

CREATION AND MAINTENANCE OF A COMMUNICATION TREE IN

WIRELESS SENSOR NETWORKS

A Dissertation

by

EUN JAE JUNG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Computer Science

CREATION AND MAINTENANCE OF A COMMUNICATION TREE IN

WIRELESS SENSOR NETWORKS

A Dissertation

by

EUN JAE JUNG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Duncan M. H. Walker
Committee Members, Jennifer L. Welch
 Rabi N. Mahapatra
 Jiang Hu
Head of Department, Valerie E. Taylor

December 2007

Major Subject: Computer Science

 iii

ABSTRACT

Creation and Maintenance of a Communication Tree in

 Wireless Sensor Networks. (December 2007)

Eun Jae Jung, B.S., Myoung-Jee University;

M.S., Oklahoma State University

Chair of Advisory Committee: Dr. Duncan M. H. Walker

A local reconfiguration algorithm (INP) for reliable routing in wireless sensor

networks that consist of many static (fixed) energy-constrained nodes is introduced in

the dissertation. For routing around crash fault nodes, a communication tree structure

connecting sensor nodes to the base station (sink or root) is dynamically reconfigured

during information dissemination. Unlike other location based routing approaches, INP

does not take any support from a high costing system that gives position information

such as GPS. For reconfigurations, INP uses only local relational information in the tree

structure among nearby nodes by collaboration between the nodes that does not need

global maintenance, so that INP is energy efficient and it scales to large sensor networks.

The performance of the algorithm is compared to the single path with repair routing

scheme (SWR) that uses a global metric and the modified GRAdient broadcast scheme

(GRAB-F) that uses interleaving multiple paths by computation and by simulations. The

comparisons demonstrate that using local relative information is mostly enough for

reconfigurations, and it consumes less energy and mostly better delivery rates than other

algorithms especially in dense environments.

 iv

For the control observer to know the network health status, two new diagnosis

algorithms (Repre and Local) that deal with crash faults for wireless sensor networks are

also introduced in the dissertation. The control observer knows not only the static faults

found by periodic testing but also the dynamic faults found by a path reconfiguration

algorithm like INP that is invoked from evidence during information dissemination.

With based on this information, the control observer properly treats the network without

lateness. Local algorithm is introduced for providing scalability to reduce

communication energy consumption when the network size grows. The performance of

these algorithms is computationally compared with other crash faults identification

algorithm (WSNDiag). The comparisons demonstrate that maintaining the

communication tree with local reconfigurations in Repre and Local needs less energy

than making a tree per each diagnosis procedure in WSNDiag. They also demonstrate

that providing scalability in Local needs less energy than other approaches.

 v

DEDICATION

To my parents, wife, and daughter for their patience, encouragement, and love

 vi

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my committee chair, Dr. Duncan M. H.

Walker. His valuable advice and guidance allowed me to persevere and finish my

doctorial degree program. Without his patience and caring for me, I could not have

completed my doctoral degree. I am also thankful to my committee members, Dr.

Jennifer L. Welch, Dr. Rabi N. Mahapatra, and Dr. Jiang Hu, for their helpful

suggestions and careful review of this work. I would like to express my appreciation

especially to Dr. Jennifer L. Welch. This research was greatly improved by her helpful

guidance.

I thank my parents and parents-in-law for their love and endless support in so many

ways. I also thank all my brothers and sisters and other family members. Their prayers

encouraged me spiritually.

I deeply give thanks to my wife, Yungah, for her never-ending love, belief, and

encouragement. I am also thankful to my sweetheart, Young-Jee, who always brings

happiness to me.

I thank God for giving me the strength and belief to finish this program.

 vii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ...v

ACKNOWLEDGEMENTS ..vi

TABLE OF CONTENTS.. vii

LIST OF FIGURES...ix

LIST OF TABLES ...xv

I INTRODUCTION...1

II REVIEW OF PREVIOUS WORK ...6

A. Routing algorithms for wireless sensor networks ...6
B. Spanning tree creation and maintenance...13

III RELIABLE AND DYNAMIC RECONFIGURATIONS OF THE

COMMUNICATION TREE ...22

A. Spanning tree creation...23
B. Spanning tree maintenance..26
C. Partition handling ..49
D. Joining spanning tree...51

IV COMPUTATIONAL ANALYSIS..54

A. Establishing a tree ...54
B. Local path reconfigurations...55
C. Competitive analysis ...60

V SIMULATION ANALYSIS ...69

A. Simulation environment ..69

 viii

Page

B. Simulation results ..72

VI SYSTEM LEVEL DIAGNOSIS ALGORITHMS FOR WIRELESS SENSOR

NETWORKS...88

A. Introduction ...88
B. Literature review ...89
C. A new crash fault diagnosis algorithm for wireless sensor networks
 (Repre)...95
D. A scalable fault diagnosis algorithm (Local) ..118

VII CONCLUSIONS AND FUTURE WORK ...133

REFERENCES...138

APPENDIX A MESSAGE FORMATS..147

APPENDIX B SIMULATION ENVIRONMENTS ...158

VITA…...……………………………..………....……………………………………..164

 ix

LIST OF FIGURES

FIGURE Page

1 An example of GRAB flow from a source to the sink [19].9

2 An alternate path selection in SWR approach...12

3 5-node wireless sensor network and its communication graph............................14

4 Information dissemination with tree and flooding. ..14

5 Full reversal method in GB [37]...20

6 Message sequence for tree creation..25

7 Final tree made. ..25

8 Overall reconfiguration steps in INP..27

9 When node A can find its new parent using INP-ACKINP.28

10 Message sequence for Fig. 9. ..29

11 Cycle free reconfiguration cases. ...29

12 Case 1 – When node ni has a neighbor nj that has the grandparent of
 node ni (i.e. ni+2) as its child. That is, nj is a great-grandparent of node ni.30

13 Case 2 – when node ni has a neighbor nj that is its grandparent ni+2.30

14 Case 3 – when node ni has a neighbor nj that has the grandparent of
 node ni (i.e. ni+2) as its parent...31

15 Case 4 – when node ni has a neighbor nj that has ni+2 as its grandparent.31

16 Case 5 – when node ni has a neighbor nj that is sibling of node ni+2....................32

17 Sibling node B of node A can find its new parent. ...33

18 Case 6 – when node ni has a neighbor nj that has ni+2 as its grandparent.34

19 A cycle occurs when node nj changes its parent to node ni+2 in case 6................35

 x

FIGURE Page

20 A cycle occurs if node nj keeps its own parent in case 6.36

21 Procedures according to the different states when ACKINP is received..............38

22 Procedures when CNFCF is received. ..39

23 When node A can have sibling B’s help. ...40

24 Procedures when ICNYP is received. ...40

25 Procedures when ACKICNYP is received. ...41

26 Procedures when ACPICNYP is received. ...42

27 When node A can find its new parent using ICNYP. ...43

28 Message sequence for Fig. 27. ...43

29 Procedures when INI is received. ...44

30 Procedures when ACKINI is received. ...44

31 Procedures when PFIND is received. ..46

32 Procedures when ACKPFIND is received..46

33 When node A can find its new parent using PFIND. ...47

34 Message sequence for Fig. 33. ...47

35 Overall reconfiguration procedure flow chart...48

36 Procedures of Check-Partition. ..51

37 Joining procedures..53

38 When neighbor(s) can give direct response to INP or HREQ
 under different number of children. ...62

39 When neighbor(s) can give direct response to INP or HREQ
 under different number of siblings. ..63

 xi

FIGURE Page

40 When detector needs siblings’ help without having direct response
 from its other neighbors. ..66

41 When detector needs children’ help without having siblings help.......................67

42 When detector needs to try UNKNOWN neighbor(s) without
 having children’s help. ...68

43 Random distribution of 400 nodes. ..71

44 Average delivery ratio for 15 initial neighbors. ...72

45 Average delivery ratio for 7 initial neighbors. ...73

46 Reasons for undelivered messages for 15 neighbors. ...74

47 Reasons for undelivered messages for 7 neighbors. ..74

48 Average messages dropped by Drop-MAC-Collision
 for 15 initial neighbors. ..75

49 Average messages dropped by Drop-MAC-Collision
 for 7 initial neighbors..75

50 Average messages dropped by Drop-MAC-Retry-Count-Exceed
 for 15 initial neighbors..76

51 Average messages dropped by Drop-MAC-Retry-Count-Exceed
 for 7 initial neighbors ...76

52 Average messages dropped by Drop-RTR-MAC-Callback
 for 15 initial neighbors. ..77

53 Average messages dropped by Drop-RTR-MAC-Callback
 for 7 initial neighbors. ..77

54 Average messages dropped by Drop-RTR-Qfull for 7 initial neighbors.78

55 Average messages dropped by Drop-RTR-Route-Loop
 for 15 initial neighbors. ..79

 xii

FIGURE Page

56 Average messages dropped by Drop-RTR-Route-Loop
 for 7 initial neighbors. ..80

57 Average messages dropped by Drop-RTR-TTL (32)
 for 15 initial neighbors. ..80

58 Average messages dropped by Drop-RTR-TTL (32)
 for 7 initial neighbors. ..81

59 Average messages dropped by Drop-IFQ-ARP-FULL
 for 15 initial neighbors. ..82

60 Average messages dropped by Drop-IFQ-ARP-FULL
 for 7 initial neighbors. ..82

61 Average messages dropped by Drop-End-of-Simulation at IFQ layer
 for 15 initial neighbors. ..83

62 Average messages dropped by Drop-End-of-Simulation at IFQ layer
 for 7 initial neighbors. ..83

63 Average latency for 15 initial neighbors. ...84

64 Average latency for 7 initial neighbors. ...84

65 Average energy per node for 15 initial neighbors..85

66 Average energy per node for 7 initial neighbors..86

67 Average node energy per message for 15 initial neighbors.86

68 Average node energy per message for 7 initial neighbors.87

69 Different testing mechanism. ...96

70 Before and after situations when X sends IAD (R is root).99

71 Energy consumption (a=10, r=3, 3 faults/exec.). ...106

72 Energy consumption (non-accumulated, a=10, r=3, 3 faults/exec.)...................107

 xiii

FIGURE Page

73 Energy consumption for Repre (first exec., N=500, a=25, r=3,
 3 faults/exec.). ..108

74 Energy consumption (a=10, r=3, 3 faults/exec.). ...109

75 Energy consumption (N=500, r=3, 3 faults/exec.). ..110

76 Energy consumption (N=100, r=3). ...111

77 Energy consumption per node (Repre, r=3, 3 faults/exec.)................................112

78 Energy consumption per node (r=3, 3 faults/exec.). ..113

79 Energy consumption for testing (N=100, a=5)...114

80 Energy consumption for Repre (a=5*(size / 100), r=3, 3 faults/exec.)..............115

81 Energy consumption for WSNDiag (a=5*(size / 100), r=3, 3 faults/exec.)115

82 Energy consumption (N=200, a= 10, r=3, 3 faults/exec.).116

83 Energy consumption per node (Repre, accumulated, N=200, a=10,
 r=3, 3 faults/exec.)..117

84 Energy consumption per node (Repre, non-accumulated, N=200, a=10,
 r=3, 3 faults/exec.)..118

85 Zone based sensor network. ...119

86 Hierarchical shape of Fig. 85. ..122

87 Cumulative energy consumption in Local (N=29524, a=10,
 r=3, 3 faults/exec.)..128

88 Cumulative energy consumption for Repre and different number of
 local trees in Local (N=29524, a=10, r=3, 3 faults/exec.)..................................129

89 Cumulative energy consumption in different approaches
 (N=3280, a=10, r=3, 3 faults/exec.). ..130

 xiv

FIGURE Page

90 Cumulative energy consumption in different approaches
 (a=10, r=3, 3 faults/exec.). ...131

91 Cumulative energy consumption per node
 (N=29524, a=10, r=3, 3 faults/exec.). ..132

 xv

LIST OF TABLES

TABLE Page

I Variables for Computational Analysis of INP ...54

II Parameters for Computational Analysis of INP and SWR61

III Parameters for Simulations of INP, SWR, and GRAB-F70

IV Variables for Computational Analysis of Repre, Local, and WSNDiag100

V Additional Variables for Computational Analysis of Local...............................123

VI Parameters for Computational Analysis of Repre, Local, and WSNDiag127

 1

I. INTRODUCTION

Wireless sensor networks are seeing increasing usage in sensing applications such as

buildings, the natural environment, industry and the military [1][2][3][4]. These

networks usually consist of many low-power, low-energy, low-cost sensor nodes with

wireless communication links, that are sensing the nearby environment, processing the

data obtained from sensing or from other nodes, and communicating necessary data to

other nodes or their base station [4][5][6].

Two key communication functions in sensor networks are broadcasting from the base

station (sink or root node) to the nodes, and gathering data from some or all nodes to the

base station [7]. In energy-constrained wireless sensor networks, message overhead must

be minimized since communication consumes most of the energy [8]. This is in contrast

to wired networks that are optimized for low latency using the high bandwidth and

power available [9].

Each sensor node has a limited radio transmission range, so it must communicate with

the base station via intermediate nodes. Even nodes that could reach the base station

directly might communicate via intermediate nodes in order to minimize transmission

energy [10][11]. A spanning tree has been considered as a communication structure

since it requires the fewest messages (energy) to disseminate information from the root

to all nodes, and provides a structure for nodes to report their results to the root (base

station) [12][13][14][15][16]. To reduce message overhead, a node concatenates the data

received from its descendants or aggregates data (e.g., transmits an average value) in a

 The dissertation follows the style of IEEE Transactions on Magnetics.

 2

tree structure [7]. A spanning tree also minimizes message collisions that occur in

flooding and other undirected communication schemes [12].

Once a spanning tree is created as a communication structure, it must be dynamically

maintained (or reconfigured) by routing around failed nodes and adding new nodes.

Routing around failures is required since in the tree structure, each node has only one

current parent (path) to the base and some sensor nodes will inevitably fail due to battery

depletion or destruction in the harsh environment [3].

The primary goal of this dissertation is creating and maintaining a communication tree

to provide a communication structure between wireless sensor nodes and the sink (root)

that is energy efficient and reliable against crash node failures. This dissertation

describes how communication paths are locally reconfigured by collaboration between

nearby nodes, to minimize energy consumption and provide scalability. For that, a new

reconfiguration algorithm (INP) that uses local relational information in the tree

structure is introduced. Unlike other approaches, INP does not require periodic message

exchanges or continual maintenance of a global metric (e.g. distance from the root) that

increase reconfiguration energy consumption. In INP, each node knows local tree

configuration information (i.e., grandparent, parent, children, and siblings). Based on

this information, a node cooperates with nearby nodes to find its new parent when its

parent is unavailable. The node tries to find the upper or same level relatives (e.g., great-

grandparents, grandparents, uncle/aunt, cousin, or granduncle/grandaunt) among its

nearby nodes and connect to one among them, since they already have cycle free paths

to reach the root in the tree with having an assumption that INP can handle only one

 3

crash fault at a time.

The INP algorithm includes joining procedures; so that nodes that are not in the tree

(e.g. newly deployed nodes) can join the tree by exchanging messages with neighbors in

the tree. Node failures may result in part of the tree being partitioned, so that the

partition can no longer communicate with the root. It is undesirable for nodes in the

partition to waste energy fruitlessly trying to communicate with the root. By extending

INP reconfiguration steps to handle partitions, the nodes in the partition can recognize

the partition situation and stop sending data until that area is rejoined to the tree like the

nodes in TORA [17].

The secondary goal of the dissertation is the introduction of system level diagnosis

algorithms against crash faults for wireless sensor networks. The impact of node failure

on the network capability depends on the number of faulty nodes, the density of nodes,

and the specific characteristics of the faulty nodes and the network. If the number of

faulty nodes increases without corrective action, the network may ultimately cease to

function. To prevent this, a control observer needs to keep track of node status (i.e.,

diagnosis information). With this information, the network can be reconfigured by

bypassing, repairing or replacing faulty nodes when as needed. For example, when an

area is partitioned due to node failures, new nodes must be deployed to recover the area

[2][16]. Diagnosis information can also help nodes to conserve energy by not sending

unnecessary information to faulty nodes.

The methods of obtaining diagnosis information are different depending on the

application. In an application where all nodes periodically report data to the control

 4

observer (e.g., a temperature monitoring application [6]), the control observer will learn

of node failures from messages that contain information about the dynamic path

reconfiguration. When sending data to the control observer, a node will detect a parent

node failure through time-outs, and invoke reconfiguration procedures. The faulty node

identity is delivered to the control observer by piggybacking on the data. In this type of

application, reconfiguration procedures work as a diagnosis algorithm.

In an application where only some nodes are involved in data communication, these

dynamic reconfigurations are not enough for the control observer to determine the

overall health of the network. In critical or time-sensitive applications, such as tracing

moving objects (e.g., tanks or enemies) in a battlefield or a sentry-line defense system on

a border, the network must always be monitored and kept healthy by the control observer.

Although regular node testing that uses a link level acknowledgement (ACK) of a

DATA (a message for testing) in the MAC layer or end-to-end acknowledgement for a

testing message of the application layer consumes more energy, each node can

periodically check neighboring node(s) and communicate any failures to the control

observer.

Based on diagnosis information obtained from regular testing and dynamic

reconfiguration procedures, an appropriate corrective action can be taken to maintain the

communication structure of the network. Two new diagnosis algorithms (Repre and

Local) that use INP reconfiguration steps are introduced in this dissertation. In Repre, all

nodes report diagnosis information to the root. When the network size grows, Repre is

extended to Local to provide scalability by reducing energy consumption and

 5

communication overhead.

This dissertation is organized as follows. Section II describes previous work. Section

III describes INP, the reliable and dynamic reconfiguration procedures to maintain the

communication tree. In section IV, INP is analytically evaluated and compared with the

single path with repair routing (SWR [18]). In section V, INP is evaluated with SWR and

GRAB-F, the fixed transmission power version of GRAB [19] through ns-2 simulations.

Section VI introduces the Repre and Local diagnosis algorithms and analytically

evaluates them along with the WSNDiag crash fault identification algorithm [4].

Conclusions and future work are described in section VII.

 6

II. REVIEW OF PREVIOUS WORK

A. Routing algorithms for wireless sensor networks

Many different routing approaches have been introduced in different environments and

there is not a single approach that we can say always gives better performance than any

other approaches. A good routing strategy for a certain network environment comes

from considering the special characteristics of the environment. For example, algorithms

that consider moving nodes [15][20] require frequent message exchanges to maintain the

communication structure, and so use unnecessary energy when nodes are fixed or slowly

moving, as in a sensor network.

In this section, some of the existing routing approaches for wireless sensor networks

and their shortcomings are reviewed and suggested directions for wireless sensor

networks that can save communication energy are introduced. Routing approaches are

classified by whether or not paths are dynamically reconfigured. This permits direct

comparison with the proposed approach.

1) Approaches without dynamic path reconfiguration

There are single path [21][22] routing algorithms without path reconfiguration. In the

rumor routing algorithm [21], a damaged route can be recovered by an agent of another

event, if available. But this situation is not always guaranteed for the broken paths. In

[21], with increasing number of events, the cost of maintaining routing information in

each node rises [23]. In the directed diffusion algorithm [22], periodic flooding is needed

for maintaining the path. These algorithms can be used in a benign environment to

 7

minimize communication energy. But in a harsh environment, message delivery can

easily fail due to node failures [18].

To achieve a higher message delivery rate, routing algorithms that maintain multiple

paths without dynamic path reconfigurations were introduced [22][24][25]. Directed

diffusion algorithm [22] can have either a single path or multiple paths, depending on the

path number(s) being reinforced from the sink [22]. Energy aware routing algorithm [24]

always uses a single path to send information among multiple paths maintained for path

energy balancing. To maintain multiple paths, infrequent localized flooding from

destination to source is performed. In [25], disjoint and partially disjoint braided multi-

path routing schemes were introduced, that use pre-routed alternate path(s) when the

primary path is broken. With these approaches, the energy consumption due to periodic

flooding in [22][24] can be reduced. But when increasing node failures break all

multiple paths, including the alternate path(s), flooding must be used to reestablish the

paths [25].

The same information can be redundantly delivered through multiple paths

[22][24][25]. Determining the ideal number of paths to balance delivery ratio, energy

consumption, and network congestion is difficult [18]. Using the wrong number of paths

can cause unnecessary energy consumption or low delivery ratio [18].

Unlike the multiple path approaches [22][24][25], GRAdient Broadcast (GRAB) [19]

uses interleaved paths that are not fixed in advance, but are created dynamically and

form a mesh structure when a message is delivered to the sink node. In GRAB, each node

that receives a message decides for itself whether to send the message, how many

 8

neighbors to send it to (by adjusting its transmission power), or whether to drop the

message. Before data transmission, each node already knows its minimum cost to the

sink through advertisement (ADV) packets initiated by the sink. Only the packet-

receiving nodes that have smaller minimum cost than the forwarding node’s minimum

cost forward the packet. Packets in all other receiving nodes are dropped. But in densely

deployed sensor fields that have many low-cost paths, this packet dropping approach is

not sufficient to prevent unnecessary message redundancy that causes unnecessary

energy consumption and message loss due to collisions. To limit the number (“width”)

of the forwarding paths further, GRAB used a credit (α) that is assigned to the message at

the source, together with the minimum cost (Csource) of the source. The maximum value

that can be used for delivering each message is α + Csource. Among those that have

smaller costs than the cost of the forwarding node, only the nodes that have sufficient

credit can forward the message [19]. A message flow example of GRAB is shown in Fig.

1. The white nodes indicated by arrows are the packet-receiving nodes that have larger

minimum cost than the forwarding node’s minimum cost.

 9

Fig. 1. An example of GRAB flow from a source to the sink [19].

2) Approaches with dynamic path reconfiguration

For ad hoc wireless networks, there are some single-path routing with path repair

algorithms [26][27]. These approaches detect a hop failure (due to a failed link or node)

and then report it to the sender, which must find an alternative path to the destination.

This is undesirable when there are many hops between sender and destination [18]. It is

particularly undesirable when the root is broadcasting to all nodes, or all nodes are

gathering information for the root.

There has been limited research on routing path reconfiguration in wireless sensor

networks to avoid node failures. The “big base station” centralized approach [16]

maintains a global view of the network in a powerful base station for wireless sensor

 10

networks. The base station builds and maintains the network routing topology by using

the neighboring information received from each node, and sets paths by communicating

directly to the nodes. Node failures require the base station to iteratively localize failed

nodes and determine alternate paths. Much iteration can be required before all reachable

nodes are reconnected to the network. This approach takes advantage of the computing

and broadcast power of the base station to control all maintenance procedures, but does

not scale.

Local reconfiguration approaches are more appropriate for scalability and minimum

communication energy in wireless sensor networks, since sensors generally collaborate

with their neighbors to produce valuable and reliable data [11].

The single path with repair (SWR) scheme [18] uses local path repair, in which nearby

nodes are used to find an alternate path to the destination, backtracking as necessary,

while preventing loops. On the path used for information delivery, the node (called a

pivot node in [18]) that has a faulty next immediate node (called downstream or parent

node), initiates the path repair procedure by broadcasting a Help Request (HREQ)

control packet [18]. The pivot node determines the best alternative node of the faulty

node among the neighbors that reply with a Help Response (HREP) control message in

response to HREQ. The best alternative is the node that has the lowest cost C among

them. When the number of hops is used as the cost metric, a neighbor that has the fewest

hops to the root is chosen.

