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ABSTRACT

Performance Analysis of Signal-to-Noise Ratio (SNR)

Estimates for Additive White Gaussian Noise (AWGN)

and Time-Selective Fading Channels. (December 2008)

Huseyin Peksen, B.S., Cankaya University, Ankara,Turkey

Co–Chairs of Advisory Committee: Dr. Erchin Serpedin
Dr. Khalid Qaraqe

In this work, first the Cramer-Rao lower bound (CRLB) of the signal-to-noise

ratio (SNR) estimate for binary phase shift keying (BPSK) modulated signals in

additive white Gaussian noise (AWGN) channels is derived. All the steps and results

of this CRLB derivation are shown in a detailed manner. Two major estimation

scenarios are considered herein: the non-data-aided (NDA) and data-aided (DA)

frameworks, respectively. The non-data-aided scenario does not assume the periodic

transmission of known data symbols (pilots) to limit the system throughput, while

the data-aided scenario assumes the transmission of known transmit data symbols

or training sequences to estimate the channel parameters. The Cramer-Rao lower

bounds for the non-data-aided and data-aided scenarios are derived. In addition, the

modified Cramer-Rao lower bound (MCRLB) is also calculated and compared to the

true CRLBs. It is shown that in the low SNR regime the true CRLB is tighter than

the MCRLB in the non-data-aided estimation scenario.

Second, the Bayesian Cramer-Rao lower bound (BCRLB) for SNR estimate is

considered for BPSK modulated signals in the presence of time-selective fading chan-

nels. Only the data-aided scenario is considered, and the time-selective fading channel

is modeled by means of a polynomial function. A BCRLB on the variance of the SNR
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estimate is found and the simulation results are presented.
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CHAPTER I

INTRODUCTION

The main scope of this thesis is to analyze the performance of the signal-to-noise ratio

(SNR) estimates in additive white Gaussian noise (AWGN) and time-selective fading

channels through comparisons with theoretical performance benchmarks. First, the

Cramer-Rao lower bound (CRLB) and modified CRLB will be used to analyze the

performance of the SNR estimate in AWGN channels. Then the performance of

the SNR estimate in time-selective fading channels will be analyzed by deriving the

Bayesian-CRLB (BCRLB). The concepts and terminology necessary to conduct this

analysis will be discussed in the following sections.

A brief description of SNR will help the reader to understand the answers of the

following questions. What is SNR? What are the applications of the SNR? The sim-

plest definition of the SNR is that of the ratio between the signal power to the noise

power. Most of the times, this ratio is measured in decibels (dB). SNR is one of the

most fundamental measures to characterize the performance of a communication sys-

tem. For instance, bit error rate can be calculated from the knowledge of SNR at the

receiver side. In general, the higher this ratio is the better the performance achieved

by the communication system. The knowledge of the SNR can be utilized in many

areas such as image and video transmission and processing, mobile communications,

satellite communications and so on. Therefore, deriving efficient SNR estimators is

an important task for any communication engineer.

After this brief description of SNR, the reasons to estimate SNR will be next

explained. It is easier to compute the SNR if the signal power or noise power is

The journal model is IEEE Transactions on Automatic Control.
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known at the receiver. However, in most cases, such an information might not be

available at the receiver site. Most of the times neither the signal power nor the

noise power is known, so the estimation should be done for both of these parame-

ters. Numerous papers can be found in literature about SNR estimation in different

scenarios and many of them focus on finding the most accurate estimator. In gen-

eral, an accurate estimate of SNR is required for saving energy in many applications.

Thus far, a large number of different estimation techniques (Split-Symbol Moments

Estimator (SSME), Maximum-Likelihood (ML) Estimator, Squared-Signal-to-Noise

Variance (SNV) Estimator, Moments Method (MM) Estimator, Signal-to-Variation

Ratio (SVR) Estimator) have been proposed to build SNR estimators. Reference

[1] presents an excellent overview of the main SNR estimation algorithms proposed

recently in the literature.

SNR estimators can be categorized into two classes: data-aided (DA) and non-

data-aided (NDA). DA estimators make use of the knowledge of the transmitted

data symbols while NDA estimators do not assume knowledge of data symbols. In

general, DA estimators perform better than NDA or blind estimators. However,

DA SNR estimators can be applied only if known data symbols are available. On

the other hand, the NDA estimators present the advantage of not decreasing the

throughput of the communication system, and therefore they are also known as “in-

service” estimation techniques [1]. References [2]-[3] present a good overview of the

DA and NDA estimation techniques. Both classes of estimators will be applied to

our models in the next chapters of this thesis.

The performance analysis of the SNR estimates represents the main focus of

this thesis. In general, the performance of an unbiased estimator can be found by

placing a lower bound on its variance. By placing lower bounds on the variances

of these estimators, the performance of these estimators can be compared with well
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defined performance benchmarks and a hierarchy in terms of performance could be

established among different SNR estimators. Many bounds exist in the literature

such as McAulay and Hofstetter 1971, Kendall and Stuart 1979, Seidman 1970, Ziv

and Zakai 1969 (see e.g., [4]). In general, CRLB is easier to compute in terms of

complexity. CRLB is a lower bound on the error variance of unbiased estimators.

CRLB was first derived by Cramer and Rao, [5], [6].

In practice, it is highly desirable to design unbiased estimators with variances

equal or very close to CRLB. In [7], the CRLBs for SNR estimators for BPSK and

QPSK modulated signals were derived. This represents a fundamental reference but

important details of the CRLB derivation were not fully disclosed. The technical

details of the reference [7] will be presented in Chapter II, and additional novel results

will be derived as well.

