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ABSTRACT 

 

Automated Counting of Cell Bodies Using Nissl Stained Cross-Sectional Images. 

 (December 2007)  

Aswin Cletus D’Souza, B.E, Manipal Institute of Technology, India 

Chair of Advisory Committee: Dr. John Keyser 

 

 Cell count is an important metric in neurological research. The loss in numbers 

of certain cells like neurons has been found to accompany not only the deterioration of 

important brain functions but disorders like clinical depression as well. Since the manual 

counting of cell numbers is a near impossible task considering the sizes and numbers 

involved, an automated approach is the obvious alternative to arrive at the cell count. In 

this thesis, a  software application is described that automatically segments, counts, and 

helps visualize the various cell bodies present in a sample mouse brain, by analyzing the 

images produced by the Knife-Edge Scanning Microscope (KESM) at the Brain 

Networks Laboratory.  

The process is described essentially in five stages: Image acquisition, Pre-

Processing, Processing, Analysis and Refinement, and finally Visualization. Nissl 

staining is a staining mechanism that is used on the mouse brain sample to highlight the 

cell bodies of our interest present in the brain, namely neurons, granule cells and 

interneurons. This stained brain sample is embedded in solid plastic and imaged by the 

KESM, one section at a time. The volume that is digitized by this process is the data that 

is used for the purpose of segmentation. 

While most sections of the mouse brain tend to be comprised of sparsely 

populated neurons and red blood cells, certain sections near the cerebellum exhibit a 

very high density and population of smaller granule cells, which are hard to segment 

using simpler image segmentation techniques. The problem of the sparsely populated 

regions is tackled using a combination of connected component labeling and template 
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matching, while the watershed algorithm is applied to the regions of very high density. 

Finally, the marching cubes algorithm is used to convert the volumetric data to a 3D 

polygonal representation.  

 Barring a few initializations, the process goes ahead with minimal manual 

intervention. A graphical user interface is provided to the user to view the processed data 

in 2D or 3D. The interface offers the freedom of rotating and zooming in/out of the 3D 

model, as well as viewing only cells the user is interested in analyzing. The 

segmentation results achieved by our automated process are compared with those 

obtained by manual segmentation by an independent expert.  
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CHAPTER I 

INTRODUCTION 

The human brain has long been an area of immense fascination for researchers 

who believe that fully understanding its structure and functions would lead to great 

strides in the field of science, from biology to artificial intelligence. In this pursuit to 

completely understand the brain, scientists look to solve smaller and simpler problems 

before attempting to solve more complex ones and this is the reason the mouse brain has 

gained much attention from research groups from all across the scientific world.  

From a medical point of view, the study of the mouse brain could help in 

identifying and arriving at possible treatments for neurological disorders like Parkinson’s 

disease and clinical depression. An important metric in this study has been the count of 

certain cell bodies in the brain, like neurons, since the loss of neurons has been found to 

accompany the deterioration of many brain functions. Attaining accurate counts of these 

cell bodies is however not an easy task due to the microscopic size of these cells, and the 

vast numbers in which they are present.  

Certain methods of estimation have been used over the years in laboratories, like 

the hemacytometer and the counting chamber, but these methods are heavily dependent 

on sample concentrations and the estimation formula used [1][2]. Fortunately, due to 

much technological advancement in the fields of microscopy and digital imaging, more 

accurate counting mechanisms are now possible. Detailed cross-sectional images of 

mouse brain tissue can be extracted using devices like the Knife-Edge Scanning 

Microscope (KESM), which can then be processed automatically by means of various 

algorithms, and visualized in 3-D.  

This thesis will describe a software application that counts cells in Nissl-stained 

image data obtained from the KESM, and enables the user to visualize these cells in 3-D 

using a graphical user interface.  

____________ 

This thesis follows the style and format of IEEE Transactions on Visualization and 

Computer Graphics. 
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1.1 Objectives 

The primary goal of this thesis is to describe a software alternative to 

neurobiologists for purposes of obtaining cell counts and visualizing the cells of interest 

from image data. The application described has the following features:  

i. An ability to load a number of consecutive images in the stack 

ii. An automated process that segments the cells of interest 

iii. A provision for the user to set certain cell characteristics that might help in 

segmentation 

iv. Ability to traverse through the image set one image at a time 

v. Options to show the boundaries of the cells found, in 2-D 

vi. A 3-D visualization showing the cell bodies identified  

vii. Graphical user interface  

1.2 Significance 

Neuron loss has been shown to have a significant effect on functions like memory 

acquisition and illnesses like clinical depression [3] [4]. This correlation is also evident in 

patients suffering from various neurological disorders like Alzheimer’s and Parkinson’s 

disease. Scientists studying these disorders in mice can gain significant savings in time 

with the help of an automated process that supplies them readily with the cell count of the 

neurons in the tissues they are studying. Such a process can be used specifically by 

members of the Brain Networks Laboratory to study brain tissue. 

