

AUTOMATED COUNTING OF CELL BODIES

USING NISSL STAINED CROSS-SECTIONAL IMAGES

A Thesis

by

ASWIN CLETUS D’SOUZA

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2007

Major Subject: Computer Science

AUTOMATED COUNTING OF CELL BODIES

USING NISSL STAINED CROSS-SECTIONAL IMAGES

A Thesis

by

ASWIN CLETUS D’SOUZA

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, John Keyser

Committee Members, Yoonsuck Choe

 Vinod Srinivasan

Head of Department, Valerie E. Taylor

December 2007

Major Subject: Computer Science

 iii

ABSTRACT

Automated Counting of Cell Bodies Using Nissl Stained Cross-Sectional Images.

 (December 2007)

Aswin Cletus D’Souza, B.E, Manipal Institute of Technology, India

Chair of Advisory Committee: Dr. John Keyser

 Cell count is an important metric in neurological research. The loss in numbers

of certain cells like neurons has been found to accompany not only the deterioration of

important brain functions but disorders like clinical depression as well. Since the manual

counting of cell numbers is a near impossible task considering the sizes and numbers

involved, an automated approach is the obvious alternative to arrive at the cell count. In

this thesis, a software application is described that automatically segments, counts, and

helps visualize the various cell bodies present in a sample mouse brain, by analyzing the

images produced by the Knife-Edge Scanning Microscope (KESM) at the Brain

Networks Laboratory.

The process is described essentially in five stages: Image acquisition, Pre-

Processing, Processing, Analysis and Refinement, and finally Visualization. Nissl

staining is a staining mechanism that is used on the mouse brain sample to highlight the

cell bodies of our interest present in the brain, namely neurons, granule cells and

interneurons. This stained brain sample is embedded in solid plastic and imaged by the

KESM, one section at a time. The volume that is digitized by this process is the data that

is used for the purpose of segmentation.

While most sections of the mouse brain tend to be comprised of sparsely

populated neurons and red blood cells, certain sections near the cerebellum exhibit a

very high density and population of smaller granule cells, which are hard to segment

using simpler image segmentation techniques. The problem of the sparsely populated

regions is tackled using a combination of connected component labeling and template

 iv

matching, while the watershed algorithm is applied to the regions of very high density.

Finally, the marching cubes algorithm is used to convert the volumetric data to a 3D

polygonal representation.

 Barring a few initializations, the process goes ahead with minimal manual

intervention. A graphical user interface is provided to the user to view the processed data

in 2D or 3D. The interface offers the freedom of rotating and zooming in/out of the 3D

model, as well as viewing only cells the user is interested in analyzing. The

segmentation results achieved by our automated process are compared with those

obtained by manual segmentation by an independent expert.

 v

To my family

 vi

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. John Keyser, for all the guidance and

encouragement he provided me since the very beginning of my graduate program. His

invaluable suggestions and expertise in the field have helped me immensely in attaining

the goals I set out to achieve with my research. I am also very grateful to my committee

members, Dr. Yoonsuck Choe and Dr. Vinod Srinivasan for being so supportive and

giving me important feedback over the course of this thesis.

I am deeply indebted to Pei-San and Dr. Louise Abott for taking time off their

busy schedules to help with my research as independent experts. Their inputs on the

identification of various cells in the data set have helped in shaping a lot of my research

work. I would also like to thank the members of the Brain Networks Laboratory and the

Geometry and Graphics Group at TAMU, especially David Mayerich, for the many

helpful suggestions I have been provided.

Finally, I would like to thank Raksh, Erwin, my parents, and my friends for all

the smiles along the way that made the many months of my research a lot more pleasant

and enjoyable.

This research was supported in part by the National Institutes of Health/National

Institute of Neurological Disorders and Stroke grant #1R01-NS54252 (PI: Yoonsuck

Choe).

 vii

NOMENCLATURE

KESM Knife-Edge Scanning Microscope

BNL Brain Networks Laboratory

 viii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

NOMENCLATURE.. vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES... x

LIST OF TABLES .. xiv

CHAPTER

 I INTRODUCTION.. 1

 1.1 Objectives.. 2

 1.2 Significance ... 2

 1.3 Outline of the thesis... 2

 II BACKGROUND AND OVERVIEW OF STAGES 4

2.1 Basic concepts in neuroscience ... 4

2.2 Staining methods ... 5

2.3 Literature review ... 6

2.4 Overview of stages .. 10

 III IMAGE ACQUISITION .. 12

 3.1 Features of the KESM... 12

 3.2 Sub-systems of the KESM .. 13

 3.3 Working principle ... 13

 3.4 Types of images attained... 14

 IV PRE-PROCESSING... 17

 ix

CHAPTER Page

 4.1 Image normalization.. 17

 4.2 Median filtering... 17

 4.3 Thresholding.. 19

 4.4 Gradient transform .. 19

 4.5 Distance transform .. 20

 4.6 Gradient weighted distance transform... 22

 V PROCESSING ... 23

 5.1 Choosing the algorithm ... 23

 5.2 Algorithms for segmenting images of type A 23

 5.3 Watershed algorithm for segmenting images of type B.............. 30

 VI ANALYSIS AND REFINEMENT .. 37

 6.1 Post-Processing in images of type A... 37

 6.2 Post-Processing for images of type B ... 46

 VII VISUALIZATION ... 50

 7.1 Marching cubes ... 50

 7.2 Graphical user interface... 54

 VIII RESULTS... 63

 8.1 Details of experiment .. 63

 8.2 Labeling corrections .. 65

 8.3 Type A results ... 66

 8.4 Type B results.. 70

 IX CONCLUSION AND FUTURE WORK... 72

 9.1 Conclusion... 72

 9.2 Future work ... 72

REFERENCES.. 74

APPENDIX .. 78

VITA ... 85

 x

LIST OF FIGURES

FIGURE Page

 1 Neuron anatomy ... 4

 2 Section of a Nissl-stained image .. 5

 3 Pepper seeds on a white surface ... 7

 4 Image after thresholding... 8

 5 The stages of the process.. 11

 6 Photograph of the KESM ... 12

 7 (a) 3D rendering of the knife edge at work (b) Labeled diagram of the

 internal working of the knife edge .. 13

 8 The two kinds of image samples (a) Type A (b) Type B........................... 14

 9 Type A cells, with green outlines for possible RBC/dying cells, and red

 outlines highlighting the neurons ... 15

 10 The various kinds of cells found in images of type B................................ 16

 11 (a) Image before median filtering (b) Image after median filtering........... 18

 12 Sobel operators for (a) X-direction (b) Y-direction and (c) Z-direction 20

 13 Sobel gradient transform on Nissl image (a) Before (b) After................... 20

 14 Chamfer 2-D distance transform on sample image (a) Before (b) After ... 21

 15 Sample connected component and the contents of the patch P associated 25

 with it..

 16 Illustration for step 1 and 2 of algorithm.. 26

 17 Image and corresponding patch list during the scan, at (a) row = 0

 (b) row = 3 (c) row = 13 (d) row = 18... 27

 xi

FIGURE Page

 18 (a) Image of a section of Nissl tissue (b) Thresholding applied

 (c) Eye-shaped cells highlighted in red (d) Same cell highlighted in the

 threshold image ... 28

 19 (a) Kernel used for template matching (b) Original image (c) Results of

 template matching .. 29

 20 Gray scale image and its digital elevation model....................................... 30

 21 (a) Original image (b) Gradient image (c) Topographical representation 30

 of the gradient image..

22 (a) Geodesic distance between two points in a sample region R (b)

 Geodesic influence zones ... 31

23 (a) Topography at immersion level hmin (b) X at hmin (c) Topography at

 immersion level hmin + 1 (d) X at hmin + 1 consists of two components,

 one that is growing from an earlier component, and the other as a new

 component .. 33

 24 Sorting data structure ... 34

 25 Watershed algorithm in progress (a) h = 0 (b) h = 80 (c) h = 130 35

 26 2D image of image 3 in the stack, at h = 130 .. 36

 27 Illustration of hole-filling algorithm .. 38

 28 (a) Image with visible chatter artifacts (b) Sample section of an image

 after image corrections (c) Noisy regions .. 39

 29 (a) Section with a group of close cells (b) Threshold results 40

 30 A mistakenly grouped cell is split using information from the preceding

 image. ... 41

 31 (a) Original image (b) Thresholded image (c) 3D template matching

 results (d) Local maxima of the matched results.. 42

 32 (a) Local peaks (b) Splitting of a group of cells using boolean operations 43

 xii

FIGURE Page

 33 Neurons with weak features as seen in (a) are marked using standard

 sized patches in (b) ... 43

 34 Cell and its respective cross-sections ... 44

 35 Neighborhood connectivity for pixel that is (a) 4-connected

 (b) 8-connected (c) 26-connected.. 46

 36 (a) C1 and C2 before merging (b) After (c) C3 and C4 before merging

 (c) After .. 47

 37 (a) Watershed segmentation (b) Sparse / dense image (c) Final

 segmentation... 49

 38 (a) Initial 2D matrix (b) Representing each point by a sprite (c) Some

 standard 2D cases (d) Representing the set by line segments (d) Object

 on a finer grid ... 51

 39 Fifteen standard cases used in 3D marching cubes [42] 51

 40 Representation of a stack of 10 type A images, where each cell has a

 random color .. 52

 41 Alternate orientation of dataset using in fig.40 .. 53

 42 Visualization of image stack of 10 type B images 53

 43 Zoomed-in view of data set used in fig.42 ... 54

 44 Interface shown with type A images in (a) 2D and (b) 3D......................... 55

 45 Type A thresholded image at threshold value t = 140 56

 46 Type A thresholded image at threshold value t = 133 57

47 Type A image shown with (a) preliminary classification: compact, noisy,

corrected, prospective noise and (b) final classification: neuron/glial,

rbc/dying, unidentified and noise ... 58

48 Type A images in 3D after processing with a random color assigned to

 each cell.. 59

 xiii

FIGURE Page

 49 Type A images in 3D after classification .. 60

 50 Type B image in 2D during the running of the watershed algorithm 60

51 Type B cells classified uniquely using (a) random coloration (b)

coloration based on cell type: granule cells or interneurons 61

 52 The ‘representation’ view of the labeling by the watershed algorithm...... 62

53 (a), (b), (c) Type A images provided for segmentation by independent

experts (d), (e), (f) Marked images where the cell types are labeled by

 the colors red, blue and yellow .. 64

54 (a), (b), (c) Type B images provided for segmentation (d), (e), (f) Marked

 images where the cell types are labeled by the colors red, blue, green and

 yellow ... 64

 55 (a), (b), (c) Original labeling (d), (e), (f) After 3D labeling corrections 65

 56 (a), (d), (g) Cells identified by expert (b), (e), (h) All cell bodies identified

 by algorithm (c), (f), (i) Neurons/Glial cells identified by algorithm 66

 57 (a) Original image (b) Segmentation: first pass (c) Corrections by expert

 during second pass ... 68

58 (a), (e), (i) Original images (b), (f), (j) Cells identified by expert

 (c), (g), (k) Segmentation results depicting cell classification

 (d), (h), (l) Segmentation results depicting individual cell areas 69

 xiv

LIST OF TABLES

TABLE Page

 1 Comparison of manual and automated results for segmentation of cell

 bodies ... 67

 2 Comparison of manual and automated results for segmentation of

 neurons ... 67

 3 Comparison of manual and automated results for segmentation of

 granular cell bodies .. 70

 4 Comparison of manual and automated results for segmentation of

 interneurons .. 71

 1

CHAPTER I

INTRODUCTION

The human brain has long been an area of immense fascination for researchers

who believe that fully understanding its structure and functions would lead to great

strides in the field of science, from biology to artificial intelligence. In this pursuit to

completely understand the brain, scientists look to solve smaller and simpler problems

before attempting to solve more complex ones and this is the reason the mouse brain has

gained much attention from research groups from all across the scientific world.

From a medical point of view, the study of the mouse brain could help in

identifying and arriving at possible treatments for neurological disorders like Parkinson’s

disease and clinical depression. An important metric in this study has been the count of

certain cell bodies in the brain, like neurons, since the loss of neurons has been found to

accompany the deterioration of many brain functions. Attaining accurate counts of these

cell bodies is however not an easy task due to the microscopic size of these cells, and the

vast numbers in which they are present.

Certain methods of estimation have been used over the years in laboratories, like

the hemacytometer and the counting chamber, but these methods are heavily dependent

on sample concentrations and the estimation formula used [1][2]. Fortunately, due to

much technological advancement in the fields of microscopy and digital imaging, more

accurate counting mechanisms are now possible. Detailed cross-sectional images of

mouse brain tissue can be extracted using devices like the Knife-Edge Scanning

Microscope (KESM), which can then be processed automatically by means of various

algorithms, and visualized in 3-D.

This thesis will describe a software application that counts cells in Nissl-stained

image data obtained from the KESM, and enables the user to visualize these cells in 3-D

using a graphical user interface.

This thesis follows the style and format of IEEE Transactions on Visualization and

Computer Graphics.

