheme includes a small feed-forward network of four artificial neurons, two of which

have a classic sigmoidal transfer function and two of which are radial basis functions.4

Alternatively, we can view the whole structure as reminiscent of a single biological

neuron [107]. The stable dynamical system, D, performs a type of leaky integration

of environmental stimuli. The result of this integration passes to a vector activa-

4A radial basis function (centered about c) is a real-valued function whose output
is a result purely of the argument’s distance from c. For example, for scalar x and
c = 0, pul(x) = pul(|x|).

99

Σ a
ζζs

∫

D

Fig. 45. Neural aspects of the controller’s structure.

tion function comprised of the pulse and saturation functions (however, unlike the

traditional integrate-and-fire neuron, no resetting of the integrator is done directly).

We note that sat(·) and pul(·) were chosen in our synthesis because they served as

simple, economical function candidates to stabilize the plant. Although the controller

derivation does not require these functions, it is interesting that our emphasis on

economical choices seems to suggest their use.

2. Scalability

Since the derivation of section C does not restrict the dimensionality of the vectors

or matrices involved, it can, in principle, scale in a straightforward way with the

dimensionality of the environment and the regulator’s dynamical component, D.

Table IV lists the characteristics of the various quantities used in the dynam-

ical control scheme, while Table V summarizes the computations required by the

controller.

100

Table IV. Quantities used in the dynamical control scheme.

quantity dimensions properties

η, s Rne

ζ Rnd

A Rnd×nd

B Rnd×ne

K0 Rnd×nd A + BK0 Hurwitz

P Rnd×nd P T = P > 0

l1 R l1 > 0

κ1 R
κ2 R

Table V. Computations performed by the dynamical control scheme.

operation quantity

binary multiply n2
e

multiply-by-constant 2nd(nd + ne) + ne

pul(·) ne

sat(·) ne

101

3. Singularity

In (5.25) the computation of Υ−1 is required; however, Υ is non-singular for s1 = 0,

precluding the use of (5.25) for this case. The situation here is analogous to that of

section IV.C.1; however, we can not (with ease) bring a graphical method like vector

field design to bear on the stabilization of ζ and ε since the high-dimensionality

precludes visualization of the full state space.

Instead, we propose a patch: we establish a guard zone about s1 = 0, such that

whenever the agent senses the target within that zone it bypasses (5.25) and uses the

actuation:

a =

 av

aω

 =

 0

−s2

 (5.27)

That is, whenever s1 becomes sufficiently close to 0, the agent will rotate on the spot

(the sense of the rotation will be so as to bring the target either in front of, or behind,

the agent) until s1 is sufficiently far from 0.

1

0

s

a
C

C*

Fig. 46. Patched controller; C is the dynamical controller of Figure 44 and C! imple-

ments (5.27).

102

4. Relaxation of stability

In section C, note that we could have simply specified that the virtual control, s!, be

defined:

s = s! = K0ζ (5.28)

resulting in:

V̇a = ζT ĀPζ + ζT PĀζ = −ζT Qζ (5.29)

which is negative definite, making ζ = 0 an asymptotically stable equilibrium point

as desired. The question then arises: if ignoring s!! (i.e., setting κ1 = 0) leads to a

stable virtual control, why introduce s!!?

To answer this, let:

l1 ≤ ρ0

2
||BT P ||1 (5.30)

where:

ρ0 =

√
nd

λmin(Q)
|κ1|||BT P ||1 (5.31)

and λmin(Q) denotes the smallest eigenvalue of Q. Setting κ1 < 0 gives rise to a

neighborhood of radius ρ0 about ζ = 0 where V̇a < 0 [102]. Hence, making κ1

negative relaxes the action of the controller such that, rather than trying to achieve

asymptotic stability of ζ = 0, it strives for ultimate boundedness of ζ to within some

region about 0.

E. Simulation results

Figures 47- 55 present simulation results for the dynamical controller of this chapter.

The numerical annotations indicate the order of actions the agent engages in (with 1

denoting the initial agent configuration); the use of the “patched” controller (C!) to

resolve singularities is indicated by the red θ annotation.

103

case (a) case (b) case (c) case (d) case (e)

case (h)case (g)case (f)

1

2

1

2

1

2

1

2

1

2

1

2

3

1

2

3

1

2

3

θ θ

θ θ
θ

Fig. 47. Simulation results for the dynamical controller with no relaxation of stability

(κ1 = 0); no obstacles are present.

Fig. 48. Simulation of the dynamical controller with κ1 = 0; the agent is impeded by

a small ball.

104

1

1

1 11

2 22

33 3

2

3

4

1
2

3 3

2

1

12
2

33

case (c) case (d) case (e)

case (h)case (g)case (f)

case (a) case (b)

Fig. 49. Simulation of the dynamical controller with relaxed stability (κ1 < 0) for the

obstacle-free case.

105

agent trajectory from the
obstacle-free simulation

agent trajectory from the
simulation with the obstacle

Fig. 50. Simulation of the dynamical controller with κ1 < 0; the agent is able to avoid

a small ball placed in its path.

Fig. 51. Simulation of the dynamical controller with κ1 < 0; the agent is able to avoid

a bigger ball placed in its path.

106

Fig. 52. Simulation of the dynamical controller with κ1 < 0; the agent is able to

circumnavigate a small wall in its path.

Fig. 53. Simulation of the dynamical controller with κ1 < 0; the agent is able to

circumnavigate a big wall in its path.

107

Fig. 54. Simulation of the dynamical controller with κ1 < 0; the agent is able to

circumnavigate a bigger wall in its path.

Fig. 55. Simulation of the dynamical controller with κ1 < 0; the wall is too big for the

agent to circumnavigate.

108

F. Weak emergence of satisficing intelligence

Consider Figure 48 which shows the machine getting stuck at a wall, when the pa-

rameter κ1 = 0. Figures 50-54 shows the machine being able to get past various

balls and walls when the κ1 is made negative. On the surface this may not seem

earth-shattering, since it is clear that the changing of κ1 had something to do with

this; however, on referring back to the derivation of the controller, we note that there

is no coupling of obstacle information to the steering channel.

A second possibility is that altering κ1 causes the controller to bias trajectories

in general—this, in fact, is true. However, it is still not the cause of the obstacle

avoidance, since the trajectory deviation when κ1 < 0 and no obstacle is in front of

it is less than the trajectory deviation when an obstacle is placed in front—hence,

the controller is taking action due to the influence of the obstacle. The question

arises: without being given obstacle information, how does this controller take the

appropriate action?

The answer is that the effect of the feedback loop is to suppress disturbances.

When the agent moves towards the obstacle it is forced to slow down. This shows

up as a disturbance to the controller, and the controller compensates. However, now

the question arises as to why this behavior does not manifest when κ1 = 0. On

referring to the controller equations, we note that when κ1 = 0 the controller is

very aggressive, pursuing asymptotic stability—it wants to get to the target and will

not admit deviations. However, when κ1 < 0, the pursuit of asymptotic stability is

relaxed to the pursuit of ultimate boundedness, i.e., the controller is open to admitting

non-optimal solutions.

Simon [5, 6] suggests that cognitive systems are systems that satisfice, that is,

systems that find “tolerable” rather than optimal solutions. With respect to our

109

system, the behavior of Figures 50-54 is an example of satisficing intelligence—the

agent takes locally non-optimal actions that allow it to get around the wall. In [108],

Bedau introduced the concept of weak emergence, reporting that weak emergence is

manifest in all complex systems with [109] placing it as requisite property of complex

adaptive systems.

Definition 2 (Weak emergence). A phenomenon, P , of a dynamical system, S,

with dynamics specified by D, is weakly emergent if and only if P can be derived from

D and the external conditions of S but only by simulation.

We appeal to this definition to show how satisficing intelligence is a weakly

emergent property of the dynamical scheme presented in this chapter.

Theorem 2. The satisficing obstacle avoidance behavior exhibited in Figures 50-54

is a weakly-emergent property of the dynamical control scheme presented in section C.

Proof. (⇒) We first show that the manifestation of P is rooted in {S, D}. This is

straightforward as through experimentation we observe that P arises when κ1 < 0

(i.e., in the simulations of Figures 50-54). With κ1 < 0, the agent exhibits more varied

behavior (including taking locally non-optimal actions) when it meets an obstacle

and reverses and/or turns to circumnavigate the obstacle. When κ1 = 0, the agent

is aggressive as it tracks the target—however, this fanaticism (to use the AI-inspired

terminology of [110, 111]) prevents it from taking non-optimal deviations from its

optimizing path towards the target.

Hence, the cause of P can be traced to {S, D} via the parameter κ1—the degree

to which the stability of C1 is relaxed.

(⇐) Now we show that P can only be seen to emerge through simulation, that

is, we can not derive its manifestation purely by analyzing {S, D}. We note that in

the synthesis of Section C, we did not explicitly design behavior for turning around

110

obstacles. This was because the agent we designed only had access to local non-

directional obstacle sensing. Hence, we simply did not have access to the information

required to design a regulator that could directly maneuver around an obstacle. Thus,

by solely considering {S, D} it is not possible to deduce the emergence of P because

the regulators in {S, D} do not receive sufficient information to, by design, engage in

P -like behavior.

What we did design into the system, through the s!! virtual control term (switched

by setting κ1 < 0), was a relaxed requirement for stability. That is, we lessened

the constraint on the level one controller providing it with the freedom to take

more varied actions—but we can not say what it will exactly do. Interaction with

the environment—through simulation—is necessary to observe the manifestation of

P .

111

CHAPTER VI

INTEGRATED CONTROL ARCHITECTURES FOR

SINGLE-AGENT SYSTEMS

The implication is that a sensory-interactive goal-directed motor system

is not simply an appendage to the intellect, but is rather the substrate

in which intelligence evolved. There is, in fact, no evidence for a clear

demarcation between the motor system and the intellect. Quite to the

contrary, much anatomical, neurophysiological, and behavioral evidence

suggests that complex behavior is generated in a multilevel control hier-

archy where motor outputs are merely the terminal symbols . . . (James S.

Albus [30])

A. Introduction

So far we have covered the development of basis behaviors to endow an autonomous

robot with faculties to navigate. We started, in chapter IV, with static controllers

which achieved the singular task of target sensor regulation for taxis and other target-

referenced behaviors. Next, in chapter V, we developed dynamical control schemes

for navigation, exploiting topological properties of the control loop to inject obstacle

and target sensor information to both achieve taxis and obstacle avoidance.

In both cases we adopted toolsets from control theory and dynamical systems

theory to develop controllers for which we could make rigorous statements. With

this chapter and the next, however, we move past control-theoretic tools and into

behavior-based robotics proper. Unlike in control theory, where we have quantitative

models of the world and sensors that provide us with the information we require, now

we begin to deal with an artificial organism in the world, with bounded resources

112

but still needing to cope in a competent manner (i.e., needing to satisfice). We may

still use models in our development, but now they are more qualitative; we still have

sensors, but now we acknowledge reality and the fact that our sensors often provide

insufficient information. The use of the term organism is fitting, for this work is

within the broader field of hard artificial life,1 and as such we recall the concept of

weak emergence. In this chapter and the next, hence, we will be engineering the

emergence of useful behaviors, by providing our agent (via the control architecture)

with the raw ingredients for this emergence: the basis behaviors of section IV.

1. Integration of behaviors

The dynamical controller represents a primitive example of the topic of this chapter—

an integrated control architecture—being able to deal concurrently with both taxis

and obstacle avoidance. In this chapter we continue in this vein, addressing the

development of more sophisticated control schemes for single agent systems. We

combine the computational machinery of chapters IV with architectural insights to

yield an architecture for robot cognition that addresses:

• individual agents that navigate on their own and are unaware of other agents

(which we address in this chapter)

• collective groups of agents that interact passively to realize useful collective

behaviors (which will be addressed in the next)

1Artificial life (alife) can be divided into three broad groups: wet, soft, and hard.
Wet alife seeks to develop artificial organisms from the perspective of biochemistry and
systems biology; soft alife uses the immense processing power provided by modern
computers to simulate models of artificial organisms. Hard alife seeks to realize
embodied and situated artificial artifacts that can, at the very least, serve as an
approximation of primitive life, exhibiting purposive cognitive behavior in the world.
In placing our work within the alife tradition [101], we appeal to the perspective of
Maturana and Varela [112] that “living systems are cognitive systems, and living is
a process of cognition.”

113

B. Machine organization

1. Hierarchy

Hierarchical structure is an observed characteristic of living organisms, and whose

importance has been addressed in the artificial life literature [113, 114, 115, 116]. In

fact, [113] poses the synthesis of dynamical hierarchies at all scales as one of four-

teen crucial open problems for the synthesis of artificial life. An early formulation

of a continuous-time hierarchical dynamic architecture was Ashby’s ultrastable sys-

tem [3]. A two level hierarchy was specified consisting of a lower-level “reacting” part

strongly coupled to the environment, and a higher-level system operating on a slower

time scale that regulated the lower-level system. In the practical realization of an

ultrastable system—the Homeostat—the higher-level system possessed the ability to

search for successful controls to regulate the lower-level system. Another example is

the cascaded architecture proposed by Albus [30] where the output of one level be-

comes the input to an adjacent lower level. Sensory feedback from the environment

entered all levels of the hierarchy, with higher levels possibly using abstractions of

lower-level senses (e.g., sensory information from which pertinent features have been

extracted).

In autonomous systems, the need for hierarchical organization generally comes [101,

117] from two sources:

• the multi-scale nature of environmental phenomena that the agent must cope

with, separating fast controllers from slow ones

• the varying degrees of abstractness in the regulation strategy, separating lower-

level controllers (dealing with ‘concrete’ phenomena grounded in the agent’s

sensori-motor embodiment) from higher-level ones (dealing with more abstract

“decision making”)

114

An example of the former can be seen in the navigation problem that we are concerned

with in this work where the situated agent must cope with phenomena occurring on

a variety of time scales ranging its perception of obstacles (fast time scales), to the

tracking of a distant target, to its perception of overall progress (slow, using long-

term trends in sensor data). The same applies to spatial scales, as shown in Table VI

which describes the separation in scale of various classes of behavior.

Issues of action selection often give rise to the need for a higher-level arbiter

to make decisions that govern lower-level actions; these decisions are often based on

abstracted sensory information. For example, to schedule the influence from a set

of several regulators (with differing goals) onto a smaller set of actuators (e.g., the

case where a robot has two independent processes that demand the use of a single

kinematic actuator), a higher-level arbitration mechanism is needed.

Table VI. A hierarchy of behaviors for navigation.

level behavior spatial scale

0 motion velocity

1 velocity tracking velocity, position

target tracking (taxis) position

obstacle avoidance position

2 searching path

115

a. The proposed architecture

In our approach, the separation of regulation tasks due to varying abstractness and

scale suggests a recursive view of the control strategy. Consider a low-level controller,2

C0, which is concerned with regulating fast phenomena in the environment. Let E0

model that portion of the environment,3 E, that is responsible for this fast phenomena

(and whose evolution is governed by the actuation output of C0, a0). This is the

situation of Figure 56(a).

At a higher level of abstraction, a slower temporal scale or a longer spatial

scale, the agent’s controllers will be attempting to regulate a similarly higher level

of phenomena—however, generally, to regulate this phenomena it will still have to

actuate change via the lower levels.4 Hence, in order to design a regulator for a higher

level, the control strategy must account for the effect of all systems “downstream”

from the controller. Consider the two-level hierarchy of Figure 56(b). The agent’s

higher faculty, C1, acts through C0 and E0 to influence the subject of its actions,

E1. Hence, the plant model used to synthesize C1, P1, must account for all of these

downstream systems.