1.3   Outline of the thesis 

The problem of automated cell counting has been addressed before and many 

techniques have been put forth to solve it. In Chapter II, we provide the reader with 

background information needed to understand the context and the conclusions of this 

thesis. 

The working of the Knife-Edge Scanning Microscope is briefly described in 

Chapter III, Image acquisition. The two prominent types of images that we shall term 

type A and type B are introduced here, and their differences explained. Since the cells 

found in these images vary so vastly in size, shape and density, the algorithms used to 
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tackle them vary as well. We use a combination of connected component labeling and 

template matching for type A segmentation, and a variation of the watershed algorithm 

for segmentation of type B.  

Pre-processing of the images must take place before the application of either of 

the algorithms mentioned above, in order to aid in better segmentation. We introduce 

these techniques in Chapter IV, Pre-processing, while Chapter V, Processing, provides an 

in-depth description of the two algorithms for the respective types of images.  

 Post-processing is an important stage, as both these algorithms do not result in 

perfect segmentation immediately once they are run. Splitting of groups of cells into their 

individual constituents, merging of components that are part of the same cell, elimination 

of noise, and so on are important procedures that must be done before the final stage. 

These are discussed in detail in Chapter VI, Analysis and Refinement. 

 Once the cells have been segmented, a visualization of them is helpful to the 

neuroscientist, who can then view the dataset from any angle/zoom and study the 

structure and arrangement of these cell bodies. Marching cubes is used to generate the 3-

D volumetric representation of this data set. We describe this algorithm as well as the 

other interface features in Chapter VII, Visualization.  

To find out how well the results of the software application compare with those of 

manual segmentation, we describe the method used to validate the results in Chapter VIII. 

The help of an independent expert is taken for comparison.  

Finally, the conclusions of the research work, and a list of possible improvements 

are provided in Chapter IX.  
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CHAPTER II 

BACKGROUND AND OVERVIEW OF STAGES 

   In this chapter, we provide the reader with a brief description of the neuron, the 

staining mechanism that was used to obtain the samples, and a review of image 

segmentation literature. 

2.1       Basic concepts in neuroscience  

2.1.1 Neuron theory  

The ‘neuron theory’ states that nerve tissue is composed of individual cells which 

are fully functional units. Although the morphology of various types of neurons differs in 

some respects, they all contain four distinct regions with differing functions: the cell body, 

the dendrites, the axon, and the axon terminals [5] [6] [7]. The structure of a standard 

neuron can be seen below in fig. 1. 

 

 

 
Fig. 1. Neuron anatomy.  

[http://en.wikipedia.org/wiki/Image:Neuron-no_labels.png] 

 

 

 

2.1.2 Nissl cell bodies 

Named after Franz Nissl who developed a staining mechanism to identify 

neuronal cell bodies throughout the brain, Nissl cell bodies were the terms used to 

describe dense granular masses often found in nerve cells [8]. 
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2.2       Staining methods 

Staining is basically the process of making a compound of interest (DNA, 

proteins) more easily identifiable by enhancing its visibility through certain chemical 

means. The online medical dictionary defines staining as ‘the use of a dye, reagent, or 

other material for producing coloration in tissues or microorganisms for microscopic 

examination’ [9].  For the study of neurons, the following staining methods have been 

widely used:  

2.1.1 Golgi staining 

The Golgi technique stains neurons by using silver chromate. The detailed 

structure of the neuron (axons, dendrites) is made visible via this stain and has been very 

useful in the study of these cells. The Golgi method is essentially a stochastic technique 

and its exact chemical mechanism remains unclear [10]. 

2.1.2  Nissl staining  

Nissl staining stains the Nissl bodies in cells, technically called the endoplasmic 

reticulum. The staining procedure consists of sequentially dipping the mounted brain 

slices in about a dozen different solutions for specified amounts of time [11]. We see a 

section of a Nissl-stained image below in fig. 2. 

 

 

 

 
Fig. 2. Section of a Nissl-stained image. 
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2.3       Literature review  

The application of computer image processing to cell counting and recognition 

has drawn much attention from image processing and cell biology communities [13]. 

Early work was based on simple thresholding techniques which assumed that the cells 

were significantly darker/lighter than background pixels [14] [15]. In the case of colored 

images, different colors were used to segment different objects [16]. This segmentation 

method has been applied to the detection of cancer cell nuclei as well [17]. Active 

contour detection has at times also been used in cell identification [13] [18]. In general 

however, most work in this area of cell segmentation could be broadly classified into two 

techniques: interactive and automated.  

