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ABSTRACT 

 

Numerical Simulation of Flow of Shear-Thinning Fluids  

in Corrugated Channels. (December 2007) 

Rohit Aiyalur Shankaran, B. E, Osmania University 

Chair of Advisory Committee: Dr. K. R. Rajagopal 

 

A numerical study of flow of a shear thinning fluid through a pair of corrugated plates 

was carried out. The aim of the study was to observe and understand the behavior of the 

flow of shear thinning fluids through channels were the fluid is subjected to a periodic 

increase and decrease in cross-section area. Such conditions are frequently observed in 

the flow of blood through blood vessels, movement of lubricating oils through the ground 

during the oil extraction process, in the process industry. Since we are dealing with non-

Newtonian fluids the non-linear terms in the constitutive equation have a significant 

affect on their behavior.  

 

The plates modeled for the study had a sinusoidal profile. A total of four different plates 

were with varying amplitude and wavelengths were simulated. The simulations were 

done both in two and three dimensional space. A wide range of Reynolds numbers were 

used for each plate. The Reynolds number used was a function of the half the average 

plate spacing (h) and the velocity. The range of Reynolds numbers used is 100 to 1000. 

The velocity profiles along the crest, trough and center lines were generated.  

 

It was observed that even at low velocities and low Reynolds numbers the shear stress at 

the wall was significant. It was also observed that even at low velocities and low 

Reynolds numbers reversed flow can occur near the regions where the profile of 

geometry is sinusoidal. Such behavior is a characteristic of shear thinning fluid. 
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NOMENCLATURE 
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�
T

                                 Velocity vector 

�
P

                                  Stress tensor 

                                  Hydrodynamic pressure 

I
�
                                   Identity 

μ                                   Dynamic viscosity 

D
�

                                  Symmetric part of the velocity gradient 

ε                                    Internal energy  

 q                                   Heat flux vector  

 r                                    Heat being radiated 

 t                                    Time 

υ                                    Kinematic viscosity 

ρ                                   Density of the fluid 

Div                                 Divergence    

Grad                               Gradient 
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                                    Velocity Gradient 
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1. INTRODUCTION 

 

A fluid which cannot be expressed using the Navier-Stokes Equations is a non-

Newtonian fluid.  

 

Most of fluids we encounter in physical and industrial processes, other than air and water 

are non-Newtonian in nature. There is a growing importance attached to understanding 

the behavior of non-Newtonian fluids in the polymer, petroleum, food processing 

industries. It’s especially important to understand the flow of non-Newtonian fluids 

thorough geometries where the cross section through which the fluid flows varies. The 

following sections try to address some of these concerns. It is shown for example that in 

non-Newtonian fluids there can be reversed flow even at low Reynolds’ numbers. Such a 

property might be undesirable in many applications. Often rheology arises because the 

fluid in question builds up a microstructure at the molecular level which becomes 

sufficiently extensive to affect the macroscopic properties of the fluid, Schwarz [14]. In 

lava, for example, the microstructure is provided by a network of interlocked silicate 

crystals, and endows the fluid with an internal strength that allows lava to withstand a 

certain amount of imposed stress before it flows. 

 

Understanding of Non-Newtonian fluid mechanics has grown only recently compared to 

Newtonian fluid mechanics. The origin of Non-Newtonian fluid mechanics could be 

attributed to the need to understand the relationship between bulk-flow of polymers to 

their molecular structure, James [7-8]. The definition of a non-Newtonian fluid given 

earlier is quite a negative one. Hence there is need for a classification of the various types 

of non-Newtonian fluid behavior.  

 

Non-Newtonian behavior is generally observed in concentrated suspensions and high 

molecular weight materials. Many household items that exhibit such behavior include  

____________________ 
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dough, whipped cream, butter, salad dressing, ketchup, egg white. Non-Newtonian 

behavior is a characteristic of polymer solutions. Non-Newtonian behavior for instance is 

observed in the industry during the production of synthetic fiber such as nylon, during the 

drawing process. Even the motion of mountain ranges, sediment beds and magma are 

governed by rheology. Non-Newtonian materials are often referred to as Viscoelastic 

materials because they exhibit properties of an elastic solid and a viscous fluid, 

Sureshkumar [15].  

 

Most biological fluids contain high molecular weight components and hence exhibit 

rheological behavior. Blood for example is a very widely studied non-Newtonian fluid. It 

consists of erythrocytes which constitutes to above 40% of the volume and the protein in 

the suspending fluid has a high molecular weight, making it non-Newtonian. These two 

components make blood a rheologically complex material. The other important body 

fluids which are non-Newtonian are mucous which is a respiratory fluid and synovial 

fluid which is present in the joints. Mucous in the respiratory system plays a very 

important role in maintaining proper respiratory behavior, hence understanding its 

rheolgical properties are very important.  

 

Research on flow between corrugated plates is originally motivated by the strong non-

Newtonian effects observed in flows involving porous media.  

1.1 Applications Of Non-Newtonian Fluids 

Non-Newtonian fluids includes a lot of industrial lubricants, many fluids that are pumped 

into oil wells to improve oil recovery, and some fluids like blood that are important in 

biology. Due to the advantages that result from the non-Newtonian behavior of polymer 

melts and solutions, polymer processing has become a huge industry for the manufacture 

of artificial fiber. The fiber is made by drawing molten polymer through a dye and then 

stretching it while being cooled. The importance of non-Newtonian fluid mechanics in 

the polymerization process is immense. The viscosity of the polymer changes from 10-2 to 

106 poise. Elastic stresses in polymeric and other complex fluids can give rise to strange 
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flow behavior not seen in Newtonian fluids. This can, for example, produce undesirable 

instabilities in industrial processes.  

 

Understanding Non-Newtonian behavior of polymers could be of great importance in 

improving their quality. Understanding materials used for Coating of surfaces, like paint 

can very helpful in determining its brushability. If it’s too viscous it could leave brush 

marks and if too thin it would not coat the surface sufficiently.  

 

The petroleum industry uses a lot of materials that are non-Newtonian. Drilling muds for 

example are used as a lubricant. So it is important for these muds to have low viscosity 

under shearing and high viscosity at rest. Such a material is termed as a shear thinning 

material. Lots of foods used in the food processing industry are non-Newtonian in nature. 

On offshore platforms it is very common to find fluids of a non-Newtonian nature 

flowing through corrugated channels. The reason for this is that the channels are designed 

to be corrugated in an attempt to break up boundary layers, Rajagopal [13].  

1.2 Classification Of Non-Newtonian Fluids 

A non-Newtonian fluid is one which cannot be defined using the Navier-Stokes 

Equations. Such a fluid exhibits non-equal normal stress in a simple shearing flow. The 

value of viscosity instead depends on flow conditions, such as flow geometry, shear 

stress or shear rate developed within the fluid and time for which the shear stress is 

applied among other factors.  

 

There are three categories into which non-Newtonian fluids are classified.  

 

1. Generalized Newtonian fluids: The rate of shear of the fluid is dependent only on 

the current value of the shear stress. These are also called purely viscous or time-

independent fluids.  

 

2. Materials for which the shear stress and rate of shear depends on the time for 

which the shear is applied. These materials are therefore time dependent.  



 4

3. Materials which exhibit properties of both elastic solids and viscous fluids. These 

materials are called Viscoelastic. In such materials there is only a partial recovery 

to the original state when a deformation or stress is applied.  

 

There are also materials which have properties that are a combination of the three 

properties mentioned above. There are also materials that are either elastic solids or 

viscous fluids depending on the prevailing conditions.  

1.2.1 Time-Independent Behavior 

This type of fluid behavior can be further subdivided into three types: Shear-thinning 

fluids, Viscoplastic fluids and Dilatant fluids.  

1.2.1.1 Shear-Thinning Fluids 

In Shear-thinning or pseudoplastic fluids the viscosity decreases with an increase in rate 

of shear. The decrease in viscosity varies for different fluids. It has been observed in 

polymer solutions that the viscosity is constant at very low and very high rates of shear. 

The terms zero-shear viscosity and infinite shear viscosity used for the viscosity at low 

and high rate of shear respectively. Lower molecular weight polymers have a wider range 

in which the viscosity is constant. Shear-thinning fluids are the most common type of 

non-Newtonian fluids encountered. They are also the focus of the research in question. 