A HREP message is either initiated from a neighbor of the pivot node directly or it is

relayed to the pivot node through a neighbor after initiating at a downstream node of the

 11

neighbor indirectly. The latter happens when a HREQ message is relayed to the

downstream node of a neighbor, since the neighbor has higher cost than the pivot node.

When the downstream node that has equal or lower cost than the faulty node receives the

HREQ message, it replies with a HREP back along the path to the pivot node. Relaying

the HREQ message to downstream nodes is limited (e.g., 3) to prevent a loop. When the

pivot node cannot find any alternative node of the faulty node, it returns information

back to the source node, with each node along the reverse path attempting to find an

alternative path [18].

Fig. 2 shows a reconfiguration situation in SWR [18]. When node F becomes faulty,

node A broadcasts an HREQ message. Nodes B, G, and H discard it since node B has

same faulty node F as its parent and nodes G and H have the pivot node A as their parent.

When node E receives the HREQ message, it relays it to its parent node C, since its cost

is higher than that of node A. Node C again forwards this message to node D since its

cost is not lower than the cost of node A. Since nodes D and F have the same cost k-1,

node D replies with an HREP message to node A through the reverse path direction (i.e.,

D → C → E → A). When node D receives an HREQ message directly from node A, it

replies with an HREP message to node A. When node C receives an HREQ message

directly from node A, it forwards the HREP message issued from node D to node A.

Node A chooses node D as its downstream node when it receives HREP messages from

nodes E, C, and D since node D has the lowest cost among the nodes.

 12

Fig. 2. An alternate path selection in SWR approach.

Since the SWR algorithm uses a global metric, nodes upstream from the pivot node

must update their cost C after the local path repair procedure. This requires

communication energy. The cost update can be postponed to minimize this

communication [18], but outdated cost information could cause a repair to create a loop,

requiring further repair or causing message delivery failure.

3) Goal approach

We propose a new single path with reconfiguration approach that only needs local

relative information (e.g. parent, grandparent) in each node. Since wireless sensor

networks consist of stationary nodes, this information is infrequently updated, in contrast

to the nodes in MANETs. A constant number of message exchanges among fault-free

neighbors is enough for many cases of path reconfiguration. Unlike the SWR approach

 13

[18] that uses a global metric, the neighborhood information does not need to be updated

incrementally among all nodes.

Since the routing structure of the proposed approach is a tree, the reconfiguration of

the routing paths is related to tree maintenance. Thus we also review prior work in tree

creation and maintenance.

B. Spanning tree creation and maintenance

The communication structure using a spanning tree or directed acyclic graph (DAG)

has been used for many different applications in many different environments. Through

this acyclic graph structure among nodes, data can be multicast, and routes can be found

[28]. In this subsection, we roughly categorize and review the prior tree maintenance

approaches. We also evaluate the shortcomings of these approaches when applied to

wireless sensor network environments and suggest an approach for these environments.

Before introducing the prior tree maintenance approaches, we introduce an example

that explains the merits of a tree communication structure by comparing it with a simple

flooding approach in wireless sensor network environments. Fig. 3 shows a 5-node

wireless sensor network with the transmission range around each node, and the

communication graph for the network. Based on Fig. 3, Fig. 4(a) shows when node 4

sends a message to the sink node 1 in a tree structure through a path (4→2→1) that

connects it to the sink. The flow of messages in a simple flooding based dissemination

approach is shown in Fig. 4(b).

 14

1

2
3

5
4

Fig. 3. 5-node wireless sensor network and its communication graph.

1 1

2

4

2

5 4

3 3

5

(a) (b)

 Fig. 4. Information dissemination with tree and flooding.

There are redundant messages in simple flooding because each node sends a message

to all of its neighbors without checking whether a neighbor has already received the

message from other nodes (i.e., implosion problem) [12]. When each node has many

neighbors, and the transmitter ranges have a large overlap (i.e., overlapping problem)

[12], many redundant messages result.

1) Spanning tree construction per each use

In centralized multi-hop lightweight time synchronization (LTS) [29], a spanning tree

is made whenever time synchronization is needed for wireless sensor networks [29]. In a

 15

distributed approach that maintains the fault status of all nodes within each node

(WSNDiag) [4], a tree is made whenever an observer initiates this algorithm for

identifying crash faulty nodes in a wireless sensor network. (A crash fault is one in

which the node simply stops working and goes silent). This algorithm is simple, but

would not be a good approach for frequent use in stationary sensor networks since it uses

much redundant energy to rebuild the whole tree for each use.

2) Maintaining total knowledge of network

The spanning tree can be built once and then maintained. Various tree reconfiguration

approaches have been introduced for different environments. Some of this work

considers the problem of new nodes joining the network and the network being

partitioned and then rejoined. Many tree maintaining algorithms have been developed

that use a global view of the network for maintaining the spanning tree. Many of them

attempt to maintain a minimum spanning tree (MST).

a) Maintaining a minimum spanning tree (MST)

There were classical algorithms that form and maintain a minimum spanning tree

(MST) using total knowledge of a network. An algorithm that updates MST and shortest

paths when graph parameters are changed was given in [30]. When a new node is added

to the MST of an n-node graph, this algorithm updates the MST with O(n) comparisons

and O(n) storage [30]. An algorithm for maintaining a minimum spanning forest in a

dynamic plane graph was introduced in [31]. The forest is maintained under edge

weights, and insertion and deletion of vertices and edges. A dual edge-ordered dynamic

 16

graph [31] was used with a primal graph to maintain the minimum spanning forest.

Creating and maintaining a dual graph [32], corresponding to a given plane graph, is

difficult without location information for all nodes.

b) Centralized approaches

The “big base station” centralized approach [16] maintains a global view of the

network in a base station for wireless sensor networks. In the algorithm, the big base

station does not attempt to maintain a MST but gives alternate paths around failed nodes

to the nodes that need them. In wireless sensor networks that consist of many nodes,

scalability cannot be provided with this approach.

c) Distributed approaches

Some distributed algorithms maintain the global view of the network in each node. In

[33], a spanning tree is used for improving database maintenance in dynamic networks

where edges may fail or recover. Each node continuously updates a dynamic data

structure that has the tree replicas of all the nodes in the network by communicating with

other nodes about any changes. Each node is assumed to know the content of the local

memory of all of its neighbors, and for each error sends a message to the neighbor that

has the error [33]. When a tree disconnected by an edge failure is merged into another

tree, it locates its minimum-weight outgoing edge to other trees through the dynamic

data structure. When two trees have the same minimum-weight outgoing edge to each

other, the trees are merged through it.

It is impractical to maintain total knowledge of the network in a special node or in

 17

each node, since it requires much communication and does not scale with large networks.

In [28], a node failure partitions the acyclic graph into one or more subgraphs (or

fragments). These fragments are coordinated to recreate a complete acyclic graph.

Physically sufficient network connectivity is assumed in the presence of node failures so

that each fault-free node can reach every other node. Whenever a node detects the failure

of a neighbor, it starts a reconfiguration by flooding a Reconfig(node_list, frag_id)

message having frag_id and node_list with its own ID. The nodes on the path that the

Reconfig message follows are added to node_list. Links that are needed for combining

fragments are accepted as edges in the combined acyclic graph by resolving contention

among fragments, avoiding cycles and message loops. When two partitioned fragments

are joined, the pre-established higher-ranked frag_id or randomly selected frag_id

among them can be used. This algorithm does not consider individual nodes joining

(reseeding) the network. Since flooding is used and every node participates in

reconfiguration, the energy consumption of this algorithm makes it unsuitable for

wireless sensor networks.

3) Maintaining a global metric

There were many other distributed approaches that do not need a total view of the

entire network in each node. Instead, global information (e.g. distance to the root of the

tree) is locally maintained in each node and used for tree maintenance. By collaborating

with its neighbors, a node’s information is incrementally updated among other related

nodes. In this dissertation, these are called incremental approaches.

 18

a) Various incremental approaches

In self-stabilizing spanning tree construction algorithms [34], each node updates its

new parent with the neighbor that has minimum distance value obtained by regularly

exchanging information with neighbors. In [35], an arbitrary spanning tree is created and

maintained for a dynamic network where edges may fail or recover. Each node keeps

three variables: its parent, distance from the root, and its current root. Those are

maintained when edge removal or addition occurs, by exchanging messages (e.g. M-

message (root, distance) [35]) among neighbors and used for reconfiguring the spanning

forest. In [36], nodes in a computer network are maintained in a rooted spanning tree

(RST) as long as the nodes remain connected in the presence of a finite number of fail-

stop failures and recoveries. Each node maintains three values: parent, root, and color. In

this fully distributed, nonmasking fault-tolerant protocol, the spanning forest is merged

into a spanning tree rooted at the node that has the highest index [36]. This protocol can

tolerate a finite number of faults during tree reorganization caused by previous faults,

but at the cost of high message overhead. The time complexity of RST is O(N) rounds

where N is the number of fault-free nodes. The single path with repair (SWR) routing

scheme [18] for wireless sensor networks that was introduced in the previous subsection

also belongs to this approach.

b) Link reversal approaches

There were also link reversal algorithms among the incremental approaches. In TORA

[17], a loop-free routing algorithm for mobile ad hoc networks (MANETs) was

introduced. It adds a partition detecting procedure to GB [37] that generates loop-free

 19

routes in the networks with frequently changing topologies due to link failures. Full and

partial reversal methods were introduced in GB. Fig. 5 [37] shows an example of simple

full reversal method. Initially all flows are directed to the destination D without a cycle.

With a link A to D failure, node A has incoming paths without an outgoing path, denoted

by R in Fig. 5. Then all incoming paths of node A are reversed. In each iteration, the

node that does not have an outgoing path reverses all its incoming paths and finally an

acyclic graph is made.

Like GB, all nodes in TORA are totally ordered with different values by having

incremental updates among nodes and thus each node has a its height within the tree.

The direction of links is always from higher to lower and thus cycles can be prevented.

Whenever a node (except the destination node) does not have at least one outgoing link,

it reverses its link directions to form an outgoing link. A destination-oriented DAG is

finally produced by having a destination that has the lowest height. Unlike GB [37],

when the network is partitioned, all invalid routes among the nodes in the partition are

erased to stop sending unnecessary messages. This conserves energy in the partition.

Based on TORA, an approach that has a leader per partition was introduced for MANETs

[38]. Whenever a node detects partition, it elects itself as the leader of the nodes in the

partition and announces it to its neighbors. This information is disseminated until all

nodes in the partition have the new leader. When two partitions are combined together

due to a new link joining them, the leader that has the smallest ID becomes the leader of

all nodes in the combined graph [38]. In [38], algorithms were introduced for both a

single link (topology) change and a change that occurs before recovering from the

 20

previous change. Like TORA and GB, cycles are prevented since paths are made only

from higher to lower heights [17][37][38].

4th Iteration 5th Iteration

3rd Iteration1st Iteration 2nd Iteration

D

A

D

A

D

A

D

A

D

A

R

R

R

R
R

R

R

4th Iteration 5th Iteration

3rd Iteration1st Iteration 2nd Iteration

D

A

D

A

D

A

D

A

D

A

R

R

R

R
R

R

R

Fig. 5. Full reversal method in GB [37].

As shown in the previous examples, most incremental approaches were used for

dynamic networks with frequent network topologies changes, such as MANETs. In those

environments, frequent message exchanges among neighbors are required to update

global information. Outdated global information could cause a repair to create a loop,

requiring further repair or causing message delivery failure. But in stationary wireless

sensor networks with more severe energy constraints, these approaches can cause high

energy consumption.

The features of the above prior work can be roughly categorized as: constructing a

 21

new spanning tree per use without maintaining it; updating MSTs with total knowledge

of a network; updating a global view of the network in a central node (centralized) or in

each node (distributed); or updating global information locally and incrementally in each

node. Most of these approaches are not suitable for direct application to static wireless

sensor networks, due to high message overhead that causes high energy consumption.

4) Goal approach

Maintaining a single routing path in a tree structure by using only local relative

information (i.e. parent, grandparent, etc.) in each node was already suggested in the

previous subsection. The reconfigured tree will be a spanning tree that is not necessarily

minimum, in order to avoid the high cost required to achieve an MST. Furthermore, only

the local information is used when considering the problems of new nodes joining the

network and the network being partitioned and then rejoined.

 22

III. RELIABLE AND DYNAMIC RECONFIGURATIONS OF THE

COMMUNICATION TREE

In this section, a new energy efficient and reliable single path routing algorithm is

described that uses only local relative information for dynamic reconfiguration of broken

paths caused by crash faults in wireless sensor networks. We focus on failure during

communication from the sensor nodes to the sink or root. The following assumptions are

made for the approach:

• The sensor network consists of randomly distributed stationary nodes that have

unique node identifiers with omni-directional antennas, with a fixed

communication range.

• All links are bidirectional, that is, if a node can receive messages from another

node, the other node also can receive messages from the node. If one node has a

longer transmission range than a neighbor, a link will not exist between them,

since messages cannot be acknowledged in both directions.

• The root node of the tree (also known as base station or sink node) R knows its

identity. Thus, there is no leader election for the root. The root will typically

have a different implementation than the sensor nodes, since it must

communicate with the control observer that manages the network and provides

statistical information for the users in the outside world.

• Enough nodes are deployed in the field so that most of them will be able to join

the communication tree, that is, they will initially have several neighbors within

their transmission range.

 23

• Only crash faults are considered. A node fails by going silent. It cannot have

malicious or intermittent behavior. If a node is found faulty by a neighboring

node, it is also found faulty by all other neighbors. A crashed node can later

recover (e.g. battery recharges). This is treated the same as seeding a new node

into the sensor network.

• A single crash fault occurs. Another crash fault cannot occur until

reconfiguration from the first one is completed. Relaxation of this assumption

will be discussed in a following subsection.

• Fault detection is initiated by a child in the tree, when attempting to send a

message to the root. It can be done by link level acknowledgement in the MAC

layer, as in IEEE 802.11 [39] or via a validation transaction, such as end-to-end

message acknowledgement and timeout in the application layer. The exact fault

detection mechanism is outside the scope of this dissertation.

• Two kinds of communication methods are used. One is cheap but unreliable

broadcast and the other is expensive but more reliable unicast. A MAC layer

such as IEEE 802.11 is available that provides reliable message unicast

capability.

A. Spanning tree creation

After sensor nodes have been deployed, an initial spanning tree T must be formed,

having the sink node as the root of the tree. The root broadcasts a PARENT control

packet with its ID and that of its parent (NULL in the case of the root). Receiving nodes

 24

that do not have a parent node set their parent and grandparent information and

broadcast their own PARENT control packet. Other receiving nodes that already have a

parent set their children, sibling, and neighbor information based on the PARENT control

packets. The process stops when all reachable nodes have a parent set. Even though

broadcasts are unreliable, all reachable nodes will eventually join the tree. If they miss a

PARENT broadcast, they will time out and broadcast an I Need Parent (INP) control

message, to which a neighboring node can respond. This is described in the following

subsection. The INP mechanism is also used for new nodes joining the network.

In the approach described here, each node maintains parent (p), grandparent (gp),

children (chd) and sibling (sibs) information. In order to increase the success of

reconfiguration, this can be extended to K ancestors, but at the cost of additional

communication to maintain the information.

Fig. 6 shows how the paths of the 5-node wireless sensor network that is shown in Fig.

3 are made with message flows. Fig. 7 shows the resulting tree. Node 1 is the root of the

tree.

 25

1 3 5 2 4

p[1]=-1

p[2]=1 p[3]=1

chd[1]=2

chd[1]=2,3

 p[4]=2

chd[2]=4
 p[5]=2

chd[2]=4,5

sibs[2]=3

sibs[3]=2

gp[5]=1

gp[4]=1

Fig. 6. Message sequence for tree creation.

1

3 2

5 4

gp[1] = -1
 p[1] = -1
 c[1] = 2,3

gp[2] = -1
 p[2] = 1
 c[2] = 4,5
 s[2] = 3

gp[3] = -1
 p[3] = 1
 s[3] = 2

gp[4] = 1
 p[4] = 2

gp[5] = 1
 p[5] = 2

Fig. 7. Final tree made.

 26

B. Spanning tree maintenance

The tree T = (V, E) consists of n vertices (nodes) and n-1 edges that connect those

vertices. When a faulty node is found by a child on the path during message propagation

from a source to a destination, the path must be reconfigured. In case of a failure, the

detecting node finds a new parent node and sends the message via the new parent. For

this reconfiguration, each node will have only local network information; p, gp, chd, and

sibs that is obtained when the spanning tree is created and updated during maintenance.

For reconfiguration, some control packets will be used locally. There are three flow

directions: HIGH, LOW, and UNKNOWN. When a node finds a neighbor that guarantees

a cycle free path to the root, it sets the neighbor relationship to LOW. The root node is

the lowest one in the network. When a node finds a neighbor that is either a descendant

of the node that causes a cycle or a descendant of its sibling node, it sets the neighbor

relationship to HIGH. If a neighbor is not known as HIGH or LOW, it is set to

UNKNOWN. When a data message arrives at a node that needs a new parent, our

reconfiguration algorithm (called the INP algorithm in the remainder of the dissertation)

is initiated after queuing the message in the node. This algorithm has several sequential

steps (INP, CNFCF, ICNYP, INI, and PFIND) as shown in Fig. 8. Each step is run with a

time limit, with the algorithm advancing to the next step if reconfiguration is not

completed within the given time. When a new data message arrives while a

reconfiguration step is running, the message is queued and sent to the new parent that is

obtained after completion of the reconfiguration. This approach is different from SWR

[18], where a new reconfiguration is initiated whenever a message arrives at the node

 27

that needs a new parent. SWR uses a message based reconfiguration mechanism while

INP uses a node based reconfiguration mechanism. These different mechanisms will be

compared in section V. The following subsections describe each step in the INP

algorithm.

INP CNFCF

ICNYP INI & PFIND

END

Incomplete

Incomplete

Done Done

Done Done

Retry > MAX

Retry =< MAX

Incom
plete

START

Fig. 8. Overall reconfiguration steps in INP.

1) INP

Whenever node ni starts a reconfiguration for a new parent due to the failure of its

current parent ni+1, it broadcasts an INP(init, myID, init.p, init.gp) control packet. INP

stands for I Need Parent, init is the ID of the initiator of the reconfiguration, and myID is

the ID of the sender of the INP control packet. Initially, init and myID are node ni. When

any node nj that is not a child or a sibling of node ni receives the INP, it checks if it can

provide a LOW direction for node ni based on its local information and the information

in the INP. If so, it unicasts an ACKINP(init, myID, myID.p, caseNUM) control message

to node ni. ACKINP stands for Acknowledgement of I Need Parent.

 28

As an example, Fig. 9 shows a situation when node A finds its new parent and Fig. 10

shows the message sequence. Since node S has parent D that is a grandparent of node A,

it provides a cycle free path.

A
B

L

C

R

G

D

K

P

H F

E
S

Fig. 9. When node A can find its new parent using INP-ACKINP.

 29

INP

ACKINP

Info

Info

Info

Info
H E B A RS D

ACPINP

Fig. 10. Message sequence for Fig. 9.

Fig. 11 shows five cycle free reconfiguration cases and each case is shown in Figs. 12

to 16. Fig. 9 was an example of case 3 (Fig. 14).

receiveINP(init, i, init.p, init.gp)
{

if (init.gp ∈ myID.chd) { /* Case 1 */
 send ACKINP(init, myID, myID.p, 1);
 } else if (init.gp == myID) { /* Case 2 */
 send ACKINP(init, myID, myID.p, 2);
 } else if (init.gp == myID.p) { /* Case 3 */
 send ACKINP(init, myID, myID.p, 3);
 } else if ((init.gp == myID.gp) && (init.p != myID.p)) { /* Case 4 */
 send ACKINP(init, myID, myID.p, 4);
 } else if (init.gp ∈ myID.sibs) { /* Case 5 */
 send ACKINP(init, myID, myID.p, 5);
}

Fig. 11. Cycle free reconfiguration cases.

 30

ni+1 ni

 nj

ni+2

nj = ni+3

ni+4

 ni-1

Fig. 12. Case 1 – When node ni has a neighbor nj that has the grandparent of node ni (i.e.

ni+2) as its child. That is, nj is a great-grandparent of node ni.

ni+1
ni

 nj

 ni-1

ni+3

nj = ni+2

Fig. 13. Case 2 – when node ni has a neighbor nj that is its grandparent ni+2.

 31

ni+1

ni

nj

ni+2
ni+3

 ni-1

Fig. 14. Case 3 – when node ni has a neighbor nj that has the grandparent of node ni (i.e.
ni+2) as its parent.

ni+1

ni

 nj+1
ni+2

ni+3

ni-1

nj

Fig. 15. Case 4 – when node ni has a neighbor nj that has ni+2 as its grandparent.

 32

ni+1

ni

ni+2

ni-1

nj

ni+3

ni+4

Fig. 16. Case 5 – when node ni has a neighbor nj that is sibling of node ni+2.

Several nodes may send an ACKINP. Then node ni selects one of the nodes nj as its

new parent by broadcasting an ACPINP(myID, myID.p, myID.gp, caseNUM). ACPINP

stands for Acceptance of I Need Parent. Node nj adds node ni to its children list. Then the

data message that was held at node ni is delivered to node nj.

When node ni broadcasts the INP, some siblings of node ni may receive this message

and thus learn their parent is faulty. At this step, the sibling will wait until node ni finds a

new parent and then set node ni as its parent after receiving ACPINP. In this way, some

siblings can find a new parent without their own search, saving energy. But in a message

based reconfiguration mechanism such as SWR [18], each node that has a faulty parent

performs its own search for a new parent when it receives a data message, increasing

energy consumption. Fig. 17 shows the next step of Fig. 9. In Fig. 17, node B, a sibling

of node A, sets node A as its parent after receiving ACPINP from node A.

 33

A
B

L

C

R

G

D

K

P

H
F

E
S

Fig. 17. Sibling node B of node A can find its new parent.

The ACPINP also helps the children of node ni to find their new grandparent. In Fig.

17, when node E receives ACPINP from node A, it learns of its new grandparent, node S.

Optionally, if ACPINP provides myID.gp information (i.e., node D), node E can also

learn its great-grandparent (ggp) from the message (myID.gp = D). When this extended

ancestor information is used, the success of reconfiguration can be increased.

In addition to cases 1 to 5 above, a case 6 was introduced in [40], shown in Fig. 18.

This is the case when node ni has a neighbor nj that has a grandparent (ni+2) of node ni as

its neighbor.

 34

ni+1

ni

ni+2

ni+3

ni-1

nj

nj+1

nj+2

Fig. 18. Case 6 – when node ni has a neighbor nj that has ni+2 as its grandparent.

Case 6 does not always provide a cycle free path. Unlike the above five cases, node nj

changes its own parent to node ni+2. This can cause a cycle since node ni+2 can be a

descendant of node nj. The same situation can happen when node nj keeps its own parent.

The parent of node nj can be a descendant of node ni.

