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ABSTRACT

An Automated Virtual Tool to Compute the Entire

Set of Proportional Integral Derivative Controllers for a Continuous Linear Time

Invariant System. (December 2007)

Bharat Narasimhan, B.E (Hons), Birla Institute of Technology and Science, Pilani -

Dubai Campus

Chair of Advisory Committee: Dr. Shankar P. Bhattacharyya

This thesis presents the very practical and novel approach of using the Graphical User

Interface (GUI) to compute the entire set of Proportional Integral Derivative (PID)

controllers given the transfer function or the frequency response of the system under

consideration.

Though there is a wide spread usage of PID controllers in the industry, until

recently no formal algorithm existed on determining a set of PID values that will

stabilize the given system. The industry still relies on algorithms like the Ziegler-

Nicholas or ad-hoc approaches in determining the value of PID controllers. Also

when it comes to model free approaches, the use of Fuzzy logic and Neural network

do not guarantee stability of the system.

For a continuous Linear Time Invariant system Bhattacharyya and others have

developed an algorithm that determines the entire set of PID controllers given the

transfer function or just the frequency response of the system. The GUI has been

developed based on this theory. The GUI also evaluates the user input performance

specifications and generates a subset of stable controllers given the performance cri-

teria for the system.

This thesis presents an approach of automating the computation of entire set
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of stabilizing Proportional Integral Derivative (PID) controllers given the system

transfer function or the frequency response data of the system. The Graphical User

Interface (GUI) developed bridges the gap between the developed theory and the

industry.
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CHAPTER I

INTRODUCTION

In the different systems existing around us like trains, automobiles, airplanes con-

trollers are used. The basic function of the controller is to track the set point and

negate external disturbance in the plant. There are two main approaches to Control

Theory, Classical Control and Modern Control. The Classical Control theory is a

frequency domain approach and until recently relies on Mathematical Models of the

system. It is widely used for Linear Time Invariant (LTI) systems. On the other

hand the Modern Control theory involves time domain analysis and based on Linear

Algebra.

Proportional Integral Derivative (PID) controllers belong to the Classical Control

Theory approach. They have been widely used in almost all industries ranging from

simple systems like Temperature control to complex Distillation plants. The PID

controller acts on the error value that is determined by the difference in the set point

and the output of the process. It is implemented as follows.

C(s) = kp +
ki

s
+ kds (1.1)

where kp, ki, kd are proportional, integral and derivative gain respectively and C(s)

is the transfer function of the controller. The derivative term may sometimes be

implemented as kds
(1+Ts)

, where T is a very small constant. For low frequency signals the

derivative term contributes low outputs, but as the frequency of the signal increases

the derivative contributes to higher outputs, thus giving erroneous outputs in case of

a noisy signal. To prevent this issue observed due to a pure differentiator when the

The journal model is IEEE Transactions on Automatic Control.
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error signal has large noise a modified derivative term may be used.

The PID controller as seen above has three modes, the Proportional, Integral

and the Derivative mode. In the Proportional mode a constant acts on the present

error. In the Integral mode, the integral of the errors are calculated. It is equivalent

of looking at all the past errors and taking a corrective action accordingly. While

in the Derivative mode action is taken on rate of change of errors. It is equivalent

of taking a corrective action by looking at the trend in change of errors. The final

output of the PID controller is the sum of the three modes.

The major issue with PID controllers is until recently no formal algorithm existed

to calculate the entire set of PID controllers to stabilize the given system. The existing

algorithms like Ziegler-Nichols (ZN) [1], Internal Model Controller (IMC) [2] etc. have

their own limitations. Algorithms like ZN method generates only one stabilizing value

for the given system. Though a complete set of PID controllers can be determined by

using the classical Routh-Hurwitz criterion, we will see from the following discussion

that such an approach involves solving non-linear inequalities and is computationally

very intense.

The Ziegler-Nichols criterion had been developed by extensive simulations of

stable, simple plants. In the ZN approach either the step response or the frequency

response of the system can be used to generate a set of PID values stabilizing the

given system. Only one set of PID value is obtained using this approach. Moreover

this criterion is applicable only to open loop stable plants. Though the single PID

value generated by the ZN criterion guarantees stability it does not account for the

user’s performance specification.

The Routh Criterion on the other hand can theoretically generate the entire set

of PID values, but this involves solving non-linear inequalities and is computationally

very intensive as seen from the following example where the transfer function P (s) is
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Table I. Routh Table

3 1 kd − 2 ki

2 3 kp + 1

1 3kd−kp−3
3

ki

0
−k2

p−4kp+3kdkp−9ki+3kd

3kd−kp−3

to be stabilized using a PID controller C(s).

P (s) =
1

s3 + 3s2 − 2s + 1

C(s) = kp +
ki

s
+ kds

The resulting characteristic equation is s4+3s3+(kd−2)s2+(kp +1)s+ki. According

to the Routh criterion the entire first column should be greater than zero for the closed

loop to be stable. From table I non linear inequalities are generated as under

3kd − kp − 3 > 0

−k2
p − 4kp + 3kdkp − 9ki + 3kd

3kd − kp − 3
> 0

As observed for a relatively low order plant the corresponding inequalities are compu-

tationally intense and hence the Routh criterion is not a practical solution to generate

the entire stabilizing set in kp, ki, kd space.

Recent research has enabled the prediction of the entire stabilizing set for PID

controllers by formulating linear inequalities [3],[4]. The motivation for the current

work is to simplify this algorithm by having interactive Graphical User Interface (GUI)

and bring this powerful algorithm closer to the industry which demands simple but

yet powerful tools to solve complex stabilizing problems.
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A. Objective

The objective of this study was to provide the industry and control systems engineer

in general a simple but powerful Graphical User Interface to

• To determine the entire set of stabilizing PID controllers given the mathematical

model of a continuous LTI system.

• To determine the entire set of stabilizing PID controllers given the frequency

response of a continuous LTI system.

• To determine the subset of the stable set of controllers depending on the per-

formance specifications given by the user.

The above were achieved using the algorithms proposed in [3],[4]. The GUI

was implemented on MATLAB R© due to the software being widely used in both

the industry and the academia alike. The GUI was then used in an application for

designing PID controllers of High Speed Flywheel for Traction Applications [5].

B. Organization of Thesis

In the following part of the thesis many topics will be covered. In Chapter II a brief

overview of concepts like Mikhailov’s plot, Hermite-Biehler theorem will be covered.

Also the concept of signature will be introduced. These concepts and terminologies

will be frequently referred to in the rest of the discussion. Chapters III, IV and V

introduces the algorithm to determine the entire set of Proportional (P), Propor-

tional Integral (PI) and Proportional Integral Derivative (PID) controllers for a given

transfer function. Each algorithm is followed by an insight into the Graphical User

Interface (GUI) developed in MATLAB R© followed by an example in each section.
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Chapter VI introduces the concept of a model free approach for determining the en-

tire set of PID controllers [4]. Again the discussion follows a similar pattern as in

the previous chapters. In Chapter VII a case study on use of GUI in designing PID

controllers for High Speed flywheels for traction application is discussed [5]. In the

concluding Chapter VII the research work is summarized and possible future work is

discussed.
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CHAPTER II

BACKGROUND AND TERMINOLOGIES

In this chapter a brief background on control systems, certain terminologies and

concepts like the Mikahailov’s Criterion, Hermite-Biehler Theorem etc are introduced.

These concepts will be referred to frequently in the later chapters and will help in

understanding the algorithm developed by Bhattacharyya and other in [3], [4] and

the GUI developed in a complete manner.

A. Background

In the past four decades elegant control system techniques like H2, H∞ [6], L1 Optimal

[7] control have been developed. YJBK parametrization [8] was one of the major

breakthrough in modern control theory. The major drawback is the order of the

stabilizing controller obtained by YJBK parametrization is always quiet high and

sometimes comparable to the order of the plant under consideration. Also recently it

has been pointed out in [9] that the controllers obtained through the above mentioned

techniques are susceptible to even a small uncertainty resulting in the entire system

unstable.

The industry on the other hand is wary of such high order controllers and these

theoretically optimal and high order controllers are not widely used by the industry.

Thus there has been a recent shift in focus in the academia towards fixed low order

controllers. Hara, Shiokata and Iwasaki in [10] developed a Fixed order controller

design via generalized KYP lemma, while in [11] Henrion, Hansson and Wallin put

forth reduced Linear Matrix Inequalities for fixed order controllers. Gryazina and

Polyak in [12] have introduced a graphical technique using D-Decomposition [13],

[14] to obtain a set of stabilizing fixed order controllers.
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More than 90% of the controllers used in the industry are Proportional Integral

Derivative controllers.[15], [16], [17]. PID controllers are simple in structure and can

handle both steady-state and transient response [18]. Entire set of stabilizing PID

controllers can be obtained using the algorithm introduced in [3], [4]. The focus of

this thesis is to develop a Graphical User Interface for the theory developed in [3],

[4], making it more practical and useful.

B. Mikhailov’s Criterion

A Hurwitz stable polynomial is a polynomial that has all the zeros in the left half of

the complex plane. For a Hurwitz stable polynomial p(s) the Mikhailov’s criterion

states that as the frequency (ω) increases from 0 to ∞ the plot of p(jω) turns in an

anti-clockwise direction and goes through n quadrants in the complex plane where n

is the degree of the Hurwitz stable polynomial. A detailed proof of the Mikhailov’s

criterion can be found in [19].

Consider the following example on Mikhailov’s plot for the Hurwitz stable poly-

nomial:

Example II.1

p(s) = s5 + 7s4 + 24s3 + 48s2 + 55s + 25 (2.1)

As seen in figure (1), as the p(s) is a Hurwitz stable polynomial with degree 5 the

Mikhailov’s plot essentially p(jω) as ω goes from 0 to ∞ turns in an anti-clockwise

direction and goes through 5 quadrants. In figure (1) it is to be noted that p(jω)

has been normalized by (1 + ω2)
n
2 , where n is the degree of the polynomial. Also it

is observed that the net change in phase as ω progress from 0 to ∞ is 5π
2

. In general

for a Hurwitz stable polynomial, this net change is nπ
2

, where n is the degree of the

polynomial. For a detailed proof refer [19].
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Fig. 1. Normalized Mikhailov’s plot for a Hurwitz stable polynomial

C. Hermite-Biehler Theorem

The Hermite-Biehler theorem gives a necessary and sufficient condition for a given

polynomial to be Hurwitz stable. Consider a real polynomial p(s) with degree n. The

hodograph p(jω) of the polynomial p(s) can be written as follows,

p(jω) = pe(ω) + jωpo(ω) (2.2)

Then the polynomial p(s) is Hurwitz stable if and only if all the real, distinct, non-

negative zeros with odd multiplicity of pe(ω) and po(ω) satisfy the following interlacing
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criterion

0 < ωe1 < ωo1 < ωe2 < ωo2 < ωe3 · · · (2.3)

A detailed proof of the Hermite-Biehler theorem can be found in [20]. Consider the

following example,

Example II.2 Referring to the Hurwitz stable polynomial in equation (2.1)

p(s) = s5 + 7s4 + 24s3 + 48s2 + 55s + 25

p(s) = pe(ω) + jpo(ω)

where

pe(ω) = 7ω4 − 48ω2 + 25

po(ω) = ω5 − 24ω3 + 55ω

From the figure (2) it is observed that the polynomial pe(ω) and po(ω) have the

interlacing property and hence Hurwitz stable polynomial.