 2

1.1 Objectives

The primary goal of this thesis is to describe a software alternative to

neurobiologists for purposes of obtaining cell counts and visualizing the cells of interest

from image data. The application described has the following features:

i. An ability to load a number of consecutive images in the stack

ii. An automated process that segments the cells of interest

iii. A provision for the user to set certain cell characteristics that might help in

segmentation

iv. Ability to traverse through the image set one image at a time

v. Options to show the boundaries of the cells found, in 2-D

vi. A 3-D visualization showing the cell bodies identified

vii. Graphical user interface

1.2 Significance

Neuron loss has been shown to have a significant effect on functions like memory

acquisition and illnesses like clinical depression [3] [4]. This correlation is also evident in

patients suffering from various neurological disorders like Alzheimer’s and Parkinson’s

disease. Scientists studying these disorders in mice can gain significant savings in time

with the help of an automated process that supplies them readily with the cell count of the

neurons in the tissues they are studying. Such a process can be used specifically by

members of the Brain Networks Laboratory to study brain tissue.

1.3 Outline of the thesis

The problem of automated cell counting has been addressed before and many

techniques have been put forth to solve it. In Chapter II, we provide the reader with

background information needed to understand the context and the conclusions of this

thesis.

The working of the Knife-Edge Scanning Microscope is briefly described in

Chapter III, Image acquisition. The two prominent types of images that we shall term

type A and type B are introduced here, and their differences explained. Since the cells

found in these images vary so vastly in size, shape and density, the algorithms used to

 3

tackle them vary as well. We use a combination of connected component labeling and

template matching for type A segmentation, and a variation of the watershed algorithm

for segmentation of type B.

Pre-processing of the images must take place before the application of either of

the algorithms mentioned above, in order to aid in better segmentation. We introduce

these techniques in Chapter IV, Pre-processing, while Chapter V, Processing, provides an

in-depth description of the two algorithms for the respective types of images.

 Post-processing is an important stage, as both these algorithms do not result in

perfect segmentation immediately once they are run. Splitting of groups of cells into their

individual constituents, merging of components that are part of the same cell, elimination

of noise, and so on are important procedures that must be done before the final stage.

These are discussed in detail in Chapter VI, Analysis and Refinement.

 Once the cells have been segmented, a visualization of them is helpful to the

neuroscientist, who can then view the dataset from any angle/zoom and study the

structure and arrangement of these cell bodies. Marching cubes is used to generate the 3-

D volumetric representation of this data set. We describe this algorithm as well as the

other interface features in Chapter VII, Visualization.

To find out how well the results of the software application compare with those of

manual segmentation, we describe the method used to validate the results in Chapter VIII.

The help of an independent expert is taken for comparison.

Finally, the conclusions of the research work, and a list of possible improvements

are provided in Chapter IX.

 4

CHAPTER II

BACKGROUND AND OVERVIEW OF STAGES

 In this chapter, we provide the reader with a brief description of the neuron, the

staining mechanism that was used to obtain the samples, and a review of image

segmentation literature.

2.1 Basic concepts in neuroscience

2.1.1 Neuron theory

The ‘neuron theory’ states that nerve tissue is composed of individual cells which

are fully functional units. Although the morphology of various types of neurons differs in

some respects, they all contain four distinct regions with differing functions: the cell body,

the dendrites, the axon, and the axon terminals [5] [6] [7]. The structure of a standard

neuron can be seen below in fig. 1.

Fig. 1. Neuron anatomy.

[http://en.wikipedia.org/wiki/Image:Neuron-no_labels.png]

2.1.2 Nissl cell bodies

Named after Franz Nissl who developed a staining mechanism to identify

neuronal cell bodies throughout the brain, Nissl cell bodies were the terms used to

describe dense granular masses often found in nerve cells [8].

 5

2.2 Staining methods

Staining is basically the process of making a compound of interest (DNA,

proteins) more easily identifiable by enhancing its visibility through certain chemical

means. The online medical dictionary defines staining as ‘the use of a dye, reagent, or

other material for producing coloration in tissues or microorganisms for microscopic

examination’ [9]. For the study of neurons, the following staining methods have been

widely used:

2.1.1 Golgi staining

The Golgi technique stains neurons by using silver chromate. The detailed

structure of the neuron (axons, dendrites) is made visible via this stain and has been very

useful in the study of these cells. The Golgi method is essentially a stochastic technique

and its exact chemical mechanism remains unclear [10].

2.1.2 Nissl staining

Nissl staining stains the Nissl bodies in cells, technically called the endoplasmic

reticulum. The staining procedure consists of sequentially dipping the mounted brain

slices in about a dozen different solutions for specified amounts of time [11]. We see a

section of a Nissl-stained image below in fig. 2.

Fig. 2. Section of a Nissl-stained image.

 6

2.3 Literature review

The application of computer image processing to cell counting and recognition

has drawn much attention from image processing and cell biology communities [13].

Early work was based on simple thresholding techniques which assumed that the cells

were significantly darker/lighter than background pixels [14] [15]. In the case of colored

images, different colors were used to segment different objects [16]. This segmentation

method has been applied to the detection of cancer cell nuclei as well [17]. Active

contour detection has at times also been used in cell identification [13] [18]. In general

however, most work in this area of cell segmentation could be broadly classified into two

techniques: interactive and automated.

2.3.1 Interactive cell segmentation

Here, the human visual system and expert judgment is employed to manually

segment and classify cell regions from the images, using a computer graphics device such

as a tablet or a mouse. In some techniques, the expert goes through several 2-D images,

marking the boundaries of the cell/nucleus of interest as he/she goes along [19]. The

algorithm finally generates a surface that uses these boundaries to visualize the cell.

Reasoning that this process above was too tedious for the expert, work has been

done in the development of several tools like hole-filling, point-bridging and surface-

dragging that work in 3-D instead of 2-D, thus claiming to save valuable time during the

segmentation process [20]. Many of these techniques employ some basic automated

segmentation techniques to get started, before the manual process begins.

2.3.2 Automated segmentation

There has been a lot of work done in the field of automated segmentation, as most

of the time, medical image stacks run to hundreds of images, with cell sizes being

extremely small. Expecting a user to manually demarcate the cell/nucleus boundaries is

not only time consuming, but near to impossible considering the tens of thousands of

cells that might be present in the volume. Automated techniques will consequently be

much faster, and will not burden the examiner with any of the segmentation work, other

 7

than the initialization of parameters. Prior work in the automated effort can be broadly

classified as:

i. Segmentation by threshold values

ii. Pattern recognition

iii. Gradient flow techniques

i. Segmentation by threshold values

In image analysis, there needs to be a key criterion to differentiate between

objects of interest and other objects, or in other words, ‘foreground pixels’ and

‘background pixels’.

Fig. 3. Pepper seeds on a white surface.

For instance, in fig. 3, it is easy to identify the foreground pixels as shades of

brown and background pixels as white. Thresholding is an image processing technique

for converting a grayscale or color image into a binary image based upon a defined value.

If a pixel in the image has an intensity value less than the threshold value, the

corresponding pixel in the resultant image is set to black. Otherwise, the resulting pixel is

set to white. Image thresholding is very useful for keeping the significant part of an

image and getting rid of the unimportant part or noise. This holds true under the

assumption that a reasonable threshold value is chosen [21].

Formally, if intensity thresholding is applied to the pixels of the pre-processed

image I, with the threshold value t, the resulting image Ir will be:

 8

1

0
r

I t
I

else

≥
=

One of the key problems of thresholding is that it is very sensitive to imaging

variations in light and noise, and thus must be used only in situations where the

foreground/background pixels are clearly identifiable [13]. Also, as can be seen in fig. 4,

objects of interest that touch each other are hard to separate. Thresholding when all cells

are clearly separable is a simple and straightforward way to proceed, but when closely

packed cells appear in images, like in some of the cases in our Nissl stained samples, this

technique is of little help as a solution.

 We use this technique in the pre-processing stage for images of cells that are

sparsely populated.

Fig. 4. Image after thresholding.

ii. Pattern recognition

Pattern recognition is defined as ‘the study of how machines can observe the

environment, learn to distinguish patterns of interest from their background, and make

sound and reasonable decisions about the categories of the patterns’ [22]. ‘Machine

Vision’ is more closely related to our cell counting problem, as it is the area of study

where images captured by an imaging system are analyzed using pattern recognition

techniques to identify and classify objects of interest [23]. Some of the techniques are

briefly described below:

 9

• Template matching has long been used as a technique to help match objects of

interest with the sample under supervision. Here, a template or a prototype,

usually a shape that is a known representation of the object of interest, is searched

for in the sample dataset and checked for how similar the two are, taking into

consideration the various orientations the object could be in. A certain ‘score’ or

‘measure’ of similarity is calculated, and a threshold value of this score is used to

decide the absence or presence of the object in the sample under inspection.

• Statistical classification basically represents each pattern in terms of a set number

of features, and calculates how closely the sample matches these features. The

pattern could be viewed then as a point in d-dimensional space, where d is the

number of features that have been enumerated [23]. Lin et al. use a feature set

consisting of volume, texture, convexity, shape, circularity, area, mean radius and

eccentricity [24]. The probability distributions of the patterns belonging to each

feature class must either be specified explicitly during design or learned by means

of a training set.

• Syntactic approach uses the combination of simpler features to describe complex

features. The complexities of implementing grammar and noisy patterns result in

large computational needs, due to the ‘curse of dimensionality’ [25].

• Neural networks use networks and combinations of simple processors to attack

the problem of feature extraction. It is closely related to statistical pattern

recognition, though its advantages as a result of parallel processing are note-

worthy.

iii. Gradient flow techniques

The watershed algorithm is an algorithm that has been widely studied and used

over the last couple of decades for the purposes of image segmentation [24] [26] [27] [28]

[29] [30].

The biggest advantage of this algorithm is in attacking the problem of ‘connected

cells’, which remained unsolved when thresholding techniques were used. It places great

value on the gradient of the cells, which tend to go from dark to light at the borders (or

 10

vice-versa if cells are stained white). If these areas where the gradient changes sharply

are spotted and all the areas in between are connected to each other, a segmentation of the

image is formed that is successful in distinguishing individual cells in a clustered section.

The key principle behind this algorithm is to consider that the gray levels of the

pixels of the image are not just color values, but ‘height values’, where the greater the

gray-scale value, the taller the peak and vice-versa. Thus, the image represents not mere

pixels, but a topographical view of crests and troughs all across the image. At this point,

we start filling the scene with water, up to a height h, incrementally from the lowest to

the highest value.

The basins that are formed correspond to the connected components in the image,

and the points where different basins meet are called the watershed points, much like

dams. This algorithm tends to over-segment the image, and post-processing techniques

are performed to ensure a good final segmentation.

Gradient flow tracking is a novel approach to segmentation. Instead of growing

the catchment basins from the minima outwards, like the watershed algorithm, this

algorithm points each voxel in the direction of its gradient flow. The gradient vector field

is then diffused with an elastic deformable transformation, which smoothes the gradient

field by propagating gradient vectors of large magnitude to vectors with weak gradients.

Thus, at the end of the procedure, we have each voxel either pointing to another voxel by

means of the gradient flow vector, or being a minimum in itself. All voxels that flow to

the same center are then classified together as a cell, and this automatically separates

individual cells from clusters [31].

2.4 Overview of stages

In fig. 5 we show a pictorial representation of the stages that will soon be

described in the chapters to follow, with each chapter describing each of the stages in the

process.

Though there are essentially 5 stages: image acquisition, pre-processing,

processing, analysis and refinement, and visualization, the algorithms applied in each

stage to the different types of images vary. The two types, type A and type B are

 11

introduced in section 3.4. Though the image acquisition stage and the visualization stage

are identical for both types of images, the three stages in between vary vastly, as depicted

in fig. 5 by the branching off of the stages in two directions.

 This is because, as we will explain in the chapters to follow, the same

segmentation methods do not yield the best results for both types of images.

Fig.5. The stages of the process

Type A image segmentation heavily depends on the post-processing stage, since

much of the 3D grouping can happen only after the components at each image level are

filtered appropriately for noise and mistakenly split components. Type B however attains

a fairly good quality of segmentation after the processing stage itself.

We start with the first stage, image acquisition in the next chapter.

 12

CHAPTER III

IMAGE ACQUISITION

The Knife Edge Scanning Microscope (KESM) is an instrument at the Brain

Networks Laboratory of Texas A&M University that performs the simultaneous slicing

and imaging of a mouse brain (fig. 6). It was designed by Dr. Bruce McCormick, and has

since played a pivotal role as the bridge between the biological world and computer

science, converting stained samples of mouse brain into its volume digitized

representation that can then be used for various types of study using computer algorithms.

3.1 Features of the KESM

The KESM handles the following operations:

i. Slices layers of mouse brain embedded in solid plastic in a staircase like

fashion.

ii. Lights up the imaging sample using light shone through the diamond knife

that is used for slicing.

ii. Captures a high resolution, high magnification image of the layer being

sliced currently

iii. Stores these images that were read into a digital storage device.

Fig. 6. Photograph of the KESM.

