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ABSTRACT 

 
Changes in Quality of Whole Cooked Sorghum  

[Sorghum bicolor (L.) Moench] Using Precooking Methods. 

(December 2007) 

Vilma Ruth Calderon de Zacatares, 

B.A., University of El Salvador; M.S., Tropical Agriculture Higher Education  

and Research Center, Costa Rica 

Chair of Advisory Committee: Dr. L.W. Rooney 

 

Four sorghum cultivars (white, sumac, high tannin and black) differing in 

kernel characteristics were evaluated for cooking quality using whole, cracked 

and decorticated kernels. Whole grain had longer minimum cooking time (MCT) 

and lower water uptake. MCT ranged from 20 to 55 min for all varieties. Soluble 

solid loses (SSL) were lower than for cracked grain (1.0 to 1.5%). Formation of a 

gruel-like texture, darker pericarp color, splitting and agglomeration of kernels 

occurred especially for white grain.  

Cracked sorghum had shorter MCT (8.8. to 17.5 min) but produced higher 

SSL (1.3 to 2.9%). Changes in color and appearance due to leaching of 

pigments especially for the sorghums with a pigmented testa occurred. 

Utilization of decorticated kernels reduced MCT (11 to 25.3 min), but nutritional 

value is affected with the removal of the pericarp, plus the SSL (0.5 to 0.7%) 

produced during cooking. 

The long grain rice types have comparatively lower values in terms of 

MCT (22 min) than whole sorghum and SSL are similar to values obtained for 

cracked grain (1.7 to 2.2%) showing a minimum of splitting. Short and medium 

rice grain shows relatively long cooking time (30 to 35 min) but no longer than 

cracked or decorticated sorghum and produced higher SSL (28% to 40%) during 

processing, showing extensive disintegration.  
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When sorghum was precooked; cooking quality improved. The 

combination of dry heat and microwave reduced MCT and SSL from 31 to 49% 

and 6.6 to 41.3%, respectively for all varieties compared to the control. This 

treatment produced grain with softer texture, increased dietary fiber and higher 

antioxidant activity retention (67.8%) for the tannin varieties than the control 

(22.7%). 

Evaluations of cooking quality of whole sorghum and the application of 

precooking process have more applications than just preparation of rice-like 

products. Whole boiled sorghum could be used in the elaboration of 

nutraceutical foods like an ingredient for yogurts, desserts or side dishes like 

exotic salads with other cereals. The inclusion of whole boiled sorghum as an 

ingredient in foods is promising with excellent potential health benefits. 
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CHAPTER I 

INTRODUCTION 

Sorghum [Sorghum bicolor (L.) Moench] is the world’s fifth leading grain 

in production and is staple food for many in Africa, Asia and Central America. In 

these areas sorghum is used to produce traditional foods or as a substitute for 

other cereals like corn, wheat or rice in products such as baked goods, beer, 

tortillas, bread and rice-like products. The amount of sorghum for human 

consumption is increasing every year in these parts of the world (from 23% in 

2000 to 35%) in 2006, (FAO/IAEA, 2007) because sorghum is a versatile, non-

GMO, gluten free grain, with a variety of colors and some varieties with bland 

flavor, similar to rice.  

Sorghum is also a good source of dietary fiber and antioxidants (Rooney 

et al.1986). Dietary fiber aids in treating coronary heart disease and 

gastrointestinal health through bulking fecal matter, decreasing constipation and 

reducing the absorption of carcinogenic metabolites (Khairwal et al.1977; 

Gregory, 1985). Certain sorghums high tannins have high antioxidant levels 

(Awika, et al. 2000). That abundance of antioxidants in sorghums is important 

due to the potential benefits of these compounds to human health. 

Acceptable whole foods from sorghum have been made from sorghums 

that have tan plant color, white pericarp, intermediate endosperm structure 

without a testa and low levels of color precursors. However special black and 

red sorghums produced specialty products like snacks, tortilla chips, extrudates 

with unique flavor, texture and health promoting benefits like high antioxidant 

activity, dietary fiber, minerals and vitamins and could be consumed also as a 

whole boiled product or as component in other food products. (Serna Saldivar & 

Rooney, 1995).  

 

                                                 
This thesis follows the style and format of Cereal Chemistry. 
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Whole, cracked or dehulled sorghum kernels are cooked to produce 

boiled rice-like products. Depending on the length of boiling, sorghum may have 

various changes in flavor, texture and colors as well as destruction of heat- 

remain sensitive nutrients and vitamins; also antioxidants are partially extracted 

and remained in the boiling water (Rumm-Kreuter, 1990). 

Standard whole sorghum grain, depending on variety, kernel size and 

hardness, requires from 30 to 50 minutes to cook when boiled undisturbed 

(Murty & House, 1981). Physicochemical characteristics of the grain like 

hardness, size, pericarp thickness and moisture, affect cooking time and cooking 

quality of boiled sorghum. The relatively long preparation time restricts sorghum 

consumption in developing countries, where energy, fuel or biomass resources 

are scarce.   

Some precooking treatments (quick cooking methods) applied to the grain 

prior to cooking can increase hydration rate and partial gelatinization of the 

grain, reducing cooking time and avoiding solid losses during cooking while 

improving nutritional value. Treatments like infrared, microwave or dry heating, 

have been used to reduce cooking time successfully in other cereals and 

legumes. A quick cooking sorghum with 5 to 20 min cook time would be useful to 

increase consumption of sorghum as a boiled whole product and at the same 

time improved its nutritional value. 

 

The objectives of this study were: 

1. To determine the cooking quality of whole grain compared with cracked 

and decorticated sorghum  

2. To evaluate the effect of various precooking process on cooking time and 

physical properties of whole sorghum kernels 

3. To determine the effect of cooking time and precooking on nutritional 

quality and antioxidant activity of whole sorghum  
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CHAPTER II 

COOKING QUALITY OF WHOLE, CRACKED AND DEHULLED SORGHUM 

LITERATURE REVIEW 

Sorghum kernel structure and composition 

 The sorghum kernel is a naked caryopsis, varying widely in size and 

shape; thousand kernel weights vary from 3-80 g. The sorghum kernel is 

composed of pericarp, endosperm, and germ. The pericarp may be thick or thin 

and contains wax and pigments. Sometimes a pigmented layer or testa is 

present just beneath the pericarp; it varies in thickness and color (Serna Saldivar 

& Rooney, 1995). The pericarp of sorghum grain originates from the ovary and is 

divided into three histological tissues, the epicarp, the mesocarp and endocarp. 

The epicarp is the outermost layer and is generally covered with a thin layer of 

wax. The mesocarp contains starch granules and is different from that of most 

cereals. The endocarp is the internal layer, composed of cross and tube cells 

(Waniska & Rooney, 2000) 

The endosperm is composed of the aleurone layer, peripheral, corneous 

and floury areas. The aleurone is the outer layer and consists of a single layer of 

rectangular cells adjacent to the testa or tube cells with large amounts of 

proteins, ash and oil.  The peripheral starchy endosperm is composed of several 

layers of cell walls containing more protein bodies and smaller starch granules. 

The corneous and floury endosperm cells are composed of starch granules, a 

protein matrix, protein bodies and cell walls (Serna Saldivar & Rooney, 1995). In 

a corneous type endosperm, starch and protein form a compact structure; floury 

endosperm shows a rather loose arrangement of protein and starch because the 

protein matrix binding them together is not continuous (Waniska & Rooney, 

2000). The germ is the remaining part of the kernel and represents 

approximately 10% of the total dry weight.  
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The color of sorghum grain is a combination of primarily anthocyanins 

and other flavonoids located in the pericarp and or in the pigmented testa if one 

is present. The R and Y genes determine the pigmentation. The seed coat (testa 

layer) may be highly pigmented, a characteristic that is genetically controlled 

(Rooney et al. 1992). In high Tannin sorghums the testa is pigmented which is 

controlled by the complementary B1, B2 genes (Rooney & Murty, 1987). 

Sorghum proximate composition varies significantly due to genetics and 

environmental factors. The protein content is usually the most variable. It is 

lower in oil than corn and usually has higher protein than corn. 

 The pericarp is rich in fiber, whereas the germ is high in crude protein, fat 

and ash. The endosperm contains mostly starch and protein with small amounts 

of oil and fiber. Some sorghum contains condensed high tannins, but most 

sorghum varieties do not.   

The carbohydrates are composed of starch, soluble sugars, pentosans, 

cellulose and hemicellulose. Starch is the most abundant chemical component, 

while soluble sugars and crude fiber are low (Duodu et al. 2002). Starch exists in 

highly organized granules in which amylose and amylopectin molecules are held 

together by hydrogen bonding.  

Regular endosperm sorghum types contain 23 to 30% amylose. In the 

native form they are considered pseudo crystals that have crystalline and 

amorphous areas. The native granules are insoluble in cold water, swell 

reversibly, exhibit birefringence (rotate the plane of polarized light) and are 

relative inaccessible to enzyme attack (Rooney & Murty, 1987).  

Sorghum starch has a higher swelling power and higher peak and cold 

viscosity than maize. The gelatinization temperature range as determined by 

differential scanning calorimetry for sorghum starch is 71Co-80Co. Corneous 

endosperm starch have higher gelatinization temperature and intrinsic viscosity 

compared to starch isolated from floury endosperm (Serna Saldivar & Rooney, 

1995). 
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Traditional uses of sorghum  

Whole sorghum food products are not commonly found in urban and semi 

urban markets in many regions of the world where this crop is cultivated, 

probably because of the drudgery involved in their domestic processing and the 

low prestige attached to them. Sorghum is considered a coarse grain, since it is 

hard to process. The flour or meal from sorghum is coarse and produces gritty 

products with a characteristic aroma (Polycarpe Kayoed, 2006). The grains are 

processed mainly at home using traditional household methods and the 

techniques used to prepare the grain are intended to mitigate the gritty 

characteristics of the food due to the hardness of the grain (Blanchet, 1987). 

Appropriate millings technologies have been developed to mechanically process 

sorghum but these technologies have not been established in many developing 

countries, where it is used as a staple food like Africa and Central America. 

In general, sorghums are decorticated partially or completely by 

traditional methods before further processing and consumption. Whole grains 

might as well be directly dry-milled to give a range of products: broken or 

cracked grains, grits, coarse meal and fine flour (Bello et al, 1990). The flour 

thus obtained is used in the preparation of a range of simple to complex food 

products. Sorghum can be mixed with flours of other cereals such as wheat and 

rice or legumes to improve palatability, nutritional value and acceptance of the 

product (Rooney & Murty, 1986). 

Porridges of varying consistencies and pH, different types of bread, 

pancakes, alcoholic and non alcoholic beverages, rice like products (steam-

cooked, deep fried) and several other products and processing techniques are 

used to make many kinds of snacks and other popular foods in Africa, India, 

Asia and Central America (Rooney & Murty, 1987). These diverse processes 

affect the flavor, nutritional value and utilization properties of the product. 
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Boiled rice-like products 

In many countries, sorghum is consumed like rice and is a very important 

component of the daily diet (Blanchet, 1987). Sorghum is often cooked to make 

boiled rice like products in regions where rice is used but scarce. The product is 

generally preferred by the rural population and prepared mostly for adults. 

(Taylor et al, 1997)  

Whole, cracked or dehulled grains are soaked overnight and then cooked 

the next morning. Soaking the grain reduces cooking time and color intensity of 

the product and improves keeping quality, probably due to partial fermentation. 

Pearling or dehulling reduces significantly the nutrient content of the grain. 

Decortication leads to a loss of protein, fiber, fat, ash, high Tannin content and 

minerals (Osman, 2004)  When the grits are used, white sorghum is preferred 

instead of red; the sorghum is decorticated or pearled, then broken into 

endosperm pieces. The grain is cooked in water (1:3 ratio) until soft. Flavorings 

and legumes such as beans, chickpea and groundnut are added (Blanchet, 

1987). The cooked product is soft and fluffy with light yellow color and resembles 

boiled rice. The freshly prepared boiled sorghum product is consumed either as 

lunch or dinner with vegetables and sauces or used in side dishes like salads, 

soups and desserts (Rooney et al, 1986).  

Pitimi, Annam or Ache, Oko Baba or Soru, Khicuri, Lehata Wagen, 

Kaohang mi fan and Nufio; are names for boiled pearled sorghum grains or grits 

that are consumed in countries like Haiti, India, Nigeria, Bangladesh, Botswana, 

China and Ethiopia, respectively. In India, especially in the south rice-like 

products are important (Young, 1999).  

 

Whole grain definition and benefits of consumption 

 There is no universally accepted definition of whole grains. The new 

Dietary Guidelines, (2005) uses the American Association of Cereal Chemists’ 

definition, which is “foods made from the entire grain seed, usually called the 
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kernel, which consists of the bran, germ, and endosperm. If the kernel has been 

cracked, crushed, or flaked to be called whole grain, it must retain nearly the 

same relative proportions of bran, germ, and endosperm as the original grain. 

The 2005 Dietary Guidelines recommend that Americans consume at least 3 

servings (3 oz. or 4g) of whole grains per day instead of refined grains.  

The benefits from consumption of whole grains include reduced risk of 

coronary heart disease, Type II diabetes, and weight control. The array of 

nutrients in whole grains may work synergistically to lower heart disease risk. 

Whole grains contain fiber, B-vitamins, vitamin E, phytonutrients, magnesium, 

and selenium, which provide antioxidant protection and lowers blood cholesterol.  

Dietary fiber from whole grains plays a key role in reducing diabetes risk, 

though the physiological mechanism is not fully understood. Interestingly, this 

potential benefit is only apparent for fiber derived from grains, not for fiber from 

fruit and vegetables (Albertson & Tobleman, 1995). Mechanisms of how whole 

grains affect body weight are not well understood, but higher intakes of fiber 

from whole grains are inversely associated with weight gain.   

 

Sorghum cooking quality 

Cooking quality of sorghum is affected by physicochemical characteristics 

of the grain. Factors like endosperm hardness, pericarp thickness, kernel size, 

moisture content and milling of the grain like cracking or dehulling grain, affect 

cooking time and quality for many cereal grains and legumes, including sorghum 

(Murty & House, 1981). 

Sorghum requires a much longer cooking time than rice or other cereals, 

but less than maize and the cooked grain texture are usually firmer than rice. 