D. Generalization of the Hermite-Biehler Theorem

The Hermite-Biehler theorem dealt only with Hurwitz stable polynomials. The Gen-

eralization of the Hermite-Biehler theorem is an extension to handle polynomials not

necessarily Hurwitz and was introduced by Bhattacharyya and other in [21].

For a given polynomial p(s), let l(p) and r(p) denoted the number of left and

right half zeros in the complex plane. Let 6 ∆∞
0 θ denote the total change in phase of

p(jω) as ω goes from 0 to ∞. In general it is noted that the roots in the left half

of the complex plane (l(p)) contribute −π
2

while the roots on the right half of the

complex plane (r(p)) contribute π
2

to the net change in phase ( 6 ∆∞
0 θ).

6 ∆∞
0 θ =

π

2
[l(p)− r(p)] (2.4)
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Fig. 2. Interlacing property for a Hurwitz’s stable polynomial

Consider a example of a non-Hurwitz polynomial as follows

Example II.3

p(s) = s5 − 7s4 + 24s3 + 48s2 + 55s + 25 (2.5)

The roots for the non-Hurwitz polynomial are

roots = 4.3364 + 4.2487i

4.3364 − 4.2487i

−0.4873 + 0.8568i

−0.4873 − 0.8568i

−0.6982 (2.6)
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From equation (2.6) it is observed that there are 2 roots to the right half of the

complex plane and 3 to the left half of the complex plane. Also from figure (3) it is

observed that the interlacing property is not met and hence it is confirmed that the

polynomial in equation (2.5) is non-Hurwitz by the Hermite-Biehler theorem. From

the Mikahilov’s plot (figure (4)) it is observed that though the encirclement is in the

anti-clockwise direction, it passes through only 3 quadrants. Had the polynomial

been Hurwitz stable the Mikhailov’s plot would pass through 5 quadrants as 5 is the

degree of the polynomial. For the given polynomial in equation (2.5), it is observed

l(p) = 3

r(p) = 2

From equation (2.4)

∆∞
0
6 θ =

π

2
(3− 2) =

π

2

The value of 6 ∆∞
0 θ = π

2
and is also verified from the Mikhailov’s plot in figure (4)

For the Generalization of the Hermite-Biehler theorem some additional terminology

is introduced.

Let,

sgn(x) =





+1 if x > 0

−1 if x < 0

0 if x = 0

Also, for a given polynomial p(s), we define signature σ(p(s)) as the difference in the

number of zeros lying in the left and the right half of the complex plane.

σ(p(s)) = l(p(s))− r(p(s)) (2.7)

Where l(p(s)) and r(p(s)) are the number of left and the right half zeros of the
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Fig. 3. Interlacing property for a non-Hurwitz stable polynomial

polynomial p(s) in the complex plane respectively. Also the polynomial p(s) can be

decomposed into even and odd parts as see in equation (2.8)

p(s)|s=jω = pe(ω) + jωpo(ω) (2.8)

The calculation of ∆∞
0 p(jω) introduced below was derived by Bhattacharyya and

others and a detailed proof is available in [21].

Assuming p(s) has no roots on the imaginary axis that is all the roots are either

on the left or the right half of the complex plane.
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Fig. 4. Normalized Mikhailov’s plot for a non-Hurwitz stable polynomial

Let,

0 < ω1 < ω2 < ω3 · · · < ωl−1 < ∞ (2.9)

be the distinct zeros of odd multiplicity of the po(ω) = 0

Then if the degree of p(s) is even,

∆∞
0 p(jω) =

π

2
{sgn[ṗo(ω)|ω=ω0 ][sgn(pe(ω0))− sgn(pe(ω1))]

+ sgn[ωṗo(ω)|ω=ω1 ][sgn(pe(ω1))− sgn(pe(ω2))]

+ sgn[ωṗo(ω)|ω=ω2 ][sgn(pe(ω2))− sgn(pe(ω3))]

+ · · ·

+ sgn[ωṗo(ω)|ω=ωl−1
][sgn(pe(ωl−1))− sgn(pe(∞))]} (2.10)
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If the degree of the p(s) is odd,

∆∞
0 p(jω) =

π

2
{sgn[ṗo(ω)|ω=ω0 ][sgn(pe(ω0))− sgn(pe(ω1))]

+ sgn[ωṗo(ω)|ω=ω1 ][sgn(pe(ω1))− sgn(pe(ω2))]

+ sgn[ωṗo(ω)|ω=ω2 ][sgn(pe(ω2))− sgn(pe(ω3))]

+ · · ·

+ sgn[ωṗo(ω)|ω=ωl−1
][sgn(pe(ωl−1))]} (2.11)

From equation (2.4), (2.7), (2.10) and (2.11) it can be inferred that for even

values of n where n is the degree of p(s)

σ(p) = l(p)− r(p) = sgn[ṗo(ω)|ω=ω0 ][sgn(pe(ω0))− sgn(pe(ω1))]

+ sgn[ωṗo(ω)|ω=ω1 ][sgn(pe(ω1))− sgn(pe(ω2))]

+ sgn[ωṗo(ω)|ω=ω2 ][sgn(pe(ω2))− sgn(pe(ω3))]

+ · · ·

+ sgn[ωṗo(ω)|ω=ωl−1
]

[sgn(pe(ωl−1))− sgn(pe(∞))] (2.12)

And for odd values of n,

σ(p) = l(p)− r(p) = sgn[ṗo(ω)|ω=ω0 ][sgn(pe(ω0))− sgn(pe(ω1))]

+ sgn[ωṗo(ω)|ω=ω1 ][sgn(pe(ω1))− sgn(pe(ω2))]

+ sgn[ωṗo(ω)|ω=ω2 ][sgn(pe(ω2))− sgn(pe(ω3))]

+ · · ·

+ sgn[ωṗo(ω)|ω=ωl−1
][sgn(pe(ωl−1))] (2.13)

Consider the following example



15

Example II.4

p(s) = s7 + 10s6 + 27s5 − 14s4 − 148s3 − 136s2 + 60s + 200 (2.14)

Then

p(jω) = po(jω) + jpe(jω)

where,

po(jω) = −10ω6 − 14ω4 + 136ω2 + 200

pe(jω) = −ω7 + 27ω5 + 148ω3 + 60ω

The real positive roots of pe(jω) are (0, 5.6325).

As the degree of the polynomial p(s) is odd, from equation(2.13)

l − r = sgn[ṗo(0)][sgn(pe(0))− sgn(pe(5.6325))]

+ sgn[(ṗo(5.6325)][sgn(pe(5.6325))]

= 1(1 + 1)− 1(−1) = 3 (2.15)

To verify that the calculated l − r is indeed the right value, the roots of p(s) are

determined:

roots = −3 − j

−3 − j

−1 − j

−1 + j

−5

1

2
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It is observed from the roots of p(s) that l − r is 3 which is equivalent to the value

calculated using equation (2.13)
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CHAPTER III

STABILIZING A LINEAR TIME INVARIANT SYSTEM USING A

PROPORTIONAL CONTROLLER

In this chapter the algorithm to determine the entire set of Proportional (P) Con-

trollers for a give transfer function using the generalized version of Hermite-Biehler

theorem is introduced. The Graphical User Interface (GUI) developed in MATLAB R©

is also studied with an example. The advantage of the powerful GUI developed is,

it lays a layer over the algorithm and the end user does not have to deal with the

algorithm directly, but is guided through the algorithm using the GUI.

A. Theory and Algorithm

The theory and the algorithm to compute the entire set of stabilizing Proportional

Controllers for a given transfer function is derived by Bhattacharyya and others is

introduced in [19]. An overview of the same is now presented here.

Consider a plant p(s) with the transfer function

p(s) =
N(s)

D(s)
(3.1)

The controller in consideration c(s) is a pure Proportional Controller given by,

c(s) = kp (3.2)

The closed loop characteristic polynomial is then give by,

δ(s, kp) = D(s) + kpN(s) (3.3)

Let n be the degree of the characteristic polynomial δ(s, kp). The objective is to

calculate all the values of kp such that the characteristic polynomial is Hurwitz stable.
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That is all the n roots of the equation (δ(s, kp) = 0) are on the left half of the complex

plane. Thus if the polynomial is Hurwitz stable, the signature (σ(p)) should be equal

to n

Writing the characteristic polynomial in equation(3.3) as even and odd part

N(s) = Ne(s) + sNo(s)

D(s) = De(s) + sDo(s)

δ(s, kp) = [De(s) + kpNe(s)] + s[Do(s) + kpNo(s)] (3.4)

As observed in equation (3.4) kp appears both in the real and imaginary part of

δ(s, kp). To use the generalized Hermite-Biehler theorem it is desirable to have the

gain kp isolated either in the odd or even part of the polynomial. This can be achieved

by multiplying the characteristic polynomial by N(−s).

Defining,

N∗(s) = N(−s) = Ne(s)− sNo(s)

ν(s, kp) = δ(s, kp)N
∗(s)

Thus to ensure that the polynomial δ(p(s, kp)) is Hurwitz stable, the signature

of ν(s, kp) is as in equation (3.5) and can be easily realized

σ(ν(s, kp)) = n− (l(N(s))− r(N(s))) (3.5)

In equation (3.5), n, l(N(s)), r(N(s)) are the degree of the characteristic polynomial,

number of roots of the numerator in the left and right half of the complex plane. For

a detailed derivation of equation (3.5) refer to [22]

Thus the gain stabilization problem has been reduced to a root counting problem

for the equation ν(s, kp) = 0 where it is desired to have n + r(N(s)) roots on the left
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half of the complex plane and l(N(s)) roots on the right half of the complex plane.

Decomposing ν(s, kp) in terms of even and odd parts of N(s) and D(s) as follows,

ν(s, kp) = h1(s) + kph2(s) + sg1(s)

where,

h1(s) = De(s)Ne(s)− s2Do(s)No(s)

h2(s) = Ne(s)Ne(s)− s2No(s)No(s)

g1(s) = Do(s)Ne(s)−De(s)No(s)

Substituting s = jω as follows

ν(ω, kp) = p1(ω) + kpp2(ω) + jωq1(ω)

where,

p1(ω) = De(ω)Ne(ω) + ω2Do(ω)No(ω)

p2(ω) = Ne(ω)Ne(ω) + ω2No(ω)No(ω)

q1(ω) = Do(ω)Ne(ω)−De(ω)No(ω)

The generalized Hermite-Biehler theorem derived in [21] can be applied to ν(ω, kp).