2.3.1 Interactive cell segmentation 

Here, the human visual system and expert judgment is employed to manually 

segment and classify cell regions from the images, using a computer graphics device such 

as a tablet or a mouse. In some techniques, the expert goes through several 2-D images, 

marking the boundaries of the cell/nucleus of interest as he/she goes along [19]. The 

algorithm finally generates a surface that uses these boundaries to visualize the cell.  

Reasoning that this process above was too tedious for the expert, work has been 

done in the development of several tools like hole-filling, point-bridging and surface-

dragging that work in 3-D instead of 2-D, thus claiming to save valuable time during the 

segmentation process [20]. Many of these techniques employ some basic automated 

segmentation techniques to get started, before the manual process begins. 

2.3.2 Automated segmentation 

There has been a lot of work done in the field of automated segmentation, as most 

of the time, medical image stacks run to hundreds of images, with cell sizes being 

extremely small. Expecting a user to manually demarcate the cell/nucleus boundaries is 

not only time consuming, but near to impossible considering the tens of thousands of 

cells that might be present in the volume. Automated techniques will consequently be 

much faster, and will not burden the examiner with any of the segmentation work, other 
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than the initialization of parameters. Prior work in the automated effort can be broadly 

classified as: 

i. Segmentation by threshold values 

ii. Pattern recognition 

iii. Gradient flow techniques   

i. Segmentation by threshold values 

In image analysis, there needs to be a key criterion to differentiate between 

objects of interest and other objects, or in other words, ‘foreground pixels’ and 

‘background pixels’.  

 

 

 

 

Fig. 3. Pepper seeds on a white surface. 

 

 

 

For instance, in fig. 3, it is easy to identify the foreground pixels as shades of 

brown and background pixels as white. Thresholding is an image processing technique 

for converting a grayscale or color image into a binary image based upon a defined value. 

If a pixel in the image has an intensity value less than the threshold value, the 

corresponding pixel in the resultant image is set to black. Otherwise, the resulting pixel is 

set to white. Image thresholding is very useful for keeping the significant part of an 

image and getting rid of the unimportant part or noise. This holds true under the 

assumption that a reasonable threshold value is chosen [21]. 

Formally, if intensity thresholding is applied to the pixels of the pre-processed 

image I, with the threshold value t, the resulting image Ir will be: 
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One of the key problems of thresholding is that it is very sensitive to imaging 

variations in light and noise, and thus must be used only in situations where the 

foreground/background pixels are clearly identifiable [13]. Also, as can be seen in fig. 4, 

objects of interest that touch each other are hard to separate. Thresholding when all cells 

are clearly separable is a simple and straightforward way to proceed, but when closely 

packed cells appear in images, like in some of the cases in our Nissl stained samples, this 

technique is of little help as a solution.  

 We use this technique in the pre-processing stage for images of cells that are 

sparsely populated.  

 

 

 

 

Fig. 4. Image after thresholding. 

 

 

 

ii. Pattern recognition  

Pattern recognition is defined as ‘the study of how machines can observe the 

environment, learn to distinguish patterns of interest from their background, and make 

sound and reasonable decisions about the categories of the patterns’ [22]. ‘Machine 

Vision’ is more closely related to our cell counting problem, as it is the area of study 

where images captured by an imaging system are analyzed using pattern recognition 

techniques to identify and classify objects of interest [23]. Some of the techniques are 

briefly described below: 
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• Template matching has long been used as a technique to help match objects of 

interest with the sample under supervision. Here, a template or a prototype, 

usually a shape that is a known representation of the object of interest, is searched 

for in the sample dataset and checked for how similar the two are, taking into 

consideration the various orientations the object could be in. A certain ‘score’ or 

‘measure’ of similarity is calculated, and a threshold value of this score is used to 

decide the absence or presence of the object in the sample under inspection. 

• Statistical classification basically represents each pattern in terms of a set number 

of features, and calculates how closely the sample matches these features. The 

pattern could be viewed then as a point in d-dimensional space, where d is the 

number of features that have been enumerated [23]. Lin et al. use a feature set 

consisting of volume, texture, convexity, shape, circularity, area, mean radius and 

eccentricity [24]. The probability distributions of the patterns belonging to each 

feature class must either be specified explicitly during design or learned by means 

of a training set. 

• Syntactic approach uses the combination of simpler features to describe complex 

features. The complexities of implementing grammar and noisy patterns result in 

large computational needs, due to the ‘curse of dimensionality’ [25].  

