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ABSTRACT 

 
 

Creation and Maintenance of a Communication Tree in 

 Wireless Sensor Networks. (December 2007) 

Eun Jae Jung, B.S., Myoung-Jee University; 

M.S., Oklahoma State University 

Chair of Advisory Committee: Dr. Duncan M. H. Walker 

 
A local reconfiguration algorithm (INP) for reliable routing in wireless sensor 

networks that consist of many static (fixed) energy-constrained nodes is introduced in 

the dissertation. For routing around crash fault nodes, a communication tree structure 

connecting sensor nodes to the base station (sink or root) is dynamically reconfigured 

during information dissemination. Unlike other location based routing approaches, INP 

does not take any support from a high costing system that gives position information 

such as GPS. For reconfigurations, INP uses only local relational information in the tree 

structure among nearby nodes by collaboration between the nodes that does not need 

global maintenance, so that INP is energy efficient and it scales to large sensor networks. 

The performance of the algorithm is compared to the single path with repair routing 

scheme (SWR) that uses a global metric and the modified GRAdient broadcast scheme 

(GRAB-F) that uses interleaving multiple paths by computation and by simulations. The 

comparisons demonstrate that using local relative information is mostly enough for 

reconfigurations, and it consumes less energy and mostly better delivery rates than other 

algorithms especially in dense environments. 
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For the control observer to know the network health status, two new diagnosis 

algorithms (Repre and Local) that deal with crash faults for wireless sensor networks are 

also introduced in the dissertation. The control observer knows not only the static faults 

found by periodic testing but also the dynamic faults found by a path reconfiguration 

algorithm like INP that is invoked from evidence during information dissemination. 

With based on this information, the control observer properly treats the network without 

lateness. Local algorithm is introduced for providing scalability to reduce 

communication energy consumption when the network size grows. The performance of 

these algorithms is computationally compared with other crash faults identification 

algorithm (WSNDiag). The comparisons demonstrate that maintaining the 

communication tree with local reconfigurations in Repre and Local needs less energy 

than making a tree per each diagnosis procedure in WSNDiag. They also demonstrate 

that providing scalability in Local needs less energy than other approaches. 
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I. INTRODUCTION  

Wireless sensor networks are seeing increasing usage in sensing applications such as 

buildings, the natural environment, industry and the military [1][2][3][4]. These 

networks usually consist of many low-power, low-energy, low-cost sensor nodes with 

wireless communication links, that are sensing the nearby environment, processing the 

data obtained from sensing or from other nodes, and communicating necessary data to 

other nodes or their base station [4][5][6]. 

Two key communication functions in sensor networks are broadcasting from the base 

station (sink or root node) to the nodes, and gathering data from some or all nodes to the 

base station [7]. In energy-constrained wireless sensor networks, message overhead must 

be minimized since communication consumes most of the energy [8]. This is in contrast 

to wired networks that are optimized for low latency using the high bandwidth and 

power available [9].  

Each sensor node has a limited radio transmission range, so it must communicate with 

the base station via intermediate nodes. Even nodes that could reach the base station 

directly might communicate via intermediate nodes in order to minimize transmission 

energy [10][11]. A spanning tree has been considered as a communication structure 

since it requires the fewest messages (energy) to disseminate information from the root 

to all nodes, and provides a structure for nodes to report their results to the root (base 

station) [12][13][14][15][16]. To reduce message overhead, a node concatenates the data 

received from its descendants or aggregates data (e.g., transmits an average value) in a 

                                                 
  The dissertation follows the style of IEEE Transactions on Magnetics. 
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tree structure [7]. A spanning tree also minimizes message collisions that occur in 

flooding and other undirected communication schemes [12]. 

Once a spanning tree is created as a communication structure, it must be dynamically 

maintained (or reconfigured) by routing around failed nodes and adding new nodes. 

Routing around failures is required since in the tree structure, each node has only one 

current parent (path) to the base and some sensor nodes will inevitably fail due to battery 

depletion or destruction in the harsh environment [3]. 

The primary goal of this dissertation is creating and maintaining a communication tree 

to provide a communication structure between wireless sensor nodes and the sink (root) 

that is energy efficient and reliable against crash node failures. This dissertation 

describes how communication paths are locally reconfigured by collaboration between 

nearby nodes, to minimize energy consumption and provide scalability. For that, a new 

reconfiguration algorithm (INP) that uses local relational information in the tree 

structure is introduced. Unlike other approaches, INP does not require periodic message 

exchanges or continual maintenance of a global metric (e.g. distance from the root) that 

increase reconfiguration energy consumption. In INP, each node knows local tree 

configuration information (i.e., grandparent, parent, children, and siblings). Based on 

this information, a node cooperates with nearby nodes to find its new parent when its 

parent is unavailable. The node tries to find the upper or same level relatives (e.g., great-

grandparents, grandparents, uncle/aunt, cousin, or granduncle/grandaunt) among its 

nearby nodes and connect to one among them, since they already have cycle free paths 

to reach the root in the tree with having an assumption that INP can handle only one 
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crash fault at a time.  

The INP algorithm includes joining procedures; so that nodes that are not in the tree 

(e.g. newly deployed nodes) can join the tree by exchanging messages with neighbors in 

the tree. Node failures may result in part of the tree being partitioned, so that the 

partition can no longer communicate with the root. It is undesirable for nodes in the 

partition to waste energy fruitlessly trying to communicate with the root. By extending 

INP reconfiguration steps to handle partitions, the nodes in the partition can recognize 

the partition situation and stop sending data until that area is rejoined to the tree like the 

nodes in TORA [17]. 

The secondary goal of the dissertation is the introduction of system level diagnosis 

algorithms against crash faults for wireless sensor networks. The impact of node failure 

on the network capability depends on the number of faulty nodes, the density of nodes, 

and the specific characteristics of the faulty nodes and the network. If the number of 

faulty nodes increases without corrective action, the network may ultimately cease to 

function. To prevent this, a control observer needs to keep track of node status (i.e., 

diagnosis information). With this information, the network can be reconfigured by 

bypassing, repairing or replacing faulty nodes when as needed. For example, when an 

area is partitioned due to node failures, new nodes must be deployed to recover the area 

[2][16]. Diagnosis information can also help nodes to conserve energy by not sending 

unnecessary information to faulty nodes. 

The methods of obtaining diagnosis information are different depending on the 

application. In an application where all nodes periodically report data to the control 
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observer (e.g., a temperature monitoring application [6]), the control observer will learn 

of node failures from messages that contain information about the dynamic path 

reconfiguration. When sending data to the control observer, a node will detect a parent 

node failure through time-outs, and invoke reconfiguration procedures. The faulty node 

identity is delivered to the control observer by piggybacking on the data. In this type of 

application, reconfiguration procedures work as a diagnosis algorithm. 

In an application where only some nodes are involved in data communication, these 

dynamic reconfigurations are not enough for the control observer to determine the 

overall health of the network. In critical or time-sensitive applications, such as tracing 

moving objects (e.g., tanks or enemies) in a battlefield or a sentry-line defense system on 

a border, the network must always be monitored and kept healthy by the control observer. 

Although regular node testing that uses a link level acknowledgement (ACK) of a 

DATA (a message for testing) in the MAC layer or end-to-end acknowledgement for a 

testing message of the application layer consumes more energy, each node can 

periodically check neighboring node(s) and communicate any failures to the control 

observer. 

Based on diagnosis information obtained from regular testing and dynamic 

reconfiguration procedures, an appropriate corrective action can be taken to maintain the 

communication structure of the network. Two new diagnosis algorithms (Repre and 

Local) that use INP reconfiguration steps are introduced in this dissertation. In Repre, all 

nodes report diagnosis information to the root. When the network size grows, Repre is 

extended to Local to provide scalability by reducing energy consumption and 
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communication overhead.  

This dissertation is organized as follows. Section II describes previous work. Section 

III describes INP, the reliable and dynamic reconfiguration procedures to maintain the 

communication tree. In section IV, INP is analytically evaluated and compared with the 

single path with repair routing (SWR [18]). In section V, INP is evaluated with SWR and 

GRAB-F, the fixed transmission power version of GRAB [19] through ns-2 simulations. 

Section VI introduces the Repre and Local diagnosis algorithms and analytically 

evaluates them along with the WSNDiag crash fault identification algorithm [4]. 

Conclusions and future work are described in section VII. 
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II. REVIEW OF PREVIOUS WORK 

 
A. Routing algorithms for wireless sensor networks  

Many different routing approaches have been introduced in different environments and 

there is not a single approach that we can say always gives better performance than any 

other approaches. A good routing strategy for a certain network environment comes 

from considering the special characteristics of the environment. For example, algorithms 

that consider moving nodes [15][20] require frequent message exchanges to maintain the 

communication structure, and so use unnecessary energy when nodes are fixed or slowly 

moving, as in a sensor network. 

In this section, some of the existing routing approaches for wireless sensor networks 

and their shortcomings are reviewed and suggested directions for wireless sensor 

networks that can save communication energy are introduced. Routing approaches are 

classified by whether or not paths are dynamically reconfigured. This permits direct 

comparison with the proposed approach. 

 
1) Approaches without dynamic path reconfiguration 

There are single path [21][22] routing algorithms without path reconfiguration. In the 

rumor routing algorithm [21], a damaged route can be recovered by an agent of another 

event, if available. But this situation is not always guaranteed for the broken paths. In 

[21], with increasing number of events, the cost of maintaining routing information in 

each node rises [23]. In the directed diffusion algorithm [22], periodic flooding is needed 

for maintaining the path. These algorithms can be used in a benign environment to 
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minimize communication energy. But in a harsh environment, message delivery can 

easily fail due to node failures [18]. 

To achieve a higher message delivery rate, routing algorithms that maintain multiple 

paths without dynamic path reconfigurations were introduced [22][24][25]. Directed 

diffusion algorithm [22] can have either a single path or multiple paths, depending on the 

path number(s) being reinforced from the sink [22]. Energy aware routing algorithm [24] 

always uses a single path to send information among multiple paths maintained for path 

energy balancing. To maintain multiple paths, infrequent localized flooding from 

destination to source is performed. In [25], disjoint and partially disjoint braided multi-

path routing schemes were introduced, that use pre-routed alternate path(s) when the 

primary path is broken. With these approaches, the energy consumption due to periodic 

flooding in [22][24] can be reduced. But when increasing node failures break all 

multiple paths, including the alternate path(s), flooding must be used to reestablish the 

paths [25]. 

The same information can be redundantly delivered through multiple paths 

[22][24][25]. Determining the ideal number of paths to balance delivery ratio, energy 

consumption, and network congestion is difficult [18]. Using the wrong number of paths 

can cause unnecessary energy consumption or low delivery ratio [18]. 

Unlike the multiple path approaches [22][24][25], GRAdient Broadcast (GRAB) [19] 

uses interleaved paths that are not fixed in advance, but are created dynamically and 

form a mesh structure when a message is delivered to the sink node. In GRAB, each node 

that receives a message decides for itself whether to send the message, how many 
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neighbors to send it to (by adjusting its transmission power), or whether to drop the 

message. Before data transmission, each node already knows its minimum cost to the 

sink through advertisement (ADV) packets initiated by the sink. Only the packet-

receiving nodes that have smaller minimum cost than the forwarding node’s minimum 

cost forward the packet. Packets in all other receiving nodes are dropped. But in densely 

deployed sensor fields that have many low-cost paths, this packet dropping approach is 

not sufficient to prevent unnecessary message redundancy that causes unnecessary 

energy consumption and message loss due to collisions. To limit the number (“width”) 

of the forwarding paths further, GRAB used a credit (α) that is assigned to the message at 

the source, together with the minimum cost (Csource) of the source. The maximum value 

that can be used for delivering each message is α + Csource. Among those that have 

smaller costs than the cost of the forwarding node, only the nodes that have sufficient 

credit can forward the message [19]. A message flow example of GRAB is shown in Fig. 

1. The white nodes indicated by arrows are the packet-receiving nodes that have larger 

minimum cost than the forwarding node’s minimum cost. 
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Fig. 1. An example of GRAB flow from a source to the sink [19]. 

 

2) Approaches with dynamic path reconfiguration 

For ad hoc wireless networks, there are some single-path routing with path repair 

algorithms [26][27]. These approaches detect a hop failure (due to a failed link or node) 

and then report it to the sender, which must find an alternative path to the destination. 

This is undesirable when there are many hops between sender and destination [18]. It is 

particularly undesirable when the root is broadcasting to all nodes, or all nodes are 

gathering information for the root. 

There has been limited research on routing path reconfiguration in wireless sensor 

networks to avoid node failures. The “big base station” centralized approach [16] 

maintains a global view of the network in a powerful base station for wireless sensor 
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networks. The base station builds and maintains the network routing topology by using 

the neighboring information received from each node, and sets paths by communicating 

directly to the nodes. Node failures require the base station to iteratively localize failed 

nodes and determine alternate paths. Much iteration can be required before all reachable 

nodes are reconnected to the network. This approach takes advantage of the computing 

and broadcast power of the base station to control all maintenance procedures, but does 

not scale. 

Local reconfiguration approaches are more appropriate for scalability and minimum 

communication energy in wireless sensor networks, since sensors generally collaborate 

with their neighbors to produce valuable and reliable data [11]. 

The single path with repair (SWR) scheme [18] uses local path repair, in which nearby 

nodes are used to find an alternate path to the destination, backtracking as necessary, 

while preventing loops. On the path used for information delivery, the node (called a 

pivot node in [18]) that has a faulty next immediate node (called downstream or parent 

node), initiates the path repair procedure by broadcasting a Help Request (HREQ) 

control packet [18]. The pivot node determines the best alternative node of the faulty 

node among the neighbors that reply with a Help Response (HREP) control message in 

response to HREQ. The best alternative is the node that has the lowest cost C among 

them. When the number of hops is used as the cost metric, a neighbor that has the fewest 

hops to the root is chosen. 

A HREP message is either initiated from a neighbor of the pivot node directly or it is 

relayed to the pivot node through a neighbor after initiating at a downstream node of the 
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neighbor indirectly. The latter happens when a HREQ message is relayed to the 

downstream node of a neighbor, since the neighbor has higher cost than the pivot node. 

When the downstream node that has equal or lower cost than the faulty node receives the 

HREQ message, it replies with a HREP back along the path to the pivot node. Relaying 

the HREQ message to downstream nodes is limited (e.g., 3) to prevent a loop. When the 

pivot node cannot find any alternative node of the faulty node, it returns information 

back to the source node, with each node along the reverse path attempting to find an 

alternative path [18].  

Fig. 2 shows a reconfiguration situation in SWR [18]. When node F becomes faulty, 

node A broadcasts an HREQ message. Nodes B, G, and H discard it since node B has 

same faulty node F as its parent and nodes G and H have the pivot node A as their parent. 

When node E receives the HREQ message, it relays it to its parent node C, since its cost 

is higher than that of node A. Node C again forwards this message to node D since its 

cost is not lower than the cost of node A. Since nodes D and F have the same cost k-1, 

node D replies with an HREP message to node A through the reverse path direction (i.e., 

D → C → E → A). When node D receives an HREQ message directly from node A, it 

replies with an HREP message to node A. When node C receives an HREQ message 

directly from node A, it forwards the HREP message issued from node D to node A. 

Node A chooses node D as its downstream node when it receives HREP messages from 

nodes E, C, and D since node D has the lowest cost among the nodes. 
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Fig. 2. An alternate path selection in SWR approach. 

 

Since the SWR algorithm uses a global metric, nodes upstream from the pivot node 

must update their cost C after the local path repair procedure. This requires 

communication energy. The cost update can be postponed to minimize this 

communication [18], but outdated cost information could cause a repair to create a loop, 

requiring further repair or causing message delivery failure. 

 
3) Goal approach 

We propose a new single path with reconfiguration approach that only needs local 

relative information (e.g. parent, grandparent) in each node. Since wireless sensor 

networks consist of stationary nodes, this information is infrequently updated, in contrast 

to the nodes in MANETs. A constant number of message exchanges among fault-free 

neighbors is enough for many cases of path reconfiguration. Unlike the SWR approach 
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[18] that uses a global metric, the neighborhood information does not need to be updated 

incrementally among all nodes.  

Since the routing structure of the proposed approach is a tree, the reconfiguration of 

the routing paths is related to tree maintenance. Thus we also review prior work in tree 

creation and maintenance. 

 
B. Spanning tree creation and maintenance 

The communication structure using a spanning tree or directed acyclic graph (DAG) 

has been used for many different applications in many different environments. Through 

this acyclic graph structure among nodes, data can be multicast, and routes can be found 

[28]. In this subsection, we roughly categorize and review the prior tree maintenance 

approaches. We also evaluate the shortcomings of these approaches when applied to 

wireless sensor network environments and suggest an approach for these environments. 

Before introducing the prior tree maintenance approaches, we introduce an example 

that explains the merits of a tree communication structure by comparing it with a simple 

flooding approach in wireless sensor network environments. Fig. 3 shows a 5-node 

wireless sensor network with the transmission range around each node, and the 

communication graph for the network. Based on Fig. 3, Fig. 4(a) shows when node 4 

sends a message to the sink node 1 in a tree structure through a path (4→2→1) that 

connects it to the sink. The flow of messages in a simple flooding based dissemination 

approach is shown in Fig. 4(b). 
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Fig. 3. 5-node wireless sensor network and its communication graph. 
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                               Fig. 4. Information dissemination with tree and flooding. 

 

There are redundant messages in simple flooding because each node sends a message 

to all of its neighbors without checking whether a neighbor has already received the 

message from other nodes (i.e., implosion problem) [12]. When each node has many 

neighbors, and the transmitter ranges have a large overlap (i.e., overlapping problem) 

[12], many redundant messages result. 

 
1) Spanning tree construction per each use 

In centralized multi-hop lightweight time synchronization (LTS) [29], a spanning tree 

is made whenever time synchronization is needed for wireless sensor networks [29]. In a 
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distributed approach that maintains the fault status of all nodes within each node 

(WSNDiag) [4], a tree is made whenever an observer initiates this algorithm for 

identifying crash faulty nodes in a wireless sensor network. (A crash fault is one in 

which the node simply stops working and goes silent). This algorithm is simple, but 

would not be a good approach for frequent use in stationary sensor networks since it uses 

much redundant energy to rebuild the whole tree for each use. 

 
2) Maintaining total knowledge of network 

The spanning tree can be built once and then maintained. Various tree reconfiguration 

approaches have been introduced for different environments. Some of this work 

considers the problem of new nodes joining the network and the network being 

partitioned and then rejoined. Many tree maintaining algorithms have been developed 

that use a global view of the network for maintaining the spanning tree. Many of them 

attempt to maintain a minimum spanning tree (MST). 

 
a) Maintaining a minimum spanning tree (MST) 

There were classical algorithms that form and maintain a minimum spanning tree 

(MST) using total knowledge of a network. An algorithm that updates MST and shortest 

paths when graph parameters are changed was given in [30]. When a new node is added 

to the MST of an n-node graph, this algorithm updates the MST with O(n) comparisons 

and O(n) storage [30]. An algorithm for maintaining a minimum spanning forest in a 

dynamic plane graph was introduced in [31]. The forest is maintained under edge 

weights, and insertion and deletion of vertices and edges. A dual edge-ordered dynamic 
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graph [31] was used with a primal graph to maintain the minimum spanning forest. 

Creating and maintaining a dual graph [32], corresponding to a given plane graph, is 

difficult without location information for all nodes. 

  
b) Centralized approaches 

The “big base station” centralized approach [16] maintains a global view of the 

network in a base station for wireless sensor networks. In the algorithm, the big base 

station does not attempt to maintain a MST but gives alternate paths around failed nodes 

to the nodes that need them. In wireless sensor networks that consist of many nodes, 

scalability cannot be provided with this approach. 

 
c) Distributed approaches 

Some distributed algorithms maintain the global view of the network in each node. In 

[33], a spanning tree is used for improving database maintenance in dynamic networks 

where edges may fail or recover. Each node continuously updates a dynamic data 

structure that has the tree replicas of all the nodes in the network by communicating with 

other nodes about any changes. Each node is assumed to know the content of the local 

memory of all of its neighbors, and for each error sends a message to the neighbor that 

has the error [33]. When a tree disconnected by an edge failure is merged into another 

tree, it locates its minimum-weight outgoing edge to other trees through the dynamic 

data structure. When two trees have the same minimum-weight outgoing edge to each 

other, the trees are merged through it. 