Wills & Ali, (1992) found that cooking time was related to the type of endosperm 

and grain size. Cooking time varied from 51 to 73 min for the whole grain and 

was positively correlated with kernel weight, density and grain volume 

(Sankarapandian, 2000) 
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Hardness is the most important and consistent characteristic that affected 

cooking time of grain when cooking quality is determined. Grain hardness has 

been linked to endosperm structure referring to the ratio of vitreous and floury 

endosperm sections. Vitreous endosperm has been characterized as a matrix of 

protein and starch that is tightly packed and strongly adheres to each other while 

floury endosperm is a more loose association of large and spherical starch 

granules with small air spaces in between the granules (Waniska & Rooney, 

2000).  

Small kernels with floury endosperm exhibit better cooking quality 

characteristics than large kernels with a hard corneous endosperm. A soft 

endosperm absorbs water at a faster rate than kernels with corneous 

endosperm due to a less densely packed endosperm structure affecting the 

ease of hydration during soaking and cooking (Young, 1990). Pericarp thickness 

is another important factor than affects the water uptake rate during soaking or 

cooking of whole grain. The rate of water uptake increases with thin pericarp 

kernels. Pericarp thickness is a genetic factor (Rooney et al. 1986) 

Cultivars with soft endosperm had larger percentages of ruptured kernels 

during cooking of whole grain, which increases soluble solids losses into the 

cooking broth. This reduces the yield of cooked product because the endosperm 

disintegrates (Blanchet, 1987) 

Considerable reduction of cooking time and increased weight and volume 

of boiled sorghum kernels (more than 100% of that of whole grains) occurred 

when pericarp was removed by decortication, but incomplete removal of the 

testa from the endosperm affected appearance of the cooked product 

(Sankarapandian, 2000). 

The use of cracked kernels reduced cooking time as well but affected the 

appearance and color of the boiled products due to leaching of pigments into the 

exposed endosperm during cooking producing darker products. Higher solid 
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losses were found when cracked kernels were cooked due to endosperm 

disintegration (Rooney et al, 1986).  

Endosperm hardness affects the amount of solids lost during cooking. 

Soft endosperm sorghum varieties demonstrated higher solid losses than hard 

endosperm kernels. (Young, 1990). Length of cooking affected soluble solids 

losses as well and the color of the cooked grains (Rooney & Murty, 1987). 

Oomah et al, (1981) found that preferred characteristics for boiled 

sorghum products were kernels with thin white pericarp with no testa, thin 

peripheral endosperm, corneous endosperm and larger grain.  For Pitimi 

(sorghum product that cooks, looks and tastes like rice); sorghum kernels with 

corneous endosperm and white pericarp were usually preferred (Blanchet, 

1987). Aboubacar and Hamaker (1999) reported that white hard and large 

sorghum kernels produced good rice-like products like Sori and Pitimi, preferred 

by consumers in Africa.  

 

Rice cooking quality  

Standard milled white rice, depending on variety and grain size (long, 

medium or short), requires from 20 to 35 min to cook to a satisfactory culinary 

acceptability when boiled according to usual recipe directions. Different rice 

varieties required different cooking times and yield different textural 

characteristics. Variations in cooking conditions also have a significant effect on 

texture, dryness or pastiness, flavor and general acceptability of the cooked rice.  

Some standards of rice quality are observed in all countries. In the U.S. 

quality in rice is evaluated according to grain size, shape, uniformity and general 

appearance (color and translucency): milling yields, cooking and processing 

characteristics. Most rice unlike many other cereals is processed and consumed 

in whole kernel form and the physical properties of the intact kernels such as 

size, shape, uniformity and general appearance are of particular significance in 

describing its quality. 
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There are wide differences in preference for cooked-rice qualities 

depending of household preparations, personal and ethnic preferences 

(Houston, 1976). Long grain rice is quite distinct from medium and short grain 

rice in cooking and processing characteristics. Long grain is called “hard rice”, 

usually cook dry and flaky with a minimum of splitting and the cooked grain 

tends to remain separate. High quality short and medium grain varieties referred 

to as “soft rice” is more moist and firm when cooked than the long-grain varieties 

and the grain tend to stick together (Roberts, 1972). 

 Comparatively high amylose content and a medium high gelatinizing 

temperature characterize the long grain varieties. Medium and short grain 

varieties have lower amylose contents and lower gelatinizing temperatures than 

long grain varieties. Long grain rice is used for canned soups and quick cooking 

products. Medium and short grain varieties generally are used for making dry 

breakfast cereals and baby foods, and as and adjunct in brewing. Although long 

grain is preferred for cooked rice in most areas in the US. (Houston, 1976). 

Some of the more important uses and processing applications of rice included 

boiled or steamed rice (milled raw rice, milled parboiled rice, brown rice and 

quick cooking rice).  

 
MATERIALS AND METHODS 

Raw materials 

Four sorghum cultivars {Sorghum bicolor (L. Moench} grown in the Texas 

Agriculture Experiment Station in Lubbock Texas in 2004 were selected for this 

study. The cultivars differed widely in physical characteristics (Table I; Fig.1).  

The grain was bright and sound without weathering. Samples of 5 kg 

each were cleaned to remove trash, foreign materials, small and broken kernels. 

Cleaning losses was less than 2% of the original grain weight. The cleaned 

sorghum had moisture content of 11 + 0.5%. The material was stored at –4ºC 

until processed. Raw grain samples were evaluated for color, hardness, physical 
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dimensions and moisture content prior to measurement of cooking quality 

parameters.  

 

 

Table I.  Descriptive characteristics of sorghum cultivars 

 
Cultivar Pericarp 

Color/Thickness 
Testa Plant Color 

ATX 635x436 White/thin no Tan 
High Tannin Red/thin yes Purple 

Black Black/thick yes Purple 
Sumac Red/thick yes Purple 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Raw sorghum materials grown at Texas Agriculture 

Experiment Station at Lubbock, TX during 2004 season 
 
 
 
Sorghum characterization 

Color: An objective color measurement of the whole grain was obtained using a 

Minolta color meter (model CR-300, Osaka, Japan). Color was expressed 

according to the L a b system where L is lightness (100) or darkness (0), + a is 

redness, -a is greenness, + b is yellowness and –b is blueness. 
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Physical dimensions and hardness: The raw sorghum kernels were evaluated 

using the Single Kernel Hardness Tester (Model SKCS 4100, Perten Instrument 

Inc. Reno, Nevada) Three hundred individual sorghum kernels were selected 

and evaluated for average weight (mg), diameter (mm) hardness index and 

class. Measurements were taken in triplicate for each sorghum type. 

 

Moisture determination: Moisture for raw and cooked kernels was determined 

using an OHAUS Moisture balance meter (model 6010, Ohaus Scale 

Corporation, Florham Park, N.J.). A sample of 10 grams of grain was weighed 

and placed under infrared light for 25 min. The moisture content was determined 

by weighing the grain after drying. The decreased weight of sorghum kernels 

was recorded. The physical characteristics are shown in Table II.  

 

RAW MATERIALS PREPARATION 

Sorghum cracking 

Cleaned sorghum for each variety was cracked using an Attrition grinder 

(Glen Mills Inc; Maywood, N.J.). The grinder dial was closed at the reading of 

10.25.  The cracked sorghums were sieved to determine particle size distribution 

and the particles above sieve # 10 were used to obtain the Minimum Cooking 

Time (MCT) and cooking quality determinations. Half kernels were removed 

using a mesh screen. Material loss for cracked varieties was less than 5%. 

 

Sorghum dehulling 

Sorghum kernels were dehulled using a Tangential Abrasive Dehulling 

Device (TADD model 4E-115, Creative Technologies, I.C. Utah). A sample of 20 

grams was put in each of twelve holes of the plate and the pearling time was set 

for 3-½ min. The bran and other fines were retained for addition during cooking.  



                                                                                                                                             13 

The dehulled samples were collected with a vacuum sample collector and 

weighed. The experiment consists of three replications. The yield of pearled 

grains was calculated as follows:  

% P.G.: (Initial Weight-Decorticated kernel Weight/Initial Weight) x 100 

 

 
 

Table II. Physical characteristics of sorghum cultivars 

 
Variety Grain color 

(L, a, b) 

Hard 

(%). 

Removal2 

Hard. 

Index1 

(%) 

Seed 

Weight 

(Mg) 

Diameter 

(Mm.) 

Moist. 

(%) 

Sumac 

Black 

High 

Tannin 

White 

37.5 

34.1 

41.7 

62.4 

10.0 

4.6 

15.1 

4.09 

7.6 

2.5 

13.1 

18.8 

20.7 

24.4 

23.7 

33.5 

45.3 

60.3 

65.2 

88.6 

16.5 

40.4 

24.2 

28.9 

0.5 

2.7 

1.9 

2.4 

12.5 

12.4 

12.2 

12.5 

1 Single Kernel Hardness 
2 TADD Hardness 

 

 

COOKING QUALITY DETERMINATIONS 

For cooking quality determinations, whole and cracked grain of the four 

varieties was used. Evaluations of decorticated grains were compared. 

 

Minimum cooking time (MCT) 

The minimum cooking time was determined by the Ranghino test (Murty 

et al. 1981) this is the cooking time after which at least 90% of the boiled 

kernels, when pressed between two glass plates, no longer exhibit an opaque 

center (Fig 2). 
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 A portion of grain (20 g) was transferred to 250 ml glass beakers, 

containing 250 ml boiling water (excess water 2:1 proportion), the grain was left 

to boiled undisturbed for 5 min at that point a portion of grain was removed from 

the beaker, 20 intact kernels were spread into a glass plate, pressed with 

another plate and evaluated as described above. This procedure was repeated 

at 5 minutes intervals and continued after all 20 kernels lost the white core 

typical on an uncooked kernel (Fig 2). Pilot studies were conducted to determine 

the MCT. The samples were run in triplicates. 

 

 

 

 
Figure 2.  Determination of minimum cooking time (MCT) in whole 

boiled sorghum kernels. A. Partially cooked B. Intermediate 
cooked C. Fully cooked 

 
 

 

 

Soluble solids losses (SSL) 

Solid material lost during cooking was determined for all cooked samples 

by weighing an aliquot containing 1 ml. of the cooking broth in a tared 

evaporating dish and reweighing it after drying at 105ºC in a force draft oven  

(method 44.15A: AACC, 1996). Solids lost were expressed as a percentage of 

the starting material (dry weight).  

A B C 
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Weight increase after cooking (WIAC) 

The water uptake of sorghum grain was determined as the increase in 

weight of 20 g of kernels after boiling for the MCT. Free water on the surface of 

the cooked kernels was removed prior to weighing by blotting the kernels with 

paper towels. The percentage of water absorbed was calculated using the 

following formula:   % W.A. = Final weight –Initial Weight / Initial weight) x 100  

 
Texture  

A TA.XT plus/TA.HD plus texture analyzer was used to determine the 

texture of cooked sorghum for the MCT.  The Miniature Kramer Shear/Ottawa 

cell attached to the HDP/90 heavy-duty platform was used. A 5-blade head or 

compression platen was attached to the arm of the texture analyzer to measure 

the compression force necessary to determine hardness and firmness of the 

cooked kernels. 

 

Statistical analysis 

All the values reported in this study are the means of three observations 

replicated three times. Standard deviation of methodologies was reported where 

appropriate. ANOVA and Fisher least significant difference (LSD) was used for 

multiple mean comparisons. SPSS software was used for all data analyzed. 

 

RESULTS AND DISCUSSION 

The cooking quality parameters of whole, cracked and decorticated 

sorghum varieties were significantly different (Table III). 

 

Minimum cooking time (MCT) 

The minimum cooking time (as determined by the Ranghino test) ranged 

from 8.8 to 55 min. Whole sumac cooking time was shorter (20.0 min) than 

whole white sorghum (55.0 min). (Fig.3) 
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Table III. Cooking quality parameters of whole, cracked and decorticated 
sorghum kernels 

 
Cultivar Sumac High Tannin Black White LSD* 

Whole      

MCTa (min) 20.0 ±  0.5 45 ± 0.9 40 ± 0.4 55 ± 0.6 5.1 

WIACb (%) 75.4 ± 1.2 65.1 ± 0.8 77.1 ± 1.1 76.5 ± 0.8 4.2 

SSLc  (%) 1.4 ± 0.6 1.0 ± 0.5 1.2 ± 0.3 1.5 ± 0.2 0.24 

Textured (N) 317 ± 1.2 353 ± 0.4 379 ± 2.1 398 ± 0.9 25.2 

Cracked      

MCTa (min) 8.8 ± 0.2 11 ± 0.4 12.1 ± 0.3 17.5 ± 0.6 0.6 

WIACb (%) 170.8 ± 0.8 108.1± 1.3 110.8 ± 0.9 182.7 ± 0.7 2.5 

SSLc (%) 1.7 ± 0.1 1.3 ± 0.3 1.8 ± 0.6 2.9 ± 0.5 0.7 

Textured (N) 160 ± 0.7 244 ± 0.8 175 ± 0.5 275 ±1.2 17.1 

Decorticated      

MCTa (min) 10.7 ± 0.4 11.0 ± 0.5 24.0 ± 0.6 25.3 ± 0.8 0.83 

WIACb (%) 141.2 ± 0.5 78.1 ± 0.8 82.2 ± 1.1 131.2 ± 1.2 14.6 

SSL c (%) 0.5 ± 0.6 0.6 ± 0.3 0.7 ± 0.9 0.6 ± 0.2 0.09 

Textured (N) 225 ± 1.1 217 ± 0.9 298 ± 0.6 250 ± 0.4 11.7 

 

a  Minimum Cooking Time (Ranghino, 1966)  
b  Weight increase after cooking.  (Water taken up during boiling for the MCT)  
c  Solid lost to the boiling water for the minimum cooking time 
d Texture measured with the TA.XT plus/TA.HD texture analyzer (texture of cooked 
kernels for the minimum cooking time) Tough means the required force in Newton 
applied to deform kernels. 
* Least Significant Difference. Means significance at  (α =0.05) 
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Endosperm structure and other physical characteristics like grain 

hardness and size may explain the differences in cooking time obtained for all 

varieties. Soft and intermediate endosperm types and smaller grains such as 

sumac had shorter MCT than cultivars with a hard endosperm and large kernels 

like white food grade sorghum (Rooney & Murty, 1987). Black and high Tannin 

sorghum could be classified as sorghum of intermediate texture due to its floury 

to corneous endosperm ratio 1:1. These sorghums varieties had similar MCT. 
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Figure 3. Minimum cooking time (MCT) for whole, craked and  

decorticated sorghum kernels 
 

 

 

MCT for cracked and decorticated grain the MCT was significantly 

reduced. The required cooking time decreased with increasing endosperm 

exposure or endosperm milling, because water uptake became easier for the 

a 

d 

c 

a 
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b 

a 

b 

b b 
  a 
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smaller endosperm particles and gelatinization of starch was produced quickly. 