[http://research.cs.tamu.edu/bnl/static/galleryKesm.html]

 13

(a) (b)

Fig. 7. (a) 3D rendering of the knife edge at work (b) Labeled diagram of the internal working of the knife edge.

[http://research.cs.tamu.edu/bnl/static/galleryKesm.html]

3.2 Sub-systems of the KESM

This microscope is comprised of the following sub-systems, to enable it to

provide for all the features mentioned above in 3.1. The sub-systems as mentioned in [12]

are as follows:

i. The precision positioning system and ultra-microtome axis align the

sample in X, Y and Z and keeps track of the position of the sample and the

knife edge.

ii. The image capture system comprises of the microscope objective coupled

with the high-resolution camera

iii. The Image analysis and Data storage system contains 5 clustered servers

that store the information transferred over the gigabit network.

3.3 Working principle

The brain specimen which is in solidified form after being embedded in plastic is

mounted using the precision positioning system. The diamond knife accurately cuts this

solid block in a step-wise fashion to minimize resistance. At the same time, light is shone

through the diamond knife and into the layer of tissue that is currently being sliced (fig.

7). This illuminates the region and provides better lighting conditions for the imaging

system to capture the details as accurately as possible. The diamond knife thus serves

dual use, one for the physical sectioning of the tissue and the other as an optical element

through which light is shone during sectioning [12].

 14

Fig. 8. The two kinds of image samples (a) Type A (b) Type B.

3.4 Types of images attained

We come across two types of cell images in our dataset. The first kind, which we

call type A for the remainder of this thesis, is comprised of regular sized cell bodies –

mainly neurons, glial cells, red blood cells and dying cells. They can be seen in fig. 8 (a).

For the most part (at least 80-90% of the image space), the Nissl stained images attained

comprise of regions of type A.

At certain portions of the brain, like the cerebellum, granule cells of very small

size occur in very high densities in a band like fashion. We call these type B images and a

sample can be viewed in fig.8 (b). Though the differences are obvious, they are

enumerated here for clarity:

• Cells in type A are sparsely populated, while those in type B are very densely

populated

• There are two main types of cells in type A: red blood cells / dying cells that

are dark, small and compact in shape and neurons / glial cells that are larger,

often hollow or exhibit a central dark spot inside a hollow ellipse, resembling

an ‘eye’. There are three main types of cells in type B: granule cells that are

tiny and compact, interneurons that are sparsely populated, and purkinje cells

that are big and have a lighter texture than the rest of the cell bodies.

We analyze these two types in greater detail with the help of some magnified

images, in the following sections.

 15

Fig. 9. Type A cells, with green outlines for possible RBC/dying cells, and red outlines highlighting the neurons.

3.4.1 Type A

The descriptions for each cell are provided below, with fig. 9 showing magnified

sections of the image for better understanding:

• Neurons / Glial cells: are marked with red outlines in the figure above. They are

identified by the central dark nucleus and an elliptical outer boundary, which

makes them similar to the shape of the human eye.

• Red blood cells / dying cells: are darker and more compact than the rest of the cell

bodies present. However, it is easy to mistake neurons for these cells because the

central nucleus of the neuron is not visible in all cross-sections. Thus, the

neighboring sections must be analyzed as well before classifying a cell as an RBC

or a dying cell.

• Endothelial cells: occur rarely, but are still visible in Nissl images. They are

found surrounding blood vessels.

 16

Fig. 10. The various kinds of cells found in images of type B.

3.4.2 Type B

Type B on the other hand consists of the following types, as seen in fig. 10:

• Granular cells: are highlighted by light green in the figure. They are densely

populated and very tiny.

• Purkinje cells: are bigger, and exhibit neuron-like characteristics like those we

find in type A. They are circled with yellow in fig. 10.

• Interneurons: are highlighted by red color. As is evident in the image, they are

very sparsely populated in comparison to granular cells.

• Endothelial cells: are present in type B images again, and are found next to blood

vessels.

 17

CHAPTER IV

PRE-PROCESSING

In this chapter, we describe the various image processing techniques that were

applied to the image stacks before the processing stage.

4.1. Image normalization

Normalization, also known as ‘contrast stretching’, is an image enhancement

technique that ‘stretches’ the range of intensity values of the image. In our cross-sectional

image stacks, due to variations in lighting and positioning on the KESM, the individual

images often vary in their brightness and gray-scale range. This non-uniformity in range

is problematic in the processing stage, where a high level of importance is placed on the

gray-scale value of each pixel. Both, the watershed as well as the thresholding algorithms

are based on the assumption that each image has the same brightness levels as the rest of

the images in the stack.

To achieve this range stretching, we should first decide on the minimum and

maximum gray scale value that the resulting image should have. Let us call these

extremes Rmin and Rmax. Usually, they correspond to the range of values that the data

element can hold, for instance for an 8-bit integer, Rmin = 0 and Rmax = 255. We then find

the minimum and maximum of the values of the pixels in image I under processing. Let

us call these Pmin and Pmax. . In order to prevent rare noisy pixels from distorting this

range, the histogram of the image is analyzed to select better values for Pmin and Pmax. [32]

Finally, for each pixel P in the image I, the resultant pixel R is calculated as:

max min
min min

max min

()
R R

R P P R
P P

−
= − +

−

4.2 Median filtering

Median filtering is used to reduce noise in an image. While a similar technique

called ‘Mean filtering’ is used to accomplish noise reduction as well, it suffers from the

 18

Fig. 11. (a) Image before median filtering (b) Image after Median filtering.

problem of blurring, as each pixel is replaced by the average intensity value of its

neighbors. In median filtering though, no such average is taken, and the problem of

blurring is thus avoided. This technique instead sorts the neighboring pixel values in a list,

and the ‘median’ value, which is the value at the center of the list, is used [33].

To put it formally, if image I has dimensions x y zS S S× × , Pi,j,k is a pixel at location

(i,j,k) where 0 xi S≤ ≤ , 0 yj S≤ ≤ and 0 zk S≤ ≤ , and []0.. 1N n − is an array that holds

the pixel values of n neighbors of Pi,j,k in sorted order, then the resulting median-filtered

Image Ir contains at location (i,j,k),

, , / 2i j kR N n=

For instance, in the following 3 3× sample neighborhood, the central value P1,1 is

a noisy pixel whose value needs to be suppressed.

100 97 104

102 6 104

101 94 99

Sorting the values, we have the neighborhood array N with n=9, as follows:

{ }[0..8] 6,94,97,99,100,101,102,104,104N =

The resultant pixel after median filtering will be

1, 1 9 / 2 [4] 100R N N= = =

 19

Sample median filtering results can be seen in fig. 11.

4.3 Thresholding

As explained in section 2.3.2, thresholding is the process of classifying the image

contents into foreground and background pixel classes, Fg and Bg. On a gray scale image,

this is done by comparing each pixel to a threshold value t. Pixels that cross the threshold

t are labeled Fg and the remaining Bg. Formally,

(,) (,)

(,) (,)

x y Fg I x y t

x y Bg I x y t

∈ ∀ ≥

∈ ∀ <

The resulting image after thresholding can be expressed as a boolean matrix Ir as follows

1

0
r

I Fg
I

else

∈
=

4.4 Gradient transform

The gradient transform serves to provide important cues about cell boundaries,

which are helpful in the watershed algorithm when building ‘dams’ on the edges of the

catchment basins. In the case of the Nissl images we obtained, the gradient from cell

pixels (foreground) to background pixels is much higher than the corresponding intra-

background or intra-foreground pixels. This important visual cue is exploited in the

human cognition system as well, and is similarly applied to machine vision using this

transform.

For an image function (,)f x y , the gradient magnitude (,)g x y is computed as

follows [34]:

2 2(,)g x y x y≅ ∆ + ∆

(,) (,)

(,) (,)

x f x n y f x n y

y f x y n f x y n

∆ = + − −

∆ = + − −

where n = 1

 20

Fig. 12. Sobel Operators for (a) X-direction (b) Y-direction and (c) Z-direction.

The Sobel operator is used as an approximation to calculate these equations. Since

we have a 3D image, 3-dimensional operators are used for each of the x, y and z

directions, as shown in fig. 12.

The Sobel operator is less sensitive to isolated noisy variations in pixel values,

since the filter calculates a local average over sets of pixels in the immediate

neighborhood. Fig. 13 shows the results of a 2-D Sobel operator on a sample portion of a

Nissl image.

Fig. 13. Sobel Gradient Transform on Nissl image (a) Before (b) After.

4.5 Distance transform

The distance transform runs through the image and returns the distance of each

point from its nearest boundary. Many segmentation decisions can be made with the

 21

knowledge of how ‘deep’ a pixel is in a cell, and this aids the watershed algorithm while

creating catchment basins.

Fig. 14. Chamfer 2-D Distance transform on sample image (a) Before (b) After.

Image thresholding is first applied to the image stacks to separate the Image I into

foreground and background pixel classes, Fg and Bg. This binary image is then used to

calculate the distance transformed image Id as follows [35],

where the metric | x - x0, y - y0, z - z0 | is a distance measurement used to quantify how

near or far the point (, ,)x y z is from the closest background pixel. Euclidean distance,

defined as

is the best metric of distance, but due to its complexity, simpler approximations are

generally used in its place. An algorithm known as the chamfer distance transform [36]

accomplishes this in a 2-pass process to generate the distance transformed image Id. The

algorithm propagates information about boundaries from pixel to pixel, in a pre-defined

direction in the first pass. Background pixels are assigned a distance of 0, and this value

is incrementally passed on to the pixels that are adjacent to it. In the second pass, the

same is done in the reverse direction, and we end up with Id consisting of an

approximation of the distance between each pixel and its nearest boundary. A sample 2-D

distance transform can be seen in fig. 14.

 22

If the distance between the central pixel and its neighboring pixels in a 3 3 3× ×

filter are described by the constants d1, d2, d3, d4 and d5, then the following is used to

propagate boundary information in Pass 1, where the direction is chosen as left to right,

top to bottom and back to front:

5 4 5

4 3 4

5 4 5

2 1

(1, 1, 1) , (, 1, 1) , (1, 1, 1)

(1, , 1) , (, , 1) , (1, , 1)

(, ,) min (1, 1, 1) , (, 1, 1) , (1, 1, 1)

(1, 1,) , (, 1,)

d d d

d d d

d d d d

d d

I x y z d I x y z d I x y z d

I x y z d I x y z d I x y z d

I x y z I x y z d I x y z d I x y z d

I x y z d I x y z d

− − − + − − + + − − +

− − + − + + − +

= − + − + + − + + + − +

− − + − + 2

1

, (1, 1,)

(1, ,)

d

d

I x y z d

I x y z d

+ − +
 − +

In pass 2, the boundary information is propagated from right to left, bottom to top and

front to back, as follows:

1

2, 1, 2

5, 4, 5

4, 3, 4

5,

(1, ,)

(1, 1,) (, 1,) (1, 1,)

(, ,) min (1, 1, 1) (, 1, 1) (1, 1, 1)

(1, , 1) (, , 1) (1, , 1)

(1, 1, 1) (

d

d d d

d d d d

d d d

d d

I x y z d

I x y z d I x y z d I x y z d

I x y z I x y z d I x y z d I x y z d

I x y z d I x y z d I x y z d

I x y z d I x

+ +

− + + + + + + +

= − − + + − + + + − + +

− + + + + + + +

− + + + 4, 5, 1, 1) (1, 1, 1)dy z d I x y z d

 + + + + + + +

4.6 Gradient weighted distance transform

Lin et al. describe a novel approach to combine the results of the gradient

transform and the distance transform described above, into a ‘gradient weighted distance

transform’ [24]. They define this new measure 'D as

min

max min

' exp 1
G G

D D
G G

−
= × −

−

where G is the gradient transform described in 3.3, D is the distance transform described

in 3.4 and 'D is the gradient weighted distance transform.

 23

CHAPTER V

PROCESSING

This chapter mainly deals with the techniques used to process the image stack and

arrive at preliminary segmentations, which are then fed to the analysis and refinement

stage of Chapter VI to further improve the results. We first explain the reasons for

choosing certain algorithms for certain types of images, and then move towards a

description of these algorithms.

5.1. Choosing the algorithm

 As mentioned in section 3.4, type A and type B vary vastly in the shapes, sizes and

densities of their cells. Having a unified approach to solve both types would compromise

on the quality of segmentation results of both types, and hence they are tackled separately

using algorithms whose strengths are best suited for one or the other.

For type A, we would need an algorithm that can find hollow, eye-shaped cells, as

well as solid cells that are sparsely populated. Thresholding followed by connected

component labeling is a good approach to this sparsely populated dataset, as they are

easily distinguishable from each other.

As for type B, we need an algorithm whose strength is to be able to distinguish

closely grouped components. This is where the watershed algorithm comes into play. We

look at each of these types in the sections to follow.

5.2 Algorithms for segmenting images of type A

5.2.1 Connected component labeling

A novel approach to connected component labeling is introduced, which differs in

many ways from the more classical implementations of the algorithm [37]. The algorithm

works on images that have already undergone the threshold operation, i.e. binary images

that store at every position the values 0 or 1, depending on the absence or presence of a

Foreground pixel at that point.