Some of the models used for modeling Shear-thinning fluids are discussed below.  

 

There are quite a few models that can be used to model Shear-thinning fluids. Some of 

the models like the power-Law and the Carreau model use curve-fitting, while the others 

like the Eyring model have more of a theoretical approach based on statistical mechanics.  
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1.2.1.2 Power-Law Model  

This model is also known as the Ostwald-De Waele model. It is a model that can be used 

to model pseudoplastic fluids. In this model the shear stress is written as a power of shear 

rate. The model uses two curve fitting parameters, one called the power law index and the 

other is generally referred to as fluid consistency coefficient.  

 

                                            
n

y x
d uk *
d y

τ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                 (1.1) 

Here yxτ  (N/m2) is the shear stress, d u (s-1) is the rate of shear, k (N/m2.sn) is flow 

consistency index and n is the power law index. k and n are the curve fitting parameters. 

This is a generalized equation and the nature of the fluid determines the value of the 

power law index. For a Shear-thinning fluids n is less than 1 (lower the value of n below 

1 greater the degree of shear-thinning), it is 1 for a Newtonian fluid and greater than 1 for 

dilatant fluids.  Its simplicity is the main reason for its wide usage. But generally the 

values of k and n are dependent on the rate of shear and its prediction of the zero and 

infinite values of viscosity can be inaccurate. The values of k and n are also affected by 

temperature. 

d y

1.2.1.3 Cross Model  

It is based on the assumption that shear-thinning behavior is caused by formation and 

breakage of structural units in the material. The equation for the cross model is given 

below.  

                                     2 / 3
0 x1 ( )y

1μ μ−
μ μ λγ

∞

∞

=
− + �

                                              (1.2) 

  

As discussed before the constants μ0 and μ∞ are the zero and infinite shear viscosities 

respectively. λ is a time constant and  xyγ�  = du
dy  is the rate of shear. This model works 

well for a variety of shear-thinning fluids. There have also been variants where the 2/3 in 

the equation is replaced with a parameter which is calculated by curve fitting.  
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1.2.1.4 The Carreau Model 

It is a widely used and effective model for shear-thinning fluids. The Carreau model tries 

to describe a wide range of fluids through a curve-fit that pieces together functions for 

both Newtonian and shear-thinning non-Newtonian fluids.  

 
( )

                                  
2 n 1 / 2−

⎥
 

0

du  1  *
dy

μ μ λ
μ μ

∞

∞

⎡ ⎤⎛ ⎞− ⎢= + ⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦
                         (1.3) 

 

Where, the constants μ0 and μ∞ are the zero and infinite shear viscosities respectively. λ is 

a time constant and  du
dy  is the rate of shear. n is less than 1 for shear-thinning fluids.   

1.2.1.5 Viscoplastic Fluids 

These types of fluids resist any deformation initially and deform or flow only when the 

applied stress exceeds a critical value which is sometimes referred to as yield stress. 

Beyond the point of the yield stress the behavior of the flow curve could be linear or non-

linear. A fluid which has got a linear flow pattern beyond the point of the yield stress is 

known as a Bingham plastic fluid. It behaves as a rigid body at low stresses. It has 

applications in mathematical modeling of mud flow in off shore engineering.  

 

                                                          u
y

∂
∂

 = 0 if τ < τ0                                                                           (1.4) 

( )0 τ τ−
μ

  if τ < τ0                                                               (1.5)                                                u
y

∂
∂

 = 

Various models like the Bingham plastic model, Casson Model and The Herschel-

Bulkley Model are available for modelling such viscoplastic flows.  
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1.2.1.6 Shear-Thickening Fluids 

In these materials the viscosity increases with an increase in the rate of shear. Such fluids 

are also called dilatant fluids. Such behavior is observed in concentrated suspensions of 

solids.  

 

This phenomenon of the viscosity increasing with the rate of shear is explained in the 

following way. When a suspension of fluid in a solid is considered at rest, the voids 

between the solid particles is minimal because of all the fluid particles filling the spaces, 

thereby providing good lubrication for the movement of the solid particles. The same 

behavior is observed at low rates of shear. When such a suspension is subjected to high 

rates of shear there is a slight expansion of the material because of the breakage of the 

dense packing of solid particles. Thus the liquid is no longer sufficient to fill the voids 

between the solid particles which results in friction between the solid particles. This 

results in a rapid increase in the stress causing an increase in viscosity. Due to a lack or 

minimal usage of such materials in the industry there has been little research on them 

until recently. But of late, there has been a lot of interest in studying such materials with 

the usage of highly loaded systems in the processing industry.  

1.2.2 Time-Dependant Behavior 

Shear flow properties depend on both rate and time for shearing for most materials. Many 

construction materials and food-stuffs exhibit such properties. When they are sheared at a 

constant rate of shear followed by a period of rest their apparent viscosity gradually 

decreases as their internal structure breaks down progressively. With time the change in 

viscosity drops to zero at which point a state of equilibrium is reached. This type of fluid 

behavior is divided into two categories, namely Thixotropy and negative Thixotropy. 
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1.2.2.1 Thixotropy 

Thixotropy is a property of a material in which it’s apparent viscosity or shear stress 

decreases with time when it is subjected to a constant rate of shear.  

1.2.2.2 Rheopexy 

Materials for which the apparent viscosity increases with the duration of shearing are said 

to exhibit Rheopexy. There are very few materials that exhibit such behavior.  

1.2.3 Viscoelastic Behavior In Fluids 

Viscoelastic materials show properties of both elastic solids and viscous fluids under 

different conditions. Perfectly viscous flow and elastic deformation are the limiting cases 

for a Viscoelastic material. Many materials like polymer melts and solutions, soap 

solutions and asphalt exhibit Viscoelastic properties. When stress is applied to 

viscoelastic materials and released, the applied stress gradually relaxes unlike an elastic 

solid where the stress relaxes immediately or a viscous fluid where it never relaxes. A 

similar response is observed when a strain is applied.  

1.3 Previous Work 

There has been a lot of study on flow of non-Newtonian fluids through channels. But 

very few of these deal with the flow of non-Newtonian fluids through corrugated, 

channels, Lee [9], Yalamanchili, Sirivat and Rajagopal [16], Yalamanchili [17]. A few of 

them are discussed in the next section. 

 

A numerical study of a two-dimensional steady developing fluid flow and heat transfer 

through a periodic wavy passage for a fluid with a Prandtl number of 0.7 was carried out 

by Bahaidarah, Anand and Chen [1]. The results were compared to flow through a 

corresponding straight channel. Sinusoidal and arc-shaped configurations were studied 

for a range of geometric parameters. The fluids studied were Newtonian.  
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There was study of flow of water in turbulent flow through a channel done by Hanratty 

[2-3]. The bottom plate was sinusoidal while the top was flat. The velocity profiles, 

pressure and shear stress were measured at the wall surface of the sinusoidal plate for 

different a / λ  ratios, where, is the amplitude and a λ  is the wavelength of the sinusoidal 

plate.  

 

Yalamanchili [4-5], Sirivat and Rajagopal [4] did an experimental study which was very 

similar to the one which is being done currently. They studied the flow of non-Newtonian 

fluids with and without polymer additives in a corrugated channel using Laser Doppler 

Velocimetry.  The centerline velocities and velocity profiles were studied for the flow of 

dilute polymer solutions, S. Muller [10].  

 

A study of flow of non-Newtonian fluids through corrugated tubes was done by Phan-

Thein and Khan [6], [11-12]. The tubes used were of small dimensions and Reynolds 

numbers studied were of the order of 410− .  
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2. KINEMATICS 

 

The basic differential equations that represent the conservation of mass, momentum and 

energy of a system are formulated in this section. The basic definitions of kinematics and 

kinetics of bodies are described. For the purpose of deriving these equations the material 

is treated as a continuum.  

2.1 Continuum Assumption 

Assuming a material body to be a continuum means that there is sufficient number of 

molecules in the body of interest. We homogenize such a body and define field quantities 

over the homogeneous body which is referred to as the continuum associated with the 

body of interest.  

