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ABSTRACT 

 

Expression and Regulation of Select Interferon Stimulated Genes in Porcine 

Endometrium During Pregnancy.  (December 2008) 

Margaret Mary Joyce, B.S., Illinois State University 

Chair of Advisory Committee: Dr. Gregory A. Johnson 

 

 

 Coordinated signals between the maternal endometrium and conceptus during the 

peri-implantation period are essential for the establishment and maintenance of 

pregnancy.  In pigs, this involves estrogen secretion from conceptuses as the signal for 

maternal recognition of pregnancy.  Pig conceptuses also secrete interferons (IFN) delta 

(IFND) and IFN gamma (IFNG).  The uterine effects of pig IFNs are not known, 

although ruminant conceptuses secrete IFN tau (IFNT) for pregnancy recognition, and 

this increases the expression of IFN-stimulated genes (ISGs) in the endometrium.  

Therefore, studies were conducted to identify and characterize ISGs in the pig 

endometrium during pregnancy and to evaluate their regulation by estrogen and 

conceptus secretory proteins (CSPs) that contain IFNs. 

 In the first study, four classical ISGs, including interferon regulatory factor 1 

(IRF1) and signal transducer and activator of transcription 2 (STAT2), were detected in 

the pig endometrium and increased after Day 12 of pregnancy, specifically in stroma.  

IRF2, a transcriptional repressor of ISGs, increased in luminal epithelium (LE) by Day 

12 of pregnancy.  The increase of IRF2 was due to estrogen while the stromal increase of 

IRF1 was due to IFN-containing CSP infusion. 

 In the second study, the ISG STAT1 increased in LE after Day 12 of pregnancy 

and estrogen resulted in a similar increase.  After Day 15 of pregnancy, STAT1 increased 

in stroma.  Infusion of IFN-containing CSPs resulted in a similar stromal increase. 
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 In the third study, the ISGs swine leukocyte antigen (SLA) class I and beta-

2microglobulin (B2M) increased in LE between Days 5 and 9 of the estrous cycle and 

pregnancy and decreased between Days 15 and 20 of pregnancy.  By Day 15 of 

pregnancy, SLAs and B2M increased in stroma where they remained through Day 40.  

Progesterone increased SLA and B2M in LE, and a progesterone receptor antagonist 

ablated the upregulation while infusion of IFN-containing CSP increased SLA and B2M 

in stroma. 

 Collectively, these studies identify ISGs expressed in the pig endometrium 

during pregnancy.  These genes may be involved in protecting the fetal semiallograft 

from immune rejection, limiting conceptus invasion through the uterine wall, and/or 

establishing a vascular supply to the conceptus.  The interactions of estrogen, 

progesterone and IFNs to regulate cell-type specific expression of ISGs highlight the 

complex interplay between endometrium and conceptus for pregnancy recognition and 

implantation. 
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CHAPTER I 
 

INTRODUCTION 
 

 Successful pregnancy requires coordinated maternal and conceptus signals.  In 

pigs, one of the earliest signals is the secretion of estrogen on Day 11 by the developing 

conceptus [1].  This occurs as the pig conceptus transforms from a spherical to a tubular 

and then to a filamentous shape [2].  Conceptus estrogen acts on the maternal 

endometrium to redirect the luteolysin prostaglandin F2α into the uterine lumen rather 

than the uterine vasculature, resulting in maintenance of the corpora lutea (CL), the 

source of progesterone required for pregnancy [1].  Exogenous estrogen injected 

intramuscularly on Days 11 through 15 of the estrous cycle results in CL maintenance, 

further indicating that estrogen is the signal for maternal recognition of pregnancy [1, 3, 

4].  Premature exposure of the pregnant uterus to estrogen on Day 9 and Day 10 results 

in degeneration of the conceptuses by Day 15, demonstrating the delicate balance of 

maternal-fetal signaling essential for the establishment and maintenance of pregnancy 

[5]. 

 The effects of ovarian progesterone and conceptus estrogen can be mediated by 

progesterone (PGR) and estrogen (ESR1) receptors.  Expression of these receptors varies 

during early pregnancy.  PGR is not detectable in the luminal epithelium (LE) after Day 

10 or the glandular epithelium (GE) after Day 12 of pregnancy, but is continually present 

in the stroma [6].  Highest levels of ESR1 were detected in the LE and GE on Days 10 

and 12 of pregnancy [7].  Levels decreased in both of these cell types by Day 15 and by 

Day 18, ESR1 is detectable in the LE by not the GE [7].  In the stroma, moderate levels 

of ESR1 are detected on Day 10 and Day 12, but after Day 15, ESR1 is no longer 

detectable [7].  These changes in PGR and ESR1 expression indicate that progesterone 

and estrogen may affect the uterine endometrium in a cell-specific manner. 

  

____________ 
This dissertation follows the style of Biology of Reproduction. 
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Pig conceptuses also secrete the Type I interferon delta (IFND) and the Type II 

IFN gamma (IFNG) on Days 12 through 20 [8].  These IFNs have not been shown to 

effect CL maintenance [9].  However, both Type I and Type II IFNs can induce 

expression of a number of genes termed interferon-stimulated genes (ISGs).  The 

classical pathway by which ISGs are induced is the Janus kinase-signal transducer and 

activator of transcription (JAK-STAT) pathway [10].  Activation of this pathway by 

Type I IFNs can result in the formation of ISG Factor 3 (ISGF3) which can bind to IFN-

stimulated response elements (ISRE) and initiate transcription of a number of ISGs [11].  

IFNG activation can result in the formation of a STAT1:1 homodimer, known as gamma 

activation factor (GAF) [12], which can bind to gamma activation sequences (GAS), 

resulting in transcription of ISGs [13]. 

Indeed, IFNs [14-21] and ISGs [16, 22-24] have been detected during early 

pregnancy in several species, most noteably in sheep [25-36], which utilize IFN tau 

(IFNT) for pregnancy recognition [4].  Studies in sheep have demonstrated that IFNT 

induces the expression of ISGs in the endometrium [28, 31, 33-35, 37-39].  Paracrine 

effects for porcine IFNs are suggested by localization of IFN receptors on endometrial 

epithelial cells [40], increased secretion of prostaglandin E2 [41], and MX1 expression in 

the stratum compactum stroma of pigs on Day 18 of pregnancy [42].  These studies 

suggest that induction or increases in uterine ISGs by conceptus IFNs is a phenomenon 

of early pregnancy in many, if not most, mammals and that these genes may be 

important for uterine receptivity and conceptus implantation and development. 
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CHAPTER II 
 

LITERATURE REVIEW 

 

Blastocyst Development, Implantation, and Placentation 

In pigs, the 1-cell fertilized ovum or zygote undergoes cleavage to form a 2-cell 

embryo by 26 h after fertilization [2].  Embryos remain in the oviduct before entering the 

uterus at 48 to 56 h.  Blastocyst formation is a key stage in early embryonic development 

when cells segregate into the embryonic disc, trophectoderm, extra-embryonic endoderm 

and blastocoel necessary for continued development and differentiation to a conceptus 

(embryo and associated extra-embryonic membranes) (Fig. 2.1) [2].  Blastocysts are 0.5 

to 1 mm diameter spheres when they hatch from the zona pellucida and increase in size 

to Day 10 of pregnancy (2-6 mm) before undergoing a morphological transition to large 

spheres of 10 to 15 mm diameter and then tubular (15 mm by 50 mm) and filamentous (l 

mm by 100-200 mm) forms on Day 11.  During the transition from tubular to 

filamentous forms, pig conceptuses elongate at 30 to 45 mm/h, primarily by cellular 

remodeling of trophectoderm [43].  However, hyperplasia is responsible for subsequent 

growth and elongation of the conceptus to 800-1000 mm length by Day 15 of pregnancy 

[2]. The period of rapid elongation of pig conceptuses is accompanied by estrogen 

production by trophectoderm [1], as well as interferons gamma (IFNG) and delta (IFND) 

[8, 40]. 

Implantation is highly synchronized, requiring reciprocal secretory and physical 

interactions between a developmentally competent conceptus and the uterine 

endometrium during a restricted period of the uterine cycle termed the “window of 

receptivity” [44-51].  In domestic animals, implantation follows a prolonged pre-

attachment period, and does not result in embryo invasion past the basal lamina of the 

mucosal epithelium.  As defined by Guillomot et al. [51] the initial phases of 

implantation are:  (1) shedding of the zona pellucida; (2) pre-contact and blastocyst 

orientation; (3) apposition; and (4) adhesion, are common across species (Fig. 2.2).   
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FIG. 2.1. Pre-implantation development of the pig conceptus.  Embryos develop into 
blastocysts before hatching from the zona pellucida.  They continue to increase in size, 
then on Day 10 transition from spherical to tubular to filamentous forms by Day 11 [2].∗

                                                 
∗ Reprinted with permission from Encyclopedia of animal science by Bazer FW, Johnson 
GA, Spencer TE, 2005, Taylor & Francis, London.  Copyright 2005 by Taylor & 
Francis. 
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FIG. 2.2. Implantation phases.  Potential phases of implantation involving interactions 
between the trophectoderm and the uterine luminal epithelium [52].∗

                                                 
∗ Reprinted with permission from Encyclopedia of animal science by Bazer FW, Johnson 
GA, Spencer TE, 2005, Taylor & Francis, London.  Copyright 2005 by Taylor & 
Francis. 
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Conceptus attachment is thought to require loss of anti-adhesive molecules in the 

glycocalyx of LE, comprised largely of mucins that sterically inhibit attachment [53-55].  

This results in “unmasking” of molecules, including selectins and galectins [56, 57], that 

contribute to initial attachment of conceptus to uterine luminal epithelium (LE).  These 

low affinity contacts are then replaced by a more stable and extensive repertoire of 

adhesive interactions between integrins and maternal extracellular matrix (ECM) which 

appear to be the dominant contributors to stable adhesion at implantation [44, 45, 53, 58, 

59]. 

 

Conceptus Estrogen as the Signal for Pregnancy Recognition 

During the estrous cycle in pigs, the luteolysin prostaglandin F2α (PGF) is 

secreted by the uterine LE and shallow GE toward the uterine vasculature (endocrine) 

and transported to the CL on the ovary, resulting in the destruction of the CL.  However 

during pregnancy, maintenance of the CL requires that PGF be redirected into the 

uterine lumen (exocrine), where it is sequestered to exert its biological effect in utero 

and/or metabolized to prevent luteolysis [1].  This redirection of PGF secretion into the 

uterine lumen is associated with estrogen secretion by the conceptus, which occurs 

between Days 11 and 12 and Days 15 and 30 of pregnancy [1, 60].  Indeed, injection of 

17β-estradiol on Days 11-15 of the estrous cycle results in PGF secretion into the uterine 

lumen and maintenance of the CL for a period equivalent to or slightly longer than 

pregnancy, a condition referred to as pseudopregnancy [1, 3, 4].  Collectively, these data 

strongly suggest that estrogen is at least in part the signal for maternal recognition of 

pregnancy in pigs (Fig. 2.3) and supports the endocrine-exocrine theory of pregnancy 

recognition, first described by Bazer and Thatcher [1]. 

 

Progesterone and Estrogen Receptors in the Uterine Endometrium 

 Effects of progesterone from the CL and estrogen from the conceptus on the 

uterine endometrium can be mediated through their respective receptors.  However, 

expression of these receptors varies in a cell-type specific manner during the estrous 
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FIG. 2.3. Maternal and conceptus signaling during early pregnancy.  Peri-implantation 
signaling between the conceptus and uterus for pregnancy recognition and production of 
histotroph [52].∗
 

                                                 
∗ Reprinted with permission from Encyclopedia of animal science by Bazer FW, Johnson 
GA, Spencer TE, 2005, Taylor & Francis, London.  Copyright 2005 by Taylor & 
Francis. 
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cycle and early pregnancy.  Progesterone receptor (PGR) is detectable in the LE, GE and 

stroma on Day 0 through Day 5 of the estrous cycle and early pregnancy [6].  However, 

prolonged progesterone exposure decreases PGR to undetectable levels in the LE by Day 

10 and in the GE by Day 12 of the estrous cycle and pregnancy, but does not decrease 

stromal PGR [6]. 

Estrogen receptor (ESR1) expression differs from that of PGR.  During the 

estrous cycle, ESR1 remains high in the LE and GE from Day 0 to 12, declines by Day 

15 and then increases in the LE by Day 18 while remaining low in the GE [7].  Stromal 

expression is highest on Day 0, decreases by Day 5, is undetectable from Day 5 to Day 

15, then increases by Day 18.  Expression during early pregnancy is the same as during 

the estrous cycle except that ESR1 levels remain low or undetectable at Day 18 [7]. 

 

Interferons and Interferon Signal Transduction Pathways 

 Isaacs and Lindenmann discovered interferons (IFNs) in 1957 as a substance that 

could protect cells from viral infection [61].  IFNs are cytokines with many different 

biological functions including immunomodulatory, cell differentiative, anti-angiogenic 

and anti-proliferative effects [62, 63].  There are two types of IFNs, Type I or Type II 

IFNs.  The Type I IFNs include IFNA, IFNB, IFND, IFNK, IFNT, and IFNW; however, 

there is only one known Type II IFN, IFNG [64].   

 The classical signaling pathway for IFNs is the Janus protein tyrosine kinase-

signal transducers and activators of transcription (JAK-STAT) pathway [10].  Binding of 

a Type I IFN to its receptor induces dimerization of the receptor chains, IFNAR1 and 

IFNAR2, which activates the JAKs associated with each receptor chain, TYK2 and 

JAK1 respectively [10].  After activation, TYK2 phosphorylates IFNAR1, resulting in a 

docking site for signal transducer and activator of transcription (STAT) 2 [65], which 

then is phosphorylated by TYK2 and serves as a docking site for STAT1 [66, 67].  

Subsequently, STAT1 is phosphorylated and the activated STAT1:2 heterodimer 

dissociates from the receptor complex.  This complex can then associate with IFN 

regulatory factor (IRF) 9 to form the ISG Factor 3 (ISGF3) complex, translocate to the 
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nucleus and bind IFN-stimulated response elements (ISRE) in the promoters of several 

interferon stimulated genes (ISGs) to initiate transcription [11].  Type I IFNs can also 

induce formation of other STAT complexes, including STAT1:1, STAT3:3, STAT5:5 

and STAT1:3 [68, 69], which can bind to gamma-activated sequences (GAS) in the 

promoters of another group of ISGs [10] (Fig. 2.4). 

 Biologically active IFN gamma forms a noncovalent dimer which binds to the 

two chains of its receptor complex, IFNGR1 and IFNGR2, in a 2:2 ratio [70, 71].  The 

two IFNGR1 chains are each associated with a JAK1 molecule and each IFNGR2 chain 

is associated with a JAK2 molecule [10].  After ligand binding, the receptor undergoes a 

conformational change that results in autophosphorylation and activation of JAK2, 

which then transphosphorylates JAK1 [72].  JAK1 subsequently phosphorylates the two 

IFNGR1 chains [73, 74], with which STAT1 proteins are associated.  The STAT1 

proteins are phosphorylated [75], dissociate from the receptor complex, form STAT1:1 

homodimers, known as gamma activation factor (GAF) [12], and translocate to the 

nucleus where they can bind GAS elements and induce gene transcription [13] (Fig. 2.4). 

 Recent studies indicate that additional signaling pathways may be important for 

some of the biological functions of most IFNs and for the expression of ISGs.  Full 

transcriptional activation of  STAT1 requires phosphorylation on Ser727 [76].  Several 

kinases have been identified that regulate Ser727 phosphorylation, such as 

Ca2+/calmodulin-dependent kinase II [77] and phosphatidylinositol 3’-kinase [78], 

indicating that they may play a role in ISG expression.  Additionally, studies in which 

p38 MAPK was inhibited indicate that this kinase is required for induction of antiviral 

responses [79-81] and that inhibition of this kinase suppresses ISRE and GAS controlled 

gene expression [82, 83]. 

 While the biological activity and expression of ISGs may involve many different 

signal transduction pathways, to date the only pathway that has been demonstrated to 

mediate the effects of the IFNs in the uterine endometrium is the JAK-STAT pathway 

[28, 84].  In ovine endometrial epithelial cells, IFN tau (IFNT) transiently 

phosphorylated STAT3, 5a/b, and 6, which briefly translocated to the nucleus, but did 
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FIG. 2.4. Type I and Type II IFN signaling pathways.  Schematic illustrating the JAK-
STAT signaling pathways for Type I and Type II IFNs [85].∗

                                                 
∗ Reprinted with permission from STAT activation and differential complex formation 
dictate selectivity of interferon responses by Wesoly J, Szweykowska-Kulinska Z, 
Bluyssen HAR.  Acta Biochimica Polonica 2007; 54:27-38.  Copyright 2007 by Acta 
Biochimica Polonica. 
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not increase expression of these STATs [84].  In contrast, STAT1 and 2 were 

persistently phosphorylated and remained in the nucleus for a prolonged time.  

Expression of both of these STATs increased with IFNT treatment [84].  ISGF3 and 

STAT1 homodimers formed in these cells and bound to ISRE and GAS elements, 

respectively [84].  Time course analysis indicated that IFNT had short term effects on 

GAS-driven promoters (expression increased by 3 hours, but decreased by 24 hours), 

while IFNT had long-term effects on expression of genes with ISRE-containing 

promoters (increased expression at 3 and 24 hours) [84]. 

 

Conceptus Interferons and Uterine Expression of Interferon Stimulated Genes 

Ruminants 

IFNT is exclusively produced by ruminant conceptuses during early pregnancy 

[25-27].  In these species, IFNT is the antiluteolytic signal for maternal recognition of 

pregnancy [86].  It is synthesized and secreted from the mononuclear cells of the 

conceptus trophectoderm between Days 10 and 21-25 [87, 88].  IFNT acts on the 

luminal epithelium (LE) and superficial glandular epithelium (sGE) to suppress 

transcription of the ESR1 gene, which prevents transcription of the oxytocin receptor 

gene [89-91] and production of luteolytic pulses of PGF2α by the uterine endometrium 

[86], thereby maintaining progesterone secretion by the CL [90]. 

Characterization of the temporal and spatial pattern of expression for many of the 

ISGs in the uterus has been done in the sheep.  Both chains of the Type I IFN receptor, 

IFNAR1 and IFNAR2, have been localized to the LE, GE and stroma of the ovine 

uterine endometrium [92], suggesting that IFNT from the conceptus should be able to 

increase expression of ISGs throughout the endometrium.  However, ISGs induced by 

the classical IFN signal transduction pathway (JAK-STAT) are only expressed in the 

stroma and GE [28].  This may be due to expression of IRF2, a potent transcriptional 

repressor of ISGs, in the LE and sGE [28]. 

The temporal and spatial pattern for most of the classical ISGs in the sheep 

uterus is similar and can be illustrated by the expression pattern for ISG15.  ISG15 
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mRNA is first detectable in the LE and stratum compactum stroma on Day 13 of 

pregnancy [29, 30].  By Day 15 of pregnancy, ISG15 is no longer detectable in the LE 

[29, 30].  Instead, expression extends below the LE to the stratum spongiosum stroma 

[29, 30].  Expression is maintained through Day 25, then declines by Day 30 with 

expression limited to patches of the stratum compactum stroma along the maternal-

conceptus interface where it remained throughout pregnancy [29, 30].  Other classical 

ISGs that have been characterized in the sheep uterus are STAT1 [28], STAT2 [28], IRF1 

[28], IRF9 [28], HLA [31], B2M [31], MX1 [32], OAS1 [33], CTSH [34], CTSK [34], 

IFITM1 [35, 93] and IFITM3 [35, 93].  Transcription of SOCS1, SOCS2, and SOCS3 

increases during early pregnancy and in response to IFNT, but the spatial patterns of 

expression are currently unknown [36].  Additional potential ISGs have been identified 

by microarray analysis although the temporal and spatial pattern of expression is still to 

be determined [35]. 