 24

A. Basic definitions

Definition 1: Image-volume I is a 3-D array of voxels, that has dimensions x y zs s s× × ,

along the x, y and z axis respectively, with sz equaling the number of Images in the image

stack.

Definition 2: Index i is a triplet (, ,)x y z of integer values that gives the position of a

voxel in the image volume, where 0 ,0 ,0x y zx s y s z s≤ < ≤ < ≤ <

Definition 3: The operator ptr() is defined to imply ‘pointer to’. ptr(i) would thus imply

‘pointer to index i’.

Definition 4: Line l is defined as a 4-tuple of values (, , ,)s ex x y ptrPatch , where

0 s e xx x s≤ ≤ ≤ , 0 yy s≤ ≤ and ptrPatch is the pointer to a ‘patch’ P, whose definition

will be provided shortly. xs represents the start position of the line along x-axis and xe

represents the end position of the line on a particular row y of an Image. In the algorithm,

lines consist of a sequence of connected foreground pixels for a constant value of y and z.

Definition 5: A patch P is a group of lines that belong to the same connected component.

Additional attributes describing the size and shape of the connected component are also

contained in P. Formally, P can be described as a 6-tuple min max(, , , , ,)L i i z A ptrBlob

where L is a list of connected lines, z is the image number on which the patch is

contained, ptrBlob is a pointer to a Blob data type(defined in 4.2.3), A is the area of the

component defined by the summation

()() () 1e s

l L

A x l x l
∈

= − +∑

and the indices imin and imax are defined as:

()

()min

min

(, ,) min

()

s
l L

s
l L

x l

i x y z y l

z z P

∈

∈

=

=

 25

Fig. 15. Sample Connected component and the contents of the Patch P associated with it.

()

()max

max

(, ,) max

()

s
l L

s
l L

x l

i x y z y l

z z P

∈

∈

=

=

Fig.15 shows a connected component in a sample image with z value 0. The

values of all the lines are shown in the L list, and the other attributes of the patch are

shown as well.

 B. The algorithm

The main advantage of the algorithm that will be described is that it collects and

builds information about the connected components in the image on the fly. Classical

implementations tend to be multi-pass algorithms, where in the first pass, the pixels are

labeled, and in the second pass, equivalence classes are used to ‘collect’ pixels that

belong to the same component.

However, a variation of the algorithm is described that takes advantage of

pointers and linked-lists to progressively augment the attributes of the patches as each

row of the image is processed.

For a linked list L of lines, we define the following operations:

• pushBack(L, l) Inserts the pointer to the line l at the end of the list L

• isEmpty(L) Returns true if list L is empty, false otherwise

 26

Fig. 16. Illustration for step 1 and 2 of algorithm.

• begin(L) Returns a pointer to the first line in the list L

• next(L, l) Returns a pointer to the line immediately succeeding l in L

Each row of image I is scanned from left to right. When a foreground pixel is

found at position (,)x y , a line l is created with starting position xs set as x. The scanning

continues until we reach a background pixel at position (',)x y , or the end of the row. At

this point, the end position xe of line l is set to the value (' 1)x − or sx, whichever is smaller,

and the y value of l is set to the current row number.

This scanning and creation of lines is repeated till the end of the row is reached.

We then compare all the new lines of this row with the lines immediately preceding it,

and augment the new information to the patches that the lines point to, whenever we

encounter an overlap. The algorithm is discussed in detail in the appendix (algorithm 1

and 2) but in brief is as follows:

1. Collect all lines of previous row in UpperList

2. Collect all lines of current row in CurrentList (fig. 16)

3. Check for overlap between lines of UpperList and CurrentList

4. If there is an overlap between line l of CurrentList, and line u of UpperList,

i. if u belongs to a patch, add l to this patch

 27

Fig. 17. Image and corresponding patch list during the scan, at (a) row = 0 (b) row = 3 (c) row = 13 (d) row = 18.

ii. else make a new patch p, and add u and l to patch p

5. For every new addition of a line to a patch,

i. update the attributes imin , imax, area

6. Update CurrentList and UpperList to their succeeding rows, and repeat all steps

At the end of the algorithm, we have a list of patches corresponding to all the

connected components that were found in the image. A sample image and the resulting

patch lists at various scan rows are shown in fig. 17.

5.2.2 Template matching

Thresholding and connected-component labeling are themselves not sufficient in

attaining accurate segmentation results. This is due to the fact that the entire cell body of

the neuron is not stained uniformly. Many Nissl cells are often stained more prominently

near the cell boundaries, and at the center of the cell, which usually corresponds to the

stained nucleus. Due to this non-uniformity in staining, thresholding often results in

broken ‘eye’ shaped cells that only vaguely represent the overall elliptical shape of the

cell. This problem is clearly illustrated in the images of fig.18.

Fig.18 (a) shows a section of a Nissl stained image, while fig.18 (b) shows the

same image after a threshold has been applied to it. In fig.14 (c), we highlight in red two

of the cells we have described above that face this problem. As is apparent in fig.14 (d),

 28

connected component labeling results in convoluted shapes and smaller patches that do

not reflect the actual shape of the cell in any way.

Fig. 18. (a) Image of a section of Nissl tissue (b) Thresholding applied (c) Eye-shaped cells highlighted in red (d) Same cell

highlighted in the threshold image.

For the reasons showcased above, template matching is employed to find those

positions in the image where these cells lie. Template matching is the process of

comparing the image with a pre-defined sample, or kernel that contains the object of

interest. The kernel moves all across the image like a moving window, comparing image

pixels with kernel pixels at each position. The comparison is done by finding the

difference between each pair of image / kernel pixels, and calculating the total sum of

these differences. Points that correspond to low sums have a high probability of the

occurrence of the object of interest.

Formally, a template (, ,)g x y z and image function (, ,)f x y z can be matched by

running a distance metric (,)d f g over the image with the template running across it like

a box filter [38]. In its continuous form, the degree of matching could be calculated as

(,)d f g∫

where the distance metric is defined by

(,)d f g f g= −

 29

In its discrete form, for an Image I of dimensions x y zs s s× × and a template of

dimensions x y zt t t× × , the following formula sums up the ‘degree of matching’ M, at a

particular point (, ,)x y z :

(, ,) (, ,)x y z

z y x

M f x y z g x t y t z t
t t t

= − − − −∑∑∑

 Fig. 19. (a) Kernel used for template matching (b) Original Image (c) Results of template matching.

Running this across the entire image volume, we get a new image volume 'I

where each point contains the ‘degree of matching’ with template T. Running the

25 25 7× × template shown in fig. 19(a) of a sample neuron over the image volume, we

get template matched results such as those seen in fig. 19(c).

Once the resultant image volume I’ is calculated, these results are used to make

critical decisions regarding the patch segmentation. The details of how these cues from

the template matching algorithm are used to provide better segmentation results are

provided in Chapter VI.

 30

5.3 Watershed algorithm for segmenting images of type B

5.3.1 Basic working principle

The watershed algorithm is a technique that makes use of image gradient cues to

segment the image. It uses gray scale image data as a measure of ‘elevation’ rather than

color value, and thus we attain a topographic representation of the data, also known as the

Digital Elevation Model (DEM), as can be seen in fig. 20.

Fig. 20. Gray scale image and its Digital Elevation Model.

Now instead of using the gray scale image, if we used the gradient of the image to

represent the topography, it would result in a DEM having ‘walls’ of separation between

objects of interest, resulting from the edges that correspond to high values in the gradient.

Fig. 21. (a) Original image (b) Gradient Image (c) Topographical representation of the gradient image.

This is depicted in fig. 21(b) and (c). These walls of separation are called

watersheds and the regions they separate are called catchment basins. A minimum M of a

 31

catchment basin is the region within the basin that is at its lowest elevation, where any

drop of water that were to fall inside in the basin would eventually flow to.

If now, the DEM is filled with water, with the water level slowly increasing per

iteration, the catchment basins would steadily grow in size until they reach the

watersheds which would be too high to scale. At the end of the iterations, we are left with

a segmentation that corresponds to catchment basins and the watersheds that separate

them from each other.

5.3.2 Definitions

Definition 1: A minimum M of height h is a connected region of pixels with the

value h from where we cannot reach a pixel of lower height without first traversing a

point at a higher altitude [27]. Thus M can be described as a region that is significantly

darker (and hence at a lower elevation) that it’s neighboring pixels.

Fig. 22. (a) Geodesic distance between two points in a sample region R (b) Geodesic Influence zones.

Definition 2: The neighborhood N(p) of a pixel p at index position i(x,y,z) is

defined by N(p) = { }(, ,) , , 1,0,1p x i y j z k i j k+ + + ∀ ∈ − . Since the algorithm is in 3-D,

we have 26 neighbors for each point in the volume in the general case, with lesser

number of neighbors along the edges and corners of the volume.

Definition 3: Each catchment basin CB is associated with a minimum M and

denoted by CB(M). It is defined as the set of all points in the image volume that are

 32

topographically nearer to M than any other minimum in the volume [29]. Thus, a water

droplet falling at any point in CB(M) will eventually flow into the minima at M.

Definition 4: If the image volume I has value I(x,y,z) at index (x,y,z), then the

range of gray scale values that I contains is given by

min max0 (, ,) 255h I x y z h≤ ≤ ≤ ≤ where hmin and hmax are the minimum and maximum

values, respectively. The catchment basin at height h, CBh(M), is defined in [27] as

CBh(M) = { }(), ()p CB M I p h∈ ≤

and the threshold image Th(I) at height h is similarly defined as

{ }() , ()hT I p I I p h= ∈ ≤

Definition 5: The geodesic distance between two points in a region R is the length

of the shortest path between the two points such that every point on this path lies within R.

Formally, if ps and pd represent the start and destination points, the geodesic distance

gdR(ps,pd) is given by

(,) min(, , ,...) , , ,...R s d s i j d s i j dgd p p p p p p p p p p R= ∈

A sample region R and the geodesic path between two points within it can be seen

in fig.22 (a).

Definition 6: Vincent and Soille’s definitions of geodesic influence zones and

SKIZ are widely used across watershed transform literature as the standard terms to

theoretically describe this segmentation technique [27]. Here, we provide the formal

definitions that they introduced and proceed to explain the immersion procedure.

If Ri is a subset of region R, the geodesic distance between the point ps and region

Ri is:

gdR(ps,Ri)= min((,))R s i i igd p p p R∀ ∈

If region R consists of several connected components like Ci, the geodesic

influence zone of Ci within R, izR(Ci) is defined as:

{ }() , [1,] /{ }, (,) (,)R i R i R jiz C p R j k i gd p C gd p C= ∈ ∀ ∈ <

 33

It is the locus of all points within R that are closer to Ci than any other component

Cj . Fig. 19(b) shows three connected components, C0, C1 and C2 and highlights the

geodesic influence zone of C1 in dark gray. The union of all the influence zones of C is

defined by:

()
1;

()R R i

i k

IZ C iz C
∈

= U

Now, the boundary points between the influence zones of two or more regions do

not belong to the influence zones of any component in C and these points are collectively

called the Skeleton by Influence Zones or SKIZR(C), given by

() / ()
R R

SKIZ C A IZ C=

5.3.3 Recursive relation

Beucher and C. Lantuéjoul presented an algorithm that used immersion as an

analogy to the watershed transformation [39]. This immersion technique has since been a

popular approach, and is defined as a recursive relation which we shall describe shortly.

Fig. 23. (a) Topography at Immersion level hmin (b) X at hmin (c) Topography at Immersion level hmin + 1 (d) X at hmin + 1 consists of

two components, one that is growing from an earlier component, and the other as a new component.

If Xh is the set of all points in the image volume at a height equal to or lower than

h, then 1()
h h

X T I+⊆ . If C is one of connected components of 1()
h

T I+ , then C is either an

extension of a component in Xh or is an altogether new component. This observation is

depicted in fig. 23 at height levels hmin and hmin + 1. The gray value in fig. 23(d)

represents the new pixels arising from raising the immersion level by 1. The recursion is

formally described in [29] as follows:

 34

[)
min min

11 1 () min max

()

,
h

h h

h h T I

X T I

X MIN IZ h h h
++ +

=

= ∪ ∈

5.3.4 Implementation

The implementation of the watershed algorithm takes advantage of many standard

data structures like arrays and linked lists. The image volume is represented by a 3-D

array of 8-bit integers, while storage of positions during the course of the algorithm is

done using lists of indices. The terms ‘voxel’ and its representation ‘index’ are used

interchangeably in this text.

Since the immersion procedure happens hmax - hmin times, with each iteration

involving going through every pixel in the volume to see if its value is less than or equal

to h, a more efficient way was introduced [27]. All the voxels are instead sorted in

increasing order of their heights, and stored in a data structure from where they can be

retrieved readily by querying the data structure with the height h. Once this is done, the

‘flooding’ step is where the recursion defined in 4.3.3 is implemented.