Decorticated grain had longer MCT than cracked grain, even if pericarp was 

removed. Pericarp act like a physical barrier that avoid faster hydration rate 

during cooking increasing MCT. 

Whole grain sorghum compared to long grain rice had longer MCT (55 min and 

30 min respectively). The starch components of rice, particularly the amylose 

content or amylose: amylopectin ratio, its gelatinization temperature and its 

pasting characteristics are largely responsible for major differences in rice 

cooking and processing behavior (Houston, 1976). 

 

Weight increases after cooking (WIAC) 

 Water taken up during boiling of the grain for the MCT was determined 

by the increase in weight of kernels after cooking (Fig. 4). 

WIAC ranged from 65.1% to 182.7%. The differences in WIAC may 

respond to differences in pericarp thickness and endosperm structure for the 

varieties evaluated. Whole sorghum hydration rate was reduced by the presence 

of the pericarp that acts like a barrier that slows during soaking and cooking. 

Rice kernels when boiled presented a moderate water uptake capacity at 770C 

(110 to 150 ml per 100 g), lower compared to whole sorghum. Water uptake 

values at 770C were higher (300 to 400 ml per 100 g) for short and medium 

grain varieties of the preferred types. 

The less tightly packed structure for the soft and intermediate endosperm 

sorghum varieties (sumac, high tannin and black) allowed water uptake in a 

shorter time than the more tightly packed hard endosperm types (white 

sorghum) (Young, 1989).  

Cracked endosperm allowed more water uptake than decorticated grain, 

because the exposed smaller endosperm pieces (mesh # 10) become hydrated 

more easily than decorticated kernels. Thus, water uptake increases with the 

increasing of endosperm exposure (cracking and decortication). 
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Figure 4. Weight Increase after cooking (WIAC) for whole, cracked and 
decorticated boiled sorghum kernels 

 

 
 
 
Solids losses during boiling (SSL) 

Solids Lost during boiling for the MCT where higher for whole and 

cracked than for decorticated grain (Fig. 5). Solid material lost during cooking for 

all samples ranged from 0.5% to 2.9%.  The MCT and hardness of grain seems 

to be the major factors involved in determining this amount. The harder the 

grain, the longer the cooking time, which allowed soluble solids losses to 

increase in cooking broth.  

For whole grain, rupturing of the kernels due to excessive water uptake at 

temperatures above starch gelatinization caused greater dry matter losses due 

to partial endosperm disintegration.  
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Figure 5. Soluble solids losses (SSL) for whole, cracked and decorticated 

boiled sorghum kernels 
 

 

 

For cracked grain, pericarp and endosperm pieces were more exposed 

allowing water penetration easily; which reduced cooking time but solids losses 

increased as well. 

Apparently most of the cooking broth solid losses consist of anthocyanins, 

starch, gums, sugars and soluble vitamins and minerals (Duodu et al, 2002). For 

decorticated grain the major part of the pigments, starch and soluble vitamins 

present in the outer layers of the kernels were lost during milling. Thus, the loss 

of solids in the broth was low. The preferred long grain types in terms of percent 

solid loss during processing is comparatively low (17 to 22%) and the kernels 

show a minimum of splitting and fraying of edges and ends. Short and medium 
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grain varieties show relatively high solid losses (28% to 40%) during processing 

and the kernels show extensive disintegration. 

 

Color and appearance of the cooked grain 

  The color of the cooked whole, cracked and decorticated kernels was 

affected by the MCT. For whole kernels the longer the cooking time the darker 

the color of the grain, apparently due to caramelization of sugars and non-

enzymatic browning during cooking (Figs. 6, 7, 8 and 9).  

Color for cracked and decorticated sumac, high tannin and black were 

affected by leached out of pigments because these grains have a pigmented 

testa. The use of tap water for cooking apparently induced pH changes in 

structure of the anthocyanins and enhanced extraction of colored compound in a 

more acidic medium (pH of tap water is 5.9) (Young, 1990). Whole white ATX 

635X436 variety had a mushy and gruel-like texture after cooking that caused 

handling problems. The endosperm was adhered to other kernels and formed 

agglomerates, probably due to the presence of some gums and wax in the 

pericarp, which affect the appearance of cooked kernels. (Fig.10). 

The percentage of ruptured kernels after cooking was larger for whole 

sumac and whole black. This is further proof that kernels with soft endosperm 

absorbed water more readily and the water is apparently more available for 

reaction with starch.  

Pericarp removal by mechanical decortication for soft and small grains 

like sumac is more difficult than for white grain because of the hardness of the 

grain. In spite of solids lost to the boiling water and as a rupture of kernels the 

cracked and decorticated white ATX635X436 (tan plant) grain gave firm though, 

not tough, separate kernels with a uniform light appearance and a slight 

yellowish hue. Food products manufactured from sorghums with a tan plant 

color are usually lighter and better in appearance than those manufactured from 

cultivars with a purple plant and straw colored glumes (Rooney et al 1986). 
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Figure 6.  Color of cooked whole, cracked and decorticated boiled sumac 

sorghum kernels 
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Figure 7.  Color of cooked whole, cracked and decorticated boiled high 

tannin sorghum kernels  
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Figure 8.  Color of cooked whole, cracked and decorticated boiled black 
sorghum kernels 
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Figure 9.  Color of cooked whole, cracked and decorticated boiled white 

sorghum kernels 
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Figure 10.  Color and appearance of cooked whole (A), cracked (B) and 

decorticated (C) white, high tannin, black and sumac sorghum 
 

 

 

Color of the milled rice is often referred to as general appearance of the 

cooked product. Rice varieties in the U.S. have either light (straw) or dark (gold) 

colored hulls. Light colored hull are preferred by processors because they don’t 

impart as much color to the processed product as do dark-colored hulls under 

similar parboiling conditions. Most consumers also prefer light colored rice.  The 

U.S. standards specify that cooked milled rice grade No 1 shall be white or 

creamy and rice grade No 2 should be not darker then slightly gray.  
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Texture of the cooked grain 

Whole grain increased the resistance to deformation and energy 

(hardness) used to crush a layer of cooked kernels (8 kg) compared to cracked 

and decorticated kernels (Fig. 11). Whole grain was significantly tougher (more 

force required to reach yield point) than the rest of the kernels, apparently due to 

differences in hydration rates, size, endosperm structure and cooking time 

between samples. Whole grain “per se” always had a hard texture after cooking 

Cracking or dehulling helped solve the hard texture but may decrease nutritional 

value. 
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Figure 11.  Force in Newton required to deform whole, cracked and 

decorticated sorghum kernels 
 

 

 

Decorticated grain had an acceptable texture, yielding firm but soft, 

separate kernel with acceptable appearance. When the pericarp was eliminated 
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heat transfer and water absorption was improved, which caused greater cooking 

of the starch, greater expansion and much better texture. 

In general the cracked sorghum kernels had better texture in terms of 

hardness of the grain, but presented gruel like and viscous texture towards the 

end of cooking that made the grain difficult to handle. Cooking characteristics for 

this grains are similar to those of brown rice and short white rice, in terms of 

sticky texture and color.   

It is recommended to improve texture and chewness of the whole cooked 

kernels modified the processing conditions like increase the moisture up to 30% 

prior to cooking, cook the grain longer than the MCT, or apply a pretreatment to 

pre-gelatinize the starch in some extent to reduce cooking time and get softer 

kernels.  

Rice quality in terms of texture defined the best rice like “hard rice”, that 

usually cooks dry and flaky with a minimum of splitting and the cooked grain 

tends to remain separate. High quality short and medium grain varieties referred 

to as “soft rice” is more moist and firm when cooked than the long-grain varieties 

and the grain tend to stick together (Roberts, 1972). 

 

CONCLUSIONS 

Minimum Cooking Time as determined by the Ranghino test (1966) for 

whole grain was longer than for cracked and decorticated grain for all varieties.   

Cultivar characteristics and specifically endosperm hardness and pericarp 

thickness may affect cooking time and other variables like soluble solids. 

The cultivar with soft endosperm (sumac) had shorter cooking time and 

hydrated faster than the hard endosperm sorghum (white ATX635X436). High 

tannin and black sorghum had similar MCT due to similar endosperm 

characteristics. Rupture of whole kernels due to excessive water uptake at 

temperatures above starch gelatinization caused significant solids losses for soft 

and intermediate texture varieties, most for white harder kernels. 
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The boiled products were different in color and affected by the MCT. 

Whole white grain presented a gruel-like texture and mushy appearance 

characteristic of an overcooked grain. Cracked and decorticated white grain had 

lighter colors and firmer separated intact grains than decorticated or cracked 

sumac, high tannin and black, which gave a brownish-gray colored product with  

a low L-value, increased a and reduced b values due to leaching of pigments 

into the endosperm which affected the appearance of the cooked products. 

Whole grain was significantly tougher (more force required to reach yield 

point) than the rest of the kernels probably due to differences in hydration rates, 

kernel size, endosperm structure and cooking time between samples.  

Cooking and processing quality of long grain white rice can be compared 

to those of decorticated white sorghum kernels, according to grain size, shape, 

uniformity and general appearance (color and translucency). Cracked sorghum 

characteristics can be compared with those of short and medium rice grain in 

terms of sticky texture and appearance (lump and aggregated kernels) of the 

processed products. 

Consumption and processing of cracked sorghum is practical in terms of 

reduced cooking time and softer grain texture but nutritional quality and 

appearance of the boiled product is affected due to high soluble solids (phenols, 

vitamins, minerals etc) and leaching of pigments into the exposed endosperm. 

When decorticated sorghum is used considerable losses of fiber, vitamins and 

minerals are produced when outer layers of the grain are removed. 

Whole sorghum cooking quality characteristics differs significantly from 

those of rice, but the physicochemical criteria could meet the requirements to eat 

sorghum like rice or as a food ingredient. Since different ethnic groups prefer 

various rice textures and colors a wide range of types of different sorghum could 

be used to meet the requirements for processed whole boiled sorghum products. 
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CHAPTER III 

EFFECT OF PRECOOKING ON COOKING QUALITY AND PHYSICAL 

PROPERTIES OF WHOLE SORGHUM 

 
INTRODUCTION 

Utilization of whole sorghum provides the opportunity to increase 

consumption of bioactive compounds, fiber and other health promoting 

components significantly. Whole sorghum depending on variety, kernel size and 

hardness, requires from 30 to 55 min of steaming. A quick cooking sorghum with 

a 5 to 15 min cook time would be useful to increase consumption of sorghum as 

a boiled whole product and at the same time reduces energy consumption. 

Precooking treatments (quick cooking methods) applied prior to cook can 

increase grain hydration and gelatinization rates, reducing cooking time. In most 

cases quick cooking includes a pre-cook process that consist of hydrating the 

grain to a given moisture content (32%-35%), followed by a short period of 

heating (microwave, infrared or dry heat), then cooked or gelatinized to some 

extent in water to produce a quick cooked and consistently uniform high quality 

product in short time (Roberts, 1972; Houston, 1976).  

The quick-cooking grain may vary in texture, bulk volume, appearance, 

taste and quality. The final product could be used in different food applications 

like canned or dry soups, salads), desserts, instant cereals, weaning foods or 

consumed fresh like rice with meat, vegetables and a sauces.  

Some of the precooking treatments described in this chapter consist of 

low technology techniques that would be suitable for use at home or small 

businesses in sorghum consuming countries where existing equipment and 

technologies does not permit the manufacture of acceptable sorghum products.  

During this phase of the study, different hydrothermal treatments were 

applied to raw grain and its effects on physicochemical properties of boiled 

sorghum were measured and compared with that of raw grain (control). 
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LITERATURE REVIEW 

General types of precooking methods 

Since the early 1940’s several precook treatment have been used mainly to 

produce rice, barley and oats products (Roberts, 1972; Ozai-Durrani, 1972). 

More than ten different approaches have been used, plus several combinations 

of these (Houston, 1976). The following are the principal commercial useful 

methods: 

 

1. Water is removing for rice by circulating in hot air (57-82 C0) per 10 to 30 

min to create transverse striations in the rice grains. 

2. Raw grain is tempered to 30% moisture, then pretreated in a blast of hot 

air (about 65ºC to 150ºC) to dextrinize, fissure or expand the grains 

somewhat (Bumping treatment) 

3. Gun-puffing a combination of some preconditioning plus high 

temperature, followed by explosive puffing to atmospheric pressure or 

into a vacuum 

4. Freeze drying of thoroughly cooked grain 

5. Microwave heating. Grain is tempered to a moisture content of 25-30%, 

then heated with either steam or microwave and then cooked    

6. Infrared heating (Roasting/Micronization) 

7. Combinations of two or more above. 

 

Microwave, infrared and dry heating treatments and combinations of these 

techniques were evaluated in this study to reduce cooking time and improve 

cooking quality of whole sorghum. A brief description of the methods and 

commonly used commercial applications are described as follows: 
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Soaking 

Many cereal grain and grain legumes are soaked before further 

processing. Cereal grains must be hydrated to allow gelatinization of starch on 

subsequent heating and cooking of the grains. Grains are hygroscopic and will 

absorb water, both as vapor and as liquid.  During soaking, water enters the 

kernel by molecular absorption, capillary absorption and hydration. Initially the 

rate of water imbibition is high, but it levels off after a few hours. The rate of 

water uptake can be regulated by controlling temperature of the soaking water. 

Soaking gives a volume increase in the grain. The amount of swelling is 

proportional to the moisture content of the grain (Wray & Cenkowski, 2002). 

By formulating a relationship among volume change, moisture content 

and temperature the swelling of grains in water can be estimated. These 

relationships are useful in the design of the equipment for grain processing 

(Young, 1990). Soaking is the bottleneck of many hydrothermal processes. 

Starch gelatinization degree and texture of finished products (eating quality 

characteristics) depend on water content and distribution. 

 

Infrared heating 

Food irradiation is emerging as a major food processing and preservation 

technology. Infrared (IR) heat treatment of moisture-conditioned grains and 

legumes can reduce cooking time by 50% for lentils and 30% for peas.  

Infrared heating occupies part of the electromagnetic spectrum with a 

frequency beyond that of visible light. When infrared waves hit a material, they 

are reflected, transmitted or absorbed. Absorbed waves are transformed into 

heat; temperature of the material increases and the surface seems roasted or 

burned (Ohlsson, 1994a).  

Infrared radiators can be divided into the following main groups: gas 

heated radiators (long waves), electric tube heaters (medium and short waves) 

halogen lamps (ultra-short waves). Long-waves IR heating at wavelengths 
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around 30µ has long been in use for industrial cooking and drying applications 

achieving shorter processing times than by convective heating. Short waves IR 

(1µ) makes it possible to reach working temperatures in seconds and has a 

penetration depth of several millimeters in many foods. (Lewis & Heppel, 2000).  