 

Mice 

In mouse placental tissue, antiviral activity consistent with Type I IFN has been 

detected [14], but may not be due to a classical Ifna or Ifnb [15].  However, trophoblast 

giant cells in vitro have been shown to secrete an Ifna-like factor [16].  Ifng is also 

present in mouse placentas from Days 10-18 [17].  On Days 10 and 12, Ifng is localized 

to the trophoblastic giant cells [17].  By Day 14, Ifng is detectable in the 

spongiotrophoblast and labyrinth region [17].  Ifng is no longer in the 

spongiotrophoblast by Day 16, but is exclusively expressed in the labyrinth region and 

remains through Day 18 [17].  Analysis of Ifng expression in the labyrinth region on 

Day 18 determined that it was primarily localized in endothelial cells immediately 

surrounding fetal blood vessels [17]. 

 Isg15 mRNA has been detected within implantation sites during pregnancy in the 

mouse uterus [16, 22].  Interestingly, Isg15 mRNA levels were much lower in artificially 

induced deciduomas, indicating that the conceptus may modulate expression [16, 22].  

Additionally, endometrial stromal cells incubated with trophoblast giant cells media had 
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higher levels of Isg15 mRNA compared to those incubated with control media, and this 

effect was blocked when the conditioned media was immunodepleted with Ifna 

antiserum [16]. 

 

Primates 

First trimester human placental tissue also produces IFNG, with the most intense 

expression in villous syncytiotrophoblast and extravillous interstitial trophoblast [18].  

Stimulation of first trimester human placental tissue with granulocyte-macrophage 

colony-stimulating factor (GM-CSF), platelet-derived growth factor (PDGF) or Sendai 

virus resulted in production and secretion of IFNA and IFNB [19-21].  Pre-treatment 

with both GM-CSF and PDGF followed by infection with Sendai virus resulted in higher 

levels of IFN then any of the treatments alone [19-21].  Regardless of treatment, the 

invasive extravillous trophoblasts produced the highest levels of IFN [19-21]. 

Recently, IFN-regulated genes have been shown to increase in decidualized 

endometrial fibroblasts in response to trophoblast conditioned media, although IFNA, 

IFNB, or IFNG was not detected in these conditioned stromal cells [23].  Additionally, 

ISG15 has been localized to the decidua [24].  These results indicate that a Type I IFN 

may be secreted by human trophoblasts. 

 

Pigs 

 As early as Day 11 of pregnancy, peri-implantation pig conceptuses produce 

acidic proteins that cross-react with human anti-IFNA antiserum [94] although peak 

antiviral activity was not measured in uterine flushings or conceptus culture media until 

Days 14 and 15 of pregnancy [95].  Both Type I IFN and Type II IFN are produced.  The 

major species, which comprises 75% of the antiviral activity of pig conceptus secretory 

proteins (CSPs), is IFNG and the minor species (25%) is the novel Type I IFND [8, 40].  

These pig conceptus IFNs are produced on approximately Days 12-20 of pregnancy, 

with maximal levels at about Days 15-16 [8, 96, 97]. 
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 Unlike IFNT, these IFNs do not appear to have an antiluteolytic effect on the CL, 

as intrauterine infusion of CSPs on Days 12 to 15 of the estrous cycle had no effect on 

the interestrus interval or temporal changes in plasma progesterone concentrations [9, 

41], however, paracrine effects for IFNs are suggested by localization of IFN receptors 

on endometrial epithelial cells [40] and MX1 expression in the stratum compactum 

stroma of pigs on Day 18 of pregnancy [42].  Although physiological roles for these 

IFNs in the pig uterus have not been determined, emerging evidence suggests that 

induction or increases in uterine ISGs by conceptus IFNs is a phenomenon of early 

pregnancy in many, if not most, mammals [16, 23, 98, 99].  Our working hypothesis is 

that pig conceptus IFNs increase uterine endometrial expression of ISGs during 

pregnancy, and that these genes have biological roles in uterine receptivity and 

conceptus implantation and development. 
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CHAPTER III 

 

PIG CONCEPTUSES INCREASE UTERINE INTERFERON-REGULATORY 

FACTOR 1 (IRF1), BUT RESTRICT EXPRESSION TO STROMA THROUGH 

ESTROGEN-INDUCED IRF2 IN LUMINAL EPITHELIUM∗

 

Introduction 

 The successful establishment and maintenance of pregnancy requires 

orchestrated communication between the conceptus (embryo/fetus and associated 

extraembryonic membranes) and the uterus, which includes:  (i) secretions from the 

conceptus to signal pregnancy recognition [4]; (ii) secretions from the uterine luminal 

epithelium (LE) and glandular epithelium (GE), i.e., the histotroph, to support the 

attachment, development and growth of the conceptus [100-102]; (iii) remodeling at the 

endometrial LE surface to allow intimate association between the conceptus 

trophectoderm and endometrium for implantation [45, 103, 104]; and (iv) remodeling of 

the endometrial stroma to generate a cytokine-rich environment that directly promotes 

angiogenesis, to provide hematotrophic support for the developing conceptus [105, 106]. 

In pigs, pregnancy recognition is the result of conceptus secretion of estrogens on 

Days 11 and 12 of pregnancy, which redirects PGF secretion from the uterine 

vasculature to the uterine lumen, where it is sequestered away from the CL [1, 3, 60, 

107].  In contrast to pigs, sheep conceptuses secrete interferon tau (IFNT) to signal 

maternal recognition of pregnancy [4, 91, 99].  In addition to its antiluteolytic actions on 

the endometrium, IFNT increases the expression of a number of IFN-stimulated genes 

(ISGs) in the stroma of the ruminant uterus [28-32, 34, 35, 38, 39, 93, 108], including 

MX1 [32], interferon regulatory factor 1 (IRF1) [28], signal transducer and activator of 

                                                 
∗ Reprinted with permission from Pig conceptuses increase uterine interferon regulatory 
factor 1 (IRF1), but restrict expression to stroma through estrogen-induced IRF2 in 
luminal epithelium by Joyce MM, Burghardt JR, Burghardt RC, Hooper RN, Jaeger LA, 
Spencer TE, Bazer FW, Johnson GA.  Biol Reprod 2007; 77:292-302.  Copyright 2007 
by Society for the Study of Reproduction. 
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transcription 2 (STAT2) [28], major histocompatibility complex (MHC) class I 

polypeptide-related alpha chain (MIC), and beta-2-microglobulin (B2M) [31]. 

Peri-implantation pig conceptuses also secrete IFNs.  Cultured conceptuses from 

Day 11 of pregnancy have been shown to secrete proteins that cross-react with antiserum 

against IFN alpha [94], although peak antiviral activity was not measured in the uterine 

flushings or conceptus culture media until Days 14 and 15 of pregnancy [95].  Both type 

I IFN and type II IFN are produced.  The major species, which comprises 75% of the 

antiviral activity of pig conceptus secretory proteins (CSPs), is the type II IFN gamma 

(IFNG) and the minor species (25%) is the novel type I IFN delta (IFND) [8, 40].  These 

IFNs do not appear to have antiluteolytic activities during pregnancy, as intrauterine 

infusion of CSPs on Days 12 to 15 of the estrus cycle had no effect on the interestrus 

interval or temporal changes in plasma progesterone concentrations [9, 41].  However, 

paracrine effects for IFNs are suggested by localization of IFN receptors on endometrial 

epithelial cells [40], increased secretion of prostaglandin E2 [41], and MX1 expression in 

the stratum compactum stroma of pigs on Day 18 of pregnancy [42].  The effects of 

these IFNs on pig endometrium have not been determined.  Although it has been noted 

that high peri-implantation levels of IFNG coincide with the presence of uterine 

transforming growth factor β, interleukin 6 and MHC class II antigens in pigs [109, 110], 

increased uterine expression of classical ISGs has not been detected [111].  Indeed, 

treatment of Madin-Darby bovine kidney cells and bovine endometrial explant cultures 

with pig CSPs increased ISG expression, whereas a similar treatment had no effect on 

ISG expression in pig endometrial explants [111].  

 Our working hypothesis is that pig conceptus IFNs increase uterine endometrial 

expression of ISGs during pregnancy, and that these genes have biological roles in 

uterine receptivity and conceptus implantation and development.  IRF1 is a key 

intermediate in the induction cascade of many classical ISGs through its abilities to bind 

and transactivate IFN-stimulated response elements (ISRE) at their promoters [112-114].  

Both type I and type II IFNs induce IRF1 [112], which plays a role in placental 

development in the murine reproductive tract [113].  In sheep, IRF1 expression increases 
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in the stroma and GE, but not in the LE, during early pregnancy, presumably due to the 

expression of IRF2, which is a potent transcriptional repressor of ISGs that is 

constitutively expressed in the LE and increases during early pregnancy [28].  Therefore, 

the objectives of the present studies were to determine whether IRF1 and IRF2 are 

expressed in the pig endometrium during pregnancy, and if so, whether the expression of 

these genes is regulated by conceptus estrogen and/or CSPs that contain IFNG and 

IFND. 

 

Materials and Methods 

Animals and Tissue Collection 

 All the experimental and surgical procedures complied with the Guide for Care 

and Use of Laboratory Animals and were approved by the Texas A&M University 

Laboratory Animal Care and Use Committee.  Pigs were observed daily for estrus (Day 

0) and exhibited at least two estrus cycles of normal duration (18-21 days) before use in 

these studies. 

Study 1.  To evaluate the effect of pregnancy status on endometrial gene 

expression, sexually mature pigs were assigned randomly at estrus to either cyclic or 

pregnant status.  The pigs in the pregnant group were bred upon detection of estrus and 

12 h and 24 h thereafter.  Pigs were ovariohysterectomized on Day 5, 9, 12, or 15 of the 

estrus cycle or on Day 9, 10, 12, 13, 14, 15, 20, 25, 30, 35, 40, 60 or 85 of pregnancy (n 

= 3 pigs/day/status) (Fig. 3.1).  Pregnancy was confirmed by the presence of normal 

conceptuses in the uterine flushings (Days 9-15) or at hysterectomy (Days 20-85). 

Study 2.  To evaluate the effect of estrogen-induced pseudopregnancy on uterine 

gene expression, pigs were assigned randomly at estrus to receive daily i.m. injections of 

either 5 ml corn oil (CO) vehicle or 5 mg 17β-estradiol benzoate (E2; Sigma Chemical 

Company, St. Louis, MO) in 5 ml CO on Days 11, 12, 13, and 14 postestrus (n = 5 

pigs/treatment).  All pigs were ovariohysterectomized on Day 15 postestrus (Fig. 3.2). 
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FIG. 3.1. Study 1 experimental design.  Pigs were assigned randomly at estrus to either 
cyclic or pregnant status.  Those in the pregnant group were bred at estrus and 12 h and 
24 h thereafter.  Pigs were ovariohysterectomized on the indicated days of the estrus 
cycle or pregnancy. 
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FIG. 3.2. Study 2 experimental design.  Cyclic pigs received daily i.m. injections of 
either estradiol benzoate or corn oil vehicle on Days 11-15 postestrus.  All pigs were 
ovariohysterectomized on Day 15 postestrus. 
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Study 3.  To evaluate the effect of pig CSPs on uterine gene expression, pigs (n = 

3) were injected i.m. with 5 mg E2 in 5 ml of CO on Days 11, 12, 13, 14, and 15 

postestrus, to induce pseudopregnancy.  On Day 12 postestrus (coincident with the onset  

and prior to the peak of secretion of IFNs by the pig conceptuses [8, 94, 95]), each pig 

was surgically implanted with two indwelling ALZET osmotic pumps (Durect Corp., 

Cupertino, CA) with constant delivery rates of 10 µl/h.  Briefly, each uterine horn was 

isolated via midline celiotomy, clamped, and severed from the uterine body at 

approximately 12.7 cm from the utero-tubal junction, while preserving the mesometrium 

and vascular supply to the uterine horn.  The transected ends of each uterine horn and 

uterine body were closed using an inverting suture pattern of absorbable suture, and the 

serosa of the antimesometrial borders of each uterine horn and the uterine body were 

sutured together to prevent twisting of the horn.  For each pump, a catheter was attached 

and inserted approximately 2 cm into the lumen of one uterine horn.  Prior to surgery, 

the pumps were filled and equilibrated according to the manufacturer’s instructions.  For 

each pig, one uterine horn was infused by a pump that was filled with 35 mg of porcine 

serum albumin (Sigma), while the other uterine horn was infused by a pump that was 

filled with 35 mg of porcine CSPs.  Thus, a 12.7-cm isolated section of the uterine horn, 

which retained full vascular supply, was completely exposed to the infusate; the uterine 

tissue samples were taken from these sections (Fig. 3.3).  Pilot studies were conducted 

with infusion of India ink to confirm coverage of the uterus by the infusate.  All gilts 

were ovariohysterectomized on Day 16 postestrus (coincident with maximal antiviral 

activity in the pig uterine flushings [95]) (Fig. 3.4). 

At hysterectomy, several sections (~0.5 cm thickness) from the middle of each 

uterine horn or from the isolated pouch of an infused uterus were fixed in fresh 4% 

paraformaldehyde in PBS (pH 7.2) and embedded in Paraplast-Plus (Oxford 

Laboaratory, St. Louis, MO).  Several sections from each uterine horn were also 

embedded in Tissue-Tek Optimal Cutting Temperature (OCT) Compound (Miles, 

Oneonta, NY), snap frozen in liquid nitrogen, and stored at -80°C before sectioning.   
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FIG. 3.3. Pig reproductive tract after ovariohysterectomy.  On Day 12 postestrus, each 
uterine horn was surgically severed from the uterine body ~12.7 cm from the utero-tubal 
junction and two mini-osmotic pumps were surgically implanted.  For each pump, a 
catheter was attached and inserted into the lumen of one uterine horn.  For each pig, one 
pump was filled with control proteins and the other with porcine conceptus secretory 
proteins. 
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FIG. 3.4. Study 3 experimental design.  Cyclic pigs received daily i.m. injection of 
estradiol benzoate on Days 11-15 postestrus.  On Day 12 postestrus, each uterine horn 
was surgically severed from the uterine body ~12.7 cm from the utero-tubal junction and 
two mini-osmotic pumps were implanted.  Prior to surgery, one pump was filled with 
porcine serum albumin (control protein) and the other was filled with porcine conceptus 
secretory proteins.  For each pump, a catheter was attached and inserted into the lumen 
of one uterine horn.   
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The remaining endometrium was physically dissected from the myometrium, frozen in 

liquid nitrogen, and stored at -80°C for RNA extraction. 

 

Preparation of Porcine CSPs 

Using procedures previously described [41, 115], the conceptuses from Day 15-

17 pregnant pigs (coincident with maximal production of IFNs by the conceptuses [8, 

94, 95]) were recovered by flushing each uterine horn with 20 ml of minimal essential 

medium (MEM).  The conceptuses were then cultured in MEM for 30 h at 37°C with 

rocking in a 50% O2, 45% N2, 5% CO2 atmosphere.  The culture medium was collected 

after centrifugation and protease inhibitors (Complete EDTA-free Protease Inhibitor 

Cocktail; Roche Diagnostics, Indianapolis, IN) were added.  The culture supernatant was 

dialyzed (MWCO 3500; Spectrum Laboratories, Inc., Rancho Dominguez, CA) four 

times using 4 L of 10 mM Tris (pH 8.2) each time, and concentrated (MWCO 5000; 

Millipore Corp., Bedford, MA).  The sample was then dialyzed (MWCO 1000, Spectrum 

Laboratories) against Dulbecco PBS (Sigma), protease inhibitors were added, and the 

sample was filter sterilized, assayed for protein concentration, and stored at 4°C until 

use. 

 

RNA Isolation and Analyses 

 RNA isolation.  Total cellular RNA was isolated from endometrial tissue samples 

using TRIzol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s 

recommendations. 

 Northern blot analysis.  Total endometrial RNA (8 µg) was loaded onto a 1.2% 

agarose gel, electrophoresed, and transferred to a 0.2-µm nylon membrane, as described 

previously [116].  The blot was hybridized with radiolabeled antisense cRNA probes that 

were generated from linearized ovine IRF1 [28], ovine IRF2 [28], human STAT2 [117], 

ovine MIC [31], or ovine B2M [31] plasmid templates.  Radiolabeled riboprobes were 

generated by in vitro transcription with [α-32P]uridine 5-triphosphate (Perkin-Elmer Life 

Sciences, Inc., Boston, MA) and the MAXIscript kit (Ambion, Austin, TX).  After 
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washing, nonspecific hybridization was eliminated by RNase A digestion.  Hybridization 

signals were detected by exposing the blot to a PhosphoImager screen and visualized 

using a Typhoon 8600 variable mode imager (Molecular Dynamics, Piscataway, NJ). 

 Slot blot analysis.  The steady-state mRNA levels were assessed in endometrial 

total RNA samples (20 µg) by slot blot hybridization with radiolabeled antisense ovine 

IRF1 [28], ovine IRF2 [28], human STAT2 [117], ovine MIC [31], or ovine B2M [31] 

cRNA probes using methods described previously [116].  To correct for variability in 

total RNA loading, a duplicate RNA slot membrane was hybridized with a radiolabeled 

antisense 18S rRNA (pT718S; Ambion) cRNA probe.  The radiolabeled riboprobes were 

generated as described above.  The membranes were washed, digested and hybridization 

signals were detected as descibed above. 

In situ hybridization analysis.  IRF1, IRF2, and STAT2 mRNAs were localized in 

paraffin-embedded pig uterine tissues by in situ hybridization, as previously described 

[37].  Briefly, deparaffinized, rehydrated, and deproteinated uterine cross-sections (5-µm 

thickness) were hybridized with radiolabeled antisense or sense ovine IRF1 [28], ovine 

IRF2 [28], and human STAT2 [117] cRNA probes, which were synthesized by in vitro 

transcription with [α-35S]uridine 5-triphosphate (Perkin-Elmer Life Sciences).  After 

hybridization, washing, and RNase A digestion, autoradiography was performed using 

NTB liquid photographic emulsion (Eastman Kodak, Rochester, NY).  Slides were 

exposed at 4°C, developed in Kodak D-19 developer, counterstained with Harris 

modified hematoxylin (Fisher Scientific, Fairlawn, NJ), dehydrated, and protected with 

coverslips. 

 

Immunofluorescence Analysis 

 Immunoreactive IRF1 protein was localized in frozen porcine uterine cross-

sections (~8-10-µm thickness) by immunofluorescence staining using methods described 

previously [118].  Briefly, tissues were fixed in methanol at -20°C, washed in PBS that 

contained 0.3% (vol/vol) Tween-20, blocked in 10% normal goat serum, incubated 

overnight at 4°C with 1 µg/ml of rabbit antihuman IRF1 (sc-497; Santa Cruz 
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Biotechnology, Santa Cruz, CA) or rabbit IgG (negative control; Sigma), and detected 

with fluorescein-conjugated goat anti-rabbit IgG (Chemicon International, Temecula, 

CA).  The slides were overlaid with Prolong antifade mounting reagent (Molecular 

Probes, Eugene, OR) and a coverslip. 

 

Photomicrography 

 Digital photomicrographs of in situ hybridization and immunofluorescence 

staining were evaluated using an Axioplan 2 microscope (Carl Zeiss, Thornwood, NY), 

which was interfaced with an Axioplan HR digital camera and the Axiovision 4.3 

software.  Photographic plates were assembled using the Adobe Photoshop ver. 6.0 

software (Adobe Systems Inc., San Jose, CA). 

 

Statistical Analysis 

 The data were subjected to least-squares ANOVA using the general linear 

models procedures of the Statistical Analysis System (SAS, Cary, NC).  The slot blot 

hybridization data were analyzed using 18S rRNA as a covariate to correct for 

differences in RNA loading.  The data from study 1 were analyzed for the effect of day 

and status and their interaction where appropriate.  For all other studies, the effects of 

treatment were determined by preplanned orthogonal contrasts.  All tests of significance 

were performed using the appropriate error terms according to the expectation of the 

mean squares for error, and P < 0.05 was considered statistically significant.  Data are 

presented as least-squares means with standard errors (SEMs).  The SEM represents the 

pool of the mean derived using the root mean square error term generated by the SAS 

software. 