It is impractical to maintain total knowledge of the network in a special node or in 
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each node, since it requires much communication and does not scale with large networks. 

In [28], a node failure partitions the acyclic graph into one or more subgraphs (or 

fragments). These fragments are coordinated to recreate a complete acyclic graph. 

Physically sufficient network connectivity is assumed in the presence of node failures so 

that each fault-free node can reach every other node. Whenever a node detects the failure 

of a neighbor, it starts a reconfiguration by flooding a Reconfig(node_list, frag_id) 

message having frag_id and node_list with its own ID. The nodes on the path that the 

Reconfig message follows are added to node_list. Links that are needed for combining 

fragments are accepted as edges in the combined acyclic graph by resolving contention 

among fragments, avoiding cycles and message loops. When two partitioned fragments 

are joined, the pre-established higher-ranked frag_id or randomly selected frag_id 

among them can be used. This algorithm does not consider individual nodes joining 

(reseeding) the network. Since flooding is used and every node participates in 

reconfiguration, the energy consumption of this algorithm makes it unsuitable for 

wireless sensor networks. 

 
3) Maintaining a global metric 

There were many other distributed approaches that do not need a total view of the 

entire network in each node. Instead, global information (e.g. distance to the root of the 

tree) is locally maintained in each node and used for tree maintenance. By collaborating 

with its neighbors, a node’s information is incrementally updated among other related 

nodes. In this dissertation, these are called incremental approaches. 
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a) Various incremental approaches 

In self-stabilizing spanning tree construction algorithms [34], each node updates its 

new parent with the neighbor that has minimum distance value obtained by regularly 

exchanging information with neighbors. In [35], an arbitrary spanning tree is created and 

maintained for a dynamic network where edges may fail or recover. Each node keeps 

three variables: its parent, distance from the root, and its current root. Those are 

maintained when edge removal or addition occurs, by exchanging messages (e.g. M-

message (root, distance) [35]) among neighbors and used for reconfiguring the spanning 

forest. In [36], nodes in a computer network are maintained in a rooted spanning tree 

(RST) as long as the nodes remain connected in the presence of a finite number of fail-

stop failures and recoveries. Each node maintains three values: parent, root, and color. In 

this fully distributed, nonmasking fault-tolerant protocol, the spanning forest is merged 

into a spanning tree rooted at the node that has the highest index [36]. This protocol can 

tolerate a finite number of faults during tree reorganization caused by previous faults, 

but at the cost of high message overhead. The time complexity of RST is O(N) rounds 

where N is the number of fault-free nodes. The single path with repair (SWR) routing 

scheme [18] for wireless sensor networks that was introduced in the previous subsection 

also belongs to this approach. 

 
b) Link reversal approaches 

There were also link reversal algorithms among the incremental approaches. In TORA 

[17], a loop-free routing algorithm for mobile ad hoc networks (MANETs) was 

introduced. It adds a partition detecting procedure to GB [37] that generates loop-free 
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routes in the networks with frequently changing topologies due to link failures. Full and 

partial reversal methods were introduced in GB. Fig. 5 [37] shows an example of simple 

full reversal method. Initially all flows are directed to the destination D without a cycle. 

With a link A to D failure, node A has incoming paths without an outgoing path, denoted 

by R in Fig. 5. Then all incoming paths of node A are reversed. In each iteration, the 

node that does not have an outgoing path reverses all its incoming paths and finally an 

acyclic graph is made. 

Like GB, all nodes in TORA are totally ordered with different values by having 

incremental updates among nodes and thus each node has a its height within the tree. 

The direction of links is always from higher to lower and thus cycles can be prevented. 

Whenever a node (except the destination node) does not have at least one outgoing link, 

it reverses its link directions to form an outgoing link. A destination-oriented DAG is 

finally produced by having a destination that has the lowest height. Unlike GB [37], 

when the network is partitioned, all invalid routes among the nodes in the partition are 

erased to stop sending unnecessary messages. This conserves energy in the partition. 

Based on TORA, an approach that has a leader per partition was introduced for MANETs 

[38]. Whenever a node detects partition, it elects itself as the leader of the nodes in the 

partition and announces it to its neighbors. This information is disseminated until all 

nodes in the partition have the new leader. When two partitions are combined together 

due to a new link joining them, the leader that has the smallest ID becomes the leader of 

all nodes in the combined graph [38]. In [38], algorithms were introduced for both a 

single link (topology) change and a change that occurs before recovering from the 
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previous change. Like TORA and GB, cycles are prevented since paths are made only 

from higher to lower heights [17][37][38]. 
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Fig. 5. Full reversal method in GB [37]. 

 

As shown in the previous examples, most incremental approaches were used for 

dynamic networks with frequent network topologies changes, such as MANETs. In those 

environments, frequent message exchanges among neighbors are required to update 

global information. Outdated global information could cause a repair to create a loop, 

requiring further repair or causing message delivery failure. But in stationary wireless 

sensor networks with more severe energy constraints, these approaches can cause high 

energy consumption. 

The features of the above prior work can be roughly categorized as: constructing a 
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new spanning tree per use without maintaining it; updating MSTs with total knowledge 

of a network; updating a global view of the network in a central node (centralized) or in 

each node (distributed); or updating global information locally and incrementally in each 

node. Most of these approaches are not suitable for direct application to static wireless 

sensor networks, due to high message overhead that causes high energy consumption. 

 
4) Goal approach 

Maintaining a single routing path in a tree structure by using only local relative 

information (i.e. parent, grandparent, etc.) in each node was already suggested in the 

previous subsection. The reconfigured tree will be a spanning tree that is not necessarily 

minimum, in order to avoid the high cost required to achieve an MST. Furthermore, only 

the local information is used when considering the problems of new nodes joining the 

network and the network being partitioned and then rejoined. 



 22
 

III. RELIABLE AND DYNAMIC RECONFIGURATIONS OF THE 

COMMUNICATION TREE 

In this section, a new energy efficient and reliable single path routing algorithm is 

described that uses only local relative information for dynamic reconfiguration of broken 

paths caused by crash faults in wireless sensor networks. We focus on failure during 

communication from the sensor nodes to the sink or root. The following assumptions are 

made for the approach: 

• The sensor network consists of randomly distributed stationary nodes that have 

unique node identifiers with omni-directional antennas, with a fixed 

communication range. 

• All links are bidirectional, that is, if a node can receive messages from another 

node, the other node also can receive messages from the node. If one node has a 

longer transmission range than a neighbor, a link will not exist between them, 

since messages cannot be acknowledged in both directions. 

• The root node of the tree (also known as base station or sink node) R knows its 

identity. Thus, there is no leader election for the root. The root will typically 

have a different implementation than the sensor nodes, since it must 

communicate with the control observer that manages the network and provides 

statistical information for the users in the outside world. 

• Enough nodes are deployed in the field so that most of them will be able to join 

the communication tree, that is, they will initially have several neighbors within 

their transmission range. 
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• Only crash faults are considered. A node fails by going silent. It cannot have 

malicious or intermittent behavior. If a node is found faulty by a neighboring 

node, it is also found faulty by all other neighbors. A crashed node can later 

recover (e.g. battery recharges). This is treated the same as seeding a new node 

into the sensor network. 

• A single crash fault occurs. Another crash fault cannot occur until 

reconfiguration from the first one is completed. Relaxation of this assumption 

will be discussed in a following subsection. 

• Fault detection is initiated by a child in the tree, when attempting to send a 

message to the root. It can be done by link level acknowledgement in the MAC 

layer, as in IEEE 802.11 [39] or via a validation transaction, such as end-to-end 

message acknowledgement and timeout in the application layer. The exact fault 

detection mechanism is outside the scope of this dissertation.  

• Two kinds of communication methods are used. One is cheap but unreliable 

broadcast and the other is expensive but more reliable unicast. A MAC layer 

such as IEEE 802.11 is available that provides reliable message unicast 

capability. 

 

A. Spanning tree creation 

After sensor nodes have been deployed, an initial spanning tree T must be formed, 

having the sink node as the root of the tree. The root broadcasts a PARENT control 

packet with its ID and that of its parent (NULL in the case of the root). Receiving nodes 
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that do not have a parent node set their parent and grandparent information and 

broadcast their own PARENT control packet. Other receiving nodes that already have a 

parent set their children, sibling, and neighbor information based on the PARENT control 

packets. The process stops when all reachable nodes have a parent set. Even though 

broadcasts are unreliable, all reachable nodes will eventually join the tree. If they miss a 

PARENT broadcast, they will time out and broadcast an I Need Parent (INP) control 

message, to which a neighboring node can respond. This is described in the following 

subsection. The INP mechanism is also used for new nodes joining the network. 

In the approach described here, each node maintains parent (p), grandparent (gp), 

children (chd) and sibling (sibs) information. In order to increase the success of 

reconfiguration, this can be extended to K ancestors, but at the cost of additional 

communication to maintain the information. 

Fig. 6 shows how the paths of the 5-node wireless sensor network that is shown in Fig. 

3 are made with message flows. Fig. 7 shows the resulting tree. Node 1 is the root of the 

tree. 
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1 3 5 2 4 

p[1]=-1 

p[2]=1 p[3]=1 

chd[1]=2 

chd[1]=2,3 

  p[4]=2 

chd[2]=4 
  p[5]=2 

chd[2]=4,5 

sibs[2]=3 

sibs[3]=2 

gp[5]=1 

gp[4]=1 

 

Fig. 6. Message sequence for tree creation. 

 

1 

3 2 

5 4 

gp[1] = -1 
  p[1] = -1 
  c[1] = 2,3 

gp[2] = -1 
  p[2] = 1 
  c[2] = 4,5 
  s[2] = 3 

gp[3] = -1 
  p[3] = 1 
  s[3] = 2 

gp[4] = 1 
  p[4] = 2 

gp[5] = 1 
  p[5] = 2 

 

Fig. 7. Final tree made. 
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B. Spanning tree maintenance 

The tree T = (V, E) consists of n vertices (nodes) and n-1 edges that connect those 

vertices. When a faulty node is found by a child on the path during message propagation 

from a source to a destination, the path must be reconfigured. In case of a failure, the 

detecting node finds a new parent node and sends the message via the new parent. For 

this reconfiguration, each node will have only local network information; p, gp, chd, and 

sibs that is obtained when the spanning tree is created and updated during maintenance.  

For reconfiguration, some control packets will be used locally. There are three flow 

directions: HIGH, LOW, and UNKNOWN. When a node finds a neighbor that guarantees 

a cycle free path to the root, it sets the neighbor relationship to LOW. The root node is 

the lowest one in the network. When a node finds a neighbor that is either a descendant 

of the node that causes a cycle or a descendant of its sibling node, it sets the neighbor 

relationship to HIGH. If a neighbor is not known as HIGH or LOW, it is set to 

UNKNOWN. When a data message arrives at a node that needs a new parent, our 

reconfiguration algorithm (called the INP algorithm in the remainder of the dissertation) 

is initiated after queuing the message in the node. This algorithm has several sequential 

steps (INP, CNFCF, ICNYP, INI, and PFIND) as shown in Fig. 8. Each step is run with a 

time limit, with the algorithm advancing to the next step if reconfiguration is not 

completed within the given time. When a new data message arrives while a 

reconfiguration step is running, the message is queued and sent to the new parent that is 

obtained after completion of the reconfiguration. This approach is different from SWR 

[18], where a new reconfiguration is initiated whenever a message arrives at the node 
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that needs a new parent. SWR uses a message based reconfiguration mechanism while 

INP uses a node based reconfiguration mechanism. These different mechanisms will be 

compared in section V. The following subsections describe each step in the INP 

algorithm. 

 

INP CNFCF 

ICNYP INI & PFIND 

END 

Incomplete 

Incomplete 

Done Done 

Done Done 

Retry > MAX 

Retry =< MAX 

Incom
plete 

START 

 

Fig. 8. Overall reconfiguration steps in INP. 

 

1) INP 

Whenever node ni starts a reconfiguration for a new parent due to the failure of its 

current parent ni+1, it broadcasts an INP(init, myID, init.p, init.gp) control packet. INP 

stands for I Need Parent, init is the ID of the initiator of the reconfiguration, and myID is 

the ID of the sender of the INP control packet. Initially, init and myID are node ni. When 

any node nj that is not a child or a sibling of node ni receives the INP, it checks if it can 

provide a LOW direction for node ni based on its local information and the information 

in the INP. If so, it unicasts an ACKINP(init, myID, myID.p, caseNUM) control message 

to node ni. ACKINP stands for Acknowledgement of I Need Parent.  



 28
 

As an example, Fig. 9 shows a situation when node A finds its new parent and Fig. 10 

shows the message sequence. Since node S has parent D that is a grandparent of node A, 

it provides a cycle free path. 

A 
B 

L 

C 

R 

G 

D 

K 

P 

H F 

E 
S 

 
Fig. 9. When node A can find its new parent using INP-ACKINP. 
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INP

ACKINP 

Info

Info 

Info

Info 
H E B A RS D 

ACPINP 

 
Fig. 10. Message sequence for Fig.  9. 

 

Fig. 11 shows five cycle free reconfiguration cases and each case is shown in Figs. 12 

to 16. Fig. 9 was an example of case 3 (Fig. 14). 

receiveINP(init, i, init.p, init.gp)  
{ 

if (init.gp ∈ myID.chd) {                             /* Case 1 */ 
      send ACKINP(init, myID, myID.p, 1); 
    } else if (init.gp == myID) {                             /* Case 2 */ 
         send ACKINP(init, myID, myID.p, 2); 
    } else if (init.gp == myID.p) {                     /* Case 3 */ 
         send ACKINP(init, myID, myID.p, 3); 
    } else if ( (init.gp == myID.gp) && (init.p != myID.p) ) {  /* Case 4 */ 
         send ACKINP(init, myID, myID.p, 4); 
    } else if (init.gp ∈ myID.sibs) {                  /* Case 5 */ 
          send ACKINP(init, myID, myID.p, 5); 
} 

 
Fig. 11. Cycle free reconfiguration cases. 

 



 30
 

 

ni+1 ni

 nj 

ni+2 

nj = ni+3 

ni+4 

 ni-1 
 

 
Fig. 12. Case 1 – When node ni has a neighbor nj that has the grandparent of node ni (i.e. 

ni+2) as its child. That is, nj is a great-grandparent of node ni. 

 

 

 

ni+1 
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 nj 

 ni-1 

ni+3 

nj = ni+2 

 
 

Fig. 13. Case 2 – when node ni has a neighbor nj that is its grandparent ni+2. 
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Fig. 14. Case 3 – when node ni has a neighbor nj that has the grandparent of node ni (i.e. 
ni+2) as its parent. 
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Fig. 15. Case 4 – when node ni has a neighbor nj that has ni+2 as its grandparent. 



 32
 

 

ni+1 

ni

ni+2

ni-1

nj

ni+3

ni+4 

 
 

Fig. 16. Case 5 – when node ni has a neighbor nj that is sibling of node ni+2. 

 
Several nodes may send an ACKINP. Then node ni selects one of the nodes nj as its 

new parent by broadcasting an ACPINP(myID, myID.p, myID.gp, caseNUM). ACPINP 

stands for Acceptance of I Need Parent. Node nj adds node ni to its children list. Then the 

data message that was held at node ni is delivered to node nj. 

When node ni broadcasts the INP, some siblings of node ni may receive this message 

and thus learn their parent is faulty. At this step, the sibling will wait until node ni finds a 

new parent and then set node ni as its parent after receiving ACPINP. In this way, some 

siblings can find a new parent without their own search, saving energy. But in a message 

based reconfiguration mechanism such as SWR [18], each node that has a faulty parent 

performs its own search for a new parent when it receives a data message, increasing 

energy consumption. Fig. 17 shows the next step of Fig. 9. In Fig. 17, node B, a sibling 

of node A, sets node A as its parent after receiving ACPINP from node A. 
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Fig. 17. Sibling node B of node A can find its new parent.  

 

The ACPINP also helps the children of node ni to find their new grandparent. In Fig. 

17, when node E receives ACPINP from node A, it learns of its new grandparent, node S. 

Optionally, if ACPINP provides myID.gp information (i.e., node D), node E can also 

learn its great-grandparent (ggp) from the message (myID.gp = D). When this extended 

ancestor information is used, the success of reconfiguration can be increased. 

In addition to cases 1 to 5 above, a case 6 was introduced in [40], shown in Fig. 18. 

This is the case when node ni has a neighbor nj that has a grandparent (ni+2) of node ni as 

its neighbor. 
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ni
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ni-1 

nj
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Fig. 18. Case 6 – when node ni has a neighbor nj that has ni+2 as its grandparent. 

 

Case 6 does not always provide a cycle free path. Unlike the above five cases, node nj 

changes its own parent to node ni+2. This can cause a cycle since node ni+2 can be a 

descendant of node nj. The same situation can happen when node nj keeps its own parent. 

The parent of node nj can be a descendant of node ni.  

Figs. 19 and 20 show two actual situations that caused cycles during simulation. Fig. 

19 shows a cycle that happened when node nj changed its own parent to node ni+2 as in 

case 6. Fig. 20 shows a cycle that happened when node nj kept its own parent.  

Fig. 19 shows the situation when node 52 became faulty. When node 42 chose node 62 

as its new parent after node 62 sent ACKINP to it, since node 42’s grandparent node 61 

is its neighbor and when node 62 changed its current parent with 61, a cycle path was 

created. In this case, node 62 avoids a cycle by not changing its parent.  
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Fig. 20 shows the situation when node 46 became faulty. When node 28 chose node 36 

as its new parent after node 36 sent ACKINP to it, since node 28’s grandparent node 56 

is its neighbor, a cycle path was created. In this case, node 36 avoids a cycle by changing 

its parent with node 28’s grandparent node 56 as its new parent. 

Although case 6 can be used with a cycle detection and removal method, the extra 

complexity of the algorithm is not worthwhile, since the later steps in the algorithm can 

handle the cases not handled by cases 1 to 5. 
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Fig. 19. A cycle occurs when node nj changes its parent to node ni+2 in case 6. 
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Fig. 20. A cycle occurs if node nj keeps its own parent in case 6. 

 

Lemma 1. Given a faulty node in a spanning tree, the new path to the root node R 

made by local reconfiguration using a case from 1 to 5, is loop free.  

Proof. We know that water on the mountain flows down into a valley and a ball on the 

inclined plane rolls down to the bottom. We also know that these natural flows are loop 

free. Each path in a spanning tree is like a water flow on the mountain. Information from 

nodes flows down into the root, R. Without loss of generality, we can say that a new path 

made by a reconfiguration case is loop free if the initiating node of the reconfiguration is 

directly or indirectly connected to a lower or same height node on the current path when 
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the height of R is 0. 

Both case 1 and 2 provide direct connections to a lower height node on the path. In 

case 1, the initiator is directly connected to its previous great-grandparent (ggp) and it 

also is connected to its previous grandparent (gp) by case 2. Through the other cases 

from 3 to 5, indirect connections are provided to the initiator. From case 3, the initiator 

can reach its gp through a sibling of the faulty node that has a lower height than the 

initiator. From case 4, it reachs its gp through a neighbor that has the same gp (i.e., same 

height as the initiator). And from case 5, it reachs its ggp through a neighbor that has the 

ggp as its p (i.e., lower height).  