Hence, we describe our general architecture (illustrated in Figure 56(c)) as a

hierarchy of regulators, where the controller at level i, Ci, seeks to regulate its sensory

2For a mobile robotics problem, the zeroth level address the problem of motion
causation, i.e., E0 consists of the agent’s motor actuators and C0 is a system that,
given a velocity command, controls E0 to achieve that velocity. We do not address
the design of this level as it is out of the scope of our work. In our development, as
mentioned in chapter IV, we subsume the competence provided by this zeroth level.

3The portion of the world that is external to the agent’s control architecture.
4An exception is when the agent can communicate with other agents; in this case,

the communication channel can serve as a link between higher levels of cognition
of separate agents, bypassing the need to effect change through the environment.
This is in contrast to stigmergic cooperation between agents, where there is no direct
communications channel. In this case, the agent must act through the environment
(i.e., using its lower-order faculties); these actions are then sensed by others who then
act in response.

116

a
0

s
0

C
0

E
0

P
0

(a) One level.

a
0

a
1

C
0

E
0

E
1

C
1

s
0

s
1

P
1

(b) Two levels.

a
0

a
2

a
1

C
0

E
0

E
1

E
2

C
1

C
2

... ...

s
0

s
1

s
2

(c) n levels.

Fig. 56. Recursive development of our hierarchical control architecture.

117

perception of the environment at level i, Ei; Ei encapsulates those aspects of the

overall environment that are relevant to the particular cognitive skill that Ci realizes.

To synthesize goal-directed behavior, the derivation of Ci needs a plant model, Pi,

of the world “downstream” from it (i.e., including all controllers Cj, j < i, and

environmental models, Ej, j ≤ i); Pi is defined according to the following recursion:

P0 := E0

Pi := Ci−1Pi−1Ei

(6.1)

2. Layering of behaviors

In a complex, dynamical environment, multi-scale phenomena generally bombard the

agent in parallel, causing the agent to have multiple objectives that must be addressed

concurrently. The society of minds theory suggested that intelligence emerges from

this mix of parallel processes. Brooks developed a robotic control scheme—the sub-

sumption architecture—that practically realized this idea, “vertically” decomposing

tasks so that separate layers (as opposed to levels5) perform their objectives concur-

rently.

Apart from Minsky and Brooks, there is another more direct route to the struc-

tural insights of subsumption, a route that we take in this work, inspired by hardware

design. Since we target custom hardware realizations (whether analog or digital), we

are unrestricted by requirements for serial execution (as with general-purpose com-

puters). Instead, we are free to instantiate hardware as needed, adopting parallel

regulation hardware to deal with parallel phenomena. Hence, from this perspective,

5In this work, the term ‘level’ pertains to hierarchical structure, that is, one can
define an ordering of levels based on some topological criteria (e.g., for us, a lower
level is one that is being driven by a higher level). A ‘layer,’ on the other hand,
denotes a parallel entity; there is no structural order here since two parallel layers
can operate independently without passing information between each other.

118

a subsumption-like architecture is the natural solution.

Figure 57 illustrates a layered architecture for a regulator which, according to the

scheme of Figure 56, would be placed within one of the control levels (i.e., within the

Ci blocks). The individual regulators, Rb
a, correspond to the basis behavior controllers

designed in chapters IV and V. As can be seen, mutually exclusive control actions

enter multiplexors where only one action is selected; the actuation signal, ai+1, from

a higher level controller governs this selection. The outputs from the multiplexors

represent control actions that can be used concurrently. They enter a node where

they are combined (possibly along with ai+1) in some fashion to produce the resultant

composite actuation, ai.

R
1

n
1

R

C
i

1

1

. .
 .

. .
 .

. .
 .

R
m

n
m

R
m

1

. .
 .

. .
 .

s
i

a
i

a
i+1

Fig. 57. The architecture of a general layered controller at the i-th level of hierar-

chy, Ci. Elementary controllers, Rb
a, that realize various basis behaviors are

grouped according to whether they address concurrent goals (in which case

they have different superscripts) or exclusive goals (in which case they have

different superscripts).

119

C. Static schemes for single agent systems

1. Obstacle avoidance

Consider an agent with front and rear obstacle sensors as shown in Figure 58. Let

ηΩ,f denote the distance between the agent, M , and ΘΩ,f ∩
(∪nΩ

i=1Ωi

)
, and let ηΩ,r

denote the distance between the M and ΘΩ,r ∩
(∪nΩ

i=1Ωi

)
, where (nΩ is the number

of obstacles in the environment). The obstacle sensors, having finite sensing radius,

return a measurement, sΩ, of these values:

sΩ =

 sΩ,f (ηΩ,f)

sΩ,r(ηΩ,r)

 (6.2)

where sΩ,f (·) and sΩ,r(·) are defined in Figure 41 of chapter V.

M

Ω
1

Ω
2

s
Ω
f

s
Ω
r

Θ
Ω

f

Θ
Ω

r

Fig. 58. Agent setup with front and rear obstacle sensors.

These sensors provide a monocular view of obstacles in front of and behind the

agent. We can use them to design a reactive collision avoidance strategy by specifying

a translational motion attenuator which filters commanded translational speeds by

120

the map:

av =

(1− sΩ,f)v for v > 0

(1− sΩ,r)v for v < 0

0 for v = 0

(6.3)

preventing the agent from ever hitting an obstacle. Beyond this, however, the utility

of these sensors in a reactive scheme for obstacle avoidance by navigation around

obstacles is limited by the absence of directional information.

To develop our navigation scheme we use the obstacle sensors to provide the

agent with motion constraints that it must operate under. Hence, we propose the

scheme of Figure 59(a) which presents a level one controller, C1, as a layering of three

regulators:

• RT,u realizes unconstrained taxis

• RT,f realizes constrained taxis by f orward-only motion

• RT,r realizes constrained taxis by reverse-only motion

and an open-loop behavior, Rot, which drives the agent to rotate regardless of the

target sensor.

Now the question is how do we drive µ1, the behavior selection signal? We can

define it via a static map as a function of the obstacle sensor data, µ1(sΩ); however,

this gives rise to some potential problems:

• elimination of useful motion: many of the basis behaviors in this work involve

rotation and translation (indeed, for the behaviors we designed in chapter IV,

pure translation or rotation are rare). Hence, the combination of obstacle-

based attenuation of translational speed (6.3) and whatever rotational motion

the agent is engaged in can serve to steer the agent away from the obstacle and

towards the target. By reactively switching between behaviors using a static

121

µ
1

a
1

C
0

R
T,u

R
T,f

R
T,r

Rot

E
0

E
1X

a
v

a
ω

-
Σ 1

> 0

C
1

s
T

s
Ω,f

s
Ω,r

(a) Level one. The obstacle-based speed attenuator of (6.3) is highlighted in
dark blue, while the sub-system for taxis is highlighted in yellow.

C
0

E
0

E
1

C
1

C
2

H
leak

H
leak

E
2s

Ω,f
_

s
Ω,r
_

(b) Level two. The overstimulation filters are placed in the environment
because they are a part of the agent’s sensors, and are hence strictly outside
of the controller.

Fig. 59. Development of a reactive control architecture for single agent systems.

122

function of the obstacle sensor data, however, we might be excluding this sort

of useful motion.

• discontinuous switching: transient stimulation by obstacles (e.g., when the agent

catches a brief sight of an obstacle during its motion, even though it may not be

moving towards it) could result in many “hard” transients on the actuators as

the agent makes discontinuous switches between behaviors (e.g., going from for-

ward motion to reverse motion, without slowing down or stopping in between).

This can result in increased wear on the actuators and drive electronics.

• chattering: the agent can get trapped in a limit cycle where it oscillates about

the switching point between constrained and unconstrained behaviors, resulting

in no net progress towards the target. For example, suppose an agent encounters

an obstacle and then starts to reactively reverse away from the obstacle (due to

it switching to constrained taxis). Once it gets sufficiently far from the obstacle,

it will switch back to unconstrained taxis, moving forwards, and encountering

the obstacle again. This repeating sequence of actions can trap the agent at the

obstacle.

Alternatively, we can extract a longer-term trend from the obstacle sensors and

govern behavior selection based on this. With the latter scheme a separation of time-

scale and abstraction exists between the navigational basis behaviors and the selection

of a behavior to adopt. This suggests the use of a controller at a higher level (level

two) in the hierarchy.

To realize this scheme, we first create an abstracted measure of obstacle sensor

overstimulation by passing obstacle sensor data through a leaky integrator, Hleak:

ẏ = −κleaky + u (6.4)

123

(for κleak > 0) and then through a hysteresis function to produce sΩ̄,f and sΩ̄,r, as

illustrated in the E2 block of Figure 59(b).

Let the actuation signal from C2 be defined:

a2 =

 a2,f

a2,r

 (6.5)

where (for i ∈ {f, r}) a2,i ∈ [0, 1] and a2,i = 0 means that motion in direction i is

unconstrained, while a2,i = 1 means that motion in direction i is fully constrained (i.e.,

disallowed). We can thus map a2 to the behavior selection multiplexor of Figure 56(b)

such that

 0

0

 selects RT,u,

 0

1

 selects RT,f ,

 1

0

 selects RT,r, and

 1

1

selects Rot. Now, to design controller C2 we need to specify a plant model, P2,

that reflects how C2’s actuation of

 a2,f

a2,r

, passing through the cascade of systems

{C1C0E0E1E2} affects the evolution of sΩ̄ :=

 sΩ̄,f

sΩ̄,r

. Qualitatively, when sΩ̄,f > 0

we expect that constraining forward motion (i.e., making a2,f > 0) should tend to

decrease sΩ̄,f , and similarly when sΩ̄,r > 0 then making a2,r > 0 to constrain reverse

motion should tend to decrease sΩ̄,r. We can describe this dynamically by:

P2 :

 ṡΩ̄,f = −a2,f

ṡΩ̄,r = −a2,r

(6.6)

To synthesize a controller that will bring obstacle overstimulation (i.e., sΩ̄) to 0,

we define the scalar-valued function:

V :=
1

2
sT

Ω̄sΩ̄ (6.7)

which is positive-definite with respect to sΩ̄. Differentiating with respect to time, we

124

obtain:

V̇ = −sΩ̄,fa2,f + sΩ̄,ra2,r (6.8)

Setting a2,f = sgn(sΩ̄,f) and a2,r = sgn(sΩ̄,r) makes (6.7) negative-definite with respect

to sΩ̄, hence bringing sΩ̄ to 0.

2. Searching

Searching in the absence of a priori knowledge of the search space—goal-directed

trial-and-error [30]—is a fail-safe, often open-loop, behavior that an agent can engage

in when confronted with a situation that it can not control (e.g., if it can not sense

the presence of a target); Ashby’s Homeostat uses a random mechanism to search for

favorable controls to properly regulate the system.

The Rot behavior used in the previous section realized a simple case of searching.

In that case, the agent executed Rot whenever both its obstacle sensors were over-

stimulated, a case that prevented the agent from using any of its basic taxis behaviors

since all translational motion was excluded; the agent’s rotation served to search for

a favorable orientation to escape this situation.

Consider a target that is out of range of an agent that desires to track it. In the

absence target sensor data, the agent would be unable to engage in taxis. In that

case, what should the agent do? Ideally, the agent would execute a search of the space

around it, with the goal that by covering a sufficient area it eventually enters sensing

range of the target [118]. But what are the characteristics of an effective search?

An unbiased search strategy involves executing a path through space that, if done

indefinitely, would eventually cover the entire space. Although a variety of “space-

filling” [119] curves exist, here we focus on the Archimedean spiral [120], illustrated

in Figure 60, as a prototypical path for a search strategy. As the figure illustrates,

a useful characteristic of Archimedes’ spiral is the uniform separation, ρ, between

125

successive crossings of the spiral across any ray emanating from the origin of the

spiral. If we consider an agent with a local sensing radius of rs, then the agent

executing an Archimedean spiral where ρ = 2rs would cover all space enclosed by the

spiral.6 The parametric equations that describe this spiral are of the form:

g1(t) = t sin(t)

g2(t) = t cos(t)
(6.9)

2ρ 3ρρ

g
1

g
2

Fig. 60. An Archimedean spiral (also known as an arithmetic spiral). Successive cross-

ings of this curve across the g1 axis (and, more generally, across any ray

emanating from the spiral’s origin) are separated by ρ.

a. Design of a reference oscillator for searching

In the following we present the design of a dynamical system to generate a reference

signal that an agent can track to execute approximations of Archimedean spirals

through space.

6With respect to the figure, we can visualize the search by a circular “paintbrush”
of radius 1

2ρ, centered about the path, and tracing along the path.

126

Searching forever Ideally, we desire a signal generator that enables an endless

search until a target is found. Consider a simple unicycle, with translational speed v

and rotational speed ω, and recall that the trajectory executed by this unicycle (with

respect to the g1 − g2 plane of Figure 60) is:

ġ1 = v cos(ψ)

ġ2 = v sin(ψ)

ψ̇ = ω

(6.10)

(where φ denotes the orientation of the vehicle in the g1 − g2 plane). Note that if we

hold the translational and rotational speeds constant, i.e., v(t) ≡ v, ω(t) ≡ ω, then

we have:

ψ(t) =
t∫

0

ωdτ = ωt

g1(t) =
t∫

0

v cos(ψ)dτ =
t∫

0

v cos(ωτ)dτ = v
ω sin(ωt)

g2(t) =
t∫

0

v sin(ψ)dτ =
t∫

0

v sin(ωτ)dτ = − v
ω cos(ωt) + v

ω

(6.11)

and hence the radius of oscillation of the path executed, r(t) :=
√

g2
1 + (g2 − v

ω)2, is

r(t) ≡ v
ω . This suggests that we can control the radius of oscillation of the path by

obtaining either:

• a suitable monotonic increasing reference function for v(t)

• a suitable monotonic decreasing reference for ω(t)

Since it is not practical to increase the translational speed of a vehicle without

bound, we consider the second option. It is out of the scope of this work (and

may not be trivial) to derive explicit expressions for ω(t) that would result in a

vehicle executing the exact trajectory of (6.9), so we present an empirically-obtained

127

candidate that enables an approximation. Setting:

ω(t) =
1√
t

(6.12)

and holding v(t) ≡ v, yields the trajectory illustrated in Figure 61.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

g
1

g
2

Fig. 61. The trajectory of a vehicle starting at the origin, under (6.12) and v(t) ≡ 0.1.

Interleaved searching The problem with the earlier development is the imprac-

ticality of accurately generating (6.12) for a long period of time—eventually, either:

• the finite precision of a digital realization

• analog integrator saturation and possibly drift due to offset errors

will prevent the generation over long time spans of the requisite linear ramp, t, that

forms the basis for (6.12).

Consider a search strategy that is composed of two behaviors. First, the agent

executes a spiral search for the finite duration ts, which is the maximum period of

128

time that we can generate a practical ramp signal.7 Next, it takes off in a bee-line in

whatever direction it is in for duration tb (whose duration is, again, constrained by

practical considerations). In this manner, the system exhaustively explores a limited

region and then moves off to potentially cover an unexplored area.

To realize this, we invoke a simple stable oscillator (illustrated in Figure 62):

ξ̇1 = fsgn(ξ2) + ξ1(1− ||ξ||1)
ξ̇2 = −fsgn(ξ1) + ξ2(1− ||ξ||1)

(6.13)

where the frequency, f , of the oscillator is set by:

f =

2π
ts

, ξ2 ≥ 0

2π
tb

, ξ2 < 0
(6.14)

Now, holding v(t) ≡ v we set:

ω(ξ) =

1√
ξ1

, ξ2 ≥ 0

0, ξ2 < 0
(6.15)

Since the oscillatory dynamics of (6.13) are piecewise constant, ξ1 and ξ2 evolve as

linear functions (ramps) of time.