 

Results 

Effects of Pregnancy (Study 1) 

 Steady-state levels of IRF1, STAT2, MIC, B2M, and IRF2 mRNAs in the pig 

endometrium.  The ovine cDNAs for IRF1, MIC, and B2M revealed mRNAs of  ~ 2.1 
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kb, ~1.7 kb, and ~1.0 kb, respectively, and the human cDNA for STAT2 revealed 

mRNAs of ~4.5 kb and ~4.8 kb in Northern blot analysis of pig total endometrial RNA 

(data not shown).  These mRNAs were similar in size to those detected using the same 

cDNAs with sheep total mRNA.  The steady-state levels of IRF1, MIC, and B2M 

mRNAs in the porcine endometrium did not change (P > 0.10), whereas the STAT2 

mRNA levels increased between Day 5 and Day 9 during the estrus cycle, and decreased 

thereafter (P < 0.005, cubic effect of day) during the estrus cycle.  During pregnancy, the 

IRF1 mRNA levels were low on Day 9 to Day 12, increased almost 3-fold between Days 

12 and 15, declined between Days 15 and 40, and remained low thereafter (P < 0.001, 

quartic effect of day) (Fig. 3.5A).  The STAT2 mRNA levels increased more than 2-fold 

between Days 12 and 14 (P < 0.01, linear effect of day) (Fig. 3.5A).  The MIC mRNA 

levels increased nearly 3-fold between Days 10 and 14 of pregnancy, remained high 

through Day 20, declined between Days 20 and 40, and remained low thereafter (P < 

0.05, cubic effect of day) (Fig. 3.5A).  The B2M mRNA levels gradually decreased 

between Day 9 and Day 13, increased ~ 2-fold between Days 13 and 14, gradually 

declined through Day 25, and remained low thereafter (P = 0.1, quadratic effect of day) 

(Fig. 3.5A).  Therefore, the levels of the mRNAs for the four classical ISGs, i.e., IRF1, 

STAT2, MIC, and B2M, are increased in the pig endometrium during the peri-

implantation period. 

The ovine cDNA for IRF2 revealed a ~ 2.4 kb mRNA in both pig and sheep 

endometrial total RNA.  The steady-state levels of IRF2 mRNA did not change (P > 

0.10) during the estrus cycle, whereas the IRF2 mRNA levels increased from Day 9 to 

Day 13 in pregnant pigs, was maximal on Days 13-15, and decreased thereafter (P < 

0.001, quadratic effect of day) (Fig. 3.5B). 

In situ hybridization for IRF1, STAT2, and IRF2 mRNAs in the pig endometrium.  

The levels of IRF1 (Fig. 3.6) and STAT2 (Fig. 3.7) mRNAs were low in all endometrial 

cell types during the estrus cycle.  During pregnancy, the IRF1 and STAT2 mRNAs were 

noticeably upregulated in the stratum compactum stroma of the endometrium between 

Day 12 and Day 15.  The IRF1 and STAT2 mRNAs remained in the stratum  



 27

 
 

 

FIG. 3.5. Steady-state levels of mRNAs for the classical IFN-stimulated genes (A) IRF1 
(a), STAT2 (b), MIC (c), and B2M (d), and the non-IFN stimulated gene (B) IRF2 in pig 
endometria during the estrus cycle and pregnancy.  The mRNA levels, expressed as least 
square means of the relative counts per minute with overall SEM, are normalized for 
differences in sample loading using 18S rRNA and represent 20 µg of total endometrial 
mRNA per sample. 
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FIG. 3.6. In situ hybridization analysis of IRF1 mRNA in pig uteri.  Corresponding 
bright-field and dark-field images from different Days (D) of the estrus cycle (C) and 
pregnancy (P) are shown.  A representative section from D12P hybridized with 
radiolabeled sense cRNA probe (Sense) serves as a negative control.  LE, luminal 
epithelium; GE, glandular epithelium; ST, stratum compactum stroma; Tr, 
trophectoderm.  The width of each field is 940 µm. 
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FIG. 3.7. In situ hybridization analysis of STAT2 mRNA in pig uteri.  Corresponding 
bright-field and dark-field images from different Days (D) of the estrus cycle (C) and 
pregnancy (P) are shown.  A representative section from D15P hybridized with 
radiolabeled sense cRNA probe (Sense) serves as a negative control.  LE, luminal 
epithelium; GE, glandular epithelium; ST, stratum compactum stroma; Tr, 
trophectoderm.  The width of each field is 940 µm. 
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FIG. 3.8. In situ hybridization analysis of IRF2 mRNA in cross-sections of pig uteri.  
Corresponding bright-field and dark-field images from different Days (D) of the estrus 
cycle (C) and pregnancy (P) are shown.  A representative section from D12P hybridized 
with radiolabeled sense cRNA probe (Sense) serves as a negative control.  LE, luminal 
epithelium; GE, glandular epithelium; ST, stratum compactum stroma; Tr, 
trophectoderm.  The width of each field is 940 µm. 



 31

compactum stroma through Day 25 of pregnancy, and then decreased to very low levels 

through Day 85.  The IRF1 (Fig. 3.6) and STAT2 (Fig. 3.7) mRNAs were not observed in 

the uterine LE of either the cyclic or pregnant pigs.  Therefore, the mRNAs for two 

classical ISGs, i.e., IRF1 and STAT2, are increased specifically in pig endometrial 

stroma during the peri-implantation period. 

As illustrated in Figure 3.8, the level of IRF2 mRNA was low during the estrus 

cycle.  However, IRF2 mRNA appeared in the LE of pregnant pigs on Day 12 and 

remained in the LE through Day 30.  IRF2 mRNA was not observed in the stroma or 

glands of the uteri from both cyclic and pregnant pigs. 

Immunoreactive IRF1 protein.  Consistent with the in situ hybridization results, 

the level of IRF1 protein was low in the endometrium on Day 15 of the estrus cycle, but 

was present in the endometrial stroma on Day 15 of pregnancy (Fig. 3.9).  IRF1 protein 

was not observed in the LE of pregnant endometrium (Fig. 3.9). 

 Collectively, these data document two expression patterns during the peri-

implantation period of pigs:  1) IRF2 increased in LE cells on Day 12, at which time-

point the elongated pig conceptuses secrete estrogen for pregnancy recognition [1]; and 

2) the levels of classical ISGs increase in the endometrial stroma between Day 12 and 

Day 15, which temporally correlates with increased antiviral activity measured in uterine 

flushes exposed to conceptus secretion of IFNG and IFND [8, 94, 95]. 

 

Exogenous Estrogen Induces IRF2 But Not IRF1 in Porcine Endometrium (Study 2)  

 Intramuscular injections of E2 did not alter the steady-state levels of IRF1 mRNA 

in the pig endometrium compared to CO injection (for CO vs. E2, 146 634 vs. 115 756 ± 

11 505 relative units of radioactivity; P > 0.10).  Consistent with the slot blot 

hybridization results, the levels of immunoreactive IRF1 protein were similar in the 

endometria (Day 15) of cyclic pigs injected with E2 and those injected with CO vehicle 

(Fig. 3.10A). 
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FIG. 3.9. Immunofluorescence localization of IRF1 protein in frozen cross-sections of 
pig endometria from day 15 of the estrus cycle (D15C) and D15 of pregnancy (P).  
Nonrelevant rabbit immunoglobulin (IgG) serves as a negative control.  LE, luminal 
epithelium; ST, stratum compactum stroma.  The width of each field is 540 µm. 
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FIG. 3.10. Localization of IRF1 protein and IRF2 mRNA in cross-sections of pig uteri 
from study 2.  A) Immunofluorescence localization of IRF1 protein in frozen cross-
sections of endometria and from Day 15 cyclic pigs injected i.m. with either the CO 
control (D15C+CO) or E2 (D15C+E2).  An example of nonrelevant rabbit 
immunoglobulin (IgG) is shown in Figure 3.9, and serves as a negative control. The 
width of each field is 540 µm.  B) In situ hybridization analysis of IRF2 mRNA in 
uterine cross-sections from pigs injected with either CO or E2.  Corresponding bright-
field and dark-field images of the endometrium are shown.  A representative section 
hybridized with radiolabeled sense cRNA probe (Sense) is shown in Figure 3.8, and 
serves as a negative control.  The width of each field is 940 µm.  LE, luminal epithelium; 
GE, glandular epithelium; ST, stratum compactum stroma.   
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In contrast, the levels of IRF2 mRNA were increased (P < 0.05) in the 

endometria of pigs injected with E2 as compared to those injected with CO vehicle (for 

CO vs. E2, 245 844 vs. 343 684 ± 19 604 relative units of radioactivity).  The in situ  

hybridization analyses revealed that IRF2 mRNA was increased specifically by E2 in the 

uterine LE (Fig. 3.10B). 

 

CSPs Regulate IRF1 But Not IRF2 (Study 3)    

 Steady-state levels of IRF1 mRNA in the pig endometrium.  Intrauterine infusion 

of CSPs into the uterine horn of pigs treated with exogenous estrogen increased (P < 0.1) 

the steady-state levels of endometrial IRF1 mRNA about 2-fold as compared to the 

uterine horns infused with control serum proteins.  Consistent with the slot blot  

hybridization results, immunoreactive IRF1 protein abundance was noticeably greater in 

the stratum compactum stroma of the uterine horn infused with CSPs as compared to the 

uterine horn infused with control serum proteins (Fig. 3.11A). 

 In contrast, in situ hybridization for IRF2 revealed that intrauterine infusion of 

CSP into Day-16 pigs treated with exogenous estrogen did not increase IRF2 mRNA 

expression over the levels detected after intrauterine infusion of control serum proteins 

(Fig. 3.11B). 

 

Discussion 

 Our results demonstrate that the levels of IRF1, STAT2, MIC, and B2M increase 

in endometria in the peri-implantation period, during which elongated pig conceptuses 

secrete IFND and IFNG [8, 40].  Furthermore, IRF1 and STAT2 are expressed in the 

endometrial stroma.  It seems likely that IFND and/or IFNG pass through altered tight 

junctions between the uterine LE cells [119], to act in a paracrine manner to induce these 

genes in the endometrial stroma, since IRF1, STAT2, MIC, and B2M  are known to be 

induced by both type I and type II IFNs [28, 112].  Indeed, the lower magnitude of 

increased expression of these genes in the endometria of pigs as compared to sheep 

correlates well with the differences noted between these species in the antiviral activities  
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FIG. 3.11. Localization of IRF1 protein and IRF2 mRNA in cross-sections of pig uteri 
from study 3.  A) Immunofluorescence localization of IRF1 protein in frozen cross-
sections of pig endometria from Day 16 cyclic pigs that received intrauterine infusion of 
control serum proteins (D16C+E2-Control) or CSPs (D16C+E2-CSP).  An example of 
nonrelevant rabbit immunoglobulin (IgG) is shown in Figure 3.9, and serves as a 
negative control.  The width of each field is 540 µm.  B) In situ hybridization analysis of 
IRF2 mRNA in uterine cross-sections from pigs injected with either CO or E2.  
Corresponding bright-field and dark-field images of the endometrium are shown.  A 
representative section hybridized with radiolabeled sense cRNA probe (Sense) is shown 
in Figure 3.8, and serves as a negative control.  The width of each field is 940 µm.  LE, 
luminal epithelium; GE, glandular epithelium; ST, stratum compactum stroma.   



 36

measured in the uterine flushes [8, 120].  Increases in IRF1 and STAT2 gene 

transcription in several cell lines require the activation of STAT1, formation of a 

homodimer (termed γ-activated factor or GAF), translocation to the nucleus, and 

transactivation through GAF binding to a γ-activated sequence (GAS) in the IRF1 

promoter [84, 112, 121, 122].  However, IRF1 can also coordinate with and maintain the 

induction cascade of other classical ISGs through binding and transactivating IFN-

stimulated response elements (ISRE) at their promoters [112-114].  It is significant that 

the stromal distributions of IRF1 and STAT2 in the pig uterus are similar to the increases 

observed for IRF1 and STAT2 in pregnant sheep endometria exposed to IFNT [28], and 

this temporal/spatial pattern of expression is shared by several ISGs in sheep [28-32, 34, 

35, 39, 123].  Cattle, mice, and primates express ISGs in the endometrial stroma or 

decidua of pregnancy [22, 24, 93, 108].  This is the first report of temporal changes in 

the gene expression levels of IRF1, STAT2, MIC, and B2M and in the spatial 

distributions of IRF1 and STAT2 in the pig uterus, and the first direct linkage of CSPs 

that contain IFNG and IFND to endometrial ISG expression in pigs. 

 Although it has been suggested that IRF1 induces and/or maintains the 

transcription of selected ISGs in the endometrial stroma of sheep [111], the pregnancy-

specific roles of uterine ISGs remain conjectural.  Hess and coworkers [23] treated 

decidualized human endometrial stromal cells with conditioned media from human 

trophoblasts, in studies similar to the in vivo intrauterine infusion experiments of the 

present study, and found that many ISGs, including IRF1, were upregulated.  The 

upregulation of ISGs from the secretory products of human trophoblasts is likely due to 

the production of type I IFNs [21].  Mouse trophoblast giant cells have also been shown 

to produce a type I IFN-like molecule, which induces ISG expression in endometrial 

stromal cells [16].  Thus, emerging evidence suggests that the induction and increase in 

ISGs in the endometrium or decidua by conceptus IFNs are phenomena of early 

pregnancy in many mammals [23, 24, 124], including pigs (present study).  Interestingly, 

a decidual-like transformation has been reported in the pregnant endometrial stroma of 

sheep, which suggests that the endometrium of noninvasive implanting species 
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undergoes remodeling that is somewhat similar to uterine decidua of species with 

invasive implantation [125].  Therefore, it is likely that ISGs facilitate remodeling within 

the stromal compartment of the uterus for uterine receptivity to conceptus implantation 

and placentation across disparate mammalian species. 

 As players in decidual/stromal remodeling, individual ISGs may be involved in 

protecting the fetal semiallograft from immune rejection, limiting conceptus invasion 

through the uterine wall, and/or establishing a vascular supply to the conceptus.  Since 

IFNG, a protein secreted by pig conceptuses, is involved in endometrial vascular 

development in mice [126], it is reasonable to hypothesize that conceptus-derived IFNs 

upregulate ISGs, such as IRF1, to facilitate the vascular changes that are needed to 

provide hematotrophic support to the developing conceptus.  Whether or not this is true, 

it is becoming increasingly clear that IFN induction of genes within the uterine stroma of 

mammals is a universal response to or component of mechanisms for the establishment 

and maintenance of pregnancy. 

 IRF2 is a potent repressor and attenuator of ISG expression and inhibits ISRE-

containing genes through direct ISRE binding and coactivator repulsion [127, 128].  As 

such, IRF2 is an important regulator in gene networks of the IFN system [129, 130].  A 

previous study by Choi et al. [28] described the expression of IRF2 in the endometrial 

LE of early pregnant sheep.  In addition, the transcriptional activity of a promoter-

reporter construct that contained five consensus ISRE-binding sites was strongly 

repressed by transient transfection of immortalized sheep stromal cells [131] with 

vectors that overexpressed ovine IRF2 [28].   These data, along with the constitutive 

presence of IRF2 and lack of IRF1 and many other classical ISGs in the LE, have led to 

the hypothesis that IRF2 restricts the expression of ISGs in the LE by directly repressing 

their transcription and rendering IFNT unable to activate the classical JAK-STAT-IRF1 

pathway [28, 99].  The present studies are the first to localize IRF2 in the pig 

endometrium, and the similar temporal and spatial patterns of expression of IRF2 and 

IRF1 in pigs and sheep supports the idea that IRF2 represses the expression of ISGs in 

the LE of pigs, and perhaps in mammals in general. 
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 In the present study, the conceptus and injections of estrogen induced IRF2 

expression, specifically in the endometrial LE.  Estrogen receptor α (ESR1) is present in 

the LE on Day 12 of pregnancy [7], at which time-point the conceptuses secrete 

estrogens.  Furthermore, estrogen is capable of regulating gene transcription through 

ESR1/Sp1 interactions [91] and the human IRF2 promoter contains four Sp1 sites [130].  

Estrogens are the maternal recognition signals that prevent CL regression [1].  In 

addition, conceptus estrogens modulate uterine gene expression to support the controlled 

inflammatory-like events that characterize changes in conceptus morphology and uterine 

remodeling for implantation in pigs [132].  Indeed, secreted phosphoprotein 1 (or 

osteopontin) is induced by estrogen in the LE [133].  Furthermore, conceptus secretion 

of estrogens correlates with conceptus secretion of interleukin 1β, which may in turn 

modulate the uterine response to this cytokine [134].  The importance of estrogen to 

early survival of pig conceptuses is underscored by the fact that premature exposure of 

the pregnant uterus to estrogen on Day 9 and Day 10 results in the degeneration of all 

pig conceptuses by Day 15 [5].  The present results strongly suggest that conceptus 

estrogens induce IRF2 in the endometrial LE, thereby indirectly inhibiting conceptus 

IFNs from inducing IRF1, STAT2, and presumably other ISGs at the sites of conceptus 

attachment for implantation.  The role that ISG repression plays in the establishment of 

pregnancy remains to be determined.  However, in sheep, MHC class I and β2-

microglobulin are silenced in the LE, presumably by IRF2 [31].  It has been 

hypothesized that the ablation of these key molecules, which are involved in host 

defense and immune histocompatibility of transplanted tissues at the maternal-placental 

interface, ensures acceptance of the conceptus semiallograft [31].  It is reasonable to 

predict similar mechanisms for the pig. 

 Interestingly, the placentas and offspring of Irf1-/- mice are smaller than their 

wild-type counterparts [110], a phenotype similar to that of several mouse strains that 

lack uterine natural killer (uNK) cells [135].  Uterine NK cells are associated with 

modification of the decidual spiral arteries that supply the conceptus with hematotrophic 

support [135].  In Irf1-/- mice, the uNK cells are fewer, smaller, and hypogranular [110].  
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Both Irf1 and Irf2 are involved in the development and/or function of peripheral NK 

cells.  In Irf1-/- mice, the numbers of NK cells in the spleen and liver are reduced and 

cytolytic activity is absent [136, 137].  Irf1 also transcriptionally regulates interleukin 15 

[138], which is involved in NK cell maturation [139].  In Irf2-/- mice, the number of NK 

cells and the NK cell cytotoxic activities of splenocytes are reduced [140].  While both 

Irf1 and Irf2 are important for peripheral NK cells, only Irf1 is involved in uNK cell 

development [110].   

 An attractive hypothesis for the pig is that conceptus secretion of IFNG and/or 

IFND increases IRF1 expression in the uterine stroma, which plays a role in increasing 

uNK cell cytolytic activity to expand maternal vascular support for developing 

conceptuses.  Uterine NK cells are present and increase in the pig endometrium during 

early pregnancy due to the presence of the conceptus [141, 142].  These uNK cells may 

also transform into larger more granulated forms with increased cell cytolytic activity 

due to the uterine microenvironment [143].  This increase in functional activity of uNK 

cells in response to the conceptus does not occur in pseudopregnant pigs, which 

indicates an affect of the conceptus that is independent of conceptus estrogens [143].  

Similar to the mouse, uNK cells may be involved in vascular changes that are important 

for embryo survival in pigs.  Indeed, endometrial lymphocytes isolated near healthy 

conceptuses, but not those from sites of fetal arrest, are more numerous and express 

genes that are linked to angiogenesis [144].   These changes are associated with 

development of the subepithelial capillary bed, which is necessary for conceptus 

survival. 