 

If λ is the mean free path and L is the characteristic length or the length scale associated 

with the body then the Knudsen number Kn is defined as 

 

                                                            nK / Lλ=                                                (2.1) 

 

The Knudsen number is useful for determining whether continuum mechanics 

formulation of fluid dynamics should be used. If the Kn is close to or greater than 1 then 

the continuum assumption of fluid mechanics is not a good approximation (the mean free 

path of a molecule is comparable to a length scale). If Kn << 1 (0.01 or less) then we can 

say that our assumption of considering the body as a continuum is appropriate.  

 

By treating the material as a continuum we are assuming the material to consist of an 

infinite number of material points. It is assumed that the manifold of material points is 

differentiable thus allowing the use of differential equations. The equations for motion of 

the material points are formulated with respect to one or more coordinate frames.  

 

 



 11

2.2 Kinematics 

Let B represent an abstract body and Κ R (B) be some reference configuration of the fluid 

body. Let Κ t (B) denote the configuration of the body at time t. The motion of the body is 

referred to as χ (we assume the body is nicely differentiable). By motion of a body we 

mean a sufficiently smooth mapping which assigns to particles belonging to Κ R (B), 

particles belonging to Κ t (B).  

 

                                                 x  (X, t)χ=
� �

  or                             (2.2)       1−X  (x, t)χ=
� �

   

χ is the transformation that takes the body from X to x.  

 

This is represented pictorially in figure 2.1.  

 

x 

χ 

X 

                          
Κ R (B) Κ t (B) 

Figure 2.1. Motion of a Body 

 

Any configuration can be chosen as the reference configuration hence the mapping itself 

changes with a change in the reference. If the reference configuration is the initial 

configuration the observation of motion is called Lagrangian motion and if the 

observation is made with respect to the current configuration then it is called as Eulerian 

motion.  
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A property φ (need not be a scalar) of a particle belonging to a body, at different instants 

of time can be expressed as, 

                                                                                                     (2.3) ( , t) ( )ˆ X x,φ φ φ= = �
� �

t

( tˆ X, )φφ =
�

 is a Lagrangian specification while  is a Eulerian specification.  ( , tx )φφ = �
�

The Eulerian approach describes changes as they occur at a fixed point in the fluid while 

the Lagrangian approach describes changes which occur as you follow a fluid particle 

along its trajectory. Generally in fluid mechanics an Eulerian approach is used.  

The Displacement  is defined as,   u (X , t )

                                                      = u(X, t) x X−
� �

 = (X, t) Xχ −
� �

                                (2.4) 

The Velocity V  is defined as,  
�

                                                             = V
�

dx
dt�

 or d( (X, t))
dt

χ
�                                      (2.5) 

The deformation gradient  is defined as, F
�

                                                                        F  = 
�

x
X
∂
∂
�
�

                                              (2.6) 

The velocity gradient  is defined as, L
�

                                                                    L = 
�

∂
∂
V
x�
�

                                                  (2.7) 

L
�

is written as grad  which is related to the deformation gradient as, V
�

                                                                    1L FF−= �
�

                                                  (2.8) 

From equation 2.3, We also have the following possible derivatives. 
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The Lagrangian derivatives are given below:         

                                                       
ˆ ˆd,

X dt t
φ φφ φ∂ ∂

∇ = =
∂ ∂
�

                                              (2.9) 

The Eulerian derivatives are given below:         

                                                     grad ,
x t t
φ φφ φ∂ ∂ ∂

= =
∂ ∂ ∂

� �

�
                                         (2.10) 

2.3 Balance Of Mass 

2.3.1 Eulerian Approach 

We consider a body B at a configuration Kt (B) as shown in figure 2.2. 

                                           

pt 

Kt (B) 

Figure 2.2. Body in the Current Configuration                                                       

                                        
t tp p

d V n 0
t

ρ υ ρ
∂

∂
+ =

∂ ∫ ∫ i
��

)   t tp K (B∀ ⊆                             (2.11) 

Where ρ  is the density and  is the velocity of the material  V
�

This can be reduced to, 

                                                         div( V) 0
t
ρ ρ∂
+ =

∂ �
                                            (2.12) 

Incompressibility condition results in the equation  

                                                       div(V) 0=
�

                                                         (2.13) 
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2.3.2 Lagrangian Approach  

We consider the same body in the same configuration as in the Eulerian approach.  

One form of equations for the balance of mass in Lagrangian approach is, 

                                                      

                                                            R t det Fρ ρ=
�

                                                   (2.14) 

 

Where Rρ  and tρ  are the densities in the reference and current configurations 

respectively.  

Another form is, 

                                                          
tp

d
dt

ρ υd 0=∫                                                      (2.15) 

2.4 Balance Of Linear Momentum  

The balance of linear momentum can be written as  

 

                      d V Vd i v ( T ) ρ b ρ = ρ ( V ) V
d t t

⎛ ⎞ ⎛+ = + ∇⎜ ⎟ ⎜ ∂⎝ ⎠ ⎝
� �� � �

∂ ⎞
⎟
⎠�

T

                       (2.16) 

 

Where,  is the stress tensor also called the Cauchy stress tensor, 
�

ρ  is the density of the 

body, b
�

 represents the body forces and  is the velocity vector.  V

T

�
In the absence of internal couples, the conservation of angular momentum reduces to the 

stress tensor being symmetric.  

In equation form it can be written as, 

                                                             T T=                                                      (2.17) 

2.5 Balance Of Energy 

The balance of energy states that the change in the energy of a system is equal to the 

transfer of the energy to the system. This transfer of energy can occur in various forms 
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but restricting ourselves only to the mechanical and thermal forms of energy, the balance 

of energy can be written as:  

 

                                          d iv (q ) T L rρε + = +� i ρ                                        (2.18) 

 

Where, ε  is the internal energy,  

             q is the heat flux vector,  

              r is the heat being radiated.   
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3. CONSTITUTIVE EQUATIONS 

 

The model for a linearly viscous incompressible fluid is: 

                                             

                                                       T P I 2 D= μ− +
�

T

� �
                                            (3.1) 

 

Where, 

�
P

 is the stress tensor 

 is the hydrodynamic pressure 

I
�
 is identity 

μ  is the dynamic viscosity of the fluid 

D

tr(D) 0

�
 is the symmetric part of the velocity gradient 

The fluid can undergo only isochoric motion. This results in the condition: 

 

=
�

                                                       (3.2)                                                                  

 

For an incompressible fluid,  

 

                                                                det(F) 0=
�

                                                       (3.3) 

 

This is the simplest condition for incompressibility because it directly relates to the 

material property. This leads to, 

 

                                                                div(V) 0=
�

                                                      (3.4) 

 

By substituting equations 3.2 and 3.3 in equation for balance of linear momentum we 

arrive at the Navier-Stokes equations which are the governing equations for an 

incompressible linearly viscous fluid. The Navier-Stokes equations in the general form 

are given by: 
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P dV b
x d

μ ρ ρ∂
− + Δ + =

∂
�� �

�

V
t

                          (3.5) 

 

Where, ρ  is the density of the fluid, b
�

 represents the body forces and V  is the velocity 

vector.  
�

 

The type of fluid being discussed in this particular case is non-Newtonian, a shear-

thinning fluid to be precise. The model used is a power law model which can be used to 

model shear-thinning fluids. The model is given by: 

 

                                                   (3.6) 2 n
0T P I [1 ( t r D ) ]μ α= − + +

� � �
D
�

Where 

0μ  and α  are the model parameters.  

n is the power law index.  

 

When the fluid is shear-thinning, n is less than 1, which means that its viscosity decreases 

with an increase in rate of shear. If the fluid is shear-thickening, n is greater than 1 and 

for a Newtonian fluid n is 0.   

 

The term  is called the generalized viscosity and can be represented 

by

2 n
0[1 (trD )]μ α+

�
eμ . This is a model for an incompressible generalized Stokesian fluid (it is capable of 

elastic response).  

  

This model is used for doing all the simulations which are discussed in detail in the 

sections that follow.  

 

The Governing equation is derived using this model. The stress tensor  is evaluated and 

it is then substituted into the equation for balance of linear momentum. This gives us the 

governing equations for the model.  