The modified Cramer-Rao lower bound (MCRLB) represents another lower bound

which was introduced in [8]. The relationship between CRLB and MCRLB was also

introduced in this reference. Some insights and details about MCRLB will be dis-

cussed in Chapter II. It is known that MCRLB is in general a looser bound than

the CRLB, but it is easier to obtain. Being easier to compute makes MCRLB useful

for numerous practical applications for which the derivation of the exact CRLB is

either impossible or computationally prohibitive. Notice also that the vectorial form

of MCRLB was presented in [9].

The true CRLB and the modified CRLB are not suited for assessing the per-

formance of algorithms dealing with time-varying parameter estimation, since these

bounds can only be applied to non-random parameters. The main reason for this is

the fact that the statistical dependence between the amplitudes of channel gain at

different instants is not taken into account by the true and the modified CRLBs.

In time-varying channels, the parameter vector to be estimated has to be con-
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sidered random. Recently, deriving CRLBs suited for time-varying parameters has

been addressed within the Bayesian statistics framework [10]. In [10], the authors

presented a closed-form expression of the Bayesian CRLB (BCRLB) for estimating

a dynamic phase offset. Also, in [11], the problem of adaptive parameter estimation

was studied.

This thesis is organized as follows. In Chapter II, first we set the signal model.

The CRLB for the SNR estimate for BPSK modulated signals in AWGN channels

are derived for both non-data-aided and data-aided scenarios. Then the MCRLB

is derived and the MCRB and CRB are compared. In Chapter III, the BCRLB

is derived for BPSK modulated signals in time-selective fading channels assuming a

data-aided scenario. Finally, computer simulation results are presented to corroborate

the analytical results.
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CHAPTER II

THE TRUE AND THE MODIFIED CRAMER-RAO BOUNDS FOR SNR

ESTIMATE

A. The True Cramer-Rao Bound

1. Background

The CRLB of the SNR estimate for a binary phase shift keying (BPSK) modulated

signal in an AWGN channel will be derived in this chapter. Even though CRLB

was described briefly in the first chapter, the mathematical expressions needed to

state the problem will be next revised. The CRLB for a scalar parameter is defined

as follows. It is assumed that the probability density function p(x; θ) satisfies the

regularity condition

E

[
−∂ ln p(x; θ)

∂θ

]
= 0 for all θ, (2.1)

where x and θ denote the observed data and unknown parameter, respectively, and

the expectation is taken with respect to p(x; θ). According to the CRLB, the variance

of any unbiased estimator must satisfy the inequality:

var(θ̂) ≥ 1

−E
[

∂2 ln p(x;θ)
∂θ2

] =
1

− ∫ ∂2 ln p(x;θ)
∂θ2 p(x; θ)dx

, (2.2)

where the expectation is taken with respect to p(x; θ). The right-hand side term of

(2.2) is referred to as the CRLB.

For a vector parameter to be estimated θ = [θ1θ2 · · · θp]
T , the CRLB places a
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bound on the variance of each element assuming that the estimator θ̂ is unbiased [12]

var(θ̂i) ≥
[
I−1(θ)

]
ii

(2.3)

where I(θ) is the p× p Fisher information matrix (FIM), which is defined generically

in terms of its (i, j) entry as follows

[I(θ)]ij = −E

[
∂2 ln p(x; θ)

∂θi∂θj

]
, (2.4)

for i = 1, . . . , p and j = 1, . . . , p.

2. Problem Statement

Having revised the definition of CRLB, the problem now can be stated. In this section,

the CRLB for the SNR estimate for a BPSK modulated signal in an AWGN channel

will be derived. The derivation will be shown in a detailed manner. The Cramer-Rao

lower bound for both NDA and DA scenarios will be presented.

In the absence of phase and frequency offsets, a BPSK signal at the output of

the matched filter can be represented as

xn = San + wn, for n = 1, · · · , N

where S is a real scalar denoting the channel gain, and an is the corresponding

transmitted symbol. In the non-data-aided scenario, an’s are modeled as independent

identically distributed (i.i.d) random symbols taking values from {+1,−1} with equal

probability. The additive terms wn’s are statistically independent zero-mean Gaussian

random variables with a variance equal to σ2. The a prior probabilities of an’s, which

are denoted as Pr(an = a(i)), a(i) ∈ {+1,−1}, are assumed to be independent of S

and wn’s. Suppose we have an observation window of N samples, within which S and

σ2 are constant.
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In many applications, telecommunications engineers have to deal with intersym-

bol interference (ISI) in both wired and wireless communication systems due to the

lack of perfect synchronization. The ISI effects are caused by the misalignment of

data symbols at the specific sampling instants. In general, ISI causes a degradation

in the performance of the digital communication system [13].

In [14], the Nyquist criterion for zero ISI is defined as: a necessary and sufficient

condition for zero ISI at the receive filter output is that the folded Fourier transform

Gfld(w) of the equivalent shaping pulse is a constant for |w| < π
T

where 1/T is the

symbol rate and

Gfld(ω) = T

∞∑

l=−∞
g(−mT )exp(jmωT). (2.5)

Having these definitions, we also assume Nyquist pulse shaping and ideal sampling at

the receiver end so that the inter-symbol interference (ISI) at each sampling instance

can be ignored. The signal-to-noise ratio (SNR) per symbol can therefore be defined

as the ratio between signal power to noise power

ρ , Es

N0

=
S2

2σ2
. (2.6)

Notice that the SNR factor ρ needs to be estimated based on N observations of

received samples xn. Two parameters are involved in this estimate. In this case, the

parameter vector can be defined as

θ ,
[
S σ2

]T
.