In conclusion, insights into the complex and overlapping events of pregnancy 

recognition and endometrial remodeling for implantation and placentation have been 

gained through examining the uterine expression levels of IRF1, STAT2, MIC, B2M, and 

IRF2 in terms of stage of estrus cycle, day of pregnancy, treatment with E2, and 

intrauterine infusion of CSP in pigs.  The results suggest that pig conceptuses orchestrate 

precise temporal and spatial changes in uterine gene expression through initial secretion 

of estrogen, followed later by the expression of proteins, such as IFND and IFNG.  
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Estrogens from pig conceptuses or injected E2 increase IRF2 expression in the LE and 

limit the expression of selected ISGs, including IRF1, to the underlying stroma.  It is 

likely that many other uterine genes critical for pregnancy success are regulated by a 

similar interplay between conceptus steroids and proteins.  Since the trophoblasts of 

ruminants, rodents, primates, and pigs share the characteristic of secretion of multiple 

paracrine factors that profoundly affect uterine gene expression and uterine remodeling, 

insights from the present study advance our understanding of early pregnancy across 

mammalian species.  While the key players at the uterine-placental interface require 

further definition, the interactions of estrogen, IFNs, and ISGs, including IRF1 and 

IRF2, described here highlight the complex and precisely orchestrated interplay between 

the endometrium and conceptus that influences conceptus survival, implantation, and 

development. 
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CHAPTER IV 

 

PIG CONCEPTUSES SECRETE ESTROGEN AND INTERFERONS TO 

DIFFERENTIALLY REGULATE UTERINE STAT1 IN A TEMPORAL AND 

CELL-TYPE SPECIFIC MANNER∗

 

Introduction 

Implantation is the process by which the blastocyst attaches to the uterus for 

juxtaposition of embryonic and maternal circulations leading to the establishment of a 

functional placenta and successful pregnancy.  During the peri-implantation period of 

pregnancy, uterine luminal epithelial (LE) cells and conceptus trophectoderm develop 

adhesion competence in synchrony to initiate an adhesion cascade within a restricted 

period of the uterine cycle termed the window of receptivity.  These cells orchestrate bi-

directional interactions between the blastocyst and uterine endometrium involving 

spatiotemporally regulated endocrine, paracrine and autocrine modulators that mediate 

cell-cell and cell-matrix interactions [46, 48, 104, 145-148].  The trophectoderm layer of 

the blastocyst produces a factor(s) that signals pregnancy recognition as well as forms 

the placental membranes that are ultimately responsible for ensuring pregnancy success. 

Uterine endometrial responses to implantation are complex.  In addition to 

remodeling of the uterine LE [51], both LE and glandular epithelia (GE) secrete 

histotroph to nourish and support development of the conceptus [102].  Uterine stroma 

transforms (i.e., decidualization) to control movement of the conceptus through the 

uterine wall during implantation while generating a cytokine-rich environment that 

directly promotes angiogenesis to ensure sufficient blood flow to the placenta for 

hematotrophic nourishment of fetal development [105, 149, 150]. 

                                                 
∗ Reprinted with permission from Pig conceptuses secrete estrogen and interferons to 
differentially regulate uterine STAT1 in a temporal and cell-type specific manner by 
Joyce MM, Burghardt RC, Geisert RD, Burghardt JR, Hooper RN, Ross JW, Ashworth 
MD, Johnson GA.  Endocrinology 2007; 148:4420-4431.  Copyright 2007 by The 
Endocrine Society. 
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In pigs, pregnancy recognition is the result of conceptus secretion of estrogens on 

d 11 and 12 of pregnancy to redirect prostaglandin F2α secretion from the uterine 

vasculature to the uterine lumen where it is sequestered away from the corpora lutea [1, 

3, 86].  In addition, conceptus estrogens modulate uterine gene expression responsible 

for endometrial remodeling from d 13-25 of gestation required for implantation [132].  

Secreted phosphoprotein 1 (SPP1, or osteopontin) is an extracellular matrix protein 

induced by estrogen in LE where it is hypothesized to influence trophectoderm and LE 

adhesion, signal transduction and cell migration [133].  Conceptus estrogen secretion 

also correlates with conceptus secretion of IL-1β, which may in turn modulate uterine 

response to this cytokine [134].  The importance of estrogen to implantation of pig 

conceptuses is underscored by the fact that premature exposure of the pregnant uterus to 

estrogen on d 9 and 10 results in degeneration of all pig conceptuses by d 15 [5]. 

Peri-implantation pig conceptuses also secrete interferons (IFNs) during the peri-

implantation period.  Cultured conceptuses from d 11 of pregnancy were first shown to 

secrete proteins that cross-reacted with antiserum against IFNα [94], but peak antiviral 

activity was not measured until d-14 and -15 conceptuses were cultured [95].  The major 

species (75% of antiviral activity in pig conceptus secretory proteins) is the type II IFNγ 

and the other (25%) is the type I IFNδ [8, 40].  However, in contrast to sheep 

conceptuses, in which a type I IFN (IFNτ) is the signal for maternal recognition of 

pregnancy [4], the IFNs produced by pig conceptuses do not appear to be antiluteolytic.  

Intrauterine infusion of conceptus secretory proteins on d 12 and 15 of the estrous cycle 

had no effect on interestrus interval or temporal changes in plasma progesterone 

concentrations [9]. 

IFNτ increases expression of a number of IFN-stimulated genes (ISGs) in the 

stroma of the ruminant uterus, including MX1 and signal transducer and activator of 

transcription 1 (STAT1) [28, 32, 148].  It is noteworthy that paracrine actions of pig 

conceptus IFNs are also suggested by localization of IFN receptors on endometrial 

epithelial cells [40] and expression of MX1 in the stroma of pigs on d 18 of pregnancy 

[42].  Although effects of these IFNs on pig endometrium have not been determined, 
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emerging evidence suggests that induction or increases in ISGs in the endometrium by 

conceptus IFNs is a phenomenon of early pregnancy in many mammals and may 

facilitate establishment of a uterine vascular supply to the conceptus [16, 21-24, 124].  

Our working hypothesis is that pig conceptus IFNs increase uterine endometrial 

expression of the ISG STAT1 during pregnancy and that STAT1 has biological roles in 

uterine receptivity and conceptus implantation and development.  Indeed, STAT1 

activation generally results in transcription of genes that are antiproliferative, 

proapoptotic and proinflammatory that could profoundly influence endometrial 

remodeling for implantation and placentation [151].  However, in ruminants, 

endometrial ISG expression is a result of the signal for pregnancy recognition from the 

conceptus.  Pigs utilize estrogens, not IFNs, for pregnancy recognition.  Therefore, the 

objectives of the present studies were to determine whether STAT1 is expressed in the 

pig endometrium during pregnancy, and if so, whether STAT1 expression is regulated by 

conceptus estrogen and/or conceptus secretory proteins that contain IFNγ and IFNδ.  

Results provide compelling evidence that pig conceptus trophectoderm cells orchestrate 

precise temporal and cell-type-specific changes in uterine STAT1 expression through 

initial secretion of estrogen, followed by IFNδ and IFNγ. 

 

Materials and Methods 

Animals and Tissue Collection 

Experimental and surgical procedures complied with the Guide for Care and Use 

of Laboratory Animals and were approved by the Texas A&M University Laboratory 

Animal Care or the Oklahoma State Institutional Care and Use Committees.  Pigs were 

observed daily for estrus (d 0) and exhibited at least two estrous cycles of normal 

duration before use in studies. 

Study 1.  To evaluate the effect of pregnancy on gene expression, pigs were 

assigned randomly to either cyclic or pregnant status.  Those in the pregnant group were 

bred when detected in estrus and 12 and 24 h thereafter.  Pigs were hysterectomized on 
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either d 5, 9, 12, or 15 of the estrous cycle or d 9, 10, 12, 13, 14, 15, 20, 25, 30, 35, 40, 

60 or 85 of pregnancy (n = 3 pigs/d·status) (Fig. 3.1).   

Study 2.  To evaluate the effect of estrogen on uterine gene expression, pigs were 

assigned randomly to receive daily injections (im) of either 5 ml corn oil vehicle or 5 mg 

17β-estradiol benzoate (Sigma Chemical Co., St. Louis, MO; 5 mg in 5 ml corn oil) on d 

11, 12, 13, and 14 post estrus (n = 5 pigs per treatment).  All pigs were hysterectomized 

on d 15 post estrus (Fig. 3.2). 

Study 3.  To evaluate the effect of pig conceptus secretory proteins on uterine 

gene expression, pigs (n = 3) were injected (im) with 5 mg 17β-estradiol benzoate 

(Sigma; 5 mg in 5 ml corn oil) on d 11, 12, 13, 14, and 15 post estrus.  On d 12 post 

estrus (coincident with secretion of IFNs by pig conceptuses) [8, 94, 95], each pig was 

surgically implanted with two indwelling Alzet osmotic pumps (Durect Corp., 

Cupertino, CA) with a constant delivery rate of 10 µl/h.  Each uterine horn was isolated 

via midline celiotomy, clamped, and severed from the uterine body at approximately 5 

in. from the uterotubal junction while preserving the mesometrium and vascular supply 

to the uterine horn.  The transected ends of each uterine horn and uterine body were 

sutured closed and the serosa of the antimesometrial borders of the horn and body 

sutured together to prevent twisting of the horn.  For each pump, a catheter was attached 

and inserted approximately 2 cm into the lumen of one uterine horn.  Before surgery, 

pumps were filled and equilibrated per manufacturer’s instructions.  For each pig, one 

uterine horn was infused by a pump filled with porcine serum albumin (35 mg; Sigma), 

whereas the other uterine horn was infused by a pump filled with porcine conceptus 

secretory proteins (CSPs) (35 mg) (Fig. 3.3).  All pigs were hysterectomized on d 16 

post estrus (coincident with maximal antiviral activity in pig uterine flushings) [95] (Fig. 

3.4). 

Preparation of porcine CSPs.  As previously described [41, 115], conceptuses 

from d 15-17 pregnant pigs (coincident with maximal production of IFNs by 

conceptuses) [8, 94, 95] were recovered by flushing uterine horns, cultured for 30 h, 

dialyzed (MWCO 3500; Spectrum Laboratories, Inc., Rancho Dominguez, CA), 
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concentrated (MWCO 5000; Millipore Corp., Bedford, MA), filter sterilized, assayed for 

protein concentration, and stored at 4 C. 

Study 4.  To evaluate the effect of early estrogen administration on conceptus 

development and uterine gene expression, pigs were bred and assigned randomly to 

receive daily injections (im) of 2.5 ml corn oil or 5 mg estradiol cypionate (A. J. Legere, 

Scottsdale, AZ; 5 mg in 2.5 ml corn oil) on d 9 and 10 of gestation.  Pigs were 

hysterectomized on d 10, 12, 13, 15, or 17 of pregnancy (n=4 pigs/day·treatment) (Fig. 

4.1).  

At hysterectomy, several sections (~0.5 cm) from the middle of each uterine horn 

were fixed in fresh 4% paraformaldehyde in PBS (pH 7.2) and embedded in Paraplast-

Plus (Oxford Laboratory, St. Louis, MO).  Several sections from each uterine horn were 

also embedded in Tissue-Tek OCT Compound (Miles, Oneonta, NY), snap frozen in 

liquid nitrogen, and stored at -80 C.  The remaining endometrium was physically 

dissected from the myometrium, frozen in liquid nitrogen, and stored at -80 C for RNA 

extraction. 

 

Microarray Analysis  

For study 4, microarray analysis was conducted using a spotted cDNA array 

representing mRNA transcripts from pig brain, oviduct, uterine endometrium, oocytes, 

early embryos, peri-implantation conceptuses, and fetal and ovarian tissues (developed 

at the University of Missouri using procedures previously described) [152].   

Total endometrial RNA (20 µg) was reverse transcribed and labeled using the 

3DNA Array 50 Expression Array Detection Kit (Genisphere Inc., Hatfield, PA).  Four 

hybridizations were conducted per the manufacturer’s recommendations.  For each 

replication, the total cDNA synthesis reaction volume for both treatments for each day 

was combined, cDNA volume concentrated to 3-10 µl (Microcon YM-30; Millipore), 

nuclease-free water added to a final volume of 10 µl, and slides hybridized (10 µl 

concentrated cDNA, 25 µl 2X formamide hybridization buffer, 2 µl LNA dT blocker, 

and 13 µl nuclease-free water) at 53 C for 16 h in a humidified hybridization cassette 
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FIG. 4.1. Study 4 experimental design.  Pregnant pigs received daily i.m. injections of 
estradiol cypionate or corn oil vehicle on Days 9 and 10 postestrus.  Pigs from both 
treatments were hysterectomized on the indicated days of pregnancy. 
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using a 22 x 40 mm LifterSlip (Erie Scientific Co., Portsmouth, NH).  After 

hybridization,  slides were washed (2X SSC/0.2% SDS at 65 C for 15 min; 2X SSC, at 

room temperature for 15 min; and 0.2X SSC at room temperature for 15 min), rinsed in 

95% ethanol for 2 min, and dried on a slide centrifuge.  Secondary hybridizations were 

conducted at 50 C for 3 h, washed and dried as before. Each microarray slide was 

scanned with the Cy3 and Cy5 channels using the ScanArray Express (PerkinElmer Life 

Sciences, Inc., Wellesley, MA).  Laser power and photomultiplier tube gain were 

adjusted for each slide to minimize variation between wavelengths.  GenePix Auto 

Processor 3.0 software was used for data preprocessing, background correction, Local 

Loess pin-by-pin intensity normalization, and microarray statistical analysis (GPAP3.0, 

http://darwin.biochem.okstate.edu/gpap3; Weng, H., and P. Ayoubi, in preparation).  

 

RNA Isolation and Analyses 

RNA isolation.  Total cellular RNA was isolated using TRIzol reagent 

(Invitrogen, Carlesbad, CA) according to the manufacturer’s recommendations. 

RT-PCR analysis.  Partial cDNAs for porcine IFNδ and porcine IFNγ were 

amplified by RT-PCR as previously described [30].  For IFNδ, conceptus total RNA 

from d 14 of pregnancy was reversed transcribed, and then gene-specific primers 

(GenBank accession no. Z22706; forward 5’-ATGGATTGTCCCCATGTAGG-3’ and 

reverse 5’-CTGAGCTACCAGGGTTACCG-3’) [153] were used.  For IFNγ, porcine 

uterine endometrial RNA from d 15 of pregnancy was reverse transcribed, and then 

gene-specific primers (GenBank accession no. AY188090; forward 5’-

CAGCTTTGCGTGACTTTGTG-3’ and reverse 5’-TGAATGGCCTGGTTATCTTTG-

3’) were used.  Both PCR products were cloned into a pCRII cloning vector using the 

TA cloning kit (Invitrogen) and confirmed by sequence analysis.  A BLAST search for 

each was conducted to ensure that only target genes were evaluated. 

Northern blot analysis.  As previously described [116],  8 µg total RNA per lane 

was hybridized with a radiolabeled antisense human STAT1 cRNA probe [154] 

generated by in vitro transcription with [α-32P]uridine 5-triphosphate (PerkinElmer) and 
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a MAXIscript kit (Ambion, Austin, TX).  Hybridization signals were detected by 

exposure to a PhosphoImager screen and visualized using a Typhoon 8600 variable 

mode imager (Molecular Dynamics, Piscataway, NJ). 

Slot blot analysis.  As previously described [116], 20 µg total RNA per slot was 

hybridized with a radiolabeled antisense human STAT1 cRNA generated as above.  To 

correct for variation in loading, a duplicate membrane was hybridized with a 

radiolabeled antisense 18S rRNA (pT718S; Ambion) cRNA probe.  Hybridization 

signals were detected as above.  

In situ hybridization analysis.  As previously described [37], deparaffinized, 

rehydrated, and deproteinated uterine cross-sections (5 µm) were hybridized with 

radiolabeled antisense or sense human STAT1 or pig IFNγ cRNA probes synthesized by 

in vitro transcription with [α-35S]uridine 5-triphosphate (PerkinElmer).  After 

hybridization, washes, and RNase A digestion, autoradiography was performed using 

NTB liquid photographic emulsion (Eastman Kodak, Rochester, NY).  Slides were 

exposed at 4 C, developed in Kodak D-19 developer, counterstained with Harris’ 

modified hematoxylin (Fisher Scientific, Fairlawn, NJ), dehydrated, and protected with 

coverslips. 

 

Immunofluorescence Analysis 

As previously described [118], frozen pig uterine cross-section (~8-10 µm) were 

fixed in -20 C methanol, washed in PBS containing 0.3% vol/vol Tween 20, blocked in 

10% normal goat serum, incubated overnight at 4 C with 30 µg/ml mouse antihuman 

STAT1 (610185; BD Biosciences PharMingen, San Jose, CA), or 25 µg/ml mouse 

antiporcine IFNγ (I7662-18P; U.S. Biological, Swampscott, MA) or mouse IgG 

(negative control; Sigma), and detected with fluorescein-conjugated goat antimouse IgG 

(Chemicon International, Temecula, CA).  Slides were overlaid with Prolong antifade 

mounting reagent (Molecular Probes, Eugene, OR) and a coverslip. 
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Photomicrography 

Digital photomicrographs of in situ hybridization (autoradiographic film 

overviews as well as representative bright-field and dark-field images of liquid emulsion 

autoradiography) and immunofluorescence staining were evaluated using an Axioplan 2 

microscope (Carl Zeiss, Thornwood, NY) interfaced with an Axioplan HR digital 

camera and Axiovision 4.3 software.  Photographic plates were assembled using Adobe 

Photoshop (version 6.0, Adobe Systems Inc., San Jose, CA). 

 

Statistical Analysis 

Data were subjected to least-squares ANOVA using the general linear models 

procedures of the Statistical Analysis System (SAS, Cary, NC).  All slot blot 

hybridization data were analyzed using the 18S rRNA as a covariate to correct for 

differences in RNA loading.  Data from study 1 were analyzed for effects of day and 

status and their interaction where appropriate.  For all other studies, effects of treatment 

were determined by preplanned orthogonal contrasts.  All tests of significance were 

performed using the appropriate error terms according to the expectation of the mean 

squares for error.  Data are presented as least-squares means with SE. 

 

Results 

STAT1 Increases in Pregnant Uterine Endometrium in a Cell-Type-Specific Manner 

The human cDNA for STAT1 detected an approximately 4.2-kb mRNA by 

Northern blot analysis of pig total endometrial mRNA from d 15 of pregnancy (data not 

shown).  This mRNA was similar in size to that detected using the same cDNA in sheep 

endometrial total mRNA.  Pregnancy-specific up-regulation of endometrial STAT1 

mRNA was evaluated using slot blot hybridization (Fig. 4.2A).  Steady-state levels of 

STAT1 mRNA in pig endometrium decreased between d 9 and 12 of the estrous cycle (P 

< 0.07).  However, during pregnancy, STAT1 mRNA levels increased between d 10 and 

20 (P < 0.01), decreased between d 20 and 25 (P < 0.07), decreased again between d 35 

and 40 (P < 0.07), and remained low thereafter (Fig. 4.2A). 



 50

FIG. 4.2. Study 1: STAT1 increases in pregnant uterine endometrium in a cell-type-
specific manner.  A, Steady-state levels of mRNA for STAT1 in pig endometrium during 
the estrous cycle and pregnancy.  The mRNA levels are expressed as least-square means 
of relative units of counts per minute with overall SEM, are normalized for differences 
in sample loading using 18S rRNA, and represent 20 µg total endometrial mRNA per 
sample.  B, In situ hybridization analysis of STAT1 mRNA in cross-sections of pig 
uterus.  Corresponding bright-field and dark-field images from different days (D) of the 
estrous cycle (C) and pregnancy (P) are shown.  A representative section from D15P 
hybridized with radiolabeled sense cRNA probe (Sense) serves as a negative control.  
Width of each field is 940 µm.  C, Immunofluorescence localization of STAT1 protein 
in frozen cross-sections of pig endometrium from d 12 and 15 of the estrous cycle (C) 
and pregnancy (P).  A representative section from D12P immunolocalized with 
nonrelevant mouse IgG serves as a negative control.  Width of each field is 540 µm.  PL, 
Placenta; ST, stratum compactum stroma; Tr, trophectoderm.  
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Temporal and spatial changes in STAT1 mRNA (Fig. 4.2B) and protein (Fig. 

4.2C) in the endometrium of cyclic and pregnant pigs were assessed by in situ 

hybridization and immunofluorescence analysis, respectively.  STAT1 mRNA was low in 

all endometrial cell types on d 9-15 of the estrous cycle.  In contrast, STAT1 mRNA 

increased in LE cells between d 9 and 12 of pregnancy.  A second increase in STAT1 

mRNA was observed in endometrial stromal and GE cells between d 12 and 15 of 

pregnancy.  STAT1 mRNA remained high in LE, stroma, and GE cells through d 20 of 

pregnancy, after which levels decreased to those observed on d 9 (Fig. 4.2B).  Consistent 

with in situ hybridization results, immunoreactive STAT1 protein was low in 

endometrium during the estrous cycle but was present in LE cells on d 12 of pregnancy 

and prominent in endometrial LE and stromal cells on d 15 (Fig. 4.2C). 