T
�
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The governing equations are: 
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Where K1, K2, K3 and K4 are given by, 
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The Generalized viscosity,  

                                                                       (3.14) 
2[1 ( ) ]

0
μ μ α= +

�
nt r D

e

Equations (3.7) to (3.9) are the equations of motion which govern the fluid. 

 

 



 20

3.1 Non-Dimentionalization  

• It is assumed that the flow is in a steady state. Hence the term         reduces to zero 

in the equation of motion. 

V
t

∂
∂ �

• The body forces are also neglected. So the term         is also zero. 

• The equation of balance of mass and the equation of motion are non-

dimensionalized by using appropriate non-dimensional quantities.  

ρb
�

• A few assumptions made before doing this are that the fluid is assumed to be 

incompressible, the velocity in the direction of flow is assumed to be much 

greater than the velocity perpendicular to the flow (u >> v), and the wavelength of 

the plate is assumed to be much greater than its amplitude (λ >> a).  

•              ,             ,              ,                 ,                these were the non-dimensional 

quantities picked. The equations are then non-dimentionalized and an order of 

magnitude analysis is performed. Reynolds number was included in the equation. 

 

y
y

h
=� �
� 2

pp
ρU

=� QU
2bh
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4. PROBLEM DESCRIPTION AND PROCEDURE 

 

 

The simulation of flow of a non-Newtonian fluid through corrugated channels is a very 

important problem from a research perspective. Its application can be found in various 

fields. 

 

The idea is to simulate the flow of a shear-thinning fluid between a pair of corrugated 

plates. The plates have a sinusoidal profile. Four plates of varying amplitudes and 

wavelengths were modeled for the simulation. The length, breadth and height of the 

plates are kept constant.  

 

The plate dimensions are mentioned in table 4.1.  

 

Length (L) - 0.43 m  

Breadth (b) - 0.089 m 

Height (h) - 0.0073 m 

Table 4.1. Plate Dimensions 

Plate Wavelength λ (m) Amplitude a(m) 

1 0.1016 0.0022 

2 0.0254 0.0022 

3 0.0254 0.0005 

4 0.1016 0.0044 

 

Shown in figure 4.1 is the front view of one of plates. All the geometric parameters are 

shown.  
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Figure 4.1. Schematic Diagram of a Plate 

λ

2a
L 

2h

 

 

The simulations were done in two-dimensional space. A wide range of Reynolds numbers 

(Re) used for each plate. The Reynolds number used was a function of the half of the 

average plate spacing (h) and the velocity.  

 

                                                            
U * hR e
υ

=                                                  (4.1) 

 

Where,   

            Re is the Reynolds number 

            U is the velocity of the fluid 

            h is half the spacing between the plates 

            υ  is the kinematic viscosity of the fluid  

  

The kinematic viscosity υ  is given by μ
ρ

 where μ  is the dynamic viscosity and ρ  is the 

density of the fluid. 

 

The problem was also studied with the plate alignment being varied. The plates were 

positioned in three different ways with the first one being the crest of one plate being in 

phase with the crest of the second plate as shown in the figure below. In the second and 
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third positions the crest of one plate is 450 and 900 degrees out of phase with each other 

as shown in the figure 4.2, figure 4.3 and figure 4.4.  

            

        Figure 4.2. Plates Aligned with Each Other Without Any Phase Difference 

       

Figure 4.3. Plates Aligned with a Phase Difference of 450 

     

Figure 4.4. Plates Aligned with a Phase Difference of 900  
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The measurements of the properties (velocity is the most important for this study) were 

made creating two additional lines called a crest line and a trough line. The crest line is 

defined as the line joining the points with maximum distance between the plates along the 

line and the trough is defined as the line joining the points with minimum distance 

between the plates along the line. The crest line and trough line are shown in the figure 

4.5.  

 

 
 

    Figure 4.5. Schematic Diagram Showing the Crest Line and the Trough Line 

4.1 Procedure For Numerical Simulation  

The numerical simulation process starts with creating the geometry. This was done using 

GAMBIT version 2.3.16. The sinusoidal plates were generated using a line tool in 

GAMBIT used for generating NURBS (Non-Uniform Rational Basis-Spline).  

 

The next step is to mesh the geometry. A structured mesh which is easy was used since 

the geometry was not too complex. All the elements used were quadrilateral for a two-

dimensional geometry and hexadron for a three-dimensional one. The grid spacing used 

was 0.01. The zone types were set in GAMBIT. The zone types used were wall, mass 

flow inlet and pressure outlet. The boundaries and zone types for a typical case are shown 

in the figure 4.6. 
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TOP WALL (WALL) OUTLET (MASS FLOW INLET)

     INLET (MASS FLOW INLET) 

BOTTOM WALL (WALL) 

Figure 4.6. Boundary and Zone Types 

The figure below shows the mesh for one of the cases. The figure shown is of plate 4 

with amplitude of 0.1016 m and a wavelength of 0.0044 m. The mesh used for all the 

cases have quadrilateral elements with a very fine grid spacing of 0.05. The mesh shown 

in figure 4.7 has about 50,000 elements.  

Figure 4.7. Two-Dimensional Mesh 

 

Following the designation of the zone types, the meshed geometry is then exported as a 

mesh file and then imported into FLUENT. FLUENT version 6.3.26 was used. The 

following procedure was followed while using Fluent. 



 26

 

• The mesh is checked for irregularities using a grid check to make sure it is ready to be 

used. The grid is scaled to be used in centimeters. This is done for convenience. The 

results are presented in SI units.  

• The units for various parameters such a length, pressure, velocity, mass flow rate and 

temperature are set to SI units.  

• The model to be used for the solving the problem is written as a C program. This 

program is imported as an interpreted user defined function and compiled. Now it is 

ready to be used.  

• The material to be used is defined. Oil and blood were used as fluids. Oil is a 

predefined material in the FLUENT database, while blood had to be defined by the 

user by creating a new material. The properties of the fluids are shown in the table 4.2. 

The viscosity is user-defined. In the drop-down menu next to the viscosity the option 

for viscosity to be “user defined” is chosen. Thereby, the model to be used for the 

viscosity which was compiled in the previous step is input and this is used to 

calculate the changes in viscosity since the viscosity is not a constant for the fluid 

being used. 

Table 4.2. Material Properties 

PROPERTY BLOOD OIL 

Density, 3

kg
m

ρ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 
1060 960 

Specific heat, p
jC

kg.k
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
3594 1880 

Thermal conductivity, wK
m.k

⎛ ⎞
⎜ ⎟
⎝ ⎠

  
0.00152 0.12 

Dynamic Viscosity, kg
m.s

μ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0.0035 0.048 
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• The boundary conditions are then defined. The mass flow rate ( m� ) is calculated and 

defined using the area of the inlet section and the velocity to be used. The velocity to 

be used is calculated previously using the relation for Reynolds number. 

• Since h and υ  are constants for all the cases and some of the other parameters like the 

length of the plate (L) and its breadth (b) are also constants, the values used for the 

velocity are non-dimensional. The non-dimensionlization was carried out as 

explained in section 3.1. The other boundary condition that needs to be defined is the 

pressure outlet.  

• The solver used is a density based solver which was discussed previously in this 

section and the flow is assumed to be laminar. The Reynolds number is varied from 

100 to 1000. The  Reynolds numbers for the data presented in the results are 100, 500 

and 1000. 

• There were four plates that were modeled and each plate was modified in three ways 

with phase difference of 00, 450 and 900 between top and the bottom plates. Each of 

these 12 cases was simulated for three different Reynolds numbers which are 100, 

500 and 1000. So a total of 36 cases were simulated in all.  

• The solution was monitored and residuals were plotted after every iteration and the 

difference in mass flow rate between the inlet and outlet was also plotted.  

• The solution was allowed to continue to run till the value of mass flow rate at the 

pressure outlet had reached a value very close to the one specified at the inlet.  

