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ABSTRACT

Kerr-NUT-AdS Metrics and String Theory. (December 2007)

Wei Chen, B.S., The University of Science and Technology of China

Chair of Advisory Committee: Dr. Christopher Pope

With the advent of supergravity and superstring theory, it is of great importance

to study higher-dimensional solutions to the Einstein equations. In this dissertation,

we study the higher dimensional Kerr-AdS metrics, and show how they admit further

generalisations in which additional NUT-type parameters are introduced.

The choice of coordinates in four dimensions that leads to the natural inclusion

of a NUT parameter in the Kerr-AdS solution is rather well known. An important

feature of this coordinate system is that the radial variable and the latitude variable

are placed on a very symmetrical footing. The NUT generalisations of the high-

dimensional Kerr-AdS metrics obtained in this dissertation work in a very similar way.

We first consider the Kerr-AdS metrics specialised to cohomogeneity 2 by appropriate

restrictions on their rotation parameters. A latitude coordinate is introduced in such

a way that it, and the radial variable, appeared in a very symmetrical way. The

inclusion of a NUT charge is a natural result of this parametrisation. This procedure

is then applied to the general D dimensional Kerr-AdS metrics with cohomogeneity

[D/2]. The metrics depend on the radial coordinate r and [D/2] latitude variables µi

that are subject to the constraint
∑

i µ
2
i = 1. We find a coordinate reparameterisation

in which the µi variables are replaced by [D/2]−1 unconstrained coordinates yα, and

put the coordinates r and yα on a parallel footing in the metrics, leading to an

immediate introduction of ([D/2]− 1) NUT parameters. This gives the most general



iv

Kerr-NUT-AdS metrics in D dimensions.

We discuss some remarkable properties of the new Kerr-NUT-AdS metrics. We

show that the Hamilton-Jacobi and Klein-Gordon equations are separable in Kerr-

NUT-AdS metrics with cohomogeneity 2. We also demonstrate that the general

cohomogeneity-n Kerr-NUT-AdS metrics can be written in multi-Kerr-Schild form.

Lastly, We study the BPS limits of the Kerr-NUT-AdS metrics. After Euclideani-

sation, we obtain new families of Einstein-Sassaki metrics in odd dimensions and

Ricci-flat metrics in even dimensions. We also discuss their applications in String

theory.
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CHAPTER I

INTRODUCTION

A. A Brief History of General Relativity

It has been so far discovered that there exist four fundamental interactions in nature,

i.e. the gravitational, electromagnetic, strong and weak nuclear forces. Although the

gravitational force is much weaker than the other fundamental interactions, its long-

range nature and additivity make it the dominative force in the large scale structures

of the universe. Newton was the first who realized the universality of the gravitational

interaction. He proposed that any two point masses are attracted to each other by a

gravitational force whose magnitude is proportional the the product of their masses

and inversely proportional to the square of the distance between them.

Newton’s description of gravity has played an important rôle in understanding

the planetary motion in our solar system. However, it was subsequently superseded

by Einstein’s general relativity. In this theory, the observed attraction between point

masses is the manifestation of their motion along geodesics in a curved spacetime.

The curvature is, in turn, generated by the energy and momentum content of matter

according to Einstein equations. [1].

General relativity has been confirmed in many experimental tests. The first of

these was verified by Einstein himself. He calculated the advance of the perihelion of

the planet Mercury according to the laws of general relativity. The result perfectly

matched the already well known measurement, namely 43” per century. Another

proposal of Einstein, the bending of light by the sun, was confirmed by Eddington in

his expedition to observe the solar eclipse of May 29, 1919.

This dissertation follows the style of Nuclear Physics B.
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The experimental tests of general relativity can only be done at the weak-field

level with our current technology. It is of great interest also to study the effects

of general relativity in strong gravitational fields. A theoretical way to do this is

to find exact solutions to the Einstein equations. This was first achieved in 1916

by Schwarzschild, by making a simplifying ansatz for a static metric with spherical

symmetry. An interesting feature of this solution is that the metric has an “event

horizon” which separates the spacetime into two regions. Nothing, even light, can

escape from inside the horizon. This introduces a new object into theoretical physics,

the black hole.

Schwarzschild’s metric carries only one parameter, the mass. Two years after his

discovery, Reissner [3] and Nordström [4] found a charged black hole solution in the

Einstein-Maxwell theory.

The Schwarzschild and the Reissner-Nordström black hole are static, spherically

symmetric and asymptotically flat. One can generalize further by relaxing these con-

ditions. However, due to the complexity and non-linearity of the Einstein equations,

this step took a long time, until in 1963, Kerr discovered a stationary and axial sym-

metric solution which describes a rotating black hole [5]. This important advance

started a golden age of general relativity in which numerous solutions, techniques

and ideas were developed. In 1965, Newman and his coworkers found the charged

Kerr black hole [6]. In 1968, Carter generalized their solution further by including

a cosmological constant and a NUT parameter [7]. An acceleration parameter was

introduced into Kerr solution by Plebanski and Demianski in 1976 [8].
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B. Quantum Theory of Gravity

As a classical theory of gravity, general relativity is well established and widely ac-

cepted. However, it is not sufficient to describe the phenomena in an extremely

strong gravitational field, such as in the vicinity of a black hole curvature singular-

ity or during the early evolution of the universe. Quantum effects, which dominate

small-distance physics, come into play. With the advent of the modern cosmology, it

is necessary to develop a quantum theory of gravity.

Demand for the quantum theory of gravity also has roots in the search for an

underlying truth in physics. It is believed by most theoretical physicists that all

the physical principles can be unified into one theory. The idea of unification has

been a dominant theme in physics for well over a century, from Maxwell’s unification

of electric and magnetic phenomena in 19th century to the present Standard model

which unifies the electromagnetic force with the strong and weak nuclear forces. The

Standard Model is based on quantum field theory, in which forces are explained as the

exchanges of force-carrying particles. The three underlying forces are then described

as the exchanges of gauge bosons in an SU(3)×SU(2)×U(1) symmetry group. The

Standard Model is quite successful in explaining the experimental data, and in fact it

agrees with all of our observations of the physical world. However, a major problem

of the theory is that it contains about twenty free parameters, whose values can be

determined only by experiment.

Now there is only one piece missing from the puzzle, namely gravity. How-

ever, the quantum field theoretic description of gravity has not been successful. In

this approach, a massless, spin-2 particle called the “graviton” is introduced as the

force-carrier. The distinguishing feature of gravitons is that they interact with each

other, and thus they contribute to the energy-momentum sources which produce
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them. This recursion introduces infinite corrections to the theory which make it

non-renormalisable.

C. Superstring Theory

A revolutionary idea, string theory, is employed to resolve the non-renormalisability

problem. In this theory, strings take the place of particles as the building blocks of the

physical world. The point-like interactions are replaced by the splitting and joining of

strings, which smears out all the infinities associated with the non-renormalisability.

After further studying, string theory has been deemed to be a very promising can-

didate for the unification theory of everything. The spectrum of bosonic particles

may be explained as the various excitations of strings, and this spectrum automat-

ically contains a massless spin-2 particle corresponding to the graviton. Moreover,

the string theory has no adjustable parameter while the Standard Model has about

twenty which can be determined only by experiment. In spite of these remarkable

features, the bosonic string theory is not totally satisfactory. First, the ground state

of string corresponds to a negative-mass particle, known as the tachyon. Second, this

theory does not contain fermionic particles.

The key to all these problems is a symmetry principle, called supersymmetry.

This describes the invariance of a theory under the exchange of bosons and fermions.

The supersymmetric transformation acting twice turns the particle into itself but

at a different location in spacetime. Therefore, supersymmetry is closely related

to the spacetime translational and rotational symmetry of special relativity. Local

supersymmetry, know as supergravity, is expected to contains the localized special

relativity, i.e. general relativity. Knowledge of general relativity is therefore crucial

to the understanding of supergravity.
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The combination of string theory and supersymmetry leads to superstring theory,

which contains both bosonic and fermionic particles but no tachyon. In superstring

theory, the dimension of spacetime is predicted to be ten. Except for the observed

3 + 1 dimensions, there are six extra dimensions which must be highly compacti-

fied. It is the geometrical and topological properties of these compact dimensions

that determine the particle species and their couplings in the four dimensional world.

Thus, the study of the geometry of spacetime is crucial to understanding the connec-

tion between the ten-dimensional superstring theory and a four-dimensional realistic

model.

The low-energy effective theory of superstrings is ten-dimensional supergravity.

Therefore, the classical solutions in supergravity, which are closely related to the

higher dimensional solutions in general relativity, can reveal many important prop-

erties of superstring theory. In 1997, Maldacena found an implementation of this

idea [9]. He studied the correspondence between the supergravity on an AdS5 × S5

background and SU(N) super-Yang-Mills gauge field theory in the large N limit in

four dimensions, and made a bold conjecture that this so called ”AdS/CFT corre-

spondence” will continue to hold between the full quantum Type IIB superstring

and SU(N) super-Yang-Mills gauge field theory with arbitrary N in four dimensions.

Then it is quite natural to ask:

Can we generalize this conjecture to the supergravity on other backgrounds?

Which background corresponds to the gauge field theory of our real world?

It is therefore important to find solutions in higher dimensional general relativity

and extract the geometrical and topological information of various backgrounds.
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D. Black Hole Solutions in Higher Dimensions

With the discovery of the superstring and supergravity, it becomes important to

generalize solutions to the Einstein equations, and especially the “elementary” black

hole solution, to higher dimensions. Schwarzschild’s solution was generalized to higher

dimensions by Tangherlini in 1963 [10]. In 1986, Myers and Perry [11] constructed

an asymptotically flat, rotating black hole metric in arbitrary dimension D. This

solution carries a mass parameter and [(D − 1)/2] independent rotation parameters,

corresponding to independent rotations in the [(D−1)/2] orthogonal spatial 2-planes.

In 1998, Hawking, Hunter and Taylor-Robinson found another solution in 1998 [12]

which describes the five-dimensional rotating black hole with a cosmological constant.

They also obtained a special case of cosmological solution in all dimensions, in which

there is a rotation in only one of the [(D − 1)/2] orthogonal spatial 2-planes. In

2004, Gibbons, Lü, Page and Pope constructed the general cosmological rotating

black hole solution in arbitrary dimension, with [(D − 1)/2] independent rotation

parameters [13, 14].

Since the four-dimensional cosmological Kerr solution can be further generalized

to have a NUT charge, one might wonder whether this is possible in higher dimensions

too.

E. General Kerr-NUT-AdS Metrics in All Dimensions

The main purpose of this dissertation is to obtain new NUT generalizations of the

Kerr-AdS metrics which are of the most general possible type. It contains material

from [15], [16], [17], [18] and [19].

The four dimensional Kerr-NUT-AdS metric is well known. It has cohomogeneity

2, and admits a coordinate system in which the NUT charge and the mass appear
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in a symmetrical way. In chapter II, we will first consider the higher dimensional

Kerr-AdS metrics with cohomogeneity 2, try to cast them into a similar coordinate

system as that in four dimensions, and then the inclusion of NUT charge will be quite

natural [15].

In chapter III, this strategy will then be applied to the most general D dimen-

sional Kerr-AdS metrics with cohomogeneity [D/2] [16]. The metrics depend on the

radial coordinate r and [D/2] latitude variables µi that are subject to the constraint∑
i µ

2
i = 1. We want to find a coordinate reparameterisation in which the µi variables

are replaced by [D/2] − 1 unconstrained coordinates yα, and put the coordinates r

and yα on a parallel footing in the metric, leading to an immediate introduction of

([D/2]− 1) NUT parameters. This gives the most general Kerr-NUT-AdS metrics in

D dimensions.

In addition, we will discuss some remarkable properties of the new Kerr-NUT-

AdS metrics. The separability of the Hamilton-Jacobi and Klein-Gordon equations

in certain backgrounds played an important rôle in uncovering hidden symmetries

associated with the existence of Killing tensors. In chapter IV, we will study whether

the Hamilton-Jacobi and Klein-Gordon equations are separable in the new Kerr-

NUT-AdS metrics with cohomogeneity 2, and manage to construct the associated

irreducible rank-2 Killing tensor [17].

In chapter V, we will look for the linearly-independent, and mutually orthogonal

null geodesic congruences in the Kerr-NUT-AdS solutions with cohomogeneity n,

which enables us to write the metrics in multi-Kerr-Schild form [18].

In chapter VI, we will study the BPS limits of the Kerr-NUT-AdS metrics [19].

After Euclideanisation, they will give new families of Einstein-Sassaki metrics in odd

dimensions and Ricci-flat metrics in even dimensions. The obtained Ricci-flat metric

in six dimension has a specific application in the AdS/CFT correspondence. It can be
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interpreted as a cohomogeneity-three resolved Calabi-Yau cone over Labc space with

a blown up 2-cycle or 4-cycle. We will discuss D3-branes on this Calabi-Yau cone and

their applications in the AdS/CFT correspondence. In terms of the dual quiver gauge

theory, this corresponds to motion along the non-mesonic, or baryonic, directions in

the moduli space of vacua. In particular, a dimension-two and/or dimension-six scalar

operator gets a vacuum expectation value. These resolved cones support various

harmonic (2, 1)-forms which reduce the ranks of some of the gauge groups either by a

Seiberg duality cascade or by Higgsing. We conclude this dissertation in chapter VII.
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CHAPTER II

KERR-NUT-ADS METRICS WITH COHOMOGENEITY 2

A. Introduction

In view of the fact that the four-dimensional rotating black hole metrics admit gen-

eralisation where a NUT parameter is present, one might wonder whether such ad-

ditional parameter could also be introduced in higher dimensions too. In fact, in a

certain special class of higher-dimensional Kerr-de Sitter black holes, namely those

in which there is just a rotation in a single 2-plane, a generalisation which includes

a NUT parameter as well as the mass and the (single) rotation parameter has been

obtained [20, 21]. It was shown in [21] that this generalisation, which is trivial in

five dimensions but non-trivial in dimensions D ≥ 6, still exhibits certain remarkable

separability properties for the Hamilton-Jacobi and wave equations, which in fact

played an important rôle in the original discovery of the generalised four-dimensional

solutions.

The purpose of this chapter is to present a much wider classes of NUT generali-

sations of the Kerr-de Sitter metrics in which the rotation parameters ai are divided

into two sets, and all parameters within a set are equal. In odd dimensions, which we

discuss in section B, we obtain generalised solutions for an arbitrary partition of the

parameters into two such sets. In even dimensions, which we discuss in section C, the

parameters are partitioned into one set with a non-vanishing value for the rotation,

and the other set with vanishing rotation. In each of the odd and even dimensional

cases, the net effect is to give a metric of cohomogeneity 2. In a manner that parallels

rather closely the generalisations in D = 4, the two associated coordinates, on which

the metric functions are intrinsically dependent, enter in a rather symmetrical way.
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The metrics that we obtain are equivalent to the previously-known Kerr-de Sitter-

Taub-NUT metrics in D = 4. In D ≥ 6 the extra parameter that we introduce gives

rise to non-trivial generalisations of the Kerr-de Sitter metrics. The new parameter is

associated with characteristics that generalise those of Taub-NUT like metrics in four

dimensions, and so we may think of it as being a higher-dimensional generalisation of

the NUT parameter. In each of the odd and even-dimensional cases, we discuss also

their supersymmetric limits. In odd dimensions, these yield, after Euclideanisation,

new Einstein-Sasaki metrics. In even dimensions, the supersymmetric limit leads to

new Rici-flat Kähler metrics.

In section D, we discuss some global aspects of the new Kerr-AdS-Taub-NUT

metrics. In particular, in the case of even dimensions, the introduction of the NUT-

type parameter implies that the time coordinate must be identified periodically, in

the same way as happens in the previously-known four-dimensional solutions. By

contrast, we find that in odd dimensions one can define a time coordinate that is not

periodic.

In section E, we discuss the case of five dimensions in detail. We find that in

this case, the new NUT-type parameter is actually bogus, in the sense that it can be

removed by using a scaling symmetry that is specific to the five-dimensional metric.

In the process of showing this, however, we uncover an intriguing and previously

unnoticed property of the five-dimensional Kerr-AdS metric. We find that it has an

“inversion symmetry,” which implies that the metric with large values of its rotation

parameters is equivalent, after a general coordinate transformation, to the metric

with small values for the rotations. The fixed point of this symmetry occurs at the

critical value of rotation that arises in the supersymmetric limit. This corresponds

to the case where the rotation parameter is equal to the radius of the asymptotically

AdS spacetime. The inversion symmetry is therefore a feature specifically of the five-
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dimensional Kerr black holes with a cosmological constant, and does not arise in the

case of asymptotically flat black holes.

The chapter ends with conclusions in section F.

B. Kerr-de Sitter with NUT Parameter in D = 2n + 1

1. The Metric

We take as our starting point the general Kerr-de Sitter metric in D = 2n + 1

dimensions, which was constructed in [13, 14]. Specifically, we begin with the metrics

written in an asymptotically non-rotating frame, as given in equation (E.3) of [13],

specialised to the case of odd dimensions D = 2n + 1. We choose the cosmological

constant to be negative, with the Ricci tensor given by Rµν = −(D − 1)g2 gµν . The

constant g is the inverse of the AdS radius. The metric is described in terms of n

“latitude” or direction cosine coordinates µi, subject to the constraint
∑n

i=1 µ2
i = 1,

n azimuthal coordinates φi, the radial coordinate r and time coordinate t. It has

(n+1) arbitrary parameters M and ai, which can be thought of as characterising the

mass and the n angular momenta in the n orthogonal spatial 2-planes.

ds2 = −W (1 + g2 r2) dτ 2 +
U dr2

V − 2M
+

2M

U

(
W dτ −

n∑
i=1

ai µ
2
i dφi

1 − a2
i g2

)2

+
n∑

i=1

r2 + a2
i

1 − a2
i g2

[dµ2
i + µ2

i dφ2
i ]

− g2

W (1 + g2 r2)

( n∑
i=1

(r2 + a2
i )µi dµi

1 − a2
i g2

)2

, (2.1)



12

where U and V are defined by

U =
n∑

i=1

µ2
i

r2 + a2
i

n∏
j=1

(r2 + a2
j) .

V =
1

r2
(1 + g2 r2)

n∏
i=1

(r2 + a2
i ) , (2.2)

W and F are given by

W =
n∑

i=1

µ2
i

1 − a2
i g2

, F =
r2

1 + g2 r2

n∑
i=1

µ2
i

r2 + a2
i

. (2.3)

In order to find a generalisation that includes a NUT-type parameter, we first

specialise the Kerr-AdS metrics by setting

a1 = a2 = · · · = ap = a , ap+1 = ap+2 = · · · = an = b . (2.4)

We then reparameterise the latitude coordinates coordinates as

µi = νi sin θ , 1 ≤ i ≤ p ,

p∑
i=1

ν2
i = 1 ,

µj+p = ν̃j cos θ , 1 ≤ j ≤ q ,

q∑
j=1

ν̃2
j = 1 , (2.5)

where we have defined

n = p + q , (2.6)

and we also then introduce a coordinate v in place of θ, defined by

a2 cos2 θ + b2 sin2 θ = v2 . (2.7)

It is convenient to divide the original n azimuthal coordinates φi into two sets, with

p of them denoted by φi and the remaining q denoted by φ̃j.

Because of the specialisation of the rotation parameters in (2.4), the Kerr-AdS

metric will now have cohomogeneity 2, rather than the cohomogeneity n of the general
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(2n + 1)-dimensional Kerr-AdS metrics. In fact, as we shall see explicitly below,

the metric has homogeneous level sets R × S2p−1 × S2q−1, with the metric functions

depending inhomogeneously on the coordinates r and v. Remarkably, the form in

which the metric can now be written puts the radial coordinate r and the coordinate

v on a parallel footing, and suggests a rather natural generalisation in which a NUT-

type parameter L can be introduced. Rather than writing the metric first without

the NUT contribution and then again with it added, we shall just directly present

our final result with the NUT parameter included. The original Kerr-AdS, subject to

the constraints on the rotation parameters specified in (2.4), corresponds to setting

L = 0. Our generalised metric including L is

ds2 = −(1 + g2r2)(1 − g2v2)

ΞaΞb

dt2 +
ρ2n−2dr2

U
+

ω2n−2dv2

V

+
2M

ρ2n−2

((1 − g2v2)

ΞaΞb

dt −A
)2

+
2L

ω2n−2

((1 + g2r2)

ΞaΞb

dt − Ã
)2

(2.8)

+
(r2 + a2)(a2 − v2)

Ξa(a2 − b2)

p∑
i=1

(
dν2

i + ν2
i dφ2

i

)
+

(r2 + b2)(b2 − v2)

Ξb(b2 − a2)

q∑
j=1

(
dν̃2

j + ν̃2
j dφ̃2

j

)
,

where

A =
a(a2 − v2)

Ξa(a2 − b2)

p∑
i=1

ν2
i dφi +

b(b2 − v2)

Ξb(b2 − a2)

q∑
j=1

ν̃2
j dφ̃j ,

Ã =
a(r2 + a2)

Ξa(a2 − b2)

p∑
i=1

ν2
i dφi +

b(r2 + b2)

Ξb(b2 − a2)

q∑
j=1

ν̃2
j dφ̃j ,

U =
(1 + g2r2)(r2 + a2)p (r2 + b2)q

r2
− 2M ,

V = −(1 − g2v2)(a2 − v2)p (b2 − v2)q

v2
+ 2L .

ρ2n−2 = (r2 + v2)(r2 + a2)p−1 (r2 + b2)q−1 , Ξa = 1 − a2g2 ,

ω2n−2 = (r2 + v2)(a2 − v2)p−1 (b2 − v2)q−1 , Ξb = 1 − b2g2 . (2.9)

It is straightforward (with the aid of a computer) to verify in a variety of low odd
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dimensions that the metric (2.8) does indeed solve the Einstein equations Rµν =

−(D−1)g2gµν , and since the construction does not exploit any special features of the

low dimensions, one can be confident that the solution is valid in all odd dimensions.

We have explicitly verified the solutions in D ≤ 9.

As we indicated above, the metric (2.8) can be re-expressed more elegantly in

terms of two complex projective spaces CP
p−1 and CP

q−1. The proof is straightfor-

ward, following the same steps as were used in [13] when studying the Kerr-de Sitter

metrics with equal angular momenta. The essential point is that one can write

p∑
i=1

(dν2
i + ν2

i dφ2
i ) = dΩ2

2p−1 = (dψ + A)2 + dΣ2
p−1 ,

p∑
i=1

ν2
i dφi = dψ + A , (2.10)

where dΣ2
p−1 is the standard Fubini-Study metric on CP

p−1 (with Rab = 2pgab), and

1
2
dA locally gives the Kähler form J . Note that dΩ2

2p−1 is the standard metric on the

unit sphere S2p−1, expressed here as the Hopf fibration over CP
p−1.

With these results, and the analogous ones for the tilded coordinates ν̃j and φ̃j,

we find that (2.8) can be rewritten as

ds2 = −(1 + g2r2)(1 − g2v2)

ΞaΞb

dt2 +
ρ2n−2dr2

U
+

ω2n−2dv2

V

+
2M

ρ2n−2

((1 − g2v2)

ΞaΞb

dt −A
)2

+
2L

ω2n−2

((1 + g2r2)

ΞaΞb

dt − Ã
)2

+
(r2 + a2)(a2 − v2)

Ξa(a2 − b2)

(
(dψ + A)2 + dΣ2

p−1

)
+

(r2 + b2)(b2 − v2)

Ξb(b2 − a2)

(
(dϕ + Ã)2 + dΣ̃2

q−1

)
, (2.11)

now with

A =
a(a2 − v2)

Ξa(a2 − b2)
(dψ + A) +

b(b2 − v2)

Ξb(b2 − a2)
(dϕ + Ã)

Ã =
a(r2 + a2)

Ξa(a2 − b2)
(dψ + A) +

b(r2 + b2)

Ξb(b2 − a2)
(dϕ + Ã) . (2.12)
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Here A and Ã are potentials such that the Kähler forms of the complex projective

spaces CP
p−1 and CP

q−1 are given locally by J = 1
2
dA and J̃ = 1

2
Ã respectively.

Another useful way of writing the metric is given in the appendix.

It can be seen from the form of (2.11) that the metrics have cohomogeneity 2, with

principal orbits on the surfaces where r and v are constant that are the homogeneous

spaces R × S2p−1 × S2q−1. The R factor is associated with the time direction, whilst

the spheres S2p−1 and S2q−1 arise from the Hopf fibrations over CP
p−1 and CP

q−1

respectively. The sphere metrics on the principal orbits are squashed, and so the

isometry group of (2.11) is R × U(p) × U(q).

We have presented the new solutions for the case of negative cosmological con-

stant, but clearly these NUT generalisations of Kerr-AdS will also be valid if we send

g → i g, yielding NUT generalisations of the Kerr-de Sitter metrics. It is also worth

noting that even when the cosmological constant is set to zero, the solutions are still

new, representing NUT generalisations of the asymptotically-flat rotating black holes

of Myers and Perry [11].

Written in the form (2.8) or (2.11), the metric appears to be singular in the

special case where one sets a = b. This is, however, an artefact of our introduction

of the coordinate v, in place of θ. We did this in order to bring out the symmetrical

relation between r and v, but clearly, as can be seen from (2.7), the coordinate v

degenerates in the case a = b. This can be avoided by using θ as the coordinate

instead, and performing appropriate rescalings.

Having written our new Kerr-AdS-Taub-NUT metrics in this form, it is clear

that we could obtain more general Einstein metrics by replacing the Fubini-Study

metrics dΣ2
p−1 and dΣ̃2

q−1 on CP
p−1 and CP

q−1 by arbitrary Einstein-Kähler metrics

of the same dimensions, and normalised to have the same cosmological constants as

dΣ2
p−1 and dΣ̃2

q−1. In the generalised metrics, A and Ã will now be potentials yielding
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the Kähler forms of the two Einstein-Kähler metrics, i.e. J = 1
2
dA and J̃ = 1

2
dÃ.

If we specialise to the case when b = 0, and define a new coordinate ψ′ = ψ−ag2t,

then the metric (2.12) reduces to

ds2 =
r2 + v2

X
dr2 +

r2 + v2

Y
dv2 − X

r2 + v2

(
dt − a2 − v2

a Ξa

(dψ′ + A)
)2

+
Y

r2 + v2

(
dt − r2 + a2

a Ξa

(dψ′ + A)
)2

+
(r2 + a2)(a2 − v2)

a2Ξa

dΣ2
p−1

+
r2v2

a2
dΩ2

2q−1 , (2.13)

where dΩ2
2q−1 = (dϕ + Ã)2 + dΣ̃2

q−1 is the metric of a unit sphere S2q−1, and

X = (1 + g2r2)(r2 + a2) − 2M

(r2 + a2)p−1 r2(q−1)
,

Y = (1 − g2v2)(a2 − v2) − 2L̃

(a2 − v2)p−1 v2(q−1)
. (2.14)

The constant L̃ is related to the original NUT parameter by L̃ = (−1)q L. A special

case of the metrics (2.13), namely when p = 1, was obtained in [20, 21].

