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ABSTRACT

Groups Generated by Bounded Automata

and Their Schreier Graphs. (December 2007)

Ievgen Bondarenko, B.S., National Taras Shevchenko University of Kyiv, Ukraine;

M.S., National Taras Shevchenko University of Kyiv, Ukraine

Chair of Advisory Committee: Dr. Rostislav Grigorchuk

This dissertation is devoted to groups generated by bounded automata and

geometric objects related to these groups (limit spaces, Schreier graphs, etc.).

It is shown that groups generated by bounded automata are contracting. We

introduce the notion of a post-critical set of a finite automaton and prove that the

limit space of a contracting self-similar group generated by a finite automaton is

post-critically finite (finitely-ramified) if and only if the automaton is bounded.

We show that the Schreier graphs on levels of automaton groups can be

constructed by an iterative procedure of inflation of graphs. This was used to associate

a piecewise linear map of the form fK(v) = minA∈KAv, where K is a finite set of

nonnegative matrices, with every bounded automaton. We give an effective criterium

for the existence of a strictly positive eigenvector of fK. The existence of nonnegative

generalized eigenvectors of fK is proved and used to give an algorithmic way for finding

the exponents λmax and λmin of the maximal and minimal growth of the components

of f
(n)
K

(v). We prove that the growth exponent of diameters of the Schreier graphs is

equal to λmax and the orbital contracting coefficient of the group is equal to 1
λmin

. We

prove that the simple random walks on orbital Schreier graphs are recurrent.

A number of examples are presented to illustrate the developed methods with

special attention to iterated monodromy groups of quadratic polynomials. We present

the first example of a group whose coefficients λmin and λmax have different values.
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CHAPTER I

INTRODUCTION

Automata are basic abstract mathematical models of sequential machines, which

naturally appear in solving various practical problems. Different types of automata

(recognition automata, Turing, Moore, and Mealy machines, cellular and pushdown

automata) were developed in connections to computability, computational complexity,

formal languages, etc. This dissertation deals with Mealy automata, which are finite

state transducers that generate an output based on their current state and an input.

Groups generated by automata (or just automaton groups — not to be

confused with automatic groups) were introduced and studied by V.M. Glushkov

and his students in the 1960s and now begin to play important role in different

areas of mathematics (algebra, dynamical systems, conformal dynamics, fractal

geometry, combinatorics, etc). Different languages (self-similar groups, groups of

automorphisms of regular rooted trees, state-closed groups, tableau representations

of L.A. Kaloujnine) dealing with these groups were developed.

The key feature of automaton groups is the self-similarity of their canonical

action on the space of finite words over the alphabet. Since the self-similar objects in

geometry (fractals) are too irregular to be described using the language of classical

Euclidean geometry, it is not surprising that the automaton groups possess properties

not typical for the traditional group theory. In particular, the class of automaton

groups contains infinite periodic finitely generated groups, groups of intermediate

growth, groups with non-uniform exponential growth, just-infinite groups, groups of

finite width, essentially new amenable groups.

The journal model is Groups, Geometry, and Dynamics.
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The fundamental problem of the theory of automaton groups is the connection

between the structure of an automaton and the properties of the group it generates.

Considering the cyclic structure of automata, Said Sidki [Sid00] introduced various

classes of finite automata and, in particular, bounded automata. Their structure

can be described explicitly, which allows one to deal fairly easily with all bounded

automata. At the same time, the class of groups generated by these automata is

sufficiently large and moreover contains most of the studied automaton groups.

Groups generated by automata are connected with classical self-similar sets via

the notion of a limit space and with dynamical systems via iterated monodromy

groups developed by V.V. Nekrashevych [Nek05]. The Schreier coset graphs of an

automaton group with respect to the stabilizers of finite words (graphs of group

actions) converge in some natural way to the limit space. This makes it possible

to use Schreier graphs in the study of topology and geometry of limit spaces, and

hence Julia sets of sub-hyperbolic rational functions in case of iterated monodromy

groups. At the same time, many interesting constructions of graphs (substitutional,

vertex-substitutional, self-similar) that converge to self-similar sets were developed

in fractal geometry. Asymptotic properties of these graphs (volume growth, growth

dimension, transition probabilities of random walks, etc.) are extensively studied and

it is interesting to understand their relations to Schreier graphs of automaton groups.

Another important topic which is related to this dissertation is the analysis

on fractals. Motivated by physics literature, different methods were developed in

construction of harmonic analysis and Brownian motion on fractals. Unfortunately,

the construction of a “Laplacian” was possible mainly on the fractals which can

be made disconnected by removing finitely many points (finitely-ramified fractals,

nested fractals, post-critically finite self-similar sets). A natural question is to describe

automaton groups whose limit spaces satisfy this property.
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1 The Perron-Frobenius theory for piecewise linear maps

In Chapter III we study spectral properties and iterations of piecewise linear maps of

the form

fK(v) = min
A∈K

Av, v ∈ RN , (1.1)

where K is a finite set of nonnegative square matrices of fixed dimension and by

“min” we mean component-wise minimum. The study of such maps stands separately

from the rest of the contents (the chapter is self-contained) and may look unrelated

to the primary topics of the dissertation. However, it is essential in the study

of asymptotic properties of the Schreier graphs of groups generated by bounded

automata and namely the connection with automata theory established in Chapter V

is our motivation for the study of these maps.

At the same time, the maps fK appear in many different contexts and the

study of such maps can be viewed as a generalization of the Perron-Frobenius

theory of nonnegative matrices. In the last hundred years this theory has been very

well developed and now plays an important role in different areas of mathematics,

including numerous applications to dynamic programming, probability theory,

numerical analysis, mathematical economics, etc. (see monographs [Bel57a, BR97,

BP94, Gan59, How60, ST02, Sen73, Var00] and their references).

The classical Perron-Frobenius theorem shows that a nonnegative matrix has

a nonnegative eigenvector associated with its spectral radius, and if the matrix is

irreducible then the corresponding eigenvector is strictly positive. One important

generalization of this result was obtained by U.G. Rothblum [Rot75], who studied

the structure of the algebraic eigenspaces of nonnegative matrices and described the

combinatorics that stands behind the index of the spectral radius and dimensions of

the algebraic eigenspaces. Moreover, it was shown that a nonnegative matrix has
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some nonnegative generalized eigenvectors with certain strictly positive entries. One

of our main tasks in Chapter III is to extend this result to maps fK and then use it

in the study of iterations fn
K
(v) for a strictly positive vector v.

Also consider the map gK, which is similar to fK, but with “maximum” instead

of “minimum”

gK(v) = max
A∈K

Av, v ∈ RN . (1.2)

The maps of the form (1.1) and (1.2) appear naturally in the probability theory

and economics with connections to Markov decision processes (with additive cost

and reward structures) and branching Markov decision processes (see [How60, RW82,

Pli77, SF79, Bel57b]), dynamical programming (see [Bel57a, Bel55b, MS69]), etc. Let

us consider one such example.

Markov decision processes. Consider a system S with a finite set of states

{1, 2, . . . , N}. At each discrete time n = 1, 2, . . . the system is in one of its states and

for each state i we have a finite set Ki of possible actions over the system S (or we

just have a finite set of actions over the system independently of the state). Assume

that if the system is in state i and we apply an action a ∈ Ki then the system changes

its state and the probability that this new state is j is equal to aij independently of

the history (independently of time n). The process of this type is called a Markov

decision process. Let vi(n) be the probability that the system is in state i at time n.

Now at each stage of the process we may ask the problem of finding the actions that

minimize (or maximize) the probability of finding the system in some state. This

leads to the following recurrence

vi(n+ 1) = min
a∈Ki

N∑

j=1

aijvj(n),

which is the particular case of the iterations of a map fK, where K is a finite set of
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stochastic matrices. If we additionally consider the situation when we need to pay

price pi(a) for every chosen action a ∈ Ki (Markov decision process with additive cost

structure), then to minimize the cost of the process we need to consider recurrence

vi(n+ 1) = min
a∈Ki

{
pi(a) +

N∑

j=1

aijvj(n)

}
,

which can be reduced to the iterations of a map fK by introducing a new variable.

A continuous analogue of equations (1.1) and (1.2) can be written in the form

dv(t)

dt
= min

A∈K

Av(t),
dv(t)

dt
= max

A∈K

Av(t),

and constitute a natural generalization of linear differential systems. Hence they

play important role in different areas of mathematics, apart from their probabilistic

applications. For example, the Riccati equation can be written in this form [Bel55a].

The theory of maps fK and gK can be considered as a part of a more general

theory of homogeneous monotone functions, which classically arise in game theory,

nonlinear potential theory, optimal control, etc. The fundamental problem in this

theory is the existence and uniqueness (up to a scalar multiple) of a strictly positive

eigenvector. There are many sufficient conditions (see [GG04] for one strong result in

this direction), which pretend on the notion “irreducibility” of such maps, however

an effective criterium is unknown.

The study of maps gK was initiated by Richard Bellman. Using the Brouwer

fixed point theorem he proved the existence of a strictly positive eigenvector for the

map gK in the case when each matrix in K is positive and studied the asymptotic

behavior of iterations gn
K
(v) for a nonnegative vector v (see [Bel56] and [Bel57a,

Chapter XI]). He also studied the asymptotic behavior of gn
K
(v) and fn

K
(v) in the

special case when K contains only (transposed) positive Markov matrices [Bel57b].
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These results were generalized to a (possibly infinite) set of irreducible matrices by

P. Mandl and E. Seneta [MS69].

The most important results for our investigation were obtained by W.H.M. Zijm

in [Zij84]. He considered the maps gK and showed that there is a simultaneous block-

triangular decomposition of the set of matrices K, which was used to give the necessary

and sufficient condition for the existence of a strictly positive eigenvector of gK and

extend the above mentioned result of U.G. Rothblum on nonnegative generalized

eigenvectors to gK. Independently, Karel Sladký [Sla80, Sla81] obtained the same

block-triangular decomposition and used it to get bounds on the asymptotic behavior

of iterations gn
K
(v) for a nonnegative vector v. Stronger results about asymptotic

behavior of iterations gn
K
(v) were obtained in [Sla81, Sla86, Zij87] for the case when

some special matrices in K are aperiodic.

Considering maps fK we follow as close as possible to the ideas of W.H.M. Zijm

and use his paper [Zij84] as a model. Notice that we cannot use Zijm’s results for −fK,

which can be expressed using maximum, because matrices should be nonnegative and

the dynamics is considered in the nonnegative cone. The problem in transferring

the results obtained for gK to fK lies in the convexity property which fK lacks.

In particular, there is no simultaneous block-triangular decomposition, which was

extremely important in [Zij84, Sla80, Sla81].

Finally, the appearance of maps fK in automata theory established in Chapter V

is closely related to the results of J. Kigami [Kig95], where maps fK appear during

the construction of metrics on some post-critically finite self-similar sets.

2 Automata and self-similar groups

Consider Mealy automata with the same input and output alphabet X. Each state

q of such an automaton A defines a natural transformation Aq of the set X∗ of finite
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words over the alphabet X. In general, the transformations defined by all the states

of the automaton generate a semigroup, but if they are invertible, we can talk about

the automaton group. In this way the automaton semigroups and groups were defined

on the seminar organized by V.M. Glushkov at National Taras Shevchenko University

of Kyiv [Glu61].

Another approach is to consider the set X∗ as a regular rooted tree and invertible

transformations Aq as automorphisms of this tree. The full group of automorphisms

of a rooted tree can be described in terms of iterated wreath products developed

by L. Kaloujnin and P. Hall. This led to a special “tableau” representation of

automorphisms, which was successfully applied by V.I. Sushchansky and his students

in the study of algebraic properties of different groups of automorphisms of a regular

rooted tree.

In his original paper, V.M. Glushkov conjectured that automaton groups may

have relation to the Burnside Problems [Glu61, page 46]. This was confirmed by

S.V. Aleshin [Ale72], who constructed automata which generate infinite periodic

finitely generated groups providing counter-examples to the General Burnside

Problem, originally solved by Golod and Shafarevich in 1964. Later V.I. Sushchansky

[Sus79] constructed infinite two-generated p-groups for every prime p > 2 using the

language of tableaux. Other constructions were produced by R.I. Grigorchuk [Gri80]

considering measure-preserving transformations of a unit interval and by N.D. Gupta

and S. Sidki [GS83b, GS83a] considering automorphisms of a regular rooted tree.

Although these constructions do not provide the first counter-examples, they are

perhaps the simplest ones.

The full strength of automaton groups was evinced when R.I. Grigorchuk proved

that his group has intermediate growth between polynomial and exponential [Gri83],

providing the answer to the Milnor Problem on growth. At the same time, it solves
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the Day Problem on amenability providing an example of an amenable group that

is not elementary amenable. The appearance of automaton groups in the study of

growth and amenability was not accidental, and it was shown later that the Aleshyn

and Sushchansky groups also have intermediate growth [Mer83, Gri85, BS06].

The study of the lattice of subnormal subgroups of automaton groups lead to the

notion of branch groups introduced by R.I. Grigorchuk. The branch groups constitute

one of the three important classes of groups on which splits the study of finitely

generated just-infinite groups [Gri00].

A fundamental connection between automaton groups and classical dynamical

systems was established by V.V. Nekrashevych [Nek05]. With (branched) self-

coverings of topological spaces are naturally associated their iterated monodromy

groups, which are generated by automata and retain the most essential information

about the dynamical systems. The methods of automaton groups were used to solve

well-known in conformal dynamics Hubbard Problem [BN06a].

Consider the following important property of automaton groups which reflects

the self-similarity of the tree X∗. For every automorphism g of the tree X∗ and a

word v ∈ X∗ define the transformation g|v, called the restriction of g, by the rule

g|v(x) = y if and only if g(vx) = g(v)y

for all x, y ∈ X∗ of equal length |x| = |y|. Then a restriction of the transformation

given by an automaton is again given by some state of this automaton. This property

lies in the foundation of the notion of self-similar group action.

One important class of automaton groups is the class of contracting self-similar

groups, which have nice algorithmic and geometric properties. Contraction of a group

means that the lengths of its elements become shorter when we take restrictions.

Namely the strong contracting properties of the Grigorchuk group were used to prove
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that it has intermediate growth and as for today it is essentially the only known

method to get upper estimates on the growth function of a group. A large class

of contracting self-similar groups is represented by iterated monodromy groups of

expanding dynamical systems. The contracting properties of a self-similar group are

characterized by the contracting coefficient, which is important when we deal with

different algorithmic problems around these groups.

The main topic of this dissertation is the class of groups generated by bounded

automata. Recall the original definition of S. Sidki [Sid00]. An automorphism g of

the tree X∗ given by a finite automaton is called bounded, if the sequence

θk(g) =
∣∣∣{v ∈ Xk | the restriction g|v acts non-trivially on X}

∣∣∣

is bounded. A finite automaton is called bounded if all its states define bounded

automorphisms. The set of all bounded automorphisms forms a group called the

group of bounded automata. When the sequence θk(g) is bounded by a polynomial

we get polynomial automorphisms and polynomial automata. These notions can be

characterized in terms of the cardinality of (right- or left-) infinite paths in the Moore

diagram of automata without the trivial state.

It is interesting that most of the studied automaton groups (in particular, all

the above mentioned examples) are subgroups of the group of bounded automata.

Also every finitely automatic GGS-group [BGŠ03], AT-group [Mer83] or spinal group

[BŠ01] is generated by bounded automorphisms. All known examples of groups of

intermediate growth are either generated by bounded automata or are constructed

from such groups. Also the iterated monodromy groups of polynomials are subgroups

of the group of bounded automata [Nek05, Theorem 6.10.8].

The first important result about polynomial automaton groups was obtained by

S. Sidki, who proved that they do not contain free non-abelian subgroups [Sid04].
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Studying the random walks on groups generated by bounded automata L. Bartholdi,

V. Kaimanovich, V.V. Nekrashevych and B. Virag [BKNV06] proved that these

groups are amenable. The last result led to the first example [BV05] of an amenable

group, which is not sub-exponentially amenable [Gri98, GHC99].

In Chapter IV we show that groups generated by bounded automata are

contracting, which allows us to consider different geometric objects and contracting

coefficients associated with these groups.

3 Post-critically finite self-similar sets

The first examples of fractals were constructed at the beginning of the twentieth

century as interesting counter-examples in topology and measure theory. For example,

the middle third Cantor set provides an example of an uncountable perfect set with

zero Lebesgue measure, the Koch curve is an example of a compact curve of infinite

length. However, the first notion of a fractal was introduced only in the 70s by

B. Mandelbrot. After that the theory of fractals begin to develop rapidly.

Although fractals were constructed as pure mathematical objects, they have

found their places in different practical applications. It was discovered that some

natural phenomena (like coastlines, clouds, mountains, etc.) should be simulated by

objects having fractal appearance rather than smooth. The natural question arises

to describe the physical processes (like heat diffusion, vibration, etc.) on fractals like

the classical analysis does it for the smooth objects. Since fractals do not possess any

smooth structure, it is not possible to define differential operators from the classical

point of view. That is the goal of a rather new branch of fractal geometry — analysis

on fractals.

The first step in this development was construction of Brownian motion on the

Sierpinski gasket. It was noticed that an important role is played by the property
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that a fractal can be made disconnected by removing finitely many points. Then

T. Lindstrøm [Lin90] extended the construction of Brownian motion to nested fractals,

which are finitely ramified fractals with strong symmetry. Using a different approach

J. Kigami [Kig89] introduced a construction of the Laplacian and described the

structure of harmonic functions, Green’s functions, Dirichlet forms on the Sierpinski

gasket. These constructions were extended to post-critically finite self-similar sets

[Kig01], which are almost the only fractals on which the analysis is developed.

Self-similar sets are usually defined as attractors of iterated functional systems.

If {fx, x ∈ X} is such a system, then the corresponding self-similar set K is defined

as the compact set satisfying the equation

K =
⋃

x∈X

fx(K).

The self-similar set K defined in this way admits a canonical self-similar structure

defined as follows [Kig01, Section 1.3]. There exists a continuous surjective map

π : Xω → K, which makes the following diagram commutative:

Xω σx−−−→ Xω

yπ

yπ

K
fx−−−→ K

for every x ∈ X, where σx : Xω → Xω is defined by σx(x1x2 . . .) = xx1x2 . . . . The

critical set C of K is defined as the pre-image of the set
⋃

x,y∈X,x 6=y (fx(K) ∩ fy(K))

under the map π and the post-critical set is P = ∪n>1σ
n(C), where σ is the shift

on the space of sequences Xω. A self-similar set is called post-critically finite if its

post-critical set P is finite.

Contracting automaton groups are connected with fractal geometry through their

limit spaces [Nek05, Chapter 3]. Limit space is defined as a quotient of the space X−ω

of left-infinite sequences over the alphabet X by an equivalence relation that can be
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described using the Moore diagram of the generating automaton. In Chapter IV we

define the post-critical set of a finite automaton as the set of all left-infinite sequences

over the alphabet X, which are read along left-infinite paths in the Moore diagram

of the automaton ending in a non-trivial state. We prove that the post-critical set

of a finite automaton is finite if and only if the automaton is bounded. We adopt

the notions of post-critically finite self-similar set and finitely ramified self-similar set

to limit spaces of automaton groups. The main result proves that the limit space of

a contracting group generated by a finite automaton is post-critically finite (finitely

ramified) if and only if this automaton is bounded.

4 Schreier graphs

Let G be a group generated by a finite system of generators S. The Schreier graph of

the action of the group G on a set M is the directed graph with the set of vertices M

and the set of edges M × S, where for every m ∈M and s ∈ S there is an edge from

m to s(m). Schreier graphs are generalization of Cayley graphs, which correspond to

the action of the group on itself by left (or right) multiplication.

The action of a finitely generated group G on a rooted tree X∗ naturally defines

the sequence of finite Schreier graphs Γn of the action (G,Xn) and uncountable family

of orbital Schreier graphs Γω of the action of G on the G-orbit of the point ω on

the boundary of X∗. The study of the Schreier graphs Γn and Γω was initiated by

L. Bartholdi and R.I. Grigorchuk [BG00a], who computed the spectra and growth

of these graphs for a few interesting examples of automaton groups. It happened

that these Schreier graphs have interesting spectral properties. In particular, the

first examples of regular graphs for which spectrum is a Cantor set were constructed

as Schreier graphs of automaton groups. The realization of the lamplighter group

as automaton group allowed to prove that it has a pure point spectrum [GŻ01] and
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this discovery led to the construction of a 7-dimensional closed manifold with non-

integer third L2-Betti number, which was the first counter-example to the Strong

Atiyah Conjecture. Also the orbital Schreier graphs were used by V.V. Nekrashevych

and R.I. Grigorchuk [GN05] to construct amenable actions of non-amenable groups.

Correlation between growth, growth of diameters, and the rate of vanishing of the

spectral gap in Schreier graphs was studied by R.I. Grigorchuk and Z. Sunik [GŠ06],

who constructed automaton groups whose Schreier graphs model the well-known

Hanoi Towers game.

The Schreier graphs Γn can be used to approximate the limit spaces of

contracting self-similar groups. The most natural way to see this was introduced

by V.V. Nekrashevych [Nek03]. Take the tree X∗ and draw the Schreier graphs Γn on

the levels of this tree. If the group is contracting then the obtained graph is Gromov-

hyperbolic and its boundary is homeomorphic to the limit space of the group. It is

well-known that geodesics in a hyperbolic space diverge exponentially. The lowest

possible exponent of divergence is characterized by the orbital contracting coefficient

of the group. We show how this coefficient can be effectively computed for the case

of bounded automata, partially answering to the questions of V.V. Nekrashevych.

It was noticed in [BG00a] that the Schreier graphs Γn of some automaton groups

can be constructed iteratively by graph substitution. Substitutional graphs were

introduced in the 70s to model the growth of plants and multicellular organisms.

Using simple rules of replacement of certain subgraphs by bigger graphs, one simple

graph can be transformed into graph with very complex structure and non-trivial

growth. In [Gro84] M. Gromov noted that substitutional graphs are similar to

L-systems introduced by A. Lindenmayer in 1968. These systems have important

applications to data and image compression.

In [Pre98] J.P. Previte considered a different notion of graph substitution. In
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his construction the vertices of a graph are replaced by some finite graphs. By

iterating this vertex-substitution procedure we get a sequence of graphs. If they are

normalized to have diameter one, the sequence can converge in the Gromov-Hausdorff

metric. J.P. Previte gives necessary and sufficient conditions for this convergence and

determines the Hausdorff dimension of the limit space. M. Previte, S.H. Yang, and

M. Vanderschoot [PV03, PY06] show that limit spaces obtained in this way have

topological dimension one, which makes them similar to the limit spaces of bounded

automaton groups.

The picture will not be complete if we forget to mention self-similar graphs

introduced by B. Krön. These infinite graphs can be considered as discrete analogs

of self-similar sets. The random walks on self-similar graphs and, in particular, their

Green functions and spectra of Markov operators are studied in [Krö02, KT04]. The

homogeneous self-similar graphs with bounded geometry have polynomial growth.

The degree of this growth was calculated in [Krö04].

However, usually the Schreier graphs of automaton groups are neither self-

similar nor substitutional in the above senses. We develop a construction of

inflation of graphs, which is a graph-theoretical analog of tile diagrams introduced

by V.V. Nekrashevych [Nek05, Section 3.10]. This construction is in some sense dual

to graph substitution. The new graph is constructed from the copies of the previous

graph using some finite data, which we call inflation data. We show how the Schreier

graphs Γn of bounded automaton groups can be constructed using such inflations and

describe the associated inflation data. The piecewise linear map of the form fK can be

naturally associated with every inflation data. Using iterations of maps fK, we show

an effective way to find the asymptotic behavior of the diameters of the Schreier graphs

Γn and the orbital contracting coefficient of the group, answering to the questions of

R.I. Grigorchuk and V.V. Nekrashevych in case of bounded automaton groups.
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CHAPTER II

AUTOMATA AND SELF-SIMILAR GROUPS

The goal of this chapter is to introduce general notations, terminology, and results

that will be used throughout the dissertation (see [Nek05, GNS00, BGN03]).

1 Spaces of words

Let X be a finite set, which will be called alphabet with elements called letters. We

always suppose |X| > 1.

LetX∗ be the free monoid generated byX. The elements of this monoid are finite

words x1x2 . . . xn, xi ∈ X, including the empty word ∅. Then X∗ can be decomposed

in the disjoint union
∐

n>0X
n, where X0 = {∅} and Xn are Cartesian products for

n > 1. The set Xn is called n-th level. The length of a word v = x1x2 . . . xn (the

number of letters in it) is denoted by |v| = n. The length of the empty word is zero.

Let Xω be the set of all right-infinite sequences (words) x1x2 . . ., xi ∈ X. Let

X−ω be the set of all left-infinite sequences (words) . . . x2x1, xi ∈ X. The sets Xω

and X−ω are naturally identified with Cartesian products XN and X−N, which allows

us to consider them as topological spaces with the topology of the direct (Tikhonov)

product of discrete sets X. The collections {vXω, v ∈ X∗} and {X−ωv, v ∈ X∗} of all

cylindrical sets form the basses of open sets in these topologies. The cylindrical sets

are open and closed, hence the spaces Xω and X−ω are totally disconnected. They

are also compact and without isolated points, thus homeomorphic to the Cantor set.

The restriction on the n-th level of a right-infinite sequence a = x1x2 . . . ∈ Xω is

the word an = x1x2 . . . xn. The restriction on the n-th level of a left-infinite sequence

a = . . . x2x1 ∈ X−ω is the word an = xn . . . x2x1.
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Two right-infinite sequences x1x2 . . . , y1y2 . . . ∈ Xω are called confinal if they

differ only in finitely many letters. The confinality relation is an equivalence relation.

The respective equivalence classes are called the confinality classes. The confinal class

of a sequence ω ∈ Xω is denoted by Ec(ω).

The shift on the space Xω is the map σ : Xω → Xω, which deletes the first

letter of the word: σ(x1x2x3 . . .) = x2x3 . . .. The shift on the space X−ω is the map

τ : X−ω → X−ω, which deletes the last letter of the word: τ(. . . x3x2x1) = . . . x3x2.

By our notations σk(an) = an−k for any a ∈ Xω and τ k(an) = an−k for any a ∈ X−ω.

2 Graphs and trees

A (directed) graph (with multiple edges and loops) Γ is defined by a set of vertices

V (Γ), a set of edges (arrows) E(Γ), and maps s, r : E(Γ) → V (Γ), where s(e) is the

beginning of the edge e and r(e) is its end.

Two vertices v1, v2 are adjacent if there exists an edge e such that v1 = s(e) and

v2 = r(e) or v2 = s(e) and v1 = r(e). In this case, we say that the edge e connects

the vertices v1 and v2. A loop is an edge e such that s(e) = r(e).

An undirected graph (with multiple edges and loops) Γ is a directed graph

together with a map e 7→ e on the set of edges such that s(e) = r(e) and r(e) = s(e).

This map turns over the directions of arrows-edges and we can assume that together

with every edge we have and an edge in opposite direction.

A simplicial graph Γ is defined by a set of vertices V (Γ) and a set of edges E(Γ),

where every edge e is a set {v1, v2} of two different vertices v1, v2 ∈ V . The vertices

v1, v2 of the simplicial graph are adjacent if the set {v1, v2} is an edge of this graph.

The edge-labeled graph with label set S is a graph together with a map m :

E(Γ)→ S, which assigns a label m(e) ∈ S to every edge of the graph.
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A morphism of graphs f : Γ1 → Γ2 is a pair of maps

fv : V (Γ1)→ V (Γ2) fe : E(Γ1)→ E(Γ2)

such that

s(fe(e)) = fv(s(e)) r(fe(e)) = fv(r(e))

for all e ∈ E(Γ1). A morphism of labeled graphs is a morphism of graphs that preserves

the labels of the edges. A morphism of simplicial graphs f : Γ1 → Γ2 is a map of

the sets of vertices fv : V (Γ1)→ V (Γ2) such that for every edge {v1, v2} ∈ E(Γ1) the

set {fv(v1), fv(v2)} is an edge of the graph Γ2. The corresponding map fe : E(Γ1)→

E(Γ2) is defined by fe({v1, v2}) = {fv(v1), fv(v2)}.

A bijective morphism f : Γ→ Γ is called an automorphism of the graph Γ.

If Γ is a graph, then its associated simplicial graph is the simplicial graph with

the same set of vertices, which contains an edge {v1, v2} if and only if the vertices v1

and v2 are adjacent in the original graph and v1 6= v2.

A sequence of edges e1e2 . . . en of a graph Γ is called a path if r(ei) = s(ei+1) for

all 1 6 i 6 n− 1. The vertex s(e1) is called the beginning of the path and the vertex

r(en) is its end. The number n is called the length of the path. Similarly we define

left-infinite paths . . . e2e1 and right-infinite paths e1e2 . . .. A path is called simple if

all its edges are different. A cycle is a path such that the beginning vertex and the

end vertex are the same. A graph is called connected if for every its vertices v1, v2

there exists a path, which begins at v1 and ends at v2.

