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ABSTRACT 
 
 
 

Active, Polymer-Based Composite Material 

 Implementing Simple Shear. 

(December 2008) 

Sang Jin Lee, B.S.; M.S., Ajou University; 

M.S., The Pennsylvania State University 

Chair of Advisory Committee: Dr. Terry S. Creasy 

 

A novel active material for controllable, high work density applications was 

designed, fabricated, analyzed, and tested. This active material uses a lens-shaped 

element to implement simple shear motion with gas pressure actuation. The lens element 

is a bladder-filled Kevlar fabric embedded in a polyurethane matrix. 

The polyurethane’s hyperelastic material parameters were found by experiment 

and estimated by numerical analysis. The Ogden material constant set found shows good 

agreement within the shear actuator’s working range. 

A fabricated, single-element shear actuator reached 34.2% free shear strain when 

pressurized to 1.03 MPa. A unitary shear actuator was modeled as were single-acting 

and dual-acting shear actuator arrays so that solitary and multi-cell behaviors were 

estimated. Actuator work performance and power from nonlinear finite element analysis 

found conventional work density is 0.2289 MJ/m3 and 0.2482 MJ/m3, for the single-

acting and double-acting shear actuator, respectively. Scientific work densities are 
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0.0758 MJ/m3 and 0.0375 MJ/m3, for single-acting and double-acting shear actuators, 

respectively. Calculation shows the volumetric power for a single-acting shear actuator 

is 0.4578 MW/m3 and 0.4964 MW/m3 for the double-acting shear actuator. 

Finally, a nastic actuator is applied to twist a generic structural beam. The nastic-

material actuated structure has an advantage over conventional actuator systems. Work 

per unit volume for nastic materials is 2280~8471% higher than conventional, discrete 

actuators that use electric motors. When compared by work per unit mass, this nastic 

actuator is 2592~13900% better than conventional actuator because nastic actuator is 

made from lighter materials and it distributes the actuation throughout the structure, 

which eliminates connecting components. 

The nastic actuator’s volumetric power is 2217~8602% higher than conventional 

actuators. Finally, the nastic actuator is 2656~14269% higher than conventional 

actuators for power per unit mass. 
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CHAPTER I 

 

INTRODUCTION  

  

1.1        Motivation and Significance of the Research 

 

Conventional mechanical actuation needs many mechanical links and joints, for 

example, in variable-sweep aircraft wings and in flight control surfaces. In addition, there 

has been a continuous search for lighter materials and efficient structures in the transport 

industry—especially in aerospace because flying vehicles must meet weight constraints [1]. 

Adaptive/shape-changing materials might enable a structure to change its functional shape 

or its material/structural properties; therefore, shape-changing materials might replace 

complex mechanical links and actuators with integral, that is, embedded and bonded, 

acutators. These materials might reduce overall weight and energy used for actuation 

because no—or fewer—links would be necessary to move loads from the actuator to the 

structure. 

Recently, Sater and Main suggested a new mechanical motion concept: nastic 

materials [2]. These active materials will mimic a plant’s ability to generate large strains 

while still performing a structural function. Unlike conventional mechanical actuators, 
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nastic material distributes actuators throughout the structure. This material might enable 

fast, continuous, and large shape changes. 

Current shape changing structures have few degrees-of-freedom. Variable sweep 

wings, variable pitch propellers, flaps, and rudders have a single degree of freedom. For 

these structures hinges and bearings carry structural and actuation loads. Hinges and 

bearings constrain the degrees of freedom. True morphing wings might need three or four 

degrees of freedom and the wings might requires smooth, continuous shape changes [2]. 

A shape-changing material inspired by plant motion has many degrees of 

freedom—perhaps with a low weight penalty for the additional capability—and must 

maintain structural integrity throughout its motion range. This is the motivation for creating 

this material and it drives this research. The first step in applying nastic materials is to 

define the issues critical to their design and use. 

.  

1.2        Definition of the Critical Issues 

 

Tzou et al. [3] states that functional, shape changing materials can be employed 

only when research addresses these critical issues: 

1. Design, modeling, simulating, optimizing 

2. Controlling, precisely actuating, signal-processing, transducer systems 

3. Manufacturing, controlling quality, producing the material 

4. Structures, structural dynamics, monitoring 
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5. Materials, composites, integration, material systems 

6. Reliability, failure analysis 

7. Applied mathematics, numerical tools 

8. Computers, microprocessor, CAD/CAM 

9. Electrofluids, optics, multifield coupling 

Integrating these issues is essential to producing a novel active material with large 

strains and high work density that carries structural loads. This material should have 

distributed shape-changing capability throughout to enable highly adaptable, conformable 

structures. This thesis covers three aspects from Tzou’s critical issue list. These aspects are  

• Design, modeling: Element design is based on an elementary analysis.  

                                 Nastic actuator performance is estimated from numerical  

                                 models. 

• Materials: High stiffness fibers and elastomer matrix. 

                   A hyperelastic material, which has non-linear large deformation  

                    behavior, is characterized.  

• Structures: Twisting beam structure. 

                    System level performance for a twisting beam is estimated and  

                     discussed. 
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1.3        Research Goal and Objectives 

 

The research goal was to develop a novel active material with functions inspired by 

plant nastic motion. The material had to obtain high work performance with its deformation 

dominated by simple shear with relatively small—or zero—volumetric expansion while 

carrying structural loads. To achieve this goal, this research had these objectives: 

• To measure the hyperelastic material parameters for a polyurethane matrix  

• To design the lens-shaped element to achieve best shear deformations 

• To built a single direction shear actuator and measure its free strain behavior 

• To develop a numerical model for single and multi-cell shear actuators and predict 

their work performance 

• To build a nastic-actuated, split beam model in FEA compare it to a conventional 

actuator 
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CHAPTER II 

 

LITERATURE REVIEW 

 

 
2.1        Smart Materials and Systems 

              

Smart materials—sometimes called active materials—can change their shape or 

properties by a pre-set program or by responding to an external stimulus. Commercial smart 

materials include piezoelectrics, shape memory alloys, electrostrictive materials, and 

magnetostrictive materials. This section reviews the history, characteristics, advantages, 

and drawbacks these materials have. 

 

2.1.1      Smart/Active materials 

 
This section presents four active materials: 

 

MAGNETOSTRICTIVE MATERIALS 

Magnetostrictive materials change their length in response to a magnetic field. The 

magnetic force causes strains by aligning magnetic domains. This phenomena was first 

discovered in 1842 by James Prescott Joule, and it is called the Joule effect after him [1, 3]. 

While most materials have a weak magentostictive effect, commercial alloy Terfenol-D can 
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have larger strains at moderate magnetic strength than a piezoelectric material has under 

great electric charge [4, 5].  

According to Banks et al. [6], a magnetostrictive material has these drawbacks: 

• The governing equation for magnetic field strength and generated strain is 

  inherently nonlinear. 

•  The material has hysteresis. 

•  Magnetostrictive materials are heavy and large. 

 

PIEZOELECTRIC MATERIALS 

Piezoelectric materials were also found in the 19th century. The Curie brothers are 

credited first observed this material in 1880 [1, 7]. Piezoelectricity means “pressure 

electricity”. Piezoelectric materials produce electricity upon pressure loading; therefore, 

they make good sensors. Also, piezoelectrics deform under an applied electric field; 

therefore, they make good actuators. Their stress/strain and electric field/voltage response 

is coupled.  

Piezoelectricity is a first-order effect at low electric field, and at this field level 

strain is proportional to the electric field. The displacement direction depends on whether 

the electric field is positive or negative. But, under a high electric field, electromechanical 

hysteresis occurs and this hysteresis causes servodisplacement control problems in 

precision actuation at large-stroke [3, 8]. 
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Many applications employ piezoelectric materials. For example, ultrasonic 

transducers, accelerometers, gramophones, resonators, filters, and ink-jet printers use 

piezoelectrics to work. 

 

SHAPE MEMORY ALLOYS 

Mechanically deformed shape memory alloys (SMA) return to their original shape 

at an actuation temperature. This is called the shape-memory effect. SMA material has a 

thermo-mechanical energy transformation [1, 5-7].  Chang and Read found this behavior in 

a gold cadmium (AuCd) sample in 1932 [3]. Later, in 1938, that behavior was found in 

brass. By 1962, Buehler, Gilfrich and Wiley observed shape-memory effect in nickel-

titanium alloy. They called it Nitinol (NiTi). NiTi is the dominant commercial SMA in the 

market. 

The shape-memory effect comes from the NiTi alloy’s shift between austenite and 

martensite structures. The SMA microstructure is martensite at low temperature. At higher 

temperature, SMA exhibits the austenite structure, which is more rigid than martensite. An 

actuator exhibits free strains to 8% [5]. Thus, it will generate large forces when constrained.  

SMA has these drawbacks:  

• Response is slow, there are large thermal time constants, 

• Temperature range is limited, the temperature must support the phase change 

region 

• Energy input is large, heat is lost to the system  
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The constitutive equations for SMA structures are found in Lagoudas, Boyd, 

Aboudi.[9-11]. For recent structural applications, Elzey et al. studied a sandwich panel that 

has SMA facesheets and stainless steel core [12] in 2002. It showed shape-reversing 

sandwich panel with a one-way shape-memory effect. In 2003, Dano et al. [13] developed a 

theory for SMA wires applied to unsymmetric laminates. The SMA wires changed the 

equilibrium configuration—the laminate will snap-through from one position to another. 

They claimed the laminate’s overall shape change can be predicted from the SMA wire 

temperature. 

 

ELECTROSTRICTIVE MATERIALS 

Another active material is electrostrictive. Electrostrictive material is like 

magnetostrictive material except that an applied electric field generates mechanical 

deformations. Electrostrictive materials can perform as sensors and actuators. 

Dielectric materials have these drawbacks: 

• Their strain-field relations and field-dependent parameters are nonlinear 

• The elements are temperature dependent. 

 

2.1.2      Shape changing structures 

 
Dean and James presented the seminal adaptive/shape changing structure 

technology in 1974 [14]. They developed an adaptive structure that corrects errors in a 

mirrored surface using forces produced by piezoelectric actuators. 



 

 

9

Lucato et al. [15] constructed a shape morphing structure by using a Kagome lattice 

structure [16]. Kagome is a Japanese word representing a basket weave pattern. The 

structure has a stainless steel active face and core, with a polycarbonate passive core, and 

electric motor actuators. Two shape changes—hinging and twisting—are possible for this 

structure. The authors claim this structure can sustain large passive load with light weight.  

Research about morphing aircraft wings is active [17-20]. The idea is—unlike 

variable sweep wings—to change the whole wing’s shape and area, so that an aerospace 

vehicle could be a multi-purpose platform. For example, one structure might be a fighter, a 

heavy carrier, and a reconnaissance aircraft. 

Most researchers employ shape memory alloys for wing morphing because wing 

shape change requires high actuation forces and shape memory alloys are the best 

candidates to meet this requirement so far. 

After 2003, Cadogan et al. [21-26] studied a morphing inflatable wing for a small 

Unmanned Aerial Vehicle (UAV). Their wing morphing is for roll control. The wing’s aft 

end causes section camber changes. The authors employed nastic structure concepts as a 

candidate for actuation along with other means, for example, piezoelectrics, pneumatics, 

shape memory alloys, electric motors, and hydraulics [21, 22]. Section 2.3 presents the 

Cadogan work in more detail. 

In 2007 and 2008, NewScientistTech magazine [27, 28] reported that researchers 

from the Netherlands are making a small unmanned aircraft that mimics bird’s wing 

changes. Lentink and his colleagues took the idea from swifts [29, 30]. They call their small 

UAV “RoboSwift” [28]. It has four individual wing regions hinged and connected to each 
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other. These regions move independently, and they respond quickly by small electric motor 

actuation. They claim this might enable quick flight control in a cheaper morphing aircraft 

than the morphing wing program by DARPA [20]. 

 
 
2.1.3      Synthetic multifunctional materials 

 
Synthetic multifunctional material (SMFM) is a structural material that contains at 

least one additional function besides load-bearing [31, 32]. DARPA initiated this research 

in 1998. The research project included powerfoil, which is as the airfoil and also as the 

power sources, for small unmanned air vehicle, carbon nanotube fibers, multifunctional 

electro-elastomers, tensegrity structures, and machine-augmented composites (MAC). 

Matic [33] has categorized multifunctional materials into 3 classes: 

• Added subsystems 

• Co-located components 

• Integrated materials 

 For multifunctional material design, he suggests starting from unifunctional design. 

Combinated unifunctional characteristics could be employed for multifunctional design. 

In 2002 Hawkins proposed machine-augmented composites (MAC) [34]. In his 

concept, mechanical and physical properties are tailored by embedding simple machines 

into a matrix. Hawkins showed a composite material with mechanical properties augmented 

by embedded microscale simple machines. The Z-machine concept in Figure 1 is a passive 

shear-extension coupling element. 
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Figure 1. This schematic diagram shows a simple stress/strain conversion machine (after ref. [31]).  
This concept applied to the Z-machine. 