The estimated SNR is generally represented in decibels since many engineering ap-

plications are interested in dB units in SNR, i.e., ρdB = 10 log(ρ), so the following



8

function is considered:

g(θ) , 10log

(
S2

2σ2

)
. (2.7)

As shown in [12], the following equation characterizes the CRLB of the SNR expressed

in decibels:

CRLB(ρ) =
∂g(θ)

∂θ
I−1(θ)

∂g(θ)

∂θ

T

, (2.8)

where I(θ) is Fisher information matrix (FIM)

I(θ) =



−E

{
∂2lnp(x;θ)

∂S2

}
−E

{
∂2lnp(x;θ)

∂S∂σ2

}

−E
{

∂2lnp(x;θ)
∂σ2∂S

}
−E

{
∂2lnp(x;θ)

∂σ22

}


 . (2.9)

From (2.7), ∂g(θ)
∂θ

can be found as

∂g(θ)

∂θ
=

[
20

ln(10)S
−10

ln(10)σ2

]
. (2.10)

a. Non-Data-Aided Case

For the NDA case, the transmitted symbol an is unknown to the receiver, so one can

express the parametric probability density function (pdf) pNDA(xn; θ) as follows:

pNDA(xn; θ) =
∑
i∈I

Pr(an = a(i))p(xn|an, θ)

=
1

2

1√
2πσ2

exp

[
−x2

n + S2

2σ2

]
exp

[
xnS

σ2

]

+
1

2

1√
2πσ2

exp

[
−x2

n + S2

2σ2

]
exp

[
−xnS

σ2

]

=
1√

2πσ2
exp

[
−x2

n + S2

2σ2

] [
1

2

(
exp

[
xnS

σ2

]
+ exp

[
−xnS

σ2

])]

=
1√

2πσ2
exp

[
−x2

n + S2

2σ2

]
cosh

(
xnS

σ2

)
. (2.11)
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Hence, the log-likelihood function for the N observed samples is given by

lnpNDA(x; θ) = −N

2
ln(2πσ2)− 1

2σ2

N∑
n=1

(
x2

n + S2
)

+
N∑

n=1

ln

(
cosh

(
xnS

σ2

))
. (2.12)

Next, since the partial derivatives of the log-likelihood pdf are required to evaluate the

elements of the Fischer information matrix, the following manipulations are necessary

to be conducted:

∂lnp(x; θ)

∂S
= −NS

σ2
+

1

σ2

N∑
n=1

tanh

(
xnS

σ2

)
xn,

∂2lnp(x; θ)

∂S2
= −N

σ2
+

1

σ4

N∑
n=1

sech2

(
xnS

σ2

)
x2

n, (2.13)

∂2lnp(x; θ)

∂S∂σ2
=

NS

σ4
− 1

σ4

N∑
n=1

tanh

(
xnS

σ2

)
xn

− S

σ6

N∑
n=1

sech2

(
xnS

σ2

)
x2

n, (2.14)

∂lnp(x; θ)

∂σ2
= − N

2σ2
+

1

2σ4

N∑
n=1

(
x2

n + S2
)− S

σ4

N∑
n=1

tanh

(
xnS

σ2

)
xn,

and

∂2lnp(x; θ)

∂σ22 =
N

2σ4
− 1

σ6

N∑
n=1

(
x2

n + S2
)

+
2S

σ6

N∑
n=1

tanh

(
xnS

σ2

)
xn

+
S2

σ8

N∑
n=1

sech2

(
xnS

σ2

)
x2

n. (2.15)
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Before proceeding to calculate the Fisher information matrix, the expected values of

the following terms are required to to be evaluated.

E

{
sech2

(
xnS

σ2

)
x2

n

}
=

∫ ∞

−∞
p(xn; θ)sech2

(
xnS

σ2

)
x2

ndxn

=
1√

2πσ2
exp

(
− S2

2σ2

) ∫ ∞

−∞
exp

(
− x2

n

2σ2

)
x2

n

cosh
(

xnS
σ2

)dxn

Remembering the definition of SNR in (2.6) and integration by substitution, one can

easily obtain

E

{
sech2

(
xnS

σ2

)
x2

n

}
= σ2f(ρ), (2.16)

where f(ρ) is a scalar function of ρ and is defined as

f(ρ) =
exp(−ρ)√

2π

∫ ∞

−∞

u2exp(u2/2)

cosh(u
√

2ρ)
du.

E

{
tanh

(
xnS

σ2

)
xn

}
=

∫ ∞

−∞
p(xn; θ)tanh

(
xnS

σ2

)
xndxn

=
1√

2πσ2

∫ ∞

−∞
exp

(
−x2

n + S2

2σ2

)
sinh

(
xnS

σ2

)
xndxn

=
1

2

1√
2πσ2

∫ ∞

−∞
exp

[
−(xn − S)2

2σ2

]
xndxn

− 1

2

1√
2πσ2

∫ ∞

−∞
exp

[
−(xn + S)2

2σ2

]
xndxn

= S (2.17)

E{x2
n} =

∫ ∞

−∞
p(xn; θ)x2

ndxn

=
1√

2πσ2

∫ ∞

−∞
exp

(
−x2

n + S2

2σ2

)
cosh

(
xnS

σ2

)
x2

ndxn

=
1

2

1√
2πσ2

∫ ∞

−∞
exp

[
−(xn − S)2

2σ2

]
x2

ndxn

+
1

2

1√
2πσ2

∫ ∞

−∞
exp

[
−(xn + S)2

2σ2

]
x2

ndxn

= S2 + σ2 (2.18)



11

With (2.16)-(2.18) in mind, one can determine the expected values of the second order

partial derivatives. The first element of the Fisher information matrix can be found

as

E

{
∂2lnp(x; θ)

∂S2

}
= −N

σ2
+

1

σ4

N∑
n=1

E

{
sech2

(
xnS

σ2

)
x2

n

}

= −N

σ2
+

N

σ2
f(ρ)