Let the real, non-negative, distinct roots with odd multiplicity of q1 be For even

degree of ν(ω, kp)

0 < ω1 < ω2 < ω3 · · · < ωl−1 < ∞ (3.6)

Based on equation (2.13) and (2.12), imaginary signature for even degree of

ν(ω, kp) is defined as follows

γ(I) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil] · (−1)l−1sgn[q(∞)]

where,

in = sgn(q1(ωn)) n goes from 0 to l
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Also in the above equations ωl is defined as ∞.

And for odd degree of ν(ω, kp)

0 < ω1 < ω2 < ω3 · · · < ωl−1 (3.7)

Based on equation (2.13) and (2.12), imaginary signature for odd degree of

ν(ω, kp) is defined as follows

γ(I) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1] · (−1)l−1sgn[q(∞)]

where,

in = sgn(q1(ωn)) n goes from 0 to l − 1

The signature for the polynomial ν(s, kp) is obtained from equation (3.5). The

signature can be calculated given the transfer function. Then the set of feasible strings

are calculated that satisfy the signature condition.

Let F ∗ denote the set of feasible strings and A the set of all possible strings then

F ∗ = {I ∈ A|γ(I) = n− (l(N(s))− r(N(s)))} (3.8)

The constant gain kp is determined if and only if the following conditions hold:

• F ∗ is not empty that is at least one feasible string exist.

• There exist a string I = {i0, i1, i2, · · ·} ∈ F ∗ such that

maxt:it>0(Lt) < mint:it<0(Ut)

where,

Lt = −p1(ωt)

p2(ωt)
for it ∈ I, it > 0

Ut = −p1(ωt)

p2(ωt)
for it ∈ I, it < 0
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If the above conditions are satisfied by the feasible strings I1, I2, I3. · · · , Is ∈ F ∗,

then the set of all stabilizing gains is given by

kp = ∪s
r=1kr (3.9)

where

kr = (maxt:it>0,it∈Ir(Lt),mint:it<0,it∈Ir(Ut)) r = 1, 2, · · · , s

A detailed proof for the above theorem is available in [23].

Consider an example as follows:

Example III.1 Consider the open-loop transfer function to be stabilized by a Pro-

portional Controller. The objective is to determine the entire set of Proportional

Controllers kp that will stabilize the given transfer function.

p(s) =
N(s)

D(s)
(3.10)

where,

N(s) = s3 − 4s2 + 1s + 2

D(s) = s5 + 8s4 + 32s3 + 46s2 + 46s + 17

Ne(ω), No(ω), De(ω), Do(ω) are calculated as follows

Ne(ω) = 4ω2 + 2

No(ω) = −ω2 + 1

De(ω) = 8ω4 − 46ω2 + 17

Do(ω) = ω4 − 32ω2 + 46
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Calculating ν(ω, kp) = δ(ω, kp)N
∗(s), where δ(ω, kp) is the characteristic polynomial,

ν(ω, kp) = −ω8 + 65ω6 − 246ω4 + 22ω2 + 34

+kp(ω
6 + 14ω4 + 17ω2 + 4)

+jω(12ω6 − 180ω4 + 183ω2 + 75)

where we define p1(ω), p2(ω), q(ω) as follows,

p1(ω) = −ω8 + 65ω6 − 246ω4 + 22ω2 + 34

p2(ω) = ω6 + 14ω4 + 17ω2 + 4

q(ω) = 12ω6 − 180ω4 + 183ω2 + 75

Determining roots of q that are real, non negative and odd multiplicity

ω0 = 0 < ω1 = 1.2018 < ω2 = 3.7240 < ω3 = ∞ (3.11)

Since the degree of ν(ω, kp) given by n + m is even and the signature is 6 the string

that satisfy the signature condition is 1,−1, 1,−1. In this particular example only

one set of valid string was found to exist. There always exists a possibility for many

valid strings.

Thus evaluating for the entire set of kp by imposing the above sign conditions on

the real part of ν(ω, kp)

p1(ω0) + kpp2(ω0) > 0

p1(ω1) + kpp2(ω1) < 0

p1(ω2) + kpp2(ω2) > 0

p1(ω3) + kpp2(ω3) < 0

Solving the above linear inequalities, the values of kp that stabilize the system is
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obtained. The range of kp thus obtained is

−8.5000 ≤ kp ≤ 4.2109 (3.12)

B. The GUI for Calculating the Entire Set of Proportional Controllers for a LTI

System

This section describes the Graphical User Interface (GUI) developed and an example

of generating the entire set of kp values for a given Linear Time Invariant system

using the GUI. As seen in the previous section the algorithm used to calculate the

set of kp values requires a complete understanding of concepts like Mikhailov’s cri-

terion, Hermite-Biehler theorem and the generalized version of the Hermite-Biehler

theorem. This process may be time consuming and many a times there may be gaps

in understanding of the algorithm. To solve this issue, proposed is a Graphical User

Interface. This GUI has been completely developed in MATLAB R©.

MATLAB R© was selected as it can handle computationally intense algorithms

and is extremely efficient in handling large Matrices. Moreover MATLAB R© is avail-

able both in the industry and academia alike. Also the software has a control system

toolbox, which handles a lot of computation related to control systems. The GUI

has been developed as an add-on package for this control systems toolbox. It must

be noted that such an attempt has been made in [24] using LabVIEW R©, a software

by National Instruments. The GUI developed in LabVIEW R© was accepted and is

being commercialized by National Instruments, due to be released in the next version

of the control systems toolbox by National Instruments. A similar attempt is being

made with MATLAB R©.
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1. GUI Based Calculation of Proportional Gain

In case of the model based approach, the inputs to the GUI are the numerator and

the denominator of the transfer function. The entire program is function based and

if desired all the steps followed in the algorithm can be viewed in the MATLAB R©

command window.

The input Numerator and Denominator accepted from the user is converted in

terms of ‘jω’. It is then decomposed into even and odd parts. All this computation

is carried out in two functions ‘D jw e o.m’ and ‘N jw e o.m’.

The decomposed Numerator and Denominator De(jω), Do(jω), Ne(jω), No(jω)

is used to calculate p1, p2 and q using the function ‘p q.m’.

The function ‘real non negative odd roost.m’ then determines the roots of the

imaginary part of ν(ω, kp) = 0. The imaginary part of ν(ω, kp) is q which was de-

termined in the previous function. The ‘satis roots.m’ function further evaluates the

roots to determine the real, non negative roots with odd multiplicity.

The ‘string gen.m’ function evaluates all possible strings based on the signature

equation and the degree of the polynomial ν(ω, kp). It generates an output of all the

valid strings satisfying the signature condition.

The function ‘determine A b.m’ and ‘determine Kp’ together generate the final

range of kp values that will stabilize the given system. This is done by solving the

linear inequalities generated by the real part of ν(ω, kp) at the various values of ω

with the inequality being determined by the valid strings generated. The rest of the

program deals with plotting the kp and scaling it to handle values like +∞,−∞.
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2. GUI Based Performance Evaluation of Proportional Controllers

The GUI based design also helps in generating subsets of the stabilizing set depending

on user inputs like Gain-margin, Phase-margin, Rise-time, Settling-time and Over-

shoot. This feature helps give the user sets of controller that not only stabilize the

system, but also satisfy the user performance criterion. This is achieved by calculat-

ing the entire set of possible controllers as discussed in the previous section and then

reducing this generated set to a finite set of points. The five specified performances

are calculated at each of the points. Though this process may seem computationally

intense, with respect to the GUI the computation does not take long.

Alternatively a feature has also been provided for the user to manually explore

the set. The three different modules essentially, module 1 which generates the set of

stable controllers for a given transfer function, module 2 which handles the manual

exploration of the stable set and module 3 which generates the subset of stable con-

trollers given the performance specification are in most aspects independent to each

other. This has been done on purpose so as to cross check the validity of the output

against each other.

The inputs to the module that generates the subset based on specification from

the user are the Numerator, Denominator and the various performance specifications.

The entire set of kp that stabilizes the system is obtained from module 1 which was

described earlier in this section.

For a given value of controller the closed loop transfer functions are generated

the step response obtained. The function ‘setpspecs.m’ generates data like the rise-

time, settling-time, overshoot. The entire process is run in a ‘for’ loop for all the set

of finite controllers. Ones the data is available for the entire set, they are compared

against the user defined specifications and the subset is generated.
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3. Illustrative Example

Consider the following example where for a given plant p(s) the entire set of kp is to

be determined.

p(s) =
8.14s3 + 9.68s2 + 5.32s + 29.84

s7 + 16s6 + 134s5 + 716s4 + 2000s3 + 4500s2 + 6000s− 100
(3.13)

As seen in the figure (5), the coefficient of the Numerator and the Denominator are the

inputs to the GUI. The entire set of kp values that stabilizes the system is determined

by the algorithm discussed earlier in this section.

Fig. 5. GUI to determine the entire set of Proportional Controllers for a given transfer

function

The steps involved in achieving this can be seen in the MATLAB R© command
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window if desired. Ne(ω), No(ω), De(ω), Do(ω) are calculated and displayed as follows

Ne(ω) = −9.68ω2 + 29.8400

No(ω) = −8.14ω2 + 5.32

De(ω) = −16ω6 − 716ω4 − 4500ω2 − 100

Do(ω) = −ω6 + 134ω4 − 2000ω2 + 6000

Calculating ν(ω, kp) = δ(ω, kp)N
∗(s), where δ(ω, kp) is the characteristic polynomial

ν(ω, kp) = 8.14ω10 − 941.2ω8 − 9584.56ω6 + 5445.44ω4 − 101392ω2 − 2984

+kp(66.2596ω6 + 7.0928ω4 − 549.4ω2 + 890.4256)

+jω(−120.56ω8 + 4586.4ω6 − 17080.56ω4 − 94634ω2 + 179572)

where we define p1(ω), p2(ω), q(ω)

p1(ω) = 8.14ω10 − 941.2ω8 − 9584.56ω6 + 5445.44ω4 − 101392ω2 − 2984

p2(ω) = 66.2596ω6 + 7.0928ω4 − 549.4ω2 + 890.4256

q(ω) = −120.56ω8 + 4586.4ω6 − 17080.56ω4 − 94634ω2 + 179572

Calculating the roots of q that are real, non negative with odd multiplicity.

ω0 = 0 < ω1 = 1.27315 < ω2 = 2.6827 < ω3 = 5.7519 (3.14)

Since the degree of ν(ω, kp) given by n + m is odd and the signature is 8 the string

that satisfy the signature condition is 1,−1, 1,−1, 1. In this particular example only

one set of valid string was found to exist. There always exists a possibility that many

valid strings exist.

Thus evaluating for the entire set of kp by imposing the above sign conditions on
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the real part of ν(ω, kp).

p1(ω0) + kpp2(ω0) > 0

p1(ω1) + kpp2(ω1) < 0

p1(ω2) + kpp2(ω2) > 0

p1(ω3) + kpp2(ω3) < 0

p1(ω4) + kpp2(ω4) < 0

Solving the above linear inequalities, the values of kp that stabilize the system is

obtained. The range of kp thus obtained is,

3.35 ≤ kp ≤ 190.50 (3.15)

The output is displayed in the plot inbuilt in the GUI as seen in the figure (6).