 
 
Working within the MAC concept, Kim [35, 36] and McCutcheon [37-39] used the 

hourglass machine in Figure 2 to augment an elastomer matrix and the material showed 

good stiffness with excellent damping. Kim also suggested the active MAC for specific 

requirements. A bio-inspired active composite material might enhance performance by 

adding actuation to structural load carrying. Nastic materials that mimic the plant motion 

have been recently studied. However, we must first discuss actuators. 

 

 

 

 

Shear Input 
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Figure 2. Hourglass (HG) machine for Finite Element Modeling 
 
 
 
 
 
 
 
 
 

2.2        Actuating Materials 
 

Actuators fall two categories[40]. The first category is natural actuators like human 

muscle. The second category is man-made actuators: pneumatic, piezoelectric, and shape 

memory alloy actuators. 



 

 

13

 
 
 
 

 
Figure 3. Actuator performances chart (after ref. [40]).  

There are several measures of actuator performances. The actuation stress – actuation strain 
relationship appears here. This chart also presents work density because work density—the work per 
unit volume—can be found from the product actuation stress × actuation strain. Chapters V and VI 

present shear actuator performance. 
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Actuator performance characteristics are stress, strain (Figure 3), force, 

displacement, density, modulus, power, efficiency, and strain resolution. Understanding 

these characteristics is important when designing mechanical systems. With conventional 

actuator materials in mind, we can introduce nastic material. 

 

2.3        Introduction to Nastic Material 

 

Nastic movements are plant movements triggered by external stimulus. The 

direction is not determined by the stimulus; the plant’s structure determines the direction 

[41]. Plant movement is classified by elastic and recoverable changes, i.e., tissue motion 

and permanent changes, i.e., growth. Nastic movement occurs elastically and is classified 

by stimulus and movement (for example, see Figure 4). Sometimes plants present large 

strains in milliseconds. 

• Nyctinastic movements are slow, up and down movements that leaves make in a 

day/night cycle 

• Seismonastic movements are sudden movements that respond to mechanical 

stimulation. 
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Figure 4. This classification scheme shows nastic movements in plants with continuous lines [42]. 
 
 

An early milestone in modern plant motion research is credited to C. Darwin [43] in 

1880. Based on his investigation during a scientific journey to the Galapagos islands, he 

classified the plant movements into the form that we us now. Bose studied plant motion 

mechanisms in the 1920s [44-46]. He defined plant motion characteristics including 
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structural shape changes by antagonistic volume changes, motile response by pressure 

variations in plant cells, and the pressure state controlled by transport through the cell wall. 

In 1962, Selsam described and illustrated plant motion classes [47]. Recently, 

Forterre et al. [48] investigated fast trap-closure performed by “snap-buckling instability” 

in the Venus flytrap and found that the macroscopic closure mechanism is determined 

solely by the leaf ‘s bistable geometry.  

In 2004, DARPA research initiatives about nastic materials are advancing a new 

active material class that is highly controllable and reversible material system that can 

generate 10 MPa in blocked stress and and 20% free strain [49]. 

A series of morphing wing studies by Cadogan et al. [21, 22, 24] considered nastic 

materials for high actuation forces in a lightweight material with continuous shape changes 

for the unmanned aerial vehicle described previously. Figure 5 shows the nastic cells are 

parallel tubes that can hold pressure. In the left picture within Figure 5, the tubes change 

their cross section from a collapsed flat sheet into a circle. Therefore, the pressure shortens 

the nastic cells and transmits forces. The forces rise with the internal pressure. 

There is a force limit shown in right picture within Figure 5. When the cell is 

pressurized, it becomes circular. Consequently, the cell wall angle becomes perpendicular 

to the original sheet. Therefore, the generated force falls as the cell becomes fully inflated. 
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Figure 5.  Cadogan et al.’s [22] nastic cell concept shortens a membrane by inflating repeated cells.  
The right image shows that the shape change limits the output force.  

 
 
 

The authors did not employ nastic concepts because their nastic actuators did not 

satisfy their requirements, that is, response was too slow for quick flight control. Instead, 

they tested piezoelectric actuators, which have an operating frequency as high as KHz, for 

direction control [22]. In general, their nastic actuators might be okay for slower operating 

frequency applications. Finally, their inflated cells act only for tensile foreshortening. 

More recently, Leo et al. investigated synthetic nastic structures as actuators [50-53] 

(2005~2007). The actuation is based upon an active transport protein. This material has 

ion-transport machines from living cells mounted in the walls of elastomeric microballoons. 

By adding Adenosine tri-phosphate (ATP), the actuator controls the fluid flow through the 

Foreshortening 

Force Limitation 
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protein pump. An electric signal opens ion channels to initiate the actuation. Fluids move 

into the sphere, increase the osmotic pressure, and enable actuation. 

 

2.4        Theoretical Backgrounds for Elastomer Tests  

 

This section explains three typical types of elastomer tests [54-56], starts with 

simple tensile test, planar tension-pure shear test, and finally, equi-biaxial extension test. 

 

2.4.1 Simple tensile test  

 

The unaixal tension that defined by ASTM puts specimens in plane stress. 

Hyperelastic models define deformation as stretch. The stretch iλ along any 

principle axis, where i=1,2,3, defined by this equation: 

 ii ε+=λ 1  ( 1) 

where iε  is the principal strain.  

One restriction is defined by this quation:  

 1321 =λλλ  ( 2) 

when the material is incompressible. 

For uniaxial stretch caused by a load that caused strain uε  

 uu ε+=λ=λ 11  ( 3) 

and, 
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uλ=λ=λ /132  ( 4) 

 

under uniaxial tension of stretches where uλ  is the stretch along the uniaxial loading 

direction and uε is the nominal tensile strain. 

 
 
2.4.2 Planar tension-pure shear test 

 
For this test, plane strain condition is imposed, and high aspect ratios (large width to 

length) specimen is used. 

The principal stretches iλ (i=1,2,3) are (corresponding to length, width and 

thickness respectively) (with incompressible material) 

 ,1, 21 =λλ=λ s and sλ=λ /13  ( 5) 

where sλ is the stretch in the loading direction. 

This can be regarded as the ‘pure shear test’ because the logarithmic strains are 

corresponds to the state of pure shear at 45° to the loading direction  

 3311 lnln ε−=λ−=λ=ε , and 0ln 22 =λ−=ε  ( 6) 

 
 
2.4.3      Equi-biaxial extension test 

 

Equi-biaxial tension tests require a stress state with equal tensile stresses along two 

orthogonal directions. 

The deformation mode with incompressibility:  
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bλ=λ=λ 21 , and 2

3 /1
b

λ=λ  ( 7) 

where bλ is the stretch in the perpendicular loading direction.  

 1−λ=ε bb  : nominal strain ( 8) 

 

2.4.4      Uniaxial compression-biaxial extension test 

 

Uniaxial compression test can be a good option to perform when the equi-biaxial 

test machine is not available. 

The uniaxial compression test [57, 58] deformation state is; 

 
02 / LL== λλ , 031 / AA== λλ  ( 9) 

And the stress state; 

 02 / AP== σσ , 031 == σσ  ( 10) 

We can get the compression strains and stresses [58] from the biaxial strains and 

biaxial stresses; 

 3)1( bbc εσσ += , 1)1/(1 2 −+= bc εε  ( 11) 

In the same manner, the biaxial strains and stresses are derived from compression 

strains and stresses using above relationships;  
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2.5        Failure Criteria of Pressurized Elastomers 

 

This work has merit only if a good failure criteria provides an limit for the response. 

This section presents the failure criteria used here. 

 

2.5.1      Failure/Fracture modes of rubber 

 

Rubber and bonded rubber blocks could fail by the following two modes, when the 

large loads imposed ([59]): (1) horizontal cracks near the bonded edge (Figure 6a), and (2) 

horizontal cracks in the free surface (Figure 6b). 

 

2.5.2 Failure criteria for free strain case; internal rupture  

 

Failure by internal cracking will occur when the local hydrostatic pressure reaches a 

critical negative value, which about -0.75 E [60]. Under this triaxial tension, any small 

cavity will rapidly increase. The criterion for internal rupture is [61] 

 
EP

4
3

max >−  ( 13) 

           Where maxP− is the maximum negative pressure developed in the block. 
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Figure 6. For rubber, two fracture modes are possible under static compression (after [59]). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Tearing near the bonded edges 

Circumferential Crack

(b) Splitting open of the free surface 



 

 

23

2.5.3      Failure criteria for blocked stress case 

 

For the (incompressible) rubber block under compression [59], maximum shear 

stress near the bonded edges has to be less than G. In other words, maximum shear 

deformation cannot be more than 100%. 

 

2.6        Introduction to Hyperelasticity 

 

Reversible, large strain performance is available with two materials: biological 

tissues and elastomers. For the synthetic nastic material studies here, elastomers are a 

crucial component that enables large strain actuation. This section presents the theoretical 

background for modeling hyperelastic materials and the section shows what properties must 

be measured by experiment. 

 

2.6.1    Background for large deformation theory 

 

For small deformation elasticity the Cauchy stress tensor, which is force/deformed 

area, is used as the stress measure. However, under large deformation it is difficult to 

determine the deformed configuration’s area. We need a new stress measure for large 

deformation [62]. 

The 1st Piola-Kirchoff stress is defined as the force divided by the undeformed area. 

However, the 1st Piola-Kirchoff stress tensor is not symmetric, and when it and the Green-
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Lagrangian strain tensor are multiplied, the product is not consistent with the strain energy 

density with Cauchy stress with small deformation strain tensor. This makes the 1st Piola-

Kirchoff stress unsuitable for numerical analysis. The 2nd Piola-Kirchoff stress tensor is the 

total force in the undeformed configuration divided by the area in the undeformed 

configuration. This stress tensor is appropriate for energy density because the strain energy 

density from 2nd Piola-Kirchoff stress and Green-Lagrangian strain equals the strain energy 

density from Cauchy stress and small deformation strain tensor. 

For hyperelastic materials, stretch is a deformation measure in many cases as well 

as strain. Stretch is deformed length/original length ratio. Therefore, when there is no 

deformation, the stretch is unity and the strain is zero. 

 

 
2.6.2    Theory of hyperelasticity  

 

This section presents a brief overview for hyperelastic model development. The 

subsections that follow provide details about the models. 

Hyperelastic material models are characterized by their strain- energy density 

functions. Many authors have analyzed hyperelastic or rubberlike materials since the early 

20th century [63]. Mooney’s [64] (1940) and Rivlin’s [65] (1948) work influenced almost 

all later research. Mooney proposed a two-term phenomenological model for large elastic 

deformation theory, and Rivlin developed his theory based on Mooney’s work. Later, a 

significant development came from Valanis and Landel [66] (1967). They changed the 

strain energy function to separable terms regarding the principal directions. Their model 
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influenced Ogden, whose model is widely employed in this area [67, 68] (1972). These 

theories express the elastic strain energy with a form dictated by continuum mechanics for 

an initially isotropic, incompressible, hyperelastic solid [69]. Table 1 lists available 

hyperelastic models. 

Oden contributed to early finite element analysis and computation methods in 

engineering in many areas including nonlinear sold mechanics and fluid mechanics. He also 

applied hyperelasticity theory to finite element analysis with important remarks about 

implementing hyperelastic materials incompressibility numerically [70, 71] (1972 and 

1982). After him, many researchers worked on developing finite element formulations for 

incompressible hyperelastic models [72-77]. 

Simo et al. [78-81] published excellent work for applying hyperelasticity based on 

continuum mechanics to finite element analysis. Current commercial FEA software, for 

example, ANSYS®, refer to Simo’s and other authors’ work described above. 

Next, we present details about each model and define the parameters that appear in 

Table 1. 
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Table 1. Hyperelastic model summary [57] 
Model name Strain energy functions Descriptions 

Neo-Hookean  )3( 110 −= ICW  
Good up to 40% strain in 

uniaxial tension, 90% strain in 
simple shear 

Mooney  )3()3( 201110 −+−= ICICW  Good up to 100% tensile test. 
Not good at large strains 

Three term 
Mooney-Rivlin 

+−+−= )3()3( 201110 ICICW  
)3)(3( 2111 −− IIC  

Good for both filled and unfilled 
rubbers 

Yeoh 
+−+−= 2

120110 )3()3( ICICW  
2

130 )3( −IC  
Needs to be careful for low 

strains 

Ogden 

+−λ+λ+λ
α
μ

= ∑
=

ααα
α−N

n n

n nnn

n

JW
1

321
3 )3(

23/1 )1(5.4 −−JK  
J ; Jacobian measuring dilatancy - 

determinant of deformation gradient ƒ 

Good up to 700% strain in 
simple tension 

 
 
 
 
2.6.2.1    The Neo-Hookean Model 

 

Generally the strain energy functions are strain invariant functions in stretch terms.  
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The simplest hyperelastic form, the Neo-Hookean model, has first and second strain 

invariants, I1 and I2 (Figure 7~Figure 9). The incompressibility constraint forces the third 

strain invariant I3=1 so that volume is conserved.  
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Figure 7. For incompressible elastomers, possible deformations are in the region between uniaxial 
stretching-marked with a square-and equi-biaxial-marked with a triangle-as I1 and I2 functions (after  

ref. [82]). 
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Figure 8. For pure shear, I1 and I2 are identical because 12 =λ  in this case. 
 