= −N

σ4
(σ2 − σ2f(ρ)). (2.19)

The second and the third elements of the Fisher information matrix can be determined

by the following manipulations

E

{
∂2lnp(x; θ)

∂S∂σ2

}
= −NS

σ4
− 1

σ4

N∑
n=1

E

{
tanh

(
xnS

σ2

)
xn

}

− S

σ6

N∑
n=1

E

{
sech2

(
xnS

σ2

)
x2

n

}

=
NS

σ4
− NS

σ4
− S

σ6
Nσ2f(ρ)

= −N

σ4
Sf(ρ). (2.20)

And the last element is given by

E

{
∂2lnp(x; θ)

∂σ22

}
=

N

2σ4
− NS2

σ6
− 1

σ6

N∑
n=1

E
{
x2

n

}

+
2S

σ6

N∑
n=1

E

{
tanh

(
xnS

σ2

)
xn

}
+

S2

σ8

N∑
n=1

E

{
sech2

(
xnS

σ2

)
x2

n

}

=
N

2σ4
− NS2

σ6
− 1

σ6
N(S2 + σ2) +

2S

σ6
NS +

S2

σ8
Nσ2f(ρ)

= −N

σ4

(
1

2
− S2f(ρ)

σ2

)
(2.21)
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With the expected values (2.19)-(2.21) ready, the expression for the Fisher information

matrix is given by

INDA(θ) =
N

σ4




σ2 − σ2f(ρ) Sf(ρ)

Sf(ρ) 1
2
− S2f(ρ)

σ2


 .

The inverse of the INDA(θ) matrix should be found to calculate the CRLB. It’s inverse

is expressed as

I−1
NDA(θ) =

σ4

N
[

σ2

2
− S2f(ρ)− σ2

2
f(ρ)

] ·




1
2
− S2f(ρ)

σ2 −Sf(ρ)

−Sf(ρ) σ2 − σ2f(ρ)


 (2.22)

Plugging (2.10) and (2.22) into (2.8), one can readily obtain the CRLB

CRLBNDA(ρ) =
200

(
1
ρ
− f(ρ) + 1

)

N(ln10)2[1− f(ρ)− 4ρf(ρ)]
(dB2). (2.23)

b. Data-Aided Case

For the data-aided (DA) case, the transmitted symbol an is known to the receiver, the

modulation can be removed perfectly and the resulting signal model can be expressed

as

xn = S + vn, for n = 1, · · · , N.

The parametric probability density function (pdf) pDA(xn; θ) can be expressed as

pDA(xn; θ) =
1√

2πσ2
exp

[
−(xn − S)2

2σ2

]
. (2.24)

Notice that the Fisher information matrix was already defined in (2.9). The same

procedure will be conducted as in the NDA case. The log-likelihood function of the
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probability density function given N samples takes the form:

lnpDA(x; θ) = −N

2
ln(2πσ2)− 1

2σ2

N∑
n=1

(xn − S)2 . (2.25)

So, the terms ∂2lnp(x;θ)
∂S2 , ∂2lnp(x;θ)

∂S∂σ2 , and ∂2lnp(x;θ)

∂σ22 can be obtained through the following

calculations:

∂lnp(x; θ)

∂S
=

1

σ2

N∑
n=1

(xn − S),

∂2lnp(x; θ)

∂S2
= −N

σ2
,

∂2lnp(x; θ)

∂S∂σ2
= − 1

σ4

N∑
n=1

(xn − S), (2.26)

∂lnp(x; θ)

∂σ2
= − N

2σ2
+

1

2σ4

N∑
n=1

(xn − S)2 ,

and

∂2lnp(x; θ)

∂σ22 =
N

2σ4
− 1

σ6

N∑
n=1

(xn − S)2 (2.27)

After taking the negative expectations, one can easily find the Fisher information

matrix as

IDA(θ) =




N
σ2 0

0 N
2σ4


 .

The inverse of IDA(θ) matrix is

I−1
DA(θ) =

2σ6

N2
·




N
2σ4 0

0 N
σ2


 (2.28)
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Again, by using (2.10) and (2.28) into (2.8), the true CRLB for the DA case can be

expressed as

CRLBDA(ρ) =
200

(
1
ρ

+ 1
)

N(ln10)2
(dB2). (2.29)

B. The Modified Cramer-Rao Bound

1. Background

As we have seen in (2.8), the evaluation of the CRLB is mathematically quite tedious

when the observed signal contains, besides the parameter to be estimated some nui-

sance parameters (denoted symbolically by the notation u and in whose values we

are not interested in and in the same whose values might be hard or impossible to

estimate). The joint probability density function can be expressed as

p(x; θ) =

∫ ∞

−∞
p(x|u; θ)p(u)du = Eu [p(x|u; θ)] . (2.30)

It is clear now that the integration in (2.30) is difficult. As shown in [8], by changing

the logarithm operators and the order of the expectation operators, MCRLB can be

expressed as

MCRLB(θ) =
1

Eu

[
Ex|u

[
∂2 ln p(x|u;θ)

∂θ2

]] (2.31)

where Ex|u[·] denotes the expectation with respect to p(x|u; θ).