• Then the post processing was done, a process which includes collecting the data 

required, sorting it, analyzing it and making modifications. 
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5. NUMERICAL SIMULATION 

5.1 Fluent 

Fluent is a computer program for modeling fluid flow and heat transfer. It is written using 

the computer language C and takes advantage of the power and flexibility offered by the 

C. Consequently, true dynamic memory allocation, efficient data structures, and flexible 

solver control are all possible. It provides mesh flexibility and allows for problems to be 

solved using both structured and unstructured meshes. Triangular and quadrilateral are 

the supported mesh types in 2D while in 3D they are tetrahedral, hexahedral, pyramid, 

wedge, polyhedral, and mixed (hybrid) meshes. FLUENT also allows for the mesh to be 

refined or coarsened, based on the flow situation. If we need more accuracy in a 

particular region we refine the mesh and if there is a region where we do not need much 

accuracy or is not critical to the flow field we coarsen the mesh to save computational 

time. FLUENT used a client/server architecture which allows for efficient execution, 

interactive control, and complete flexibility between different types of machines or 

operating systems. All functions required to compute a solution and display the results 

are accessible in Fluent through an interactive, menu-driven interface.  

 

The Fluent package consists of  Fluent, the solver, Gambit, the preprocessor that is used 

for the geometry modeling and mesh generation, an additional preprocessor that can 

generate volume meshes from boundary meshes and finally some filters which are 

capable of importing surface and volume meshes from other CAD/CAE packages.  
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The figure 5.1 shows the general structure of Fluent program.  

        

   Figure 5.1. Structure of Fluent Program 

5.2 Running Fluent And Gambit 

FLUENT and GAMBIT were run remotely on a Texas A&M University supercomputer 

during the entire analysis process. A program called X-WIN32 which allows us to 

remotely connect to the supercomputer was used. X-WIN32 acts as an interface to 

communicate with the supercomputer. It also provides a graphical interface that helps in 

displaying the graphics on the screen. Three supercomputers that are capable of running 

FLUENT and GAMBIT were available namely AGAVE, COSMOS and K2. Another 

program called WINSCP382 was used to manage the files. Files can be transferred from 

and to the supercomputers using WINSCP382.  

5.3 Gambit 

GAMBIT is a software package designed to help in building mesh models for 

computational fluid dynamics (CFD). GAMBIT receives user input by means of its 

graphical user interface (GUI). The GAMBIT GUI makes the basic steps of building, 

meshing, and assigning zone types to a model simple and intuitive, yet it is versatile 

enough to accommodate a wide range of modeling applications.  

 

  GAMBIT CAD/CAE PACKAGES

 FLUENT 
 

    TGRID 
Mesh 

Mesh 

Mesh 

Boundary 

and/or volume 

Boundary Mesh

Mesh 

Geometry/mesh 
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The three steps of creating and meshing a geometry using GAMBIT is as follows: 

 

• Creating the geometry 

• Meshing the geometry 

• Assigning appropriate zone to the boundaries 

5.4 Geometry 

A critical part of creating the geometry is generation of the corrugated plates. These 

plates have a sinusoidal contour with different plates having different wavelengths and 

amplitude. These plates were generated using a line tool in Gambit used for generating 

NURBS (Non-Uniform Rational Basis-Spline). NURBS is a mathematical model 

commonly used in computer graphics for generating and representing curves and surfaces. 

This tool needs the points on the sinusoidal curve to be specified. 

 

Gambit provides two methods for constructing a NURBS edge.  

• Interpolate 

• Approximate 

In the Interpolate method the edge to passes through all specified vertices while the 

approximate method creates an edge that passes near to all interior vertices to within a 

specified tolerance. In both cases, the new edge begins and ends at the first and last 

specified vertices. 

5.5 Meshing  

Gambit allows the use of structured and unstructured mesh to mesh the geometry. A 

combination of the two can also be used. This is done by splitting the geometry into 

several zones and meshing the zones individually. A structured mesh  

 

Gambit incorporates a wide variety of meshing techniques. There are options to mesh the 

following entities. 
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• Edge  

• Face 

• Volume 

• Group 

 

The Mesh Edges command allows you to grade or mesh any or all edges in the model. 

When you grade an edge, Gambit applies the mesh node spacing specifications but does 

not create mesh nodes on the edge. When you mesh an edge, Gambit creates mesh nodes 

according to the specifications. 

The Mesh Faces command allows you to create the mesh for one or more faces in the 

model. When you mesh a face, Gambit creates mesh nodes on the face according to the 

currently specified meshing parameters.  

The Mesh Volumes command allows you to create a mesh for one or more volumes in 

the model. When you mesh a volume, Gambit creates mesh nodes throughout the volume 

according to the currently specified meshing parameters.  

To mesh a volume, you must specify the following parameters:  

• entity to be meshed 

• Meshing scheme 

• Mesh node spacing 

• Meshing options 

The Mesh Groups command activates meshing operations for one or more groups of 

topological entities. 

When you mesh a group by means of the Mesh Groups command, Gambit performs 

meshing operations for all of the topological entities that comprise components of the 

group. If you apply meshing parameters to any or all components of the group prior to 

executing the Mesh Groups command, Gambit meshes those components according to 
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their previously applied parameters. All other components of the group are meshed 

according to the default meshing parameters. For example, if you mesh a group that 

includes three edges to one of which has been previously applied a double-sided, 

successive-ratio grading scheme, Gambit honors the applied scheme when it meshes the 

group but meshes the other two edges according to the current default grading scheme.  

To perform a group meshing operation, you must specify the following parameters:  

• Group name(s) 

• Mesh node spacing 

5.5.1 Specifying Zone Type 

The next step after meshing is to specify zone types to the various boundaries. Zone-type 

specifications define the physical and operational characteristics of the model at its 

boundaries and within specific regions of its domain. There are two classes of zone-type 

specifications: 

• Boundary types 

• Continuum types 

Boundary-type specifications, such as wall or pressure outlet define the characteristics of 

the model at its external or internal boundaries. Continuum-type specifications, such as 

fluid or solid, define the characteristics of the model within specified regions of its 

domain. 

Some of the available zone types are inflow, inlet, inlet vent, interior, internal, mass flow 

inlet, membrane, moving boundary, node outflow, outlet, outlet vent, periodic, porous, 

pressure, pressure far field, pressure inflow, pressure inlet, pressure outflow, pressure 

outlet, radiation, radiator, recirculation inlet, recirculation outlet, surface, symmetry, 

traction, velocity, velocity inlet and vent wall.  
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5.5.2 Boundary Layers   

Boundary layers define the spacing of mesh node rows in regions immediately adjacent 

to edges and/or faces. They are used primarily to control mesh density and, thereby, to 

control the amount of information available from the computational model in specific 

regions of interest.  

As an example of a boundary layer application, consider a computational model that 

includes a cylinder representing a pipe through which flows a viscous fluid. Under 

normal circumstances, it is likely that the fluid velocity gradients are large in the region 

immediately adjacent to the pipe wall and small near the center of the pipe. By attaching 

a boundary layer to the face that represents the pipe wall, you can increase the mesh 

density near the wall and decrease the density near the center of the cylinder, thereby 

obtaining sufficient information to characterize the gradients in both regions while 

minimizing the total number of mesh nodes in the model.  

To define a boundary layer, you must specify the following information:  

• Boundary-layer algorithm 

• Height of the first row of mesh elements 

• Growth factor—which specifies the height of each succeeding row of elements 

• Total number of rows—which defines the depth of the boundary layer 

• Edge or face to which the boundary layer is attached 

• Face or volume that defines the direction of the boundary layer 

5.6 The Fluent Process 

Once a mesh has been read into FLUENT, all remaining operations are performed within 

FLUENT. These include setting boundary conditions, defining fluid properties, executing 

the solution, refining the mesh, and viewing and post processing the results. The mesh 

generated using GAMBIT or some other mesh generating technique is imported into 
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FLUENT. The mesh which was generated using GAMBIT in this case contains the 

geometry and the mesh. The boundaries are also assigned specific zone types. 

The FLUENT serial solver manages file input and output, data storage, and flow field 

calculations using a single solver process on a single computer. FLUENT also uses a 

utility called cortex that manages FLUENT's user interface and basic graphical functions. 

FLUENT's parallel solver allows you to compute a solution using multiple processes that 

may be executing on the same computer, or on different computers in a network.  

5.7 Steps In Solving A CFD Problem  

Once you have determined the important features of the problem you want to solve, 

follow the basic procedural steps shown below.  