• Neural networks use networks and combinations of simple processors to attack 

the problem of feature extraction. It is closely related to statistical pattern 

recognition, though its advantages as a result of parallel processing are note-

worthy. 

iii.  Gradient flow techniques 

The watershed algorithm is an algorithm that has been widely studied and used 

over the last couple of decades for the purposes of image segmentation [24] [26] [27] [28] 

[29] [30].  

The biggest advantage of this algorithm is in attacking the problem of ‘connected 

cells’, which remained unsolved when thresholding techniques were used. It places great 

value on the gradient of the cells, which tend to go from dark to light at the borders (or 
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vice-versa if cells are stained white). If these areas where the gradient changes sharply 

are spotted and all the areas in between are connected to each other, a segmentation of the 

image is formed that is successful in distinguishing individual cells in a clustered section.  

The key principle behind this algorithm is to consider that the gray levels of the 

pixels of the image are not just color values, but ‘height values’, where the greater the 

gray-scale value, the taller the peak and vice-versa. Thus, the image represents not mere 

pixels, but a topographical view of crests and troughs all across the image. At this point, 

we start filling the scene with water, up to a height h, incrementally from the lowest to 

the highest value.  

The basins that are formed correspond to the connected components in the image, 

and the points where different basins meet are called the watershed points, much like 

dams. This algorithm tends to over-segment the image, and post-processing techniques 

are performed to ensure a good final segmentation.  

Gradient flow tracking is a novel approach to segmentation. Instead of growing 

the catchment basins from the minima outwards, like the watershed algorithm, this 

algorithm points each voxel in the direction of its gradient flow. The gradient vector field 

is then diffused with an elastic deformable transformation, which smoothes the gradient 

field by propagating gradient vectors of large magnitude to vectors with weak gradients. 

Thus, at the end of the procedure, we have each voxel either pointing to another voxel by 

means of the gradient flow vector, or being a minimum in itself. All voxels that flow to 

the same center are then classified together as a cell, and this automatically separates 

individual cells from clusters [31]. 

2.4       Overview of stages  

In fig. 5 we show a pictorial representation of the stages that will soon be 

described in the chapters to follow, with each chapter describing each of the stages in the 

process. 

Though there are essentially 5 stages: image acquisition, pre-processing, 

processing, analysis and refinement, and visualization, the algorithms applied in each 

stage to the different types of images vary. The two types, type A and type B are 



 11 

introduced in section 3.4. Though the image acquisition stage and the visualization stage 

are identical for both types of images, the three stages in between vary vastly, as depicted 

in fig. 5 by the branching off of the stages in two directions.  

 This is because, as we will explain in the chapters to follow, the same 

segmentation methods do not yield the best results for both types of images.  

 

Fig.5. The stages of the process 

 

 

 

Type A image segmentation heavily depends on the post-processing stage, since 

much of the 3D grouping can happen only after the components at each image level are 

filtered appropriately for noise and mistakenly split components. Type B however attains 

a fairly good quality of segmentation after the processing stage itself.  

We start with the first stage, image acquisition in the next chapter. 
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CHAPTER III 

IMAGE ACQUISITION  

The Knife Edge Scanning Microscope (KESM) is an instrument at the Brain 

Networks Laboratory of Texas A&M University that performs the simultaneous slicing 

and imaging of a mouse brain (fig. 6). It was designed by Dr. Bruce McCormick, and has 

since played a pivotal role as the bridge between the biological world and computer 

science, converting stained samples of mouse brain into its volume digitized 

representation that can then be used for various types of study using computer algorithms.  

3.1 Features of the KESM 

The KESM handles the following operations: 

i. Slices layers of mouse brain embedded in solid plastic in a staircase like 

fashion.  

ii. Lights up the imaging sample using light shone through the diamond knife 

that is used for slicing.  

ii. Captures a high resolution, high magnification image of the layer being 

sliced currently 

iii. Stores these images that were read into a digital storage device. 

 

 

 

Fig. 6. Photograph of the KESM. 

[http://research.cs.tamu.edu/bnl/static/galleryKesm.html] 
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(a)                                                           (b) 

Fig. 7. (a) 3D rendering of the knife edge at work (b) Labeled diagram of the internal working of the knife edge. 

[http://research.cs.tamu.edu/bnl/static/galleryKesm.html] 

 

 

3.2 Sub-systems of the KESM 

This microscope is comprised of the following sub-systems, to enable it to 

provide for all the features mentioned above in 3.1. The sub-systems as mentioned in [12] 

are as follows:  

i. The precision positioning system and ultra-microtome axis align the 

sample in X, Y and Z and keeps track of the position of the sample and the 

knife edge. 

ii. The image capture system comprises of the microscope objective coupled 

with the high-resolution camera 

iii. The Image analysis and Data storage system contains 5 clustered servers 

that store the information transferred over the gigabit network. 