All cases from 1 to 5 directly or indirectly provide the initiator a new connection to a 

lower height node (i.e., its gp or ggp). Thus, new paths made by the above five cases are 

loop free.          (End of proof) 

 

INP-ACKINP is an essential procedure for the reconfiguration that is repeatedly used 

in the more complex reconfiguration steps (i.e., CNFCF and ICNYP). Fig. 21 describes 

the different responses of a node based on its current state when receiving an ACKINP.  
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RecvACKINP(init, j, j.p, caseNUM) from j { 
   if (init == myID) 
   { 
 myID.p = j; 
 myID.gp = j.p; 
 myID.flowdirection = LOW; 
       Broadcast ACPINP (myID, myID.p, caseNum) to its neighbors; 
    } 
    else { 
 if (state == recvICNYP )  
       Send ACKICNYP (init, myID, j, j.p) 
                   to the node that gave ICNYP;  
 else if (state == recvCNFCF)  
  Send ACKCNFCF(init, myID, j, j.p) to the node  

     that gave CNFCF;   
    } 
}  

Fig. 21. Procedures according to the different states when ACKINP is received. 

 

2) CNFCF 

If the detecting node ni cannot find a cycle free parent with one of above five cases 

within a given time, node ni lets each sibling node know this fact by broadcasting a 

CNFCF (init, myID, init.p, init.gp) control packet. CNFCF stands for Cannot Find Cycle 

Free. Each sibling that hears the CNFCF starts to find its new parent by broadcasting an 

INP control packet. When a sibling receives ACKINP from its neighbor that satisfies one 

of the above five cases, it sends ACKCNFCF (init, myID, finderID, finderID.p) control 

packet to the initiator, node ni. ACKCNFCF stands for Acknowledgement of CNFCF and 

finderID is the ID of a sibling’s neighbor that gives ACKINP to the sibling. When a 

sibling does not receive ACKINP, it broadcasts CNFCF. If a sibling that is not in the 

transmission range of the detecting node ni receives CNFCF, it also can help node ni by 

checking its neighbors by sending INP. 

If node ni receives ACKCNFCF messages from some of its siblings, it chooses one of 

the siblings as its new parent and broadcasts an ACPCNFCF (init, siblingID, finderID, 
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finderID.p) control packet. ACPCNFCF stands for Acceptance of CNFCF. The 

ACPCNFCF message also helps other nodes (children or siblings of node ni) to find their 

new parent or grandparent. Fig. 22 shows these procedures. By helping each other, the 

possibility for the detecting node ni to find a new parent is increased and the siblings can 

find their new parent without much extra message traffic. 

 

recvCNFCF(init, i, init.p, init.gp) 
{ 

myid.intersibling = i; 
state =recvCNFCF; 
Send INP (init, myID, init.p, init.gp); 
If (TO(ACKINP)) { 

state = sendCNFCF; 
send CNFCF(init, myID, init.p, init.gp) to myID.sibs except node i; 

} 
} 

 

Fig. 22. Procedures when CNFCF is received. 

 

ig. 23 shows a situation that node A can find its new parent through sibling B when 

it

F

s current parent P is dead. Node B finds a new parent C after receiving a CNFCF 

message and node A changes its new parent with node B after receiving a ACKCNFCF 

message from node B. If node A does not have sibling B’s help via a CNFCF message, it 

can find its new parent through an UNKNOWN node H by spending more effort, as 

explained below, but at the cost of additional energy consumption. 
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Fig. 23. When node A can have sibling B’s help. 

 

3) ICNYP 

When the initiator node ni still cannot find its LOW direction node through INP and 

CNFCF procedures, it broadcasts an ICNYP (init, myID, init.p, init.gp) control packet to 

each child to check if a child can find a LOW direction node. By broadcasting INP, each 

child that receives ICNYP tries to find a LOW direction node. ICNYP stands for I Cannot 

Be Your Parent. Fig. 24 shows these procedures.  

 

recvICNYP(init, i, init.p, init.gp)  
{ 
 state =recvICNYP; 
 Send INP (init, myID, init.p, init.gp); 
} 

 

Fig. 24. Procedures when ICNYP is received. 
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When a child ni-1 receives ACKINP from a neighbor, it sends ACKICNYP (init, myID, 

finderID, finderID.p,) control packet to node ni in response to the ICNYP message. 

ACKICNYP stands for Acknowledgement of ICNYP. The message contains the 

neighbor’s ID in finderID and its parent in finderID.p. If node ni receives ACKICNYP 

messages with new paths from some of its children, it chooses one of the children as its 

new parent, broadcasts an ACPICNYP (init, childID, finderID, finderID.p). The 

ACPICNYP message also helps other nodes (children or siblings of node ni) to find their 

new parent or grandparent. ACPICNYP stands for Acceptance of ICNYP, and childID for 

the node which sent ACKICNYP and chosen as a new parent. When a child ni-1 receives 

ACPICNYP from node ni, it sets the neighbor that finds a LOW direction node as a new 

parent by sending ACPINP. Figs. 25 and 26 show those procedures. 

 

 

Receive ACKICNYP (init, k, finderID, finderID.p) from k { 
    If (init == myID) { 
        If (state == sendICNYP) { 

myID.p = k; 
myID.gp = finderID; 
remove k from its children list 
Broadcast ACPICNYP(init, k, finderID, finderID.p) to it neighbors  
state = Complete; 

        }  
    } 

else if (init != myID) { 
    if (state == recvICNYP) 

Send ACKICNYP(init, myID, finderID, finderID.p) to its parent; 
    } 
} 

 

Fig. 25. Procedures when ACKICNYP is received. 
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Receive ACPICNYP (init, k, finderID, finderID.p) from k { 
If (k == myID) { 
 If ( state == recvICNYP) { 

  myID.p = finderID; 
  myID.gp = finderID.p; 
  add initiator to its children list; 
  Broadcast ACPICNYP to its neighbors; 
  state = Complete; 

 } 
} else if (init != myID) { 
 if (state == recvICNYP) { 

  myID.gp = k; 
  remove k from its sibling list; 
  state = Complete; 

 } else { 
  if (finderID == myID) { 
   add k into my children list; 
  } else if (k == myID.p) { 
   myID.gp = finderID; 
   add initiator into my sibling list; 
  } 
 }  

} 
}  

Fig. 26. Procedures when ACPICNYP is received. 

 

In Fig. 27, node A sends a ICNYP message since it cannot find its new parent through 

INP and CNFCF procedures. Since node E has a neighbor U that has node D as its gp 

(i.e., case 4), it can choose node E as its new parent. Fig. 28 shows the message sequence 

for this situation. 
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Fig. 27. When node A can find its new parent using ICNYP. 

 

ICNYP
INP 

ACKINP 
ACKICNYP

Info
Info 

U E A H 

ACPINP 
ACPICNYP

 

Fig. 28. Message sequence for Fig. 27. 
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4) INI and PFIND 

When the initiator node ni still cannot find its LOW direction node with ICNYP 

procedures, node ni tries a node among UNKNOWN direction neighbors as its new 

(candidate) parent. Before doing this, node ni gets more local information that helps it 

select an UNKNOWN node by broadcasting a INI (myID) control packet. Through 

ACKINI (INIsender, myID, myID.p, myID.gp) from the neighbors, node ni receives that 

information. INI stands for I Need Information and ACKINI stands for Acknowledgement 

of INI, which carries information about the responding node’s neighbors. Fig. 29 shows 

these procedures. 

 

recvINI(INIsender)  
{ 
 Send ACKINI (INIsender, myID, myID.p, myID.gp) to INI sender;  
} 

 
Fig. 29. Procedures when INI is received. 

 
recvACKINI(INIsender, i, i.p, i.gp) from i 
{ 

if ((i.p == myID) || (i.gp == myID) || (i.p ∈ myID.siblings) || 
(i.gp ∈ myID.children) || (i.gp ∈ myID.siblings))  
     i.direction = HIGH; 

    else if (i.p == myID.p)  
       i.direction = SAME; 
    else 
          i.direction = UNKNOWN; 
    if (i.direction == UNKNOWN) { 
 state=sendPFIND; 
 send PFIND(PFINDsender, PFINDsender.p, PFINDsender.gp, Relayer) to i; 
   } 
} 

 
Fig. 30. Procedures when ACKINI is received. 
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By collecting this information node ni may capture the local connectivity among 

neighbors and filter the UNKNOWN nodes that should not be chosen as new parent 

candidates. Fig. 30 shows these procedures. HIGH flow direction neighbors are 

discarded. Then for groups of neighbors that all share the same path, all but the highest 

node is discarded, to avoid redundant work. If node ni still has neighbors that have an 

UNKNOWN flow direction, it will randomly choose one of these nodes and send a 

PFIND (PFINDsender, PFINDsender.p, PFINDsender.gp, Relayer) control packet to 

the node. PFIND stands for Path Find.  

The PFIND message propagates up the neighbor’s path towards the root, checking at 

each relay node whether it can provide a LOW direction node by satisfying one of five 

cases discussed above. If a LOW direction node is found at a relay node, the relay node 

responds to node ni with ACKPFIND (myID, PFINDsender, myID.p) along the reverse 

path direction. ACKPFIND stands for Acknowledgement of PFIND. Then node ni sets 

the UNKNOWN node that relays ACKPFIND as its new parent and broadcasts 

ACPPFIND (Acceptance of PFIND). If node ni does not receive a ACKPFIND message 

within a time limit, the node sends a PFIND message through a different UNKNOWN 

node. If there are no UNKNOWN nodes remaining, node ni back offs on its time limit 

and restarts INI and PFIND procedures since the network topology may have changed 

during the previous procedures. Reconfiguration tries end when node ni reaches the back 

off limit. Figs. 31 and 32 show these procedures.  
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Fig. 31. Procedures when PFIND is received. 

recvACKPFIND(myID, PFINDsender, myID.p) from k 
{ 

if (PFINDsender == myid) { 
 myID.p = k; 
 myID.gp = k.p; 

 Broadcast ACPPFIND(myID, myID.p, myID.gp, caseNUM) to its neighbor; 
    } 
    else 
 forward ACKPFIND to PFINDsender; 
} 

recvPFIND (PFINDsender, PFINDsender.p, PFINDsender.gp, Relayer)  
{ 
    if ((PFINDsender.gp == myID) || (PFINDsender.gp ∈ myID.chd) || (PFINDsender.gp ∈ myID.gp) ||  
        (PFINDsender.gp ∈ myID.sibling) || (PFINDsender.gp == myID.p) || (myID == Representative))   
    Send ACKPFIND (myID, PFINDsender, myID.p) to sender; 
    else 
 forward PFIND to its parent; 
} 

 

 
Fig. 32. Procedures when ACKPFIND is received. 

 

Fig. 33 shows node A can find its new parent by using the PFIND procedure after 

trying all other previous procedures. An UNKNOWN node H can become a new parent 

of node A. This is because node L has node D as its gp (i.e., case 4). Fig. 34 shows the 

message sequence for this situation. Fig. 35 shows the overall reconfiguration algorithm 

flow chart. 
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Fig. 33. When node A can find its new parent using PFIND. 

 

 

E F A H G K L

INI

ACKINI
ACKINI

PFIND
PFIND

PFIND
PFIND

ACKPFIND

ACKPFIND

ACKPFIND
ACKPFIND

ACPPFIND

INFO

E F A H G K L

INI

ACKINI
ACKINI

PFIND
PFIND

PFIND
PFIND

ACKPFIND

ACKPFIND

ACKPFIND
ACKPFIND

ACPPFIND

INFO

Fig. 34. Message sequence for Fig. 33. 
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Fig. 35. Overall reconfiguration procedure flow chart. 

Receive Data Packet 

Enque Data packet to queue 

Is parent faulty? Forward the receiving Data packet 

Is state complete? 

YES

NO 

YES

Finish process of receiving 
current data and ready for 
other data 

NO 

 TO (ACKINP)  
NO 

Receive ACKINP 

YES 

Receive ACKCNFCF 

Change its parent and grandparent 

Broadcast ACPCNFCF   

 TO (ACKCNFCF)  

Change its parent and grandparent 

Broadcast ACPINP   

Broadcast INP to its neighbors   

Send CNFCF to its siblings   

Receive ACKICNYP 

Change its parent and grandparent 

Broadcast ACPICNYP   

 TO (ACKICNYP)  

Send ICNYP to its children   

Send INI to its neighbors   

 TO (ACKINI)  

 Backoff number < max  

 Change backoff time  

Receive ACKINI 

Compute flow direction of neighbors 

Send PFIND to an 
UNKNOWN neighbor 

End 

 TO (ACKPFIND)  Receive ACKPFIND 

Change its parent and grandparent 

Broadcast ACPPFIND 

 Are all UNKNOWN tried? 

NO 

YES 

NO 

NO 

YES 

YES 

NO 

NO 

YES 

YES 

NO 

YES 



 49
 

Although the detecting node ni has several sequential steps to find its new parent, these 

tries were bounded to save energy. It is better for a node to give up rather than 

consuming most of its energy searching for a new parent. There is an extended step to 

follow when a detecting node ni can tolerate further energy consumption to find a new 

parent, such as when node ni has really urgent data to deliver to the root. One solution is 

to flood the data. However, the node failure may mean that there is no way to create a 

path to root R in the current tree. Recognition of this fact is termed partition detection. 

 
C. Partition handling 

Node ni and its descendants nodes might be partitioned from the current tree structure 

when node ni’s parent becomes faulty. It may be undesirable for the descendants of 

detecting node ni to continue sending information to their parents on the current tree 

structure since this wastes energy. With the above local reconfiguration steps in INP 

algorithm, partition situations cannot be detected. By extending the existing 

reconfiguration steps to include a partition handling procedure, the nodes in the partition 

area can recognize the partition situation and stop sending data until the area rejoins the 

tree T. 

The partition of node ni and its descendant nodes does not mean that no path can be 

found from each node in the partition area to the root R. Each node may find a new path 

to root R by rebuilding a new communication tree structure or by flooding route request 

control packets that are used in reactive routing protocols like AODV [41].  

The INP algorithm focuses on locally reconfiguring the existing tree communication 

structure against crash faults on a given network topology. Thus at most a few paths per 
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local reconfiguration situation are added to, removed from, and changed during 

reconfiguration. Thus the term “partitioned” in this dissertation means that node ni and 

its descendant nodes could not find path to the root R using the partition detection 

procedure. 

If the above steps of the INP algorithm fail, the partition detection procedure is 

initiated. Node ni sends a CHECK-PARTITION control packet to its children. This 

happens after node ni fails to receive a ACKPFIND message from any UNKNOWN 

neighbors. Each child again sends a PFIND message to its neighbors and waits for a 

ACKPFIND message. When a child receives ACKPFIND from a neighbor, it replies 

with ACKCHECK-PARTITION (newparentID) to node ni with newparentID the 

neighbor’s ID. When a child does not receive any ACKPFIND within the given time 

limit, it sends a CHECK-PARTITION to its children. The same steps are repeated until 

each leaf node in the tree tries to find a new path.  

When a leaf node cannot find a new path, it sends an ACKCHECK-PARTITION 

message with newparentID = NULL to its parent. When each parent node receives these 

messages from all of its children, it sends an ACKCHECK-PARTITION message with 

newparentID = NULL to its parent. When the initiator node ni receives these messages 

from all of its children, partition has been detected. Fig. 36 shows the procedures. 
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Recv_CheckPartition() 
{ 
     For each neighbor k except its parent, grandparent, children, and siblings 
     { 
 Send PFIND to k; 
 If  TO(AckPFIND(k) 
  NofNotFindNode++; 
     } 
     If (NofNotFindNode == Number of neighbors except its parent, grandparent, children, and siblings)   
     { 
      If (node is leaf) 

 Send ACKCheckPartition(NULL, myid) to its parent; 
Else 
{ 

  For each child j  
   Send CheckPartition() message to j; 
 } 
     } 
} 
  
Recv_ACKCheckPartition(p, from) 
{  
     If (p == NULL) 
     { 
 NofNotFindChild++; 
 If ( (NofNotFindChild == Number of children) 
     { 

          If (recvCheckPartition)  
   Send ACKCheckParition(NULL, myid) to its parent; 
  else 
   Detect partition; 
 } 
     } 
     Else  
     { 
      if (recvCheckPartition) 
  Send ACKCheckPartition(from, myid) to its parent; 
 Else 
 { 
  Myid.Parent = from; 
  Myid.gp = p; 
  Send ACPICNYP(from); 
  Return; 
 } 
     } 
} 

 
Fig. 36. Procedures of Check-Partition. 

 

D. Joining spanning tree 

When a node is newly deployed (reseeding) or restarts after a crash fault (e.g. battery 
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recharged), it must join the tree. When node ni can reach a node nj that belongs to the 

tree T, it joins the tree T by becoming a child of that node nj. Since each node ni does not 

have a parent and grandparent yet, it broadcasts INP (init, myID, init.p, init.gp) with 

init.p=NULL and init.gp=NULL. When any node nj belonging to the tree T receives the 

INP message, it replies with ACKINP (init, myID, myID.p, caseNUM). Then node ni 

randomly selects one of the responding nodes as its new parent. Note that this approach 

can cause the spanning tree diameter to grow over time, but we are placing a priority on 

minimum-energy tree maintenance. If the diameter becomes too large, the spanning tree 

can be recreated.  

In Fig. 37, there are two partition areas, I and II that are partitioned from the spanning 

tree T and each other. When nodes O and P are deployed, they cannot help those two 

partition areas to rejoin the tree. They just know that they cannot reach tree T since there 

is no ACKINP from a node belonging to the spanning tree T.  

When nodes S, T, and U are additionally deployed, node S receives ACKINP from 

node K and sends PARENT(S,K) to its neighbors after sending ACPINP (S,K,LOW) to 

node K. Then the nodes in both partition areas I and II can rejoin tree T through node S. 

Node O functions as a connector between partition areas I and II.  

As long as nodes are in a partition area, no procedure that makes parent-child 

relationships among the nodes is needed. When nodes are reconnected to the tree T, the 

relationships among the nodes are established. There is no merge procedure among 

partition areas themselves before those are reconnected to the tree T. 
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Fig. 37. Joining procedures. 
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IV. COMPUTATIONAL ANALYSIS 

The INP algorithm was analyzed for energy consumption and message overhead. 

Since the energy consumed varies based on the particular network, the following 

subsections parameterize the network and compute the energy consumption and message 

overhead for specific functions and then for the entire algorithm. 

Energy consumption is assumed not a function of distance but a function of message 

type. This is correct when the transmitter power is constant and transmitter energy is a 

function of message length. The energy to send a message of type X is denoted as E(Xs). 

The energy to receive a message of type Y is denoted as E(Yr). Table I shows variables 

for computational analysis of INP. 

 
TABLE I 

VARIABLES FOR COMPUTATIONAL ANALYSIS OF INP 

Variable Description 

N total number of nodes (i.e., N=|F|+|FF|) 
FF set of all fault-free nodes 
F set of all faulty nodes 

Nei[j] total number of neighbors of node j including children and siblings 
chd[j] total number of children of node j  
sibs[j] total number of siblings of node j 
unknown[j] total number of UNKNOWN neighbors of node j 

c maximum number of neighbors 
height[j] height of node j  

 

 
A. Establishing a tree 

For establishing a tree, each node broadcasts its PARENT message and receives 
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PARENT messages from all fault-free neighbors. Since energy consumption for each 

fault-free node j is E(parents) + Nei[j]·E(parentr), equation (1) is the energy 

consumption of all fault-free nodes.            

∑
=

N

j 1
 (( E(parents) + Nei[j] ·E(parentr) ) (where,  j ∈FF)                    (1) 

(1) becomes (2) in the worst case when all nodes are fault-free with a maximum 

number of neighbors c.    

N·(E(parents) + c·E(parentr))                                           (2) 

The total number of messages exchanged does not exceed c·|FF| when the maximum 

number of neighbors is c, since each fault-free node sends a message. In the worst case 

when all nodes in the network are fault-free, the number becomes c·N or O(N). 

 
B. Local path reconfigurations 

The following shows the energy consumption of path reconfiguration procedures. 