2. The Supersymmetric Limit

Odd-dimensional Kerr-AdS black holes admit supersymmetric limits, which in Eu-

clidean signature with positive cosmological constant become Einstein-Sasaki metrics

[22, 23] (see also [24, 25] for discussions of how the supersymmetric limit arises in

the Lorentzian regime, when a Bogomol’nyi inequality is saturated). We find that

an analogous limit also exists for our new metrics where the NUT charge is intro-

duced. We first set g = i so that the metric has a unit positive cosmological constant

(Rµν = (D − 1) gµν). We then Euclideanise the metric by sending

t → it , a → ia , b → ib , (2.15)
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define

1 − a2 = α ε , 1 − b2 = β ε , M = −m εn+1 , L = � εn+1 ,

1 − r2 = ε x , 1 + v2 = ε y , (2.16)

and then take the limit ε → 0. This leads to the metric

ds2 =
(
dt +

(α − x)(α − y)

α(α − β)
(dψ + A) − (β − x)(β − y)

β(α − β)
(dϕ + Ã)

)2

+
x − y

4X
dx2 +

x − y

4Y
dy2 +

(α − x)(α − y)

α(α − β)
dΣ2

p−1 −
(β − x)(β − y)

β(α − β)
dΣ̃2

q−1

+
X

x − y

( (α − y)

α(α − β)
(dψ + A) − (β − y)

β(α − β)
(dϕ + Ã)

)2

+
Y

x − y

( (α − x)

α(α − β)
(dψ + A) − (β − x)

β(α − β)
(dϕ + Ã)

)2

, (2.17)

where again J = 1
2
dA and J̃ = 1

2
dÃ are the Kähler forms of the CP

p−1 and CP
q−1

complex projective spaces with metrics dΣ2
p−1 and dΣ̃2

q−1 respectively, and

X = − 2m

(α − x)p−1(β − x)q−1
− x(α − x)(β − x) ,

Y =
2�

(α − y)p−1(β − y)q−1
+ y(α − y)(β − y) . (2.18)

It is straightforward to verify that the above metric (2.17) is an Einstein-Sasaki metric

in D = 2n + 1 dimensions. Note that the metric has the form

ds2
2n+1 = (dt + 2A)2 + ds2

2n . (2.19)

where ds2
2n is an Einstein-Kähler metric and A is the corresponding Kähler potential,

in the sense that the Kähler form for ds2
2n can be written locally as J = dA. As

far as we know, these cohomogeneity-2 Einstein-Kähler metrics ds2
2n have not been

obtained explicitly before. Note that one can go to the Ricci-flat limit of ds2
2n by

performing a rescaling that amounts to dropping the x3 term and y3 term in (2.18).
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If we consider the special case where p = n − 1 and q = 1, the Einstein-Sasaki

metrics reduce to ones that were obtained recently in [26]. This may be seen by

defining new parameters by the expressions

α̂ = −4(β − 2α) , β̂ = α(α − β) , m = 1
8
(−1)N µ , � = 1

8
(−1)N ν , (2.20)

where N ≡ p − 1, and introducing new coordinates defined by

x̂ = x − α , ŷ = y − α , t = τ + 2(α − β)χ , ϕ = 2βχ , ψ = 2ψ̂ + 2αχ . (2.21)

Defining also X̂ = 4X and Ŷ = 4Y , we obtain, upon substitution into (2.17), the

metric

ds2 = [dτ − 2(x̂ + ŷ)dχ +
2x̂ŷ

β̂
σ]2 +

x̂ − ŷ

X̂
dx̂2 +

x̂ − ŷ

Ŷ
dŷ2

+
X̂

x̂ − ŷ
(dχ − ŷ

β̂
σ)2 +

Ŷ

x̂ − ŷ
(dχ − x̂

β̂
σ)2 +

x̂ŷ

β̂
dΣ2

N , (2.22)

where σ = dψ̂ + 1
2
A, and

X̂ = −4x̂3 − α̂x̂2 − 4β̂x̂ − µ

x̂N
, Ŷ = 4ŷ3 + α̂ŷ2 + 4β̂ŷ +

ν

ŷN
. (2.23)

This is precisely of the form of the Einstein-Sasaki metrics that were obtained in

section (4) of reference [26], in the case where the Einstein-Kähler base metric in

that paper is taken to be CP
N . A detailed discussion of the global structure of

these metrics was given in [26], and new complete D = 7 Einstein-Sasaki spaces were

obtained.

C. Kerr-de Sitter with NUT Parameter in D = 2n

The Kerr-de Sitter metrics in even spacetime dimensions take a slightly different

form from those in odd dimensions. The reason for this is that now there are an odd
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number of spatial dimensions, and so there can be (n − 1) independent parameters

characterising rotations in (n − 1) orthogonal 2-planes, with one additional spatial

direction that is not associated with a rotation. Because of this feature, the D = 2n

dimensional Kerr-de Sitter black holes in general have cohomogeneity n, which can

be reduced to cohomogeneity 2 if one sets all the (n − 1) rotation parameters equal.

By contrast, in odd dimensions D = 2n + 1 the general metrics have cohomogeneity

n, reducing to cohomogeneity 1 if one sets all the rotation parameters equal.

It will be recalled that in section B, we were able to generalise the odd-dimensional

Kerr-de Sitter to include a NUT parameter by dividing the angular momentum param-

eters ai into two sets, equal within a set, thereby obtaining a metric of cohomogeneity

2. Our construction with the NUT parameter is intrinsically adapted to metrics of

cohomogeneity 2, and so this means that in the present case, when we consider gen-

eralising the even-dimensional Kerr-de Sitter metrics, we shall first need to divide the

rotation parameters ai into two sets. In one set, the parameters will be equal and

non-zero, while in the other set, the remaining rotation parameters will all be chosen

to be zero.

Our starting point is the expression for the Kerr-de Sitter metrics given in equa-

tion (E.3) of reference [13], specialised to dimension D = 2n. We shall take the

cosmological constant to be negative, with the resulting Kerr-AdS metrics satisfying

Rµν = −(D − 1)g2 gµν .
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ds2 = −W (1 + g2r2) dτ 2 +
U dr2

V − 2M
+

2M

U

(
W dτ −

n−1∑
i=1

ai µ
2
i dφi

1 − a2
i g2

)2

+
n∑

i=1

r2 + a2
i

1 − a2
i g2

dµ2
i +

n−1∑
i=1

r2 + a2
i

1 − a2
i g2

µ2
i dφ2

i

− g2

W (1 + g2r2)

( n∑
i=1

(r2 + a2
i )µi dµi

1 − a2
i g

2

)2

, (2.24)

where U and V are defined here by

U = r
n∑

i=1

µ2
i

r2 + a2
i

n−1∏
j=1

(r2 + a2
j) ,

V =
1

r
(1 + g2r2)

n−1∏
i=1

(r2 + a2
i ) (2.25)

W and F are given in (2.3). We then set

a1 = a2 = · · · = ap = a , ap+1 = ap−2 = · · · = an−1 = 0 . (2.26)

We then introduce new “latitude” coordinates νi, ν̃j and θ, in place of the µi in [13],

µi = νi sin θ , 1 ≤ i ≤ p ,

p∑
i=1

ν2
i = 1 ,

µj+p = ν̃j cos θ , 1 ≤ j ≤ n − p ,

n−p∑
j=1

ν̃2
j = 1 , (2.27)

In this case, because there are only (n − 1) azimuthal coordinates φi, we split them

into two sets, which we shall denote by φi and φ̃j, defined for

φi : 1 ≤ i ≤ p , φ̃j : 1 ≤ j ≤ q , (2.28)

where this time we have defined q such that

p + q = n − 1 . (2.29)
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We then introduce a new variable v, in place of θ, which this time is defined by

a2 cos2 θ = v2 . (2.30)

We can now write out the Kerr-AdS metric of [13, 14], subject to the restriction

(2.26), in terms of the new variables defined above, and, as in the odd-dimensional

case we discussed previously, this allows us to conjecture a generalisation that in-

cludes a NUT parameter L as well as the mass parameter M and angular momentum

parameter a. Again, we shall just present our final result, having included the NUT

parameter. Thus we obtain the new Kerr-AdS-Taub-NUT metric (which we have

verified explicitly in D ≤ 8)

ds2 = −(1 + g2r2)(1 − g2v2)

Ξa

dt2 +
ρ2n−3dr2

U
+

ω2n−3dv2

V

+
2M r

ρ2n−3

((1 − g2v2)

Ξa

dt −A
)2

− 2Lv

ω2n−3

((1 + g2r2)

Ξa

dt − Ã
)2

(2.31)

+
(r2 + a2)(a2 − v2)

a2Ξa

p∑
i=1

(dν2
i + ν2

i dφ2
i ) +

r2v2

a2

(
dṽ2

q+1 +

q∑
j=1

(dν̃2
j + ν̃2

j dφ̃2
j)

)
,

where

A =
a2 − v2

a Ξa

p∑
i=1

ν2
i dφi , Ã =

r2 + a2

a Ξa

p∑
i=1

ν2
i dφi ,

U = (1 + g2r2)(r2 + a2)p r2q − 2M r ,

V = (1 − g2v2)(a2 − v2)p v2q − 2Lv .

ρ2n−3 = (r2 + v2)(r2 + a2)p−1 r2q , Ξa = 1 − a2g2 ,

ω2n−3 = (r2 + v2)(a2 − v2)p−1 v2q . (2.32)

The (2n)-dimensional Kerr-AdS-Taub-NUT metrics that we have constructed

here can be seen to be quite similar in structure to the (2n+1)-dimensional examples

that we constructed in section B, in the special case where we set the b parameter to
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zero. In fact we can re-express the metrics (2.31) in terms of a complex projective

space and a sphere metric, in a manner that is closely analogous to (2.13). This

is expressed most simply by making redefinitions as in (2.10), and then introducing

a new Hopf fibre coordinate ψ̃ = ψ − ag2t as we did in the odd-dimensional case.

Having done this, we arrive at the metric

ds2 =
r2 + v2

X
dr2 +

r2 + v2

Y
dv2 − X

r2 + v2

(
dt − a2 − v2

a Ξa

(dψ̃ + A)
)2

(2.33)

+
Y

r2 + v2

(
dt − a2 + r2

a Ξa

(dψ̃ + A)
)2

+
(a2 + r2)(a2 − v2)

a2Ξa

dΣ2
p−1 +

r2v2

a2
dΩ2

2q ,

where dΩ2
2q is the metric on the unit sphere S2q,

X = (1 + g2r2)(r2 + a2) − 2M r

(r2 + a2)p−1 r2q
,

Y = (1 − g2v2)(a2 − v2) − 2Lv

(a2 − v2)p−1 v2q
, (2.34)

and the Kähler form J for the CP
p−1 metric dΣ2

p−1 is given locally by J = 1
2
dA.

For the cases with q = 0, there can also be a BPS limit of the solutions, giving

rise to Ricci-flat Kähler metrics instead of Einstein-Kähler. To do this, we first

Euclideanise the metric by setting t → i t, a → i a and set g = i. We then take the

following limit

1−a2 = α ε , 1− r2 = x ε , 1+ v2 = y ε , M = µ (−ε)p−1 , L = i ν εp−1 , (2.35)

with ε → 0. The metric becomes ds2 = ε ds̃2, where ds̃2 is a Ricci-flat Kähler metric,

given by

ds̃2 =
x − y

4X
dx2 +

x − y

4Y
dy2 +

(x − α)(α − y)

α
dΣ2

p−1

+
X

x − y
(dt +

α − y

α
(dψ + A))2 +

Y

x − y
(dt − x − α

α
(dψ + A))2 ,

X = x(x − α) +
2µ

(x − α)p−1
, Y = y(α − y) − 2ν

(α − y)p−1
. (2.36)
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The Kähler 2-form is given locally by J = dB, where

B = 1
2
(x + y)dt +

(x − α)(α − y)

2α
(dψ + A) . (2.37)

D. Global Analysis

The global analysis of Kerr-AdS black holes in general dimensions was given in [13, 14].

Here, we study the effect of introducing the NUT charge L. We shall consider the case

where v is a compact coordinate, ranging over the interval 0 < v1 ≤ v ≤ v2, where

v1 and v2 are two adjacent roots of V (v) = 0, such that the function V is positive

when v lies within the interval. In the case when L = 0, we would have v1 = a and

v2 = b. The coordinate r ranges from r0 to infinity, where r0 is the largest root of

U(r) = 0. The discussion now divides into the cases of D = 2n + 1 dimensions and

D = 2n dimensions.

1. D = 2n + 1 Dimensions

The metric (2.11) is degenerate at v = v1 and v2, where V (vi) = 0. The corresponding

Killing vectors whose norms �2 = gµν �µ �ν vanish at these surfaces have the form

� = γ0
∂

∂t
+ γ1

∂

∂φ
+ γ2

∂

∂ψ
, (2.38)

for constants γ0, γ1 and γ2 to be determined. The associated “surface gravities” are

of Euclidean type, in the sense that

κ2
E =

gµν (∂µ�
2) (∂ν�

2)

4�2

∣∣∣
v=vi

(2.39)

is positive. Thus these degenerations are typical of an azimuthal coordinate at a

spatial origin. We can scale the coefficients γi so that the Euclidean surface gravity is

1, implying that the Killing vector generates a closed translation with period 2π. One
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might conclude that the time coordinate is periodic, since γ0 is non-vanishing. This

is indeed the case for the solutions in even dimensions. However, in odd dimensions

the ∂/∂t term can be removed by making the coordinate transformation

t = t̃ +
Ξb(a

2 − v2
1)(b

2 − v2
2)b ψ − Ξa(b

2 − v2
1)(b

2 − v2
2)aϕ

ab(a2 − b2)(1 − g2v2
1)(1 − g2v2

2)
(2.40)

The two Killing vectors whose norms vanish at v1 and v2 are now given by

�i =
4L

V ′(vi)

( b

b2 − v2
i

∂

∂ϕ
+

a

a2 − v2
i

∂

∂ψ

)
. (2.41)

Both Killing vectors have unit Euclidean surface gravity, implying that they both

generate closed 2π translations. Since it does not suffer a periodic identification, t̃ is

perhaps a more natural choice than t for the time coordinate.

The metric also degenerates at r = r0, and the corresponding null Killing vector

has Lorentzian surface gravity κ, in the sense that κ2 = −κ2
E is positive. Thus r = r0

is an horizon. If we write the null Killing vector in terms of coordinate t̃, normalised

to

�̃0 =
∂

∂t̃
+ γ̃1

∂

∂φ
+ γ̃2

∂

∂ψ
, (2.42)

where γ̃1 and γ̃2 are determined from the condition that �̃2
0 = 0 at r = r0, we find

that the surface gravity is given by

κ =
(1 − g2v2

1)(1 − g2v2
2)(r

2
0 + a2)(r2

0 + b2)(1 + g2r2
0)U

′(r0)

2ΞaΞb(r2
0 + v2

1)(r
2
0 + v2

2)[U(r0) + 2M ]
. (2.43)

If instead we consider the null Killing vector in terms of the original coordinate t,

and rescale it to give

�0 =
∂

∂t
+ γ1

∂

∂φ
+ γ2

∂

∂ψ
, (2.44)
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then the surface gravity is then given by

κ =
(1 + g2r2

0)U
′(r0)

2[U(r0) + 2M ]
, (2.45)

which is identical to the result for the Kerr-AdS black hole [13, 14] without the

NUT parameter. It is not a priori obvious what the proper normalisation for the

asymptotically timelike Killing vector should be, since the metrics with the non-

vanishing NUT parameter are not asymptotic to AdS.

2. D = 2n Dimensions

In even dimensions, the introduction of the NUT parameter implies that the time

coordinate is necessarily periodic (as in four dimensions). To see this, we note from

the metric (2.33) that, at the degenerate surfaces v = v1 and v2, the Killing vectors

whose norms vanish are given by

�i =
2

V ′(vi)

(
(a2 − v2

i )
∂

∂t
+ a Ξa

∂

∂ψ̃

)
. (2.46)

These Killing vectors are normalised to have unit Euclidean surface gravities, and

hence they generate closed translations with period 2π. In the case when L = 0, then

v1 = a and v2 = −a, so the �i do not have ∂/∂t terms. However, when L �= 0 there

are necessarily ∂/∂t terms appearing in these Killing vectors that generate periodic

translations, and so t must be identified periodically.

E. Inversion Symmetry of D = 5 Kerr-AdS Black Holes

In this section, we first demonstrate that the NUT parameter L introduced in our

general rotating black holes is trivial in the special case of D = 5 dimensions. How-

ever, our demonstration also brings to light a rather remarkable property of the five-
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dimensional Kerr-AdS black hole metric, namely, that it admits a discrete symmetry

transformation which shows that the metric with over-rotation (where the parameters

a and b are such that a2g2 > 1 and/or b2g2 > 1) is equivalent to a Kerr-AdS metric

with under-rotation.

We start with the five-dimensional Kerr-AdS metric written in the (2.11) with

p = 1 and q = 1, and make the coordinate transformations

ψ → ab2χ + ag2t + a(1 + b2g2)φ , ϕ → ba2χ + bg2t + b(1 + a2g2)φ ,

t → t + a2b2χ + (a2 + b2)φ , (2.47)

and define r2 = x and v2 = y. This leads to the five-dimensional metric

ds2 = (x + y)
(dx2

4X
+

dy2

4Y

)
− X

x(x + y)
(dt + y dφ)2 +

Y

y(x + y)
(dt − x dφ)2

a2b2

xy

(
dt − xydχ − (x − y)dφ

)2

, (2.48)

where

X = (1 + g2x)(x + a2)(x + b2) − 2Mx

= g2x3 + (1 + (a2 + b2)g2)x2 + (a2 + b2 + a2b2g2 − 2M)x + a2b2 ,

Y = −(1 − g2y)(a2 − y)(b2 − y) + 2Ly

= g2y3 − (1 + (a2 + b2)g2)y2 + (a2 + b2 + a2b2g2 + 2L)y − a2b2 . (2.49)

Although, the solution ostensibly has the four independent parameters (M,L, a, b),

one can in fact scale away either M or L in this five-dimensional case. To do this, we

set

x̃ = λ2x , ỹ = λ2y , t̃ =
t

λ
, χ̃ =

χ

λ5
, φ̃ =

φ

λ3
. (2.50)

The metric (2.48) is invariant under this transformation, if we simultaneously trans-
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form the parameters a, b, M and L. Thus we define X̃ = λ6 X and Ỹ = λ6 Y , where

X̃ and Ỹ are defined as in (2.49) except with tilded parameters ã, b̃, M̃ and L̃. It

follows that we shall have

λ2 + λ2(a2 + b2)g2 = 1 + (ã2 + b̃2)g2 , λ6 a2 b2 = ã2 b̃2 ,

λ4(a2 + b2 + a2b2g2 + 2L) = ã2 + b̃2 + ã2b̃2g2 + 2L̃ ,

λ4(a2 + b2 + a2b2g2 − 2M) = ã2 + b̃2 + ã2b̃2g2 − 2M̃ . (2.51)

We can then choose, for example, to set L̃ = 0, and solve the four equations (2.51)

for ã, b̃, M̃ and λ. Thus a solution with L �= 0 is transformed into a tilded solution

with L̃ = 0, and since this latter solution is just of the original five-dimensional

Kerr-AdS form, it follows that the metric (2.48), even with L �= 0, is also just the

five-dimensional Kerr-AdS metric, but with changed values for the rotation and mass

parameters. It is nevertheless interesting that the Kerr-de Sitter black hole in D = 5

can be put in such a symmetric form.

It should be stressed that the scaling symmetry that we used above in order

to show that the parameter L in the five-dimensional metrics is “trivial” is very

specific to five dimensions. In particular, it can be seen from (2.11) that in higher

dimensions, when at least one of p or q exceeds 1, the associated metrics on the

complex projective spaces will break the scaling symmetry. Thus, as in the case of

the simpler NUT generalisations discussed [20, 21], five-dimensions is the exception

in not admitting a non-trivial generalisation.

The transformation described above becomes particularly simple if we consider

the case of an asymptotically flat five-dimensional rotating black hole, i.e. when g = 0.

In this case, we have from (2.51) that λ = 1 and

ã2 + b̃2 + 2L̃ = a2 + b2 + 2L , ã2 + b̃2 − 2M̃ = a2 + b2 − 2M , ã2b̃2 = a2b2 . (2.52)
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Thus L̃ + M̃ = L + M , and so we can arrange to have L̃ = 0 by taking M̃ = L + M ,

implying that ã2 + b̃2 = a2 + b2 + 2L, together with ã2b̃2 = a2b2. It is worth noting,

however, that even though one can always map into a solution where L̃ = 0, it may,

depending upon the original values for a, b and L, correspond to having complex values

for ã and b̃. Although the metric (2.48) would still be real, the metric written back in

terms of the original ψ, φ and t coordinates would then be complex. Thus although

the parameter L is really trivial in five dimensions, its inclusion can nevertheless

allow one to parameterise the solutions in a wider class without the need for complex

coordinate transformations. Similar remarks apply also to the case when g �= 0.

There is another interesting consequence of the five-dimensional scaling symme-

try discussed above, namely, that even with the parameter L omitted entirely, the

five-dimensional rotating AdS black hole metrics have a symmetry that allows one to

map an “over-rotating” black hole (i.e. where a2g2 > 1 or b2g2 > 1) into an under-

rotating black hole. This can be understood by again considering the transformations

in (2.51), where we now choose not only L̃ = 0 but also L = 0. The system of equa-

tions then admits a sextet of solutions for (ã, b̃, M̃ , λ) (where we assume, without loss

of generality, that the signs of the rotation parameters are unchanged):

ã = a , b̃ = b , M̃ = M , λ = 1 ,

ã = b , b̃ = a , M̃ = M , λ = 1 ,

ã =
1

ag2
, b̃ =

b

ag
, M̃ =

M

a4g4
, λ =

1

ag
,

ã =
1

bg2
, b̃ =

a

bg
, M̃ =

M

b4g4
, λ =

1

bg
,

ã =
a

bg
, b̃ =

1

bg2
, M̃ =

M

b4g4
, λ =

1

bg
,

ã =
b

ag
, b̃ =

1

ag2
, M̃ =

M

a4g4
, λ =

1

ag
. (2.53)
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The first of these is the identity, the second is merely an exchange of the rôles of a and

b, whilst the remaining four, modulo exchanges of the a’s and the b’s, are equivalent

and non-trivial. Taking the third as an example, we see that if the metric is over-

rotating by virtue of having a2g2 > 1, then it can be re-expressed, by a change of

variables, as a metric which is under-rotating. In fact any five-dimensional Kerr-AdS

black hole with over-rotation is equivalent, after a change of coordinates, to one with

under-rotation. Of course, after transforming back into the original coordinates in

which the over-rotating black hole ostensibly exhibited singular behaviour, one would

find that the coordinate ranges that actually reveal that it is well-behaved are not

the “naive” ones that led to the original conclusion of singular behaviour.

It is instructive to rewrite the transformations (2.53) in terms of the original

coordinates of the five-dimensional Kerr-AdS metric as given by Hawking, Hunter

and Taylor-Robinson in [12]. The metric is given by

ds2
5 = −∆

ρ2

[
dt − a sin2 θ

Ξa

dφ − b cos2 θ

Ξb

dψ
]2

+
∆θ sin2 θ

ρ2

[
a dt − r2 + a2

Ξa

dφ
]2

∆θ cos2 θ

ρ2

[
b dt − r2 + b2

Ξb

dψ
]2

+
ρ2 dr2

∆
+

ρ2 dθ2

∆θ

+
(1 + g2r2)

r2 ρ2

[
a b dt − b (r2 + a2) sin2 θ

Ξa

dφ − a (r2 + b2) cos2 θ

Ξb

dψ
]2

,(2.54)

where

∆ ≡ 1

r2
(r2 + a2)(r2 + b2)(1 + g2r2) − 2M ,

∆θ ≡ 1 − a2 g2 cos2 θ − b2 g2 sin2 θ ,

ρ2 ≡ r2 + a2 cos2 θ + b2 sin2 θ ,

Ξa ≡ 1 − a2 g2 , Ξb ≡ 1 − b2 g2 . (2.55)

It satisfies Rµν = −4g2 gµν . Taking the transformation in the third line of (2.53) as an

example, we find that after re-expressing our results back in terms of the quantities
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in (2.54), the symmetry transformation amounts to

a → 1

ag2
, b → b

ag
, M → M

a4g4
,

φ → − 1

ag
φ , ψ → ψ − b

a
φ , t → agt +

1

g
φ ,

r → 1

ag
r , cos θ →

(
1 − Ξa

Ξb

)1/2

cos θ . (2.56)

It is straightforward to see that this transformation leaves the metric in (2.54) invari-

ant, and that it therefore allows one to map an over-rotating Kerr-AdS metric into an

under-rotating one. In other words, if we perform the transformation of parameters

given in the first line in (2.56), then the metric is restored to its original form by

making the general coordinate transformations given also in (2.56).

Another way of expressing this result is that for any given values of a and b,

and provided one allows the coordinates to take complex values in general, then there

exist real sections of the complex metric describing Kerr-AdS black holes with under-

rotation, and also real sections of the same metric that describe Kerr-AdS black holes

with over-rotation.

It is instructive also to re-express the coordinate transformations in (2.56) in

terms of the coordinates y and θ̂ rather than r and θ, where y and θ̂ are the coordinates

with respect to which the conformal boundary of the Kerr-AdS metric is precisely the

standard R × S3 Einstein universe, with a round S3 factor. They are defined by [12]

Ξa y2 sin2 θ̂ = (r2 + a2) sin2 θ , Ξb y2 cos2 θ̂ = (r2 + b2) cos2 θ . (2.57)

Applying the transformations in (2.56), we find that these imply the coordinate trans-

formations

y2 → − 1

g2
− y2 sin2 θ̂ , tan2 θ̂ → −

(
1 +

1

g2y2

)
sec2 θ̂ . (2.58)
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This result emphasises that the original y =constant boundary, which is the most

natural choice from the AdS/CFT point of view [12, 27], is quite different from the

y =constant boundary of the transformed metric.

A number of remarks are in order. First, we note that the symmetry we are

discussing, which can be expressed in terms of dimensionless quantities as ag →
1/(ag), exists only in the case of the rotating black hole with a cosmological constant.