 

 

 



 

 

29

 

0

3

6

9

12

15

18

1 2 3 4

λ1

W
/C

1
Uniaxial
Pure shear
Equi-biaxial

 

Figure 9. This plot shows that the neo-Hookean model strain energy density contains only first strain 
invariant terms. 

 

 

Neo-Hookean model is                                                         

 )3( 11 −= ICW  ( 17) 

where 1C  is constant shear modulus [57]. 

 

2.6.2.2 (2-term) Mooney Model 

 

The Mooney model – also called as Mooney-Rivlin model – is 

 )3()3( 2211 −+−= ICICW  ( 18) 
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From the ref. [83], for a equi-biaxial extension (equivalent to uniaxial compression),  

 
1

2
3

2
2 /1 λλλ ==  ( 19) 

so 

 )32/1()3/2( 1
2
121

2
11 −++−+= λλλλ CCW  ( 20) 

Differentiating W with respect to 1λ  gives (and dropping subscript) 

 ))(/1(2 21
2 λλλ CCf +−=  ( 21) 

where f is the force per unit unstrained area. 

Then, 

 ))(/1(2 21
2 λλλ CCt +−=  ( 22) 

 where t is corresponding true stress 

With this approach, several authors have reported the inconsistency between 

Mooney’s model and experimental data. 

For example, Treloar [83] claims that Rivlin and Saunders ref. [84] is inconsistent. 

He claims that, for simple extension, Mooney’s model fits well with experimental data with 

the ratio of 12 / CC . However, for uniaxial compression data, which corresponds to equi-

biaxial extension, ≅2C 0. From this inconsistency, Mooney’s model does not represent 

strain density function for a general elastomer property adequately, and the overpredicted 

simple extension curve and misfit biaxial stress-strain relation have been reported [85]. 
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2.6.2.3 Third or Higher Order Ogden Model 

 

This Ogden model is 

 
+−λ+λ+λ

α
μ

= ∑
=

ααα
α−N

n n

n nnn

n

JW
1

321
3 )3( 23/1 )1(5.4 −−JK  ( 23) 

More complicated versions, Valanis and Landel model are developed, and Ogden 

model has been derived based on this model. As the matrix elastomer is highly nonlinear 

and goes to large deformation more than 600%, the Ogden model has been chosen and used 

in this research. 

 

2.6.3      Stress softening and Mullins effect      

 

Under repeated tensile strain, many polymers exhibit a reduction in stress after the 

initial extension; this is the Mullins Effect [86-89]. For rubbery material elasticity it is 

important to know the Mullins effect; almost 60 years have passed since Mullins’ work in 

1947 [86]. The Mullins effect is “Phenomenon observed in elastomeric polymers where the 

equilibrium stress-strain response softens with the strain history” [90]. The Mullin’s effect 

has these features: 

• The cycled material has the stress-strain response of virgin material at strains 

greater than the previous maximum strain 

• The cycled material has a more compliant response at strains smaller than the 
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previous maximum strain 

When the Mullins effect occurs, the microstructure beaks down with increasing 

deformation, but the initial structure cannot be rebuilt. 
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CHAPTER III 

 

MATERIAL PREPARATION  

 

3.1        Fabrication of Specimen from Soft Polyurethane 

 

Baseline design data needed to complete the analysis came from soft polyurethane 

specimens tested in simple and planar tension. The next sections present the fabrication 

method for these specimens. 

 

3.1.1      Simple tensile test 

              

             The specimen and test procedure followed specification ASTM D638-03. Dog-

bone specimens were prepared from soft polyurethane. The mini-CNC machine in Figure 

10 cut a mold in Figure 11 from machinable modeling wax. Figure 12 shows a D638 

specimen. The specimens were used for the single extension to failure test and for cyclic 

testing. 

The soft polyurethane (SPU) is a commercial product called FMSC 1035® from 

Freeman Manufacturing and Supply Company (FMSC). Freeman sells a one-gallon kit 

including two ½ gallon containers. The constituents for each container are 

• Part A: polyurethane polymer, Bis(2-ethylhexyl) phthalate 
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• Part B: nonhazardous polyol, diethyl toluene diamine, di(methylthio) toluene 

diamine 

When mixed in a 1:1 ratio-by volume or weight-the SPU is a pourable, low 

viscosity fluid. FMSC 1035 gels in 30 minutes at room temperature 22.2°C (72°F); the SPU 

must fill any mold before it gels. Demold time is 16 hours at room temperature. 

When fully cured, the dog-bone specimen is ready for the tensile test. 

 

 

 

 

 

Figure 10. Roland PNC-300® mini-CNC machine. 
This machine cut the wax mold for specimens. 
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Figure 11. Big and small mold made ASTM D638 specimens. 
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Figure 12. A dog-bone shaped specimen used for tensile test. 

 
 
 
 
3.1.2      Planar tension test 

 

The equations presented in section 2.5.2 show that a planar tension specimen 

produces shear deformation in an elastomer. Figure 13 and Figure 14 show the wax mold 

and originally designed specimen, respectively. The mold for pure shear test specimen is 

also made from mini-CNC machine. FMSC 1035® resin is also used for this specimen.  
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Figure 13. Wax mold made the planar tension specimen. 
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Figure 14. Planar tension-Pure shear test specimen is wider than it is high. 
The design dimensions are 177 X 100.5 X 1.6mm including initial grip separation 24.5mm.  
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3.2        Design and Fabrication of Lens Element 
 

Designing a material to deform in simple shear is a challenge. This section presents 

a first-order method for designing them based on simple shear deformation. First, we look 

at material response when driven to shear by external forces. At the material element 

boundary, the displacements follow solid mechanics solutions. Our objective is to create an 

active material that has simple shear displacement at the boundary for each active material 

element. In an assembly, these active cells might produce a material that has homogenized 

response that is simple shear while the interior displacements are what is necessary to move 

the element boundary and apply forces to the exterior. 

The shear actuator uses a lens-shaped element, embedded inside a rubber matrix. 

The lens element contains a balloon within a Kevlar fabric sleeve. Since this balloon-

Kevlar element is lenticular, we start with first-order geometric equation for a lens. 

 
 
3.2.1      First-order strain equations for a lens-shaped element 

 

As shown in Figure 15, a material in equal biaxial expansion/contraction is 

equivalent to shear condition when 2θ equals 90° in Mohr’s circle. Therefore, the following 

derivation must find the best initial and final aspect ratio for the lens to achieve pure shear 

when pressurized. Figure 16 explains the concept of shear actuator. 
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Figure 15. The two-dimensional Mohr’s circle for strain shows that pure expansion/contraction-the 
open circle points in left image-is equivalent to pure shear, which appears at the open circle points in 

the right image. 
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Figure 16. Nastic cells can be arranged as a single-acting shear actuator (top), or as an array the shears 
left or right as needed (bottom). The lens element is 45° to the shear direction and embedded in the 
elastomer matrix. The concept claims that the lens element actuator approaches a full circle when 

pressurized and causes shear deformation. 
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.         

Figure 17. This picture shows the geometry of a lens.  
A lens is characterized by the length of long axis ‘a’ and short axis ‘b’ as in the picture. 

 
 
 
3.2.2      Aspect ratio for best shear deformation 

 

Figure 17 shows the geometry of a lens. Author [91] discusses lens analysis and 

presents the circle-circle intersection equations 

 222222 )(412 RrdRd
d

a +−−=  ( 24) 

In our case, Rr = , therefore 
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b
baR

2

22 +
= , 222 aRd −=  ( 27) 

And, 

 
2

22 dRaRRb −=−−=  ( 28) 

From simple circle-arc relations, the total lens circumference c  is 

 
)(tan42 1

bR
aRrc
−

=π= −  ( 29) 

 

Thus, the radius of the circle that has same circumference as a given lens is 

 
)(tan2 1

bR
aRr
−π

= −  ( 30) 

If we set r=1.0, then 
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R
bRa π

−=  ( 31) 

                                                       

Now, deleting a and d from above relationships gives 
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Also, the lens area A is 
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For best shear deformation, the aspect ratio must be 1.381 as Figure 18 and Figure 

19 show. Figure 20 shows strain ratio variation due to b dimension change. 
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Figure 18.  Strain ratio with various aspect ratio shows best shear deformation occurs when the lens 
aspect ratio—long axis length divided by short axis length—is 1.3817. 
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Figure 19. Strain ratio with given lens shape strains. 
It shows, when 16.03% strain, pure shear will take place. 
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Figure 20. Strain ratio varies when b approached a full circle. 

 
 
3.2.3 Kevlar fabric lens element  
 

Kevlar fabric ontained from Fiberglast froms the structural base for the lens-element 

actuator. A toy balloon is inside the fabric. A single-use aluminum crimp clamp connects 

the toy ballon to a nylon pressure-supply hose (see Figure 21 and Figure 22). 

 
Figure 21. Lens element made from Kevlar fabric 
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3.3        Fabrication of Shear Actuator 

 

To make shear actuator structure flexible, polyurethane or any other similar flexible 

material can be applied, and this study used a soft polyurethane matrix material (Freeman 

Company manufacturing Repro polyurethane 1035 resin system) and Kevlar fabric 

containing a balloon inside as a lens element. 

 

 

Figure 22. Portable sewing machine used for Kevlar fabric 

 

The Kevlar fabric element Young’s modulus is 100GPa, Poisson’s ratio 0.35. 

With the 1035 resin system, specimens can be made quickly at room temperature 

without any heat source. The first step in the fabrication process is making a mold with a 

precise CNC machine (Roland DGA Company Model PNC 300). After this process, pour 

pre-mixed 1035 resin into the mold and cure at room temperature. 
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3.3.1      Mold design and CNC machining 

 

The mold is designed by using commercial CAD software SolidWorks®. (see Figure 

23~Figure 27). The mold specifications are as follows 

• Target shape of lens; Long axis of lens a = 6mm, b = 3.73mm 

• Area of lens = 64.06624mm2 

• Volume fraction = 44.5 % (with 12mm X 12mm matrix) 

 

 
Figure 23. Rotated lens-Block model showing cavity 
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Figure 24. Rotated lens-Block model. 

The features are cut-excluded in sequence. 
 
 
 

   
Figure 25. Assembly for the mold (left) and final assembly for the actuator fabrication (right) 
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Figure 26. The base mold for 2nd part.  

Kevlar fabric element is rotated. 
 
 
 

   
Figure 27. Assembly for the 2nd mold 
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Figure 28~Figure 31 show the wax mold for shear actuator. The 1st and 2nd mold 

were made separately as described above. 

 
Figure 28. 1st mold for lens-shear actuator. 

 
 

 
Figure 29. The top blocks and back blocks applied. 
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Figure 30. This is 2nd mold for shear actuator. 

 
 

 
Figure 31. Top and back blocks applied to 2nd mold. 
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The shear actuator is fabricated as in Figure 32 and Figure 33. 

 
Figure 32. The mold and Kevlar fabric element set up to apply the soft polyurethane resin. 

 
 
 

 
Figure 33. Actuator is in curing process with soft polyurethane resin.  

A clamping device put forces to make sure the parts in appropriate place during curing. 
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Fully constructed shear actuator (Figure 34) is bonded to the aluminum block as in 

Figure 35. 

 

   
 

 
Figure 34. The actuator is fully constructed. 

(Top) First part (half), (Bottom)  Second work – whole part finished. 
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Figure 35. Fabricated shear actuator.  
It is bonded to the aluminum block. 

 
 

3.3.2      Assembly and injection molding of shear actuator 

  

A controlled pressure/vaccum pump provided constant pressure to the balloon 

inside the lens element to maintain the appropriate initial lens element shape during curing 

process. After half the actuator is made, the actuator is flipped over to make the remaining 

half. After finished curing, it is attached to the aluminum plate as the fixed bottom. 

 
 
3.3.3      Array of shear actuators 
 

A shear actuator panel with 12 elements is fabricated in a similar way to single 

actuator. The mold is designed to make the half portion, then the other half is made. Then it 

is fixed to the brass plate as in Figure 36. 
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Figure 36. A shear actuator panel with 12 elements is fabricated.  
It is bonded to aluminum base.  

 
 



 

 

56

CHAPTER IV 

 

EXPERIMENTAL PROCEDURE 

 

4.1        Determination of Hyperelastic Constants 
 

Experimental procedure starts with hyperelastic constants for soft polyurethane 

matrix. As described in previous chapters, for hyperelastic material, only simple tensile test 

cannot represent the material property. In this work, simple tensile test and planar 

tension/pure shear test are performed. In addition, uniaxial compression/biaxial extension 

test data is estimated and added to the hyperelastic test data to get better material constants 

to represent material behavior well. 

This chapter presents test procedures for simple tensile test and planar tension/pure 

shear test. The biaxial test data, curvefitting, and hyperelastic constant simulation are 

described in the next chapter. 

 

4.1.1      Simple tensile test 
 

 

The tensile test was performed with an Instron 4411 testing machine. This test uses 

specified the ASTM D638 standard. 
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4.1.1.1 Conservative Strain to Failure 
 

The cyclic force-displacement relationship - and eventually the cyclic stress-strain 

relationship – came from a two step procedure. 

First, four specimens are tested to failure. 

• Install the specimen securely (Figure 37), then mark and measure the gage length. 

• Initialize the load cell and displacement 

• Set the testing parameters: 

o Crosshead moves at 50.8mm/min (2.0 in/min). 

o The DAQ sample rate is 5 Hz. 