Infrared heating followed by flaking (Micronizing) has typically been used 

to process grain for feed (Wray & Cenkowski, 2002) and for the production of 

flakes included in breakfast cereal formulations. Other commercial applications 

include drying of low moisture foods such as breadcrumbs, cocoa, flour, grains, 

malt and tea.  

 

Microwave heating 

Microwaves used in the food industry or domestic uses for heating have 

frequencies between 915 and 2450 MHz (Blaszczak, 2002). The principle of 

microwave cooking is different from that of conventional cooking where foods 

are cooked by frictional heat produced by the action of microwaves on water 

molecules causing them to vibrate at high speed (Ohlsson, 1994a).   

When a microwave is applied to a food, dipoles in the water and ionic 

components such as salt, attempt to orient themselves creating heat. The outer 

parts of the food receive the same energy as the inner parts, but the surface 

losses heat faster. The distribution of water, ions and shape of a food has a 

major effect in the amount of heating received (Wray & Cenkowski, 2002).  

The depth of penetration of microwave energy is determined by the 

dielectric constant and the loss factor of the food, but they vary with the moisture 

content, temperature and frequency of electric field.  Uniform temperature 

control during microwave heating is difficult. These difficulties are the major 

limitation for industrial application of microwave heating methods (Ohlsson, 

1984a). The use of microwaves has positive ratings for drying rate, baking and 

cooking, tempering, microbial stability, enzyme inactivation, precooking and 

rehydration capacity of foods.  
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Dry heat  

A hot air blast can be any source of dry heat that can produce internal 

heating of the grain, exciting the water molecule that raises the water vapor 

pressure and causes the grain to expand almost to the point of eversion. 

(Mwangwela, et al. 2005; Wray & Cenkowski, 2002). Hot air poppers or even an 

iron pan with or without sand over an open fire can be used as a hot air blast.   

Dry heat application causes gelatinization of the starch. Grain evenly 

hydrated to about 30 to 35%, requires only about 2 min of steaming at 

atmospheric pressure to gelatinize it (Khairwal et al. 1977). This process has 

been commercially applied to produce popcorn, caramel popcorn, and for drying 

low moisture foods and grains.  

 

Effect of precooking in cereals and legumes 

There is little information on the application of precooking treatments in 

sorghum and its effects on physicochemical properties of the grain These 

methods have been applied successfully in rice, oats, barley, legumes and 

lentils and many forms of quick cooking (pre-cooked) products have been 

developed and marketed in the last twenty years.  

Some of the effects of hydrothermal treatments on physicochemical 

properties and cooking quality of some cereals and legumes are described 

above.  

 

Effects of infrared heating (IR) 

 Long wave IR heating around 30 µm has been used for industrial 

cooking and drying applications, achieving shorter processing times than by 

convective heating or microwaving (Rowley, 2001) Infrared heating pre-

gelatinizes the starch and denaturates proteins. Physically this treatment has 

been shown to increase hydration rate for some legumes. (Abdul-kadir et al. 
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1990). Increased cooking time, a hardening of texture and reduced water 

absorption capacity has also been reported in infrared heated chickpeas and 

cereal grains (Sarantinos & Black, 1996, Mwangwela, et al. 2005) 

Infrared heating has been used successfully to shorten cooking time by 

50% in some legumes and lentils, pre-gelatinizing the starch and denaturating 

protein and disrupting the endosperm structure an increasing hydration rate 

during. However, for in chickpeas infrared increased cooking time by firming the 

texture and reducing water absorption capacity (Mwangwela, 2005). 

Sorghum exposed to infrared treatment changed physical structure and 

chemical properties, causing physical fissuring of the pericarp and reduced the 

bulk density of treated seeds. Heat denaturation and protein coagulation 

occurred before starch gelatinization and this resulted in a physical barrier that 

restricted water uptake and swelling of the starch granules during cooking 

(Zylema, 1985). 

 Some studies of micronization in wheat kernels showed that infrared 

heated grain at radiation doses of 1-10 KGy promoted changes in endosperm 

microstructure as examined by SEM. The cell content was clearly separated 

from the wall and protein matrix and protein bodies were deposited on the 

surface of starch granules, adhering firmly to each other. Gel-liked properties of 

starch granules were promoted and hydration properties increased (Blaszczak, 

2002). 

 The functional properties of infrared heated potato starch had improved 

stability of cooked starch because viscosity was similar to native starch; 

micronization restrains the swelling of the starch (Duodu et al, 2002). 

 Another study showed that infrared heating of peas increased dry matter 

digestibility by 37.6% by increasing the amount of available protein by 6% and 

gelatinizing the starch and therefore requiring 91% less energy to melt the 

available starch during cooking (Wray & Cenkowski, 2002).   The old process of 
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used the infrared to warm up the kernels of sorghum and then the kernels were 

flaked to knock out the steam inside the material.  

 

Effects of microwave heating  

In a few studies reported of microwaved grains, wheat kernels treated 

with microwave heat had marked structural changes, which were enhanced by 

longer treatment time. The microwave heating of wheat grain clearly influenced 

kernel microstructure when the temperature of grain exceeded 64 Co. At 70Co to 

80 Co the disruption of cell integrity included protein denaturation as well as 

deformation of starch granules. Statistically significant changes in wheat grain 

moisture content, grain vitreosity, sedimentation value, dough energy as well as 

bread volume where induced by microwave heating, when grains reached 79 Co 

and 98 Co (Blaszczak, 2002). 

Microwave treatment of grains longer than 90 seconds caused marked 

changes in kernel endosperm structure, like protein denaturation creating visible 

fibrils as well as high swelling and gelatinization of starch granules (Zylema et al, 

1985). More knowledge is needed about the influence of geometry, size and 

shrinkage of the kernels and stress cracking during microwave heating.  

In cereals like rice and oats, the amounts of damaged and resistant starch 

increase with microwave energy absorbed and the temperature of treatment, 

mainly at the moisture of 30% and the temperature of 100Co. Other 

physicochemical properties like gelatinization temperature, maximum viscosity, 

breakdown value; gel value and soluble amylase content were slightly higher in 

the microwave treated grains. Microwaved cereals significantly reduced the 

nutritional quality of cooked samples as well. Fat, thiamine, iron, calcium and 

phosphorus were significantly reduced. (Polycarpe, 2006) 

 An application of microwave energy to produce quick cooking rice is 

presented by Houston, (1972); Raw rice is soaked in water to 30% moisture, 

then heated in a microwave for 1 min. Microwave energy is said to provide 
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advantages by its volume-heating effect, which cooks the rice with minimum 

clumping together of individual grains and a very rapid heating effect, which can 

impart porous structure to the precooked rice grains. 

 

Effects of dry heat  

This method has been applied commonly in white and brown rice. The 

treatment consist to remove 3 or 4 % of water from the rice in its natural state by 

circulating air at 57 to 82 C0 per 10 to 30 min., to create transverse striations in 

the rice grains, thus yielding a quick cooking product (Hoseney, 1998). This 

method is used to produce “minute rice”, the endosperm of the grain becomes 

quite opaque and chalky. Some degree of swelling of starch occurred as well as 

fracturing of the surface and the starch is dextrinize to some extent. This product 

can be prepared for serving in about 15 min. a similar quick cooking white-rice 

product has been produced by the same general process and has had very 

good consumer acceptance. 

Data on the use of dry heat treated-cereal as a quick cooking method and 

its effects on physicochemical properties of sorghum grain are still needed. In 

the few studies conducted, cooking time of sorghum grain applying dry heat was 

positively correlated with grain weight and density, besides swelling capacity 

also showed significantly positive correlation with swelling index and diameter of 

popped grain. (Sankarapandian, 2000). A Similar observation was made by 

Khairwal et al (1977) and Louis & Heppel, (2000). 

 

Quick cooking rice characteristics 

 Even if cooking time of rice is not to long as cooking time for other 

cereals, considerable effort has been directed to develop quick cooking rice 

products with the view toward increasing the consumption of rice and developing 

profitable new products. A quick cooking rice is expected to be serve about 5 to 

15 after being added to boiling water .The variation in cooking time depend on 
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the process used to produce the product and the recipe adapted to the product. 

(Ozai Durrani, 1972) 

 In most cases quick cooking rice is considered to have been precooked to 

some degree. The partially cooked rice is usually dried in such as manner as to 

retain the rice grains in porous and open-structured conditions. The finished 

product should consist of dry individual kernels, free of lumps and aggregates 

and approximately 1.5 to 3 times the bulk volume of raw rice initially used. 

(Khairwal et al. 1977). 

 General types of quick cooking rice process were described initially in this 

chapter, but in general consisted of soak-boiled-steam dry methods, expanded 

dry pregelatinized methods, dry heat treatments, microwave treatments, gun-

puffing, freeze-drying and combinations of this methods. There is still active 

interest in developing new and improved quick cooking rice products with the 

view to increase yields, reducing processing and capital equipment cost, 

shortening of processing times and improving appearance and convenience to 

the consumer. 

Referring to the quality of quick cooking rice the majority of US 

consumers prefer long-grain, light, fluffy, slightly dry individual kernels having 

essentially no gritty or hard uncooked centers. This is commonly referred as 

“Chinese type” cooked ricer and has been the target for most quick cooking rice 

development in the past years. 

 

MATERIALS AND METHODS 

 Whole grain from: ATX 635X436 (food grade sorghum) sumac, high 

tannin and black sorghum varieties were used for this part of the study. 

Characteristics for the raw materials are shown in Table I and II of chapter I.  

The raw whole grain was precooked using different hydrothermal 

treatments. After pretreatment, samples were cooked and cooking 

characteristics were measured including minimum cooking time (MCT), Soluble 
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Solid Losses (SS) and Weight Increase after cooking (WIAC), using the same 

methods described in chapter I. Texture of cooked kernels and changes in 

endosperm structure were determined. 

 

Quick cooking methods description 

Precooking methods described in Table IV were applied to uncooked raw 

whole sorghum kernels from all varieties prior to cooking. All sorghum samples 

were soaked overnight (16 hours) in excess water to increase moisture to 30-

32% before application of precooking methods, with exception of the control.  

 

Texture determination 

A TA.XT plus/TA.HD plus texture analyzer was used to determine the 

texture of pretreated cooked sorghum for the MCT.  The Miniature Kramer 

Shear/Ottawa cell attached to the HDP/90 heavy-duty platform was used. A 5-

bladed head or compression platen was attached to the arm of the texture 

analyzer to measure the compression force necessary to determine hardness 

and firmness of the cooked kernels 

 

Environmental scanning electron microscopy (ESSEM) 

Scanning electron microscopy (ESSEM) was used to observe structure of 

corneous and floury endosperm in precooked sorghum samples. Kernels were 

cut longitudinally in half, mounted on aluminum stubs with silver paste, coasted 

with gold palladium and viewed with a JEOL T330A, scanning electron 

microscope model E3 at an accelerating voltage of 20 KV. Pictures were taken 

at about the same location in each kernel. 
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Statistical analysis 

Statistic methods used in this phase of the study are the same as 

described in chapter I. Fisher least significant difference (LSD) was used for 

mean comparison between samples. The data was analyzed using SPSS. 

 

 
 
Table IV. Description of precooking treatments applied to raw grain before 

boiling 
 
Treatment Description 
Dry Heat Grain is soaked at room temperature, then exposed to circulating 

hot air stream  (80C0) in a corn popper (model Nº 0482107 
National presto Inc, WI) for 45 sec or just prior to eversion 
(popping) 

Microwave Grain is soaked at room temperature, then microwaved on high for 
1 min (120 C0) in a domestic microwave (model 210T Matusi, 
Japan frequency 2480 MHz) 
 

Combination of Microwave  
and Dry Heat 

Grain is soaked, then heated in a microwave for 45 sec and 
exposed to circulating hot air stream in a hot air popping machine 
for another 45 sec 

Infrared heating Grain is soaked, and then exposed to a gas infrared burner for 10 
min time  (150o C) model Nº 36/52 Schwank innovative solutions, 
Georgia, US 
 

Control Cleaned, raw dry grain. 
 

 
 
 
 
RESULTS AND DISCUSSION 
 

Minimum cooking time (MCT) 

The different precooking processes applied reduced the minimum 

cooking time significantly for all varieties. The MCT ranged from 13 to 55 min. 

(Table V; Fig 12). 

Microwave and dry heat treatments combined, produced the shortest 

cooking time with a reduction of 41% for sumac (softer grain) and 31% for white 



                                                                                                                                             39 

sorghum (harder grain). Cooking time reduction for high tannin and black was 

32.5% and 49%, respectively this grain had intermediate endosperm structure. 

This treatment produce a synergistic effect on kernels, which increased grain 

temperature and produced endosperm expansion almost to the point of 

eversion, creating some ruptures in the pericarp that allowed water uptake and 

consequently rapid starch gelatinization. When using this treatment, 30% 

moisture in the grain promoted starch gelatinization after 90 sec of heat 

application. 

For dry heat applied by itself, not in combination, MCT reduction ranged 

from 15% to 48% for all sorghum varieties. This treatment was effective to 

produce internal heating and starch gelatinization to reduce MCT in comparison 

with control. Minute rice is processed using this method. 

When microwave energy was applied, MCT reduction for this treatment 

ranged from 11 to 23% for all varieties evaluated. In previous studies microwave 

energy applied to wheat kernels, longer than 90 sec caused marked changes in 

endosperm structure like protein denaturation and gelatinization of starch 

granules, a decrease in amylase inhibitory activity and an increase in damaged 

and resistant starch (Blaszczak, 2002, Duodu, et al. 2002).   

Infrared heated sorghum show low hydration rate and kernel shrinkage. 

MCT reduction ranged from 5% to 11% and was lower than for other treatments. 