Figs. 19 and 20 show two actual situations that caused cycles during simulation. Fig.

19 shows a cycle that happened when node nj changed its own parent to node ni+2 as in

case 6. Fig. 20 shows a cycle that happened when node nj kept its own parent.

Fig. 19 shows the situation when node 52 became faulty. When node 42 chose node 62

as its new parent after node 62 sent ACKINP to it, since node 42’s grandparent node 61

is its neighbor and when node 62 changed its current parent with 61, a cycle path was

created. In this case, node 62 avoids a cycle by not changing its parent.

 35

Fig. 20 shows the situation when node 46 became faulty. When node 28 chose node 36

as its new parent after node 36 sent ACKINP to it, since node 28’s grandparent node 56

is its neighbor, a cycle path was created. In this case, node 36 avoids a cycle by changing

its parent with node 28’s grandparent node 56 as its new parent.

Although case 6 can be used with a cycle detection and removal method, the extra

complexity of the algorithm is not worthwhile, since the later steps in the algorithm can

handle the cases not handled by cases 1 to 5.

42

43

54

71

53

76

61

62

64

82

81 91

Cycle 92

 R

52

?

44

Fig. 19. A cycle occurs when node nj changes its parent to node ni+2 in case 6.

 36

9

10

8

7

6

20

36

19

18

25

28

26

37 27

40 30

47

 56

Cycle

?

46

 R

Fig. 20. A cycle occurs if node nj keeps its own parent in case 6.

Lemma 1. Given a faulty node in a spanning tree, the new path to the root node R

made by local reconfiguration using a case from 1 to 5, is loop free.

Proof. We know that water on the mountain flows down into a valley and a ball on the

inclined plane rolls down to the bottom. We also know that these natural flows are loop

free. Each path in a spanning tree is like a water flow on the mountain. Information from

nodes flows down into the root, R. Without loss of generality, we can say that a new path

made by a reconfiguration case is loop free if the initiating node of the reconfiguration is

directly or indirectly connected to a lower or same height node on the current path when

 37

the height of R is 0.

Both case 1 and 2 provide direct connections to a lower height node on the path. In

case 1, the initiator is directly connected to its previous great-grandparent (ggp) and it

also is connected to its previous grandparent (gp) by case 2. Through the other cases

from 3 to 5, indirect connections are provided to the initiator. From case 3, the initiator

can reach its gp through a sibling of the faulty node that has a lower height than the

initiator. From case 4, it reachs its gp through a neighbor that has the same gp (i.e., same

height as the initiator). And from case 5, it reachs its ggp through a neighbor that has the

ggp as its p (i.e., lower height).

All cases from 1 to 5 directly or indirectly provide the initiator a new connection to a

lower height node (i.e., its gp or ggp). Thus, new paths made by the above five cases are

loop free. (End of proof)

INP-ACKINP is an essential procedure for the reconfiguration that is repeatedly used

in the more complex reconfiguration steps (i.e., CNFCF and ICNYP). Fig. 21 describes

the different responses of a node based on its current state when receiving an ACKINP.

 38

RecvACKINP(init, j, j.p, caseNUM) from j {
 if (init == myID)
 {
 myID.p = j;
 myID.gp = j.p;
 myID.flowdirection = LOW;
 Broadcast ACPINP (myID, myID.p, caseNum) to its neighbors;
 }
 else {
 if (state == recvICNYP)
 Send ACKICNYP (init, myID, j, j.p)
 to the node that gave ICNYP;
 else if (state == recvCNFCF)
 Send ACKCNFCF(init, myID, j, j.p) to the node

 that gave CNFCF;
 }
}

Fig. 21. Procedures according to the different states when ACKINP is received.

2) CNFCF

If the detecting node ni cannot find a cycle free parent with one of above five cases

within a given time, node ni lets each sibling node know this fact by broadcasting a

CNFCF (init, myID, init.p, init.gp) control packet. CNFCF stands for Cannot Find Cycle

Free. Each sibling that hears the CNFCF starts to find its new parent by broadcasting an

INP control packet. When a sibling receives ACKINP from its neighbor that satisfies one

of the above five cases, it sends ACKCNFCF (init, myID, finderID, finderID.p) control

packet to the initiator, node ni. ACKCNFCF stands for Acknowledgement of CNFCF and

finderID is the ID of a sibling’s neighbor that gives ACKINP to the sibling. When a

sibling does not receive ACKINP, it broadcasts CNFCF. If a sibling that is not in the

transmission range of the detecting node ni receives CNFCF, it also can help node ni by

checking its neighbors by sending INP.

If node ni receives ACKCNFCF messages from some of its siblings, it chooses one of

the siblings as its new parent and broadcasts an ACPCNFCF (init, siblingID, finderID,

 39

finderID.p) control packet. ACPCNFCF stands for Acceptance of CNFCF. The

ACPCNFCF message also helps other nodes (children or siblings of node ni) to find their

new parent or grandparent. Fig. 22 shows these procedures. By helping each other, the

possibility for the detecting node ni to find a new parent is increased and the siblings can

find their new parent without much extra message traffic.

recvCNFCF(init, i, init.p, init.gp)
{

myid.intersibling = i;
state =recvCNFCF;
Send INP (init, myID, init.p, init.gp);
If (TO(ACKINP)) {

state = sendCNFCF;
send CNFCF(init, myID, init.p, init.gp) to myID.sibs except node i;

}
}

Fig. 22. Procedures when CNFCF is received.

ig. 23 shows a situation that node A can find its new parent through sibling B when

it

F

s current parent P is dead. Node B finds a new parent C after receiving a CNFCF

message and node A changes its new parent with node B after receiving a ACKCNFCF

message from node B. If node A does not have sibling B’s help via a CNFCF message, it

can find its new parent through an UNKNOWN node H by spending more effort, as

explained below, but at the cost of additional energy consumption.

 40

A
B

L

C

R

G

D

K

P

H
F

E

Fig. 23. When node A can have sibling B’s help.

3) ICNYP

When the initiator node ni still cannot find its LOW direction node through INP and

CNFCF procedures, it broadcasts an ICNYP (init, myID, init.p, init.gp) control packet to

each child to check if a child can find a LOW direction node. By broadcasting INP, each

child that receives ICNYP tries to find a LOW direction node. ICNYP stands for I Cannot

Be Your Parent. Fig. 24 shows these procedures.

recvICNYP(init, i, init.p, init.gp)
{
 state =recvICNYP;
 Send INP (init, myID, init.p, init.gp);
}

Fig. 24. Procedures when ICNYP is received.

 41

When a child ni-1 receives ACKINP from a neighbor, it sends ACKICNYP (init, myID,

finderID, finderID.p,) control packet to node ni in response to the ICNYP message.

ACKICNYP stands for Acknowledgement of ICNYP. The message contains the

neighbor’s ID in finderID and its parent in finderID.p. If node ni receives ACKICNYP

messages with new paths from some of its children, it chooses one of the children as its

new parent, broadcasts an ACPICNYP (init, childID, finderID, finderID.p). The

ACPICNYP message also helps other nodes (children or siblings of node ni) to find their

new parent or grandparent. ACPICNYP stands for Acceptance of ICNYP, and childID for

the node which sent ACKICNYP and chosen as a new parent. When a child ni-1 receives

ACPICNYP from node ni, it sets the neighbor that finds a LOW direction node as a new

parent by sending ACPINP. Figs. 25 and 26 show those procedures.

Receive ACKICNYP (init, k, finderID, finderID.p) from k {
 If (init == myID) {
 If (state == sendICNYP) {

myID.p = k;
myID.gp = finderID;
remove k from its children list
Broadcast ACPICNYP(init, k, finderID, finderID.p) to it neighbors
state = Complete;

 }
 }

else if (init != myID) {
 if (state == recvICNYP)

Send ACKICNYP(init, myID, finderID, finderID.p) to its parent;
 }
}

Fig. 25. Procedures when ACKICNYP is received.

 42

Receive ACPICNYP (init, k, finderID, finderID.p) from k {
If (k == myID) {
 If (state == recvICNYP) {

 myID.p = finderID;
 myID.gp = finderID.p;
 add initiator to its children list;
 Broadcast ACPICNYP to its neighbors;
 state = Complete;

 }
} else if (init != myID) {
 if (state == recvICNYP) {

 myID.gp = k;
 remove k from its sibling list;
 state = Complete;

 } else {
 if (finderID == myID) {
 add k into my children list;
 } else if (k == myID.p) {
 myID.gp = finderID;
 add initiator into my sibling list;
 }
 }

}
}

Fig. 26. Procedures when ACPICNYP is received.

In Fig. 27, node A sends a ICNYP message since it cannot find its new parent through

INP and CNFCF procedures. Since node E has a neighbor U that has node D as its gp

(i.e., case 4), it can choose node E as its new parent. Fig. 28 shows the message sequence

for this situation.

 43

A

L

C

R

G

D

K

P

H
F

E

T
U

Fig. 27. When node A can find its new parent using ICNYP.

ICNYP
INP

ACKINP
ACKICNYP

Info
Info

U E A H

ACPINP
ACPICNYP

Fig. 28. Message sequence for Fig. 27.

 44

4) INI and PFIND

When the initiator node ni still cannot find its LOW direction node with ICNYP

procedures, node ni tries a node among UNKNOWN direction neighbors as its new

(candidate) parent. Before doing this, node ni gets more local information that helps it

select an UNKNOWN node by broadcasting a INI (myID) control packet. Through

ACKINI (INIsender, myID, myID.p, myID.gp) from the neighbors, node ni receives that

information. INI stands for I Need Information and ACKINI stands for Acknowledgement

of INI, which carries information about the responding node’s neighbors. Fig. 29 shows

these procedures.

recvINI(INIsender)
{
 Send ACKINI (INIsender, myID, myID.p, myID.gp) to INI sender;
}

Fig. 29. Procedures when INI is received.

recvACKINI(INIsender, i, i.p, i.gp) from i
{

if ((i.p == myID) || (i.gp == myID) || (i.p ∈ myID.siblings) ||
(i.gp ∈ myID.children) || (i.gp ∈ myID.siblings))
 i.direction = HIGH;

 else if (i.p == myID.p)
 i.direction = SAME;
 else
 i.direction = UNKNOWN;
 if (i.direction == UNKNOWN) {
 state=sendPFIND;
 send PFIND(PFINDsender, PFINDsender.p, PFINDsender.gp, Relayer) to i;
 }
}

Fig. 30. Procedures when ACKINI is received.

 45

By collecting this information node ni may capture the local connectivity among

neighbors and filter the UNKNOWN nodes that should not be chosen as new parent

candidates. Fig. 30 shows these procedures. HIGH flow direction neighbors are

discarded. Then for groups of neighbors that all share the same path, all but the highest

node is discarded, to avoid redundant work. If node ni still has neighbors that have an

UNKNOWN flow direction, it will randomly choose one of these nodes and send a

PFIND (PFINDsender, PFINDsender.p, PFINDsender.gp, Relayer) control packet to

the node. PFIND stands for Path Find.

The PFIND message propagates up the neighbor’s path towards the root, checking at

each relay node whether it can provide a LOW direction node by satisfying one of five

cases discussed above. If a LOW direction node is found at a relay node, the relay node

responds to node ni with ACKPFIND (myID, PFINDsender, myID.p) along the reverse

path direction. ACKPFIND stands for Acknowledgement of PFIND. Then node ni sets

the UNKNOWN node that relays ACKPFIND as its new parent and broadcasts

ACPPFIND (Acceptance of PFIND). If node ni does not receive a ACKPFIND message

within a time limit, the node sends a PFIND message through a different UNKNOWN

node. If there are no UNKNOWN nodes remaining, node ni back offs on its time limit

and restarts INI and PFIND procedures since the network topology may have changed

during the previous procedures. Reconfiguration tries end when node ni reaches the back

off limit. Figs. 31 and 32 show these procedures.

 46

Fig. 31. Procedures when PFIND is received.

recvACKPFIND(myID, PFINDsender, myID.p) from k
{

if (PFINDsender == myid) {
 myID.p = k;
 myID.gp = k.p;

 Broadcast ACPPFIND(myID, myID.p, myID.gp, caseNUM) to its neighbor;
 }
 else
 forward ACKPFIND to PFINDsender;
}

recvPFIND (PFINDsender, PFINDsender.p, PFINDsender.gp, Relayer)
{
 if ((PFINDsender.gp == myID) || (PFINDsender.gp ∈ myID.chd) || (PFINDsender.gp ∈ myID.gp) ||
 (PFINDsender.gp ∈ myID.sibling) || (PFINDsender.gp == myID.p) || (myID == Representative))
 Send ACKPFIND (myID, PFINDsender, myID.p) to sender;
 else
 forward PFIND to its parent;
}

Fig. 32. Procedures when ACKPFIND is received.

Fig. 33 shows node A can find its new parent by using the PFIND procedure after

trying all other previous procedures. An UNKNOWN node H can become a new parent

of node A. This is because node L has node D as its gp (i.e., case 4). Fig. 34 shows the

message sequence for this situation. Fig. 35 shows the overall reconfiguration algorithm

flow chart.

 47

A

L

C

R

G

D

K

P

H
F

 E

Fig. 33. When node A can find its new parent using PFIND.

E F A H G K L

INI

ACKINI
ACKINI

PFIND
PFIND

PFIND
PFIND

ACKPFIND

ACKPFIND

ACKPFIND
ACKPFIND

ACPPFIND

INFO

E F A H G K L

INI

ACKINI
ACKINI

PFIND
PFIND

PFIND
PFIND

ACKPFIND

ACKPFIND

ACKPFIND
ACKPFIND

ACPPFIND

INFO

Fig. 34. Message sequence for Fig. 33.

 48

Fig. 35. Overall reconfiguration procedure flow chart.

Receive Data Packet

Enque Data packet to queue

Is parent faulty? Forward the receiving Data packet

Is state complete?

YES

NO

YES

Finish process of receiving
current data and ready for
other data

NO

 TO (ACKINP)
NO

Receive ACKINP

YES

Receive ACKCNFCF

Change its parent and grandparent

Broadcast ACPCNFCF

 TO (ACKCNFCF)

Change its parent and grandparent

Broadcast ACPINP

Broadcast INP to its neighbors

Send CNFCF to its siblings

Receive ACKICNYP

Change its parent and grandparent

Broadcast ACPICNYP

 TO (ACKICNYP)

Send ICNYP to its children

Send INI to its neighbors

 TO (ACKINI)

 Backoff number < max

 Change backoff time

Receive ACKINI

Compute flow direction of neighbors

Send PFIND to an
UNKNOWN neighbor

End

 TO (ACKPFIND) Receive ACKPFIND

Change its parent and grandparent

Broadcast ACPPFIND

 Are all UNKNOWN tried?

NO

YES

NO

NO

YES

YES

NO

NO

YES

YES

NO

YES

 49

Although the detecting node ni has several sequential steps to find its new parent, these

tries were bounded to save energy. It is better for a node to give up rather than

consuming most of its energy searching for a new parent. There is an extended step to

follow when a detecting node ni can tolerate further energy consumption to find a new

parent, such as when node ni has really urgent data to deliver to the root. One solution is

to flood the data. However, the node failure may mean that there is no way to create a

path to root R in the current tree. Recognition of this fact is termed partition detection.

C. Partition handling

Node ni and its descendants nodes might be partitioned from the current tree structure

when node ni’s parent becomes faulty. It may be undesirable for the descendants of

detecting node ni to continue sending information to their parents on the current tree

structure since this wastes energy. With the above local reconfiguration steps in INP

algorithm, partition situations cannot be detected. By extending the existing

reconfiguration steps to include a partition handling procedure, the nodes in the partition

area can recognize the partition situation and stop sending data until the area rejoins the

tree T.

The partition of node ni and its descendant nodes does not mean that no path can be

found from each node in the partition area to the root R. Each node may find a new path

to root R by rebuilding a new communication tree structure or by flooding route request

control packets that are used in reactive routing protocols like AODV [41].

The INP algorithm focuses on locally reconfiguring the existing tree communication

structure against crash faults on a given network topology. Thus at most a few paths per

 50

local reconfiguration situation are added to, removed from, and changed during

reconfiguration. Thus the term “partitioned” in this dissertation means that node ni and

its descendant nodes could not find path to the root R using the partition detection

procedure.

If the above steps of the INP algorithm fail, the partition detection procedure is

initiated. Node ni sends a CHECK-PARTITION control packet to its children. This

happens after node ni fails to receive a ACKPFIND message from any UNKNOWN

neighbors. Each child again sends a PFIND message to its neighbors and waits for a

ACKPFIND message. When a child receives ACKPFIND from a neighbor, it replies

with ACKCHECK-PARTITION (newparentID) to node ni with newparentID the

neighbor’s ID. When a child does not receive any ACKPFIND within the given time

limit, it sends a CHECK-PARTITION to its children. The same steps are repeated until

each leaf node in the tree tries to find a new path.

When a leaf node cannot find a new path, it sends an ACKCHECK-PARTITION

message with newparentID = NULL to its parent. When each parent node receives these

messages from all of its children, it sends an ACKCHECK-PARTITION message with

newparentID = NULL to its parent. When the initiator node ni receives these messages

from all of its children, partition has been detected. Fig. 36 shows the procedures.

 51

Recv_CheckPartition()
{
 For each neighbor k except its parent, grandparent, children, and siblings
 {
 Send PFIND to k;
 If TO(AckPFIND(k)
 NofNotFindNode++;
 }
 If (NofNotFindNode == Number of neighbors except its parent, grandparent, children, and siblings)
 {
 If (node is leaf)

 Send ACKCheckPartition(NULL, myid) to its parent;
Else
{

 For each child j
 Send CheckPartition() message to j;
 }
 }
}

Recv_ACKCheckPartition(p, from)
{
 If (p == NULL)
 {
 NofNotFindChild++;
 If ((NofNotFindChild == Number of children)
 {

 If (recvCheckPartition)
 Send ACKCheckParition(NULL, myid) to its parent;
 else
 Detect partition;
 }
 }
 Else
 {
 if (recvCheckPartition)
 Send ACKCheckPartition(from, myid) to its parent;
 Else
 {
 Myid.Parent = from;
 Myid.gp = p;
 Send ACPICNYP(from);
 Return;
 }
 }
}

Fig. 36. Procedures of Check-Partition.

D. Joining spanning tree

When a node is newly deployed (reseeding) or restarts after a crash fault (e.g. battery

 52

recharged), it must join the tree. When node ni can reach a node nj that belongs to the

tree T, it joins the tree T by becoming a child of that node nj. Since each node ni does not

have a parent and grandparent yet, it broadcasts INP (init, myID, init.p, init.gp) with

init.p=NULL and init.gp=NULL. When any node nj belonging to the tree T receives the

INP message, it replies with ACKINP (init, myID, myID.p, caseNUM). Then node ni

randomly selects one of the responding nodes as its new parent. Note that this approach

can cause the spanning tree diameter to grow over time, but we are placing a priority on

minimum-energy tree maintenance. If the diameter becomes too large, the spanning tree

can be recreated.

In Fig. 37, there are two partition areas, I and II that are partitioned from the spanning

tree T and each other. When nodes O and P are deployed, they cannot help those two

partition areas to rejoin the tree. They just know that they cannot reach tree T since there

is no ACKINP from a node belonging to the spanning tree T.

When nodes S, T, and U are additionally deployed, node S receives ACKINP from

node K and sends PARENT(S,K) to its neighbors after sending ACPINP (S,K,LOW) to

node K. Then the nodes in both partition areas I and II can rejoin tree T through node S.

Node O functions as a connector between partition areas I and II.

As long as nodes are in a partition area, no procedure that makes parent-child

relationships among the nodes is needed. When nodes are reconnected to the tree T, the

relationships among the nodes are established. There is no merge procedure among

partition areas themselves before those are reconnected to the tree T.

 53

R

Faulty node

A

B
C

D

I
H

E

U

T

S

G

J

Newly deployed
nodes II (S,T,U)

O
J

P

U

V
W

X

Y
Newly deployed
nodes I (O, P)

Partition I

Partition II

Partition detection

K

Fig. 37. Joining procedures.

 54

IV. COMPUTATIONAL ANALYSIS

The INP algorithm was analyzed for energy consumption and message overhead.

Since the energy consumed varies based on the particular network, the following

subsections parameterize the network and compute the energy consumption and message

overhead for specific functions and then for the entire algorithm.

Energy consumption is assumed not a function of distance but a function of message

type. This is correct when the transmitter power is constant and transmitter energy is a

function of message length. The energy to send a message of type X is denoted as E(Xs).

The energy to receive a message of type Y is denoted as E(Yr). Table I shows variables

for computational analysis of INP.

TABLE I

VARIABLES FOR COMPUTATIONAL ANALYSIS OF INP

Variable Description

N total number of nodes (i.e., N=|F|+|FF|)
FF set of all fault-free nodes
F set of all faulty nodes

Nei[j] total number of neighbors of node j including children and siblings
chd[j] total number of children of node j
sibs[j] total number of siblings of node j
unknown[j] total number of UNKNOWN neighbors of node j

c maximum number of neighbors
height[j] height of node j

A. Establishing a tree

For establishing a tree, each node broadcasts its PARENT message and receives

 55

PARENT messages from all fault-free neighbors. Since energy consumption for each

fault-free node j is E(parents) + Nei[j]·E(parentr), equation (1) is the energy

consumption of all fault-free nodes.

∑
=

N

j 1
 ((E(parents) + Nei[j] ·E(parentr)) (where, j ∈FF) (1)

(1) becomes (2) in the worst case when all nodes are fault-free with a maximum

number of neighbors c.

N·(E(parents) + c·E(parentr)) (2)

The total number of messages exchanged does not exceed c·|FF| when the maximum

number of neighbors is c, since each fault-free node sends a message. In the worst case

when all nodes in the network are fault-free, the number becomes c·N or O(N).

B. Local path reconfigurations

The following shows the energy consumption of path reconfiguration procedures.

1) INP

Energy consumption of an INP message sender node j when a neighbor that is not a

child or sibling replies with ACKINP message is:

E(inps) + E(ackinpr) + E(acpinps) (3)

Maximum energy consumption of an INP message sender node j when all neighbors

except children and siblings reply with ACKINP messages is:

E(inps) + (Nei[j]-chd[j]-sibs[j])·E(ackinpr) + E(acpinps) (4)

Energy consumption of an ACKINP message sender node is:

E(inpr) + E(ackinps) + E(acpinpr) (5)

 56

Energy consumption of other neighbor nodes is:

E(inpr) + E(acpinpr) (6)

Thus the total energy needed for an INP procedure in worst case is expressed as (7). It

shows when all neighbors except children and siblings reply with ACKINP messages.

(4) + (Nei[j]-chd[j]-sibs[j])·(5) + (chd[j]+sibs[j])·(6) (7)

The total number of messages exchanged in worst case is O(c) with a maximum

number of neighbors, c.