In the case of asymptotically-flat black holes, for which g = 0, there is no inversion

symmetry. The inversion symmetry for the five-dimensional Kerr-AdS black hole is

reminiscent of a T-duality symmetry, in the sense that it implies there is a maximum

allowed value for the rotation, namely a2g2 = 1. In fact, this value is associated

with the supersymmetric limit. If one considers the case where a rotation parameter

is becoming very large, i.e. a2g2 >> 1, then it can be seen from (2.56) that in the

limiting case when a2g2 approaches infinity, the metric will actually approach the

pure AdS metric.

It is interesting also to consider the effect on the canonical AdS metric of the

transformations (2.58) taken in isolation. In other words, we start with the AdS

metric

ds2 = −(1 + g2y2)dt2 +
dy2

1 + g2y2
+ y2(dθ̂2 + sin2 θ̂2 dφ2 + cos2 θ̂ dψ2) , (2.59)

and impose just the coordinate transformations given in (2.58) (which are independent

of the rotation parameters a and b). Upon doing so, we find that the AdS metric

(2.59) transforms according to

ds2 → − 1

g2
(1 + g2y2)dφ2 +

dy2

1 + g2y2
+ y2(dθ̂2 + sin2 θ̂2 g2dt2 + cos2 θ̂ dψ2) . (2.60)

This is identical in form to (2.59), with the rôles of φ and gt exchanged. It can easily

be seen that in terms of the standard embeddding of AdS5 in R
4,2, the transforma-
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tion (2.58) corresponds to exchanging the the rôles of the two timelike embedding

coordinates with a pair of spacelike embedding coordinates.

F. Conclusions

In this chapter, we have constructed generalisations of certain Kerr-de Sitter and

Kerr-AdS black holes in all dimensions D ≥ 6, in which an additional NUT-type

parameter is introduced. Specifically, the cases where we have obtained the more

general solutions are where the rotation parameters are specialised so that the metrics

have cohomogeneity 2. The nature of the generalisation is then analogous to the way

in which a NUT parameter can be introduced in the four-dimensional Kerr-de Sitter

metrics.

The same procedure can be followed also in five dimensions, but in this case

we find that the additional NUT parameter is trivial, in the sense that it can be

absorbed by a rescaling of parameters and coordinates. However, we also found

that there exists a remarkable symmetry of the five-dimensional Kerr-AdS metrics,

in which one can map a solution where one or both of the rotation parameters are

large (the case of over-rotation, where a2g2 > 1 and/or b2g2 > 1) into a solution

where the rotation parameters are small (i.e. under-rotation). This means that there

is effectively a maximum rotation possible, corresponding to the supersymmetric case

where a2g2 = 1 or b2g2 = 1.

We also studied the supersymmetric limits of the new Kerr-de Sitter-Taub-NUT

metrics, showing that after Euclideanisation we can obtain new cohomogeneity-2

Einstein-Sasaki metrics in all odd dimensions D ≥ 7, and new cohomogeneity-2 Ricci-

flat Kähler metrics in all even dimensions D ≥ 6.



33

CHAPTER III

GENERAL KERR-NUT-ADS METRICS IN ALL DIMENSIONS

A. Introduction

In chapter II, it was shown that one can introduce a NUT charge parameter in

all the Kerr-AdS metrics in D ≥ 6 if they are first specialised, by equating rotation

parameters appropriately, to have cohomogeneity 2. The case of D = 4 had, of course,

been obtained long ago, and the case D = 5 turns out to be rather degenerate, in

that the NUT parameter is trivial and can be removed by a redefinition of the other

parameters and the coordinates. (Cohomogeneity-one pure multi-nut solutions in

higher dimensions were obtained in [28].)

The purpose of this chapter is to present NUT generalisations of the Kerr-AdS

metrics which are of the most general possible type. We find that in D dimensions

the general Kerr-AdS metric (with all rotation parameters allowed to be unequal) can

be extended by the inclusion of (D − 5)/2 independent NUT parameters when D is

odd, and (D − 2)/2 when D is even. We arrived at these solutions by first rewriting

the Kerr-AdS metrics using a set of coordinate variables that make the introduction

of the NUT parameters a very natural generalisation of the usual mass parameter.

The choice of coordinates in four dimensions that leads to the natural inclusion

of a NUT parameter in the Kerr-AdS solution is rather well known. In the standard

description of the Kerr-AdS solution one has angular coordinates (θ, φ) parameterising

the 2-sphere spatial sections at constant radius r. If one defines y = a cos θ, where a

is the rotation parameter, and makes appropriate linear redefinitions of the time and
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azimuthal coordinate φ, the metric can be written as

ds2
4 = − ∆r

r2 + u2
(dτ + y2dψ)2 +

∆y

r2 + u2
(dτ − r2dψ)2 +

(r2 + y2) dr2

∆r

+
(r2 + y2) dy2

∆y

,

(3.1)

where

∆r = (r2 + a2)(1 + g2r2) − 2Mr , ∆y = (a2 − y2)(1 − g2y2) . (3.2)

This Kerr-AdS solution, satisfying Rµν = −3g2 gµν , is generalised to include the NUT

parameter L by replacing ∆y by

∆y = (a2 − y2)(1 − g2y2) + 2Ly . (3.3)

An important feature of this parameterisation, which makes the inclusion of the

NUT parameter very natural, is that the radial variable r and the “latitude” variable

y are placed on a very symmetrical footing. The NUT generalisations of the higher-

dimensional Kerr-AdS metrics that were obtained in chapter II worked in a very

similar way. An essential part of the construction was that the rotation parameters

had to be specialised in such a way that the cohomogeneity was reduced to 2, and so

again a latitude-type coordinate y could be introduced in such a way that it, and the

radial variable r, appeared in a very symmetrical way. The metric functions depended

on r and y, with the (D − 2)-dimensional hypersurfaces at constant r and y being

homogeneous.

The key to finding the NUT generalisations that we obtain in the present chapter

is to make a suitable reparameterisation of the multiple “latitude” coordinates that

arise in the higher-dimensional Kerr-AdS metrics. In D dimensions one has the time

and radial variables (t, r), [(D − 1)/2] azimuthal angles φi and [D/2] latitude, or
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direction cosine, coordinates µi, which are subject to the constraint

[D/2]∑
i=1

µ2
i = 1 . (3.4)

The spatial sections at constant radius r have the geometry of deformed (D − 2)-

spheres. The unit SD−2 metric is given by

dΩ2 =

[D/2]∑
i=1

dµ2
i +

[(D−1)/2]∑
i=1

µ2
i dφ2

i (3.5)

in these variables. Associated with each azimuthal angle φi is a rotation parameter

ai.

We find that the appropriate reparameterisation of the µi coordinates is as fol-

lows. Taking D = 2n + 1 in the odd-dimensional case, and D = 2n in the even-

dimensional case, we parameterise the n coordinates µi as

µ2
i =

∏n−1
α=1(a

2
i − y2

α)∏′n
k=1(a

2
i − a2

k)
, (3.6)

where the prime on
∏′ indicates that the term that vanishes (i.e. when k = i) is

omitted from the product.∗ Note that this parameterisation using just (n − 1) co-

ordinates yα explicitly solves the constraint (3.4). It also has the striking property

that it diagonalises the metric (3.5) on the unit sphere, expressed in terms of the

unconstrained latitude variables yα:

dΩ2 =
n−1∑
α=1

gα dy2
α +

[(D−1)/2]∑
i=1

µ2
i dφ2

i , (3.7)

where the notation
∏′ universally indicates that the vanishing factor is to be omitted

∗Transformations of this type were first considered by Jacobi, in the context of
constrained dynamical systems [29].
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from the product, µ2
i is given by (3.6), and

gα = −y2
α

∏′n−1

β=1(y
2
α − y2

β)∏n
k=1(a

2
k − y2

α)
. (3.8)

Note that the parameterisation (3.6) solves the constraint (3.4), and diagonalises the

metric as in (3.7), for arbitrary choices of unequal constants a2
i .

When we utilise (3.6) in the next section, we shall take the constants ai to be

the rotation parameters of the Kerr-AdS black holes. In the case of even dimensions

D = 2n, there are only (n − 1) rotation parameters, and so an is taken to be zero.

We shall see that with this choice of the parameters in the Jacobi transformations

(3.6), the Kerr-AdS metrics obtained in [13, 14], which are non-diagonal in the lat-

itude coordinate differentials dµi, remarkably become diagonal with respect to the

unconstrained coordinate differentials dyα. Furthermore, we shall see that after writ-

ing the Kerr-AdS metrics in terms of the coordinates (t, r, yα, φi), the radial variable

r and the latitude variables yα enter the metrics in a very symmetrical fashion, such

that the generalisation to include a set of (n − 1) NUT parameters becomes very

natural. It is explicitly verified [30] by a investigation of the Riemannian curvature

that these generalisations of the Kerr-AdS metrics satisfy the Einstein equations in

all dimensions.

After presenting the general Kerr-NUT-AdS metrics in section B, we then con-

sider, in section C, some simpler expressions for the Kerr-NUT-AdS metrics. It turns

out that the symmetrical appearance of the radial and latitude variables is further

enhanced if one performs a “Wick rotation” of the radial coordinate r, and defines

variables xµ with xα = yα, xn = i r. This leads to a form for the metric in which

all the coordinates xµ enter on an exactly parallel footing. In a further simplification

of the expressions for the metrics, we find that by defining appropriate linear com-

binations of the time and azimuthal coordinates, the Kerr-NUT-AdS metrics can be
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cast in a form that provides a natural generalisation of the four-dimensional metrics

described in [31]. We also discuss certain scaling symmetries and discrete symmetries

of the Kerr-NUT-AdS metrics. The scaling symmetries imply that there are (n − 2)

non-trivial NUT parameters in odd dimensions D = 2n + 1, and (n − 1) non-trivial

NUT parameters in even dimensions D = 2n. The discrete symmetries imply that

metrics with over-rotation, i.e. where one or more rotation parameters exceeds the

AdS radius, are equivalent to metrics with under-rotation.

In section D, we focus on the particular cases of dimensions D = 6 and D = 7,

since these are the lowest dimensions where our new results extend beyond those

known previously. In section E we study the supersymmetric, or BPS, limits of the

new metrics in odd and even dimensions. After performing a Euclideanisation, the

odd-dimensional solutions give rise to new examples of Einstein-Sasaki metrics in

D ≥ 7. By writing these as circle fibrations over an Einstein-Kähler base, we thereby

obtain new classes of Einstein-Kähler metrics in all even dimensions D ≥ 6. The

chapter ends with conclusions in section F.

B. The General Kerr-NUT-AdS Solutions

In this section, we shall present our general results for the Kerr-NUT-AdS metrics

in D dimensions. These ostensibly have a total of (D − 1) independent parameters,

comprising the mass M , the [(D−1)/2] rotation parameters ai, and [(D−2)/2] NUT

parameters Lα. As we shall discuss later, in odd dimensions there is a symmetry that

allows one to eliminate one of the parameters, and so in odd dimensions there are

actually in total (D − 2) non-trivial parameters in the solutions we obtain.

The first step is to rewrite the Kerr-AdS metrics, which were obtained in [13, 14],

in terms of the new coordinate parameterisation introduced in (3.6). It is advanta-



38

geous to separate the discussion into two cases, depending upon whether D is odd or

even.

1. The Odd-dimensional Case: D = 2n + 1

As a preliminary, we make the following definitions:

U =
n−1∏
α=1

(r2 + y2
α) , Uα = −(r2 + y2

α)
∏′ n−1

β=1
(y2

β − y2
α) , 1 ≤ α ≤ n − 1 ,

W =
n−1∏
α=1

(1 − g2y2
α) , γi =

n−1∏
α=1

(a2
i − y2

α) , 1 ≤ i ≤ n ,

X =
1 + g2r2

r2

n∏
k=1

(r2 + a2
k) − 2M ,

Xα =
1 − g2y2

α

y2
α

n∏
k=1

(a2
k − y2

α) + 2Lα 1 ≤ α ≤ n − 1 . (3.9)

We have actually already included the new NUT parameters Lα here; they appear

just in the definitions of the functions Xα. Note that again the notation
∏′ indicates

that the term in the full product that vanishes is to be omitted.

Using these functions, we find that the Kerr-NUT-AdS metrics in D = 2n + 1

dimensions are given by

ds2 =
U

X
dr2 +

n−1∑
α=1

Uα

Xα

dy2
α − X

U

[
Wdt̃ −

n∑
i=1

a2
i γidφ̃i

]2

+
n−1∑
α=1

Xα

Uα

[(1 + g2r2)W

1 − g2y2
α

dt̃ −
n∑

i=1

a2
i (r

2 + a2
i ) γi

a2
i − y2

α

dφ̃i

]2

+

∏n
k=1 a2

k

r2
∏n−1

α=1 y2
α

[
(1 + g2r2)W dt̃ −

n∑
i=1

(r2 + a2
i )γi dφ̃i

]2

. (3.10)

With the parameters Lα set to zero, the metrics are just a rewriting of the Kerr-AdS

metrics obtained in [13, 14], using the new coordinates yα defined by (3.6).† They

†Note that the metric signature is just the usual (−++ · · ·+), for the appropriate



39

are written here in an asymptotically-static frame. We have also rescaled the time

and azimuthal coordinates in order to simplify the expression. They are related to

the original asymptotically static coordinates (t, φi) by

t = t̃

n∏
i=1

Ξi , φi = ai Ξi φ̃i

∏′ n

k=1
(a2

i − a2
k) , (3.11)

where Ξi = 1−g2 a2
i . The coordinate t is canonically normalised, and the coordinates

φi each have period 2π, in the Kerr-AdS metrics.

The new metrics that we have obtained, by including the (n − 1) parameters

Lα in the definition of Xα in (3.9), describe the general Kerr-NUT-AdS metrics in

dimension D = 2n + 1. As we shall discuss in section C, in odd dimensions there is

actually a redundancy among the (n − 1) NUT parameters, with one of them being

trivial. Thus the total count of non-trivial parameters in the general Kerr-NUT-AdS

metrics in dimension D = 2n + 1 is 2n − 1, which can be thought of n rotation

parameters, the mass, and (n − 2) NUT charges.

2. The Even-dimensional Case: D = 2n

In this case we begin by defining functions as follows:

U =
n−1∏
α=1

(r2 + y2
α) , Uα = −(r2 + y2

α)
∏′ n−1

β=1
(y2

β − y2
α) , 1 ≤ α ≤ n − 1 ,

W =
n−1∏
α=1

(1 − g2y2
α) , γi =

n−1∏
α=1

(a2
i − y2

α) , 1 ≤ i ≤ n − 1 ,

X = (1 + g2r2)
n−1∏
k=1

(r2 + a2
k) − 2M r ,

Xα = −(1 − g2y2
α)

n−1∏
k=1

(a2
k − y2

α) − 2Lα yα , 1 ≤ α ≤ n − 1 . (3.12)

choices of the yα coordinate intervals that correspond to the standard Kerr-AdS black
hole solution.
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We find that the Kerr-NUT-AdS metrics in D = 2n dimensions are given by

ds2 =
U

X
dr2 +

n−1∑
α=1

Uα

Xα

dy2
α − X

U

[
Wdt̃ −

n−1∑
i=1

γidφ̃i

]2

+
n−1∑
α=1

Xα

Uα

[(1 + g2r2)W

1 − g2y2
α

dt̃ −
n−1∑
i=1

(r2 + a2
i ) γi

a2
i − y2

α

dφ̃i

]2

. (3.13)

Again, the previously-known Kerr-AdS metrics correspond to setting the new NUT

parameters Lα to zero in the definition of the functions Xα in (3.12). The coordinates

t̃ and φ̃i are related to the canonically-normalised coordinates t and φi of the Lα = 0

Kerr-AdS metrics by

t = t̃

n∏
i=1

Ξi , φi = ai Ξi φ̃i

∏′ n−1

k=1
(a2

i − a2
k) , (3.14)

When Lα = 0, regularity of the Kerr-AdS metric dictates that the azimuthal angles

φi should all have period 2π.

As we shall discuss in section C, all the NUT parameters are non-trivial in even

dimensions, and so the general Kerr-NUT-AdS metrics in dimension D = 2n have

2n − 1 independent parameters, comprising (n − 1) rotations, the mass, and (n − 1)

NUT parameters.

C. A Simpler Form for the Kerr-NUT-AdS Metrics

We already saw in section B that the Kerr-NUT-AdS metrics assume a rather sym-

metrical form when the latitude coordinates µi are parameterised in terms of the

coordinates yα using (3.6). The parallel between the radial coordinate r and the lati-

tude coordinates yα becomes even more striking if we perform a Wick rotation of the

radial variable, and define the n coordinates xµ by

xn = i r , xα = yα , 1 ≤ α ≤ n − 1 . (3.15)
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As we shall show, the Kerr-NUT-AdS metrics can now be written in a considerably

simpler form. In fact, if we then perform further transformations on the time and

azimuthal coordinates, we arrive at an even simpler way of presenting the Kerr-NUT-

AdS metrics, which generalises the four-dimensional expressions obtained in [31]. As

always, it is convenient to separate the discussion at this stage into the cases of odd

and even dimensions.

1. D = 2n + 1 Dimensions

We first define the functions

Uµ =
∏′n

ν=1
(x2

ν − x2
µ) , Xµ =

(1 − g2x2
µ)

x2
µ

n∏
k=1

(a2
k − x2

µ) + 2Mµ ,

W̃ =
n∏

ν=1

(1 − g2x2
ν) , γ̃i =

n∏
ν=1

(a2
i − x2

ν) . (3.16)

The odd-dimensional Kerr-NUT-AdS metric (3.10) can then be written as

ds2 =
n∑

µ=1

{ Uµ

Xµ

dx2
µ +

Xµ

Uµ

[ W̃

1 − g2x2
µ

dt̃ −
n∑

i=1

a2
i γ̃i

a2
i − x2

µ

dφ̃i

]2}
−

∏n
k=1 a2

k∏n
µ=1 x2

µ

[
W̃ dt̃ −

n∑
i=1

γ̃i dφ̃i

]2

. (3.17)

Note that Mn is just equal to the previous mass parameter M , while the remaining

Mα are NUT parameters, previously denoted by Lα.

It is useful to give also the inverse of the metric (3.17). Defining

Sµ =
n∏

k=1

(a2
k − x2

µ)2 , Bj =
∏′n

k=1
(a2

j − a2
k) , (3.18)
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we find that the inverse metric is given by

( ∂

∂s

)2

=
n∑

µ=1

{Xµ

Uµ

( ∂

∂xµ

)2

+
Sµ

x4
µ Uµ Xµ

[ 1

(
∏

j Ξj)

∂

∂t̃
+

n∑
k=1

(1 − g2x2
µ)

Bk Ξk (a2
k − x2

µ)

∂

∂φ̃k

]2}
− (

∏n
k=1 a2

k)

(
∏n

ν=1 x2
ν)

( 1

(
∏

j Ξj)

∂

∂t̃
+

n∑
k=1

1

a2
kBk Ξk

∂

∂φ̃k

)2

. (3.19)

The inverse metric becomes somewhat simpler if expressed in terms of the original

canonically normalised coordinates t and φk, whose relation to t̃ and φ̃k is given in

(3.11). The metric (3.19) then becomes

( ∂

∂s

)2

=
n∑

µ=1

{Xµ

Uµ

( ∂

∂xµ

)2

+
Sµ

x4
µ Uµ Xµ

[ ∂

∂t
+

n∑
k=1

ak (1 − g2x2
µ)

(a2
k − x2

µ)

∂

∂φk

]2}
− (

∏n
k=1 a2

k)

(
∏n

ν=1 x2
ν)

( ∂

∂t
+

n∑
k=1

1

ak

∂

∂φk

)2

. (3.20)

It is straightforward to see that the Kerr-NUT-AdS metrics (3.10) and (3.17) have

a set of discrete symmetries under which one of the rotation parameters ai is inverted

through the AdS radius 1/g. Thus, choosing a1 for this purpose as a representative

example, we can see that (3.17) is invariant under the set of transformations

a1 g → 1

a1 g
, aj → aj

a1 g
, 2 ≤ j ≤ n ,

Mµ → Mµ

(a1 g)2n
, gt → φ1 , φ1 → gt , xµ → xµ

a1 g
, (3.21)

with φj for 2 ≤ j ≤ n left unchanged. This, and the other permutation-related inver-

sion symmetries, can always map a metric with over-rotation (one or more parameters

ai satisfying |ai g| > 1) into a metric with under-rotation (all parameters satisfying

|ai g| < 1).

A further simplification of the new Kerr-NUT-AdS metrics that we obtained in

(3.10) and (3.17) in dimensions D = 2n+1 is possible, allowing them to be written in

a manner that is a rather natural higher-dimensional analogue of the expression in [31]
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for the four-dimensional rotating black hole metrics. Again we begin by performing

the “Wick rotation” of the radial variable, as in (3.15). We then find that after

appropriate linear redefinitions of the time and azimuthal coordinates, the D = 2n+1

Kerr-NUT-AdS metrics can be written as

ds2 =
n∑

µ=1

{dx2
µ

Qµ

+ Qµ

( n−1∑
k=0

A(k)
µ dψk

)2}
− c

(
∏n

ν=1 x2
ν)

( n∑
k=0

A(k) dψk

)2

, (3.22)

where we define

Qµ =
Xµ

Uµ

, Uµ =
∏′n

ν=1
(x2

ν − x2
µ) , Xµ =

n∑
k=1

ck x2k
µ +

c

x2
µ

− 2bµ ,

A(k)
µ =

′∑
ν1<ν2<···<νk

x2
ν1

x2
ν2
· · ·x2

νk
, A(k) =

∑
ν1<ν2···<νk

x2
ν1

x2
ν2
· · ·x2

νk
. (3.23)

Here, the prime on the summation symbol in the definition of Ak
µ indicates that the

index value µ is omitted in the summations of the ν indices over the range [1, n].

Note that ψ0 plays the rôle of the time coordinate. It is worth remarking that A(k)

and A
(k)
µ can be defined via the generating functions

n∏
ν=1

(1 + λx2
ν) =

n∑
k=0

λk A(k) , (1 + λx2
µ)−1

n∏
ν=1

(1 + λx2
ν) =

n−1∑
k=0

λk A(k)
µ . (3.24)

The constants ck, c and bµ are arbitrary, with cn = (−1)n+1 g2 determining the

value of the cosmological constant, Rµν = −2ng2gµν . The remaining 2n constants ck,

c and bµ are related to the n rotation parameters ai, the mass M and the (n−1) NUT

parameters Lα in the obvious way that follows by comparing Xµ in (3.23) with Xµ

in (3.16). However, it should be noted that not all the parameters are non-trivial in

the general solution. This can be seen from the fact that there is a scaling symmetry
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of the metric (3.22), under which we send

xµ → λxµ , ψk → λ−2k−1 ψk ,

ck → λ2n−2k ck , c → λ2n+2 c , bµ → λ2n bµ . (3.25)

This scaling symmetry implies that there is one trivial parameter in the general Kerr-

NUT-AdS solution, leaving a total of 2n − 1 non-trivial parameters in D = 2n + 1

dimensions. In fact, in odd dimensions there is not necessarily a clear distinction

between rotation parameters and NUT parameters, as can be seen by comparing the

expressions for the functions Xµ in (3.23), and the expressions in terms of rotations,

mass and NUT parameters in (3.16). One might for example find that for some values

of the parameters, if the scaling symmetry (3.25) is used in order to remove a “re-

dundant” NUT charge, then this leads to a rotation parameter becoming imaginary.

In such a range of the parameters, it would be more natural to retain the redundant

NUT parameter. This is quite different from the situation in even dimensions, where

the mass and NUT parameters are distinguished by being the coefficients of linear

powers of the coordinates, as can be seen in (3.12) and in (3.27) below.

We find that the inverse of the metric (3.22) is given by

( ∂

∂s

)2

=
n∑

µ=1

{
Qµ

( ∂

∂xµ

)2

+
1

x4
µ Qµ U2

µ

[ n∑
k=0

(−1)k x2(n−k)
µ

∂

∂ψk

]2}
− 1

c (
∏n

ν=1 x2
ν)

( ∂

∂ψn

)2

. (3.26)

The specific case of the Kerr-NUT-AdS metric in D = 7 dimensions is discussed in

section D, including the explicit transformation of the time and azimuthal coordinates

that brings the metric into the form (3.22). We also give a more extensive discussion

of the counting of non-trivial parameters in this example.
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2. D = 2n Dimensions

In this case, in addition to performing the Wick rotation of the radial variable as in

(3.15), one must additionally rescale the mass by a factor of i in order to obtain a

real metric. We then define functions

Uµ =
∏′n

ν=1
(x2

ν − x2
µ) , Xµ = −(1 − g2x2

µ)
n−1∏
k=1

(a2
k − x2

µ) − 2Mµ xµ ,

W̃ =
n∏

ν=1

(1 − g2x2
ν) , γ̃i =

n∏
ν=1

(a2
i − x2

ν) , (3.27)

where Mn = i M and Mα = Lα. The even-dimensional Kerr-NUT-AdS metrics (3.13)

can then be written as

ds2 =
n∑

µ=1

{ Uµ

Xµ

dx2
µ +

Xµ

Uµ

[ W̃

1 − g2x2
µ

dt̃ −
n−1∑
i=1

γ̃i

a2
i − x2

µ

dφ̃i

]2}
. (3.28)

We find that the inverse of the metric (3.28) is given by

( ∂

∂s

)2

=
n∑

µ=1

{Xµ

Uµ

( ∂

∂xµ

)2

+
Sµ

UµXµ

[ 1

(
∏

k Ξk)

∂

∂t̃
+

n−1∑
k=1

1 − g2x2
µ

Ξk Bk (a2
k − x2

µ)

∂

∂φ̃k

]2}
,

(3.29)

where

Sµ =
n−1∏
k=1

(a2
k − x2

µ)2 , Bj =
∏′n−1

k=1
(a2

j − a2
k) . (3.30)

Note that in terms of the original canonically-normalised coordinates t and φi, the

inverse metric (3.29) takes the slightly simpler form

( ∂

∂s

)2

=
n∑

µ=1

{Xµ

Uµ

( ∂

∂xµ

)2

+
Sµ

UµXµ

[ ∂

∂t
+

n−1∑
k=1

ak( 1 − g2x2
µ)

(a2
k − x2

µ)

∂

∂φk

]2}
, (3.31)

The even-dimensional Kerr-NUT-AdS metrics (3.13) and (3.28) also have a set

of discrete symmetries under which any one of the rotation parameters ai is inverted

through the AdS radius 1/g. Thus, for example, (3.28) is invariant under the set of
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transformations

a1 g → 1

a1 g
, aj → aj

a1 g
, 2 ≤ j ≤ n − 1 ,

Mµ → Mµ

(a1 g)2n−1
, gt → φ1 , φ1 → gt , xµ → xµ

a1 g
, (3.32)

with φj for 2 ≤ j ≤ n − 1 left unchanged. This, and the other permutation-related

inversion symmetries, can always map a metric with over-rotation (one or more pa-

rameters ai satisfying |ai g| > 1) into a metric with under-rotation (all parameters

satisfying |ai g| < 1).