1.   Define the modeling goals.  

2.   Create the model geometry and grid.  

3.   Set up the solver and physical models.  

4.   Compute and monitor the solution.  

5.   Examine and save the results.  

6.   Consider revisions to the numerical or physical model parameters, if necessary.  

Fluent being an unstructured solver uses internal data structures to assign an order to the 

cells, faces, and grid points in a mesh and to maintain contact between adjacent cells. 

Therefore, it does not require i, j, k indexing to locate neighboring cells. This gives you 

the flexibility to use the best grid topology for your problem, as the solver does not force 

an overall structure or topology on the grid.  

In 2D, quadrilateral and triangular cells are accepted, and in 3D, hexahedral, tetrahedral, 

pyramid, wedge, and polyhedral cells can be used. These cells are shown in figure 5.2. 

Both single-block and multi-block structured meshes, as well as hybrid meshes 

containing quadrilateral and triangular cells or hexahedral, tetrahedral, pyramid, and 

wedge cells are acceptable. Fluent also accepts grids with hanging nodes (i.e., nodes on 

edges and faces that are not vertices of all the cells sharing those edges or faces). Grids 
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with non-conformal boundaries (i.e., grids with multiple sub-domains in which the grid 

node locations at the internal sub-domain boundaries are not identical) are also acceptable.  

2D Cells 

            `  

     Triangle     Quadrilateral 

    Tetrahedron 

   Prism/Wedge 

3D Cells 

   Pyramid 

    Hexahedron 

 Figure 5.2. Types of Elements Used in Gambit 

5.8 Setting Boundary Types 

The boundary types available in FLUENT are classified as follows:  
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• Flow inlet and exit boundaries: pressure inlet, velocity inlet, mass flow inlet, and 

inlet vent, intake fan, pressure outlet, pressure far-field, outflow, outlet vent, and 

exhaust fan.  

• Wall, repeating, and pole boundaries: wall, symmetry, periodic, and axis.  

• Internal cell zones: fluid, and solid (porous is a type of fluid zone).  

Internal face boundaries: fan, radiator, porous jump, wall, and interior 

 

Of these boundary types the one which was used extensively for the current model are 

wall, mass flow inlet and pressure outlet.  

5.8.1 Mass Flow Boundary Condition 

Mass flow boundary conditions can be used in FLUENT to provide a prescribed mass 

flow rate or mass flux distribution at an inlet. Physically, specifying the mass flux permits 

the total pressure to vary in response to the interior solution. This is in contrast to the 

pressure inlet boundary condition, where the total pressure is fixed while the mass flux 

varies.  

A mass flow inlet is often used when it is more important to match a prescribed mass 

flow rate than to match the total pressure of the inflow stream. An example is the case of 

a small cooling jet that is bled into the main flow at a fixed mass flow rate, while the 

velocity of the main flow is governed primarily by a (different) pressure inlet/outlet 

boundary condition pair.  

You will enter the following information for a mass flow inlet boundary:  

• mass flow rate, mass flux, or (primarily for the mixing plane model) mass flux 

with average mass flux  

• total (stagnation) temperature  

• static pressure  

• flow direction  
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When mass flow boundary conditions are used for an inlet zone, a velocity is computed 

for each face in that zone, and this velocity is used to compute the fluxes of all relevant 

solution variables into the domain. With each iteration, the computed velocity is adjusted 

so that the correct mass flow value is maintained.  

To compute this velocity, your inputs for mass flow rate, flow direction, static pressure, 

and total temperature are used.  

There are two ways to specify the mass flow rate. The first is to specify the total mass 

flow rate, m, for the inlet. The second is to specify the mass flux, n ρν  (mass flow rate 

per unit area). If a total mass flow rate is specified, FLUENT converts it internally to a 

uniform mass flux by dividing the mass flow rate by the total inlet area:  

                                                       n  
m  
A

ρ ν =                                                     (5.1) 

If the direct mass flux specification option is used, the mass flux can be varied over the 

boundary by using profile files or user-defined functions. If the average mass flux is also 

specified (either explicitly by you or automatically by FLUENT), it is used to correct the 

specified mass flux profile, as described earlier in this section.  

Once the value of n ρν at a given face has been determined, the density, ρ, at the face 

must be determined in order to find the normal velocity ( n ν ). The manner in which the 

density is obtained depends upon whether the fluid is modeled as an ideal gas or not. 

Each of these cases is examined below.  

5.8.2 Wall Boundary Conditions  

Wall boundary conditions are used to bound fluid and solid regions. In viscous flows, the 

no-slip boundary condition is enforced at walls by default, but you can specify a 

tangential velocity component in terms of the translational or rotational motion of the 

wall boundary, or model a "slip'' wall by specifying shear. (You can also model a slip 
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wall with zero shear using the symmetry boundary type, but using a symmetry boundary 

will apply symmetry conditions for all equations.) 

The shear stress and heat transfer between the fluid and wall are computed based on the 

flow details in the local flow field.  

5.9 Shear-Stress Calculation At Wall Boundaries  

For no-slip wall conditions, FLUENT uses the properties of the flow adjacent to the 

wall/fluid boundary to predict the shear stress on the fluid at the wall. In laminar flows 

this calculation simply depends on the velocity gradient at the wall. 

For specified-shear walls, FLUENT will compute the tangential velocity at the boundary.  

If you are modeling inviscid flow with FLUENT, all walls use a slip condition, so they 

are frictionless and exert no shear stress on the adjacent fluid.  

5.10 Shear-Stress Calculation In Laminar Flow 

In a laminar flow, the wall shear stress is defined by the normal velocity gradient at the 

wall as  

                                                      w    n
ντ μ=

∂⎛
⎜

⎞
⎟∂⎝ ⎠

                                                 (5.2) 

When there is a steep velocity gradient at the wall, you must be sure that the grid is 

sufficiently fine to accurately resolve the boundary layer.  

5.11 Defining Materials  

An important step in the setup of the model is to define the materials and their physical 

properties. Material properties are defined in the Materials panel, where you can enter 

values for the properties that are relevant to the problem scope you have defined in the 

Models panel. These properties may include the following:  
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• density and/or molecular weights  

• viscosity  

• heat capacity  

• thermal conductivity  

• UDS diffusion coefficients  

• mass diffusion coefficients  

• standard state enthalpies  

• kinetic theory parameters  

Properties may be temperature-dependent and/or composition-dependent, with 

temperature dependence based on a polynomial, piecewise-linear, or piecewise-

polynomial function and individual component properties either defined by you or 

computed via kinetic theory.  

5.12 Material Types And Databases  

In FLUENT, you can define six types of materials: fluids, solids, mixtures, combusting-

particles, droplet-particles, and inert-particles. Physical properties of fluids and solids are 

associated with named materials. These materials are then assigned as boundary 

conditions for zones.  

5.13 Viscosity  

Fluent provides several options for definition of the fluid viscosity:  

• constant viscosity  

• temperature dependent and/or composition dependent viscosity  

• kinetic theory  

• non-Newtonian viscosity  

• user-defined function  

Fluent provides four options for modeling non-Newtonian flows:  

• power law  
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• Carreau model for pseudo-plastics  

• Cross model  

• User-defined viscosity 

A user-defined function was used for the viscosity 

5.14 The Solver 

Fluent allows you to choose one of the two numerical methods:  

• pressure-based solver  

• density-based solver  

The pressure-based approach was developed for low-speed incompressible flows, while 

the density-based approach is mainly used for high-speed compressible flows. However, 

recently both methods have been extended and reformulated to solve and operate for a 

wide range of flow conditions beyond their traditional or original intent.  

In both methods the velocity field is obtained from the momentum equations. In the 

density-based approach, the continuity equation is used to obtain the density field while 

the pressure field is determined from the equation of state.  

On the other hand, in the pressure-based approach, the pressure field is extracted by 

solving a pressure equation or pressure correction equation which is obtained by 

manipulating continuity and momentum equations.  