In simplicial graph a path e1e2 . . . en is uniquely defined by the sequence of

vertices v0v1 . . . vn, where ei = {vi−1, vi} for all i = 1, 2, . . . , n. Hence the sequence of

vertices v0v1 . . . vn such that {vi−1, vi} ∈ E for all i is also called a path.

A geodesic path (or just geodesic) connecting the vertices v1 and v2 is a path of
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minimal length, whose beginning and end are v1 and v2 respectively. The length of a

geodesic path connecting v1 and v2 is called the distance between them and is denoted

by d(v1, v2). We define d(v, v) = 0. The distance d(·, ·) is called the combinatorial

(geodesic, natural) metric on the graph. The diameter of a graph Γ is the length of

its longest geodesic and is denoted by Diam Γ.

A subgraph of a graph Γ induced or spanned by a set of vertices U ⊂ V (Γ) is

a graph with the set of vertices U together with all edges of the graph Γ between

vertices in U . The ball B(v, r) of radius r with center at the vertex v is the set of

vertices {u ∈ V : d(v, u) 6 r}.

The degree of a vertex v is the number of edges whose beginning or end is v

(note that a loop counts twice). A graph Γ is locally finite if every its vertex has

finite degree. If the graph is locally finite then every ball B(v, r) is finite.

The growth function of a locally-finite connected graph Γ with respect to a vertex

v0 is the function γ : N → N, where γ(r) is equal to the number of vertices in the

ball B(v0, r). A graph has polynomial growth if its growth function is bounded by a

polynomial. A graph has polynomial growth if the number

α = lim sup
r→∞

log γ(r)

log r

is finite. In this case, the number α is called the degree of growth of the graph. The

degree of the growth does not depend on a choice of the base point v0.

A tree T is a connected simplicial graph without cycles. A rooted tree is a tree

with a fixed vertex called its root. A morphism of rooted trees is a morphism of

corresponding graphs, which maps the root of one tree to the root of the other one.

For two vertices v, u of a rooted tree we say that the vertex u lies below the

vertex v if the path, which connects u with the root of the tree, passes through the

vertex v. The subgraph of a rooted tree induced by the set of vertices that lie below
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Fig. 1. Binary tree

the vertex v is a subtree, which is denoted by Tv and is called the subtree with rooted

vertex v. If T is a rooted tree, then the set Tn of all vertices on distance n from the

root is called the n-th level of the tree T .

A rooted tree T is called d-regular if the degree of the root is d and the degree

of all the other vertices is d + 1. A rooted tree is called binary if it is 2-regular (see

Figure 1). The n-th level of a d-regular tree contains dn vertices.

The set of all finite words X∗ over the alphabet X has a natural structure of a

rooted tree in which two words are connected by an edge if and only if they are of

the form v and vx, where v ∈ X∗ and x ∈ X. The empty word ∅ is the root of the

tree X∗. The tree X∗ is d-regular for d = |X| and every d-regular tree is isomorphic

to X∗. The subtree Tv of the tree X∗ coincides with the tree vX∗ rooted at v. The

map u 7→ vu defines the canonical isomorphism of the rooted trees X∗ and vX∗. The

set Xω is naturally identified with the boundary of the tree X∗, which is the set of all

infinite simple paths starting at the root.
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3 Automorphisms of rooted trees

Denote by AutX∗ the group of all automorphisms of the rooted tree X∗.

An automorphism of the rooted tree X∗ preserves the root, and hence all

distances between vertices and the levels Xn. Since an automorphism is a bijective

map on the vertices, it induces a permutation on every level of the tree.

Take arbitrary g ∈ AutX∗. For every word v ∈ X∗ define the map g|v : X∗ → X∗

by the rule

g|v(x) = y if and only if g(vx) = g(v)y

for all x, y ∈ X∗ of equal length |x| = |y|. The map g|v is an automorphism of the

tree X∗ and is called the restriction of g on the word v or the state of g in the word v.

The action of g on the tree X∗ can be written in the form

g(vw) = g(v)g|v(w)

for all v, w ∈ X∗. Restrictions have the following properties:

g|v1v2
= g|v1

|v2
(g · h)|v = g|h(v) · h|v

for arbitrary automorphisms g, h ∈ AutX∗ and words v, v1, v2 ∈ X∗.

An automorphism g is called finite-state, if the set of its states {g|v : v ∈ X∗} is

finite. An automorphism g is called finitary if there exists n > 1 such that g|v = 1

for all words v ∈ Xn. The set of all finitary automorphisms form a group, called the

finitary group. A finitary automorphism g is called rooted if g|x = 1 for every letter

x ∈ X (g may act non-trivially only near the root of the tree).

Every automorphism g ∈ AutX∗ induces a permutation πn on the n-th level Xn

and restrictions g|v on words v ∈ Xn. Different automorphisms have different tuples

{permutation πn, restrictions g|v, v ∈ Xn}.
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Theorem II.1 ([GNS00, Proposition 3.8]). The group AutX∗ is isomorphic to the

wreath product Sym(X) ≀AutX∗, where Sym(X) is the complete symmetric group on

the set X. The group AutX∗ is isomorphic to the infinite wreath product ≀∞i=1Sym(X).

Let X = {x1, x2, . . . , xd}. The canonical representation of the elements of the

wreath product Sym(X) ≀ AutX∗ allows us to represent the elements g ∈ AutX∗ in

the form

g = (g|x1
, g|x2

, . . . , g|xd
)πg, (2.1)

where πg is the permutation induced by g on the first level X. The multiplication of

automorphisms g and h represented in the form (2.1) can be done by the rule

g · h = (g|x1
h|πg(x1), g|x2

h|πg(x2), . . . , g|xd
h|πg(xd))πgπh.

The notation (2.1) is convenient to use for recurrent definition of automorphisms in

the following way. Suppose that elements g1, g2, . . . , gm satisfy the following wreath

recursions:

g1 = (g11, g12, . . . , g1d)π1

g2 = (g21, g22, . . . , g2d)π2 (2.2)

...

gm = (gm1, gm2, . . . , gmd)πm,

where πi ∈ Sym(X) and every gij is a word over the alphabet {g±1
1 , g±1

2 , . . . , g±1
m }.

Then the system (2.2) completely determines the action of the automorphisms gi on

the rooted tree X∗. The action of gi on the first level is defined by the permutation

πi and the action of the restriction gi|xj
is uniquely defined by the word gij.

Every group of automorphisms has a series of natural subgroups.

Definition 1. Let G be a subgroup of AutX∗.
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1. The group G is called level-transitive if it acts transitively on all levels Xn.

2. For every vertex v ∈ X∗ the subgroup StG(v) = {g ∈ G : g(v) = v} is called

the vertex stabilizer.

3. For every n > 1 the intersection of all stabilizers of vertices on n-th level

StG(n) =
⋂

v∈Xn

StG(v)

is called the level stabilizer.

4. For every sequence w = x1x2 . . . ∈ Xω the subgroup

Pw =
⋂

n>1

StG(x1x2 . . . xn)

is called the parabolic subgroup or the stabilizer of the end w of the tree.

For every vertex v ∈ X∗ and number n > 1 the maps

φ : StAut X∗(v)→ AutX∗, ψ : StAut X∗(n)→
|X|n∏

i=1

AutX∗

defined by the rules:

φ(g) = g|v, ψ(g) = (g|v)v∈Xn

are homomorphisms.

Proposition II.2 ([GNS00, Proposition 6.1]). Let G be a subgroup of AutX∗. The

level stabilizers form a chain

G > StG(1) > StG(2) > StG(3) > . . .

of normal subgroups of finite index in the group G. Moreover, the intersection
⋂

n>1 StG(n) is trivial.

Hence the group AutX∗ is profinite and all its subgroups are residually finite.
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4 Automata

Definition 2. An automaton A is a quadruple (X,Q, π, λ), where

1. X is an alphabet;

2. Q is a set of states of the automaton;

3. π : Q×X → X is a map, called the transition function of the automaton;

4. λ : Q×X → X is a map, called the output function of the automaton.

An automaton is finite if it has a finite number of states.

The set of states Q is usually denoted by A as well.

A subset P ⊂ Q is a sub-automaton of A if for every state p ∈ P and every letter

x ∈ X the state π(p, x) belongs to P . The corresponding maps πP and λP are the

restrictions of the maps π and λ on the set P ×X.

The maps π, λ can be extended on Q×X∗ by the following recurrent formulas

π(q, ∅) = q π(q, xw) = π(π(q, x), w),

λ(q, ∅) = ∅ λ(q, xw) = λ(q, x)λ(π(q, x), w),

where x ∈ X, q ∈ Q, and w ∈ X∗ are arbitrary elements. Similarly, the maps π, λ are

extended on Q×Xω.

An automaton A with a fixed state q is called initial and is denoted by Aq.

Every initial automaton defines a transformation λ(q, ·) on the sets of finite and

infinite words X∗ and Xω, which we also denote by Aq(w) = λ(q, w). The action of

an initial automaton Aq can be interpret as the work of a machine, which being in

the state q and reading on the input tape a letter x, goes to the state π(q, x), types

on the output tape the letter λ(q, x), then moves both tapes to the next position and

proceeds further.
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The nucleus N of an automaton A is its minimal finite sub-automaton such that

for every state q ∈ A there exists a level k ∈ N such that the state π(q, v) belongs to

N for every word v ∈ X∗ of length > k. If the automaton A is infinite the nucleus

may not exist. A finite automaton coincides with its nucleus if and only if every its

state has an incoming arrow.

An automaton A can be represented (and defined) by a labeled directed graph,

called the Moore diagram, in which the vertices are the states of the automaton and

for every pair (q, x) ∈ Q×X there is an edge from q to λ(q, x) labeled by x|π(q, x).

Using the Moore diagram of the automaton one can easily find the image of a word

x1x2 . . . under the transformation Aq. We just start at the state q and go along the

arrows labeled by x1|y1, x2|y2, . . . . Then the word y1y2 . . . which appears on the right

labels is the image Aq(x1x2 . . .).

We say that a left-infinite path . . . e2e1 in the Moore diagram of an automaton

is labeled by a pair of left-infinite sequences . . . x2x1| . . . y2y1 if each edge ei is labeled

by xi|yi. We say that a left-infinite sequence . . . x2x1 is read on a left-infinite path

. . . e2e1, if each edge ei is labeled by xi|yi for some letter yi.

An automaton is called invertible if each of its states defines an invertible

transformation of the set X∗ (or equivalently of the set Xω). If A is an invertible

automaton, then its inverse is the automaton A−1 = (X,Q, π′, λ′), where

π(q, x) = π′(q, λ(q, x)) λ(λ′(q, x)) = x,

for all q ∈ Q and x ∈ X. By changing every label x|y to y|x in the Moore diagram

of the automaton A we get the Moore diagram of the automaton A−1. An initial

automaton A−1
q defines a transformation, which is inverse to the transformation

defined by Aq.

Invertible transformations defined by initial automata are automorphisms of
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Fig. 2. The automata generating the Grigorchuk group (on the left) and the

Gupta-Fabrikovsky group (on the right)

the tree X∗ and every automorphism can be given by some initial automaton. If

the transformation Aq is invertible, then the automorphism Aπ(q,v) defined by the

state π(q, v) is precisely the restriction of the automorphism Aq on the word v. An

automorphism is finite-state if and only if it can be given by a finite initial automaton.

Definition 3. Let A be an invertible automaton. The group generated by all the

transformations Aq, q ∈ Q, is denoted by GA and is called the group generated by the

automaton A or the automaton group defined by A.

Example 1 (Grigorchuk group). Let X = {0, 1}. Define the automorphisms of the

binary tree X∗ by the wreath recursions:

a = (1, 1)σ, b = (a, c), c = (a, d), d = (1, b),

where σ is the transposition (0, 1) ∈ Sym(X). The Grigorchuk group is generated by

a, b, c, d. So, it is generated by the automaton shown in Figure 2. This group was
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constructed as an example of infinite periodic finitely generated group (see [Gri80]).

Also it is the first example of a group of intermediate growth (see [Gri83]), i.e. its

growth function has intermediate growth between polynomial and exponential. The

Grigorchuk group has many other interesting properties like just-infiniteness, finite

width, etc. (see [BGŠ03, H00, BG02, BG00a, BG00b]).

Example 2 (Gupta-Fabrikovsky group). This group is defined over the alphabet

X = {0, 1, 2} and is generated by elements a, t, which are defined by the wreath

recursions:

a = (1, 1, 1)σ, t = (a, 1, t),

where σ is the permutation (0, 1, 2) ∈ Sym(X). The automaton generating the

Gupta-Fabrikovsky group is shown in Figure 2. This group is studied in [FG85].

5 Self-similar groups

Definition 4. A faithful action of a group G on X∗ (or on Xω) is called self-similar

if for every g ∈ G and every x ∈ X there exist h ∈ G and y ∈ X such that

g(xw) = yh(w) (2.3)

for every w ∈ X∗ (respectively w ∈ Xω).

Applying Equation (2.3) several times we get that for every g ∈ G and every

v ∈ X∗ there exist h ∈ G and u ∈ X∗, |u| = |v|, such that

g(vw) = uh(w)

for all w ∈ X∗ (w ∈ Xω). The automorphism h is precisely the restriction g|v. An

automorphism group G of the tree X∗ is self-similar if g|v ∈ G for all words v ∈ X∗
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and every g ∈ G. A self-similar group is called finite-state if the set of restrictions

{g|v|v ∈ X∗} is finite for every element g of the group.

Groups generated by automata are self-similar and every self-similar group G

can be given by the complete automaton A of its action. The set of states of this

automaton is G and the maps π, λ are defined by the rules

π(g, x) = h = g|x λ(g, x) = y = g(x),

where x ∈ X, g ∈ G. It follows that Ag(w) = g(w) for all w ∈ X∗ and every g ∈ G.

Proposition II.3 ([Nek05, Section 1.5.4]). A finitely generated self-similar group is

finite-state if and only if it can be generated by a finite invertible automaton.

A set S of automorphisms of the tree X∗ is called self-similar, if the restriction

s|v belongs to S for every s ∈ S and v ∈ X∗. That is S is a sub-automaton of the

complete automaton of AutX∗.

Definition 5. A self-similar group G is called self-replicating (recurrent) if it acts

transitively on the first level X of the tree X∗, and for a letter x ∈ X the map

φx : StG(x) → G given by the rule g 7→ g|x is surjective (it does not depend on a

letter x).

Proposition II.4 ([Nek05, Corollary 2.8.5]). A self-replicating self-similar group is

level-transitive.

An important class of self-similar groups is the class of contracting groups.

Definition 6. A self-similar group G is called contracting if there exists a finite set

N ⊂ G such that for every g ∈ G there exists a level k ∈ N such that g|v ∈ N for all

words v ∈ X∗ of length > k. The minimal set with this property is called the nucleus

of the self-similar action.
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It follows from the definition that every contracting action is finite-state.

The nucleus of a contracting self-similar group is a self-similar set and is precisely

the nucleus of the complete automaton of the action. If N is the nucleus of some

contracting group, then the self-similar group 〈N〉 is contracting with nucleus N .

Proposition II.5 ([Nek05, Proposition 2.11.3]). A finitely generated self-replicating

contracting self-similar group is generated by its nucleus.

Proposition II.6. Let G be a contracting self-similar group. The G-orbit of every

point ω ∈ Xω is contained in a union of finitely many confinality classes.

Proof. The G-orbit of a point ω ∈ Xω is contained in the union ∪g∈NEc(g(ω)).

For a finitely generated self-similar group the contracting property means that

the length of the group elements contracts under taking restrictions. Let G be a

group generated by a finite set S. We can consider the word length l(g) = lS(g) with

respect to S of the group element g ∈ G defined by

l(g) = min{n|g = s1s2 . . . sn, si ∈ S ∪ S−1}.

Observe, that if the group G is self-similar with a self-similar generating set S then

l(g|v) 6 l(g) for all v ∈ X∗ and g ∈ G.

Definition 7. Let G be a finitely generated self-similar group. The number

ρ = lim
n→∞

max
v∈Xn

n

√
lim sup
l(g)→∞

l(g|v)
l(g)

. (2.4)

is called the contracting coefficient of the action.

The contracting coefficient is finite and does not depend on a particular choice

of a generating set (see [Nek05, Lemma 2.11.10]).
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Theorem II.7 ([Nek05, Proposition 2.11.11]). A finitely generated self-similar group

is contracting if and only if its contracting coefficient ρ is less than 1.

Contracting groups have nice algorithmic properties.

Theorem II.8 ([Nek05, Proposition 2.13.10]). A finitely generated contracting self-

similar group has solvable word problem. Moreover, for any ǫ > 0 there exists an

algorithm of polynomial complexity of degree not greater than log |X|
− log ρ

+ ǫ solving the

word problem in the group, where ρ is its contracting coefficient.

The Grigorchuk group and the Gupta-Fabrikovsky group are contracting.

6 Schreier graphs

Let G be a group generated by a finite set S. Let H be a subgroup of G. The Schreier

graph Γ(G,S,H) of the group G with respect to its subgroup H and the generating set S

is the labeled directed graph whose vertices are the right cosets G/H = {Hg : g ∈ G},

the set of edges G/H × S, and the label set S. The edge (Hg, h) is labeled by h and

the maps s, r are defined by the rules

s((Hg, h)) = Hg r((Hg, h)) = Hgh

for all Hg ∈ G/H and h ∈ S.

If the group G acts on a set M , then the corresponding Schreier graph Γ(G,S,M)

is the labeled directed graph with the set of vertices M , the set of edges M × S, and

the label set S. In this graph the edge (x, g) starts in x, ends in g(x), and is labeled

by g. That is the maps s, r are given by the rules

s((x, g)) = x r((x, g)) = g(x).

Suppose that the group G acts transitively on M . For every point m ∈ M define
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a subgroup StG(m) = {g ∈ G : g(m) = m}, which is called the stabilizer of the

point m. Then the Schreier graph Γ(G,S,M) is isomorphic to the Schreier graph

Γ(G,S, StG(m)) for every m ∈M .

The Cayley graph of the group G is the Schreier graph of the action of G on itself

by multiplication from the right, or (what is the same) the Schreier graph Γ(G,S, {1}).

If the set S is symmetric, that is S = S−1, then we can suppose that the graph

Γ(G,S,M) is undirected with the map (x, g) = (g(x), g−1).

The Schreier graph Γ(G,S,M) is locally finite, since the set S is finite. If the

group G acts transitively on M then the graph Γ(G,S,M) is connected.

The Schreier graph Γ(G,S,M) uniquely defines the action of the group G on the

set M and if the action is faithful uniquely defines the group G. The sets of vertices

in the connected components of the graph Γ(G,S,M) coincide with the orbits of the

action (G,M). For every m ∈M the Schreier graph Γ(G,S,m) of the action of G on

the G-orbit of the point m is called the orbital Schreier graph. For arbitrary points

from the same orbit the corresponding orbital Schreier graphs are isomorphic.

Let G be a group of automorphisms of the rooted tree X∗ generated by a finite

set S. The levels Xn of the tree are invariant under the action of the group G. Denote

by Γn(G,S) the Schreier graph of the action of G on Xn. For a point w ∈ Xω denote

by Γw(G,S) the orbital Schreier graph of the action of G on the G-orbit of the point

w. The Schreier graph Γ(G,S,X∗) is a disjoint union of the Schreier graphs Γn(G,S).

For a finite invertible automaton S, the Schreier graph Γn(〈S〉, S) is denoted by

Γn(S) and is called the Schreier graph of n-th level of the automaton S.

The shift map τn : Xn+1 → Xn, which deletes the last letter of a word

τn(x1x2 . . . xnxn+1) = x1x2 . . . xn, induces the surjective morphism of labeled graphs

τn : Γn+1(G,S) → Γn(G,S). Hence we have the inverse spectrum of finite labeled
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graphs

Γ0(G,S)← Γ1(G,S)← Γ2(G,S)← . . . . (2.5)

Proposition II.9 ([BGN03, Proposition 7.1]). The Schreier graph Γ(G,S,Xω) is the

inverse limit of the sequence (2.5).

Proposition II.10 ([BGN03, Proposition 7.2], [GŻ99]). Take an infinite word w =

x1x2 . . . ∈ Xω. The sequence of the pointed Schreier graphs (Γn(G,S), x1x2 . . . xn)

converges in the local topology on pointed graphs to the pointed Schreier graph

(Γw(G,S), w).

In [Gri84] (see also [GŻ99]) the local topology is introduced on the space of

Cayley graphs of finitely generated groups. This topology can be considered on the

space of all locally-finite connected graphs (Γ, v) with a fixed vertex v. The distance

between graphs (Γ1, v1) and (Γ2, v2) is the number 2−R, where R is the maximal radius

such that there exists an isomorphism f : BΓ1
(v1, R)→ BΓ2

(v2, R), which moves v1 to

v2. The distance is defined to be zero if there exists an isomorphisms f : Γ1 → Γ2 such

that f(v1) = v2. The defined metric gives a natural topology on the set of pointed

graphs, called local topology. It was used, for example, in the study of random walks

on Schreier graphs of actions of groups on rooted trees in [GŻ99]. The space of all

graphs with this topology is a totally disconnected space.

We say that a graph Γ1 is locally contained in a graph Γ2 (denoted Γ1 ⊑ Γ2) if

for every vertex v1 of Γ1 and every R ∈ N there exist a vertex v2 of Γ2 such that

the distance between the pointed graphs (Γ1, v1) and (Γ2, v2) is less than 2−R. Two

graphs Γ1 and Γ2 are locally isomorphic if Γ1 ⊑ Γ2 and Γ2 ⊑ Γ1. Thus two graphs are

locally isomorphic if and only if for every finite subgraph of the first one, the second

graph contains its isomorphic copy.

Let G be a group of automorphisms of the tree X∗. A sequence w = x1x2 . . . ∈
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Xω is called G-generic or generic with respect to the action of the group G if for

every g ∈ G either g(w) 6= w or there exists n ∈ N such that g(v) = v for all

v ∈ x1x2 . . . xnX
ω.

Suppose that the group G acts transitively on all levels of the tree X∗. Then the

set of all G-generic points is a union of a countable number of nowhere dense sets.

Hence, almost all points of the space Xω are G-generic in the Baire category.

Theorem II.11 ([GNS00, Proposition 6.21]). Let G be a finitely generated level-

transitive group of automorphisms of X∗. The orbital Schreier graph Γw(G,S) for a

G-generic point w ∈ Xω is locally contained in every orbital Schreier graph Γw′(G,S),

w′ ∈ Xω. In particular, the orbital Schreier graphs for G-generic points are locally

isomorphic.

Thus almost all (in the Baire category) orbital Schreier graphs of a level-transitive

action are locally isomorphic.

Let G be a finitely generated level-transitive contracting self-similar group. For

every finite generating set S of the group G define

νn = lim sup
d(ω1,ω2)→∞

d(σn(ω1), σ
n(ω2))

d(ω1, ω2)

for all n > 1, where d(·, ·) is the combinatorial (geodesic) metric on the connected

components of the Schreier graph Γ(G,S,Xω) and the points ω1, ω2 ∈ Xω lie in the

same orbit of the action (G,Xω). The number

ρo = lim
n→∞

n
√
νn

is called the orbital contracting coefficient of the group G. This coefficient was

introduced by V. Nekrashevych (private communication) to give an upper bound

on the growth of the orbital Schreier graphs Γω. In Chapter V we will see a natural
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interpretation of the coefficient ρo in terms of hyperbolic geometry.

Proposition II.12. The orbital contracting coefficient ρo does not depend on the

choice of a finite generating set S and is not greater than the contracting coefficient

ρ of the group G.

Proof. (V. Nekrashevych) The independence of the choice of a generating set is proved

by the standard arguments (see the proof of the corresponding fact for the usual

contracting coefficient).

If the points ω1 and ω2 belong to a common G-orbit, then there exists an element

g ∈ G such that g(ω1) = ω2 and d(ω1, ω2) = l(g). Then the points σn(ω1) and σn(ω2)

also belong to a common G-orbit. Moreover, g|v(σn(ω1)) = σn(ω2), where the word v

is the beginning of length n of the word ω1. In particular, l(g|v) > d(σn(ω1), σ
n(ω2))

and so

d(σn(ω1), σ
n(ω2))

d(ω1, ω2)
6
l(g|v)
l(g)

.

Thus ρo 6 ρ.

In particular ρo < 1 by Theorem II.7.

Theorem II.13. Let G be a level-transitive contracting self-similar group with finite

generating set S. The growth of every orbital Schreier graph Γw(G,S), w ∈ Xω, is

polynomial of degree not greater than − log |X|
log ρo

.

Proof. See the proofs of the similar results [BGN03, Proposition 8.11] and [Nek02,

Proposition 5.10].

As a corollary, the contracting coefficient of the action (G,X∗) is not less than 1
|X| .

Another important coefficient characterizes the growth of diameters of finite
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Schreier graphs Γn(G,S). Define the number

ρd = lim inf
n→∞

n

√
1

Diam Γn(G,S)
,

where Diam Γ is the diameter of the graph Γ.

Proposition II.14. The coefficient ρd does not depend on the choice of a finite

generating set S and lies between 1
|X| and 1.

Proof. The independence of the choice of a generating set is proved by the standard

arguments. The bounds follow from the inequalities 1 6 Diam Γn(G,S) 6 |X|n.

Theorem II.15. Let G be a level-transitive contracting self-similar group with finite

generating set S. The growth degree of every orbital Schreier graph Γw(G,S), w ∈ Xω,

is not less than − log |X|
log ρd

.

Proof. Denote Dn = Diam Γn(G,S). Let ρ1 ∈ (0, ρd) be an arbitrary number. Choose

a sufficiently large number N ∈ N so that Dn 6 1/ρn
1 for all n > N .

Since the action is level-transitive, the growth function γ of every orbital Schreier

graph satisfies γ(Dn) > |X|n. Put k =
[
− log n

log ρ1

]
. Then we have the inequalities

γ(n) > γ

(
1

ρk
1

)
> γ(Dn) > |X|k > |X|−

log n
log ρ1

−1
=

1

|X| · n
− log |X|

log ρ1 ,

for all n > 1
ρN
1

. Hence, the degree of growth of every orbital Schreier graph is not less

than − log |X|
log ρ1

for any ρ1 ∈ (0, ρd). Theorem II.13 implies that the coefficient ρd is less

than 1 and we obtain that the degree of growth of every orbital Schreier graph is not

less than − log |X|
log ρd

.

Corollary II.16. The degrees of growth of the orbital Schreier graphs Γw(G,S),

w ∈ Xω, lie between − log |X|
log ρd

and − log |X|
log ρo

.
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The diameters of the Schreier graphs Γn(G,S) of a level-transitive contracting

self-similar group have exponential growth of exponent 1
ρd
> 1. In Chapter V we will

deal with the problem of finding this coefficient ρd and the asymptotic behavior of

the sequence Diam Γn(G,S). The asymptotic behavior is considered with respect to

the following equivalence. Let an, bn, n > 1, be sequences of nonnegative numbers or

vectors of the same dimension. We say that an < bn if there exists a constant q > 0

such that q · an > bn for all n large enough. If an < bn and bn < an then we say that

an ∼ bn and that an and bn have the same growth. The diameters of the Schreier

graphs associated with two finite generating systems have the same growth.

For a finite invertible automaton S we denote by ρo(S) and ρd(S) the coefficients

ρo and ρd of the group generated by S. To find the coefficients ρo and ρd it is sufficient

to consider the Schreier graphs associated with the nucleus of the group (even if it is

not a generating set).

Proposition II.17. Let G be a level-transitive contracting self-similar group with a

finite generating set S. Let N be the nucleus of the group G. Then ρo(S) = ρo(N )

and ρd(S) = ρd(N ).

Proof. If the group G is level-transitive then the group 〈N〉 is level-transitive. Really,

choose a level k ∈ N such that s|v ∈ N for every s ∈ S and all words v ∈ X∗ of

length > k. Let w ∈ Xk be any word. For a given v, u ∈ Xn there exists g ∈ G such

that g(wv) = wu, then g|w(v) = u with g|w ∈ 〈N〉. So, the Schreier graphs Γn(N )

are connected.

The statement of the proposition follows from the fact that G|Xk = {g|v|g ∈

G, v ∈ Xk} is a subset of 〈N〉. Moreover, Diam Γn(N ) ∼ Diam Γn(S).



36

7 Limit spaces of self-similar groups

Let us fix a contracting self-similar group G.