A. Sorting the image volume

Since we use 8-bit integers to store the values of the voxels, we know that the

minimum and maximum values for a voxel are 0 and 255 respectively.

Fig. 24. Sorting data structure.

 35

Thus, we initialize an array VoxelsAtHeight[256] that stores a pointer to an index

at each array location. The index pointer at VoxelsAtHeight[h] points to the head of a

linked list that contains all the indexes of voxels that have a height value h. This data

structure is illustrated in fig.24. The pseudo-code for sorting by storage is available in

algorithm 3 of the Appendix.

B. Immersion

By immersion, we mean the increasing of the ‘water level’ h in the topography,

thus ‘immersing’ the voxels that are below this level. Starting the process with hmin, the

algorithm continues to iteratively increase the water level, while keeping track of

catchment basins, geodesic influence zones, and watershed voxels along the way. The

immersion stage is basically an implementation of the recursive relation described in

sections 5.3.2 and 5.3.3. Access to all pixels at the h and h+1 levels are easy with the data

structure defined in 5.3.4 A.

Calculating geodesic influence zones is done using a distance matrix which

updates distance information as and when the immersion takes place. A label matrix is

also used to keep track of the various labels used. We maintain a running queue Q that is

used to traverse all the pixels that are to be analyzed in the current iteration.

The algorithm takes care of both cases of voxels of height h+1:

Fig. 25. Watershed algorithm in progress (a) h = 0 (b) h = 80 (c) h = 130.

 36

(a) Voxels that are extensions of catchment basins identified at height h

(b) Voxels that form an altogether new minimum.

In fig. 25, we see the watershed algorithm in progress, with the light green color

representing the ‘water’ that is slowly filling up the image volume. A scaled down and

slightly modified version of the ‘fast watershed’ algorithm described in [27] is presented

in algorithm 4 and 5 of the Appendix.

Below in fig. 26, we see the water filled image in 2-D at h = 135

Fig. 26. 2D image of image 3 in the stack, at h = 130.

 37

CHAPTER VI

ANALYSIS AND REFINEMENT

Post processing is an important stage in the filtering out of noise and segmenting

the cells in the best way possible. As stated before, images of type A use the results from

template matching to help further segment the results of connected component labeling,

and the images of type B analyze the 3-D catchment basins that were formed to eliminate

noise and split/combine cells.

6.1 Post-processing in images of type A

6.1.1 Hole-filling

Many of the components that we end up with after the processing of type A

Images have ‘holes’ in them. This is either due to the inherent nature of the staining of

the cell as we discussed earlier in 5.2.2, or simply because a few of the pixels inside the

cell fell short of the threshold value that was chosen to separate background and

foreground pixels. For these reasons, an appropriate hole-filling algorithm is used, that is

illustrated in fig. 27. For detailed pseudo-code, the reader is referred to algorithm 6 in the

Appendix. In its simplest form, the algorithm works as follows:

i. Create a boolean matrix whose dimensions are based on the min and max

values of the patch

ii. Fill this matrix with data from the patch, as in fig. 27(a)

iii. Complement this matrix (fig. 27(b))

iv. Identify those patches that are touching the boundaries of the matrix.

v. Delete this patches and their corresponding regions from the matrix (fig. 27(c))

vi. Complement the new image (fig. 27(d))

vii. Use this patch as a replacement for the original patch. (fig. 27(e))

6.1.2 Scoring

To decide if a component fits a certain amount of ‘similarity’ to a standard cell,

few measures have been defined to help in scoring each component. The attributes we

take into consideration during scoring are as follows:

 38

Fig. 27. Illustration of hole-filling algorithm.

A. Size

Though cross-sectional areas of a cell vary due to the shape in 3-D, it is fairly

straight-forward identifying components that are too big, by comparing them to

thresholds attained either by manual observation or a training data set. The ‘size’ of a

component is defined by the number of pixels it contains. Since as defined in 6.2.1, each

component is represented by a patch P consisting of a list of lines l, the number of pixels

n is given by:

()
()

() ()
e s

l L P

n x l x l
∈

= −∑

B. Compactness

Compactness is a region-based shape descriptor that is given as [40]

Cp = / Aρ

where ρ is the perimeter of the region.

C. Circularity

The circularity measure is similar to the compactness measure, except that it is

calculated by the following formula [41]:

2

4 A
Cr

π

ρ

×
=

where a value of 1 indicates a perfect circle, and deviation towards 0 implies an ellipse

with progressively larger eccentricities.

 39

D. Height-to-width ratio

The height-to-width ratio of a component represented by a patch P is given by the

following:

Fig. 28. (a) Image with visible chatter artifacts (b) Sample section of an image after image corrections (c) Noisy regions.

max min

max min

(()) (())

(()) (())

y i P y i P
HTWR

x i P x i P

−
=

−

The HTWR measure is a good way to spot noise, which we shall discuss below.

6.1.3 Segmentation refinement

Now that the components have been ‘scored’ according to the metrics described

above, we can proceed to derive inferences from them to help in the post-processing.

A. Noise elimination

 There are two predominant types of noise found in Nissl images. Chatter noise,

and Non-Chatter noise

• Chatter: is the term used to express the physical phenomenon of the vibration of

the sectioning knife that occurs during the slicing of the mouse brain by the

KESM. Due to this chatter, there are often imaging artifacts that are left behind in

the image, which generally correspond to alternating lines of low and high

intensities(fig 28.a).

 40

Though a fair amount of image processing was done on the image set well before

processing for an automated cell count, some artifacts are too prominent to ignore

and often mistakenly get classified as foreground pixels. However, many of these

components that arise out of mistaken segmentation of chatter artifacts can be

successfully eliminated using the scores we mentioned earlier. Horizontal chatter

that can be seen in fig 28.b is often eliminated after image processing, but some

artifacts still remain (fig 28.c).

Fig. 29. (a) Section with a group of close cells (b) Threshold results.

The ‘height/width’ ratio helps identify components like these which are either too

long compared to their height or too tall compared to their breadths. Since chatter

usually occurs in the horizontal and vertical directions only, this measure is often

very helpful and fairly accurate in determining noise components.

Thus if either of the following conditions for patch P is satisfied,

min

max

()

()

HTWR P HTWR

HTWR P HTWR

<

>

P is classified as noise and taken off from the PatchList.

• Non-chatter noise: Other noise that occurs in the image volume is eliminated

fairly easily during the 3D Grouping process described in 6.1.4. Random noisy

elements that occur in an image most often do not have a corresponding noisy

element at the same location in the immediately preceding or succeeding images

 41

and hence are not grouped together. Thus, the inherent nature of the algorithm

itself eliminates noise by preventing its propagation in 3D.

B. Incorrectly grouped cells

Though it occurs relatively infrequently when compared to images of type B, cells

that are close to each other sometimes end up being grouped together as part of the same

component due to the threshold level that was chosen for that image. At these points,

some 3D cues are made use of as well as the results of the template matching algorithm

to break the large component into its constituent cells. Fig. 29 illustrates this problem.

 Identifying the groups: Since standard Nissl cells are not boundless in their sizes,

it is fairly straightforward to identify which of the components arising after labeling

comprise of multiple cells.

Fig. 30. A mistakenly grouped cell is split using information from the preceding image.

If the size of the patch P is n and nmax is the size of the largest cross-section of a

standard cell, then if n>nmax , patch P is classified as a component that might possibly

contain more than one cell. The methods used to help separate them are described below.

 Using patch list comparisons: One option for tackling this problem is by

comparing the identified patch P with patches that it overlaps in the immediately

preceding or succeeding image. In fig 30(a), we see that the upper cross-section consists

of a component that is clearly a combination of two cells. We use this information for

splitting P into separate cells, and thus perform the split by performing binary AND

operations between the two images.

 42

Template matching: The above patch list comparisons described often do not

work very well because of various reasons, namely

• Cells that are mistakenly grouped in the current image are likely to be mistakenly

grouped in the preceding / succeeding image as well. This is because the distance

between two cross-sections in the image stack is negligible.

• A component that in reality represents a single cell, but is incorrectly broken into

two due to bad thresholding might further influence more components to

incorrectly split up.

For these reasons, the results of the template matching algorithm are invoked to

try and get better segmentation results and split the groups appropriately. In fig.31 (a) we

see a standard section from a Nissl stained image, followed by its corresponding

threshold image in (b).

Fig. 31. (a) Original image (b) Thresholded image (c) 3D Template matching results (d) Local maxima of the matched results.

The results from the 3D template matching algorithm are seen in fig. 31(c). Using

a threshold that classifies based on the top 5% of the gray scale range of the matched

image, we arrive at an image consisting of connected components that correspond to the

peaks of the matching, in fig.31 (d). Connected component labeling is run over this image,

and local peaks in the components are collected. These local peaks correspond to a high

probability of occurrence of a cell, not just by local 2D pattern matching but by taking

into account data from about 7 consecutive images at a time. Hence, a local peak very

 43

strongly suggests the existence of a neuron / glial cell at this point. Local peaks for the

template matched patches are shown as red dots in fig. 32(a), and blue dots in fig. 32(b).

To split a large cell, we see if it contains more than one local peak within it. If it

does, we use simple boolean operations like AND and MINUS with a solid circle of

standard size and arrive at the results, as shown below in fig. 32(b).

Fig. 32. (a) Local peaks (b) Splitting of a group of cells using boolean operations.

Fig. 33. Neurons with weak features as seen in (a) are marked using standard sized patches in (b).

C. Incorrectly split cells

Just as we have incorrectly grouped cells, we have neurons and glial cells that are

incorrectly split into many pieces due to bad thresholding, as discussed in section 5.2.2.

 44

This is where the process of patch replacement is introduced. Just like in the case of

splitting grouped cells, we analyze the data we have obtained using template matching. If

there is a local peak at a point where there are many small patches (most likely pieces of

the same cell), all these pieces are replaced by a cell of standard size. Fig. 33 shows some

neurons that corresponded to bad thresholded components being successfully marked by

cells of standard size (blue outlines in fig. 33 (b))

For a formal description of the process discussed in the last two sections, the

reader is referred to algorithm 7 in the Appendix.

6.1.4 Three dimensional grouping

Now that all the low scoring patches in each image have been modified, replaced

or refined by some means, we can begin to combine all these patches in 3D without

having to worry about erroneous 2D patches propagating in 3D. A cell in 3-D usually

spans 5-6 images, reaching its largest size at the central images and diminishing in size as

we move further away due to its generally spherical shape (fig. 34).

The bounding box of a patch P is the rectangle whose top-left corner and bottom-

right corner is defined by the co-ordinates of its minimum and maximum index positions,

iminand imax respectively. Using the bounding box for patch comparisons, we can easily

eliminate patches that do not overlap with each other.

Fig. 34. Cell and its respective cross-sections.

 45

Definition 1. A blob B is defined as a representation of a 3-D cell, consisting of a

collection of patches attached to each other. Formally, it is a 4-tuple (L, imin, imax, S)

where L is a list of patches, and S, imin, imax are defined as follows:

()
p L

S A p
∈

=∑

()

()

()

min

min min

min ()

(, ,) min ()

min

p L

p L

p L

x i p

i x y z y i p

z p

∈

∈

∈

=

()

()

()

max

max max

max ()

(, ,) max ()

max

p L

p L

p L

x i p

i x y z y i p

z p

∈

∈

∈

=

For a linked list L of patches, the following operations are defined:

• pushBack(L, p) Inserts the pointer to the patch p at the end of the list L

• isEmpty(L) Returns true if list L is empty, false otherwise

• begin(L) Returns a pointer to the first patch in the list L

• next(L, p) Returns a pointer to the patch succeeding p in L

A formal algorithm for the 3D Grouping process is available in Appendix, but in brief,

it is as follows:

i. Compare a pair of patches in the upper patch list and current patch list, by

checking if their bounding boxes overlap. If they do not, compare next pair.

ii. If the bounding boxes do overlap, check if they really overlap by using the

line information of both patches

iii. If this is true as well, add the current overlapping patch to the blob being

pointed to by the upper patch

This algorithm is very similar to the 2D case with lines and patches. Once 3D

grouping is carried out using the algorithms described in algorithms 8, 9 and 10 of the

 46

Appendix, we are left with a list BlobList which contains all the blobs present in the

volume.

6.2 Post-processing for images of type B

The watershed algorithm has a known problem of over-segmentation in the case

of large foreground objects. This is because every local minimum ends up with a

catchment basin of its own that is separated from other minima by watershed lines. In the

case of large objects, more than one minimum often occurs within the same object, thus

resulting in multiple segments per object though there ideally should be just one.

In the case of the Nissl data set however, over-segmentation is not much of a

problem since the objects are extremely tiny (25-30 pixels in 2D). The minima and their

catchment basins seem to represent the granular cells uniquely, i.e. one segment per cell.

However, there are still noisy segments that need to be addressed. Just as in Section 6.1,

we introduce certain metrics to score the segments to decide if the segments are on track.

The scoring as described by Lin et. al is described as follows:

6.2.1 Scoring

A. Size

The total number of voxels that form the component is considered the ‘size’ or

‘volume’ V.