Using either method, Fluent will solve the governing integral equations for the 

conservation of mass and momentum, and (when appropriate) for energy and other 

scalars such as turbulence and chemical species. In both cases a control-volume-based 

technique is used that consists of:  

• Division of the domain into discrete control volumes using a computational grid.  
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• Integration of the governing equations on the individual control volumes to 

construct algebraic equations for the discrete dependent variables ("unknowns'') 

such as velocities, pressure, temperature, and conserved scalars.  

• Linearization of the discretized equations and solution of the resultant linear 

equation system to yield updated values of the dependent variables.  

The two numerical methods employ a similar discretization process (finite-volume), but 

the approach used to linearize and solve the discretized equations is different.  

The density-based solver solves the governing equations of continuity, momentum, and 

(where appropriate) energy and species transport simultaneously (i.e., coupled together). 

Governing equations for additional scalars will be solved afterward and sequentially (i.e., 

segregated from one another and from the coupled set) using the procedure described 

below. Because the governing equations are non-linear (and coupled), several iterations 

of the solution loop must be performed before a converged solution is obtained.  

 

• Update the fluid properties based on the current solution. (If the calculation has 

just begun, the fluid properties will be updated based on the initialized solution.)  

• Solve the continuity, momentum, and (where appropriate) energy and species 

equations simultaneously.  

• Where appropriate, solve equations for scalars such as turbulence and radiation 

using the previously updated values of the other variables.  

• When interphase coupling is to be included, update the source terms in the 

appropriate continuous phase equations with a discrete phase trajectory 

calculation.  

• Check for convergence of the equation set.  

These steps are continued until the convergence criteria are met.  

In the density-based solution method you can solve the coupled system of equations 

(continuity, momentum, energy and species equations if available) using, either the 
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coupled-explicit formulation or the coupled-implicit formulation. The main distinction 

between the density-based explicit and implicit formulations is described next.  

In the density-based solution methods the discrete, non-linear governing equations are 

linearized to produce a system of equations for the dependent variables in every 

computational cell. The resultant linear system is then solved to yield an updated flow-

field solution.  

The manner in which the governing equations are linearized may take an "implicit'' or 

"explicit'' form with respect to the dependent variable (or set of variables) of interest. By 

implicit or explicit we mean the following:  

• Implicit: For a given variable, the unknown value in each cell is computed using a 

relation that includes both existing and unknown values from neighboring cells. 

Therefore each unknown value will appear in more than one equation in the 

system, and these equations must be solved simultaneously to give the unknown 

quantities.  

• Explicit: For a given variable, the unknown value in each cell is computed using a 

relation that includes only existing values. Therefore each unknown will appear in 

only one equation in the system and the equations for the unknown value in each 

cell can be solved one at a time to give the unknown quantities.  

5.15 User Defined Functions 

A user-defined function, or UDF, is a function that you program, that can be dynamically 

loaded with the FLUENT solver to enhance the standard features of the code. For 

example, you can use a UDF to define your own boundary conditions, material properties, 

and source terms for your flow regime, as well as specify customized model parameters 

(e.g., DPM, multiphase models), initialize a solution, or enhance post-processing.  

UDFs are written in the C programming language using any text editor and the source 

code file is saved with a .c extension. One source file can contain a single UDF or 

multiple UDFs, and you can define multiple source files. 
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UDFs are defined using DEFINE macros provided by Fluent Inc. They are coded using 

additional macros and functions that access Fluent solver data and perform other tasks.  

Every UDF must contain the udf.h file inclusion directive (#include "udf.h") at the 

beginning of the source code file, which allows definitions of DEFINE macros and other 

Fluent-provided macros and functions to be included during the compilation process. 

Note that values that are passed to a solver by a UDF or returned by the solver to a UDF 

are specified in SI units.  

Source files containing UDFs can be either interpreted or compiled in Fluent. For 

interpreted UDFs, source files are interpreted and loaded directly at runtime, in a single-

step process. An interpreted UDF was used in this case. For compiled UDFs, the process 

involves two separate steps. A shared object code library is first built and then it is loaded 

into FLUENT. Once interpreted or compiled, UDFs will become visible and selectable in 

Fluent graphics panels, and can be hooked to a solver by choosing the function name in 

the appropriate panel.  

In summary, UDFs:  

• Are written in the C programming language.  

• Must have an include statement for the udf.h file.  

• Must be defined using DEFINE macros supplied by Fluent Inc.  

• Utilize predefined macros and functions supplied by Fluent Inc. to access Fluent 

solver data and perform other tasks.  

• Are executed as interpreted or compiled functions.  

• Are hooked to a Fluent solver using a graphical user interface panel.  

• Use and return values specified in SI units.  
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The program which was written in C is: 

# include "udf.h" 

# define n 0.67 

# define alpha 1.0 

# define muo 0.0042 

DEFINE_PROPERTY(Power_law_model,cell,thread) 

{ 

 float visc,trace; 

 float u[3],v[3],w[3]; 

 int i;  

 for(i=0; i<3; i++) 

 { 

  u[i] = C_U_G(cell,thread)[i]; 

  v[i] = C_V_G(cell,thread)[i];      

  w[i] = C_W_G(cell,thread)[i]; 

 } 

           trace = 0.5*(2*pow(u[0],2) + pow(v[0]+u[1],2) + 2*pow(v[1],2) + 

pow(v[2]+w[1],2) + 2*pow(w[2],2) +   pow(w[0]+u[2],2)); 

           visc = 0.5*muo*pow(1+alpha*trace,0.67); 

             return visc; 

} 
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6. RESULTS AND CONCLUSIONS 

 

After the solution had converged the next step in the process is post processing. This 

consisted of setting up the solution such that the data we need from the solution can be 

extracted. The data acquired from each case consisted of:  

• The velocity profiles at the center line, crest line and trough line.  

• Images of the velocity contours showing the distribution of velocity between the 

plates.  

• Images of the velocity vectors in the regions where there are recirculation zones.  

• The distribution of wall shear stress along the top wall.  

 

Since there are 36 cases and a lot of data, it is not possible to include all the data in this 

report. Hence only the important results are included in this section.  

6.1 Plate 1 

The velocity contours of the plate 1 are shown in figure 6.1. The fluid used is blood. The 

phase angle between the plates is 0o.  

 

 

Figure 6.1. Velocity Contours, Blood, a = 0.0022, λ =0.1016, Re = 1000  
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The inlet velocity is 0.412 m/s. This region is colored in green. From there the flow 

accelerated when the cross-section area decreases, and slows down when the cross-

section area increases. The flow accelerates to a maximum velocity of 0.882 m/s which is 

twice the value at the inlet. The centerline velocity along the length of the plate can be 

seen in the figure below.  

 

 

Figure 6.2. Plate 1, Centerline Velocity Profile, Blood 

 

It can be seen that the velocity flow keeps accelerating all the way till the end except for 

when there is increase in the cross section area. There are recirculation zones in this case 

but they are not clearly visible because of their very low velocity which has a magnitude 

of 0.0155 m/s in the opposite direction of the flow.  

A similar pattern is observed in the velocity contour for the case in which oil is used as 

the fluid. The same Reynolds number (1000) is used. The velocity in this case at the inlet 

is 6.84 m/s. The velocity vectors near the expansion region are shown below. It can be 

seen in the figure that there is a predominant recirculation region. The maximum value of 

velocity in this region is 9.13 m/s in the opposite direction of the flow. The flow 

accelerates to a maximum value of 14.8 m/s when is more than twice the value at the inlet.  
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Figure 6.3. Plate 1 Velocity Vectors, Oil, a = 0.0022, λ =0.1016, Re = 1000  

Shown in figure 6.4 is the center line velocity plot for the same case. 

 

 

Figure 6.4. Plate 1, Oil, Re 1000, Centerline Velocity Profile 
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Shown below is a velocity plot for the same case along the trough line. It can be seen that 

the flow changes direction as it approaches the plates. The maximum velocity in the 

opposite direction is a very large number too (9.13 m/s).  

 

 

Figure 6.5. Velocity Profile at Trough Line, Oil, Re = 1000  

Seen in figure 6.6 is the velocity plot along the trough line for a Reynolds number of 500. 