Definition 8. Two left-infinite sequences . . . x2x1, . . . y2y1 ∈ X−ω are said to be

asymptotically equivalent with respect to the group G if there exists a finite set K ⊂ G

and a sequence gn ∈ K, n > 1, such that

gn(xnxn−1 . . . x2x1) = ynyn−1 . . . y2y1

for all n > 1. The asymptotic equivalence is an equivalence relation. The quotient of

the topological space X−ω by the asymptotic equivalence relation is called the limit

space of the self-similar group G and is denoted by JG.

The asymptotic equivalence relation can be uniquely defined by the nucleus of

the group. In particular, contracting self-similar groups with the same nuclei have

homeomorphic limit spaces.

Theorem II.18 ([Nek05, Theorem 3.6.3]). Let G be a contracting self-similar group

with nucleus N . Two sequences . . . x2x1, . . . y2y1 ∈ X−ω are asymptotically equivalent

if and only if there exists a left-infinite path . . . e2e1 in the Moore diagram of the

nucleus N such that every edge ei is labeled by xi|yi.

The asymptotic equivalence is closed and every point is equivalent to at most

|N | points. The limit space JG is compact, metrizable, and has topological dimension

6 |N |−1. If the group G is finitely generated and level-transitive then the limit space

JG is connected.

It is not difficult to see, that two sequences . . . x2x1, . . . y2y1 are asymptotically

equivalent if and only if the sequence of distances dn(xn . . . x2x1, yn . . . y2y1) in the

Schreier graph Γn(G,S) is bounded. In particular, if the simplicial Schreier graphs
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on levels of two contracting self-similar groups coincide, then their limit spaces are

homeomorphic.

The asymptotic equivalence relation is invariant under the shift τ : X−ω → X−ω,

which induces a surjective continuous map s on the limit space JG and every point

x ∈ JG has not more than |X| pre-images under the map s.

Definition 9. For every finite word v ∈ X∗ the tile Tv of the limit space JG is the

image of the cylindrical set X−ωv under the canonical projection X−ω → JG.

The tile T of the group G is the quotient of the topological space X−ω by the

equivalence relation in which two left-infinite sequences . . . x2x1, . . . y2y1 ∈ X−ω are

equivalent if and only if there is a left-infinite path in the Moore diagram of the

nucleus, which ends in the trivial state and is labeled by . . . x2x1| . . . y2y1.

The tile Tv is called the tile of |v|-th level. There is precisely one tile of the zero

level T∅ = JG. Tiles have the following properties:

1. Every tile Tv is a compact subset of the space JG.

2. s(Tvx) = Tv for every letter x ∈ X.

3. Tv =
⋃

x∈X

Txv for all v ∈ X∗.

In particular, the image of a tile of the n-th level under the map s is the union

of |X| tiles of the n-th level. The limit space JG is the union of all tiles of n-th level

for every n > 1.

Proposition II.19 ([Nek05, Proposition 3.6.8]). Let N be the nucleus of the group

G. Two tiles Tv and Tu of the same level |v| = |u| have a non-empty intersection if

and only if there exists h ∈ N such that h(v) = u.
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Fig. 3. The Schreier graphs Γ1, Γ2, Γ3 of the Grigorchuk group drawn on the tree

The last proposition shows that two tiles Tv and Tu for v, u ∈ Xn intersect if and

only if the vertices v and u are adjacent in the Schreier graph Γn(N ).

It is said that a contracting self-similar group satisfies the open set condition if

for every element g of the nucleus there exists a finite word v ∈ X∗ such that g|v = 1.

Theorem II.20 ([Nek05, Proposition 3.6.5]). If a contracting group satisfies the open

set condition then every tile is the closure of its interior, any two distinct tiles of the

same level have disjoint interiors, and the boundary of the tile Tv is equal to the set

∂Tv = Tv ∩
⋃

u∈X|v|,u 6=v

Tu

for every v ∈ X∗.

If the group does not satisfy the open set condition, then every tile is covered by

the other tiles of the same level.
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Fig. 4. The limit space of the Gupta-Fabrikovsky group

Corollary II.21. If a contracting group satisfies the open set condition, then a

sequence . . . x2x1v ∈ X−ωv represents a point of the boundary of the tile Tv if and

only if the sequence . . . x2x1 is read on a left-infinite path in the Moore diagram of

the nucleus, which ends in the state h ∈ N with h(v) 6= v.

The limit space JG can be viewed as a hyperbolic boundary in the following way.

Let G be a finitely generated self-similar group. For any given finite generating set S

of G define the self-similarity graph Σ(G,S) as the graph with set of vertices X∗ in

which two vertices v1, v2 ∈ X∗ are connected by an edge if and only if either vi = xvj

for some x ∈ X (vertical edges), or s(vi) = vj for some s ∈ S (horizontal edges). See

the beginning of the self-similarity graph of the Grigorchuk group in Figure 3.

Theorem II.22 ([Nek03], see also [Nek05, Theorem 3.8.8]). The self-similarity graphs

Σ(G,S) and Σ(G,S ′), where S and S ′ are finite generating sets of the group G, are

quasi-isometric. If the group G is contracting then the self-similarity graph Σ(G,S) is

a Gromov-hyperbolic space and its hyperbolic boundary is homeomorphic to the limit

space JG.

The previous theorem shows that the Schreier graphs Γn(G,S) can be used to
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approximate and identify the limit space JG. Another way to see this is given in

[Nek05, Section 3.6.3].

Example 3. The Schreier graphs of the Grigorchuk group are described in [BG00a].

From this description follows that the limits space JG of the Grigorchuk group is

homeomorphic to the closed interval [0, 1] (see also [Nek05, BGN03]).

The limit space of the Gupta-Fabrikovsky group is shown in Figure 4.

Many other examples of limit spaces are considered in [Nek05, BGN03].
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CHAPTER III

DYNAMICS OF PIECEWISE LINEAR MAPS

In this chapter, following the ideas of W.H.M. Zijm from [Zij84], we consider piecewise

linear maps of the form fK(v) = minA∈KAv, where K is a finite set of nonnegative

matrices and by “min” we mean component-wise minimum. We study spectral

properties and iterations of the maps fK. We introduce the notions of <-minimal

matrix for a set K and principal <-minimal partition of the set of indices {1, 2, . . . , N}.

We give algorithmic criterium for the existence of a strictly positive eigenvector of

fK. The main result proves the existence of nonnegative generalized eigenvectors of

fK, whose special components are strictly positive. This allows us to show that for

a <-minimal matrix A the asymptotic relation fn
K
(v) ∼ Anv holds for any strictly

positive vector v. As an intermediate result we get a generalization of the Howard’s

policy iteration method.

1 Nonnegative matrices

In this section we introduce all necessary definitions, notations, and results used in

the chapter. For the references, see [Gan59, BP94, Sen73, BR97].

All matrices, unless otherwise stated, will be squared of a fixed dimension N > 1.

The set {1, 2, . . . , N} is called the state space and denoted by S. The elements of S

(indices of matrices) are called states.

Denote by Ai the i-th row of a matrix A and by vi the i-th component of a vector

v. The transpose matrix of A is denoted by At. If S1, S2 ⊂ S then we denote by

A|(S1,S2) the matrix obtained by restricting the matrix A to S1 × S2 and by v|S1
the

restriction of the vector v to S1.
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A matrix A = (aij) is nonnegative (A > 0) if aij > 0 for all i, j. A matrix

A = (aij) is positive (A > 0) if aij > 0 for all i, j. A vector v is nonnegative (v > 0)

if vi > 0 for all i. A vector v is strictly positive (v > 0) if vi > 0 for all i. We write

A > B if A−B > 0 (aij > bij for all i, j),

v > u if v − u > 0 (vi > ui for all i),

where matrices A,B and vectors v, u are of compatible dimensions.

A permutation matrix is a matrix obtained by permuting the rows of the identity

matrix (denoted by I). Every row and every column of a permutation matrix contains

exactly one non-zero entry equal to one.

The spectral radius of a matrix A is denoted by spr(A).

The n-th iteration of a map f : RN → RN is denoted by fn(v) =

f(f(. . . f(v) . . . )).

1.1 Perron-Frobenius Theorem and its generalizations

In 1912 Ferdinand Georg Frobenius (1849 – 1917) introduced the following notion.

Definition 10. A nonnegative matrix A is called reducible if there exists a partition

of the state space S = S1 ∪ S2, S1 ∩ S2 = ∅, such that A|(S1,S2) = 0, or if N = 1 and

A = 0. Otherwise the matrix A is called irreducible.

In other words, a nonnegative matrix A is reducible if there exists a permutation

matrix P such that

PAP t =




B C

0 D



 ,

where B and D are (non-empty) square matrices, i.e. there is a nontrivial A-invariant

subspace, whose base is the subset of the standard base of RN .
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Irreducibility has the following combinatorial characterization. We say that a

state i has access to a state j (in matrix A) if there exists a nonnegative integer n

such that the ij-th entry of An is positive. This notion can be interpreted in graph-

theoretical terms. Every nonnegative matrix A has an associated directed graph Γ(A)

with the set of vertices S, which has an edge from i to j if and only if aij > 0. In

this situation the matrix A is called the incidence matrix of the graph Γ(A). Then a

state i has access to a state j under A if and only if there exists a directed path in

Γ(A) from i to j. A directed graph Γ is called strongly connected if for every ordered

pair (v, u) of its vertices there exists a directed path which starts at v and ends at u.

Proposition III.1. A nonnegative matrix A is irreducible if and only if the graph

Γ(A) is strongly connected.

In his original paper F. G. Frobenius proved the following theorem, which was

a nontrivial generalization of the famous theorem on the leading eigenvalue of a

positive matrix by Oskar Perron (1880 – 1975). This theorem is central in the theory

of nonnegative matrices, which is also called the Perron-Frobenius theory.

Theorem III.2 (Perron-Frobenius). Let A be a nonnegative irreducible matrix with

spectral radius λ. Then

1. λ > 0 is an eigenvalue of A. Moreover, λ is a simple root of the characteristic

polynomial.

2. There exists a strictly positive eigenvector v associated with λ. Moreover, the

only nonnegative eigenvectors of A are scalar multiples of v.

The number λ and vector v from the theorem are usually called the Perron

eigenvalue and the Perron eigenvector.

We also need the following properties of irreducible matrices.
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Theorem III.3. Let A be an irreducible matrix with spectral radius λ. Then

1. (σI − A)−1 is a positive matrix for any σ > λ.

2. (I + A)N−1 is a positive matrix.

3. If Au > λu or Au 6 λu for some vector u > 0 then Au = λu.

4. The spectral radius of A|(C,C) is less than λ for any subset C  S.

Some of the results about irreducible matrices can be easily generalized to all

nonnegative matrices by considering a nonnegative matrix as a limit of positive (and

thus irreducible) matrices. Since strict inequalities are not preserved by a limiting

process, the results for nonnegative matrices are weaker. We summarize some needed

properties of nonnegative matrices in

Theorem III.4. Let A be a nonnegative matrix with spectral radius λ. Then

1. λ > 0 is an eigenvalue of A.

2. There exists a nonnegative eigenvector v associated with λ.

3. The spectral radius of A|(C,C) is not greater than λ for any subset C  S and is

equal to λ for some subset C  S.

4. If Au > σu for some real number σ and a real vector u with at least one positive

component, then λ > σ.

Proof. The items 1, 2, 3 are well-known. For the item 4 see [Zij84, Lemma 2.5].

1.2 Block-triangular structure of nonnegative matrices

If a nonnegative matrix is reducible then it admits a special block-triangular structure,

which plays an important role in description of algebraic eigenspaces of the matrix

and its iterations. We describe this following [BP94, Zij84].
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A class of a nonnegative matrix A is a subset C of the state space S such that

A|(C,C) is irreducible and such that C cannot be enlarged without destroying the

irreducibility. A class C is called basic if spr(A|(C,C)) = spr(A), otherwise non-basic

(then spr(A|(C,C)) < spr(A) by Theorem III.3 item 4). It follows that for any matrix

A we have a partition of the state space S into classes, say C1, C2, . . . , Cn. Then, after

possibly permuting the states and renumbering the classes, A can be written in the

form, sometimes called the Frobenius Normal Form,

A =





A(1,1) A(1,2) . . . A(1,n)

0 A(2,2) . . . A(2,n)

0 0
. . .

...

0 0 0 A(n,n)





,

where A(i,j) denotes the matrix A|(Ci,Cj).

Now we can partially order classes by accessibility relation. We say that a class

C has access to (from) a class C′ if there is an access to (from) some (or equivalently

any) state in C to some (or equivalently any) state in C′. A class C is called final if it

has no access to any other class.

The spectral radius of A|(C,C) is called the spectral radius of the class C.

The Frobenius Normal Form shows that the spectrum of the matrix A is the

union of the spectra of matrices A|(C,C) over all the classes C of A. In particular, the

spectral radius of A is the maximal spectral radius of its classes.

Theorem III.5 ([BP94], Theorem 3.10). A nonnegative matrix A possesses a strictly

positive eigenvector if and only if the basic classes of A are precisely its final classes.

Notice, that even if a nonnegative matrix has a strictly positive eigenvector, the

last part of the Perron-Frobenius Theorem does not hold — it may not be unique up

to a scalar multiple. Similarly to the previous theorem one gets the following result.
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Proposition III.6. A nonnegative matrix A possesses a unique, up to a scalar

multiple, strictly positive eigenvector if and only if A has only one basic class, which

is the only final class.

Already these results indicate importance of the position of basic and non-basic

classes of a nonnegative matrix A. These positions can be defined precisely using

the concept of a chain. A chain of classes of A is an ordered collection of classes

{C1, C2, . . . , Cn} such that Ci has access to Ci+1, i = 1, 2, . . . , n − 1. The length of a

chain is the number of basic classes it contains. The depth of a class C is the length

of the longest chain that starts with C. The degree ν(A) of the matrix A is the length

of its longest chain.

Definition 11. The partition {S0, S1, . . . , Sν} of the state space S, where Si is the

union of all classes of depth i, is called the principal partition of S with respect to A.

Principal partitions play a fundamental role in this chapter.

The next proposition follows directly from the definition of a principal partition.

Proposition III.7. Let {S0, S1, . . . , Sν} be the principal partition of S with respect

to A. Then, after possibly permuting the states, A can be written in the form

A =





A(ν,ν) A(ν,ν−1) . . . A(ν,0)

0 A(ν−1,ν−1) . . . A(ν−1,0)

0 0
. . .

...

0 0 0 A(0,0)





,

where A(i,j) denotes A|(Si,Sj). We have spr(A(i,i)) = spr(A) for i = 1, 2, . . . , ν, and

spr(A(0,0)) < spr(A) if S0 is not empty. Each state in Si+1 has access to some state

in Si for i = 1, 2, . . . , ν − 1.
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Remark III.8. Notice that for i = 1, 2, . . . , ν the basic classes of the matrix A|(Si,Si)

are precisely its final classes. Hence, A|(Si,Si) possesses a strictly positive eigenvector

by Theorem III.5.

We need the following useful lemma.

Lemma III.9 ([Zij84, Lemma 2.5]). Let A be a nonnegative matrix with spectral

radius λ. If Av > λv with v > 0, then every final class of A is basic and (Av)i = λvi

for every i in a final class of A.

Matrices which possess strictly positive eigenvectors have the following additional

properties.

Lemma III.10. Let A be a nonnegative matrix which has a strictly positive

eigenvector. Let S1 ⊂ S be the union of all final classes of A. If Au = λu for

some vector u with u|S1
> 0 then u is strictly positive.

Proof. Let {C1, C2, . . . , Cm} be the partition of S\S1 on classes. Then {S1, C1, . . . , Cm}

is the partition of S and, after possibly permuting the states and renumbering the

classes, A can be written in the form:

A =





A(C1,C1) A(C1,C2) . . . A(C1,S1)

0 A(C2,C2) . . . A(C2,S1)

0 0
. . .

...

0 0 0 A(S1,S1)





.

Each class Ci has access to some state in S1, which is equivalent to the condition that

A|(Ci,S\Ci) 6= 0 for all i = 1, 2, . . . ,m.

The set S1 contains all basic classes of A by Theorem III.5, so spr(A|(Ci,Ci)) < λ.

We know that u|S1
> 0. Assume by induction that we have proved that u|S\C1

> 0.
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Then

(Au)|C1
= A|(C1,C1)u|C1

+ A|(C1,S\C1)u|S\C1
= λu|C1

.

The matrix
(
λI − A|(C1,C1)

)−1
is positive by Theorem III.3 item 1. Hence

u|C1
=
(
λI − A|(C1,C1)

)−1
A|(C1,S\C1)u|S\C1

> 0.

Lemma III.11 ([Zij84, Lemma 2.3]). Let A be a nonnegative matrix with spectral

radius λ which possesses a strictly positive eigenvector. Then:

1. There exists a nonnegative matrix A∗ defined by:

A∗ = lim
n→∞

1

n+ 1

n∑

i=0

λ−iAi.

We have AA∗ = A∗A = λA∗ and (A∗)2 = A∗. Moreover, a∗ij > 0 if and only if

j belongs to a final (basic) class of A and i has access to j under A.

2. The matrix λI − A+ A∗ is non-singular.

3. If A∗v = 0 for some vector v > 0 (or v 6 0), then vi = 0 for every state i

belonging to a final (basic) class of A.

4. If Av > λv for some vector v then A∗v > v.

If Av 6 λv for some vector v then A∗v 6 v.

Notice that if A is a (reducible) stochastic matrix then A∗ is a limiting transition

probability matrix and the inverse of (I−A+A∗) is the so-called fundamental matrix

of the respective Markov chain.
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1.3 Generalized eigenvectors and algebraic eigenspaces

Let A be a nonnegative matrix with spectral radius λ. The smallest nonnegative

integer n such that the sequence of null spaces stabilizes

Null(A− λI)  Null(A− λI)2  · · ·  Null(A− λI)n = Null(A− λI)n+1,

is called the index η(A) of A with respect to the eigenvalue λ. The index of an

irreducible matrix is one. The null space Null(A − λI)η(A) is called the algebraic

eigenspace of A and its elements are called generalized eigenvectors of A. The

algebraic eigenspace of an irreducible matrix is one dimensional (it consists of zero

and the eigenvectors corresponding to λ). A generalized eigenvector has order i if it

belongs to Null(A− λI)i+1 \Null(A− λI)i. Generalized eigenvectors of order 0 are

precisely the eigenvectors associated with λ.

Uriel G. Rothblum gave a combinatorial characterization of the index

corresponding to the spectral radius.

Theorem III.12 ([Rot75], see also [BP94]). Let A be a nonnegative matrix with

spectral radius λ. The index of A with respect to λ is equal to the degree of A, i.e.

η(A) = ν(A).

Moreover, it was shown that the algebraic eigenspace corresponding to the

spectral radius contains a nonnegative vector with the largest number of positive

coordinates among all vectors in this subspace.

Theorem III.13 ([Rot75], see also [BP94]). Let A be a nonnegative matrix with

spectral radius λ. Let {S0, S1, . . . , Sν} be the principal partition of S with respect to

A. Then there exists a set of nonnegative generalized eigenvectors v(1), v(2), . . . , v(ν)
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such that

Av(ν) = λv(ν),

Av(i) = λv(i) + v(i+1), i = ν − 1, . . . , 2, 1.

Moreover

v
(i)
j > 0, j ∈

ν⋃

k=i

Sk and v
(i)
j = 0, j ∈

i−1⋃

k=0

Sk,

for i = 1, 2, . . . , ν.

One of our main goals in this chapter is to generalize the previous theorem to

the maps fK, as it was done in [Zij84] for the maps gK.

1.4 Iterations of nonnegative matrices

Iterations of a square matrix, in particular the asymptotic behavior of their

coordinates, can be easily described using the Jordan normal form of the matrix.

If the matrix is nonnegative then the iterations mainly depend on the position of

positive entries in the matrix and there is a combinatorial description using notions

of classes and chains of classes. This description will be used to prove similar results

about the iterations of the maps fK.

We study the asymptotic behavior of iterations Anv and fn
K
(v) with respect to the

equivalence relation defined at the end of Section 6 of Chapter II. Notice that if h is a

homogeneous monotone map (in particular a nonnegative matrix) then hn(v) ∼ hn(u)

for any strictly positive vectors v, u > 0 (and in general for any nonnegative vectors

with the same sets of positive states). Really, choose real numbers a, b > 0 such that

av 6 u 6 bv. Then

ahn(v) 6 hn(u) 6 bhn(v),

for all n > 1. Hence we can and will change one strictly positive vector to another
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one considering asymptotic behavior of such maps if it is necessary.

The following lemma is useful.

Lemma III.14. For any integer k > 0 and real λ, β > 0 we have asymptotic relation

n∑

i=0

βn−iikλi ∼






nkλn, if λ > β;

nk+1λn, if β = λ.

Proof. The asymptotic relation
∑n

i=0 i
k ∼ nk+1 is well known. Then in case λ = β:

n∑

i=0

βn−iikλi = λn

n∑

i=0

ik ∼ nk+1λn;

and in case λ > β we have inequalities

nkλn
6

n∑

i=0

βn−iikλi = βn

n∑

i=0

ik
(
λ

β

)i

6 βnnk

n∑

i=0

(
λ

β

)i

=

= βnnk

(
λ
β

)n+1

− 1

λ
β
− 1

6 nk λ
n+1

λ− β ,

which prove the needed asymptotic relation.

Theorem III.15. Let A be a nonnegative matrix with spectral radius λ. Let

{S0, S1, . . . , Sν} be the principal partition of S with respect to A. Then

(Anv)i ∼ nk−1λn, for i ∈ Sk and k = 1, 2, . . . , ν,

for any strictly positive vector v (even for a nonnegative vector with v|S\S0
> 0).

Proof. Let v(1), v(2), . . . , v(ν) be the nonnegative generalized eigenvectors that satisfy

Theorem III.13. Let us show by induction from i = ν to i = 1 that

Anv(i) ∼ λn

ν−i∑

j=0

njv(i+j) for all i = 1, 2, . . . , ν.

The basis of induction i = ν follows from Anv(ν) = λnv(ν). Suppose that the relation
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holds for i+ 1 and we want to prove it for i. Then

Anv(i) = λAn−1v(i) + An−1v(i+1) ∼

∼ λAn−1v(i) + λn−1

ν−i−1∑

j=0

(n− 1)jv(i+1+j) ∼

∼ λnv(i) + λn−1

n−1∑

l=1

ν−i−1∑

j=0

ljv(i+1+j) =

= λnv(i) + λn−1

ν−i−1∑

j=0

(
n−1∑

l=1

lj

)
v(i+1+j) ∼ (by Lemma III.14)

∼ λnv(i) + λn

ν−i−1∑

j=0

nj+1v(i+1+j) = λn

ν−i∑

j=0

njv(i+j).

Then for any nonnegative vector v such that v|S\S0
> 0 and v|S0

= 0 the relations

(Anv)i ∼ (Anv(1))i ∼ λn

ν−1∑

j=0

njv
(1+j)
i = λn

k−1∑

j=0

njv
(1+j)
i ∼ nk−1λn

hold for i ∈ Sk and k = 1, 2, . . . , ν.

If S0 is empty then we are done, otherwise notice that λ > 0 and denote D =

A|(S0,S0), C = A|(S\S0,S0), and B = A|(S\S0,S\S0). Notice that Dnv 4 βnv for some

0 < β < λ and for any vector v > 0, because spr(D) < λ by Proposition III.7.

For a strictly positive vector v define decomposition v = u+w, where nonnegative

vectors u and w are defined by

u|S\S0
= v|S\S0

and u|S0
= 0,

w|S\S0
= 0 and w|S0

= v|S0
.

Then we have asymptotic relations

(Anv)i = (Anu)i + (Anw)i ∼ (Anv(1))i + (Anw)i ∼ nk−1λn + (Anw)i ∼ nk−1λn,
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because

(Anw)i =

(
n−1∑

j=0

BjCDn−1−jv|S0

)

i

4

(
n−1∑

j=0

BjCβn−1−jv|S0

)

i

4

4

(
n−1∑

j=0

Bjβn−1−jv(1)|S\S0

)

i

∼
n−1∑

j=0

βn−1−j(Ajv(1))i ∼

∼
n−1∑

j=0

βn−1−jjk−1λj ∼ ( by Lemma III.14 ) ∼ nk−1λn,

for i ∈ Sk and k = 1, 2, . . . , ν.

Theorem III.15 gives us combinatorial algorithm for finding the growth of each

component of Anv for a strictly positive vector v. For states in Sk, k = 1, 2, . . . , ν, it

follows directly from the theorem. For the states i ∈ S0 we apply the theorem to the

matrix A|(S0,S0) with its spectral radius and principal partition, and so on.

This algorithm can be also described using chains of classes as follows. Take a

state i and the corresponding class D which contains i. Let β be the maximum of

spectral radii of the classes C, where C runs through all the classes such that D has

access to C. Consider all possible chains that start at D and for each chain count

the number of classes C in this chain with spectral radius β. Let k be the maximum

among such numbers. Then (Anv)i ∼ nk−1βn for any strictly positive vector v. In

particular, if i belongs to a final class of A then (Anv)i ∼ βn, where β is the spectral

radius of the final class.

Remark III.16. The <-minimal behavior of (Anv)i over all states i is ∼ βn, where

β is the spectral radius of some final class. If a state i has access to a state j then

(Anv)j 4 (Anv)i. So, (Anv)i ∼ (Anv)j for any two states i and j in the same class.

As a corollary of the previous theorem, one gets an extension of Theorem III.5

in terms of asymptotic behavior of matrix iterations.
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Theorem III.17. Let A be a nonnegative matrix with spectral radius λ. The following

conditions are equivalent:

1. The matrix A possesses a strictly positive eigenvector.

2. Basic classes of A are precisely its final classes.

3. (Anv)i ∼ λn for all i and for some (every) vector v > 0.

4. (Anv)i ∼ (Anv)j for all i, j and for some (every) vector v > 0.

2 Product property of a set of nonnegative matrices

Fix an integer N > 1. Let K be a finite set of nonnegative square matrices of

dimension N . Consider

f(v) = fK(v) = min
A∈K

Av, g(v) = gK(v) = max
A∈K

Av,

for v ∈ RN , where by “min” and “max” we mean component-wise minimum and

maximum correspondingly.

Note that in general we do not have the property that for every v ∈ RN there

exists a matrix A ∈ K such that fK(v) = Av. The following concept eliminates this

difficulty (compare with [Sen73, Section 3.1, page 59]).

Definition 12. Let K be a set of nonnegative square matrices of dimension N . We

say that K satisfies the product property if for each subset V ⊆ S = {1, 2, . . . , N} and

for each pair of matrices A,B ∈ K the matrix C defined by

Ci :=






Ai, if i ∈ V ;

Bi, if i ∈ S \ V ,

belongs to K.
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Every set K that satisfies the product property can be given by a collection of

admissible rows. Suppose we have any collection {Ri, i ∈ S}, where Ri is a set of

nonnegative vectors (rows) of length N for each i ∈ S. Then the set K of all matrices,

whose i-th row is an element of Ri for each i ∈ S, satisfies the product property. And

vice versa, every set K that satisfies the product property is given by a collection

{Ri, i ∈ S}, where Ri = {Ai|A ∈ K} for every i ∈ S.

If we have any finite set K0 of nonnegative matrices then we can close it with

respect to the product property and obtain another finite set K ⊃ K0 which satisfies

the product property. We just construct the set K using the collection {Ri, i ∈ S},

where Ri = {Ai|A ∈ K0} for i ∈ S. In other words, the set K is the set of all matrices,

whose i-th row is equal to the i-th row of some matrix in K0 for every i ∈ S.

Proposition III.18. Let K0 be a finite set of nonnegative square matrices and let K

be the closure of the set K0 with respect to the product property. Then

fK0
(v) = min

A∈K0

Av = min
A∈K

Av = fK(v)

for any vector v ∈ RN .

Proof. Since K0 ⊂ K, fK0
(v) > fK(v). Suppose there exist v ∈ RN and i ∈ S such

that ui > wi, where u = fK0
(v) and w = fK(v). Since the set K is finite there exists

a matrix A ∈ K such that wi = Aiv. By the construction of the set K there exists

a matrix B ∈ K0 such that Bi = Ai. Then ui 6 Biv = Aiv = wi and we get a

contradiction.

So we can extend our given set of matrices to a bigger one, which satisfies the

product property, without changing the function f . Hence, in consideration of the

map fK we can (and will) always assume that K possesses the product property.

Moreover, if K satisfies the product property, then for every v ∈ RN there exists
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A = Av ∈ K such that fK(v) = Av. In the theory of Markov decision processes this

property is usually called the optimal choice property (see [How60, Bel57a]).

3 <-minimal matrices and principal <-minimal partition

Lemma III.19. Let K be a finite set of nonnegative matrices with the product

property. Then there exist matrices B ∈ K and C ∈ K such that Bnv 4 Anv 4 Cnv

for every matrix A ∈ K and all strictly positive vectors v.

Proof. We will prove the existence of the matrix B. The proof of the existence of the

corresponding matrix C goes similarly.