B. Uniformity of intensity

Since the granular cells exhibit uniformity of intensity when compared to the cells

of type A which due to their ‘eye’ shape exhibit vast variations in intensity, this measure

Fig. 35. Neighborhood connectivity for pixel that is (a) (a) 4-connected (b) 8-Connected (c) 26-Connected.

 47

is a good metric for scoring type B cells. We use the standard deviation equation,

U =
1

2

0

1
()

1

n

i avg

i

v v
n

−

=

−
−
∑

where vavg is the average intensity of the cell, and U is the uniformity of intensity.

C. Shape

Similar to the circularity measure defined for 2D in section 5.1.2, the shape

measure is defined for a 3D object as:

3

264

B
S

Vπ
=

×

where B is the number of boundary voxels in the image, and V is the volume defined in

6.2.1.A. A boundary voxel is defined as any voxel that is not completely surrounded by

other foreground voxels. Since we use a 26-connected grid for our algorithm, we use the

same to decide if the voxel is a boundary one or not (fig 35.c).

6.2.2 Merging

Often times a single cell gets broken up into different segments due to the

formation of multiple minima and the growth of their respective catchments basins within

this cell. To identify and rectify this incorrect splitting, we use the scoring mechanisms

described in section 5.2.1 as well as some new merging techniques described below.

Fig. 36. (a) C1 and C2 before merging (b) After (c) C3 and C4 before merging (c) After.

The basic principle behind the decision of whether or not to merge is to compare

the score of the merged segment with that of the pre-merged segments and see if the

 48

score is significantly higher. If it is, then the watersheds separating the segments are

broken, and the segments are combined. If not, they are left as they are. In fig.36, we see

an example of cell segments where merging helps (fig.(a),(b)) and where it fails to make

things better(fig (c),(d)).

The scoring metrics described above can be combined linearly, with a slightly

higher priority given to the size of the segment. Overall score of a segment resulting out

of the watershed algorithm is given by:

() () () ()Score C aV C bU C cS C= + +

If cell segments C1 and C2 are candidates for the merging, and if C1,2 is the

combined cell segment, merging happens when

1,2 1,2

1 2

() ()

() ()

Score C Score C

Score C Score C
ϕ× ≥

where ϕ is a pre-defined threshold for merging decisions.

6.2.3 Classification

The watershed algorithm described in the last few sections is very helpful in

identifying granule cells. However, interneurons and purkinje cells also get segmented

using this algorithm. Classifying certain cells as granule cells and interneurons is done by

analyzing the features that differentiate the two.

As mentioned in 3.4.2, interneurons are found in regions where the cells are very

sparsely populated, while granule cells occur in regions of very dense concentration. We

can use this fact to differentiate between the two.

 49

Fig. 37. (a) Watershed segmentation (b) Sparse / dense image (c) Final segmentation.

A kernel of size 40 40× is used to run through each image, and generate a

boolean matrix that is called DenseOrSparse. If the number of pixels that cross a certain

darkness value in this kernel window is more than a pre-defined threshold value, the

algorithm outputs ‘dense’ to the boolean matrix, else it outputs ‘sparse’.

When classifying the segments, the DenseOrSparse boolean matrix is referred to

decide how to label them. Purkinje cells are not identified using this matrix, but granule

cells and interneurons have been consistenly identified. The shades of red in fig. 37(c)

correspond to granule cells, while the shades of cyan correspond to interneurons.

 50

CHAPTER VII

VISUALIZATION

This chapter describes not only the algorithm that is used to convert the

volumetric data set to a 3D polygonal model for viewing, but also the various features

that the graphical user interface (GUI) provides the user.

7.1 Marching cubes

The Marching Cubes algorithm is used for converting the volumetric

representation to a 3D Model [42]. This is briefly described in the following sections.

7.1.1 Basic principle

Rendering what is essentially a matrix of points where each point is either ‘in’ or

‘out’ of the foreground object of interest is not as straightforward as rendering a ‘pixel’ or

a ‘dot’ at each foreground point. This might work when the object is at a distance from

the observer and the rendering of the dots covers all the ‘holes’ between each pair of dots,

but if we zoom into a rendering of such a kind, the flaws in the rendering become obvious.

 If we were to analyze this in 2-D for simplicity, and the ‘foreground object’ was

represented by the dots in fig. 38(a), a straight-forward but unrealistic rendering would be

attained by setting up ‘sprites’ at each position where a foreground pixel is seen, like fig.

38(b). We could improve on this by instead analyzing each ‘square’ of 4 positions each in

the matrix, and looking at which of the corners of the square are classified as foreground,

and which as background. Since the number of possible combinations of foreground-

background pixels in each square is very limited, we can use this combination to look up

a table of standard cases (fig. 38(c)), from where we can derive lines that cut across edges

of the square.

Using these standard cases, we can depict the foreground object as a more solid

combination of line segments that form a continuous ‘boundary’ for the object, enclosing

the entire foreground object inside this boundary (fig. 38(d)). The essence of this

algorithm is that a complicated boundary for this object is built incrementally, one square

 51

Fig. 38. (a) Initial 2D matrix (b) Representing each point by a sprite (c) Some standard 2D cases

(d) Representing the set by line segments (d) Object on a finer grid.

at a time, without having to worry about the overall object in its entirety at any point. The

finer the grid, the smoother the boundary looks eventually, as in fig. 29 (e). To extend the

case to 3D, we have the cases as enumerated in fig. 39, with the volume being traversed

one cube at a time, rather than squares. The end product of this operation is a smooth

boundary for the object, which is much less jagged than a sprite representation.

 The modifications we made on the algorithm, as well as the images that were

created are shown in the sections to follow. For a more formal description of the

algorithm, the reader is referred to algorithm 11 in the Appendix.

Fig. 39. Fifteen standard cases used in 3D marching cubes [42].

 52

Fig. 40. Representation of a stack of 10 type A images, where each cell has a random color.

7.1.2 Modifications

Since the volumetric dataset is anisotropic, i.e. distances along the z axis are much

larger than distances along the x and the y axes, certain modifications were made to the

resulting heights of the rendering. Apart from these, the implementation was a standard

one as described in [42].

7.1.3 Visualization results

In fig. 40 and fig. 41, we see the results attained by using marching cubes on

images of type A. Here, to help the user identify the distinction between cells, random

colors were used. We see the rendering of images of type B in fig. 42, with a zoomed in

view available in fig. 43.

 53

Fig. 41. Alternate orientation of dataset using in fig.40.

Fig. 42. Visualization of image stack of 10 type B images.

 54

Fig. 43. Zoomed-in view of data set used in fig.42.

7.2 Graphical user interface

The interface for this application was developed using the OpenGL User Interface

Library (GLUI), which is an open source library in C++ that can be downloaded and used

by programmers. It provides an easy to use, intuitive and flexible platform from where

the user can examine the image set and analyze the resulting segmentation, both in 2D

and in 3D. Here are some of the main features of the interface.

7.2.1 Choosing segmentation type

Though we can use certain image cues like average intensity to decide if a certain

image is of type A or type B, we leave this task to the user to tell the application what

images in general it is going to be analyzing. This prevents algorithms of one type from

unsuccessfully trying to segment images from the other type.

7.2.2 Type A

i. Choosing between 2D and 3D

While visualizing in 3D can be helpful in looking at the overall topology of the

cells, 2D is helpful in analyzing the boundaries segmented in each image in detail.

The 2D and 3D representations are shown in fig. 44.

 55

(a)

(b)

Fig. 44. Interface shown for type A images in (a) 2D and (b) 3D.

 56

Fig. 45. Type A thresholded image at threshold value t = 140.

ii. Traversing the image stack

Spinner controls are used to shift through the images in the stack, one by one.

This helps the user track the segmentation of certain cells as he moves through the

stack. We see this spinner control in fig. 44 and fig.45 in the ‘current image’ panel.

iii. Threshold control

A slider is used to change the threshold value of the current image on the fly, in

case the user feels that the automated threshold value chosen was too low or too

high. Type A images with their threshold value at 140 and 133 are shown in fig.

45 and fig. 46 respectively.

iv. Display type panel

To switch between the regular image (fig.44) and the thresholded image (fig 45),

the ‘display type’ panel is equipped with a radio button to enable the user to make

this choice. Option to view template matching results are also provided after

processing takes place.

 57

Fig. 46. Type A thresholded image at threshold value t = 133.

v. Functions panel

At what point the algorithm segments the images, converts to a 3D representation

and so on are in the hands of the user. These buttons are present in the ‘functions’

panel in last few images.

vi. Analysis panel

This panel is ‘activated’ only after the process operation has taken place. The

algorithm analyzes the stack using the type A algorithms, and the user is then free

to analyze the results. The preliminary classification before 3D grouping is:

compact, noisy, corrected (replaced), and prospective noise cells. We see the

boundaries of these respective types outlined in fig. 47(a), where compact cells

are outlined in green, noisy in red and yellow, corrected in dark blue and

prospective noise in light blue.

After 3D grouping, more useful information is now available. We are able to

classify as neurons / glial, red blood /dying cells, noisy cells and unidentified cells,

 58

as seen in fig. 47(b), where neurons are outlined in red, red blood cells in green,

unidentified in yellow and noise in white.

(a)

(b)

Fig. 47. Type A image shown with (a) preliminary classification: compact, noisy, corrected, prospective noise and (b) final

classification: neuron/glial, rbc/dying, unidentified and noise.

 59

Fig. 48. Type A images in 3D after processing with a random color assigned to each cell.

vii. 3D panel

The options of showing the image textures / marching cubes representation is

available to the user in the 3D panel, as seen in fig. 48. We see the classification

in 3D in fig. 49, where green represents neurons, red represent red blood cells and

blue represents unidentified cells.

7.2.3 Type B

Most of the features are similar to type A, and so we only highlight those interface

features here that are unique to type B segmentation.

i. Display panel

We are able to view not only the watershed growing through the image volume,

but also see unique labels with random coloration, classified cells with a set color

scheme, and various other representations in 3D. We see some of these features in

fig. 50 and fig. 51.

 60

Fig. 49. Type A images in 3D after classification.

Fig. 50. Type B image in 2D during the running of the watershed algorithm.

 61

(a)

(b)

Fig. 51. Type B cells classified uniquely using (a) random coloration (b) coloration based on cell type: granule cells or interneurons.

 62

Fig. 52. The ‘representation’ view of the labeling by the watershed algorithm.

We also see in fig. 52 the ‘representation’ option in 3D, which is basically a

unique coloration applied to each cell and superimposed on the originally image

textures.

ii. Functions

The user is given the control to ‘start watershed’ algorithm and to ‘convert to 3D’

for purposes of 3D viewing.

 63

CHAPTER VIII

RESULTS

The procedures described in this thesis lead to segmentation results that are very

comparable with those arrived at by human cognition. The segmentation results of the

independent experts are first described, and then a comparison and explanation of the

results achieved by the techniques discussed in this thesis is provided.

8.1 Details of experiment

Since the best way of comparing the results from automated segmentation is by

comparing them with those arrived at by human cognition, experts in the field of

neuroscience were asked to mark the cell bodies they found in the image sets that were

provided. They were given 3 each of type A and type B images. The type A images were

of size 256 256× px, while those of the latter were 128 128× px.

The experts proceeded to mark with different colors, the various cell bodies they

were able to identify in the individual sections. In type A, neurons and glial cells were

marked by a red dot, red blood cells and cells that were dying were marked by yellow

dots and endothelial cells by blue dots. In type B, granule cells were marked by red dots,

purkinje cells by green dots, Interneurons by yellow dots and endothelial cells by blue

dots.

In fig. 53, we see the type A images that were supplied in their raw form before

segmentation, as well as the results after the expert identified the cells in each image.

Similarly we see the raw and labeled type B images in fig. 54. Each image was labeled by

what they look like to the observer in that one image alone. For instance, a solid dark

region is labeled as a ‘red blood cell’ even though it might actually be a neuron on further

investigation of the preceding and succeeding image. For this reason, certain labeling

corrections were made to the set, which we describe in the section 8.2.

Cells of type B that are closely packed are labeled granule cells, while those that

occur sparsely in the section are labeled Interneurons, as discussed previously in section

6.2.3.

 64

Fig. 53. (a), (b), (c) Type A images provided for segmentation by independent experts

(d), (e), (f) Marked images where the cell types are labeled by the colors red, blue and yellow.

Fig. 54. (a), (b), (c) Type B images provided for segmentation

(d), (e), (f) Marked images where the cell types are labeled by the colors red, blue, green and yellow.

 65

Fig. 55. (a), (b), (c) Original labeling (d), (e), (f) After 3D labeling corrections.

8.2 Labeling corrections

For comparison between our results and those of the expert, a 3D consolidation

process has to take place, because the automated process is the result of a 3D

combination and not merely 2D segmentation. Thus, the results of the experts are

combined in 3D using certain rules that were agreed upon, as described below.