 
1) INP 

Energy consumption of an INP message sender node j when a neighbor that is not a 

child or sibling replies with ACKINP message is:  

E(inps) + E(ackinpr) + E(acpinps)                                        (3) 

Maximum energy consumption of an INP message sender node j when all neighbors 

except children and siblings reply with ACKINP messages is:  

E(inps) + (Nei[j]-chd[j]-sibs[j])·E(ackinpr) + E(acpinps)                    (4) 

Energy consumption of an ACKINP message sender node is:  

E(inpr) + E(ackinps) + E(acpinpr)                                       (5) 
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Energy consumption of other neighbor nodes is:  

E(inpr) + E(acpinpr)                                                 (6) 

Thus the total energy needed for an INP procedure in worst case is expressed as (7). It 

shows when all neighbors except children and siblings reply with ACKINP messages. 

(4) + (Nei[j]-chd[j]-sibs[j])·(5) + (chd[j]+sibs[j])·(6)                        (7) 

The total number of messages exchanged in worst case is O(c) with a maximum 

number of neighbors, c. 

 
2) CNFCF 

Energy consumption of a CNFCF message sender node j when a sibling replies with 

ACKCNFCF message is:  

 E(cnfcfs) + E(ackcnfcfr) + E(acpcnfcfs)      (8) 

Maximum energy consumption of a CNFCF message sender node j when all siblings 

reply with ACKCNFCF messages is: 

E(cnfcfs) + sibs[j]·E(ackcnfcfr) + E(acpcnfcfs)                              (9) 

Energy consumption of an ACKCNFCF message sender node is:  

E(cnfcfr) + E(ackcnfcfs) + E(acpcnfcfr)                                 (10) 

Energy consumption of other neighbor nodes except siblings is:  

E(cnfcfr) + E(acpcnfcfr)                                             (11) 

Thus the total energy needed for a CNFCF procedure in worst case is expressed in 

(12), when all siblings reply with ACKCNFCF messages. 

(9) + sibs[j]·(10) + (Nei[j]-sibs[j])·(11)                               (12) 

The total number of messages exchanged in worst case is O(c) with a maximum 
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number of neighbors, c. 

 
3) ICNYP 

This procedure can be analyzed in two parts. One is related to the ICNYP message step 

and the other is related to the INP message step. Energy consumption of an ICNYP 

message sender node j when a child replies with ACKICNYP message is:  

E(icnyps) + E(ackicnypr) + E(acpicnyps)                               (13) 

Maximum energy consumption of an ICNYP message sender node j when all its 

children reply with ACKICNYP message is:  

E(icnyps)+ chd[j]·E(ackicnypr) + E(acpicnyps)                           (14) 

Maximum energy consumption of an ACKICNYP message sender node k that is a child 

of node j is: 

E(icnypr) + E(ackicnyps)+ E(acpicnypr)                             (15) 

This does not include the energy consumed by node k for the INP procedure before 

sending a ACKICNYP message to node j. 

The energy consumption of all other neighbors of node j except its children is:  

(Nei[j]-chd[j])·(E(icnypr) + E(acpicnypr ))                               (16) 

Thus, the total energy used for the ICNYP message step in an ICNYP procedure in the 

worst case is expressed as (17),  when all children reply with ACKICNYP messages. 

(14) + chd[j]·(15) + (16)                                           (17) 

In addition, each child k of node j executes an INP procedure that consumes the energy 

given in (7), with k used instead of j. Thus, the worst-case total energy used for the INP 

message step in an ICNYP procedure is expressed as (18). 
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chd[j]·(7)                                                         (18) 

Finally, the total energy used for the ICNYP procedure in the worst case is expressed 

as (19). 

(17) + (18)                                                        (19) 

The total number of messages exchanged in the worst case is O(c2), for a maximum 

number of neighbors, c. 

 
4) INI and PFIND 

Energy consumption of an INI message sender node j when UNKNOWN neighbors can 

reply with an ACKINI message is:  

E(inis) + unknown[j]·E(ackinir)                                     (20) 

When all neighbors except children and siblings are UNKNOWN (i.e., Nei[j]-chd[j]-

sibs[j]), energy consumption of an INI message sender node j is maximized. Energy 

consumption of an ACKINI message sender node is:  

E(inir) + E(ackinis)                                                (21) 

Energy consumption of other neighbor nodes is:  

E(inir)                                                          (22) 

Thus, the total energy needed for an INI procedure is expressed as (23), when all 

UNKNOWN neighbors send ACKINI messages. 

(20) + unknown[j]·(21) + (Nei[j]-unknown[j])·(22)                         (23) 

The total number of messages exchanged in the worst case is O(c) or O(1), with a 

maximum number of neighbors, c. 

After receiving INI message(s), node j sends a PFIND message. Energy consumption 
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of node j when it tries the first UNKNOWN neighbor and finds a new path is:  

E(pfinds) + E(ackpfindr)+ E(acppfinds)                                (24) 

The node k that confirms a cycle free path and replies with an ACKPFIND message 

back to the PFIND sender consumes the energy shown in (25). 

E(pfindr) + E(ackpfinds)                                            (25) 

Each message relay node p from node j to node k or vice versa consumes the energy 

shown in (26). 

E(pfindr) + E(pfinds) + E(ackpfindr) + E(ackpfinds)                      (26) 

The number of relay nodes is |height[k] - height[j]| - 1. Thus, the total energy 

consumption of relay nodes is:   

(|height[k] - height[j]| - 1)·(26)                                       (27) 

In the worst case, node j must try all its UNKNOWN neighbors. Equation (28) shows 

the energy consumption of node j in that case. 

unknown[j]·E(pfinds) + E(ackpfindr)+ E(acppfinds) <or> unknown[j]·E(pfinds)  (28) 

Equation (28) comes from the fact that node j may have a new parent after trying all 

the UNKNOWN neighbors or may not have a new parent. That is, there is no such node k 

that confirms a cycle free path and replies with an ACKPFIND message back to the 

PFIND sender or a node k in the last UNKNOWN try. Thus, energy consumption in the 

final destinations of the PFIND message is:  

unknown[j]·E(pfindr) <or> (unknown[j]-1)·E(pfindr) + (25)              (29) 

The first case is for when PFIND sender j receives the PFIND message that it sent and 

the second case is for when node k consumes the energy shown in (25) after other 



 60
 

previous PFIND messages have arrived at node j. 

For each UNKNOWN node try, the total energy consumption of relay nodes (27) is 

used. Thus (30) is used to get the total relay node energy consumption. 

unknown[j]·(27)                                                  (30) 

Therefore, the total energy consumption of the PFIND procedure is (31). 

(28) + (29) + (30)                                                (31) 

The total number of messages exchanged during PFIND is O(unknown[j]·height[root]) 

in the worst case. Since the number of unknown nodes cannot exceed the maximum 

number of neighbors, the total number of messages is bounded by c·O(height[root]). 

Height can range from N-1 to O(log(N)). 

 
C. Competitive analysis 

INP is evaluated with single path with repair routing (SWR) [18] since the 

reconfiguration of a single path is a common problem to both algorithms and SWR uses 

local path repair similar to INP.  

The energy consumption of the algorithms is evaluated by using the per-packet 

analysis method [42]. Per-packet energy consumption is computed as follows:  

             Energy = C + (Power/DataRate) × packet size                         (32) 

where C is the constant overhead per packet, Power is the transmitter or receiver power, 

DataRate is the data rate of the channel after removing encoding overhead, and packet 

size is the length of the packet. Power per bit is usually higher for transmitting than 

receiving [43]. The constant C accounts for per-packet computation, carrier sensing, 

sending or receiving any coordination packets such as RTS/CTS, and transceiver 
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wakeup time. The value of C depends on whether the traffic is broadcast or unicast: C(B) 

or C(U). Unicast has higher energy consumption since it has an acknowledgement 

packet. After the constant amount C of energy consumption, each node consumes energy 

for receiving or for sending data packets, depending on the packet length. A radio 

transceiver model that uses the same power for receiving and listening is assumed [43]. 

Table II shows the parameters used in the analysis, taken from [43]. Transmit power is 

assumed to be constant, independent of neighbor location within the transmission range. 

 
TABLE II 

PARAMETERS FOR COMPUTATIONAL ANALYSIS OF INP AND SWR 

Parameter Value 

Transmit power 24.75 mW 
Receive power 13.5 mW 
Bandwidth 20 kbps 
MAC  S-MAC 
Duration of periodic listen   115 ms 
Duty cycle 10% 
Number of nodes  1024 

 

 
The calculation results below show the energy consumption for both algorithms for 

reconfiguration of one faulty node, both when a single message is delivered, and when 

all of the children of the faulty node deliver messages. 

The following assumed topologies are reasonable since the characteristics of both 

algorithms are reflected on the results obtained by using those topologies. For example, 

each sibling of the detecting node can find its new parent without its own effort in the 
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INP algorithm unlike in the SWR algorithm. 

Although each node in the tree can have different number of children in actuality, an 

assumption that each node has r number of children was used for the following 

calculations. Height of the tree is O(logrN). 

Fig. 38 shows the energy consumption for different numbers of children of the 

detecting node. The detecting node has 10 neighbors (including children and siblings, 

but not including the faulty parent). There are no siblings assumed in Fig. 38. Fig. 39 

shows energy consumption for different number of sibling neighbors of the detecting 

node. The detecting node has 10 neighbors and 5 children. Note that a sibling might not 

be a neighbor if it is out of transmission range, but that is not considered in these 

examples. 
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Fig. 38. When neighbor(s) can give direct response to INP or HREQ under different 
number of children. 
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Fig. 39. When neighbor(s) can give direct response to INP or HREQ under different 
number of siblings. 

 

In Figs. 38 and 39, half the neighbors of the detecting node that are not children or 

siblings are assumed to be able to directly guarantee a loop free path through them (cases 

1 to 5 in INP) and reply with an acknowledgement (ACKINP in INP, HREP in SWR). 

For SWR, the TTL field in the HREQ message is set to 3, as in [18]. This limits the 

length of the route the HREQ message can travel [18]. Each neighbor that has a higher 

hop number than the value of the detector relays the HREQ message up until TTL 

becomes 0. In both algorithms, children do not send ACKINP or HREP messages. When 

there are few children among the neighbors, more neighbors relay the HREQ message. 

For example, with 2 children, 4 neighbors relay HREQ since 4 other neighbors can 

directly send a HREP message. This causes the total energy used by SWR to fall with 

increasing number of children of the detecting node, as shown in Fig. 38. When there are 
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9 children (all neighboring nodes are children, except for the new parent), the energy 

costs of SWR and INP are the same. In INP, the number of children does not 

significantly affect the energy consumption, since the neighbors (including children) that 

cannot find any of the five cases just wait until the detecting node finds a new parent 

(ACPINP) or starts the next procedure (e.g. CNFCF). 

Figs. 38 and 39 do not consider the amount of energy that SWR needs for updating 

node cost (height) values. These updates are postponed until a downward message is 

delivered to each child [18]. Outdated height values can result in loop formation during 

reconfiguration, requiring extra energy to detect and remove. In the INP algorithm, the 

neighborhood relationships are kept updated during reconfiguration, so loops can never 

occur during reconfiguration. 

In Fig. 39, as the number of siblings of the detecting node rises, the INP algorithm 

uses more energy while SWR uses less energy. This is because siblings are not involved 

in the SWR repair procedure. The HREQ message is discarded by all siblings. In the INP 

algorithm, although siblings do not try to find a new parent, they are aware that their 

parent is dead by receiving an INP message, and make the detecting node their new 

parent. This causes the total energy to rise with the number of siblings, but completes the 

reconfiguration for all siblings. 

In Fig. 39, “SWR Total with One Detect” is the total energy consumed by all nodes for 

the first detecting node to reconfigure. It falls as the number of siblings rises, since there 

are fewer non-sibling, non-children neighbors to reply to messages. The curve “SWR 

Total with All Siblings’ Detect” is the total energy consumed by all nodes for all siblings 
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to detect the faulty parent and reconfigure. This is more realistic since eventually most 

nodes will communicate with the root. The curve “SWR One Detector Energy” is the 

energy expended by one child of the faulty node to detect and reconfigure. The curve 

“SWR Detectors Total” is the total energy consumed by all the siblings as they all detect 

the faulty parent and reconfigure. 

The top curve in Fig. 39 rises with the number of siblings, due to the repeated 

reconfiguration process. As the number of siblings increases, the energy consumption 

starts to fall, since there are fewer non-child, non-sibling neighbors, so there is less 

communication. 

Fig. 40 shows the energy consumption when the detecting node can find its new parent 

after a CNFCF message is used in the INP algorithm. Each node has 10 neighbors and 5 

children. Each sibling is assumed able to give an ACKCNFCF message to the detector. 

Since each sibling tries to find its new parent via the INP procedure, the amount of 

energy that sibling(s) and their neighbors consume increases with the number of siblings. 

The “Detector’s Neighbor’s Total” is the total energy used by the detecting node’s 

neighbors to receive messages from the detector. This does not change since the number 

of neighbors is fixed here. The “Detector’s Total Energy” increases slightly with 

increasing number of ACKCNFCF messages received. As mentioned above, SWR does 

not use any sibling help in reconfiguration so cannot reconfigure in cases where INP 

uses the CNFCF message procedure. 
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Fig. 40. When detector needs siblings’ help without having direct response from its other 

neighbors. 

 

Fig. 41 shows the energy consumption when the detecting node must use the ICNYP 

procedure to find a new parent. The detecting node has 2 siblings and each node 

including the detecting node has 10 neighbors. Each child is assumed able to give an 

ACKICNYP message to the detector. Since each child tries to first find its new parent via 

the INP procedure, the amount of energy that children and their neighbors’ consume 

increases with the number of children. The detecting node’s energy increases negligibly 

when the number of ACKICNYP messages received increase. Total energy consumption 

for the CNFCF procedure is not affected by the number of children since the number of 

detecting node’s siblings involved in this procedure is fixed. As SWR does not use any 

children’s help in reconfiguration, it cannot reconfigure in cases where INP uses the 

ICNYP procedure. 
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Fig. 41. When detector needs children’ help without having siblings help. 

 

Fig. 42 shows the energy consumption when the detector can find its new parent after 

trying all UNKNOWN neighbors in the INP algorithm. Each node has 10 neighbors. The 

detecting node has 2 siblings. The number of UNKNOWN neighbors is taken after 

subtracting children and siblings from the 10 neighbors. After the INI procedure, half of 

UNKNOWN neighbors are assumed as HIGH neighbors and disregarded in being 

considered as a new parent.  

Among the remaining UNKNOWN neighbors, only one neighbor is assumed to receive 

an ACKPFIND message initiated from a child of root R along the reverse path direction 

after other failed UNKNOWN neighbors’ tries. It happens when the PFIND message is 

assumed to be delivered to a child of root R without having a chance to find a new path, 

by assuming all five simple cases fail at all intermediate nodes on the path in the last 

UNKNOWN node’s try. Previous failed tries occur when a PFIND message is sent to one 
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of detecting node’s descendents. To measure the energy consumption of each failed try, 

the PFIND message is also assumed to travel as the length from the last UNKNOWN 

node to a child of root R.  

UNKNOWN neighbors are assumed to be located at leaves of the tree for the worst 

case situation. With a network size 1024, each UNKNOWN neighbor’s height is changed 

according to the different number of children. When the number of children is 2, the 

height is 9 (three children imply a height of six, etc.). Thus the total energy for the 

PFIND procedure falls when the number of children increases. As can be seen, the 

energy consumption for the PFIND procedure is higher than the energy consumption for 

other procedures. 
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Fig. 42. When detector needs to try UNKNOWN neighbor(s) without having children’s 

help. 
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V. SIMULATION ANALYSIS 

INP and SWR are also evaluated through simulations and those algorithms are also 

compared with GRAdient broadcast [19] with fixed transmission range (GRAB-F) that 

uses dynamically made interleaving multiple paths. GRAB [19] was previously 

compared with SWR in [18] to evaluate the effectiveness of SWR. Three metrics that are 

used for comparing the performance of these approaches are average message delivery 

ratio, average information latency, and average energy consumption per data delivery. 

Information latency is defined as the amount of time spent for delivering a message from 

a source node to the root node R. These metrics are considered for different node 

densities and node failure rates. 

 
A. Simulation environment 

For simulations, we use NRLsensorsim [44], which extends the ns-2 network 

simulator [45] to facilitate simulating sensor networks. For simulating sensor networks 

that detect phenomena such as seismic activity or sound, NRLsensorsim adds the 

phenomenon notion to ns-2 [44]. This is implemented by a phenom “channel” attached 

to each node, separate from the regular data channel. Through the sensor agent that is 

attached to the phenom channel, each sensor node receives PHENOM packets that are 

broadcast by mobile PHENOM node(s) that are moving around along the paths provided 

by a PHENOM “routing” protocol. Nodes deliver the received PHENOM packet events 

to the node’s sensor application. Nodes react to the phenomenon (PHENOM packets) 

according to the function defined by its sensor application [44]. In this work, the nodes 

will transmit “phenomenon detected” messages to the root. 
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Table III shows the parameters that were used for the simulations. A radio transceiver 

model that uses the same power for receiving and listening is assumed, as in section IV 

[43]. 

 
TABLE III 

PARAMETERS FOR SIMULATIONS OF INP, SWR, AND GRAB-F 

Parameter Value 
Transmit power 24.75 mW 
Receive power 13.5 mW 
Idle listening power 13.5 mW 
Sense power 0.00175 mW 
Bandwidth 2Mbps 
MAC 802.11b 
Network size 400 
Network type Random 
Maximum fault rate 20% 
Transmission range Fixed 
Radio propagation model Two-ray ground reflection 
Antenna model Omni directional 
Average initial number of neighbors 7, 15 

 

 
Nodes are randomly distributed on a plane. Fig. 43 shows 400 randomly deployed and 

located sensor nodes and a destination (sink) node on a fixed 2000 × 2000 m2. All nodes 

are fixed except a mobile PHENOM node [44]. The destination node is located at (1067, 

1909) and the PHENOM node [44] is initially located at (300, 300). A communication 

tree is constructed and the PHENOM node moves around inside the sensor field with a 

constant velocity (e.g., 500 m/s or 1000 m/s). When the phenomenon moves into the 

transmission range of a node, the node sends a “phenomenon detected” packet to the root 

node. The circles in Fig. 43 show one fixed transmission range occurred when nodes 
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send those packets. Although it is looked like many different transmission ranges 

depending on the sending nodes since the snapshot has various sizes of the circles, but it 

is all the same. Up to 20% of randomly selected nodes (i.e., 80 out of 400 in Fig. 43) 

become faulty at different times, five sets of faulty nodes are used without duplication 

and the results averaged for the simulations. The same conditions are also used in the 

SWR and GRAB-F simulations. One thing we want to emphasis is that GRAB-F uses a 

fixed “width” of the forwarding paths, in contrast to the GRAB algorithm, which 

assumes variable transmit power and so variable path width. Two different transmission 

ranges are used in the simulations, one with an average of 7 neighbors, and one with an 

average of 15 neighbors. 

 

 
 

Fig. 43. Random distribution of 400 nodes. 
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B. Simulation results 

Figs. 44 and 45 show average data delivery rates for 15 and 7 neighbors. In both cases, 

there is only a small difference (less than 3%) in delivery ratios between INP and SWR 

for the same number of faulty nodes. In a dense network, Fig. 44, INP has a smaller drop 

in delivery ratio with increasing faults (less than 1%) than SWR has (less than 3%). This 

is because INP could handle all reconfiguration situations that occurred, while SWR 

could not. Thus INP has a higher delivery ratio than SWR after 9 faults. 
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Fig. 44. Average delivery ratio for 15 initial neighbors. 

 

In Fig. 45, INP has a higher delivery ratio than SWR after 33 faults. In a sparse 

network with increasing faults, the chance that nodes cannot find new parents increases 

in both approaches. Nevertheless, INP found more new parents than SWR. The single 

path delivery schemes (INP, SWR) always had a delivery ratio more than 25% higher 

than GRAB-F,  a multiple path delivery scheme using broadcast. 
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Fig. 45. Average delivery ratio for 7 initial neighbors. 