3. Integration

To realize an integrated control architecture, we stitch together the behaviors of taxis

and searching with obstacle avoidance. Since these are mutually-exclusive, never

being active simultaneously (since one is active when there is a target in range, and

the other when that is not true) we can integrate them using a multiplexor as shown

in Figure 63. As shown in the figure, we apply a leaky integrator to sT̄ (a sense

7This period ts will either be due to limitations in the underlying analog circuitry,
or governed by our choice of digital word length.

129

ξ
1

ξ
2

||ξ||
1
=1ξξ

Fig. 62. The vector field structure of oscillator (6.13).

that indicates that the target is out of range) followed by hysteresis to perform the

selection; we do this to decouple the actuators from fast transients where the target

briefly goes out of range.

Figures 64 and 65 present the result of simulating an agent with this control

architecture in a virtual environment.

130

µ
1

a
1

s
1

R
T

B
s

X
a
v

a
ω

-
Σ 1

> 0

C
1

s
T

s
T

s
Ω,f

s
Ω,r

H
leak

__

Fig. 63. A controller integrating taxis with an open-loop search behavior.

initial
position

Fig. 64. An example of basic obstacle avoidance.

131

initial position

search

target sensor range

Fig. 65. An example of searching and taxis, both with obstacle avoidance.

132

CHAPTER VII

INTEGRATED CONTROL ARCHITECTURES FOR

MULTI-AGENT SYSTEMS

A. Introduction

Having described and demonstrated the principles behind realizing an integrated

control architecture for the single agent case in chapter VI, our goal now is to develop

an integrated architecture for multi-agent systems. Our goal here is to realize a scheme

for a set of homogeneous agents to engage in collective behavior [95] that would be

useful for a robotic exploration or mobile sensor networks problem. Specifically, we

want to engineering higher-order behaviors for:

• agents to navigate in the midst of other agents

• agents to flock together to a target

• agents to self-organize about that target

while using only passive interactions.

1. The “nearest neighbor” agent sensor

We first endow the agents with faculties to perceive each other. Consider a local

frame of reference attached to agent M and let ηA =

 ηA,1

ηA,2

 denote the position of

the closest agent in this frame. For n agents within sensing range of M (illustrated

in Figure 66), let li, i ∈ {1, . . . , n} denote the displacement of between agent Mi and

M . Then η := lj, where

j = argmin
∀i∈{1,...,n}

||li|| (7.1)

133

M

l
2

l
1

l
j

M
j

Fig. 66. The agent sensor of M returns a measurement of the displacement, lj, to the

closest agent, Mj.

The agent sensor is a memoryless system that returns its measurement of the dis-

placement to the closest agent, sA =

 sA,1

sA,2

:

sA = σ(ηA) :=

 σ1(ηA,1)

σ2(ηA,2)

 (7.2)

where σ1 and σ2 are arbitrary measurement functions.

2. Outline

Before addressing the design of a fully integrated architecture, we first design a suite

of higher-order behaviors using the elementary behaviors developed in chapter IV. In

designing these, we illustrate three methods for realizing composite behaviors from

elementary ones:

• time-division multiplexing of mutually exclusive primary behaviors

• superposition of complementary primary behaviors

134

• construction of composite sensory feedback

B. Regulating inter-agent boundaries

By virtue of the agent sensor, agents are aware of the presence of other agents in their

vicinity. This information can be used to realize a scheme of regulating inter-agent

proximity. For example, in a multi-robot scheme, we desire agents to be within sensing

range of each other, yet not so close as to cause collisions.1 Moreover, in mobile sensor

networks and robotic exploration, agents must be close enough to communicate, but

also be far enough apart to ensure that the network achieves sufficient coverage over a

territory.2 We formulate this as the maintenance by each agent of “social boundaries.”

Consider Figure 67 which shows an agent, Mi, surrounded by two regions:

• the inclusion zone, Zi := B(0; rA,max)−B(0; rA,min), within which Mi strives to

maintain at least one other agent (e.g., agent Mj in the figure)

• the exclusion zone, Ze := B(0; rA,min) within which Mi strives to ensure no

other agent enters

To realize a composite behavior that strives to maintain these social boundaries, we

can employ the elementary taxis and anti-taxis behaviors of chapter IV referenced to

the agent sensor. Since these two behaviors are exclusive to each other, superposing

them may result in actuation nulls where the antagonistic actions will sum to zero.

Rather, we propose the scheme of Figure 68. The yellow box highlights an agent-based

taxis scheme with obstacle avoidance (identical in structure to the target-based taxis

1The obstacle sensors may be unreliable in preventing collisions due to the dy-
namical nature of both agents. For example, two fast-moving agents close enough
together may collide due to “sight” limitations in the obstacle sensors.

2Note that we map the network goal of maintaining connectivity with the spatial
objective of ensuring an agent is nearby, and the network requirement of coverage to
the spatial objective of ensuring agents are not too close.

135

r
A,min

r
A,max

M
i

B(0;r
A,min
)

B(0;r
A,max
)

M
j

l
2
i

l
1
i

r
A

Fig. 67. The “social boundaries” of agent Mi: the inclusion zone, Zi is shown in blue,

while the exclusion zone, Ze, is shown in yellow. Agent Mi senses Mj with

respect to Mi’s local li1 − li2 coordinate system, and strives to maintain Mj

within the inclusion zone (i.e., at a distance, rA, where rA,min < rA < rA,max).

with obstacle avoidance scheme of chapter VI). We multiplex this with an agent-

based anti-taxis behavior (RĀ) and a null actuation (the 0 block). The hysteresis

function is defined such that it:

• selects taxis when the nearest agent goes sufficiently beyond Zi

• selects anti-taxis when the nearest agent enters Ze

• selects the null actuation av = 0, aω = 0 otherwise

C. Flocking

Flocking is a mode of collective behavior where a mass of agents move together

through the environment. We can realize a simple case of flocking by superposing a

translational motion bias to the previous scheme; however, we want a more purposeful

136

R
A,u

R
A,f

R
A,r

Rot

µ
,A

R
A,u

R
A,f

R
A,r

Rot

s
A

R
A
_

0

|| ||
2

.

Fig. 68. A regulation scheme to maintain social boundaries.

behavior. To that end, we illustrate three architectures that enable a group of agents

to flock to the target.

Suppose we wish to move a mass of agents from some point to a target location.

Two behaviors will be at play in each agent:

• the primary behavior of target-based taxis3

• the secondary behavior of social boundary maintenance4

We have two options for composing these behaviors together: superposition of the

behavior’s actions and, as done in section B, multiplexing of the actions.

137

µ

R
A

R
T

R
A
_

0

|| ||
2

.

Σ

s
A

s
T

Fig. 69. A regulation scheme for flocking using action superposition. The yel-

low-highlighted RT and RA blocks realize target tracking and agent tracking,

respectively. The social boundary regulator is shown highlighted in dark blue;

the summation is done at the output of this regulator.

138

1. Action superposition

Consider the action superposition scheme of Figure 69 in which the outputs of the

social boundary regulator and the target tracking regulator have been summed. Fig-

ure 70 shows a simulation where six agents flock to the target under this scheme. A

major concern with superposition is that when the behaviors are not mutually exclu-

sive, they can “fight” each other, that is, the sum of the actuation signals can result

in a net output of zero. In the figure we can see that this does in fact happen as the

agents get locked into a static configuration away from the target.

final (static)
group configuration

initial group
configuration

1

1

2

2

3

3
4

4
5

6

5
6

Fig. 70. The result of simulating six agents under the scheme of Figure 69.

Since target tracking and regulation of social boundaries are not necessarily ex-

clusive to one another, we can propose the alternate superposition scheme of Fig-

ure 71. Here we “break” the social boundary regulator in two and superpose target

tracking and agent tracking outputs. This then goes to the remaining half of the

social boundary regulator that handles agent repulsion. Since the agent-repulsion

3For brevity, we will refer to target-based taxis as target tracking.
4Recall that this is composed of two primary behaviors: agent-based taxis (agent

tracking) and agent-based anti-taxis (agent-repulsion).

139

µ
1

R
A

R
T

R
A
_

0

|| ||
2

.

Σ

s
A

s
T

Fig. 71. A regulation scheme for flocking using action superposition. The social bound-

ary regulator has been split into two (highlighted by the two dark blue boxes),

and the superposition with target tracking is done in between the two halves.

140

regulator is closer to the output, it has higher-priority than either agent tracking or

target tracking. Figure 72 shows the result of re-running the earlier simulation with

the new scheme. Now, the agents “cloud” around the target, each getting close to it

briefly, before breaking away (due to the switching of agent-repulsion behavior).

initial group
configuration

1

23

4

5
6

Fig. 72. The result of simulating six agents under the scheme of Figure 71.

2. Action multiplexing

The scheme of Figure 71 is still subject to actuation nulls when target tracking and

agent tracking become antagonistic. Figure 73 illustrates an action multiplexing

scheme that is inherently immune to null actuation and undesired equilibria away

from the target, since the agent is always doing something. Figure 74 and 75 show

two simulations of this scheme; in both, the agents cloud about the target.

D. Self-organization: passive coordinated deployment

The action superposition scheme of Figure 69 had an appealing emergent character-

istic: actuation nulls about the target led to the emergence to static formations of

agents about the target. However, on closer inspection, the formation is not ideal

since the coverage of the target is clearly biased, restricting the usefulness of the

141

R
A,u

R
A,f

R
A,r

Rot

µ

R
A

R
T

R
A
_

|| ||
2

.

s
A

s
T

Fig. 73. A regulator for flocking; action multiplexing.

initial group
configuration

1

2
3

4
5

6

Fig. 74. The result of simulating six agents under the scheme of Figure 73.

142

initial group
configuration

2

3

4
5

6

1
Ω

1

Ω
2

Fig. 75. The result of simulating six agents under the scheme of Figure 73 with obsta-

cles.

scheme for mobile sensor networks or robotic exploration.

To rectify matters, we want to engineer the emergence of a more useful agent for-

mation that better covers the target. Recall that under the assumptions of chapter III

we are under a variety of constraints including:

• the lack of a global information pertaining to agent positions

• the lack of inter-agent communication faculties for active coordination between

agents

Moreover, with the sensor model proposed at the beginning of this section, each

agent only has access to the relative position of, at most, a single agent, the nearest

neighbor. Hence, we can not appeal to the conventional multi-agent coordination- and

formation-control schemes found in the literature [74, 75, 76, 77, 78] which generally

require more sophisticated sensing.

To form a basis for a passive coordination scheme, we need some piece of common

information that the distributed agents can use. To that end, we recognize that every

agent performs a measurement (albeit a local one) of a common phenomenon: its

displacement to the common target. Now, consider the ideal case where the agents

143

execute a regular simple n-sided polygonal5 formation of agents centered about the

target; Figure 76 illustrates the case for a hexagon. Let i denote any vertex of the

polygon, Mi denote the agent at that vertex, and xi,T denote Mi’s displacement to

the target. Let Ψ(θ) be the two-dimensional rotation matrix:

Ψ(θ) =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 (7.3)

and θC > 0 be half the measure of the interior angle of an n-sided regular polygon:

θC =
π

2

(
1− 2

n

)
(7.4)

We observe that the displacement from Mi to agent Mi+1 (at the adjacent vertex,

going clockwise) is co-linear with Ψ(θC)xi,T , and similarly that the displacement from

Mi to Mi−1 is co-linear with Ψ(−θC)xi,T .

Tx
i,TM

i

M
i+1

M
i-1

x
i,i+1

x
i,i-1

θ
C

−θ
C

Fig. 76. The case of a hexagonal formation of agents about a target.

Hence, to give rise to a formation of agents,6 we want to regulate our perception

5Recall that a regular polygon is one where all angles are congruent, and all sides
have the same length; a simple polygon is one which does not intersect itself (in
contrast to a star-like polygon).

6We note that so far we have specified an imprecise relationship between sT and

144

of the displacement to our nearest neighbor to be in compliance with this relationship

between the target sensor and agent sensor measurements. To do so, we construct a

composite sensory feedback signal for coordination, sC :

sC : (sT , sA) "→ Ψ(θC)sT − sA (7.5)

and use the taxis behavior to regulate sC to 0.

Now, will this work? Simulation results confirm that the use of this regulation

scheme does not work (for the cases simulated)—even with ideal measurements of the

displacements to the target and other agents. The reason behind this failure stems

from the fact that there is only set of isolated configurations where the agents can

come to rest: those configurations where Ψ(θC)sT − sA goes to zero for every agent.

It is unlikely that a system of multiple dynamic agents, where there is only very loose

coupling between the agents (via a nearest neighbor agent sensor and a target sensor),

will come to rest at precisely the right “sweet spot.” Moreover (7.5) is biased towards

agents entering a relationship where the displacement between the target and the

nearest neighbor is at θC > 0—but this neglects the equally useful case of −θC . Since

agents do not have a global view of the current status of the formation, we can not

obtain a basis for determining an appropriate sign to use locally.

We hence augment our scheme to create a band of acceptable orientations (about

±θC) as illustrated in Figure 77:

sC =

 0 for
∣∣|θT,A|− θC

∣∣ < δC

Ψ(θC)sT − sA otherwise
(7.6)

sA, that of co-linearity. To make this relationship an equality, we merely need invoke
the law of cosines. However, since our agent and target sensors are only providing
distorted (and likely noisy) measurements of xi,T and xi,j the utility of doing so
is unjustified. Our goal here is to obtain a qualitative relationship that gives us a
principled basis behind the engineering of emergence of a formation.

145

where:

θT,A = cos−1

(
sT · sA

||sT ||2||sA||2
)

(7.7)

where 0 < δC < θC specifies the width of this band.

l
1

l
2

T

−θ
C

θ
C

2δ
C

2δ
C

s
T

Fig. 77. Under the coordinated deployment behavior, the agent (shown as a red trian-

gle at the origin of the l1 − l2 coordinate system) attempts to regulate sA to

within the grey regions (which are sectors of width 2δC > 0 offset by θC > 0

with respect to sT). The blue shaded region indicates the range of the agent

sensor.

Figures 79-82 present simulation results for various configurations of agents op-

erating under the control scheme of Figure 78.

E. An integrated architecture

Figure 83 illustrates a layered control scheme that stitches together our regulators for

flocking (which includes social boundary maintenance) and coordinated deployment;

since these behaviors are mutually exclusive, multiplexors were used to compose these

146

µ

R

R
T

|| ||
2

.

s
T

s
A Σ

_

Fig. 78. A regulator for self-organization (highlighted in dark blue). A regulator for

taxis is also instantiated to bring the agent to the target; once there, taxis

will disengage, and self-organization will take over.

(a) Initial configuration. (b) Final configuration.

Fig. 79. Self-organization of a single group of twelve agents.

147

(a) Initial configuration.

(b) Final configuration.

Fig. 80. Self-organization of twelve agents divided into two groups.

(a) Initial configuration. (b) Final configuration.

Fig. 81. Self-organization of one group of thirteen agents.

148

(a) Initial configuration.

(b) Final configuration.

Fig. 82. Self-organization of twenty six agents, divided into two groups. Note the

emergence of a symmetric final formation. In the final configuration, all agents

except for four are stable in a static formation; the four that are not stationary,

oscillate about stationary positions.

149

behaviors.

µ
1

s
T

s
A

|| ||
2

.

|| ||
2

.

|| ||
2

.