• Start the LabView® software to collect the data.  

• Start the crosshead. 

• Move the crosshead until the specimen fails – repeat the procedure for 4 or more 

specimens. 

• Analyze the data file with spreadsheet software.  

Find the shortest strain to failure. Use 90% of the shortest failure strain as the 

maximum cyclic strain to ensure the specimen not breaking during cyclic tension. 
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Figure 37. The dog-bone shaped specimen mounted to the crossheads. 
 

 

4.1.1.2 Cyclic Tensile Behavior 
 

Once the conservative cyclic strain is know, it is time for the second step. As in 

previous chapter, the hyperelastic material such as soft polyurethane has the Mullins effect. 

To minimize the Mullins effect, we have to pre-condition the specimen appropriately. At 

least 4 cycles are needed in this test. 

The procedures are same for the first step except that we have to place the stoppage 

device with calculating the 90% of the shortest failure strain above. If the upper crosshead 
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moves up and hit the stoppage device, it will automatically stop. Then we move the 

crosshead down until the original position, then move up again. We have at least 4 cycles 

with this procedure.  

The force-displacement plot from the 4th cycle is converted into stress-strain. It will 

be used to determine the hyperelastic material constants. 

 
 
4.1.2 Planar tension-pure shear test 

 

Planar tension test also uses Instron 4411 testing machine. It uses wide grip as in 

Figure 38. 

For planar tension-pure shear test, we apply at least 4 pre-conditioning cycles to 

specimen to remove Mullins effect. 

As in the tensile test, the upper part of the specimen is mounted in the upper grip, 

then the lower part is mounted in the bottom grip. When the test finished, the lower part is 

removed and then upper part is removed from the grip. 

The gage length is also checked. The testing parameters are  

• Crosshead speed: 12.7 mm/min (0.5 in/min) 

• Sample rate: 5 Hz  

After pre-conditioning, the crosshead moves up. For the planar tension-pure shear 

test in this study, the small dot or cross is marked at the center of the specimen. This is to 

prove the pure shear condition by observing the dot’s shape change. 
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The crosshead movement is stopped 4 or 5 times until reaching to the top 

displacement. Pictures are taken with digital camera with focusing the dot at the center. The 

force-displacement curve is converted into the stress-strain curve and to form another curve 

in the hyperelastic material test curve set. 

 

     

 

Figure 38. Planar tension test in this work used this grip.  
This grip has sharp edges that prevent slipping during planar tension-pure shear test. 
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4.2        Characterizing the Lens Element – Kevlar Fabric Actuator 

 

Material property—McCutcheon’s data—for Kevlar fabric is  

 • Young’s modulus = 100 GPa 

 • Poisson’s ratio 0.35  

The lens element is Kevlar fabric, and itself is an actuator. The actuator performance 

curve is tested by Instron 4411 testing machine. The test procedure is as follows  

• A single pull-out test is performed to a Kevlar fabric sheet. The 70% of the 

maximum force is calculated. This is the conservative force to apply to the lens 

element. 

• The Kevlar fabric lens element sits in the grip as Figure 39 shows. A compressed 

nitrogen gas fills the lens element. 

• After measuring the gage length, the crosshead moves up to reach the conservative 

force. 

• Then it is pressurized by nitrogen gas. At this actuated stage (actuation pressure is 

held constant), the crosshead moves down slowly so that the Kevlar fabric is going 

back to the original position. 

• The above procedure is repeated for various pressures. The unloading force-

displacement represents the actuator performance. 
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Figure 39. The Kevlar fabric lens element is tested in Instron 4411 machine.  
A nitrogen bottle is connected to pressurize the actuator. 
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4.3        Experiments of Shear Actuator- Pressure vs. Free Strain Relationship 
 

To measure the shear amount, the ruler was put on the top of single shear actuator. 

This shows original reference line. With increasing pressure, the shear amount is measured 

as in Figure 40. This shows the shear actuator’s peak free shear strain vs. pressure plot. 

 

 

 

Figure 40. This shows the free strain test for a single shear actuator. 
 The red line shows the free displacement and the blue line shows the initial position. 
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CHAPTER V 

 

ANALYSIS AND RESULTS OF SHEAR ACTUATOR 

 

5.1        Material Property of Hyperelastic Matrix 

 

In this work, simple tensile test and planar tension-pure shear test have been 

performed with experimental procedure in previous chapter. For 3rd test data, equi-biaxal 

tension data is estimated from pure shear test data. Hypereleastic material property (Ogden 

material model) are found from these three data sets.  

FEA simulations show the acceptable range for constants in shear actuator 

numerical modeling in later a section. 

 

5.1.1      Simple tensile test 

 

Throughout this research, two soft polyurethane resins from Freeman® supply are 

tested with same tensile test procedure described in previous chapter. The first resin is 

FMSC 1035T, and it was used in the early stage of hyperelastic material research. It is 

reported here because the elastomer modeled in this research is based on this resin. The 

second one is FMSC 1035, which is similar to 1035T. It is the resin used for shear actuator, 

and in the analysis in this chapter uses this resin. 
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5.1.1.1    Tensile Test Result of FMSC 1035T® Resin 

 

Dog-bone shaped specimens followed ASTM D638 standard have been made from 

FMSC 1035T® (Figure 41). It is started with the single tension test using 3 specimens to 

determine the conservative strain to failure. Test parameters are as the following 

• Crosshead speed: 50.8 mm/min (2.0 in/min) 

• Sampling rate:      5 Hz 

• The gage length:  50mm 

• The cross-section area: 18mm2. 

 

 

 

Figure 41. An ASTM D638 specimen from FMSC 1035T® resin is shown after fully cured.  
The dates when the specimen made have been recorded for every specimen.  
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Figure 42. Tensile test result for single extension to failure shows . The force vs. displacement in this 

plot is converted to stress-strain relationship to determine conservative strain to failure. 
 

 
The minimum strain to failure from Figure 42 was 667.3%. The 90% of this value 

was used for cyclic test. The failure stress and strains are shown in Table 2. 

 

Table 2. Failure stress and strains from single pull-out test 
 

Specimen Failure stress (MPa) Strain (%) 
#1 1.56 855.3 
#2 1.42 700.5 
#3 1.24 667.3 
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Figure 43. Cyclic test result for a 1035T specimen shows the Mullins effect. The square shows the 1st 

cycle during increasing displacement. 
 

 

 

The cyclic test (Figure 43) has same test parameters as single-pull out test. The 4th 

cycle data  (force-displacement) from 4-cycle test was converted into stress-strain curve 

(Figure 44) and used to characterize the material constants. Hyperelastic material 

characterization is described in the later section. 

For linear analysis in the earlier stage, the secant modulus is found from the stress-

strain curve. The result is shown in Table 3. 

The stress and strain values here are all engineering stress and strain values. 
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(b) 

Figure 44. Tensile test data from the 4th cycle provides the stress-strain relationship; 
 (a) Force-Displacement (b) Stress-Strain 

 
 
 
 
 
 
 



 

 

69

 
Table 3. Secant modulus comes from tensile test data for the 4th cycle.  

 
Strain (%) Secant modulus (MPa) 

100 0.25 
200 0.158 
300 0.138 
400 0.134 

 
 
5.1.1.2    Tensile Test Result of FMSC 1035® Resin 

 

This test was done and reported by Ewumi [92] and the procedure described in 

section 4.1.1. The test parameters are as follows  

• Crosshead speed: 50.8mm/min (2 in/min) 

• Sampling rate:      5 Hz 

• Specimen width: 3.175mm 

• Specimen thickness :   3mm 

• Gage length:              22mm 

• Overall length:           69mm 

 
As in Figure 45, the 90% of the smallest distance to failure was found and used in 

cyclic test. Force-displacement relationship is found from cyclic test (Figure 46). 
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Figure 45. Force vs. displacement plot for 8 specimens to determine maximum length to failure. 
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Figure 46. Force vs. displacement relationship is from 4 cycle-test data for 1035 soft polyurethane 

specimen. 
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Figure 47. The unloading curve for each cycle show that the unloading response approaches consistent 

behavior. The 4th cycle test data (force vs. displacement) is converted to stress-strain relationship. 
 

 

As shown in Figure 47, the unloading curve (force-displacement) is converted to 

stress vs. strain relationship to determine hyperelastic material property. This is described 

in later section. 

 
 
5.1.2      Planar tension-pure shear test 

 

The planar tension test specimens are built from 1035 resin. The wide grip has sharp 

edges and it gives the unexpected specimen failure during the test as in Figure 48. 

Therefore, as in Figure 49, thin cloths are applied to the specimen surface to keep the grip 

serrations from cutting the specimen. The edges are grounded by the files. The even 

clamping force help prevent slipping during the test. 
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Figure 48. Sharp edges in the wide grips cut the specimen during initial work. 
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Figure 49. Thin cloths applied on the grip surface allow the test to run without the gripped regions 
failing. The edges still mark the specimen, but it can endure the planar tension-pure shear test without 

failure. 
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With cloths applied to prevent the specimen from failing in the grip, three 

specimens—denoted as Specimen #1, Specimen #2, and Specimen #3—have been tested 

and reported in this work. 

All specimens were pre-conditioned more than 4 cycles before the test was 

performed. The planar tension-pure shear test test parameters are as follows 

• Gage length: 24.5mm  

• Crosshead speed: 12.7 mm/min (0.5 in/min) 

• Sample rate: 5 Hz, 

• Aspect ratio of specimen: 7.2:1 
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Figure 50. Picture 1 shows the planar tension-pure shear test for Specimen #1. 

The small cross in the center of the specimen shows the deformation state of planar tension that is 
equivalent to pure shear. The marker to the right of the small cross is a reference for image analysis. 

 
 
 

 
 
 

Figure 50~Figure 54 show the pictures from the planar tension-pure shear test of 

Specimen #1. For this case, a small cross was used to show the deformation state of the 

specimen. 
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Figure 51. Picture 2 shows Specimen #1 at larger stretch.  

This shows about 26% deformation. 
 
 
 

 
Figure 52. Picture 3 shows Specimen #1 at about 52% deformation. 
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Figure 53. Picture 4 shows Specimen #1 at about 78% deformation. 
 
 
 
 

 
Figure 54. Picture 5  for Specimen #1. The crosshead movement stopped at about 103% deformation, 

took this picture, and started in reverse direction to record downward curve. 
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Figure 55. Picture 1 for planar tension-pure shear test with Specimen #2 shows the dot applied to the 
center of the specimen to verify that the pure shear condition is achieved. This picture is the reference 

shot that sets the dot’s initial dimensions. 
 
 
 
 
 

Figure 55~Figure 59 show the pictures from the planar tension-pure shear test of 

Specimen #2. The pictures show a dot applied to the center of the specimen to show the 

deformation state of the specimen. 
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Figure 56. Picture 2 shows the dot on Specimen #2 at about 28% deformation from crosshead 
movement. 

 
 

 

Figure 57. Picture 3 for Specimen #2 shows the dot’s ellipsoid shape at about 58% deformation. 
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Figure 58. Picture 4 for Specimen #2 shows about 82% deformation. 
 
 
 

 

Figure 59. Picture 5 for Specimen #2 shows the dot with the crosshead stopped at about 108% 
deformation; this is the maximum deflection applied. 
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Specimen #3 broke due to the previous split even though it had the fabrics to 

prevent unexpected break (Figure 60 and Figure 61). Test for Specimen #2 run well and 

matched well with Specimen #1 results as in Figure 61.  

 

 

 

Figure 60. Specimen #3 broke during the test. 
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Figure 61. This force vs. time and force vs. displacement shows the uploading curve from Specimen #1 
and #2 are relatively matched well. However, it also shows Specimen #3 was broken unexpectedly 

during the test. 
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Figure 62. The uploading force vs. displacement relationship for Specimen #1 and Specimen #2 from 
Figure 61 are similar. Because uploading curves for this case had uneven points (stopped to take 

pictures), trendline has applied to get a smooth curve. 
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Figure 63. The smoothed line (Force vs. displacement) are converted into stress vs. strain relationship 
for planar tension-pure shear test. This test data are added to the hyperelastic test curve set to obtain 

new Ogden constants. 
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As shown in Figure 61~Figure 63, stress vs. strain relationship is determined from 

planar tension test. To determine that planar tension test data is equivalent to pure shear 

data, a small cross was applied to Specimen #1 (Figure 50~Figure 54), and a dot to 

Specimen #2 (Figure 55~Figure 59). The small cross and dot support checking the 

difference between the stretch in the polymer and the stretch calculated from crosshead 

movement. 

Here the analysis starts with the difference between vertical deformation calculated 

from the crosshead movement and from the small cross/dot. As shown in Figure 64, cross’s 

vertical deformation is 105.1%, and the vertical deformation calculated from the crosshead 

movement is 103.57%. The deformation from crosshead movement is 1.48% less than 

small cross. 

Similarly, from Figure 65, the small cross deformed 108.34% vertically, and gage 

length vertical deformation is 103.984%. The deformation from crosshead movement is 

4.19% less than small cross. From these numbers the values agree within 1.48~4.19%. 