2) CNFCF

Energy consumption of a CNFCF message sender node j when a sibling replies with

ACKCNFCF message is:

 E(cnfcfs) + E(ackcnfcfr) + E(acpcnfcfs) (8)

Maximum energy consumption of a CNFCF message sender node j when all siblings

reply with ACKCNFCF messages is:

E(cnfcfs) + sibs[j]·E(ackcnfcfr) + E(acpcnfcfs) (9)

Energy consumption of an ACKCNFCF message sender node is:

E(cnfcfr) + E(ackcnfcfs) + E(acpcnfcfr) (10)

Energy consumption of other neighbor nodes except siblings is:

E(cnfcfr) + E(acpcnfcfr) (11)

Thus the total energy needed for a CNFCF procedure in worst case is expressed in

(12), when all siblings reply with ACKCNFCF messages.

(9) + sibs[j]·(10) + (Nei[j]-sibs[j])·(11) (12)

The total number of messages exchanged in worst case is O(c) with a maximum

 57

number of neighbors, c.

3) ICNYP

This procedure can be analyzed in two parts. One is related to the ICNYP message step

and the other is related to the INP message step. Energy consumption of an ICNYP

message sender node j when a child replies with ACKICNYP message is:

E(icnyps) + E(ackicnypr) + E(acpicnyps) (13)

Maximum energy consumption of an ICNYP message sender node j when all its

children reply with ACKICNYP message is:

E(icnyps)+ chd[j]·E(ackicnypr) + E(acpicnyps) (14)

Maximum energy consumption of an ACKICNYP message sender node k that is a child

of node j is:

E(icnypr) + E(ackicnyps)+ E(acpicnypr) (15)

This does not include the energy consumed by node k for the INP procedure before

sending a ACKICNYP message to node j.

The energy consumption of all other neighbors of node j except its children is:

(Nei[j]-chd[j])·(E(icnypr) + E(acpicnypr)) (16)

Thus, the total energy used for the ICNYP message step in an ICNYP procedure in the

worst case is expressed as (17), when all children reply with ACKICNYP messages.

(14) + chd[j]·(15) + (16) (17)

In addition, each child k of node j executes an INP procedure that consumes the energy

given in (7), with k used instead of j. Thus, the worst-case total energy used for the INP

message step in an ICNYP procedure is expressed as (18).

 58

chd[j]·(7) (18)

Finally, the total energy used for the ICNYP procedure in the worst case is expressed

as (19).

(17) + (18) (19)

The total number of messages exchanged in the worst case is O(c2), for a maximum

number of neighbors, c.

4) INI and PFIND

Energy consumption of an INI message sender node j when UNKNOWN neighbors can

reply with an ACKINI message is:

E(inis) + unknown[j]·E(ackinir) (20)

When all neighbors except children and siblings are UNKNOWN (i.e., Nei[j]-chd[j]-

sibs[j]), energy consumption of an INI message sender node j is maximized. Energy

consumption of an ACKINI message sender node is:

E(inir) + E(ackinis) (21)

Energy consumption of other neighbor nodes is:

E(inir) (22)

Thus, the total energy needed for an INI procedure is expressed as (23), when all

UNKNOWN neighbors send ACKINI messages.

(20) + unknown[j]·(21) + (Nei[j]-unknown[j])·(22) (23)

The total number of messages exchanged in the worst case is O(c) or O(1), with a

maximum number of neighbors, c.

After receiving INI message(s), node j sends a PFIND message. Energy consumption

 59

of node j when it tries the first UNKNOWN neighbor and finds a new path is:

E(pfinds) + E(ackpfindr)+ E(acppfinds) (24)

The node k that confirms a cycle free path and replies with an ACKPFIND message

back to the PFIND sender consumes the energy shown in (25).

E(pfindr) + E(ackpfinds) (25)

Each message relay node p from node j to node k or vice versa consumes the energy

shown in (26).

E(pfindr) + E(pfinds) + E(ackpfindr) + E(ackpfinds) (26)

The number of relay nodes is |height[k] - height[j]| - 1. Thus, the total energy

consumption of relay nodes is:

(|height[k] - height[j]| - 1)·(26) (27)

In the worst case, node j must try all its UNKNOWN neighbors. Equation (28) shows

the energy consumption of node j in that case.

unknown[j]·E(pfinds) + E(ackpfindr)+ E(acppfinds) <or> unknown[j]·E(pfinds) (28)

Equation (28) comes from the fact that node j may have a new parent after trying all

the UNKNOWN neighbors or may not have a new parent. That is, there is no such node k

that confirms a cycle free path and replies with an ACKPFIND message back to the

PFIND sender or a node k in the last UNKNOWN try. Thus, energy consumption in the

final destinations of the PFIND message is:

unknown[j]·E(pfindr) <or> (unknown[j]-1)·E(pfindr) + (25) (29)

The first case is for when PFIND sender j receives the PFIND message that it sent and

the second case is for when node k consumes the energy shown in (25) after other

 60

previous PFIND messages have arrived at node j.

For each UNKNOWN node try, the total energy consumption of relay nodes (27) is

used. Thus (30) is used to get the total relay node energy consumption.

unknown[j]·(27) (30)

Therefore, the total energy consumption of the PFIND procedure is (31).

(28) + (29) + (30) (31)

The total number of messages exchanged during PFIND is O(unknown[j]·height[root])

in the worst case. Since the number of unknown nodes cannot exceed the maximum

number of neighbors, the total number of messages is bounded by c·O(height[root]).

Height can range from N-1 to O(log(N)).

C. Competitive analysis

INP is evaluated with single path with repair routing (SWR) [18] since the

reconfiguration of a single path is a common problem to both algorithms and SWR uses

local path repair similar to INP.

The energy consumption of the algorithms is evaluated by using the per-packet

analysis method [42]. Per-packet energy consumption is computed as follows:

 Energy = C + (Power/DataRate) × packet size (32)

where C is the constant overhead per packet, Power is the transmitter or receiver power,

DataRate is the data rate of the channel after removing encoding overhead, and packet

size is the length of the packet. Power per bit is usually higher for transmitting than

receiving [43]. The constant C accounts for per-packet computation, carrier sensing,

sending or receiving any coordination packets such as RTS/CTS, and transceiver

 61

wakeup time. The value of C depends on whether the traffic is broadcast or unicast: C(B)

or C(U). Unicast has higher energy consumption since it has an acknowledgement

packet. After the constant amount C of energy consumption, each node consumes energy

for receiving or for sending data packets, depending on the packet length. A radio

transceiver model that uses the same power for receiving and listening is assumed [43].

Table II shows the parameters used in the analysis, taken from [43]. Transmit power is

assumed to be constant, independent of neighbor location within the transmission range.

TABLE II

PARAMETERS FOR COMPUTATIONAL ANALYSIS OF INP AND SWR

Parameter Value

Transmit power 24.75 mW
Receive power 13.5 mW
Bandwidth 20 kbps
MAC S-MAC
Duration of periodic listen 115 ms
Duty cycle 10%
Number of nodes 1024

The calculation results below show the energy consumption for both algorithms for

reconfiguration of one faulty node, both when a single message is delivered, and when

all of the children of the faulty node deliver messages.

The following assumed topologies are reasonable since the characteristics of both

algorithms are reflected on the results obtained by using those topologies. For example,

each sibling of the detecting node can find its new parent without its own effort in the

 62

INP algorithm unlike in the SWR algorithm.

Although each node in the tree can have different number of children in actuality, an

assumption that each node has r number of children was used for the following

calculations. Height of the tree is O(logrN).

Fig. 38 shows the energy consumption for different numbers of children of the

detecting node. The detecting node has 10 neighbors (including children and siblings,

but not including the faulty parent). There are no siblings assumed in Fig. 38. Fig. 39

shows energy consumption for different number of sibling neighbors of the detecting

node. The detecting node has 10 neighbors and 5 children. Note that a sibling might not

be a neighbor if it is out of transmission range, but that is not considered in these

examples.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9
Number of Children

En
er

gy
 (J

)

SWR Total Energy
INP Total Energy

Fig. 38. When neighbor(s) can give direct response to INP or HREQ under different
number of children.

 63

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4
Number of Siblings

En
er

gy
 (J

)

SWR Total with All Siblings' Detect
SWR Total with One Detect
INP Total
SWR Detectors Total
SWR One Detector Energy
INP Detector Energy

Fig. 39. When neighbor(s) can give direct response to INP or HREQ under different
number of siblings.

In Figs. 38 and 39, half the neighbors of the detecting node that are not children or

siblings are assumed to be able to directly guarantee a loop free path through them (cases

1 to 5 in INP) and reply with an acknowledgement (ACKINP in INP, HREP in SWR).

For SWR, the TTL field in the HREQ message is set to 3, as in [18]. This limits the

length of the route the HREQ message can travel [18]. Each neighbor that has a higher

hop number than the value of the detector relays the HREQ message up until TTL

becomes 0. In both algorithms, children do not send ACKINP or HREP messages. When

there are few children among the neighbors, more neighbors relay the HREQ message.

For example, with 2 children, 4 neighbors relay HREQ since 4 other neighbors can

directly send a HREP message. This causes the total energy used by SWR to fall with

increasing number of children of the detecting node, as shown in Fig. 38. When there are

 64

9 children (all neighboring nodes are children, except for the new parent), the energy

costs of SWR and INP are the same. In INP, the number of children does not

significantly affect the energy consumption, since the neighbors (including children) that

cannot find any of the five cases just wait until the detecting node finds a new parent

(ACPINP) or starts the next procedure (e.g. CNFCF).

Figs. 38 and 39 do not consider the amount of energy that SWR needs for updating

node cost (height) values. These updates are postponed until a downward message is

delivered to each child [18]. Outdated height values can result in loop formation during

reconfiguration, requiring extra energy to detect and remove. In the INP algorithm, the

neighborhood relationships are kept updated during reconfiguration, so loops can never

occur during reconfiguration.

In Fig. 39, as the number of siblings of the detecting node rises, the INP algorithm

uses more energy while SWR uses less energy. This is because siblings are not involved

in the SWR repair procedure. The HREQ message is discarded by all siblings. In the INP

algorithm, although siblings do not try to find a new parent, they are aware that their

parent is dead by receiving an INP message, and make the detecting node their new

parent. This causes the total energy to rise with the number of siblings, but completes the

reconfiguration for all siblings.

In Fig. 39, “SWR Total with One Detect” is the total energy consumed by all nodes for

the first detecting node to reconfigure. It falls as the number of siblings rises, since there

are fewer non-sibling, non-children neighbors to reply to messages. The curve “SWR

Total with All Siblings’ Detect” is the total energy consumed by all nodes for all siblings

 65

to detect the faulty parent and reconfigure. This is more realistic since eventually most

nodes will communicate with the root. The curve “SWR One Detector Energy” is the

energy expended by one child of the faulty node to detect and reconfigure. The curve

“SWR Detectors Total” is the total energy consumed by all the siblings as they all detect

the faulty parent and reconfigure.

The top curve in Fig. 39 rises with the number of siblings, due to the repeated

reconfiguration process. As the number of siblings increases, the energy consumption

starts to fall, since there are fewer non-child, non-sibling neighbors, so there is less

communication.

Fig. 40 shows the energy consumption when the detecting node can find its new parent

after a CNFCF message is used in the INP algorithm. Each node has 10 neighbors and 5

children. Each sibling is assumed able to give an ACKCNFCF message to the detector.

Since each sibling tries to find its new parent via the INP procedure, the amount of

energy that sibling(s) and their neighbors consume increases with the number of siblings.

The “Detector’s Neighbor’s Total” is the total energy used by the detecting node’s

neighbors to receive messages from the detector. This does not change since the number

of neighbors is fixed here. The “Detector’s Total Energy” increases slightly with

increasing number of ACKCNFCF messages received. As mentioned above, SWR does

not use any sibling help in reconfiguration so cannot reconfigure in cases where INP

uses the CNFCF message procedure.

 66

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5
Number of Siblings

En
er

gy
 (J

)

Total Energy

CNFCF Total

Detector's Neighbor's Total

Detector's Total Energy

Fig. 40. When detector needs siblings’ help without having direct response from its other

neighbors.

Fig. 41 shows the energy consumption when the detecting node must use the ICNYP

procedure to find a new parent. The detecting node has 2 siblings and each node

including the detecting node has 10 neighbors. Each child is assumed able to give an

ACKICNYP message to the detector. Since each child tries to first find its new parent via

the INP procedure, the amount of energy that children and their neighbors’ consume

increases with the number of children. The detecting node’s energy increases negligibly

when the number of ACKICNYP messages received increase. Total energy consumption

for the CNFCF procedure is not affected by the number of children since the number of

detecting node’s siblings involved in this procedure is fixed. As SWR does not use any

children’s help in reconfiguration, it cannot reconfigure in cases where INP uses the

ICNYP procedure.

 67

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8
Number of Children

En
er

gy
 (J

)

Total Enegy
ICNYP Total
CNFCF Total
Detector's Neighbor's Total
Detector's Total

Fig. 41. When detector needs children’ help without having siblings help.

Fig. 42 shows the energy consumption when the detector can find its new parent after

trying all UNKNOWN neighbors in the INP algorithm. Each node has 10 neighbors. The

detecting node has 2 siblings. The number of UNKNOWN neighbors is taken after

subtracting children and siblings from the 10 neighbors. After the INI procedure, half of

UNKNOWN neighbors are assumed as HIGH neighbors and disregarded in being

considered as a new parent.

Among the remaining UNKNOWN neighbors, only one neighbor is assumed to receive

an ACKPFIND message initiated from a child of root R along the reverse path direction

after other failed UNKNOWN neighbors’ tries. It happens when the PFIND message is

assumed to be delivered to a child of root R without having a chance to find a new path,

by assuming all five simple cases fail at all intermediate nodes on the path in the last

UNKNOWN node’s try. Previous failed tries occur when a PFIND message is sent to one

 68

of detecting node’s descendents. To measure the energy consumption of each failed try,

the PFIND message is also assumed to travel as the length from the last UNKNOWN

node to a child of root R.

UNKNOWN neighbors are assumed to be located at leaves of the tree for the worst

case situation. With a network size 1024, each UNKNOWN neighbor’s height is changed

according to the different number of children. When the number of children is 2, the

height is 9 (three children imply a height of six, etc.). Thus the total energy for the

PFIND procedure falls when the number of children increases. As can be seen, the

energy consumption for the PFIND procedure is higher than the energy consumption for

other procedures.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5 6 7
Number of Children

En
er

gy
 (J

)

Total Energy
PFIND Total
INI Total
ICNYP Total
CNFCF Total
Detector's Neighbor's Total
Detector's Total

Fig. 42. When detector needs to try UNKNOWN neighbor(s) without having children’s

help.

 69

V. SIMULATION ANALYSIS

INP and SWR are also evaluated through simulations and those algorithms are also

compared with GRAdient broadcast [19] with fixed transmission range (GRAB-F) that

uses dynamically made interleaving multiple paths. GRAB [19] was previously

compared with SWR in [18] to evaluate the effectiveness of SWR. Three metrics that are

used for comparing the performance of these approaches are average message delivery

ratio, average information latency, and average energy consumption per data delivery.

Information latency is defined as the amount of time spent for delivering a message from

a source node to the root node R. These metrics are considered for different node

densities and node failure rates.

A. Simulation environment

For simulations, we use NRLsensorsim [44], which extends the ns-2 network

simulator [45] to facilitate simulating sensor networks. For simulating sensor networks

that detect phenomena such as seismic activity or sound, NRLsensorsim adds the

phenomenon notion to ns-2 [44]. This is implemented by a phenom “channel” attached

to each node, separate from the regular data channel. Through the sensor agent that is

attached to the phenom channel, each sensor node receives PHENOM packets that are

broadcast by mobile PHENOM node(s) that are moving around along the paths provided

by a PHENOM “routing” protocol. Nodes deliver the received PHENOM packet events

to the node’s sensor application. Nodes react to the phenomenon (PHENOM packets)

according to the function defined by its sensor application [44]. In this work, the nodes

will transmit “phenomenon detected” messages to the root.

 70

Table III shows the parameters that were used for the simulations. A radio transceiver

model that uses the same power for receiving and listening is assumed, as in section IV

[43].

TABLE III

PARAMETERS FOR SIMULATIONS OF INP, SWR, AND GRAB-F

Parameter Value
Transmit power 24.75 mW
Receive power 13.5 mW
Idle listening power 13.5 mW
Sense power 0.00175 mW
Bandwidth 2Mbps
MAC 802.11b
Network size 400
Network type Random
Maximum fault rate 20%
Transmission range Fixed
Radio propagation model Two-ray ground reflection
Antenna model Omni directional
Average initial number of neighbors 7, 15

Nodes are randomly distributed on a plane. Fig. 43 shows 400 randomly deployed and

located sensor nodes and a destination (sink) node on a fixed 2000 × 2000 m2. All nodes

are fixed except a mobile PHENOM node [44]. The destination node is located at (1067,

1909) and the PHENOM node [44] is initially located at (300, 300). A communication

tree is constructed and the PHENOM node moves around inside the sensor field with a

constant velocity (e.g., 500 m/s or 1000 m/s). When the phenomenon moves into the

transmission range of a node, the node sends a “phenomenon detected” packet to the root

node. The circles in Fig. 43 show one fixed transmission range occurred when nodes

 71

send those packets. Although it is looked like many different transmission ranges

depending on the sending nodes since the snapshot has various sizes of the circles, but it

is all the same. Up to 20% of randomly selected nodes (i.e., 80 out of 400 in Fig. 43)

become faulty at different times, five sets of faulty nodes are used without duplication

and the results averaged for the simulations. The same conditions are also used in the

SWR and GRAB-F simulations. One thing we want to emphasis is that GRAB-F uses a

fixed “width” of the forwarding paths, in contrast to the GRAB algorithm, which

assumes variable transmit power and so variable path width. Two different transmission

ranges are used in the simulations, one with an average of 7 neighbors, and one with an

average of 15 neighbors.

Fig. 43. Random distribution of 400 nodes.

 72

B. Simulation results

Figs. 44 and 45 show average data delivery rates for 15 and 7 neighbors. In both cases,

there is only a small difference (less than 3%) in delivery ratios between INP and SWR

for the same number of faulty nodes. In a dense network, Fig. 44, INP has a smaller drop

in delivery ratio with increasing faults (less than 1%) than SWR has (less than 3%). This

is because INP could handle all reconfiguration situations that occurred, while SWR

could not. Thus INP has a higher delivery ratio than SWR after 9 faults.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of sequential faults

D
el

iv
er

y
R

at
e

(%
)

INP
SWR
GRAB-F

Fig. 44. Average delivery ratio for 15 initial neighbors.

In Fig. 45, INP has a higher delivery ratio than SWR after 33 faults. In a sparse

network with increasing faults, the chance that nodes cannot find new parents increases

in both approaches. Nevertheless, INP found more new parents than SWR. The single

path delivery schemes (INP, SWR) always had a delivery ratio more than 25% higher

than GRAB-F, a multiple path delivery scheme using broadcast.

 73

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of sequential faults

D
el

iv
er

y
R

at
e

(%
) INP

SWR
GRAB-F

Fig. 45. Average delivery ratio for 7 initial neighbors.

Figs. 46 and 47 show the specific reasons for undelivered data messages in INP and

SWR. “Undelivered messages” are the sum of “Holding messages” and “Dropped

messages”. “Holding messages” are the messages stored in a node queue because the

node could not find a new path. “Dropped messages” are either the messages dropped at

fault-free nodes or the messages dropped when nodes become faulty. In Fig. 46, there is

little difference between INP and SWR for “Dropped messages” (less than 10 more

messages dropped in SWR). There are no “Holding messages” for INP because all nodes

find their new parents and thus “Undelivered messages” are all from “Dropped

messages”. SWR has many more “Holding messages” than INP starting from 9 faults. In

Fig. 47, there are some sharp increases in undelivered message with increasing faults.

Figs. 48 to 62 show the reasons why the undelivered messages are dropped or held.

 74

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of sequential faults

N
um

be
r o

f m
es

sa
ge

s
Holding messages -INP
Holding messages -SWR
Dropped messages - INP
Dropped messages -SWR
Undelivered messages -INP
Undelivered messages -SWR

Fig. 46. Reasons for undelivered messages for 15 neighbors.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of sequential faults

N
um

be
r o

f m
es

sa
ge

s

Holding messages -INP
Holding messages -SWR
Dropped messages - INP
Dropped messages -SWR
Undelivered messages -INP
Undelivered messages -SWR

Fig. 47. Reasons for undelivered messages for 7 neighbors.

Figs. 48 and 49 show the total number of messages that were dropped by MAC

collision for 15 and 7 neighbors. This includes data for the same message dropped

repeatedly. In a dense network, Fig. 48, more collisions occur than in a sparse network,

Fig. 49. The collisions decrease with increasing node failures, since fewer nodes are

 75

sending messages.

240

260

280

300

320

340

360

380

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 48. Average messages dropped by Drop-MAC-Collision for 15 initial neighbors.

60

80

100

120

140

160

180

200

220

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 49. Average messages dropped by Drop-MAC-Collision for 7 initial neighbors.

At the MAC layer, a message is retried up to 4 times before giving up. If the retry limit

is reached, this route failure is reported to the RTR layer by the link layer. Then Drop-

RTR-MAC-Callback for the message occurs [45]. The number of messages permanently

 76

dropped by MAC collision after reaching the retry limit is shown in Figs. 50 and 51.

50

55

60

65

70

75

80

85

90

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 50. Average messages dropped by Drop-MAC-Retry-Count-Exceed for 15 initial
neighbors.

5

7

9

11

13

15

17

19

21

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 51. Average messages dropped by Drop-MAC-Retry-Count-Exceed for 7 initial

neighbors.

Figs. 52 and 53 show the messages dropped by Drop-RTR-MAC-Callback. These

figures include the number of messages dropped by MAC-Retry-Count-Exceeded since

 77

MAC-Retry-Count-Exceeded causes Drop-RTR-MAC-Callback.

70

75

80

85

90

95

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 52. Average messages dropped by Drop-RTR-MAC-Callback for 15 initial
neighbors.

5

7

9

11

13

15

17

19

21

23

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 53. Average messages dropped by Drop-RTR-MAC-Callback for 7 initial
neighbors.

The maximum number of messages in the RTR queue is 64 (RTQ_MAX_LEN 64)

and the maximum period of time that a message can stay in the queue is 30 seconds

 78

(RTQ_TIMEOUT 30). Any messages reaching either limit are dropped. Fig. 54 shows

the number of messages that were dropped by RTR queue full with 7 initial neighbors.

Queue full drops do not occur with 15 initial neighbors. This is because most

reconfigurations were successful and quickly performed in the dense environment. With

7 initial neighbors in Fig. 54, INP has many dropped messages and SWR has no dropped

messages. This is because a forwarding node in INP keeps the received messages in the

RTR queue, while the node in SWR sends the message back to the source when it cannot

find its new parent, preventing a bottleneck in the queue. This explains why SWR has

more held messages than INP in Figs. 46 and 47. It also explains why INP has more

dropped messages than SWR before 53 faults in Fig 47.

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 54. Average messages dropped by Drop-RTR-Qfull for 7 initial neighbors.

In Figs. 55 and 56, Drop-RTR-Route-Loop occurs when a source node receives the

messages it sent in both approaches. In SWR, Drop-RTR-Route-Loop also occurs when a

 79

message forwarding node receives the message. We call this an inner loop. It is different

from a loop that occurs when the source node receives the message that it sent. INP does

not detect inner loops and messages are delivered until the time to live (TTL) limit is

reached, then dropped. In INP, since a node that needs a new parent finds a Low

direction node as its new parent, both kinds of loops are not expected. But in practice,

loops and inner loops can occur when a broadcast control packet (e.g., ACPICNYP) is

not delivered to neighboring nodes. An average of 0, 1.2, or 2.2 loops were found in Fig.