R
A

R
T

R
T,A

R
A

a
1

s
1

X
a
v

a
ω

-
Σ 1

> 0

s
Ω,f

s
Ω,r

Fig. 83. An integrated controller for a multi-agent scheme that includes flocking,

self-organization about a target waypoint, and obstacle avoidance.

Figure 84 show a time-lapsed view of a multi-agent simulation where twenty-six

agents are divided into two groups. The first group arrives at the target and self-

organizes; a second group arrives later, perturbing the organization by merging with

the first group of agents. The overall group then continues to self-organize to cover

the target, approximately uniformly.

150

(a) Initial configuration.

(b) Both groups disperse to maintain social boundaries.

(c) The two groups begin to merge.

(d) Mixing of the groups. (e) Self-organization.

Fig. 84. Two groups of agents (twenty-six in total) flock to the target and self-organize

about it. The final configuration is mostly stationary (i.e., most of the agents

are at rest), with isolated subgroups of agents occasionally moving about to

re-organize.

151

(a) Initial configuration.

(b) Mid-flight. (c) At the obstacles.

(d) Final (static) configura-
tion.

Fig. 85. A groups of twenty-six agents flock to the target and self-organize about it,

navigating past two obstacles.

152

Fig. 86. This simulation uses the same initial group configuration as Figure 85, but

with the obstacles repositioned near the target to constrain that area. The

collective self-organizes into a configuration that is distorted by the obstacles.

F. Discussion

In this chapter we presented the development of an integrated control architecture to

enable groups of agents to function as a collective. Our approach was to employ the

primary basis behaviors we designed in chapter IV in various behavioral composition

schemes to realize useful secondary and tertiary behaviors.

We note that beyond providing a technology-independent formulation for robotic

cognition, our scheme is:

• an agent-centric formulation

• very decentralized, each agent only knows of its single nearest neighbor (via an

easy-to-realize sensing scheme)

• strongly homogeneous in terms of task allocation (i.e., there are no designated

leaders or followers; any two agents can adopt identical behaviors)

• strongly homogeneous in terms of knowledge, that is, each agent is only aware

of:

– the relative displacement of the target

153

– the relative displacement of the single nearest neighbor

– the distance to the nearest point of an obstacle ahead of and behind the

agent

and does not know of its position within the flock

We comment more on these points below.

1. Implementation of behaviors

We did not have to utilize many separate basis behaviors to design our scheme. In

fact, we obtained a diversity of specialized behaviors from just one class of behavior—

taxis—through:

• applying constraints to yield constrained taxis behaviors

• reversing the direction of flow to yield anti-taxis

• applying different sensory feedback signals to yield target tracking, agent track-

ing, and agent repulsion

• fusing target sensor and agent sensor outputs, and applying this composite

signal to a taxis controller to yield coordinated deployment

By comparing our scheme with a related software-based one, we see the de-

scriptive power of the cybernetic approach in being able to specify this diversity of

behaviors with less design effort. For example, in [84] a similar repertoire of behav-

iors for collective multi-agent systems was developed via a software approach. In that

work, six separate behaviors were specified by heuristic rules of the form:

if sensor-event-of-type-a occurs {

do actuation-response-of-type-a

154

Table VII. Correspondence between the behaviors of a software-based scheme and our

scheme.

behaviors of [84] our construction

collision avoidance (obstacles) primary behavior (taxis with speed attenuation)

collision avoidance (agents) primary basis behavior (anti-taxis)

following secondary behavior (social boundary regulation)

dispersion secondary behavior (social boundary regulation)

aggregation secondary behavior (social boundary regulation)

homing primary basis behavior (taxis)

flocking tertiary behavior (social regulation and taxis)

} else if sensor-event-of-type-b occurs {

do actuation-response-of-type-b

} ...

Table VII illustrates the correspondence between our behaviors and those of [84].

Whereas the software approach utilized separate heuristic rules that were specified

via if-else constructs, all of our behavioral repertoire were based on permutations

of taxis,7 specified as a closed-loop feedback law whose basic characteristics could be

rigorously analyzed.

Hence, regardless of the technology-independence of a cybernetic formulation,

the descriptive power of the toolset provides an appealing way of thinking about

robotic control from a more agent-centric point-of-view. That is, whereas a heuristic

approach requires the designer to think about behavioral design from the vantage

7That is, we only specified (“programmed”) one behavior—taxis—and through
varying usage obtained our repertoire.

155

point of an observer (and often imbibing abstractions made by the observer), control-

theoretic toolsets and dynamical systems theory bring the vantage point down to the

basest of levels, that of the sensory feedback signals that are bombarding the agent.

The problem then becomes one of steering the signals via an appropriate system.

From this perspective, thus, we view the problem of robotic control for what it is to

the agent: the regulation of a sensory signal from an undesirable characteristic to a

desirable one.8

2. Flocking

Of relevance are the various leaderless9 flocking schemes found in the literature of

which the seminal work of Reynolds [83], as well as its descendants, stand as important

representatives.

Reynolds’ work was in the area of computer graphics (for which embodiment is

generally not an issue), and formulated flocking as consisting of the composition of

three primary behaviors (inter-agent collision avoidance, velocity matching of neigh-

boring agents, staying close to neighboring agents). Two schemes for composition of

new behaviors were also presented, weighted averaging and a priority-based scheme

(to avoid the actuation nulls that can result from averaging). Matarić’s work in [84]

adapts Reynolds’ formulation to a behavior-based robotics platform, giving rise to

the flocking algorithm:

compute a weighted sum of the actuations from:

<collision avoidance>, <following>, <aggregation>, <dispersion>

8The designer still imparts something from the vantage point of an observer: the
concept of what is desirable. However, the actions undertaken by the agent are not
scripted from this perspective; they emerge from the agent’s regulation of perception.

9For a discussion of non-homogeneous groups of agents that use leader-referenced
schemes (among others), see [121].

156

if agent is at the front of the flock {

slow down

} else if the agent is at the rear of the flock {

speed up

}

where the behaviors enclosed in angular brackets correspond to those of table VII.

Beyond the heuristic nature of the behavioral specification, this formulation differs

from ours in that the agents of [84] can sense whether they are at the “front” or

“rear” of the flock. Moreover, in determining the weighted sum, the distance to the

centroid of the agent’s neighbors is needed. Both of these suggest a requirement for

agent perception beyond that of our scheme. An element of Reynolds’ scheme that is

absent in both Matarić’s and ours is the need for velocity information of an agent’s

neighbors.

Olfati-Saber’s work [122] places the design of flocking agents on a very rigorous

control-theoretic foundation, using Reynolds’ algorithm as a foundation. The ap-

proach employs a particle-based model to describe dynamical agents where, for agent

i, the position, qi, and velocity, pi, are related to the actuation, ai, by:

q̇i = pi

ṗi = ai

(7.8)

Two flocking schemes are presented, for free-flocking (in an obstacle-free environment)

and flocking in the presence of obstacles; for both, the actuation signal includes the

following terms:

∑
j∈Ni

f1(||qj − qi||)nij +
∑
j∈Ni

f2(||qj − qi||)(pj − pi) (7.9)

where Ni denotes the indices of all agents that are neighbors of agent i. The first

157

term is based on computing a gradient, while the second aims for velocity consensus

between agents.

The first point of difference with our scheme is the particle-based formulation of

agents, which although capturing the dynamical attributes of agents, ignores vehicular

kinematic restrictions that practical embodied agents must cope with. Beyond this,

the computation of the actuation requires significant sensory feedback to measure

the relative displacements and velocities of each local neighbor of an agent. Further,

for the formulation of flocking with obstacle avoidance, the relative position of the

obstacle (i.e., a vector quantity, as opposed to our scalar measurement) must be

measured.

Now, the question arises: are the sensory requirements of these other schemes a

problem? To be sure, they are forms of decentralized control. We note, however, that

to perceive the relative displacements of a variably-sized population of neighboring

agents, some form of vision or a radar-like system would be necessary10 to image the

surrounding environment. If only a population of constant size need be detected,

then a simpler scheme using an onboard sensor array (with each array replicated for

the number of agents, or time-multiplexed to detect each agent in sequence) could

be used. For a lightweight agent, these sensing schemes are all costly prospects, in

terms of either energy, space, or time (i.e., increased latency in processing the sensory

data).

3. Self-organization

Control-theoretic formulations of the formation control problem strive to achieve

faithful reproduction of a geometric formation, often invoking more sophisticated

10An alternative strategy would employ a triangulation scheme; however, this in-
troduces a fixed global reference (i.e., a common coordinate system) for the system.

158

sensing schemes (as above, requiring the ability to sense several neighboring agents),

which, although local, are generally difficult to realize.

In our approach, we instead design a system where the agents satisfice with a

repertoire of realizable sensors. Perfect formations (that is, perfect geometric shapes)

are not our goal; rather, we strive for the emergence of an approximately uniform

coverage of the target, regardless of the specific geometric shape. Recall that our use

of the term emergence is limited, appealing to Bedau’s definition. That is, emergence

is not simply a “magical” occurrence that we are happy to exploit when it occurs.

Rather, a weakly emergent phenomenon is something that occurs due to a structural

characteristic of the system (it is classified as emergent because we can not anticipate

it arising purely by considering the often complex equations of motion of the system).

Hence, we strive to engineer emergence by providing the raw materials for it: in this

case, by endowing the agent with a regulator that fuses target and agent sensor data

to provide the agent with guidance as to how to regulate both senses to achieve an

acceptable formation about the target.

159

CHAPTER VIII

COMPARISONS WITH OTHER SCHEMES

A. Introduction

In this chapter we present some comparisons between the regulation-based agent

control scheme advanced by our work, and those found in the literature.

Our philosophy here is to compare algorithms which are lightweight (i.e., of

similar implementation complexity) and require similar sensory faculties. This choice

was made to ensure comparisons would be as fair as possible, as well as to provide

insight into how different algorithmic approaches (i.e., regulation versus heuristics)

could be, potentially, combined in hybrid schemes.1

To ensure similar comparisons were made, when time constants were used for

filters (in our analog scheme) or delays (in heuristic schemes) they were set equal

across all techniques, vector summations (when performed) were normalized to unit

vectors, and agent maximum speeds were set similarly. Beyond this, we also adopt

performance metrics that do not look at absolute performance (i.e., optimal charac-

teristics), but rather at robustness. Since this work is concerned with the design of

behaviors for agents with bounded resources that ought to satisfice [5, 6] rather than

optimize, such a characterization seems most appropriate.

In sections B and C, we present the comparison of robotic navigation schemes in

different settings, namely:

• taxis in an obstacle-free environment, in which we limit the accuracy of the

target sensor in an effort to ascertain the robustness of various schemes in the

face of degraded perception

1This would be useful for future work.

160

• taxis with obstacle avoidance, in which we present the agent with progressively

‘difficult’ obstacle formations and ascertain its ability to circumnavigate these

obstacles under the control of various algorithms

B. Taxis in an obstacle-free environment

Here we consider the effect of limited resolution of target sensor directional informa-

tion on the performance of various algorithms for taxis in obstacle-free environments.

This is an important characterization, as the foundations of this work—the control

schemes of chapter IV—are concerned with taxis behaviors. We address the more

general case of taxis with obstacle avoidance in the next section.

Some of the applications that motivate the work of this dissertation are robotics

exploration problems (e.g., search and rescue, space robotics, etc.) and mobile sensor

networks. These applications generally demand lightweight agent designs (e.g., for

reasons of agility in complex environments, economics, etc.), often precluding the use

of expensive sensors with fine perceptual acuity. Practical sensors in this context,

then, are often of limited accuracy and introduce distortion to measurements of en-

vironmental phenomenon. Further, in hostile environments it is possible for sensors

to degrade (e.g., through injury to the robot); when such degradation is not catas-

trophic (i.e., when the sensor has not been totally destroyed, allowing some, possibly

coarser, sensing), we desire graceful degradation of performance. Thus it is impor-

tant to understand how a taxis2 algorithm’s ability to track a target fares with sensor

degradation.

2Which forms the basis of robotic navigation.

161

1. Constrained target sensing

We first describe how we model target sensors with constrained resolution. If the dis-

placement from agent to target is η, then the true direction to the target (referenced

to the agent’s local frame of reference), θ, is given by:

θ = sgn+(η2)cos−1

(
η1√

η2
1 + η2

2

)
(8.1)

where:

sgn+(x) =

 1 for x ≥ 0

−1 for x < 0
(8.2)

To model the effect of limited target sensor resolution, let n denote the number

of distinct directions that the target sensor can resolve.3 Then α(n) = 2π
n is the

angular spacing between these distinct directions. With this, we can define the coarse-

resolution version of θ as:

θ′(n) = floor

(|θ|+ α(n)
2

α(n)

)
sgn(θ)α(n) (8.3)

Figure 87 illustrates the case for n ∈ {3, 4, 5}.
Figure 88 presents the target sensor model used for the simulation of all algo-

rithms in this section, showing how Q, the block specified by (8.3), fits in the overall

scheme.

2. Algorithms compared

We now provide an overview of the algorithms that we compare our unconstrained

taxis scheme against. Three algorithms beyond our own were considered:

• a Braitenberg vehicle, representing perhaps the simplest class of taxis algorithm

3A high-resolution target sensor will have a correspondingly high number of dis-
tinct directions.

162

s
2

s
1

n = 3

s
2

s
1

n = 4

s
2

s
1

n = 5

Fig. 87. Constrained target sensing. The target sensor takes the actual displacement

to the target, η, and returns a vector, s, constrained to one of n directions

(shown in red).

rect2pol

pol2rectQ

θ
θ

ρ

s

η

Fig. 88. The target sensor model used for the simulations of all algorithms in this

section. The target sensor is a memoryless system that measures the dis-

placement from the agent to the target, η, constrains the direction (from θ to

θ′ through Q), and returns a vector to the target that is either in polar form,

(ρ, θ′), or rectangular form, s. The blocks “rect2pol” and “pol2rect” effect

the conversions between rectangular and polar coordinates.

163

• a heuristic for taxis employed by Brooks, in his influential work on the sub-

sumption architecture, and Matarić, in her behavior-based robotics work

• the virtual force field method of Borenstein and Koren, a lightweight potential

field technique targeted to practical, fast-moving mobile robots

a. Braitenberg vehicle 3a (Bra3a)

In the influential work of the biological cyberneticist Braitenberg [55], several thought

experiments were conducted, resulting in a variety of virtual robotic “vehicles” ex-

hibiting a diversity of behaviors. The origin of these thought experiments lie in his

earlier study [54] which sought to understand how mappings from sensing to actuation

(specifically, the decussations found in the neural topology of biological organisms)

give rise to various behaviors such as taxis and kinesis.

In this section, we consider one such Braitenberg vehicle, vehicle “3a,” described

in Figure 89, which exhibits taxis behavior. Beyond the simplicity of this scheme, we

note that Braitenberg’s work, along with the earlier work of W. Grey Walter, influ-

enced the reactive and behavior-based robotics paradigms. Hence, it is an important

algorithm, from a historical perspective, to compare our scheme against.

-

-

Fig. 89. Braitenberg vehicle 3a. Information from the target sensors (in red) are

mapped directly to the motor actuators (in blue). The mapping is “inhibitory”

so that when the target is near the sensor, the motors are actuated to a lesser

degree than when the target is far from the sensor. The effect of this mapping

is that the agent engages in taxis, coming to rest at the target.