Again, we find that the new Kerr-NUT-AdS metrics in dimension D = 2n, which

we have obtained in (3.13) and (3.28), can be further simplified and written elegantly

in a form that is a natural higher-dimensional analogue of the four-dimensional metrics

in [31]. After making the Wick rotation of the radial variable, as in (3.15), we then

find that after appropriate linear redefinitions of the time and azimuthal coordinates,

the D = 2n Kerr-NUT-AdS metrics can be written as

ds2 =
n∑

µ=1

{dx2
µ

Qµ

+ Qµ

( n−1∑
k=0

A(k)
µ dψk

)2}
, (3.33)

where we define

Qµ =
Xµ

Uµ

, Uµ =
∏′n

ν=1
(x2

ν − x2
µ) , Xµ =

n∑
k=0

ck x2k
µ + 2bµ xµ ,

A(k)
µ =

′∑
ν1<ν2<···<νk

x2
ν1

x2
ν2
· · ·x2

νk
. (3.34)

Again, the prime on the summation symbol in the definition of Ak
µ indicates that the

index value µ is omitted in the summations of the ν indices over the range [1, n]. The

constants ck and bµ are arbitrary, with cn = (−1)n+1 g2 determining the value of the

cosmological constant, Rµν = −(2n− 1)g2gµν . The remaining constants ck and bµ are
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related to the rotation parameters, mass and NUT parameters in the obvious way

that follows by comparing Xµ in (3.34) with Xµ in (3.27).

In this even-dimensional case there is ostensibly a mismatch between the total

number of parameters in the metrics (3.13) or (3.28), namely (n − 1) rotation pa-

rameters ai, the mass M and the (n − 1) NUT parameters Lα, and the number of

parameters in the polynomials Xµ, namely n constants ck for 0 ≤ k ≤ n − 1, and n

constants bµ. However, there is also a scaling symmetry that leaves the metric (3.33)

invariant, namely

xµ → λxµ , ψk → λ−2k−1 ψk ,

ck → λ2n−2k ck , bµ → λ2n bµ . (3.35)

This implies one parameter in Xµ is trivial, leaving 2n − 1 non-trivial parameters in

total in the general Kerr-NUT-AdS solution in dimension D = 2n.‡

It is useful also to record the inverse of the metric (3.33), which we find to be

( ∂

∂s

)2

=
n∑

µ=1

{
Qµ

( ∂

∂xµ

)2

+
1

Qµ U2
µ

[ n−1∑
k=0

(−1)k x2(n−1−k)
µ

∂

∂ψk

]2}
. (3.36)

The specific case of the Kerr-NUT-AdS metric in D = 6 dimensions is discussed in

section D, including the explicit transformation of the time and azimuthal coordinates

that brings the metric into the form (3.33).

‡It should be emphasised that there is a significant difference therefore between
even and odd dimensions, as regards the number of non-trivial NUT charges that
can be introduced. In even dimensions D = 2n the general Kerr-AdS metrics can
be augmented with the introduction of (n− 1) non-trivial NUT parameters, while in
odd dimensions D = 2n+1 the general Kerr-AdS metrics can be augmented with the
introduction of (n − 2) non-trivial NUT parameters. Thus, in particular, there is a
non-trivial NUT charge in D = 4, but there is no non-trivial NUT charge in D = 5.
In odd dimensions, only in D = 7 and above does one have non-trivial NUT charges.



48

D. Kerr-NUT-AdS Metrics in D = 6 and D = 7

1. Seven-dimensional Kerr-NUT-AdS

Here we present the specific example of D = 7, with rotation parameters ai = {a, b, c},
mass M and two NUT parameters L1 and L2. The Kerr-NUT-AdS metric is given

by

ds2 =
(r2 + y2)(r2 + z2) dr2

X
+

(r2 + y2)(y2 − z2) dy2

Y
+

(r2 + z2)(z2 − y2) dz2

Z

− X

(r2 + y2)(r2 + z2)

[
(1 − g2y2)(1 − g2z2) dt̃ − a2(a2 − y2)(a2 − z2) dφ̃1

−b2(b2 − y2)(b2 − z2) dφ̃2 − c2(c2 − y2)(c2 − z2)dφ̃3

]2

+
Y

(r2 + y2)(y2 − z2)

[
(1 + g2r2)(1 − g2z2) dt̃ − a2(a2 + r2)(a2 − z2) dφ̃1

−b2(b2 + r2)(b2 − z2) dφ̃2 − c2(c2 + r2)(c2 − z2) dφ̃3

]2

+
Z

(r2 + z2)(z2 − y2)

[
(1 + g2r2)(1 − g2y2) dt̃ − a2(a2 + r2)(a2 − y2) dφ̃1

−b2(b2 + r2)(b2 − y2) dφ̃2 − c2(c2 + r2)(c2 − y2) dφ̃3

]2

+
a2b2c2

r2y2z2

[
(1 + g2r2)(1 − g2y2)(1 − g2z2) dt̃ − (a2 + r2)(a2 − y2)(a2 − z2) dφ̃1

−(b2 + r2)(b2 − y2)(b2 − z2) dφ̃2 − (c2 + r2)(c2 − y2)(c2 − z2) dφ̃3

]2

,(3.37)
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where

t̃ =
t

ΞaΞbΞc

, φ̃1 =
φ1

a Ξa(b2 − a2)(c2 − a2)
,

φ̃2 =
φ2

b Ξb(a2 − b2)(c2 − b2)
, φ̃3 =

φ3

c Ξc(a2 − c2)(b2 − c2)
,

Ξa = 1 − a2g2 , Ξb = 1 − b2g2 , Ξc = 1 − c2g2 ,

X =
1

r2
(1 + g2r2)(a2 + r2)(b2 + r2)(c2 + r2) − 2M ,

Y =
1

y2
(1 − g2y2)(a2 − y2)(b2 − y2)(c2 − y2) + 2L1 ,

Z =
1

z2
(1 − g2z2)(a2 − z2)(b2 − z2)(c2 − z2) + 2L2 . (3.38)

Note that regularity of the metric dictates that the coordinates φi each have period

2π when the NUT parameters L1 and L2 are set to zero.

The metric has six parameters, (a, b, c,M,L1, L2), but one of them is redundant.

To show this, we first rewrite the metric after making the coordinate transformations

t = t′ + (a2 + b2 + c2)ψ1 + (a2b2 + b2c2 + c2a2)ψ2 + a2b2c2ψ3 ,

φ1

a
= ψ1 + (b2 + c2)ψ2 + b2c2ψ3 + g2(t′ + (b2 + c2)ψ1 + b2c2ψ2) ,

φ2

b
= ψ1 + (a2 + c2)ψ2 + a2c2ψ3 + g2(t′ + (a2 + c2)ψ1 + a2c2ψ2) ,

φ3

c
= ψ1 + (a2 + b2)ψ2 + a2b2ψ3 + g2(t′ + (a2 + b2)ψ1 + a2b2ψ2) , (3.39)
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which leads to

ds2 =
(r2 + y2)(r2 + z2) dr2

X
+

(r2 + y2)(y2 − z2) dy2

Y
+

(r2 + z2)(z2 − y2) dz2

Z

− X

(r2 + y2)(r2 + z2)

(
dt′ + (y2 + z2)dψ1 + y2z2dψ2

)2

+
Y

(r2 + y2)(z2 − y2)

(
dt′ + (z2 − r2)dψ1 − r2z2dψ2

)2

+
Z

(r2 + z2)(y2 − z2)

(
dt′ + (y2 − r2)dψ1 − r2y2dψ2

)2

(3.40)

+
C3

r2y2z2

(
dt′ + (y2 + z2 − r2)dψ1 + (y2z2 − r2y2 − r2z2)dψ2 − r2y2z2dψ3

)2

.

The functions X, Y and Z can be expressed as

X = g2r6 + C0r
4 + C1r

2 + C2 − 2M +
C3

r2
,

Y = g2y6 − C0y
4 + C1y

2 − C2 + 2L1 +
C3

y2
,

Z = g2z6 − C0z
4 + C1z

2 − C2 + 2L2 +
C3

z2
, (3.41)

where

C0 = 1 + g2(a2 + b2 + c2) , C1 = a2 + b2 + c2 + g2(a2b2 + b2c2 + c2a2) ,

C2 = a2b2 + b2c2 + c2a2 + g2a2b2c2 , C3 = a2b2c2 . (3.42)

We can now view the solution as being parameterised by (C0, C1, C3), together with

X0 = C2 − 2M , Y0 = 2L1 −C2, Z0 = 2L2 −C2. The solution has a scaling symmetry,

namely

r → λ r , y → λ y , z → λ z ,

C0 → λ2C0 , C1 → λ4C1 , C3 → λ8C3 ,

X0 → λ6X0 , Y0 → λ6Y0 , Z0 → λ6Z0 ,

t̃ → λ−1t̃ , ψ1 → λ−3ψ1 , ψ2 → λ−5ψ2 , ψ3 → λ−7ψ3 , (3.43)
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This implies that one of the parameters in (3.43) can be set to 1 without loss of

generality. In turn, this allows us to set one of the original parameters, say L2 to

zero. Thus there are actually five non-trivial parameters in the solution.

For any fixed gauged choice of M,L1, L2, the metric still has discrete residual

symmetry, namely

a → 1

a g2
, b → b

a g
, c → c

a g
, {M,L1, L2} → λ6 {M,L1, L2} , (3.44)

with λ = 1/(a g).

2. Six-dimensional Kerr-NUT-AdS

Here we present the explicit D = 6 metric, given by

ds2 =
(r2 + y2)(r2 + z2) dr2

X
+

(r2 + y2)(y2 − z2) dy2

Y
+

(r2 + z2)(z2 − y2) dz2

Z

− X

(r2 + y2)(r2 + z2)

(
(1 − g2y2)(1 − g2z2) dt̃ − (a2 − y2)(a2 − z2) dφ̃1

−(b2 − y2)(b2 − z2) dφ̃2

)2

+
Y

(r2 + y2)(y2 − z2)

(
(1 + g2r2)(1 − g2z2) dt̃ − (a2 + r2)(a2 − z2) dφ̃1

−(b2 + r2)(b2 − z2) dφ̃2

)2

+
Z

(r2 + z2)(z2 − y2)

(
(1 + g2r2)(1 − g2y2) dt̃ − (a2 + r2)(a2 − y2) dφ̃1

−(b2 + r2)(b2 − y2) dφ̃2

)2

. (3.45)

where X,Y and Z are given by

X = (1 + g2r2)(r2 + a2)(r2 + b2) − 2M r , Y = −(1 − g2y2)(a2 − y2)(b2 − y2) − 2L1 y ,

Z = −(1 − g2z2)(a2 − z2)(b2 − z2) − 2L2 z . (3.46)
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The coordinate t̃, φ̃1 and φ̃2 are related to the canonically defined t, φ1 and φ2 by

(3.14). We can then make the coordinate transformation

t = t′ + (a2 + b2) ψ1 + a2b2 ψ2 ,
φ1

a
= ψ1 + b2 ψ2 + g2(dt̃ + b2 ψ1) ,

φ2

b
= ψ1 + a2 ψ2 + g2(dt̃ + a2 ψ1) , (3.47)

which leads to the metric

ds2 =
(r2 + y2)(r2 + z2) dr2

X
+

(r2 + y2)(y2 − z2) dy2

Y
+

(r2 + z2)(z2 − y2) dz2

Z

− X

(r2 + y2)(r2 + z2)

(
dt′ + (y2 + z2) dψ1 + y2z2 dψ2

)2

+
Y

(r2 + y2)(y2 − z2)

(
dt′ + (z2 − r2) dψ1 − r2z2 dψ2

)2

+
Z

(r2 + z2)(z2 − y2)

(
dt′ + (y2 − r2) dψ1 − r2y2 dψ2

)2

. (3.48)

The functions X,Y and Z given in (3.46) can now be written as

X = g6r6 + C0 r4 + C1r
2 − 2M r + C2 ,

Y = g6y6 − C0 y4 + C1y
2 − 2L1 y − C2 ,

Z = g6z6 − C0 z4 + C1z
2 − 2L1 z − C2 ,

where Ci are constants, expressed in terms two constants a and b, given by

C0 = 1 + g2(a2 + b2) , C1 = a2 + b2 + g2a2b2 , C2 = a2b2 . (3.49)
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In fact, the constants Ci can be arbitrary, since the form of the metric has the following

symmetry:

r → λ r , y → λ y , z → λ z ,

C0 → λ2 C0 , C1 → λ4 C1 , C2 → λ6 C2 ,

M → λ5 M , L1 → λ5 L1 , L2 → λ5 L2 ,

t̃ → λ−1 t̃ , ψ1 → λ−3 ψ1 , ψ2 → λ−5 ψ2 . (3.50)

Thus to fix Ci as given by (3.49) is to have fixed the symmetry. It follows that unlike

in the case of odd dimensions, the NUT parameters here are all non-trivial. For the

above fixed parameter gauge, the metric has residual discrete symmetry, namely

a → 1

a g2
, b → b

a g
(3.51)

with λ = a g.

The form in which the six-dimensional Kerr-NUT-AdS metric is written in equa-

tion (3.48) is closely analogous to the form of the four-dimensional Plebanski metrics

[31].

E. BPS Limits

1. BPS Limit for D = 2n + 1

In this section we shall investigate the BPS limit of the odd-dimensional Kerr-NUT-

AdS metrics. In this limit the metrics admit Killing spinors, and if one further-

more performs a Euclideanisation to positive-definite metric signature, and sets the

cosmological constant to be positive (by taking g2 to be negative) one will obtain

Einstein-Sasaki metrics.

For convenience, we shall scale the metrics in this limit so that their Ricci tensor
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is the same as that of a unit sphere of the same dimension. This is achieved by setting

g = i. It is convenient also to write the metrics in a specific asymptotically-rotating

frame, by sending φi → φi − g dt.

We shall first consider the 7-dimensional metric discussed in the previous section.

The Euclideanisation is achieved by sending

t → i τ , a → i a , b → i b , c → i c . (3.52)

To take the BPS limit we define

1 − a2 = α ε , 1 − b2 = β ε , 1 − c2 = γ ε ,

1 − r2 = x ε , 1 + y2 → y ε , 1 + z2 → z ε ,

M = m ε4 , L1 = �1 ε4 , L2 = �2 ε4 , (3.53)

and then send ε → 0. This leads to the metric

ds2
7 = (dτ + A)2 + ds2

6 , (3.54)
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where

ds2
6 =

(x − y)(x − z) dx2

4X
+

(y − x)(y − z) dy2

4Y
+

(z − x)(z − y)

4Z
dz2

+
X

(x − y)(x − z)

(
(α − y)(α − z)dφ̃1 + (β − y)(β − z)dφ̃2

+(γ − y)(γ − z)dφ̃3

)2

+
Y

(y − x)(y − z)

(
(α − x)(α − z)dφ̃1 + (β − x)(β − z)dφ̃2

+(γ − x)(γ − z)dφ̃3

)2

+
Z

(z − x)(z − y)

(
(α − x)(α − y)dφ̃1 + (β − x)(β − y)dφ̃2

+(γ − x)(γ − y)dφ̃3

)2

A = (α − x)(α − y)(α − z)dφ̃1 + (β − x)(β − y)(β − z)dφ̃1

+(γ − x)(γ − y)(γ − z)dφ̃1

X = x(α − x)(β − x)(γ − x) − 2m , Y = y(α − y)(β − y)(γ − y) − 2�1 ,

Z = z(α − z)(β − z)(γ − z) − 2�2 . (3.55)

The φ̃i are related to the original φi by the constant scalings

φ1 = α(α − β)(α − γ)φ̃1 , φ2 = β(β − α)(β − γ)φ̃2 ,

φ3 = γ(γ − α)(γ − β)φ̃3 . (3.56)

For the general case of D = 2n+1 dimensions, we find after performing analogous

computations that the Einstein-Sasaki metric is given by

ds2
2n+1 = (dτ + A)2 + ds2

2n , (3.57)
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where

ds2
2n =

n∑
µ=1

Uµ dx2
µ

4Xµ

+
n∑

µ=1

Xµ

Uµ

( n∑
i=1

Wi dφ̃i

αi − xµ

)2

,

A =
n∑

i=1

Widφ̃i , Uµ =
∏′n

ν=1
(xν − xµ) ,

Xµ = xµ

n∏
i=1

(αi − xµ) − 2�µ , Wi =
n∏

ν=1

(αi − xν) (3.58)

Thus we obtain a large class of local Einstein-Sasaki metrics in arbitrary (2n + 1)

dimensions. These metrics extend the results obtained in [22, 23], where there were

no NUT charges, and those in [26, 15], where metrics of cohomogeneity two were

considered. We expect that (3.57,3.58) is the most general metric for Einstein-Sasaki

spaces with U(1)n+1 isometry in (2n + 1) dimensions.

It is of considerable interest to study the global structure of these Einstein-Sasaki

metrics, and thereby to obtain the conditions on the parameters under which they

extend onto smooth manifolds. This was done for D = 5 in [22, 23], where complete

metrics for the Einstein-Sasaki manifolds Lpqr were obtained. Those results extended

previous results for the Y pq [32] manifolds, which corresponded to the specialisation

where the two angular momentum parameters were set equal. For seven dimensions,

the global structure has been previously discussed for various special cases. When

Y and Z in (3.55) both have a double root, the solution reduces to that obtained in

[33], where the global structure was analysed in detail. If two angular momenta are

set equal, the solution reduces to that obtained in [26] where the global structure was

also discussed. Aside from these special cases, our general results in D = 7 that we

have obtained in this paper are new. Similarly, our results in D ≥ 9 extend those

obtained previously.
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2. BPS Limit for D = 2n

The BPS limit in this case can give rise to Ricci-flat Kähler metrics. Consider first

the example of the six-dimensional Kerr-NUT-AdS metric. We perform a Euclideani-

sation and take an analogous BPS limit to the one we discussed above for the seven-

dimensional case, by setting

M = mε3, L1 = i�1ε
3, L2 = i�2ε

3 . (3.59)

In the BPS limit, when ε goes to zero, we obtain the Ricci flat metric

ds2
6 =

(y − x)(z − x) dx2

4X
+

(x − y)(z − y) dy2

4Y
+

(x − z)(y − z)

4Z
dz2

+
X

(y − x)(z − x)

(
y z dτ̃ − (α − y)(α − z)dφ̃1 − (β − y)(β − z)dφ̃2

)2

+
Y

(x − y)(z − y)

(
x z dτ̃ − (α − x)(α − z)dφ̃1 − (β − x)(β − z)dφ̃2

)2

+
Z

(x − z)(y − z)

(
x y dτ̃ − (α − x)(α − y)dφ̃1 − (β − x)(β − y)dφ̃2

)2

X = x(α − x)(β − x) − 2m , Y = y(α − y)(β − y) − 2�1 ,

Z = z(α − z)(β − z) − 2�2 . (3.60)

The coordinates τ̃ and φ̃i are related to the original τ and φi by the constant scalings

φ1 = α(α − β)φ̃1 , φ2 = β(β − α)φ̃2 , τ = αβ τ̃ . (3.61)

Note that this metric can in fact be viewed as the zero cosmological constant limit of

the six-dimensional Einstein-Kähler metric (3.55) that we obtained above.

For the general case of D = 2n dimensions, we find that the BPS limit of the
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Euclideanised Kerr-NUT-AdS metrics yields the Ricci-flat metrics

ds2
2n =

n∑
µ=1

Uµ dx2
µ

4Xµ

+
n∑

µ=1

Xµ

Uµ

( γ

xµ

dτ̃ −
n−1∑
i=1

Wi dφ̃i

αi − xµ

)2

,

Xµ = xµ

n−1∏
i=1

(αi − xµ) − 2�µ , Uµ =
∏′n

ν=1
(xν − xµ) ,

Wi =
n∏

ν=1

(αi − xν) , γ =
n∏

ν=1

xν . (3.62)

Again, these metrics can be obtained also as limiting cases of the metrics (3.58), in

which the cosmological constant is sent to zero.

F. Conclusions

In this chapter, we have obtained new results for the inclusion of NUT parameters in

the Kerr-AdS metrics that were constructed in [13, 14]. Our strategy for doing this

involved first making a judicious choice of coordinates parameterising the latitude

variables in the Kerr-AdS metrics. By making a change of variables analogous to one

considered long ago by Jacobi in the theory of constrained dynamical systems, we

were able to rewrite the Kerr-AdS solutions of [13, 14] in such a way that the metrics

become diagonal in a set of unconstrained latitude coordinates yα. These coordinates

then appear in a manner that closely parallels that of the radial variable r, and this

immediately suggests a natural generalisation of the Kerr-AdS metrics to include NUT

charges. It is explicitly verified [30] by a investigation of the Riemannian curvature

that these generalisations of the Kerr-AdS metrics satisfy the Einstein equations

in all dimensions. After further changes of variable, we arrived at the very simple

expressions (3.22) and (3.33) for the general Kerr-NUT-AdS metrics in all odd and

even dimensions. These expressions can be thought of as natural generalisations of

the four-dimensional results obtained in [31].
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The general Kerr-NUT-AdS metrics that we have obtained in this chapter have a

total of (2n−1) non-trivial parameters, where the spacetime dimension is D = 2n+1

in the odd-dimensional case, and D = 2n in the even-dimensional case. In odd

dimensions these parameters can be viewed as comprising n rotations, a mass, and

(n − 2) NUT charges. In even dimensions they instead comprise (n − 1) rotations,

a mass, and (n − 1) NUT charges. In odd dimensions, but not in even dimensions,

there is some measure of arbitrariness in the interpretation of parameters as rotations

or NUT charges.

An interesting feature of the Kerr-AdS and Kerr-NUT-AdS metrics that is un-

covered by our work is that in all dimensions there exist discrete symmetries of the

metrics in which one of the rotation parameters is inverted through the AdS radius

1/g, together with appropriate scalings of the other rotation parameters, the mass and

the NUT charges. An implication of these symmetries is that any metric with over-

rotation, i.e. where one or more of the rotation parameters exceeds the AdS radius,

is identical, up to coordinate transformations, to a metric with only under-rotation.

This was observed in chapter II for the Kerr-AdS metric in D = 5. The inversion

symmetry was apparently not previously noticed in the four-dimensional Kerr-AdS

metric, and we have presented it explicitly, in the standard coordinate system, in

appendix C.

We also considered the BPS, or supersymmetric, limits of the Kerr-NUT-AdS

metrics. In odd dimensions these yield, after Euclideanisation, new examples of

Einstein-Sasaki metrics. We expect that by making appropriate choices for the various

parameters in the solutions, one can obtain new examples of complete Einstein-Sasaki

spaces defined on non-singular compact manifolds.
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CHAPTER IV

SEPARABILITY IN COHOMOGENEITY-2 KERR-NUT-ADS METRICS

A. Introduction

In order to obtain explicit solutions to the Einstein equations, or coupled Einstein/matter

equations, it is generally necessary to make simplifying symmetry assumptions about

the form the metric. In some cases, where a high degree of symmetry is assumed, this

alone can be sufficient to render the reduced system of equations solvable. A typical

example is when one considers an ansatz for cohomogeneity-1 metrics, meaning that

the remaining metric functions depend non-trivially on only a single coordinate, and

hence the Einstein equations reduce to a system of ordinary differential equations.

In more complicated circumstances, it may be that symmetries of a less manifest

nature can play an important rôle in allowing one to construct an explicit solution to

the Einstein equations. A nice example of this kind is provided by the Kerr solution for

a four-dimensional rotating black hole [5]. This is a metric of cohomogeneity 2, with

non-trivial coordinate dependence on both a radial and an angular variable. It was

observed, after the original discovery of the solution, that it exhibits the remarkable

property, associated with a “hidden symmetry,” of allowing the separability of the

Hamilton-Jacobi equation and the Klein-Gordon equation. In fact, it can be shown

that the separability is related to the existence of a 2-index Killing tensor Kµν in the

Kerr geometry, satisfying ∇(µ Kνρ) = 0. By exploiting this property, and conjecturing

that it would continue to hold for the more general situation with a cosmological

constant and a NUT charge, Carter was able to construct the solution for a four-

dimensional Kerr-NUT-AdS black hole [7].

It is of considerable interest to investigate the issue of separability in other grav-
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itational solutions, including in particular solutions describing black holes in higher

dimensions. Not only can this shed light on the existence of hidden symmetries, as-

sociated with the existence of Killing tensors, in the known black hole metrics; it can

also point the way to constructing more general solutions with additional parameters.

In chapter II, we reviewed the general D-dimensional Kerr-AdS black hole con-

structed in [13, 14]. In this solution, there are [(D − 1)/2] independent rotation

parameters ai, characterising angular momenta in orthogonal spatial 2-planes. The

general metrics are of cohomogeneity [D/2], with principal orbits R × U(1)[(D−1)/2].

It was shown in [34] that the Hamilton-Jacobi and Klein-Gordon equations are sep-

arable in all odd dimensions D, if one make the specialisation that all (D − 1)/2

rotation parameters ai are set equal. This has the effect of enhancing the symmetry

of the principal orbits from R × U(1)(D−1)/2 to R × U((D − 1)/2), and reducing the

cohomogeneity from (D − 1)/2 to 1. In fact, the enhanced manifest symmetry in

this case is already sufficient to permit the separability, without the need for any

additional hidden symmetry. Indeed, it was shown in [34] that the Killing tensor in

this case is reducible, being a linear combination of direct products of Killing vectors.

A non-trivial, irreducible, Killing tensor was found to exist in the case where all ro-

tation parameters except one are vanishing [21]. Irreducible Killing tensors were also

shown to exist in the special case of the five-dimensional asymptotically flat metric of

[11], for arbitrary values of the two rotation parameters [35]. In the case of rotating

AdS black holes in five dimensions, the separability, and associated irreducible Killing

tensor, were found in [36].

A feature common to all the known cases exhibiting the phenomenon of separa-

bility is that the metric in question is of cohomogeneity ≤ 2. A natural next step, in

the investigation of separability, is therefore to examine all the D-dimensional rotat-

ing black holes under the appropriate specialisation of parameters that reduces their
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cohomogeneity from [D/2] to 2. In fact, the D-dimensional rotating AdS black holes

with this specialisation were studied in chapter II, and it was shown that they admit

a generalisation in which a NUT parameter is introduced. Specifically, the special-

isation that reduces the cohomogeneity to 2 is achieved by taking sets of rotation

parameters to be equal in an appropriate way.