56 and an average of 0, 3.4, or 4.4 were found in Fig. 55. In INP, dropped packets

caused by inner loops are not included in Figs 55 and 56 but included in Figs 57 and 58.

In SWR, loops and inner loops are caused by not updating node costs (height). In a

sparse network such as in Fig 56, there are many chances for these loops with increasing

faults.

Fig. 55. Average messages dropped by Drop-RTR-Route-Loop for 15 initial neighbors.

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

 80

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 56. Average messages dropped by Drop-RTR-Route-Loop for 7 initial neighbors.

In Figs. 57 and 58, Drop-RTR-TTL occurs when time to live (TTL) is exceeded. We

set TTL to 32. In INP, TTL drops were also caused by inner loops, since INP does not

provide inner loop detection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 57. Average messages dropped by Drop-RTR-TTL (32) for 15 initial neighbors.

 81

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 58. Average messages dropped by Drop-RTR-TTL (32) for 7 initial neighbors.

Figures 59 and 60 show the average number of dropped messages among those

buffered at the ARP table. DROP_IFQ_ARP_FULL happens only for unicast, not

broadcast. The ARP module receives queries from the Link layer. If ARP has the

hardware address for the destination, it writes it into the MAC header of the message. If

not, it broadcasts an ARP query, and caches the message temporarily. There is a buffer

for a single message for each unknown destination hardware address. When an

additional message to the same destination is sent to ARP, the earlier buffered message

is dropped [45].

 82

25

27

29

31

33

35

37

39

41

43

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 59. Average messages dropped by Drop-IFQ-ARP-FULL for 15 initial neighbors.

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 60. Average messages dropped by Drop-IFQ-ARP-FULL for 7 initial neighbors.

In Figs. 61 and 62, Drop-End-of-Simulation occurs when a message remains in the

interface queue at the end of simulation.

 83

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 61. Average messages dropped by Drop-End-of-Simulation at IFQ layer for 15
initial neighbors.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of faults

N
um

be
r o

f d
ro

pp
ed

 m
es

sa
ge

s

INP
SWR

Fig. 62. Average messages dropped by Drop-End-of-Simulation at IFQ layer for 7 initial

neighbors.

Figs. 63 and 64 show average data message latency. In a dense network, Fig. 63, with

increasing number of faults, INP show less latency than SWR. This is because the five

basic cases were used for most reconfigurations, and take little time. In a sparse network,

 84

Fig. 64, INP has higher latency than SWR. This is because further procedures such as

PFIND are used more often, and take longer time. Note that in these situations, SWR

would drop the message.

160

170

180

190

200

210

220

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of sequential faults

Ti
m

e
(m

se
c)

INP
SWR

Fig. 63. Average latency for 15 initial neighbors.

60

65

70

75

80

85

90

95

100

105

110

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of sequential faults

Ti
m

e
(m

se
c)

INP
SWR
GRAB-F

Fig. 64. Average latency for 7 initial neighbors.

 85

Figs. 65 and 66 show average energy consumption per node. The energy for all

activities in the simulation is included: making a tree, delivering data messages, sensing

environment, and reconfiguring paths. The energy for making an initial tree and sensing

the environment is the same in all three approaches. INP has lower energy consumption

than SWR and GRAB-F, which is one of the primary goals of the research.

450

460

470

480

490

500

510

520

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of sequential faults

En
er

gy
 (m

J)

INP
SWR

Fig. 65. Average energy per node for 15 initial neighbors.

 86

400

420

440

460

480

500

520

540

560

580

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of sequential faults

En
er

gy
 (m

J)

INP
SWR
GRAB-F

Fig. 66. Average energy per node for 7 initial neighbors.

Figs. 67 and 68 show average energy per node per successful message delivery. INP

uses less energy than SWR or GRAB-F. In a dense network, Fig. 67, less energy is

consumed per message than in a sparse network, Fig. 68, for both INP and SWR. This is

because reconfigurations were easily done without consuming much energy.

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of sequential faults

En
er

gy
 (m

J)

INP
SWR

Fig. 67. Average node energy per message for 15 initial neighbors.

 87

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of sequential faults

En
er

gy
 (m

J)

INP
SWR
GRAB-F

Fig. 68. Average node energy per message for 7 initial neighbors.

 88

VI. SYSTEM LEVEL DIAGNOSIS ALGORITHMS FOR WIRELESS SENSOR

NETWORKS

A. Introduction

Nodes in a sensor network can fail for many reasons, including battery depletion or

destruction [3]. Failures include complete loss of a node, or internal faults that cause a

node to operate incorrectly. Different mechanisms must be applied for diagnosing the

different kinds (e.g., crash, malicious) of failures.

In this section, a new sensor-initiated [7] crash fault diagnosis algorithm is introduced

for wireless sensor networks. Unlike monitoring/testing initiated by a request from an

observer (i.e., observer-initiated approach [7]), sensors trigger the testing periodically or

when they detect some signs/evidence of failure in a node. The problem with the

observer-initiated approach is that the status of the sensor network cannot be known

before the request from the observer/manager. This is not appropriate for sensor

networks used in urgent and critical environments that need self-monitoring/testing

mechanisms for a control observer to know constantly the fault/health status of sensors

in the network. This proposed approach uses a one-to-one testing mechanism where each

node is tested by one fault-free node by using unicast communications. It provides more

reliable testing results than results produced by one-to-many testing that uses broadcast

communication, with its accompanying problems (e.g., contention).

This approach uses a routing tree that is locally reconfigured in the face of broken

paths due to faulty nodes, to report diagnosis information. By using dynamic

reconfiguration, both static and dynamic faults are detected. And the newly

 89

deployed/recharged nodes can join at any time in this algorithm.

Energy consumption and communication overhead in this approach increases with

network size. To provide scalability, an extended approach is introduced, in which the

network is partitioned into zones. Each zone has a local representative node and each

node sends diagnosis information not to the network representative node (root), but to its

local representative node. The local representative node sends summarized diagnosis

information to the network representative node (e.g. number of node faults). Each local

representative node knows each node’s status in the local tree and the network

representative node can recognize not the specific status of each node in the local tree,

but the local tree’s general network status. This reduces energy consumption and

provides scalability.

The rest of the section is organized as follows. In subsection B, traditional system

level diagnosis and the previously introduced algorithms are reviewed. Subsection C

presents a new sensor-initiated fault diagnosis algorithm (Repre) and it is analytically

compared with the WSNDiag algorithm. Subsection D presents a scalable distributed

fault diagnosis algorithm (Local) and it is also analytically compared with the single

representative algorithm (Repre) and WSNDiag.

B. Literature review

Identification of the fault status (i.e., faulty or fault-free) of each processor (i.e. node)

in a system based on a syndrome, the set of all test results, is termed system level

diagnosis [46][47][48][49][50]. System level diagnosis was first introduced by Preparata,

Metze, and Chien (PMC model) [51] to diagnose nodes in multi-processor computer

 90

systems [52]. System level diagnosis in multi-processor systems became very useful for

maintaining the reliability of the system that could otherwise be diminished by the

increasing number of nodes and complexity of the system [53][54]. The theory of system

level diagnosis was not limited to multi-processor systems but extended to various

network environments: wired and wireless communication networks, and currently to

wireless sensor networks.

Unlike fault-tolerant systems that use redundant modules (e.g., N-modular redundancy)

or error detecting codes, to detect (or mask) faulty nodes, a testing method is used in

system level diagnosis by assuming that each node can test other node(s). Each tester

node tests its tested node(s) in a given system and the fault status of each tested node is

determined based on the syndrome generated by an assumed fault model.

In [50], only a central observer made the diagnosis decision after analyzing the

syndrome gathered from all tester nodes and distributed the system status (diagnosis

information) to each fault-free node. This approach was not scalable with increasing

network size.

With the advent of distributed diagnosis approaches (e.g., Self [55], New self [56],

Event_self [57], and Adaptive DSD [58]), a reliable central observer that has global

diagnosis information is no longer used [58]. Instead, each fault-free node can determine

the fault status of other nodes in the system by direct testing and by exchanging the

diagnosis information of other nodes with other fault-free neighbors.

Before the first adaptive algorithm [59] introduced by Hakimi and Nakajima, the

testing assignment for a system was fixed and was not changed during execution

 91

depending on the fault situation [60]. The adaptive algorithm [59] had a central observer

like the PMC model. In the adaptive pattern, the testing assignment was changed

depending on the results of previous tests [49]. Bianchini and Busken introduced an

adaptive and distributed diagnosis algorithm called Adaptive DSD [58]. In the adaptive

DSD, the testing topologies were changed depending on the fault situation. There was no

limitation on the number of faulty nodes that could be diagnosed as long as at least one

fault-free node existed. In adaptive DSD, each node was tested by only one fault-free

node by using sequential testing. The diagnostic information was only disseminated in

the reverse direction of tests performed. In the Self family of algorithms [55][56][57],

each node is tested by at least t+1 other nodes (t is the number of faulty nodes). Since

every fault-free node sends all test results of the tester nodes to all other fault-free nodes

in the New_self algorithm [56], a large number of diagnostic messages must be

forwarded through the network. By using adaptive DSD, the heavy message overhead of

the Self family algorithms is reduced. Initially, each node only knows the test results of

its tested node(s) but each node can know the fault status of all nodes after spending the

necessary number of testing rounds for diagnosing the nodes in a system [58].

In 1995, Rangarajan, Dahbura, and Ziegler [9] introduced a new adaptive distributed

diagnosis algorithm (RDZ) in an arbitrary network topology. The is one of the few

diagnosis algorithms [9][46][61] for arbitrary network topologies in wired environments.

The adaptive DSD and Self family algorithms previously introduced cannot be used for

arbitrary network topologies, since they assume fully connected network topologies.

Through the validation transaction [9] in the RDZ algorithm, nodes can be tested directly

 92

by their tester, and also indirectly whenever the diagnosis information is disseminated.

When a fault-free node receives a message, it must give an acknowledgement for that

message within the specified time. If not, the sender learns that the receiver node failed.

Thus, both static and dynamic faults can be detected. Faulty nodes can rejoin the

network after being repaired at any time during algorithm execution [9].

Unlike adaptive DSD [58] where sequential testing was performed, testing in RDZ

was performed by tester nodes without having any sequence restriction among the testers.

Also, the fault detection and diagnosis message dissemination steps were separated and

the dissemination steps were executed in parallel by flooding [9].

Since RDZ was introduced for point-to-point communication networks in wired

environments, reducing information latency with increasing message overhead could be

tolerable due to large bandwidth and power available. But this is not true in wireless

sensor networks, since high message overheads would cause high energy consumption,

and communication consumes most of the energy [12].

There are two published approaches [4][16] to trace faulty nodes in a wireless sensor

network. One [16] is a centralized approach that maintains the global status only in a

powerful base station and the other [4] is a distributed approach that maintains the fault

status of all nodes in each node.

Staddon, Balfanz, and Durfee [16] introduced an algorithm that can trace the faulty

nodes by using a powerful base station that has a global view of the network. The base

station can build the routing topology of the entire sensor network by using the

neighboring information received from each node. For this, each node recognizes its

 93

neighbors when the initial route discovery protocol is run, and sends this neighbor

information to the base station via neighbor nodes in order to save energy. Each node

does not attempt to make a new route to the base station when it is needed, but receives

the routing information from the base station directly. The base station is assumed to

have enough transmitting power to send messages directly to all nodes [16]. Although

each node can save energy by not directly attempting to make a new route, there is no

way for a node to find a new route when the base station cannot give new routes to the

nodes.

To trace the faulty nodes, the base station divides all nodes in the network into three

groups: alive (i.e., fault-free), dead (i.e., faulty), and silent. Since the routing topology is

a tree having the base station as the root, when a node in the middle of the path becomes

faulty, the base station cannot receive any information transmitted from any of the nodes

located below the faulty node. These nodes are called silent nodes since the base station

cannot determine whether they are faulty or fault-free without more information.

By updating the routes near the known faulty nodes, the base station starts to

determine which silent nodes are alive and dead. If all silent nodes are alive, the base

station does not have to do route updating again since the nodes would respond to the

base station by using the new routes obtained directly from the base station. But the

route updating by the base station must be done repeatedly until all faulty nodes among

the silent nodes are determined, since information from fault-free nodes cannot be

delivered to the base station when some faulty nodes are intermediate nodes on the new

paths. Thus, when there are a number of faulty nodes among the silent nodes, many

 94

route updating procedures, message traffic, energy consumption and latency is required

to deliver all sensing information from each silent but alive node.

Chessa and Santi [4] suggested a distributed crash fault diagnosis protocol (WSNDiag)

designed for wireless sensor networks. Unlike fault diagnosis algorithms for the wired

network environment that use one-to-one based testing, WSNDiag uses one-to-many

based testing. Each fault-free node broadcasts an existence message, IMA (i.e., “I am

alive” in [4]), to its neighbors. This message originates from an initiator when the

diagnosis for the network is needed, and advertises each node’s fault-free status to its

neighbors. When a node does not receive an IMA message from a neighbor within the

required time after broadcasting its IMA message, it considers the neighbor to be a faulty

node. Diagnosis information from each fault-free node is aggregated and delivered to the

initiator, the root of the spanning tree. Then the completed diagnosis information made

by the initiator is disseminated to all nodes in the network.

A one-to-many broadcasting testing mechanism cannot provide reliable testing results.

For better test results, one-to-one testing mechanism is preferred. Since WSNDiag

assumes only static faults (i.e., no new faults occur during the execution of the diagnosis

algorithm), faulty nodes that occur during the current algorithm execution cannot be

diagnosed until the next algorithm execution. To deliver diagnosis information without

having increased latency, an extra mechanism that handles dynamic failure events is

required for WSNDiag. Since a tree is not maintained but is made per each use in

WSNDiag, it consumes redundant energy without providing scalability.

 95

C. A new crash fault diagnosis algorithm for wireless sensor networks (Repre)

Each sensor knows its neighboring information when a routing tree is made after it is

deployed in an environment. Based on this neighboring information, the initial tester-

tested relationships among all nodes are established so that each tester node tests its

tested node(s) regularly. And those relationships are adaptively changed depending on

the faulty status of each node. After each regular testing, testers report the faulty nodes’

information to the root node through the routing paths when they detect faults. At that

time, dynamic faults in the network also can be detected and reported by using INP

reconfiguration procedures locally maintaining the tree structure.

When a faulty node becomes fault-free (e.g., after battery recharge or repair) or a new

node is deployed, it can join the network using the JOIN procedure introduced in section

III, and find a tester using the TESTME mechanism described below.

1) Testing

While approaches like WSNDiag [4] use one-to-many testing that exploits the shared

nature of wireless communication, one-to-one testing via unicasting mechanism is used

in Repre. One-to-many broadcast testing used in WSNDiag [4] causes a high volume of

incoming IMA messages from all fault-free neighbors and the receiving channel becomes

a bottleneck (i.e., response explosion problem [62]). Fig. 69(a) shows the response

explosion problem by using one-to-many testing and Fig. 69(b) shows one-to-one testing.

 96

IMAIMA

(a) One-to-many (b) One-to-one

Fig. 69. Different testing mechanism.

The hidden terminal problem [63] (resulting from collisions) can also occur since the

RTS/CTS mechanism in a MAC protocol is not used while broadcasting. This kind of

unreliable communication may cause incorrect testing results. Also in one-to-many

testing, all neighbor nodes of a faulty node redundantly detect its faultiness and report it

redundantly.

To increase the reliability of testing results and to reduce the redundancy, Repre uses

unicasting for one to one testing. When the RTS/CTS/DATA/ACK mechanism [39] is

used for unicasting in a MAC protocol [39][43][63], hidden terminal problems are

avoided and collisions are reduced [63].

To make initial tester-tested relationships among nodes in the network, each tested

node locally decides (randomly chooses) a neighbor as its tester node by unicasting a

TESTME message to the node after getting all neighbors’ information. When the

 97

neighbor receives TESTME, it sends a ACKTM message back to confirm that it can be

the tester.

After the initial relationships are made, each tested node unicasts an IMA message that

tells its tester that it is fault-free in each testing round. This message becomes the basic

testing method since the tested node uses multiple retransmissions in a MAC protocol

when a MAC acknowledgement (ACK) of DATA (IMA message) is not received

(DATA/ACK mechanism) within the timeout delay. In environments with a low packet

loss rate, where retry in a MAC layer usually succeeds, this IMA message is enough for

both tester and tested nodes.

If the tester node does not get an IMA message within the expected time, the tester

assumes (considers) that the tested node is faulty and unicasts a TEST message to its

tested node to confirm the faulty status. The tester node finally determines the faulty

status of its tested node when the tester does not get the REPLY response message within

the required time. If the tested node does not get a MAC acknowledgement (ACK) from

its tester in response to an IMA message, it considers that the tester node is faulty and

finds a new parent by broadcasting a TESTME message to its neighbors and waits for

ACKTM responses. The node chooses its new tester by unicasting a ACPTM message to

one of the responding nodes. If the previous tester is still alive and it receives a TESTME

message from its tested node, it will also send an ACKTM to the tested node. In this case,

the tested node continues using the previous tester node. By doing these, the tester (and

tested) node doubly checks its tested (and tester) node so that the reliability of the test

results is increased.

 98

2) IAD message

The Repre algorithm also has a mechanism (IAD) where a tester node gives a

precaution of its imminent death (e.g. battery depletion) to the neighbors. With this

mechanism, the tested node(s) can find a new tester node without waiting for the next

regular testing round. If a tested node sends an IAD message, its tester reports this

information to the representative node by piggybacking on the data to be delivered.

Since the tester is no longer expecting IMA message from the tested node and does not

try to confirm the tested node’s status, it saves energy and reduces the latency to

recognize the fault.

If a child receives an IAD message from its parent, it would not attempt to send data to

the current faulty parent, but instead would initiate dynamic reconfiguration procedures,

saving energy and reducing message latency.

Fig. 70 shows the before and after situations when a node X that will soon die

broadcasts an IAD message to its neighbors. When the tested node Z of node X receives

the IAD message, it finds its new tester node S using the TESTME mechanism. When the

tester node Y of node X receives the IAD message, it reports node X’s failure to the

representative node before the next regular testing.

 99

Z

S Y
X

W

Path

R R

Z

S Y

W

Tester Tested

Fig. 70. Before and after situations when X sends IAD (R is root).

3) Top-to-bottom information dissemination

Nodes in a sensor network usually do not need to know the faulty status of all other

nodes in the network. This is because the nodes in wireless sensor networks usually

work in cooperation their neighbor nodes. However, there are some applications where

each node needs to know the global status of the network. For example, in WSNDiag [4],

when a mobile control observer wants to have a global view of network status from any

fault-free node. For these situations, the diagnosis information that is delivered to the

representative node is propagated to each node in the network through the paths in the

tree.

4) Computational analysis

The proposed diagnosis algorithm (Repre) was analyzed for energy consumption and

message overhead. Variables in Table I were used with additional variables in Table IV

 100

for analysis. The analysis for establishing the initial tree is given in section IV.

TABLE IV

VARIABLES FOR COMPUTATIONAL ANALYSIS OF REPRE, LOCAL, AND WSNDIAG

Variable Description
a average number of neighbors
r average number of children
L total number of leaf nodes
L_event total number of leaf nodes that have an event to be reported
event total number of failure events
Testers set of all tester nodes
Tested[j] number of nodes tested from tester node j
FF_Tested[j] number of fault-free nodes tested from tester node j
F_Tested[j] number of fault nodes tested from tester node j
Chd_msg[j] number of children that have a new event or an event needed to

be delivered to its parent node j
Err[j] number of communication error at node j
Err total number of errors = |Tester|⋅ Err[Tester]

a) Testing

For testing, each tester j uses (FF_Tested[j]-Err[j])·E(IMAr) +

(F_Tested[j]+Err[j])·E(tests) + Err[j]·E(replyr) energy. Each fault-free tested node k

uses E(IMAs) energy since each node is tested by only one fault-free node that requires a

IMA message from its tested node. Each fault-free tested node whose IMA message was

not delivered to its tester node would receive the test message from its tester and send

the reply message as a response. It costs E(testr) + E(replys). Thus the total energy

consumption for testing all nodes is expressed as (33).

∑
=

N

j 1
((FF_Tested[j]-Err[j])·E(IMAr) + (F_Tested[j]+Err[j])· E(tests)

 101

+Err[j]· E(replyr)) + |FF|·E(IMAs) +∑ Err[j] · (E(testr) + E(replys))
=

N

j 1

(where, j ∈FF∩Testers) (33)

It can also be formulated as (34) in the worst case when all fault-free nodes are testers.

Each node tests exactly one node and each node is tested by one node in this case.

|FF|⋅E(IMAs) + (|FF|-Err)⋅E(IMAr)) +

(|F|+Err)⋅E(tests) +Err⋅ (E(testr) +E(replys) +E(replyr)) (34)

The total number of messages used is |FF| +|F| +2Err since there are |FF| IMA

messages, |F| + Err test and Err reply messages.

b) Information dissemination

The analysis is based on the policy that whenever diagnosis information (info) is

delivered to another node, the node that receives the information must give an

acknowledge message (ackinfo) back to the sender. So the sender makes sure that the

message is successfully delivered to the receiver. Although this application level

acknowledgement consumes more energy than the MAC acknowledgement, it can be

used for a network that needs higher delivery confirmation. In a network that does not

need an ackinfo message back to the sender, E(ackinfos+r) should be omitted from the

following analysis.

By default, information transmissions from nodes to the representative (bottom-to-top)

occur and the energy cost for those transmissions is analyzed. For disseminating

diagnosis information, three different locations (i.e., leaf, internal, and representative) of

each node must be considered. When a node is a leaf of the tree and it has an event to

 102

report to its parent, the node consumes E(infos) + E(ackinfor). Thus energy consumption

of all leaf nodes that have an event to report is expressed as (35).

L_event·(E(infos) + E(ackinfor)) (35)

It also can be formulated as (36) in the worst case when all faulty nodes are detected

by leaf nodes.

event·(E(infos) + E(ackinfor)) (36)

When a node j is an internal node of the tree and it receives messages from some

children and sends them to its parent, it spends the energy given in (37) since node j

aggregates event information obtained from its children and sends the aggregated result

to its parent.

chd_msg[j]·(E(infor) + E(ackinfos)) + E(infos) + E(ackinfor) (37)

In the worst case, each internal node j sends info to its parent each time when it

receives an event from any child without aggregating with other event information. Thus,

the total amount of energy used by all internal nodes for this worst case is expressed as

(38).

∑
=

event

i 1
 (h[Li]-1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (at here, h[Li] is hop

 counts between a leaf Li that reports eventi and the representative R) (38)

The representative node R consumes (39) when it receives information from its

children that have an event to relay or event detected:

chd_msg[R]·(E(infor) + E(ackinfos)) (39)

In the worst case, when the node R receives nonaggregated info of each event from

 103

any child, the total energy used in node R is expressed as (40).

event·(E(infor) + E(ackinfos)) (40)

Thus, the total worst case energy consumption for reporting failure events from

detecting nodes to the representative node R is (36) + (38) + (40).