The CRLB in (2.2) can also be further expressed as

CRLB(θ) =
1

E

[[
∂ ln p(x;θ)

∂θ

]2
] =

1
∫ [

∂ ln p(x;θ)
∂θ

]2

p(x; θ)dx
. (2.32)
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So the MCRLB can be found as

MCRLB(θ) =
1

Eu

[
Ex|u

[
∂ ln p(x|θ)

∂θ

]2
] . (2.33)

2. Problem Statement

In this section, the modified CRLB will be derived for the SNR estimate for BPSK

modulated signals in AWGN channels. The signal model is given by (2.5). For vector

parameters, the modified CRLB is given by the following formula:

MCRLB(ρ) =
∂g(θ)

∂θ
I′−1

(θ)
∂g(θ)

∂θ

T

,

where I′−1(θ) is the inverse modified Fisher information matrix (MFIM)

I′(θ) =



−Ex,a

{
∂2lnp(x|a,θ)

∂S2

}
−Ex,a

{
∂2lnp(x|a,θ)

∂S∂σ2

}

−Ex,a

{
∂2lnp(x|a,θ)

∂σ2∂S

}
−Ex,a

{
∂2lnp(x|a,θ)

∂σ22

}


 . (2.34)

The log-likelihood function given the transmitted symbols lnp(x|a, θ) can be repre-

sented as

lnp(x|a, θ) = −N

2
ln(2πσ2)− 1

2σ2

N∑
n=1

(xn − San)2.

To find the modified Fisher information matrix, we will need to find the partial

derivatives of the log-likelihood function just like we did before.

∂lnp(x|a, θ)

∂S
=

1

σ2

N∑
n=1

(xn − San)an,

∂2lnp(x|a, θ)

∂S2
= − 1

σ2

N∑
n=1

a2
n, (2.35)

∂2lnp(x|a, θ)

∂S∂σ2
= − 1

σ4

N∑
n=1

an(xn − San), (2.36)

∂lnp(x|a, θ)

∂σ2
= − N

2σ2
+

1

2σ4

N∑
n=1

(xn − San)2,
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and

∂2lnp(x|a, θ)

∂σ22 =
N

2σ4
− 1

σ6

N∑
n=1

(xn − San)2. (2.37)

Thus, the expected values of the elements for the modified Fisher information matrix

can be determined as follows:

Ex,a

{
∂2lnp(x|a, θ)

∂S2

}
= − 1

σ2

N∑
n=1

Exn,an{a2
n}

= −N

σ2
(2.38)

Ex,a

{
∂2lnp(x|a, θ)

∂S∂σ2

}
= − 1

σ4

N∑
n=1

Exn,an{anxn}+
S

σ4

N∑
n=1

Exn,an{a2
n}

=
NS

σ4
− 1

σ4

N∑
n=1

Ean

{
anExn|an{xn}

}

=
NS

σ4
− S

σ4

N∑
n=1

Ean{a2
n}

= 0 (2.39)

Ex,a

{
∂2lnp(x|a, θ)

∂σ22

}
=

N

2σ4
− 1

σ6

N∑
n=1

Exn,an

{
(xn − San)2

}

=
N

2σ4
− 1

σ6
Nσ2

= − N

2σ4
(2.40)

Therefore, by plugging (2.38)-(2.40) into (2.34), it is found that the modified Fisher

information matrix takes the diagonal matrix form

I′(θ) =




N
σ2 0

0 N
2σ4


 .

The inverse of the modified Fisher information matrix can be found as

I′−1
(θ) =

2σ6

N2
·




N
2σ4 0

0 N
σ2


 , (2.41)
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and the modified CRLB can be easily found by plugging (2.41) into (2.34) as

MCRLB(ρ) =
200

(
1
ρ

+ 1
)

N(ln10)2
(dB2). (2.42)

C. Numerical Results

Figures 1, 2 and 3 compare the CRLB (2.23) and MCRLB (2.42) for the non-data-

aided case assuming different observation lengths. The observation lengths N = 100,

N = 200, and N = 400 are assumed for Figures 1, 2 and 3, respectively. Since the

MCRLB (2.42) takes the same form as the CRLB (2.29) for the data-aided estimation

case, the dotted lines also represent the performance bounds when the training sym-

bols are transmitted. One can compare the CRLBs for non-data aided and data-aided

cases by replacing MCRLB with CRLB for the data-aided case.

Notice that for large SNR values, f(ρ) approaches zero and, therefore, the two

bounds get close. As one can see, for SNR values greater than 6 dB, the two bounds

become identical. While in the low SNR regime, the difference between the two

bounds is significant. In other words, the MCRLB is quite loose at low SNR levels.



18

0 1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
s
/N

0
 (dB)

C
R

LB
, M

C
R

LB
 (

dB
2 )

 

 
CRLB, N=100
MCRLB, N=100

Fig. 1. CRLB and MCRLB for SNR estimators for a BPSK signal with N=100.
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Fig. 2. CRLB and MCRLB for SNR estimators for a BPSK signal with N=200.
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CHAPTER III

THE BAYESIAN CRAMER-RAO BOUNDS FOR SNR ESTIMATE

A. Background

There exists two basic models for the static parameter estimation. The parameters

to be estimated are assumed to be non-random unknown variables in the first model.

The parameter estimation problem with this type of model is called Fisher or non-

Bayesian estimation. For instance, S and σ2 were assumed to be unknown non-

random parameters in Chapter II, and the resulting estimation framework could be

referred to as non-Bayesian. The second model assumes that the parameters to be

estimated are random variables with a priori probability densities. This type of

estimation is called Bayesian estimation. Bayesian estimation will represent our main

interest in this chapter since the parameters will be considered random variables with

a priori information. Notice also that the selected model always depends on the

specific application.

It is important to develop lower bounds on the performance of any Bayesian esti-

mator. There are already several Bayesian bounds proposed in the literature such as

the Bayesian Cramer-Rao lower bound, Bayesian Bhattacharyya bound, Bobrovsky-

Zakai bound and Weiss-Weinstein bound.

The Bayesian Cramer-Rao lower bound (BCRLB) will be derived in this chapter.