In odd dimensions, D = 2n + 1, cohomogeneity 2 is achieved by dividing the

n = p + q rotation parameters ai into two sets, with p of them equal to a, and the

remaining q parameters equal to b. At the same time, the isometry group enlarges

from R × U(1)p+q to R × U(p) × U(q).

In even dimensions D = 2n, cohomogeneity 2 is achieved by instead dividing the

n − 1 = p + q rotation parameters into a set of p that are taken to equal a, with the

remaining q parameters taken to be zero. In this case, the isometry group enlarges

from R × U(1)p+q to R × U(p) × SO(2q + 1).

In this chapter, we shall show that all these cohomogeneity-2 Kerr-AdS metrics

have the property that the Hamilton-Jacobi equation and the Klein-Gordon equation

are separable. Furthermore, we show that this property persists when the NUT

parameter introduced in chapter II is included. We also obtain the 2-index Killing

tensor Kµν that is associated with the hidden symmetry responsible for allowing the

equations to separate. Unlike the case of the further specialisation to cohomogeneity

1 in odd dimensions that was studied in [34], in these cohomogeneity-2 cases the

Killing tensor is irreducible.

We also study some further properties of the cohomogeneity-2 Kerr-NUT-AdS

metrics that were obtained in chapter II. In particular, we examine the case where

one adjusts the NUT parameter so that the two adjacent roots of the metric function

whose vanishing defines the endpoints of the range of one of the inhomogeneous

coordinates become coincident. After appropriate scalings, this limit yields NUT-
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type metrics of cohomogeneity 1, which in some special cases coincide with NUT

generalisations obtained previously in [28].

B. Separability in D = 2n Dimensions

We copy the cohomogeneity-2 Kerr-NUT-AdS metric in D = 2n dimensions here

which was given in (2.33)

ds2 =
r2 + v2

X
dr2 +

r2 + v2

Y
dv2 − X

r2 + v2

(
dt − a2 − v2

a Ξa

(dψ + A)
)2

(4.1)

+
Y

r2 + v2

(
dt − a2 + r2

a Ξa

(dψ + A)
)2

+
(a2 + r2)(a2 − v2)

a2Ξa

dΣ2
p−1 +

r2v2

a2
dΩ2

2q .

Here, dΩ2
2q is the metric on the unit sphere S2q, dΣ2

p−1 is the standard Fubini-Study

metric on the “unit” complex projective space CP
p−1 with Kähler form J = 1

2
dA, and

the metric functions X and Y are given by

X = (1 + g2r2)(r2 + a2) − 2M r

(r2 + a2)p−1 r2q
,

Y = (1 − g2v2)(a2 − v2) − 2Lv

(a2 − v2)p−1 v2q
. (4.2)

It should be noted that one can replace the unit-sphere metric dΩ2
2q = γij dxidxj by

any (2q)-dimensional Einstein metric normalised to Rij = (2q−1) γij, and the Fubini-

Study metric dΣ2
p−1 = hmn dxmdxn on CP

p−1 can be replaced by any Einstein-Kähler

(2p−2)-metric normalised to Rmn = 2phmn, and one again has a local solution of the

Einstein equations.

It is not hard to see that the inverse of the metric (4.1), which we can write as
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(∂/∂s)2 ≡ gµν ∂µ∂ν , is given by

(r2 + v2)
( ∂

∂s

)2

= X
( ∂

∂r

)2

+ Y
( ∂

∂v

)2

− 1

X

(
(r2 + a2)

∂

∂t
+ aΞa

∂

∂ψ

)2

+
1

Y

(
(a2 − v2)

∂

∂t
+ aΞa

∂

∂ψ

)2

+ a2(
1

r2
+

1

v2
)
( ∂

∂Ω

)2

(4.3)

− a2Ξa

( 1

r2 + a2
− 1

a2 − v2

)
hmn

(
∂m − Am

∂

∂ψ

)(
∂n − An

∂

∂ψ

)
,

where Am are the components of the 1-form A, ( ∂
∂Ω

)2 = γij∂i∂j is the inverse of the

metric on the unit (2q)-sphere, and hmn are the components of the inverse of the

Fubini-Study metric on CP
p−1.

1. Separability of the Hamilton-Jacobi Equation

The covariant Hamiltonian function on the cotangent bundle of the metric (4.1) is

given by

H(Pµ, x
µ) ≡ 1

2
gµν Pµ Pν , (4.4)

where Pµ are the canonical momenta conjugate to the coordinates xµ. In terms of

Hamilton’s principle function S, one has Pµ = ∂µS, and the Hamilton-Jacobi equation

is given by

H(∂µS, xµ) = −1
2
µ2 . (4.5)

It is evident from (4.3) that the Hamilton-Jacobi equation admits separable solutions

of the form

S = −Et + Jψ ψ + F (r) + G(v) + P + Q , (4.6)

where P is a function of the CP
p−1 coordinates only, and Q is a function of the S2p

coordinates only. We introduce separation constants KΣ and KΩ for the functions on
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these spaces, so that

(∂Q

∂Ω

)2

= K2
Ω , hmn (∂mP − Jψ AmP )(∂nP − Jψ AnP ) = K2

Σ . (4.7)

From the above, we can read off the remaining non-trivial equations for the

functions F (r) and G(v) in (4.6), finding

−2κ = XF ′2 − 1

X

(
E(r2 + a2) − aΞaJψ

)2

+
a2K2

Ω

r2
− a2ΞaK

2
Σ

r2 + a2
+ µ2r2 ,

2κ = Y Ġ2 +
1

Y

(
E(a2 − v2) − aΞaJψ

)2

+
a2K2

Ω

v2
+

a2ΞaK
2
Σ

a2 − v2
+ µ2v2 , (4.8)

where F ′ denotes dF/dr, Ġ denotes dG/dv, and κ is the separation constant associated

with the non-trivial hidden symmetry that permits the separation of the Hamilton-

Jacobi equation.

Note that the separation demonstrated thus far works equally well if dΣ2
p−1 is

any (2p−2)-dimensional Einstein-Kähler metric and dΩ2
2q is any Einstein metric with

the same scalar curvatures as the CP
p−1 and S2q metrics respectively. A complete

separability, in which the functions P and Q are themselves fully separated, depends

upon the complete separability of the Hamilton-Jacobi equations in these two spaces.

In particular, this is possible whenever they are homogeneous spaces, as is the case

for CP
p−1 and S2q. Note that in the case of the Einstein-Kähler space, the relevant

Hamilton-Jacobi equation is the one describing a particle of charge Jψ in geodesic

motion, with minimal coupling to the potential A whose field strength is 2J , where

J is the Kähler form.

Following the discussion in [21], we note that associated with the separation

constant κ is a Poisson function K, which Poisson commutes with the Hamiltonian

H. The function K is equal to the separation constant κ if the Hamilton-Jacobi

equations are satisfied, and so we can simply read it off from either of the equations
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in (4.8), or any linear combination thereof. Thus, for example, from the first equation

in (4.8) we may read off

K = −1
2
XP2

r +
1

2X

(
(r2 + a2)Pt + aΞaPψ

)2

− a2P2
Ω

2r2
+ 1

2
r2gµν PµPν

+
a2Ξa

2(r2 + a2)
hmn(Pm − AmPψ)(Pn − AnPψ) , (4.9)

where P2
Ω ≡ γijPiPj and γij is the inverse metric on the unit sphere S2q. An alterna-

tive way of writing K, which puts the r and v coordinates on an equivalent footing,

is to take the linear combination of the two equations in (4.8) that eliminates µ2,

yielding

K =
1

2(r2 + v2)

[v2

X
[(r2 + a2)Pt + aΞaPψ]2 +

r2

Y
[(a2 − v2)Pt + aΞaPψ]2

−v2XP2
r + r2Y P2

v

]
+

a2

2

( 1

v2
− 1

r2

)
P2

Ω

+
a2 + r2 − v2

2(r2 + a2)(a2 − v2)
hmn(Pm − AmPψ)(Pn − AnPψ) , (4.10)

The function K defines a Stäckel-Killing tensor with components Kµν , given by

K = 1
2
Kµν PµPν (4.11)

Thus the components Kµν can be read off trivially from (4.9) or (4.10) by inspection.

The Stäckel-Killing tensor satisfies

∇(µ Kνρ) = 0 , (4.12)

by virtue of the fact that K Poisson commutes with H.
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2. Separability of the Klein-Gordon Equation

The separability of the Klein-Gordon equation is closely related to that of the Hamilton-

Jacobi equation. A key observation, which can easily be seen from (4.1), is that

√−g = a1−2p−2q Ξ−p
a (r2 + a2)p−1 (a2 − v2)p−1 r2q v2q

√
h
√

γ (r2 + v2) . (4.13)

Aside from the factor (r2+v2), the coordinate dependence of
√−g therefore factorises

into a product of a function of r, a function of v, a function of the S2q coordinates

and a function of the CP
p−1 coordinates. Since the Laplacian is given by

=
1√−g

∂µ

(√−g gµν ∂ν

)
, (4.14)

it follows from (4.3) that the Klein-Gordon equation f = λf becomes

1

(r2 + a2)p−1 r2q

∂

∂r

(
(r2 + a2)p−1 r2q X

∂f

∂r

)
+

1

(a2 − v2)p−1 v2q

∂

∂v

(
(a2 − v2)p−1 v2q Y

∂f

∂v

)
− 1

X

(
(r2 + a2)

∂

∂t
+ aΞa

∂

∂ψ

)2

f +
1

Y

(
(a2 − v2)

∂

∂t
+ aΞa

∂

∂ψ

)2

f (4.15)

+a2
( 1

r2
+

1

v2

) 1√
γ

∂i(
√

γ γij ∂jf)

−a2Ξa

( 1

r2 + a2
− 1

a2 − v2

) 1√
h

Dm(
√

h hmn Dnf) = λ (r2 + v2) f ,

where Dm ≡ ∂m − Am ∂/∂ψ. It is manifest that the equation can be separated by

writing f as a product of functions of r, v, ψ, the S2q coordinates and the CP
p−1

coordinates. Of course the complete separability of the equation depends upon the

fact that one can fully separate the Klein-Gordon equations on S2q and CP
p−1, by

virtue of the homogeneity of these spaces.
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C. Separability in D = 2n + 1 Dimensions

The cohomogeneity-2 Kerr-NUT-AdS metric in D = 2n+1 dimensions can be written

in a “vielbein basis” as in (A.1),

ds2 =
r2 + v2

X
dr2 − X

r2 + v2

[
dt + v2dφ − a(a2 − v2)

Ξa(a2 − b2)
A − b(b2 − v2)

Ξb(b2 − a2)
B

]2

+
r2 + v2

Y
dv2 +

Y

r2 + v2

[
dt − r2dφ − a(r2 + a2)

Ξa(a2 − b2)
A − b(r2 + b2)

Ξb(b2 − a2)
B

]2

+
(r2 + a2)(a2 − v2)

Ξa(a2 − b2)
dΣ2

p−1 +
(r2 + b2)(b2 − v2)

Ξb(b2 − a2)
dΣ̃2

q−1

+
a2b2

r2v2

[
dt − (r2 − v2)dφ − r2v2dψ

−(r2 + a2)(a2 − v2)

aΞa(a2 − b2)
A − (r2 + b2)(b2 − v2)

bΞb(b2 − a2)
B

]2

(4.16)

where

X =
(1 + g2r2)(r2 + a2)(r2 + b2)

r2
− 2M

(r2 + a2)p−1 (r2 + b2)q−1
,

Y =
−(1 − g2v2)(a2 − v2)(b2 − v2)

v2
+

2L

(a2 − v2)p−1 (b2 − v2)q−1
. (4.17)

Here, dΣ2
p−1 and dΣ̃2

q−1 are the standard “unit” metrics on two complex projective

spaces CP
p−1 and CP

q−1, with Kähler forms given locally by J = 1
2
dA and J̃ = 1

2
dB.

One can also obtain more general solutions by replacing the complex projective spaces

with their Fubini-Study metrics by any other Einstein-Kähler metrics with the same

Ricci scalars.

One can straightforwardly show that the inverse (∂/∂s)2 of the metric (4.16) is
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given by

(r2 + v2)
( ∂

∂s

)2

= X
( ∂

∂r

)2

+ Y
( ∂

∂v

)2

+
1

a2b2

( 1

r2
+

1

v2

)( ∂

∂ψ

)2

− 1

X

(
r2 ∂

∂t
+

1

r2

∂

∂ψ
+

∂

∂φ

)2

+
1

Y

(
v2 ∂

∂t
+

1

v2

∂

∂ψ
− ∂

∂φ

)2

−(a2 − b2) Ξa

( 1

r2 + a2
− 1

a2 − v2

)
hmn Dm Dn

−(b2 − a2) Ξb

( 1

r2 + b2
− 1

b2 − v2

)
h̃k� D̃k D̃� , (4.18)

where

Dm ≡ ∂m − aAm

(a2 − b2)Ξa

( ∂

∂φ
− a2 ∂

∂t
− 1

a2

∂

∂ψ

)
,

D̃k ≡ ∂k − bBk

(b2 − a2)Ξb

( ∂

∂φ
− b2 ∂

∂t
− 1

b2

∂

∂ψ

)
, (4.19)

and hmn and h̃k� are the inverses of the Fubini-Study metrics dΣ2
p−1 and dΣ̃2

q−1 on the

complex projective spaces CP
p−1 and CP

q−1.

1. Separability of the Hamilton-Jacobi Equation

Following analogous steps to those we described in section B, it can be seen that the

Hamilton-Jacobi equation is separable, if we write the Hamilton principle function as

S = −Et + Jψ ψ + Jφ φ + F (r) + G(v) + P + P̃ , (4.20)

where P depends only on the coordinates of CP
p−1, and P̃ depends only on the

coordinates of CP
q−1. We have separation constants KΣ and KΣ̃ associated with the

two complex projective space factors. The Hamilton-Jacobi equations in these two

subspaces themselves describe particles of charges q and q̃ minimally coupled to the

vector potentials A and B respectively, where

q =
a

(a2 − b2)Ξa

(Jφ + a2E − 1

a2
Jψ) , q̃ =

b

(b2 − a2)Ξb

(Jφ + b2E − 1

b2
Jψ) , (4.21)
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and

hmn (∂mP −qAm)(∂nP −qAn) = K2
Σ , h̃k� (∂kP̃ − q̃Ak)(∂�P̃ − q̃A�) = K2

Σ̃
. (4.22)

From (4.18), it then follows that there is a further non-trivial separation constant

κ, leading to the equations

−2κ = XF ′2 +
J2

ψ

a2b2r2
− 1

X
(Er2 − 1

r2
Jψ − Jφ)2

−(a2 − b2)Ξa K2
Σ

r2 + a2
− (b2 − a2)Ξb K2

Σ̃

r2 + b2
+ µ2 r2 ,

2κ = Y Ġ2 +
J2

ψ

a2b2v2
+

1

Y
(Ev2 − 1

v2
Jψ + Jφ)2

+
(a2 − b2)Ξa K2

Σ

a2 − v2
+

(b2 − a2)Ξb K2
Σ̃

b2 − v2
+ µ2 v2 . (4.23)

We can then read off the associated Poisson function K that commutes with the

Hamiltonian H, and which takes the constant value κ upon use of the Hamilton-

Jacobi equations. As in section B, one can organise the expression for K in different

ways, depending on the choice of linear combination of the two expressions in (4.23)

that one makes. Thus, for example, from the first expression we can write K as

K = −1
2
XP2

r − 1

2a2b2r2
P2

ψ +
1

2X
(r2Pt +

1

r2
Pψ + Pφ)2

+
(a2 − b2)Ξa

2(r2 + a2)
P2

Σ +
(b2 − a2)Ξb

2(r2 + b2)
P2

Σ̃
+ 1

2
r2 gµν PµPν , (4.24)

where

P2
Σ ≡hmn [Pm− aAm

(a2 − b2)Ξa

(Pφ − a2Pt − 1

a2
Pψ)][Pn− aAn

(a2 − b2)Ξa

(Pφ − a2Pt − 1

a2
Pψ)] ,

P2
Σ̃
≡ h̃k� [Pk− bBk

(b2 − a2)Ξb

(Pφ − b2Pt − 1

b2
Pψ)][P�− bB�

(b2 − a2)Ξa

(Pφ − b2Pt − 1

b2
Pψ)] .(4.25)

The components of the associated Killing tensor Kµν can be read off directly from

(4.24), via K = 1
2
KµνPµPν . Again, as in the even-dimensional case discussed in



71

section B, one can equivalently express K in a more symmetrical fashion by taking

the linear combination of the two equations in (4.23) that eliminates µ2.

2. Separability of the Klein-Gordon Equation

As in the case of even dimensions, here too the separability of the Klein-Gordon

equation is closely related to the separability of the Hamilton-Jacobi equation. Again,

the key point is that
√−g has a simple form, being proportional to (r2 + v2) times a

product of functions of r, v and the coordinates on the two complex projective spaces:

√−g =
ab r v

√
h

√
h̃

|a2 − b2|n−2 Ξp−1
a Ξq−1

b

(r2+a2)p−1 (r2+b2)q−1 (a2−v2)p−1 (b2−v2)q−1 (r2+v2) .

(4.26)

Together with the the expression (4.18) for the inverse metric, we see that the Klein-

Gordon equation f = λf assumes the manifestly separable form

1

r(r2 + a2)p−1(r2 + b2)q−1

∂

∂r

(
r(r2 + a2)p−1(r2 + b2)q−1 X

∂f

∂r

)
1

v(a2 − v2)p−1(b2 − v2)q−1

∂

∂v

(
v(a2 − v2)p−1(b2 − v2)q−1 Y

∂f

∂v

)
− 1

X

(
r2 ∂

∂t
+

1

r2

∂

∂ψ
+

∂

∂φ

)2

f +
1

Y

(
v2 ∂

∂t
+

1

v2

∂

∂ψ
− ∂

∂φ

)2

f +
1

a2b2

( 1

r2
+

1

v2

) ∂2f

∂ψ2

−(a2 − b2)Ξa

( 1

r2 + a2
− 1

a2 − v2

) 1√
h

Dm(
√

h hmnDnf)

−(b2 − a2)Ξb

( 1

r2 + b2
− 1

b2 − v2

) 1√
h̃

D̃k(
√

h̃ h̃k�D̃�f) = λ(r2 + v2)f . (4.27)

Note that Dm and D̃k, defined in (4.19), yield gauge covariant derivatives acting

on charged wavefunctions in the two complex projective spaces, once one separates

variables by writing f as a product of functions of the coordinates. As in the previous

discussions, the complete separability of the system depends upon the separability of

the Klein-Gordon equations in the complex projective spaces.
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D. Specialisation to NUT Metrics of Cohomogeneity 1

The NUT generalisations of the Kerr-AdS metrics that were found in chapter II all

have cohomogeneity 2, and, as we have shown in this chapter, they all share the feature

that the Hamilton-Jacobi equation and the Klein-Gordon equation are separable in

these backgrounds. It is also of interest to see how these cohomogeneity-2 Kerr-NUT-

AdS metrics reduce to certain previously-known solutions under specialisations of the

parameters. In particular, we shall show that if one applies a limiting procedure in

which the cohomogeneity is reduced from 2 to 1, then the resulting metrics include

some higher-dimensional NUT metrics that were obtained in [28]. As usual, the

discussion divides into the cases of even-dimensional metrics and odd-dimensional

metrics.

1. D = 2n

Our starting point is the class of even-dimensional cohomogeneity-2 Kerr-NUT-AdS

metrics that were given in (4.1). The cohomogeneity can be reduced from 2 to 1 by

specialising the parameters in such a way that the two adjacent roots of the function

Y (v) that define the range of the v coordinate become coincident. Provided the v

coordinate is rescaled appropriately as the limit is taken, one obtains a non-singular

metric that now no longer has any dependence on the rescaled v coordinate.

The function Y (v) acquires a double root, at v = v0, if the parameters a and L

are chosen to satisfy

L = L0 ≡ (a2 − v2
0)

p+1v2q−1
0

(2q + 1)a2 − (2p + 2q + 1)v2
0

,

g2 =
(2q − 1)a2 − (2p + 2q − 1)v2

0

v2
0((2q + 1)a2 − (2p + 2q + 1)v2

0)
. (4.28)
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In order to approach this limit with an appropriately rescaled v coordinate, we define

v = v0 + ε cos χ , L = L0(1 + ε2 c) , (4.29)

with the constant c given by

c =
a4(1 − 4q2) + 2a2(2q − 1)(2p + 2q + 1)v2

0 + (1 − 4(p + q)2)v4
0

2(a2 − v2
0)

2v2
0

, (4.30)

where ε will shortly be sent to zero. The function Y under this limit becomes

Y = ε2Y0 sin2 χ , (4.31)

where

Y0 =
2(a − v0)

2c

(2p + 2q + 1)v2
0 − (2q + 1)a2

. (4.32)

In order for the metric (4.1) to be nonsingular in the limit, we must also make the

coordinate transformations

ψ → a Ξa

ε Y0

ψ̃ , t → t +
a2 − v2

0

ε Y0

ψ . (4.33)

Sending ε to zero, the metric (4.1) then becomes

ds2 = − X

r2 + v2
0

(dt +
2v0

Y0

cos χdψ − a2 − v2
0

a Ξa

A)2 +
r2 + v2

0

X
dr2

+
(r2 + v2

0)

Y0

(dχ2 + sin2 χdψ2) +
r2 + a2

a2 Ξa

dΣ2
p−1 +

r2v2
0

a2
dΩ2

2q . (4.34)

The metrics (4.34) are contained within a rather general class of cohomogeneity-1

NUT metrics that were obtained in [28]. The case p = 1 and q = 0 reduces to the

standard Taub-NUT-AdS metric in four dimensions.
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2. D = 2n + 1

In odd dimensions, our starting point is the cohomogeneity-2 Kerr-NUT-AdS metrics

presented in equation (4.16).

Proceeding in an analogous fashion to the discussion we gave in even dimensions,

we first consider the conditions under which Y has a double root, at v = v0. This

happens when the constants L, a and b are chosen such that

L = L0 ≡ (a2 − v2
0)

p(b2 − v2
0)

q(1 − g2v2
0)

2v2
0

,

g2 =
a2b2 + (a2(q − 1) + b2(p − 1))v2

0 − (p + q − 1)v4
0

(a2q + b2p − (p + q)v2
0)v

4
0

. (4.35)

Next, we deform away slightly from the double root, and introduce a new coordinate

χ in place of v:

v = v0 + ε cos χ , L = L0(1 + ε2 c) , (4.36)

where the constant c is given by

c =
2

(a2 − v2
0)

2(b2 − v2
0)

2

(
− 2a2b2(a2q + b2p) − (a4q(q − 1) + b4p(p − 1)(4.37)

+2a2b2(pq − 2p − 2q))v2
0 + 2(p + q)(a2(q − 1) + b2(p − 1))v4

0

−(p + q)(p + q − 1)v6
0

)
.

The function Y in this limit becomes

Y = ε2Y0 sin2 χ , (4.38)

where

Y0 =
(a2 − v2

0)
2(b2 − v2

0)
2 c

v4
0((p + q)v2

0 − a2q − b2p)
. (4.39)
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Making the further coordinate transformation

t → t − v2
0φ

ε Y0

, φ → φ

ε Y0

, ψ → − φ

v2
0ε Y0

− ψ

v4
0

, (4.40)

we can now obtain a smooth limit in which ε is sent to zero, for which the metric

(4.16) becomes

ds2 = − X

r2 + v2
0

[
dt +

2v0

Y0

cos χdφ − a(a2 − v2
0)

Ξa(a2 − b2)
A −− b(b2 − v2

0)

Ξb(b2 − a2)
B

]2

+
a2b2

r2v2
0

[
dt +

2v0

Y0

cos χdφ +
r2

v2
0

(dψ +
2v0

Y0

cos χdφ) − (r2 + a2)(a2 − v2
0)

aΞa(a2 − b2)
A

−(r2 + b2)(b2 − v2
0)

bΞb(b2 − a2)
B

]2

+
r2 + v2

0

X
dr2 +

r2 + v2
0

Y0

(dχ2 + sin2 χdφ2)

+
(r2 + a2)(a2 − v2

0)

Ξa(a2 − b2)
dΣ2

p−1 +
(r2 + b2)(b2 − v2

0)

Ξb(b2 − a2)
dΣ̃2

q−1 . (4.41)

This metric is contained within the class of cohomogeneity-1 NUT generalisations

that were considered in [28].

E. Conclusions

The separability of the Hamilton-Jacobi and Klein-Gordon equations in the back-

ground of a rotating four-dimensional black hole played an important rôle in the

construction of generalisations of the Kerr metric, and in the uncovering of hidden

symmetries associated with the existence of Killing tensors. In this chapter, we have

shown that the Hamilton-Jacobi and Klein-Gordon equations are separable in Kerr-

AdS backgrounds in all dimensions, if one specialises the rotation parameters so that

the metrics have cohomogeneity 2. Furthermore, we have shown that this property of

separability extends to the NUT generalisations of these cohomogeneity-2 black holes

that we obtained in chapter II. In all these cases, we also constructed the associated

irreducible rank-2 Killing tensor whose existence reflects the hidden symmetry that
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leads to the separability. We also considered some cohomogeneity-1 specialisations of

the new Kerr-NUT-AdS metrics, and showed how they relate to previous results in

the literature [28].

The results on separability that we have obtained in this chapter raise the inter-

esting question of whether it might extend to the higher-dimensional rotating black

holes with more general choices for the rotation parameters, and thus having co-

homogeneity larger than 2. This question was finally answered by [37], in which

Frolov, Krtous and Kubiznak proved the separability of the Hamilton-Jacobi and

Klein-Gordon equations in the general (D ≥ 4) cohomogeneity-n Kerr-NUT-AdS

spacetimes presented in chapter III.
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CHAPTER V

KERR-SCHILD STRUCTURE AND HARMONIC 2-FORMS ON

KERR-NUT-ADS METRICS

A. Introduction

One intriguing feature of General Relativity is that, despite its high degree of non-

linearity, many exact solutions can be cast into a Kerr-Schild form [38] where non-

trivial parameters such as mass, charge, or cosmological constant enter the metrics as

a linear perturbation of flat spacetime. A simple example is the (A)dS metric, which

can be written as

ds2 = −dt2 + dr2 + r2dΩ2
n + Λ r2(dt − dr)2 , (5.1)

where the first three terms describe the (n+2)-dimensional Minkowski spacetime and

the cosmological constant enters the last term linearly. More complicated examples

include the Plebanski metric [31]; in (2,2) signature, the Plebanski metric can have a

double Kerr-Schild form where both the mass and the NUT charge enter the metric

linearly [21].