In type A, any cell that is classified as a ‘neuron’ in even one of the images must

be labeled as a neuron in all the remaining images as well. This is because the key

characteristics of the neuron (central dark nucleus and elliptical outer body) might be

seen only in a few images that contain it. Thus, only a yellow dot (non-neuron) can be

corrected to a red dot (neuron), and not vice versa. No corrections are made to

endothelial cells. We see these corrections in fig. 55. Only a handful of cells change their

label during this correction process.

 No corrections were made to type B cells as all cells had the same label across the

different images.

 66

Fig. 56. (a), (d), (g) Cells identified by expert (b), (e), (h) All cell bodies identified by algorithm

(c), (f), (i) Neurons/Glial cells identified by algorithm.

8.3 Type A results

 In fig. 56, we see the results attained by human cognition compared with those of

the algorithm. The color scheme for the expert’s results is the same as in fig. 53 while the

color scheme for automated results is as follows: Red outlines indicate neurons and glial

 67

cells, white outlines indicated tiny noisy elements, and green is used for red blood cells /

dying cells.

TABLE 1

Comparison of manual and automated results for segmentation of cell bodies

Img
Manual

num(cbm)

Automated

num(cba)

1-1 Correspondence

num(cbcorr)

Percentage identified

()

()
100

corr

m

num cb

num cb
×

Percentage extra /

missed by expert

() ()

()
100

corra

a

num cb num cb

num cb

−
×

1 57 62 55 96.5 % 11.3 %

2 66 65 60 90.9 % 8.3 %

3 63 59 57 90.5 % 3.4 %

3D 72 68 62 86.1 % 8.8 %

TABLE 2

Comparison of manual and automated results for segmentation of neurons

Img
Manual

num(nm)

Automated

num(na)

1-1 Correspondence

num(ncorr)

Percentage identified

corr

m

()

()
100

num n

num n
×

Percentage extra /

missed by expert

() ()

()
100

corra

a

num n num n

num n

−
×

1 30 40 25 83.3 % 37.5 %

2 32 45 27 84.4 % 40 %

3 31 40 26 83.9% 35 %

3D 33 45 28 84.8% 37.7 %

Since the focus is on identifying neurons, we have a separate column of images in

fig. 56 showing only the outlines of neurons that were identified by our algorithm.

We tabulate these results in Table 1 and Table 2. We find that the ability of our

algorithm to find general cell bodies in the image set is very strong. Examining the

numbers in the ‘1-1 Correspondence’ column, we see that a high percentage (86 %) of

those cell bodies identified by the expert have also been successfully identified by our

automated process. This result is encouraging, considering that many cell bodies,

 68

especially neurons, tend to get split up into multiple pieces due to their non-uniform

staining during the thresholding process. This shows that the patch replacement using

template matching has been overall a successful approach to this problem of non-uniform

staining of cells. In the case of further classifying these cell bodies into neurons and non-

neurons, the results are promising as well. The percentage of neurons found by the expert

that the algorithm was also able to identify is reasonably high as well (85%).

Fig. 57. (a) Original image (b) Segmentation: first pass (c) Corrections by expert during second pass.

However, there are many neurons that are ‘extra’ in the automated segmentation.

Now, these extra neurons could be either of the two following cases:

• Cells that were incorrectly marked as neurons by our algorithm.

• Cells that were actually neurons but were missed by the human observer when

segmenting the first time.

To find out which of these categories the extra neurons fell into, the automated

results were shown to the expert for a second look, to confirm whether each cell was

indeed incorrectly marked, or a real neuron. The results of the expert did not change

much from that of the first time, though there were a few cells that the observer conceded

to have missed during the first time. In fig. 57 we see one such sample, where the 3 white

dots in fig. 57 (c) correspond to cells that the algorithm helped the observer find. In this

sample, we find that out of the 18 extra cells, 3 were conceded to be actually neurons,

 69

while the rest of the 15 were thought to be red blood cells that were incorrectly marked as

neurons.

This excess of cells classified as neurons can be explained due to the following:

• The automated experiments were conducted using an image stack of 20 images

with the kernel comprising of 7 cross-sections, out of which the subset

corresponding to the images handed to the expert were extracted from this stack

and compared. It is thus possible that the algorithm saw neurons in other sections

(beyond those given to the expert) that then propagated its labeling into this

smaller subset.

Fig. 58. (a), (e), (i) Original images (b), (f), (j) Cells identified by expert

(c), (g), (k) Segmentation results depicting cell classification (d), (h), (l) Segmentation results depicting individual cell areas.

• Low value of threshold might have been chosen during the template matching

phase, resulting in many more local maxima forming and influencing cells to be

classified as neurons / glial cells.

 70

• Due to the high priority given to neurons in the 3D classification, this error is

propagated across images and we get many more cells identified as neurons than

those identified by a human observer.

8.4 Type B results

 In fig. 58, we see the results attained for type B. The first column shows original

images, the second the results of the human observer, the third shows the automated

results highlighting the classification, i.e. granule cells(shades of maroon) and

interneurons (shades of green and blue), while the final column randomly colors each cell

to aid in the process of counting.

Purkinje cells and endothelial cells, which occur at the boundary of the densely

populated granule cells and on blood vessels respectively, are not segmented by the

automated algorithm and are consequently ignored in the counting process. The results

are tabulated in Table 3 and Table 4.

TABLE 3

Comparison of manual and automated results for segmentation of granular cells

Img
Manual

num(grm)

Automated

num(gra)

1-1 Correspondence

num(grcorr)

Percentage

identified

corr

m

()

()
100

num gr

num gr
×

Percentage extra /

missed by expert

() ()

()
100

corra

a

num gr num gr

num gr

−
×

1 98 109 86 87.7 % 21.1 %

2 83 101 75 90.3 % 25.7 %

3 73 85 62 84.9 % 27.05 %

3D 112 134 103 91.9 % 23.1 %

Similar to type A, we have a very high percentage of cells segmented by the

human observer that have also been spotted by the automated process, but many extra as

well. The watershed algorithm works well and can be seen by the numbers of 1-1

 71

correspondence in granule cells. Interneurons are spotted by the dense/sparse matrix

discussed earlier.

TABLE 4

Comparison of manual and automated results for segmentation of interneurons

Img
Manual

num(inm)

Automated

num(ina)

1-1 Correspondence

num(incorr)

Percentage

identified

corr

m

()

()
100

num in

num in
×

Percentage extra /

missed by expert

() ()

()
100

corra

a

num in num in

num in

−
×

1 9 15 9 100 % 40 %

2 11 31 11 100 % 64.5 %

3 10 17 10 100 % 41.1 %

3D 13 33 13 100% 60.6 %

The problem of extra cells occurs again, which can either be incorrectly marked

cells or cells that the observer failed to see. However, ending up with extra segments is a

known drawback of the watershed algorithm, and so the results were not re-verified for

confirmation. These extra segments can be eliminated by some changes in the post-

processing method and some tweaking of the threshold data used to classify noise.

 72

CHAPTER IX

CONCLUSION AND FUTURE WORK

9.1 Conclusion

A software application was described that could serve as an alternative to the

manual approach by neuroscientists to segment, count and visualize various types of cells

present in the Nissl stained images obtained from the KESM. While most of the noise

was eliminated from the images and most of the cell bodies were successfully identified,

the classification process still had some false positives when identifying neurons and

granule cells. The watershed algorithm is one of the only ways to approach the problem

of granule cells due to their size and density, and this was successfully implemented to

separate out these cells.

There is still room for better classification results, and we discuss this in the

‘future work’ section.

9.2 Future work

9.2.1 Automatic identification of type A and type B

While using an average intensity threshold was indeed considered to decide if the

image being analyzed was of type A or type B, this was not implemented since it was

likely to be prone to error. More complex analysis to decide on the type is needed for this

classification.

9.2.2 Using faster techniques for matching

The 3D template matching that is currently implemented uses a 3D kernel that

steps through the volume one at a time. This is computationally very costly, and can be

improved by using faster techniques like Fast Fourier Transforms (FFT).

9.2.3 Smoothing on marching cubes visualization

The smoothing operation could serve to make the 3D polygonal representation

using marching cubes more appealing visually.

9.2.4 More accurate classification techniques

 73

The problem of false positives could be further alleviated using better post-

processing techniques for this classification.

9.2.5 Better comparison method for validation

As described in section 8.3, there were certain issues with the set analyzed by the

experts and those analyzed by the automated algorithms. A more consistent comparison

method could be used in future.

 74

REFERENCES

[1] Lars K. Nielsen, Gordon K. Smythl, and Paul F. Greenfield, “Hemacytometer Cell

Count Distributions: Implications of Non-Poisson Behavior,” Biotechnol. Prog.,

vol.7, pp. 560-563, 1991.

[2] David R Caprette, “Counting cells using a Microscope Counting Chamber,”

http://www.ruf.rice.edu/~bioslabs/methods/microscopy/cellcounting.html, Mar

2007.

[3] E. Pauli, M. Hildebrandt, J. Romstöck, H. Stefan, and I. Blümcke, “Deficient

memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule

cell loss,” Neurology, vol. 67, pp. 1383 – 1389, Oct 2006.

[4] Barry L. Jacobs, Henriette van Praag, Fred H. Gage, “Depression and the birth and

death of brain cells,” http://www.biopsychiatry.com/newbraincell/, July 2000.

[5] Francisco López-Muñoz, Jesús Boya and Cecilio Alamo, “Neuron theory, the

cornerstone of neuroscience on the centenary of the Nobel Prize award to Santiago

Ramón y Cajal,” Brain Research Bulletin, vol. 70, no.s 4-6, pp. 391-405, 16

October 2006.

[6] Harald Fodstad, “The Neuron Theory,” Proceedings of the 13th Meeting of the

World Society for Stereotactic and Functional Neurosurgery, vol.77, pp. 20-24,

September 2001.

[7] Harvey Lodish, Arnold Berk, Lawrence S. Zipursky, Paul Matsudaira, David

Baltimore and James Darnell,

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mcb.section.6108 Molecular Cell

Biology, 2000.

[8] Alain Beaudet and Alain Rambourg, “Tri-dimensional Structure of Nissl Bodies: A

Stereoscopic Study in Ventral Horn Cells of Rat Spinal Cord,” The Anatomical

Record, vol.207, pp. 539-546.

[9] “Staining,” http://cancerweb.ncl.ac.uk/cgi-bin/omd?staining, May 2007.

[10] Strausfeld, N. J., I. Vilinsky, and L. C. Hansen , “Golgi Impregnations,

Introduction,” http://web.neurobio.arizona.edu/Flybrain/html/atlas/golgi/index.html,

Apr 2007.

[11] Daniel S. Barth, “Neuroscience Methods, Background,”

http://psych.colorado.edu/~dbarth/PDFs/4052/4052%20Manual%20Chapters/Histol

ogy%20I.pdf.

[12] Bruce H. McCormick, “Development of the Brain Tissue Scanner,” Brain Networks

Lab Technical Report, March 2002.

 75

[13] Ying-Lun Fok, Joseph C. K. Chan, and Roland T. Chin, “Automated Analysis of

Nerve-Cell Images Using Active Contour Models,” IEEE Transactions on Medical

Imaging, vol. 15, June 1996.

[14] Elmoataz, A.; Revenu, M.; Porquet, C, “Segmentation and Classification of various

types of cells in Cytological Images,” International Conference on Image

Processing and its Applications, 1992, pp.385-388, April 1992.

[15] Mussio, P.; Pietrogrande, M.; Bottoni, P.; Dell'Oca, M.; Arosio, E.; Sartirana, E.;

Finanzon, M.R.; Dioguardi, N., “Automatic cell count in digital images of liver

tissue sections,” Proceedings of the Fourth Annual IEEE Symposium, Computer-

Based Medical Systems, 1991, pp.153-160, May 1991.

[16] D. Comaniciu and P. Meer, “Robust Analysis of Feature Spaces: Color Image

Segmentation,” IEEE Conf. on Comp. Vis. and Pattern Recognition, pp. 750-755,

1997.

[17] Constantinos G. Loukas, George D. Wilson, Borivoj Vojnovic, Alf Linney, “An

Image Analysis-based Approach for Automated Counting of Cancer Cell Nuclei in

Tissue Sections,” Cytometry, vol. 55A, pp.30-42, September 2003.

[18] Amini, A.A.; Weymouth, T.E.; Jain, R.C, “Using Dynamic Programming for

Solving Variational Problems in Vision,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol.12, pp.855-867, Sep 1990.

[19] Stephen J. Lockett, Damir Sudar, Curtis T. Thompson, Dan Pinkel, Joe W. Gray,

“Efficient, Interactive, and Three-dimensional Segmentation of Cell Nuclei in

Thick Tissue Sections,” Cytometry, vol.31, no. 4, pp.275-286, Dec 1998.

[20] Yan Kang, Klaus Engelke and Willi A. Kalender, “Interactive 3D Editing Tools for

Image Segmentation,” Medical Image Analysis, vol.8, pp. 35-46, Mar 2004.

[21] Bill Green, “Histogram, Thresholding and Image Centroid Tutorial,”

http://www.pages.drexel.edu/~weg22/hist_thresh_cent.html, Apr 2002.

[22] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao, “Statistical Pattern

Recognition: A Review,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol.22, January 2000.