In the worst case, the total number of messages used is O(event · h) (h is the height of

the tree).

c) Top-to-bottom transmission

Optionally, when each node needs to receive diagnosis information from the

representative node R, node R broadcasts the diagnosis information to its children. And

the children broadcast this information to their children, and so on until the diagnosis

information reaches the leaf nodes.

In this case, the representative node consumes E(infos) + chd[R]·E(ackinfor). Each

internal node j consumes E(infor) + E(ackinfos) + E(infos) + chd[j]·E(ackinfor). Each

leaf node consumes E(infor) + E(ackinfos). Thus the total energy consumption for all

nodes to receive the diagnosis information is expressed as (41):

E(infos) + chd[R]·E(ackinfor) + L·(E(infor) + E(ackinfos)) +

(N-L-1)(E(infor) + E(ackinfos) + E(infos) + chd[j]·E(ackinfor)) (41)

The message overhead used for delivering diagnosis information to every node from

the representative R is O(N).

d) Children information dissemination

This subsection describes the energy cost for the representative node to receive

 104

children’s information from all nodes. It is used when the representative node wants to

know the information of all fault free nodes.

Depending on the location of each node in the tree, a different amount of energy is

used. Each leaf node consumes E(childinfos) + E(ackchildinfor) energy. Since leaf nodes

do not have children, they send a childinfo message that only contains “-1” in the N_ch

field (Appendix A) of the message. Since each intermediate node j receives and

aggregates the information from all children and sends it to its parent, it consumes

chd[j]·(E(childinfor) + E(ackchildinfos)) + E(childinfos) + E(ackchildinfor) energy. Since

the representative node only receives information from its children, it consumes

chd[R]·(E(childinfor) + E(ackchildinfos)). Thus, the total energy consumption for

delivering all children’s information to the representative node is expressed as (42):

L·(E(childinfos) + E(ackchildinfor))

+ (N-L-1) · (chd[j]·(E(childinfor) + E(ackchildinfos)) + E(childinfos) +

E(ackchildinfor))

+ chd[R]·(E(childinfor) + E(ackchildinfos)) (42)

The message overhead used for delivering children’s information to the representative

R is O(N).

E(childinfos), and E(childinfor) have different values depending on the amount of

information. When the children’s information is delivered up to the representative node,

each intermediate node aggregates all children’s information, and delivers the

aggregated information to its parent node. Thus, nodes higher in the tree deliver more

information. The representative node receives all children’s information.

 105

In worst case analysis with in an r-ary complete tree [64] that generates the maximum

packet size on each level in the tree, the total packet size generated by all leaf nodes is rh.

The height of the tree h = logr(N(r-1)+1)/r), since each leaf node sends a childinfo

packet with a single integer as payload.

Each internal node at depth h-i (i is from 0 to h) generates a childinfo message whose

size is ((r+1)(ri-1))/(r-1). The number of nodes at depth h-i is rh-i. Thus the total packet

size generated for delivering all children’s information to the representative is expressed

as (43). The average packet size is (43)/(N-1).

rh · (2B+9B)+ rh-i·(2B· (r+1)(ri-1))/(r-1)+9B) ∑
−

=

1

1

h

i

(where, 9B=|AppHdr+CRC| for the childinfo packet format in Appendix A) (43)

5) Competitive analysis

The proposed diagnosis algorithm (Repre) is compared with WSNDiag [4]. The same

parameters except number of nodes that were used in section IV were used in this

analysis.

Fig. 71 shows the accumulated energy consumption of each method by increasing

number of executions. At the first execution, Repre is a little bit more expensive than

WSNDiag for both network sizes, because it consumes energy for testing, local

configuration, and fault reporting after making the initial tree. On the other hand, Repre

consumes less energy than WSNDiag after two executions. This is because WSNDiag

completely rebuilds the communication tree each time, while Repre only reconfigures

the existing tree as needed. Thus, the gap between Repre and WSNDiag becomes larger

 106

as the network size increases.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10
Number of Executions

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

) WSNDiag, N=500
Repre, N=500
WSNDiag, N=100
Repre, N=100

Fig. 71. Energy consumption (a=10, r=3, 3 faults/exec.).

Fig. 72 shows the non-accumulated energy of each method consumed at each

execution. In WSNDiag, there is little different between one execution and another. In

Repre, there is a big difference between the first execution and later ones. This is

because the tree is made only at first execution in Repre. When the tree is increased to

500 nodes, the energy gap consumed becomes much bigger in WSNDiag rather than in

Repre. Since the number of remaining fault free nodes is continuously decreased by

three, the amount of energy at each execution is also decreased.

 107

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10
Number of Executions

En
er

gy
 C

on
su

m
pt

io
n

(J
)

Repre, N=500
WSNDiag, N=500
Repre, N=100
WSNDiag, N=100

Fig. 72. Energy consumption (non-accumulated, a=10, r=3, 3 faults/exec.).

Fig. 73 shows the total energy consumed for each different operation when the first

execution is done in Repre. When the network size is increased, the energy consumed

for making a tree increases rapidly since all nodes consume energy for that. In contrast

to making a tree, the other operations consume much less energy. Since the energy is

needed only locally for a new path to the parent, the energy for local configuration does

not depend on the total number of nodes in the network, but on the number of neighbors.

Energy for fault reporting depends on the number of relaying nodes between a detecting

node and the representative. Since each node has 3 children there is not much height

difference network sizes 100 to 700. Thus, energy consumption increases only a small

amount as the network size is increased.

 108

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700
Network Size

En
er

gy
 C

on
su

m
pt

io
ns

 (J
)

Total energy for making a tree at set up time
Total Energy for testing
Total energy for local configuration
Total energy for fault reporting

Fig. 73. Energy consumption for Repre (first exec., N=500, a=25, r=3, 3 faults/exec.).

Fig. 74 shows the energy for first execution and five executions for both approaches

for different network sizes. At first execution, WSNDiag always consumes less energy

than Repre since Repre needs more operations. But the energy gap between the first

execution energy and five executions for WSNDiag is much larger than Repre since it

makes a new tree each time.

 109

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500
Network Size

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

) WSNDiag, R=5
Repre, R=5
Repre, R=1
WSNDiag, R=1

Fig. 74. Energy consumption (a=10, r=3, 3 faults/exec.).

From Fig. 75, we know that WSNDiag is more affected by the number of neighbors

than Repre. This is because WSNDiag uses a one-to-many testing approach and makes a

tree for each execution. For Repre, there is no such consumption since it uses one-to-one

testing that is not much affected by the number of neighbors. Also by only building a

tree at first execution, it uses much less energy.

 110

0

50

100

150

200

250

5 10 15 20 25
Number of Neighbors

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

) WSNDiag, 10R
WSNDiag, 5R
Repre, 10R
Repre, 5R
Repre, 1R
WSNDiag, 1R

Fig. 75. Energy consumption (N=500, r=3, 3 faults/exec.).

Fig. 76 shows the energy consumption for different executions with varying number of

faults from 1 to 4. The number of faults has little impact on the amount of energy

consumed in both WSNDiag and Repre because most energy is consumed making the

tree. But with varying number of faults, when the number of executions is increased, the

total number of fault free nodes is decreased proportionally with the number of faults.

For WSNDiag, the number of fault free nodes that consumed energy for making a tree is

continuously decreased with increasing faulty nodes. In WSNDiag, after 10 executions

are done, the consumed energy for 4 faults per execution is less than the energy used for

3 or fewer faults per execution. Repre is less sensitive to the number of faults since it

does not rebuild the tree for each execution.

 111

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4
Number of Faults/Execution

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

WSNDiag, 10R WSNDiag, 5R Repre, 10R
Repre, 5R Repre, 1R WSNDiag, 1R

Fig. 76. Energy consumption (N=100, r=3).

Fig. 77 shows energy consumption per node in Repre with different numbers of

neighbors for each different network size. Since the transmission power is assumed to be

constant, the transmission range cannot be changed with increasing node density. Since

the number of neighbors increases proportionately with increasing number of nodes,

there is not much difference in per-node energy except the first execution. For the first

execution, since all nodes broadcast a message to the neighbors to make an initial tree,

both the number of nodes and the number of neighbors affects the energy cost. Thus it

costs the highest when N=700 and a=35. Fig. 77 also includes energy consumption per

node for only testing at each execution. Since all nodes are testing and only the nodes

that are on or near the information dissemination path(s) are involved with local

reconfiguration and data dissemination, almost all energy consumption per node is for

 112

testing, except the first execution.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10
Number of Executions

En
er

gy
 p

er
 N

od
e

(J
)

N=100, a=5*1
N=200, a=5*2
N=300, a=5*3
N=400, a=5*4
N=500, a=5*5
N=600, a=5*6
N=700, a=5*7
Testing

Fig. 77. Energy consumption per node (Repre, r=3, 3 faults/exec.).

Fig. 78 includes the WSNDiag approach with the conditions of Fig. 77. When

WSNDiag is used, a tree is always made at each execution. Thus energy per node at each

different condition is not much different among different executions. In WSNDiag,

energy consumption is proportionally increased with increasing total number of nodes

and neighbors since the number of neighbors increases proportionately with increasing

number of nodes, as in Fig. 77.

 113

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8 9 10
Number of Executions

En
er

gy
 p

er
 N

od
e

(J
)

WSNDiag, N=100, a=5 WSNDiag, N=200, a=10
WSNDiag, N=300, a=15 Repre, N=100, a=5
Repre, N=200, a=10 Repre, N=300, a=15

Fig. 78. Energy consumption per node (r=3, 3 faults/exec.).

In the Repre analysis, all fault free nodes are assumed tested by their testers, by

exchanging TEST and REPLY messages. If only tester nodes that did not get IMA

message(s) from its tested node(s) send a TEST message to each tested node and wait for

REPLY message(s), much energy can be saved. Fig. 79 shows energy consumption when

different percentages of fault free nodes are testing by exchanging TEST and REPLY

messages.

 114

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1 2 3 4 5 6 7 8 9 10
Number of Executions

En
er

gy
 p

er
 N

od
e

(J
)

100% Testing
70% Testing
50% Testing
30% Testing
10% Testing

Fig. 79. Energy consumption for testing (N=100, a=5).

Fig. 80 and Fig. 81 show total energy consumption for the Repre and WSNDiag

approaches respectively, with the same conditions as Fig. 77 and Fig. 78. When

WSNDiag is used, the amount of energy grows much faster than Repre (notice the

difference in the y-axis scales).

 115

0

10

20

30

40

50

60

100 200 300 400 500
Network Size

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Repre, R=10 Repre, R=9
Repre, R=8 Repre, R=7
Repre, R=6 Repre, R=5
Repre, R=4 Repre, R=3
Repre, R=2 Repre, R=1

Fig. 80. Energy consumption for Repre (a=5*(size / 100), r=3, 3 faults/exec.).

0

50

100

150

200

250

100 200 300 400 500
Network Size

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

WSNDiag, R=1 WSNDiag, R=2
WSNDiag, R=3 WSNDiag, R=4
WSNDiag, R=5 WSNDiag, R=6
WSNDiag, R=7 WSNDiag, R=8
WSNDiag, R=9 WSNDiag, R=10

Fig. 81. Energy consumption for WSNDiag (a=5*(size / 100), r=3, 3 faults/exec.).

 116

Fig. 82 shows how the fixed listening period C prior to testing or disseminating data

affects on energy consumption for both approaches. In comparison to normal operations

such as testing or disseminating, a large amount of energy is spent on listening. By

reducing this period as much as possible, energy consumption can be significantly

reduced.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10
Number of Executions

To
ta

l E
ne

rg
y

(J
)

WSNDiag, Periodic_ listening_ time =115ms
Repre, Periodic_ listening_ time =115ms
WSNDiag, Periodic_ listening_ time =57.5 ms
Repre, Periodic_ listening_ time =57.5 ms
WSNDiag, Periodic_ listening_ time =11.5 ms
Repre, Periodic_ listening_ time =11.5 ms

Fig. 82. Energy consumption (N=200, a= 10, r=3, 3 faults/exec.).

Fig. 83 shows the energy consumption for different node types in Repre for different

numbers of executions. For leaf and internal nodes, the average value among all nodes of

that type is shown. As discussed earlier, leaf nodes always consume less energy per

algorithm execution. The internal nodes consume more energy than leaf nodes since leaf

nodes only send information to the internal nodes but the internal nodes send the

 117

diagnosis information to the representative after receiving it from leaf nodes. The

representative node always consumes more than both leaf and internal nodes since all

information ultimately arrives at the representative node. This suggests that periodically

the tree should be rebuilt so that the internal and representative nodes become leaves and

vice versa, in order to average out per-node energy consumption. In practice the

representative node is likely to be a high-energy node, so the exchange should take place

between leaves and internal nodes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10
Number of Executions

En
er

gy
 p

er
 N

od
e

(J
)

Representative node
One Inter node
One Leaf node

Fig. 83. Energy consumption per node (Repre, accumulated, N=200, a=10, r=3, 3

faults/exec.).

Fig. 84 shows energy consumption per node in Repre for different numbers of

executions. Unlike Fig. 83, this shows the non-accumulated value for each execution.

Since the conditions are the same at each execution with 10 Neighbors, 3 Children and 3

Faults, each node consumes almost the same energy for execution, except the first

 118

execution that needs extra energy to make a tree.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6 7 8 9 10
Number of Executions

En
er

gy
 p

er
 N

od
e

(J
)

Representative node
One Inter node
One Leaf node

Fig. 84. Energy consumption per node (Repre, non-accumulated, N=200, a=10, r=3, 3

faults/exec.).

D. A scalable fault diagnosis algorithm (Local)

This subsection describes Local, an extension of the Repre approach to provide

scalability in a large network. The network is divided into zones. Each zone has its own

local tree and the root of the local tree becomes the local representative node of the local

tree. Each root of the local tree is formed based on relative hop distance in the initial

routing tree.

Fig. 85 shows a sensor network with 60 randomly located nodes. There are five zones

in the sensor network, from 1 to 5. Each local root (H2, H3, H4, and H5) is chosen either

when the initial tree is made or later. Initial representative node R becomes the highest

local root H1. The diagnosis procedure is executed within each zone and the diagnosis

 119

information is sent to the local root of the zone. These local roots become leaves of the

next higher local tree and report their diagnosis summary to its local representative node,

and so on until the initial representative node is reached.

5
4

2

1

3

H1

H2 H3

H4

H5

R

Fig. 85. Zone based sensor network.

1) Choosing the local representative nodes

It is assumed that the control observer knows the proper number of local roots in a

given total number of nodes and the relative hop distance (d) to the next level of the

local roots. In Fig. 85, H2, H3, H4, and H5 are the next lower level local roots of the

initial root H1. The control observer can estimate these values through experience or

pre-computation.

When a PARENT message is broadcast from the initial root node, distance (d)

 120

information is included along with the hop count (hop count = 0) and a zone name

(initial root ID). Since each node j can know its hop count when it receives a PARENT

message from a neighbor, it declares itself a local representative if hj mod d = 0 (where,

hj is the hop count from initial root at node j). It then includes its zone name (its ID) in

the PARENT message. If a node is not a local root, then it has the same zone name as its

parent’s zone name. This process is repeatedly executed until all nodes in the network

know their zones.

Even though each local root does not know how many nodes are in the zone at set up

time, it can know that when it receives the first diagnosis results from all nodes in the

zone. Unlike a tester node that only reports diagnosis information when it detects a

faulty node, all nodes report their test results in the first testing round.

When the control observer estimates the d value after getting the initial tree

information, leaf nodes send NRH messages (Appendix A) to their parents after making

an initial tree. An NRH message describes the total number of descendants (N), average

number of children for each parent (R), and the height of the node (H). Each node sends

an NRH message that aggregates the NRH messages received from descendants with its

local information to its parent. This process is repeatedly executed until the control

observer receives NRH messages from all children.

When the d is distributed from the control observer to all nodes in the network, since

each node j knows its maximum hop count from the leaf nodes (i.e., height), it declares

itself a local root if hj mod d = 0. In this way, each local root is located as many as d

hops away from the leaf nodes, and so on up the tree, considering the local roots as

 121

leaves if multiple levels of local representatives are needed. A zone based sensor

network in Fig. 1 is made in this way with d = 4.

2) Testing

Tester-tested relationships are established and adaptively changed against faulty nodes

among the nodes within the same local tree (zone) by using the TESTME mechanism.

The mechanism is restricted to the zone is because the diagnosis information of the local

tree is delivered to the local root through the paths between the testers and the local root

in the local tree. For this, the local zone information is added to the control packets (i.e.,

TESTME, ACKTM, or ACPTM) that are used in the TESTME mechanism.

3) Information dissemination

When the diagnosis procedure is executed in a zone, each local root gathers diagnosis

information from its zone and sends only the summarized information (e.g. number of

faulty nodes in a zone) to the control observer R when it needs attention. The local root

node sends the local diagnosis information to the descendants of the local tree when each

node needs to know the diagnosis information for the nodes in the same zone.

Each local root communicates with other local roots through the paths (i.e., one local

root to the initial root and the initial root to the other local root) when a node changes its

current local tree to other local tree.

 122

H4 H5

p

H2

q

H3

f

R

s

Fig. 86. Hierarchical shape of Fig. 85.

For example, in Fig. 86 that represents Fig. 85 in a hierarchical shape, a node p

belonging to zone 2 finds its parent f faulty. When there is no neighbor that can become

its new parent within zone 2, it considers a neighbor q in zone 3 as its parent. Node p

changes its zone name to zone 3 and sends its previous zone name 2 and the death of

node f to its new parent q. Then node q forwards this information to its local root H3. H3

in turn informs H2 about the reconfiguration through H3 to R and R to H2. H2 then

deletes p and f from its list of descendants. The failure of node f can also be known to H2

from its tester.

4) Computational analysis

An analytical energy model that is used for Local is described below. Variables in

Tables I and IV were used with additional variables in Table V for analysis.

 123

TABLE V
ADDITIONAL VARIABLES FOR COMPUTATIONAL ANALYSIS OF LOCAL

Variable Description
L total number of leaf nodes in a local tree
l_event total number of leaf nodes that have an event to be reported in a

local tree
N total number of nodes in a local tree
T number of local trees
D maximum hop distance from each node to its local root in a local

tree
depthj depth of node j in initial tree (depth of initial representative R,

depthR = 0)

a) Set up local trees

When using the NRH message for setting local roots, there are two steps needed to

select local representatives. The first step is delivering an NRH message to the initial

representative. The initial representative consumes chd[R]·(E(acknrhs) + E(nrhr)), each

intermediate node j consumes chd[j]·(E(nrhr) + E(acknrhs)) + E(nrhs) + E(acknrhr),

and each leaf node consumes E(nrhs) + E(acknrhr). Thus, total energy consumption for

delivering NRH message is expressed as (44).

chd[R]·(E(acknrhs) + E(nrhr)) + L·(E(nrhs)+ E(acknrhr))+

 (N-L-1) · (chd[j]·(E(nrhr) + E(acknrhs)) + E(nrhs) + E(acknrhr)) (44)

The second step is delivering a HOP message that has distance d value from the initial

representative to all nodes. Energy consumption for delivering this message is expressed

as (45).

E(hops) + chd[R]·E(ackhopr) (in representative R)

+ (N-L-1)·(E(hopr)+E(ackhops)+E(hops)+chd[j]·E(ackhopr)) (in all intermediates)

 124

+ L·(E(hopr) + E(ackhops)) (in all leaves) (45)

The message overhead used for delivering the NRH message or HOP message is O(N).

After learning its local root from the HOP message, each node sends its children

information to its parent and so on up to the local root. Energy consumption for that is

expressed as (46).

l·(E(childinfos) + E(ackchildinfor)) (in local leaves)

+ (n-l-1) ·(chd[j]·(E(childinfor) + E(ackchildinfos)) + E(childinfos) + E(ackchildinfor))

(in all local intermediates)

+ chd[Rlocal]·(E(childinfor) + E(ackchildinfos)) (in a local root) (46)

Thus total energy consumption for all local representative nodes to receive their own

children information is T·(46).

In worst case analysis with in an r-ary complete tree [64], (46) becomes (47). In an r-

ary complete tree, T= ⎡((rd)h/d -1)/(r-1))⎤.

rd·(E(childinfos) + E(ackchildinfor)) (in local leaves)

+ ((rd+1-1)/(r-1)-rd-1)·(r·(E(childinfor)+E(ackchildinfos))+E(childinfos) +

E(ackchildinfor)) (in all local intermediates)

+ r·E(childinfor) + E(ackchildinfos) (in a local root) (47)

Thus for setting up the local trees, as much as (44) + (45) + T·(46) more energy is

consumed than the energy consumed for making a single representative tree shown in

section IV.

The total packet size generated for delivering all children information to each

representative in each zone is (48). The average packet size is (48)/ ((rd+1-1)/(r-1) -1).

 125

rd · (2B+9B)+ ∑ rd-i·(2B· (r+1)(ri-1))/(r-1)+9B) (48)
−

=

1

1

d

i

b) Testing

The analysis used in Repre (i.e., (33)) is applied to each zone. The total energy for all

zones is T times the amount consumed for one zone. When each parent becomes a tester

of its children in an r-ary complete tree [64], the number of local fault free tester and

fault free tested nodes are maximally and . ∑
−

=

1

0

d

j

jr ∑
=

d

j

jr
1

c) Information dissemination

By default, bottom-to-top information transmission to the initial representative node R

is used and the energy cost for that is analyzed. Total energy consumption for a fault

detecting node to send diagnosis information to its local root is expressed as (49).

E(infos) + E(ackinfor) (in a detecting node)

+(d-1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (in internal nodes)

+(E(infor) + E(ackinfos) (in local root) (49)

In the worst case, when diagnosis information is delivered without aggregation with

other diagnosis information, total energy used in all local trees to deliver the diagnosis

information is event · (49).

The total energy consumption for delivering the summarized information from a local

root j to the representative R is expressed as (50).

(depthj - 1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (in internal nodes)

+ E(infos) + E(ackinfor) (in a local root j)

 126

+ E(infor) + E(ackinfos) (in representative R) (50)

The total energy consumption for delivering information from the representative R to a

local root j is expressed as (51).

(depthj - 1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (in internal nodes)

+ E(infos) + E(ackinfor) (in representative j)

+ E(infor) + E(ackinfos) (in a local root j) (51)

When the main representative node R sends information to all local representatives,

the energy consumption when using an r-ary complete tree [64] for the worst case

analysis is expressed as (52).

E(infos) + r·E(ackinfor) (in node R)

+ r·(rh-d-1)/(r-1)·(E(infor) + E(ackinfos) + E(infos) + r·E(ackinfor)) (in all internal

nodes between R and the lowest local roots)

+ (rh-d-1))·(E(infor) + E(ackinfos)) (in the lowest local roots) (52)

5) Competitive analysis

The proposed diagnosis algorithm (Local) is compared with the single Representative

algorithm (Repre) and WSNDiag [4]. In this analysis, in each testing execution, each

tester node is assumed to send a TEST message to its tested node without waiting for an

IMA message from its tested node and the fault free tested node is assumed to send a

REPLY response message back to its tester node. In Repre, tester and tested relationships

are made among any neighbors while each parent becomes the tester of all its children in

Local. In Repre, all TEST and REPLY messages are unicasted from each tester and the

fault free tested nodes. In Local, each tester node broadcasts the TEST message to its

 127

children and each fault free child unicasts a REPLY message to the parent, the tester.