The general cohomogeneity-n Kerr-NUT-AdS solutions in chapter III can be

viewed as higher-dimensional generalisations of the Plebanski metric. The solu-

tions are parameterised by the mass, multiple NUT charges and arbitrary orthog-

onal rotations. In this chapter, we demonstrate in section B that the D-dimensional

Kerr-NUT-AdS solution admits [D/2] linearly-independent, mutually-orthogonal and

affinely parameterised null geodesic congruences upon Wick-rotation of the metric to

([D/2], [(D + 1)/2]) signature. This enables us to cast the metric into the multi-

Kerr-Schild form, where the mass and all of the NUT parameters enter the metric
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linearly. In section C, we obtain n harmonic 2-forms on the Kerr-NUT-AdS metrics

in D = 2n dimensions. In the BPS limit, these n harmonic 2-forms becomes linearly

dependent, and the number of linearly-independent ones becomes n − 1. However, a

Kähler 2-form emerges under the BPS limit, and hence the total number of harmonic

2-forms remains n. We conclude the chapter in section D.

B. Multi-Kerr-Schild Structure

Let us first consider the case of D = 2n + 1 dimensions, for which the metric was

given in (3.22). In order to put the metric in a Kerr-Schild form, it is necessary to

Wick rotate to (n, n + 1) signature. This can be easily achieved by Wick rotating all

the spatial U(1) coordinates. The corresponding metric is then given by

ds2 =
n∑

µ=1

{dx2
µ

Qµ

− Qµ

( n−1∑
k=0

A(k)
µ dψk

)2}
+

c

(
∏n

ν=1 x2
ν)

( n∑
k=0

A(k) dψk

)2

, (5.2)

where

Qµ =
Xµ

Uµ

, Uµ =
∏′n

ν=1
(x2

ν − x2
µ) , Xµ =

n∑
k=1

ck x2k
µ +

c

x2
µ

− 2bµ ,

A(k)
µ =

′∑
ν1<ν2<···<νk

x2
ν1

x2
ν2
· · ·x2

νk
, A(k) =

∑
ν1<ν2···<νk

x2
ν1

x2
ν2
· · ·x2

νk
, (5.3)

The prime on the summation and product symbols in the definition of A
(k)
µ and Uµ

indicates that the index value µ is omitted in the summations of the ν indices over

the range [1, n]. Note that ψ0 was denoted as t in chapter III, playing the rôle of

the time like coordinate in the (1, 2n) spacetime signature. In this way of writing

the metric, all of the integration constants of the solution enter only in the functions

Xµ. The constant cn = (−1)n+1g2 is fixed by the value of the cosmological constant,

with Rµν = −2ng2 gµν . The other 2n constants ck, c and bµ are arbitrary. These are
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related to the n rotation parameters, the mass and the (n−1) NUT parameters, with

one parameter being trivial and removable through a scaling symmetry, as shown in

chapter III. Note that in (n, n + 1) signature, the NUT charges are really masses

with respect to different time-like Killing vectors. However, we shall continue to refer

them as NUT charges.

We now re-arrange the metric (5.2) into the form

ds2 = −
n∑

µ=1

Xµ

Uµ

[ n−1∑
k=0

A(k)
µ dψk +

Uµ

Xµ

dxµ

] [ n−1∑
k=0

A(k)
µ dψk − Uµ

Xµ

dxµ

]
+

c

(
∏n

ν=1 x2
ν)

( n∑
k=0

A(k) dψk

)2

. (5.4)

If we perform the following coordinate transformation,

dψ̂k = dψk +
n∑

µ=1

(−x2
µ)n−k−1

Xµ

dxµ , k = 0 , · · · , n , (5.5)

the metric can then be cast into the n-Kerr-Schild form, namely

ds2 = ds̄2 +
n∑

µ=1

2bµ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̂k

]2

, (5.6)

where

ds̄2 = −
n∑

µ=1

{X̄µ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̂k

]2

− 2
[ n−1∑

k=0

A(k)
µ dψ̂k

]
dxµ

}
+

c

(
∏n

ν=1 x2
ν)

( n∑
k=0

A(k) dψ̂k

)2

,

X̄µ =
n∑

k=1

ck x2k
µ +

c

x2
µ

. (5.7)

It is straightforward to verify that the metric ds̄2 is that of pure AdS spacetime.

The mass and NUT parameters bµ appear linearly in the metric ds2. It should be

emphasised that although the constants c and ck with k < n are trivial in the metric
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ds̄2, they provide non-trivial angular momentum parameters in the metric ds2. It

is interesting to note that all of the constants ck, including cn that is related to the

cosmological constant, appear linearly in the metric, and can all be extracted from

ds̄2 and grouped in the second term of (5.6). This implies that all the parameters, the

mass, NUTs and angular momenta and cosmological constant can enter the metric

linearly as a perturbation of flat spacetime. In this chapter, we shall consider in

detail only the Kerr-Schild form where the mass and NUT parameters enter the

metric linearly as a perturbation of pure AdS spacetime.

The AdS metric (5.7) can be diagonalised, in a way that the second term of (5.6)

remains simple. To do so, let us first rewrite the X̄µ as follows

X̄µ =
(1 − g2 x2

µ)

x2
µ

n∏
k−1

(a2
k − x2

µ) . (5.8)

Then we complete the square in ds̄2:

ds̄2 =
n∑

µ=1

{ Uµ

X̄µ

dx2
µ − X̄µ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̂k − Uµ

X̄µ

dxµ

]2}
+

c

(
∏n

ν=1 x2
ν)

( n∑
k=0

A(k) dψ̂k

)2

,

(5.9)

and make the coordinate transformation,

dψ̃k = −dψ̂k +
n∑

µ=1

(−x2
µ)n−k−1

X̄µ

dxµ , k = 0 , · · · , n . (5.10)

The metric can be put into a new form,

ds2 = ds̄2 +
n∑

µ=1

2bµ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̃k − Uµ

X̄µ

dxµ

]2

, (5.11)

where

ds̄2 =
n∑

µ=1

{ Uµ

X̄µ

dx2
µ − X̄µ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̃k

]2}
+

c

(
∏n

ν=1 x2
ν)

( n∑
k=0

A(k) dψ̃k

)2

. (5.12)
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Performing a recombination of the U(1) coordinates, namely

τ =
n∑

k=0

B(k) dψ̃k ,
ϕi

ai

=
n∑

k=1

B
(k−1)
i dψ̃k + g2

n−1∑
k=0

B
(k)
i dψ̃k , i = 1 , · · · , n ,

(5.13)

where

B
(k)
i =

′∑
j1<j2<···<jk

a2
j1

a2
j2
· · · a2

jk
, B(k) =

∑
j1<j2···<jk

a2
j1

a2
j2
· · · a2

jk
, (5.14)

the odd dimensional Kerr-NUT-AdS metrics can be expressed as

ds2 = ds̄2 +
n∑

µ=1

2bµ

Uµ

(k(µ)αdxα)2 , (5.15)

ds̄2 =
W∏n
i=1 Ξi

dτ 2 +
n∑

µ=1

Uµ

X̄µ

dx2
µ −

n∑
i=1

γi

Ξi

∏′ n
k=1(a

2
i − a2

k)
dϕ2

i , (5.16)

k(µ)αdxα =
W

1 − g2 x2
µ

dτ∏n
i=1 Ξi

− Uµ dxµ

X̄µ

−
n∑

i=1

ai γidϕi

(a2
i − x2

µ)Ξi

∏′ n
k=1(a

2
i − a2

k)
,(5.17)

where

Ξi = 1 − g2 a2
i , γi =

n∏
ν=1

(a2
i − x2

ν) , W =
n∏

ν=1

(1 − g2 x2
ν) . (5.18)

If we set all but one of the bµ to zero, the result reduces to the Kerr-Schild form for

rotating AdS black holes obtained previously in [13].

We now turn our attention to the the case of D = 2n dimensions. The cor-

responding Kerr-NUT-AdS metrics were obtained in (3.33). After performing Wick

rotations, the metric with (n, n) signature is given by

ds2 =
n∑

µ=1

{dx2
µ

Qµ

− Qµ

( n−1∑
k=0

A(k)
µ dψk

)2}
, (5.19)

where we Qµ, Uµ and A
(k)
µ have the same form as those in the odd dimensions, given
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in (5.3). The functions Xµ are given by

Xµ =
n∑

k=0

ck x2k
µ + 2bµ xµ . (5.20)

The constants ck and bµ are arbitrary, except for cn = (−1)n+1g2, which is fixed by

the value of the cosmological constant, Rµν = −(2n − 1)g2 gµν . The metric can be

re-arranged into the form

ds2 = −
n∑

µ=1

Xµ

Uµ

[ n−1∑
k=0

A(k)
µ dψk +

Uµ

Xµ

dxµ

] [ n−1∑
k=0

A(k)
µ dψk − Uµ

Xµ

dxµ

]
. (5.21)

After performing the coordinate transformation

dψ̂k = dψk +
n∑

µ=1

(−x2
µ)n−k−1

Xµ

dxµ , k = 0 , · · · , n − 1 , (5.22)

the metric can be cast into the n-Kerr-Schild form,

ds2 = ds̄2 −
n∑

µ=1

2bµxµ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̂k

]2

(5.23)

where

ds̄2 = −
n∑

µ=1

{X̄µ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̂k

]2

− 2
[ n−1∑

k=0

A(k)
µ dψ̂k

]
dxµ

}
,

X̄µ =
n∑

k=0

ck x2k
µ . (5.24)

It is straightforward to verify that ds̄2 is the metric for pure AdS spacetime. As in

the odd dimensions, this metric can be put into a diagonal form, while keeping the

second term of (5.23) simple. To do that, we first reparameterise Xµ as

X̄µ = −(1 − g2x2
µ)

n−1∏
k=1

(a2
k − x2

µ) . (5.25)
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We then complete the square in ds̄2, i.e.

ds̄2 =
n∑

µ=1

{ Uµ

X̄µ

dx2
µ − X̄µ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̂k − Uµ

X̄µ

dxµ

]2}
(5.26)

and make the coordinate transformation

dψ̃k = −dψ̂k +
n∑

µ=1

(−x2
µ)n−k−1

X̄µ

dxµ , k = 0 , · · · , n − 1 . (5.27)

The metric (5.23) can then be put into a new form:

ds2 = ds̄2 −
n∑

µ=1

2bµxµ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̃k − Uµ

X̄µ

dxµ

]2

, (5.28)

where

ds̄2 =
n∑

µ=1

{ Uµ

X̄µ

dx2
µ − X̄µ

Uµ

[ n−1∑
k=0

A(k)
µ dψ̃k

]2}
. (5.29)

The ds̄2 metric can now straightforwardly be diagonalised by means of the coordinate

transformation

τ =
n−1∑
k=0

B(k) dψ̃k ,
ϕi

ai

=
n−1∑
k=1

B
(k−1)
i dψ̃k + g2

n−2∑
k=0

B
(k)
i dψ̃k i = 1 , · · · , n − 1 ,

(5.30)

where

B
(k)
i =

′∑
j1<j2<···<jk

a2
j1

a2
j2
· · · a2

jk
, B(k) =

∑
j1<j2···<jk

a2
j1

a2
j2
· · · a2

jk
. (5.31)

The even dimensional Kerr-NUT-AdS metrics can now be expressed as

ds2 = ds̄2 −
n∑

µ=1

2bµxµ

Uµ

(k(µ)αdxα)2 , (5.32)
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where

ds̄2 =
W∏n−1

i=1 Ξi

dτ 2 +
n∑

µ=1

Uµ

X̄µ

dx2
µ −

n−1∑
i=1

γi

a2
i Ξi

∏′ n−1

k=1 (a2
i − a2

k)
dϕ2

i , (5.33)

k(µ)αdxα =
W

1 − g2x2
µ

dτ∏n−1
i=1 Ξi

− Uµdxµ

X̄µ

−
n−1∑
i=1

γidϕi

(a2
i − x2

µ)aiΞi

∏′ n−1

k=1 (a2
i − a2

k)
,(5.34)

where Ξi, γi and W have the same structure as that in the odd dimensions, given by

(5.18). When all but one of the bµ vanishes, the metric reduces to the Kerr-Schild

form of the rotating AdS black hole obtained in [13].

To summarise, we find that in both even and odd dimensions, the Kerr-NUT-AdS

solution can be cast into the following multi-Kerr-Schild form:

ds2 = ds̄2 +
n∑

µ=1

2bµ f(xµ)

Uµ

(k(µ)αdxα)2 , (5.35)

where f(xµ) = 1 for odd dimensions and f(xµ) = xµ for even dimensions. The vectors

k(µ)α are n linearly-independent, mutually-orthogonal and affinely-parameterised null

geodesic congruences, satisfying

k(µ)αkα
(ν) = 0 , kα

(µ)∇̄αk(µ)β = 0 . (5.36)

Note that the index α in kα(µ) can be raised with either gαβ or ḡαβ for the above

conditions to be satisfied.

C. Harmonic 2-forms in D = 2n Dimensions

In this section, we find n harmonic 2-forms G
(µ)
(2) = dB

(µ)
(1) on the 2n-dimensional Kerr-

NUT-AdS metric (5.19), where we use the index µ = 1, 2, . . . n to label the harmonic

2-forms. The potentials have a rather simple form, given by

B
(µ)
(1) =

xµ

Uµ

( n−1∑
k=0

A(k)
µ dψk

)
. (5.37)
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The metric (5.19) admits a natural vielbein basis, namely

eµ =
dxµ√
Qµ

, ẽµ =
√

Qµ

( n−1∑
k=0

A(k)
µ dψk

)
. (5.38)

In this vielbein basis, the harmonic 2-forms G
(µ)
(2) are given by

G
(µ)
(2) =

∑
f (µ)

ν eν ∧ ẽν , (5.39)

where the coefficients are

f (µ)
µ =

1

U2
µ

[
A(n−1) +

n−2∑
k=1

(−1)k(2k + 1)x2(k+1)
µ A(n−k−2)

µ

]
,

f (µ)
ν = −2xµxν

U2
µ

∏
ρ �=µ,ν

(x2
ρ − x2

µ) , with µ �= ν . (5.40)

We verify with low-lying examples that all of the G
(µ)
(2) are harmonic, i.e. dG

(µ)
(2) =

0 = d ∗ G
(µ)
(2) . It is worth observing that these 2-forms are harmonic regardless of the

detailed structure of the functions Xµ.

It was shown in chapter III that the BPS limit of the metric (5.19) gives rise to

the non-compact Calabi-Yau metric that can provide a resolutions of the cone over

the Einstein-Sasaki spaces. Under suitable coordinate transformation, the metric is

given by

ds2 =
n∑

µ=1

{dx2
µ

Qµ

+ Qµ

( n−1∑
k=0

A(k)
µ dψk

)2}
, (5.41)

where we define

Qµ =
4Xµ

Uµ

, Uµ =
∏′n

ν=1
(xν − xµ) , Xµ = xµ

n−1∏
k=1

(xµ + αk) + 2bµ ,

A(k)
µ =

′∑
ν1<ν2<···<νk

xν1xν2 · · ·xνk
. (5.42)

Note that we have Wick rotated the metric to have Euclidean signature. We can

choose the same form of the vielbein basis as in (5.38). The Kähler 2-form is then
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given by

J(2) =
n∑

µ=1

eµ ∧ ẽµ . (5.43)

The 1-form potentials for the harmonic 2-forms are given by

B
(µ)
(1) =

1

Uµ

( n−1∑
k=0

A(k)
µ dψk

)
. (5.44)

The corresponding harmonic 2-forms G
(µ)
(2) have the same form as in (5.39), with the

functions f
(µ)
ν are given by

f (µ)
ν =

2

U2
µ

∏
ρ �=µ,ν

(xρ − xµ) , with µ �= ν , f (µ)
µ = −

∑
ν �=µ

f (µ)
ν . (5.45)

Note that G
(µ)
(2) satisfy the linear relation

∑n
µ=1 G

(µ)
(2) = 0. Thus, in the BPS limit,

there are (n − 1) linearly independent such harmonic 2-forms. Together with the

Kähler 2-form, the total number of harmonic 2-forms is n again.

D. Conclusion

In this chapter, we explicitly express the general Kerr-NUT-AdS metrics in Kerr-

Schild form for both even and odd dimensions. We demonstrate that, in a suitable

coordinate system the mass, NUT and angular momentum parameters enter linearly

in the metric, and hence they can be viewed as a linear perturbation of pure AdS

spacetime.

We also obtain n harmonic 2-forms on the 2n-dimensional Kerr-NUT-AdS met-

rics. An interesting property of these harmonic 2-forms is that the closure and co-

closure do not depend on the detailed structure of the functions Xµ. This provides a

potential ansatz for charged Kerr-NUT-AdS solutions for pure Einstein-Maxwell the-

ories in higher dimensions, whose explicit analytical solutions remain elusive. In the

case of four dimensions, the back-reaction of the gauge field to the Einstein equations
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gives precisely the charged Plebanski metric [31], where only the functions Xµ in the

metric have extra contributions from the electric and magnetic charges. However, the

same phenomenon does not occur in higher dimensions; nevertheless, the harmonic

2-forms we constructed can be viewed as charged Kerr-NUT-AdS solutions at the lin-

ear level for small-charge expansion. Together with the charged slowly-rotating black

holes obtained in [39, 40], our results may lead to the general charged Kerr-NUT-AdS

solutions.
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CHAPTER VI

RESOLVED CALABI-YAU CONES AND FLOWS FROM LABC

SUPERCONFORMAL FIELD THEORIES

A. Introduction

The AdS/CFT correspondence relates type IIB string theory on AdS5 × S5 to four-

dimensional N = 4 U(N) superconformal Yang-Mills theory [9, 41, 42]. More gener-

ally, type IIB string theory on AdS5 ×X5, where X5 is an Einstein-Sasaki space such

as T 1,1, Y pq [43, 32] or Labc [22, 23], corresponds to an N = 1 superconformal quiver

gauge theory. The dual gauge theories have been identified in [44] for T 1,1, in [45, 46]

for Y pq and in [47, 48, 49] for Labc.

There is a prescription for mapping perturbations of the supergravity background

to operators in the dual gauge theory [41, 42]. In particular, motion in the Kähler

moduli space of the Calabi-Yau cone over the Einstein-Sasaki space corresponds to

giving vacuum expectation values (vevs) to the fundamental fields, such that only non-

mesonic operators get vevs. This is because the mesonic directions of the full moduli

space correspond to the motion of the D3-branes in the Calabi-Yau space whereas

the non-mesonic, or baryonic, directions are associated with either deformations of

the geometry or turning on B-fields. This has been studied for a blown-up 2-cycle in

the resolved conifold in [50], as well as for a blown-up 4-cycle in the resolved conifold

[51], Y pq cones [52], Labc cones [53] and general Calabi-Yau cones [54]. All of these

resolved Calabi-Yau cones with blown-up 4-cycles follow the general construction

given in [55, 56].

In this chapter, we shall apply the state/operator correspondence to a general

class of resolved Calabi-Yau cones over Labc with a blown-up 2-cycle or 4-cycle. These
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metrics are obtained from the Euclideanization of the BPS limit of the six-dimensional

Kerr-NUT-AdS solutions constructed in chapter II, III.∗ In particular, blowing up

a 2-cycle or 4-cycle corresponds to giving a vev to a real dimension-two and/or six

scalar operator. Although cycles are being blown up, in all but two cases there remain

singularities [57, 58]. However, there is a countably infinite subset of cases where there

is an ALE singularity, on which perturbative string dynamics is well-defined. Some

of these cases were studied in [54]. While adding a large number of D3-branes that

are uniformly distributed, or “smeared”, on the blown-up cycle ends up inducing a

power-law singularity at short distance†, the resulting backgrounds can nevertheless

be reliably used to describe perturbations around the UV conformal fixed point of

the quiver gauge theories. Close to the UV fixed point, blowing up a 2-cycle on the

Labc cone corresponds to giving a vev to an operator that is analogous to the case

of the resolved conifold. Therefore, we shall refer to these spaces as resolved cones,

though it should be understood that there are still orbifold-type singularities.

The supergravity background can also be perturbed by adding a harmonic 3-form

which lives on the Calabi-Yau metrics. If this is a pure (2, 1)-form then supersym-

metry will be preserved. Furthermore, if this form carries nontrivial flux then it

corresponds to D5-branes wrapped on a 2-cycle in the Calabi-Yau space. The intro-

duction of these fractional D3-branes eliminates the conformal fixed point in the UV

limit of the quiver gauge theory. The theory undergoes a Seiberg duality cascade

and the ranks of some of the gauge groups are reduced with decreasing energy scale.

The supergravity solutions corresponding to fractional branes have been constructed

∗This is the even-dimensional analog of the relation between the Einstein-Sasaki
spaces constructed in [26] and odd-dimensional BPS Kerr-NUT-AdS solutions.

†This singularity is due to the smearing of the D3-brane charge on the blown-up
cycle. A completely non-singular solution with D3-branes stacked at a single point
on the resolved conifold has been constructed [59].
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for the cones over T 11 [60, 61], Y pq [62] and Labc spaces [63, 64]. Fractional branes

have also been considered for Calabi-Yau spaces with blown-up cycles, such as the

deformed conifold [65], resolved conifold [66] and regularized conifold [51], as well as

the resolved Y pq cones with blown-up 4-cycles [54]. We shall also consider continuous

families of 3-forms that do not have nontrivial flux. In this case, there remains a

conformal fixed point in the UV limit of the field theory. It has been proposed that

the ranks of some of the gauge groups are reduced with decreasing energy scale via

the Higgs mechanism [67].

Since the Labc spaces have cohomogeneity two, the form fields constructed on the

corresponding Calabi-Yau spaces will generally have nontrivial dependence on the

radial direction as well as the two non-azimuthal coordinates of Labc. In addition,

these forms generally break the U(1)R × U(1) × U(1) global symmetry group of the

theory down to a U(1) × U(1) symmetry group which, in particular, breaks the R-

symmetry. However, this is done in such a way that the theory preserves N = 1

supersymmetry.

The various perturbations of the AdS5 × Labc supergravity background that will

be discussed are shown in Figure 1. These perturbations, which can be superimposed

with one another, correspond to continuous families of Renormalization Group (RG)

flows from the UV superconformal fixed point of the quiver gauge theory.

The chapter is organized as follows. In section B, we discuss the geometry of the

resolved Calabi-Yau cones over the Labc spaces. A subset of these are the resolved

cones over Y pq and their various limits. We find various harmonic (2, 1)-forms on these

metrics, some of which carry nontrivial flux and some of which do not. In section

C, we apply some of our results to the AdS/CFT correspondence. In particular,

we relate the perturbations of the AdS5 × Labc background to various flows from

the UV conformal fixed point of the dual quiver gauge theory. In section D, we
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Lpqr 
Superconformal 

Field Theory

Blown-up
2-cycle

Blown-up
4-cycle

3-form
field

Fig. 1. RG flows from the superconformal fixed point of the Labc quiver gauge theory

correspond to various deformations of the supergravity background.

consider eight-dimensional resolved cones over Lpqrs and the various harmonic forms

that live on them. In section E, we carry out the corresponding analysis for the

higher-dimensional resolved cones. Lastly, conclusions are presented in section F.

B. Six-dimensional Resolved Calabi-Yau Cones

Although the Labc spaces themselves are non-singular for appropriately chosen integers

p, q, r [22, 23], the cones over these spaces have a power-law singularity at their

apex. In the case of the cone over T 1,1, this singularity can be smoothed out in two

different ways [68]. Firstly, one can blow up a 3-cycle, which corresponds to a complex

deformation. The resulting deformed conifold has been crucial for the construction

of a well-behaved supergravity dual of the IR region of the gauge theory, providing a

geometrical description of confinement [65].

One might hope that a similar resolution procedure could be performed on other

Labc cones. Although a first-order deformation of the complex structure of Y pq cones

has been found in [69], there exists an obstruction to finding the complex deformations

beyond first order [70, 71]. There is also evidence from the field theory side that
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such deformations will break supersymmetry for the Y pq cones [72, 73, 74, 75] as

well as for a large class of Labc cones [75]. Nevertheless, there are Labc cones which

allow for complex structure deformations [70, 71], which can be understood from the

corresponding toric diagrams [48].‡ However, the explicit metrics for these deformed

Labc cones, let alone the solutions for D3-branes on these cones, are not known.

2-cycle

4-cycle

Fig. 2. A 4-cycle within the base space of a cone over Labc can be blown up. Within

this 4-cycle lies a 2-cycle. The volumes of these two cycles correspond to two

independent Kähler moduli.

The second way in which the T 1,1 cone can be rendered regular is by blowing up a

2-cycle [68]. Also, for the case of a cone over T 1,1/Z2, the singularity can be resolved by

blowing up a 4-cycle. Both of these resolutions are examples of Kähler deformations

which, as we shall see shortly, can also be performed on the Labc cones C(Labc).

Moreover, the 2-cycle actually lives within the 4-cycle, as illustrated in Figure 2.

This means that there are two Kähler moduli associated with the 4-cycle. For certain

parameter choices, we can have the 4-cycle corresponds to the Einstein-Kähler base

space of Labc, whose metric can be obtained by taking a certain scaling limit of a

Euclideanized form of the Plebanski-Demianski metric [63]. It is also possible to have

‡We thank Angel Uranga for discussions on this point.
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the volume of the 4-cycle vanishes, whilst keeping a 2-cycle blown up.

It has been found that the cone over Y 2,1 can be rendered completely regular

by blowing up an appropriate 4-cycle [57]. However this, together with the resolved

cones over T 1,1 and T 1,1/Z2, constitute the only examples of non-singular resolved

cones over the Labc spaces [58]. Although we shall refer to these spaces as “resolved”

Labc cones, there are generally orbifold-type singularities remaining. In the limit of

a vanishing 2-cycle, this can be seen simply because at short distance the geometry

becomes a direct product of R
2 and the four-dimensional Einstein-Kähler base space

of Labc, which is itself an orbifold. Nevertheless, the resolved cones over Labc can be

embedded in ten dimensions to give Ricci-flat backgrounds Mink4×C(Labc), on which

perturbative string dynamics is well-defined. However, as we shall see in section C, the

back-reaction of D3-branes leads to a power-law singularity at short distance. This

singularity is due to the fact that we are smearing the D3-branes on the blown-up

cycle. For the case of the resolved conifold, it has been shown that if the D3-branes

are stacked at a single point then the supergravity solution is completely regular [59].

1. Resolved Cones over Y pq

Before turning to resolved cones over the general cohomogeneity-two Labc spaces, it

is instructive first to consider the subset involving the cohomogeneity-one Y pq spaces.

The metric of the resolved cone over Y pq is given in chapter II,

ds2
6 =

x + y

4X
dx2+

X

x + y
(dτ +

y

2α
σ3)

2+
x + y

4Y
dy2+

Y

x + y
(dτ− x

2α
σ3)

2+
x y

4α
(σ2

1 +σ2
2) .