Further for all the values of kp determined, the performances like Overshoot, Rise-

time, Settling-time, Gain and Phase margin are found as discussed in the previous

section and is displayed in the GUI as seen in figure (7). Also for a given specification

a sub-set of kp values can be determines. As seen in the figure (8), for the performance

specification of Phase Margin greater than 45dB and the Overshoot less than 35%,

the subset in red and the entire set in blue are displayed.
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Fig. 6. GUI with the entire set of kp displayed for the given transfer function
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Fig. 7. GUI with all the performance displayed for the given transfer function
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Fig. 8. GUI with a sub-set of stabilizing values of kp satisfying the condition of PM

> 45dB and Overshoot < 35%
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CHAPTER IV

STABILIZING A LINEAR TIME INVARIANT SYSTEM USING A PI

CONTROLLER

In this chapter using the results obtained in Chapter II, the complete set of Propor-

tional Integral (PI) controllers are determined for a given transfer function. The flow

of text in this chapter is similar to Chapter III which dealt with pure Proportional

Controllers. The algorithm to determine the entire set of PI controllers is introduced

first followed by an example for better clarity. The GUI developed in MATLAB R©

with its features is then introduced which is followed by an illustrative example.

A. Theory and Algorithm

The theory and the algorithm to compute the entire set of stabilizing Proportional

Integral controllers for a given transfer function is derived by Bhattacharyya and

others and is introduced in [25]. An overview of the same is now presented.

Consider a plant p(s) with the transfer function

p(s) =
N(s)

D(s)
(4.1)

The controller in consideration c(s) is a Proportional Integral controller given by

c(s) = kp +
ki

s
=

kps + ki

s
(4.2)

The closed loop characteristic polynomial is then give by

δ(s, kp, ki) = D(s)s + (kps + ki)N(s) (4.3)

Let n be the degree of the characteristic polynomial δ(s, kp, ki). The objective is

to calculate the entire set of kp, ki values such that the characteristic polynomial is
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Hurwitz stable. That is all the n roots of the equation (δ(s, kp, ki) = 0) should be on

the left half of the complex plane. Thus as seen in Chapter II, if the polynomial is

Hurwitz stable, the signature should be equal to n

Writing the characteristic polynomial in equation(4.3) as even and odd part

N(s) = Ne(s) + sNo(s)

D(s) = De(s) + sDo(s)

in,

δ(s, kp, ki) = [(Do(s) + kpNo(s))s
2 + kiNe]

+s[De(s) + kiNo(s) + kpNe(s)] (4.4)

As observed in equation (4.4) both kp and ki appears both in the real and imaginary

part of δ(s, kp, ki). Similar to the approach in Chapter II, it is desirable to have the

ki in the even part and kp in the odd part of the polynomial. This can be achieved

by multiplying the characteristic polynomial by N(−s). Defining

N∗(s) = N(−s) = Ne(s)− sNo(s) (4.5)

ν(s, kp, ki) = δ(s, kp, ki)N
∗(s) (4.6)

Thus to ensure that the polynomial δ(s, kp, ki) is Hurwitz stable, the signature

of ν(s, kp, ki) is as in equation (4.7) and can be easily realized

σ(ν(s, kp, ki)) = n− (l(N(s))− r(N(s))) (4.7)

In equation (4.7) n is the degree of the characteristic polynomial δ(s, kp, ki), l(N(s))

and r(N(s)) are the number of roots of the numerator of the transfer function on the

left and the right half of the complex plane respectively. The derivation of equation

(4.7) is similar to [22]
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Thus the gain stabilization problem has been reduced to a root counting problem

for the equation ν(s, kp, ki) = 0 where it is desired to have n + r(N(s)) roots on the

left half of the complex plane and l(N(s)) roots on the right half of the complex plane.

Decomposing ν(s, kp, ki) in terms of even and odd parts of N(s) and D(s) as

follows

ν(s, kp, ki) = h1(s) + kih2(s) + g1(s) + kpg2(s)

where,

h1(s) = s2(Do(s)Ne(s)−De(s)No(s))

h2(s) = Ne(s)Ne(s)− s2No(s)No(s)

g1(s) = s[De(s)Ne(s)− s2Do(s)No(s)]

g2(s) = s[Ne(s)Ne(s)− s2No(s)No(s)]

Substituting s = jω as follows

ν(ω, kp, ki) = p1(ω) + kip2(ω) + j[q1(ω) + kpq2(ω)]

where,

p1(ω) = −ω2[Do(ω)Ne(ω)−De(ω)No(ω)]

p2(ω) = Ne(ω)Ne(ω) + ω2No(ω)No(ω)

q1(ω) = ω[De(ω)Ne(ω) + ω2Do(ω)No(ω)]

q2(ω) = ω[Ne(ω)Ne(ω) + ω2No(ω)No(ω)]

The generalized Hermite-Biehler theorem derived in [21] can be applied to ν(ω, kp, ki).

For even degree of ν(ω, kp, ki) let the real, non-negative, distinct roots with odd

multiplicity of q1 + kpq2 be

ω0 = 0 < ω1 < ω2 < ω3 · · · < ωl−1 < ∞ (4.8)
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Based on equation (2.13) and (2.12), imaginary signature for even degree ν(ω, kp, ki)

is defined as follows

γ(I) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil] · (−1)l−1sgn[q(∞)]

where

in = sgn(q1(ωn) + kpq2(ωn)) n goes from 0 to l

In the above equations ωl is defined as ∞.

In case of odd degree of ν(ω, kp, ki), let the real, non-negative, distinct roots with

odd multiplicity of q1 + kpq2 be

ω0 = 0 < ω1 < ω2 < ω3 · · · < ωl−1 (4.9)

Based on equation (2.13) and (2.12), imaginary signature for odd degree ν(ω, kp, ki)

is defined as follows

γ(I) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1] · (−1)l−1sgn[q(∞)]

where

in = sgn(q1(ωn) + kpq2(ωn)) n goes from 0 to l − 1

The signature for the polynomial ν(s, kp, ki) is known from equation (4.7). The

signature can be calculated given the transfer function. Then the set of feasible strings

are calculated that satisfy the signature condition. Let F ∗ denote the set of feasible

strings, then

F ∗ = I ∈ A|γ(I) = n− (l(N(s))− r(N(s))) (4.10)

In equation (4.10) A is the set of all possible strings.

The set of controllers in {kp, ki} space is determined for a given plant with rational
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transfer function if and only if the following conditions hold

• F ∗ is not empty that is at least one feasible string exist.

• There exist a string I = {i0, i1, i2, · · ·} ∈ F ∗ and values of ki such that for all

t = 0, 1, 2 · · · for which

N∗(jωt) 6= 0 [p1(ω) + kip2(ω)]it > 0 (4.11)

Also if there exist a set of values in ki such that the above condition is satisfied

for feasible strings I1, I2, · · · ∈ F ∗

Then the set of stabilizing ki values for a fixed kp is the unions of all ki values

satisfying

[p1(ω) + kip2(ω)]it > 0 for I1, I2, · · · (4.12)

Consider an example as follows:

Example IV.1 Consider the open-loop transfer function to be stabilized by a Pro-

portional Integral (PI) controller. The objective is to determine the entire set of PI

controllers {kp, ki} that will stabilize the given transfer function.

p(s) =
N(s)

D(s)
(4.13)

where

N(s) = s3 + 4s2 + 2s + 9

D(s) = s4 + 4s3 + 5s2 + 8s + 16

Ne(ω), No(ω), De(ω), Do(ω) are calculated

Ne(ω) = −4ω2 + 9
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No(ω) = −ω2 + 2

De(ω) = ω4 − 5ω2 + 16

Do(ω) = −4ω2 + 8

Calculating ν(ω, kp) = δ(ω, kp)N
∗(s), where δ(ω, kp) is the characteristic polynomial

ν(ω, kp) = −ω8 − 9ω6 − 42ω4 − 40ω2

+ki(ω
6 + 12ω4 − 68ω2 + 81)

+j[(13ω5 − 93ω3 + 144ω)

+kp(ω
7 + 12ω5 − 68ω3 + 81ω)] (4.14)

where we define p1(ω), p2(ω), q1(ω), q2(ω)

p1(ω) = −ω8 − 9ω6 − 42ω4 − 40ω2

p2(ω) = ω6 + 12ω4 − 68ω2 + 81

q1(ω) = 13ω5 − 93ω3 + 144ω

q2(ω) = ω7 + 12ω5 − 68ω3 + 81ω

For kp = 2.1196 determining roots of the imaginary part of ν(ω, kp) that is q1 + kpq2

that are real, non negative and have odd multiplicity

ω0 = 0 < ω1 = 1.5094 < ω2 = 1.6777 < ω3 = ∞ (4.15)

Since the degree of ν(ω, kp, ki) is even and the signature is 6 the string that satisfy

the signature condition is 1,−1, 1,−1. In this particular example only one set of valid

string was found to exist. There always exists a possibility for many valid strings.

Thus evaluating for the entire set of ki by imposing the above sign conditions on
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the real part of ν(ω, kp, ki)

p1(ω0) + kip2(ω0) > 0

p1(ω1) + kip2(ω1) < 0

p1(ω2) + kip2(ω2) > 0

p1(ω3) + kip2(ω3) < 0

Solving the above linear inequalities for different values of ki, the entire set in the

{kp, ki} space that stabilize the system is obtained and is as displayed in

figure (9)

B. GUI for Calculating the Entire Set of Proportional Integral Controllers for a LTI

System

This section deals with the development of the GUI for determining the entire set of

Proportional Integral controllers for a given transfer function based on the discussion

in the previous sections of this chapter. Like in the case of Proportional Controller,

the GUI has been developed in MATLAB R©.

1. GUI Based Calculation of Proportional Integral Values

The development of the GUI for Proportional Integral controller is on the same lines as

that developed for Proportional Controller. The input to the GUI are the Numerator

and the Denominator of the transfer function in the ‘s’ domain. For a range of kp

values given by the user linear inequalities are solved to obtain the corresponding

values of ki. Scanning a range of kp values and solving the corresponding linear

inequalities, the entire set in {kp, ki} space can be generated. The values of kp that

need to be scanned can be changed manually.
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Fig. 9. The stabilizing set of (kp, ki) values for example (IV.1)

The ‘main PI.m’ handles the overall GUI aspect of the program. This program

call functions depending on the user interaction with the GUI. The computation of

the entire set of kp, ki controllers is handled by the function ‘main PI computation.m’.

This function replaces the ‘s’ with ‘jω’ for the given transfer function. It then de-

composes the Numerator and the Denominator into even and odd polynomials.

The function ‘p q.m’ generates p1, p2, q1, q2 from the decomposed numerator and

denominator No(jω), Ne(jω), Do(jω), De(jω)

A feasible range of kp values within −100 to 100 is scanned for the possible values

of kp that may stabilize the system. This is performed by comparing the number of
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real non-negative roots with odd multiplicity obtained from the equation q1+kpq2 = 0

with the actual number of roots required. This entire computation is completed in

the function ‘determine required roots.m’ and ‘determine Kp.m

The control is then transferred to the user where the user is required to select

one value of kp against which the entire set of ki values are obtained. For a particular

value of kp selected the function ‘string gen.m’ generates a set of valid strings that

satisfy the signature equation.