We use induction on dimension N . For N = 1 the statement is obvious. Suppose

the lemma is correct for any set of nonnegative square matrices of dimension < N

with the product property. Let us fix a strictly positive vector v > 0.

For each A ∈ K and i ∈ S we can find the asymptotic behavior of (Anv)i using

Theorem III.15. Define the set K′ ⊂ K of all matrices B in K for which there exists

i ∈ S such that the growth of (Bnv)i is <-minimal over all possible such sequences,

i.e. (Bnv)i 4 (Anv)j for all matrices A ∈ K and all j ∈ S. By Remark III.16 there

exists some real number λ > 0 such that (Bnv)i ∼ λn. For each matrix B ∈ K′ define

S0(B) = {j ∈ S | (Bnv)j ∼ λn}

and S1(B) = S \ S0(B). Suppose that some state i in S0(B) has access to some

state j in S1(B). Then (Bnv)j 4 (Bnv)i. Since the asymptotic behavior of

(Bnv)i is <-minimal, we have (Bnv)i ∼ (Bnv)j. Hence j ∈ S0(B) and we have a

contradiction. Thus no state in S0(B) has access to a state in S1(B), which means

that B|(S0(B),S1(B)) = 0.

Observe that the spectral radius of every class of B from S0(B) is not greater
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than λ. If a class C from S0(B) is final then it has spectral radius λ. The converse

is also true: a class C from S0(B) with spectral radius λ is final. Really, suppose

it is not final. Then it has access to a final class from S0(B). Thus there exists a

chain which starts at C and contains at least two classes with spectral radius λ. So,

(Bnv)i < nλn for all i in C and we get a contradiction.

Let us show that K′ contains a matrix B with the biggest set S0(B), i.e. such

that S0(B) ⊃ S0(A) for any A ∈ K′. It is sufficient to prove that for any two matrices

B,D ∈ K′ there exists E ∈ K′ such that S0(E) ⊃ S0(B)∪S0(D). Define E as follows:

Ei = Bi for i ∈ S0(B) and Ei = Di for i 6∈ S0(B). Then

E =




D|(S1(B),S1(B)) ∗

0 B|(S0(B),S0(B))



 ,

E ∈ K′, and S0(E) ⊃ S0(B), because (Env)i = (Bnv)i for all i ∈ S0(B). In order

to prove that S0(E) contains S0(D), it is sufficient to prove that each class C of E,

which belongs to S0(D) \S0(B) and has spectral radius λ, is final (if there is no such

a class we are done). By construction, E|(C,C) = D|(C,C) and C belongs to some class

C′ of D from S0(D). If C 6= C′ then spr(D|(C′,C′)) > spr(D|(C,C)) = spr(E|(C,C)) = λ

by Theorem III.3 item 4 and we have a contradiction with C′ ⊂ S0(D). Thus C = C′

and so E|(C,S\C) = D|(C′,S\C′) = 0. Hence, the class C is final and our claim is proved.

Choose B ∈ K′ to be a matrix with the biggest set S0(B). Denote S0 = S0(B)

and S1 = S1(B).

If S0 = S then the matrix B satisfies the condition of the lemma and we are done.

Suppose that S1 6= ∅. The set K|(S1,S1) satisfies the product property and we can apply

induction to it. So there exists D ∈ K such that (D|(S1,S1))
nv|S1

4 (A|(S1,S1))
nv|S1

for

all A ∈ K. Define a matrix E in the same way as above: Ei = Bi for i ∈ S0 and

Ei = Di for i 6∈ S0. We want to show that it satisfies the condition of the lemma.
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As above (Env)i = (Bnv)i for all i ∈ S0. So (Env)i 4 (Anv)i for every matrix

A ∈ K and for all i ∈ S0. We need to prove this relation for i ∈ S1.

(Env)|S1
6 (D|(S1,S1))

nv|S1
+

n−1∑

l=1

(D|(S1,S1))
n−lD|(S1,S0)(B|(S0,S0))

lv|S0
4

4 (D|(S1,S1))
nv|S1

+
n−1∑

l=1

(D|(S1,S1))
n−lλlv|S1

=
n−1∑

l=0

(D|(S1,S1))
n−lλlv|S1

.

Fix a state i ∈ S1 and let ((D|(S1,S1))
nv|S1

)i ∼ nkβn. Suppose β < λ. Then there

exists j ∈ S1 such that ((D|(S1,S1))
nv|S1

)j ∼ βn. Then

(Env)j 4

(
n−1∑

l=0

(D|(S1,S1))
n−lλlv|S1

)

j

∼
n−1∑

l=0

λlβn−l ∼ λn

and therefore j must be in S0. We get a contradiction, hence β > λ. If β > λ then

(Env)i 4

(
n−1∑

l=0

(D|(S1,S1))
n−lλlv|S1

)

i

∼
n−1∑

l=0

λl(n− l)kβn−l ∼ nkβn ∼

∼ ((D|(S1,S1))
nv|S1

)i 4 ((A|(S1,S1))
nv|S1

)i 4 (Anv)i

for every A ∈ K.

Now suppose that β = λ. Let Ci be the class of D|(S1,S1) that contains i. Then

λ is the maximum of the spectral radii of D|(S1,S1)|(C,C), where C runs through all the

classes of D|(S1,S1) such that Ci has access to C. Also the maximal number of classes C

with spr(D|(S1,S1)|(C,C)) = λ in chains that start at Ci is k. If the maximum of spectral

radii of D|(C,C), where Ci has access to C, is greater than λ, then (Dnv)i < nk+1λn. If

not then the maximal number of classes C of B with spr(D|(C,C)) = λ in a chain that

starts at Ci is at least k + 1, otherwise there exists a state j in S1 with (Env)j ∼ λn.

Thus, (Dnv)i < nk+1λn. Notice that the above statement is true for any matrix
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A ∈ K, i.e. if ((A|(S1,S1))
nv|S1

)i ∼ nkλn then (Anv)i < nk+1λn. Then

(Env)i 4

n−1∑

l=0

(D|(S1,S1))
n−lλlv|S1

∼
n−1∑

l=0

λl(n− l)kλn−l ∼ nk+1λn
4 (Anv)i

for any A ∈ K. So (Env)i 4 (Anv)i for all i ∈ S and A ∈ K.

Definition 13. Every matrix B ∈ K (C ∈ K) which satisfies Lemma III.19 will be

called <-minimal (correspondingly <-maximal) for the set K.

If the set K does not satisfy the product property, then a matrix is called <-

minimal (<-maximal) for K if it is <-minimal (<-maximal) for the closure of K with

respect to the product property. In this case these matrices may not belong to K.

Notice, that fn
K
(v) 4 Anv for every matrix A ∈ K and every strictly positive

vector v. In particular it is true for a <-minimal matrix and it does not follow from

the previous lemma that iterations of the map fK and of a <-minimal matrix have the

same asymptotic behavior. It will be proved later (see Theorem III.28) and will follow

from the existence of nonnegative generalized eigenvectors of fK (see Theorem III.27).

There is a simple (but not effective) algorithm to find all <-minimal (<-maximal)

matrices for a given set K. We find the asymptotic behavior of (Anv)i for every

matrix A ∈ K using Theorem III.15 and take matrices with <-minimal (respectively

<-maximal) growth.

Notice that the principal partitions, spectral radii, and degrees of every two

<-minimal (<-maximal) matrices coincide, which follows from Theorem III.15 and

from the fact that Anv ∼ Bnv for all <-minimal (<-maximal) matrices A,B ∈ K

and v > 0. Also note that by Theorem III.5 if one <-minimal (<-maximal) matrix

possesses a strictly positive eigenvector then all <-minimal (<-maximal) matrices do.

Definition 14. The principal partition {S0, S1, . . . , Sν} of a <-minimal (<-maximal)

matrix is called the principal <-minimal partition (correspondingly the principal <-
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maximal partition) of S with respect to K.

Proposition III.20. Suppose the set K satisfies the product property. Let matrices

B and C be respectively <-minimal and <-maximal for K. Then

spr(B) = min
A∈K

spr(A), ν(B) = min{ν(A)|A ∈ K : spr(A) = spr(B)},

spr(C) = max
A∈K

spr(A), ν(C) = max{ν(A)|A ∈ K : spr(A) = spr(C)}.

Proof. Let λ = spr(B) and µ = minA∈K spr(A). Since K is finite, µ = spr(D) for

some D ∈ K. Since B ∈ K, λ > µ. Suppose λ > µ. By Theorem III.15 there exists

i ∈ S such that (Bnv)i ∼ λn for every vector v > 0. But

(Dnv)i 4 Poly(n)µn � λn ∼ (Bnv)i

for every vector v > 0 and we get a contradiction with the <-minimality of B.

Now let e = ν(B) and r = min{ν(A)|A ∈ K : spr(A) = λ}. Since K is finite,

r = ν(D) for some D ∈ K with spr(D) = λ. Suppose e > r. By Theorem III.15 there

exists i ∈ S such that (Bnv)i ∼ ne−1λn for every vector v > 0. But

(Dnv)i 4 nr−1λn � ne−1λn ∼ (Bnv)i

for every vector v > 0 and we get a contradiction with the <-minimality of B.

Similarly for the <-maximal matrix C.

Denote λK = spr(B) and νK = ν(B) for the matrix B, which is <-minimal for K.

4 Existence of strictly positive eigenvector of fK

The first result about existence of a strictly positive eigenvector for the maps gK

belongs to Richard Bellman. Using the Brouwer fixed point theorem he proved the

existence of a strictly positive eigenvector for the map gK in the case when each matrix
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in K is strictly positive (see [Bel56] and [Bel57a, chapter XI, sections 10 − 11]) and

in this case he studied the asymptotic behavior of iterations of gK. He also studied

the asymptotic behavior of gn
K

in the special case when K contains only strictly

positive Markoff matrices (see [Bel57b]). These results were generalized to the set of

irreducible matrices by P. Mandl and E. Seneta [MS69]. A simple proof of this result

was obtained by W.H.M. Zijm [Zij84]. His proof also works for the maps fK.

Proposition III.21. Let K be a set of irreducible matrices with the product property.

Then the map fK possesses a strictly positive eigenvector associated with λK =

minA∈K spr(A). Moreover, it is unique up to a scalar multiple.

Proof. Take any B ∈ K. Let λB be the spectral radius of B and let v be the

corresponding strictly positive eigenvector. Find D ∈ K such that

Dv = min
A∈K

Av

and we choose Di to be equal to Bi if the row Bi also minimizes the i-th coordinate,

i.e. if (Bv)i 6 (Av)i for all A ∈ K.

If D = B then fK(v) = Bv = λBv and we are done.

If D 6= B then Dv � Bv = λBv and λD = spr(D) < λB by Theorem III.3 item 3.

Apply the same procedure for the matrix D with its strictly positive eigenvector u

associated with λD. Since K is finite, after a finite number of steps we will reach a

matrix D with spectral radius λ and eigenvector w such that

Dw = min
A∈K

Aw = λw.

Since we could start with an arbitrary matrix in K, in particular with a matrix with

the spectral radius minA∈K spr(A), the number λ above is equal to λK.

Now suppose that the eigenvector is not unique up to a scalar multiple. Then
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f(v) = λv and f(u) = λu for linear independent and strictly positive vectors v and u.

Then f has an infinite number of linearly independent strictly positive eigenvectors.

Since the set K is finite, there exists an irreducible matrix A ∈ K with two strictly

positive eigenvectors, which are linearly independent. We have a contradiction with

Theorem III.2 item 2.

The maps fK and gK are homogeneous and monotone, hence we can and will

change one strictly positive vector to another one considering asymptotic behavior of

their iterations.

The following corollary gives the necessary condition for the existence of a strictly

positive eigenvector of the map fK. Moreover, it will follow from Corollary III.29 that

this condition is also sufficient.

Corollary III.22. If fK possesses a strictly positive eigenvector, then the following

asymptotic relation holds
(
fn

K
(v)
)

i
∼ λn

K

for some (every) strictly positive vector v and every state i ∈ S.

The next proposition gives a sufficient condition for the existence of a strictly

positive eigenvector for the map fK. Moreover, it will follow from Corollary III.29

that this condition is also necessary.

Proposition III.23. Suppose that some (every) <-minimal matrix possesses a

strictly positive eigenvector. Then the map fK possesses a strictly positive eigenvector

associated with λ = λK. Moreover, if it is unique up to a scalar multiple for a <-

minimal matrix, then it is unique up to a scalar multiple for fK.

Proof. Let B be a <-minimal matrix with strictly positive eigenvector v. Apply the
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same procedure as in the proof of Proposition III.21. Find D ∈ K such that

Dv = min
A∈K

Av

with Di = Bi if (Bv)i 6 (Av)i for all A ∈ K. Then Dv 6 Bv = λv and Dnv 6

λnv = Bnv. Thus D is <-minimal, has strictly positive eigenvector, and spr(D) = λ.

Since each final class of D is basic, (Dv)i = (λv)i for all i in the final classes of D by

Theorem III.3 item 3. Hence Di = Bi for all i in the final classes of D and the set of

final classes of B contains the set of final classes of D.

By Theorem III.5 each non-final class of D is non-basic. Let S1 ⊂ S be the union

of all final classes and let S2 = S \ S1. Then, after possibly permuting the states,

D =




D|(S2,S2) E

0 B|(S1,S1)





with spr(D|(S1,S1)) = λ and spr(D|(S2,S2)) < λ. Define

u|S1
= v|S1

and u|S2
= (λI −D|(S2,S2))

−1Ev|S2
. (3.1)

Then Du = λu and thus u > 0 by Lemma III.10. Suppose ui > vi for some i ∈ S.

Then it follows from Du = λu and Dv 6 λv that

D|(S2,S2)

[
u|S2
− v|S2

]
> λ

[
u|S2
− v|S2

]
.

This contradicts spr(D|(S2,S2)) < λ by Theorem III.4 item 4. Hence v > u > 0.

By construction, u = v if and only if D = B. We can apply the same procedure

to D and u. On each step the set of final classes of the new matrix is contained

in the set of final classes of the previous matrix and the next eigenvector coincides

with the previous one on the states from the final classes of the new matrix. Since

K is finite, after a finite number of steps all received matrices will have the same set
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of final classes and all received eigenvectors are the same on this set. Now suppose

this process will never stabilize. It means that all received eigenvectors are different.

Since K is finite, some matrix appears in this process at least two times with different

strictly positive eigenvectors that coincide on the final classes of this matrix. But

by (3.1) eigenvector of a matrix is uniquely defined by its coordinates from the final

classes of this matrix. We get a contradiction. Thus, after a finite number of steps

we will reach a <-minimal matrix M ∈ K with strictly positive eigenvector w such

that

Mw = min
A∈K

Aw = λw.

The proof of the last part about the uniqueness of a strictly positive eigenvector

up to a scalar multiple is the same as the proof of the last part of Proposition III.21,

using the observation that if a matrix from K has a strictly positive eigenvector

associated with λK then it is <-minimal.

So, if there exists a <-minimal matrix with strictly positive eigenvector, then the

growth exponent of each component of fn
K
(v) is equal to the spectral radius of this

<-minimal matrix.

The next proposition deals with the case when <-minimal matrices do not possess

a strictly positive eigenvector, and shows the existence of a nonnegative eigenvector

for fK, whose special entries are positive. Later this proposition with ν = 1 will be

used as the basis of induction for Lemma III.26.

Proposition III.24. Let {S0, S1, . . . , Sν} be the principal <-minimal partition of the

state space S with respect to K. Then there exists a nonnegative vector v such that:

fK(v) = min
A∈K

Av = λKv and v|Sν
> 0, v|S\Sν

= 0.

Proof. Let B be a <-minimal matrix for K. Since {S0, S1, . . . , Sν} is the principal
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partition of B, the matrix B|(Sν ,Sν) possesses a strictly positive eigenvector associated

with λK = spr(B|(Sν ,Sν)) by Remark III.8. The set K|Sν
= {A|(Sν ,Sν)|A ∈ K}

also satisfies the product property and B|Sν
is <-minimal for it. We can apply

Proposition III.23 for K|Sν
. There exists a strictly positive vector w defined on Sν

such that

min
A∈K

A|(Sν ,Sν)w = λKw.

Take the vector v with v|Sν
= w and v|S\Sν

= 0. Then v satisfies the conditions of

the proposition.

It was shown by W.H.M. Zijm [Zij84] and independently by K. Sladký [Sla81] that

a more strong result holds for gK, which proves existence of a simultaneous (uniform)

block-triangular representation of the matrices in K and allows one to define the

“principal partition” (in our terms — the principal <-maximal partition) of S with

respect to K. This partition plays a fundamental role in those papers. This result

does not hold for fK.

5 Generalized Howard’s policy iteration procedure

There are several algorithms used for determining the optimal policy for decision

problems: Bellman’s value iteration procedure [Bel57a], Howard’s policy iteration

procedure [How60], and many modifications of the previous one’s.

We prove in this section one lemma, which shows existence of a solution of a

set of “nested” functional equations that we will use in the next section. As it was

noticed in [Zij84] for the case of the maps gK, it can be viewed as a generalization of

the Howard’s policy iteration procedure.

We write just λ and ν instead of λK and νK if there is no ambiguity.

Let t be an integer greater than 1. Suppose that for each A ∈ K we have a
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sequence of (column) vectors ri(A), i = 1, 2, . . . , t− 1.

Lemma III.25. Assume that the set of rectangular matrices

{
(A, r1(A), r2(A), . . . , rt−1(A))

∣∣∣ A ∈ K

}

satisfies the product property. Suppose that some (every) <-minimal matrix B ∈ K

possesses a strictly positive eigenvector. Suppose furthermore B∗rt−1(B) > 0 for

every <-minimal matrix B, where B∗ is defined by Lemma III.11. Then there exists

a solution {v(1), v(2), . . . , v(t)} of the set of functional equations:

min
A∈K

Av(t) = λv(t),

min
A∈Ki+1

{
Av(i) + ri(A)

}
= λv(i) + v(i+1), i = 1, 2, . . . , t− 1,

where Ki is defined recursively by

Kt := {A | A ∈ K, Av(t) = λv(t)},

Ki := {A | A ∈ Ki+1, Av
(i) + ri(A) = λv(i) + v(i+1)}, i = 2, 3, . . . , t− 1.

Furthermore v(t) > 0.

Proof. The set of equations

Bv(t) = λv(t),

Bv(i) + ri(B) = λv(i) + v(i+1), i = 1, 2, . . . , t− 1, (3.2)

B∗v(1) = 0
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has a unique solution

v(t) = B∗rt−1(B),

v(i) = (λI −B +B∗)−1[ri(B) +B∗ri−1(B)− v(i+1)], i = 2, 3, . . . , t− 1,

v(1) = (λI −B +B∗)−1[r1(B)− v(2)].

Moreover v(t) > 0. Since we have the “extended” product property, there exists a

matrix D ∈ K such that

Dv(t) = min
A∈K

Av(t),

Dv(i) + ri(D) = min
A∈Hi+1

{
Av(i) + ri(A)

}
, i = 1, 2, . . . , t− 1,

where Hi ⊂ K are defined recursively as the subset of matrices from Hi+1 which

minimize the right hand side of i-th equation above. We choose D = B if B satisfies

the above equations, i.e. if B ∈ H1.

Then Dv(t) 6 λv(t) and thus D is <-minimal and possesses a strictly positive

eigenvector. As above, the set of equations (3.2) with the matrix D instead of B has

a unique solution {u(1), u(2), . . . , u(t)} with u(t) > 0 and so on. We want to show that

this process will eventually stop. It is easy to see that if {v(i)} and {u(i)} satisfy the

following properties

(a) u(t) 6 v(t);

(b) if u(i) = v(i) for i = k + 1, k + 2, . . . , t then u(k) 6 v(k);

(c) if u(i) = v(i) for all i = 1, 2, . . . , t then D = B,

then, since K is finite, after a finite number of steps we will reach a matrix which

stays intact under application of this process. The corresponding solution of (3.2)

will satisfy the conditions of the lemma.
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Let us prove (a), (b), and (c). Let C ⊂ S be the union of all final classes of D.

(a) Using Lemma III.11 and construction of u(i) and v(i) we get

u(t) = D∗rt−1(D) 6 D∗[λv(t−1) + v(t) −Dv(t−1)] = D∗v(t)
6 v(t).

(b) Now suppose u(i) 6 v(i) for i = k + 1, k + 2, . . . , t. Define vectors ψ(i),

i = 1, 2, . . . , t, such that:

Dv(t) = λv(t) + ψ(t),

Dv(i) + ri(D) = λv(i) + v(i+1) + ψ(i).

From (3.2) for the matrix D and the previous equations we get:

D[v(i) − u(i)] = λ[v(i) − u(i)] + [v(i+1) − u(i+1)] + ψ(i). (3.3)

Thus, ψ(i) = 0 and Dv(i)+ri(D) = Bv(i)+ri(B) for i = k+1, . . . , t. Hence B ∈ Hk+1.

It follows that ψ(k) 6 0 and

D[v(k) − u(k)] = λ[v(k) − u(k)] + ψ(k) ⇒ ( applying D∗ ) (3.4)

D∗ψ(k) = 0.

Hence ψ
(k)
i = 0 for all i ∈ C by Lemma III.11 item 3.

Consider the case k > 2. Then ψ
(k−1)
i 6 0 for i ∈ C and hence D∗ψ(k−1) 6 0 by

Lemma III.11 item 1. Applying D∗ to (k − 1)-st equation of (3.3) we obtain:

0 = D∗[v(k) − u(k)] +D∗ψ(k−1), but D[v(k) − u(k)] 6 λ[v(k) − u(k)].

Hence [v(k) − u(k)] > D∗[v(k) − u(k)] = −D∗ψ(k−1) > 0, because ψ
(k−1)
i 6 0 for i ∈ C.

For k = 1 we have B ∈ H2 and since ψ
(1)
i = 0 for i ∈ C we may choose Di = Bi

for i ∈ C. In this case D∗
i = B∗

i and u
(1)
i = v

(1)
i = 0 for i ∈ C. Thus D∗v(1) = 0. It
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follows from (3.4) that

[v(1) − u(1)] > D∗[v(1) − u(1)] = 0.

(c) As above, ψ(i) = 0 for all i and hence B ∈ H1. Thus D = B by construction.

6 Generalized eigenvectors of fK

Lemma III.26. Let {S0, S1, . . . , Sν} be the principal <-minimal partition with respect

to K. There exists a set of nonnegative vectors v(1), v(2), . . . , v(ν) such that

min
A∈K

Av(ν) = λv(ν), (3.5)

min
A∈Ki+1

Av(i) = λv(i) + v(i+1), i = 1, 2, . . . , ν − 1;

where

Kν := {A | A ∈ K, Av(ν) = λv(ν)},

Ki := {A | A ∈ Ki+1, Av
(i) = λv(i) + v(i+1)}, i = 2, 3, . . . , ν − 1.

Moreover

v
(i)
j > 0, j ∈

ν⋃

k=i

Sk and v
(i)
j = 0, j ∈

i−1⋃

k=0

Sk. (3.6)

Proof. By induction on ν. For ν = 1 the result follows from Proposition III.24.

Suppose that the theorem holds for ν < t and let now ν = t.

Notice that

Kt = {A | A ∈ K, Av(t) = λv(t), and A|(S\St,St) = 0}

for any given v(t) with v(t)|St
> 0 and v(t)|S\St

= 0. Define the set of matrices

H = {A|(S\St,S\St), A ∈ Kt}.



70

Clearly H also satisfies the product property and B|(S\Sν ,S\Sν) is a <-minimal matrix

for H for any <-minimal matrix B for K. Thus S0, S1, . . . , Sν−1 is the principal <-

minimal partition of H. By the induction hypothesis there exist nonnegative vectors

u(1), u(2), . . . , u(t−1) defined on S \ Sν such that u(t−1)|St−1
> 0 and

min
A∈H

Au(t−1) = λu(t−1),

min
A∈Hi+1

Au(i) = λu(i) + u(i+1), i = 1, 2, . . . , t− 2.

Now we need to find vectors v(1), v(2), . . . , v(t) such that (3.5) holds. Let us put

v
(i)
j = u

(i)
j and v

(t)
j = 0 for j ∈ S \ St.

Then clearly Ki ⊂ {A | A ∈ Kt, A|(S\St,S\St) ∈ Hi} for i = 1, 2, . . . , t − 1, and the

vectors v(i), independent of their coordinates on St, satisfy (3.5) for the states in

S \St. It remains to determine v
(i)
j for j ∈ St, i = 1, 2, . . . , t. The conditions on v(i)|St

are the following:

min
A∈K

A|(St,St)v
(t)|St

= λv(t)|St
,

min
A∈Ki+1

{
A|(St,St)v

(i)|St
+

t−1∑

j=i

A|(St,Sj)v
(i)|Sj

}
= λv(i)|St

+ v(i+1)|St

for i = 1, 2, . . . , t−1. Since {S0, S1, . . . , St} is the principal partition of any <-minimal

matrix B ∈ K, the matrix B|(St,St) possesses a strictly positive eigenvector associated

with λ. Moreover u(t−1)|St−1
> 0. Each final class of B|(St,St) has access to some state

in B|(St−1,St−1). Thus

(B|(St,St−1)u
(t−1)|St−1

)i > 0

for some i in every final class of B|(St,St). Then B|∗(St,St)
B|(St,St−1)u

(t−1)|St−1
> 0 for

every <-minimal matrix B by Lemma III.11 item 1. We can now apply Lemma III.25

and find v(i)|St
.
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It may happen that v(i) does not satisfy the nonnegativity constrains (3.6) on St

(they satisfy it on S \ St by induction). In this case consider

w(t) = v(t), (3.7)

w(i) = v(i) + αv(i+1), i = 1, 2, . . . , t− 1,

for a real number α. They also satisfy (3.5) and we can choose α large enough so

that w
(i)
j > 0 for all j ∈ St, i = 1, 2, . . . , t.

Now we are ready to prove the main result.

Theorem III.27. Let {S0, S1, . . . , Sν} be the principal <-minimal partition with

respect to K. Then there exists a set of nonnegative vectors v(1), v(2), . . . , v(ν) such

that

min
A∈K

Av(ν) = λv(ν),

min
A∈K

Av(i) = λv(i) + v(i+1), i = 1, 2, . . . , ν − 1.

Moreover

v
(i)
j > 0, j ∈

ν⋃

k=i

Sk and v
(i)
j = 0, j ∈

i−1⋃

k=0

Sk.

Proof. Use Lemma III.26 to find solutions v(1), v(2), . . . , v(ν) of the corresponding

system (3.5). Now consider the vectors w(1), w(2), . . . , w(ν) from (3.7). It is easy

to see that for α large enough

min
A∈Ki+1

Aw(i) = min
A∈Ki+2

Aw(i) = . . . = min
A∈K

Aw(i), i = 1, 2, . . . , ν,

and the vectors w(1), w(2), . . . , w(ν) satisfy the conditions of the theorem.
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7 Asymptotic behavior of iterations of fK

Theorem III.28. Let {S0, S1, . . . , Sν} be the principal <-minimal partition with

respect to K. Then

(
fn

K
(v)
)

i
∼ nk−1λn

K
, for i ∈ Sk and k = 1, 2, . . . , ν,

for every strictly positive vector v. For every <-minimal matrix B ∈ K the asymptotic

relation

fn
K
(v) ∼ Bnv

holds for every strictly positive vector v.

Proof. The proof of the first part is the same as for a single matrix (see

Theorem III.15). Thus (fn
K
(v))i ∼ (Bnv)i for i 6∈ S0. We need to prove the previous

asymptotic relation for i ∈ S0.

The upper bound fn
K
(v) 4 Bnv is obvious. Define

H = {A ∈ K | A|(S0,S\S0) = 0} and fK|S0
= min

A∈H

A|(S0,S0).

Then B|(S0,S0) is a <-minimal matrix for H|S0
for any matrix B which is <-minimal

for K. Let β = spr(B|(S0,S0)) (notice that β < λ) and let {S ′
0, S

′
1, . . . , S

′
ν′} be the

principal <-minimal partition of S0 with respect to H|S0
. By Theorem III.27 there

exist nonnegative vectors w(1), w(2), . . . , w(ν′) defined on S0 such that

fK|S0
(w(ν′)) = βw(ν′)

fK|S0
(w(i)) = βw(i) + w(i+1), i = 1, 2, . . . , ν ′ − 1,

and with specified nonnegative constrains. Notice that then (Bnv)i ∼ nk−1βn for

i ∈ S ′
k and k = 1, 2, . . . , ν ′.