(6.1)

where

X = x(x + α) − 2µ

x
, Y = y(α − y) +

2ν

y
, (6.2)
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and that

σ3 = dψ + cos θ dφ , σ2
1 + σ2

2 = dθ2 + sin2 θ dφ2 . (6.3)

It has been shown that the only completely regular examples are the resolved cones

over T 1,1, T 1,1/Z2 and Y 2,1 [57, 58]. We shall now consider various limits of the metric

(6.1).

Resolved conifold

In order to reduce to a resolved cone over T 11 (or T 11/Z2), we need to select

ν such that Y (y) has a double root. This happens when ν = − 2
27

α3. Making the

coordinate redefinition

y = 2
3
α+ε cos θ̃ , ν = − 2

27
α3+ 1

2
αε2 , τ = − 2

9ε
φ̃ , σ3 → σ3+

2α

3ε
dτ , (6.4)

and setting the parameter ε to zero, we find that the metric becomes

ds2
6 =

x + 2
3
α

4X
dx2+

X

9(x + 2
3
α)

(σ3+cos θ̃ dφ̃)2+ 1
6
(x+ 2

3
α)(dθ̃2+sin2 θ̃ dφ̃2)+ 1

6
x (σ2

1+σ2
2) .

(6.5)

If µ = 0, there is a blown-up S2 and the solution describes the resolved conifold [68].

If, on the other hand, α = 0, then there is a blown-up S2 × S2 and the solution

describes the regularized conifold [51]. In fact, it has been shown that one can always

blow up a 4-cycle on any cone over an Einstein-Sasaki space [55, 56]. We shall now

take a look at the analogous limits for the resolved cones over the Y pq spaces.

The α = 0 limit

If we let y → αy, ν → α3ν and then take α → 0, we obtain the limit

ds2 =
x

4X
dx2 +

X

x
(dτ + 1

2
yσ3)

2 + x
[dy2

4Y
+ Y σ2

3 + 1
4
y(σ2

1 + σ2
2)

]
, (6.6)
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where

X = x2 − 2µ

x
, Y = y(1 − y) +

2ν

y
. (6.7)

There is a single Kähler modulus, which corresponds to a blown-up 4-cycle with a

volume parameterized by µ. This is the analog of the resolved cone for general Y pq

spaces. However, unlike the T 1,1/Z2 case, this metric has an orbifold-type singularity

at its apex, since the geometry reduces to the direct product of R
2 and an Einstein-

Kähler orbifold.

The µ = 0 limit: blowing up 2-cycles

One can also consider the limit in which µ vanishes, in which case x runs from 0

to asymptotic ∞. Near x = 0, we can express the metric as

ds2 = y
(
dr2 + 1

4
r2(σ3 +

2

y
dτ)2 + 1

4
r2(σ2

1 + σ2
2) +

dy2

4Y

)
+ Y (dτ − 1

2
r2σ3)

2 , (6.8)

where x = r2. At r = 0 there is a collapsing 3-sphere, instead of a circle as in

the previous limit. There is a single Kähler modulus corresponding to the volume

of a blown-up 2-cycle, which is parameterized by α. However, unlike the analogous

resolved conifold for which there is a smooth 2-sphere, in general this 2-cycle is a

“tear-drop” with a conical singularity.

Calabi-Yau structure

The Calabi-Yau structure on the metric (6.1) is given by a Kähler form J and a

holomorphic (3, 0)-form G(3). These can be expressed in the complex vielbein basis

ε1 = e1 + i e2 , ε2 = e3 + i e4 , ε3 = e5 + i e6 , (6.9)
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where the vielbein is conveniently chosen to be

e1 =

√
x + y

4X
dx , e2 =

√
X

x + y

(
dτ +

y

2α
σ3

)
, e3 =

√
x + y

4Y
dy ,

e4 =

√
Y

x + y

(
dτ − x

2α
σ3

)
, e5 =

√
xy

4α
σ1 , e6 =

√
xy

4α
σ2 . (6.10)

The Kähler 2-form is then given by

J = i
2
εi ∧ ε̄i , (6.11)

and the complex self-dual harmonic (3, 0)-form is given by

G(3) = e−3iτ ε1 ∧ ε2 ∧ ε3 ≡ W(3) + i ∗W(3) . (6.12)

Harmonic (2, 1)-forms

We are interested in harmonic (2, 1)-forms that live on the resolved Y pq cones,

since their presence preserves the minimal supersymmetry of the theory. We find

there exist the following five such (2, 1)-forms:

Φ1 =
e−3iτ

xX
ε̄1∧ε2∧ε3 , Φ2 =

e−3iτ

y Y
ε̄2∧ε1∧ε3 , Φ3 =

e3iτ

x y X Y
ε̄3∧ε1∧ε2 ,

Φ4 =
1

x y
√

x+y

( 1

x
√

Y
ε2∧(ε̄3∧ε3−ε̄1∧ε1)− 1

y
√

X
ε1∧(ε̄3∧ε3−ε̄2∧ε2)

)
,

Φ5 =
1√
x+y

( 1

x2
√

Y
ε2∧(ε̄3∧ε3−ε̄1∧ε1)+

1

y2
√

X
ε1∧(ε̄3∧ε3−ε̄2∧ε2)

)
. (6.13)

All of these forms have singularities at all distances x, for certain values of y, except

for Φ1, which has a singularity only at small distance. Φ1 has a rapid fall off at large

distance, such that it does not support nontrivial flux. On the other hand, in the
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large-x limit the last harmonic form behaves like

Φ5 = 1
4
σ1∧σ2∧(σ3+

2

y
dτ)+

1

2y2
σ3∧dτ∧dy+

1

4x

(
−2σ1∧σ2∧dτ

+i
[
(
1

y
σ1∧σ2− 1

y2
σ3∧dy)∧dx+

y

Y
σ1∧σ2∧dy

])
+O(

1

x2
). (6.14)

This indicates that this form does support nontrivial flux. In the α = 0 limit, in

which we have first rescaled y → αy, Φ4 and Φ5 reduce to the same form. This form

has a singularity that is confined to small distance.

2. Resolved Cones over Labc

We now turn to the resolved cones over the general cohomogeneity-two Labc spaces.

The metric is given in chapter III,

ds2 = 1
4
(u2dx2+v2dy2+w2dz2)+

1

u2
(dτ +(y+z)dφ+yz dψ)2

+
1

v2
(dτ +(x+z)dφ+xz dψ)2+

1

w2
(dτ +(x+y)dφ+xy dψ)2, (6.15)

where the functions u, v, w are given by

u2 =
(y−x)(z−x)

X
, v2 =

(x−y)(z−y)

Y
, w2 =

(x−z)(y−z)

Z
,

X = x(α−x)(β−x)−2M , Y = y(α−y)(β−y)−2L1 ,

Z = z(α−z)(β−z)−2L2 . (6.16)

Notice that the coordinates x, y and z appear in the metric on a symmetrical footing.

We shall choose x to be the radial direction, and y and z to be the non-azimuthal

coordinates on the Labc level sets. This reduces to the Y pq subset when a = p−q,

b = p+q and c = d = p.
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Calabi-Yau structure

The complex vielbein can be written as

ε1 = e1+i e2 , ε2 = e3+i e4 , ε3 = e5+i e6 , (6.17)

in the vielbein basis

e1 = 1
2
u dx , e2 =

1

u
(dτ +(y+z)dφ+yz dψ) ,

e3 = 1
2
v dy , e4 =

1

v
(dτ +(x+z)dφ+xz dψ) ,

e5 = 1
2
w dz , e6 =

1

w
(dτ +(x+y)dφ+xy dψ) . (6.18)

Then the Kähler 2-form and complex self-dual harmonic (3, 0)-form are given by

J =
i

2
ε̄i∧εi , G(3) = ei ν ε1∧ε2∧ε3 , (6.19)

where

ν = 3τ +2(α+β)φ+αβψ . (6.20)

Harmonic (2, 1)-forms

There is a harmonic (2, 1)-form given by

Ψ1 =
ei ν

X
ε̄1∧ε2∧ε3 . (6.21)

Using this, one can then construct a general class of harmonic (2, 1)-forms

Φ1 = f(γ) Ψ1 , (6.22)

for any function f so long as dγ∧Ψ1 = 0. This orthogonality condition is obeyed by

γ =
Y Z

X
ei 2ν , (6.23)
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as can be seen by calculating its exterior derivative:

dγ =
2γ

(x−y)(y−z)(z−x)

(
u(y−z)X ′ ε̄1−v(z−x)Y ′ ε2−w(x−y)Z ′ ε3

)
. (6.24)

We can consider the special case for which

Φ1 =
(Y Z)δ

Xδ+1
ei(2δ+1)ν ε̄1∧ε2∧ε3 , (6.25)

where δ is a continuous parameter. Due to the ν dependence, this field only preserves

U(1)2 of the U(1)3 isometry of the six-dimensional space. Although the full U(1)3

is preserved for δ = −1/2, the form field would blow up at the degeneracies of X,

Y and Z, which would lead to a singular surface in the ten-dimensional geometry.

In order for the singularity to be confined to X = 0, so that we have a reasonable

gravity description near the UV region of the dual field theory, we require that δ ≥ 0.

We find there exist the following (2, 1)-forms:

Φ1 = f
(Y Z

X
ei 2ν

) ei ν

X
ε̄1∧ε2∧ε3 ,

Φ2 = f
(XZ

Y
ei 2ν

) ei ν

Y
ε1∧ε̄2∧ε3 ,

Φ3 = f
(XY

Z
ei 2ν

) ei ν

Z
ε1∧ε2∧ε̄3 , (6.26)

Φ4 = a1Aε1∧(ε̄2∧ε2−ε̄3∧ε3)+a2B ε2∧(ε̄3∧ε3−ε̄1∧ε1)

+ a3C ε3∧(ε̄1∧ε1−ε̄2∧ε2) ,

Φ5 = b1Ax ε1∧(ε̄2∧ε2−ε̄3∧ε3)+b2By ε2∧(ε̄3∧ε3−ε̄1∧ε1)

+ b3Cz ε3∧(ε̄1∧ε1−ε̄2∧ε2) ,

where

A−1 = (y−z)2
√

(y−x)(z−x)X , B−1 = (x−z)2
√

(x−y)(z−y)Y ,

C−1 = (x−y)2
√

(x−z)(y−z)Z , (6.27)
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and ai and bi are constants which satisfy the conditions a1+a2+a3 = 0 and b1+

b2+b3 = 0. Notice that the first three forms in (6.27) are related to each other by

interchanging the x, y and z coordinates, while the last two forms remain invariant.

This reflects the fact that the x, y and z coordinates appear in a completely symmetric

manner in the metric of the resolved cone over Labc. Φ1 has a singularity that is

confined to small distance, as do Φ4 and Φ5 if one performs the rescaling y → αy,

z → αz and then takes the limit α → 0. Φ4 and Φ5 have nontrivial flux, while Φ1

does not.

In the cohomogeneity-two limit, the resolved Labc cones reduce to the resolved

Y pq cones. In this limit, Φ4 and Φ5 reduce to the corresponding forms given in (6.13),

while the first three forms generalize those in (6.13) to include an arbitrary function

f . In particular, taking f = 1 reproduces the Φ1 and Φ2 in (6.13), whilst taking f to

be the inverse of its argument reproduces Φ3.

C. D3-branes and the AdS/CFT Correspondence

A supersymmetric D3-brane solution of the type IIB theory with six-dimensional

Calabi-Yau transverse space is given by

ds2 = H−1
2 (−dt2+dx2

1+dx2
2+dx2

3)+H
1
2ds2

6 ,

F5 = G(5)+∗G(5) , G(5) = dt∧dx1∧dx2∧dx3∧dH−1 ,

F(3) = FRR
(3) +i FNS

(3) = m ω(3) , (6.28)

with

6H = m2|ω(3)|2 . (6.29)

Here the 6 is a Laplacian of the Calabi-Yau metric ds2
6 and ω(3) is a harmonic

(2, 1)-form in ds2
6. We shall refer to this as a modified D3-brane solution, owing to
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the inclusion of the additional 3-form. If this 3-form carries nontrivial flux, then it

corresponds to fractional a D3-brane.

We shall take the six-dimensional metric ds2
6 of the transverse space to be the

resolved cone over Labc. We first consider the case of vanishing m. It was shown in

[76, 37, 77] that the Klein-Gordon equation for the general Kerr-NUT-AdS solutions

constructed in [16] is separable. Since our metrics arise as the Euclideanization of the

supersymmetric limit of Kerr-NUT-AdS solutions, the corresponding equation for H

is hence also separable. To see this, we consider a real superposition of the ansatz

H = H1(x) H2(y) H3(z) e2i(a0ψ−a1φ+a2 τ) . (6.30)

In general, this ansatz breaks the U(1)3 global symmetry.

The Laplace equation is then given by

0 =
1

(y−x)(z−x)

((X H ′
1)

′

H1

− (a0+a1x+a2x
2)2

X

)
+

1

(x−y)(z−y)

((Y H ′
2)

′

H2

− (a0+a1y+a2y
2)2

Y

)
+

1

(x−z)(y−z)

((Z H ′
3)

′

H3

− (a0+a1z+a2z
2)2

Z

)
, (6.31)

where a prime denotes a derivative with respect to the separated variable associated

with the function Hi. This equation can be expressed as three separate equations in

x, y and z:

(X H ′
1)

′−
((a0+a1x+a2x

2)2

X
+b0+b1x

)
H1 = 0 ,

(Y H ′
2)

′−
((a0+a1y+a2y

2)2

Y
+b0+b1y

)
H2 = 0 ,

(Z H ′
3)

′−
((a0+a1z+a2z

2)2

Z
+b0+b1z

)
H3 = 0 , (6.32)

where b0 and b1 are separation constants. These equations do not have explicit closed-
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form solutions for general ai and bi. We shall consider the simplest solution obtained

by setting all of the ai and bi to zero and letting H depend on x only. The solution

is given by

H = c0− c1 log(x−x1)

(x1−x2)(x1−x3)
+

c1 log(x−x2)

(x2−x1)(x2−x3)
+

c1 log(x−x3)

(x3−x1)(x3−x2)
. (6.33)

where x1, x2 and x3 are the three roots of X, satisfying

x1+x2+x3 = α+β , x1x2+x1x3+x2x3 = α β , x1x2x3 = 2M . (6.34)

Consider the radial coordinate x with x1 ≤ x ≤ ∞. Then the function H has a

logarithmic divergence at x1.

We now consider solutions for which the 3-form ω(3) is turned on. A simple

solution can be obtained by rescaling y → αy, z → βz and then taking the limit

α = β = 0. The general construction of [55, 56] is recovered for the case of this class

of resolved Labc cones [53]. We can then take ω(3) to be the harmonic (2, 1)-form Ψ1

given by (6.21). Then, for a certain choice of integration constants, the resulting H

is given by

H =
x

18M(x3−2M)
, (6.35)

which diverges at x3 = 2M .

The divergence of the H function in both (6.33) and (6.35) corresponds to a

naked singularity in the short-distance region of the geometry. This singularity of

the D3-brane solution arises even in the case of the resolved cone over Y 2,1, which

itself is completely regular [57]. This singularity is due to the fact that the D3-branes

have been smeared over the blown-up 4-cycle. A shell of uniformly distributed branes

tends to be singular at its surface. For the case of the resolved conifold, in which

there is a blown-up 2-cycle, a completely regular solution has been found for which
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the D3-branes are stacked at a single point [59]. This involves solving the equations

(6.32) for the case of T 1,1 for which there is a delta function source. The solution is

expressed as an expansion in terms of the angular harmonics. It would be interesting

to explore than analogous construction for the resolved Labc cones. All of these other

examples, with the sole exception of Y 2,1, will still have orbifold singularities.

Another possible way in which regular solutions can be obtained is to blow up

a 3-cycle instead of a 4-cycle. Then an appropriate 3-form would prevent the 3-cycle

from collapsing, as in the case of the deformed conifold [65]. As already discussed in

the previous section, while there exists an obstruction to complex deformations of Y pq

cones there are other subsets of the Labc cones which do allow for complex structure

deformations [70, 71, 48]. However, the explicit metrics for these deformed Labc cones

are not known.

Although the solution describing D3-branes on a resolved Labc cone becomes

singular at short distance, we can still use this background at large distance to study

various flows of the quiver gauge theory in the region of the UV conformal fixed point.

At large x, (6.29) becomes

4

x2
∂x

(
X∂xH

)
= m2|ω(3)|2 , (6.36)

where X is given by (6.16). Note that this equation applies for arbitrary α and β,

since for large x we can consistently neglect the dependence of H on the non-azimuthal

“angular” coordinates y and z. Again considering the case of the self-dual harmonic

(2, 1)-form Ψ1 given by (6.21), the resulting asymptotic expansion of H is

H =
Q

x2

(
1+

c2

x
+

c4

x2
+

c6

x3
+· · ·

)
, (6.37)
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where

c2 =
2

3
(α+β) ,

c4 =
1

2
(α2+αβ+β2) ,

c6 =
1

30

(m2

Q
+12(α2+β2)(α+β)+2M

)
. (6.38)

We have set an additive constant to zero so that the geometry is asymptotically

AdS5×Labc. This can be seen from the leading x−2 ∼ r−4 term in H (since x has

dimension two, we can take x ∼ r2 for large x). The transformation properties and

dimensions of the operators being turned on in the dual field theory can be read off

from the linearized form of the supergravity solution (6.28). The metric perturbations

due to H have the same form as those within the metric ds2
6 itself. Therefore, from

the asymptotic expansion of H given in (6.37), we can read off that there are scalar

operators of dimension two, four and six with expectation values that go as c2, c4 and

c6, respectively. This is consistent with the perturbations of the 2-form and 4-form

potentials. We shall now discuss the gauge theory interpretation of the blown-up

2-cycles, as well as the 3-form, in more detail.

Blown-up 2-cycle

First, we consider the case with vanishing M , for which the six-dimensional space

is the Labc analog of the resolved conifold, in the sense that there is a blown-up 2-

cycle. The volume of the 2-cycle is characterized by the parameters α and β. This is

a global deformation, in that it changes the position of the branes at infinity [54].

The parameters α and β specify the expectation values of dimension n non-

mesonic scalar operators in the dual gauge theory. For the case β = −α, c2 and c6

vanish, while c4 can only vanish for α = β = 0. To identify the specific dimension-two

operator whose expectation value goes as c2, it is helpful to consider the description
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of the resolved cone over Labc in terms of four complex numbers zi which satisfy the

constraint
4∑

i=1

Qi |zi|2 = t , (6.39)

where one then takes the quotient by a U(1) action [45]. The parameter t is the area

of the blown-up CP 1 and corresponds to the coefficient of the Fayet-Iliopoulos term

in the Lagrangian of the field theory. The zi correspond to the lowest components of

chiral superfields. This can be described as a gauged linear sigma model with a U(1)

gauge group and 4 fields with charges Qi. Then the above constraint corresponds to

setting the D-terms of the gauged linear sigma model to zero to give the vacuum. For

the Labc spaces, the Qi are given by Qi = (a,−c, b,−d) where d = a+b−c [47]. The

requirement
∑4

i=1 Qi = 0 guarantees that the 1-loop β-function vanishes, so that the

sigma model is Calabi-Yau.

Since t acts as a natural order-parameter in the gauge theory, from (6.39) it is rea-

sonable to suppose that blowing up the 2-cycle corresponds to giving an expectation

value that goes as c2 to the dimension-two scalar operator§

K = aAαĀα̇−cBα̇B̄α̇+bCαC̄α−dDα̇D̄α̇ . (6.40)

This operator lies within the U(1) baryonic current multiplet. Since this conserved

current has no anomalous dimension, the dimension of K is protected. K reduces to

the operator discussed in [54] for the case of a resolved cone over T 11/Z2, for which

a = b = c = d = 1.

Blown-up 4-cycle

For nonvanishing M in the function X, one generically blows up a 4-cycle. Unlike

§We thank Amihay Hanany and Igor Klebanov for correspondence on this point.
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the case of a blown-up 2-cycle, this is a local deformation since it does not change the

position of the branes at infinity [54]. In the limit of vanishing α and β, one recovers

the general construction obtained in [55, 56] that has been recently discussed in

[52, 53, 54]. Also note that c6 vanishes for the appropriate values of M , α and β.

It has been shown that the number of formal Fayet-Iliopoulos parameters can be

matched with the possible deformations, which is suggestive that the dimension-six

operator that is turned on is associated with the gauge groups in the quiver. Although

the specific operator has not been identified, it has been proposed that they are of

the schematic form [54]

Oi =
∑

g

ci,gWgW̄g , (6.41)

where the gauge groups in the quiver have been summed over, Wg is an operator

associated with the field strength for the gauge group g, and ci,g are constants. The

dimension-six operator might also have contributions from the bifundamental fields

of the form

a1AαĀαBα̇B̄α̇CβC̄β+a2AαĀαBα̇B̄α̇Dβ̇D̄β̇+a3AαĀαCβC̄βDβ̇D̄β̇+a4Bα̇B̄α̇CβC̄βDβ̇D̄β̇,

(6.42)

where the ai are constants. It is proposed that a particular combination of all of these

terms in (6.41) and (6.42) correspond to the blown-up 4-cycle¶. One possibility is

that the contributions from the bifundamental fields in (6.42) are present only when

α and β are nonvanishing.

Turning on the 3-form

Turning on a 3-form results in the ranks of some of the gauge groups of the

dual quiver gauge theory being reduced with decreasing energy scale. For the case in

¶We thank Sergio Benvenuti for correspondence on this point.
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which the 3-form has nontrivial flux, the theory undergoes a Seiberg duality cascade

[60, 61, 65]. On the other hand, the 3-form Ψ1 given by (6.21) does not have nontrivial

flux. For a case such as this, it has been proposed that the reduction in ranks of gauge

groups is due to Higgsing [67]. In particular, from (6.37), we see that the parameter m

associated with the 3-form also contributes to the expectation value c6 of a dimension-

six scalar operator. An additional effect of this 3-form is that the U(1) R-symmetry

is broken. The theory still preserves N = 1 supersymmetry.

D. Eight-dimensional Resolved Calabi-Yau Cones

1. Cohomogeneity-two Metrics

We now turn to eight-dimensional Calabi-Yau spaces, which can be used to construct

M2-brane solutions of eleven-dimensional supergravity. Before considering the general

cohomogeneity-four resolved cones over Lpqrs, we shall first look at the cohomogeneity-

two metrics, which can be built over an S2×S2 base space. These metrics are given

in chapter II, III,

ds2
8 = 1

4
u2dx2+ 1

4
v2dy2+

1

u2

[
dτ +

y

3α
(σ3+σ̃3)

]2

+
1

v2

[
dτ− x

3α
(σ(3)+σ̃3)

]2

+c2(σ2
1+σ2

2+σ̃2
1+σ̃2

2)

u2 =
x+y

X
, v2 =

x+y

Y
, c2 =

xy

6α
,

X = x(x+α)− 2µ

x2
, Y = y(α−y)+

2ν

y2
, (6.43)

Completely regular examples were discussed in [58].
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Calabi-Yau structure

We can define the vielbein basis

e1 = 1
2
u dx , e2 = −1

u
(dτ +

y

3α
(σ3+σ̃3)) , e3 = 1

2
v dy , (6.44)

e4 =
1

v
(dτ− x

3α
(σ3+σ̃3)) , e5 = c σ1 , e6 = c σ2 , e7 = c σ̃1 , e8 = c σ̃2 ,

and then the complex vielbein

ε1 = e1+i e2 , ε2 = e3+i e4 , ε3 = e5+i e6 , ε4 = e7+i e8 . (6.45)

The Kähler 2-form and holomorphic (4, 0)-form are given by

J = i
2
εi∧ε̄i , (6.46)

and

G(4) = e−4iτ ε1∧ε2∧ε3∧ε4 . (6.47)

Harmonic (2, 2)-forms

We find four self-dual (2, 2)-forms; they are given by

Φ1 =
(ε̄1∧ε1+ε̄2∧ε2)∧(ε̄3∧ε3+ε̄4∧ε4)−2(ε̄1∧ε1∧ε̄2∧ε2+ε̄3∧ε3∧ε̄4∧ε4)

x3y3

Φ2 =
(ε̄1∧ε1−ε̄2∧ε2)∧(ε̄3∧ε3−ε̄4∧ε4)

xy(x+y)2
,

Φ3 =
e−4iτ (ε̄1∧ε̄2∧ε3∧ε4+ε1∧ε2∧ε̄3∧ε̄4)

x2y2 XY
,

Φ4 =
(ε̄1∧ε2−ε1∧ε̄2)∧(ε̄3∧ε3+ε̄4∧ε4)

xy
√

XY
. (6.48)

Notice that Φ1 and Φ2 are square integrable, in that they are well behaved at both

small and large asymptotic distance. For the cases in which the eight-dimensional

Calabi-Yau spaces are regular [58], these harmonic forms can be used to construct
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completely non-singular M2-brane solutions to eleven-dimensional supergravity.