The reversed flow has a lower maximum velocity (1.5 m/s), when compared to the case 

with Reynolds number 1000 which is obvious but even the proportion of this velocity 

compared to the inlet velocity (3.42 m/s) is low. It is only half the inlet velocity. This 

shows that as the Reynolds number increases the effect reversed flow. The reversed flow 

seems to affect the maximum velocity of the flow. The more the reversed flow (the 

maximum velocity of the reversed flow) more the maximum velocity in proportion to the 

inlet velocity. 

 

Shown in figure 6.7 are the velocity vectors for a similar case with oil as fluid and the 

Reynolds number of 100.  The inlet velocity is 0.68 m/s. Reversed flow can still be 

observed even at such a low Reynolds number and inlet velocity. The flow is accelerated 

to a maximum velocity of 1.42 m/s.  
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Figure 6.6. Velocity Profile at Trough Line, Oil, Re = 500 

 

 

 

Figure 6.7. Plate 1, Velocity Vectors, Oil, Re = 100  



 50

 

The similar cases were simulated with plates with phase angle of 45o and 90o with each 

other. Velocity contours for the plate with phase angle of 45o is shown in figure 6.8. The 

region with blue shade which is near the walls is the low velocity region some of which 

has some reversed flow. The maximum value of the reversed flow is 0.768 m/s which is 

low when you consider the inlet velocity is 7.45 m/s. The maximum velocity (11.6 m/s) 

too is less in proportion to inlet velocity when compared to the case where there was no 

offset between the plates. This can be attributed to the fact that the difference between the 

maximum and minimum spacing between the plates in this case is much lesser than when 

the plates are aligned with each other.  

 

 

Figure 6.8. Velocity Contours, phase 45o, Oil, a = 0.0022, λ =0.1016, Re = 1000 
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When the plates are offset by 90o it was observed that there were no recirculation zones. 

The inlet velocity was 8.44 m/s and the maximum velocity was 9.58 m/s near the end of 

the channel. So there is hardly any acceleration of the flow. The minimum velocity of the 

flow was 1.31 m/s near the top wall.  

6.2 Plate 2 

The velocity contours of the plate 2 are shown in figure 6.9. The fluid used is blood. The 

phase angle between the plates is 0o.  

 

 

Figure 6.9. Velocity Contours, Oil, a = 0.0022, λ = 0.0254, Re = 1000 

 



 52

Seen in the figure below is the plot for the centerline velocity for the same case. The inlet 

velocity of the flow is 6.97 m/s and the maximum velocity is 16.15 m/s. which is a little 

more when compared to the same case of plate 1. Plate 2 has a smaller wavelength when 

compared to plate 1. 

 

The center line velocity along the length of the channel is shown in figure 6.10.  

 

 

Figure 6.10. Plate 2, Centerline Velocity Profile 

 



 53

Figure 6.11. Velocity Vectors, Phase 0, Oil, a = 0.0022, λ = 0.0254, Re = 1000 

The velocity vectors near the bottom plate are shown in figure 6.11. There are a lot of 

high velocity reversed flow regions in the flow. The maximum velocity of the reversed 

flow is 10.4 m/s, which is 60% greater than the inlet velocity.  

 

It is observed that when the wavelength is reduced by keeping the amplitude constant, 

there is more reversed flow and also the velocity of the reversed flow is higher. The same 

trend was observed when blood was used as the fluid. 

 

The simulations were repeated for plate 2 with phase difference of 45o and 90o between 

the plates. Shown below are the velocity contours for plate 2 with a phase difference of 

90o between the plates. It can be seen in figure 6.12 that the fluid accelerates quite a bit 

more than plate 1. The inlet velocity is 8.47 m/s and the maximum velocity is 12.33 m/s. 

This happens even though the cross section area does not change anywhere between the 

plates.  It can be observed in figure 6.13 that there is a small region of reversed flow. This 

is a possible reason for the flow to accelerate. The maximum velocity of this reversed 

flow is 1.4 m/s, which is about 1/6th of the inlet velocity.  
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Figure 6.12. Velocity Contours, Phase 90, Oil, a = 0.0022, λ = 0.0254, Re = 1000 

 

Figure 6.13. Velocity Vectors, Phase 90, Oil, a = 0.0022, λ = 0.0254, Re = 1000 

6.3 Plate 3  

In plate 3 the amplitude is reduced to 0.0005 m but wavelength is the same as plate 2. It 

was observed that there was reversed flow only for the case where oil was used as the 

fluid and the Reynolds number was 1000.  The velocity contours for such a case is shown 

in figure 6.14. The flow accelerated to 9.43 from the inlet velocity of 6.85. From the 

velocity vectors in figure 6.15 it can be seen that there is very little reversed flow and it 

has a maximum value of 0.9 m/s.  
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Figure 6.14. Velocity Contours, Phase 0, Oil, a = 0.0005, λ = 0.0254, Re = 1000 

 

 

 

Figure 6.15. Velocity Vectors, phase 0, Oil, a = 0.0005, λ = 0.0254, Re = 1000 
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6.4 Plate 4 

In plate 4 the amplitude is 0.0044 m which is twice the value than for plate 1 but the 

wavelength is 0.1016 m which is the same as plate 1. The inlet velocity for a Reynolds 

number of 1000 and without offset is 6.83 m/s. The velocity vectors for such a case are 

shown in figure 6.16. The maximum velocity of the flow is 21.5 m/s, which is about 3 

times the value at the inlet. There are lots of recirculation zones in the flow like the one 

seen below. The maximum value of the velocity of the reversed flow is 12.4 m/s which is 

twice the value at the inlet.  

 

 

Figure 6.16. Velocity vectors, phase 0, Oil, a = 0.0044, λ = 0.1016, Re = 1000 

Shown in figure 6.17 is the plot of the centerline velocity along the length of the channel. 
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Figure 6.17. Plate 4, Centerline Velocity Profile 

 

The figure 6.18 shows the velocity vectors for oil for a Reynolds number of 100. 

Recirculation zones can be clearly seen, which have a maximum magnitude of 1.1 m/s 

compared to the inlet velocity of 0.68 m/s. The flow is accelerated all the way to a 

velocity of 2.25 m/s which is about 3.5 times the inlet velocity.  

 

 

Figure 6.18. Velocity Vectors, Oil, a = 0.0044, λ = 0.1016, Re = 100 
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The simulations were repeated for plate 4 with phase difference of 45o and 90o between 

the plates. Shown below in figure 6.19 are the velocity contours for plate 4 with a phase 

difference of 45o between the plates. The maximum velocity of the flow is 15.6 m/s. 

 

 

Figure 6.19. Velocity vectors, phase 45o, Oil, a = 0.0044, λ = 0.1016, Re = 1000 

 

Shown in figure 6.20 are the velocity vectors for the same case. The recirculation zones 

can be clearly seen. The maximum velocity of the reversed flow is 10.8 m/s while the 

inlet velocity is 6.84 m/s.  
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Figure 6.20. Velocity Vectors, Phase 45o, Oil, a = 0.0044, λ = 0.1016, Re = 1000 

Shown below in figure 6.21 are the velocity contours for a similar case as above except 

that the phase difference between the plates is 90o.  

 

 

Figure 6.21. Velocity Vectors, Phase 90o, Oil, a = 0.0044, λ = 0.1016, Re = 1000 
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It can be seen in figure 6.22 that there is acceleration in the flow even though there is no 

change in the cross section of the channel. This can be attributed to the reversed flow as 

seen in the figure below. This figure shows the velocity vectors. The reversed flow can be 

clearly seen. The maximum velocity of the reversed flow is 5.79 m/s even though the 

inlet velocity is 6.84 m/s.   

 

 

Figure 6.22. Velocity vectors, phase 90o, Oil, a = 0.0044, λ = 0.1016, Re = 1000 

Shown in figure 6.23 are the velocity vectors for blood for a Reynolds number of 1000 

with the plates 900 out of phase with each other. Reversed flow was observed in this case 

although it cannot be clearly seen in this figure. Even though the inlet velocity is only 

0.41 m/s and there is no change in the cross section area of the channel there are reversed 

flows.  



 61

 

Figure 6.23. Velocity vectors, phase 90o, Blood, a = 0.0044, λ = 0.1016, Re = 1000 

It can be observed that when the amplitude is increased with the wavelength kept the 

same, there is an increase in the reversed flow and the reversed flow velocity.  
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