Infrared heating reported to produced drastic changes in kernel microstructure 

and physical properties in some legumes like chickpeas like protein coagulation 

producing a physical barrier which inhibited hydration and did not allow 

gelatinization of the grain, increasing cooking time (Mwangwela, 2005) 

 

Weight increases after cooking (WIAC) 

There was a significant difference in water absorption capacity between 

treatments and between varieties (Table VI). 
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Table V. Changes in minimum cooking time (∆ MCT) for precooked 
sorghum compared the control 

 

MCTa (min) Sumac High Tannin Black White LSDb 

Control 22 40  45 55 8.5 

Microwave 17 32 40 46 11.3 

∆ MCT c 5 8 5 9  

MCT Reduction (%) 23 20 11 17  

Dry Heat 15 35 39 48 7.3 

∆ MCT 7 5 6 7  

MCT Reduction (%) 32 12.5 13.3 12.7  

Dry heat-microwave 13 27 23 38 13.2 

∆ MCT 9 13 22 17  

MCT Reduction (%) 41 32.5 49 31  

Infrared 21 38 42 49 2.6 

∆ MCT 1 2 3 6  

MCT Reduction (%) 4.5 5 7 11  

 
a Minimum Cooking Time. 
b LSD Least Significant Difference (αααα 0.05) 
c Change in Minimum Cooking time using precooking methods. 
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Figure 12. Changes in minimum cooking time using precooking methods 
 
 
 

Water absorption was measured by the increase in weight after cooking 

at the MCT. Higher increase in weight was shown by dry heat and microwave 

combined (Fig 13). This treatment caused ruptures in the pericarp and stress 

cracking of kernels, which allowed higher hydration rates during cooking and 

effectively increased cooked kernel yield by 75.3% to 82.9% for all varieties 

evaluated. WIAC for white and sumac sorghum was not significant for most of 

the treatments. Infrared heated grain had the lowest hydration rates for all 

sorghum varieties, apparently due to protein bodies coagulation and deposition 

on the surface of starch granules, phenomenon that occurred prior to starch 

gelatinization inside the kernel and produced a physical barrier that restricted 

water uptake and starch gelatinization during cooking (Mwangwela, 2005).  
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Table VI.  Changes in weight after cooking (∆WIAC) for precooked 
sorghum compared to the control.  

 

WIACa (%) Sumac High Tannin Black White LSDb 

Control 75.4 65.1 77.1 76.5 5.8 

Microwave 70.4 59.9 70.3 66.5 7.5 

∆ WIAC c (%) 5 5.2 6.8 10  

Increment (%) 93.3 92 91.1 86.9  

Dry Heat 72.3 62.5 76.0 68.0 2.7 

∆ WIAC (%) 3.1 2.6 1.1 8.5  

Increment (%) 95.8 96.1 98.5 89  

Dry heat-microwave 75.3 80.0 82.2 82.9 3.3 

∆ WIAC (%) 10 14.9 45.1 6.4  

Increment (%) 99.8 122 106.6 108.3  

Infrared 16.8 20.0 15.9 7.5 2.6 

∆ WIAC (%) -58,6 -45.1 -61.2 -69.3  

Increment (%) -77.7 -69 -79.3 -90.1  
a Weight Increase after cooking for the MCT 
b LSD Least Significant Difference (αααα 0.05) 
c Change in  ∆ WIAC using precooking methods. 
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Figure 13. Changes in sorghum kernel weight after cooking using precooking 
methods 

 

 

 Kernels show shrinkage and bulk density reduction. The increment 

in weight was negative compared to the control. Kernels show a reduction in 

bulk density and significative shrinkage. Microwaved and dry heated grain, when 

applied separately, not combined show good hydration rates as well. 

Microwaved sorghum yielded from 66.5 to 70.4% of increase in weight after 

cooking and dry heated increase in weight ranged from 62.5 to 76%. Good yield 

of cooked kernels after cooking is desirable characteristic for food processors 

and consumers. 

  

Soluble solid losses (SSL) 

 Soluble solid losses show significant differences for all varieties and 

treatments applied. SSL were higher for varieties with harder endosperm that 
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takes longer to cook like white, high tannin and black sorghum. MCT could 

influence SSL amount due endosperm disintegration and splitting of the grain 

during cooking above starch gelatinization temperatures especially for harder 

grains. Solid Losses during cooking may be influenced by different physical 

parameters of the grain like MCT, hardness, hydration rate and others (Table 

VII, Fig 14). 

 

  

Table VII.  Changes in soluble solid loses (∆SSL) for precooked sorghum 
compared to the control 

 

SSLa (%) Sumac High Tannin Black White LSDb 

Control 1.7 1.5 1.8 2.9 0.80 

Microwave 0.6 0.7 0.9 0.8 0.31 

∆ SSL c (%) 1.1 0.8 0.9 2.1  

Reduction (%) 35.2 46.6 50 27.5  

Dry Heat 0.5 0.8 0.6 0.9 0.25 

∆ SSL (%) 1.2 0.7 1.2 2.0  

Reduction (%) 29.4 47.0 33.3 31.0  

Dry heat-microwave 1.3 1.4 1.5 1.7 0.10 

∆ SSL (%) 0.4 0.1 0.3 1.2  

Reduction (%) 23.5 6.6 16.6 41.3  

Infrared 0.3 0.6 0.4 1.2 0.3 

∆ SSL (%) 1.4 0.9 1.4 1.7  

Reduction (%) 82.3 60.0 77.7 58.6  
a Soluble Solid Lost for the MCT 
b LSD Least Significant Difference (αααα 0.05) 
c Change in  ∆ SSL using precooking methods. 
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Figure 14.  Changes in sorghum soluble solid losses (SSL) in cooking 
broth using precooking methods 

 

 

 SSL for precooked grain where higher for dry heat and microwaved 

treatment combined, but amount was lower than for control. SSL with this 

treatment ranged from 1.3 to 1.7% and reduction in SSL ranged from 6.6 to 

41.3%. This reduction was significative for all varieties. Reduction in SSL is good 

because may improve the nutritional quality of the grain by retaining soluble 

vitamins and minerals. 

 Microwaved and dry heat treatment reduced the amount of SSL in 

cooking broth for all varieties. The reduction in soluble solid losses ranged from 

27.5 to 50% using these treatments. Infrared heated grain had the lowest SSL in 
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cooking broth. SSL with this treatment ranged from 0.3 to 1.2%. Infrared heating 

inhibited water hydration during cooking, thus SSL were lower for all varieties.  

 

Color and appearance of precooked grain 

The color of the whole precooked kernels was almost similar to the 

control (Fig. 15). White sorghum kernels presented a uniform light appearance 

and brighter color with slight yellowish hue. Sumac high Tannin presented 

brighter reddish-brown hue, with low b values. Black sorghum presented a 

brighter black-brownie hue, with low b value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Color and appearance of precooked non-boiled sorghum kernels. 
White (A) high tannin (B), sumac (C) and black (D) sorghum 
kernels. 
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Most of the treatments (infrared, microwave, dry heat and combination of 

the last two) had those color characteristics with exception of the infrared heated 

kernels, which pericarp surface was roasted with an off color, presenting kernel 

shrinkage and a drastic reduce in bulk volume. 

Microwaved grains presented shrinkage as well, but no so drastically as 

with Infrared heated grain and had no changes in pericarp color. The rest of the 

precooked kernels had an increase in size related to the control than can be 

observed marked in the dry heat and microwave treatment combined. 

In general, precooked kernels after boiling in water had darker color 

compared to the control probably due to non-enzymatic browning and 

caramelization of sugars during cooking. (Fig. 16 and 17). White kernels had a 

mushy gruel-like texture after cooking which affected appearance of the product. 

In grain that took longer to cook this problem was marked, characteristics of 

harder endosperm grains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Color and appearance of precooked boiled sorghum kernels  
using combination of dry heat and microwave. A. Raw grain  
(left) and (B) cooked grain. 
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Precooked sumac, high tannin and black had darker pericarp color also, 

apparently due to some leaching of pigments into the endosperm through the 

split pericarp, formed during cooking. This happened in grain that had a 

pigmented testa. Most of the treatments had separate, firm and intact kernels 

with exception of the control, which had longer MCT and produced overcooked 

kernels with a mushy appearance. 

The differences in size in and color of cooked kernels may be influenced by 

variables like minimum cooking time, endosperm hardness, hydration rates and 

other factors inherent to the treatment applied like temperature, residence time, 

doses of radiation and the way that heat was transferred into the kernel (Duodu 

et al.2002). 
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Figure 17.  Color of control and precooked grain using combination of dry heat 

and microwave 
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Texture of precooked boiled kernels 

  Infrared heated grain for all varieties increased resistance to deformation 

used to crush a layer of cooked kernels (8 kg) compared to the rest of the 

treatments (Fig. 18). Significant differences in force required to crush the kernels 

were found. Infrared grain produced grain significantly tougher (more force 

required to reach yield point) than control grain. When this treatment was used 

water uptake was restricted with inhibited gelatinization of the starch producing  

Kernels with harder texture  

 

 

 
 

0
50

100
150
200
250
300
350
400
450
500

Fo
rc

e 
(N

ew
to

n)

Control Microwave Dry Heat Dry heat and
Microwave

Infrared 

Sumac High tannin Black White

 

Figure 18. Force in Newton required to deform precooked boiled sorghum 

kernels  
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Precooked grain using a combination of dry heat and microwave 

produced the softer grain for all sorghum varieties. The toughness of the grain 

was almost similar for white, sumac and high Tannin sorghum using this 

treatment. 

 Dry heat and microwaved applied separately produced grain with similar 

toughness, but had harder texture compared to the control. 

The softness of the grain in this case could be related to MCT and SSL 

during cooking. Also precooking treatments that caused major physical changes 

like endosperm splitting or stress cracking during heating and cooking produced 

softer kernels as observed with combination of dry heat and microwaved 

treatment. 

Other parameters causing marked differences in softness among 

treatments are: the extent of starch gelatinization, endosperm structure, 

moisture content of grain and transfer of heat within the grain during the 

pretreatment application that caused some retrogradation and annealing of the 

starch in areas of the starch granules where moisture is limited or evaporated for 

example in the peripherical endosperm of microwaved or infrared heated grain.  

In this study precooking methods were not modified for sorghum and 

were applied using the same conditions (temperature, residence time, moisture 

content) as described for rice. To improve texture and chewness of precooked 

boiled sorghum; is important to conduct further research to investigate the 

adequate precooking conditions in terms of moisture content, temperature and 

residence time, depending on cultivar characteristics, to get a better product.  

 

Changes in structure of precooked kernels 

Dry heat and microwave combined, produced the best treatment for quick 

cooking sorghum, so changes in kernel structure produced using this treatment 

were examined for all varieties. 
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Changes in structure were observed. The internal structure of white 

precooked sorghum kernels had many starch granules from the floury and 

corneous endosperm that retained their individual shape and did not form a 

continuous network (Fig.19 A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Photomicrograph of cross-sections of precooked sorghum kernels; 
P. pericarp; PE. peripherical endosperm; CE. corneous 
endosperm; FE. Floury endosperm; G. Germ. A. white kernel;      
B. high tannin kernel; C. black sorghum kernel and D. sumac 
kernel 
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However some areas of the corneous endosperm had partially and 

completely gelatinized starch granules. The internal moisture evaporates without 

leaving air tunnels, which explains the tightly packed hard endosperm of white 

sorghum. The moisture inside the kernel was probably not chemically available 

to the crystalline areas in the starch granules for gelatinization to take place 

during the limited heating tie (90 sec). Besides, a large amount of non-

gelatinized starch was observed in the peripheral endosperm.  

High tannin and black sorghum had intermediate hardness, so the starch 

granules in corneous areas are partially gelatinized, showing more completely 

gelatinized starch in floury endosperm area than white kernels. (Fig.19 B and C). 

No air tunnels were formed when moisture evaporated from the interior of the 

kernel. In the peripherical endosperm partially gelatinized starch granules were 

observed.  

The internal structure of the precooked sumac (Fig.19 D) had more 

gelatinized starch in both corneous and floury endosperm, the internal moisture 

upon evaporation formed large air tunnels that disrupted all the structure at the 

center of the kernel. The disrupted starch-protein matrix made it easier for water 

absorption in pretreated sumac kernels during cooking. 

Precooked boiled white kernels had more completely gelatinized starch 

granules in the corneous endosperm (Fig. 20), with a small proportion of non-

gelatinized starch that retained their individual granule shape, which is typical of 

a hard endosperm grain. High Tannin and black presented similar characteristics 

but high tannin grain retained a large portion of unchanged granules in corneous 

endosperm and protein bodies appeared normal and embedded in a thick 

protein matrix. A higher degree of starch gelatinization was observed in black 

corneous endosperm because this grain is softer than high tannin sorghum, but 

both grains are classified as grain of intermediate endosperm hardness. 
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Figure 20. Photomicrograph of cross-sections of corneous endosperm in 
precooked boiled sorghum kernels showing the degree of starch 
gelatinization 

 

 

 

The sumac kernels had completely gelatinized starch. Starch was 

completely melted and embedded in a continuous network, characteristic of an 

overcooked grain. Air tunnels and bubbles formed during the evaporation of the 

internal moisture during heat application are observed. Soft endosperm grain 

types like sumac tended to swell and melt more extensively than hard or 

intermediate endosperm types (Mwangwela. 2005).  

All varieties, responded significantly different to this combined treatment, 

although treatment conditions were held exactly the same for all grains. This 

treatment was the most effective for sumac because of its soft, floury endosperm 

structure and reduced kernel size. Processing conditions like temperature 
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moisture and residence time could be modified and controlled to obtain better 

results when these treatments are applied depending on the cultivars 

characteristics.  

 

CONCLUSIONS 

 Application of precooked treatments (specifically the combination of 

dry heat and microwave) to sorghum kernels before cooking was effective to 

produce a quick-cooked sorghum. This treatment produced a sorghum cooked 

in less time than control and cooking parameters were less affected than for 

control (less SSL and higher weight after cooking).  

 This is a practical method that can be suitable at home for household 

preparation or for utilization in small food business and results can be compared 

with the one obtained for boiled or steamed quick cooking rice, when long grain 

is used (rice whit high amylose content and a medium-high gelatinizing 

temperature). Rice consumers prefer grain rice that cooks dry and fluffy, with 

kernels that retain their conformation and remain separate after cooking. Thus, 

this treatment yielded a soft product with firm kernels, nice color and 

appearance. 

  MCT reduction with this treatment ranged from 41% for sumac (softer 

grain) and 30.9% for white sorghum (harder grain). Cooking time reduction for 

high Tannin and black was 32.5% and 49%, respectively. A higher increase in 

weight was shown by this treatment as well; cooked kernel yield was in the 

range of 75.3% to 82.9%. Wich is a good characteristic for food processors and 

consumers,  

 Precooking conditions didn’t affected significant the appearance of the 

kernels. Most of the precooked grain showed an increase in size and volume, 

some pericarp splitting and similar color to the original raw grain.  Infrared 

heated grain had a pericarp surface that looked roasted of burned showing a 

decreasing in size and kernel shrinkage for all varieties. 