Let v be a strictly positive vector defined on S \S0 such that A|(S\S0,S\S0)v > λv



73

for all A ∈ K (take for example v(1)|S\S0
, where v(1) is from Theorem III.27). Define

vectors u
(i)
αi , i = 1, 2, . . . , ν ′, such that u

(i)
αi |S\S0

= αiv and u
(i)
αi |S0

= w(i) (here αi are

some real numbers). Then

fK(u(i)
αi

) = min
A∈K




αiA|(S\S0,S\S0)v + A|(S\S0,S0)w

(i)

αiA|(S0,S\S0)v + A|(S0,S0)w
(i)



 = min
A∈H

Au(i)
αi
, i = 1, 2, . . . , ν ′,

for αi large enough. Moreover, we can additionally choose αi such that αiλv >

αiβv + αi+1v for i = 1, 2, . . . , ν ′ − 1. Then

fK(u(ν′)
αν′

) >




αν′λv

f |S0
w(ν′)



 =




αν′λv

βw(ν′)



 >




αν′βv

βw(ν′)



 = βu(ν′)
αν′
,

fK(u(i)
αi

) >




αiλv

f |S0
w(i)



 =




αiλv

βw(i) + w(i+1)



 >




αiβv + αi+1v

βw(i) + w(i+1)



 = βu(i)
αi

+ u(i+1)
αi+1

,

for i = 1, 2, . . . , ν ′−1. It follows that
(
fn

K
(u

(1)
α1 )
)

i
< nk−1βn for i ∈ S ′

k, k = 1, 2, . . . , ν ′,

and the lower bound is proved for i ∈ S \ S ′
0.

We can now do the same for the states in S ′
0 and so on.

Corollary III.29. The following conditions are equivalent:

1. The map fK has a strictly positive eigenvector.

2. Some (every) <-minimal matrix has a strictly positive eigenvector.

3.
(
fn

K
(v)
)

i
∼ λn for all i and for some (every) vector v > 0.

4.
(
fn

K
(v)
)

i
∼
(
fn

K
(v)
)

j
for all i, j and for some (every) vector v > 0.
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CHAPTER IV

GROUPS GENERATED BY BOUNDED AUTOMATA

The structure of bounded and polynomial automata can be described explicitly, which

makes it possible to deal with all bounded (polynomial) automata and allows us to

understand easily whether a given automaton is bounded, polynomial, or neither just

by looking at its Moore diagram. We will prove that a group generated by a bounded

automaton is contracting. This allows us to consider the limit spaces JG of these

groups, which happened to be related to the class of post-critically finite self-similar

sets. We introduce the notions of post-critical sets of a finite automaton and of the

limit space of a contracting self-similar group, adapted from the fractal geometry.

Then we show that the limit space of a contracting self-similar group generated by a

finite automaton is post-critically finite if and only if the automaton is bounded.

1 Bounded and polynomial automata

1.1 Definition and basic properties

Recall the original definitions by Said Sidki [Sid00].

Let g be an automorphism of the tree X∗. Define the numeric sequence θk(g)

as the number of words v ∈ Xk such that the restriction g|v is active, i.e. g|v acts

non-trivially on the first level X of the tree X∗. Looking at the asymptotic behavior

of the sequence θk(·) we can define different classes of automorphisms of the tree

X∗. For example, the automorphisms whose sequence θk is eventually 0 are precisely

finitary automorphisms.

If an automorphism g is finite-state then there are only two essentially different

possibilities for the asymptotic behavior of the sequence θk(g).
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Proposition IV.1 ([Sid00]). Let g be an automorphism given by a finite initial

automaton with m states. Then the sequence θk(g) either grows exponentially or

polynomially of degree at most m− 1.

Another approach, which is in most cases equivalent to the S. Sidki’s method, is

to consider the numeric sequence αk(g), which is the number of words v ∈ Xk such

that the restriction g|v is non-trivial (but may act trivially on X). It follows that

θk(g) 6 αk(g) for all k > 1.

Proposition IV.2. Let g be an automorphism given by a finite initial automaton

with m states. Then

αk(g) 6 θk(g) + θk+1(g) + · · ·+ θk+m−1(g)

for all k > 1.

Proof. Take a word v ∈ Xk such that the restriction g|v is non-trivial. Since the

automaton has m states, there exists a word u ∈ X∗, |u| 6 m − 1, such that the

restriction g|v|u acts non-trivially on X. The word vu is counted in θk+|u|(g).

In particular, for a finite-state automorphism g the sequence θk(g) is bounded by

a polynomial of degree n if and only if the sequence αk(g) is bounded by a polynomial

of degree n.

Definition 15. A finite-state automorphism g ∈ AutX∗ is called bounded if the

sequence θk(g) (equivalently αk(g)) is bounded. A finite-state automorphism g ∈

AutX∗ is called polynomial (of degree n) if the sequence θk(g) (equivalently αk(g)) is

bounded by a polynomial (of the smallest degree n).
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It is easy to see that the sequences θk(·) and αk(·) have the following properties

θk(gh) 6 θk(g) + θk(h) θk(g
−1) = θk(g)

αk(gh) 6 αk(g) + αk(h) αk(g
−1) = αk(g)

(4.1)

for all automorphisms g and h.

Define the set Bn = Bn(X), n > 0, of all finite-state automorphisms g of the tree

X∗, whose sequence θk(g) (equivalently αk(g)) is bounded by a polynomial of degree

n. The properties (4.1) imply that the set Bn forms a group. It is proved in [Sid00]

that all groups Bn are different for all n > 0 and so we have a chain of groups

B0 < B1 < . . . < Bn < . . . .

Definition 16. The group B0 is called the group of bounded automata. The group Bn

is called the group of polynomial automata of degree n. The group ∪n>1Bn is called

the group of polynomial automata.

The group B0 consists of all bounded automorphisms.

Definition 17. A finite invertible automaton A is called bounded if all its states

define bounded automorphisms.

A finite invertible automaton A is called polynomial if all its states define

polynomial automorphisms. A finite invertible automaton A is called polynomial

of degree n if the automorphism Aq ∈ Bn for every state q of A and Ap 6∈ Bn−1 for

some state p.

A group generated by a bounded automaton is a subgroup of B0. A group

generated by a polynomial automaton of degree n is a subgroup of Bn. It is easy to

see that a finite-state automorphism of the tree X∗ is bounded if and only if it can

be given by an initial automaton, which is bounded.
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When we talk about the activity of an automorphism g, we consider the

properties of the sequences θk(g), αk(g), and the words v ∈ X∗ for which g|v is

active or just non-trivial.

The first important result about algebraic properties of the group of polynomial

automata is

Theorem IV.3 ([Sid04]). The group Bn(X) does not contain free non-abelian

subgroups for every n > 0 and for any finite alphabet X.

In case of the group of bounded automata the previous theorem is a particular

case of the next important result.

Theorem IV.4 ([BKNV06]). The group B0 is amenable.

In particular, every bounded automaton generates amenable group. The

amenability of groups generated by polynomial automata and contracting self-similar

groups is an open question.

1.2 Structure of bounded and polynomial automata

Let g be the automorphism given by a finite initial automaton Ag. Let Γ be the

subgraph of the Moore diagram of A induced by the set of non-trivial states. Let A

be the incidence matrix of the graph Γ. The (g, h)-entry of the matrix Ak counts the

number of paths in Γ of length k that start at the state g and end at the state h (see,

for example, [ST02, Proposition 4.1.2]). Every such a path corresponds to a unique

word in Xk. Hence

αk(g) =
∑

h∈A,h 6=1

Ak|(g,h)

for all k > 1 and now Proposition IV.1 follows from Theorem III.15.

Analyzing the iterations of nonnegative integer matrices one gets the following

propositions. They describe the Moore diagrams of the bounded and polynomial
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treesfinitary

cycle

Fig. 5. General form of connected components of bounded automata

automata and, in particular, show a connection between the cyclic structure of

the automata and their activity growth. A cycle in the Moore diagram of an

automaton is called trivial, if it contains only one vertex that corresponds to the

trivial automorphism of the tree X∗.

Proposition IV.5 ([Sid00]). A finite invertible automaton is polynomial if and only

if every two non-trivial cycles in the Moore diagram of the automaton are disjoint.

Proposition IV.6 ([Sid00]). A finite invertible automaton is bounded if and only if

every two non-trivial cycles in the Moore diagram of the automaton are disjoint and

not connected by a directed path.

It follows that a bounded automaton is a disjoint union of the automata

schematically described in Figure 5. Notice that a (bounded) polynomial automaton

contains a state that corresponds to the trivial automorphism, and, moreover, there

is a path from every state to the trivial state (the automaton satisfies the open set

condition).

Also the spectral properties of the matrix A can be used to check whether the
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automaton A is polynomial or not.

Proposition IV.7 ([Nek05, Proposition 3.9.4]). The automaton A is polynomial of

degree n if and only if the spectral radius of A is 1 and has multiplicity n+ 1.

The bounded automorphisms are in some sense generalization of the directed

automorphisms, which appear in [BGŠ03] (see also [Roz96]) in connections to the

constructions of groups of intermediate growth and infinite periodic finitely generated

groups.

Definition 18. An automorphism g of the treeX∗ is called directed along the sequence

w ∈ Xω if the restriction g|v is trivial for every word v ∈ X∗ whose distance on the

tree X∗ to the sequence w is at least 2.

Notice that the previous definition is slightly more general that the one given

in [BGŠ03], where it is also supposed that g|v acts trivially on X for every beginning

word v of the sequence w.

Every directed finite-state automorphism is bounded. The activity of a directed

automorphism is concentrated along one ray in the tree X∗, while the activity of the

automorphism given by a bounded (polynomial) initial automaton is concentrated

along a finite (respectively countable) number of rays.

Proposition IV.8 ([Nek05, Proposition 3.9.11]). A finite-state automorphism g is

bounded if and only if there exists a level n such that the automorphism g|v is either

directed or rooted for every word v ∈ Xn.

Moreover, we may assume that for every directed automorphism g|v there exists

(precisely one) word u ∈ Xn such that g|v|u = g|v.

So, after passing to a power Xn of the alphabet, we may assume that every

restriction g|v is either rooted or directed along a sequence yω for some letter y of the

new alphabet.
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Theorem IV.9. Let A be a finite invertible automaton and let Γ be the subgraph

of the Moore diagram of A spanned by the set of non-trivial states. The following

conditions are equivalent:

1. The automaton A is bounded (polynomial).

2. There exist only a finite (countable) number of left-infinite paths in Γ.

3. There exist only a finite (countable) number of right-infinite paths in Γ.

Proof. Let A be a bounded automaton. By Proposition IV.6 for every state g in a

cycle of the graph Γ there exist precisely one left-infinite path ending in g and one

right-infinite path beginning in g. Then there exist a finite number of left-infinite

paths ending in a non-trivial finitary state, there are no left-infinite paths ending in a

non-finitary state which does not lie on a cycle, and the item 2 follows. Similarly, there

exist a finite number of right-infinite paths beginning in a non-finitary state which

does not lie on a cycle, there are no right-infinite paths beginning in a non-trivial

finitary state, and the item 3 follows.

On the other hand, suppose the automaton A is not bounded. Then by

Proposition IV.6 there exist two different simple cycles C1 and C2 in the graph Γ

such that either these cycles begin and end at the same vertex g, or there exists a

non-empty path γ from the beginning of C1 to the beginning of C2. In the first case,

we have uncountable families of different left-infinite and right-infinite paths in Γ of

the form . . . p3p2p1 and p1p2p3 . . . respectively, where pi is either C1 or C2. In the

second case, there are infinite (countable) families {C−ω
1 γCn

2 }n∈N and {Cn
1 γCω

2 }n∈N of

different left-infinite and right-infinite paths.

The statement for the polynomial automata can be proved by induction on the

maximal number of cycles in the graph Γ connected by a directed path. If this

number is equal to m then the automaton is polynomial of degree m − 1. Here the
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only left-infinite paths in Γ are the paths of the form

C−ω
k γk−1 . . . γ2Cn2

2 γ1Cn1

1 γ0, ni ∈ N,

and the only right-infinite paths are the paths of the form

γkCnk

k γk−1 . . . γ2Cn2

2 γ1Cω
1 , ni ∈ N,

where Ci is a simple cycle of Γ and γi is a finite path.

2 Contraction of groups generated by bounded automata

Proposition IV.10. Let G be a contracting self-similar group with nucleus N . If N

is a polynomial automaton of degree n, then G is a subgroup of Bn.

Proof. Take arbitrary element g ∈ G. There exists a level n such that g|v ∈ N for all

words v of length > n. Then

θk(g) =
∑

h∈N
ah · θk−n(h), (4.2)

for all k > n, where ah is the number of restrictions g|v on words v ∈ Xn which are

equal to h. Hence, if h ∈ Bn for all h ∈ N then g ∈ Bn.

The following is a joint result with V. Nekrashevych.

Theorem IV.11. The group generated by a bounded automaton is contracting.

Proof. Let G be the group generated by the states S of a bounded automaton A.

Let Sf be the set of all finitary automorphisms of A and let Snf = S \ Sf . Then all

the states in the non-trivial cycles of A belong to Snf . Let Sc be the union of all the

states in these cycles.
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Since there are no directed paths between cycles, there exists a number n1 such

that s|v ∈ Sc ∪ Sf for every s ∈ S and every word v ∈ Xn1 . The group G1 generated

by Sf ∪Sc is self-similar and contains the group G|Xn1 = 〈g|v : g ∈ G, v ∈ Xn1〉. Thus

G1 is contracting if and only if the group G is contracting. Moreover, in this case

their nuclei coincide. So, we can suppose that all non-finitary elements lie on cycles,

which means Snf = Sc.

Let k1 be the least common multiple of the lengthes of cycles in Sc. We can find

a number k2 such that the restriction h|v is trivial for every h ∈ 〈Sf〉 and every word

v ∈ Xk1k2 (note that the group 〈Sf〉 is finite). Let n1 = k1k2. Then for every s ∈ S

and every v ∈ Xn1 either s|v ∈ Sf or s|v ∈ Sc. Moreover, the restriction s|v belongs

to Sc for a unique word v ∈ Xn1 , since the cycles are disjoint and not connected by

a directed path.

Let N1 be the set of all non-trivial elements h ∈ G such that there exists a unique

word vh ∈ Xn1 such that h|vh
= h and for all words v ∈ Xn1 not equal to vh the

restriction h|v belongs to 〈Sf〉. In particular, N1 contains Sc. The set N1 is finite,

because every element h in N1 is uniquely defined by the permutation it induces on

Xn1 and by the restrictions h|v on words v ∈ Xn1 .

Let us denote by l1(g) the minimal number of elements of Sc ∪ S−1
c in a

decomposition of g into a product of elements S ∪ S−1. Let us prove that for every

g ∈ G there exists a number k such that for every v ∈ Xn1k the restriction g|v belongs

to N1 ∪ 〈Sf〉. We prove this induction on l1(g).

If l1(g) = 1 then g = f1sf2 for f1, f2 ∈ 〈Sf〉 and s ∈ Sc ∪ S−1
c . Then for every

v ∈ Xn1 we have g|v = f1sf2|v = s|f2(v) and so g|v is either equal to s ∈ N1 or belongs

to Sf ∪ S−1
f . Thus the basis of induction is proved.

Suppose that the claim is proved for all elements g ∈ G such that l1(g) < m.

Let g = f1s1f2s2f3 . . . fmsmfm+1 for fi ∈ 〈Sf〉 and si ∈ Sc ∪ S−1
c . For every u ∈ Xn1
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the restriction fi|u is trivial and the restriction si|u is either equal to si or belongs to

Sf ∪ S−1
f . Consequently we have only two possibilities:

1. either l1(g|u) < m for all u ∈ Xn1 ;

2. or g|u = s1s2 . . . sm for a unique u ∈ Xn1 and g|v ∈ 〈Sf〉 for all v ∈ Xn1 \ {u}.

In the first case we can apply the induction hypothesis. In the second case the

decomposition of g|u does not contain finitary elements. So, by the same reasons as

above, either l1(g|u|v) < m for every word v ∈ Xn1 and we can apply the induction

hypothesis; or g|u|w = g|u for a unique word w ∈ Xn1 and g|u|v ∈ 〈Sf〉 for every word

v ∈ Xn1 not equal to w. In the last case g|u belongs to N1 and the claim is proved.

Consequently, the group G is contracting.

Corollary IV.12. Let N be the nucleus of the group generated by a bounded

automaton. Then the subgraph of the Moore diagram of N spanned by the set of

all non-finitary elements is a disjoint union of simple cycles.

In particular, for every non-finitary element g of the nucleus of the group there

exists precisely one letter x ∈ X such that the restriction g|x is non-finitary.

Corollary IV.13. Every finitely generated self-similar subgroup of B0 is contracting

and satisfies the open set condition.

Corollary IV.14. The world problem is solvable in polynomial time in every group

generated by a bounded automaton.

Proof. Follows from Theorem II.8.

Corollary IV.15. All orbital Schreier graphs of the group generated by a bounded

automaton have polynomial growth.

Proof. Follows from Theorem II.13.
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Fig. 6. One of the smallest polynomial and not bounded automata

In Chapter V we will deal with the problem of finding the degree of this growth,

which is usually not integer.

The above theorem cannot be generalized to the groups generated by polynomial

automata. For example, consider the group G generated by the automaton in

Figure 6. By Proposition IV.6 this automaton is polynomial, moreover, it has linear

activity growth, so the group G is a subgroup of B1. The automorphism a is the

adding machine (see Section 1 of Chapter VI) and has infinite order. Thus the

elements bn = (bn, an), n > 1, are all different, but they should belong to the nucleus.

So, the group G is not contracting. Moreover, the orbital Schreier graphs Γω of this

group have intermediate growth (see [BH05]).

The group G has the following property. The groups generated by all minimal

(i.e. with the minimal number |Q| + |X|) polynomial and not bounded automata

(these automata have three states over the alphabet with two letters) are isomorphic

to G. Really, up to passing to inverses of all generators, permuting the states of the

automaton, permuting the letters of the alphabet, there are only three such automata
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A, A1, A2, which are given by the following wreath recursions:

a = (1, a)σ a1 = (1, a1)σ a2 = (1, a2)σ

b = (b, a) b1 = (b1, a1)σ b2 = (a2, b2)σ

Then a = a1 = a2, b1a = (b1a, a), a
−1b2 = (a−1b2, a). The automorphisms b, b1a,

and a−1b2 satisfy the same wreath recursion and thus are equal. Hence, the groups

generated by these automata are the same.

3 Post-critical sets

Let G be a contracting self-similar group and let Tv, v ∈ X∗, be the tiles of the group.

Define the set

B =
⋃

x 6=y,x,y∈X

Tx ∩ Ty.

Consider the canonical projection π : X−ω → JG and define two sets

C = π−1(B), P =
⋃

n>1

τn(C).

Definition 19. The set C is called the critical set of the group G and of its limit

space JG. The set P is called the post-critical set of G and of JG.

The set π(P) is thought of as a “boundary” of the limit space JG.

The critical and post-critical sets play an important role in determining the

topological structure of the limit space JG. For example, if the critical set is empty

(hence the post-critical set is empty) then the limit space is homeomorphic to the

Cantor set Xω.
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Definition 20. Let A be a finite automaton. The set

PA =






. . . x2x1 ∈ X−ω

∣∣∣∣∣∣∣∣∣∣

there exists a path . . . e2e1 in the Moore diagram

of A, which ends in a non-trivial state and

is labeled by . . . x2x1| ∗ or ∗ | . . . x2x1.






is called the post-critical set of the automaton A.

Notice that if the automaton A is invertible and coincides with its inverse (for

example it is a nucleus), then it is sufficient to read only the left labels of the left-

infinite paths, i.e. the post-critical set of A is equal to the set of sequences . . . x2x1 ∈

X−ω which are read on the left-infinite paths in the Moore diagram of A ending in a

non-trivial state.

The following proposition explains why we use the term “post-critical set” in the

definition 20 and gives an effective way to find the post-critical set of the group.

Proposition IV.16. The post-critical set of a contracting self-similar group with

nucleus N is equal to the post-critical set of the automaton N .

Proof. Let P and PN be the post-critical sets of the group G and of its nucleus N

respectively. Let Γ be the Moore diagram of N .

Take an arbitrary sequence . . . x2x1 ∈ PN and let . . . e2e1 be the corresponding

left-infinite path in Γ. Let the state gi be the end of the edge ei. Then gn+1|xn
= gn and

the state g1 is non-trivial. There exists a word v ∈ X∗ such that the restriction g1|v
acts non-trivially on the first level X of the tree X∗. Let x, y ∈ X be different letters

such that g1|v(x) = y. Then by Proposition II.19 the tiles Tx and Ty have non-empty

intersection and the sequence . . . x2x1vx represents a point in this intersection. Hence

the sequence . . . x2x1vx belongs to the critical set of the group G and the sequence

. . . x2x1 belongs to the post-critical set P.
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Now let us take a sequence . . . x2x1 ∈ P. There exists a word v ∈ X∗ and a

letter x ∈ X such that the sequence . . . x2x1vx belongs to the critical set. Then

. . . x2x1vx represents a point in the intersection Tx ∩ Ty for a letter y different from

x. By Proposition II.19 there exist an element g ∈ N such that g(x) = y and a

left-infinite path . . . e2e1 in Γ, which ends in g and is labeled by . . . x2x1v|∗. Then

the path . . . ek+2ek+1, where k = |v|, ends in a non-trivial state of the nucleus and is

labeled by . . . x2x1|∗. So, . . . x2x1 ∈ PN .

Corollary IV.17. The (post) critical set of a contracting self-similar group is empty

if and only if it is a subgroup of the finitary group.

If a contracting self-similar group is generated by a finite automaton then one

does not need to know the nucleus in order to find the post-critical set of the group,

as the next proposition shows.

Proposition IV.18. Let G be a contracting self-similar group generated by a finite

automaton A. The post-critical set of G is equal to the post-critical set of A.

Proof. The proof is similar to the proof of Proposition 3.2.7 in [Nek05], which shows

that the asymptotic equivalence relation can be described only by the Moore diagram

of the generating automaton.

Let P and PA be the post-critical sets of the group G and the automaton A

respectively. Let ΓA be the Moore diagram of A.

Take an element . . . x2x1 ∈ PA. There exists a left-infinite path . . . e2e1 in the

graph ΓA such that every edge ei is labeled by xi|∗ or every edge ei is labeled by

∗|xi. Let the state sn be the end of the edge en (then sn+1 is the beginning of en).

Then the state s1 is non-trivial and sn+1|xn
= sn for all n > 1 or s−1

n+1|xn
= s−1

n for all

n > 1. Since the group is contracting and the automaton A is finite, there exists a
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level k such that the restrictions s|v and s−1|v belong to the nucleus N of the group

for every s ∈ A and every v ∈ X∗ of length > k. Then

either sn+k|xn+k−1xn+k−2...xn+1xn
= sn ∈ N for all n > 1

or s−1
n+k|xn+k−1xn+k−2...xn+1xn

= s−1
n ∈ N for all n > 1.

Hence the path . . . e2e1 is in fact the path in the nucleus, and so . . . x2x1 belongs to

P by Proposition IV.16.

Now let us take an arbitrary element . . . x2x1 ∈ P and let . . . e2e1 be the

corresponding left-infinite path in the Moore diagram Γ of the nucleus N . Let gn

be the end of the edge en. Then g1 is non-trivial and gn+1|xn
= gn for all n > 1.

There exists a representation gn = sk . . . s2s1 of gn as a product of the elements of A

and their inverses, where the states si = sn,i and the number k depend on n. Such a

representation of gn+1 defines the representation of gn in the following way:

gn = gn+1|xn
= sk|sk−1...s2s1(xn) . . . s2|s1(xn)s1|xn

. (4.3)

Since the sequence gn assumes only a finite number of different values, we can assume

that the number k is the same for all n. If needed, the trivial si will be written

additionally to gn from the left. Also, we can assume that the restriction of gn+1

given by the formula (4.3) is precisely the representation of gn. Then sn+1,1|xn
= sn,1

for all n > 1. We can assume that sn,1 ∈ A for all n > 1 or sn,1 ∈ A−1 for all n > 1.

The sequence of states sn,1 defines the left-infinite path in ΓA, which is labeled by

. . . x2x1|∗ in the first case and by ∗| . . . x2x1 in the second case. Since g1 is non-trivial,

s1,1 is also non-trivial. So, the sequence . . . x2x1 belongs to PA.
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4 Limit spaces of groups generated by bounded automata

Definition 21. The limit space JG of a contracting self-similar group is called post-

critically finite (p.c.f. for short) if its post-critical set P is finite.

The following is a joint result with V. Nekrashevych.

Theorem IV.19. A contracting self-similar group has a post-critically finite limit

space if and only if its nucleus is a bounded automaton.

Proof. Let N be the nucleus of the group with the Moore diagram Γ.

Suppose thatN is a bounded automaton. By Theorem IV.9 there are only finitely

many left-infinite paths in Γ, which end in a non-trivial state. Then there are finitely

many left-infinite sequences which are read on these paths. Hence the post-critical

set of N is finite and the limit space is post-critically finite by Proposition IV.16.

In the other direction, let a sequence . . . x2x1 ∈ X−ω be read on a left-infinite

path . . . e2e1 in Γ, i.e. the edge ei is labeled by xi|∗. If the path . . . e2e1 in the graph

Γ passes through the states . . . g2g1 (here gi+1 is the beginning and gi is the end of

the edge ei), then the state gn is uniquely defined by the state gn+1 and the letter

xn by gn = gn+1|xn
. It follows, that any given sequence . . . x2x1 is read on not more

than |N | left-infinite paths in Γ. Consequently, if the post-critical set is finite, then

the number of left-infinite paths in Γ, which end in a non-trivial state, is finite and

the nucleus N is a bounded automaton by Theorem IV.9.

Corollary IV.20. A contracting self-similar group has a post-critically finite limit

space if and only if it is a subgroup of the group of bounded automata.

In particular, the group generated by a bounded automaton has a post-critically

finite limit space, because the group is contracting by Theorem IV.11.
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In the same way one can see that a contracting self-similar group is a subgroup

of the group of polynomial automata if and only if the post-critical set of the group

is countable.

Proposition IV.21. Let G be a contracting self-similar group with post-critically

finite limit space. Then every element of the post-critical set of the group is a pre-

periodic sequence.

Proof. The nucleus N of the group G is a bounded automaton. Then the subgraph

Γnf of the Moore diagram of N spanned by the set of all non-finitary states of N

is a disjoint union of simple cycles by Corollary IV.12. In particular, for every non-

finitary state g ∈ N there exists precisely one left-infinite path γ−, which ends in

g, and it is of the form C−ω for a simple cycle C. Then the sequence . . . x2x1 which

is read on this path is periodic. Hence, the corresponding left-infinite sequences for

finitary non-trivial states of N will be pre-periodic. The statement follows from

Proposition IV.16.

Moreover, the post-critical set of a finite invertible automaton contains only pre-

periodic sequences if and only if the automaton is polynomial (see Theorem IV.9).

Post-critically finite self-similar sets are closely related to finitely ramified self-

similar sets.

Definition 22. The limit space JG of a contracting self-similar group is called finitely

ramified if every two different tiles of the same level have finite intersection.

Every post-critically finite self-similar set is finitely ramified, but the converse

is not true (see [Kig01, Section 1.3]). The situation is different for the limit

spaces of groups.
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Theorem IV.22. Let G be a contracting self-similar group. The limit space JG is

post-critically finite if and only if it is finitely ramified.

Proof. Suppose that the post-critical set of the group is infinite. For every non-trivial

element g of the nucleus N denote by Bg the set of all sequences . . . x2x1 ∈ X−ω,

which are read on the left-infinite paths in the Moore diagram of N , which end in

g. The union of these sets Bg is the post-critical set of the nucleus and is infinite

by Proposition IV.16 and our assumption. Since the nucleus is a finite automaton,

there exists an elements g ∈ N \ {1} for which the set Bg is infinite. Since the state

g is non-trivial, there exists a word v ∈ X∗ such that g(v) 6= v. Then for every

sequence . . . x2x1 ∈ Bg there exists a sequence . . . y2y1 ∈ X−ω such that . . . x2x1v is

asymptotically equivalent to . . . y2y1g(v). Hence, every point of the limit space JG

represented by a sequence from Bgv belongs to both Tv and Tg(v). It follows that the

intersection Tv ∩ Tg(v) is infinite, since the asymptotic equivalence classes are finite.

On the other hand, suppose that there are two different tiles Tu and Tv, u 6= v, of

the same level |u| = |v|, which have an infinite intersection. Then by Corollary II.21

there exists an infinite number of left-infinite paths in the Moore diagram of N , which

end in a non-trivial state. By Theorem IV.9 the automaton N is not bounded and

the limit space of the group G is not post-critically finite.

Corollary IV.23. A contracting self-similar group generated by a finite automaton

has post-critically finite (or finitely ramified) limit space if and only if this automaton

is bounded.

Corollary IV.24. A contracting self-similar group G satisfies the open set condition

and the boundary of every tile Tv, v ∈ X∗, is finite if and only if G is a subgroup of

the bounded automata group.