3.3 Working principle 

The brain specimen which is in solidified form after being embedded in plastic is 

mounted using the precision positioning system. The diamond knife accurately cuts this 

solid block in a step-wise fashion to minimize resistance. At the same time, light is shone 

through the diamond knife and into the layer of tissue that is currently being sliced (fig. 

7). This illuminates the region and provides better lighting conditions for the imaging 

system to capture the details as accurately as possible. The diamond knife thus serves 

dual use, one for the physical sectioning of the tissue and the other as an optical element 

through which light is shone during sectioning [12]. 
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Fig. 8. The two kinds of image samples (a) Type A (b) Type B. 

 

3.4 Types of images attained 

We come across two types of cell images in our dataset. The first kind, which we 

call type A for the remainder of this thesis, is comprised of regular sized cell bodies – 

mainly neurons, glial cells, red blood cells and dying cells. They can be seen in fig. 8 (a). 

For the most part (at least 80-90% of the image space), the Nissl stained images attained 

comprise of regions of type A.   

At certain portions of the brain, like the cerebellum, granule cells of very small 

size occur in very high densities in a band like fashion. We call these type B images and a 

sample can be viewed in fig.8 (b). Though the differences are obvious, they are 

enumerated here for clarity:  

• Cells in type A are sparsely populated, while those in type B are very densely 

populated 

• There are two main types of cells in type A: red blood cells / dying cells that 

are dark, small and compact in shape and neurons / glial cells that are larger, 

often hollow or exhibit a central dark spot inside a hollow ellipse, resembling 

an ‘eye’. There are three main types of cells in type B: granule cells that are 

tiny and compact, interneurons that are sparsely populated, and purkinje cells 

that are big and have a lighter texture than the rest of the cell bodies.  

We analyze these two types in greater detail with the help of some magnified 

images, in the following sections.  

 



 15 

 

Fig. 9. Type A cells, with green outlines for possible RBC/dying cells, and red outlines highlighting the neurons. 

 

3.4.1 Type A  

The descriptions for each cell are provided below, with fig. 9 showing magnified 

sections of the image for better understanding: 

• Neurons / Glial cells:  are marked with red outlines in the figure above. They are 

identified by the central dark nucleus and an elliptical outer boundary, which 

makes them similar to the shape of the human eye.  

• Red blood cells / dying cells: are darker and more compact than the rest of the cell 

bodies present. However, it is easy to mistake neurons for these cells because the 

central nucleus of the neuron is not visible in all cross-sections. Thus, the 

neighboring sections must be analyzed as well before classifying a cell as an RBC 

or a dying cell.  

• Endothelial cells: occur rarely, but are still visible in Nissl images. They are 

found surrounding blood vessels.  
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Fig. 10. The various kinds of cells found in images of type B. 

 

3.4.2 Type B  

Type B on the other hand consists of the following types, as seen in fig. 10: 

• Granular cells: are highlighted by light green in the figure. They are densely 

populated and very tiny. 

• Purkinje cells: are bigger, and exhibit neuron-like characteristics like those we 

find in type A. They are circled with yellow in fig. 10.  

• Interneurons: are highlighted by red color. As is evident in the image, they are 

very sparsely populated in comparison to granular cells. 

• Endothelial cells: are present in type B images again, and are found next to blood 

vessels. 
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CHAPTER IV 

PRE-PROCESSING 

In this chapter, we describe the various image processing techniques that were 

applied to the image stacks before the processing stage.  

4.1.  Image normalization 

Normalization, also known as ‘contrast stretching’, is an image enhancement 

technique that ‘stretches’ the range of intensity values of the image. In our cross-sectional 

image stacks, due to variations in lighting and positioning on the KESM, the individual 

images often vary in their brightness and gray-scale range. This non-uniformity in range 

is problematic in the processing stage, where a high level of importance is placed on the 

gray-scale value of each pixel. Both, the watershed as well as the thresholding algorithms 

are based on the assumption that each image has the same brightness levels as the rest of 

the images in the stack.  