Therefore, the author claims no difference exists, and the displacement data from crosshead 

movement was used to calculate strains. 
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Figure 64. Strain calculated from small cross measures and from crosshead movement for Specimen #1 
show strain data from crosshead movement (at 103.6% deformation) are 1.48% less than the data from 

dot (105.1% deformation) in the middle of the specimen. 
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Figure 65. Vertical strain calculated from the dot displacement and from crosshead movement for 
Specimen #2 shows crosshead movement strains (at 104% deformation) are 4.19% less than the data 

from dot (108.3% deformation) in the middle of the specimen. 
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Now, next question is the data from this planar tension test is equivalent to pure 

shear condition. The explanation about this question is as follows. 

Figure 66 and Figure 67 show the image analysis for the small cross (Specimen #1) 

and for the dot (Specimen #2), respectively. In Figure 66, when the small cross deformed 

105.1% vertically in the planar tension test for Specimen #1 (Figure 50~Figure 54), the 

cross narrowed 0.68%  horizontally.  

In a similar manner, a dot on planar tension Specimen #2, see Figure 55~Figure 59, 

narrowed 0.04% horizontally at 108.3% vertical deformation as Figure 67 shows. 

Therefore, the horizontal strains in Figure 66 and Figure 67 are shown as almost zero 

compared to vertical strains. 

Specimen #1 and Specimen #2 strain states appear as 3D Mohr’s circles in Figure 

68 and Figure 69, respectively. Both figures have zoomed picture at origin, and dotted lines 

represents slightly displaced from pure shear condition. 

In Figure 68, the small cross strained 71.8% vertically and 0.68% horizontally. For 

Mohr’s circles, true strains are used because planar tension-pure shear conversion is from 

true strain measure. The vertical extension/horizontal contraction ratio is 104.5:1.  

Similarly, Figure 69 shows 73.4% vertical extension and 0.04% horizontal 

contraction measured from the dot on Specimen #2. For this strain state, vertical 

extension/horizontal contraction ratio is 1834.9:1.  

To make sure these are pure shear condition or not, a reference has been found. 

Treloar performed planar tension test in ref. [93]. He regarded 520% vertical extension and 
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12% horizontal contraction as pure shear condition. The vertical extension/horizontal 

contraction ratio is 43:1. 

Compared to Treloar’s work, strain states in Specimen #1 and Specimen #2 are 

regarded as pure shear condition because they have significantly higher vertical extension 

than horizontal contraction. This means the horizontal contraction at the specimen’s 

centroid is small compared to the vertical deformation; therefore, the plain strain condition 

was achieved . Planar tension data obtained from wide specimen test can be converted to 

pure shear data, and it will be added to hyperelastic material parameter set. 

The thickness change near the specimen’s centroid can be calculated from the 

measured stretches if the incompressibility applies. The change in thickness can be 

estimated from vertical stretch by incompressibility condition ( 1321 =λλλ , which means 

volume is conserved during deformation), and plain strain assumption ( 12 =λ , which 

means there is no change in width direction).  

The calculation results are summarized in Table 4. As a conclusion, the thickness 

change between estimation from experimental results and theoretical values are 0.04 % ~ 

0.68%. 
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Figure 66. Vertical strain vs. horizontal strain from a small cross placed on Specimen #1 shows that the 
cross got narrower by less than 1.4%; therefore, horizontal strains in these planar tension experiments 

are almost zero. 
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Figure 67. Vertical strain vs. horizontal strain from the dot maker on specimen #2 shows that the dot 
got narrower by less than 1% with 108.3% vertical strain. Therefore, the horizontal strains are almost 

zero. 
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Figure 68. The 3D Mohr’s circle from the strain state for the small cross on Specimen #1 shows nearly 

planar tension behavior. Treloar [93] regarded 520% vertical extension and 12% horizontal 
contraction (43:1) as pure shear condition. By this criterion the present  (104:1) can be treated as the 

pure shear condition. 
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Figure 69. This graph shows that the dot target on Specimen #2 provides a vertical/horizontal stretch 
ratio that exceeds that Treloar accepts as planar shear. 
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Table 4. Principal stretches from the center region stretches for Specimens #1 and #2 are close to the 

ideal values. Parameter 1λ  is the vertical stretch, 2λ is width stretch, and 3λ is thickness stretch. 

Ideally, 2λ  is unity. In the experiment, 2λ  is less than unity. 
 

 

1λ  

(Max. 

value) 

2λ  

(Max. 

value) 

3λ  = )/(1 21λλ  

(Calculated 

from 

experiment) 

3λ  = 1/1 λ  

Difference (%) 

between 

experiment and 

theory 

Specimen #1 2.051 0.9932 0.4909 0.4875 0.68 

Specimen #2 2.0834 0.9996 0.4802 0.47999 0.04 
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5.1.3 Hyperelastic material characterization and simulation from 1035T resin 

 

Since Ogden model demands 3-D test data, the error may occur with simple tension 

test only. Before shear or biaxial test is implemented, using the typical elastomer stress-

strain relationship appearing in Figure 70, these test data has been assumed based upon 

simple tensile test data in Figure 71 to make better accuracy in curvefitting to find material 

constants [94]. The FEA hyperelastic material simulation is performed and described in this 

section. 
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Figure 70. Typical Elastomer Stress-Strain Data Set (after ref. [94]) 
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Figure 71. Shear and Biaxial test data assumed using the relationship in Figure 70. 
 

 

Finally Ogden constants were found using 3 data sets. Commercial FEA software 

Algor® has been used. 

1μ =3.52521, 2μ =-0.0454221, 3μ =0.00399199 MPa 
                                  1α =0.0751,   2α =-1.57,           3α =3.9537 
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5.1.3.1    FEA Simulation of 1035T Specimen - Simple Tensile Test 

 

The Ogden constants are consistent only if the FEA model for each experiment 

returns the same parameters entered. The first check is the simple tension test. Here the 

properties measured and estimated for 1035T polyurethane. The dog-bone type specimen 

was modeled—see Figure 72—and the simple tensile test simulated. The simulation results 

shows good agreement with tensile test data until 120% strain (Figure 73), but it didn’t run 

after that. 

 

 

Figure 72. ASTM D638 specimen is simulated using Ogden hyperelastic material constants (100% 
strain shown). 
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Figure 73. FEA simulation for the simple tensile test shows good agreement to 120% strain. 
 
 
 
5.1.3.2 Planar Tension-Pure Shear Test 

 

The FEA simulation for planar tension test started with 200 mm X 30 mm X 1.6mm 

model (Figure 74 and Figure 75). The specimen aspect ratio is 6.667:1. Boundary 

conditions imposed as  

• Bottom plane of specimen is fixed.  

• Top plane can only move vertically. 

• Left and right edges are free. 
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Figure 74. This specimen was modeled by Solidworks® and Algor®  software as preprocessor, and then 
imported by ANSYS for analysis. The red lines are for calculating the strains. 

 

 
Figure 75. This wide specimen model has free horizontal edges, and fixed bottom. Top plane can only 

move vertically. Initial grip separation is 30mm. Shown at 100% strain. 
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Figure 76. The planar tension simulation provides a good estimate of the experiment response up to 200 
percent strain. The top image shows the full analysis and the bottom image provides a detailed view up 

to 60% strain. 
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Figure 77. The thickness change calculated from the strain in Figure 76 shows a decaying response as 
the strain increases. 

 

 

Figure 76 shows FEA simulation results, and Figure 77 shows thickness change in 

the specimen’s middle section. The theoretical values come from the relationship described 

in section 2.5.2. The FEA and theoretical value of thickness stretch appear in Figure 78, 

and show good agreement up to 50% vertical extensions. 
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Figure 78. If the FEA model with Ogden parameters does a good job predicting the response, the 
theoretical and FEA thickness stretches must be similar. The results show good agreement to 50% 

vertical extensions. 
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Another boundary condition imposed on the FEA planar tension model keeps left 

and right edges from moving horizontally; Figure 79 shows this condition. This forces ideal 

planar tension conditions throughout the model. The results tell us whether the model with 

free left and right edges—and therefore the physical specimen—is the right size to provide 

good planar tension data. 

 
 

 

Figure 79. This model has boundary conditions applied to the left and right sides.   
Because the left and right edges cannot move horizontally, planar tension conditions exist everywhere. 

Other boundary conditions are same as in Figure 75. 
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As a conclusion from Figure 80, the FEA model overpredicts with guessed shear 

curve. As shown in the next pages, free edge condition is more similar to the real test 

deformation behavior, and also FEA simulation shows it is close to the guessed shear test. 
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Figure 80. FEA simulation result according to the model in Figure 79 shows that it overpredicts 
compared to the free edge model in Figure 75. 
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One experimental finding is that the edge effect in the present planar tension 

specimen is significant. Figure 81 shows the free-edge curvature during an experiment. An 

FEA model with periodic boundary condition on the left and right edges represents an 

infinite model. Figure 82 shows a narrow model with these boundary conditions. As 

physical specimens become narrow, the center region that has 2λ  stretch at 1.0 is too thin. 

Most of the stress occurs within edge effect and does not contribute to the shear stress. 

 

 
Figure 81. The edge is bow-shape as predicted by FEA (in Figure 75). 

 
 

As a conclusion about the difference between bowed-edge and ideal plane strain 

condition, as in Figure 83, the difference of stresses between an infinite model and 10:1 

model is 4% at 100% deformation. The difference between an infinite model and 6.667:1 

model rises to 6.17%. Therefore, we can conclude the shear stress in a 7.2:1 model, which 

matched the present physical specimens made from 1035 resin, will be at least 4~6.17% 

low. 
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Figure 82. Periodic boundary conditions were imposed on left & right edges of the quarter planar-

tension model to check the free-edge effect on shear stress. 
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Figure 83. The FEA simulation for stress vs. strain of various aspect ratio specimens is shown. The 

stress error between an infinite model and a 10:1 model is 4%. The 6.67:1 model has stress 6.17% lower 
than the ideal condition. 
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5.1.3.3    Biaxial Extension Test  

 

The FEA equi-biaxial extension test used the same specimen size from ref. [54-56]; 

Figure 84 shows this specimen. The gripped regions—shown as grey color in Figure 84—

extend with equal strains. 

 

 

Figure 84. Schematic biaxial test specimen diagram shows key parameters for the test (after [56]). 
 
 
 

In conclusion, FEA simulation overpredicts equi-biaxial extension stresses (Figure 

85 and Figure 86).  

The thickness changes are also checked as in Figure 87, but as in Figure 88, 

thickness change estimated by FEA and theoretical values are not matched well. 
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Figure 85. FEA simulation shows 10% deformed equi-biaxial extension specimen. 
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Figure 86. FEA simulation over predicts the stress in the equi-biaxial test. 
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Figure 87. Thickness change from simulating the equi-biaxial extension test is shown.  This result was 
used to estimate thickness change in Figure 88. 
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Figure 88. The estimated strains in thickness show the differences between theoretical and FEA values 

are significant. The error between theoretical and FEA values at 7% biaxial strain is 4.48%, and at 
35% strain is 14.8%. 
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5.1.3.4    Uniaxial Compression Test 

 

According to ref. [95], uniaxial compression is equivalent to equi-biaxial tension for 

incompressible materials, and the conversion relationship is described in Section 2.5.4. For 

the uniaxial compression test the top and bottom specimen surfaces are lubricated to reduce 

or eliminate shear deformation. Then this test result can be converted into biaxial extension 

test. If the top and bottom surfaces are not lubricated, this test is not equivalent to biaxial 

extension. 

This FEA simulation (Figure 89) includes fixed (Figure 90) and lubricated surfaces 

(Figure 91) to check whether the compression test can approximate the equi-biaxial 

extension test. 

 

 

Figure 89. FEA model is imported from Algor®. Specimen size is: 25.3mm diameter X 17.8mm 
thickness 
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Figure 90. FEA simulation shows 30% compression strains for fixed boundary conditions. 
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Figure 91. FEA simulation shows 10% compression strains for lubricated surfaces. 
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Figure 92. Simulated compression test shows that non-lubricated surfaces produce significant error in 
an experiment that must stand in for biaxial extension. 
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Figure 93. Results from compress test are converted to equi-biaxial strains and stresses. 
 It shows biaxial test from lubricated compression test is matched until only 10% strains, while biaxial 

test from fixed compression test is not matched with guessed biaxial test curve.  
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5.1.3.5    Modified Hyperelastic Model for Biaxial Tension and Uniaxial Compression 

Test 

 

Since simulated biaxial test shown in Figure 92 and Figure 93 did not match well 

with the estimated biaxial curve, the biaxial test curve was modified to the new estimate 

shown in Figure 94. This new biaxial curve shows better agreement with the typical 

elastomer test data set in Figure 70. 
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Figure 94. Modified guessed biaxial curve is lower than the first estimate. 

 

The curve fitting software found new Ogden constants. Simple tensile test data, 

“originally guessed” shear test based on simple tensile data, and biaxial (modified guess) 

curves are used for curve fitting. 
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1μ =3.6567, 2μ =-0.0228219, 3μ =0.00558044 MPa 

1α =0.0841536, 2α =-1.5232, 3α =3.77668 

Using new Ogden constants, commercial ANSYS® software performed 3 FEA 

simulation sets for these hyperelastic tests: biaxial extension, uniaxial compression with 

fixed boundary conditions, and uniaxial compression with lubricated surfaces. 