F 
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 Appearance of cooked kernel was acceptable, but harder grains with 

longer MCT like white kernels; presented gruel like and mushy texture.  Cooking 

parameters of grains with pigmented testa (sumac, high tannin and black) 

resemble those of brown rice, in terms of color and appearance. 

 Texture for infrared heated grain was significantly tougher (more force 

required to reach yield point) than for the rest of the treatments. Softer grains 

were produced by a combination of dry heat and microwave, 

 When endosperm structure was examined, results shown that dry 

heat and microwave when combined; was effective harder endosperm varieties, 

softer endosperm like sumac had overcooked characteristics. 

 The response to treatment conditions like time-temperature profiles 

etc produce significant changes in the structure of this grain. Changes in 

physical and structural characteristics of pretreated whole sorghum may respond 

to inherent properties of each sorghum variety like size, hardness, endosperm 

type etc.  
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CHAPTER IV 

NUTRITIONAL QUALITY OF WHOLE BOILED SORGHUM 

INTRODUCTION 

Sorghum has been dietary staples for centuries in parts of India, Africa, 

China and Central America. Today, these crops are significant contributors to 

the protein and energy requirements of millions of people. Various processing 

methods used to produce sorghum foods, affect the nutritional value of sorghum. 

Most African foods are processed from decorticated sorghum, grits or cracked 

kernels, which significantly reduces the amount of fiber, minerals, proteins, and 

lysine (Serna-Saldivar & Rooney, 1995). The development of new or 

modification of the existing processing methods to cook whole sorghum without 

affecting nutritional quality is important to improve the diets of many people. 

In this chapter the evaluation of nutritional quality of whole boiled grain in 

comparison with precooked boiled sorghum was evaluated. No systematic 

research on the changes brought about by the use of precooking treatments and 

cooking of whole sorghum like rice has been reported. The objectives of this 

chapter were to determine changes in levels of constituents of the grain as well 

as antioxidant activity of whole boiled sorghum.  

 

LITERATURE REVIEW 

Whole sorghum composition and nutritional value 

Sorghum grain composition is significantly affected by genetic and 

environmental factors. Whole sorghum grain generally contains: starch (75-79%) 

as the major component, followed by protein (9.0-14.0%) and oil (1.5-5.0%). 

Approximately 80%, 16% and 3% of the protein is in the endosperm, germ and  

pericarp respectively. Prolamins constitute the major protein fraction in sorghum 

followed by glutelins. These fractions are mainly located within the protein 
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bodies and protein matrix of the starchy endosperm. (Rooney & Serna Saldivar, 

1990). 

 Sorghum generally contains 1% less oil and significantly more waxes 

than maize. Lipids in sorghum are located in the scutellum and consist mainly of 

non-polar or neutral lipids (93.2%) that are composed by tryglicerides (85%) and 

diglycerides. The germ and aleurone are rich in fat-soluble and B-vitamins. 

Fiber consists of endogenous components of plant materials that are 

resistant to digestion by enzymes in the monogastric stomach and upper 

gastrointestinal tract of animals. The major individual components are cellulose; 

hemicellulose, lignin, pectin and gums located in the pericarp and endosperm 

cell walls. Most of the fiber in sorghum is present in the pericarp and cell walls. 

Sorghum contains 6.5-7.9% insoluble fiber, hemicelluloses and cellulose and 

1.1-1.2% of soluble fiber (Waniska and Rooney, 2000). Sorghum is an important 

source of minerals located in the pericarp, aleurone layer, and germ. Whole 

sorghum is considered an adequate source of magnesium, iron, zinc, and 

copper that are reduced by germination and decortication. (Appendix, A) 

Phosphorous is the mineral found in greatest amounts but availability 

depends on the amount bound by phytates (Rooney & Waniska, 1992). In 

addition to these components, whole sorghum contains other health promoting 

components such as phytochemicals, which include phenolic compounds that 

have antioxidant properties and can protect against degenerative diseases 

(Towo & Ndossi, 2003). 

The definition of a phenolic compound is any compound containing a 

benzene ring with one or more hydroxyl groups like phenolic acids, flavonoids 

and condensed tannins (proanthocyanidins) etc. (Awika, et al. 2000).   
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Sorghum phenolic antioxidants  

Sorghum, as other cereal grains, fruits and vegetables have 

phytochemical compounds, which have been evaluated for antioxidant 

properties (Dlamini, 2007) and anticancer activities. 

 Phenols are valuable antioxidants that contribute to the natural body 

defense system in scavenging free radicals, chelating metals and repairing 

lipids, proteins and DNA. Phenolic compounds also provide flavor and color 

characteristics to fruit juices, wines and other foods. 

  The phenolic acids identified in sorghum include gallic, protocatechuic, 

vanillic, ferulic, caffeic, cinnamic, p-coumaric, and p-hydroxybenzoic acids. In 

cereal grains, the phenolic acids exist as free acids, soluble and insoluble esters 

and are concentrated in the outer layers of the kernel (pericarp, testa and 

aleurone). 

Flavonoids consist of three major groups: flavones, flavonols and flavans, 

but the major group of flavanoids in sorghum are the flavans. The major flavans 

in sorghum are the anthocyanidins (flavan-3en-3ols), which are the major 

pigments of flowers, stalks and leaves. The other group present is catechins 

(flavan 3-ols) and the third group is leucoanthocyanidins (flavan 3-4-diols). 

Tannins are effectively classified as water-soluble phenolic compounds 

with high molecular. Chemically there are two classes of tannins: hydrolysable 

tannins and condensed tannins. The tannins found in sorghum are the 

condensed tannins of flavolans; they are also referred to as proanthocyanidins 

because when treated with mineral acids, anthocyanidins are released (Abdul 

Kadir, 1990).  

Sorghums with more than 1% based on grain weight condensed tannins 

are regarded as high Tannin sorghums (Type III). More recently any sorghum 

with a pigmented testa is classed as tannin sorghum.  Significant variation 

occurs in tannin content among sorghums with a pigmented testa.  
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Phenolic antioxidant act by donating a proton to a free radical, this 

stabilizes it, while the antioxidant free radical that is generated is stabilized by 

resonance due to the presence of the benzene ring. The free radicals in food 

systems are usually derived from fatty acid auto-oxidation, which results in chain 

reaction leading to production of more free radicals. The ability of polyphenols to 

chelate iron and copper further supports their role as preventative antioxidants in 

terms of inhibiting transition metal catalyzed free radical formation (Awika, et al. 

2000).   

The total phenol content of sorghums is significantly correlated with 

antioxidant activity (Awika, et al. 2003; Dykes et al. 2005). Sorghums with a 

pigmented testa have increased antioxidant activity due because of tannins. 

Sorghums containing condensed tannins have consistently shown the highest 

antioxidant activity in vitro. The quantities exceed the antioxidant levels of most if 

not all fruits and vegetables.  

Antioxidant activity increased when sorghum had purple/red secondary 

plant color, a black or dark-red thick pericarp and a pigmented testa and a 

spreader gene (Dykes et al. 2005). Kernels that contain condensed tannins 

usually but not always have a thick highly pigmented testa; these sorghums are 

potent sources of antioxidants (Taylor, et al. 1997).  

Tannin sorghums like high tannin, black or “sumac” are special sorghum 

varieties with the highest levels of phenols and antioxidant activity. Awika, 

(2003) reported that tannin and black sorghum bran contained higher antioxidant 

activity showing 2400 and 1008 µmol Trolox equiv/g, respectively.  

Sumac grain had the highest antioxidant activity value of 360 µmol Trolox 

equiv/g (ABTS) in contrast with white sorghum (non pigmented) contained the 

lowest amount 14 µmol Trolox equiv./g (ABTS). 
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Determination of antioxidant activity 

Antioxidant activity can be evaluated with different mechanisms. The 

most commonly used are ABTS (2,2’-azinobis-(3-ethylbenzothiazoline-6-

sulphonic acid) and DPPH (α,α diphenil-β-picrylhydrazyl radical) The ABTS 

radical is used in the Trolox equivalent antioxidant capacity assay (TEAC), 

where the ability of antioxidants to scavenge the radical cation (ABTS) is 

measured relative to Trolox (6-hydroxy-2, 5,7,8 tetramethylchorman-2-carboxylic 

acid) a water soluble analogue of vitamin E or ascorbic acid. When Trolox is 

used the antioxidant activity capacity is expressed as Trolox equivalent 

antioxidant capacity (TEAC). (Awika, 2003).  

 

Dietary fiber and sorghum bran 

 Sorghum is an excellent source of insoluble dietary fiber. That is 

composed of compounds that cannot be broken down by digestive enzymes in 

the small intestine, but can be fermented by bacteria in the large intestine. Thus 

insoluble fiber increases fecal bulk and decreases fecal transit time through the 

large intestine. Soluble fiber includes pectins, gums and beta-glucans, which 

affect absorption and related activities in the small intestine. Soluble fibers slow 

nutrient absorption and are fermented by gut microflora, which produce short 

chain fatty acids, that may lower serum and LDL cholesterol, glycemic response 

and insulin levels (Rooney & Murty, 1987). 

 Cereal bran is a rich and common source of dietary fiber as well as 

various vitamins and minerals. Bran from cereals like rice, oats, sorghum and 

barley are highly effective sources of dietary fiber in animal and human studies.  

 

Effect of processing sorghum on antioxidant activity and nutritional value 

of sorghum foods 

Processing of grains may lead to variable effects on the extractable 

phenolic compounds, dietary fiber, vitamins and minerals (Albertson & 
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Tobelman, 1995). Tannins bind to proteins, carbohydrates and minerals and 

thus they may reduce digestibility of these nutrients.  To reduce the negative 

effects, of high Tannin, decortication, germination, fermentation or chemical 

treatments are used. Information on the effect of processing on the antioxidants 

of sorghum-based foods is generally scanty, but work done by Awika, (2003) 

has shown that most processes decrease retention of assayable 

proanthocyanidins in food products. Processing tannin or black sorghum into 

food products affects phenol levels. For example various thermal processes like 

roasting (200 C0 for 5 min), microwave heating (For 1 min) and blanching (100 

C0 for 2 min) caused 14, 93 and 98% reduction of assayable high tannins in 

foods. 

Bread and cookies fortified with sorghum bran, retained 57 and 72% 

respectively of the original bran antioxidant activity. Awika et al. (2003) also 

reported that extrusion of tannin sorghum caused an 85% decrease in polymeric 

tannins while the lower molecular weight tannins increased by 29 to 478%. 

Phenol levels of maize tortillas containing black or brown sorghum bran 

decreased by 33-38% and 47-50% respectively (Cedillo-Sebastian, 2005) 

Frying into tortilla chips reduced phenol levels by 52-55% for black 

sorghum and 60-66% for tannin sorghum bran respectively compared to the 

original tortillas. Awika et al. (2003) reported that extrusion decreased the 

degree of polymerization (DP) in proanthocyanidins, in comparison with raw 

grain. Dlamini (2007) reported that tannin type III sorghum extrudates retained 

only 21% of their original assayable tannin content and 89% of their original 

antioxidant activity. Total phenolic compounds measured in sorghum porridges 

decreased by 38 to 65% after cooking. 

Reduction of detectable tannins in thermal processing can be attributed to 

structural breakdowns and chemical rearrangement. Thermal food processes in 

general cause polyphenols to form insoluble complexes with protein, vitamins 
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and minerals. This in turn decreases nutrient bioavailability and high tannin 

extractability.   

Nutritional losses with thermal processing, alkaline cooking and boiling in 

water, are generally not great for grain products, although they can be significant 

with fruits and vegetables.  Cooking sorghum (boiling) in water, depending on its 

length, reduces the tannin concentration in sorghum and enhances dietary fiber 

and the development of resistant starch, which leads to increased dietary fiber 

and enlargement of the fecal volume in animals and humans (Duodu & Taylor, 

2002). 

Four dietary factors: Resistant starch (RS), Dietary fiber (DF), protein 

content (kafirin fraction) and polyphenols explain the variation in nutritive values 

of raw uncooked and cooked boiled sorghum products. The RS and nitrogenous 

substances formed in response to boiling, serve as energy and N substrates for 

gut microflora resulting in a slight reduction of protein digestibility. Food 

processing by application of 100 C0, results in protein denaturation and 

aggregation reactions.  

During boiling, antioxidants and other soluble vitamins and minerals are 

partially extracted in the boiling water; if this water is discarded these 

antioxidants and soluble solids are lost. Iron (FE) and Zinc (Zn) solubility 

decreased for the cooked grains (Polycarpe kayoed, 2006)  

Matuscheck et al, (2001) reported a significant decrease in soluble solids 

and soluble vitamins and minerals like Iron and Zinc, after cooking of sorghum 

grain in water and related this to the chelating effect of phytate and phenolic 

compounds.  

 

Whole boiled sorghum as a nutraceutical food 

Nutraceuticals or functional foods have components that collectively 

impart a physiological benefit that enhances overall health including disease 

treatment and/or prevention (Gordon et al. 2000).  
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Functional foods are not strictly defined but include dietary supplements, 

medical foods, enriched or fortified foods, processed cereals, beverage products 

and isolated nutrients and phytochemical components.  

Specialty sorghums have already been used to produce products with 

desirable qualities and show promise as functional food components (Appendix 

B). Rooney et al. (1992) reported that sorghum and pearl millet bran were 

excellent bulking agents compared to wheat. They also reported that tannin 

sorghums are slowly digested. Diets rich in tannin sorghums contribute to a 

longer period of fullness and satiety. 

Sorghum also has anticarcinogenic properties. A study by Re et al. (1999) 

shows that black and high tannin sorghum bran reduced colon carcinogenesis in 

rats. In their study rats fed diets containing black or tannin sorghum bran had 

fewer aberrant crypts than those fed diets containing cellulose or white sorghum 

bran. The reduction could be due to antioxidant activity of the black and tannin 

sorghum bran.  

Sorghum bran is also a good source of dietary fiber, which aids in 

gastrointestinal health through bulking fecal matter, decreasing constipation and 

reducing the absorption of carcinogenic metabolites. Dietary fiber also aids in 

lowering plasma and liver cholesterol levels and maybe a significant factor in 

treating coronary heart disease (Re et al. 1999). 

The antioxidant potential of tannin sorghums is important due to the 

potential benefits of these compounds to human health. Oxidative compounds in 

the human body, when out of balance cause cellular destruction leading to 

degenerative diseases like arthritis, Parkinson’s, cancer and cardiovascular 

diseases. Antioxidants react with these compounds to impede or prevent 

oxidative chain reactions (Awika, et al. 2003). 
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Rice nutritional quality 

The composition of milled rice varies depending upon the variety, its 

agronomic conditions during growth and excellent milling. The outer layer 

removed during milling determines the nutrient composition of rice (Sotelo et al. 