‘determine ki main.m’ and ‘determine A b.m’ together solve the inequalities gen-

erated by evaluating the real part of the ν(ω, kp, ki) at different values of ω at which the

imaginary part is zero and the sign of inequalities being determined by the output of

‘string gen.m’. Based on the above computation the output of ‘determine ki main.m’

is the entire set of ki values for the selected kp.

2. GUI Based Performance Evaluation of Proportional Integral Controllers

For a given set of performance condition like overshoot, rise-time, settling-time, gain

margin and phase margin the GUI can determine the subset of stable controllers in

the {kp, ki} space that satisfy these conditions. This subset is displayed in addition

to the original set of stable controllers, enabling the user to visually see the reduction

in set of controllers.

The performance computation for the PI controller is similar to that of the P

controller which was discussed in the previous chapter. The entire two dimensional

set in the {kp, ki} space is generated initially. This set is then converted into a finite

set of points. It must be noted that by using the algorithm introduced in [25], the

set of {kp, ki} values over which the performance has to be evaluated is limited to

the finite stabilizing set obtained rather than the infinite 2d space. For each point

in the set the performance is evaluated. For the calculation of the settling time, rise
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time and overshoot the step response of the closed loop system is generated for each

{kp, ki} value. From the step response the three performance criteria are obtained.

For the calculation of the gain and phase margin the open loop transfer function is

calculated for each {kp, ki} value. This though being computationally intense, it is

handled well by MATLAB R©.

Also if the user desires, for a selected value of kp the user can view all the perfor-

mance specifications for all the corresponding value of ki. In this manner a relative

comparison can be made between different available values of ki based on the five

performance criteria. As in case of the Proportional Controllers, the above described

modules, namely ‘generating the entire stable set of controllers’, ‘subset generation

based on the user inputs’ and ‘exploring the set of stable ki values manually’ are

relatively independent of each other for the purpose of cross checking the output of

the GUI.

3. Illustrative Example

Consider the following example where for a given plant p(s) the entire set of PI

controllers is to be determined.

p(s) =
200s3 + 200s2 + 508.8

s8 + 33s7 + 459s6 + 3477s5 + 15544s4 + 3182s3 + 56856s2 + 60568s
(4.16)

As seen in the figure (10), the coefficient of the Numerator and the Denominator are

the inputs to the GUI. The entire set of {kp, ki} values that stabilizes the system is

determined by the algorithm discussed earlier in this section.

The steps involved in achieving this can be seen in the MARLAB R© command

window if desired. Ne(ω), No(ω), De(ω), Do(ω) are calculated and displayed as follows

Ne(ω) = −200ω2 + 508.8



42

Fig. 10. GUI for determining the entire set of Proportional Integral controllers for a

given transfer function

No(ω) = −200ω2 + 5.32

De(ω) = ω8 − 459ω6 + 15544ω4 − 56856ω2

Do(ω) = −33ω8 + 3477ω6 − 3182ω2 + 60568

Calculating ν(ω, kp, ki) = δ(ω, kp, ki)N
∗(s), where δ(ω, kp, ki) is the characteristic

polynomial

ν(ω, kp, ki) = −200ω12 + 85200ω10 − 2396609.6ω8

+8965702.4ω6 + 13732601.6ω4 − 30816998.4ω2

+ki(40000ω6 + 40000ω4 − 203520ω2
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+258877.44)

+jω[(6400ω10− 603091.2ω8 − 2705939ω6

+7166387.2ω4 − 28928332.8ω2)

+kp(40000ω6 + 40000ω4 − 203520ω2

+258877.44)]

where we define p1(ω), p2(ω), q1(ω), q2(ω)

p1(ω) = −200ω12 + 85200ω10 − 2396609.6ω8

+8965702.4ω6 + 13732601.6ω4 − 30816998.4ω2

p2(ω) = 40000ω6 + 40000ω4 − 203520ω2

+258877.44

q1(ω) = ω(6400ω10− 603091.2ω8 − 2705939ω6

+7166387.2ω4 − 28928332.8ω2)

q2(ω) = ω(40000ω6 + 40000ω4 − 203520ω2

+258877.44)

Determining roots of q1 + kpq2 = 0 that are real, non negative and odd multiplicity

for kp value 216.7391

ω0 = 0 < ω1 = 1.1077 < ω2 = 1.2548 < ω3 = 3.6104 < ω4 = 9.0891 < ω5 = ∞
(4.17)

Since the degree of ν(ω, kp) given by n + m is even and the signature is 10 the string

that satisfy the signature condition is 1,−1, 1,−1, 1,−1. In this particular example

only one set of valid string was found to exist. There always exists a possibility for
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many valid strings.

Thus evaluating for the entire set of ki by imposing the above sign conditions on

the real part of ν(ω, kp, ki) for a given value of kp

p1(ω0) + kpp2(ω0) > 0

p1(ω1) + kpp2(ω1) < 0

p1(ω2) + kip2(ω2) > 0

p1(ω3) + kip2(ω3) < 0

p1(ω4) + kip2(ω4) < 0

p1(ω5) + kip2(ω5) < 0

Solving the above linear inequalities, the values of ki, for a given kp that stabilize the

system is obtained. For a fixed value of kp = 216.7391, the range of ki thus obtained

is

0 ≤ ki ≤ 40.3053 (4.18)

The output is displayed in the plot inbuilt in the GUI as seen in the figure (11).

Scanning the entire range of kp and solving linear inequalities to obtain the corre-

sponding values of ki the entire stable set PI controllers are obtained as seen in figure

(12). This is obtained in a separate pop up window on clicking the ‘2d plot’ button

available on the GUI. Further in a 1d set of fixed kp and varying ki, the GUI can de-

termined, the performances like Overshoot, Rise-time, Settling-time, Gain and Phase

margin are found as discussed in the previous section and is displayed in the GUI

as seen in figure (13). Also for a given specification a sub-set of stabilizing {kp, ki}
values can be determined. As seen in the figure (14), for the performance specifica-

tion of Phase Margin greater than 7dB and the Rise-time less than 2sec, the subset

satisfying the performance criteria in red and the entire stabilizing set in blue are
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Fig. 11. GUI with the entire set of ki for a fixed value of kp

displayed.
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Fig. 12. GUI with the entire set of kp displayed for the given transfer function
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Fig. 13. GUI with all the performance displayed for the given transfer function
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Fig. 14. GUI with a subset of stabilizing values in {kp, ki} space satisfying the condi-

tion of PM > 7dB and Rise-time < 2sec
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CHAPTER V

STABILIZING A LINEAR TIME INVARIANT SYSTEM USING A PID

CONTROLLER

Using the Generalized Hermite-Biehler theorem introduced in [21], in Chapter III and

IV the algorithm and the GUI to calculate the entire set of P and PI controllers were

presented. In this chapter the algorithm to calculate the entire set of PID controllers

is introduced. As it will be seen from the following discussion the logic in calculation

of the entire set of PID controller is similar to calculation of entire set of P and PI

controllers for a given transfer function.

A. Theory and Algorithm

The theory and the algorithm to compute the entire set of stabilizing Proportional In-

tegral Derivative controllers for a given transfer function is derived by Bhattacharyya

and others and is introduced in [3]. An overview of the same is now presented.

Consider a plant p(s) with the transfer function

p(s) =
N(s)

D(s)
(5.1)

The controller in consideration c(s) is a Proportional Integral Derivative controller

given by

c(s) = kp +
ki

s
+ kds =

kds
2 + kps + ki

s
(5.2)

The closed loop characteristic polynomial is then given by

δ(s, kp, ki, kd) = D(s)s + (kds
2 + kps + ki)N(s) (5.3)

Let n be the degree of the characteristic polynomial δ(s, kp, ki, kd). The objective is
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to calculate the entire set of {kp, ki, kd} values such that the characteristic polynomial

is Hurwitz stable. That is all the n roots of the equation (δ(s, kp, ki, kd) = 0) are on

the left half of the complex plane. Thus as seen in Chapter II, if the polynomial is

Hurwitz stable, the signature (σ(p)) should be equal to n.

Writing the characteristic polynomial in equation (5.3) as even and odd part,

N(s) = Ne(s) + sNo(s)

D(s) = De(s) + sDo(s)

in

δ(s, kp, ki, kd) = [(Do(s) + kdNe(s) + kpNo(s))s
2 + kiNe(s)]

+s[De(s) + kpNe(s) + kpNe(s)s
2 + kiNo(s)] (5.4)

As observed in equation (5.4) kp, ki and kd appears both in the real and imaginary

part of δ(s, kp, ki, kd). Similar to the approach in case of pure Proportional Controllers

or Proportional Integral controllers in Chapter III, it is desirable to have the ki and

kd only in the even part and kp only in the odd part of the polynomial. This can be

achieved by multiplying the characteristic polynomial by N(−s). Defining

N?(s) = N(−s) = Ne(s)− sNo(s) (5.5)

ν(s, kp, ki, kd) = δ(s, kp, ki, kd)N
∗(s) (5.6)

Thus to ensure that the polynomial δ(s, kp, ki, kd) is Hurwitz stable, the signature

of ν(s, kp, ki, kd) is as in equation (5.7) and can be easily realized

σ(ν(s, kp, ki, kd)) = n− (l(N(s))− r(N(s))) (5.7)

The derivation of equation (5.7) is similar to [22]
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Thus the gain stabilization problem has been reduced to a root counting problem

for the equation ν(s, kp, ki, kd) = 0 where it is desired to have n + r(N(s)) roots on

the left half of the complex plane and l(N(s)) roots on the right half of the complex

plane.

Decomposing ν(s, kp, ki, kd) in terms of even and odd parts of N(s) and D(s) as

under

ν(s, kp, ki, kd) = h1(s) + (ki + kds
2)h2(s) + g1(s) + kpg2(s)

where,

h1(s) = s2(Do(s)Ne(s)−De(s)No(s))

h2(s) = Ne(s)Ne(s)− s2No(s)No(s)

g1(s) = s[De(s)Ne(s)− s2Do(s)No(s)]

g2(s) = s[Ne(s)Ne(s)− s2No(s)No(s)]

Substituting s = jω as follows

ν(ω, kp, ki, kd) = p1(ω) + (ki − kdω
2)p2(ω) + j[q1(ω) + kpq2(ω)]

where,

p1(ω) = −ω2[Do(ω)Ne(ω)−De(ω)No(ω)]

p2(ω) = Ne(ω)Ne(ω) + ω2No(ω)No(ω)

q1(ω) = ω[De(ω)Ne(ω) + ω2Do(ω)No(ω)]

q2(ω) = ω[Ne(ω)Ne(ω) + ω2No(ω)No(ω)]

The generalized Hermite-Biehler theorem derived in [21] can be applied to ν(ω, kp, ki, kd).