Proof. If a contracting self-similar group G is a subgroup of the bounded automata
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group, then the nucleus of G is a bounded automaton and the group G satisfies the

open set condition. If the group satisfies the open set condition, then the finiteness

of the boundary of every tile Tv is equivalent to the finiteness of the post-critical set

of the group by Theorem II.20.

Corollary IV.25. A post-critically finite limit space has topological dimension 6 1.

Proof. A contracting self-similar group with post-critically finite limit space is a

subgroup of the bounded automata group. By the previous corollary the tiles Tv

have finite (hence, 0-dimensional) boundary. At the same time, for every point ζ of

the limit space JG represented by the sequence . . . x2x1 the collection

{⋃

x∈X

Tx,
⋃

x∈X

Txx1
,
⋃

x∈X

Txx2x1
, . . .

}

forms a basis of neighborhoods of ζ.

Also notice, that the limit space JG of a contracting self-similar groupG satisfying

the open set condition has topological dimension 0 if and only if G is a subgroup of

the finitary group (in this case JG is homeomorphic to the Cantor set Xω).
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CHAPTER V

SCHREIER GRAPHS OF GROUPS GENERATED BY BOUNDED AUTOMATA

In this chapter we study the structure and asymptotic properties of the Schreier

graphs of a group generated by a bounded automaton.

In the first section we introduce a construction of inflated graphs, which are

iteratively produced from an initial graph using some fixed data, called inflation

data. With every inflation data we associate a piecewise linear map of the form

fK = minA∈KA and show that the growth of diameters of inflated graphs can be

found by iterating this map.

In Section 2 we introduce tile graphs Tn of the group G generated by a bounded

automaton, which differ from the Schreier graphs Γn by a uniformly bounded number

of edges, and in some sense converge to the tile T of the group. These tile graphs

can be constructed using the method of the first section, and in this way we associate

a piecewise linear map of the form fK with every bounded automaton. Now we

can effectively find the growth of diameters of the Schreier graphs Γn. Using the

coefficients associated with the map fK we can effectively find the orbital contracting

coefficient of the group G. If the associated map fK possesses a strictly positive

eigenvector, then we can introduce a nice metric on the limit space JG.

Finally, in the last section we consider the orbital Schreier graphs Γω, ω ∈ Xω,

and prove that the simple random walk on these graphs is recurrent.

1 Inflation of graphs

In this section all considered graphs are simplicial.
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1.1 Definition and basic properties

Definition 23. An inflation data I = (X,P,E, ψ) is given by

1. A finite set X and an arbitrary set P .

2. A set E of unordered pairs of elements of P ×X.

3. An injective map ψ : P → P ×X.

An inflation data is called finite if the set P is finite (then also E is finite).

We refer to the set E as to a set of (non-oriented) edges between vertices P ×X.

Let Γ be a graph with a map ϕ : P → V (Γ) which marks some vertices of Γ by

elements of P . Using the inflation data I we can produce a new graph G with a map

ζ : P → V (G) in the following way.

Inflation. Take the disjoint union of |X| copies of the graph Γ, identify its set

of vertices with V (Γ)×X, and connect vertices (v, x) and (u, y) (here v, u ∈ V (Γ) and

x, y ∈ X) by an edge if and only if the vertices v and u are marked correspondingly

by p and q, i.e ϕ(p) = v and ϕ(q) = u, and the pair {(p, x); (q, y)} belongs to the

set E. In this new graph we mark a vertex (w, x) by p ∈ P if ψ(p) = (q, x) and the

vertex w of Γ is marked by q, i.e. we define ζ(p) = (ϕ(q), x) when ψ(p) = (q, x).

Given an initial graph Γ0 with ϕ0 : P → V (Γ0) we can construct a sequence of

graphs Γn with maps ϕn : P → V (Γn) applying consequently the inflation rule. The

set ϕn(P ) of marked vertices is thought as a “boundary” of the graph Γn. To simplify

notations for every p ∈ P the vertex ϕn(p) of the graph Γn will be denoted just by p.

The vertices of the set ϕn(P ), or by the above agreement the vertices of the set P ,

are called the boundary vertices of the graphs Γn.

Definition 24. The graphs Γn = Γn(I) are called the inflated graphs of the graph

Γ0 using (or by) the inflation data I.
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The vertices of the graph Γn are naturally identified with the set V (Γ0) × Xn.

In particular, if the graph Γ0 is finite then all the graphs Γn are finite.

In the definition of an inflation data I we may suppose that the map ψ is not

injective, but then we can construct an inflation data J with a smaller set P which

produces graphs Γn(J ) (starting from the graph Γ1(I)) isomorphic to Γn(I) for all

n > 2. The injectivity of the map ψ guarantees that if we start with an injective

map ϕ0 : P → V (Γ0) then all the maps ϕn : P → V (Γn) will be injective and the

boundary vertices are in one to one correspondence with the points of P .

If for a given initial pair (Γ0, ϕ0) all the maps ϕn, n > 0, of the inflated graphs

Γn are not injective, then we can construct an inflation data J with a smaller set

P which produces the same graphs Γn but the respective maps ϕn(J ) are injective

for all sufficiently large n. So, considering asymptotic properties of the sequence of

inflated graphs, we can always suppose that the maps ϕn are injective.

Example 4 (Dual Sierpinski graphs). Consider the inflation data IS = (X,P,E, ψ):

1. X = {0, 1, 2} and P = {a, b, c}.

2. E =
{
{(b, 0); (a, 1)}, {(c, 0); (a, 2)}, {(c, 1); (b, 2)}

}
.

3. ψ(a) = (a, 0), ψ(b) = (b, 1), ψ(c) = (c, 2).

Let Γ0 be the graph with one vertex which is labeled by a, b, c. Then the inflated

graphs Γn(IS) are the dual Sierpinski graphs (see Figure 7). As was noticed in

[GŠ06] these graphs are the simplicial Schreier graphs on levels of the automaton

group generated by:

a = (a, 1, 1)(1, 2), b = (1, b, 1)(0, 2), c = (1, 1, c)(0, 1).

The limit space of this group is homeomorphic to the Sierpinski gasket (see [Nek05,

page 112]).
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Fig. 7. Dual Sierpinski graphs

Let I = (X,P,E, ψ) be an inflation data. We can pass to the n-th power of the

set X and construct a new inflation data I(n) = (Xn, P, E(n), ψ(n)), called the n-th

iteration of the inflation data I, with the same set P , where the map ψ(n) : P →

P × Xn is defined by n times consequential application of the map ψ on the first

coordinate of the image, i.e. defined recursively by the rules:

ψ(1) = ψ, ψ(n)(p) = (ψ(n−1)(q), x), where ψ(p) = (q, x);

the set E(n) of pairs of elements of P×Xn is defined recursively by the rules: E(1) = E;

a pair {(p, vx), (q, uy)} belongs to E(n) if either x = y and the pair {(p, v); (q, u)}

belongs to E(n−1), or the pair {(p′, x); (q′, y)} belongs to E with ψn−1(p′) = (p, v) and

ψn−1(q′) = (q, u).

By the above construction we get that applying an inflation data n times is the

same as applying one time the n-th iteration of the inflation data. More precisely,

the following proposition holds.

Proposition V.1. Let I be an inflation data and Γ0 be a graph with a map ϕ0 : P →
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V (Γ0), and let Γn = Γn(I) and Γ
(n)
1 = Γ1(I(n)) be the corresponding inflated graphs

with maps ϕn and ϕ
(n)
1 . Then for every n > 1 there exists an isomorphism ζ : Γn →

Γ
(n)
1 which preserves marked vertices, i.e. ϕn(p) = v if and only if ϕ

(n)
1 (p) = ζ(v).

It is easy to check the connectedness of inflated graphs Γn.

Proposition V.2. Let I be an inflation data. Let T be the graph with the set of

vertices X in which two vertices x, y are connected by an edge if and only if there

exists a pair {(p, x); (q, y)} ∈ E for some p, q ∈ P . The following conditions are

equivalent:

1. The graphs Γn are connected for all n > 0.

2. The graphs Γ0 and T are connected.

Proof. The connectedness of Γ1 implies the connectedness of T and implication 1⇒ 2

is obvious. For the converse we use induction on n. Suppose T and Γn−1 are connected.

The components Γn−1x and Γn−1y of the graph Γn are connected by an edge if and

only if the pair {x, y} is an edge of T . The connectedness of Γn follows.

In particular, if the graph Γ0 is connected then all graphs Γn, n > 1, are either

connected or disconnected. If the graph Γ0 is not connected, but the graph Γ1 is,

then it is easy to see that the graphs Γn are connected for all n > 1.

1.2 Inflation distance map

Let us understand how the distances between the boundary vertices change when we

apply inflation.

Let I = (X,P,E, ψ) be an inflation data. Let Γ be a graph with an injective map

ϕ : P → V (Γ) and let Γ1 be the inflated graph with the map ζ : P → V (Γ1) produced

from (Γ, ϕ) by applying I. Since we want to talk about distances in these graphs, let
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Fig. 8. A path in an inflated graph

us assume that the graphs Γ and Γ1 are connected (but this is not necessary). Then

by the remark after Proposition V.2 all inflated graphs produced from (Γ, ϕ) using

the inflation data I are connected.

Let γ be a simple path in the graph Γ1 between boundary vertices p and q (here

p, q ∈ P ). The path γ can be represented in the form [γ1]e1γ2e2 . . . em[γm+1], where

each γi is a path inside some copy of the graph Γ and ei is an edge of E (it is uniquely

defined by the ending of γi and the beginning of γi+1, see Figure 8). Some of the paths

γi could be trivial and we may have several edges ei one after another. If we want the

path γ to be a geodesic in the graph Γ1 then all the paths γi should be geodesics in the

respective copies of the graph Γ. In this case the length of γ is uniquely determined

by the sequence of the end vertices of γi, which are some boundary vertices pi, qi of

the respective copy of Γ (here pi, qi ∈ P ). Thus

dΓ1
(p, q) = min

γ

(
∑

γi

dΓ(pi, qi) +mγ

)
, (5.1)

where the minimum is taken over all simple paths in Γ1 between p and q such that

all γi are geodesics in Γ; the nonnegative number mγ counts the number of edges ei

in the path γ (notice mγ 6 |E|).

Let S =
{
{p, q}

∣∣∣ p, q ∈ P, p 6= q
}

be the state space. Consider the set of distances

dΓ(p, q) between boundary vertices p, q ∈ P in the graph Γ as a nonnegative integer
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vector
−→
d Γ of dimension |S| = |P |(|P | − 1)/2 (here the {p, q}-th entry of the vector

−→
d Γ is equal to dΓ(p, q)). Using (5.1) we can define a set K of nonnegative integer

matrices of dimension |S| × |S| and nonnegative integer vectors mA of dimension |S|

for each A ∈ K, such that

−→
d Γ1

= min
A∈K

(
A
−→
d Γ +mA

)
. (5.2)

Notice that the set K = K(I) and the vectors mA(I), A ∈ K, in the above expression

do not depend on initial graph Γ and actually are associated only with the inflation

data I. To see this let us consider another construction, which involves only I.

Let Γ be the complete graph on the set P (as the set of vertices) and ϕ be the

identity map. Let Γ1 be the graph obtained from (Γ, ϕ) using the inflation data I.

For each pair {p, q} ∈ S we define the set R{p,q} of admissible rows and the set m{p,q}

of admissible numbers as follows. Let γ be a simple path in Γ1 between the boundary

vertices p and q such that every its restriction on a copy of the graph Γ is a geodesic.

As before, γ has decomposition [γ1]e1γ2e2 . . . em[γm+1], where γi is an edge (not a

path) in some copy of the graph Γ and ei is an edge of E. For each such a path γ we

put mγ := m and define the row Rγ by the rule

R
γ

{p′,q′} =
∣∣∣{γi| γi connectes vertices p′ and q′}

∣∣∣, {p′, q′} ∈ S.

Put R{p,q} = {Rγ} and m{p,q} = {mγ}. Then the set K(I) and vectors mA, A ∈ K(I),

are constructed from R{p,q} and m{p,q} as in Section 2 of Chapter III.

Definition 25. The map fI(x) = min
A∈K(I)

(Ax+mA) is called the inflation distance

map associated with the inflation data I.

Under a few adjustments the above construction of fI is also valid in the

case when the graphs Γn produced using I are not connected (the graph T from
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Proposition V.2 is not connected). It is easy to see that if p and q are not connected

by a path in ΓN for some N > 1 then they will not be connected in Γn for all

n > N . Now, if for a pair {p, q} there is no path γ in Γ1, we remove this pair from

the state space S and remove the edge {p, q} from the graph Γ and apply the above

construction again with the updated Γ. It may happen that we need to delete all the

pairs and the state space S will be empty. This just means that for arbitrary initial

graph Γ0 all the boundary vertices will lie in different connected components of Γn

for all sufficiently large n and the diameters of all connected components of Γn are

uniformly bounded.

The n-th iteration f
(n)
I of the inflation distance map fI is the inflation distance

map associated with the n-th iteration I(n) of the inflation data I.

Using the inflation distance map we can find the distances between boundary

vertices in all the inflated graphs. We just need to iterate the inflation distance map:

−→
d Γn

= fI(
−→
d Γn−1

) = f
(n)
I (
−→
d Γ0

), (5.3)

for all n > 1. The initial vector
−→
d Γ0

(actually every vector
−→
d Γn

) in the above

recurrence is strictly positive if we assume that the map ϕ0 : P → V (Γ0) is injective

and the graph Γ0 is connected. If the graph Γ0 is not connected and this leads to

the situation when some boundary vertices p, q for {p, q} ∈ S are not connected by

a path in Γ1, then we can delete the respective component from the recurrence (5.3)

and from the state space S accordingly adjusting the map fI (but only for the specific

graph Γ0).

If an inflation data I is finite (the set P is finite) then the set K(I) is finite and the

inflation distance map fI is finite dimensional. In this case, if we are interested only

in the asymptotic behavior of the distances
−→
d Γn

, we can omit the constant vectors
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mA, consider only the set K(I) and the corresponding map fK(I)(x) = min
A∈K(I)

Ax.

Really, choose a nonnegative vector v such that mA 6 v for all A ∈ K(I). Then

fK(I)(·) 6 fI(·) 6 fK(I)(·) + v and iterating we get

f
(n)
K(I)(

−→
d Γ0

) 6 f
(n)
I (
−→
d Γ0

) =
−→
d Γn

6 f
(n)
K(I)(

−→
d Γ0

) +
n−1∑

i=0

f
(i)
K(I)(v), (5.4)

for all n > 1. From the theory of maps fK developed in Chapter III we can conclude

(see Theorem III.28) that either dΓn
(p, q) ∼ nk or dΓn

(p, q) ∼ nkλn, where the

nonnegative integer number k and the real λ depend on p and q. Moreover, there is

an effective (algorithmic) method of finding the numbers k and λ. The number λ is

no less than 1, since the nonnegative matrices of K(I) have integer coefficients. For a

finite inflation data the associated map fK(I) is also called the inflation distance map

and denoted by fI with a slight ambiguity.

A finite inflation data is called expanding if the iterations f
(n)
I (v) of its inflation

distance map have a component with exponential growth, where v is a strictly positive

vector (it is also natural to assume that there are no unbounded components with

polynomial growth, but it is not necessary for the next discussion). A sequence of

inflated graphs Γn is called expanding if there is a component of
−→
d Γn

which has

an exponential growth. It is easy to see (but requires some proof) that then the

corresponding inflation data is expanding.

Let Γ0 be a connected graph with an injective map ϕ0 : P → V (Γ0). The

estimates (5.4) together with Lemma III.14 imply that for a component dΓn
(p, q) of

−→
d Γn

with exponential growth the asymptotic relation

dΓn
(p, q) ∼ f

(n)
K(I)(

−→
d Γ0

)|(p,q) (5.5)

holds. In particular, if the inflation data I is expanding then the sequences of graphs

Γn is expanding. If the graph Γ0 is not connected or the map ϕ0 is not injective, then
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Fig. 9. Construction of inflation distance map for dual Sierpinski graphs

the map fK(I) will be adjusted and it may happen that the sequence of graphs Γn is

not expanding. Then, dealing with this particular pair (Γ0, ϕ0), we use the standard

inflation distance map fI and assume that the inflation data I is not expanding for

this pair. If the sequence {Γn} is expanding, then the asymptotic relation (5.5) is

correct for the adjusted map fK(I).

Define the coefficients λmin(I) and λmax(I) as the minimal and the maximal

exponents respectively of the exponential growth (so λmax > λmin > 1) of components

of
−→
d Γn

. These coefficients do not depend on (Γ0, ϕ0), if Γn is connected and ϕn is

injective for all sufficiently large n. Notice that the <-minimal exponential component

of
−→
d Γn

has growth λn
min, but the <-maximal one besides λn

max may also have a

polynomial part.

Example 5. Let IS be the inflation data of the dual Sierpinski graphs defined in

Example 4. Let us construct the associated map f = fIS
. Take the complete graph

Γ on {a, b, c} and construct the graph Γ1 (shown in Figure 9). For the boundary

vertices a and b of Γ1 there are precisely two simple paths γ and δ (shown as blue
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and green), whose restrictions on Γ are geodesics. Then

R
γ
ab = 2, R

γ
bc = 0, Rγ

ac = 0, and mγ = 1;

Rδ
ab = 1, Rδ

bc = 1, Rδ
ac = 1, and mδ = 2.

Similarly for the pairs {b, c} and {a, c}. Then the components of f are defined by

f(v)ab = min{2vab + 1, vab + vbc + vac + 2}

f(v)bc = min{2vbc + 1, vab + vbc + vac + 2}

f(v)ac = min{2vac + 1, vab + vbc + vac + 2}

for arbitrary vector v. Since each component of f (n)(v) for v > 0 has growth 2n, the

inflation data IS is expanding.

1.3 Diameters of inflated graphs

Theorem V.3. Let Γn be the inflated graphs produced from a graph Γ0 using a finite

inflation data I. If the sequence of graphs {Γn} is expanding, then

Diam Γn ∼ max
(p,q)

(
f

(n)
I (v)

)

(p,q)
,

for any strictly positive vector v, where fI is the inflation distance map of I (maybe

adjusted for the pair (Γ0, ϕ0)). The growth exponent of Diam Γn is equal to λmax(I).

Proof. Let the points p0, q0 ∈ P represent the above maximum, i.e.

max
(p,q)

(
f

(n)
I (
−→
d Γ0

)
)

(p,q)
∼ dΓn

(p0, q0) ∼ nkλn

for some numbers k and λ. The condition of the theorem implies that λ > 1.

The diameter of the graph Γn is not smaller than dΓn
(p0, q0) and we have the

estimate from below Diam Γn < nkλn. Let us do the estimate from above.
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Let γ be a geodesic in the graph Γn which represents the diameter. Let v and

u be the end vertices of γ. The vertices v and u may not be boundary vertices of

Γn and may not be boundary vertices of the copies of Γn−1 in which they lie. The

path γ can be represented in the form [γ1]e1γ2e2 . . . em[γm+1], where γi is a path in

some copy of the graph Γn−1 and ei is an edge of E. The ending of γ1, the beginning

of γm+1, and both ends of γi for 2 6 i 6 m are boundary vertices (of the respective

copies) of the graph Γn−1. Let us denote them by q1, pm+1, and pi, qi respectively.

Denote the beginning of γ1 by v1 and the ending of γm+1 by u1. The vertices v1 and

u1 represent the vertices v and u in the respective copies of the graph Γn−1. Then

dΓn
(v, u) = dΓn−1

(v1, q1) +
m∑

i=2

dΓn−1
(pi, qi) + dΓn−1

(pm+1, u1) +m. (5.6)

Choose a constant C such that m 6 |E| 6 C and dΓn
(p, q) 6 Cnkλn for all p, q ∈ P

and all n > 1. This constant does not depend on n and on a particular choice of a

geodesic γ. Then

dΓn
(v, u) 6 dΓn−1

(v1, q1) + dΓn−1
(pm+1, u1) + C2(n− 1)kλn−1. (5.7)

We can do the same calculations for the distances dΓn−1
(v1, q1) and dΓn−1

(pm+1, u1).

Notice that in this case one of the end vertices belongs to P (here q1, pm+1 ∈ P ) and

thus in the corresponding formula (5.6) we will have only one component d(·, ·) not

in the summation over i. Then

dΓn−1
(v1, q1) 6 dΓn−2

(v2, q2) + C2(n− 2)kλn−2;

dΓn−1
(pm+1, u1) 6 dΓn−2

(p2, u2) + C2(n− 2)kλn−2,

for some boundary vertices p2, q2 of the graph Γn−2, where the vertices v2 and u2

represent the vertices v1 and u1 in the respective copies of the graph Γn−2. We
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continue this process and eventually get

dΓn−1
(v1, q1) 6 dΓ0

(vn+1, qn+1) + C2

n−2∑

i=1

ikλi
6 C ′nkλn;

dΓn−1
(pm+1, u1) 6 dΓ0

(pn+1, un+1) + C2

n−2∑

i=1

ikλi
6 C ′nkλn,

for some constant C ′ which depends only on the numbers C, k, λ, and the diameter

of the graph Γ0 (see Lemma III.14).

Plugging the obtained estimates in (5.7) we get Diam Γn = dΓn
(u, v) 4 nkλn.

If the sequences dΓn
(p, q) have polynomial growth for all p, q ∈ P , then let k be

such that max
(p,q)

(
f

(n)
I (
−→
d Γ0

)
)

(p,q)
∼ nk. Then by the same arguments as in the proof of

the theorem one can show that either Diam Γn ∼ nk or Diam Γn ∼ nk+1. It follows

that the exponent of growth of Diam Γn is always equal to the exponent of growth of

the <-maximal component of f
(n)
I (v).

The coefficient λmin(I) will also play an important role in Section 4.

Example 6 (Diameters of the dual Sierpinski graphs). By Example 5 the inflation

data IS is expanding, we can apply Theorem V.3 and get Diam Γn ∼ 2n.

2 Structure of Schreier graphs and tile graphs

Let S be a finite invertible automaton. Let Γn(S) be the corresponding Schreier

graphs on levels. Sometimes, instead of considering Schreier graphs Γn(S), it is better

to consider their special subgraphs defined as follows. Let Tn(S) be the graph with

the set of vertices Xn in which two vertices v, u are connected if and only if there

exists g ∈ S such that g(v) = u (Schreier graph condition) and g|v = 1. Basically

Tn(S) = Γn(S) \ { g-edge between v and u, if g|v 6= 1}
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for all n > 1. We will just write Γn and Tn instead of Γn(S) and Tn(S).

Definition 26. The graphs Tn(S) are called the tile graphs of the automaton S.

If the automaton S does not have the identity state, then the tile graphs are

totally disconnected.

Suppose S coincides with its nucleus and let P be the post-critical set of S. Let

us describe how to construct the graph Γn from the graph Tn. Notice, that if an

edge of Γn between vertices v and u is absent in Tn, then the words v and u are the

restrictions of some post-critical sequences. Define the set of pairs (edges)

E(Γ\T ) =






{p, q}

∣∣∣∣∣∣∣∣∣∣

there is a path . . . e2e1 in the Moore diagram of S

labeled by p|q and ending in a non-trivial state (p, q ∈ P),

and there is no such a path ending in the trivial state






.

Then, to construct the simplicial graph Γn we take the simplicial graph Tn and for

each pair {p, q} ∈ E(Γ\T ) we connect the vertices pn and qn by an edge. Notice

that if the automaton S is bounded, then the graphs Γn and Tn differ by a uniformly

bounded number of edges (precisely by |E(Γ\T )| edges for all sufficiently large n).

Let G be a contracting self-similar group generated by a finite self-similar set

S. While the Schreier graphs Γn(S) are used to approximate the limit space JG, the

graphs Tn(S) can be used to approximate the tile T of the group G. This can be seen

similarly to what was done in Section 7 of Chapter II. Define the self-similarity graph

Ω(G,S) as the graph with the set of vertices X∗ and two vertices v, u ∈ X∗ belong

to a common edge if and only if either v = xu for some x ∈ X (the vertical edges) or

g(v) = u and g|v = 1 for some g ∈ S (the horizontal edges). The subgraph of Ω(G,S)

spanned by the set of vertices Xn coincides with the graph Tn(S).

Theorem V.4. The self-similarity graphs Ω(G,S) and Ω(G,S ′), where S and S ′ are

finite generating sets of G, are quasi-isometric. If the group G is contracting then the



107

self-similarity graph Ω(G,S) is a Gromov-hyperbolic space and its hyperbolic boundary

is homeomorphic to the tile T.

Proof. Similar to the proof of Theorem II.22.

Any sequence A ∈ X−ω defines a geodesic {An|n > 1} in the self-similarity graph

Ω(G,S). By the divergence of geodesics in a Gromov-hyperbolic space we get that

the sequence d′n(An, Bn), n > 1, for A,B ∈ X−ω is either bounded or has exponential

growth, where d′n(·, ·) denotes the distance in the tile graph Tn of a contracting group.

2.1 Connectedness of tile graphs

Since we will deal with distances in the tile graphs Tn, it is better if these graphs are

connected (as simplicial graphs) and this can be easily checked.

Proposition V.5. Let S be a finite invertible automaton, which coincides with its

nucleus. If the graph T1(S) is connected, then all the graphs Tn(S) are connected.

Proof. Induction on n. Suppose that T1 and Tn−1 are connected. If {v, u} is an edge

of Tn−1 than for every letter x ∈ X the pair {vx, ux} is an edge of Tn. Hence, Tn−1x

is a connected subgraph of Tn. Let {x, y} be an arbitrary edge of the graph T1. There

exists an element g ∈ S such that g(x) = y and g|x = 1. It follows from the definition

of a nucleus that there exists a word v ∈ Xn−1 and an element h ∈ S such that

h|v = g. Then we get an edge {vx, h(v)y} of the graph Tn and thus the components

Tn−1x and Tn−1y are connected by an edge in Tn, if x, y are connected by an edge in

T1. Hence, the connectedness of T1 and Tn−1 implies the connectedness of Tn.

The graphs Tn(N ) can be used to check the connectedness of the tile T. The

following is a joint result with V. Nekrashevych.
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Proposition V.6. Let G be a contracting self-similar group with nucleus N . The

tile T is connected if and only if the graph T1(N ) is connected.

Proof. See also Proposition 3.3.4 in [Nek05].

If the tile T is connected then Proposition II.19 implies that all the graphs Tn(N )

are connected. For the proof of the converse, suppose the graph T1(N ) is connected

but the tile T is not. Then the graphs Tn(N ) are connected by Proposition V.5. Then

there exists a closed non-empty set A ⊂ T with non-empty closed complement T \A.

Let Aω ⊂ X−ω be the preimage of A under the canonical projection X−ω → T. Then

the set Aω is also closed and has a non-empty closed complement.

For every n > 1 let An ⊂ Xn be the set of all possible endings of length n of

the infinite words belonging to Aω. Since the set Aω is closed, a sequence . . . x2x1

represents an element of A if and only if xnxn−1 . . . x1 ∈ An for all n > 1.

There exists n0 such that for every n > n0 the set An is not equal to Xn. Since

the graph Tn(N ) is connected, there exists a word vn ∈ An and an element gn ∈ N

such that gn(vn) ∈ Xn \ An and gn|vn
= 1. By compactness arguments there exists

an increasing sequence nk such that both sequences vnk
and gnk

(vnk
) converge to

certain elements ξ = . . . x2x1 and ζ = . . . y2y1 of X−ω respectively. Then ξ ∈ Aω and

ζ ∈ X−ω \ Aω, since both sets Aω and X−ω \ Aω are closed. The word xnxn−1 . . . x1

is an ending of vnk
and ynyn−1 . . . y1 is an ending of gnk

(vnk
) for every n > 1 and

all sufficiently large nk. Let sn = gnk
|u, where vnk

= uxnxn−1 . . . x1. Then sn ∈ N

satisfies sn(xnxn−1 . . . x1) = ynyn−1 . . . y1 and sn|xnxn−1...x1
= 1. Therefore, ξ and ζ are

asymptotically equivalent and represent equal points of the tile T, which contradicts

the choice of the set A.

The following observation is due to L. Bartholdi and V. Nekrashevych.

Proposition V.7. Let G be a level-transitive self-similar group generated by a
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bounded automaton S, which coincides with its nucleus and without non-trivial finitary

elements. Then the graphs Tn(S) are connected.

Proof. The graphs Γn(S) are connected. Let g(v) = u for v ∈ X∗ and g|v 6= 1. The

conditions on the automaton S imply that for every g ∈ S and for every level n such

a word v ∈ Xn exists only one. Thus in the graph Tn(S) we have the following path

u, g(u), g2(u), . . . , gk(u) = v

which connects v and u.