 The FEA simulation models and boundary conditions are same as before. Figure 95 

shows the result. Biaxial test data calculated from lubricated compression test shows a good 

match with the guessed biaxial test.  

However, the simulated biaxial test and biaxial data calculated from dry surface 

compression overpredict the stress. Figure 95 shows these results.  
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Figure 95. FEA simulation results with modified biaxial curve. 

 The result shows biaxial data calculated from compression (lubricated) has good match with the 
guessed curve, while biaxial data (FEA) and biaxial from compression (fixed boundary) overpredict 

results. 
 

 
5.1.3.6    Simulation of Biaxial Extension Test using Circular Specimen 

 

For a complementary purpose, a new circular model from Axel paper [58] has been 

applied to new FEA simulation for biaxial extension test (Figure 96). 
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Figure 96. The biaxial tension model is a 50mm radius disk that is 2.8mm thick. This image shows the 
model at 20% deformation. 
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Figure 97. The simulation results for biaxial tension test using circular and square model. 
The result shows no difference between two models. 
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Figure 98. The FEA simulation over-predicts the biaxial extension stresses, that is, the model does not 
return the biaxial extension behavior supplied to the software. 
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From the simulation results so far, biaxial test simulation from circular specimen 

(Figure 97 and Figure 98) still overestimate the biaxial stresses over given biaxial strains. 

Then the square model from ref. [54-56] has been updated with the whole grip 

region included (Figure 99) while the last square model only shows the inside square’s 

deformation. 

 

 

Figure 99. Updated biaxial FEA model using ANSYS shows the model at left and the model at 20% 
strain at right. 1X magnified.  
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There is the region, near the specimen centroid, where horizontal and vertical 

stresses are identical. Figure 100 and Figure 101 shows the results from FEA simulation. 
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Figure 100. Strain distribution in the center of the square biaxial specimen shows that only data in the 
center is in equal biaxial extension. Result shows stresses from 15mm to 30mm are identical (at 10% 

strain). 
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Figure 101. As biaxial strain goes large, the identical region becomes smaller (at 40% strain shown). 
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Figure 102. FEA simulation result using updated biaxial extension specimen still overpredict the biaxial 
stresses over given biaxial strain. 

 

 

As shown in Figure 102, the simulation results in this work by commercial FEA 

software ANSYS®, and references [54-56] overestimate the biaxial stresses. As a 

conclusion, with these identical results, the biaxial test calculated from compression test 

will match better with the guessed curve. 
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5.1.4      Hyperelastic material characterization and simulation from 1035 resin 

 

The 1035 resin characterization used simple tensile test data from Section 5.1.1.2, 

planar tension-pure shear test data from Section 5.1.2, and guessed biaxial extension data. 

Section 5.1.2 showed planar tension test data is equivalent to pure shear data. 

The 4th order Ogden constants came from curvefitting software in ANSYS®. FEA 

simulations showing simple tensile, planar tension-pure shear, and lubricated compression 

equi-biaxial performance must return the same Ogden constants to prove that the data is 

consistent. The applicable stress/strain limits for the Ogden constants are discussed. 

 

5.1.4.1    Hyperelastic Curve Set from 1035 Resin Tests 

 

New hyperelastic test curves were prepared as Figure 103 shows. The simple tensile 

test curve is from Ewumi’s data [92], the pure shear curve is from the section 5.1.2, and 

biaxial curve is estimated from from pure shear curve. This curve set is different from 

typical elastomer stress-strain set in Figure 104. 
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Figure 103. Hyperelastic curves for 1035 resin are shown. Simple tensile test data and pure shear data 
from planar tension test are used. Biaxial curve is guessed based on pure shear test data. 
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Figure 104.  The curves above are different from typical elastomer stress-strain set (after ref. [94]) 
because the pure shear data only goes to 100% strain while simple tensile data goes more than 900% 

strain. 
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Commercial FEA software ANSYS® has a curvefitting software to find the 

material constants for hyperelastic models. For Ogden material, ANSYS® can find the 1st, 

2nd , 3rd , or higher order material property. In this work, the 3rd, 4th, 5th, and 9th order 

constants are found by curvefitting, see Figure 105~Figure 108. 

 

 

 

Figure 105. This captured image shows test results and fitted curve for the 3rd order Ogden constants 
from ANSYS® software. 
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Figure 106. This captured image shows test results and fitted curve for the 4th order Ogden constants. 
 

 

 

 

 



 

 

123

 

 

 

 

 

Figure 107. This captured image shows test results and fitted curve for the 5th order Ogden constants. 
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Figure 108. This captured image shows test results and fitted curve for the 9th order Ogden constants. 

 

As shown in Figure 105~Figure 108, the curvefitting results for the 3rd order Ogden 

constants shows large overshoot in less than 300% strain in tensile test. The curvfitting for 

the 4th, 5th, and 9th Ogden constants shows similar results. Next, FEA simulations 

performed to check the simulation results match well with fitted curve or not. 
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FEA simulation using the 3rd order Odgen constants for 1035 resin 

As described before, commercial FEA software ANSYS® has the curvefitting 

algorithm for hyperelastic material properity. The 3rd order Ogden constans found are 

1μ =3.29407868918E-5,  2μ =3.3208448391,   3μ =3.49915865219 MPa 

1α =5.00737571163,   2α =0.0517907194523,  3α =0.0520713215461 
 

FEA simulated simple tensile test, planar tension-pure shear test, and biaxial 

extension from lubricated compression test were performed to verify the 3rd order Ogden 

constants. Figure 109, Figure 110, and Figure 111 show the simulation results. 
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Figure 109. FEA simulated simple tensile test made with the 3rd order Ogden constants is shown.  

The FEA results matches well with the data curve from Figure 105 for huge strains that are not likely 
in this analysis. 
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Figure 110. FEA simulated planar tension-pure shear test results with the 3rd order Ogden constants 
also has good match with data from Figure 105 for strain under 0.75. 
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Figure 111. FEA compression test simulation results with 3rd order Ogden constants were converted to 

biaxial test and the data also shows good agreement with fitted curve. 
 
 
 

As a conclusion, FEA simulations using the 3rd order Ogden constants shows good 

match with fitted curve by curvefitting software. Now this result is compared to the 4th 

order constants to decide what constants will be used, on the following page. 
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FEA simulation using the 4th order Odgen constants for 1035 resin 
 
Commercial FEA software ANSYS® can find higher—4th or higher—order Odgen 

constants for hyperelastic material properity. The 4th order Ogden constans found are 

1μ = -3.80611293727, 2μ = 0.020180574353, 3μ = 7.9035829192, 4μ =7.93743654455MPa 

1α = 0.443685229869, 2α = 2.426861504, 3α = 0.122285224823, 4α =0.123151748913 

Similar to the 3rd order constants case in previous pages, Simple tensile test, planar 

tension-pure shear test, and biaxial extension FEA simulations from lubricated compression 

test are performed to verify the  4th order Ogden constants, see Figure 112~Figure 114. 
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Figure 112. FEA simple tensile test simulation results with the 4th  order Ogden constants shows the 
FEA results matches well with fitted curve in Figure 106. 
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Figure 113. FEA simulation of planar tension-pure shear test results with the 4th order Ogden constants 

also shows good match with fitted curve in Figure 106. 
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Figure 114. FEA simulation of compression test results with the 4th order Ogden constants were 

converted to biaxial test.  The data also shows good agreement with fitted curve. 
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As stated in Chapter II, elastomer’s complex and sensitive behavior makes it 

difficult to find the “near-perfect” model in for numerical and analytical investigations. But 

we still need to understand the chosen hyperelastic model’s advantages and disadvantages 

to prevent unexpected error and to get the best results possible. 

As a conclusion for hyperelastic material properties, the 3rd and 4th order Odgen 

constants matched well with fitted curve from ANSYS® software. It means we can get the 

expected results -almost same from curvefitting- from numerical simulations.  

From the candidates, the 4th order Ogden constants are selected for shear actuator 

FEA simulation because they are closer to the test curves, and used for this research 

hereafter. However, one must keep in mind that this Ogden constant set, when it is used for 

FEA simulations, has “overshoot” between 0~200% deformation in simple tensile test. The 

large deformation region—higher than 300%—in simple tensile test shows good agreement 

with real test data.  

Similarly, for the pure shear test, the 4th order Ogden constants matches well with 

real test data under 50% deformation. Because The shear actuator in this research shows 

less than 50% shear deformation, these constants are used for numerical simulation.  
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5.2        Behavior of Kevlar Fabric – Lens Element 

 

Kevlar fabric lens element itself is an actuator, so actuator performance curve must 

be determined by the test. For tensile lens element test with Kevlar fabric, Fray check® has 

been used to maintain the fabric’s integrity during the test (Figure 115). This test followed 

the procedure described in section 4.2.  

 

 

 
Figure 115. Fray Check® used for Kevlar fabric to maintain the integrity of specimen during the test. 
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Figure 116. Force vs. time plot of single pull-out test of Kevlar fabric. 

70% of the maximum force (1622.3 N) here is selected as the conservative force (1135.6 N) for tensile 
test of Kevlar fabric lens element. 
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Figure 116 and Figure 117 show force-time plot of Kevlar fabric and lens element, 

respectively. The result in Figure 118 shows nonlinear actuator characteristics. 
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Figure 117. Force-time plot of lens element pressurized by 0.651 MPa (95 Psi) is shown as an example. 
Applied pressures to lens element are 0.069 MPa, 0.138 MPa. 0.345 MPa, and 0.651 MPa. After the 

tensile force reaches the conservative force (1135.6 N) from single pull out test in Figure 116, the 
crosshead movement stopped and actuated for each pressures, then maintained with same pressure and 

returned to original position. The down curves due to each pressures are showing the actuator 
performance chart in next figure. 
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Figure 118. Force vs. displacement plot of Kevlar fabric lens element shows nonlinear actuator 

characteristics. 
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5.3        Experimental Evaluation of Shear Actuator Performance 

 

After finished curing in the mold (in section 3.3.1), the single shear actuator is 

pressurized to check its free strain behavior. After that, it is bonded to an aluminum block. 

The peak shear strain is measured by applying various pressures. 

 

5.3.1      Behavior of shear actuator when pressurized 

 

As shown in Figure 119, and Figure 120, the pressurized single shear actuator 

shows rotating behavior before clamped to an aluminum block. 

 

5.3.2      Pressure vs. free strain relationship 

 

The shear actuator is bonded to the aluminum block. To measure the free shear 

strains, it is actuated up to 1.241 MPa (180 Psi). At this pressure, small leak occurred at the 

clamping area, so measurement was not performed at this pressure level. Below 1.241 MPa, 

there was almost no leak. 
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Figure 119. Without clamping bottom, the actuator shows rotating behavior. 

Front view of actuator; without pressure (top), pressurized (bottom) 
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Figure 120. Isometric view of the actuator is showing also the rotating deformation behavior; 

 without pressure (left), pressurized (right) 
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Figure 121. This picture shows the top view of the single element shear actuator before actuation. 
 
 
 

 
Figure 122. Single shear actuator is pressurized with 0.67 MPa (96.5 Psi). 

 Shear amount is shown red and original line is shown in blue. 
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Figure 121 shows the top view of the shear actuator. At each pressure level (0.138, 

0.276, 0.414, 0.552, 0.67, 0.827, and 1.034 MPa), top side free deformation is measured as 

in Figure 122. Free shear deformation at each pressure is calculated as in Figure 123. The 

result shows single shear actuator shows peak free strain up to 34% when pressurized with 

1.034 MPa. 
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Figure 123. Pressure-shear strain plot represents that the single shear actuator shows more than 34% 
free shear deformation pressurized with 1.034 MPa. Reference height to calculate shear strain amount 

is 12mm. 
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5.4        Numerical Analysis of Single and Multi-Cell Behaviors 

 

A single-shear direction model two-shear direction model is considered as the unit 

cell. The free strain behavior is described. Work performance are calculated using 

conventional work density and scientific work density. The multi-cell behavior is also 

simulated, based on single-direction model and two-direction model. 

 

5.4.1      Application of failure criteria 

 

As described in the section 2.6, rubber’s fracture/failure modes include  

(1) horizontal cracks occur near the bonded edges  

(2) horizontal cracks occur in the free surface  

For the free strain case, the criterion for internal rupture is [61] 

 
EP

4
3

max >−  ( 34) 

where maxP− is the maximum negative pressure developed in the block. 

• Material properties of soft polyurethane matrix: from tensile test with 1035 resin. 

- 100% secant modulus: 0.060023 MPa 

- Poisson’s ratio:            0.499999 (assumed from incompressibility condition) 

• Material properties of Kevlar fabric element from Mr. McCutcheon’s test data 
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- Young’s modulus : 100GPa 

- Poisson’s ratio :      0.35 

So the pressure inside the lens to make the matrix’s hydrostatic pressure correspond 

to 0.04502 MPa needs to be determined. 

For blocked stress case, the maximum shear stress developed near the bonded 

edges, should be not exceed G, i.e. that the maximum shear deformation should not exceed 

about 100%. This is applied to each shear actuator analysis case. 