This is reliable, since if a child did not receive the TEST broadcast and respond with a

REPLY, the parent can retry. The parameters in Table VI were used in the analysis.

Transmit and receive powers were taken from [12].

TABLE VI

PARAMETERS FOR COMPUTATIONAL ANALYSIS OF REPRE, LOCAL, AND WSNDIAG

Parameter Description
Transmit power 0.6W
Receive power 0.2W (33% of transmit power)
Bandwidth 2 Mbps
MAC S-MAC
Number of nodes 121, 364, 1093, 3280, 9841, 29524

Fig. 87 shows the energy consumption for different numbers of zones in Local. There

are 29524 nodes and each node has 3 children. This initial tree is a 3-ary complete tree

with height 9. The energy consumption for the first execution is the same for all hop

counts (d) since the same energy was consumed for deciding d and delivering children

information to each local representative node. For this network, minimum energy is

consumed when d is 3, 4, or 5. This is true for any number of cumulative executions.

When d is 9, there is only one tree, which consumes more than twice the energy of an

optimal solution.

 128

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9
Radius (Hops)

En
er

gy
 (J

)

Ex=1
Ex=10
Ex=30
Ex=50
Ex=70
Ex=90
Ex=100

Fig. 87. Cumulative energy consumption in Local (N=29524, a=10, r=3, 3 faults/exec.).

Fig. 88 shows the cumulative energy consumption for different number of executions

from 1 to 100. Local with different d and Repre were compared. Repre consumed more

energy than Local for all d. Although Local with d = 9 has a single representative like

Repre, it consumes less energy than Repre. This is because each tester and tested

relationship was established randomly among neighbors in Repre while each parent in

each local tree becomes the tester of its children in Local. As in Fig. 87, d of 1 and 7 and

d of 3 and 5 consumed a similar amount of energy.

 129

0

50

100

150

200

250

300

350

1 10 20 30 40 50 60 80 90 100
Number of Executions

En
er

gy
 (J

)

Repre
Local (d=9)
Local (d=7)
Local (d=5)
Local (d=3)
Local (d=1)

Fig. 88. Cumulative energy consumption for Repre and different number of local trees in

Local (N=29524, a=10, r=3, 3 faults/exec.).

Fig. 89 shows the cumulative energy consumption for different number of executions

from 1 to 100 for a network with 3280 nodes. Local uses less energy per diagnosis

algorithm execution.

 130

0

10

20

30

40

50

60

70

1 10 20 30 40 50 60 70 80 90 100
Number of Executions

En
er

gy
 (J

)

WSNDiag
Repre
Local (d=3)

Fig. 89. Cumulative energy consumption in different approaches (N=3280, a=10, r=3, 3

faults/exec.).

Fig. 90 shows the difference between WSNDiag, Repre, and Local for one and ten

executions for different network sizes. For more executions and larger network sizes, the

energy consumption of WSNDiag becomes considerably larger than Repre and Repre

becomes larger than Local. This is because WSNDiag completely rebuilds the

communication tree each time, while Repre and Local only reconfigure the existing

tree(s) as needed.

 131

0

10

20

30

40

50

60

70

121 364 1093 3280 9841 29524
Number of Nodes

En
er

gy
 (J

)

WSNDiag (1 Exec)
WSNDiag (10 Exec)
Repre (1 Exec)
Repre (10 Exec)
Local (d=3, 10 Exec)
Local (d=3, 10 Exec)

Fig. 90. Cumulative energy consumption in different approaches (a=10, r=3, 3

faults/exec.).

Fig. 91 shows the cumulative energy consumption for different node types in Repre

and Local for different numbers of executions. The average value among all nodes of

each type is shown. Leaf nodes in both Repre and Local always consume less energy per

algorithm execution. In both approaches, the internal nodes consume more energy than

the representative node(s) for a small number of executions due to the energy used by

these nodes when building the initial tree. In later executions the representative node(s)

consumes more energy disseminating diagnosis information.

In Local, the difference of energy consumption between local root and internal node

(inter) is mainly due to summarized information shared among other local roots. Each

local tree in Local has smaller size than a tree in Repre. Thus the energy consumption

difference between local root and internal node is smaller than the difference between a

representative and internal node in Repre. It means the representative overhead is

 132

decreased in Local.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

1 2 3 4 5 6 7 8 9 10
Number of Executions

En
er

gy
 (J

)
Representative

Inter Node

Leaf Node

Local Representative (d=3)

Local Inter Node (d=3)

Local Leaf Node (d=3)

Fig. 91. Cumulative energy consumption per node (N=29524, a=10, r=3, 3 faults/exec.).

 133

VII. CONCLUSIONS AND FUTURE WORK

In this dissertation, I have described the INP algorithm that creates a tree routing

structure and maintains it for wireless sensor networks. The routing paths connecting

nodes to the root are locally reconfigured against crash faulty nodes when information is

delivered from sensor nodes to the control observer. Energy efficiency and scalability

are provided for the reconfigurations by using only locally available relational

information among neighbor nodes that does not need global maintenance throughout

the tree. I have also described how INP can be extended for partition detection and how

it can be used for reconnecting the partitioned region to the tree if new deployed nodes

create joining paths.

INP was compared to SWR [18] through analytical calculations and ns-2 simulations.

In densely deployed networks (i.e. nodes have many neighbors), most reconfiguration

situations can by handled by INP with one of the five low-energy cases. In sparsely

deployed networks (i.e. nodes have few neighbors), INP is able to reroute more cases

than SWR by trying several different reconfiguration steps. Thus, INP had a higher

delivery ratio, but higher latency than SWR.

The simulation results showed that each node in INP used a little less energy than in

SWR. In INP, only the nodes related to a failed node participated in a reconfiguration and

thus other nodes did not waste their energy. But in SWR, all neighbors are involved in

the reconfiguration, even though they are not all necessary. Another reason than INP

used less energy than SWR is that in most realistic cases a faulty node has several

children, and these children eventually all have data messages to send to the root. INP

 134

uses less energy for reconfiguration than SWR because the siblings located inside of the

transmission range of a node that is looking for a new parent can get their new parents

without their own efforts.

In SWR, to reduce communication overhead, updating the global value was postponed

until a node received any information from its parent, on which the parent’s global value

piggybacked. If a node became involved in another reconfiguration before updating its

global value, a loop could occur. This could result in increased latency (to detect and

repair the loop) or cause message delivery failure.

INP was also compared by simulation to GRAB-F, a fixed transmission range version

of GRAB [19]. GRAB-F had much lower delivery ratios and higher energy consumption

than INP and SWR. This is because the broadcasting communication method used in

GRAB-F was not as reliable as the unicast method used in INP and SWR. In GRAB-F,

the number of forwarding paths could not be adequately limited, since a fixed

transmission range was used, as in INP and SWR. In a dense network with high traffic,

the fixed transmission range results in high message redundancy that causes a lot of

message dropping by collisions and excess energy consumption.

In this dissertation, I have also described two new sensor-initiated crash fault diagnosis

algorithms for wireless sensor networks, Repre and Local. Local was extended from

Repre to provide scalability when the network size grows. Since INP was used for path

reconfiguration, both static and dynamic faults were detected and reported to the control

observer.

Repre was compared to WSNDiag [4] and Local was compared to Repre and

 135

WSNDiag through analytical computations. Repre and Local use reliable one-to-one

testing while WSNDiag use one-to-many testing. Using INP, Repre and Local

maintained the tree communication structure by locally reconfiguring it as needed while

WSNDiag made a tree per each use (diagnosis). Thus, the more reconfigurations and the

larger the network, the larger the energy gap between WSNDiag and Repre, and between

Repre and Local.

Several extensions to this research should be considered in future work. These include:

• Five basic reconfiguration cases in included in the current INP algorithm,

related to the grandparent of the node looking for a new parent. If each node

keeps track of K levels of ancestors and all related cases are used for

reconfiguration at the first step, a new parent may be found before resorting to

the more expensive search steps, such as PFIND. This would increase the

reconfiguration success rate with lower latency, but with more messages during

reconfiguration to update the relational information. The trade-offs between

reconfiguration energy and knowledge maintenance energy must be studied.

• Keeping track of neighbors within K hops. This requires more messages during

tree creation and maintenance, but can significantly reduce the chances of

having only UNKNOWN neighbors. The trade-offs to identify the lowest-energy

solution in different situations should be quantified.

• The current INP algorithm handles reconfigurations occurred when nodes send

information to the root. Reconfigurations that occur when sending a message

from parent to children should be studied. One solution is that when a parent

 136

detects that one of its children is dead, it can inform the other children, who can

attempt to connect to the children of the dead child. One option is for the parent

to keep track of the grandchildren information. When reconfiguration is needed,

the parent passes the children information of the dead child to its children and

lets them find those grandchildren. Then the grandchildren know of the faulty

parent and find their new parents using the current INP approach.

• Link failures were not considered in this research. If they can occur, then it will

no longer be the case that because one node declares a neighbor faulty that

other neighbors should trust that. Changing or extending INP to include link

failures should be studied.

• Fixed transmission ranges were assumed in INP. Varying transmission ranges

by adjusting transmission power based on current network density should be

studied. Since power amplifier efficiency falls sharply with lower transmission

power, variable power amplifiers do not make sense. Instead, a practical

implementation would use discrete power levels with transmitters optimized for

each level.

• In the current Local algorithm, the issue of local root reliability was not

addressed. But it must be addressed in the future particularly when local roots

are chosen from homogeneous failure prone sensor nodes. Having a backup

node would be one solution.

• In the tree structure, node energy level is different depending on the location

within the tree. The root node always consumes more energy than either leaf or

 137

internal nodes, since all information ultimately arrives at the root node. For

node energy balancing, a node with low energy levels should move lower in

the tree, so that less traffic passes through it. One solution is for the node that

has the highest energy level among the possible neighbors to become the new

parent during reconfiguration. For this, nodes must share their energy levels

during reconfiguration. Another solution is that if a lower energy level node

has a higher energy level sibling node; it introduces some of its children to the

sibling. And the sibling becomes a parent of those children. Further solutions

include having the lower energy node limiting its number of children or giving

up the current parent position.

• Repre and Local should be simulated and evaluated.

 138

REFERENCES

[1] B. R. Badrinath and M. Srivastava, “Smart Space and Environment,” IEEE

Personal Communications, vol. 7, no. 5, pp. 3-3, October 2000.

[2] C. Hsin and M. Liu, “A Distributed Monitoring Mechanism for Wireless Sensor

Networks,” Proc. 3rd ACM Workshop on Wireless Security (WISE), pp. 57-66,

September 2002.

[3] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century Challenges:

Scalable Coordination in Sensor Networks,” Proc. 5th Annual ACM/IEEE

International Conference on Mobile Computing and Networks (MobiCom 99), pp.

263-270, August 1999.

[4] S. Chessa and P.Santi, “Crash Faults Identification in Wireless Sensor Networks,”

Computer Communications, vol. 25, no. 14, pp. 1273-1282, September 2002.

[5] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless

Sensor Networks for Habitat Monitoring,” MobiCom Workshop on Wireless Sensor

Networks and Applications (WSNA), pp. 122-131, September 2002.

[6] Y. Zhao, R. Govindan, and D. Estrin, “Residual Energy Scans for Monitoring

Wireless Sensor Networks,” IEEE Wireless Communications and Networking

Conference (WCNC), pp. 356 -362, March 2002.

[7] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A Taxonomy of Wireless

Micro-Sensor Network Models,” ACM Mobile Computing and Communications

Review, vol. 6, no. 2, pp.28-36, April 2002.

 139

[8] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocols for Self-Organization

of a Wireless Sensor Network,” IEEE Personal Communication, vol. 7, no. 5, pp

16-27, October 2000.

[9] S. Rangarajan, A. T. Dahbura, and E. A. Ziegler, “A Distributed System-Level

Diagnosis Algorithm for Arbitrary Network Topologies,” IEEE Transactions on

Computers, vol. 44, no. 2, pp. 312-333, February 1995.

[10] J. Pottie and W. J. Kaiser, “Embedding the Internet Wireless Integrated Network

Sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51-58, May 2000.

[11] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for

Wireless Sensor Networks,” Proc. IEEE INFOCOM 2002, pp. 1567-1576, June

2002.

[12] J. Kulik, W. R. Heinzelman, and H. Balakrishnan, “Negotiation-based Protocols for

Disseminating Information in Wireless Sensor Networks,” Wireless Networks, vol.

8, No. 2-3, pp. 169-185, March 2002.

[13] F. Akyildiz, W. Su, Y, Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor

Networks,” IEEE Communications, pp. 102-114, August 2002.

[14] C. Zhou and B. Krishnamachari, “Localized Topology Generation Mechanisms for

Wireless Sensor Networks,” IEEE Global Telecommunications Conference

(GLOBECOM), vol. 3, pp. 1269-1273, December 2003.

[15] W. Zhang, G. Cao, and T. L. Porta, “Dynamic Proxy Tree-Based Dissemination

Schemes for Wireless Sensor Networks,” IEEE International Conference on

Mobile Ad-hoc and Sensor Systems (MASS), pp. 21-30, October 2004.

 140

[16] J. Staddon, D. Balfanz, and G. Durfee, “Efficient Tracing of Failed Nodes in

Sensor Networks,” MobiCom Workshop on Wireless Sensor Networks and

Applications (WSNA), pp. 122-131, September 2002.

[17] V. D. Park and M. S. Corson, “A Highly Adaptive Distributed Routing Algorithm

for Mobile Wireless Networks,” Proc. IEEE INFOCOM ‘97, pp. 7-11, April 1997.

[18] D. Tian and N. D. Georganas, “Energy Efficient Routing with Guaranteed Delivery

in Wireless Sensor Networks,” IEEE Wireless Communications and Networking

Conference (WCNC), vol. 3, pp.1923-1929, March 2003.

[19] F. Ye, G. Zhong, S. Lu, and L. Zhang, “Gradient Broadcast: A Robust Data

Delivery Protocol for Large Scale Sensor Networks,” ACM Wireless Networks

(WINET), vol. 11, no. 3, pp. 285-298, May 2005.

[20] A. Juttner and A. Magi, “Tree Based Broadcast in Ad Hoc Networks,” Mobile

Networks and Applications, vol. 10, no. 5, pp. 753-762, October 2005.

[21] D. Braginsky and D. Estrin, “Rumor Routing Algorithm for Sensor Networks,”

First ACM Workshop on Wireless Sensor Networks and Applications, pp. 22-29,

September 2002.

[22] C. Intagogonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable

and Robust Communication Paradigm for Sensor Networks,” Proc. 6th Annual

International Conference on Mobile Computing and Networking (MobiCom 2000),

pp. 56-67, August 2000.

 141

[23] J. N. Al-Karaki and A. E. Kamal, “Routing Techniques in Wireless Sensor

Networks: A Survey,” IEEE Wireless Communications, vol. 11, no. 6, pp. 6-28,

2004.

[24] R. C. Shah and H. M. Rabaey, “Energy Aware Routing for Low Energy Ad Hoc

Sensor Networks,” IEEE Wireless Communications and Networking Conference

(WCNC), vol. 1, pp. 350-355, March 2002.

[25] D. Ganesan, R. Govindan, R. Shenker, and D. Estrin, “Highly-Resilient, Energy-

Efficient Multipath Routing in Wireless Sensor Networks,” ACM SIGMOBILE

Mobile Computing and Communications Review, vol. 5, no. 4, pp. 11-25, October

2001.

[26] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks,” Mobile Computing, pp. 153-181, Kluwer Academic Publishers,

Norwell, MA, 1996.

[27] R. D. Poor, “Gradient Routing in Ad Hoc Networks,” MIT Media Laboratory,

http://www.media.mit.edu/pia/Research/ESP/texts/poorieeepaper.pdf, 2000.

[28] K. Ravindran, G. Singh, and P. Gupta, “Reconfiguration of Spanning Trees in

Networks in the Presence of Node Failures,” Proc. 13th International Conference

on Distributed Computing Systems, pp. 219-226, May 1993.

[29] J. v. Greunen and J. Rabaey, “Lightweight Time Synchronization for Sensor

Networks,” WSNA ‘03, pp. 11-19, 2003.

[30] P. M. Spira and A. Pan, “On Finding and Updating Spanning Trees and Shortest

Paths,” SIAM J. on Computing, vol. 4, no. 3, pp. 375-380, September 1975.

 142

[31] D. Eppstein, G. F. Italiano, R. Tamassia, and R. E. Tarjan, J. Westbrook and M.

Yung, “Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph,”

J. of Algorithms, vol. 13, no. 1, pp. 33-54, March 1992.

[32] R. J. Wilson, Introduction to Graph Theory, 3rd ed., Longman Scientific &

Technical, New York, 1985.

[33] S. Kutten and A. Porat, “Maintenance of a Spanning Tree in Dynamic Networks,”

Proc. 13th International Symposium on Distributed Computing, pp. 342-355, 1999.

[34] F. C. Gartner, “A Survey of Self-Stabilizing Spanning-Tree Construction

Algorithms,” EPFL Tech. Rep. IC/2003/38, pp. 1-12, June 2003.

[35] A. J. Mooij, N. Goga, and W. Wesselink, “A Distributed Spanning Tree Algorithm

for Topology-Aware Networks,” Conference on Design, Analysis and Simulation of

Distributed Systems (DASD ‘04), pp. 169 - 178, 2004.

[36] A. Arora and A. Singhai, “Optimal, Nonmasking Fault-Tolerant Reconfiguration of

Trees and Rings,” Ohio State University, Tech. Rep. CISRC-TR09, 1994.

[37] E. Gafni and D. Bertsekas, “Distributed Algorithms for Generating Loop-Free

Routes in Networks with Frequently Changing Topology,” IEEE Transactions on

Communications, vol. 29, no. 1, pp. 11-18, January 1981.

[38] N. Malpani, J. L. Welch, and N. Vaidya, “Leader Election Algorithms for Mobile

Ad Hoc Networks,” 4th International Workshop on Discrete Algorithms and

Methods for Mobile Computing and Communication, pp. 96 – 103, August 2000.

[39] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications, IEEE Std. 802.11, 1999 edition.

 143

[40] E. Jung, and D. M. H. Walker, “Reliable Energy Efficient Routing in Wireless

Sensor Networks,” IEEE International Workshop on Resource Provisioning and

Management in Sensor Networks (RPMSN), November 2005.

[41] IETF Manet working group AODV draft, http://www3.ietf.org/proceedings/02jul/I-

D/draft-ietf-manet-aodv-11.txt/, July 2002.

[42] L. M. Feeney and M. Nilsson, “Investigating the Energy Consumption of a

Wireless Network Interface in an Ad Hoc Networking Environment,” Proc. IEEE

INFOCOM ‘2001, vol. 3, pp. 1548-1557, 2001.

[43] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Control with Coordinated,

Adaptive Sleeping for Wireless Sensor Networks,” Tech. Rep. ISI-TR-567, USC

Information Sciences Institute, January 2003.

[44] Nrlsensorsim, http://cs.itd.nrl.navy.mil/work/sensorsim/, April 2004.

[45] UCB/LBNL/VINT Network Simulator – ns-2.27, http://www.isi.edu/nsnam/ns/,

January 2005.

[46] A. Bagchi and S. L. Hakimi, “An Optimal Algorithm for Distributed System Level

Diagnosis,” 21st International Symposium on Fault-Tolerant Computing, pp. 214-

221, June 1991.

[47] M. J. Bearden and R. P. Bianchini, Jr., “Efficient and Fault-Tolerant Distributed

Host Monitoring Using System-Level Diagnosis,” Proc. IFIP/IEEE International

Conference on Distributed Platforms: Client/Server and Beyond, pp. 159-172,

February 1996.

http://www3.ietf.org/proceedings/02jul/I-D/draft-ietf-manet-aodv-11.txt/
http://www3.ietf.org/proceedings/02jul/I-D/draft-ietf-manet-aodv-11.txt/
http://cs.itd.nrl.navy.mil/work/sensorsim/
http://www.isi.edu/nsnam/ns/

 144

[48] R. P. Bianchini, Jr. and R. W. Buskens, “Implementation of On-Line Distributed

System-Level Diagnosis Theory,” IEEE Transactions on Computers, vol. 41, no. 5,

pp. 616-626, May 1992.

[49] E. P. Duarte Jr. and T. Nanya, “A Hierarchical Adaptive Distributed System-Level

Diagnosis Algorithm,” IEEE Transactions on Computers, vol. 47, no. 1, pp. 34-45,

January 1998.

[50] A. K. Somani, “System Level Diagnosis: A Review,” Tech. Rep., Dependable

Computing Laboratory, Iowa State University, Ames, IA, 1997.

[51] F. P. Preparata, G. Metze, and R. T. Chien, “On the Connection Assignment

Problem of Diagnosable Systems,” IEEE Transactions On Computers, vol. ec-16,

no. 6, pp. 848-854, December 1967.

[52] S. Chutani and K. Vijayananda, “On the Suitability of the OSI Standard to the

Diagnosis of Communication Networks,” IEEE Catalogue no. 95TH8061, pp. 116-

120, 1995.

[53] A. T. Dahbura, K. K. Sabnani, and L. L. King, “The Comparison Approach to

Multiprocessor Fault Diagnosis,” IEEE Transactions on Computers, vol. c-36, no.

3, pp. 373-378, March 1987.

[54] A. Sengupta and A. T. Dahbura, “On Self-Diagnosable Multiprocessor Systems:

Diagnosis by the Comparison Approach,” IEEE Transactions on Computers, vol.

41, no. 11, pp.1386-1396, November 1992.

 145

[55] J. G. Kuhl and S. M. Reddy, “Fault-Diagnosis in Fully Distributed Systems,” 11st

International Symposium on Fault-Tolerant Computing (FTCS-11), pp.100-105,

1981.

[56] S. H. Hosseini, J. G. Kuhl, and S. M. Reddy, “A Diagnosis Algorithm for

Distributed Computing Systems with Failure and Repair,” IEEE Transactions on

Computers, vol. c-33, no. 3, pp. 223-233, March 1984.

[57] R. Bianchini, K. Goodwin, and D. S. Nydick, “Practical Application and

Implementation of System-Level Diagnosis Theory,” 20st International Symposium

on Fault-Tolerant Computing (FTCS-20), pp.332-339, June 1990.

[58] R. Bianchini and R. Buskens, “An Adaptive Distributed System-Level Diagnosis

Algorithm and Its Implementation,” Proc. 21st Int. Symp. Fault-Tolerant

Computing, pp. 222-229, June 1991.

[59] S. L. Hakimi and K. Nakajima, “On Adaptive System Diagnosis,” IEEE

Transactions on Computers, vol. c-33, no. 3, pp. 234-240, 1984.

[60] M. Barborak and M. Malek, “The Consensus Problem in Fault-Tolerant

Computing,” ACM Computing Surveys, vol. 25, no. 2, pp. 171-220, 1993.