To achieve this range stretching, we should first decide on the minimum and 

maximum gray scale value that the resulting image should have. Let us call these 

extremes Rmin and Rmax. Usually, they correspond to the range of values that the data 

element can hold, for instance for an 8-bit integer, Rmin = 0 and Rmax = 255. We then find 

the minimum and maximum of the values of the pixels in image I under processing. Let 

us call these Pmin and Pmax. . In order to prevent rare noisy pixels from distorting this 

range, the histogram of the image is analyzed to select better values for Pmin and Pmax. [32] 

Finally, for each pixel P in the image I, the resultant pixel R is calculated as:   

max min
min min

max min

( )
R R

R P P R
P P

− 
= − + 

−   

4.2  Median filtering  

Median filtering is used to reduce noise in an image. While a similar technique 

called ‘Mean filtering’ is used to accomplish noise reduction as well, it suffers from the  
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Fig. 11. (a) Image before median filtering (b) Image after Median filtering. 

 

problem of blurring, as each pixel is replaced by the average intensity value of its 

neighbors. In median filtering though, no such average is taken, and the problem of 

blurring is thus avoided. This technique instead sorts the neighboring pixel values in a list, 

and the ‘median’ value, which is the value at the center of the list, is used [33]. 

To put it formally, if image I has dimensions x y zS S S× × , Pi,j,k is a pixel at location 

(i,j,k) where 0 xi S≤ ≤ , 0 yj S≤ ≤ and 0 zk S≤ ≤ , and [ ]0.. 1N n −  is an array that holds 

the pixel values of n neighbors of Pi,j,k in sorted order, then the resulting median-filtered 

Image Ir contains at location (i,j,k), 

, , / 2i j kR N n=     

For instance, in the following 3 3×  sample neighborhood, the central value P1,1 is 

a noisy pixel whose value needs to be suppressed.  

100 97 104 

102 6 104 

101 94 99 

Sorting the values, we have the neighborhood array N with n=9, as follows: 

{ }[0..8] 6,94,97,99,100,101,102,104,104N =  

The resultant pixel after median filtering will be 

1, 1 9 / 2 [4] 100R N N=   = =     
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Sample median filtering results can be seen in fig. 11.  

4.3 Thresholding 

As explained in section 2.3.2, thresholding is the process of classifying the image 

contents into foreground and background pixel classes, Fg and Bg. On a gray scale image, 

this is done by comparing each pixel to a threshold value t. Pixels that cross the threshold 

t are labeled Fg and the remaining Bg. Formally,  

( , ) ( , )

( , ) ( , )

x y Fg I x y t

x y Bg I x y t

∈ ∀ ≥

∈ ∀ <
 

The resulting image after thresholding can be expressed as a boolean matrix Ir as follows 

1

0
r

I Fg
I

else

∈
= 


 

4.4  Gradient transform  

The gradient transform serves to provide important cues about cell boundaries, 

which are helpful in the watershed algorithm when building ‘dams’ on the edges of the 

catchment basins. In the case of the Nissl images we obtained, the gradient from cell 

pixels (foreground) to background pixels is much higher than the corresponding intra-

background or intra-foreground pixels. This important visual cue is exploited in the 

human cognition system as well, and is similarly applied to machine vision using this 

transform.  

For an image function ( , )f x y , the gradient magnitude ( , )g x y  is computed as 

follows [34]:   

2 2( , )g x y x y≅ ∆ + ∆  

 
( , ) ( , )

( , ) ( , )

x f x n y f x n y

y f x y n f x y n

∆ = + − −

∆ = + − −
 

where n = 1  
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Fig. 12. Sobel Operators for (a) X-direction (b) Y-direction and (c) Z-direction. 

 

The Sobel operator is used as an approximation to calculate these equations. Since 

we have a 3D image, 3-dimensional operators are used for each of the x, y and z 

directions, as shown in fig. 12.  

The Sobel operator is less sensitive to isolated noisy variations in pixel values, 

since the filter calculates a local average over sets of pixels in the immediate 

neighborhood. Fig. 13 shows the results of a 2-D Sobel operator on a sample portion of a 

Nissl image. 

 

 

  

Fig. 13. Sobel Gradient Transform on Nissl image (a) Before (b) After. 

 

 

4.5  Distance transform  

The distance transform runs through the image and returns the distance of each 

point from its nearest boundary. Many segmentation decisions can be made with the 
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knowledge of how ‘deep’ a pixel is in a cell, and this aids the watershed algorithm while 

creating catchment basins.  

 

 

  

Fig. 14. Chamfer 2-D Distance transform on sample image (a) Before (b) After. 