164

In our implementation of this scheme, we re-cast the structural inhibitory map-

ping described by Figure 89 and [55] to the algebraic form:

v = s1

ω = s2

(8.4)

b. Brooks-Matarić “homing” behavior (BroMat)

In Brooks’ seminal work [58] on the subsumption architecture, a simple “rotate-

and-go” heuristic (described in Figure 90 using Brooks’ diagrammatic style) for

differentially-driven vehicles was used to enable an agent to track a desired head-

ing. Matarić presents the following heuristic for “homing” behavior [85] that more

explicitly describes how taxis (in this case, tracking of “home”) occurs within such a

scheme:

Home:

Whenever at home

stop

otherwise turn toward home, go.

Figure 91 presents a finite state machine that specifies our implementation of

Brooks-Matarić homing behavior, with the motor control outputs for each state being

given by:

turn :

 v = 0

ω = κωsgn(θ′)

fw :

 v = κv

ω = 0

stop :

 v = 0

ω = 0

(8.5)

165

turn
inhibit

heading
forward

robot motor actuation

Fig. 90. The underlying “rotate-and-go” motion controller used in Brooks’ subsump-

tion scheme. The “turn” module is first engaged to cause the agent to align

with a desired heading; while rotating, the “forward” motion block is in-

hibited. Upon aligning with the commanded heading, the forward block is

engaged, and the agent moves forwards.

where κv > 0 and κω > 0 are scaling factors that will be described later.

turn

stop

fw

θ ≠ 0

θ ≠ 0

θ = 0

θ = 0

Fig. 91. Our implementation of Brooks-Matarić homing behavior. The red arrows

indicate transitions caused by arrival at the target.

c. Borenstein-Koren virtual force field (BorKor)

Potential field methods have their origin in the work of Krogh [123] and Khatib [124]

on obstacle avoidance for robotic manipulators and mobile robots. Work in the mobile

robotics community by Brooks and Arkin adapted potential field methods (which up

to that point had not been used on physically-realized mobile robotic agents, due to

166

the requirements for global knowledge of the environment [125]) for use on mobile

robots, leading to the navigation algorithms of [58] (using attractive and repulsive

forces to guide the agent), and [59] (using directional fields called schemas that are

instantiated in response to environmental stimuli).

The work of Borenstein and Koren in [125], inspired by the potential field work

of Khatib and Krogh as well as the practical work of Brooks and Arkin, developed

the virtual force field method to facilitate “fast, continuous, and smooth motion of

the controlled vehicle” [125]. The technique uses virtual forces to obtain heading

information that is used to derive a steering rate command—similar to Arkin [59]—

but adds preprocessing of sensory data to make the algorithm less sensitive to sensor

fluctuations.4

In this method a heading vector5 is used to modulate the steering rate command,

ω, while the agent translates forwards. Hence, this method is a “continuous” version

of Brooks-Matarić homing in which translation and rotation occur concurrently;6 Fig-

ure 92 illustrates the scheme using conventions similar to those of [58] and Figure 90.

In our implementation of this scheme for taxis we use the following law:

v = κvtanh(ρ)

ω = κω[(−)θ′]
(8.6)

where, as in [125], (−) denotes an operator that returns the shortest rotational dis-

4In a simulated environment, the preprocessing scheme is not relevant since ideal-
ized sensor information can be used.

5For the purposes of this section, discussing taxis in an obstacle-free environment,
the heading vector is an attractive vector directed from the agent to the target. The
more general case of taxis and obstacle avoidance will be discussed in the next section.

6In the presence of obstacles, the translational speed is allowed to drop to prevent
collisions.

167

turn;
forward

heading

robot motor actuation

Fig. 92. The underlying motion controller used in the scheme of Borenstein and Koren.

placement between the agent’s current direction of motion and the measured heading

to the target, θ′.

d. Unconstrained taxis (uc)

The development of this scheme was presented in chapter IV. To recapitulate, the

foundation for this behavior is the regulation of the agent’s sensory perception of the

target, s. We describe perception using the plant model:

P : η̇ = p(η, a) := Υ(η)a (8.7)

where:

Υ(η) =

 −1 η2

0 −η1

 (8.8)

and s(η) is specified by Figure 88. From this, we derive a controller (using vector

field design) to stabilize η = 0, leading to the actuation law:

v = sgn(s1)

ω = sgn+(s1)sgn(s2)
(8.9)

168

Table VIII. Five different initial conditions for the agent were used in the comparison

of taxis algorithms.

d ψ (radians)

4 0

4 3
4π

4 4
3π

8 4
5π

8 3
2π

3. Methodology and performance metrics

To compare these algorithms, the agent was placed at various initial conditions away

from the target and, for each initial condition, was put under the control of each

algorithm; Table VIII summarizes the initial conditions we consider with reference

to the setup illustrated in Figure 93. A sweep of the parameter n (the number of

distinct directions that could be resolved by the target sensor) from n = 3 to n = 42

was conducted for all combinations of initial condition and algorithm7 and the length

of the path taken by the agent from its initial position to a region of radius 0.3

units about the target was measured from the simulation data. For all 800 runs, the

agents had the same maximum translational and rotational speeds (i.e., κv = 5 and

κω = 5); the only differences between runs were in the initial condition of the agent,

the algorithm employed, and the value of n—with these parameters being varied one

at a time.

In evaluating the robustness of the taxis algorithms to target sensor degradation,

7Hence, in total, the results of this section required 5 × 4 × 40 = 800 simulation
runs.

169

l
2

l
1

M d

Tψ

Fig. 93. The agent was placed d units away from the target, with an orientation of

ψ radians with respect to the target.

we note that absolute path length is not as important as how the path length degrades

as n is decreased.8 Hence, our metric of robustness for a given algorithm is the

standard deviation of the path lengths produced by that algorithm for n = 3 to

n = 42, with lower standard deviations indicating a more robust algorithm.

4. Results

Figure 94 presents a plot of path length versus target sensor resolution (n) for the

four algorithms considered, when the agent is started with d = 4 and ψ = 0. Pointed

directly at the target, the agent under control of all schemes takes the shortest path

to the target, for all n.

Beyond this degenerate, baseline case (summarized in Table IX), Figure 95

presents simulation results for the case d = 4 and ψ = 3
4π. The robustness of

the various schemes to degraded target sensor resolution can be ascertained, qualita-

tively, by looking at how the path length increases as n is decreased. For example,

although BroMat starts off with lower path lengths than BorKor, it degrades to a

greater degree indicating less insensitivity to target sensor resolution. For sufficiently

8Recall, with mobile robotic agents possessing only local knowledge of the world,
we are not concerned with optimality, but rather with how the agent is able to satisfice
to achieve tolerable results. In this context, considering absolute path lengths is
inappropriate.

170

high resolution (i.e., for n > 8) we note that both BorKor and Bra3a exhibit a great

deal of insensitivity to sensor degradation, whereas BroMat can be seen to degrade

steadily as n is decreased from n = 42. For low sensor resolution, Bra3a degrades

the worst, followed by BroMat, and then BorKor. Although the unconstrained taxis

method yielded the lowest path length, we do not consider that as significant as the

robustness it exhibits to degraded (i.e., lower-resolution) target sensor information

over the other methods—path length stays constant in spite of n being decreased.

Figure 96 and Table XI present the case for d = 4 and ψ = 4
3π. Although uc

performs better than the other methods (achieving a smaller standard deviation in

path length), it does exhibit a sensitivity for the case n = 4. For that case, constrained

target sensor directional information induced the agent to take a less optimal path

towards the target in which it moved forwards; for all other values of n, the agent

took a shorter route that involved it backing up to the target.

The results of Figure 97 and Table XII (for d = 8 and ψ = 4
5π), exhibit similar

trends as those for the case d = 4 and ψ = 3
4π. As well, the results of Figure 98 and

Table XIII (for d = 8 and ψ = 3
2π), exhibit similar trends as those for the case d = 4

and ψ = 4
3π. We note however, that uc for this case generally executes longer path

lengths to the target; however, the standard deviation is still lower for uc.

C. Navigation: taxis with obstacle avoidance

Here we evaluate the ability of our scheme to circumnavigate a variety of obstacle

formations, and compare it against other approaches.

1. Algorithms compared

The approach for navigation we use is the constrained regulation scheme for obstacle

avoidance presented in Figure 59 of chapter VI. We compare its performance with

171

5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16

18

20
Bra3a
BroMat
BorKor
uc

pa
th

 le
ng

th

n

Fig. 94. Path length versus the number of distinct target sensor directions (n) for the

Braitenberg vehicle 3a (Bra3a), Brooks-Matarić homing (BroMat), Boren-

stein-Koren virtual force field (BorKor), and unconstrained taxis (uc) algo-

rithms; d = 4 and ψ = 0.

Table IX. Summary of algorithm performance characteristics for obstacle-free taxis:

d = 4, ψ = 0.

path length

algorithm minimum maximum standard deviation

Bra3a 3.70 3.70 0.00

BroMat 3.70 3.70 0.00

BorKor 3.70 3.70 0.00

uc 3.70 3.70 0.00

172

5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16

18

20
Bra3a
BroMat
BorKor
uc

pa
th

 le
ng

th

n

Fig. 95. Path length versus the number of distinct target sensor directions (n) for the

Braitenberg vehicle 3a (Bra3a), Brooks-Matarić homing (BroMat), Boren-

stein-Koren virtual force field (BorKor), and unconstrained taxis (uc) algo-

rithms; d = 4 and ψ = 3
4π. Note the high degree of insensitivity to n of

unconstrained taxis.

173

5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16

18

20
Bra3a
BroMat
BorKor
uc

pa
th

 le
ng

th

n

Fig. 96. Path length versus the number of distinct target sensor directions (n) for the

Braitenberg vehicle 3a (Bra3a), Brooks-Matarić homing (BroMat), Boren-

stein-Koren virtual force field (BorKor), and unconstrained taxis (uc) algo-

rithms; d = 4 and ψ = 4
3π.

Table X. Summary of algorithm performance characteristics for obstacle-free taxis:

d = 4, ψ = 3
4π.

path length

algorithm minimum maximum standard deviation

Bra3a 4.25 15.80 1.84

BroMat 3.81 8.91 0.89

BorKor 5.05 8.22 0.54

uc 3.79 3.79 0.00

174

5 10 15 20 25 30 35 40

6

8

10

12

14

16

18

20

22

24

26

28
Bra3a
BroMat
BorKor
uc

pa
th

 le
ng

th

n

Fig. 97. Path length versus the number of distinct target sensor directions (n) for the

Braitenberg vehicle 3a (Bra3a), Brooks-Matarić homing (BroMat), Boren-

stein-Koren virtual force field (BorKor), and unconstrained taxis (uc) algo-

rithms; d = 8 and ψ = 4
5π.

Table XI. Summary of algorithm performance characteristics for obstacle-free taxis:

d = 4, ψ = 4
3π.

path length

algorithm minimum maximum standard deviation

Bra3a 4.18 15.90 1.86

BroMat 3.80 8.91 0.89

BorKor 4.85 7.92 0.52

uc 3.92 6.79 0.45

175

5 10 15 20 25 30 35 40

6

8

10

12

14

16

18

20

22

24

26

28
Bra3a
BroMat
BorKor
uc

pa
th

 le
ng

th

n

Fig. 98. Path length versus the number of distinct target sensor directions (n) for the

Braitenberg vehicle 3a (Bra3a), Brooks-Matarić homing (BroMat), Boren-

stein-Koren virtual force field (BorKor), and unconstrained taxis (uc) algo-

rithms; d = 8 and ψ = 3
2π.

Table XII. Summary of algorithm performance characteristics for obstacle-free taxis:

d = 8, ψ = 4
5π.

path length

algorithm minimum maximum standard deviation

Bra3a 8.26 26.17 2.86

BroMat 7.84 17.47 1.67

BorKor 9.04 16.30 1.24

uc 7.74 7.74 0.00

176

Table XIII. Summary of algorithm performance characteristics for obstacle-free taxis:

d = 8, ψ = 3
2π.

path length

algorithm minimum maximum standard deviation

Bra3a 8.05 26.22 2.91

BroMat 7.84 17.48 1.67

BorKor 8.34 15.42 1.20

uc 8.34 11.44 0.55

respect to three schemes found in the literature:

• Braitenberg vehicle “3c” of [55]

• Matarić’s “avoid-everything-else” behavior of [85]

• a virtual force field method that uses the core of Borenstein and Koren [125, 126]

and mates it with Arkin’s “noise schema instantiation” [59] technique (to help

solve actuation nulls caused when obstacle sensor and target sensor outputs are

superposed)

a. Braitenberg vehicle 3c (Bra3c)

Braitenberg presents a “multisensorial vehicle” [55]—vehicle “3c”—whose behavioral

traits include taxis towards desirable stimuli as well as avoidance of undesirable stim-

uli. Figure 99 illustrates a version of this vehicle with two sensory inputs.

177

Fig. 99. A reactive scheme for obstacle avoidance based on Braitenberg vehicle “3c.”

The vehicle engages in taxis when the obstacle sensor (in orange) is not stim-

ulated; when stimulated by an obstacle, the vehicle stops and rotates until

the stimulation ceases.

We implement this vehicle with the actuation law:

v =

 s1 no obstacle in sight

0 otherwise

ω =

 s2 no obstacle in sight

κω otherwise

(8.10)

b. Matarić’s “avoid-everything-else” behavior (Mat)

In [85], Matarić specifies a heuristic for collision avoidance where the agent turns

when confronted with an obstacle and backs up before proceeding forwards.

We implement this behavior and integrate it with a homing behavior using the

finite state machine of Figure 100. We note that the timeout for backing off was

matched to the obstacle overstimulation filter time constants used in our scheme.

c. A dithered virtual force field method (BorKor-d)

Here we adopt the lightweight potential field method of [125, 126], where the target

exerts an attractive virtual force on the agent (i.e., directed from the agent to the

target) and an obstacle exerts a repulsive one (i.e., directed from the obstacle to the

agent). The agent translates forwards until it reaches the target, with the steering

178

stop taxis

turn

back
timeout

no obstacle
in sight

obstacle
in sight

Fig. 100. Our implementation Matarić’s avoid-everything-else behavior. The red arrow

indicates a transition caused by arrival at the target.

command being derived from the vector sum of the two forces; to preclude null actua-

tion (i.e., where the repulsive and attractive forces cancel, leaving the agent “stuck” at

an obstacle) a random dithering signal (Arkin’s noise “schema instantiation” of [59])

is added to the vector sum.

2. Methodology

We compare obstacle avoidance of the above algorithms in the face of various obstacle

formations. To make as direct a comparison as possible between pure obstacle avoid-

ance, we limit the obstacle sensor of this section to the monocular setup described in

chapters IV and V.

To evaluate performance, we measure the length of the path executed by the

agent under the control of each algorithm in the face of nine different obstacles. The

obstacles were labeled ‘A’ through ‘I’ with varying size or shape; obstacle ‘A’ is a single

spherical obstacle of size 0.5 units placed in the path of the agent, while obstacles

‘B,’ ‘C,’ ‘D,’ ‘E,’ ‘F,’ and ‘G’ are walls of length 1.5, 2, 3.5, 6.5, 12.50, and 17 units,

respectively, placed transverse to the agent’s path to the target. Obstacle ‘H’ is a

concave obstacle placed in the agent’s path; it is the same size (transversally) as ‘E’

but includes two extensions (1.25 units in length) making it concave with respect to

179

the agent’s straight-line path to the target. Obstacle ‘I’ is a variant of ‘H’ but with

longer extensions (making it more concave than ‘H’).