2.2 Tile graphs as inflated graphs

Let us show that the tile graphs Tn(S) can be produced by the method described

in Section 1 of this chapter. It can be done in a natural way if we restrict ourself

to the case when the automaton S coincides with its nucleus. It covers the case

of a self-replicating contracting self-similar group, and also we can always make this

restriction when we deal with the asymptotic behavior of diameters of Schreier graphs

and the orbital contracting coefficient of a contracting group by Proposition II.17.

With every finite invertible automaton S, which coincides with its nucleus, we

associate the inflation data IS = (X,P, E, ψ), where

1. The set X is the alphabet and the set P is the post-critical set of S.

2. The set E is the set of all pairs {(p, x); (q, y)} such that there exists a path

. . . e2e1 in the Moore diagram of S which ends in the trivial state and is labeled

by the pair px|qy (here p, q ∈ P and x, y ∈ X).

3. The map ψ : P → P × X is defined by the rule ψ(p) = (τ(p), xp), where xp is

the last letter of the left-infinite sequence p.
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Clearly the map ψ is injective, because p and τ(p)xp are equal as infinite words.

Theorem V.8. Let S be a finite invertible automaton, which coincides with its

nucleus, with inflation data IS = (X,P, E, ψ). Let G0 be the graph with a single

vertex marked by the elements of P. The inflated graphs Gn produced from G0 using

IS are the simplicial tile graphs Tn(S).

Proof. We will use the same notation for the simplicial graph as for the graph itself.

The set of vertices of Gn is naturally identified with the set Xn and we suppose

that the graphs Tn and Gn have the same set of vertices Xn. The graphs Gn also come

together with the maps ζn : P→ V (Gn) = Xn. Define the map ϕn : P→ V (Tn) = Xn

by the rule ϕn(p) = v if the word v is the restriction of p on the n-th level.

By induction on n. We have T0 = G0. Suppose that Tn = Gn and the marked

vertices in one graph correspond to the marked vertices in another one, i.e. ϕn(p) =

ζn(p) for all p ∈ P.

For every letter x ∈ X consider the subgraph T x
n+1 of Tn+1 spanned by the set

Xnx. Two vertices vx and ux are connected by an edge in T x
n+1 if there exists g ∈ S

such that g(vx) = ux and g|vx = 1. In particular Tn is the subgraph of T x
n+1 (with a

natural identification between Xn and Xnx) for every x ∈ X.

Let us understand what are the edges of Tn+1 that may not be in the disjoint

union ∪x∈XTnx of |X| copies of the graph Tn. Let {vy, uz} be such an edge. Then

there is an element g ∈ S such that g(vy) = uz and g|vy = 1. Notice that g|v 6= 1.

Let enen−1 . . . e1e0 be the corresponding path in the Moore diagram of S labeled by

vy|uz (here the edge e0 ends in 1). Since the automaton S coincides with its nucleus,

the finite path enen1
. . . e1e0 can be continued to the left-infinite one labeled by the

pair py|qz, where p and q are some post-critical sequences. The vertices v and u are

marked by p and q respectively, and the edge {(p, y); (q, z)} belongs to the set E. It
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means that to construct the graph Tn+1 we need to take a copy of the graph Tn for

each x ∈ X and connect marked vertices according to the rule E. This is precisely

the inflation rule for construction of Gn+1.

If the vertex v of Tn is labeled by q and p = qx ∈ P then the vertex vx of Tn+1

is labeled by p. This is precisely the rule for marking vertices of Gn+1.

Let G be the group generated by a bounded automaton S. The inflation

data IN associated with the nucleus N of the group G is called the inflation data

associated with G and is denoted by IG. The corresponding inflation distance map

fIN and the coefficients λmin(IN ), λmax(IN ) are denoted by fG and λmin(G), λmax(G)

correspondingly. Notice that Proposition IV.18 implies that the inflation data IN (S)

associated with the nucleus N (S) of the automaton S and the inflation data IN
coincide for any generating automaton S of the group G.

If a bounded automaton S does not coincide with its nucleus then the simplicial

tile graphs Tn(S) may not coincide with the inflated graphs produced using IG.

However the asymptotic properties of these graphs, which we will discuss, remain

the same (see Proposition II.17 and Proposition V.9 below). Nevertheless observe

that even if S 6= N (S) we can pass to some power Xn of the alphabet and define

the inflation data IS such that Theorem V.8 holds (but starting from the graph Γ1

instead of G0). This construction is somewhat artificial and not important for the

rest of the context. In the sequel, when we talk about the inflation data IS one can

suppose that we consider the inflation data IN (S) = IG.

3 Growth of diameters of Schreier graphs Γn

Denote by dn(·, ·) and d′n(·, ·) the distances in the Schreier graphs Γn and the tile

graphs Tn respectively.



112

Proposition V.9. The asymptotic relation Diam Γn(S) ∼ DiamTn(S) holds for any

bounded automaton S.

Proof. Notice that for any (not necessarily connected) graph Γ and any bundle

e1, e2, . . . , ek of its edges the diameter of the graph Γ′ = Γ \ {e1, e2, . . . , ek} satisfies

inequalities:

1

2k
Diam Γ 6 Diam Γ′

6 2k Diam Γ.

By construction, the graph Tn is missing not more than |E(Γ\T )| 6 |P|(|P| − 1)/2

edges of the graph Γn, where P is the finite post-critical set of the bounded

automaton S. Hence, Diam Γn ∼ DiamTn.

Theorem V.10. Let G be the group generated by a bounded automaton S. The

asymptotic relation

Diam Γn(G,S) ∼ max
i

(
f

(n)
G (v)

)

i

holds for any strictly positive vector v.

Proof. Let N be the nucleus of the group G and P be its post-critical set. Since the

automaton S is bounded, the post-critical set P is finite and the inflation data IG is

finite. The group G1 generated byN is contracting and hence the self-similarity graph

Ω(G1,N ) is a Gromov-hyperbolic space by Theorem V.4. Then for any two points

A,B ∈ X−ω on the boundary of Ω(G1,N ) the sequence of distances d′n(An, Bn),

n > 1, in the tile graphs Tn(N ) is either bounded or has exponential growth. In

particular, it is true for the post-critical points in P.

If the diameters of the Schreier graphs Γn(G,S) are uniformly bounded (the

group G is finite) then the sequence d′n(pn, qn) is bounded for all p, q ∈ P and the

statement follows.

If the diameters of the Schreier graphs Γn(G,S) are not uniformly bounded

(the group G is infinite) then the diameters of the tile graphs Tn(S) and Tn(N ) are
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not uniformly bounded. The remark after Theorem V.3 implies that some sequence

d′n(pn, qn) for p, q ∈ P is unbounded and thus has exponential growth. Hence, the

inflation data IG is expanding (the sequence of inflated graphs Tn(N ) is expanding)

and we can apply Theorem V.3:

Diam Γn(G,S) ∼ Diam Γn(N ) ∼ DiamTn(N ) ∼ max
i

(
f

(n)
G (v)

)

i
,

where v is an arbitrary strictly positive vector.

Corollary V.11. The growth exponent of diameters of the Schreier graphs Γn is equal

to λmax(G) and the coefficient ρd(G) is equal to 1/λmax(G).

If the group G is level-transitive, then the inflation data is expanding and some

sequence d′n(pn, qn) for p, q ∈ P has exponential growth. At the same time, it may be

not true for the sequences dn(pn, qn) in the Schreier graphs. It is possible that all of

them are bounded (see Example 1 in Chapter VI).

4 Orbital contracting coefficient of bounded automaton groups

Let G be a level-transitive self-similar group generated by a bounded automaton S

and let N be the nucleus of G. Let IG = (X,P, E, ψ) be the inflation data associated

with the group G (the inflation data IN ). We will prove that the orbital contracting

coefficient ρo(G) is equal to 1/λmin, here λmin = λmin(G).

Without loss of generality we always suppose that the automaton S coincides

with its nucleus and hence the simplicial tile graphs Tn(S) are the inflated graphs

produced by the inflation data IG (actually we can suppose that S = N ).

In the next two sections we establish some properties of geodesics and distances

in the Schreier graphs and tile graphs, which will be used to get estimates on the

orbital contracting coefficient.
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4.1 Decomposition of geodesics in tile graphs

Let Γn and Tn be the Schreier graphs and the tile graphs of the group G associated

with the automaton S.

The iterations of the inflation distance map fG allow us to compute the

asymptotic behavior of the sequences d′n(pn, qn) for all p, q ∈ P. So, for every pair

p, q ∈ P we can find two numbers k ∈ N and λ ∈ R such that d′n(pn, qn) ∼ nkλn. If the

sequence d′n(pn, qn) is bounded we call the post-critical points p and q asymptotically

equal (they are asymptotically equivalent and represent the same point in the limit

space JG). The vertices pn, qn are connected by an edge in the tile graph Tn(N )

for every asymptotically equal p, q ∈ P. In particular, the pre-periods of these

sequences have the same length. By the remark after Theorem V.4, if p and q are not

asymptotically equal, then the corresponding exponent λ is greater than 1.

Let us understand how to find the asymptotic behavior of the sequence of

distances dn(pn, qn), n > 1, for p, q ∈ P in the Schreier graphs Γn. The graph Γn

can be constructed from the copies of the graph Tn−1 in the same way as Tn except

that we can use not only the edges from E but also the edges from E(Γ\T ). Since

both of these sets are finite, we have

dn(pn, qn) = min
γ

(
∑

γi

d′n−1(rn−1, tn−1) +mγ

)
,

where the minimum is taken over the finite number of paths γ between pn and qn.

Each γi is the piece of γ in a copy of Tn−1 and the boundary vertices rn−1, tn−1 are

the ends of γi. Since we know the asymptotic behavior of each d′n−1(rn−1, tn−1) we

can find the asymptotic behavior of dn(pn, qn).

Let us consider the decomposition of geodesics in the tile graph Tn induced by

the inflation production of Tn from Tn−1, similarly to what was done in Section 1.2
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when the inflation distance map was constructed. Let γ be a geodesic in the graph Tn

between two vertices v and u. We want to write the distance between v and u as the

sum of distances between boundary vertices (in different graphs Ti). The path γ can

be represented in the form [γ1]e1γ2e2 . . . em[γm+1], where γi is a geodesic in some copy

of the graph Tn−1 in the graph Tn and ei is an edge of E (it is uniquely defined by the

ending of γi and the beginning of γi+1). Some of the paths γi can be trivial (empty).

The number m is not greater than |E|. Sometimes we will write γ(n) instead of γ

and γi(n − 1) instead of γi referring to the level on which geodesics lie. The edges

ei = ei(n− 1) will be called the edges of level n− 1 referring to the fact they connect

copies of the graph Tn−1 in the graph Tn.

The path γ1 (or the edge e1 if γ1 is empty) begins in the vertex τ(v), and the

path γm+1 (or the edge em if γm+1 is empty) ends in the vertex τ(u). All the other

ends of the paths γi are the boundary vertices of the respective copies of the graph

Tn−1. Then the length of the geodesic γ is equal to

d′n(u, v) = |γ| =
∑

γi

|γi|+m = (5.8)

= d′n−1(τ(v), pn−1) +
∑

γi

d′n−1(rn−1, tn−1) + d′n−1(qn−1, τ(u)) +m,

where the vertices rn−1, tn−1 are the ends of the path γi, and the last sum is taken over

all γi except γ1 and γm+1. All r, t and p, q are the post-critical sequences (r, t, p, q ∈ P).

If τ(v) and τ(u) are the boundary vertices of Tn−1, then we can approximate the

length of γ knowing the asymptotic behaviour of d′n(pn, qn) for p, q ∈ P.

If τ(v) is not a boundary vertex of Tn−1, then we consider the geodesic γ1 in

Tn−1 and find the corresponding representation [γ′1]e
′
1γ

′
2e

′
2 . . . e

′
m′ [γ′m′+1] of γ1 using

the inflation production of Tn−1 from Tn−2. Here γ′i = γ′i(n − 2) and e′i = e′i(n − 2).

All the ends of the paths γ′i are the boundary vertices of the copies of Tn−2, maybe
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except the beginning vertex τ 2(v) of the geodesic γ′1. We can continue with the path

γ′1 in the graph Tn−2 and so on until all the ends of the paths γi are either the boundary

vertices in the respective tile graphs or they belong to the graph T1.

By the same arguments we can get a representation of the path γm+1 if the end

vertex τ(u) is not a boundary vertex of Tn−1. Putting the obtained representations

of γ1 and γm+1 in the representation of γ we get

[η1]e1η2e2 . . . el[ηl], (5.9)

where ηi = ηi(ni) is a geodesic in a copy of the graph Tni
and ei = ei(mi) is an edge

of E of the level mi. The number l is not greater than 2(n − 2)|E| + |E|. The ends

of ηi are the boundary vertices of Tni
or some vertices of T1. Let us show that the

representation of γ cannot consist mainly of the edges ei.

Lemma V.12. There exists a number K > 1, which depends only on the

automaton S, such that the representation of γ cannot contain a sequence

ei+1, γi+2, ei+2, γi+3, . . . , γi+K , ei+K, where the ends of each γi+2, . . . , γi+K are

represented by asymptotically equal post-critical sequences.

Proof. Notice, that the pre-periods of two post-critical sequences, which are

asymptotically equal or represent the ends of an edge e ∈ E, have the same length.

The ends of the edge ei = e(ni) can be parameterized by the same post-critical

sequences (for example, e = {(p, x); (p, y)}) only if this edge connects different

copies of the graph Tni
(here x 6= y). The ends of a non-trivial path γi are always

parameterized by different post-critical sequences.

For K > |E| the representation of γ cannot contain a subsequence

ei+1, γi+2, ei+2, γi+3, . . . , γi+K , ei+K , where each ej and γj are of the same level.

Let the edge ei = ei(ni) be followed by the non-trivial path γi+1 = γi+1(ni+1) of
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a different level ni 6= ni+1. Let ei = {pni
x, qni

y} and the ends of γi+1 are p′ni+1
y and

q′ni+1
y for p, q, p′, q′ ∈ P. If ni > ni+1 then the pre-periods of p′ and q′ are strictly less

than the pre-periods of p and q; and p, q cannot be periodic, because otherwise there

exists a left-infinite path in the Moore diagram of the nucleus ending in the trivial

state and labeled by a periodic sequence p′|q′, which is possible only when p′ = q′. If

ni < ni+1 then the pre-periods of p and q are strictly less than the pre-periods of p′

and q′.

These observations imply the existence of a constant K that satisfies the lemma.

For example, we can choose K = 2(|E|+1)(l+1), where l is the length of the longest

pre-period of the sequences from P.

In particular, the representation of γ cannot contain a sequence of edges

ei+1, ei+2, . . . , ei+K one after another (the paths γi+2, γi+3, . . . , γi+K are trivial).

Also Lemma V.12 implies that if the length of the geodesic γ is sufficiently large,

than the decomposition of γ contains a geodesic γi, whose ends are the boundary

vertices, and whose length is comparable with the length of γ.

Let γ be a geodesic in the Schreier graph Γn. We can express γ as a finite

sequence of geodesics in Tn and edges of E(Γ\T ). Finding the representation of each

such sub-geodesic, we get a decomposition of γ similar to (5.9).

4.2 Asymptotic behavior of distances

Lemma V.13. There exists a constant C, which depends only on the automaton S,

such that for arbitrary A,B ∈ X−ω the following properties hold:

(i) if the sequence dn(An, Bn) is bounded, then dn(An, Bn) 6 C for all n;

(ii) if the sequence d′n(An, Bn) is bounded, then d′n(An, Bn) 6 C for all n.
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Proof. Since dn(An, Bn), n > 1, is bounded there exists a bounded sequence gn ∈ G

such that gn(An) = Bn for all n > 1. Find k such that the restrictions of all gn on

any word of length > k belong to N . Let A = . . . x2x1 then

h(An) = Bn, for h = gn+k|xn+kxn+k−1...xn+1
∈ N .

So, dn(An, Bn) 6 C for all n, where C = max
h∈N

lS(h).

The proof of (ii) goes similarly.

If the graphs Γn and Tn are associated with the nucleus N of the group G, then

we can choose C = 1. In particular, if two finite words v, u ∈ Xk, k > 1, are not

connected by an edge in Γk(N ) then we cannot find letters xi, yi ∈ X, i > 1, to make

the sequence of distances

dn(xn−k . . . x2x1u, yn−k . . . y2y1v), n > 1

bounded. The same observation holds for the tile graphs Tn(N ).

Lemma V.14. Take arbitrary p, q ∈ P and v, u ∈ Xk, k > 1. Then

(i) d′n+k(pnv, qnu), n > 1, is either bounded or ∼ d′n(p′n, q
′
n) for some p′, q′ ∈ P;

(ii) dn+k(pnv, qnu), n > 1, is either bounded or ∼ d′n(p′n, q
′
n) for some p′, q′ ∈ P.

Proof. For every n the graph Tn+k is the inflated graph produced from Tn using

the finite inflation data I(k)
G = (Xk,P, E(k), ψ(k)). Let γ = γ(n) be a geodesic in

Tn+k connecting the vertices pnv and qnu. Then γ can be represented in the form

[γ1]e1γ2e2 . . . em[γm+1], where γi is a geodesic in some copy of the graph Tn in the

graph Tn+k and ei is an edge of E(k) (the number m = m(n) is not greater than

|E(k)|). If the distance d′n+k(pnv, qnu) is not bounded, then at least one of the paths

γi is not trivial for all sufficiently large n. The ends of each path γi are the boundary
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vertices (of the respective copy) of the graph Tn. In particular, |γi| = d′n(p′n, q
′
n) for

some p′, q′ ∈ P. Denote by γmax = γmax(n) the longest path γi in the representation

of γ. Since the set P is finite, without loss of generality we may assume that the ends

of the path γmax(n) are represented by the same p′, q′ ∈ P for all sufficiently large n.

Then, d′n+k(pnv, qnu) ∼ |γmax(n)| ∼ d′n(p′n, q
′
n).

The proof of (ii) goes similarly.

Let us be more precise and explain “without loss of generality” at the ends of

the previous proof. We can chose p′, q′ ∈ P, which represent the ends of the path

γmax(n) for infinitely many n. Let us show that d′n+k(pnv, qnu) ∼ d′n(p′n, q
′
n). Clearly

d′n+k(pnv, qnu) ∼ |γmax(n)|. So, it is enough to show that if p′′, q′′ ∈ P also represent

the ends of the path γmax(n) for infinitely many n, then d′n(p′n, q
′
n) ∼ d′n(p′′n, q

′′
n). Let

n1, n2 be such that the pairs {p′, q′} and {p′′, q′′} represent the ends of the paths

γmax(n1) and γmax(n2) respectively. Suppose n2 > n1. By applying the power σn2−n1

of the shift map to the geodesic γ(n2) (to every vertex of the path γ(n2)) we get a

path η between pn1
v and qn1

u in the graph Tn1+k. Then

d′n1
(p′n1

, q′n1
) = |γmax(n1)| 6 |γ(n1)| = d′n1+k(pn1

v, qn1
u) 6 |η| 6

6

m+1∑

i=1

|σn2−n1(γi(n2))|+m 6 (m+ 1)Cd′n1
(p′′n1

, q′′n1
) +m,

where the constant C > 0 depends only on the inflation data IS and we assume n1

is large enough. By choosing n2 > n1 we get the same inequalities with interchanged

{p′, q′} and {p′′, q′′}. Hence d′n(p′, q′) ∼ d′n(p′′n, q
′′
n) and we are done. To be more precise

in the choice of the constant C, we assume that the level n is large enough so that

for all P,Q, P ′, Q′ ∈ P the inequality d′n(Pn, Qn) 6 d′n(P ′
n, Q

′
n) implies the asymptotic

relation d′n(Pn, Qn) � d′n(P ′
n, Q

′
n). In particular, if P,Q ∈ P represent the ends of

the path γmax(n1), then d′n(Pn, Qn) � d′n(P ′
n, Q

′
n) for all the other P ′, Q′ ∈ P which
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represent the ends of γi(n1), i = 1, 2, . . . ,m + 1. Then we choose a constant C > 0

such that for all P,Q, P ′, Q′ ∈ P the asymptotic relation d′n(Pn, Qn) � d′n(P ′
n, Q

′
n)

implies d′n(Pn, Qn) 6 Cd′n(P ′
n, Q

′
n) for all sufficiently large n.

The <-smallest asymptotic behavior among the unbounded sequences of

distances d′n(pn, qn) for p, q ∈ P is equivalent to λn
min. Hence, Lemma V.14 shows

that the unboundedness of the sequence d′n+k(pnv, qnu) (dn+k(pnv, qnu)) implies the

asymptotic relation d′n+k(pnv, qnu) � λn
min (dn+k(pnv, qnu) � λn

min). Let us show that

this is true for all left-infinite sequences over the alphabet X.

Lemma V.15. Take arbitrary A,B ∈ X−ω. Then the sequence dn(An, Bn) is either

bounded or the asymptotic relation dn(An, Bn) � λn
min holds.

Proof. It is easy to see that for every A,B ∈ X−ω there exist A′, B′ ∈ X−ω such that

dn(An, Bn) ∼ d′n(A′
n, B

′
n) (just use the decomposition of geodesics in Γn). So, it is

sufficient to prove the lemma for the tile graphs and its distance d′n(·, ·).

Suppose that the sequence d′n(An, Bn) is unbounded. For each level n fix a

geodesic γ = γ(n) between An and Bn in the graph Tn. Let us prove that there

exists m > 1 such that the decomposition (5.9) of the geodesic γ(n + m) for all

sufficiently large n contains a non-trivial geodesic γi of level > n, whose ends p, q are

the boundary vertices with unbounded sequence d′n(pn, qn). Then the statement of

the lemma follows.

Notice that if we choose m such that the words Am and Bm differ in at least one

letter, then the decomposition of γ(n) for all n > m should contain some edge e ∈ E

of the level > n − m. Since the set E is finite, without loss of generality, we may

suppose that the edge e is the same for all n. Choosing one end of e instead of A or

B we can assume that one of them is a post-critical sequence. So, let B ∈ P.

If the sequence A and some post-critical sequence differ in finitely many places,
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then A = pu for some p ∈ P and u ∈ X∗, and we can apply Lemma V.14. Otherwise,

choose numbers m1 = 0,m2, . . . ,mK such that the words τm1+...+mi−1(Am1+...+mi
) and

pmi
for i = 2, 3, . . . , K differ in at least one letter for all p ∈ P, where the constant

K is from Lemma V.12. Put m = m1 + m2 + . . . + mK . In particular, Am and Bm

differ in at least K letters. Then the decomposition of γ(n) for all n > m contains at

least K edges ei (even of different levels). At least one path γi between these edges

should be non-trivial and such that d′n(pn, qn) is unbounded, where p, q ∈ P represent

the ends on γi. Our statement is proven.

4.3 The proof of the main theorem

Without loss of generality and using Proposition II.17 we can suppose that the

group G is generated by its nucleus N . Let Γn = Γn(N ) and Tn = Tn(N ) be

the corresponding Schreier graphs and tile graphs. We will use Lemma V.13 with the

constant C = 1 (see remark after the lemma).

Lemma V.16. There exist A,B ∈ X−ω such that dn(An, Bn) ∼ d′n(An, Bn) ∼ λn
min.

Proof. There exist p, q ∈ P such that d′n(pn, qn) ∼ λn
min. Since the asymptotic behavior

λn
min is the smallest one over d′n(p′n, q

′
n) for not asymptotically equal p′, q′ ∈ P, there

is always a periodic left-infinite sequence p ∈ P such that d′n(pn, qn) ∼ λn
min for some

q ∈ P (just use the decomposition of geodesics and notice that from one pair {p, q}

we can construct another pair {p′, q′}, where the pre-period of p′ is smaller than the

pre-period of p and d′n(p′n, q
′
n) � d′n(pn, qn)). So, let the left-infinite sequence p be

periodic with period u ∈ X∗ (here p = pu). Choose a power v = um of the word u

such that the sequence qv is not post-critical, qv 6∈ P. Such a word v always exists,

because otherwise the sequence q is periodic with period u, and hence p = q, which

contradicts d′n(pn, qn) ∼ λn
min. We will prove that the left-infinite sequences p = pv
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and qv satisfy the conditions of the lemma.

Suppose that dn+k(pnv, qnv) 6 1 for all n > 1 (here k = |v|). Then there exists

a left-infinite path in the Moore diagram of the nucleus labeled by the pair pv|qv.

This path cannot end in the trivial state, because pv is periodic and pv 6= qv. If this

path ends in a non-trivial state then the sequence qv is post-critical and we get a

contradiction. Hence, dn+k(pnv, qnv) > 1 for some n. By Lemma V.13 the sequence

dn+k(pnv, qnv) is unbounded and the asymptotic relation dn+k(pnv, qnv) � λn
min holds.

At the same time,

dn+k(pnv, qnv) 6 d′n+k(pnv, qnv) 6 d′n(pn, qn) ∼ λn
min.

Hence, the left-infinite sequences pv, qv satisfy the conditions of the lemma.

Lemma V.17. There exists a constant C > 0 such that

lim sup
dn(vn,un)→∞

dn−k(σ
k(vn), σk(un))

dn(vn, un)
6

C

λk
min

for all k > 1.

Proof. Let K be as in Lemma V.12. Choose constants c, d > 0 such that for all

p, q ∈ P with unbounded d′n(pn, qn) the following estimates hold:

cnlλn
6 d′n(pn, qn) < d′n(pn, qn) +K 6 dnlλn,

for all sufficiently large n, where the coefficients l and λ depend on p, q. Without loss

of generality we suppose that the above inequalities hold for all n > 1.

Define C = d/c > 0. Then for all n > k the following estimates hold

d′n−k(σ
k(pn), σk(qn))

d′n(pn, qn)
=
d′n−k(pn−k, qn−k)

d′n(pn, qn)
6
d(n− k)lλn−k

cnlλn
6

C

λk
min

, (5.10)

because λmin is the minimal possible λ above.
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So, for boundary vertices of the tile graphs Tn the inequality of the lemma holds.

To prove it for arbitrary sequences of vertices vn, un of the Schreier graphs Γn we

use the decomposition of geodesics and expand dn(vn, un) as a sum of d′i(pi, qi), and

show that dn−k(σ
k(vn), σk(un)) is bounded by the respective sum of d′i−k(pi−k, qi−k).

Dividing we will get the same estimate as in (5.10).

Let γ be a geodesic connecting the vertices vn and un in the Schreier graph Γn.

The path γ can be represented in the form [η1]e1η2e2 . . . el[ηl+1] as in Section 4.1, where

ηi is a geodesic between two boundary vertices in the graph Tni
or some geodesic in

the graph T1. Then

dn(vn, un) >
∑

ηi

|ηi| =
∑

ηi

d′ni
(rni

, tni
),

where ni is a level such that ηi is a geodesic in Tni
, and the vertices rni

, tni
are the

ends of ηi (here r, t ∈ P). The sum is taken over paths ηi of level ni > 1. Since

dn(vn, un) goes to infinity, the sum over ηi is non-empty.

By applying the power σk of the shift map to the path γ (to every vertex of γ)

we get a path γ′ between σk(vn) and σk(un). The path γ′ is represented in the form

[η′1]e
′
1η

′
2e

′
2 . . . e

′
l[η

′
l+1], where η′i = σk(ηi) and e′i = σk(ei) and some of them could be

trivial (in particular η′i is trivial for ηi of level 6 k). Let l′ 6 l be the number of

non-trivial (non-empty) edges e′i in the path γ′. The number l′ is not greater than

(the number of non-empty paths γ′i)×K by the construction of K. Then

dn−k(σ
k(vn), σk(un)) 6 |γ′| =

∑

η′
i

|η′i|+ l′ =
∑

ηi

d′ni−k(rni−k, tni−k) + l′ 6

6
∑

ηi

(
d′ni−k(rni−k, tni−k) +K

)
.



124

Then

dn−k(σ
k(vn), σk(un))

dn(vn, un)
6

∑
ηi

(
d′ni−k(rni−k, tni−k) +K

)

∑
ηi

d′ni
(rni

, tni
)

6
C

λk
min

.

We are ready to prove the main result of this section.

Theorem V.18. The orbital contraction coefficient ρo(G) is equal to 1/λmin.

Proof. Let us prove that ρo > λ−1
min.

Using Lemma V.16 find A,B ∈ X−ω such that d′n(An, Bn) ∼ dn(An, Bn) ∼ λn
min.

Take any w ∈ Xω and consider infinite words Cn = Anw and Dn = Bnw, which

belong to the common G-orbit for all n, because An and Bn are connected by a path

in the graph Tn. Then:

dn(An, Bn) 6 d(Cn, Dn) 6 d′n(An, Bn)

for all n and thus d(Cn, Dn) ∼ λn
min. Choose constants c, d > 0 such that cλn

min 6

d(Cn, Dn) 6 dλn
min for all sufficiently large n. Then

νk = lim sup
d(vn,wn)→∞

d(σk(vn), σk(wn))

d(vn, wn)
> lim sup

n→∞

d(σk(Cn), σk(Dn))

d(Cn, Dn)
=

= lim sup
n→∞

d(Cn−k, Dn−k)

d(Cn, Dn)
>

c

dλk
min

,

ρo = lim
k→∞

k
√
νk > k

√
c

dλk
min

=
1

λmin

.