1990). Rice has about 7% high quality protein and only traces of fat. Varietal 

differences in protein content have been established. Milled rice has been 

reported to contain less total lipids (1.09%) in comparison with brown rice 

(2.65%) or bran (20.24%). Predominant fatty acids identified in rice were 

palmitic, linoleic and oleic acid. Milled rice is almost 90% composed of starch on 

a dry basis, which in turn is composed of amylose and amylopectin (Hoseney, et 

al. 1998). 

 The cooking and eating quality of rice is influenced by its amylose content 

(Houston, 1992). The mineral content of rice also varies depending upon the 

growing conditions and degree of polishing .The grain is a rich source of B 

complex vitamins, which are present in the outer layers of the grain. Abrasive 

milling greatly reduces the vitamin content (Subramanian, et al. 1991). 

 There are many primary processed rice products, most of the produce is 

consumed in the form of cooked grains and their physicochemical and cooking 

quality varies considerably. The cooking quality also depends on the method of 

cooking used. In previous studies have been reported that cooking of rice 

influences its nutritional quality. The nutrional value of raw and cooked rice 

varieties changed significantly. (Wells & Davis, 1994). 

The fat content of rice cooked using microwave and pressure-cooking 

brought about a significant decrease (20-60%), but between cooking methods 

there was not significant difference in fat content. In the same study thiamine, 

iron, calcium and phosphorus content of cooked samples were determined. All 

this elements shown significant decreases in the cooked samples. Thiamine 

decreases by 29-63% (pressure cooked) and 38-69 (microwave cooked); iron 

decrease by 33 to 50% on cooking (Polycarpe Kayoed, 2006).   
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The total dietary fiber of boiled white milled rice increase after cooking 

from 2.24 to 3.03 g/100g. Also the in vitro protein digestibility was slightly higher 

from 80 to 90.8%. The starch digestibility of cooked samples was significantly 

higher than raw rice samples (Houston, 1992).  

 

MATERIALS AND METHODS 

In this phase of the study two sorghum varieties were selected for further 

analysis of nutritional value and antioxidant activity. The varieties selected were 

food grade white sorghum ATX635x436 and sumac. The white sorghum variety 

was based on the preference of people for consumption, and acceptance. These 

sorghum varieties are well adapted, produce consistent crops and are often 

preferred for food production in Africa, Asia and Central American countries. 

Sumac is an especial unique sorghum variety with excellent physical, 

properties (small grain and softer endosperm), good cooking quality, plus 

possible health benefits due to high tannin content. The characteristics of the 

raw materials are shown in Table I and II of chapter I. 

Precooked white and Sumac, using combination of dry heat and 

microwave and control (grain non-precooked just boiled) were evaluated for 

proximate composition and antioxidant activity (ABTS). The results were 

compared with proximate analysis and antioxidant activity of raw sorghum of 

both varieties.  

 

Proximate analysis of samples 

Samples of precooked and cooked white and sumac sorghum were 

freeze dried using liquid nitrogen to remove all the moisture and then ground into 

flour using a UDY cyclone sample mill (model 3010030, U.D. Corp., Boulder, 

Colorado) equipped with a 1.0 mm screen. The flour was stored in plastic bags 

at –4ºC until analyzed for protein, ash, minerals and dietary fiber. The samples 
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were analyzed for proximate analysis using   standard AAAC, (2006) approved 

methods.  

  

Antioxidant activity of samples 

The Antioxidant activity of cooked whole non-pretreated and pretreated 

(with a combination of dry heat and microwave) white and sumac samples were 

evaluated using the (ABTS) method modified by Awika, et al. (2003). For the 

ABTS assay the phenols were extracted for two hours using acidified methanol. 

The ABTS radical was generated overnight (12 hours) by reacting in the dark, 

equal volumes of 8 mM ABTS solution in distilled/deionized water with 3mM of 

potassium persulfate. The working solutions were prepared by diluting ABTS 

free radical mixture with a pH 7.4 phosphate buffer containing 150 mM NaCl, to 

an absorbance of 1.5 wavelength of 734 nm (Re, et al. 1999; Awika et al. 2003).  

 

RESULTS AND DISCUSSION 

Changes In chemical composition and antioxidant activity of precooked 

sorghum  

Processing and the application of precooking methods on whole grain 

sorghum affected levels of the major chemical components of sorghum grain 

and antioxidant activity. A comparison of chemical composition and antioxidant 

activity of precooked sorghum and control (non-precooked just boiled) is shown 

in Table XIII). 

 

Protein content 

An increase in protein content was observed for cooked non-pretreated 

sorghum grain for both varieties. This could be attributed to a relative enrichment 

of the kernel in nitrogen due to the loss of water-soluble solids low in nitrogen 

during boiling as was observed in parboiled sorghum (Young, 1990). Thermal 

processing of protein results in varying levels of structural changes, which 
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depend on the severity of heat treatment and other conditions. According to 

Subramanian et al. (1981) protein in cereals containing significant amounts of 

carbohydrates can be susceptible to heat processing because interaction 

between functional groups within protein chains or between protein chains and 

other grain constituents like high tannins are known to form cross linkages.  

Cooking reduces digestibility of sorghum kafirin through disulfide-

mediated polymerization principally among protein found at the periphery of the 

protein bodies. The quality of protein as determined by its amino acid content 

may be affected by the severity of heat processing (time and temperature) which 

affected the digestibility of processed grains (Rum-Kreuter & Demmmel, 1990).  

 
 

Table VIII. Effect of precooking on chemical composition and antioxidant 
activity of whole precooked sorghum 

 
Cultivar Protein 

(%) 
(N X 6.25) 

 

Fat 
(%) 

Ash 
(%) 

Crude 
Fiber 
(%) 

Dietary 
Fiber 
(%) 

ABTSa 

(Trolox/g) 

White       
Raw1 9.98 2.62 1.33 1.52 9.07 14.0 
Control2 10.96 2.86 1.45 1.86 11.25 8.50 
Precooked3 10.37 2.47 1.19 1.49 13.68 9.70 
       
Sumac       
Raw1 10.24 2.84 1.40 1.59 12.87 360.0 
Control2 10,81 3.18 1.54 1.65 10.93 81.62 
Precooked3 10.11 2.63 1.37 1.43 14.00 173.10 

1 whole raw sample  
2 whole boiled grain 
3 whole precooked (using combination of dry heat and microwave) and boiled in water 
a Antioxidant activity of sorghum samples expressed as Trolox equivalent of antioxidant capacity 
(TEAC). 
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Protein content of precooked samples decreases in comparison with 

cooked non-pretreated samples, but were significantly higher than protein in 

raw. 

 
Crude fat 
 

Cooking significantly increases fat content in non-precooked grain for 

both varieties and lower values were observed for precooked grain in 

comparison with raw whole sorghum values. The influence of boiling on the 

quality of lipids in some grains was reported to increase due to hydrolysis of 

tryacilglycerols into free fatty acids and accelerated the formation of 

hydroperoxides and secondary oxidation products (Ohlsson, 1994a). In general 

the peroxide values of lipids heated where water is the heat transfer medium are 

nearly twice those produced by other ways of heating. 

Crude fat in sorghum is composed of essentially free, non-polar lipids 

(Waniska & Rooney, 2000) and about 0.2 to 0.5% of wax from the cutin layer 

covering the pericarp. For precooked samples the physical damage of the wax 

containing cutin layer to the cooking broth under conditions of high temperature 

and constant stirring could account almost entirely for the reduced crude fat 

content. In microwaved and pressure-cooked white and brown rice fat estimated 

as total fat or crude ether extract range from 0.5 to 0.6 g/100 g in raw rice. 

Cooking by both methods decreased the fat content. The authors attributed this 

to a different degree of polish of the rice varieties and the washing process, 

wherein the lipids on the surface of rice grains were washed off during cooking. 

Most of the lipids are concentrated in the outer layer on the grain (Re et al.1999) 

 

Ash content 

 Ash content reported was higher in cooked non-pretreated grain for both 

varieties. It has been reported that the mineral composition and content of the 

sorghum grain largely depends on the availability of soil nutrients. Some 



                                                                                                                                             69 

minerals are stable during heat processing, but cooking should bring about a 

significant decrease in ash content. The losses of mineral compounds during 

cooking occurs due to a combined effect of soaking and cooking since the 

samples were soaked prior to cook, losses of soluble minerals like iron, calcium, 

zinc and phosphorus may occurred (Polycarpe kayoed, 2006), as was observed 

in cooked pretreated grain.  

The ash content in precooked samples, decreased from the original raw 

grain content in both varieties.  The pericarp, aleurone layer and germ are rich 

sources of ash (Duodu, et al, 2002). Much of the mineral content is located in 

the pericarp therefore ash content was reduced significantly by physical damage 

of the pericarp (ruptures) that caused leaching of the soluble minerals into the 

cooking broth, reducing its content due to MCT and SSL that was longer than for 

pretreated grain. Similar results were observed in the total ash content of 

microwaved and pressure cooked white and brown rice, where cooking brought 

about a significant decrease in ash content (11-38%), including losses of iron, 

calcium, and phosphorous due to age and variety of samples, climatic conditions 

and the extent of milling plus the effect of washing, soaking and cooking. 

(Houston et al. 1972).  

Phytin the storage form of phosphorus in seeds is the most recognized 

and documented antinutritional factor that chelates divalent minerals such as Fe 

and Zn, forming insoluble complex with this minerals and reducing their 

bioavailability. Other inhibitors of the absorption of divalent minerals are phenolic 

compounds, which affect activity and biological availability of metal ions by 

chelating the metal. Phytate and phenolic compounds maybe partly responsible 

for the widespread mineral deficiencies observed in populations that subsist 

largely on sorghum and other cereals (Zheng, et al. 1998; Polycarpe kayoed, 

2006). 

Soaking and cooking reduces the phytate content and high Tannin 

concentration, in sorghum. Soaking overnight at room temperature caused 15-
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35% and 42-58% reduction of these compounds respectively (Osman, 2004) 

improving mineral availability in the cooked products. 

 

Crude fiber and dietary fiber 

Crude fiber content of non-pretreated grain was significantly high. The 

fiber in sorghum is mainly insoluble fiber (82.6%). Sorghum contains 6.5 to 7.9% 

of insoluble and only 1.1 to 1.23% of soluble fiber including B-glucans, which 

comprise most of the soluble part. Thermal processing of cereals is known to 

cause redistribution of insoluble and soluble dietary fiber. In addition small 

amounts of resistant starch have been detected in the insoluble dietary fiber 

fraction, which increases with increasing heat treatment (Osman, 2004) These 

two factors may be responsible for the increased dietary fiber content recorded 

on pretreated sorghum samples.  

In high tannin sorghum like sumac, cooking may increase the amount of 

dietary fiber due to the formation of polyphenols-protein complexes. Among 

major cereals, high Tannin sorghums are thought to contain the most protein 

associated with the dietary fiber fraction (Waniska & Rooney, 2000).  

In a study of dietary profiles of milled Basmati, white, brown and Jeere 

rice, total dietary fiber (TDF), insoluble (IDF) and soluble dietary fiber (SDF) 

fractions, ranged from 2.08 to 2.82; 1.97 to 2.74 and 0.53 to 0.80g/100g, 

respectively. Cooking resulted in a non-significant increase in dietary fiber of rice 

varieties; the increase was higher for microwave-cooked samples than pressure-

cooked samples. The increases in dietary fiber for pressure cooked samples 

were: TDF, 5-24%; IDF, 4-5% and SDF, 6-42%; while in microwaved cooked 

samples the increases were: TDF, 7-35%, IDF, 9-29% and SDF, 6-42%. 

 

Antioxidant activity  
 

As was expected, Antioxidant activity of processed sorghum decreased 

(Table VIII). The antioxidant activity of non-precooked sorghum was drastically 
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reduced. Retention in cooked non-pretreated was 22.7% for sumac and 60.7% 

for white grain.  

Precooked samples retained more antioxidant activity related to the 

original content of raw grain (Table IX). Retention for pretreated sumac was 

67.88% and 74.74% for white. As was explained before, Awika, (2003) and 

Dlamini, (2007) reported that most processes decrease assayable 

proanthocyanidins retention in final products. In general, processing high tannin 

or black sorghum into food products affects its phenol levels. Longer MCT and 

higher SSL in non-pretreated samples, plus structural breakdowns and chemical 

rearrangement of proanthocyanidins polymers that are forming insoluble 

complexes with protein vitamins and minerals, during cooking, may influence 

these results. 

 
 
 

Table IX. Retention of ABTS antioxidant activity (�mol TE/g) in sorghum 
after cooking. TE= Trolox Equivalents 

 
Treatment Before After boiling Retention (%) 

Sumac    

Control 360.0* 81.6 ± 3.01** 22.7 

Precooked + boiled 255 ± 0.3** 173.1 ± 1.32** 67.8 

White    

Control 14.0* 8.5 ± 0.49** 60.7 

Precooked + boiled 9.75 ± 0.6** 7.25 ± 0.66** 74.7 

*Values corresponding to unprocessed sorghum. Adapted of Guajardo et al. (2006) 
** Measured values of sorghum samples  

 

 
 

During boiling, most of the phenolic compounds are partially extracted in 

the boiling water; reducing the antioxidant activity of the boiled product. If this 
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water is discarded, as is usually done, all soluble solids compounds are lost in 

the cooking broth; reducing significantly the nutritional value of the cooked 

sorghum. In this study sorghum was cooked in excess water as is done in many 

parts of the world, so, studies about cooking quality parameters of sorghum 

grain cooked in limited water should be investigated and can solve the problem 

of nutritional deficiency of boiled cereal grains.  

In this study a preliminary trial cooking whole sorghum in limited water 

was performed, but the method was not practical in terms of time, energy 

consumption and handling problems of the cooking product. By the time that 

water was absorbed completely, a sticky gruel like sorghum paste was formed at 

the bottom of the cooking pot, apparently formed by lipids hydrolization present 

in the germ and pericarp, which caused handling problems. The real cooking 

time of sorghum could not be evaluated appropriately. Adding more water to 

initiate the boiling process again was significantly time and energy consuming. 

The sorghum looked overcooked at the end of the process. The exact water 

amount needed to reach minimum cooking time couldn’t be measured 

adequately. 

 

CONCLUSIONS 

  Precooking treatment (In this case combination of dry heat and 

microwave) applied to raw grain before cooking produced a nutritive sorghum 

grain cooked in less time; with increased dietary fiber and high antioxidant 

potential for consumption like rice or as a component in other food products 

such as salads, desserts, etc. 