BCRLB was first derived by Van Trees in 1968 [15]. Van Trees defined a D × D
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Bayesian information matrix JB in [4], whose elements are

[JB]i,j = Ey,θ

{
∂ ln p(y,θ)

∂θi

· ∂ ln p(y,θ)

∂θj

}

= −Ey,θ

{
∂2 ln p(y, θ)

∂θi∂θj

}
. (3.1)

JB can be expressed as

JB = JD + JP , (3.2)

where

[JD]i,j = Ey,θ

{
∂ ln p(y|θ)

∂θi

· ∂ ln p(y|θ)

∂θj

}

= −Ey,θ

{
∂2 ln p(y|θ)

∂θi∂θj

}

= Eθ

{
−Ey|θ

[
∂2 ln p(y|θ)

∂θi∂θj

]}

= Eθ

{
[I(θ)]i,j

}
, (3.3)

and

[JP ]i,j = Eθ

{
∂ ln p(θ)

∂θi

· ∂ ln p(θ)

∂θj

}

= −Eθ

{
∂2 ln p(θ)

∂θi∂θj

}
. (3.4)

In (3.3), I(θ) is the Fisher information matrix which was defined in (2.4). The

contribution of the data is represented by the JD term in (3.3) and the JP term in

(3.4) represents the contribution of the prior information.

R(θ̂) ≥ JB
−1 , BCRLB, (3.5)

and

Ey,θ

{(
θ̂i(y)− θi

)2
}
≥ [JB]ii , (3.6)
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with equality if and only if the following linear relationship holds:

θ̂i(y)− θi =
D∑

j=1

kij
∂ ln p(y|θ)

∂θj

, (3.7)

for some constants kij. The reader should note that kij is not a function of θ.

B. Problem Statement

In this section, a closed-form expression of a BCRLB for SNR estimate will be pre-

sented. The transmission of a BPSK modulated signal over a time-selective fading

channel is considered. Assuming an ideal receiver with perfect synchronization, the

output of the receiver’s matched filter can be expressed as

yn = anhn + wn, n = 1, ...., N (3.8)

where yn is the received signal, an stands for the transmitted data symbol (an = ±1),

hn denotes the time-varying positive channel gain and wn represents the realization

of a zero-mean, white, complex Gaussian noise with known variance σ2
w at the time

index n.

It is straightforward to extend the analysis to vector case. For example, the

received samples could be represented in terms of the N × 1 vector

y = Ah + w, (3.9)

where y ≡ [y1 · · · yN ]T , h ≡ [h1 · · ·hN ]T , w ≡ [w1 · · ·wN ]T and A is the N × N

diagonal matrix with [A]nn = an.

Notice also that the communication channel can be modeled in several ways.

There exit various papers in this regard. Clarke’s model [16] is widely used, i.e.,

where hn is a zero mean complex normal random process with the following correlation
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function

E[hnh
∗
n−l] = σ2

hJ0

(
2π

fd

fs

l

)
, (3.10)

where [·]∗ denotes the conjugate operator, σ2
h is the channel variance, fd is the max-

imum Doppler frequency, fs is the sampling rate, and J0(·) is the Bessel function of

zero zero. This model is proven to be very useful from the viewpoint of performance

evaluation criteria [2]. The polynomial model is more appropriate for capturing the

changes in time selective channels and was used in [17], [18]. By assumption, the

slowly time-varying process hn is bandlimited. So, by using Taylor’s series expansion

theorem, the time-varying channel gain can be expanded as a M-order polynomial

hn =
M−1∑
m=0

cmtn
m + RM(n), (3.11)

where cm is the unknown complex random channel gain, τn = [t0n · · · tM−1
n ]T stands

for the index of the nth sample, and RM(n) denotes the remainder of the Taylor series

expansion. The RM → 0 as M → ∞ approximation was already presented in [17].

Therefore, for M sufficiently high, the channel can be approximated as h ≈ Tc where

T =




1 t1 · · · t1
M−1

1 t2 · · · t2
M−1

...
...

...

1 tN · · · tN
M−1




, c =




c0

c1

...

cM−1




. (3.12)

In this chapter, just the data-aided estimation case will be considered. So, the trans-

mitted symbol an is assumed to be known to the receiver. The channel gains are

assumed to be unknown complex Gaussian random parameters. Hence, the proba-

bility density functions of each sample, in the case of BPSK transmission, are given
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by

pDA(yn|θ) =
1

πσ2
w

exp

[
−|yn − τn

Tc|2
σ2

w

]
. (3.13)

SNR was defined as the ratio of the signal power to the noise power. So, SNR over a

channel realization can be represented as

ρ =
cHTTTc

Nσ2
w

, (3.14)

where SNR ρ is a function of a vector of unknown parameters θ = [cT , σ2
w]T in

complex channels. SNR will be estimated with the given known symbols aDA and y

with the assumed statistical model. Many engineering applications use the quantities

decibels (dB). Using dB has many advantages such as representing very small and

large numbers, logarithmic scaling possibility and ability to carry out multiplication

of ratios by simple addition and subtraction. In our case, the SNR can be expressed

in dB as follows: ρ(dB) = 10 log(ρ). Note that the superscript [·](dB) denotes quantities

in dB.

The term JB was defined in equation (3.2). JB can be further expanded as follows

JB = Eθ [I(θ)] + Eθ

[−∆θ
θ ln p(θ)

]
, (3.15)

where ∆θ
θ represents the second-order partial derivative and I(θ) is the Fisher infor-

mation matrix which was expressed in (2.4). The Fisher information matrix can also

be expressed as

I(θ) = Eyn|θ
[−∆θ

θ ln p(yn|θ)
]
. (3.16)

Now, the BCRLB can be derived as follows. First, we will compute Eθ [I(θ)] which

corresponds to the first term in the righthand side of equation (3.15) in the subsection

Step 1. Then, Eθ

[−∆θ
θ ln p(θ)

]
, which corresponds to the second term in (3.15) will
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be achieved in Step 2. Finally, BCRLB will be found by calculating the Bayesian

information matrix. The inverse of the addition of two matrices found in Step 1 and

Step 2 respectively will give us the bound on the unknown parameters. SNR is a

function of these unknown parameters. Thus, BCRLB will be achieved by making

use of the unknown parameters.