 

Figs. 46 and 47 show the specific reasons for undelivered data messages in INP and 

SWR. “Undelivered messages” are the sum of “Holding messages” and “Dropped 

messages”. “Holding messages” are the messages stored in a node queue because the 

node could not find a new path. “Dropped messages” are either the messages dropped at 

fault-free nodes or the messages dropped when nodes become faulty. In Fig. 46, there is 

little difference between INP and SWR for “Dropped messages” (less than 10 more 

messages dropped in SWR). There are no “Holding messages” for INP because all nodes 

find their new parents and thus “Undelivered messages” are all from “Dropped 

messages”. SWR has many more “Holding messages” than INP starting from 9 faults. In 

Fig. 47, there are some sharp increases in undelivered message with increasing faults. 

Figs. 48 to 62 show the reasons why the undelivered messages are dropped or held. 
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Fig. 46. Reasons for undelivered messages for 15 neighbors. 
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Fig. 47. Reasons for undelivered messages for 7 neighbors. 

 

Figs. 48 and 49 show the total number of messages that were dropped by MAC 

collision for 15 and 7 neighbors. This includes data for the same message dropped 

repeatedly. In a dense network, Fig. 48, more collisions occur than in a sparse network, 

Fig. 49. The collisions decrease with increasing node failures, since fewer nodes are 
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sending messages. 
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Fig. 48. Average messages dropped by Drop-MAC-Collision for 15 initial neighbors. 
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Fig. 49. Average messages dropped by Drop-MAC-Collision for 7 initial neighbors. 

 

At the MAC layer, a message is retried up to 4 times before giving up. If the retry limit 

is reached, this route failure is reported to the RTR layer by the link layer. Then Drop-

RTR-MAC-Callback for the message occurs [45]. The number of messages permanently 
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dropped by MAC collision after reaching the retry limit is shown in Figs. 50 and 51.  
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Fig. 50. Average messages dropped by Drop-MAC-Retry-Count-Exceed for 15 initial 
neighbors. 
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Fig. 51. Average messages dropped by Drop-MAC-Retry-Count-Exceed for 7 initial 

neighbors. 

 

Figs. 52 and 53 show the messages dropped by Drop-RTR-MAC-Callback. These 

figures include the number of messages dropped by MAC-Retry-Count-Exceeded since 
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MAC-Retry-Count-Exceeded causes Drop-RTR-MAC-Callback. 
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Fig. 52. Average messages dropped by Drop-RTR-MAC-Callback for 15 initial 
neighbors. 
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Fig. 53. Average messages dropped by Drop-RTR-MAC-Callback for 7 initial 
neighbors. 

 

The maximum number of messages in the RTR queue is 64 (RTQ_MAX_LEN 64) 

and the maximum period of time that a message can stay in the queue is 30 seconds 
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(RTQ_TIMEOUT 30). Any messages reaching either limit are dropped. Fig. 54 shows 

the number of messages that were dropped by RTR queue full with 7 initial neighbors. 

Queue full drops do not occur with 15 initial neighbors. This is because most 

reconfigurations were successful and quickly performed in the dense environment. With 

7 initial neighbors in Fig. 54, INP has many dropped messages and SWR has no dropped 

messages. This is because a forwarding node in INP keeps the received messages in the 

RTR queue, while the node in SWR sends the message back to the source when it cannot 

find its new parent, preventing a bottleneck in the queue. This explains why SWR has 

more held messages than INP in Figs. 46 and 47. It also explains why INP has more 

dropped messages than SWR before 53 faults in Fig 47. 
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Fig. 54. Average messages dropped by Drop-RTR-Qfull for 7 initial neighbors. 

 

In Figs. 55 and 56, Drop-RTR-Route-Loop occurs when a source node receives the 

messages it sent in both approaches. In SWR, Drop-RTR-Route-Loop also occurs when a 
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message forwarding node receives the message. We call this an inner loop. It is different 

from a loop that occurs when the source node receives the message that it sent. INP does 

not detect inner loops and messages are delivered until the time to live (TTL) limit is 

reached, then dropped. In INP, since a node that needs a new parent finds a Low 

direction node as its new parent, both kinds of loops are not expected. But in practice, 

loops and inner loops can occur when a broadcast control packet (e.g., ACPICNYP) is 

not delivered to neighboring nodes. An average of 0, 1.2, or 2.2 loops were found in Fig. 

56 and an average of 0, 3.4, or 4.4 were found in Fig. 55. In INP, dropped packets 

caused by inner loops are not included in Figs 55 and 56 but included in Figs 57 and 58. 

In SWR, loops and inner loops are caused by not updating node costs (height). In a 

sparse network such as in Fig 56, there are many chances for these loops with increasing 

faults. 

 

 
Fig. 55. Average messages dropped by Drop-RTR-Route-Loop for 15 initial neighbors. 
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Fig. 56. Average messages dropped by Drop-RTR-Route-Loop for 7 initial neighbors. 

 

In Figs. 57 and 58, Drop-RTR-TTL occurs when time to live (TTL) is exceeded. We 

set TTL to 32. In INP, TTL drops were also caused by inner loops, since INP does not 

provide inner loop detection. 
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Fig. 57. Average messages dropped by Drop-RTR-TTL (32) for 15 initial neighbors. 
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Fig. 58. Average messages dropped by Drop-RTR-TTL (32) for 7 initial neighbors. 

 

Figures 59 and 60 show the average number of dropped messages among those 

buffered at the ARP table. DROP_IFQ_ARP_FULL happens only for unicast, not 

broadcast. The ARP module receives queries from the Link layer. If ARP has the 

hardware address for the destination, it writes it into the MAC header of the message. If 

not, it broadcasts an ARP query, and caches the message temporarily. There is a buffer 

for a single message for each unknown destination hardware address. When an 

additional message to the same destination is sent to ARP, the earlier buffered message 

is dropped [45]. 
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Fig. 59. Average messages dropped by Drop-IFQ-ARP-FULL for 15 initial neighbors. 
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Fig. 60. Average messages dropped by Drop-IFQ-ARP-FULL for 7 initial neighbors. 

 

In Figs. 61 and 62, Drop-End-of-Simulation occurs when a message remains in the 

interface queue at the end of simulation. 
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Fig. 61. Average messages dropped by Drop-End-of-Simulation at IFQ layer for 15 
initial neighbors. 
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Fig. 62. Average messages dropped by Drop-End-of-Simulation at IFQ layer for 7 initial 

neighbors. 

 

Figs. 63 and 64 show average data message latency. In a dense network, Fig. 63, with 

increasing number of faults, INP show less latency than SWR. This is because the five 

basic cases were used for most reconfigurations, and take little time. In a sparse network, 
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Fig. 64, INP has higher latency than SWR. This is because further procedures such as 

PFIND are used more often, and take longer time. Note that in these situations, SWR 

would drop the message. 
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Fig. 63. Average latency for 15 initial neighbors. 
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Fig. 64. Average latency for 7 initial neighbors. 
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Figs. 65 and 66 show average energy consumption per node. The energy for all 

activities in the simulation is included: making a tree, delivering data messages, sensing 

environment, and reconfiguring paths. The energy for making an initial tree and sensing 

the environment is the same in all three approaches. INP has lower energy consumption 

than SWR and GRAB-F, which is one of the primary goals of the research. 
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Fig. 65. Average energy per node for 15 initial neighbors. 
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Fig. 66. Average energy per node for 7 initial neighbors. 

 

Figs. 67 and 68 show average energy per node per successful message delivery. INP 

uses less energy than SWR or GRAB-F. In a dense network, Fig. 67, less energy is 

consumed per message than in a sparse network, Fig. 68, for both INP and SWR. This is 

because reconfigurations were easily done without consuming much energy. 
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Fig. 67. Average node energy per message for 15 initial neighbors. 
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Fig. 68. Average node energy per message for 7 initial neighbors. 
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VI. SYSTEM LEVEL DIAGNOSIS ALGORITHMS FOR WIRELESS SENSOR 

NETWORKS 

 
A. Introduction 

Nodes in a sensor network can fail for many reasons, including battery depletion or 

destruction [3]. Failures include complete loss of a node, or internal faults that cause a 

node to operate incorrectly. Different mechanisms must be applied for diagnosing the 

different kinds (e.g., crash, malicious) of failures.  

In this section, a new sensor-initiated [7] crash fault diagnosis algorithm is introduced 

for wireless sensor networks. Unlike monitoring/testing initiated by a request from an 

observer (i.e., observer-initiated approach [7]), sensors trigger the testing periodically or 

when they detect some signs/evidence of failure in a node. The problem with the 

observer-initiated approach is that the status of the sensor network cannot be known 

before the request from the observer/manager. This is not appropriate for sensor 

networks used in urgent and critical environments that need self-monitoring/testing 

mechanisms for a control observer to know constantly the fault/health status of sensors 

in the network. This proposed approach uses a one-to-one testing mechanism where each 

node is tested by one fault-free node by using unicast communications. It provides more 

reliable testing results than results produced by one-to-many testing that uses broadcast 

communication, with its accompanying problems (e.g., contention). 

This approach uses a routing tree that is locally reconfigured in the face of broken 

paths due to faulty nodes, to report diagnosis information. By using dynamic 

reconfiguration, both static and dynamic faults are detected. And the newly 
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deployed/recharged nodes can join at any time in this algorithm. 

Energy consumption and communication overhead in this approach increases with 

network size. To provide scalability, an extended approach is introduced, in which the 

network is partitioned into zones. Each zone has a local representative node and each 

node sends diagnosis information not to the network representative node (root), but to its 

local representative node. The local representative node sends summarized diagnosis 

information to the network representative node (e.g. number of node faults). Each local 

representative node knows each node’s status in the local tree and the network 

representative node can recognize not the specific status of each node in the local tree, 

but the local tree’s general network status. This reduces energy consumption and 

provides scalability. 

The rest of the section is organized as follows. In subsection B, traditional system 

level diagnosis and the previously introduced algorithms are reviewed. Subsection C 

presents a new sensor-initiated fault diagnosis algorithm (Repre) and it is analytically 

compared with the WSNDiag algorithm. Subsection D presents a scalable distributed 

fault diagnosis algorithm (Local) and it is also analytically compared with the single 

representative algorithm (Repre) and WSNDiag. 

 
B. Literature review 

Identification of the fault status (i.e., faulty or fault-free) of each processor (i.e. node) 

in a system based on a syndrome, the set of all test results, is termed system level 

diagnosis [46][47][48][49][50]. System level diagnosis was first introduced by Preparata, 

Metze, and Chien (PMC model) [51] to diagnose nodes in multi-processor computer 
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systems [52]. System level diagnosis in multi-processor systems became very useful for 

maintaining the reliability of the system that could otherwise be diminished by the 

increasing number of nodes and complexity of the system [53][54]. The theory of system 

level diagnosis was not limited to multi-processor systems but extended to various 

network environments: wired and wireless communication networks, and currently to 

wireless sensor networks. 

Unlike fault-tolerant systems that use redundant modules (e.g., N-modular redundancy) 

or error detecting codes, to detect (or mask) faulty nodes, a testing method is used in 

system level diagnosis by assuming that each node can test other node(s). Each tester 

node tests its tested node(s) in a given system and the fault status of each tested node is 

determined based on the syndrome generated by an assumed fault model.  

In [50], only a central observer made the diagnosis decision after analyzing the 

syndrome gathered from all tester nodes and distributed the system status (diagnosis 

information) to each fault-free node. This approach was not scalable with increasing 

network size. 

With the advent of distributed diagnosis approaches (e.g., Self [55], New self [56], 

Event_self [57], and Adaptive DSD [58]), a reliable central observer that has global 

diagnosis information is no longer used [58]. Instead, each fault-free node can determine 

the fault status of other nodes in the system by direct testing and by exchanging the 

diagnosis information of other nodes with other fault-free neighbors.  

Before the first adaptive algorithm [59] introduced by Hakimi and Nakajima, the 

testing assignment for a system was fixed and was not changed during execution 
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depending on the fault situation [60]. The adaptive algorithm [59] had a central observer 

like the PMC model. In the adaptive pattern, the testing assignment was changed 

depending on the results of previous tests [49]. Bianchini and Busken introduced an 

adaptive and distributed diagnosis algorithm called Adaptive DSD [58]. In the adaptive 

DSD, the testing topologies were changed depending on the fault situation. There was no 

limitation on the number of faulty nodes that could be diagnosed as long as at least one 

fault-free node existed. In adaptive DSD, each node was tested by only one fault-free 

node by using sequential testing. The diagnostic information was only disseminated in 

the reverse direction of tests performed. In the Self family of algorithms [55][56][57], 

each node is tested by at least t+1 other nodes (t is the number of faulty nodes). Since 

every fault-free node sends all test results of the tester nodes to all other fault-free nodes 

in the New_self algorithm [56], a large number of diagnostic messages must be 

forwarded through the network. By using adaptive DSD, the heavy message overhead of 

the Self family algorithms is reduced. Initially, each node only knows the test results of 

its tested node(s) but each node can know the fault status of all nodes after spending the 

necessary number of testing rounds for diagnosing the nodes in a system [58]. 

In 1995, Rangarajan, Dahbura, and Ziegler [9] introduced a new adaptive distributed 

diagnosis algorithm (RDZ) in an arbitrary network topology. The is one of the few 

diagnosis algorithms [9][46][61] for arbitrary network topologies in wired environments. 

The adaptive DSD and Self family algorithms previously introduced cannot be used for 

arbitrary network topologies, since they assume fully connected network topologies. 

Through the validation transaction [9] in the RDZ algorithm, nodes can be tested directly 
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by their tester, and also indirectly whenever the diagnosis information is disseminated. 

When a fault-free node receives a message, it must give an acknowledgement for that 

message within the specified time. If not, the sender learns that the receiver node failed. 

Thus, both static and dynamic faults can be detected. Faulty nodes can rejoin the 

network after being repaired at any time during algorithm execution [9]. 

Unlike adaptive DSD [58] where sequential testing was performed, testing in RDZ 

was performed by tester nodes without having any sequence restriction among the testers. 

Also, the fault detection and diagnosis message dissemination steps were separated and 

the dissemination steps were executed in parallel by flooding [9].  

Since RDZ was introduced for point-to-point communication networks in wired 

environments, reducing information latency with increasing message overhead could be 

tolerable due to large bandwidth and power available. But this is not true in wireless 

sensor networks, since high message overheads would cause high energy consumption, 

and communication consumes most of the energy [12]. 

There are two published approaches [4][16] to trace faulty nodes in a wireless sensor 

network. One [16] is a centralized approach that maintains the global status only in a 

powerful base station and the other [4] is a distributed approach that maintains the fault 

status of all nodes in each node. 

Staddon, Balfanz, and Durfee [16] introduced an algorithm that can trace the faulty 

nodes by using a powerful base station that has a global view of the network. The base 

station can build the routing topology of the entire sensor network by using the 

neighboring information received from each node. For this, each node recognizes its 
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neighbors when the initial route discovery protocol is run, and sends this neighbor 

information to the base station via neighbor nodes in order to save energy. Each node 

does not attempt to make a new route to the base station when it is needed, but receives 

the routing information from the base station directly. The base station is assumed to 

have enough transmitting power to send messages directly to all nodes [16]. Although 

each node can save energy by not directly attempting to make a new route, there is no 

way for a node to find a new route when the base station cannot give new routes to the 

nodes. 

To trace the faulty nodes, the base station divides all nodes in the network into three 

groups: alive (i.e., fault-free), dead (i.e., faulty), and silent. Since the routing topology is 

a tree having the base station as the root, when a node in the middle of the path becomes 

faulty, the base station cannot receive any information transmitted from any of the nodes 

located below the faulty node. These nodes are called silent nodes since the base station 

cannot determine whether they are faulty or fault-free without more information. 

By updating the routes near the known faulty nodes, the base station starts to 

determine which silent nodes are alive and dead. If all silent nodes are alive, the base 

station does not have to do route updating again since the nodes would respond to the 

base station by using the new routes obtained directly from the base station. But the 

route updating by the base station must be done repeatedly until all faulty nodes among 

the silent nodes are determined, since information from fault-free nodes cannot be 

delivered to the base station when some faulty nodes are intermediate nodes on the new 

paths. Thus, when there are a number of faulty nodes among the silent nodes, many 
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route updating procedures, message traffic, energy consumption and latency is required 

to deliver all sensing information from each silent but alive node. 

Chessa and Santi [4] suggested a distributed crash fault diagnosis protocol (WSNDiag) 

designed for wireless sensor networks. Unlike fault diagnosis algorithms for the wired 

network environment that use one-to-one based testing, WSNDiag uses one-to-many 

based testing. Each fault-free node broadcasts an existence message, IMA (i.e., “I am 

alive” in [4]), to its neighbors. This message originates from an initiator when the 

diagnosis for the network is needed, and advertises each node’s fault-free status to its 

neighbors. When a node does not receive an IMA message from a neighbor within the 

required time after broadcasting its IMA message, it considers the neighbor to be a faulty 

node. Diagnosis information from each fault-free node is aggregated and delivered to the 

initiator, the root of the spanning tree. Then the completed diagnosis information made 

by the initiator is disseminated to all nodes in the network. 

A one-to-many broadcasting testing mechanism cannot provide reliable testing results. 

For better test results, one-to-one testing mechanism is preferred. Since WSNDiag 

assumes only static faults (i.e., no new faults occur during the execution of the diagnosis 

algorithm), faulty nodes that occur during the current algorithm execution cannot be 

diagnosed until the next algorithm execution. To deliver diagnosis information without 

having increased latency, an extra mechanism that handles dynamic failure events is 

required for WSNDiag. Since a tree is not maintained but is made per each use in 

WSNDiag, it consumes redundant energy without providing scalability. 
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C. A new crash fault diagnosis algorithm for wireless sensor networks (Repre) 

Each sensor knows its neighboring information when a routing tree is made after it is 

deployed in an environment. Based on this neighboring information, the initial tester-

tested relationships among all nodes are established so that each tester node tests its 

tested node(s) regularly. And those relationships are adaptively changed depending on 

the faulty status of each node. After each regular testing, testers report the faulty nodes’ 

information to the root node through the routing paths when they detect faults. At that 

time, dynamic faults in the network also can be detected and reported by using INP 

reconfiguration procedures locally maintaining the tree structure. 

When a faulty node becomes fault-free (e.g., after battery recharge or repair) or a new 

node is deployed, it can join the network using the JOIN procedure introduced in section 

III,  and find a tester using the TESTME mechanism described below. 

 
1) Testing 

While approaches like WSNDiag [4] use one-to-many testing that exploits the shared 

nature of wireless communication, one-to-one testing via unicasting mechanism is used 

in Repre. One-to-many broadcast testing used in WSNDiag [4] causes a high volume of 

incoming IMA messages from all fault-free neighbors and the receiving channel becomes 

a bottleneck (i.e., response explosion problem [62]). Fig. 69(a) shows the response 

explosion problem by using one-to-many testing and Fig. 69(b) shows one-to-one testing. 
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(a) One-to-many                                   (b) One-to-one 
 

Fig. 69. Different testing mechanism. 

 

The hidden terminal problem [63] (resulting from collisions) can also occur since the 

RTS/CTS mechanism in a MAC protocol is not used while broadcasting. This kind of 

unreliable communication may cause incorrect testing results. Also in one-to-many 

testing, all neighbor nodes of a faulty node redundantly detect its faultiness and report it 

redundantly. 

To increase the reliability of testing results and to reduce the redundancy, Repre uses 

unicasting for one to one testing. When the RTS/CTS/DATA/ACK mechanism [39] is 

used for unicasting in a MAC protocol [39][43][63], hidden terminal problems are 

avoided and collisions are reduced [63]. 

To make initial tester-tested relationships among nodes in the network, each tested 

node locally decides (randomly chooses) a neighbor as its tester node by unicasting a 

TESTME message to the node after getting all neighbors’ information. When the 
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neighbor receives TESTME, it sends a ACKTM message back to confirm that it can be 

the tester. 