Collectively, these data document two STAT1 expression events in endometria 

during the peri-implantation period of pigs:  1) STAT1 increases in LE cells on d 12 

when elongated pig conceptuses secrete estrogen for pregnancy recognition [1, 3, 86], 

and 2) a second STAT1 increase in endometrial stroma and GE cells between d 12 and 15 

temporally correlates with increased antiviral activity measured in uterine flushes 

exposed to conceptus secretion of IFNγ and IFNδ [8, 94, 95].  Interestingly, expression 

of STAT1 in pig stroma and GE is similar to that observed in sheep endometrium in 

response to conceptus IFNτ, but up-regulation of STAT1 in LE is unique to the pig, 

which uses estrogen for pregnancy recognition. 

 

IFNδ and IFNγ are Synthesized by Pig Conceptuses 

Two major species of pig conceptus IFNs had previously been identified, the 

type II IFNγ and the type I IFNδ [8, 40].  Although these proteins were shown to be 

coexpressed in d-16 pig trophectoderm, no rigorous temporal and spatial localization of 

these genes was performed.  Therefore in the present studies, pig-specific cRNA probes 

to IFNγ and IFNδ and antiserum to IFNγ were used to determine temporal and spatial 

localization of these IFNs in pig conceptus and uterine tissues (Fig. 4.3).  RT-PCR  
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FIG. 4.3. Study 1: IFNδ and IFNγ are synthesized by pig conceptuses.  A, RT-PCR analysis of 
IFNδ mRNA in two d-14 pig conceptus total RNA preparations.  B, In situ hybridization analysis 
of IFNγ mRNA in cross-sections of the interface between pig uterus and conceptus.  
Corresponding bright-field and dark-field images from different days (D) of the estrous cycle (C) 
and pregnancy (P) are shown.  A representative section from D15P hybridized with radiolabeled 
sense cRNA probe (Sense) serves as a negative control.  On D9P and D12P, arrows indicate a 
population of cells within the endometrial stroma that express IFNγ mRNA.  Width of each field 
is 940 µm.  ST, stratum compactum stroma; Tr, trophectoderm.   
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analysis for IFNδ in d-14 conceptuses detected an approximately 296-kb mRNA (Fig. 

4.3A).  Sequence analysis identified that the PCR product was pig IFNδ; however, levels 

of IFNδ mRNA were not sufficiently high to be detectable in pig trophectoderm by our 

in situ hybridization procedure (data not shown).  In contrast, robust hybridization was 

detected for IFNγ using in situ hybridization (Fig. 4.3B).  IFNγ was not evident in 

endometrium during the estrous cycle but was expressed in a pregnancy-specific manner 

by a population of cells scattered within the endometrial stroma on d 9 and 12.  It is 

likely these are endometrial lymphocytes that have been reported to express IFNγ in the 

pig [144].  Pig conceptus trophectoderm cells expressed high amounts of IFNγ mRNA 

by d 13 of pregnancy, and IFNγ remained readily detectable through d 20 (Fig. 4.3B).  

Similar to a previous report [40], immunoreactive IFNγ was localized to perinuclear 

membranes typically occupied by endoplasmic reticulum and Golgi appratus as well as 

cytoplasmic vesicles within trophectoderm cells, suggesting trafficking and secretion of 

IFNγ into the uterine lumen for access to endometrium (data not shown). 

 

Estrogen Injections Given IM Increase STAT1 in Uterine Luminal Epithelium 

The timing of STAT1 expression in uterine LE coincides with the secretion of 

estrogen by pig conceptuses to signal pregnancy recognition.  The potential involvement 

of estrogen in endometrial LE STAT1 expression was evaluated by exogenous estrogen 

administration in postestrus cyclic pigs. 

The im injection of estradiol benzoate did not alter steady-state levels of STAT1 

mRNA compared with corn oil injection in total pig endometrium, of which LE cells 

compose a small proportion (P > 0.1; Fig. 4.4A).  However, in situ hybridization and 

immunofluorescence staining for STAT1 revealed that estradiol benzoate increased 

STAT1 mRNA and protein in the endometrial LE (Fig. 4.4, B and C).  No increase in 

STAT1 gene expression was observed in the LE of corn-oil-treated pigs.  STAT1 is 

therefore among the first genes shown to be regulated by estrogen in the pig uterine LE 

where it is temporally available to participate in pregnancy recognition and/or the 

adhesion cascade for implantation. 
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FIG. 4.4. Study 2: im estrogen injections increase STAT1 in uterine luminal epithelium.  A, Steady-state 
levels of STAT1 mRNA in uterine endometrium of pigs injected im with corn oil or estradiol benzoate 
(estrogen).  The mRNA levels are expressed as least-square means of relative units of counts per minute 
with overall SEM, normalized for differences in sample loading using 18S rRNA, and represent 20 µg 
total endometrial mRNA per sample.  B, In situ hybridization analysis of STAT1 mRNA in uterine cross-
sections from corn oil control (CO) or estradiol benzoate (E2) injected pigs.  Corresponding bright-field 
and dark-field images of endometrium are shown.  A representative section from d 15 of pregnancy (P) 
hybridized with radiolabeled sense cRNA probe (Sense) serves as a negative control.  Width of each field 
is 940 µm.  C, Immunofluorescence localization of STAT1 protein in frozen cross-sections of pig 
endometrium from d-15 cyclic pigs injected im with corn oil (CO) or with estradiol benzoate (E2).  A 
representative section from d 15 of pregnancy immunolocalized with nonrelevant mouse IgG serves as a 
negative control.  Width of each field is 540 µm.  ST, Stratum compactum stroma.   



 56

Intrauterine Infusion of Pig Conceptus Secretory Proteins That Contain IFNδ and IFNγ 

Increases STAT1 in Uterine Stroma 

To investigate protein paracrine signals, including IFNδ and IFNγ, directed from 

the conceptus, CSPs were infused into the uterine lumen of estrogen-treated postestrus 

cyclic pigs.   

CSPs increased steady-state levels of endometrial STAT1 mRNA expression over 

intrauterine infusion of control serum proteins (P = 0.08; Fig. 4.5A).  Consistent with 

slot blot hybridization results, in situ hybridization and immunofluorescence analyses for 

STAT1 demonstrated increased expression in the endometrial stratum compactum stroma 

of d-16 cyclic pigs intrauterine infused with CSP (Fig. 4.5, B and C).  No increase in 

STAT1 was observed when control serum proteins were infused into the uteri of d-16 

cyclic pigs.  Therefore, similar to sheep, STAT1 increases in the sub-LE uterine wall, 

coincident with exposure to IFNs, where it is temporally available to facilitate 

remodeling within the stromal compartment of the uterus for implantation and 

placentation. 

 

Uterine STAT1 Increases in Close Proximity to Paracrine Release of IFNγ by Implanting 

Conceptuses 

Figure 4.6 illustrates the spatial distribution of STAT1 mRNA in relation to 

location of the conceptus within the uterine lumen using autoradiographs of serial 

uterine cross-sections probed with IFNγ and STAT1 cRNAs respectively.  Significantly, 

STAT1 increases in uterine endometrial LE, stroma, and GE cells in close proximity to 

the implanting conceptus that expresses estrogens, IFNδ, and IFNγ, with the amount of 

STAT1 decreasing as distance from the point of contact between conceptus and uterus 

increases.  These data strongly suggest that STAT1 expression is regulated by paracrine 

secretions i.e., estrogens and/or IFNδ and IFNγ, from the implanting pig conceptus.   
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FIG. 4.5. Study 3: intrauterine infusion of pig CSPs that contain IFNδ and IFNγ increase 
STAT1 in uterine stroma.  A, Steady-state levels of STAT1 mRNA in endometrium of 
pigs intrauterine infused with control serum proteins or with CSPs.  The mRNA levels 
are expressed as least-square means of relative units of counts per minute with overall 
SEM, normalized for differences in sample loading using 18S rRNA, and represent 20 
µg total endometrial mRNA per sample.  *, Statistically different from control at P < 
0.08.  B, In situ hybridization analysis of STAT1 mRNA in uterine cross-sections from 
control serum protein- and CSP-infused pigs.  Corresponding bright-field and dark-field 
images of uterine endometrium are shown.  A representative section from d 15 of 
pregnancy hybridized with radiolabeled sense cRNA probe (Sense) serves as a negative 
control.  Width of each field is 940 µm.  C, Immunofluorescence localization of STAT1 
protein in frozen cross-sections of pig endometrium from d-16 cyclic pigs intrauterine 
infused with CSP or with control proteins.  A representative section from d 15 of 
pregnancy immunolocalized with non-relevant mouse IgG serves as a negative control.  
Width of each field is 540 µm.  ST, Stratum compactum stroma.  
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FIG. 4.6. Study 1: uterine STAT1 increases in close proximity to paracrine release of 
IFNγ by implanting conceptuses.  A, Representative autoradiographic images (Biomax-
MR; Kodak) showing entire cross-sections of the uterine walls from d 15 of pregnancy 
probed with radiolabeled antisense pig IFNγ cRNA (top) or STAT1 cRNA (bottom).  The 
luminal epithelium of the IFNγ-probed tissue has been artificially outlined in gray for 
histological reference.  Width of each field is 20 mm.  B, Corresponding bright-field and 
dark-field images from the same sectioned uterus probed with STAT1 in A.  Width of 
each field is 940 µm.   
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Inappropriate Early Estrogen Results in Demise of Embryos and Loss of IFN-Induced 

STAT1 

Early uterine exposure to estrogen on d 9 and 10 of pregnancy results in total 

embryo loss by d 15-17 of pregnancy [155].  Analysis of uterine STAT1 mRNA 

expression using this experimental model system provides an opportunity to investigate 

the interrelationship between paracrine release of estrogens and IFNs by pig 

conceptuses. 

Total endometrial STAT1 mRNA was 2.1-fold lower on d 15 of early estrogen-

treated than control pregnant pigs (P = 0.06; Fig. 4.7A).  Although STAT1 mRNA 

increased in LE of all animals in the study, stromal expression of STAT1 was observed 

only in control pregnant pigs.  No stromal expression of STAT1 was detected in pigs 

exposed to early estrogen (Fig. 4.7B).  These results indicate that inappropriate estrogen, 

leading to progressive conceptus degeneration, compromises paracrine release of IFNδ 

and IFNγ, which are required for stromal expression of STAT1.   

 

Discussion 

Our results demonstrate that cell-type-specific induction of STAT1 in the pig 

uterus is differentially regulated by conceptus signals.  Estrogen secretion by the 

conceptus on d 12, which is the signal for maternal recognition of pregnancy, temporally 

correlates with STAT1 expression in the LE, and treatment of cyclic pigs with exogenous 

estrogen increased STAT1 in the LE.  Stromal induction of STAT1 correlates with IFNδ 

and IFNγ secretion by the conceptus, and intrauterine infusion of CSPs, which contain 

IFNδ and IFNγ, into cyclic pigs treated with exogenous estrogen increased STAT1 

compared with intrauterine infusion of control proteins, similar to that observed on d 15 

of pregnancy. 

Up-regulation of STAT1 within uterine LE, stroma, and GE in close proximity to 

the implanting conceptus implies paracrine regulation of STAT1 by conceptus estrogens 

and IFNs.  A similar conceptus-associated pattern of LE gene expression has previously 

been observed for SPP1, a gene that increases in the pig uterine LE in response to  
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FIG. 4.7. Study 4: inappropriate early estrogen results in demise of embryos and loss of IFN-
induced STAT1.  A, Microarray analysis of total STAT1 mRNA in endometrium of untreated 
(control) and early estrogen-treated pregnant pigs.  The mRNA levels are expressed as relative 
mRNA differences between signals measured in the Cy3 and Cy5 channels using the ScanArray 
Express system with overall SEM and represent 20 µg total endometrial mRNA per sample.  *, 
Statistically different from control at P < 0.06.  B, In situ hybridization analysis of STAT1 
mRNA in uterine cross-sections from d-17 control pregnant (D17P) and early estrogen-treated 
pregnant pigs (D17 + Early E2).  Corresponding bright-field and dark-field images of uterine 
endometrium are shown.  A representative section from d 17 of pregnancy hybridized with 
radiolabeled sense cRNA probe (Sense) serves as a negative control.  Width of each field is 940 
µm.  ST, Stratum compactum stroma.  
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conceptus estrogen [133].  It is likely that estrogen effects on the endometrium are 

restricted to regions near the conceptus due to sulfatase activity of trophectoderm.  

During pregnancy, pig endometrium rapidly converts estradiol to the biologically 

inactive estrone sulfate, and concentrations of estrone sulfate are high within the uterine 

lumen of pregnant pigs [156].  Trophectoderm has sulfatase activity that restores the 

biological activity of estrogen, allowing for a localized effect of estrogen to up-regulate 

STAT1 and SPP1 in LE. 

In contrast, it is somewhat surprising that initial increases in stromal STAT1 are 

restricted to sites of intimate association between the conceptus and uterus, given that 

IFNγ synthesis and secretion by pig conceptuses appears to be similar in magnitude to 

IFNτ production by sheep conceptuses (Fig. 4.3, B and C) [9].  Indeed, STAT1 increases 

universally in the stroma and GE of pregnant sheep without regard to conceptus location 

within the lumen, presumably due to the high levels of secretion of IFNτ by conceptuses 

[30, 120].  One explanation for the spatial pattern of STAT1 expression observed in the 

pig uterus is that IFNδ and IFNγ act synergistically to up-regulate ISGs.  Interaction 

between type I and type II IFNs has been previously demonstrated [157].  It is plausible 

that high levels of IFNγ act on uterine stromal and GE cells to increase intracellular 

stores of ISGF3 so that the much lower levels of IFNδ can maximally up-regulate STAT1 

in close proximity to the implanting pig conceptus 

To the best of our knowledge, this is the first report demonstrating estrogen 

regulation of STAT1 gene expression.  Induction of STAT1 in LE may be the result of 

direct transcriptional activation.  The protein kinase regulated by RNA (PKR) is an ISG, 

yet in the absence of IFN, induction can be mediated by Sp1 [158].  Interestingly, 

estrogen regulates oxytocin receptor expression in the uterine LE of sheep through GC-

rich Sp1 promotor elements [91].  It is plausible that in a similar manner, estrogen up-

regulates STAT1 gene expression in pig LE through binding of Sp1 sites.  Alternatively, 

induction of STAT1 in LE may be indirect through the induction of a putative 

estromedin.  This estromedin would be released from uterine cells, because exogenous 

estrogen, in the absence of a conceptus, induced STAT1 in uterine LE.  Stromal 
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estromedins that regulate gene expression in adjacent epithelia have been reported in the 

murine uterus [159].  However, estrogen receptor α (ESR1) is nearly undetectable in pig 

endometrial stroma from d 5-15 of pregnancy [7], and only low levels of estrogen 

receptor β (ESR2) have been detected in total pig endometrium [160, 161].  Because 

ESR1 is prominent in pig LE through d 12 of pregnancy [7], it is possible that estrogen 

binds ESR1 in LE to induce release of an unknown autocrine factor that up-regulates 

STAT1 in LE. 

Although estrogen regulation of STAT1 gene expression has not previously been 

reported, estrogen has been shown to induce transcriptional activation of STATs [162].  

This activation required cytoplasmic localization of ESR1 and ESR2 [162].  

Additionally, MAPK, Src-kinase, and phosphatidylinositol-3-kinase activity were 

involved in this activation [162].  Because ESR1 is present in the pig uterine LE at the 

time of estrogen release by conceptuses [7], and ESR2 is barely detectable in the pig 

uterus [161], it is likely that STAT1 regulation would be mediated via ESR1.  However, 

estrogen receptor involvement may not be essential.  Kennedy and co-workers [163] 

used estrogen receptor-negative osteoblast and breast cancer cells to demonstrate 

estrogen-dependent STAT1 activation.   

Although estrogens, secreted by pig conceptuses on d 12 of gestation, function to 

establish pregnancy [1, 3, 86], secretion of estrogen also overlaps with initiation of 

attachment of the conceptus to the uterine luminal surface for implantation on d 13 of 

pregnancy [164].  Indeed, both pregnancy recognition and implantation require rapid 

morphological elongation of trophectoderm that coincides with elevated conceptus 

estrogen synthesis and release [132].  The timing and extent of estrogen exposure can 

have dramatic effects on conceptus development and survival.  Insufficient distribution 

of estrogen, as seen in litters with fewer than two piglets per uterine horn at the time of 

trophectoderm elongation, results in failure to prevent luteolysis and subsequent 

termination of pregnancy [165].  On the contrary, adverse timing of estrogen exposure in 

the form of naturally occurring alfatoxins in moldy corn on d 9 and 10 of gestation 

results in conceptus degeneration during the period of placental attachment to the uterine 
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surface [155, 166].  Indeed, conceptus estrogens are believed to regulate implantation 

success by altering gene expression, including SPP1 [133] and IL-1β [134], in uterine 

LE to initiate a cascade of molecular events that modifies the luminal glycocalyx for 

conceptus implantation [164, 167].  It is reasonable to propose that elongating pig 

conceptuses secrete estrogen to increase expression of STAT1 in LE and that this gene 

has a role in pregnancy recognition and/or the adhesion cascade for implantation. 

Pig conceptuses also secrete IFNs during the peri-implantation period [8], a 

phenomenon shared by humans, rodents, and ruminants [4, 16, 21].  However the 

secretion of both type I and type II IFNs, IFNδ and IFNγ, respectively, is unique to the 

pig.  In general, both type I and II IFNs can induce STAT1 through the classical Janus 

kinase-STAT signaling pathway leading to γ-activation factor binding of γ-activated 

sequence (GAS) elements and induction of gene transcription [13]. In addition, IFNδ 

signals through a similar, yet distinct, pathway leading to ISGF3 complex binding of 

IFN-stimulated response elements in the promoters of several ISGs to initiate 

transcription [11]. 

Although the type I IFNα and type II IFNγ each induce expression of largely 

nonoverlapping sets of genes, they can also act in concert to produce synergistic 

interactions leading to mutual reinforcement of physiological responses [168].  This 

synergy has been demonstrated for cooperative induction of ISGs such as STAT1.  

Normally relatively nonresponsive to IFNγ, combined treatment of cells with IFNγ 

followed by IFNα results in higher-magnitude ISG induction [168].  In addition, 

cotreatment with IFNγ and IFNα extends the period of ISG expression over IFNα alone 

[157].  For typical ISGs, type I IFNs induce rapid expression, independent of protein 

synthesis, followed by a protein synthesis-dependent suppression of transcription within 

6 h.  IFNγ overrides IFNα-induced ISG repression, allowing continuous expression of 

ISGs for greater than 24 h [157].  Clearly, IFNδ and IFNγ may profoundly influence 

uterine physiology through cooperative induction of cytokine-specific transcription 

factors, such as STAT1, that allow reinforcement of effects of distinct cell-surface 

ligands while maintaining the specificities of the individual inducing IFNs.  
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It is estimated that the IFNs control the transcription of several hundred genes to 

influence cell functions.  STAT1 activation mediates transcriptional responses to many 

cytokines and growth factors that are generally antiproliferative, proapoptotic, and 

proinflammatory [151].  Interestingly, recent work by Hartman et al. [169] has shown 

that gene transcription that results from STAT1 activation depends on the type of 

interferon that activates STAT1.  Because STAT1 homodimers form after both IFNγ and 

IFNα stimulation, it was expected that IFNγ-induced STAT1 binding sites would 

predominately overlap with those of the IFNα-induced STAT1 sites.  However, IFNγ 

and IFNα treatments result in dramatic differences in target sites for STAT1 binding.  

Sixty-six percent of the STAT1 binding sites observed with IFNγ treatment were absent 

in IFNα-treated cells, and 75% of IFNα-induced STAT1 binding sites were not present 

in IFNγ-treated cells [169].  Indeed, IFNγ-induced STAT1 homodimers bind sites not 

occupied by STAT1 upon IFNα induction, and visa versa, indicating that many STAT1 

IFNγ sites are not used in the IFNα response, and many STAT1 IFNα sites are not used 

in the IFNγ response [169].  Therefore, pig conceptuses provide the potential for highly 

complex and differential cell-type-specific gene expression in the mesenchymal 

component of the pregnant uterus through conceptus cosecretion of IFNδ and IFNγ to 

induce STAT1. 