As in the previous section, we stress that path length is not taken as the sole

metric of performance: our aim here is to understand how the algorithm is able to

cope with varying obstacles. That is, an algorithm that achieves great performance

(i.e., low path lengths) for some obstacles but gets stuck at larger ones is clearly not as

robust (and from our perspective as designers of “satisficing” systems, undesirable) as

one that achieves tolerable performance for all obstacles. Hence, a higher performing

algorithm (in the sense we adopt here) is one that can circumnavigate more obstacles.

3. Results

Figures 101, 102 and 103 illustrate paths executed by the agent under control of all

four algorithms. Algorithms Bra3c and BorKor-d are shown superposed on each other

(with BorKor-d’s path shown in a lighter shade), as are cr and Mat (with Mat shown

in a lighter shade). All algorithms enable the agent to circumnavigate the obstacle,

with Bra3c achieving the shortest path.

In Figure 104 we see BorKor-d’s inability to avoid obstacle formation ‘D’, while

Figure 105 presents Bra3c’s similar failure. With Figures 106 and 107 only cr and

Mat remain viable. Finally, Figure 108 shows that Mat is unable to get past the

concave obstacle, while the proposed technique—cr—is.

The actual path length measurements are presented in Table XIV. As can be

seen, for smaller obstacles Bra3c performs best, with cr achieving a moderate level of

performance. With increasing obstacle size, however, cr (and Mat, upto a point) is

able to cope quite well; it is also able to circumnavigate a moderately-sized concave

obstacle, ‘H.’ We stress, however, that cr is still a local method and so its robustness

is limited; the inability of cr to circumnavigate a more concave obstacle, ‘I,’ as seen

180

in Figure 109 is indicative of this.

rabg

cr BorKor-d

Bra3c

(a)

Mat

cr dvff

rag

(b)

Fig. 101. Paths executed by the agent around obstacle formation ‘A.’

rabg

cr

BorKor-d

Bra3c

(a)

Mat

cr

dvff

rag

(b)

Fig. 102. Paths executed by the agent around obstacle formation ‘B.’

D. Discussion

From the comparisons we looked at for taxis, we find one strength of our approach is

robustness against target sensor degradation. This suggests its applicability in robotic

schemes that require lightweight sensing faculties (e.g., a multi-agent scheme where

economic constraints preclude the use of complex target sensors for a multiplicity of

agents). Alternatively, it can also serve application spaces where there is a potential

for the sensing faculties to suffer damage in the course of operation.

For general navigation, the results suggest that our technique is on par with

the navigation behaviors proposed by Matarić. We note that our agent was able to

181

rabg

cr

BorKor-d

Bra3c

(a)

Mat

cr

dvff

rag

(b)

Fig. 103. Paths executed by the agent around obstacle formation ‘C.’

rabg

cr

BorKor-d

Bra3c

(a)

Mat

cr

dvff
rag

(b)

Fig. 104. Paths executed by the agent around obstacle formation ‘D.’ The BorKor-d

method failed to circumnavigate the obstacle.

182

Mat

cr

Fig. 105. Paths executed by the agent around obstacle formation ‘E.’ Only cr and Mat

enabled the agent to avoid the obstacle.

Mat

cr

Fig. 106. Paths executed by the agent around obstacle formation ‘F.’ Only cr and Mat

enabled the agent to avoid the obstacle.

183

Mat

cr

Fig. 107. Paths executed by the agent around obstacle formation ‘G.’ Only cr and Mat

enabled the agent to avoid the obstacle.

Mat

cr

Fig. 108. Paths executed by the agent around obstacle formation ‘H’ (note: this con-

cave obstacle was created by adding two horizontal extensions on the top and

bottom of formation ‘E’). Only cr enabled the agent to avoid the obstacle.

184

Fig. 109. Path executed by the agent around obstacle formation ‘I’ (note: this concave

obstacle was created by lengthening the two horizontal extensions of obstacle

‘H’) under control of ‘cr.’ The obstacle is sufficiently concave as to cause ‘cr’

to fail to circumnavigate it.

Table XIV. Summary of algorithm performance characteristics: taxis with obstacle

avoidance. The dash (−) indicates that the algorithm did not converge,

that is, the agent was unable to circumnavigate the obstacle.

path length for obstacle formation:

algorithm A B C D E F G H I

BorKor-d 9.77 9.70 9.70 − − − − − −
Bra3c 6.72 6.92 7.16 8.18 − − − − −
Mat 11.89 11.92 11.90 17.33 22.36 32.77 37.81 − −
cr 9.17 9.17 12.47 12.31 18.40 23.00 30.61 22.72 −

185

circumnavigate a concave obstacle formation that Mat was unable to; however, it

is possible that with appropriate tuning of the backoff timer, Mat could be set to

circumnavigate that case.9 One benefit of our scheme that this demonstrates, on the

other hand, is the fewer parameters that need to be tuned for it to operate tolerably

well.

To reiterate, the focus of our work, and its strength, is for situations where an

agent must cope with poor sensory information. This is reflected in our low-resolution

requirements for target sensing (e.g., setting the sensor coarseness such that n = 3

was sufficient for our scheme to perform very well) and obstacle sensing (monocular

sensing). It is instructive, however, to compare our scheme against a technique with

more sophisticated information available to it.

Consider the sensing scheme of Figure 110 which is able to perceive the relative

displacement from an agent to a set of obstacles. This is considerably more complex

than our monocular scheme, not only in terms of increased hardware costs (due to the

requirement for several ranging sensors, such as ultrasound transducers) but also due

to increased processing time. Even if processing was done in parallel, the fundamental

problem with using several ranging transducers (e.g., the twelve-sensor sonar ring of

Brooks [58]) that measure the transit time for an emitted signal to return to the

device is that the firing of the ranging transducers must be done in sequence (or, at

most, in pairs) to ensure that there is no cross-coupling between sent and received

signals. This requirement for sequential firing, in turn, imposes limitations on the

top speed of the agent.

If we disregard complexity, however, we find that a scheme that is able to use this

high-quality information would perform better than ours. For example, Figure 111

9We do stress, however, that the backoff timer was not set arbitrarily, but instead
was matched to the time constants of our overstimulation filters.

186

1

2

3

f
1

f
2f

r

f
3

Fig. 110. The omni-directional obstacle sensor measures the displacement, f i for

i ∈ {1, 2, 3}, from the obstacles (numbered 1, 2 and 3 in the figure) sur-

rounding an agent (in red) to the agent, sums them (while attenuating their

magnitudes so that closer obstacles yield longer vectors), and returns the

resultant vector, f r.

presents a comparison of Mat and cr (as implemented in the previous section) against

the virtual force field method with an omni-directional obstacle sensor.10 With global

information, omni is able to perform better than the local techniques because of its

enhanced long-range perceptual acuity—leading to a better path that avoid obstacles

earlier, as well as circumventing problem obstacle formations (that cr is unable to, as

can be seen in the figure).

Hence, we do not claim that our proposed control scheme is suitable for all appli-

cations. As mentioned in chapter I, by endowing an agent with sufficient perceptual

and computational faculties, the need for local techniques vanishes. However, for the

applications that motivate this work—search and rescue, robotic exploration, and

mobile sensor networks—which often demand lightweight solutions, our lightweight

scheme, being comparatively robust to degraded sensing and large obstacle forma-

10Given an omni-directional sensor with sufficiently long range, the virtual force
field method begins to look more like a potential field method.

187

cr

Mat

(a)

cr

Mat

omni

(b)

Fig. 111. A comparison of cr and Mat (both using monocular obstacle sensors), and

the virtual force field method using an omni-directional sensor (omni). The

path lengths executed by the agent for each of these cases were 21.77, 11.85,

and 9.16 respectively.

188

tions, is a promising candidate.

189

CHAPTER IX

EXPERIMENTAL VALIDATION

A layman who has experienced things is more to be trusted than a sage

who speaks on the basis of theoretical knowledge but without experience.

(Mar Isaac of Nineveh)

A. Introduction

So far we have developed our control architecture from a mathematical point of view;

having designed basis behaviors with provable characteristics, we then integrated

them into control schemes, using a custom simulation environment1 to verify the

schemes.

In this chapter we present the design of a custom experimental testbed for our

scheme, and present experimental results that help demonstrate the efficacy of our

approach.

1. Methodology

There are two basic philosophies for robotic testbeds found in the literature.

In the first, mobile mechatronic systems with limited autonomy are constructed

with wireless faculties to communicate with an external (i.e., off-board) controller.

An external sensing system (e.g., an overhead camera) measures phenomena relevant

to each agent (e.g., the displacement from the agent to the target, other agents, or

obstacles) and either:

1The simulation environment was development using Matlab and Simulink; the
results of integrating the equations of motion in Matlab were visualized using a cus-
tom Open-GL based application. An overview of this environment is presented in
Appendix B.

190

• computes the relevant actuation signals for each agent (according to the control

architecture that would be onboard the agent in a production system) and

transmits this to the agents to control the actuators directly

• transmits this information to a controller onboard the agent, which then, ac-

cording to its control architecture, drives the actuators

This is only a modest step towards reality above simulation, since often the external

sensing system has more sensory acuity and access to more global information than

a real sensor system onboard the agent would have. This can yield unrealistically

positive experimental results. However, this scheme is relatively straightforward to

realize, isolating the designer from having to deal with practical (and highly non-

ideal) local sensors; rather, much of the effort here would be in the design of software

to measure phenomena from the external sensing system (e.g., image processing from

video input). A possible problem, however, is the introduction of artifacts in the

experimental results due to limitations in communication bandwidth and real-time

processing delays. Beyond this, however, a major problem is that the testbed does

not bring the robotic scheme much closer to a production environment: often this

sort of testbed serves only a singular function of providing some experimental results.

The second approach is agent-based. That is, the testbed is an implementation

of a practical robotic scheme, using real sensors and computation onboard the agent,

that validate the control architecture on a realistic real-world platform—ideally, one

that has the attributes of a production system. The major disadvantage with this

approach is the amount of time required to develop the system.

This work is an engineering dissertation, and as such, we intend our scheme to

have path from a theoretical setting to real-world application. Hence, it serves neither

the goals of academic nor professional engineering to realize a testbed purely for the

191

sake of experimental measurements. For this reason, we adopt the second approach

and realize a testbed with the following characteristics of a production mobile robotic

system (similar to a system that would be used for any of the key applications of our

work, robotic exploration and mobile sensor networks):

• we use steered vehicles (as opposed to ideal, but unrealistic, differentially-driven

vehicles) on a performance chassis

• we use a custom computational substrate onboard the agent (custom digital

hardware implemented on a field-programmable gate array)

• all sensing is done locally with relatively inexpensive production sensors

• we operate at fast speeds

We constructed two such agents for our testbed.

B. Testbed setup

1. Chassis and electromechanical subsystems

A front-wheel steered vehicle was used for the testbed. This was chosen over a differ-

entially driven vehicle (more commonly found in prototype robots) as it is more reflec-

tive of a production implementation. Specifically, a performance remote-controlled

vehicle was chosen, the Team Losi Mini-LST miniature (1/18 scale) monster truck,

illustrated in Figure 112. The drivetrain is powered by dual DC motors; power is

distributed to all four wheels via a transmission consisting of a slipper clutch and

three differentials. Dual servomotors at the front of the vehicle serve to steer it. A

stock 7.2 V 1100 mAh Ni-MH battery pack provides power to the motors as well all

on-board electronics.

192

rear dif

f

fferential

front di

drive motors

ferential
housing

ferential
housing

drive motor
power electronics

center di
housing

steering
servomotors

Fig. 112. The chassis used for our experimental testbed with an outline of the key

electromechanical subsystems.

193

2. Sensors

a. Obstacle sensing

To sense the presence of obstacles, we employed the LV-MaxSonar EZ-0 ultrasound

transducers by MaxBotix Inc. These rangefinders have a mass of 4.3g, a volume of

approximately 16cm3, and could be operated at voltages as low as 2.5V; operating in

free-running mode they provide measurements every 49ms.

The parts had a tolerable precision of ±2.54cm, and could range obstacles at a

distance 15cm to 645cm away from the sensor; for closer obstacles, the sensor could

indicate the obstacle’s presence or absence, but not its distance.

The sensor provides three interfaces for reading sensor data, RS-232, an ana-

log voltage-based scheme, and the single-wire pulse width modulated scheme shown

in Figure 113. The hardware we used to read data from this sensor is shown in

Figure 114.

0 ms

pe ne pe

0.9 ms 37.5 ms 49 ms

Fig. 113. Pulse width modulated scheme for obstacle sensor data read-out. The width

of the pulse is directly proportional to the distance to the closest obstacle in

front of it.

b. Target and agent sensing

Polulu Inc. produces small form-factor infrared transceiver pairs which can be used

by two agents to locate one another. The sensor is far from ideal: it provides no

range measurements and produces a very coarse four-level quantization of target

194

1

acq
clk

1

1

0

1

0
D

acq) pe

pe

ne

acq

acq

s

Fig. 114. Hardware used to read obstacle sensor data.

direction.2 The advantages of this part, however, are the long detection range, and

the straightforward interface, requiring the sampling of four wires (level shifting from

5V logic to 3.3V logic was required, and was accomplished via 74ACT244 octal driver).

Figure 115 illustrates the circuit used to convert the four bit measurement from

the transceiver to the vector, sT , used by the control laws (irn, irs, ire, irw are level-

shifted versions of the output of this part).

3. Actuators

The drive motor power electronics and steering servomotors both take in pulse width

modulated signals to set either speed and direction (with the former), or steering

angle (with the latter). To implement the speed drivers a free-running digital counter

was used to time a period of 7.6 ms. At the start of each period, a two-state flag

would assert and remain asserted for a duration that corresponds to a control input

from the control hardware.

2As such it provides a means of stressing those basis behaviors which very mini-
mally satisfy our definition of a measurement function.

195

ir
N

ir
E

ir
W

ir
S

[0 1] T

[0 0] T 1

0

[0 -1] T

[0 0] T

[1 0] T

[0 0] T

[-1 0] T

[0 0] T1

0

1

0

s
T

1

0

Fig. 115. Hardware for target sensor data conversion.

0 ms 1.0 ms 1.5 ms 2.0 ms 7.6 ms

a
v
= 0 a

v
= -v

max
a

v
= +v

max

a

= 0 a

= -

max
a

= +

max

or

Fig. 116. Pulse width modulation scheme for the drive motor power electronics and

steering servomotors.

196

4. Computational substrate

To implement the control hardware as well as any interfacing hardware, we used field-

programmable gate arrays (FPGAs). Opal Kelly Inc. produces modular development

boards for relatively high-density field-programmable gate array devices. They are

particularly well-suited to our robotics application due to the small form factors, and

lack of unnecessary hardware (e.g., other than the FPGA and some RAM, they do

not have other hardware peripherals onboard available to the designer). Moreover,

they are well-supported by custom CAD software from Opal Kelly, as well as FPGA

CAD from Xilinx.

We used two models for our testbed, the XEM3001 and XEM3005; both boards

were over-specified for our lightweight control hardware.

a. Control hardware

The control hardware for the experimental results were mostly direct mappings of the

control architectures presented in chapters VI and VII. The two exceptions were in

the implementation of hysteresis functions and leaky integrators.

u>th
H

u<th
L

¬h

¬h
h

h

th
L
th
H

Fig. 117. Hardware approximation of a hysteresis function.

Our implementation of hysteresis function is shown in Figure 117. For a leaky

integrator with input u and output y we employ the scheme of Figure 118 in which

we first quantize u to {0, 1} (if it has not already been quantized) via the hysteresis

197

function of Figure 117 and use this to control a free-running counter.

0

1 0

1

1

0

1

2n-1

0

-1

clk

D

(¬dir) ∧ (y=0)

dir ∧ (y=2n-1)
dir

n

Σ

y

Fig. 118. Hardware approximation of a leaky integrator.