For even degree of ν(ω, kp, ki, kd) let the real, non-negative, distinct roots with
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odd multiplicity of the imaginary part of ν(ω, kp, ki) which is q1 + kpq2 be

ω0 = 0 < ω1 < ω2 < ω3 · · · < ωl−1ω = ∞ (5.8)

Based on equation (2.13) and (2.12), imaginary signature for even degree of ν(ω, kp, ki, kd)

is defined as follows

γ(I) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 +−1lil] · (−1)l−1sgn[q(∞)] (5.9)

where

in = sgn(q1(ωn) + kpq2(ωn)) n goes from 0 to l

In the above equations ωl is defined as ∞.

For odd degree of ν(ω, kp, ki, kd) let the real, non-negative, distinct roots with

odd multiplicity of the imaginary part of ν(ω, kp, ki) which is q1 + kpq2 be

ω0 = 0 < ω1 < ω2 < ω3 · · · < ωl−1 (5.10)

Based on equation (2.13) and (2.12), imaginary signature for odd degree of ν(ω, kp, ki, kd)

is defined as follows

γ(I) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1] · (−1)l−1sgn[q(∞)] (5.11)

where

in = sgn(q1(ωn) + kpq2(ωn)) n goes from 0 to l − 1

The signature for the polynomial ν(s, kp, ki, kd) is known from equation (5.7).

The signature can be calculated given the transfer function. Then the set of feasible

strings are calculated that satisfy the signature condition.

Let F ∗ denote the set of feasible strings, then

F ∗ = I ∈ Akp |γ(I) = n− (l(N(s))− r(N(s))) (5.12)
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In equation (5.12) A is the entire set of strings.

The set of controllers in {kp, ki, kd} space is determined for a given plant with

rational transfer function if and only if the following conditions hold

• F ∗ is not empty that is at least one feasible string exist.

• There exist a string I = {i0, i1, i2, · · ·} ∈ F ∗ and values of ki and kd such that

for all t = 0, 1, 2 · · · for which

N∗(jωt) 6= 0 [p1(ω) + (ki − kdω
2)p2(ω)]it > 0 (5.13)

Also if there exist a set of values in ki and kd such that the above condition is

satisfied for feasible strings I1, I2, · · · ∈ F ∗

Then the set of stabilizing {ki, kd} values for a fixed kp is the unions of all

{ki, kd} sets satisfying

[p1(ω) + (ki − kdω
2)p2(ω)]it > 0 for I1, I2, · · · (5.14)

Consider an example as follows:

Example V.1 Consider the open-loop transfer function to be stabilized by a Propor-

tional Integral Derivative (PID) controller. The objective is to determine the entire

set of PID controllers {kp, ki, kd} that will stabilize the given transfer function.

p(s) =
N(s)

D(s)
(5.15)

where

N(s) = s3 + 6s2 − 2s + 1

D(s) = s5 + 3s4 + 29s3 + 15s2 − 3s + 60
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Ne(ω), No(ω), De(ω), Do(ω) are calculated

Ne(ω) = −6ω2 + 1

No(ω) = −ω2 − 2

De(ω) = 3ω4 − 15ω2 + 60

Do(ω) = ω4 − 29ω2 − 3

Calculating ν(ω, kp, ki, kd) = δ(ω, kp, ki, kd)N
∗(s), where δ(ω, kp, ki, kd) is the charac-

teristic polynomial

ν(ω, kp) = 3ω8 − 166ω6 − 19ω4 − 117ω2

+(ki − kdω
2)(ω6 + 40ω4 − 8ω2 + 1)

+j[(−ω9 + 9ω7 + 154ω5 − 369ω3 + 60ω)

+kp(ω
7 + 40ω5 − 8ω3 + ω)]

where we define p1(ω), p2(ω), q1(ω), q2(ω)

p1(ω) = 3ω8 − 166ω6 − 19ω4 − 117ω2

p2(ω) = ω6 + 40ω4 − 8ω2 + 1

q1(ω) = −ω9 + 9ω7 + 154ω5 − 369ω3 + 60ω

q2(ω) = ω7 + 40ω5 − 8ω3 + ω

For kp = 8.0128 determining roots of q1 + kpq2 that are real, non negative and have

odd multiplicity

ω0 = 0 < ω1 = 0.4496 < ω2 = 0.8296 < ω3 = 5.6212 (5.16)

Since the degree of ν(ω, kp, ki, kd) given by is odd and the signature is 7 the string
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that satisfy the signature condition is 1,−1, 1,−1. In this particular example only

one set of valid string was found to exist. There always exists a possibility for many

valid strings.

Thus evaluating for the entire set of {ki, kd} by imposing the above sign condi-

tions on the real part of ν(ω, kp, ki, kd)

p1(ω0) + (ki − ω2)p2(ω0) > 0

p1(ω1) + (ki − ω2)p2(ω1) < 0

p1(ω2) + (ki − ω2)p2(ω2) > 0

p1(ω3) + (ki − ω2)p2(ω3) < 0

Solving the above linear inequalities, the entire set of controllers in the {ki, kd} space

for a fixed value of kp = 8.0128 is obtained and is as seen in the figure (15). Also by

varying kp similar linear inequalities in the {ki, kd} space can be generated. The plot

of the entire set of PID controllers that stabilize the given system is as seen in the

figure (16).

B. GUI for Calculating the Entire Set of Proportional Integral Derivative Controllers

for a LTI System

As in the case with P, PI controllers the GUI for determining the entire set of PID

controllers that will stabilize the system has been developed in MATLAB R©. Like

the other GUIs, this too has three modules namely, determining the entire stabilizing

set in {kp, ki, kd} space for the given transfer function, determining the subset of

controllers that satisfy the given performance specification and for a given set of

controllers determining the performance specification like gain margin, phase margin,

rise-time, settling-time and overshoot. For a chosen PID value, the GUI also displays



56

5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Ki

K
d

Fig. 15. Stabilizing values in {ki, kd} space for a fixed value of kp

the unit step response and the output of the error signal.

1. GUI Based Calculation of Proportional Integral Derivative Values

The GUI determines the entire set of PID values given the transfer function. A 3d

set in {kp, ki, kd} space can be viewed or for a more detailed analysis for a selected

value of kp a 2d set in {ki, kd} space can be viewed also. This feature has been

developed on the same lines as the previous two GUI’s discussed for the Proportional

and Proportional Integral controller.

The main program that initializes the GUI is ‘main PID.m’. This program calls
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Fig. 16. The stabilizing set of {kp, ki, kd} values for example (V.1)

other programs depending on the user input. The program that is responsible for the

basic computation is ‘main PID computation.m’. The entire code is functional based

enabling each code to be independently tested and for purposed of recycling the code

for other programs. The two inputs to the GUI are numerator and the denominator

of the transfer function whose PID values are to be determined. These values are

transferred to ‘main PID computation.m’.

‘main PID computation.m’ first calls the function ‘s2jw.m’ that converts the nu-

merator and the denominator from the ‘s’ domain in terms of ‘jω’. The output of

this function namely the numerator and the denominator in ‘jω’ terms is decomposed

into even and odd parts by the function ‘N jw e o.m’ and ’D jw e o.m’ respectively.

The function ‘p q.m’ converts the decomposed even and odd parts of the nu-
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merator and denominator into p1, p2, q1, q2. This involves the calculation of the

ν(ω, kp, ki, kd) which is the product of the characteristic polynomial and conjugate

of the numerator and then generating the above polynomials p1, p2, q1, q2.

The function ‘determine required roots.m’ and ‘determine Kp.m’ determine the

set of kp values that satisfies the necessary condition for stability. This is done by

calculating the minimum number of real non negative roots with odd multiplicity and

comparing them with actual roots of the imaginary part of ν(ω, kp, ki, kd) for various

values of kp ranging from −500 to 500.

The control is then transferred to the user who selects a value of kp from the

available values. The real, non negative, roots with odd multiplicity of the imaginary

part of ν(ω, kp, ki, kd) = 0 is determined. Note the imaginary part for a fixed value

of kp is a function of only ω. The function ‘string gen.m’, determine A b.m and

‘determine Ki Kd ineq.m’ together solve linear inequalities in {ki, kd} space generated

by evaluating the real part of ν(ω, kp, ki, kd) at the various values of ω. Again note

that the real part of ν(ω, kp, ki, kd) for a fixed values of ω are functions of ki and kd.

2. GUI Based Performance Evaluation of Proportional Integral Derivative

Controllers

Like the previous GUI’s developed for Proportional and Proportional Integral con-

trollers the GUI developed for Proportional Integral Derivative controller can also

determine the subset of stabilizing controllers that satisfy the given performance cri-

teria like overshoot, rise-time, settling-time, gain margin and phase margin. For a

selected value of kp a 2d stabilizing set in {ki, kd} space is generated. This set is then

divided into finite points and is analyzed against each specified performance criteria.

This function is performed by ’main determ subset.m’. This function calls other sub

functions like ’stepspecs.m’ which determines the overshoot, rise-time, settling-time
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of the closed loop transfer function.

Also the GUI can also display the performance for selected values of kp, ki, kd.

This is handled by another sub function ’view perfm.m’. This enables the user to

manually explore the set and in general determine the trend in increase or decrease

of performance criteria. Moreover during this manual exploration the plot of the step

response and the error signal are also displayed.

3. Illustrative Example

Consider the following example where for a given plant p(s) the entire set of PID

controllers is to be determined.

p(s) =
4s3 + 4s + 1

s8 + 13s7 + 75s6 + 249s5 + 517s4 + 583s3 + 557s2 + 155s + 25
(5.17)

As seen in the figure (17), the coefficient of the Numerator and the Denominator

are the inputs to the GUI. The entire set of {kp, ki, kd} values that stabilizes the

system is determined by the algorithm discussed earlier in this section.

The steps involved in achieving this can be seen in the MATLAB R© command

window if desired. Ne(ω), No(ω), De(ω), Do(ω) are calculated and displayed as follows

Ne(ω) = 1

No(ω) = −4ω2 + 4

De(ω) = ω8 − 75ω6 + 517ω4 − 557ω2 + 25

Do(ω) = −13ω6 + 249ω4 − 583ω2 + 155

Calculating ν(ω, kp, ki, kd) = δ(ω, kp, ki, kd)N
∗(s), where δ(ω, kp, ki, kd) is the charac-

teristic polynomial

ν(ω, kp, ki, kd) = −4ω12 + 304ω10− 2355ω8
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Fig. 17. GUI for determining the entire set of Proportional Integral Derivative con-

trollers for a given transfer function

+4047ω6 − 1745ω4 − 55ω2

+(ki − kdω
2)(16ω6 − 32ω4 + 16ω2 + 1

+jω[52ω10− 1047ω8 + 3253ω6

−2435ω4 + 63ω2 + 25

+kp(16ω6 − 32ω4 + 16ω2 + 1)]

where we define p1(ω), p2(ω), q1(ω), q2(ω)

p1(ω) = −4ω12 + 304ω10− 2355ω8

+4047ω6 − 1745ω4 − 55ω2

p2(ω) = (ki − kdω
2)(16ω6 − 32ω4 + 16ω2 + 1
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q1(ω) = ω(52ω10− 1047ω8 + 3253ω6

−2435ω4 + 63ω2 + 25)

q2(ω) = ω(16ω6 − 32ω4 + 16ω2 + 1)

Determining roots of q1 + kpq2 = 0 that are real, non negative and odd multiplicity

for kp value 99.9361

ω0 = 0 < ω1 = 0.7842 < ω2 = 0.9945 < ω3 = 2.1388 < ω4 = 3.7441 < ω5 = ∞
(5.18)

Since the degree of ν(ω, kp) given by n + m is even and the signature is 10 the string

that satisfy the signature condition is 1,−1, 1,−1, 1,−1. In this particular example

only one set of valid string was found to exist. There always exists a possibility for

many valid strings.