Although it is well established that conceptus IFNτ induces expression of 

numerous ISGs in the stroma and GE of ruminants [98], the pregnancy-specific roles of 

uterine ISGs in general remain conjectural.  Recent analysis of human endometrium by 

Hess et al. [23] may shed light on ISG function(s) within the endometrium.  In these 

studies, culture medium from human trophoblasts was incubated with decidualizing 

endometrial stromal cells, and global gene expression was assessed in the decidualized 

cells.  IFN-induced or related genes constituted a significant percentage of those that 

were up-regulated in decidualizing cells in response to paracrine signals from the 

trophoblast [23].  Human trophoblasts have previously been reported to produce IFN 

[21], and clearly, results from Hess et al. [23] and others [16, 22, 24, 124] indicate 

decidualizing stroma of mice and humans undergoes an IFN-like response similar to that 
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observed in the endometrial stroma of ruminants, and now pigs.  Interestingly, a 

decidual-like transformation has previously been reported in the pregnant endometrial 

stroma of sheep, suggesting that the endometrium of noninvasive implanting species 

undergoes remodeling somewhat similar to that observed in the decidua of invasive 

implanting species [125].  Therefore it is likely that ISGs facilitate remodeling within the 

stromal compartment of the uterus for implantation and placentation across disparate 

mammalian species.  As players in decidual/stromal remodeling, individual ISGs could 

be involved in protecting the fetal semi-allograft from immune rejection, in limiting 

conceptus invasion through the uterine wall, and/or in establishing a vascular supply to 

the conceptus.  Because IFNγ, a protein secreted by pig conceptuses, is believed to 

initiate endometrial vascular development [126], it is reasonable to hypothesize that 

conceptus-derived IFNs up-regulate ISGs such as STAT1 to facilitate vascular changes 

necessary to provide hematotrophic support to the developing conceptus.  Whether this 

is the case or not, it is becoming increasingly clear that IFN induction of genes within 

the uterine stroma of mammals is a universal response to, or component of, a 

progressing pregnancy. 

It is particularly intriguing that IRF1, a prototypic IFNγ/STAT1-responsive gene 

[109],  is not detectable in the uterine LE of peri-implantation sheep and pigs [28, 170].  

However, the concommittant expression of interferon regulatory factor 2 (IRF2), a 

potent transcriptional repressor of ISGs [127, 129], in LE has led to the hypothesis that 

IRF2 prevents ISG expression in LE, whereas ISG expression in the underlying stroma 

continues unabated [28, 170].  Indeed, most ISGs, including STAT1 are not expressed in 

the LE of sheep [148].  Results of the present study indicate that conceptus estrogen 

secretion on d 12 alters this physiology by inducing STAT1 in pig LE without the 

subsequent induction of IRF1.  Given that the human IRF1 promoter contains seven Sp1 

sites [130] and that estrogen is capable of regulating gene transcription through 

ESR1/Sp1 interactions [91], estrogen may also regulate IRF1 expression.  Indeed, 17β-

estradiol can downregulate IRF1 expression [171, 172] without effecting STAT1 

expression [171], and this effect appears to be mediated by ESR1 [172, 173].  The 
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temporal/spatial pattern of uterine ESR1 correlates with this idea [7].  ESR1 is detectable 

in pig LE on d 15 where STAT1, but not IRF1, is expressed [170].  ESR1 is not present 

in d-15 stroma where both STAT1 and IRF1 are prominently expressed [170]. 

Collectively, in vivo results support the conclusion that conceptus estrogen and 

IFNs regulate uterine ISGs in a complex cell-type-specific manner.  In the case of 

STAT1, conceptus estrogen increases STAT1 in LE as part of the pregnancy recognition 

signal that may also serve to remodel the apical surface of LE to allow attachment of the 

conceptus, whereas conceptus IFNδ and IFNγ increase STAT1 in the underlying uterine 

stroma that may play a role in the remodeling of the uterine wall for maximal blood flow 

to the developing fetus.  It is likely that many other uterine genes considered critical for 

pregnancy success are regulated by similar interplay between conceptus steroid and 

protein secretion.  Because the trophoblasts of ruminants, rodents, and primates share 

with pigs the secretion of multiple paracrine factors that profoundly affect uterine gene 

expression and uterine remodeling, insights from the present studies impact our 

understanding of early pregnancy across mammalian species.  Although the key players 

at the uterine-placental interface require further definition, the interactions of estrogen, 

IFNs, and STAT1 described here highlight the complex, precisely orchestrated interplay 

between endometrium and conceptus that influences conceptus survival, implantation, 

and development.
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CHAPTER V 

 

UTERINE MAJOR HISTOCOMPATIBILITY CLASS I MOLECULES AND 

BETA 2 MICROGLOBULIN ARE REGULATED BY PROGESTERONE AND 

CONCEPTUS INTERFERONS DURING PIG PREGNANCY∗

 

Introduction  

Implantation is the process by which the blastocyst attaches to the uterus for 

juxtaposition of embryonic membranes with maternal uterine endometrium to establish 

histotrophic and hematotrophic exchange of nutrients and gases leading to the 

establishment of a functional placenta.  During placentation, intimate physical contact 

between uterine and placental cells facilitates bi-directional interactions involving 

spatiotemporally regulated endocrine, paracrine and autocrine modulators that mediate 

cell-cell and cell-matrix interactions essential for successful establishment and 

maintenance of pregnancy [46, 145, 148].  These interactions may also, at least in part, 

prevent rejection of the conceptus (embryo/fetus and associated extraembryonic 

membranes), which is a semi-allograft within the uterine environment. 

Medawar recognized that the laws of transplantation biology dictate rejection of 

the conceptus as a semiallogeneic tissue with paternal as well as maternal 

histocompatibility Ags [174, 175], however many details of how the conceptus is 

protected from a potentially hostile immune environment remain unclear.  Nevertheless, 

the conceptus in utero secures its own position, establishes an immunological truce with 

its mother, and obstructs or directs her immune system to contribute to the immunologic  

privileged state of the trophoblast [176]. 

 The bulk of immune response to tissue grafts is directed to the MHC Ags.  MHC  

                                                 
∗ Reprinted with permission from Uterine MHC class I molecules and β2-microglobulin 
are regulated by progesterone and conceptus interferons during pig pregnancy by Joyce 
MM, Burghardt JR, Burghardt RC, Hooper RN, Bazer FW, Johnson GA.  J Immunol 
2008; 181:2494-2505.  Copyright 2008 by The American Association of Immunologists, 
Inc. 
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molecules are polymorphic cell surface glycoproteins that present peptide Ags to TCRs, 

and bind to inhibitory and activating receptors on NK cells and other leukocytes.  MHC 

class I molecules are categorized as either classical or nonclassical and contain a 

transmembrane α-chain associated noncovalently with an extracellular β-chain called β2-

microglobulin (β2m).  The classical MHC class I molecules are expressed on most 

somatic cells and present peptides derived from self proteins or from proteins of 

intracellular pathogens to CTL; therefore, they are involved in immune recognition of 

foreign pathogens and transplanted tissue.  Additional class I MHC molecules termed 

nonclassical are less polymorphic and are restricted in cell-type specific expression 

[177].   Protection of the conceptus from the maternal immune system involves down-

regulation of MHC class I by the trophoblast [177-181].  Additionally, in some species 

such as humans, nonclassical monomorphic MHC class I molecules are expressed by the 

trophoblast, which may protect the trophoblast cells from NK cell attack and T 

lymphocytes [177, 178].  However, when placentation is noninvasive, trophectoderm 

cells do not express any MHC class I during the first trimester of pregnancy.  Notable 

examples of noninvasive placentation include the entire placenta of pigs, all regions of 

placentation excluding the invasive chorionic girdle that develops into the endometrial 

cups of horses, and the interplacentomal uterine-placental interface of ruminants [177, 

180, 182]. 

Cytokines and hormones regulate expression of MHC molecules during 

conceptus development, as well as the tissue differentiation and remodeling that occurs 

at the uterine-placental interface [102, 103, 105, 183-188].  Mattsson et al. [189] 

reported in mice increased uterine, but not placental, expression of MHC class I and 

class II molecules in response to IFN.  Choi and co-workers [31] reported complex 

regulation of MHC class I and β2m in uterine and placental tissue of sheep.  In these 

studies, MHC class I and β2m were inhibited in endometrial luminal epithelium (LE), but 

paradoxically stimulated by IFN-τ, the pregnancy recognition signal in sheep [148], in 

both endometrial stromal cells, and in glandular epithelium (GE) [31]. 

In pigs, conceptuses secrete estrogens on days 11 and 12 of pregnancy as the  
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signal for pregnancy recognition [1].  In addition, conceptus estrogens modulate uterine 

gene expression responsible for uterine remodeling for implantation and placentation 

from days 13 to 25 of gestation [132].  The importance of estrogen is underscored by the 

fact that premature exposure of the pregnant uterus to estrogen on days 9 and 10 results 

in degeneration of all pig conceptuses by day 15 [5]. 

Peri-implantation pig conceptuses also secrete IFNs.  The major species is type II 

IFN-γ and the other is type I IFN-δ [8, 40].  In contrast to sheep conceptuses, in which a 

type I IFN-τ is the signal for maternal recognition of pregnancy [148], the IFNs 

produced by pig conceptuses do not appear to be antiluteolytic [9].  However, both sheep 

and pig conceptus IFNs increase expression of a number of IFN-stimulated genes (ISGs) 

in uterine stroma [148, 170, 190, 191].  Although physiological roles for these IFNs in 

the pig uterus have not been determined, emerging evidence suggests that induction or 

increases in uterine ISGs by conceptus IFNs is a phenomenon of early pregnancy in 

many, if not most, mammals [16, 23, 124, 170, 190, 191].  

Our working hypothesis is that pig conceptus IFNs increase uterine endometrial 

expression of the classical and nonclassical MHC class I molecules.  In pigs these 

molecules are known as classical swine leukocyte Ag (SLA) class I genes (SLA-1, SLA-

2, SLA-3) and nonclassical SLA class I (SLA-6, SLA-7, SLA-8) genes [192], and β2m 

during pregnancy.  The temporal cell type-specific expression of these genes plays a role 

in preventing immune disruption of pregnancy.  Therefore, the objective of the present 

study is to determine 1) the temporal and spatial expression of SLA class I and β2m 

genes in pig endometrium during pregnancy, and 2) whether their expression is regulated 

by estrogen, progesterone, or conceptus secretory proteins (CSPs) that contain IFN-γ and 

IFN-δ.  Results provide compelling evidence that pig conceptus trophectoderm cells 

induce uterine stromal expression of SLA class I and β2m genes through secretion of 

IFN-δ or IFN-γ, but expression is silenced in LE as a possible means of preventing 

immune rejection at the uterine-placental interface. 
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Materials and Methods 

Animals and Tissue Collection 

 Experimental and surgical procedures complied with the Guide for Care and Use 

of Laboratory Animals and were approved by the Texas A&M University Laboratory 

Animal Care and Use Committee.  Pigs were observed daily for estrus (day = 0) and 

exhibited at least two estrous cycles of normal duration before use in these studies. 

Study one.  To evaluate the effect of pregnancy on endometrial gene expression, 

pigs were assigned randomly to either cyclic or pregnant status.  Those in the pregnant 

group were bred when detected in estrus and 12 and 24 h thereafter.  Pigs were 

hysterectomized on either day 5, 9, 12, or 15 of the estrous cycle or day 9, 10, 12, 13, 14, 

15, 20, 25, 30, 35, 40, 60 or 85 of pregnancy (n = 3 pigs/day/status) (Fig. 3.1). 

 Study two.  To evaluate the effect of estrogen on endometrial gene expression, 

pigs were assigned randomly to receive daily injections (i.m.) of either 5 ml corn oil 

vehicle or 5 mg of 17β-estradiol benzoate (5 mg in 5 ml of corn oil; Sigma-Aldrich) on 

days 11-14 postestrus (n = 5 pigs/treatment).  This dose of 17β-estradiol is used to 

induce pseudopregnancy in pigs [132].  All pigs were hysterectomized on day 15 

postestrus (Fig. 3.2). 

 Study three.  To evaluate the effect of pig CSPs on endometrial gene expression, 

pigs (n = 3) were injected (i.m.) with 5 mg 17β-estradiol benzoate (5 mg in 5 ml of corn 

oil; Sigma-Aldrich) on days 11-15 postestrus.  On day 12 postestrus (coincident with 

secretion of IFNs by pig conceptuses [8, 95]), each pig was surgically implanted with 

two indwelling ALZET osmotic pumps (Durect Corporation) with a constant delivery 

rate of 10 µl/h.  Each uterine horn was isolated via midline celiotomy, clamped, and 

severed from the uterine body at ~5 inches from the utero-tubal junction while 

preserving the mesometrium and vascular supply to the uterine horn.  The transected 

ends of each uterine horn and uterine body were sutured closed and the serosa of the 

antimesometrial borders of the horn and body sutured together to prevent twisting of the 

uterine horn.  For each pump, a catheter was attached and inserted ~2 cm into the lumen 

of one uterine horn.  Before surgery, pumps were filled and equilibrated per the 
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manufacturer’s instructions.  For each pig, one uterine horn was infused from a pump 

filled with porcine serum albumin (35 mg; Sigma-Aldrich), whereas the other uterine 

horn was infused from a pump filled with porcine CSP (35 mg) (Fig. 3.3).  All pigs were 

hysterectomized on day 16 postestrus (coincident with maximal antiviral activity in pig 

uterine flushings [95]) (Fig. 3.4). 

Preparation of porcine CSP.  As previously described [41], conceptuses from 

day-15 to day-17 pregnant pigs (coincident with maximal production of IFNs by 

conceptuses [8, 95]) were recovered by flushing uterine horns and cultured for 30 h.  

After recovery, medium was dialyzed (m.w. cutoff, 3500; Spectrum Laboratories), 

concentrated (m.w. cutoff, 5000; Millipore), filter sterilized, assayed for protein 

concentration (Bio-Rad) and stored at 4°C because IFN-γ is unstable to freezing and 

thawing. 

 Study four.  To evaluate the effects of progesterone on endometrial gene 

expression, pigs were ovariectomized on day 4 postestrus and assigned randomly to 

receive daily injections (i.m.) of either progesterone (200 mg; Sigma-Aldrich) or 

progesterone plus ZK137,316 (75 mg), a progesterone receptor antagonist generously 

provided by Dr. K. Chwalisz (Shering AG, Berlin, Germany), on days 4-12 postestrus.  

All pigs were hysterectomized on day 12 postestrus (n = 5 pigs/treatment) (Fig. 5.1). 

 At hysterectomy, several sections (~0.5 cm) from the middle of each uterine horn 

were fixed in fresh 4% paraformaldehyde in PBS (pH 7.2) and embedded in Paraplast-

Plus (Oxford Laboratory).  Several sections from each uterine horn were also embedded 

in Tissue-Tek OCT Compound (Miles), snap frozen in liquid nitrogen, and stored at -

80°C.  The remaining endometrium was physically dissected from the myometrium, 

frozen in liquid nitrogen, and stored at -80°C for RNA extraction. 

 

RNA Isolation and Analyses 

RNA isolation.  Total cellular RNA was isolated using TRIzol reagent 

(Invitrogen), according to the manufacturer’s recommendations.
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FIG. 5.1. Experimental design for study 4.  Cyclic pigs were ovariectomized on Day 4 
postestrus.  They were then assigned randomly to receive daily i.m. injections of either 
progesterone or progesterone plus ZK137,316 on Days 4-12 postestrus.  All pigs were 
hysterectomized on Day 12 postestrus. 
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 RT-PCR analyses.  A partial cDNA that cross-hybridizes with the classical SLA 

class I genes (SLA-1, SLA-2, and SLA-3), as well as partial cDNAs for SLA-6, SLA-7, 

SLA-8, β2m gene, and ubiquitin-specific protease (USP) gene were amplified by RT-

PCR as previously described [30].  For all genes, porcine uterine endometrial RNA from 

day 15 of pregnancy was reverse transcribed, then the following gene-specific primers 

were used to amplify the PCR products:  classical SLA class I (forward) 5’-

ATACCTGGAGATGGGGAAGG-3’, (reverse) 5’-CCTTGGTAAGGGACACATCG-

3’, 500-bp product; SLA-6 (forward) 5’-TTGGTATCCCGGCCCGGCCACGGTAGTG-

3’, (reverse) 5’-TGCCCGATACTGTTCAGCTACTCCC-3’, 443-bp product [193]; 

SLA-7 (forward) 5’-TATTGCGATCGGAACACACGCATC-3’, (reverse) 5’-

GCATGCCACTTCCAGGTAGGCTCTGC-3’, 309-bp product [193]; SLA-8 (forward) 

5’-GCCACGGGGAGCCCCGGTACCTTGAG-3’, (reverse) 5’-

GAAGCGCTCATGAGCACGGGACTTG-3’, 422-bp product [193]; β2m (forward) 5’-

ATGATATCCCACTTTTCACACCGCTCCAGTAGC-3’, (reverse) 5’-

ATAGATCTGGATTCATCCAACCCAGATGCAGC-3’, 439-bp product [193]; and 

USP (forward) 5’-AGAGGATGACAGTGCCAAGG-3’, (reverse) 5’-

CTGCTTCCAACAGGTCTTCC-3’, 473-bp product (GenBank accession no. 

AF134195).  All PCR products were cloned into a pCRII cloning vector using the TA 

Cloning kit (Invitrogen) and confirmed by sequence analysis.  A BLAST search for each 

was conducted to ensure that only target genes were evaluated.  

 Slot blot analyses.  As previously described [116], duplicate membranes with 20 

µg of total RNA per slot were hybridized with radio-labeled antisense porcine classical 

SLA class I genes, SLA-6, SLA-7, and SLA-8 and β2m gene RNA probes generated by in 

vitro transcription with [α-32P]UTP (Perkin-Elmer Life Sciences) and a MAXIscript kit 

(Ambion).  To correct for variation in loading, a duplicate membrane was hybridized 

with a radio-labeled antisense 18 S rRNA (pT718S; Ambion) RNA probe.  

Hybridization signals were detected by exposure to a PhosphoImager screen and 

visualized using a Typhoon 8600 variable mode imager (Molecular Dynamics). 

 In situ hybridization analyses.  As previously described [29], deparaffinized,  
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rehydrated, and deproteinated uterine cross-sections (5 µm; 1 cross-section each from 

three separate blocks from each animal) were hybridized with radio-labeled antisense or 

sense classical SLA class I genes, SLA-6, SLA-7, and SLA-8 and β2m or USP gene RNA 

probes synthesized by in vitro transcription with [α-35S]UTP (Perkin-Elmer).  After 

hybridization, washes and RNase A digestion, autoradiography was performed using 

NTB liquid photographic emulsion (Eastman Kodak).  Slides were exposed at 4°C, 

developed in Kodak D-19 developer, counterstained with Harris’ modified hematoxylin 

(Fisher Scientific), dehydrated, and protected with coverslips. 

 

Immunofluorescence Analyses 

As previously described [118], frozen uterine cross-sections (~8-10 µm; 1 cross-

section each from three separate blocks from each animal) were fixed in -20°C 

methanol, washed in PBS containing 0.3% v/v Tween 20 (rinse solution), blocked in 

10% normal goat serum, incubated overnight at 4°C with 10 µg/ml mouse anti-porcine 

MHC class I (PT85A; VMRD), or 10 µg/ml mouse IgG (negative control; Sigma-

Aldrich) and detected with 2 µg/ml fluorescein-conjugated goat anti-mouse IgG 

(Chemicon International).  Slides were overlaid with Prolong anti-fade mounting reagent 

(Molecular Probes) and a coverslip. 

 SLA class I protein was colocalized with either β2m protein or von Willibrand 

factor in frozen uterine cross-sections by immunofluorescence staining as previously 

described [194].  Briefly, sections were cut, fixed, washed, and blocked as we described.  