After the initial relationships are made, each tested node unicasts an IMA message that 

tells its tester that it is fault-free in each testing round. This message becomes the basic 

testing method since the tested node uses multiple retransmissions in a MAC protocol 

when a MAC acknowledgement (ACK) of DATA (IMA message) is not received 

(DATA/ACK mechanism) within the timeout delay. In environments with a low packet 

loss rate, where retry in a MAC layer usually succeeds, this IMA message is enough for 

both tester and tested nodes. 

If the tester node does not get an IMA message within the expected time, the tester 

assumes (considers) that the tested node is faulty and unicasts a TEST message to its 

tested node to confirm the faulty status. The tester node finally determines the faulty 

status of its tested node when the tester does not get the REPLY response message within 

the required time. If the tested node does not get a MAC acknowledgement (ACK) from 

its tester in response to an IMA message, it considers that the tester node is faulty and 

finds a new parent by broadcasting a TESTME message to its neighbors and waits for 

ACKTM responses. The node chooses its new tester by unicasting a ACPTM message to 

one of the responding nodes. If the previous tester is still alive and it receives a TESTME 

message from its tested node, it will also send an ACKTM to the tested node. In this case, 

the tested node continues using the previous tester node. By doing these, the tester (and 

tested) node doubly checks its tested (and tester) node so that the reliability of the test 

results is increased. 
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2) IAD message 

The Repre algorithm also has a mechanism (IAD) where a tester node gives a 

precaution of its imminent death (e.g. battery depletion) to the neighbors. With this 

mechanism, the tested node(s) can find a new tester node without waiting for the next 

regular testing round. If a tested node sends an IAD message, its tester reports this 

information to the representative node by piggybacking on the data to be delivered. 

Since the tester is no longer expecting IMA message from the tested node and does not 

try to confirm the tested node’s status, it saves energy and reduces the latency to 

recognize the fault.  

If a child receives an IAD message from its parent, it would not attempt to send data to 

the current faulty parent, but instead would initiate dynamic reconfiguration procedures, 

saving energy and reducing message latency. 

Fig. 70 shows the before and after situations when a node X that will soon die 

broadcasts an IAD message to its neighbors. When the tested node Z of node X receives 

the IAD message, it finds its new tester node S using the TESTME mechanism. When the 

tester node Y of node X receives the IAD message, it reports node X’s failure to the 

representative node before the next regular testing.  
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Fig. 70. Before and after situations when X sends IAD (R is root). 

 

3) Top-to-bottom information dissemination 

Nodes in a sensor network usually do not need to know the faulty status of all other 

nodes in the network. This is because the nodes in wireless sensor networks usually 

work in cooperation their neighbor nodes. However, there are some applications where 

each node needs to know the global status of the network. For example, in WSNDiag [4], 

when a mobile control observer wants to have a global view of network status from any 

fault-free node. For these situations, the diagnosis information that is delivered to the 

representative node is propagated to each node in the network through the paths in the 

tree. 

  
4) Computational analysis 

The proposed diagnosis algorithm (Repre) was analyzed for energy consumption and 

message overhead. Variables in Table I were used with additional variables in Table IV 
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for analysis. The analysis for establishing the initial tree is given in section IV. 

 
TABLE IV 

VARIABLES FOR COMPUTATIONAL ANALYSIS OF REPRE, LOCAL, AND WSNDIAG 

Variable Description 
a average number of neighbors 
r average number of children 
L total number of leaf nodes 
L_event total number of leaf nodes that have an event to be reported 
event total number of failure events 
Testers set of all tester nodes 
Tested[j] number of nodes tested from tester node j 
FF_Tested[j] number of fault-free nodes tested from tester node j      
F_Tested[j] number of fault nodes tested from tester node j    
Chd_msg[j] number of children that have a new event or an event needed to 

be delivered to its parent node j 
Err[j] number of communication error at node j 
Err total number of errors = |Tester|⋅ Err[Tester] 

 

 
a) Testing 

For testing, each tester j uses (FF_Tested[j]-Err[j])·E(IMAr) + 

(F_Tested[j]+Err[j])·E(tests) + Err[j]·E(replyr) energy. Each fault-free tested node k 

uses E(IMAs) energy since each node is tested by only one fault-free node that requires a 

IMA message from its tested node. Each fault-free tested node whose IMA message was 

not delivered to its tester node would receive the test message from its tester and send 

the reply message as a response. It costs E(testr) + E(replys). Thus the total energy 

consumption for testing all nodes is expressed as (33). 

∑
=

N

j 1
((FF_Tested[j]-Err[j])·E(IMAr) + (F_Tested[j]+Err[j])· E(tests) 
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+Err[j]· E(replyr)) + |FF|·E(IMAs) +∑ Err[j] · (E(testr) + E(replys))  
=

N

j 1

(where,  j    ∈FF∩Testers)                                          (33) 

It can also be formulated as (34) in the worst case when all fault-free nodes are testers. 

Each node tests exactly one node and each node is tested by one node in this case. 

|FF|⋅E(IMAs) + (|FF|-Err)⋅E(IMAr)) + 

(|F|+Err)⋅E(tests) +Err⋅ (E(testr) +E(replys) +E(replyr))                   (34) 

The total number of messages used is |FF| +|F| +2Err since there are |FF| IMA 

messages, |F| + Err test and Err reply messages. 

 
b) Information dissemination 

The analysis is based on the policy that whenever diagnosis information (info) is 

delivered to another node, the node that receives the information must give an 

acknowledge message (ackinfo) back to the sender. So the sender makes sure that the 

message is successfully delivered to the receiver. Although this application level 

acknowledgement consumes more energy than the MAC acknowledgement, it can be 

used for a network that needs higher delivery confirmation. In a network that does not 

need an ackinfo message back to the sender, E(ackinfos+r) should be omitted from the 

following analysis. 

By default, information transmissions from nodes to the representative (bottom-to-top) 

occur and the energy cost for those transmissions is analyzed. For disseminating 

diagnosis information, three different locations (i.e., leaf, internal, and representative) of 

each node must be considered. When a node is a leaf of the tree and it has an event to 
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report to its parent, the node consumes E(infos) + E(ackinfor). Thus energy consumption 

of all leaf nodes that have an event to report is expressed as (35). 

L_event·( E(infos) + E(ackinfor))                                      (35) 

It also can be formulated as (36) in the worst case when all faulty nodes are detected 

by leaf nodes. 

event·(E(infos) + E(ackinfor))                                      (36) 

When a node j is an internal node of the tree and it receives messages from some 

children and sends them to its parent, it spends the energy given in (37) since node j 

aggregates event information obtained from its children and sends the aggregated result 

to its parent. 

chd_msg[j]·(E(infor) + E(ackinfos)) + E(infos) + E(ackinfor)                (37) 

In the worst case, each internal node j sends info to its parent each time when it 

receives an event from any child without aggregating with other event information. Thus, 

the total amount of energy used by all internal nodes for this worst case is expressed as 

(38). 

∑
=

event

i 1
 (h[Li]-1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (at here, h[Li] is hop  

         counts between a leaf Li that reports eventi and the representative R)           (38) 

The representative node R consumes (39) when it receives information from its 

children that have an event to relay or event detected: 

chd_msg[R]·(E(infor)  + E(ackinfos))                                   (39) 

In the worst case, when the node R receives nonaggregated info of each event from 
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any child, the total energy used in node R is expressed as (40). 

event·(E(infor) + E(ackinfos))                                        (40) 

Thus, the total worst case energy consumption for reporting failure events from 

detecting nodes to the representative node R is (36) + (38) + (40). 

In the worst case, the total number of messages used is O(event · h) (h is the height of 

the tree). 

  
c) Top-to-bottom transmission 

Optionally, when each node needs to receive diagnosis information from the 

representative node R, node R broadcasts the diagnosis information to its children. And 

the children broadcast this information to their children, and so on until the diagnosis 

information reaches the leaf nodes. 

In this case, the representative node consumes E(infos) + chd[R]·E(ackinfor). Each 

internal node j consumes E(infor) + E(ackinfos) + E(infos)  + chd[j]·E(ackinfor). Each 

leaf node consumes E(infor) + E(ackinfos). Thus the total energy consumption for all 

nodes to receive the diagnosis information is expressed as (41): 

E(infos) + chd[R]·E(ackinfor) + L·(E(infor) + E(ackinfos))  +  

(N-L-1)(E(infor) + E(ackinfos) + E(infos)  + chd[j]·E(ackinfor))               (41) 

The message overhead used for delivering diagnosis information to every node from 

the representative R is O(N). 

                   
d) Children information dissemination 

This subsection describes the energy cost for the representative node to receive 
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children’s information from all nodes. It is used when the representative node wants to 

know the information of all fault free nodes. 

Depending on the location of each node in the tree, a different amount of energy is 

used. Each leaf node consumes E(childinfos) + E(ackchildinfor) energy. Since leaf nodes 

do not have children, they send a childinfo message that only contains “-1” in the N_ch 

field (Appendix A) of the message. Since each intermediate node j receives and 

aggregates the information from all children and sends it to its parent, it consumes 

chd[j]·(E(childinfor) + E(ackchildinfos)) + E(childinfos) + E(ackchildinfor) energy. Since 

the representative node only receives information from its children, it consumes 

chd[R]·(E(childinfor) + E(ackchildinfos)). Thus, the total energy consumption for 

delivering all children’s information to the representative node is expressed as (42): 

L·(E(childinfos) + E(ackchildinfor)) 

+ (N-L-1) · ( chd[j]·(E(childinfor) + E(ackchildinfos)) + E(childinfos) + 

E(ackchildinfor) ) 

+ chd[R]·(E(childinfor) + E(ackchildinfos))                                (42) 

The message overhead used for delivering children’s information to the representative 

R is O(N). 

E(childinfos), and E(childinfor) have different values depending on the amount of 

information. When the children’s information is delivered up to the representative node, 

each intermediate node aggregates all children’s information, and delivers the 

aggregated information to its parent node. Thus, nodes higher in the tree deliver more 

information. The representative node receives all children’s information. 
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In worst case analysis with in an r-ary complete tree [64] that generates the maximum 

packet size on each level in the tree, the total packet size generated by all leaf nodes is rh. 

The height of the tree h = logr(N(r-1)+1)/r), since each leaf node sends a childinfo 

packet with a single integer as payload. 

Each internal node at depth h-i (i is from 0 to h) generates a childinfo message whose 

size is ((r+1)(ri-1))/(r-1). The number of nodes at depth h-i is rh-i. Thus the total packet 

size generated for delivering all children’s information to the representative is expressed 

as (43). The average packet size is (43)/(N-1). 

rh · (2B+9B)+ rh-i·(2B· (r+1)(ri-1))/(r-1)+9B) ∑
−

=

1

1

h

i

(where, 9B=|AppHdr+CRC| for the childinfo packet format in Appendix A)     (43) 
 

 
5) Competitive analysis 

The proposed diagnosis algorithm (Repre) is compared with WSNDiag [4]. The same 

parameters except number of nodes that were used in section IV were used in this 

analysis. 

Fig. 71 shows the accumulated energy consumption of each method by increasing 

number of executions. At the first execution, Repre is a little bit more expensive than 

WSNDiag for both network sizes, because it consumes energy for testing, local 

configuration, and fault reporting after making the initial tree. On the other hand, Repre 

consumes less energy than WSNDiag after two executions. This is because WSNDiag 

completely rebuilds the communication tree each time, while Repre only reconfigures 

the existing tree as needed. Thus, the gap between Repre and WSNDiag becomes larger 
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as the network size increases. 
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Fig. 71. Energy consumption (a=10, r=3, 3 faults/exec.). 

 

Fig. 72 shows the non-accumulated energy of each method consumed at each 

execution. In WSNDiag, there is little different between one execution and another. In 

Repre, there is a big difference between the first execution and later ones. This is 

because the tree is made only at first execution in Repre. When the tree is increased to 

500 nodes, the energy gap consumed becomes much bigger in WSNDiag rather than in 

Repre. Since the number of remaining fault free nodes is continuously decreased by 

three, the amount of energy at each execution is also decreased. 
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Fig. 72. Energy consumption (non-accumulated, a=10, r=3, 3 faults/exec.). 

 

Fig. 73 shows the total energy consumed for each different operation when the first 

execution is done in Repre. When the network size is increased, the energy consumed 

for making a tree increases rapidly since all nodes consume energy for that. In contrast 

to making a tree, the other operations consume much less energy. Since the energy is 

needed only locally for a new path to the parent, the energy for local configuration does 

not depend on the total number of nodes in the network, but on the number of neighbors. 

Energy for fault reporting depends on the number of relaying nodes between a detecting 

node and the representative. Since each node has 3 children there is not much height 

difference network sizes 100 to 700. Thus, energy consumption increases only a small 

amount as the network size is increased. 
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Fig. 73. Energy consumption for Repre (first exec., N=500, a=25, r=3, 3 faults/exec.). 

 

Fig. 74 shows the energy for first execution and five executions for both approaches 

for different network sizes. At first execution, WSNDiag always consumes less energy 

than Repre since Repre needs more operations. But the energy gap between the first 

execution energy and five executions for WSNDiag is much larger than Repre since it 

makes a new tree each time.  
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Fig. 74. Energy consumption (a=10, r=3, 3 faults/exec.). 

 

From Fig. 75, we know that WSNDiag is more affected by the number of neighbors 

than Repre. This is because WSNDiag uses a one-to-many testing approach and makes a 

tree for each execution. For Repre, there is no such consumption since it uses one-to-one 

testing that is not much affected by the number of neighbors. Also by only building a 

tree at first execution, it uses much less energy. 
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Fig. 75. Energy consumption (N=500, r=3, 3 faults/exec.). 

 

Fig. 76 shows the energy consumption for different executions with varying number of 

faults from 1 to 4. The number of faults has little impact on the amount of energy 

consumed in both WSNDiag and Repre because most energy is consumed making the 

tree. But with varying number of faults, when the number of executions is increased, the 

total number of fault free nodes is decreased proportionally with the number of faults. 

For WSNDiag, the number of fault free nodes that consumed energy for making a tree is 

continuously decreased with increasing faulty nodes. In WSNDiag, after 10 executions 

are done, the consumed energy for 4 faults per execution is less than the energy used for 

3 or fewer faults per execution. Repre is less sensitive to the number of faults since it 

does not rebuild the tree for each execution. 
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Fig. 76. Energy consumption (N=100, r=3). 

 

Fig. 77 shows energy consumption per node in Repre with different numbers of 

neighbors for each different network size. Since the transmission power is assumed to be 

constant, the transmission range cannot be changed with increasing node density. Since 

the number of neighbors increases proportionately with increasing number of nodes, 

there is not much difference in per-node energy except the first execution. For the first 

execution, since all nodes broadcast a message to the neighbors to make an initial tree, 

both the number of nodes and the number of neighbors affects the energy cost. Thus it 

costs the highest when N=700 and a=35. Fig. 77 also includes energy consumption per 

node for only testing at each execution. Since all nodes are testing and only the nodes 

that are on or near the information dissemination path(s) are involved with local 

reconfiguration and data dissemination, almost all energy consumption per node is for 
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testing, except the first execution. 
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Fig. 77. Energy consumption per node (Repre, r=3, 3 faults/exec.). 

 

Fig. 78 includes the WSNDiag approach with the conditions of Fig. 77. When 

WSNDiag is used, a tree is always made at each execution. Thus energy per node at each 

different condition is not much different among different executions. In WSNDiag, 

energy consumption is proportionally increased with increasing total number of nodes 

and neighbors since the number of neighbors increases proportionately with increasing 

number of nodes, as in Fig. 77. 
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Fig. 78. Energy consumption per node (r=3, 3 faults/exec.). 

 

In the Repre analysis, all fault free nodes are assumed tested by their testers, by 

exchanging TEST and REPLY messages. If only tester nodes that did not get IMA 

message(s) from its tested node(s) send a TEST message to each tested node and wait for 

REPLY message(s), much energy can be saved. Fig. 79 shows energy consumption when 

different percentages of fault free nodes are testing by exchanging TEST and REPLY 

messages. 
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Fig. 79. Energy consumption for testing (N=100, a=5). 

 

Fig. 80 and Fig. 81 show total energy consumption for the Repre and WSNDiag 

approaches respectively, with the same conditions as Fig. 77 and Fig. 78. When 

WSNDiag is used, the amount of energy grows much faster than Repre (notice the 

difference in the y-axis scales). 
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Fig. 80. Energy consumption for Repre (a=5*(size / 100), r=3, 3 faults/exec.). 
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Fig. 81. Energy consumption for WSNDiag (a=5*(size / 100), r=3, 3 faults/exec.). 
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Fig. 82 shows how the fixed listening period C prior to testing or disseminating data 

affects on energy consumption for both approaches. In comparison to normal operations 

such as testing or disseminating, a large amount of energy is spent on listening. By 

reducing this period as much as possible, energy consumption can be significantly 

reduced.  
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Fig. 82. Energy consumption (N=200, a= 10, r=3, 3 faults/exec.). 

 

Fig. 83 shows the energy consumption for different node types in Repre for different 

numbers of executions. For leaf and internal nodes, the average value among all nodes of 

that type is shown. As discussed earlier, leaf nodes always consume less energy per 

algorithm execution. The internal nodes consume more energy than leaf nodes since leaf 

nodes only send information to the internal nodes but the internal nodes send the 
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diagnosis information to the representative after receiving it from leaf nodes. The 

representative node always consumes more than both leaf and internal nodes since all 

information ultimately arrives at the representative node. This suggests that periodically 

the tree should be rebuilt so that the internal and representative nodes become leaves and 

vice versa, in order to average out per-node energy consumption. In practice the 

representative node is likely to be a high-energy node, so the exchange should take place 

between leaves and internal nodes. 
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Fig. 83. Energy consumption per node (Repre, accumulated, N=200, a=10, r=3, 3 

faults/exec.). 

 

Fig. 84 shows energy consumption per node in Repre for different numbers of 

executions. Unlike Fig. 83, this shows the non-accumulated value for each execution. 

Since the conditions are the same at each execution with 10 Neighbors, 3 Children and 3 

Faults, each node consumes almost the same energy for execution, except the first 
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execution that needs extra energy to make a tree.  
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Fig. 84. Energy consumption per node (Repre, non-accumulated, N=200, a=10, r=3, 3 

faults/exec.). 

 
 
D. A scalable fault diagnosis algorithm (Local) 

This subsection describes Local, an extension of the Repre approach to provide 

scalability in a large network. The network is divided into zones. Each zone has its own 

local tree and the root of the local tree becomes the local representative node of the local 

tree. Each root of the local tree is formed based on relative hop distance in the initial 

routing tree.  

Fig. 85 shows a sensor network with 60 randomly located nodes. There are five zones 

in the sensor network, from 1 to 5. Each local root (H2, H3, H4, and H5) is chosen either 

when the initial tree is made or later. Initial representative node R becomes the highest 

local root H1. The diagnosis procedure is executed within each zone and the diagnosis 
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information is sent to the local root of the zone. These local roots become leaves of the 

next higher local tree and report their diagnosis summary to its local representative node, 

and so on until the initial representative node is reached. 
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Fig. 85. Zone based sensor network. 

 

1) Choosing the local representative nodes 

It is assumed that the control observer knows the proper number of local roots in a 

given total number of nodes and the relative hop distance (d) to the next level of the 

local roots. In Fig. 85, H2, H3, H4, and H5 are the next lower level local roots of the 

initial root H1. The control observer can estimate these values through experience or 

pre-computation. 

When a PARENT message is broadcast from the initial root node, distance (d) 
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information is included along with the hop count (hop count = 0) and a zone name 

(initial root ID). Since each node j can know its hop count when it receives a PARENT 

message from a neighbor, it declares itself a local representative if hj mod d = 0 (where, 

hj is the hop count from initial root at node j). It then includes its zone name (its ID) in 

the PARENT message. If a node is not a local root, then it has the same zone name as its 

parent’s zone name. This process is repeatedly executed until all nodes in the network 

know their zones.  

Even though each local root does not know how many nodes are in the zone at set up 

time, it can know that when it receives the first diagnosis results from all nodes in the 

zone. Unlike a tester node that only reports diagnosis information when it detects a 

faulty node, all nodes report their test results in the first testing round. 