[61] M. Stahl, R. Buskens, and R. Bianchini, “Simulation of the Adapt On-Line

Diagnosis Algorithm for General Topology Networks,” Proc. IEEE 11th

Symposium Reliable Distributed Systems, pp. 180-187, October 1992.

[62] C. C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor Information Networking

Architecture and Applications,” vol. 8, no. 4, IEEE Personal Communication

Magazine, pp. 52-59, August 2001.

 146

[63] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “Macaw: A Media Access

Protocol for Wireless LAN’s,” Proc. of the ACM SIGCOM, pp. 212-225,

September 1994.

[64] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms

(Second Edition), The MIT Press. Cambridge, MA, 2001.

[65] W. Ye, J. Heidemann, and D. Estrin, “A Flexible and Reliable Radio

Communication Stack on Motes,” Tech. Rep. ISI-TR-565, USC Information

Sciences Institute, September 2002.

 147

APPENDIX A MESSAGE FORMATS

The following is the list of messages used for the INP reconfiguration algorithm and

their function and formats. Message formats are explained based on the IEEE 802.11

MAC format since simulations are done with this. For computational analysis, the S-

MAC format was used and the format is explained below when additional messages for

the diagnosis algorithms are introduced.

PARENT: It is used for making the initial tree. By exchanging this information with

other nodes, each node gets its parent, grandparent, children, and siblings.

Type Reserved Destination Source Parent Time Stamp

(2Byte) (2Byte) (2Byte)(2Byte) (2Byte)

struct hdr_Parent {
 u_int8_t Parent_type; // Packet Type
 u_int8_t reserved[3]; //
 nsaddr_t Parent_dst; // Destination Node
 nsaddr_t Parent_src; // Source Node
 nsaddr_t Parent_parent; // Parent Node
 double Parent_timestamp; // when Parent sent
 // for computing latency
 inline int size() {

 int sz = 5*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }

 };

INP (“I need parent”): It is used for a node to find a new parent in the tree.

Type Reserved Destination Source Parent Grandparent Initiator Time Stamp

struct hdr_INP {
 u_int8_t INPtype; // Packet Type
 u_int8_t reserved[2]; //
 nsaddr_t INP_dst; // Destination Node
 nsaddr_t INP_src; // Source Node
 nsaddr_t INP_parent; // Parent Node

 nsaddr_t INP_initiator; // Initiator Node

nsaddr_t INP_grandparent; // Grandparent Node

 148

 double INP_timestamp; // when INP sent
 // to compute route
 // discovery latency

 inline int size() {
 int sz = 7*sizeof(u_int32_t);

 assert (sz >= 0);
 return sz;
 }
};

ACKINP(“Acknowledgement of INP”): It is used when a node can become a new

parent of the INP sender.

Type Case Num Reserved Destination Source Parent Initiator Time Stamp

(2Byte) (2Byte) (2Byte)(2Byte)(2Byte)(2Byte)

struct hdr_ACKINP {
 u_int8_t ACKINP_type; // Packet Type
 u_int8_t ACKINP_caseNum // Cycle Free Path Type
 // (Case 1 to 5)
 u_int8_t reserved[2]; //
 nsaddr_t ACKINP_dst; // Destination Node
 nsaddr_t ACKINP_src; // Source Node
 nsaddr_t ACKINP_parent; // Parent Node
 nsaddr_t ACKINP_initiator; // Initiator Node
 double ACKINP_timestamp

 inline int size() {
 int sz = 6*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ACPINP(“Acceptance of INP”): It is used when an INP sender declares one of

ACKINP senders as its new parent.

Type Case Num Reserved Destination Source Parent Grandparent Fault Node Time Stamp

struct hdr_ACPINP {
 u_int8_t ACPINP_type; // Packet Type
 u_int8_t ACPINP_caseNum; // case Number
 u_int8_t reserved[2];
 nsaddr_t ACPINP_dst; // Destination Node

 149

 nsaddr_t ACPINP_src; // Source Node
 nsaddr_t ACPINP_parent; // Parent Node
 nsaddr_t ACPINP_gp; // Grandparent Node
 nsaddr_t ACPINP_faultNode; // Fault Node
 double ACPINP_timestamp;

 inline int size() {
 int sz = 7*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

CNFCF (“Cannot find cycle free”): It is used when an INP sender is looking for its

siblings’ helps when it did not receive a ACKINP.

Type Reserved Destination Source Parent Grandparent Initiator Time Stamp

struct hdr_CNFCF {
 u_int8_t CNFCF_type; // Packet Type
 u_int8_t reserved[3];
 nsaddr_t CNFCF_dst; // Destination Node
 nsaddr_t CNFCF_src; // Source Node
 nsaddr_t CNFCF_parent; // Parent Node
 nsaddr_t CNFCF_grandparent; // Grandparent Node
 nsaddr_t CNFCF_initiator; // Initiator Node
 double CNFCF_timestamp;

 inline int size() {
 int sz = 7*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ACKCNFCF (“Acknowledgement of Cannot find cycle free”): It is used when a

sibling node of the initiator can become a new parent since it received an ACKINP from

one of its neighbors.

 Type Reserved Destination Source Finder Finder’s Parent Initiator Time Stamp

struct hdr_ACKCNFCF {
 u_int8_t ACKCNFCF_type; // Packet Type
 u_int8_t reserved[3];

 150

 nsaddr_t ACKCNFCF_dst; // Destination Node
 nsaddr_t ACKCNFCF_src; // Source Node
 nsaddr_t ACKCNFCF_finder; // Finder Node
 nsaddr_t ACKCNFCF_finderP; // Finder’s parent
 nsaddr_t ACKCNFCF_initiator; // Initiator Node
 double ACKCNFCF_timestamp;

 inline int size() {
 int sz = 7*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ACPCNFCF (“Acceptance of CNFCF”): It is used when the CNFCF sender declares

one of the ACKCNFCF senders as its new parent.

Type Case Num Reserved Destination Source Parent Finder Finder’s Parent Time Stamp

struct hdr_ACPCNFCF {
 u_int8_t ACPCNFCF_type; // Packet Type
 u_int8_t reserved[2]; //
 u_int8_t ACPCNFCF_caseNum; // case numher
 nsaddr_t ACPCNFCF_dst; // Destination Node
 nsaddr_t ACPCNFCF_src; // Source Node
 nsaddr_t ACPCNFCF_parent; // New Parent
 nsaddr_t ACPCNFCF_finder; // Finder
 nsaddr_t ACPCNFCF_finderP; // Finder’s Parent
 double ACPCNFCF_timestamp; // when ACPICNYP sent;

 inline int size() {
 int sz = 7*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ICNYP (“I cannot be your parent”): It is used when a node is looking for its

children’s help. It checks whether its child becomes its new parent using this message,

when it did not receive any ACKINP or ACKCNFCF messages.

Type Reserved Destination Source Parent Grandparent Initiator Time Stamp

 151

struct hdr_ICNYP {
 u_int8_t ICNYP_type; // Packet Type
 u_int8_t reserved[3];
 nsaddr_t ICNYP_dst; // Destination Node
 nsaddr_t ICNYP_src; // Source Node
 nsaddr_t ICNYP_parent; // Parent Node
 nsaddr_t ICNYP_grandparent; // Grandparent Node
 nsaddr_t ICNYP_initiator; // Initiator Node
 double ICNYP_timestamp;

 inline int size() {
 int sz = 7*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ACKICNYP (“Acknowledgement of ICNYP”): It is used when a child node of the

initiator can become a new parent since it received an ACKINP from one of its

neighbors.

Type Case Num Reserved Destination Source Finder Finder’s Parent Initiator Time Stamp

struct hdr_ACKICNYP {
 u_int8_t ACKICNYP_type; // Packet Type
 u_int8_t ACKICNYP_caseNum; // Case number
 u_int8_t reserved[2];
 nsaddr_t ACKICNYP_dst; // Destination Node
 nsaddr_t ACKICNYP_src; // Source Node
 nsaddr_t ACKICNYP_finder; // Node which finds new path
 nsaddr_t ACKICNYP_finderP; // Finder’s parent
 nsaddr_t ACKICNYP_initiator; // Initiator Node
 double ACKICNYP_timestamp;

 inline int size() {
 int sz =7*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ACPICNYP (“Acceptance of ICNYP”): It is used when the ICNYP sender declares one

of the ACKICNYP senders as its new parent. The format is same as ACPCNFCF.

 152

INI (“I need information”): It is used when a node needs neighbors’ information

before using the PFIND message.

Type Reserved Destination Source Fault Node Time Stamp

struct hdr_INI {
 u_int8_t INI_type; // Packet Type
 u_int8_t reserved[3];
 nsaddr_t INI_dst; // Destination Node
 nsaddr_t INI_src; // Node itself
 nsaddr_t INI_faultNode; // Fault Node
 double INI_timestamp;

 inline int size() {
 int sz = 5*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ACKINI (“Acknowledgement of INI”): It is used when a neighbor send its information

to the INI sender.

Type Reserved Destination Source Parent Grandparent Time Stamp

struct hdr_ACKINI {
 u_int8_t ACKINI_type; // Packet Type
 u_int8_t reserved[3];
 nsaddr_t ACKINI_dst; // Destination: INI sender
 nsaddr_t ACKINI_src; // Node itself
 nsaddr_t ACKINI_parent; // Parent Node
 nsaddr_t ACKINI_gp; // Grandparent Node
 double ACKINI_timestamp;

 inline int size() {
 int sz = 6*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

 153

PFIND (“Path find”): It is used when an UNKNOWN neighbor is selected and

checked whether it becomes a new parent or not.

Type Reserved Destination Sender Relayer Parent Grandparent Time Stamp

struct hdr_PFIND {
 u_int8_t PFIND_type; // Packet Type
 u_int8_t reserved[3];
 nsaddr_t PFIND_dst; // Destination Node:
 // selected neighbor
 nsaddr_t PFIND_src; // PFIND sender
 nsaddr_t PFIND_relayer; // Relay Node
 nsaddr_t PFIND_parent; // Parent Node of PFIND sender
 nsaddr_t PFIND_gp; // Grandparent of PFIND sender
 double PFIND_timestamp;

 inline int size() {
 int sz =7*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

ACKPFIND (“Acknowledgement of PFIND”): It is used when a relay node that

receives PFIND finds a new path and lets the sender of PFIND know it along the reverse

path direction.

Type Reserved Destination Source Origin Parent Time Stamp

struct hdr_ACKPFIND {
 u_int8_t ACKPFIND_type; // Packet Type
 u_int8_t reserved[3];
 nsaddr_t ACKPFIND_dst; // Destination Node:
 // previous relayer
 nsaddr_t ACKPFIND_src; // Source Node
 nsaddr_t ACKPFIND_origin; // Sender of PFIND
 nsaddr_t ACKPFIND_parent; // Parent Node
 double ACKPFIND_timestamp;

 inline int size() {
 int sz = 6*sizeof(u_int32_t);
 assert (sz >= 0);
 return sz;
 }
};

 154

ACPPFIND (“Acceptance of PFIND”): It is used when the PFIND sender declares

one of the ACKPFIND senders as its new parent. The format is same with ACPINP.

The following is the list of additional messages that are used for the Repre and Local

diagnosis algorithms. For measuring the energy consumption of those algorithms and

alternatives, packet formats followed the radio communication stack introduced in [65].

This stack is used on the Mica Motes developed at USC/ISI and UCLA [65]. This stack

includes sensor-MAC (i.e., S-MAC), [11][42][65] a medium-access control protocol that

was specially designed for wireless sensor networks. The unique two-byte transmitter

and receiver addresses are in the MAC header (macHdr) with a one-byte Physical header

(phyHdr) [65].

INFO (“Diagnosis Information”): It is a diagnosis message disseminated among the

nodes.

macHdr type seqNo faultID … faultID …… CRC

(5B) (1B) (1B) (2B) (2B)

AppHdr(7B)

phyHdr: macHdr: phyHdr toAddr fromAddr packetLength

(2B) (1B) (2B) (1B)

NRH (“Nodes_Children_Height”): It describes the total number of descendants,

average number of children per each parent, and the height of each node. Each NRH

 155

message initiated from each leaf is aggregated and updated in each intermediate node

and arrives at the initial representative node. The control observer uses this message for

computing hop count between a local root and the next local root.

(7B) (2B) (2B) (2B)

#of_nodes Ave_ch

(2B)

CRCheightAppHdr

CHILDINFO (“Child information”): It is the children information that each

intermediate node sends to its parent after establishing a tree or local tree(s).

HOP: It is initiated from the initial representative node and used for determining and

announcing each local root to the nodes. It has each local root node ID and the hop

count.

IAD (“I am dying”): It is used for a node that will die due to battery depletion to give

early warning to the nodes tested by that node. Then each receiving node(s) can know

that its tester node does not have enough power to complete the diagnosis procedure and

they regard the tester as faulty and each selects another node as its tester. This message

is also used for other purposes. In the INP algorithm, it helps the neighbors to get the

relational information and use it for path reconfiguration.

(7B) (2B) (2B) (2B) (2B) (2B) (2B) (2B)

AppHdr N_ch(k) C1 … Ck N_ch(g) C1 … Cg … CRC

(7B) (2B) (2B) (2B)

AppHdr Repre_id Hop_count CRC

 156

For each message type below, this control packet is used.

IMA (“I am alive”): It is used when each tested node reports its health to its tester.

TEST: It is used when a tester node tests its tested node.

REPLY: It is used when a fault free tested node tells its health to its tester after

receiving a TEST message.

TESTME (“Test me”): It is used for a node that needs a tester for itself. Whenever a

node learns that its tester node is faulty (or will become faulty soon), the node sends this

message to its neighbors.

ACKTM (“Acknowledgement of TESTME”): It is an acknowledgement of the

TESTME message. It is sent by each fault-free neighbor that receives TESTME.

ACPTM (“Acceptance of TESTME”): It is a confirmation message of ACKTM. When

a node receives several ACKTM from fault-free neighbors, it chooses one as its tester

and sends ACPTM to that node. So the node that receives ACPTM becomes its tester.

ACKINFO (“Acknowledgement of INFO”): It is an acknowledgement of INFO. Each

node can detect the faulty status of a neighbor when it does not receive this message

from the neighbor after sending an INFO message to it.

ACKNRH(“Acknowledgement of NRH”): This is an acknowledgement of NRH.

(2B) (7B)

AppHdr CRC

 (7B) (2B) (2B) (2B) (2B) (2B)

 AppHdr myID.p myID.gp Testedby Testerof CRC

 157

ACKCHILDINFO (“Acknowledgement of CHILDINFO”): It is an acknowledgement

of CHILDINFO. Each node can detect the faulty status of its parent node when it does

not receive this message after sending CHILDINFO.

ACKHOP: This is an acknowledgement of ACKHOP.

 158

APPENDIX B SIMULATION ENVIRONMENTS

To install NRLsensorsim for simulating sensor networks in the ns-2 network simulator

(ns-2.27), nrlsensorsim-2.27.tgz was downloaded from

http://downloads.pf.itd.nrl.navy.mil/archive/nrlsensorsim/.

For compatibility of NRLsensorsim with ns-2.27, a patch file (patch_script-2.27.sh)

that modifies ns-2.27 must be run in nrlsensorsim-2.27 directory before installing of ns-

2.27 as follows:

>tar -xzvf ns-allinone-2.27.tgz
>tar -xzvf nrlsensorsim-2.27.tgz
>cd nrlsensorsim-2.27/
>./patch_script-2.27.sh
>cd ../ns-allinone-2.27/
>./install

The modification details are described in

http://downloads.pf.itd.nrl.navy.mil/archive/nrlsensorsim/INSTALL-2.27.txt.

A simulation of the INP routing protocol that includes creation of the routing tree and

local reconfiguration against fault nodes was made in the ns-allinone-2.27/ns-2.27/INP

directory. The following 9 files are under the INP directory;

INP/INP.cc
INP/INP.h
INP/INP.tcl
INP/INP_logs.cc
INP/INP_packet.h
INP/INP_rqueue.cc
INP/INP_rqueue.h
INP/INP_rtable.cc
INP/INP_rtable.h

For these files to be compiled, the following INP object files shown as bold are added

into the OBJ_CC variable in the Makefile located in the upper directory (i.e., ns-

 159

allinone-2.27/ns-2.27) ;

OBJ_CC = \
…
INP/INP_logs.o INP/INP.o \
INP/INP_rtable.o INP/INP_rqueue.o \
…

 $(OBJ_STL)

For INP to be integrated with ns-2.27, a declaration of new INP packet type is

included in common/packet.h as follows:

enum packet_t {
 …

 PT_INP,
 PT_NTYPE // This MUST be the LAST one
};

Also, a textual name for a new INP packet type is added into the constructor of p_info

class in common/packet.h

p_info() {
 ...
 name_[PT_INP]= "inp";
}

To trace new INP packets when the packets are sent, received, and dropped,

format_INP() function was added into trace/cmu-trace.cc and trace/cmu-trace.h

At trace/cmu-trace.h

class CMUTrace : public Trace {
 ...
private:
 ...
 void format_INP(Packet *p, int offset);
};

 160

At trace/cmu-trace.cc

...
#include <INP/INP_packet.h>
...
void
CMUTrace::format(Packet* p, const char *why)
{
 ...

switch(ch->ptype()) {
 ...
 case PT_INP:
 format_INP(p, offset);
 break;
 default:
 ...
}

...
void
CMUTrace::format_INP(Packet *p, int offset)
{

struct hdr_INP *ah = HDR_INP(p);
struct hdr_ip *ih = HDR_IP(p);

switch(ah->ah_type) {

case INPTYPE_Parent:
 case INPTYPE_INP:
 case INPTYPE_CNFCF:
 case INPTYPE_ICNYP:

case INPTYPE_INI:
 case INPTYPE_ACKICNYP:
 case INPTYPE_ACKINI:
 case INPTYPE_ACKINP:

case INPTYPE_ACPINP:
case INPTYPE_ACPICNYP:
case INPTYPE_PFIND:
case INPTYPE_ACKPFIND:

 if (pt_->tagged()) {
 ...
 } else if (newtrace_) {
 ...
 } else {

sprintf(pt_->buffer() + offset,

 "[0x%x %d %d %d %f] (%s)",
 rp->INP_type,
 rp->INP_dst,

rp->INP_src,
rp->INP_parent,

 rp->INP_timestamp,
 rp->INP_type == INPTYPE_INP ? "INP" :
 (rp->rp_type == INPTYPE_CNFCF ? "CNFCF" :

 161

 ...
 }
 break;
 default:

#ifdef WIN32
 fprintf(stderr,
 "CMUTrace::format_INP: invalid INP packet type\n");

#else
 fprintf(stderr,
 "%s: invalid INP packet type\n", __FUNCTION__);

#endif
 abort();
 }
}

Tcl library files were modified to add the INP packet type (at tcl/lib/ns-packet.tcl), to

define default values for bound attributes (at tcl/lib/ns-default.tcl), and to add the

procedures that set the INP routing agent for a wireless node (at tcl/lib/ns-lib.tcl) like

these;

At tcl/lib/ns-packet.tcl

foreach prot {
 INP
 AODV
 # ...
 NV
} {
 add-packet-header $prot
}

At tcl/lib/ns-default.tcl

...
Defaults defined INP
Agent/INP set accessible_var_ true

At tcl/lib/ns-lib.tcl

 Simulator instproc create-wireless-node args {
 # ...
 switch -exact $routingAgent_ {

 162

 INP {
 set ragent [$self create-INP-agent $node]
 }
 # ...
 }
 # ...
}

Simulator instproc create-INP-agent { node } {
 # create INP routing agent
 set ragent [new Agent/INP [$node node-addr]]
 $self at 0.0 "$ragent start"
 $node set ragent_ $ragent
 return $ragent
}

For INP packets to be treated as routing packets at the queue (i.e., priqueue) that

considers routing packets with high priority packets, queue/priqueue.cc is modified as

follows:

At queue/priqueue.cc

 void
 PriQueue::recv(Packet *p, Handler *h)
 {
 struct hdr_cmn *ch = HDR_CMN(p);
 if (Prefer_Routing_Protocols) {
 switch(ch->ptype()) {
 . . .
 case PT_AODV:
 case PT_INP:
 default:
 Queue::recv(p, h);
 }
 }
 else {
 Queue::recv(p, h);
 }
 }

Before executing the make command, for common/packet.cc to be recompiled, the

timestamp of common/packet.cc must be modified by using the UNIX touch command

as follows. This is because common/packet.h is changed and common/packet.cc was

 163

not changed.

> touch common/packet.cc
> make

 164

VITA

Eun Jae Jung was born in Wonju, Korea. He received his Bachelor’s degree in

mathematics from Myongji University, Yongin, Korea in 1991, and earned his Master’s

degree in computer science from Oklahoma State University, Stillwater, in 1996. He

received a Ph.D degree in computer science at Texas A&M University in December

2007, under the supervision of Dr. Duncan M. H. Walker. He worked in the Computer

Science Department Computer Support Group as a graduate assistant, from January

1999 through December 2003. His current research interests include wireless sensor

networks, routing protocols, and system level diagnosis. His permanent address is: 42-1

Bukmoon-Dong, Andong-Si, Kyeong-Sang-Buk-Do, Republic of Korea.

	I. INTRODUCTION
	II. REVIEW OF PREVIOUS WORK
	A. Routing algorithms for wireless sensor networks
	1) Approaches without dynamic path reconfiguration
	2) Approaches with dynamic path reconfiguration
	3) Goal approach

	B. Spanning tree creation and maintenance
	1) Spanning tree construction per each use
	2) Maintaining total knowledge of network
	a) Maintaining a minimum spanning tree (MST)
	b) Centralized approaches
	c) Distributed approaches

	3) Maintaining a global metric
	a) Various incremental approaches
	b) Link reversal approaches

	4) Goal approach

	III. RELIABLE AND DYNAMIC RECONFIGURATIONS OF THE COMMUNICATION TREE
	A. Spanning tree creation
	B. Spanning tree maintenance
	1) INP
	2) CNFCF
	3) ICNYP
	4) INI and PFIND

	C. Partition handling
	D. Joining spanning tree

	IV. COMPUTATIONAL ANALYSIS
	A. Establishing a tree
	B. Local path reconfigurations
	1) INP
	2) CNFCF
	3) ICNYP
	4) INI and PFIND

	C. Competitive analysis

	V. SIMULATION ANALYSIS
	A. Simulation environment
	B. Simulation results

	VI. SYSTEM LEVEL DIAGNOSIS ALGORITHMS FOR WIRELESS SENSOR NETWORKS
	A. Introduction
	B. Literature review
	C. A new crash fault diagnosis algorithm for wireless sensor networks (Repre)
	1) Testing
	2) IAD message
	3) Top-to-bottom information dissemination
	4) Computational analysis
	a) Testing
	b) Information dissemination
	c) Top-to-bottom transmission
	d) Children information dissemination

	5) Competitive analysis

	D. A scalable fault diagnosis algorithm (Local)
	1) Choosing the local representative nodes
	2) Testing
	3) Information dissemination
	4) Computational analysis
	a) Set up local trees
	b) Testing
	c) Information dissemination

	5) Competitive analysis

	VII. CONCLUSIONS AND FUTURE WORK