After dipping in rinse solution at room temperature, sections were incubated overnight at 

4°C with the initial primary Ab (10 µg/ml mouse anti-porcine MHC class I or mouse 

IgG).  Following washes, sections were incubated with 2 µg/ml initial secondary Ab 

(fluorescein-conjugated goat anti-mouse IgG), washed, and incubated overnight at 4°C 

with the second primary Ab (20 µg/ml rabbit anti-human β2m, RDI-CBL307; Research 

Diagnostics, 10 µg/ml rabbit anti-human von Willebrand factor, AB7356; Chemicon 

International, or 10 µg/ml rabbit IgG, negative control; Sigma-Aldrich).  Following 

washes, sections were incubated with 2 µg/ml secondary Ab (Texas Red-conjugated goat 
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anti-rabbit IgG; Molecular Probes), washed, dipped in distilled-deionized water, and 

overlaid with anti-fade mounting reagent as described. 

 

Photomicrography 

 Digital photomicrographs of in situ hybridization (brightfield and darkfield 

images) and immunofluorescence staining were evaluated using an Axioplan 2 

microscope (Carl Zeiss) interfaced with an Axioplan HR digital camera and Axiovision 

4.3 software.  For immunofluorescence colocalization of proteins, digital camera settings 

were evaluated to confirm that no “spectral bleed through” FITC signal was detectable in 

the Texas Red filter set and vice versa.  In these studies, once the distribution of 

individual Ags was established, the codistribution of two Ags was investigated 

simultaneously in individual sections using compatible primary and FITC or Texas Red 

secondary Ab combinations with appropriate filter sets.  Individual fluorophore images 

were recorded sequentially with AxioVision 4.3 software and evaluated in multiple 

fluorophore overlay images recorded in Zeiss Vision Image (.zvi) file format, which 

were subsequently converted to Tagged Image File (.tif) format.  Photographic plates 

were assembled using Adobe Photoshop (version 6.0, Adobe Systems).  All sections 

from each day per treatment were assessed as a group, and sections exhibiting the most 

representative hybridization or immunostaining pattern for each day per treatment were 

selected for inclusion in photographic plates. 

 

Statistical Analyses 

 All slot blot hybridization data were subjected to least-squares ANOVA using the 

general linear models procedures of the Statistical Analysis System.  Data were analyzed 

using the 18 S rRNA as a covariate to correct for differences in RNA loading and for 

effects of day and status and their interaction where appropriate.  All tests of significance 

were performed using the appropriate error terms according to the expectation of the 

mean square for error.  Slot blot hybridization data are presented as least squares means 

with SE. 
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Results 

Effects of Pregnancy From Study One 

 Partial cDNAs for classical SLA class I genes SLA-1, SLA-2 and SLA-3, the 

nonclassical class I genes SLA-6, SLA-7, SLA-8, as well as β2m gene were detected in 

day-15 pregnant pig endometria by RT-PCR analyses.  Steady-state mRNAs in 

endometrium from the estrous cycle and pregnancy were then examined using antisense 

RNA probes and slot blot hybridization (Fig. 5.2).  There was no significant change in 

total steady-state mRNA during the estrous cycle for any of these mRNAs (p > 0.1).  

During the ~115 days of pig pregnancy, steady-state mRNAs increased between day 9 

and 14, decreased between day 14 and 60 and remained low through day 85 (classical 

and nonclassical SLA class I mRNAs, p < 0.005, quartic effect of day; β2m mRNA, p = 

0.06, quartic effect of day) (Fig. 5.2). 

 In situ hybridization was used to localize classical and nonclassical SLA class I 

mRNAs as well as β2m mRNAs to specific cell types within the endometria of cyclic and 

pregnant pigs.  Messenger RNA for SLA-1, SLA-2 and SLA-3 increased in the LE, GE, 

and blood vessels between days 5 and 9 of the estrous cycle and remained in these cell 

types through day 15 (Fig. 5.3).  During pregnancy, the pattern of expression for SLA-1, 

SLA-2, and SLA-3 mRNAs was the same as observed for the estrous cycle through day 

12.  However by day 15, expression increased in the stratum compactum stroma (note 

the difference in the spatial distribution of mRNA in endometrium from day 15 of the 

estrous cycle vs day 15 of pregnancy, Fig. 5.3), where it remained detectable through 

day 40 of pregnancy.  Significantly, SLA-1, SLA-2, and SLA-3 mRNAs were no longer 

detectable in the LE by day 20 of pregnancy (expanded view of day 25 shown in Fig. 

5.3). 

 The three nonclassical SLA class I mRNAs exhibited similar patterns of 

expression in pig endometria by in situ hybridization.  SLA-6, SLA-7, and SLA-8 mRNAs 

increased in LE after day 9 of the estrous cycle and early pregnancy (Fig. 5.4).  These 

mRNAs then decreased in LE after day 15 of pregnancy and were not detectable in LE 

on day 25 (Fig. 5.4).  However, similar to the classical SLA mRNAs, SLA-6, SLA-7, and  
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FIG. 5.2. Steady-state levels of mRNA for SLA-1, SLA-2, SLA-3, SLA-6, SLA-7, SLA-8 
and β2m genes in pig endometria during the estrous cycle and pregnancy.  Steady-state 
levels of mRNA for the classical SLA-1, SLA-2, SLA-3 genes (A), the nonclassical SLA-
6, SLA-7, and SLA-8 genes (B-D), and β2m gene (E) in pig endometria during the estrous 
cycle and pregnancy were determined by slot blot hybridization.  The mRNA levels, 
expressed as least square mean of relative units of cpm with overall SEM, are 
normalized for differences in sample loading using 18 S rRNA.  The mRNA levels 
represent 20 µg of total endometrial mRNA per sample.  Each of these mRNAs was 
increased during pregnancy over the estrous cycle. 
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FIG. 5.3. In situ hybridization analysis of SLA-1, SLA-2, and SLA-3 mRNA in pig 
endometria.  Corresponding brightfield and darkfield images from different days of the 
estrous cycle (C) and pregnancy (P) are shown.  A representative section from day 15 of 
pregnancy hybridized with radio-labeled sense RNA probe (Sense) serves as a negative 
control.  An expanded view of the photomicrographs of the uterine-conceptus interface 
on day 25 of pregnancy indicating the lack of hybridization for SLA-1, SLA-2, and SLA-3 
mRNAs in epithelia at this interface is shown.  LE, stratum compactum stroma (ST), 
placenta (PL), and blood vessels (BV) are indicated.  The width of each field is 870 µm. 
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FIG. 5.4. In situ hybridization analyses of SLA-6, SLA-7, and SLA-8 mRNAs in pig endometria.  
Corresponding brightfield and darkfield images from different days of the estrous cycle (C) and 
pregnancy (P) are shown for SLA-6, whereas only darkfield images are shown for SLA-7 and 
SLA-8.  Representative sections from day 15 of pregnancy hybridized with radio-labeled sense 
RNA probes (Sense) served as negative controls.  LE, stratum compactum stroma (ST), placenta 
(PL), and blood vessels (BV) are indicated.  The width of each field is 870 µm. 
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SLA-8 mRNAs increased in the stratum compactum stroma by day 15 of pregnancy, 

where they remained through day 25, and then decreased to undetectable levels by day 

40 (Fig. 5.4).  Expression was also detected in endothelia cells in endometrial stroma on 

all days of the estrous cycle and pregnancy (Fig. 5.4). 

In situ hybridization for β2m mRNA was generally more intense than was 

observed for SLA mRNAs; however, the general patterns of expression for these 

mRNAs were similar.  The β2m mRNA increased in the LE and GE between days 5 and 

9 of the estrous cycle and pregnancy, and remained in these cell types through day 15 

(Fig. 5.5).  During pregnancy, the pattern of expression for β2m mRNA was the same as 

observed for the estrous cycle through day 12.  However by day 15, expression increased 

in the stratum compactum stroma (note the difference in the spatial distribution of 

mRNA in endometrium from day 15 of the estrous cycle vs day 15 of pregnancy) (Fig. 

5.5).  The β2m remained detectable in the stratum compactum stroma through day 30 and 

became undetectable in LE by day 20 of pregnancy.  Expression of β2m mRNA by GE 

was more robust than the SLA mRNAs on all days examined, and diverged from the 

general pattern of SLA mRNA expression by further increasing in GE between days 60 

and 85 of pregnancy (Fig. 5.5).  Additionally, β2m mRNA was detectable in endothelial 

cells in the endometrial stroma on all days of the estrous cycle and pregnancy (Fig. 5.5). 

Because mRNAs for SLA-1, SLA-2, SLA-3, SLA-6, SLA-7, and SLA-8 and β2m 

gene decreased in uterine LE between days 15 and 20 of pregnancy, endometrial 

expression of the USP gene, a negative regulator of type I IFN signaling [195], was 

examined.  In situ hybridization revealed that USP mRNA increased between days 15 

and 20 of pregnancy in the LE, where it continued to be expressed through day 40 (Fig. 

5.6). 

Immunofluorescence analysis of pig endometria indicated that immunoreactive 

classical SLA class I molecules increased in LE between days 9 and 12 of the estrous 

cycle and pregnancy (Fig. 5.7).  Consistent with in situ hybridization results, SLA class I 

molecules were maintained in the LE of cyclic endometrium.  In pregnant endometrium, 

SLA class I molecules were not detectable in LE by day 15 and remained absent from  



 84

 
 
FIG. 5.5. In situ hybridization analysis of β2m mRNA in pig endometria.  Corresponding 
brightfield and darkfield images from different days of the estrous cycle (C) and pregnancy (P) 
are shown.  A representative section from day 15 of pregnancy hybridized with radio-labeled 
sense RNA probe (Sense) served as a negative control.  LE, GE, stratum compactum stroma 
(ST), placenta (PL), and blood vessels (BV) are indicated.  The width of each field is 870 µm. 
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FIG. 5.6. In situ hybridization analysis of USP mRNA in pig endometria.  
Corresponding brightfield and darkfield images in LE from different days of pregnancy 
(P) are shown.  A representative section from day 15 of pregnancy hybridized with 
radio-labeled sense RNA probe (Sense) served as a negative control.  The width of each 
field is 870 µm. 
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FIG. 5.7. Immunofluorescence localization of classical SLA class I molecules in frozen cross-
sections of pig endometria during the estrous cycle (C) and pregnancy (P).  A nonrelevant mouse 
Ig (mIgG) served as a negative control as illustrated in Fig. 5.10.  LE, stratum compactum 
stroma (ST), and blood vessels (BV) are indicated.  The width of each field is 540 µm. 
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LE through day 85 (Fig. 5.7).  Similar to the temporal and spatial expression of SLA 

mRNAs, immunoreactive SLA class I molecules increased in the stratum compactum 

stroma by day 15 of pregnancy, remained abundant through day 25, and then 

progressively decreased through day 85 (Fig. 5.7).  An increase of SLA class I molecules 

in endometrial stroma was not observed during the estrous cycle (Fig. 5.7).  In addition, 

SLA class I protein was present in endothelial cells of the endometrium throughout the 

estrous cycle and pregnancy (Fig. 5.7). 

 Collectively, results from study one indicate that classical and nonclassical SLA, 

as well as β2m, 1) increases in uterine LE before implantation; 2) increases in uterine 

stratum compactum stroma during the peri-implantation period (days 10-25); and 3) 

decreases in uterine LE immediately after initial attachment of trophectoderm to uterine 

LE during early placentation.  Therefore, although expression prominently increases 

within the uterine-placental environment, classical SLA class I mRNA and molecules 

and nonclassical SLA class I and β2m mRNAs are conspicuously absent at the 

immediate interface between uterine and placental epithelia of pigs after day 15, perhaps 

due to expression of USP in uterine LE. 

 

Effects of Exogenous Estrogen and CSPs for Studies Two and Three 

The i.m. injections of estradiol benzoate did not alter expression of classical SLA 

class I mRNA in endometrial LE of day-15 cyclic-treated pigs compared with corn oil 

vehicle treatment (Fig. 5.8A).  In contrast, intrauterine infusion of CSPs into the uterine 

horns of day-16 cyclic pigs treated with exogenous estrogen increased expression of 

classical SLA class I mRNAs in the stratum compactum stroma compared with 

intrauterine infusion of control serum proteins (Fig. 5.8A).  In agreement with mRNA 

results, immunofluorescence analysis indicated the intrauterine infusion of CSP 

increased SLA class I molecules in the stratum compactum stroma (Fig. 5.8B). 

Similar to SLA class I mRNA, in situ hybridization for SLA-6 (Fig. 5.9A), SLA-7 

(Fig. 5.9B), SLA-8 (Fig. 5.9C), and β2m gene (Fig. 5.9D) indicated no effect of 

exogenous estrogen on expression of these mRNAs in day 15 cyclic pig endometria.   
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FIG. 5.8. Treatment with CSP increased expression of classical SLA class I mRNAs.  A, 
In situ hybridization analysis of SLA-1, SLA-2, and SLA-3 mRNA.  B, 
Immunofluorescence localization of classical SLA molecules.  Cross-sections of pig 
endometria from day-15 cyclic pigs injected i.m. with either corn oil control (CO) or 
estradiol benzoate (E2), or from estrogen-treated day-16 cyclic pigs in which either 
control serum proteins (E2 + SP) or CSPs (E2 + CSP) were infused into the uterine 
lumen are shown.  Corresponding brightfield and darkfield images of in situ 
hybridization from different treatments are shown.  A representative section from day 15 
of pregnancy hybridized with radio-labeled sense RNA probe (15P Sense) served as a 
negative control for in situ hybridization as illustrated in Fig. 5.3.  A nonrelevant mouse 
Ig (mIgG) served as a negative control as illustrated in Fig. 5.10.  LE, luminal 
epithelium, stratum compactum stroma (ST), and blood vessels (BV) are indicated.  The 
width of each in situ hybridization field is 870 µm and the width of each 
immunofluorescence localization field is 540 µm. 
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FIG. 5.9. In situ hybridization analyses on expression of mRNAs.  SLA-6 (A), SLA-7 
(B), SLA-8 (C) and β2m (D) mRNAs in cross-sections of pig endometria from day-15 
cyclic pigs injected i.m. with either corn oil control (CO) or estradiol benzoate (E2), or 
from estrogen-treated day-16 cyclic pigs, which received intrauterine infusions of either 
control serum proteins (E2 + SP) or CSPs (E2 + CSP).  Corresponding brightfield and 
darkfield images from different treatments are shown.  Representative sections from day 
15 of pregnancy hybridized with radio-labeled sense RNA probes (15P Sense) served as 
negative controls as illustrated for SLA-6, SLA-7, and SLA-8 in Fig. 5.4 and for β2m in 
Fig. 5.5.  LE and stratum compactum stroma (ST) are indicated.  The width of each field 
is 870 µm. 
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However, intrauterine infusion of CSP into estradiol benzoate-treated day-16 cyclic pigs 

increased mRNA levels for SLA-6, SLA-7, SLA-8, and β2m gene in the stratum 

compactum stroma compared with infusion of serum proteins (Fig. 5.9A-D). 

 Collectively, results from study two and study three strongly suggest that 

classical and nonclassical SLA, as well as β2m increase in endometrial stroma in 

response to IFN-γ or IFN-δ present in CSP of the peri-implantation period, but 

expression of these mRNAs and molecules in the endometrial LE is not induced by 

conceptus estrogens alone, although these estrogens are accepted to be the pregnancy 

recognition signal. 

 

Effects of Exogenous Progesterone for Study Four 

 Because SLA-1, 2, 3, 6, 7, and 8 and β2m mRNAs increased in endometrial LE 

between days 5 and 15 of pregnancy, which is a period of increased progesterone 

secretion from the corpora lutea, the effects of exogenous progesterone on endometrial 

expression of SLA class I and β2m mRNAs and proteins was examined.  Classical SLA 

class I and β2m mRNAs were detectable in endometrial LE and blood vessels of the 

stratum compactum stroma of ovariectomized pigs treated with exogenous progesterone.  

These effects of progesterone were completely ablated by treatment with the 

progesterone receptor antagonist, ZK137,316, in both uterine LE and vasculature (Fig. 

5.10A). 

Results shown in Figure 5.10B confirm that SLA class I and β2m proteins 

colocalize in the endometrial LE and endothelial cells of ovariectomized pigs treated 

with exogenous progesterone.  Immunoreactive SLA class I molecules also colocalized 

with von Willebrand factor, an endothelial cell marker, in endometrial endothelial cells 

of the stratum compactum stroma on day 12 in ovariectomized pigs treated with 

exogenous progesterone (Fig. 5.10B). 

Collectively, results from study four strongly suggests that expression of intact 

SLA class I molecules including classical SLA class I and β2m heterodimers is increased 

by progesterone produced by corpora lutea in endometrial LE and endothelial cells  
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FIG. 5.10. The effects of exogenous progesterone on endometrial expression of SLA 
class I and β2m mRNAs and proteins.  A, In situ hybridization analyses for SLA-1, SLA-
2, SLA-3, and β2m mRNAs in cross-sections of endometria from day-12 ovariectomized 
pigs treated with progesterone (P4) or progesterone and the progesterone receptor 
antagonist ZK137,316 (P4 + ZK).  Corresponding brightfield and darkfield images from 
different treatments are shown.  LE, stratum compactum stroma (ST), and blood vessels 
(BV) are indicated.  The width of each field is 870 µm.  B, Immunofluorescence 
colocalization of classical SLA with β2m and classical SLA with von Willibrand factor 
(VW) in endometrial cross-sections from day 12 ovariectomized pigs treated with 
progesterone.  SLA immunoreactivity was detected using fluorescein-conjugated anti-
mouse IgG (left, green fluorescence), whereas the β2m and von Willibrand factor 
immunoreactivity were detected using Texas Red-conjugated anti-rabbit IgG (middle, 
red fluorescence).  SLA and β2m proteins were colocalized (right, yellow fluorescence) 
to LE and blood vessels (BV) within the stratum compactum stroma (ST).  Nonrelevant 
mouse Ig (mIgG) was detected using fluorescein-conjugated anti-mouse IgG, 
nonrelevant rabbit Ig (rIgG) was detected using Texas Red-conjugated anti-rabbit IgG 
and their colocalization served as negative controls as illustrated (lower).  The width of 
each field is 540 µm. 
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during the peri-implantation period in pigs. 

 

Discussion 

The MHC class I molecules and accompanying β2m function in immune 

responses and are involved in discrimination of self from non-self.  It is generally 

accepted that modification or down-regulation of these molecules in placental tissues is 

beneficial to pregnancy across mammalian species [177-182].  The present studies focus 

on the uterine tissues that represent the maternal component of the fetal-maternal 

interface of pregnancy.  Results illustrate dynamic temporal and cell type-specific 

regulation of MHC class I molecules and β2m by progesterone and CSPs in the peri-

implantation pig uterine endometrium.  Similar to previous results in sheep, MHC class I 

and β2m up-regulate in endometrial stratum compactum stroma, but are conspicuously 

undetectable in LE, suggesting that lack of expression in LE is beneficial to pregnancy in 

species in which the LE maintains direct contact with the placenta (epitheliochorial 

placentation).  However, clear differences between sheep and pigs in regulation and 

pattern of expression of these genes were observed.  Although pigs and sheep share 

stromal MHC class I and β2m expression, pigs lack the IFN-τ responsible for this 

expression in sheep [31].  Therefore it is likely that in pigs, conceptus-derived IFN-δ and 

IFN-γ increase MHC class I and β2m in endometrial stroma [8, 9, 40].  Unlike sheep, 

which never express MHC class I and β2m in LE, ovarian progesterone increased 

expression of SLA class I and β2m in the uterine LE during the estrous cycle and early 

pregnancy of pigs.  Finally, the present data suggest a mechanism for down-regulation of 

SLA class I and β2m in LE that has not been proposed for sheep.  Although estrogens 

secreted by the conceptus or administered exogenously did not directly effect expression 

of SLA class I and β2m genes, estradiol does increase expression of IFN regulatory 

factor 2 (IRF)-2 in LE [170], which together with USP may down-regulate SLA class I 

and β2m gene expression in uterine LE between days 15 and 25 of pregnancy.  

Collectively, for the majority of the first half of gestation, there is abundant uterine 
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expression of SLA and β2m in the stromal compartment of pig endometrium, but not in 

LE that is directly apposed to trophectoderm or chorion. 