Let us do the estimate from above. Fix k > 1. Let w,w′ ∈ Xω be any two points

from the same G-orbit. The distance between w and w′ on the corresponding orbital

Schreier graph is equal to the distance between their sufficient beginnings on the

corresponding Schreier graph Γn. We could find n such that d(w,w′) = dn(wn, w
′
n)
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and d(σk(w), σk(w′)) = dn−k(σ
k(wn), σk(w′

n)). Then by Lemma V.17

νk = lim sup
d(w,w′)→∞

d(σk(w), σk(w′))

d(w,w′)
=

= lim sup
dn(vn,un)→∞

dn−k(σ
k(vn), σk(un))

dn(vn, un)
6

C

λk
min

,

ρo = lim
k→∞

k
√
νk 6 k

√
C

λk
min

=
1

λmin

.

Corollary V.19. The growth degree of every orbital Schreier graph Γω(G,S), ω ∈

Xω, lies between log |X|
log λmax

and log |X|
log λmin

.

Corollary V.20. If the inflation distance map fG possesses a strictly positive

eigenvector with eigenvalue λ then Diam Γn ∼ DiamTn ∼ λn, ρo = ρd = λ−1, and the

growth degree of every orbital Schreier graph Γω(G,S), ω ∈ Xω, is qual to log |X|
log λ

.

5 Metrics on post-critically finite limit spaces

LetG be a contracting self-similar group generated by a bounded automaton. Suppose

that the inflation distance map fG possesses a strictly positive eigenvector with

eigenvalue λ. Then we can construct a metric on the limit space JG.

Fix a finite generating set S of the group G and let Γn = Γn(G,S) be the

corresponding Schreier graphs with distance denoted by dn(·, ·). Define a pseudo-

metric d(·, ·) on the space X−ω by equality:

d(ξ, ζ) = lim sup
n→∞

dn(ξn, ζn)

λn
, for ξ, ζ ∈ X−ω. (5.11)

Theorem V.21. The space X−ω factorized by d(·, ·) = 0 is homeomorphic to JG.

Proof. Since the asymptotic behavior of the diameters of Γn is equivalent to λn,

the distance d(ξ, ζ) between arbitrary two points is finite and the diameter of the
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space (X−ω, d(·, ·)) is finite. If the sequences ξ and ζ are asymptotically equivalent,

then the sequence dn(ξn, ζn) is bounded, and d(ξ, ζ) = 0. If the sequences ξ and ζ

are not asymptotically equivalent, then the sequence dn(ξn, ζn) is not bounded, and

dn(ξn, ζn) ∼ λn by Lemma V.15 and Theorem V.10. Hence, d(ξ, ζ) > 0.

Proposition V.22. The box-counting dimension of the limit space JG with respect

to the metric d(·, ·) is equal to log |X|
log λ

.

Proof. Follows from the fact that

min
u∈Xk
{Diam Tu} ∼ max

u∈Xk
{Diam Tu} ∼

1

λk
.

6 Random walks on Schreier graphs

The fundamental question in the study of random walks on graphs is whether a

random walk is recurrent or transient. A random walk is called recurrent if it returns

to the initial point with probability one; otherwise transient. A random walk on a

locally finite graph is called simple if from each vertex it goes with equal probability

to one of its neighbors.

Let Γ be a strongly connected infinite locally finite graph. A constriction of the

graph Γ is an infinite sequence V0, V1, V2, . . . of disjoint non-empty finite subsets of

V (Γ) such that V (Γ) =
⋃

i>0 Vi and there are no edges between vertices in Vi and Vj

for |i− j| > 2. A constriction V0, V1, V2, . . . of Γ is called slowly-widening if

∞∑

i=1

1

|Ei|
is divergent,

where Ei is the set of edges between vertices in Vi−1 and Vi.

A refinement of a graph Γ is a graph obtained from Γ by inserting a finite number
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of new vertices in the interior of each edge.

Theorem V.23 ([NW59]). The simple random walk on a strongly connected infinite

locally finite graph Γ is recurrent if and only if Γ has a slowly-widening refinement.

We can use the previous theorem to get the following result.

Theorem V.24. Let G be a self-similar group generated by a bounded automaton

S. The simple random walk on every orbital Schreier graph Γw(G,S), w ∈ Xω, is

recurrent.

Proof. Since the automaton S is bounded, the sequence

an =
∣∣∣{v ∈ Xn| there exists s ∈ S such that s|v 6= 1}

∣∣∣,

is bounded, say by a constant b > 0.

Let us fix w ∈ Xω and consider the orbital Schreier graph Γw(G,S). If the

graph Γw(G,S) is finite then there is nothing to prove. So we suppose that the graph

Γw(G,S) is infinite. Since the group G is contracting, Proposition II.6 implies that

the orbit OrbG(w) = V (Γw(G,S)) is contained in a union of finitely many confinality

classes, say Ec(w1), Ec(w2), . . . , Ec(wm) with non-confinal wi ∈ Xω for different i.

Let us construct a slowly-widening constriction of Γw(G,S). Define

V0 =
m⋃

i=1

Xσ(wi) ∩OrbG(w).

Suppose now that we have constructed finite sets of vertices V0, V1, . . . , Vn−1. For

every vertex v ∈ ⋃n−1
i=0 Vi and for every generator s ∈ S consider the confinality class

of s(v) and let s(v) ∈ Ec(wk), where k = k(s, v) depends on s and v. Let l(s, v) be an

integer number such that the infinite words s(v) and wk may differ only in the first
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l(s, v)-st letters. Define ln = max{l(s, v)|s ∈ S and v ∈ ⋃n−1
i=0 Vi} and notice that

s(v) ∈ V̂n =
m⋃

i=1

X lnσln(wi)

for every s ∈ S and v ∈ ⋃n−1
i=0 Vi. Define

Vn+1 =
(
V̂n

⋂
OrbG(w)

)
\

n−1⋃

i=0

Vi.

By construction, the set Vn has the following properties: it contains every vertex u,

which is not in Vn−1 but is connected with some vertex in Vn−1; every vertex u in the

complement of Vn differs from every vertex in Vn by a letter on position > ln.

Now let Vn be the sets constructed by the procedure above starting from V0. The

first property above implies that there are no edges between Vi and Vj for |i − j| >

2. The second property implies that if there is an edge s(u) = v for s ∈ S and

vertices u ∈ Vn and v in the complement of Vn, then the restriction s|u1u2...uln
(here

u = u1u2 . . . ∈ Xω) is non-trivial. Hence the number of such edges is bounded by

m ·b for all n > 1, because each vertex of Vn is of the form u1u2 . . . ulnσ
ln(wi) for some

i ∈ {1, 2, . . . ,m}. In particular, the set En of edges between vertices in Vn−1 and Vn

is bounded by m · b for all n. The series

∞∑

i=1

1

m · b

is divergent. Hence the constructed constriction V0, V1, V2, . . . is slowly-widening and

we can apply Theorem V.23.

The theorem does not hold for the whole class of contracting self-similar groups.

For example, there are contracting self-similar actions of Zn for every n > 1, whose

Schreier graphs Γω are just the Cayley graphs of the group, and the simple random

walk on Zn for n > 3 is transient by the classical Polya’s theorem.
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CHAPTER VI

EXAMPLES AND APPLICATIONS

In this chapter we consider some well-known examples of automata groups to illustrate

methods developed in Chapter V. We show that the orbital Schreier graphs of iterated

monodromy groups of quadratic polynomials have arbitrary large degrees of growth.

We present the first example of a group with different coefficients λmin and λmax.

1 Adding machine

One of the simplest automata over the alphabet X = {0, 1} is shown in Figure 10

and is called the adding machine. This automaton is bounded and its post-critical

set consists of two elements a = 0−ω and b = 1−ω. The set of edges E and the map

ψ of the associated inflation data are given by

E =
{
{(a, 1); (b, 0)}

}
, ψ(a) = (a, 0), ψ(b) = (b, 1).

The inflation distance map f(x) = 2x+1 is one-dimensional and is given by one matrix

A = (2) (we omit the additive constant 1). It possesses a strictly positive eigenvector

with eigenvalue λ = 2. So, the diameters of the Schreier graphs Γn have growth

2n, the orbital Schreier graphs Γω have linear growth, and the orbital contracting

coefficient ρo is equal to 1
2
. The sequence of metric spaces (Γn,

dn(·,·)
2n ) converges in the

Gromov-Hausdorff metric to the unit circle, while the sequence (Tn,
d′n(·,·)

2n ) converges

to the interval [0, 1].

The simplicial Schreier graph Γn differs from the simplicial tile graph Tn by one

edge between words an and bn. The sequences a, b represent the same point of the

limit space JG, and represent the boundary points of the tile T = [0, 1].
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Fig. 10. The adding machine and the associated inflation data

2 Iterated monodromy groups of quadratic polynomials

An important class of examples of contracting self-similar groups is the class of

iterated monodromy groups of post-critically finite rational functions, which build a

connection between classical dynamical systems and automaton groups. The limit

space of an iterated monodromy group is homeomorphic to the Julia set of the

corresponding function (see [Nek05, Theorem 6.4.4]). Iterated monodromy groups

of post-critically finite polynomials are generated by bounded automata (see [Nek05,

Theorem 6.10.8]) and we can apply the results of the dissertation.

2.1 IMG(z2 + i)

The iterated monodromy group of the polynomial z2+i is generated by the automaton

shown in Figure 11. The IMG(z2 + i) is one more example of a group of intermediate

growth (see [BP06]). The alphabet is X = {0, 1} and the post-critical set consists of

three elements a = (10)−ω0, b = (10)−ω, c = (01)−ω. The set of edges E and the map

ψ of the associated inflation data are given by

E =
{
{(a, 0); (a, 1)}

}
, ψ(a) = (b, 0), ψ(b) = (c, 0), ψ(c) = (b, 1).
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Fig. 11. The IMG(z2 + i) and the associated inflation data

Fig. 12. The Schreier graph Γ6 of IMG(z2 + i) and the Julia set of z2 + i
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The components of the inflation distance map f are given by

fab(v) = vbc,

fac(v) = 2vab + 1,

fbc(v) = vab + vac + 1,

fK =





0 0 1

2 0 0

1 1 0




,

or just one matrix on the right when we omit additive constants. This matrix possesses

a strictly positive eigenvector with eigenvalue λ ≈ 1.5213.., which is the real root of

the polynomial x3−x−2. So, the diameters of the Schreier graphs Γn have growth λn,

the orbital Schreier graphs Γω have growth degree log 2
log λ

≈ 1.6518 . . . , and the orbital

contracting coefficient ρo is equal to 1
λ
≈ 0.6572 . . . .

The simplicial Schreier graphs are trees (and thus planar) and coincide with the

simplicial tile graphs. These graphs can be drawn in C in such a way that they

converge in the Hausdorff metric to the Julia set of z2 + i (see Figure 12), which

is homeomorphic to the limit space of the group. However, the sequence of metric

spaces (Γn,
dn(·,·)

λn ) does not converge in the Gromov-Hausdorff metric to the Julia set

of z2 + i.

2.2 Basilica group

Basilica group is the iterated monodromy group of z2 − 1 and is generated by the

automaton shown in Figure 13. This group is torsion-free, has exponential growth,

and is the first example of amenable but not subexponentially amenable group (see

[GŻ02]). The alphabet is X = {0, 1} and the post-critical set consists of three

elements a = 1−ω, b = (01)−ω, c = (10)−ω. The set of edges E and the map ψ

of the associated inflation data are given by

E =
{
{(a, 0); (b, 1)}, {(a, 0); (c, 0)}

}
, ψ(a) = (a, 1), ψ(b) = (c, 1), ψ(c) = (b, 0).
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Fig. 13. The Basilica group and the associated inflation data

The components of the inflation distance map f are

fab(v) = vac,

fac(v) = min{2vab + 1, vab + vbc + 2},

fbc(v) = min{vab + vbc + 1, 2vbc + 2},

and fK is given by the set of matrices

K =










0 1 0

2 0 0

1 0 1




,





0 1 0

2 0 0

0 0 2




,





0 1 0

1 0 1

1 0 1




,





0 1 0

1 0 1

0 0 2










,

(actually, we can remove the 2-nd and 3-rd matrices without changing the map fK,

but then K will not satisfy the product property). The map fK possesses a strictly

positive eigenvector with eigenvalue
√

2. So, the diameters of the Schreier graphs Γn

have growth (
√

2)n, the orbital Schreier graphs Γω have quadratic growth, and the

orbital contracting coefficient ρo is equal to 1√
2
.

The simplicial Schreier graph Γn differs from the simplicial tile graph Tn by two

edges {an, bn} and {an, cn}. See the graph Γ6 and the Julia set of z2− 1 in Figure 14.
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Fig. 14. The Schreier graph Γ6 of the Basilica group and the Julia set of z2 − 1

2.3 Groups K(ν, ω)

Let X = {0, 1}. Let ν = ν1ν2 . . . νs ∈ X∗ and ω = ω1ω2 . . . ωt ∈ X∗ be non-empty

words with νs 6= ωt. Denote by K(ν, ω) the group generated by the automorphisms

b1, b2, . . . , bs and a1, a2, . . . , at, which are defined by the wreath recursions

b1 = (1, 1)σ, bi+1 =






(bi, 1), if νi = 0,

(1, bi), if νi = 1,

for i = 1, 2, . . . , s− 1;

a1 =






(bs, at), if νs = 0 and ωt = 1,

(at, bs), if νs = 1 and ωt = 0,
ai+1 =






(ai, 1), if ωi = 0,

(1, ai), if ωi = 1,

for i = 1, 2, . . . , t− 1.

The dynamics of a quadratic polynomial is encoded by an infinite sequence over

the alphabet {0, 1, ∗}, called the kneading sequence. If the orbit of the critical point

of a quadratic polynomial is strictly pre-periodic and its kneading sequence is ν(ω)ω,

then its iterated monodromy group coincides with the group K(ν, ω). However, not

every sequence of the form ν(ω)ω is a kneading sequence and not all groups K(ν, ω)

are iterated monodromy groups of quadratic polynomials. Nevertheless, if the word ω
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is not periodic then the group K(ν, ω) is an iterated monodromy group of some post-

critically finite polynomials of degree 2n. See [BN06b] for more details and algebraic

properties of these groups.

It is easy to see (and also follows from the description of the inflation data), that

if the word ω is periodic with period ϑ then the simplicial Schreier graphs Γn(K(ν, ω))

and Γn(K(ν, ϑ)) coincide. So, we suppose that the word ω is not periodic.

The critical set of every group K(ν, ω) consists of one left-infinite sequence

a(1) = (ωt . . . ω2ω1)
−ωνs . . . ν2ν1.

Since the word ω is not periodic and ωt 6= νs, the post-critical set consists of s + t

elements a(1), a(2) = τ(a(1)), . . . , a(s+t) = τ s+t−1(a(1)) (here τ(a(s+t)) = a(s+1)). The

set of edges E and the map ψ of the associated inflation data are given by

E =
{
{(a(1), 0); (a(1), 1)}

}
, ψ(a(i)) =






(a(i+1), νi), if 1 6 i 6 s;

(a(i+1), ωi−s), if s < i < s+ t,

(a(s+1), ωt), if i = s+ t.

In particular, the simplicial Schreier graphs Γn are trees and coincide with the

simplicial tile graphs. The inflation distance map f is a square matrix of dimension

(s + t)(s + t − 1)/2, whose columns and rows are parameterized by the pairs (i, j),

i < j, i, j ∈ {1, 2, . . . , s+ t}. To describe this matrix notice the following:

dn+1(u, v) = dn(τ(u), τ(v)), if the last letters of u and v coincide,

dn+1(u, v) = dn(a(1)
n , τ(u)) + dn(a(1)

n , τ(v)) + 1, if the last letters are different,

for arbitrary u, v ∈ Xn+1, n > 1. Then the entries of the matrix f = (f(i,j),(i′,j′)) can
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be defined explicitly as follows:

f(i,j),(i′,j′) = 2, if (i, j) = (s, s+ t) and (i′, j′) = (1, s+ 1);

f(i,j),(i′,j′) = 1, if (i′, j′) = (i+ 1, j + 1) and the last letters of a(i) and a(j) coincide,

or if (i′, j′) = (1, i+ 1) and the last letters of a(i) and a(j) are different,

or if (i′, j′) = (1, j + 1) and the last letters of a(i) and a(j) are different;

f(i,j),(i′,j′) = 0, in all other cases.

For example, IMG(z2 + i) = K(0, 01) and the above matrix f coincides with the

one obtained in Example 2.1. The group IMG(z2 + i) is a particular example of the

next more general case.

Groups K(0, 0 . . . 01). For every k > 3 consider the group K(0, 0k−21). The

post-critical set of this group contains k elements a(1), a(2), . . . , a(k) and notice that

the last letter of a(k) is 1, and the last letter of all other sequences is 0. Then

dn+1(a
(i)
n+1, a

(j)
n+1) = dn(a

(i+1)
n , a

(j+1)
n ), if i < j 6= k,

dn+1(a
(i)
n+1, a

(k)
n+1) = dn(a

(1)
n , a

(2)
n ) + dn(a

(1)
n , a

(i+1)
n ) + 1, if i < k,

for all n > 1. Now, the matrix f has one final class {(1, 2), (2, 3), . . . , (k−1, k), (1, k)}

with the irreducible matrix of dimension k shown on the left, and all the other states

lie in non-final classes with irreducible components of the form shown on the right:





0 1 0 . . . 0

0 0 1 . . . 0

...
...

. . . . . .
...

1 0 . . . 0 1

2 0 . . . 0 0





,





0 1 0 . . . 0

0 0 1 . . . 0

...
...

. . . . . .
...

0 0 . . . 0 1

∗ ∗ . . . ∗ 0





,

where the last row of the right matrix may have one entry with 1 and all the

other entries are zeros. The spectral radius of the matrix on the right is one. The
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Fig. 15. The automaton generating the group K(010, 011)

characteristic polynomial of the matrix on the left is xk − x− 2. Then the matrix f

has a strictly positive eigenvector and we get the following result.

Theorem VI.1. For the group K(0, 0k−21), k > 3, the diameters of the Schreier

graphs Γn have growth λn, the growth degree of every orbital Schreier graphs Γω is

equal to log 2
log λ

, and the orbital contracting coefficient ρo is equal to 1
λ
, where λ is the

unique positive root of the polynomial xk − x− 2.

In particular, the orbital Schreier graphs of the iterated monodromy groups of

quadratic polynomials can have arbitrary large degree of growth.

2.4 Group K(101, 100)

The sequence 101(100)ω is the simplest and best known example of a non-kneading

sequence (it is not given by an external angle) and the group K(101, 100) is not the

iterated monodromy group of a quadratic polynomial (see [BS02] for more details).

It is interesting that this group is the first example of an automaton group with

different coefficients λmin and λmax. I do not know whether it is just a coincidence or
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the evidence of a deep correlation (see Problem 4 in Chapter VII).

The group K(101, 100) is generated by the automaton shown in Figure 15.

The inflation distance matrix f has one final class {(1, 4), (2, 5), (3, 6)} with the

irreducible matrix shown on the left and spectral radius 3
√

2, one basic class

{(1, 2), (1, 3), (2, 4), (1, 5), (1, 6)} with the irreducible matrix shown on the right and

spectral radius 1+
√

5
2

, and all the other classes are not basic but have access to the

basic class:





0 1 0

0 0 1

2 0 0




,





1 1 0 0 0

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

1 0 0 0 0





.

It follows that the matrix f does not possess a strictly positive eigenvector. So, the

diameters of the Schreier graphs Γn have growth (1+
√

5
2

)n, the orbital contracting

coefficient ρo is equal to 1
3
√

2
, and the growth degrees of orbital Schreier graphs Γω lie

between log 2

log(1+
√

5)−log 2
≈ 1.4404 . . . and 3.

3 Gupta-Sidki group

This group is generated by the automaton shown in Figure 16.

The alphabet is X = {1, 2, 3} and the post-critical set consists of three elements

a = 3−ω, b = 3−ω1, c = 3−ω2. The set of edges E and the map ψ of the associated

inflation data are given by

E =






{(b, 1); (b, 2)}, {(c, 1); (c, 2)},

{(b, 2); (b, 3)}, {(c, 2); (c, 3)},

{(b, 1); (b, 3)}, {(c, 1); (c, 3)}






,

ψ(a) = (a, 3),

ψ(b) = (a, 1),

ψ(c) = (a, 2).
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Fig. 16. The Gupta-Sidki group and the associated inflation data

The components of the inflation distance map f are

fab(v) = min{2vab + 1, 2vac + 1, 2vbc + 1},

fac(v) = min{2vab + 1, 2vac + 1, 2vbc + 1},

fbc(v) = min{2vab + 1, 2vac + 1, 2vbc + 1},

and hence fK possesses a strictly positive eigenvector with eigenvalue 2. So, the

diameters of the Schreier graphs Γn have growth 2n, the orbital Schreier graphs Γω

have growth degree log 3
log 2

, and the orbital contracting coefficient ρo is equal to 1
2
.

The simplicial Schreier graphs coincide with the simplicial tile graphs.
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CHAPTER VII

CONCLUSIONS, PROBLEMS AND CONJECTURES

In this dissertation, we studied groups generated by bounded automata, geometric

objects related to these groups — limit spaces, tiles, Schreier graphs, etc., and the

associated piecewise linear maps.

We showed that bounded automata appear naturally in connection to analysis on

fractals. We introduced the notion of a post-critical set of a finite automaton, which

is finite if and only if the automaton is bounded. At the same time, this post-critical

set coincides with the post-critical set of the corresponding limit space, since bounded

automaton groups are contracting. We showed that the limit space of a contracting

group generated by a finite automaton is post-critically finite (finitely-ramified) if and

only if this automaton is bounded.

The Schreier graphs Γn of bounded automaton groups can be constructed using

a simple inflation rule. The description of this procedure allowed us to associate a

piecewise linear map fK to every bounded automaton. The extension of the Perron-

Frobenius theory to these maps obtained in the dissertation made it possible to give

an algorithmic method for finding the growth of diameters of the Schreier graphs Γn

and the contracting coefficients associated with bounded automata.

Although this dissertation is contribution to the field of geometric group theory,

we have not discussed at all algebraic properties of bounded automaton groups. It

should be the subject of further research.

Problem 1. Describe bounded automata which generate finite groups.

Problem 2. Describe bounded automata which generate infinite periodic groups.

The first step in solving the previous problems is to consider bounded automata
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without non-trivial finitary elements (notice that the group generated by such an

automaton does not contain non-trivial finitary elements).

Conjecture 1. The group generated by a bounded automaton without non-trivial

finitary elements is either finite or contains an element of infinite order.

Moreover, it is sufficient to check only the orders of elements in the nucleus,

which is an algorithmic problem (see remark after Problem 9).

Most of the known groups of intermediate growth are generated by bounded

automata and it is natural to ask the following question, which seems to be very

difficult.

Problem 3. Describe bounded automata which generate groups of intermediate

growth.

A large class of groups of intermediate growth is represented by G groups

introduced in [BGŠ03], which are also usually infinite periodic groups. Here the

essential role is played by finitary elements in these groups.

Conjecture 2. The group generated by a bounded automaton without non-trivial

finitary elements has either polynomial or exponential growth.

Even if the previous statement is not true, it is interesting to study the

corresponding counter-examples and conditions which make these groups grow

intermediately. The second part about exponential growth, probably, can be

improved. The only known method to prove that an automaton group has exponential

growth is to indicate a free semigroup inside this group (see examples in [BGK+06]).

Conjecture 3. The group generated by a bounded automaton without non-trivial

finitary elements has exponential growth if and only if it contains a free semigroup.
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As we know, the conjecture is open even for the whole class of automaton groups.

In Chapter V we gave an algorithmic way (using results of Chapter III) to

compute the orbital contracting coefficient ρo of a bounded automaton group and the

coefficient ρd, which characterizes the growth exponent of diameters of the Schreier

graphs Γn. In particular, we have the lower bound − log |X|
log ρd

and the upper bound

− log |X|
log ρo

on the degrees of growth of orbital Schreier graphs. However, the question

how to find the precise value of the growth degree of an orbital Schreier graph is still

open. For bounded automata it should be not difficult to show that all these degrees

have the same value equal to − log |X|
log ρd

. But it seems to be more natural to prove this

statement at once for the whole class of contracting self-similar groups.

Conjecture 4. All orbital Schreier graphs of a level-transitive contracting self-similar

finitely generated group have the same degree of growth, which is equal to − log |X|
log ρd

.

We would got the previous statement automatically if it were always true that

ρo = ρd, what is correct for many well-know groups. However, considering the

class of groups K(ν, ω), which appears naturally as a class of groups containing the

iterated monodromy groups of quadratic polynomials with pre-periodic critical point,

we found the first example of a group with ρo 6= ρd, namely the group K(101, 100) (see

Section 2.4 of Chapter VI). At the same time, the sequence 101(100)ω is the simplest

and best known example of a non-kneading sequence (it is not given by an external

angle, see [BS02] for more information) and the group K(101, 100) is not an iterated

monodromy group of a quadratic polynomial. This coincidence looks interesting and

we can ask the following

Problem 4. Is it true that for iterated monodromy groups of post-critically finite

quadratic polynomials the coefficients ρd and ρo coincide?

The next question is more general and important.
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Problem 5. Describe bounded automata whose inflation distance map possesses a

strictly positive eigenvector.

In general, we proved that the asymptotic behavior of diameters of the Schreier

graphs Γn of a bounded automaton group is equivalent to nkλn for an integer k > 0.

However, we do not know an example of a group with k > 1.

Problem 6. Can the growth of diameters of the Schreier graphs Γn have non-trivial

polynomial part?

The contracting property of a self-similar group guaranties that the orbital

Schreier graphs have polynomial growth. The converse may also be true.

Conjecture 5. A self-replicating (level-transitive) group generated by a finite

automaton is contracting if and only if all orbital Schreier graphs have polynomial

growth of uniformly bounded degree.

Even through the previous statement does not give an algorithmic criterium

of contraction, it looks somewhat similar to the well-known Gromov’s theorem on

groups of polynomial growth. Maybe we also need to restrict ourself to branch groups.

Combining Conjectures 4 and 5 we have that a self-replicating automaton group is

contracting if and only if there exists an orbital Schreier graph of polynomial growth.

Orbital Schreier graphs of self-similar actions of (virtually) nilpotent groups have

polynomial growth and we come to the following

Conjecture 6. A self-replicating self-similar action of a nilpotent group is finite-state

if and only if it is contracting.

The conjecture is proved for abelian groups in [NS04]. In case of self-similar

actions of nilpotent groups on the trees X∗, where |X| is a prime, it follows from the

result of A. Berlatto and S. Sidki (see [Nek05, Theorem 6.1.11]).
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The study of bounded automata is the first step in considering polynomial

automata and it is natural to ask the question about generalization of the results

obtained in the dissertation to all polynomial automata.

Problem 7. Describe polynomial automata which generate contracting groups.

Problem 8. How to find the growth of orbital Schreier graphs of polynomial

automaton groups? Is it true that it is always sub-exponential?

It is known that the orbital Schreier graphs of polynomial automaton groups

are amenable (see [GN05]), which was proved without discussing the growth of

these graphs. Already the simplest polynomial automaton (discussed in Section 2 of

Chapter IV) generates a non-contracting group, whose orbital Schreier graphs have

intermediate growth.

Problem 9. Describe an algorithm for finding the order of an automorphism given

by a polynomial initial automaton.

In case of bounded automata the previous problem was solved by S. Sidki (see

[Sid00]). Actually, the standard algorithm used to find the order of an element of a

contracting self-similar group, realized in the program package AutomGrp developed

by Y. Muntyan and D. Savchuk (see http://sourceforge.net/projects/finautom/),

works for bounded automaton groups (it may not stop in general).

The introduced notion of the post-critical set of a finite automaton allows us to

use it in the classification of automaton groups. If the post-critical set is empty, the

group is the subgroup of the finitary group. It is not difficult to describe automaton

groups with the post-critical set of size one and two.

Problem 10. Characterize groups generated by bounded automata using the size of

its post-critical set.
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[BGŠ03] L. Bartholdi, R. Grigorchuk, and Z. Šuniḱ. Branch groups. In Handbook
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Math., 6(2):259–290, 1989.

[Kig95] J. Kigami. Hausdorff dimensions of self-similar sets and shortest path

metrics. J. Math. Soc. Japan, 47(3):381–404, 1995.

[Kig01] J. Kigami. Analysis on fractals, volume 143 of Cambridge Tracts in

Mathematics. Cambridge University Press, Cambridge, 2001.
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