 Chemical composition of precooked samples changed after cooking in 

comparison with raw and control grain. Fat, protein and ash content were slightly 

reduced. Dietary fiber and antioxidant activity were relatively high. This samples 

retained more antioxidant activity related to the control. These changes may be 
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attributed to differences in heat processing (time and temperature profiles) and 

soluble solid losses produced during cooking. 

 The nutritional quality of pretreated samples could be compared with the 

results analyzed for milled white long grain, brown rice and basmati rice when 

microwaved or pressure cooked (Houston, 1972). The changes in the nutritional 

profile with the application of those thermal treatments behave the same as for 

sorghum. Cooking in excess water influenced the nutritional quality of sorghum 

due to high soluble solids lost in cooking broth. Cooking sorghum in limited 

water could solve the problem of nutritional deficiencies in boiled cereals if a 

practical method to do it is developed. 

In this study a preliminary trial shows that this method is not practical in 

terms of time, energy consumption and handling problems of the cooking 

product. The real cooking time and the exact amount of water need to reach 

minimum cooking time of sorghum could not be evaluated appropriately. Adding 

more water to initiate the boiling process again was significantly time and energy 

consuming.  
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CHAPTER V 

SUMMARY 

COOKING QUALITY OF WHOLE, CRACKED AND DECORTICATED 

SORGHUM 

Minimum cooking time (MCT) for whole sorghum ranged form 22 to 55 

min and soluble solid losses (SSL) ranged from ranged from 1.0 to 1.5%. 

Cultivar characteristics like endosperm hardness, kernel size and pericarp 

thickness may affect cooking quality parameters. Cracked and decorticated 

grain had shorter MCT. This ranged from 8.8 to 17.5 min and from 11 to 25.3 

min, respectively.  

The cultivar with soft endosperm (sumac) had shorter cooking time when 

utilized whole, cracked or dehulled and hydrated faster than sorghums with hard 

or intermediate endosperm hardness (white ATX635X436, black and high 

tannin).  

Processing of cracked sorghum was practical in terms of short cooking 

time and production of grain with softer texture, but higher soluble solids (ranged 

from 1.3 to 2.9%) and leaching of pigments into the exposed endosperm and 

cooking broth occurred. Utilization of decorticated kernels reduced cooking time 

also, but nutritional value is affected with the removal of the pericarp, plus the 

SSL (ranged from 0.5 to 0.7%) produced during cooking. 

The long grain rice types have comparatively lower values in terms of 

MCT (22 min) compared to whole sorghum and SSL are similar to values 

obtained for cracked grain (1.7 to 2.2%). kernels show a minimum of splitting. 

Short and medium rice grain shows relatively longer cooking time (30 to 35 min) 

but no longer than cracked or decorticated sorghum and higher SSL (28% to 

40%) during processing. The kernels show extensive disintegration.  

Cooking in excess water influenced the nutritional quality of whole 

sorghum due to high soluble solids lost in cooking broth (ranged from to1.0 to 

1.5% for all varieties evaluated). Cooking sorghum in limited water could solve 
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the problem of nutritional deficiencies in boiled cereals if a practical method to 

do it is developed. In this study preliminary trials show that this method is not 

practical in terms of time, energy consumption and handling problems of the 

cooking product. The real cooking time of sorghum could not be evaluated 

appropriately. Adding more water to initiate the boiling process again was 

significantly time and energy consuming. The sorghum looked overcooked at the 

end of the process. The exact water amount needed to reach minimum cooking 

time couldn’t be measured adequately. 

 

PROCESSING CHARACTERISTICS OF WHOLE COOKED SORGHUM 

Precooking was evaluated in whole grain of white, sumac, high tannin 

and black sorghum kernels. When sorghum was precooked the cooking quality 

characteristics were improved.  

The most effective treatment was application of dry heat and microwave energy 

combined. This treatment reduced MCT and SSL for whole sorghum from 31 to 

49%; and 6.6 to 41.3%, respectively for all varieties compared to the control. 

Higher yields of cooked grain can be obtained using this process (weight 

increase was increased from 75.3 to 82.9% in comparison with the control not 

precooked), which is a good advantage for food processors and consumers. 

Rice kernels when boiled presented a higher water uptake capacity (110% to 

150%), compared to whole sorghum. Water uptake values at were higher (300 

to 400 ml per 100 g) for short and medium grain varieties of the preferred types. 

Precooked sorghum had slightly altered cooking and sensory properties 

in terms of color, texture and appearance of the final products. The formation of 

a gruel-like paste during cooking normally associated with white whole grain and 

longer cooking time, affected the appearance. The black and high tannin 

sorghum varieties evaluated yielded firm, separated kernels with darker color 

after cooking and the pericarp had some splitting that allowed water uptake 

easily. Evaluation of the pretreatment by a consumer panel is needed to rate 
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sensory properties as acceptable or not, since sensory characteristics were 

evaluated just by the researcher. 

Chemical composition changed after precooking. Protein, ash and fat 

were slightly reduced compared to the control, however precooking produced a 

nutritive sorghum with increased dietary fiber and high antioxidant potential. 

Almost half of the antioxidant activity was retained (67.8%) in comparison with 

control (22.7%) for the high Tannin varieties. 

The application of precooking processes could make a significant 

contribution to reduction of cooking time in areas where sorghum is available 

and for US and European markets where “the need” for whole grain functional or 

nutraceutical foods is increasing. The black and high Tannin sorghums could 

produce specialty foods with unique flavor and texture and high antioxidant 

activity with all the benefits of whole grains.   

 

APPLYING THE TECHNOLOGY OF PRECOOKING FOR PRODUCT 

DEVELOPMENT 

 The processing benefits of precooking were emphasized by cultivars with 

hard endosperm or intermediate hardness, because grain with soft endosperm 

was overcooked. However the precooking conditions must be adjusted for 

sorghum varieties with softer endosperm structure to improve the cooking 

properties. After pretreatment the softer grain, sumac, even if cooking time was 

the shortest, gave higher SSL during cooking (1.1%) which implies lower 

retention of nutritional components in the final product. This illustrates the impact 

that this technology could have on nutritional quality of grains to provide 

nutritious foods to people whose staple diet consists of mainly cereal products 

typically low in nutritive components. 

Application of this technology to different raw materials other than rice or 

legumes is encouraged. Also precooked grain seems to have application other 

than preparation of rice-like products, for example like an ingredient for granola 
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bars, desserts or side dishes like exotic mixed salads with other grains. The 

inclusion of whole boiled sorghum as an ingredient in some foods has been 

investigated and preliminary results were favorable (Appendix B) 

 

FURTHER WORK 

The cooking quality of sorghum and the effectiveness of precooking is a 

function of moisture content and time-temperature profile. By varying these 

parameters, e.g. increasing moisture content by soaking longer or decreasing 

residence time and heating, a completely different product could be obtained. 

Thus, these parameters should be investigated to limit energy requirements and 

yield a product with acceptable cooking and sensory properties, depending on 

the cultivar physicochemical characteristics. Besides, a trained panel should 

evaluate their impact on sensory properties.  

In this study sorghum was cooked in excess water as is used in many 

parts of the world, but soluble solid losses leached from grain into the cooking 

broth. If this cooking water is discarded soluble vitamins minerals and phenolic 

compounds are lost. So, cooking quality parameters of sorghum grain cooked in 

limited water should be investigated. 

A more precise and complete analysis of the nutritional quality of boiled 

whole sorghum is required with special attention to the retention of B-vitamins 

and minerals after cooking. A chemical Analysis of the composition of cooking 

broth of whole and cracked grain is required to determine the amount of phenolic 

compounds and other soluble material that are extracted during boiling The 

compounds in cooking broth could be used in the elaboration of other products 

or as an ingredient. Tea, food colorants etc. could be developed from this 

source. 
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APPENDIX A 
 

NUTRITIONAL QUALITY OF WHOLE SORGHUM  
 
 
TABLE A-1. Nutrient composition of sorghum, millets and other cereals (per 

100 g edible portion; 12 % moisture) 
 

Food� Protein 
(g)�

Fat 
(g)� Ash (g)�

Crude 
fibre 
(g)�

Ca 
(mg)�

Fe 
(mg)�

Thiamin 
(mg)�

Riboflavin 
(mg)�

Rice 
(brown)� 7.9� 2.7� 1.3� 1.0� 33� 1.8� 0.41� 0.04�

Wheat� 11.6� 2.0� 1.6� 2.0� 30� 3.5� 0.41� 0.10�

Maize� 9.2� 4.6� 1.2� 2.8� 26� 2.7� 0.38� 0.20�

Sorghum� 10.4� 3.1� 1.6� 2.0� 25� 5.4� 0.38� 0.15�

Pearl 
millet� 11.8� 4.8� 2.2� 2.3� 42� 11.0� 0.38� 0.21�

Finger 
millet� 7.7� 1.5� 2.6� 3.6� 350� 3.9� 0.42� 0.19�

Adapted from FAO/IAEA (2007) 
 
 
 
Table A-2. Nutrient content of whole sorghum and its fractions (dry basis). 
 
Kernel 
fraction�

%  
kernel 
weight�

Protein 

(%)�
Ash 
(%)�

Oil 
(%)�

Starch 
(%)�

Niacin 
(mg/100g)�

Riboflavin 
(mg/100 

g)�

Pyridoxine 
(mg/100g)�

Whole 
kernel�

100� 12.3� 1.67� 3.6� 73.8� 4.5� 0.13� 0.47�

Endosperm� 82.3� 12.3� 0.37� 0.6� 82.5� 4.4� 0.09� 0.40�

Germ� 9.8� 18.9� 10.4� 28.1� 13.4� 8.1� 0.39� 0.72�

Bran� 7 9� 6.7� 2.0� 4.9� 34.6� 4.4� 0.40� 0.44�
Adapted from FAO/IAEA (2007) 
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Table A-3. Chemical composition of whole and decorticated sorghum dishes* 
from Haiti and Africa 

 

Source: FAO/IAEA (2007) 
 
* All data are expressed on a dry - matter basis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Variety and preparation� Protein 
(N×6.25)�

Ash  
(% w/w)�

Fat  
(%w/w)�

Crude 
fibre  

(% w/w)�

Sugar  
(% w/w)�

Pitimi  
(whole grain boiled)�

14.9� 1.78� 5.1� 2.1� 72.5�

Pitimi decorticated  
(80% extraction)�

10.1� 0.87� 2.7� 0.8� 74.3�

Dabar, ugali, whole grain� 11.3� 1.56� 4.1� 2.2� 69.9�

Dabar, ugali, decorticated  
(79% extraction)�

12.6� 1.23� 4.2� 1.1� 74.8�



    85 

APPENDIX B 
 

EXAMPLE OF A NUTRACEUTICAL PRODUCT DEVELOPED WITH  

WHOLE BOILED SORGHUM 

 

(Report presented in AACC, 2006 Product Development Competition 

San Francisco, CA. Authors: N. Alviola, A. Cardenas, V. Calderon,                      

D. Guajardo. Cereal Quality Lab,Texas A&M University. 

(“Essential Grain” won second place in competiton) 

 

Product description 

“Essential Grain” is a ready to eat whole grain meal that is totally natural 

and a healthier alternative. It is made with whole brown glutinous rice, specialty 

cracked sorghum (Sumac) and barley, cooked in reduced fat milk and flavored 

with delicious condensed milk and natural spices like vanilla and cinnamon, 

without any preservative or artificial colorants. The different whole grain sources 

provide the product with a substantial amount of dietary fiber, antioxidants and 

B-glucans, besides other vitamins and minerals inherent in whole cereal grains 

that improve health (Table B-1). To add nutritional value and taste, the product is 

presented in six different flavors: vanilla (plain), raisins, blueberries, cranberries, 

mocha and chocolate and is conveniently packaged in a six-pack serving for 

customer “on-the-go” convenience. 

A serving of “Essential Grain” (250 grams) contains 5 grams of dietary 

fiber, which represent 16.5 % of the Daily Value. Each serving has also an 

outstanding antioxidant activity with an ABTS value of 750 µmol TE and a 

substantial amount of    B-glucans of 1.7 grams. Consumers are increasingly 

interested in whole grain foods with elevated levels of the above-mentioned 

components, because of their beneficial effects on health. (Trogh et al, 2005). 

Consumer acceptability was performed on the product. Twenty untrained 

young adults panelists performed an informal sensory evaluation on each of the 
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flavored and plain samples of “Essential grain”. The attributes of appearance, 

texture and flavor were acceptable to the panel. 

 

Table B-1. Essential Grain Ingredients and Functionality 

Ingredient Main Functionality 

Rice, sorghum and barley 

Reduced fat milk 

Condensed milk 

Cinnamon, vanilla, mocha, 

chocolate 

Blueberries, cranberries 

Raisins 

Corn Starch 

Structure, color, source of antioxidants and 

dietary fiber 

Texture and source of calcium, Vitamin E 

Flavor, texture and color 

Flavor and color 

Source of antioxidants and natural flavor 

Source of minerals and potassium 

Thickener  

 

Rationale 

The United States Department of Agriculture (USDA) 2005. Dietary 

Guidelines for Americans (DHHS and USDA, 2005) recommends that the 

average sedentary American adult should consume at least 6 ounce-equivalent 

servings of grain products per day, including at least 3 servings of whole grains 

as a foundational element of all meals including snacks, breakfast and desserts.  

Numerous studies show that whole grain foods in diet would reduce the risk of 

many diseases because they contain not only dietary fiber but also other 

potentially beneficial components like phytochemicals including antioxidants and 

lignans (phytosterols).  

“Essential Grain” is a nutraceutical and functional option for health-

conscious consumers, because it is rich in antioxidants, B-glucans and dietary 

fiber that promote digestive health. Likewise, it may decrease the risk of cancer 

and heart disease and reduce LDL cholesterol. Nowadays, Americans are more 

conscious about the need to increase their grain consumption by 20-25% 



    87 

(USDA, 2006). The Whole Grain Council (2006) established that whole grain 

foods including snacks and dessert would reach sales of $7.5 billions in 2009. 

 

Target market 

“Essential Grain” is primarily targeted to young adults (25+) who are 

looking for convenient, delectable and healthier alternatives for meals, snacks or 

deserts and who prefer natural wholesome foods .It can be enjoyed anytime as 

a breakfast meal, as a dessert or even as a snack! It is delicious hot or cold. For 

hot consumption, just open the lid and heat in a microwave on high for 1 to 1 1/2 

minutes. If you prefer it cold, simple grab one from the fridge and enjoy it! 

 

 
Essential Grain. 

               “The healthy alternative in any occasion”. 
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