 

 

Image thresholding is first applied to the image stacks to separate the Image I into 

foreground and background pixel classes, Fg and Bg. This binary image is then used to 

calculate the distance transformed image Id as follows [35],  

where the metric | x - x0, y - y0, z - z0 | is a distance measurement used to quantify how 

near or far the point ( , , )x y z  is from the closest background pixel. Euclidean distance, 

defined as  

 

is the best metric of distance, but due to its complexity, simpler approximations are 

generally used in its place. An algorithm known as the chamfer distance transform [36] 

accomplishes this in a 2-pass process to generate the distance transformed image Id. The 

algorithm propagates information about boundaries from pixel to pixel, in a pre-defined 

direction in the first pass. Background pixels are assigned a distance of 0, and this value 

is incrementally passed on to the pixels that are adjacent to it. In the second pass, the 

same is done in the reverse direction, and we end up with Id consisting of an 

approximation of the distance between each pixel and its nearest boundary. A sample 2-D 

distance transform can be seen in fig. 14.  
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If the distance between the central pixel and its neighboring pixels in a 3 3 3× ×  

filter are described by the constants d1, d2, d3, d4 and d5, then the following is used to 

propagate boundary information in Pass 1, where the direction is chosen as left to right, 

top to bottom and back to front:  

5 4 5

4 3 4

5 4 5

2 1

( 1, 1, 1) , ( , 1, 1) , ( 1, 1, 1)

( 1, , 1) , ( , , 1) , ( 1, , 1)

( , , ) min ( 1, 1, 1) , ( , 1, 1) , ( 1, 1, 1)

( 1, 1, ) , ( , 1, )

d d d

d d d

d d d d

d d

I x y z d I x y z d I x y z d

I x y z d I x y z d I x y z d

I x y z I x y z d I x y z d I x y z d

I x y z d I x y z d

− − − + − − + + − − +

− − + − + + − +

= − + − + + − + + + − +

− − + − + 2

1

, ( 1, 1, )

( 1, , )

d

d

I x y z d

I x y z d

 
 
 
 
 

+ − + 
 − + 

 

In pass 2, the boundary information is propagated from right to left, bottom to top and 

front to back, as follows: 

1

2, 1, 2

5, 4, 5

4, 3, 4

5,

( 1, , )

( 1, 1, ) ( , 1, ) ( 1, 1, )

( , , ) min ( 1, 1, 1) ( , 1, 1) ( 1, 1, 1)

( 1, , 1) ( , , 1) ( 1, , 1)

( 1, 1, 1) (

d

d d d

d d d d

d d d

d d

I x y z d

I x y z d I x y z d I x y z d

I x y z I x y z d I x y z d I x y z d

I x y z d I x y z d I x y z d

I x y z d I x

+ +

− + + + + + + +

= − − + + − + + + − + +

− + + + + + + +

− + + + 4, 5, 1, 1) ( 1, 1, 1)dy z d I x y z d

 
 
 
 
 
 
 + + + + + + + 

 

4.6  Gradient weighted distance transform 

Lin et al. describe a novel approach to combine the results of the gradient 

transform and the distance transform described above, into a ‘gradient weighted distance 

transform’ [24]. They define this new measure 'D  as 

 
min

max min

' exp 1
G G

D D
G G

− 
= × − 

− 
 

where G is the gradient transform described in 3.3, D is the distance transform described 

in 3.4 and 'D  is the gradient weighted distance transform. 
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CHAPTER V 

PROCESSING 

This chapter mainly deals with the techniques used to process the image stack and 

arrive at preliminary segmentations, which are then fed to the analysis and refinement 

stage of Chapter VI to further improve the results. We first explain the reasons for 

choosing certain algorithms for certain types of images, and then move towards a 

description of these algorithms. 

5.1.  Choosing the algorithm 

 As mentioned in section 3.4, type A and type B vary vastly in the shapes, sizes and 

densities of their cells. Having a unified approach to solve both types would compromise 

on the quality of segmentation results of both types, and hence they are tackled separately 

using algorithms whose strengths are best suited for one or the other.  

For type A, we would need an algorithm that can find hollow, eye-shaped cells, as 

well as solid cells that are sparsely populated. Thresholding followed by connected 

component labeling is a good approach to this sparsely populated dataset, as they are 

easily distinguishable from each other. 

As for type B, we need an algorithm whose strength is to be able to distinguish 

closely grouped components. This is where the watershed algorithm comes into play. We 

look at each of these types in the sections to follow.  

5.2 Algorithms for segmenting images of type A 

5.2.1  Connected component labeling 

A novel approach to connected component labeling is introduced, which differs in 

many ways from the more classical implementations of the algorithm [37]. The algorithm 

works on images that have already undergone the threshold operation, i.e. binary images 

that store at every position the values 0 or 1, depending on the absence or presence of a 

Foreground pixel at that point.  
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A.  Basic definitions 

 

Definition 1: Image-volume I is a 3-D array of voxels, that has dimensions x y zs s s× × , 

along the x, y and z axis respectively, with sz equaling the number of Images in the image 

stack. 