5. Integrated vehicle

Figures 119-121 show various views of the agent based on the XEM3001 board.

C. Experiments

Several experiments were conducted to validate our theoretical development. They

can be examined by referring to the video files that accompany this dissertation (the

details of these files can be found in appendix A).

198

FPGA board

power distribution
5V to 3.3V level shift

target/agent
sensor

and beacon

obstacle
sensor

Fig. 119. Top view of agent.

199

Fig. 120. Side view of agent.

Fig. 121. Front view of agent.

200

CHAPTER X

CONCLUSION

Furthermore, my child, take heed: of writing many books there is no end,

and much study is a weariness of the flesh. (Ecclesiastes)

A. Summary of the work

This work addressed the engineering of useful weakly emergent behaviors for mobile

autonomous robots.

We began with the construction of static regulators to realize elementary behav-

iors for purely reactive systems. We also presented the design of a dynamical control

scheme where obstacle avoidance was an emergent behavior. For both schemes, ele-

mentary behaviors that deal with well-posed problems (from the perspective of having

adequate sensory and actuation faculties to cope with the problem) were realized us-

ing control theory.

To realize an integrated control architecture that would enable an agent to cope

competently (i.e., satisfice) in an unstructured environment, we turned to the engi-

neering of emergent behavior. A hierarchical and layered topology for structuring the

regulators was proposed, based on the multi-scale nature of the environment. Com-

posite behaviors that used our basis behaviors were realized, and several simulation

results were used to qualify our scheme. An experimental two-agent testbed was used

to validate the control architecture on a real-world mobile mechatronic artifact.

The contributions of this dissertation (many of which have been disseminated

in [117, 101, 102, 95, 103]) include:

• a novel tool, vector field design, for the synthesis of static (purely reactive)

behaviors

201

• the development of a dynamical control scheme that manifests weakly emergent

behavior

• a novel mechanism1 to realize composite behaviors, the simultaneous regulation

of two senses

• the design of an integrated cybernetic control architecture for lightweight robotic

exploration problems and mobile sensor networks

• the engineering of an emergent self-organization behavior which is highly de-

centralized for homogeneous multi-agent systems

• a software verification environment and visualization tool for qualification of

cybernetic robotic research schemes

• a performance testbed based on custom hardware and FPGA-based computa-

tion

B. Future work

We propose some areas of future work that extend this dissertation, and more broadly,

should further the development of cybernetic brains for robotics.

1. Extending vector field design

In this work we presented the use of vector field design for the case of regulating

a system evolving in a two-dimensional problem space. However, for problems that

involve higher-dimensional state spaces (e.g., applications to unmanned aerial vehi-

cles or underwater exploration, dynamical vehicle models, over-actuated kinematic

1Beyond action superposition and multiplexing.

202

models) the tool in its current form is of limited use. Future work would involve ex-

tending the tool to higher dimensions. To retain the visual nature of the tool—and its

intuitiveness—a mechanism to go back and forth between two- or three-dimensional

projections of a higher-dimensional state space (which could be used for design) would

be necessary.

As well, in this work we described the relationship between flow geometry and

agent behavior with respect to circular flows, and along the L− and L+ manifolds.

Future work could extend this relationship to different flow geometries and along

other manifolds.

2. Improved perception

The perceptual schemes we considered in this work were intentionally limited to

lightweight schemes that did not involve vision. However, considering natural organ-

isms and some of the “heavier-weight” robotics schemes were looked at, it is clear

some form of machine vision would be very useful, especially in enabling the agent to

simultaneously perceive a multiplicity of different environmental phenomena—other

agents, obstacles, targets—in a unified manner.

Moreover, the use of feedback based on optic flow2 could provide a economical

means of obtaining motion feedback for the agent (beyond the use of MEMS-based

sensors which are, at present, expensive and of limited accuracy), as well as perceiving

the relative velocity of neighboring phenomena.

Future work could involve developing schemes for the regulation of visual per-

ception. For example, one could consider the agent’s field of vision as a spatially-

distributed dynamical system (modeled by partial differential equations) whose evo-

lution in time and distribution in space could be steered by the agent’s actuation.

2For which neuromorphic approaches have started to emerge.

203

3. Machine “introspection”

In chapters VI and VII we utilized multiplexors to prevent actuation nulls when

competitive behaviors superpose. An alternative strategy would be to design a higher-

level regulator that “looks” at the internal regulators to determine whether non-

productive actuation (caused by antagonistic controller outputs) are occurring.

Work of this nature might provide a route to more abstract cognition, where

rather than referencing all perception to the outside world, some perception could be

inward-directed, with regulators controlling the robot’s own control architecture (its

“brain”).

4. Inter-agent communication

If behavior is regulation of perception (as we have held in this work), then perhaps an

appropriate metaphor for communication would be the regulation of another agent’s

control architecture. To that end, as an extension of the previous section (where

the object was regulation of the agent’s own “mind”), future work could address the

design of agent interaction schemes using regulators that attempt to control other

agents through communication.

In realizing truly autonomous agents that can be classified as artificial life (as

opposed to scripted automata that are essentially heirs of Vaucanson’s duck), we

ought to get beyond the mere use of communication as a means of reading another

agent’s status or broadcasting our own to achieve coordinated action. Rather, we

would like to see an emergent system of communication develop through a cybernetic

formulation of the problem. For example, consider Figure 122 which shows two agents,

M and N , operating in a common environment. A possible formulation for E for the

case of stigmergic communication between M and N (i.e., in which M and N exchange

204

information via actuating change in the environment) could be:

E :

 ẋ = f(x, aM , aN)

sM = g(x, aM) + h(x, aM , aN)
(10.1)

With this, we could propose the problem of designing a regulator (in M) that

would cause E to be under the sole control of M—in effect, bending N to M ’s will.

M NE

a
M

a
N

s
N

s
M

Fig. 122. The robot communication problem from the perspective of agent M .

205

REFERENCES

[1] Hubert L. Dreyfus, Alchemy and Artificial Intelligence, vol. P-3244, RAND

Corporation, 1965.

[2] Hans P. Moravec, “The Stanford cart and the CMU rover,” Proceedings of the

IEEE, vol. 71, no. 7, pp. 872–884, 1983.

[3] W. Ross Ashby, Design for a Brain, Chapman and Hall, second edition, 1960.

[4] Pattie Maes, “Modeling adaptive autonomous agents,” in Artificial Life: An

Overview, Christopher G. Langton, Ed., pp. 135–162. MIT Press, Cambridge,

MA, 1995.

[5] Herbert A. Simon, “A behavioral model of rational choice,” The Quarterly

Journal of Economics, vol. 69, no. 1, pp. 99–118, 1955.

[6] Herbert A. Simon, “Cognitive science: The newest science of the artificial,”

Cognitive Science, vol. 4, pp. 33–46, 1980.

[7] M. Okamoto, T. Sakai, and K. Hayashi, “Biochemical switching device realizing

a McCulloch-Pitts type equation,” Biological Cybernetics, vol. 58, no. 5, pp.

295–299, 1988.

[8] A. Hjelmfelt and J. Ross, “Chemical implementation and thermodynamics of

collective neural networks,” Proceedings of the National Academy of Sciences

of the United States of America, vol. 89, pp. 388–391, 1992.

[9] A. Hjelmfelt, E. D. Weinberger, and J. Ross, “Chemical implementation of

finite-state machines,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 89, pp. 383–387, 1992.

206

[10] A. Hjelmfelt, E. D. Weinberger, and J. Ross, “Chemical implementation of

neural networks and Turing machines,” Proceedings of the National Academy

of Sciences of the United States of America, vol. 88, pp. 10983–10987, 1991.

[11] M. Okamoto, T. Sakai, and K. Hayashi, “Switching mechanism of a cycle

enzyme system: Role as a “chemical diode”,” BioSystems, vol. 21, pp. 1–11,

1987.

[12] Steen Rasmussen, Liaohai Chen, David Deamer, David C.Krakauer, Norman H.

Packard, Peter F. Stadler, and Mark A. Bedau, “Transitions from nonliving to

living matter,” Science, vol. 303, pp. 963–965, 2004.

[13] Uri Alon, An Introduction to Systems Biology: Design Principles of Biological

Circuits, Chapman and Hall, 2006.

[14] Rodney A. Brooks, “A hardware retargetable distributed layered architecture

for mobile robot control,” in IEEE International Conference on Robotics and

Automation, vol. 4, pp. 106–110, 1987.

[15] Carver Mead, Analog VLSI and Neural Systems, Addison-Wesley, 1989.

[16] Rahul Sarpeshkar, “Analog versus digital: Extrapolating from electronics to

neurobiology,” Neural Computation, vol. 10, pp. 1601–1638, 1998.

[17] Jan Van der Spiegel, Paul Mueller, David Blackman, Peter Chance, Christopher

Donham, Ralph Etienne-Cummings, and Peter Kinget, “An analog neural com-

puter with modular architecture for real-time dynamic computations,” IEEE

Journal of Solid-State Circuits, vol. 27, no. 1, pp. 82–92, 1992.

[18] Miguel Figueroa, David Hsu, and Chris Diorio, “A mixed-signal approach to

207

high-performance low-power linear filters,” IEEE Journal of Solid-State Cir-

cuits, vol. 36, no. 5, pp. 816–822, 2001.

[19] Roman Genov and Gert Cauwenberghs, “Kerneltron: Support vector machine

in silicon,” IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 1426–

1434, September 2003.

[20] Ralf M. Philipp and Ralph Etienne-Cummings, “Single-chip stereo imager,”

Analog Integrated Circuits and Signal Processing, vol. 39, pp. 237–250, 2004.

[21] Reid R. Harrison, “A biologically inspired analog IC for visual collision detec-

tion,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52,

no. 11, pp. 2308–2318, 2005.

[22] Randall D. Beer, Hillel J. Chiel, and Leon S. Sterling, “A biological perspective

on autonomous agent design,” Robotics and Autonomous Systems, vol. 6, pp.

169–186, 1990.

[23] Mark W. Tilden, “Adaptive robotic nervous systems and control circuits there-

for,” U.S. Patent (Patent Number 5,325,031), June 1994.

[24] W. Grey Walter, “An imitation of life,” Scientific American, vol. 182, no. 5,

pp. 42–45, May 1950.

[25] W. Grey Walter, “A machine that learns,” Scientific American, vol. 184, no.

8, pp. 60–63, August 1951.

[26] Robert G. Gallager, “Claude E. Shannon: A retrospective on his life, work,

and impact,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp.

2681–2695, 2001.

[27] Norbert Wiener, The Human Use of Human Beings, Houghton Mifflin, 1954.

208

[28] W. Ross Ashby, “Design for an intelligence-amplifier,” in Automata Studies,

C. E. Shannon and J. McCarthy, Eds. Princeton University Press, 1956.

[29] Stafford Beer, “Fanfare for effective freedom–cybernetic praxis in government,”

in Platform for Change, pp. 421–52. Wiley, 1975.

[30] James S. Albus, “Mechanisms of planning and problem solving in the brain,”

Mathematical Biosciences, vol. 45, pp. 247–293, 1979.

[31] Dylan A. Shell and Maja J. Matarić, “Ergodic dynamics for large-scale dis-

tributed robot systems,” in Proceedings of the 5th International Conference on

Unconventional Computation, pp. 254–266, 2006.

[32] Jiming Liu and Jianbing Wu, Multi-Agent Robotic Systems, CRC Press, 2001.

[33] Y. Uny Cao, Alex. S. Fukunaga, and Andrew B. Kahng, “Cooperative mobile

robotics: Antecedents and directions,” Autonomous Robots, vol. 4, pp. 1–23,

1997.

[34] W. Ross Ashby, An Introduction to Cybernetics, Chapman and Hall, 1968.

[35] John Guckenheimer and Philip Holmes, Nonlinear Oscillations, Dynamical Sys-

tems, and Bifurcations of Vector Fields, Springer-Verlag, 1983.

[36] Lawrence Perko, Differential Equations and Dynamical Systems, Springer-

Verlag, third edition, 2001.

[37] Dragan Nesić and Dina S. Laila, “On preservation of dissipation inequalities

under sampling,” in Proceedings of the 39th IEEE Conference on Decision and

Control, pp. 2472–2477, 2000.

209

[38] Y. Itoh, N. Hori, and H. Kamei, “Digital redesign of a nonlinear state-feedback

control system based on the principle of equivalent areas,” in SICE Annual

Conference, pp. 350–354, 2004.

[39] R. E. Kalman and J. E. Bertram, “Control system analysis and design via

the second method of Lyapunov,” Journal of Basic Engineering, vol. 82, pp.

371–400, 1960.

[40] Thomas L. Vincent and Walter J. Grantham, Nonlinear and Optimal Control

Systems, John Wiley & Sons, 1997.

[41] Tom Ziemke, “What’s that Thing Called Embodiment?,” in Proceedings of the

25th Annual Meeting of the Cognitive Science Society, pp. 1134–1139, 2003.

[42] Susan Stepney, “Embodiment,” in In Silico Immunology, D. Flower and J. Tim-

mis, Eds. Springer, 2007.

[43] Stanley J. Rosenschein and Leslie Pack Kaelbling, “A situated view of repre-

sentation and control,” Artificial Intelligence, vol. 73, pp. 149–173, 1995.

[44] Ronald C. Arkin, Behavior-Based Robotics, MIT Press, 1998.

[45] Jean-Claude Latombe, Robot Motion Planning, Kluwer, 1991.

[46] Steven M. LaValle, Motion Planning, Cambridge University Press, 2006.

[47] Dan Paluska, Maja J. Matarić, Robert Ambrose, and Jerry Pratt, “Biomimetic

robot control,” in Biologically Inspired Intelligent Robots, Y. Bar-Cohen and

C. Breazeal, Eds., vol. PM122. SPIE Press, 2003.

[48] Allen Newell and Herbert A. Simon, “Computer science as empirical inquiry:

Symbols and search,” Communications of the ACM, vol. 19, no. 3, pp. 113–126,

1976.

210

[49] David Kirsh, “Foundations of AI: The big issues,” Artificial Intelligence, vol.

47, pp. 3–30, 1991.

[50] John Haugeland, Artificial Intelligence: The Very Idea, MIT Press, 1985.

[51] Michael Sipser, Introduction to the Theory of Computation, PWS Publishing

Company, 1997.

[52] C. Moore, “Generalized shifts: Unpredictability and undecidability in dynam-

ical systems,” Nonlinearity, vol. 4, pp. 199–230, 1991.

[53] Rodney A. Brooks, “Elephants don’t play chess,” Robotics and Autonomous

Systems, vol. 6, pp. 3–15, 1990.

[54] Valentino Braitenberg, “Taxis, kinesis and decussation,” Progress in Brain

Research, vol. 17, pp. 210–222, 1965.

[55] Valentino Braitenberg, Vehicles: Experiments in Synthetic Psychology, The

MIT Press, 1984.

[56] Michael A. Arbib, The Metaphorical Brain, Wiley-Interscience, 1972.

[57] Marvin Minsky, The Society of Mind, Simon & Schuster, 1986.

[58] Rodney A. Brooks, “A robust layered control system for a mobile robot,” IEEE

Transactions on Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[59] Ronald C. Arkin, “Motor schema-based mobile robot navigation,” The Inter-

national Journal of Robotics Research, vol. 8, no. 4, pp. 92–112, 1989.

[60] Pattie Maes, “Situated agents can have goals,” Robotics and Autonomous

Systems, vol. 6, pp. 49–70, 1990.