By the failure criterion above, allowable actuation pressure inside lens for single 

shear actuator (without periodic boundary conditions) is 

• For blocked stress: 14.77 MPa (= 2141.1 PSI = 147.7 Bar) 

• For free strain: 1.2 MPa (=174 PSI = 12 Bar) 

For twin shear actuator, maximum allowable actuation pressure inside lens for twin 

shear actuator (left lens pressurized only) is 

• For blocked stress: 15.31 MPa (= 2220.45 PSI = 153.1 Bar) 

• For free strain: 2.35 MPa (=340.998 PSI = 23.53 Bar) 

 

 
 
5.4.2      Behavior of shear actuator 

 

Two shear actuators are considered. The first one is single-shear direction model. It 

has only one lens element, and called single shear actuator hereafter. Second is two-shear 
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direction model. It has two lens element, and can shear for left or right direction according 

to what lens is pressurized. 

 

5.4.2.1    Single Shear Actuator 

  

Single-shear direction actuator FEA simulations show that the deformation behavior 

is near perfect simple shear at lower pressure (Figure 124). Also with increasing pressure, 

the shear deformation is still dominant as in Figure 125. Figure 126 shows free shear strain 

vs. pressure plot. 

 

Figure 124. Free strain behavior of single shear actuator at 0.055 MPa (7.93 Psi) shows simple shear 
deformation. Boundary conditions are  fixed bottom (Top, left & right edges are free) 
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Figure 125. Free strain deformation behavior of single shear actuator with 1.09 MPa (158.6 Psi) shows 
shear dominant motion. Boundary conditions are same as in Figure 124. 
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Figure 126. Free (peak) shear strain vs. pressure plot from nonlinear FEA simulation of single shear 
actuator shows 14.2% peak shear strain with 16.4 MPa. Boundary conditions are same as in Figure 124 

and Figure 125. 
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Figure 127. Free strain behavior of single shear actuator at 0.055 MPa (7.93 Psi) shows simple shear 
dominant deformation when periodic boundary conditions imposed on left & right edges. 

Other boundary conditions are same as before. 
 

 

Figure 128. Free strain deformation behavior of single shear actuator at 1.09 MPa (158.6 Psi) shows 
still shear dominant motion. Boundary conditions are same as in Figure 127. 
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Figure 127~Figure 129 show the free strain behavior when periodic boundary 

conditions imposed on left and right edges. 
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Figure 129. Free (peak) shear strain vs. pressure plot of single shear actuator is shown when periodic 
boundary condition imposed. Peak strain reaches 16% with 16.4 MPa this case. 

 
 
5.4.2.2 Twin Shear Actuator 

 

In this work, only left lens in twin shear actuator is pressurized, and twin shear 

actuator is showing shear in right direction (Figure 130 and Figure 131). 

 

Figure 130. Twin shear actuator model shows pressure is applied to the left lens element. 
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Figure 131. Left lens element is pressurized for this two direction shear actuator. 
Blocked stress state is shown top, and free strains is shown at bottom. 
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5.4.3      Work performance of shear actuator 

 

In this section, work performance is calculated as work per actuator unit volume. It 

started with single-shear actuator work density, calculating both conventional work density 

and scientific work density. The values are compared to the existing actuating materials 

from the reference (Figure 132 and Figure 133). Same procedure is applied to two-direction 

shear actuator and find work performances. 

 

5.4.3.1    Work Density of Single Shear Actuator 

 

 

Figure 132. To calculate work density, prescribed displacements are imposed to the FEA models. 
This picture shows an example of given 2% shear strain on the top plane. Other boundary conditions 

are  Bottom fixed, top Uy (horizontal move) fixed, and left & right edges are free. 
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Figure 133. This actuator performance chart [40] is based upon industrial convention, which is 
calculated from blocked stress and free strain of the actuator. For single shear actuator, conventional 

work density is 228.9 KJ/m3 (=0.229 MJ/m3),  and shown as a dot in right side. 
It shows the work density line of single shear actuator is slightly less than shape memory alloy, but is 

much higher than piezoelectrics and magnetostrictor. 
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Figure 134 shows scientific work density of single-shear actuator. 
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Figure 134. By scientific calculations, work density reaches 75.8 KJ/m3  for single shear actuator. 
This is lower than the conventional density as expected because the integration area (force-

displacement) to calculate work density is smaller than conventional work density. 
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5.4.3.2    Work Density of Twin Shear Actuator 

 

Twin shear actuator work density is calculated in a similar manner to single shear 

actuator. For conventional work density in Figure 135, this actuator has lower blocked 

stress than shape memory alloy, thermal expansion, magnetostrictor, and hydraulic, but 

higher blocked stress than piezoelectrics, pneumatic, muscle, solenoid, and moving coil 

transducer. 

The free strain is higher than shape many existing actuating materials, for example, 

shape memory alloy, magnetostrictor, and piezoelectrics. For the work density values, it is 

slightly less than shape memory alloy, but higher than magnetostrictor, thermal expansion, 

and piezoelectrics. 

Figure 136 shows scientific work density of twin shear actuator. 
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Figure 135. For twin shear actuator, by industrial convention [40], work density is 248.2 KJ/m3 

(=0.2482 MJ/m3). It is shown as a dot in right side. This actuator has almost same work density as shape 
memory alloy, and higher than magnetostrictor, thermal expansion, and piezoeletrics. 
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Figure 136. By scientific calculations, work density reaches 37.5 KJ/m3 for twin shear actuator.   
Similar to single shear actuator case, the scientific work density is smaller than conventional work 

density. Also note that the scientific work density of twin shear actuator is smaller than single shear 
actuator because the volume of actuator is as twice as the single shear actuator. 

 
 



 

 

153

5.4.4      Power vs. efficiency of single and twin shear actuator 

 

According to the ref. [40], volumetric power and efficiency is defined as follows. 

• Volumetric power (p): The mechanical power output per unit initial volume in 

sustainable cyclic operation. 

• Efficiency (η): The mechanical work output-energy input ratio during a complete 

cycle in cyclic operation. 

For estimating volumetric power, the operating frequency for both single and twin 

shear actuator is assumed as 2 Hz.  

Now calculation examples for single actuator are shown a s the following. The 

results is summarized in Table 5. 

• Work density, single shear actuator = 228.8813 KJ/m3  

• Power: sJW /11 =  

• So, volumetric power (= power output per unit volume) = 457.76269 KW/m3 

                                                                                             = 457762.69 W/m3 

•  For energy input, as shown in Figure 137, energy input per unit volume is 1237.7  

    KJ/m3, and mechanical work output per unit volume for single actuator is 228.8813  

    KJ/m3. 

• Therefore, efficiency for single shear actuator is 1849.0
7.1237

8813.228
= . 
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The calculation examples for twin actuator is as the following  

•  Volumetric power = 248.216 KJ/m3 ×  2 Hz (= 2 cycles/s) 

                                       = 496.43 KW/m3 = 496431.3 W/m3         

• And efficiency for twin shear actuator is  

1734.0
67.1431
22.248

==
volumeunitperinputEnergy

volumeunitperoutputworkMechanical . 

The estimated power vs. efficiency is shown in Figure 138. The power is lower than 

piezoelectrics because piezoelectric actuator has lower blocked stress, but much higher 

operating frequency. 

Also the shape memory alloy power is higher than shear actuator because shape 

memory alloy has significantly high blocked stress. 
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Table 5. Power and efficiency estimations for single and twin shear actuator 

 Single Twin 

“Guessed” operating frequency 2 Hz 2 Hz 

Work density (using industrial 

convention) = mechanical work output 

per unit volume 

228.8813 KJ/m3 248.2257 KJ/m3 

Volumetric power 

(= power output per unit volume) 

457762.69 W/m3 

= 457.76 KW/m3 

= 0.4578 MW/m3 

496431.3 W/m3 

= 496.431 KW/m3 

= 0.4964 MW/m3 

Energy input per unit volume 1237.7 KJ/m3 1431.67 KJ/m3 

Efficiency 0.1849 0.1734 
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Figure 137 shows energy input for single and twin shear actuator, and Figure 138 

shows volumetric power and efficiency. 
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Figure 137. These pictures show energy input to calculate the efficiency in 
 

Table 5 for the single (top) and twin (bottom) shear actuator.  
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Figure 138. Volumetric power and efficiency chart (after [40]) is shown. The single and twin actuator is 
shown as square and diamond, respectively, in the right side. The piezoelectrics has higher operating 
frequency so it has higher power than shear actuator even though blocked stress of piezoelectrics are 
low. The shape memory alloy has higher blocked stress so the power of shape memory alloy is higher 

than shear actuators. 
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5.4.5      Numerical simulations of multi-cell array 

 

Repeated single shear actuator array (1, 3, 5, 7, 9, 11, and 13 unit cells), and twin 

shear actuator (2, 6, 10 unit cells) are modeled and simulated. The maximum shear strains 

and work densities are obtained from FEA simulations to predict the array’s behavior. 

 

5.4.5.1    FEA Model of Array with Single and Twin Shear Actuator 

 

This section shows the FEA models used to simulate the array behavior using single 

and twin shear actuator (Figure 139, Figure 140, and Figure 141). 

 

 

 

 
Figure 139. This array of shear actuator is composed of 3 singles. The box shows unit cell. 
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Figure 140. This picture shows FEA models of array of shear actuator – 5, 7, and 11 shear actuators. 
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Figure 141. Array of shear actuator composed of 6, 10, 14 shear actuators.  
Please note that 14 actuator model was running for free strain case only as in Figure 143. 
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5.4.5.2 Work Performance of Multi-Cell Array 

 

To predict multi-cell array performance, the shear strain and work performance of 

the single shear actuator in Figure 139 and the twin shear actuator in Figure 141 is shown 

below. Please note that the performance of the unit cell is shown so that we can see if solo 

and array performance differ; we want the whole array performance. 

For single-shear actuator arrays, the center unit cell shear strains remain constant 

after 7 cells are in the model. The work density reaches the highest value at 5 cells, and 

converges to the same value for whole actuator and unit cell. Figure 142 shows this 

information. 

For arrays containing twin-shear actuator, the center unit-cell shear strain and work 

density becomes constant after 6 cell-twins actuator. Figure 143 shows the change in this 

values with increasing model size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

162

 
 
 

0

5

10

15

3 5 7 9 11 13

Number of cell

Sh
ea

r s
tr

ai
n 

(%
)

Wholel actuator
Unit cell

 
 

0

10

20

30

40

3 5 7 9 11 13

Number of cell

W
or

k 
de

ns
ity

 (K
J/

m
3 )

Whole actuator

Unit cell

 
Figure 142. Maximum shear strain; work density vs. number of cells of single shear actuator is shown. 
The shear strains remain constant after 7 cells. The work density reaches the highest value at 5 cells, 

and converges to the same value for whole actuator and unit cell. 
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Figure 143.  Maximum shear strain; work density vs. number of cells of twin shear actuator is shown. 
The shear strain and work density held constant after 6 cell twin actuator. 
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CHAPTER VI 

 

INTEGRATION INTO THE STRUCTURAL APPLICATIONS 

 

6.1        Application to the Structural Panel 

 

The triangular beam is modeled in this chapter. The nastic actuator and 

conventional motor provide power to twist the beam. To estimate the efficient and powerful 

way, each mechanism’s work performance, power, and price are analyzed and compared. 

 

6.1.1 Split beam model - the beam with monolithic rubber block  

 

The split beam is made with aluminum. The monolithic elastomer block, 

representing the nastic actuator, is applied between the split (Figure 144, Figure 145, and 

Figure 146). The aluminum beam—aluminum Alloy 6061-O[96]—has material properties: 

• Young’s modulus : 68.947 GPa 

• Poisson’s ratio :      0.33 

Von Mises stress criteria provides this beam’s failure stress (Figure 145). The yield 

stress of Aluminum alloy 6061-O is 48.3 MPa ([97]). Maximum Von Mises stresses at each 

node are compared to the yield stress. 
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Figure 144. FEA model of split beam with rubber block model is shown in isometric view. 
 
 

 

Figure 145. Von Mises stress distribution is shown at applied pressure 48.9 MPa. 
 
 



 

 

166

The failure criteria applied to split beam model. The maximum twist angle 

correspond to this criteria is 12.76° (0.051° per unit length), and the deformation state in 

this twist angle is in Figure 146. 

 

 

Figure 146. Front view of split beam with monolithic rubber block is shown; 
(Top) undeformed model, 

(Bottom) Deformed model (12.76° rotated) pressurized with 50.6 MPa. 
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The conventional work density is calculated from the maximum allowable actuation 

stress and actuation strain. The split beam/nastic actuator’s conventional work density is 

1.127 MJ/m3, which appears as a dot in Figure 147. 

 

 

Figure 147. Conventional work density for split beam is 1.127 MJ/m3 (actuator performance chart 
drawn after [40]) The nastic actuator is shown as a dot in right side. It has same or higher work density 

than most of existing actuators including shape memory and piezoelectrics. 
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Figure 148. Scientific work performance of the beam with nastic actuator reaches 59.7 KJ/m3. Although 
work value is lower, work density is bigger due to smaller volume of the actuator. 
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Scientific work density for the split beam with nastic actuator shows 59.7 KJ/m3 

(Figure 148). The equation to calculate scientific work density is the following  

• For both nastic actuator and conventional actuator (motor) 

3
3 /
)(

)( mMJ
mmDepthHeightBase

radianmmN
Volume

angleTwistmomentreaction
=

××
×⋅

=
× α  

 

6.1.2 Conventional triangular beam model 

 

Triangle beam with conventional motor and rod is modeled (Figure 149). The 

triangle beam uses same Aluminum Alloy 6061-O as the split beam with nastic actuator in 

previous section. 