When the control observer estimates the d value after getting the initial tree 

information, leaf nodes send NRH messages (Appendix A) to their parents after making 

an initial tree. An NRH message describes the total number of descendants (N), average 

number of children for each parent (R), and the height of the node (H). Each node sends 

an NRH message that aggregates the NRH messages received from descendants with its 

local information to its parent. This process is repeatedly executed until the control 

observer receives NRH messages from all children.  

When the d is distributed from the control observer to all nodes in the network, since 

each node j knows its maximum hop count from the leaf nodes (i.e., height), it declares 

itself a local root if hj mod d = 0. In this way, each local root is located as many as d 

hops away from the leaf nodes, and so on up the tree, considering the local roots as 



 121
 

leaves if multiple levels of local representatives are needed. A zone based sensor 

network in Fig. 1 is made in this way with d = 4. 

 
2) Testing 

Tester-tested relationships are established and adaptively changed against faulty nodes 

among the nodes within the same local tree (zone) by using the TESTME mechanism. 

The mechanism is restricted to the zone is because the diagnosis information of the local 

tree is delivered to the local root through the paths between the testers and the local root 

in the local tree. For this, the local zone information is added to the control packets (i.e., 

TESTME, ACKTM, or ACPTM) that are used in the TESTME mechanism. 

 
3) Information dissemination 

When the diagnosis procedure is executed in a zone, each local root gathers diagnosis 

information from its zone and sends only the summarized information (e.g. number of 

faulty nodes in a zone) to the control observer R when it needs attention. The local root 

node sends the local diagnosis information to the descendants of the local tree when each 

node needs to know the diagnosis information for the nodes in the same zone. 

Each local root communicates with other local roots through the paths (i.e., one local 

root to the initial root and the initial root to the other local root) when a node changes its 

current local tree to other local tree. 
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Fig. 86. Hierarchical shape of Fig. 85. 

 

For example, in Fig. 86 that represents Fig. 85 in a hierarchical shape, a node p 

belonging to zone 2 finds its parent f faulty. When there is no neighbor that can become 

its new parent within zone 2, it considers a neighbor q in zone 3 as its parent. Node p 

changes its zone name to zone 3 and sends its previous zone name 2 and the death of 

node f to its new parent q. Then node q forwards this information to its local root H3. H3 

in turn informs H2 about the reconfiguration through H3 to R and R to H2. H2 then 

deletes p and f from its list of descendants. The failure of node f can also be known to H2 

from its tester. 

 
4) Computational analysis 

An analytical energy model that is used for Local is described below. Variables in 

Tables I and IV were used with additional variables in Table V for analysis. 
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TABLE V 
ADDITIONAL VARIABLES FOR COMPUTATIONAL ANALYSIS OF LOCAL 

Variable Description 
L total number of leaf nodes in a local tree 
l_event total number of leaf nodes that have an event to be reported in a 

local tree 
N total number of nodes in a local tree 
T number of local trees 
D maximum hop distance from each node to its local root in a local 

tree 
depthj depth of node j in initial tree (depth of initial representative R, 

depthR = 0)      
 

 
a) Set up local trees 

When using the NRH message for setting local roots, there are two steps needed to 

select local representatives. The first step is delivering an NRH message to the initial 

representative. The initial representative consumes chd[R]·(E(acknrhs) + E(nrhr)), each 

intermediate node j consumes chd[j]·(E(nrhr) + E(acknrhs)) +  E(nrhs) + E(acknrhr), 

and each leaf node consumes E(nrhs) + E(acknrhr). Thus, total energy consumption for 

delivering NRH message is expressed as (44). 

chd[R]·(E(acknrhs) + E(nrhr)) + L·( E(nrhs)+ E(acknrhr) )+ 

 (N-L-1) · ( chd[j]·(E(nrhr) + E(acknrhs)) + E(nrhs) + E(acknrhr) )    (44) 

The second step is delivering a HOP message that has distance d value from the initial 

representative to all nodes.  Energy consumption for delivering this message is expressed 

as (45). 

E(hops) + chd[R]·E(ackhopr) (in representative R) 

+ (N-L-1)·( E(hopr)+E(ackhops)+E(hops)+chd[j]·E(ackhopr)) (in all intermediates) 
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+ L·(E(hopr) + E(ackhops)) (in all leaves)                                (45) 

The message overhead used for delivering the NRH message or HOP message is O(N). 

After learning its local root from the HOP message, each node sends its children 

information to its parent and so on up to the local root. Energy consumption for that is 

expressed as (46). 

l·(E(childinfos) + E(ackchildinfor)) (in local leaves) 

+ (n-l-1) ·( chd[j]·(E(childinfor) + E(ackchildinfos)) + E(childinfos) + E(ackchildinfor) ) 

(in all local intermediates) 

+ chd[Rlocal]·(E(childinfor) + E(ackchildinfos)) (in a local root)                (46) 

Thus total energy consumption for all local representative nodes to receive their own 

children information is T·(46).  

In worst case analysis with in an r-ary complete tree [64], (46) becomes (47). In an r-

ary complete tree, T= ⎡((rd)h/d -1)/(r-1))⎤. 

rd·(E(childinfos) + E(ackchildinfor)) (in local leaves) 

+ ((rd+1-1)/(r-1)-rd-1)·(r·(E(childinfor)+E(ackchildinfos))+E(childinfos) + 

E(ackchildinfor)) (in all local intermediates) 

+ r·E(childinfor) + E(ackchildinfos)  (in a local root)                      (47) 

Thus for setting up the local trees, as much as (44) + (45) + T·(46) more energy is 

consumed than the energy consumed for making a single representative tree shown in 

section IV. 

The total packet size generated for delivering all children information to each 

representative in each zone is (48). The average packet size is (48)/ ((rd+1-1)/(r-1) -1). 
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b) Testing 

The analysis used in Repre (i.e., (33)) is applied to each zone. The total energy for all 

zones is T times the amount consumed for one zone. When each parent becomes a tester 

of its children in an r-ary complete tree [64], the number of local fault free tester and 

fault free tested nodes are  maximally and . ∑
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c) Information dissemination 

By default, bottom-to-top information transmission to the initial representative node R 

is used and the energy cost for that is analyzed. Total energy consumption for a fault 

detecting node to send diagnosis information to its local root is expressed as (49). 

E(infos) + E(ackinfor) (in a detecting node) 

+(d-1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (in internal nodes) 

+(E(infor) + E(ackinfos) (in local root)                                 (49) 

In the worst case, when diagnosis information is delivered without aggregation with 

other diagnosis information, total energy used in all local trees to deliver the diagnosis 

information is event · (49). 

The total energy consumption for delivering the summarized information from a local 

root j to the representative R is expressed as (50). 

(depthj - 1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (in internal nodes) 

+ E(infos) + E(ackinfor ) (in a local root j) 
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+ E(infor) + E(ackinfos) (in representative R)                           (50) 

The total energy consumption for delivering information from the representative R to a 

local root j is expressed as (51). 

(depthj - 1)·(E(infor) + E(ackinfos) + E(infos) + E(ackinfor)) (in internal nodes) 

+ E(infos) + E(ackinfor ) (in representative j) 

+ E(infor) + E(ackinfos) (in a local root j)                            (51) 

When the main representative node R sends information to all local representatives, 

the energy consumption when using an r-ary complete tree [64] for the worst case 

analysis is expressed as (52). 

E(infos)  + r·E(ackinfor) (in node R) 

+ r·(rh-d-1)/(r-1)·(E(infor) + E(ackinfos) + E(infos)  + r·E(ackinfor)) (in all internal 

nodes between R and the lowest local roots) 

+ (rh-d-1) )·(E(infor)  + E(ackinfos)) (in the lowest local roots)               (52) 

 
5) Competitive analysis 

The proposed diagnosis algorithm (Local) is compared with the single Representative 

algorithm (Repre) and WSNDiag [4]. In this analysis, in each testing execution, each 

tester node is assumed to send a TEST message to its tested node without waiting for an 

IMA message from its tested node and the fault free tested node is assumed to send a 

REPLY response message back to its tester node. In Repre, tester and tested relationships 

are made among any neighbors while each parent becomes the tester of all its children in 

Local. In Repre, all TEST and REPLY messages are unicasted from each tester and the 

fault free tested nodes. In Local, each tester node broadcasts the TEST message to its 
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children and each fault free child unicasts a REPLY message to the parent, the tester. 

This is reliable, since if a child did not receive the TEST broadcast and respond with a 

REPLY, the parent can retry. The parameters in Table VI were used in the analysis. 

Transmit and receive powers were taken from [12]. 

 
TABLE VI 

PARAMETERS FOR COMPUTATIONAL ANALYSIS OF REPRE, LOCAL, AND WSNDIAG 

Parameter Description 
Transmit power 0.6W 
Receive power 0.2W (33% of transmit power) 
Bandwidth 2 Mbps 
MAC S-MAC 
Number of nodes 121, 364, 1093, 3280, 9841, 29524 

 

 
Fig. 87 shows the energy consumption for different numbers of zones in Local. There 

are 29524 nodes and each node has 3 children. This initial tree is a 3-ary complete tree 

with height 9. The energy consumption for the first execution is the same for all hop 

counts (d) since the same energy was consumed for deciding d and delivering children 

information to each local representative node. For this network, minimum energy is 

consumed when d is 3, 4, or 5. This is true for any number of cumulative executions. 

When d is 9, there is only one tree, which consumes more than twice the energy of an 

optimal solution. 
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Fig. 87. Cumulative energy consumption in Local (N=29524, a=10, r=3, 3 faults/exec.). 

 

Fig. 88 shows the cumulative energy consumption for different number of executions 

from 1 to 100. Local with different d and Repre were compared. Repre consumed more 

energy than Local for all d. Although Local with d = 9 has a single representative like 

Repre, it consumes less energy than Repre. This is because each tester and tested 

relationship was established randomly among neighbors in Repre while each parent in 

each local tree becomes the tester of its children in Local. As in Fig. 87, d of 1 and 7 and 

d of 3 and 5 consumed a similar amount of energy. 
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Fig. 88. Cumulative energy consumption for Repre and different number of local trees in 

Local (N=29524, a=10, r=3, 3 faults/exec.). 

 

Fig. 89 shows the cumulative energy consumption for different number of executions 

from 1 to 100 for a network with 3280 nodes. Local uses less energy per diagnosis 

algorithm execution. 
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Fig. 89. Cumulative energy consumption in different approaches (N=3280, a=10, r=3, 3 

faults/exec.). 

 

Fig. 90 shows the difference between WSNDiag, Repre, and Local for one and ten 

executions for different network sizes. For more executions and larger network sizes, the 

energy consumption of WSNDiag becomes considerably larger than Repre and Repre 

becomes larger than Local. This is because WSNDiag completely rebuilds the 

communication tree each time, while Repre and Local only reconfigure the existing 

tree(s) as needed. 
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Fig. 90. Cumulative energy consumption in different approaches (a=10, r=3, 3 

faults/exec.). 

 

Fig. 91 shows the cumulative energy consumption for different node types in Repre 

and Local for different numbers of executions. The average value among all nodes of 

each type is shown. Leaf nodes in both Repre and Local always consume less energy per 

algorithm execution. In both approaches, the internal nodes consume more energy than 

the representative node(s) for a small number of executions due to the energy used by 

these nodes when building the initial tree. In later executions the representative node(s) 

consumes more energy disseminating diagnosis information.  

In Local, the difference of energy consumption between local root and internal node 

(inter) is mainly due to summarized information shared among other local roots. Each 

local tree in Local has smaller size than a tree in Repre. Thus the energy consumption 

difference between local root and internal node is smaller than the difference between a 

representative and internal node in Repre. It means the representative overhead is 



 132
 

decreased in Local. 
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Fig. 91. Cumulative energy consumption per node (N=29524, a=10, r=3, 3 faults/exec.). 
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VII. CONCLUSIONS AND FUTURE WORK 

In this dissertation, I have described the INP algorithm that creates a tree routing 

structure and maintains it for wireless sensor networks. The routing paths connecting 

nodes to the root are locally reconfigured against crash faulty nodes when information is 

delivered from sensor nodes to the control observer. Energy efficiency and scalability 

are provided for the reconfigurations by using only locally available relational 

information among neighbor nodes that does not need global maintenance throughout 

the tree. I have also described how INP can be extended for partition detection and how 

it can be used for reconnecting the partitioned region to the tree if new deployed nodes 

create joining paths. 

INP was compared to SWR [18] through analytical calculations and ns-2 simulations. 

In densely deployed networks (i.e. nodes have many neighbors), most reconfiguration 

situations can by handled by INP with one of the five low-energy cases. In sparsely 

deployed networks (i.e. nodes have few neighbors), INP is able to reroute more cases 

than SWR by trying several different reconfiguration steps. Thus, INP had a higher 

delivery ratio, but higher latency than SWR. 

The simulation results showed that each node in INP used a little less energy than in 

SWR. In INP, only the nodes related to a failed node participated in a reconfiguration and 

thus other nodes did not waste their energy. But in SWR, all neighbors are involved in 

the reconfiguration, even though they are not all necessary. Another reason than INP 

used less energy than SWR is that in most realistic cases a faulty node has several 

children, and these children eventually all have data messages to send to the root. INP 
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uses less energy for reconfiguration than SWR because the siblings located inside of the 

transmission range of a node that is looking for a new parent can get their new parents 

without their own efforts.  

In SWR, to reduce communication overhead, updating the global value was postponed 

until a node received any information from its parent, on which the parent’s global value 

piggybacked. If a node became involved in another reconfiguration before updating its 

global value, a loop could occur. This could result in increased latency (to detect and 

repair the loop) or cause message delivery failure. 

INP was also compared by simulation to GRAB-F, a fixed transmission range version 

of GRAB [19]. GRAB-F had much lower delivery ratios and higher energy consumption 

than INP and SWR. This is because the broadcasting communication method used in 

GRAB-F was not as reliable as the unicast method used in INP and SWR. In GRAB-F, 

the number of forwarding paths could not be adequately limited, since a fixed 

transmission range was used, as in INP and SWR. In a dense network with high traffic, 

the fixed transmission range results in high message redundancy that causes a lot of 

message dropping by collisions and excess energy consumption. 

In this dissertation, I have also described two new sensor-initiated crash fault diagnosis 

algorithms for wireless sensor networks, Repre and Local. Local was extended from 

Repre to provide scalability when the network size grows. Since INP was used for path 

reconfiguration, both static and dynamic faults were detected and reported to the control 

observer.   

Repre was compared to WSNDiag [4] and Local was compared to Repre and 
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WSNDiag through analytical computations. Repre and Local use reliable one-to-one 

testing while WSNDiag use one-to-many testing. Using INP, Repre and Local 

maintained the tree communication structure by locally reconfiguring it as needed while 

WSNDiag made a tree per each use (diagnosis). Thus, the more reconfigurations and the 

larger the network, the larger the energy gap between WSNDiag and Repre, and between 

Repre and Local. 

Several extensions to this research should be considered in future work. These include: 

• Five basic reconfiguration cases in included in the current INP algorithm, 

related to the grandparent of the node looking for a new parent. If each node 

keeps track of K levels of ancestors and all related cases are used for 

reconfiguration at the first step, a new parent may be found before resorting to 

the more expensive search steps, such as PFIND. This would increase the 

reconfiguration success rate with lower latency, but with more messages during 

reconfiguration to update the relational information. The trade-offs between 

reconfiguration energy and knowledge maintenance energy must be studied. 

• Keeping track of neighbors within K hops. This requires more messages during 

tree creation and maintenance, but can significantly reduce the chances of 

having only UNKNOWN neighbors. The trade-offs to identify the lowest-energy 

solution in different situations should be quantified. 

• The current INP algorithm handles reconfigurations occurred when nodes send 

information to the root. Reconfigurations that occur when sending a message 

from parent to children should be studied. One solution is that when a parent 
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detects that one of its children is dead, it can inform the other children, who can 

attempt to connect to the children of the dead child. One option is for the parent 

to keep track of the grandchildren information. When reconfiguration is needed, 

the parent passes the children information of the dead child to its children and 

lets them find those grandchildren. Then the grandchildren know of the faulty 

parent and find their new parents using the current INP approach. 

• Link failures were not considered in this research. If they can occur, then it will 

no longer be the case that because one node declares a neighbor faulty that 

other neighbors should trust that. Changing or extending INP to include link 

failures should be studied. 

• Fixed transmission ranges were assumed in INP. Varying transmission ranges 

by adjusting transmission power based on current network density should be 

studied. Since power amplifier efficiency falls sharply with lower transmission 

power, variable power amplifiers do not make sense. Instead, a practical 

implementation would use discrete power levels with transmitters optimized for 

each level. 

• In the current Local algorithm, the issue of local root reliability was not 

addressed. But it must be addressed in the future particularly when local roots 

are chosen from homogeneous failure prone sensor nodes. Having a backup 

node would be one solution. 

• In the tree structure, node energy level is different depending on the location 

within the tree. The root node always consumes more energy than either leaf or 
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internal nodes, since all information ultimately arrives at the root node. For 

node energy balancing, a node with low energy levels should move lower in 

the tree, so that less traffic passes through it. One solution is for the node that 

has the highest energy level among the possible neighbors to become the new 

parent during reconfiguration. For this, nodes must share their energy levels 

during reconfiguration. Another solution is that if a lower energy level node 

has a higher energy level sibling node; it introduces some of its children to the 

sibling. And the sibling becomes a parent of those children. Further solutions 

include having the lower energy node limiting its number of children or giving 

up the current parent position. 

• Repre and Local should be simulated and evaluated. 
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APPENDIX A  MESSAGE FORMATS 

The following is the list of messages used for the INP reconfiguration algorithm and 

their function and formats. Message formats are explained based on the IEEE 802.11 

MAC format since simulations are done with this. For computational analysis, the S-

MAC format was used and the format is explained below when additional messages for 

the diagnosis algorithms are introduced. 

PARENT: It is used for making the initial tree. By exchanging this information with 

other nodes, each node gets its parent, grandparent, children, and siblings. 

Type       Reserved      Destination       Source        Parent           Time Stamp 

(2Byte) (2Byte) (2Byte)(2Byte) (2Byte)  

struct hdr_Parent { 
      u_int8_t        Parent_type;         // Packet Type 
      u_int8_t        reserved[3];         //  
      nsaddr_t        Parent_dst;          // Destination Node  
      nsaddr_t        Parent_src;          // Source Node 
      nsaddr_t        Parent_parent;       // Parent Node 
      double          Parent_timestamp;    // when Parent sent     
                // for computing latency 
      inline int size() {  

 int sz = 5*sizeof(u_int32_t); 
     assert (sz >= 0); 
   return sz; 
     } 

     }; 

   

INP (“I need parent”): It is used for a node to find a new parent in the tree. 

Type     Reserved     Destination     Source     Parent     Grandparent     Initiator     Time Stamp 

 

struct hdr_INP { 
        u_int8_t        INPtype;      // Packet Type 
        u_int8_t        reserved[2];   //  
        nsaddr_t        INP_dst;           // Destination Node  
        nsaddr_t        INP_src;           // Source Node  
        nsaddr_t        INP_parent;        // Parent Node 
        
              nsaddr_t        INP_initiator;   // Initiator Node 

nsaddr_t        INP_grandparent;   // Grandparent Node 
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        double          INP_timestamp;     // when INP sent  
        // to compute route 
        // discovery latency 

 inline int size() {  
   int sz = 7*sizeof(u_int32_t); 

     assert (sz >= 0); 
    return sz; 
       } 
}; 

 

ACKINP(“Acknowledgement of INP”): It is used when a node can become a new 

parent of the INP sender. 