211

[61] Ronald C. Arkin and Tucker R. Balch, “AuRA: Principles and practice in

review,” Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,

no. 2/3, pp. 175–188, 1997.

[62] Randall D. Beer, Intelligence as Adaptive Behavior, Academic Press, Inc.,

1990.

[63] R. D. Beer, “A dynamical systems perspective on agent-environment interac-

tion,” Artificial Intelligence, vol. 72, pp. 173–215, 1995.

[64] Simon Haykin, Neural Networks, Prentice Hall, 1999.

[65] P. S. Churchland and T. J. Sejnowski, The Computational Brain, MIT Press,

1992.

[66] Brosl Hasslacher and Mark W. Tilden, “Living machines,” in Robotics and

Autonomous Systems: The Biology and Technology of Intelligent Autonomous

Agents, L. Steels, Ed. Elsevier, 1995.

[67] Stanley J. Rosenschein, “Formal theories of knowledge in AI and robotics,”

New Generation Computing, vol. 3, no. 4, pp. 345–357, 1985.

[68] Stanley J. Rosenschein and Leslie Pack Kaelbling, “The synthesis of digital

machines with provable epistemic properties,” in TARK ’86: Proceedings of

the 1986 Conference on Theoretical Aspects of Reasoning about Knowledge,

pp. 83–98, 1986.

[69] Leslie Pack Kaelbling, “An architecture for intelligent reactive systems,” in

Reasoning about actions & plans : Proceedings of the 1986 Workshop, num-

ber 4, pp. 395–410, 1986.

212

[70] Leslie Pack Kaelbling and Stanley J. Rosenschein, “Action and planning in

embedded agents,” Robotics and Autonomous Systems, vol. 6, pp. 35–48, 1990.

[71] H. Asama, A. Matsumoto, and Y. Ishida, “Design of an autonomous and

distributed robot system: ACTRESS,” in Intelligent Robots and Systems, pp.

283–290, 1989.

[72] Claude LePape, “A combination of centralized and distributed methods for

multi-agent planning and scheduling,” in IEEE ICRA, pp. 488–493, 1990.

[73] Lynne E. Parker, “ALLIANCE: An architecture for fault tolerant multi-robot

cooperation,” IEEE Transactions on Robotics and Automation, vol. 14, no. 2,

1998.

[74] Ruggero Carli, Fabio Fagnani, Alberto Speranzon, and Sandro Zampieri, “Com-

munication constraints in coordinated consensus problems,” in Proceedings of

the 2006 American Control Conference, pp. 4189–4194, 2006.

[75] Dimos V. Dimarogonas and Kostas J. Kyriakopoulos, “On the state agreement

problem for multiple unicycles,” in Proceedings of the 2006 American Control

Conference, pp. 2016–2021, 2006.

[76] Zhiyun Lin, Bruce Francis, and Manfredi Maggiore, “Coupled dynamic systems:

From structure towards state agreement,” in Proceedings of the 44th IEEE

Conference on Decision and Control, pp. 3303–3308, 2005.

[77] Zhiyun Lin, Bruce Francis, and Manfredi Maggiore, “Necessary and sufficient

graphical conditions for formation control of unicycles,” IEEE Transactions on

Automatic Control, vol. 50, no. 1, pp. 121–127, 2005.

213

[78] Luc Moreau, “Stability of multiagent systems With time-dependent commu-

nication links,” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp.

169–182, 2005.

[79] Jakob Fredslund and Maja J. Matarić, “A general algorithm for robot forma-

tions using local sensing and minimal communication,” IEEE Transactions on

Robotics and Automation, vol. 18, no. 5, pp. 837–846, 2002.

[80] Petter Ögren, Edward Fiorelli, and Naomi Ehrich Leonard, “Cooperative con-

trol of mobile sensor networks: Adaptive gradient climbing in a distributed

environment,” IEEE Transactions on Automatic Control, vol. 49, no. 8, pp.

1292–1302, 2004.

[81] Guy Theraulaz and Eric Bonabeau, “A brief history of stigmergy,” Artificial

Life, vol. 5, pp. 97–116, 1999.

[82] Owen Holland and Chris Melhuish, “Stigmergy, self-organization, and sorting

in collective robotics,” Artificial Life, vol. 5, pp. 173–202, 1999.

[83] C. W. Reynolds, “Flocks, herd, and schools: A distributed behavioral model,”

in SIGGRAPH, pp. 25–34, 1987.

[84] Maja J. Matarić, “Designing emergent behaviors: From local interactions to

collective intelligence,” in Proceedings, From Animals to Animats 2, Second

International Conference on Simulation of Adaptive Behavior. pp. 432–441, MIT

Press, 1993.

[85] Maja J. Matarić, “Designing and understanding adaptive group behavior,”

Adaptive Behavior, vol. 4, no. 1, pp. 50–81, 1995.

214

[86] Ronald C. Arkin, “Cooperation without communication: Multiagent schema-

based robot navigation,” Journal of Robotic Systems, vol. 9, no. 3, pp. 351–364,

1992.

[87] Tucker Balch and Ronald C. Arkin, “Communication in reactive multiagent

robotic systems,” Autonomous Robots, vol. 1, pp. 1–25, 1994.

[88] Lynne E. Parker and F. Tang, “Building multi-robot coalitions through auto-

mated task solution synthesis,” Proceedings of the IEEE, vol. 94, no. 7, pp.

1289–1305, 2006.

[89] Qun Li and Daniela Rus, “Navigation protocols in sensor networks,” ACM

Transactions on Sensor Networks, vol. 1, no. 1, pp. 3–35, 2005.

[90] Manfredo P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice

Hall, 1976.

[91] Michael G. Hinchey, Roy Sterritt, and Chris Rouff, “Swarms and swarm intel-

ligence,” Computer, vol. 40, no. 4, pp. 111–113, 2007.

[92] Y. Sato and T. Ikegami, “Nonlinear computation with switching map systems,”

Journal of Universal Computer Science, vol. 6, no. 9, pp. 881–905, 2000.

[93] Vladimir J. Lumelsky, “Algorithmic issues of sensor-based robot motion plan-

ning,” in Proceedings of the 26th IEEE Conference on Decision and Control,

vol. 3, pp. 1796–1801, 1987.

[94] Luc Steels, “Intelligence with representation,” Philosophical Transactions of

the Royal Society A: Mathematical, Physical & Engineering Sciences, vol. 361,

no. 1811, pp. 2381–2395, 2003.

215

[95] Nebu John Mathai and Takis Zourntos, “Emergent fluctuations in the trajec-

tories of agent collectives,” Fluctuation and Noise Letters, vol. 7, no. 4, pp.

L429–L437, 2007.

[96] Hassan K. Khalil, Nonlinear Systems, Prentice Hall, third edition, 2002.

[97] Richard J. Dunn, Price T. Bingham, and Charles A. Fowler, “Ground moving

target indicator radar and the transformation of U.S. warfighting,” Tech. Rep.,

Northrop Grumman, Washington, 2004.

[98] W. Koch and R. Klemm, “Ground target tracking with STAP radar,” IEE

Proceedings Radar, Sonar and Navigation, vol. 148, no. 3, pp. 173–185, 2001.

[99] Chris Eliasmith, “Computation and dynamical models of mind,” Minds and

Machines, vol. 7, pp. 531–541, 1997.

[100] Maja J. Matarić, “Behavior-based control: Main properties and implications,”

in Proceedings of the IEEE International Conference on Robotics and Autono-

mation, Workshop on Architectures for Intelligent Control Systems, 1992.

[101] Nebu John Mathai and Takis Zourntos, “Control-theoretic synthesis of hier-

archical dynamics for embodied cognition in autonomous robots,” in IEEE

Symposium on Artificial Life, pp. 448–455, 2007.

[102] Takis Zourntos and Nebu John Mathai, “A BEAM-inspired Lyapunov-based

strategy for obstacle avoidance and target-seeking,” in American Control Con-

ference, pp. 5302—5309, 2007.

[103] Takis Zourntos, Nebu John Mathai, S. Magierowski, and Deepa Kundur, “A

bio-inspired layered analog scheme for navigational control of lightweight au-

216

tonomous agents,” in IEEE International Conference on Robotics and Automa-

tion, 2008 (to appear).

[104] C. D. Johnson, “Accommodation of external disturbances in linear regulator

and servomechanism problems,” IEEE Transactions on Automatic Control, vol.

16, no. 6, pp. 635–644, 1971.

[105] Miroslav Krstić, Ioannis Kanellakopoulos, and Petar V. Kokotović, Nonlinear

and Adaptive Control Design, Wiley, 1995.

[106] W. Ross Ashby and Roger C. Conant, “Every good regulator of a system must

be a model of that system,” International Journal of Systems Science, vol. 1,

no. 2, pp. 89–97, 1970.

[107] Michael A. Arbib, Ed., The Handbook of Brain Theory and Neural Networks,

MIT Press, 2003.

[108] Mark A. Bedau, “Weak emergence,” in Philosophical Perspectives: Mind,

Causation, and World, J. Tomberlin, Ed., vol. 11, pp. 375–399. 1997.

[109] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, 2nd

edition, 1992.

[110] Michael Bratman, “Two faces of intention,” The Philosophical Review, vol.

93, no. 3, pp. 375–405, July 1984.

[111] Philip R. Cohen and Hector J. Levesque, “Intention is choice with commit-

ment,” Artificial Intelligence, vol. 42, pp. 213–261, 1990.

[112] H. R. Maturana and F. J. Varela, Autopoiesis and Cognition, vol. 42 of Boston

Series in the Philosophy of Science, D. Reidel Publishing Company, 1980.

217

[113] Mark A. Bedau, John S. McCaskill, Norman H. Packard, Steen Rasmussen,

Chris Adami, David G. Green, Takashi Ikegami, Kunihiko Kaneko, and

Thomas S. Ray, “Open problems in artificial life,” Artificial Life, vol. 6, pp.

363–376, 2000.

[114] Steen Rasmussen, Nils A. Baas, Bernd Mayer, Martin Nilsson, and Michael W.

Olesen, “Ansatz for dynamical hierarchies,” Artificial Life, vol. 7, pp. 329–353,

2001.

[115] Martin N. Jacobi, “Hierarchical organization in smooth dynamical systems,”

Artificial Life, vol. 11, pp. 493–512, 2005.

[116] Simon McGregor and Chrisantha Fernando, “Levels of description: A novel

approach to dynamical hierarchies,” Artificial Life, vol. 11, pp. 459–472, 2005.

[117] Nebu John Mathai and Takis Zourntos, “A hierarchical dynamical systems

analog computation architecture for embodied cognition,” in Unconventional

Computation: Quo Vadis, Los Alamos National Laboratory, March 2007.

[118] Scott Burlington and Gregory Dudek, “Spiral search as an efficient mobile

robotic search technique,” Tech. Rep., Center for Intelligent Machines, McGill

University, Montreal, January 1999.

[119] Hans Sagan, Space-Filling Curves, Springer-Verlag, 1994.

[120] Archimedes, “On spirals,” in The Works of Archimedes, Sir Thomas Heath,

Ed. Dover, 2002.

[121] Tucker Balch and Ronald C. Arkin, “Behavior-based formation control for

multirobot teams,” IEEE Transactions on Robotics and Automation, vol. 14,

no. 6, pp. 926–939, 1998.

218

[122] Reza Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and

theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420,

2006.

[123] B. H. Krogh, “A generalized potential field approach to obstacle avoidance

control,” in International Robotics Research Conference, August 1984.

[124] Oussama Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” The International Journal of Robotics Research, vol. 5, no. 1, pp.

90–98, 1986.

[125] Johann Borenstein and Yorem Koren, “Real-time obstacle avoidance for fast

mobile robots,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19,

no. 5, pp. 1179–1187, September/October 1989.

[126] Y. Koren and J. Borenstein, “Potential field methods and their inherent lim-

itations for mobile robot navigation,” in Proceedings of the IEEE Conference

on Robotics and Automation, pp. 1398–1404, 1991.

219

APPENDIX A

EXPERIMENTAL RESULTS

Video files (described in Table XV) that present some of our experimental results

accompany this dissertation and are available for downloading.

Table XV. Summary of accompanying video files.

file description

taxis_obs.mov search, taxis, obstacle avoidance

taxis_wall.mov taxis, obstacle avoidance (larger obstacle)

capture.mov two-agent follower-leader scenario

(involves the capture of one agent)

escape.mov two-agent follower-leader scenario

(involves the escape of one agent)

220

APPENDIX B

SIMULATION ENVIRONMENT

A. Introduction

Figure 123 presents an overview of the simulation environment used to characterize

the various single agent and multi-agent behaviors described in this work.

testbench animateMATLAB
time series

data

OpenGL

Fig. 123. Overview of the simulation environment used in this work. The dark grey

blocks indicate software that was written as part of the work of this disser-

tation, while the black boxes indicate third-party software and libraries.

A software testbench, illustrated in Figure 124 that specified the coupled agent-

environment dynamical system was specified using Simulink. Simulink was primarily

used for its graphical block diagramming facilities and, apart from simple mathe-

matical functions and signal conditioning blocks, the testbench was developed using

custom s-functions, written using MATLAB’s “M-File” programming language (i.e.,

no third-party toolboxes were used).

MATLAB was used to simulate the testbench, and the resulting time series of

agent position and orientation in the environment was dumped to a file. This file

was then input to visualization software (animate), which produced an animation of

221

MATLAB

M
1

M
i E

M
n

...

...

a
1

{ s
1
, ..., s

i
, ..., s

n
 }

a
i

a
n

Fig. 124. Structure of the testbench.

the motion of agents in the environment. The visualizer was developed as part of

the work of this dissertation, using the rendering facilities provided by the OpenGL

(version 1.2) library.

B. Environment model

The environment model was used to track the evolution of each agent’s orientation

and position in the environment (based on the agent’s velocity actuation commands),

and generate sensory feedback (i.e., target, agent and obstacle sensor data).

Let a global frame of reference be imposed on the environment, and with respect

to this frame of reference let:

• gi(t) =

 gi
1

gi
2

 denote the position of agent Mi in the environment

• ψi(t) denote the orientation of agent Mi in the environment

Then the state of the environment (with initial conditions, gi(0) and ψi(0)) evolves

222

according to:

ġi
1 = ai

v(t) cos
(
ψi(t)

)
ġi
2 = ai

v(t) sin
(
ψi(t)

)
ψ̇i = ai

ω(t)

(B.1)

where ai
v and ai

ω are the commanded translational and rotational speeds, respectively,

of agent Mi.

223

VITA

Nebu John Mathai, P.Eng., received his bachelor’s degree in Engineering Sci-

ence at the University of Toronto in 2000, and his master’s degree in Electrical and

Computer Engineering in 2004, also at the University of Toronto.

From 2000 to 2003, he worked as a design engineer at Cogency Semiconductor,

Toronto, developing several hardware cores for signal processing, encryption, and for-

ward error correction. He commenced his doctoral studies at Texas A&M University

in 2004, graduating in 2008. He served as a lecturer in the Department of Electrical

and Computer Engineering at Texas A&M for close to three years.

From 2005 to 2008 he held a PGS-D fellowship from the Natural Sciences and

Engineering Research Council of Canada, and in 2008 was awarded a U.S. Senator

Phil Gramm Doctoral Fellowship. He received the Texas A&M IEEE Students’ Choice

Award for Best Teaching Assistant in 2005 and the Students’ Choice Award for Best

Instructor in 2006.

N. J. Mathai may be reached through Dr. Deepa Kundur or Dr. Takis Zourntos

at the Department of Electrical and Computer Engineering, Texas A&M University,

College Station, Texas, 77843-3128. His e-mail address is mathai@ieee.org.