Thus evaluating for the entire set of {ki, kd} values by imposing the above sign

conditions on the real part of ν(ω, kp, ki, kd) for a given value of kp.

p1(ω0) + (ki − kdω
2
0)p2(ω0) > 0

p1(ω1) + (ki − kdω
2
0)p2(ω1) < 0

p1(ω2) + (ki − kdω
2
0)p2(ω2) > 0

p1(ω3) + (ki − kdω
2
0)p2(ω3) < 0

p1(ω4) + (ki − kdω
2
0)p2(ω4) < 0

p1(ω5) + (ki − kdω
2
0)p2(ω5) < 0

Solving the above linear inequalities, the 2d set in the {ki, kd} space, for a given

kp that stabilize the system is obtained. For a fixed value of kp = 99.9361, the 2d

set in the {ki, kd} space is as seen in the figure (18). Scanning the entire range of

kp and solving linear inequalities to obtain the corresponding values in the {ki, kd}
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Fig. 18. GUI with the entire set of {ki, kd} for a fixed value of kp

space the entire stable set PID controllers are obtained as seen in figure (19). This

is obtained in a separate pop up window when the ’3d plot’ button available on

the GUI is enabled. Further in a 2d set in {ki, kd} space for a fixed kp, the GUI

can determined, the performances like Overshoot, Rise-time, Settling-time, Gain and

Phase margin as discussed in the previous section and is displayed in the GUI as seen

in figure (20). Also for a given specification a sub-set of stabilizing {kp, ki, kd} values

can be determined. As seen in the figure (21), the performance specification of Gain

Margin greater than 1.2dB and the Overshoot less than 30%, the subset satisfying

the performance criteria in red and the entire stabilizing set in blue are displayed.
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Fig. 19. GUI with the entire set of {kp, ki, kd} displayed for the given transfer function
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Fig. 20. GUI with the performance displayed for a selected value of PID controller
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Fig. 21. GUI with a subset of stabilizing values in {ki, kd} space satisfying the condi-

tion of GM > 1.2dB and Overshoot < 30%
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CHAPTER VI

A MODEL FREE APPROACH IN STABILIZING A LTI SYSTEM USING A PID

CONTROLLER

In the previous chapters the algorithms discussed for determining the set of Propor-

tional, Proportional Integral, Proportional Integral Derivative controllers required a

Mathematical model of the system. In this chapter introduced is the model free

approach where only the frequency response of the system to be stabilized is re-

quired. The frequency response can be easily obtained by performing experiments

and does not require any modeling of the plant in terms of transfer function or state

space. In the case when the plant is unstable, it could be stabilized by a known

feedback compensator, and a frequency response then obtained. From this frequency

response for the stable setup the frequency response for the unstable plant can be

determined by dividing out the known compensator. Further in this chapter is in-

troduced the GUI built in MATLAB R©, which takes the frequency response of the

system as the input and constructs a 3d set in {kp, ki, kd} space that will stabilize the

system. Also is introduced the algorithm to determine the subset of controllers that

satisfy the specification on the gain and phase margin. The GUI also incorporates

the performance based evaluation where the gain and the phase margin along with

the frequency response of the system are the inputs and the output being the subset

of stable controllers that meet the performance requirements.

A. Theory and Algorithm

The theory and the algorithm to compute the entire set of stabilizing Proportional

Integral Derivative controllers given just the frequency response of the system is

derived by Bhattacharyya and others and is introduced in [4]. An overview of the
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same is now presented.

Consider the plant p(s) = N(s)
D(s)

that is to be stabilized by a PID controller c(s).

It is to be noted that the actual transfer function p(s) is not known, but the frequency

response of the same is available. Also let the PID controller c(s) be of the form

c(s) =
kds

2 + kps + ki

s(1 + sT )
(6.1)

Equation (6.1) is a modified PID controller where T is a very small value. (1 + sT )

is introduced to avoid a pure differentiator.

The characteristic polynomial δ(s) is given as follows

δ(s, kp, ki, kd) = s(1 + sT )D(s) + (kds
2 + kps + ki)N(s) (6.2)

Let n be the degree of the denominator of the plant under consideration. The

objective is to calculate the entire set of {kp, ki, kd} values such that the charac-

teristic polynomial is Hurwitz stable. That is all the (n + 2) roots of the equation

(δ(s, kp, ki, kd) = 0) are on the left half of the complex plane. Thus as seen in Chapter

II, if the polynomial is Hurwitz stable, the signature (σ(p)) should be equal to (n+2)

Similarly as seen with a polynomial, the concept of signature is now extended to

a rational function

R(s) =
A(s)

B(s)
(6.3)

Then if z+
R , p+

R, z−R , p−R denote the number of open right half zeros and poles and left

half zeros and poles respectively, the signature of R(s) is given by

σ(R) = z−R − z+
R − (p−R − p+

R) (6.4)

Defining π(s) as follows

π(s, kp, ki, kd) =
δ(s, kp, ki, kd)

N(s)
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= s(1 + sT ) + (kds
2 + kps + ki)p(s) (6.5)

As seen in the equation (6.5) if the equation is decomposed into real and imaginary

parts, both the parts would be still dependent on kp, ki, kd. As seen in the previous

chapters when dealing with the Proportional, Proportional Integral and Proportional

Integral Derivative controllers for a model based controller in this case too the stabi-

lization problem is converted to a root counting problem by multiplying p(−s).

Defining ν(s) as follows

ν(s, kp, ki, kd) = π(s, kp, ki, kd)p(−s)

= s(1 + sT )p(−s) + (kds
2 + kps + ki)p(s)p(−s) (6.6)

For the rational function ν(s, kp, ki, kd) to be stable, the signature condition required

is as follows

σ(ν(s, kp, ki, kd)) = n−m + 2z+ + 2 (6.7)

In equation (6.7) n,m, z+ are degree of the numerator, degree of the denominator and

the total number of right half zeros of the system under consideration respectively.

For a detailed proof on evaluation of the signature for ν(s) refer [4].

Further in the calculation of the signature of ν(s, kp, ki, kd), n−m is calculated

by evaluating the high frequency slope of the magnitude of the plot of p(jω). Also

z+ can be evaluated from the phase plot as follows for a stable system

∆∞
0 [φ(ω)] = −[(n−m) + 2z+]

π

2
(6.8)

In case of an unstable system, required is a stabilizing controller c(s) and the frequency

response of the corresponding stable closed-loop system g(jω). From the closed loop

frequency response, the frequency response of the original system p(jω) is calculated
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as follows

p(jω) =
g(jω)

c(jω)(1− p(jω))
(6.9)

The high frequency slope rp of the magnitude of p(jω) is calculated. Also the con-

troller’s relative degree rc and the total number of zeros in the right half of the

complex plane z+
c is calculated. z+ is then calculated as follows

z+ =
1

2
[−rp − rc − 2z+

c − σ(g)]

where

σ(g) =
2

π
∆∞

0
6 p(jω)

Thus the σ(ν(s, kp, ki, kd)) for both an unstable and a stable system can be deter-

mined.

In equation (6.6) replacing s by jω

ν(ω, kp, ki, kd) = jω(1 + jωT )p(−jω) + (ki + jωkp − ω2kd)p(jω)p(−jω)

= (ki − kdω
2)|p(jω)|2 − ω2Tpr(ω) + ωpi(ω)

+jω(kp|p(jω)|2 + pr(ω) + ωTpi(ω)) (6.10)

In equation (6.10) it is now observed that the real part of ν(jω) is dependent on on

ki, kd while the imaginary part is dependent only on kp. Thus defining

νr(ω, ki, kd) = (ki − kdω
2)|p(jω)|2 − ω2Tpr(ω) + ωpi(ω) (6.11)

νi(ω, kp) = kp|p(jω)|2 + pr(ω) + ωTpi(ω) (6.12)

ν(ω, kp, ki, kd) is now defined as follows

ν(ω, kp, ki, kd) = νr(ω, ki, kd) + jωνi(ω, kp) (6.13)
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Applying the Generalized Hermite-Biehler theorem derived in [21], evaluating νi(jω, kp) =

0. For a fixed value of kp let the real, non negative roots with odd multiplicity be as

follows.

ω0 = 0 < ω1 < ω2 < ω3 · · · < ωl−1 < ∞ (6.14)

These roots can be evaluated using the only information available, the frequency

response of the system as follows.

kp = −pr(ω) + ωTpi(ω)

|p(jω)|2

= −cosφ(ω) + ωTsinφ(ω)

|p(jω)| (6.15)

Calculating valid strings I = [i0, i1, i2, · · · , il] depending on n−m being even or odd.

In the case when n−m is even the strings are evaluated as follows

σ(ν(s)) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil] · (−1)l−1sgn[q(∞)]

where

in = sgn(q1(ωn)) n goes from 0 to l

Also in the above equation ω0 is defined as 0 and ωl is defined as ∞. In the case when

n−m is odd ωl and il does not exist and hence σ(ν(s)) reduces to

σ(ν(s)) = [i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1] · (−1)l−1sgn[q(∞)]

where

in = sgn(q1(ωn)) n goes from 0 to l − 1

For a fixed value of kp, the entire set of {ki, kd} controllers stabilizing the system

can be calculated by solving inequalities generated by evaluating the real part of

ν(ω, ki, kd) at the values of ω determined. The sign of the inequalities are decided by
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the valid strings I.

νr(jωt, ki, kd)it > 0

ki − kdω
2
t +

ωtsinφ(ωt)− ω2
t Tcosφ(ωt)

|p(jωt)| it > 0

By sweeping over a range of kp and solving the corresponding linear inequalities to

obtain the set of {ki, kd} values, the entire set of stabilizing controllers in {kp, ki, kd}
space can be generated.

Moreover the values over which kp has to be swept can also be determined. The

kp values to be selected have to be such that on solving νi(ω, kp) for values of ω they

generate a minimum of k real, non-negative roots with odd multiplicity where k is

given by

k =
n−m + 2z+ + 2

2
− 1 if n−m is even

k =
n−m + 2z+ + 3

2
− 1 if n−m is odd

Consider an example as follows:

Example VI.1 Consider a plant p(s) whose frequency response p(jω) is obtained and

is as seen in the figure (22) The objective is to determine the entire set of PID

controllers {kp, ki, kd} that will stabilize the given system. Calculating the entire set

of PID controller for the system using the algorithm discussed. The signature for the

rational function ν(ω, kp, ki, kd) is as follows

ν(ω, kp, ki, kd) = n−m + 2z+ + 2 (6.16)

Where n−m is calculated from the high frequency slope of the magnitude of p(jω).