1. Step 1: Calculation of Eθ [I(θ)]

In this subsection, the term Eθ [I(θ)] will be evaluated. The Fisher information matrix

I(θ) should be computed first. The following manipulations should be done by using

equation (3.16). The Fisher information matrix I(θ) can be found using the identity

given in [12] as

E

[
∂lnp(yn|θ)

∂θi

· ∂lnp(yn|θ)

∂θj

]
= −E

[
∂2lnp(yn|θ)

∂θi∂θj

]
. (3.17)

So, the second order derivative matrix can be obtained directly from (3.13) by expand-

ing the squared magnitude into a product of a complex number with its conjugate

as

lnpDA(yn|θ)

∂θ∗
· lnpDA(yn|θ)

∂θ∗

H

=
|yn − τn

T c|2
σ4

w




1 tn · · · tM−1
n

tn t2n · · · tMn
...

...
...

tM−1
n tMn · · · t

2(M−1)
n




. (3.18)
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Therefore, we can obtain the FIM as

Eθ [I(θ)] = E

[
lnpDA(yn|θ)

∂θ∗
lnpDA(yn|θ)

∂θ∗

H
]

=
1

σ2
w




1 tn · · · tM−1
n 0

tn t2n · · · tMn 0

...
...

...
...

tM−1
n tMn · · · t

2(M−1)
n 0

0 0 · · · 0 1
2σ2

w




.

(3.19)

2. Step 2: Calculation of Eθ

[−∆θ
θ ln p(θ)

]

The term Eθ

[−∆θ
θ ln p(θ)

]
will be evaluated in this subsection. It represents the

contribution of the prior information. The parameter vector θ = [cT , σ2
w]T contains

both c and σ2
w terms. So we need to have knowledge about these terms. The channel

gain is assumed to be complex normal, so the probability density function of the

parameter vector can be expressed as

p(cm) =
1

πσ2
c

exp

(
−|cm|2

σ2
c

)
. (3.20)

And we will model the channel noise as a uniform distribution

p(σ2
w) =

1

b− a
for 0 < a < σ2

w < b, (3.21)

where a is the minimum value and b is the maximum value. The joint probability

density function of these two models is

p(θ) =
1

b− a

M−1∏
m=0

1

πσ2
c

exp

(
−|cm|2

σ2
c

)
. (3.22)

The log-likelihood joint probability density function can be found as

lnp(θ) = −ln(b− a)−M ln(πσ2
c )−

M−1∑
m=0

|cm|2
σ2

c

. (3.23)
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The first-order partial derivative of the log-likelihood joint pdf with respect to the

complex conjugate of the parameter vector can be obtained as

∂ ln p(θ)

∂θ∗
= −




c0
σ2

c

c1
σ2

c

...

cM−1

σ2
c

0




. (3.24)

Again, by using the identity in equation (3.17) given in [12], one can find the contri-

bution of the prior information as

Eθ

[−∆θ
θ ln p(θ)

]
= Eθ

{
∂ ln p(θ)

∂θ∗
· ∂ ln p(θ)

∂θ∗

H
}

=




1
σ2

c
0 · · · 0 0

0 1
σ2

c
· · · 0 0

...

0 0 · · · 1
σ2

c
0

0 0 · · · 0 0




. (3.25)

3. Step 3: Calculation of BCRLB

By plugging (3.19) and (3.25) into (3.15), we can readily obtain the Bayesian infor-

mation matrix as

JB =
1

σ2
w

X + Y, (3.26)
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where

X =




1 tn · · · tM−1
n 0

tn t2n · · · tMn 0

...
...

...
...

tM−1
n tMn · · · t

2(M−1)
n 0

0 0 · · · 0 1
2σ2

w




, Y =




1
σ2

c
0 · · · 0 0

0 1
σ2

c
· · · 0 0

...

0 0 · · · 1
σ2

c
0

0 0 · · · 0 0




. (3.27)

X is the matrix part of the equation (3.19) and Y is the matrix found in equation

(3.25). Both of these matrix’s dimensions are (M + 1)× (M + 1).

From the definition of the BCRLB given in (3.5), we can obtain the bound on the

variances of unknown parameters θ. However, we want to find the Bayesian bound

on the variance of SNR which is a function of θ = [c0, c1, . . . , cM−1, σ
2
w]T .

We define the function γ(θ) to be estimated which was also presented in (3.14) as

γ(θ) = ρ =
cHTTTc

Nσ2
w

. (3.28)

Then, the BCRLB is defined in [4] as

Ey,θ

{
(γ̂(θ)− γ(θ))2} ≥ ΓJ−1

B ΓT, (3.29)

where Γ is

Γ = Eyn,θ

{
γ(θ)

∂lnp(yn,θ)

∂θ

}

=

∫ ∫
γ(θ)

∂lnp(yn,θ)

∂θ
p(yn, θ)dyndθ

=

∫ (∫
γ(θ)

∂lnp(yn,θ)

∂θ
dθ

)
dyn

=

∫
p(yn)

(∫
γ(θ)

∂lnp(θ|yn)

∂θ
dθ

)
dyn. (3.30)
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Evaluating the inner integral gives

∫
γ(θ)

∂lnp(θ|yn)

∂θ
dθ = γ(θ)p(θ|yn) |∞−∞ −

∫
∂γ(θ)

∂θ
p(θ|yn)dθ. (3.31)

Assuming

lim
θ→±∞

γ(θ)p(θ|yn) = 0 for all yn, (3.32)

we have

Γ = −
∫ ∫

∂γ(θ)

∂θ
p(yn,θ)dyndθ

= −Eθ

{
∂γ(θ)

∂θ

}
. (3.33)

After some straightforward calculations, one can find the first-order partial derivative

of the γ(θ) as

∂γ(θ)

∂θ
=




2TT Tc
Nσ2

w

−cHTTTc
Nσ4

w




T

. (3.34)

Applying the expectation operator to the first-order partial derivative of the γ(θ)

function leads to

Γ = −Eθ

{
∂γ(θ)

∂θ

}
=




0

tr(TT T)σ2
c

Nab




T

, (3.35)

where the notation tr(·) denotes the trace of a matrix and is defined to be the sum

of the elements on the main diagonal (the diagonal from the upper left to the lower

right) of that matrix.