Progesterone, the hormone of pregnancy, plays a critical role in control of 

temporal and spatial (cell-specific) changes in gene expression within the uterus [148].  

Indeed, treatment with progesterone significantly alters the expression of a number of 

genes in the uteri of rodents, primates, and sheep as determined using microarray 

analyses [35, 196, 197].  In the present pig study, progesterone increased expression of 

SLA class I and β2m genes in endometrial LE and stromal endothelial cells during the 

estrous cycle and early pregnancy.  This expression was blocked by ZK137,316, a 

progesterone receptor antagonist, indicating that induction by progesterone is mediated 

via progesterone receptors.  Since progesterone receptors in pigs are down-regulated in 

endometrial LE and GE by day 10 of the estrous cycle and pregnancy, but maintained in 

stromal cells and myometrium [6], the endocrine effects of ovarian progesterone on 

endometrial LE expression of SLA class I and β2m genes may be mediated indirectly by 

either progesterone-induced paracrine-acting factors (progestamedins) produced by the 

progesterone receptor-positive stromal cells, or by induction of factors in LE that down-

regulate progesterone receptors to either allow or stimulate expression of endometrial 

genes [155, 198]. 

Given that SLA class I molecules and β2m are important for host defense, their 

expression in the LE during the estrous cycle and early pregnancy may be important for 

preventing uterine infections.  At estrus, mucin 1 (MUC1), which forms an apical LE 

glycocalyx barrier to provide innate immune protection for the uterus from bacterial 

infections [199], is localized to the endometrial LE, but decreases by day 10 of the 

estrous cycle and pregnancy [54].  This down-regulation of MUC1 is hypothesized to be 

necessary for conceptus attachment to the LE, but leaves the uterus susceptible to 

bacterial invasion [54, 199, 200].  Increased expression of SLA class I and β2m genes 

before day 9 of the estrous cycle and pregnancy by ovarian progesterone may 

compensate for the progesterone-induced loss of MUC1 and provide continued immune 

protection of the uterus from pathogens. 
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Results of the present study strongly suggest that classical SLA genes SLA-1, 

SLA-2, and SLA-3, nonclassical SLA-6, SLA-7, and SLA-8, as well as β2m mRNAs are 

induced in the stratum compactum stroma of pigs in response to IFNs secreted by the 

conceptus.  Pig conceptuses secrete both IFN-δ and IFN-γ; ~75% of antiviral activity in 

pig CSPs is attributed to IFN-γ and the other 25% to IFN-δ [8, 40].  Pig conceptus 

trophectoderm cells express high amounts of IFN-γ mRNA from day 13 through day 20 

of pregnancy, and immunoreactive IFN-γ localizes to perinuclear membranes typically 

occupied by endoplasmic reticulum and Golgi apparatus as well as cytoplasmic vesicles 

within trophectoderm cells, suggesting trafficking and secretion of IFN-γ into the uterine 

lumen [8, 190].  Interestingly, SLA-1, SLA-2, and SLA3, but not SLA-6 or SLA-7, were 

reported to respond to both IFN-γ and IFN-α in a pig kidney cell line [201].  Although 

results of the present study are consistent with those of Tennant et al. [201] for SLA-1, 

SLA-2, and SLA-3, there are differences between in vivo and in vitro results for SLA-6 

and SLA-7.  It is perhaps not surprising that stromal cells in vivo, which have distinct 

spatial relationships to other cell types and the extracellular matrix, respond differently 

to IFNs than do isolated and cultured kidney cells.  Certainly macrophages are highly 

individualized in tissues, where their functions are a reflection of the systemic and local 

environment [202].  Indeed, it is well established that uterine gene regulation is altered 

by differences in cell type or epithelial-stromal interactions [203]. 

Pig conceptuses are unique among mammalian species in that they secrete two 

IFNs during the peri-implantation period, providing the opportunity for IFN-γ and IFN-δ 

to work together to regulate endometrial gene expression.  In general, both type I and 

type II IFNs can induce expression of SLA class I through the classical JAK-STAT cell 

signaling pathway leading to gamma-activation factor binding of gamma activation 

sequence elements and induction of gene transcription [13].  In addition, IFN-δ signals 

through a similar, yet distinct, pathway leading to ISG factor 3 complex binding of IFN-

stimulated response elements in the promoters of several ISGs to initiate transcription 

[11].  Interactions between type I and type II IFNs have been demonstrated [204].  

Although the type I IFN-α and type II IFN-γ each induce expression of largely 
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nonoverlapping sets of genes, they can also act in concert to produce synergistic 

interactions leading to mutual reinforcement of physiological responses [168].  With 

cells that are normally relatively unresponsive to IFN-γ, sequential treatment with IFN-γ 

followed by IFN-α results in greater induction of ISGs [168].  In addition, cotreatment 

with IFN-γ and IFN-α extends the period of ISG expression over IFN-α alone [157].  For 

typical ISGs, type I IFNs induce rapid expression followed by a protein synthesis-

dependent suppression of transcription within 6 h.  IFN-γ overrides this suppression, 

allowing continuous expression of ISGs for over 24 h [157].  Clearly, IFN-δ and IFN-γ 

may profoundly influence endometrial physiology through cooperative induction of 

cytokine-specific transcription factors that allow reinforcement of effects of distinct cell 

surface ligands, including SLA class I and β2m genes while maintaining the specificities 

of the individual inducing IFNs to influence cell function. 

 Although it is well established that conceptus IFN-τ induces expression of 

numerous ISGs in the stroma and GE of ruminants [148], and that ISGs increase in the 

decidualizing stroma of humans and rodents [16, 23], the pregnancy-specific roles of 

uterine ISGs remain conjectural.  Because IFN-γ secreted by pig conceptuses can initiate 

uterine vascular development [126], it is reasonable to hypothesize that conceptus-

derived IFNs up-regulate ISGs such as SLA class I and β2m genes to facilitate vascular 

changes necessary to support the developing conceptus.  Recently, placental human 

HLA-G was implicated in regulation of angiogenesis during placental invasion and 

replacement of endothelial cells at the ends of uterine spiral arteries [205].  Indeed, there 

is evidence that vascular development at the maternal-fetal interface is regulated by a 

balance of proangiogenic and antiangiogenic factors, and MHC and β2m molecules may 

be significant players in this balance [205].  Whether IFN-induced SLA class I and β2m 

gene products in endometrial stratum compactum stroma of pigs are involved in 

angiogenesis during pregnancy remains to be determined; however, it is clear that 

expression of ISGs within the uterine stroma of mammals is a universal response to 

pregnancy. 
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 Intriguingly, SLA class I and β2m gene products decrease in endometrial LE as 

pregnancy progresses so that they are no longer detectable by day 20 of pregnancy.  

Although the mechanism involved in this down-regulation is unknown, IRF-2, a potent 

repressor and attenuator of ISG expression [127, 128], is induced in endometrial LE of 

pigs by estrogens [170].  IRF-2 can also bind to the promoter of Ubp43, Usp18, a USP in 

mice used to mediate basal levels of expression.  Ubp43 (Usp18), a ubiquitin 

deconjugating enzyme specific for the ubiquitin-like protein ISG15 [206], is up-

regulated by type I IFNs [207] and inhibits type I IFN signaling by decreasing JAK1 

phosphorylation [195].  Although Usp18 is present in both endometrial LE and the deep 

GE of cows [208], results of the present study localized USP gene only to LE between 

days 15 and 20 of pregnancy in pigs, which is coincident with temporal loss of SLA 

class I and β2m mRNAs from LE.  Given that IRF-2 and USP genes are expressed in the 

LE during pregnancy, both may play a role in down-regulating SLA class I and β2m 

genes.  It is generally accepted that SLA class I and β2m molecules are decreased in the 

placenta to ensure that the conceptus semiallograft avoids host-vs-graft immune 

rejection [177-182]. 

In conclusion, results of the present study suggest that down-regulation of SLA 

class I and β2m genes in uterine LE, in coordination with a lack of expression of these 

genes in placenta [182], may be important for preventing fetal allograft rejection in 

species exhibiting epitheliochorial placentation.  The temporal cell type-specific 

regulation of pig endometrial SLA class I and β2m by progesterone, IFN-γ, or IFN-δ and 

perhaps through permissive effects of conceptus estrogens, provides insight into how 

immune tolerance of the conceptus allograft is achieved.  The traditional view, first 

proposed by Medawar [174, 175], was that the immune system must be circumvented to 

permit pregnancy.  The results presented in this study provide additional evidence that 

supports reports from multiple investigators implicating the immune system as a 

dynamic and active player in the complex bidirectional endocrine, paracrine, autocrine, 

and juxtacrine interactions between uterus and placenta that uniquely define 

establishment and maintenance of a successful pregnancy. 
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CHAPTER VI 

 

SUMMARY AND CONCLUSIONS 

 

Summary 

 Coordinated signaling between the maternal endometrium and conceptus is 

required for successful establishment and maintenance of pregnancy.  During pregnancy 

in pigs, one of the first signals from the conceptus, and the signal for maternal 

recognition of pregnancy, is the secretion of estrogen [1].  Pig conceptuses also secrete 

IFND and IFNG during early pregnancy [8], but they do not appear to be involved in 

pregnancy recognition [9].  However in other species, conceptus IFNs and uterine ISGs 

have been detected during early pregnancy [14-39], indicating that this may be a 

common event of early pregnancy which may be important for uterine receptivity and 

conceptus implantation and development.  Therefore, the studies described in this 

dissertation were undertaken to determine if ISGs increase during pregnancy in the pig 

endometrium and if so, whether expression of these genes is regulated by conceptus 

estrogen and/or CSPs which contain IFND and IFNG. 

 Results of these studies indicate gene expression is regulated in a temporal and 

cell-type specific manner (Fig. 6.1).  As described in Chapters III and IV, IRF2 and 

STAT1 expression increased in the LE on Day 12 of pregnancy, which is correlated with 

estrogen secretion by the conceptus [1].  In Study 2, exogenous estrogen also increased 

expression of both of these genes in the LE, indicating that the conceptus regulates these 

genes through the secretion of estrogen.  Expression of IRF2, a potent transcriptional 

repressor of ISGs [127-130], may prevent ISG expression in the LE, but not the 

underlying stroma.  This is one possible explanation for the lack of expression of IRF1, a 

prototypic IFNG/STAT1-responsive gene [109], in the STAT1-positive LE.  

Alternatively, estrogen may be influencing expression of IRF1.  Indeed in mice, 17β-

estradiol can downregulate IRF1 expression [171, 172] without affecting STAT1  
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FIG. 6.1. Proposed model of gene expression changes and regulation in pig 
endometrium.  Progesterone increases expression of SLA class I and B2M in the LE by 
Day 9 of the estrous cycle and pregnancy via a PGR-mediated pathway.  As pregnancy 
progresses, SLA class I and B2M decrease in the LE and are no longer detectable by Day 
20.  On Day 12 of pregnancy, IRF2 and STAT1 expression increase in the LE in response 
to estrogen secretion by the conceptus.  By Day 15 of pregnancy, the ISGs IRF1, STAT1, 
STAT2, SLA1, SLA2, SLA3, SLA6, SLA7, SLA8 and B2M increase in the stroma, 
presumably due to the secretion of IFND and/or IFNG by the conceptus.  However, 
except for STAT1, these ISGs are not detectable in the LE.  This may be due to IRF2 
expression, a potent transcriptional repressor of ISGs [127-130], in this cell type.  
However, the absence of IRF1, a prototypic IFNG/STAT1-responsive gene [109], in the 
LE may be due to downregulation by estrogen via an ESR1-mediated pathway [171-
173].  This is consistent with the localization of ESR1 in the LE on Day 12 of 
pregnancy, but not in the stroma on Day 15 of pregnancy [7].  STAT1 expression in the 
LE decreases after Day 20 of pregnancy, indicating that IRF2 alone may not be 
sufficient to down-regulate STAT1 in the LE.  Indeed, USP, which may increase in 
response to Type I IFNs [207], inhibit Type I IFN signaling by decreasing JAK1 
phosphorylation [195], and contain an IRF2 binding site in its promoter [209], increases 
in the LE by Day 20 of pregnancy.  Given that IRF2 and USP are expressed in the LE by 
Day 20 of pregnancy, both may play a role in the down-regulation of STAT1 in this cell 
type. 
 



 102

expression [171], and this effect appears to be mediated by ESR1 [172, 173].  The 

temporal/spatial pattern of uterine ESR1 in the pig is consistent with this idea [7].  ESR1 

is detectable in pig LE on Day 12 where STAT1, but not IRF1, is expressed [170].  ESR1 

is not present in Day 15 stroma where both STAT1 and IRF1 are prominently expressed 

[170]. 

Progesterone also appears to regulate gene expression in the LE.  As described in 

Chapter V, progesterone increased expression of SLA class I and B2M in the LE during 

the estrous cycle and early pregnancy.  This expression was blocked by ZK, a PGR 

antagonist, indicating that expression is mediated by progesterone receptors.  Since PGR 

in pigs are down-regulated in endometrial LE and GE by Day 10 of the estrous cycle and 

pregnancy, but maintained in stromal cells and myometrium [6], SLA class I and B2M 

expression may be mediated indirectly by either progesterone-induced paracrine-acting 

factors (progestamedins) produced by the progesterone receptor-positive stromal cells, 

or by induction of factors in the LE that down-regulate progesterone receptors in the LE 

[155, 198]. 

Progesterone also induces loss of MUC1, which provides innate immune 

protection from bacterial infection [199], in the LE by Day 10 of the estrous cycle and 

pregnancy [54, 199, 200].  Given that SLA class I molecules and B2M are important for 

host defense, increased expression of these genes prior to Day 9 of the estrous cycle and 

pregnancy by ovarian progesterone may compensate for the loss of MUC1 and provide 

continued immune protection of the uterus from pathogens. 

SLA class I and B2M decrease in the LE as pregnancy progresses and are no 

longer detectable by Day 20.  While the mechanism involved in this down-regulation is 

unknown, it may involve repression by IRF2 alone or in cooperation with USP.  As 

described in Chapter V, USP localized to the LE between Days 15 and 20 of pregnancy, 

which is coincident with temporal loss of SLA class I and B2M mRNAs from the LE.  

Ubp43 (USP18, ubiquitin specific protease), is up-regulated by Type I IFNs [207] and 

inhibits Type I IFN signaling by decreasing JAK1 phosphorylation [195].  In mice, IRF2 

can bind to the promoter of Ubp43 (USP18) to mediate basal levels of expression [209].   
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Given that IRF2 and USP are expressed in the LE during pregnancy, both may play a 

role in down-regulating SLA class I and B2M genes. 

It is generally accepted that SLA class I and B2M, key molecules involved in 

host defense and immune histocompatibility of transplanted tissues, are decreased in the 

placenta to ensure that the conceptus semi-allograft avoids host-versus-graft immune 

rejection [31].  Results in Chapter V indicate that ablation of expression of SLA class I 

and B2M genes in uterine LE may also be important for preventing a graft versus uterine 

host response by the developing fetal immune system. 

Graft versus host disease (GVHD) is a common complication of allogeneic bone 

marrow transplantation in which functional immune cells in the transplanted marrow 

recognize the recipient as “foreign” and mount an immunologic attack.  Clinical 

manifestations can be widespread and include damage to the mucosa and parenchyma of 

multiple internal and external organs.  In transplantation biology, there are three 

requirements for GVHD:  i) the transplanted graft must contain immunologically 

competent cells; ii) the recipient must be incapable of rejecting the transplanted cells; 

and iii) the recipient must express tissue antigens that are not present in the transplant 

donor that could thus be recognized as foreign [210].  The pig conceptus is similar to a 

transplanted graft.  There are active B-lymphocytes by gestational Day 20 in the yolk 

sac, and in the liver at gestational Day 30 [211].  The T-lymphopoietic system becomes 

active in the pig thymus as early as gestational Day 40 [212, 213] and by Day 60, fetal 

pigs can produce antibodies and reject allografts [214], to meet the first requirement of 

GVHD.  Regarding the second requirement of GVHD, several mechanisms, including 

expression of nonclassical MHC molecules by trophoblast cells, tryptophan catabolism 

and lymphocyte apoptosis [215, 216], promote maternal tolerance to the conceptus.  This 

results in a successful pregnancy, demonstrating the inability of the mother (recipient) to 

reject the conceptus (transplanted cells).  Finally, the conceptus inherits only half of its 

antigens from the mother.  Maternal antigens not inherited by the conceptus are 

recognized as foreign by the conceptus.  Therefore, potential exists for extensive uterine 
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damage through development of a fetal graft versus uterine host immune response 

during the first half of pregnancy. 

Although the requirements of GVHD appear to be present during pregnancy, the 

disease does not materialize.  Previous studies have identified putative proteins 

expressed by pig trophectoderm that could suppress graft-versus-host reactions [217], 

although the mechanism is unknown.  Results in Chapter V suggest that the conceptus 

protects the uterus from graft versus host damage by secreting estrogens and IFNs to 

initiate expression of gene regulatory networks that down-regulate SLA class I and B2M 

in uterine LE immediately prior to development of fetal immune cells and 

immunocompetency.  Therefore, presentation of “foreign” maternal antigens to the fetal 

immune cells is prevented. 

 In addition to gene expression changes in the LE, several genes increase in the 

uterine stroma during pregnancy as described in Chapters III, IV, and V.  IRF1, STAT2, 

STAT1, SLA1, SLA2, SLA3, SLA6, SLA7, SLA8, and B2M, all ISGs [28, 31, 148, 189], 

increase in the pig stroma by Day 15 of pregnancy.  Infusion of CSPs also increased 

these ISGs in the stroma.  As illustrated in Fig. 4.6, this increase was localized to the 

region of the uterus in close proximity to the implanting conceptus.  The importance of 

the conceptus for stromal ISG expression was further demonstrated in Chapter IV, Study 

4.  In this study, exogenous estrogen was administered to pregnant pigs on Day 9 and 

Day 10 of pregnancy.  This inappropriately early estrogen results in degeneration of the 

conceptuses by Day 15 of pregnancy [5].  Degeneration of the conceptus, which would 

presumably prevent the production and secretion of proteins such as IFND and IFNG by 

the conceptus, prevented stromal expression of STAT1. 

While the pregnancy-specific roles of uterine ISGs in general remain conjectural, 

it is likely that they facilitate remodeling within the stromal compartment of the uterus 

for implantation and placentation.  Individual ISGs could be involved in protecting the 

fetal semi-allograft from immune rejection, in limiting conceptus invasion through the 

uterine wall, and/or in establishing a vascular supply to the conceptus.  Because IFNG is 

believed to initiate endometrial vascular development [126], it is reasonable to 
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hypothesize that conceptus-derived IFNs increase ISGs such as IRF1 and STAT1 to 

facilitate vascular changes necessary to provide hematotrophic support to the developing 

conceptus.  Indeed, recent studies have demonstrated that angiogenic genes increase 

during pregnancy in endometrium, particularly endometrial lymphocytes, isolated near 

healthy conceptuses, but not from sites of fetal arrest [144].  While it is currently 

unknown whether ISGs are involved in angiogenic gene expression changes during 

pregnancy, it is becoming increasingly clear that IFN induction of genes within the 

uterine stroma of mammals is a universal response to, or component of, a progressing 

pregnancy. 

 

Conclusions 

 These studies provided compelling evidence that pig conceptuses orchestrate 

precise temporal and cell-type specific changes in uterine gene expression through 

secretion of estrogen, followed by IFND and IFNG.  Because the pig conceptus IFNs 

have been identified (IFND and IFNG) [8], but are not known to be involved in 

pregnancy recognition [9], the pig is an excellent model to investigate the role of uterine 

ISGs during pregnancy.  Using siRNA and morpholine antisense oligonucleotide 

methods, IFND and/or IFNG production by the conceptus trophectoderm can be 

knocked out, thereby preventing ISG induction in the uterine stroma.  The effect of a 

lack of stromal ISGs on pregnancy, such as vascular and placental development, immune 

rejection, and conceptus survival and development, could then be evaluated.  

Understanding the function of stromal ISGs would contribute to our knowledge of 

uterine function for the successful establishment and maintenance of pregnancy.   
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