From figure (22), the high frequency slope is calculated to −60dB/decade and hence

n−m is 3.
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Fig. 22. Bode plot of the plant p(s)

As the system under consideration is stable, p+ is zero and hence z+ can be

calculated as follows

∆∞
0 [φ(ω)] = −[(n−m) + 2z+]

π

2
(6.17)

The total change of phase as seen from the phase plot in figure (22) is −6π
2

and hence

z+ is 2.

The signature of the ν(jω, kp, ki, kd) can now be determined and is given by

σ(ν(jω, kp, ki, kd)) = 3 + 2(2) + 2 = 9 (6.18)

Also as n−m is odd, the valid strings can be generated as follows

[i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1] · (−1)l−1j] = 9 (6.19)

where,

j = sgn[νi(0, kp)] where kp is fixed (6.20)



73

The equation (6.19) can be satisfied only if l ≥ 4. Figure (23) the plot of g(ω) where

g(ω) is defined as follows

kp = −cosφ(ω) + ωTsinφ(ω)

|p(jω)| = g(ω) (6.21)

As seen in the figure (23) the maximum number of real, non negative roots are 4 and

including ω0 defined earlier is 5, which is also the minimum number of required roots

(l + 1) to satisfy the signature condition. The range of kp that satisfy this condition

is from −23 to 19. From the feasible values of kp selecting kp = 10. The values of ω

for which g(ω) is 10 are as follows

ω1 = 0.4536 < ω2 = 1.0163 < ω3 = 3.5282 < ω4 = 109.4055 (6.22)

The corresponding value of valid strings is then given by I = 1, -1, 1, -1, 1.

Generating linear inequalities in the {ki, kd} space by evaluating νr(ω, ki, kd) at

the values of ω the entire set of stabilizing controllers for a particular value of kp can

be obtained.

The linear inequalities generated for kp = 10

ki > 0

ki − 0.2057kd < 9.1321

ki − 1.0328kd > −15.3594

ki − 12.4479kd < 350.3452

ki − 11969.5569kd > −144209721.1202

Solving the above linear inequalities, the entire set of controllers in the {ki, kd} space

for a fixed value of kp = 10 is obtained and is as seen in the figure (24). Also by

varying kp similar linear inequalities in the {ki, kd} space can be generated. The plot
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of the entire set of PID controllers that stabilize the given system is as seen in the

figure (25)

10
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1

10
2

Frequency (w)

g(w) vs. w

Fig. 23. Plot of g(ω) against varying values of frequency ω

B. GUI for Model Free Approach for Calculating the Entire Set of Proportional

Integral Derivative Controllers for a LTI System

As seen in the previous section the entire set of PID values that can stabilize the

system can be calculated just using the frequency response, which in turn can be

obtained by experimental evaluation. A GUI has been developed in MATLAB R© to

bring this theory closer to the user. The only inputs to the GUI is the Bode plot

of the system and the GUI will generate a 3d set in the {kp, ki, kd} space. The GUI

developed for model free approach though has got relatively less number of features

than the Model based approach. The GUI does the basic calculation of the entire
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Fig. 24. Stabilizing values in {ki, kd} space for a fixed value of kp

stabilizing set for a given system. Also with respect to determining the subset of

stabilizing controllers for the given performance specification, the GUI can handle

only Gain and Phase margin. The speed of calculating the subset is much higher

than the model based approach though.

1. GUI Based Calculation of Proportional Integral Derivative Values

The input to the GUI is the bode plot of the system under consideration. The user

is required to store the input as a ‘.txt’ file in the same directory in which the GUI

is present. Also the file has to be named as ‘bode data.txt’. The requirement on
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Fig. 25. The stabilizing set of {kp, ki, kd} values for VI.1

the text file is that it must contain three columns of data having the magnitude, the

phase in degrees and the corresponding frequency at which it was observed. This is

the only input required for a stable system. For an unstable system the number of

poles in the right half of the complex plane is also required. An alternative to this

approach is to stabilize the system with one known controller (not necessarily PID)

and to follow the algorithm as discussed in the previous section. For unstable system,

the GUI handles only the first method where the number of poles in the right half of

the complex plane must be known.

The input and the outputs to the GUI is controlled by the program ‘main data PID.m’.

To initiate the GUI it is required to run this program. This program calls other pro-

grams depending upon the interaction between the user and the GUI. The base pro-

gram that finds the stabilizing set is ‘main data PID computation.m’. The GUI does

not display the steps in achieving the final set of PID controllers that will stabilize
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the system. The user if requires can see all the steps in the MATLAB R© command

window.

The program ‘determine high f slope.m’ calculates the high frequency slope which

as seen in the previous section is n−m. ‘determine net change phase.m’ calculates the

total net change in phase of the bode plot, which is used in calculating z+. Both n−m

and z+ is required to calculate the signature. Also ‘determine min roots odd mult.m’

determines the total number of minimum roots required, which helps in calculating

the range of feasible kp values.

The function ‘determine all kp.m’ is a relatively complex function that calculates

all the values of kp and the corresponding values of ω at which the νi(ω, k i, k d) reduce

to zero. The range of kp values scanned is from -5000 to 5000. Due to limitations of

programming some times erroneous results may occur. This occurs when there is a

sudden change in kp values as the function g(ω) progress. During the experimental

evaluation of the program the maximum change observed was from 1000 to −1000

and hence the value of kp to be scanned ranges from −5000 to 5000. Though there

can be no guarantee of kp exceeding this range, it can be mitigated by increasing the

range of kp values scanned. A plot of g(ω) is also readily available and the user can

intervene the running of the program and increase the kp range if desired.

The GUI then transfers control to the user who selects a desired value of kp corre-

sponding to which the entire set of controllers in the {ki, kd} space is generated. This

is done by ‘string gen MF.m’, ‘determine A B c.m’ and ‘determine Ki Kd ineq.m’,

which together generate the set of linear inequalities in the {ki, kd} space where the

inequality sign is decided by the function ‘string gen MF.m’
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2. Illustrative Example

Consider the following example where for a frequency response of the plant the entire

set of PID controllers is to be determined. The frequency response obtained for plant

p(s) is given by p(jω). As seen from the figure (26). The obtained frequency response

and the number of roots of the numerator of the transfer function which are on the

right half of the complex plane z+ are the only inputs to the GUI.

Fig. 26. GUI for determining the entire set of Proportional Integral Derivative con-

trollers given the frequency response of the system

The steps involved in obtaining the entire set of PID controllers can be viewed in
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the MATLAB R© command window if desired. The signature for the rational function

ν(ω, kp, ki, kd) for this example is computed using the high frequency slope n−m of the

magnitude of the bode plot. The displayed output is n−m = 3 and ν(ω, kp, ki, kd) = 7.

The plot of g(ω) which is required in the computation of set of kp values is also

an output during the calculations of the GUI. This plot of g(ω) can be used to verify

the calculations done by the GUI. The plot of g(ω) is displayed in figure (27). The

Fig. 27. Plot of g(ω) against varying frequency

range of kp generated is displayed in the figure inbuilt in the GUI as seen in figure(28)

At this point the control of the program is transfered to the user, who is required to

select the desired kp value against which the set in {ki, kd} space is displayed. For kp

value of −5 the output of the GUI is as seen in the figure(29) This was generated by

generating linear inequalities (displayed below) in the {ki, kd} space

ki < 0



80

Fig. 28. The GUI with the range of feasible kp values displayed for the given bode

plot

ki − 0.0713kd > 0.41223

ki − 18.8484kd < 163.9076

ki − 3959.1103kd > −15574817.7108

(6.23)

Also the GUI can generate the entire 3d PID set. This set is generated by computing

the set of ki, kd values by varying kp over the generated feasible set. The generated

3d PID set is displayed in a separate pop-up window and is seen in figure (30)
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Fig. 29. The GUI with the set in {ki, kd} space for a value of kp = −5
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Fig. 30. Complete set of PID values for the given frequency response
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CHAPTER VII

DISCUSSION AND CONCLUSION

In the previous chapters an overview of the Theory and Algorithm developed by

Bhattacharyya and others [3], [4], [25] and the Graphical User Interface for a Pro-

portional, Proportional Integral, and Proportional Integral Derivative controller were

introduced. The theory developed to determine the entire set of controllers with or

without the model, was a major leap in the control systems field and the development

of the GUI is an important step in making this theory practicable and simplifying it

to an extent of entering only the transfer function or the bode plot to the GUI.

The GUI also incorporates the concept of scanning through the entire set of

stable controllers to compute the subset of controllers satisfying the performance

specification.

The GUI helps in carrying out complex calculation and minimized the user in-

volvement. Also the GUI enables the user to have no or minimal knowledge of the

theory behind the computation of the entire set of PID controllers making this pow-

erful theory more widely available.

In the following section a case study is reviewed where the GUI could have been

possibly used and possible future work in this direction.

A. Case Study

The High speed Flywheel Energy Storage System (FESS) is controlled by a DC bus

voltage regulator. The regulation of this DC bus voltage and also the current and the

speed of High speed Flywheel Energy Storage System is done by a PID controller. In

[5] a detailed derivation of the Mathematical model of the speed controlled FESS is

introduced. Also the paper derives the entire set of PID controllers for the system.



84

The Authors also mentions of extending the work in [5] by computing subsets of

stabilizing sets of PID controllers based on parameters like Gain and Phase margin,

Overshoot, Rise Time and Settling Time.

All of the above can now be done by the GUI developed in MATLAB R© with

a click of a button. The only inputs to the GUI in case for the above example

is the Mathematical Model of the speed controlled FESS. Alternatively, with the

GUI for Model free approach available, the frequency response of the system under

consideration can be used. Both the GUIs help in calculating the entire set of PID

controllers. Moreover the GUI can even compute the subset of the stabilizing PID

controllers given the performance specification required. With respect to the work

done on High speed Flywheel Energy Storage System in [5], the use of GUI not only

simplifies the calculation of the stabilizing set of PID controllers, but also helps in

calculating a subset of controllers based on the performance specification which in

the paper is left for future work.

B. Future Work

GUI for computing the entire set of PID controllers for a discrete time system has

also been developed and is introduced in [26]. The algorithm for the GUI is discussed

in [27], [28]. The integration of all the available GUI like GUIs computing P, PI, PID

for Continuous time system and the GUIs computing P, PD and PID for Discrete

time system should be the next step. All the above mentioned GUIs do not take

into account time delay. The theory for calculating the set of P, PI, PID controllers

in case of delay is now available [29]. The GUI handling time delays should also

be developed and integrated with the other GUI. Moreover the theory discussed in

this thesis can be extended to any three term controller. Given the structure of the



85

controller a GUI can be developed to find the entire stabilizing set in the 3d space.

The Final integrated GUI will thus give the user the ability to work on any three

term controller, a continuous or discreet time system and a delay or delay free case.

The GUI then should be used in case studies like the High speed Flywheel Energy

Storage System to show the users the apparent advantage and also to increase the

reliability of the GUI.
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