The Γ term in equation (3.29) has already been determined. Now we need to find

the inverse of the Bayesian information matrix. The inverse of the Bayesian matrix

can be found by the following manipulations
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J−1
B =

(
1

σ2
w

X + Y

)−1

=




1

σ2
w




1 tn · · · tM−1
n 0

tn t2n · · · tMn 0

...

tM−1
n tMn · · · t

2(M−1)
n 0

0 0 · · · 0 1
2σ2

w




+




1
σ2

c
0 · · · 0 0

0 1
σ2

c
· · · 0 0

...

0 0 · · · 1
σ2

c
0

0 0 · · · 0 0







−1

(3.36)

=




1

σ2
w




1 tn · · · tM−1
n 0

tn t2n · · · tMn 0

...

tM−1
n tMn · · · t

2(M−1)
n 0

0 0 · · · 0 0




︸ ︷︷ ︸
ωωT

+




1
σ2

c
0 · · · 0 0

0 1
σ2

c
· · · 0 0

...

0 0 · · · 1
σ2

c
0

0 0 · · · 0 1
2σ4

w




︸ ︷︷ ︸
Z




−1

,(3.37)

where

ω =




τn

0


 . (3.38)

There exists a known matrix inversion lemma, which is called Woodbury identity,

e.g., [19]:

(A + buvH)−1 = A−1 − b

1 + bvHA−1u
A−1uvHA−1. (3.39)
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Equation (3.37) looks familiar to the form of Woodbury identity, so

J−1
B =

(
Z +

1

σ2
w

ωωT

)−1

= Z−1 − 1

σ2
w + ωTZ−1ω

Z−1ωωTZ−1, (3.40)

where

Z−1 =




σ2
cIM

2σ4
w


 . (3.41)

By plugging (3.41) in (3.40), we can find the inverse of the Bayesian information

matrix as

J−1
B =




σ2
cIM

2σ4
w


− 1

σ2
w + ωT




σ2
cIM

2σ4
w


 ω




σ2
cIM

2σ4
w


 ωωT




σ2
cIM

2σ4
w




=




σ2
cIM − σ4

cτnτn
T

σ2
w+σ2

cτn
T τn

2σ4
w


 . (3.42)

By plugging (3.35) and (3.42) into (3.29), one can get the Bayesian CRLB on the

variance of the SNR as

BCRLB =

[
0T tr(TT T)σ2

c

Nab

]



σ2
cIM − σ4

cτnτn
T

σ2
w+σ2

cτn
T τn

2σ4
w







0

tr(TT T)σ2
c

Nab




=

[√
2σ2

wσ2
c

Nab
tr(TTT)

]2

. (3.43)

C. Numerical Results

Figure 4 shows the Bayesian CRLB for the SNR estimate for the BPSK modulated

signal in time-selective fading channels. BCRLB for data-aided case is considered. For

simplicity, {τ1 . . . τN} has been chosen such that TTT = NI. The same simplification
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is also done in our work. We assumed tr(TTT) = N so that the observation length

term N is canceled in equation (3.43). It is observed that the BCRLB is not sensitive

to the polynomial order M . We obtain the same plots for different values of M.
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Fig. 4. BCRLB for SNR estimators for BPSK signal (DA scenario).
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CHAPTER IV

CONCLUSIONS

We summarize this work and suggest possible future research topics in this chapter.

A. Summary of the Thesis

To summarize, this thesis has considered the problem of finding lower bounds of SNR

estimates.

First, background information about CRLB has been presented. CRLB for SNR

estimate for BPSK modulated signals in AWGN channels has been shown in a detailed

way. CRLBs for both non-data-aided and data-aided cases have been investigated.

Moreover, the MCRLB has been calculated and compared to the true CRLBs. It is

found that all the lower bounds are inversely proportional to the observation length.

It is observed that the MCRLB is the same as the CRLB for the data-aided case. At

low SNR levels, the MCRLB is loose for the non-data-aided estimation scenario.

Next, background information about BCRLB has been presented. The BCRLB

has been derived for the SNR estimate of a BPSK modulated signal in time-selective

fading channels. The time-selective fading channel is modeled using a polynomial-

in-time model. BCRLB for data-aided case is considered in this work. Simulation

results have been also presented for BCRLB.

B. Future Works

There are numerous directions for future research work. First, different types of

lower bounds can be applied to both estimation scenarios such as the Barankin and

Bayesian Bhattacharyya lower bounds. Performance of the lower bounds for SNR es-
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timate could be calculated in different directions such as frequency flat Rician fading

channels. Additionally, in our current work, the noise was assumed to be an uncor-

related normal process. However, in general, the noise is caused by interference. So,

finding performance bounds of signal-to-noise-and-interference ratio (SINR) can be

considered as a interesting future work. Furthermore, determining which bounds pre-

dict most accurately the performance of SNR estimators at low SNR values represents

another challenging and very important research problem.
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