[23] Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, Second

Edition, Academic Press, February 2003.

[24] Gang Lin, Umesh Adiga, Kathy Olson, John Guzowski, Carol Barnes and Badrinath

Roysam, “A Hybrid 3D Watershed Algorithm Incorporating Gradient Cues and

Object Models for Automatic Segmentation of Nuclei in Confocal Image Stacks,”

Cytometry , vol. 56A, pp. 23-36, 2003.

 76

[25] Perlovsky, L.I., “Conundrum of combinatorial complexity,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 20, pp. 666-670, June 1998.

[26] Zheng Lin, Jesse Jin, Hugues Talbot, “Unseeded region growing for 3D image

segmentation,” Selected Papers from Pan-Sydney Workshop on Visual Information

Processing, 2002.

[27] Vincent L. and Soille P., “Watersheds in digital spaces: an efficient algorithm based

on immersion simulations,” IEEE Transactions on Pattern Analysis and Machine

Intelligence vol.13, pp. 583 – 598, June 1991.

[28] S. Beucher, “The watershed transformation applied to image segmentation,”

Conference on Signal and Image Processing in Microscopy and Microanalysis, pp.

299 - 314, September 1991.

[29] J. B. T. M. Roerdink and A. Meijster, “The Watershed Transform: Definitions,

Algorithms and Parallelization Techniques,” Mathematical Morphology, pp.187-

228, 1999.

[30] Paul R.Hill, C Nishan Canagarajah, David R Bull, “Image Segmentation Using a

Texture Gradient Based Watershed Transform,” IEEE Transactions of Image

Processing , vol. 12, December 2003.

[31] Gang Li, Tianming Liu, Jingxin Nie, Lei Guo, Wong, S.T.C., “Segmentation of

Touching cells using gradient flow tracking,” 4th IEEE International Symposium on

Biomedical Imaging: From Nano to Macro, vol. 12, pp.77-80, April 2007.

[32] Robert Fisher, Simon Perkins, Ashley Walker and Erik Wolfart,

http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm, “Contrast Stretching,” July

2007.

[33] Bob Fisher, Simon Perkins, Ashley Walker and Erik Wolfart,

http://www.cee.hw.ac.uk/hipr/html/median.html, “Median Filtering,” July 2007.

[34] “Edges: Gradient edge detection,”

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edge

s/gradient.htm, July 2007.

[35] Donald G. Bailey, “An Efficient Euclidean Distance Transform,” Combinatorial

Image Analysis, vol. 3322, pp. 394-408, 2004.

[36] R. Klette, “Algorithms for Picture Analysis,” Lecture 08, available at

www.citr.auckland.ac.nz/~rklette/Books/MK2004/Algorithms.htm, February 2005.

[37] Robert Fisher, Simon Perkins, Ashley Walker and Erik Wolfart, “Connected

components labeling,” http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm, July

2007.

 77

[38] Rudolf K. Bock, “Template Matching,”

http://rkb.home.cern.ch/rkb/AN16pp/node283.html#SECTION00028300000000000

00000, April 1998.

[39] S. Beucher and C.Lantuéjoul, “Use of Watershed in Contour Detection,” Proc. Int.

Workshop Image Processing, Real-Time Edge and Motion Detection/Estimation, pp.

12-21, September 1979.

[40] Lee, S.C. Yimmg Wang Lee, E.T., “Compactness measure of digital shapes,”

Region 5 Conference: Annual Technical and Leadership Workshop, pp. 103-105,

April 2004.

[41] D.P. Huijsmans, “Microscopy, Modeling Visualization Mathematical Morphology,”

http://www.liacs.nl/~fverbeek/courses/ia2007/IA2007-lecture10.pdf, April 2007.

[42] William E. Lorensen, Harvey E. Clin, “Marching Cubes: A High Resolution 3D

Surface Construction Algorithm,” Proceedings of the 14th Annual Conference on

Computer Graphics and Interactive Techniques, pp. 163 – 169, 1987.

 78

APPENDIX

Pseudo-code for various algorithms referenced in the thesis are provided here

1. Scan

Initialization:

/* upperList and currentList hold Lines, while patchList holds Patches */

upperList NULL

currentList NULL

patchList NULL

←

←

←

Scanning:

For 0y ← to sy

upperList currentList

currentList NULL

←

←

For 0x ← to sx

 if (,)I x y Fg∈

 Initialize l

 ()sx l x←

while (,)I x y Fg∈ and xx s≤

 1x x← +

()

()

ex l x

y l y

←

←

 pushBack (currentList, l)

if 0y > and isEmpty(currentList) = false and isEmpty(upperList) = false

 augmentResults (upperList, currentList)

2. Augment results(upperList, currentList)

For each line ul in upperList and cl in currentList{

 if () ()s ex ul x cl>

 Advance cl to the next line in currentList

else if () ()e sx ul x cl<

 79

 Advance ul to the next line in upperList

 else

 /* Case 1 - cl overlaps with multiple lines from upperList */

 while (isOverlap(cl,ul) = true and isOverlap(cl, next(ul)) = true)

 Combine () with (())ptrPatch ul ptrPatch next ul

 Advance to the next line in ul upperList

/* Case 2 – cl overlaps with a single line from upperList */

if ()ptrPatch ul NULL=

 initialize new Patch P

((),)

((),)

pushBack L P ul

pushBack L P cl

() ()

() ()

ptrPatch ul ptr P

ptrPatch cl ptr P

←

←

 fill all attributes of P based on values of ul and cl

 (,)pushBack patchList P

else

 Initialize patch ()P ptrPatch ul←

((),)pushBack L P cl

 ()ptrPatch cl P←

Adjust the attributes of P based on the newly added cl

Advance cl to the next line in currentList

3. Sort by storage

for 0i ← to sz

 for 0j ← to sy

 for 0k ← to sx

 Initialize index ind(x,y,z) to (k,j,i)

 if VoxelsAtHeight[I(k,j,i)]=NULL

 VoxelsAtHeight[I(k,j,i)] ← ind

 else

 80

Insert ind at the end of the List pointed to by

VoxelsAtHeight[I(k,j,i)]

4. Is marked (voxel v(x,y,z))

 if Labels[z][y][x]>0 or Labels[z][y][x]=WSHED

 return true

 return false

5. Fast watersheds

Sort all the voxels in the Image Volume I using the sortByStorage() algorithm

for minh h← to hmax

 for each voxel v in the list VoxelsAtHeight[h]

 set Labels(v) ←MASK

 if ' () such that (')v N v isMarked v true∃ ∈ =

 set Distance(v) ←1

 pushBack(Q, ind)

 set curDist ←1

 pushBack(dummyVoxel)

 while(true)

 Initialize v ← begin(Q)

 if v = dummyVoxel

 if isEmpty(Q) = true

 Break

 else

 pushBack(dummyVoxel)

 curDist ←curDist + 1

 ind ← begin(Q)

 For every voxel 'v in ()N v

 81

 if Distance('v)<curDist and isMarked('v)

 if 'v is named

 if Labels(v) = MASK or WSHED

 Labels(v) = Labels('v)

 else if Labels(v) ≠ Labels('v)

 Labels(v) = WSHED

 else if Labels(v) = MASK

 Labels(v) = WSHED

 else if Labels('v)=MASK and Distance('v)=0

 set Distance('v) to curDist + 1

 pushBack(Q, 'v)

 //New minima

 for every voxel v in VoxelsAtHeight[h]

 set Distance(v) ←0

 if Labels(v)=MASK

 Assign new label l at voxel v

 pushBack(v)

 while isEmpty(Q) = false

 Initialize 'v ←begin(Q)

 for every neighbouring voxel ''v in N('v)

 if Labels(''v)=MASK

 pushBack(''v)

 set Labels(''v) ← l

6. Hole fill(patch P)

Initialize a Boolean matrix Img of dimensions rows cols× , where

()

()

max min

max min

(()) (()) 1

(()) (()) 1

cols x i P x i P

rows y i P y i P

= − +

= − +

 82

[]

min min

Initialize every index in Img to

for each ()

for each (), ()

Img[() (())][() (())]

s e

false

l L P

x x l x l

set y l y i P x l x i P true

∈

∈

− − =

//Complement the Img matrix

for each (,) where 0 ,0

Img[][] Img[][]

x y x cols y rows

y x y x

≤ < ≤ <

=

//Run Connected-Component labeling on the resulting Img, clearing the pixels of all

//patches that do not touch any boundary

newPatchList (Img[][])returnPatchList←

[]

min min max max

min min max max

min min

for each

(()) (()) (()) (())

(()) (()) (()) (())

for each ()

for each (), ()

Img[() (())][() (())]

s e

nP newPatchList

if x i nP x i P and x i nP x i P

and y i nP y i P and y i nP y i P

l L nP

x x l x l

set y l y i P x l x i P fa

∈

≠ ≠

≠ ≠

∈

∈

+ + = lse

//Complement Image Img again

for each (,) where 0 ,0

Img[][] Img[][]

x y x cols y rows

y x y x

≤ < ≤ <

=

//Resulting patch P is one without any holes (fig. 22 e)

7. Patch refinement (PatchList)

/* This algorithm inputs a list of Patches in the current image and corrects by means of

modification or replacement, all Patches that do not satisfy certain score requirements */

for each patch P PatchList∈

()

min max min

min min

min max

() or () or ()

Classify as noise. Remove from

() or ()

Analyze Convolved Image and get local maxima near

(, ,) (), () such that

c

if HWR P HWR HWR P HWR n P n

P P PatchList

if Cp P Cp Cr P Cr

I P

if x y z i P i P

< > <

< <

∃ ∈ (, ,)

Modify or Replace patch so its attributes are within acceptable limits

c
I x y z Threshold

P

≥

 83

8. Bounding-box overlap (patch P1, patch P2)

if ys(imin(P1)) > ye(imax(P2)) or ys(imin(P2)) > ye(imax(P1))

 Return false

else if xs(imin(P1)) > xe(imax(P2)) or xs(imin(P2)) > xe(imax(P1))

 Return false

else

 Return true

9. Patch overlap (patch P1, patch P2)

Initialize Boolean matrix M of size

() ()max 1 min 1 max 1 min 1(()) (()) 1 (()) (()) 1x i P x i P y i P y i P− + × − +

for each line 1()l L P∈

 for () ()s ei x l to x l←

 set [][]M y i true←

for each line 2()l L P∈

 for () ()s ei x l to x l←

 if [][]M y i true=

 Return true

Return false

10. Group in 3D (list[] Patches)

for 0←i to sz - 1

 Initialize patch])[(iPatchesbegincurPatch ←

 Initialize patch])1[(+← iPatchesbeginupPatch

 while y(imin(upPatch)) < y(imax(curPatch)) and upPatch<>end(Patches[i+1])

 if isBoundingBoxOverlap(curPatch, upPatch) = false

 Advance upPatch to next patch in Patches[i+1]

 else

 if isPatchOverlap(curPatch, upPatch) = false

 Advance upPatch to next patch in Patches[i+1]

 else

 /* Patch is overlapping. Add to the Blob list */

 if ptrBlob(curPatch)<>NULL

 ptrBlob(upPatch) ()ptrBlob curPatch←

 84

 pushBack (L(ptrBlob(upPatch)), upPatch)

 Adjust attributes of ptrBlob(upPatch) with new data

 else

 Create a new Blob B

 pushBack (L(B), curPatch)

 pushBack (L(B), upPatch)

 ptrBlob(curPatch) B←

 ptrBlob(upPatch) B←

 Fill attributes of B

 Add B to BlobList

 Advance upPatch to next patch in Patches[i+1]

 Advance upPatch to next patch in Patches[i+1]

11. Marching cubes()

for each image Ik in the data set, where (0,)
z

k s∈

Read image Ik and next image Ik+1

for each position (, ,)x y z in Ik

 Read in the values of the four neighboring voxels of (x, y, z) in Ik:

3

2

1

0

(1, 1,)

(, 1,)

(1, ,)

(, ,)

v x y z

v x y z

v x y z

v x y z

= + +

= +

= +

=

 Read the values of the corresponding voxels in Ik+1:

7

6

5

4

(1, 1, 1)

(, 1, 1)

(1, , 1)

(, , 1)

v x y z

v x y z

v x y z

v x y z

= + + +

= + +

= + +

= +

Calculate the table index TI as described using the values of the corner

voxels of the cube as values for 7 6 5 4 3 2 1 0(, , , , , , ,)i i i i i i i i

Use the calculated TI to extract information about edge intersections and

corresponding triangles from the table

Calculate the normal for the triangles so that lighting calculations are

accurate

 85

VITA

Aswin Cletus D’Souza received his Bachelor of Engineering (B.E.) in Computer

Science & Engineering from Manipal Institute of Technology in 2004. He entered the

Master of Science (MS) program in the department of Computer Science at Texas A&M

University in August 2005 and will be receiving his degree in December 2007. He is

planning to start his professional career in the industry upon graduation. He can be

contacted either at aswindsouza@yahoo.com or his current residence: 6014 Winsome

Lane, #209, Houston, TX 77057.