The material used for the rod is AISI 1010 Steel, cold drawn (low carbon steel). The 

material property is as the following [98] 

• Young’s modulus 205 GPa 

• shear modulus 80 GPa 

• Poisson’s ratio 0.29 

• Yield strength 305 MPa 

For triangle beam with conventional motor and rod, the torque required the twist 

beam same angle (12.76°) as the nastic actuator is as follows. 

• Torque required (N•mm)=26604.88N•mm=27.15Kgf•mm 

Maximum motor power output 27.15Kgf•mm×46rpm/974=1.282107KW 
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Two motor candidates were selected. One can provide higher power, but expensive. 

The other can provide the torque only about half as needed, but it is much cheaper. 

• Motor 1: High-Torque Face-Mount Air-Powered Gear motors [99] 

  Gives more torque needed (1.384 KW), Price: $3476, 

• Motor 2: DC gear motors [99] 

  Gives half the torque needed (0.605 KW), Price: $607. 

 

 

Figure 149. This picture shows equivalent model of cylinder inside the beam. 

 

Figure 150 and Figure 151 show the work value and work density from 

conventional beam-motor systems, respectively. 
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Figure 150. The work value is calculated for conventional beam-motor system. 
 Please note that work value (9416.36 N•mm•radian) is much higher (2904 %) than work of nastic 

actuator (313.42 N•mm•radian) from Figure 148. This means conventional actuator system needs much 
more work to twist the beam as the same angle as nastic actuator. 
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Figure 151. Work performance of equivalent model: Work vs. twist angle (top), work density using 
motor1 (Middle), work density using motor2 (Bottom). The work density values are much smaller than 
the nastic actuator. In calculation, the work density (work per unit volume) of nastic actuator is as high 

as 2280~8471% than the conventional actuators using electric motors. 
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6.2        Work per Unit Mass of Each System 

 

In this research, actuating system work performance refers to the work density as 

work per actuator unit volume. However, the work density as work per unit mass (Figure 

152) of the actuator is also an important factor for actuating system, especially for aircraft 

or space vehicles because their weight is constrained. 
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Figure 152. Work per unit mass (split beam with nastic actuator) is shown. 
 As a conclusion, work per unit mass of nastic actuator is as high as 2592~13900% than electric motor 

system (Figure 153) because nastic actuator uses much lighter material than motors. 
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6.2.1      The weight of the nastic actuator for split beam 

 

• Calculation of the mass of rubber block 

- FMSC 1035 Polyurethane; Gallon kit – Net. Wt. 16 lbs=7.2576Kg 

                                           1 Gallon = 3.7854 l = 3.7854×106mm3. 

- Density of 1035 polyurethane= 7.2576Kg/(3.7854×106mm3)=1.9173×106Kg/mm3 

- Density of rubber block (shear actuator) = 6000 mm3. 

Therefore, weight of rubber block = Density×Volume=0.0115 Kg. 

• Weight of Kevlar fabric; 6.5 oz per square yard. 

  We need 55.8 in2 Kevlar fabric. By the unit conversions and calculations, the weight 

of Kevlar fabric is 0.00793388 kg. 

• Weight of tube fitting; 0.01 g.  

   We need 250 fittings, so total weight of tube fitting=2.5g=0.0025kg 

• Weight of nylon tube per unit length; 7.112×10-6 kg/m 

   We need 5” long tube for each single actuator, so for 250 cells, 104.17 ft = 31.7514m 

needed. Therefore, total weight of nylon tube = 0.00022582kg 

• Total weight of nastic actuator = rubber block+Kevlar fabric+tube fitting+nylon tube 

                                                    =0.02216 kg 
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Figure 153. Work per unit mass for split beam with conventional actuator are shown; 
(top) motor 1, (bottom) motor 2. Comparison with nastic actuator is discussed in Figure 152. 
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6.2.2      Calculation of the weight of the conventional beam 
 

• Weight of the rod (AISI 1010 Steel) = 2.967 Kg 

• Weight of the triangular beam (Aluminum Alloy 6061-O) = 0.65475 Kg 

• Weight of the motor; Motor 1 = 15.4 Kg (equivalent model from other supplier) 

                                     Motor 2 = 92.7 Kg                                  

Therefore, total weight of the conventional beam; Motor 1 = 19.02 Kg 

                                                                                Motor 2 = 96.32 Kg         

Work per unit mass for split beam with conventional actuator is shown in Figure 

153. 

 

6.3        Price of the Triangular Beam Systems 
 

The prices for each actuating system are based upon the estimate of commercial 

product, mostly from web-based merchandizing sites, and are shown in Table 6 and Table 7. 
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Table 6. Nastic actuator (rubber-block) 

Part Supplier Unit price EA Total 

Freeman 1035 

Polyurethane 

Freeman 

Supply 

$96.55  

per Gallon kit 
1 Gallon $96.55 

Double pinch hose 

and tube clamp 
McMaster 

$8.00 

 per pack of 25 

10 Pack 

(250 EA) 
$80 

Nylon tube McMaster 
$22.40 

26” long 
10 $16.67 

Toy Balloon  
$1.00 (assumed) 

Per pack of 10 
25 $25.0 

Kevlar fabric  

$13.00 

8 inches wide by 13 feet 

long 

1 
$13.00 

 

Total: $231.22 
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Table 7. Conventional beam with motors 

Part Supplier Unit price EA Total 

Steel rod Freeman Supply 

$22.30 

16mm diameter and 

304.8mm long (12”) 

1 $96.55 

Motor1 McMaster  $3476 1  $3476 

Motor2 McMaster  $607 1  $607 

Total: $3572.55 (Motor1) 

$703.55 (Motor2) 

 

As shown in the tables above, the nastic actuator is much cheaper than the 

conventional system, especially due to the high price of the motors. The work per unit mass 

vs. prices of each system is shown in Figure 154. The nastic actuator shows higher work 

performance and lower price than the conventional actuating systems. 
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Figure 154. Work per unit mass vs. Price of the system is shown. The price of nastic actuator is much 
cheaper than conventional actuating system with motors as 204~1445%. 

 
 
 
6.4        Power Output for Triangular Beams 

 

As commented in the previous chapter, the power of the system is defined as 

      Power: 1W = 1 J/s  

To calculate the power, the operating frequency is assumed as 1 Hz for triangular 

beams. In both aspects of power outputs (volumetric power and power per unit mass), the 

nastic actuator shows much superior performance than the conventional actuator systems 

(Figure 155). 

• For volumetric power (power output per unit volume) 
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    - Nastic actuator (rubber block): 59.7 KW/m3 

  - Conventional beam, Motor 1:   2.576 KW/ m3 

                                      Motor 2:   0.686 KW/ m3 

• For power per unit mass, 

- Nastic actuator: 14.14 W/kg 

   - Conventional beam, Motor 1:   0.513 W/ kg 

                                      Motor 2:   0.0984 W/kg 
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Figure 155. Power per unit mass vs. Price of the system is shown. 
The power per unit mass of nastic actuator is 2217~8602% higher than conventional actuating system 

with electric motors. 
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6.5 Summary 

 

As a conclusion, the nastic actuator has much superior work performance and power 

compared to the conventional actuator. Conventional actuators using commercial electric 

motors need 3047% higher input force to implement same degree of twist angle than the 

nastic actuator. Please note that if we use the work calculation for reaction forces of the 

beams, the work will be almost identical for nastic and conventional actuator because twist 

angles are same. The work performance (work per unit volume) of nastic actuator is 

2280~8471% higher than conventional actuator because the volume of nastic actuator is 

much smaller than the conventional actuator using electrical motors. This means nastic 

actuator is much efficient than conventional actuator. 

Another measure of work density is work per unit mass. This definition of work 

performance is important for aerospace vehicles, especially for satellites because of their 

weight constraints. Nastic actuator is also 2592~13900% higher performance than 

conventional actuator because the actuator is composed of much lighter materials. 

For volumetric power, the nastic actuator is 2217~8602% higher than conventional 

actuators. Also the nastic actuator is 2656~14269% higher than conventional actuators for 

power per unit mass. 

Even with higher performances, the price of nastic actuator is much cheaper 

(204~1445%) because of the high prices of the electric motors for conventional actuators. 
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As with the comparisons above, the nastic actuator might be helpful to the industrial 

world to save energy and materials, as well as the costs when applied to real applications, 

for example, commercial structures. 
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CHAPTER VII 

 

CONCLUSIONS, APPLICATIONS, AND FUTURE WORK 

 

This chapter presents the conclusion from experiments and analysis of nastic shear 

actuator, some possible applications, and suggested future work for structural application 

by implementing micro-actuation technology. 

 

7.1        Conclusions 

 

The lens shaped element is designed by first-order geometric analysis, and is 

embedded into the polymer matrix. The lens element is made from Kevlar fabric, and soft 

polyurethane made the matrix. 

The hyperelastic material property has been found experimentally and numerically. 

Simple tensile test and planar tension test have been performed to characterize hyperelastic 

material property of matrix. Optical measurement shows planar tension test results can be 

converted to pure shear data. Biaxial test is guessed from typical stress-strain relationship 

of elastomer, and added to set of hyperelastic material curves. Though the good fitting 

throughout the whole deformation range is difficult due to the complex nature of elastomer 

material, the Ogden material constant set is shown good agreement within the working 

range of shear actuator. 
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A single-element shear actuator is fabricated, and tested free strain behavior. Peak 

shear strain is over 30% when pressurized with 1.03 MPa. 

Unit cell and the array of single-direction and two-direction shear actuator is 

modeled to check the single and multi-cell behavior. Work performance and power of the 

actuator are calculated from numerical analysis. The performance of the array shows 

consistent property after 5 or 7 repeated unit cells. 

The application of nastic actuator to the structural beam shows its advantage 

compared to the conventional actuating mechanism. The work performance, power, and the 

prices of the nastic actuator system is estimated much higher, by the order of 103 or 104, 

than the conventional electric motors. 

 

7.2        Applications  

 

One of the possible applications is the novel aerospace vehicle using tilt-rotor 

system (Figure 156). The nastic actuator can provide quick shape change during the 

operations, that is stilly carrying the structural loads.  

Also, the variable (controllable) pitch propellers (Figure 157) for aircraft and ships 

can be the applications. As the direction and speed of the vehicle change, the nastic actuator 

can provide more flexibility to the vehicle, quick response, and save the fuels. 
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Figure 156. V-22 Osprey [100] 

 
 
 

   
Figure 157. Variable (controllable) pitch propellers [101]; Aircraft (left) and Ship (right) 
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Another possible application is for offshore industry. For an oil well or oil platform 

(Figure 158), the blowout preventer (BOP) in Figure 159 is used to close the valve if gas 

overpressure is significant. This might keep the platform and lives of oil workers. 

The requirement for blowout preventer is to have fast response time and large 

blocked pressure. From the characteristics of nastic actuator, it will be worth to condider 

the application for this area. 

 

 
Figure 158. An offshore oil/gas platform ([102]) 
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Figure 159. A blowout preventer ([103]) 

 
 

7.3 Future Work 

 

In consideration of hyperelastic material tests, equi-biaxial extension test is not 

performed, and is substituted by FEA simulations in this study due to the limitation of the 

testing machines. Implementation of this test can make a whole set of hyperelastic tests, 

and might enable better fitting of hyperelastic material constants. 

In this work, nastic actuator has applied to a split beam. The various shapes of 

structural applications, for example, sandwich panel using nastic actuator core, can be 

designed. It might make more efficient way for the structures with specific deformation 

behavior required. 
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Finally, the actuation mechanism of micro cells might be the issue when embedded 

in moving vehicles. The concept of active protein actuation by Sundaresan and Leo [50, 52, 

53] was explained in Chapter II. Here in this work, a proposed concept of micro-actuation 

called “closed cell gas generation” [2, 104] is considered. 

 

7.3.1        Actuation of micro cell by closed cell gas generation 

 

By using Ni-H2 battery technology, hydrogen (H2) gas is generated with electrolysis 

for actuation. This technology controls the volume of cells from electrochemical production 

of gases. The calculation example for checking the advantage of application follows. 

• The change in actuator volume is ( VΔ )=0.04624 cc from lens volume change of 

single shear actuator 

• Maximum actuation pressure for single shear actuator ≈ 15 MPa. 

• If we assume the operating frequency as 1 Hz, then volume flow rate is  

fV ×Δ =0.04624cc/sec. 

• The corresponding number of moles of H2 can be calculated from ideal gas law  

  (assume room temperature) is  

410939.2 −×==
TR

PVn mol 

• 2n moles of electron need assume 100% conversion efficiency, and 96,485  

Coulombs to create one mole of electrons. 2Fn=15 Ams/actuator. 

• Corresponding power density is 12779.3W/m3. 
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• For conventional hydraulic oil actuator with 15.48MPa and 0.04624cc volume  

change, and assuming 0.8 pumping efficiency, resulting power is 0.895 W/actuator. 
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