Type      Case Num      Reserved     Destination     Source         Parent         Initiator         Time Stamp

(2Byte) (2Byte) (2Byte)(2Byte)(2Byte)(2Byte) 

 
 

struct hdr_ACKINP {  
       u_int8_t        ACKINP_type;       // Packet Type 
       u_int8_t        ACKINP_caseNum     // Cycle Free Path Type 
       // (Case 1 to 5) 
       u_int8_t        reserved[2];       //  
       nsaddr_t        ACKINP_dst;        // Destination Node 
       nsaddr_t        ACKINP_src;        // Source Node 
       nsaddr_t        ACKINP_parent;     // Parent Node 
       nsaddr_t        ACKINP_initiator;  // Initiator Node 
       double          ACKINP_timestamp 
  
       inline int size() {  
     int sz = 6*sizeof(u_int32_t); 
     assert (sz >= 0); 
    return sz; 
       } 
}; 

 

ACPINP(“Acceptance of INP”): It is used when an INP sender declares one of 

ACKINP senders as its new parent. 

Type   Case Num   Reserved   Destination   Source   Parent   Grandparent   Fault Node   Time Stamp 
 

 
struct hdr_ACPINP { 
        u_int8_t        ACPINP_type;         // Packet Type 
        u_int8_t        ACPINP_caseNum;      // case Number 
        u_int8_t        reserved[2];          
        nsaddr_t        ACPINP_dst;          // Destination Node 
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        nsaddr_t        ACPINP_src;          // Source Node 
        nsaddr_t        ACPINP_parent;       // Parent Node 
        nsaddr_t        ACPINP_gp;           // Grandparent Node 
        nsaddr_t        ACPINP_faultNode;    // Fault Node 
        double          ACPINP_timestamp;     
                                                                                          
        inline int size() { 
    int sz = 7*sizeof(u_int32_t); 
         assert (sz >= 0); 
         return sz; 
        }  
}; 

 

CNFCF (“Cannot find cycle free”): It is used when an INP sender is looking for its 

siblings’ helps when it did not receive a ACKINP. 

 
Type      Reserved     Destination       Source        Parent         Grandparent               Initiator         Time Stamp

struct hdr_CNFCF { 
        u_int8_t        CNFCF_type;         // Packet Type 
        u_int8_t        reserved[3];         
        nsaddr_t        CNFCF_dst;          // Destination Node  
        nsaddr_t        CNFCF_src;          // Source Node 
        nsaddr_t        CNFCF_parent;       // Parent Node 
        nsaddr_t        CNFCF_grandparent;  // Grandparent Node 
        nsaddr_t        CNFCF_initiator;    // Initiator Node 
        double          CNFCF_timestamp;     
       
   inline int size() {  
    int sz = 7*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
   } 
}; 

 

ACKCNFCF (“Acknowledgement of Cannot find cycle free”): It is used when a 

sibling node of the initiator can become a new parent since it received an ACKINP from 

one of its neighbors. 

 Type       Reserved       Destination       Source       Finder       Finder’s Parent       Initiator       Time Stamp

 

struct hdr_ACKCNFCF { 
        u_int8_t        ACKCNFCF_type;         // Packet Type 
        u_int8_t        reserved[3];            
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        nsaddr_t        ACKCNFCF_dst;          // Destination Node  
        nsaddr_t        ACKCNFCF_src;          // Source Node 
        nsaddr_t        ACKCNFCF_finder;       // Finder Node  
        nsaddr_t        ACKCNFCF_finderP;      // Finder’s parent  
        nsaddr_t        ACKCNFCF_initiator;    // Initiator Node 
        double          ACKCNFCF_timestamp;     
            
   inline int size() {  
    int sz = 7*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
   } 
};  

 

ACPCNFCF (“Acceptance of CNFCF”): It is used when the CNFCF sender declares 

one of the ACKCNFCF senders as its new parent. 

 
Type     Case Num     Reserved     Destination     Source     Parent     Finder     Finder’s Parent     Time Stamp 

struct hdr_ACPCNFCF { 
        u_int8_t        ACPCNFCF_type;         // Packet Type 
        u_int8_t        reserved[2];           //  
        u_int8_t        ACPCNFCF_caseNum;      // case numher 
        nsaddr_t        ACPCNFCF_dst;          // Destination Node  
        nsaddr_t        ACPCNFCF_src;          // Source Node 
        nsaddr_t        ACPCNFCF_parent;       // New Parent  
        nsaddr_t        ACPCNFCF_finder;       // Finder  
        nsaddr_t        ACPCNFCF_finderP;      // Finder’s Parent  
        double          ACPCNFCF_timestamp;    // when ACPICNYP sent; 
                 

  inline int size() {  
   int sz = 7*sizeof(u_int32_t); 
    assert (sz >= 0); 
  return sz; 
   } 
}; 

 

ICNYP (“I cannot be your parent”): It is used when a node is looking for its 

children’s help. It checks whether its child becomes its new parent using this message, 

when it did not receive any ACKINP or ACKCNFCF messages. 

Type      Reserved     Destination       Source        Parent         Grandparent               Initiator         Time Stamp
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struct hdr_ICNYP { 
        u_int8_t        ICNYP_type;          // Packet Type 
        u_int8_t        reserved[3];          
        nsaddr_t        ICNYP_dst;              // Destination Node 
        nsaddr_t        ICNYP_src;              // Source Node 
        nsaddr_t        ICNYP_parent;           // Parent Node 
        nsaddr_t        ICNYP_grandparent;      // Grandparent Node 
        nsaddr_t        ICNYP_initiator;        // Initiator Node   
        double          ICNYP_timestamp;           
        

 inline int size() {  
     int sz = 7*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
       } 
}; 

 

ACKICNYP (“Acknowledgement of ICNYP”): It is used when a child node of the 

initiator can become a new parent since it received an ACKINP from one of its 

neighbors. 

Type   Case Num   Reserved   Destination   Source   Finder   Finder’s Parent   Initiator   Time Stamp

 

struct hdr_ACKICNYP { 
        u_int8_t        ACKICNYP_type;        // Packet Type 
        u_int8_t        ACKICNYP_caseNum;     // Case number 
        u_int8_t        reserved[2];          
        nsaddr_t        ACKICNYP_dst;         // Destination Node  
        nsaddr_t        ACKICNYP_src;         // Source Node 
        nsaddr_t        ACKICNYP_finder;      // Node which finds new path  
        nsaddr_t        ACKICNYP_finderP;     // Finder’s parent 
        nsaddr_t        ACKICNYP_initiator;   // Initiator Node   
        double          ACKICNYP_timestamp;     
                 
    inline int size() {  
    int sz =7*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
   } 
}; 

 

ACPICNYP (“Acceptance of ICNYP”): It is used when the ICNYP sender declares one 

of the ACKICNYP senders as its new parent. The format is same as ACPCNFCF. 
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INI (“I need information”): It is used when a node needs neighbors’ information 

before using the PFIND message. 

Type       Reserved      Destination       Source        Fault Node         Time Stamp 

 

struct hdr_INI { 
        u_int8_t        INI_type;         // Packet Type 
        u_int8_t        reserved[3];          
        nsaddr_t        INI_dst;          // Destination Node 
        nsaddr_t        INI_src;          // Node itself  
        nsaddr_t        INI_faultNode;    // Fault Node  
        double          INI_timestamp;     
                 
    inline int size() {  
    int sz = 5*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
   } 
}; 

 

ACKINI (“Acknowledgement of INI”): It is used when a neighbor send its information 

to the INI sender. 

Type     Reserved     Destination     Source     Parent     Grandparent     Time Stamp 

 

 
struct hdr_ACKINI { 
        u_int8_t        ACKINI_type;         // Packet Type 
        u_int8_t        reserved[3];          
        nsaddr_t        ACKINI_dst;          // Destination: INI sender  
        nsaddr_t        ACKINI_src;          // Node itself  
        nsaddr_t        ACKINI_parent;       // Parent Node 
        nsaddr_t        ACKINI_gp;           // Grandparent Node 
        double          ACKINI_timestamp;     
                 
        inline int size() {  
    int sz = 6*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
   } 
}; 
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PFIND (“Path find”): It is used when an UNKNOWN neighbor is selected and 

checked whether it becomes a new parent or not. 

Type      Reserved     Destination       Sender        Relayer         Parent       Grandparent         Time Stamp

 

struct hdr_PFIND { 
        u_int8_t        PFIND_type;      // Packet Type 
        u_int8_t        reserved[3];         
        nsaddr_t        PFIND_dst;       // Destination Node: 
                                         // selected neighbor 
        nsaddr_t        PFIND_src;       // PFIND sender 
        nsaddr_t        PFIND_relayer;   // Relay Node  
        nsaddr_t        PFIND_parent;    // Parent Node of PFIND sender 
        nsaddr_t        PFIND_gp;        // Grandparent of PFIND sender 
        double          PFIND_timestamp;     
                 

  inline int size() {  
    int sz =7*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
   } 
}; 

 

ACKPFIND (“Acknowledgement of PFIND”): It is used when a relay node that 

receives PFIND finds a new path and lets the sender of PFIND know it along the reverse 

path direction. 

Type      Reserved     Destination       Source        Origin         Parent          Time Stamp 

 

struct hdr_ACKPFIND { 
        u_int8_t        ACKPFIND_type;        // Packet Type 
        u_int8_t        reserved[3];          
        nsaddr_t        ACKPFIND_dst;         // Destination Node: 
                 // previous relayer  
        nsaddr_t        ACKPFIND_src;         // Source Node 
        nsaddr_t        ACKPFIND_origin;      // Sender of PFIND  
        nsaddr_t        ACKPFIND_parent;      // Parent Node 
        double          ACKPFIND_timestamp;    
                 
        inline int size() {  
    int sz = 6*sizeof(u_int32_t); 
    assert (sz >= 0); 
   return sz; 
   } 
}; 
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ACPPFIND (“Acceptance of PFIND”): It is used when the PFIND sender declares 

one of the ACKPFIND senders as its new parent. The format is same with ACPINP. 

The following is the list of additional messages that are used for the Repre and Local 

diagnosis algorithms. For measuring the energy consumption of those algorithms and 

alternatives, packet formats followed the radio communication stack introduced in [65]. 

This stack is used on the Mica Motes developed at USC/ISI and UCLA [65]. This stack 

includes sensor-MAC (i.e., S-MAC), [11][42][65] a medium-access control protocol that 

was specially designed for wireless sensor networks. The unique two-byte transmitter 

and receiver addresses are in the MAC header (macHdr) with a one-byte Physical header 

(phyHdr) [65]. 

 

INFO (“Diagnosis Information”): It is a diagnosis message disseminated among the 

nodes. 

macHdr type seqNo faultID … faultID …… CRC 

(5B) (1B) (1B) (2B) (2B) 

AppHdr(7B) 

 

phyHdr:  macHdr:  phyHdr toAddr fromAddr packetLength 

(2B) (1B) (2B) (1B) 

 

NRH (“Nodes_Children_Height”): It describes the total number of descendants, 

average number of children per each parent, and the height of each node. Each NRH 
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message initiated from each leaf is aggregated and updated in each intermediate node 

and arrives at the initial representative node. The control observer uses this message for 

computing hop count between a local root and the next local root. 

(7B) (2B) (2B) (2B) 

#of_nodes    Ave_ch

(2B) 

CRCheightAppHdr 

 

CHILDINFO (“Child information”): It is the children information that each 

intermediate node sends to its parent after establishing a tree or local tree(s). 

 

HOP: It is initiated from the initial representative node and used for determining and 

announcing each local root to the nodes. It has each local root node ID and the hop 

count. 

 

IAD (“I am dying”): It is used for a node that will die due to battery depletion to give 

early warning to the nodes tested by that node. Then each receiving node(s) can know 

that its tester node does not have enough power to complete the diagnosis procedure and 

they regard the tester as faulty and each selects another node as its tester. This message 

is also used for other purposes. In the INP algorithm, it helps the neighbors to get the 

relational information and use it for path reconfiguration. 

(7B) (2B) (2B) (2B) (2B) (2B) (2B) (2B) 

AppHdr           N_ch(k)          C1        …        Ck          N_ch(g)          C1      …         Cg        …         CRC 

(7B) (2B) (2B) (2B) 

AppHdr Repre_id      Hop_count CRC
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For each message type below, this control packet is used. 

 

IMA (“I am alive”): It is used when each tested node reports its health to its tester. 

TEST: It is used when a tester node tests its tested node. 

REPLY: It is used when a fault free tested node tells its health to its tester after 

receiving a TEST message.  

TESTME (“Test me”): It is used for a node that needs a tester for itself. Whenever a 

node learns that its tester node is faulty (or will become faulty soon), the node sends this 

message to its neighbors. 

ACKTM (“Acknowledgement of TESTME”): It is an acknowledgement of the 

TESTME message. It is sent by each fault-free neighbor that receives TESTME.  

ACPTM (“Acceptance of TESTME”): It is a confirmation message of ACKTM. When 

a node receives several ACKTM from fault-free neighbors, it chooses one as its tester 

and sends ACPTM to that node. So the node that receives ACPTM becomes its tester. 

ACKINFO (“Acknowledgement of INFO”): It is an acknowledgement of INFO. Each 

node can detect the faulty status of a neighbor when it does not receive this message 

from the neighbor after sending an INFO message to it. 

ACKNRH(“Acknowledgement of NRH”): This is an acknowledgement of NRH. 

(2B) (7B) 

AppHdr        CRC

  (7B)              (2B)                  (2B)                (2B)                   (2B)               (2B) 

 AppHdr        myID.p          myID.gp          Testedby          Testerof          CRC 



 157
 

ACKCHILDINFO (“Acknowledgement of CHILDINFO”): It is an acknowledgement 

of CHILDINFO. Each node can detect the faulty status of its parent node when it does 

not receive this message after sending CHILDINFO. 

ACKHOP: This is an acknowledgement of ACKHOP. 
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APPENDIX B  SIMULATION ENVIRONMENTS 

To install NRLsensorsim for simulating sensor networks in the ns-2 network simulator 

(ns-2.27), nrlsensorsim-2.27.tgz was downloaded from 

http://downloads.pf.itd.nrl.navy.mil/archive/nrlsensorsim/.  

For compatibility of NRLsensorsim with ns-2.27, a patch file (patch_script-2.27.sh) 

that modifies ns-2.27 must be run in nrlsensorsim-2.27 directory before installing of ns-

2.27 as follows:  

>tar -xzvf ns-allinone-2.27.tgz 
>tar -xzvf nrlsensorsim-2.27.tgz 
>cd nrlsensorsim-2.27/ 
>./patch_script-2.27.sh 
>cd ../ns-allinone-2.27/ 
>./install 

 

The modification details are described in 

http://downloads.pf.itd.nrl.navy.mil/archive/nrlsensorsim/INSTALL-2.27.txt. 

A simulation of the INP routing protocol that includes creation of the routing tree and 

local reconfiguration against fault nodes was made in the ns-allinone-2.27/ns-2.27/INP 

directory. The following 9 files are under the INP directory;  

INP/INP.cc  
INP/INP.h 
INP/INP.tcl 
INP/INP_logs.cc 
INP/INP_packet.h 
INP/INP_rqueue.cc 
INP/INP_rqueue.h 
INP/INP_rtable.cc 
INP/INP_rtable.h 

 

For these files to be compiled, the following INP object files shown as bold are added 

into the OBJ_CC variable in the Makefile located in the upper directory (i.e., ns-
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allinone-2.27/ns-2.27) ; 

OBJ_CC = \ 
… 
INP/INP_logs.o INP/INP.o \ 
INP/INP_rtable.o INP/INP_rqueue.o \ 
… 

 $(OBJ_STL) 
 

For INP to be integrated with ns-2.27, a declaration of new INP packet type is 

included in common/packet.h as follows: 

enum packet_t {  
 … 

 

 PT_INP, 
       PT_NTYPE // This MUST be the LAST one 
}; 
 

Also, a textual name for a new INP packet type is added into the constructor of p_info 

class in common/packet.h 

p_info() { 
     ...  
 name_[PT_INP]= "inp"; 
}  
 

To trace new INP packets when the packets are sent, received, and dropped, 

format_INP() function was added into trace/cmu-trace.cc and trace/cmu-trace.h  

 

At trace/cmu-trace.h 

class CMUTrace : public Trace { 
     ...   
private: 
      ...     
     void    format_INP(Packet *p, int offset); 
}; 
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At trace/cmu-trace.cc 
 
... 
#include <INP/INP_packet.h>  
... 
void 
CMUTrace::format(Packet* p, const char *why) 
{ 
      ...  

switch(ch->ptype()) { 
  ... 
     case PT_INP: 
               format_INP(p, offset); 
              break; 
      default: 
         ...  
} 
 
... 
void 
CMUTrace::format_INP(Packet *p, int offset) 
{ 

struct hdr_INP *ah = HDR_INP(p); 
struct hdr_ip *ih = HDR_IP(p); 

 
switch(ah->ah_type) { 

case INPTYPE_Parent: 
 case INPTYPE_INP:  
      case INPTYPE_CNFCF: 
 case INPTYPE_ICNYP: 

case INPTYPE_INI: 
      case INPTYPE_ACKICNYP: 
      case INPTYPE_ACKINI: 
      case INPTYPE_ACKINP: 

case INPTYPE_ACPINP: 
case INPTYPE_ACPICNYP: 
case INPTYPE_PFIND: 
case INPTYPE_ACKPFIND: 

          if (pt_->tagged()) { 
              ... 
            } else if (newtrace_) { 
                  ... 
            } else {                                                                  

                                                                    
sprintf(pt_->buffer() + offset, 

                    "[0x%x %d %d %d %f] (%s)", 
                    rp->INP_type, 
          rp->INP_dst, 

rp->INP_src, 
rp->INP_parent, 

                    rp->INP_timestamp, 
                    rp->INP_type == INPTYPE_INP ? "INP" : 
                    (rp->rp_type == INPTYPE_CNFCF ? "CNFCF" :   
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      ... 
            } 
            break;  
        default: 

#ifdef WIN32 
             fprintf(stderr, 
          "CMUTrace::format_INP: invalid INP packet type\n"); 

#else 
   fprintf(stderr, 
          "%s: invalid INP packet type\n", __FUNCTION__); 

#endif 
                abort(); 
        } 
} 
 

Tcl library files were modified to add the INP packet type (at tcl/lib/ns-packet.tcl), to 

define default values for bound attributes (at tcl/lib/ns-default.tcl), and to add the 

procedures that set the INP routing agent for a wireless node (at tcl/lib/ns-lib.tcl) like 

these; 

At tcl/lib/ns-packet.tcl 
 
foreach prot { 
    INP 
    AODV 
    # ... 
    NV 
} { 
    add-packet-header $prot 
} 
 

At tcl/lib/ns-default.tcl 
 
# ... 
# Defaults defined INP 
Agent/INP set accessible_var_ true 

 

At tcl/lib/ns-lib.tcl 
 
 Simulator instproc create-wireless-node args { 
      # ... 
      switch -exact $routingAgent_ { 
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          INP { 
              set ragent [$self create-INP-agent $node] 
          } 
          # ... 
      } 
      # ... 
} 

 
Simulator instproc create-INP-agent { node } { 
         # create INP routing agent 
         set ragent [new Agent/INP [$node node-addr]] 
         $self at 0.0 "$ragent start" 
         $node set ragent_ $ragent 
         return $ragent 
} 
 

For INP packets to be treated as routing packets at the queue (i.e., priqueue) that 

considers routing packets with high priority packets, queue/priqueue.cc is modified as 

follows: 

At queue/priqueue.cc 
 
 void 
 PriQueue::recv(Packet *p, Handler *h) 
 { 
     struct hdr_cmn *ch = HDR_CMN(p); 
  if (Prefer_Routing_Protocols) { 
   switch(ch->ptype()) { 
               . . . 
                case PT_AODV:
               case PT_INP: 
               default: 
                   Queue::recv(p, h); 
          } 
      } 
      else { 
         Queue::recv(p, h); 
      } 
 } 

 
Before executing the make command, for common/packet.cc to be recompiled, the 

timestamp of common/packet.cc must be modified by using the UNIX touch command 

as follows. This is because common/packet.h is changed and common/packet.cc was 
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not changed.  

> touch common/packet.cc 
> make 
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