2. Cohomogeneity-four Metrics on Resolved Cones over Lpqrs

We now turn to the general cohomogeneity-four metrics on resolved Calabi-Yau cones

over the seven-dimensional Einstein-Sasaki spaces Lpqrs, which can be written as in

chapter III

ds2
8 = 1

4
(u2

1 dx2
1+u2

2 dx2
2+u2

3 dx2
3+u2

4 dx2
4)

+
1

u2
1

[dτ +(x2+x3+x4)dφ+(x2x3+x2x4+x3x4)dψ+x2x3x4dχ]2

+
1

u2
2

[dτ +(x1+x3+x4)dφ+(x1x3+x1x4+x3x4)dψ+x1x3x4dχ]2

+
1

u2
3

[dτ +(x1+x2+x4)dφ+(x1x2+x1x4+x2x4)dψ+x1x2x4dχ]2

+
1

u2
4

[dτ +(x1+x2+x3)dφ+(x1x2+x1x3+x2x3)dψ+x1x2x3dχ]2 , (6.49)

where

u2
1 =

(x2−x1)(x3−x1)(x4−x1)

X1

, u2
2 =

(x1−x2)(x3−x2)(x4−x2)

X2

,

u2
3 =

(x1−x3)(x2−x3)(x4−x3)

X3

, u2
4 =

(x1−x4)(x2−x4)(x3−x4)

X4

,

X1 = x1(a−x1)(b−x1)(c−x1)−2M1 ,

X2 = x2(a−x2)(b−x2)(c−x2)−2M2 ,

X3 = x3(a−x3)(b−x3)(c−x3)−2M3 ,

X4 = x4(a−x4)(b−x4)(c−x4)−2M4 . (6.50)
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Calabi-Yau structure

We shall choose the vielbein basis

e1 = 1
2
u1 dx1 , u3 = 1

2
u2 dx2 , e5 = 1

2
u3 dx3 , e7 = 1

2
u4 dx4 ,

e2 =
1

u1

[dτ +(x2+x3+x4)dφ+(x2x3+x2x4+x3x4)dψ+x2x3x4dχ] ,

e4 =
1

u2

[dτ +(x1+x3+x4)dφ+(x1x3+x1x4+x3x4)dψ+x1x3x4dχ] ,

e6 =
1

u3

[dτ +(x1+x2+x4)dφ+(x1x2+x1x4+x2x4)dψ+x1x2x4dχ] ,

e8 =
1

u4

[dτ +(x1+x2+x3)dφ+(x1x2+x1x3+x2x3)dψ+x1x2x3dχ] . (6.51)

The holomorphic vielbein are then given by

ε1 = e1+i e2 , ε2 = e3+i e4 , ε3 = e5+i e6 , ε4 = e7+i e8 . (6.52)

Defining

J =
i

2
(ε̄1∧ε1+ε̄2∧ε2+ε̄3∧ε3+ε̄4∧ε4) ,

Ω = ei ν ε1∧ε2∧ε3∧ε4 , (6.53)

where

ν = 4τ +3(a+b+c) φ+2(ab+bc+ca) ψ+abc χ , (6.54)

it is straightforward to verify that

dJ = 0 , dΩ = 0 , (6.55)

and hence that the metric is indeed Ricci-flat Kähler, with J being the Kähler form

and Ω the holomorphic (4, 0)-form.
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Harmonic (3, 1)-forms

We find that harmonic (3, 1)-forms can be constructed as follows. First, it can

be verified that

G(3,1) =
1

X1

ei ν ε̄1∧ε2∧ε3∧ε4 (6.56)

is closed, and hence harmonic. Next, we define the function

γ =

√
X2X3X4

X1

ei ν , (6.57)

which can be shown to satisfy the relation

dγ =
u1 ei ν

u2u3u4 (x1−x2)(x1−x3)(x1−x4)

(
u1 (x2−x3)(x2−x4)(x4−x3)X

′
1 ε̄1

−u2 (x3−x1)(x3−x4)(x4−x1) X ′
2 ε2+u3 (x1−x2)(x4−x1)(x4−x2) X ′

3 ε3

+u4 (x1−x2)(x3−x1)(x2−x3) X ′
4 ε4

)
, (6.58)

where X ′
i denotes the derivative of Xi with respect to its argument xi. It therefore

follows that dγ∧G(3,1) = 0, and so

Φ(3,1) = f(γ) G(3,1) (6.59)

is a harmonic (3, 1)-form for any function f . In particular, we have a family of

harmonic (3, 1)-forms given by

Ψ(3,1) =
Xδ

2 Xδ
3 Xδ

4

Xδ+1
1

e(2δ+1) i ν ε̄1∧ε2∧ε3∧ε4 (6.60)

for any constant δ. For nonzero δ, these forms preserve only a U(1)3 subgroup of

the U(1)4 isometry of the eight-dimensional space. Note that Ψ(3,1) has a singularity

only at short distance if δ ≥ 0, where we have taken x1 to be the radial direction.

Additional harmonic (3, 1)-forms can be constructed by permuting the xi directions,

but these forms have singularities for all x1. They are analogous to the (2, 1)-forms Φ1,
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Φ2 and Φ3 in (6.27) for a six-dimensional space, and they do not support nontrivial

flux.

Harmonic (2, 2)-forms

We can also construct harmonic (2, 2)-forms as follows. We define (2, 2)-forms

G(2,2) = f (ε̄1∧ε1∧ε̄2∧ε2+ε̄3∧ε3∧ε̄4∧ε4)

+g (ε̄1∧ε1∧ε̄3∧ε3+ε̄2∧ε2∧ε̄4∧ε4)

+h (ε̄1∧ε1∧ε̄4∧ε4+ε̄2∧ε2∧ε̄3∧ε3) , (6.61)

where f , g and h are functions of (x1, x2, x3, x4). Imposing the closure of G(2,2) leads

to three independent solutions for f , g and h, namely

f = g = h = 1 , (6.62)

f =
1

(x1−x2)2(x1−x3)(x2−x4)(x3−x4)2
,

g =
x1 (2x4−x2−x3)+x2 (2x3−x4)−x3 x4

(x1−x2)2(x1−x3)2(x2−x4)2(x3−x4)2
,

h =
1

(x1−x2)(x1−x3)2(x2−x4)2(x3−x4)
, (6.63)

and

f =
1

(x1−x3)(x2−x3)2(x1−x4)2(x2−x4)
,

g =
1

(x1−x3)2(x2−x3)(x1−x4)(x2−x4)2
,

h =
x1 (x3+x4−2x2)+x2 (x3+x4)−2x3 x4

(x1−x3)2(x2−x3)2(x1−x4)2(x2−x4)2
. (6.64)

These forms are somewhat analogous to the (2, 1)-forms Φ4 and Φ5 given in (6.27)

for a six-dimensional space. The first solution, (6.62), is just the harmonic (2, 2)-form
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J∧J . It follows from (6.61) that J∧G(2,2) is proportional to (f+g+h), and so J∧G(2,2)

is non-zero for (6.62). However, each of the solutions (6.63) and (6.64) satisfies

f +g+h = 0, and so these two harmonic (2, 2)-forms satisfy the supersymmetric

condition

J∧G(2,2) = 0 . (6.65)

Notice also that these harmonic (2, 2)-forms are square integrable. These can be used

to construct modified M2-brane solutions, which have only orbifold-type singularities.

Note that none of these cohomogeneity-four Calabi-Yau spaces are completely regular

[58].

3. M2-brane Solutions

We can use these eight-dimensional spaces, and the harmonic 4-forms which they sup-

port, to construct a modified M2-brane solution to eleven-dimensional supergravity,

given by

ds2
11 = H−2/3(−dt2+dx2

1+dx2
2)+H1/3ds2

8 ,

F(4) = dt∧dx1∧dx2∧dH−1+m L(4) , (6.66)

where

H = − 1

48
m2L2

(4) , (6.67)

and L(4) is an (anti)self-dual harmonic 4-form on the eight-dimensional space with

the metric ds2
8.

Let us first consider the case with m = 0, for which the Laplace equation on the

Calabi-Yau metric is separable. The solution for general dimensionality is presented

in the appendix E. Here we just give a solution for the eight-dimensional case that
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depends only on the radial variable x1; it is given by

H =

∫ x1 3Q

X(x′
1)

dx′
1 . (6.68)

Thus in the asymptotic region at large x1, the function H has the behavior

H =
Q

x3
1

(
1+

c2

x1

+· · ·
)

, where c2 =
3

4
(α+β+γ) . (6.69)

We have taken an arbitrary additive constant to zero, so that the geometry is asymp-

totically AdS4×Lpqrs. Since x1 has dimension two, we see that there is a non-mesonic

dimension-two scalar operator being turned on with expectation value c2.

It is especially interesting to construct M2-brane solutions using one of the

square-integrable harmonic (2, 2)-forms that we found previously, since this guar-

antees that with the appropriate integration constants the only singularities are of

orbifold type. This is because the 4-form prevents the blown-up 4-cycle from col-

lapsing. Moreover, examples of regular eight-dimensional Calabi-Yau spaces that

have been discussed in [58] can be used to construct completely non-singular M2-

brane solutions. The resulting geometry smoothly interpolates between AdS4×Lpqrs

asymptotically, and a direct product of Minkowski3 and a compact space at short dis-

tance. Many examples of cohomogeneity-one solutions of this type were constructed

in [81, 82, 83]. Although not much is known even about the UV conformal fixed point

of the dual three-dimensional N = 2 super Yang-Mills field theory, based on the ge-

ometrical properties of the supergravity background it flows to a confining phase in

the IR region.
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E. Harmonic Forms on Higher-dimensional Resolved Cones

In this section, we extend some of the constructions of harmonic middle-dimension

forms to the case of higher-dimensional metrics on the resolutions of cones over

Einstein-Sasaki spaces. We take as our starting point the local Ricci-flat Kähler

metrics in dimension D = 2n+4 that were considered in [58]:

ds̃2 =
x+y

4X
dx2+

x+y

4Y
dy2+

X

x+y

[
dτ +

y

α
σ
]2

+
Y

x+y

[
dτ− x

α
σ
]2

+
xy

α
dΣ2

n

σ = dψ+A , X = x(x+α)− 2µ

xn
, Y = y(α−y)+

2ν

yn
, (6.70)

where dΣ2
n is a metric on a 2n-dimensional Einstein-Kähler space Z, satisfying Rab =

2(n+1) gab, with Kähler form J = 1
2
dA. (We have made some minor changes of

coordinates compared to the metric presented in [58].) For convenience, we shall set

the constant α to unity. This can always be done, when α �= 0, by means of coordinate

scalings together with an overall rescaling of the Ricci-flat metric. The special case

α = 0 can be recovered via a limiting procedure.

Next, we define the 2-forms

ωx = 1
2
dx∧(dτ +y σ) , ωy = 1

2
dy∧(dτ−xσ) , ω = xy J . (6.71)

It can easily be verified that Ĵ ≡ ωx−ωy+ω is closed and, in fact, this is the Kähler

form of the Ricci-flat Kähler metric (6.70). In the case that n is even (n = 2m), we

find that the middle-degree form

G(2m+2) =
1

(xy)2m+1

[
ωx∧ωy∧ωm−1+

1

m+1
(ωx−ωy)∧ωm− 1

m(m+1)
ωm+1

]
(6.72)

is closed. Since it is also self-dual, it follows that it is a harmonic form. This gener-

alises the harmonic (2, 2)-form Φ1 in eight dimensions given in (6.48) and is somewhat

analogous to the (2, 1)-forms Φ4 and Φ5 given in (6.27) for a six dimensions.
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Further harmonic forms can be obtained if one takes the Einstein-Kähler base

metric dΣ2
n to be a product of Einstein-Kähler metrics. For example, if we choose it

to be the product of metrics on two copies of CP
m (recall that we are considering the

case where n = 2m is even), with Kähler forms J1 and J2 respectively (so J = J1+J2),

then defining

ω1 = xy J1 , ω2 = xy J2 , (6.73)

we find that

G̃(2m+2) =
1

(x+y)2 (xy)m
(ωx+ωy)∧

m∑
p=0

(−1)p ωm−p
1 ∧ωp

2 (6.74)

is closed and self-dual, and therefore it is harmonic.

F. Conclusions

We have investigated the Kähler moduli associated with blowing up a 2-cycle or

4-cycle on Calabi-Yau cones over the Labc spaces. This yields a countably infinite

number of backgrounds with ALE singularities on which perturbative string dynamics

is well-defined. Although adding D3-branes induces a power-law type singularity at

short distance, one can still use the AdS/CFT dictionary to relate the blown-up

cycles to deformations of the dual quiver gauge theory close to the UV conformal

fixed point. In particular, we identify the non-mesonic dimension-two real scalar

operator that acquires a vev, thereby generalizing the state/operator correspondence

for the resolved conifold over T 11 [50] and T 11/Z2 [54] to resolved cones over the

Labc spaces. On the other hand, blowing up a 4-cycle corresponds to a dimension-six

non-mesonic scalar operator getting a vev.

The resolved cones over the cohomogeneity-two Labc spaces support various har-

monic (2, 1)-forms, some of which depend nontrivially on three non-azimuthal coordi-
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nate directions. These forms can be further generalized by a multiplicative function,

so long as the exterior derivative of this function satisfies a certain orthogonality

condition. In particular, there are harmonic (2, 1)-forms which depend on continu-

ous parameters. 3-forms carrying nontrivial flux correspond to fractional D3-branes,

while those which do not correspond to giving a vev to a dimension-six operator.

For the D3-brane solutions constructed with resolved cones over Labc, we have

restricted ourselves to the case in which the D3-branes are smeared over the blown-

up cycle. As we already mentioned, this yields to a power-law singularity at short

distance. For solutions involving a 3-form field, one may be able to smooth out this

singularity by a complex deformation of the Calabi-Yau space that results in a blown-

up 3-cycle. Although it has been shown that there are obstructions to the existence

of complex deformations of cones over Y pq spaces, there are other subsets of the Labc

cones which do allow for complex structure deformations [70, 71, 48]. It would be

useful to construct the explicit metrics describing these deformed Labc cones, as well

as the non-singular supergravity solutions that describe fractional D3-branes on these

spaces.

Alternatively, one can consider stacking the D3-branes at a single point. For

the case of the resolved conifold, this has been shown to yield a completely regular

solution [59]. Perhaps there are analogous constructions with the resolved cones over

Labc. With the exceptions of T 1,1, T 1,1/Z2 and Y 2,1, the resolved Labc cones have

orbifold singularities. Although these singularities will remain there when D3-branes

are stacked at a single point, perturbative string dynamics is well-defined on such

backgrounds.

One can also consider fibering a D3-brane worldvolume direction (which need

not be compact) over a resolved Labc cone in such a way that the resulting geometry

only has orbifold-type singularities. For the case of the resolved conifold, such a
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D3-brane solution has already been constructed and is completely regular, and it is

also supersymmetric [78]. The corresponding D3-brane solutions for the resolved Labc

cones are currently being investigated [79].

We also discussed the geometry of higher-dimensional Calabi-Yau spaces with

blown-up cycles, as well as the various harmonic forms which live on them. In par-

ticular, we have found that eight-dimensional resolved cones over the Lpqrs spaces

support harmonic 4-forms that are square integrable. They can be used to construct

M2-brane solutions of eleven-dimensional supergravity which have only orbifold-type

singularities. Unfortunately, not much is known about the dual three-dimensional

N = 2 gauge theories, other than that they flow from a UV conformal fixed point to

a confining phase in the IR region.

Lastly, the type IIB supergravity backgrounds dual to certain marginal deforma-

tions (β deformations) of the conformal fixed point of the Y pq and Labc quiver gauge

theories were obtained in [80, 84]. The solution-generating method works for any

gravity solution with U(1)×U(1) global symmetry. It might be interesting to see if

these deformations can be applied to the gravity solutions discussed in this paper,

since they possess the necessary global symmetry.
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CHAPTER VII

CONCLUSION

In this dissertation, we have studied the higher dimensional Kerr-AdS black hole

solutions, and showed how they admit further generalisation in which NUT-type

parameters are introduced.

we first constructed Kerr-NUT-AdS metrics in all dimensions where the rotation

parameters are specialised so that the metrics have cohomogeneity 2. The nature of

the generalisation is then analogous to the way in which a NUT parameter can be

introduced in the four-dimensional Kerr-AdS metrics.

This strategy was then applied to the general D dimensional Kerr-AdS metrics

with cohomogeneity [D/2]. By making a choice of coordinates parameterising the

latitude variables in the Kerr-AdS metrics, we were able to rewrite the Kerr-AdS

solutions in such a way that the metrics become diagonal in a set of unconstrained

latitude coordinates yα. These coordinates then appear in a manner that closely

parallels that of the radial variable r, and this immediately suggests a natural gener-

alisation of the Kerr-AdS metrics to include ([D/2]−1) NUT charges. After further

changes of variable, we arrived at the very simple expressions (3.22) and (3.33) for the

general Kerr-NUT-AdS metrics in all odd and even dimensions. These expressions

can be thought of as natural generalisations of the four-dimensional results obtained

in [31].

The new Kerr-NUT-AdS metrics have some remarkable properties. We showed

that the Hamilton-Jacobi and Klein-Gordon equations are separable in the Kerr-NUT-

AdS background with cohomogeneity 2 and constructed the associated irreducible

rank-2 Killing tensor whose existence reflects the hidden symmetry that leads to the

separability. We also demonstrated that the general cohomogeneity-n Kerr-NUT-AdS
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solutions in D dimensions admit [D/2] linearly-independant and mutually orthogonal

null geodesic congruences, which enables us to write the metrics in multi-Kerr-Schild

form.

We also studied the BPS limits of the Kerr-NUT-AdS metrics. These yield, after

Euclideanisation, new examples of Einstein-Sasaki metrics in odd dimensions, and

Ricci-flat Kähler cones in even dimensions. In six dimension, this gives a resolved

Calabi-Yau cone over Labc spaces with a blow up 2-cycle or 4-cycle. We discussed D3-

branes on this Calabi-Yau cone and their applications in AdS/CFT correspondence.

To conclude, our results not only contribute to the classification of solutions

in general relativity, but also provide interesting non-trivial backgrounds for string

theory.
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APPENDIX A

ANOTHER FORM FOR THE ODD-DIMENSIONAL KERR-NUT-ADS METRICS

WITH COHOMOGENEITY 2

If we perform the same angular redefinitions (2.47) in the odd-dimensional Kerr-

NUT-AdS metrics with cohomogeneity 2 (2.11), they may be re-expressed as

ds2 =
r2+v2

X
dr2+

r2+v2

Y
dv2+

(r2+a2)(a2−v2)

Ξa(a2−b2)
dΣ2

p−1+
(r2+b2)(b2−v2)

Ξb(b2−a2)
dΣ̃2

q−1

+
a2b2

r2v2

[
dt−(r2−v2)dφ−r2v2dχ− (r2+a2)(a2−v2)

aΞa(a2−b2)
A− (r2+b2)(b2−v2)

bΞb(b2−a2)
B

]2

− X

r2+v2

[
dt+v2dφ− a(a2−v2)

Ξa(a2−b2)
A− b(b2−v2)

Ξb(b2−a2)
B

]2

+
Y

r2+v2

[
dt−r2dφ− a(r2+a2)

Ξa(a2−b2)
A− b(r2+b2)

Ξb(b2−a2)
B

]2

, (A.1)

where we have defined X and Y as

X ≡ U

(r2+a2)p−1 (r2+b2)q−1

=
(1+g2r2)(r2+a2)(r2+b2)

r2
− 2M

(r2+a2)p−1 (r2+b2)q−1
,

Y ≡ V

(a2−v2)p−1 (b2−v2)q−1

=
−(1−g2v2)(a2−v2)(b2−v2)

v2
+

2L

(a2−v2)p−1 (b2−v2)q−1
. (A.2)
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APPENDIX B

A SYMMETRY BETWEEN THE TIME AND AZIMUTHAL COORDINATES

It can be observed from the expressions for the Kerr-NUT-AdS metrics that

we obtained in chapter III, section C that the time coordinate and the azimuthal

angular coordinates appear on a very parallel footing. It is possible, therefore, to

present further simplifications of the expressions (3.17) and (3.28) in odd and even

dimensions that exploit this observation.

For the Kerr-NUT-AdS metrics in odd dimensions D = 2n+1, we make the

definitions

a0 =
1

g
, ΓI =

n∏
ν=1

(a2
I−x2

ν) , 0 ≤ I ≤ n ,

φ̃0 = −g2n t̃ , Xµ =
g2

x2
µ

n∏
I=0

(a2
I−x2

µ)+2Mµ . (B.1)

The metric (3.17) can then be written as

ds2 =
n∑

µ=1

{ Uµ

Xµ

dx2
µ+

Xµ

Uµ

( n∑
I=0

a2
I ΓI dφ̃I

a2
I−x2

µ

)2}
− (

∏n
k=1 a2

k)

(
∏n

µ=1 x2
µ)

( n∑
I=0

ΓI dφ̃I

)2

. (B.2)

For the Kerr-NUT-AdS metrics in even dimensions D = 2n, we make the defini-

tions

a0 =
1

g
, ΓI =

n∏
ν=1

(a2
I−x2

ν) , 0 ≤ I ≤ n−1 ,

φ̃0 = −g2n−2 t̃ , Xµ = −g2

n−1∏
I=0

(a2
I−x2

µ)−2Mµ xµ . (B.3)

The metric (3.28) can then be written as

ds2 =
n∑

µ=1

{ Uµ

Xµ

dx2
µ+

Xµ

Uµ

( n−1∑
I=0

ΓI dφ̃I

a2
I−x2

µ

)2}
. (B.4)
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APPENDIX C

INVERSION SYMMETRY OF THE D = 4 ROTATING BLACK HOLE

We made the observation in chapter III, section C that there exists an inversion

symmetry in all the Kerr-NUT-AdS metrics, in which one of the rotation parameters

is inverted through the AdS radius, together with corresponding scalings of the other

parameters. A case of particular interest is in four dimensions. The four-dimensional

Kerr-AdS metric can be written as

ds2 =
ρ2

∆r

dr2+
ρ2

∆θ

dθ2−∆r

ρ2
(dt− a

Ξ
sin2 θ dφ2)2+

∆θ sin2 θ

ρ2
(a dt− r2+a2

Ξ
dφ)2 ,

ρ2 = r2+a2 cos2 θ , ∆r = (1+g2r2)(r2+a2)−2M r , ∆θ = 1−a2g2 cos2 θ , (C.1)

where Ξ = 1−a2g2. It is straightforward to verify that the metric is invariant under

the transformation

a → 1

a g2
, M → M

a3g3
,

r → r

a g
, cos θ → ag cos θ , φ → − φ

a g
, t → a g t+

φ

g
. (C.2)

Note that the metric (C.1) is written in a frame that is asymptotically rotating at

infinity. As a consequence the required ignorable coordinate transformations in (C.2)

that bring the transformed metric back to its original form do not, unlike those

given in (3.32) for an asymptotically-static frame, simply involve an exchange of the

azimuthal coordinate and g times the time coordinate. If we define an asymptotically-

static frame by replacing the azimuthal coordinate with φ̂ = φ+ag2t, then the last

two transformations in (C.2) become simply

φ̂ → gt , gt → φ̂ . (C.3)
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APPENDIX D

COMPLEX STRUCTURE AND FIRST-ORDER EQUATIONS

In this appendix, we construct Ricci-flat Kähler spaces in dimension D = 2n+4,

built over an Einstein-Kähler base space of real dimension 2n with metric dΣ2
n. We

normalise this metric so that it satisfies Rij = 2(n+1)gij. Its Kähler form will be

written as J = 1
2
dA. We may also assume that it admits a holomorphic (n, 0)-form

Ω, satisfying (see, for example, section 4 of [26])

dΩ = i (n+1)A∧Ω . (D.1)

The ansatz for the (3n+4)-dimensional Ricci-flat Kähler metrics will be

dŝ2 = u2dx2+v2dy2+a2(dτ +f1σ)2+b2(dτ +f2σ)2+c2dΣ2
n , (D.2)

where a, b, c, u, v, f1 and f2 are functions of x and y, and

σ = dψ+A . (D.3)

We define the vielbein

ê1 = udx , ê2 = a(dτ +f1σ) , ê3 = vdy , ê4 = b(dτ +f2σ) , êi = cei ,

(D.4)

where ei is a vielbein for the Einstein-Kähler base metric dΣ2
n.

We make the ansatz

Ĵ = e1∧e2+e3∧e4+c2J (D.5)

for the Kähler form. It is then natural to define a complex vielbein by

ε̂1 = ê1+i ê2 , ε̂2 = ê3+i ê4 , ε̂i = c εi , (D.6)
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where εi is a complex vielbein for the base metric dΣ2
n. We also make the ansatz

Ω̂ = eiατ+iβψ cn ε̂1∧ε̂2∧Ω (D.7)

for the holomorphic (n+2, 0)-form. The conditions for dŝ2 to be Ricci flat and Kähler

are then given by

dĴ = 0 , dΩ̂ = 0 . (D.8)

One immediately finds that the constant β should be chosen to be

β = n+1 . (D.9)

However, the constant α can be left arbitrary.

We now obtain the first-order equations:

dĴ = 0 : (bv)′−(au)̇ = 0 , (c2)′−2auf1 = 0 , (c2)̇−2bvf2 = 0 ,

dΩ̂ = 0 : α uvcn−(avcn)′−(bucn)̇ = 0 ,

αbucnf2−(n+1)bucn+[abcn(f1−f2)]
′ = 0 ,

αavcnf1−(n+1)avcn−[abcn(f1−f2)]̇ = 0 . (D.10)

The constant α appearing in the first-order equations (D.10) is always trivial, in the

sense that it can be set to any chosen non-zero value without loss of generality. To

see this, we perform the following rescaling of coordinates and functions:

x → λx , y → λ y , τ → λ τ ,

c → λ c , f1 → λ f1 f2 → λ f2 , (D.11)

whilst leaving the functions a, b, u and v unscaled. It can be seen that the effect of
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these rescalings is to scale the metric dŝ2 in (D.2) according to

dŝ2 → λ2 dŝ2 . (D.12)

The rescalings have the effect of replacing α by λα in the first-order equations (D.10),

thus giving

dĴ = 0 : (bv)′−(au)̇ = 0 , (c2)′−2auf1 = 0 , (c2)̇−2bvf2 = 0 ,

dΩ̂ = 0 : λα uvcn−(avcn)′−(bucn)̇ = 0 ,

λα bucnf2−(n+1)bucn+[abcn(f1−f2)]
′ = 0 ,

λα avcnf1−(n+1)avcn−[abcn(f1−f2)]̇ = 0 . (D.13)

Since a rescaling of a Ricci-flat metric by a non-zero constant leaves it Ricci-flat, it

follows that the constant λ can be chosen at will, and so no generality is lost by

setting α to any desired finite and non-zero value.
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APPENDIX E

SEPARABILITY OF LAPLACIAN ON CALABI-YAU METRICS

We consider the Calabi-Yau metrics obtained in chapter II, III. The metric can

be expressed as

ds2 =
n∑

µ=1

[Uµ dx2
µ

4Xµ

+
Xµ

Uµ

(
n−1∑
i=0

Widφi)
2
]
,

Xµ = xµ

n−1∏
i=1

(αi−xµ)−2�µ , Uµ =
n∏

ν=1

′ (xν−xµ) , (E.1)

where Wi is defined by
n∏

µ=1

(1+qxµ) ≡
n−1∑
i=0

Wi q
i+1 . (E.2)

It turns out that the equation H = 0 is separable in the xµ coordinates, where

is the Laplacian taken on the above metric. (The separability for the more general

non-extremal Kerr-NUT-AdS metrics was shown explicitly in [76, 37, 77]. Making

the ansatz

H =
( n∏

µ=1

Hµ(xµ)
)

exp
(
2i

n−1∑
i=0

(−1)iaiφn−1−i

)
, (E.3)

for the harmonic function, we find that the Hµ(xµ) satisfy

(XµH
′
µ)′−

((
∑n−1

i=0 ai x
i
µ)2

Xµ

+
n−2∑
i=1

bix
i
µ

)
Hµ = 0 , (E.4)

where a prime on Hµ or Xµ denotes a derivative with respect to its argument xµ.

The system thus has 2n−1 independent separation constants a0, a1, . . . an−1 and

b0, b1, . . . , bn−2.
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