Definition 2: Index i is a triplet ( , , )x y z  of integer values that gives the position of a 

voxel in the image volume, where 0 ,0 ,0x y zx s y s z s≤ < ≤ < ≤ <  

Definition 3: The operator ptr() is defined to imply ‘pointer to’. ptr(i) would thus imply 

‘pointer to index i’.  

Definition 4: Line l is defined as a 4-tuple of values ( , , , )s ex x y ptrPatch , where 

0 s e xx x s≤ ≤ ≤  , 0 yy s≤ ≤ and ptrPatch is the pointer to a ‘patch’ P, whose definition 

will be provided shortly. xs represents the start position of the line along x-axis and xe 

represents the end position of the line on a particular row y of an Image. In the algorithm, 

lines consist of a sequence of connected foreground pixels for a constant value of y and z.  

Definition 5: A patch P is a group of lines that belong to the same connected component. 

Additional attributes describing the size and shape of the connected component are also 

contained in P. Formally, P can be described as a 6-tuple min max( , , , , , )L i i z A ptrBlob  

where L  is a list of connected lines, z is the image number on which the patch is 

contained, ptrBlob is a pointer to a Blob data type(defined in 4.2.3), A is the area of the 

component defined by the summation 

( )( ) ( ) 1e s

l L

A x l x l
∈

= − +∑  

and the indices imin and imax are defined as: 

 

( )

( )min

min

( , , ) min

( )

s
l L

s
l L

x l

i x y z y l

z z P

∈

∈




= 


=
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Fig. 15. Sample Connected component and the contents of the Patch P associated with it. 

 

( )

( )max

max

( , , ) max

( )

s
l L

s
l L

x l
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=

 

Fig.15 shows a connected component in a sample image with z value 0. The 

values of all the lines are shown in the L list, and the other attributes of the patch are 

shown as well. 

 B.  The algorithm 

The main advantage of the algorithm that will be described is that it collects and 

builds information about the connected components in the image on the fly. Classical 

implementations tend to be multi-pass algorithms, where in the first pass, the pixels are 

labeled, and in the second pass, equivalence classes are used to ‘collect’ pixels that 

belong to the same component.  

However, a variation of the algorithm is described that takes advantage of 

pointers and linked-lists to progressively augment the attributes of the patches as each 

row of the image is processed.  

For a linked list L of lines, we define the following operations: 

• pushBack(L, l)  Inserts the pointer to the line l at the end of the list L 

• isEmpty(L)  Returns true if list L is empty, false otherwise 



 26 

 

Fig. 16. Illustration for step 1 and 2 of algorithm. 

 

 

• begin(L)  Returns a pointer to the first line in the list L 

• next(L, l)  Returns a pointer to the line immediately succeeding l in L 

Each row of image I is scanned from left to right. When a foreground pixel is 

found at position ( , )x y , a line l is created with starting position xs set as x. The scanning 

continues until we reach a background pixel at position ( ', )x y , or the end of the row. At 

this point, the end position xe of line l is set to the value ( ' 1)x −  or sx, whichever is smaller, 

and the y value of l is set to the current row number.  

This scanning and creation of lines is repeated till the end of the row is reached. 

We then compare all the new lines of this row with the lines immediately preceding it, 

and augment the new information to the patches that the lines point to, whenever we 

encounter an overlap.  The algorithm is discussed in detail in the appendix (algorithm 1 

and 2) but in brief is as follows:  

1. Collect all lines of previous row in UpperList 

2. Collect all lines of current row in CurrentList (fig. 16) 

3. Check for overlap between lines of UpperList and CurrentList 

4. If there is an overlap between line l of CurrentList, and line u of UpperList, 

i. if u belongs to a patch, add l to this patch 
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Fig. 17. Image and corresponding patch list during the scan, at (a) row = 0 (b) row = 3 (c) row = 13 (d) row = 18.  

 

ii. else make a new patch p, and add u and l to patch p 

5. For every new addition of a line to a patch, 

i. update the attributes imin , imax, area 

6. Update CurrentList and UpperList to their succeeding rows, and repeat all steps 

At the end of the algorithm, we have a list of patches corresponding to all the 

connected components that were found in the image. A sample image and the resulting 

patch lists at various scan rows are shown in fig. 17. 

5.2.2  Template matching 

Thresholding and connected-component labeling are themselves not sufficient in 

attaining accurate segmentation results. This is due to the fact that the entire cell body of 

the neuron is not stained uniformly. Many Nissl cells are often stained more prominently 

near the cell boundaries, and at the center of the cell, which usually corresponds to the 

stained nucleus. Due to this non-uniformity in staining, thresholding often results in 

broken ‘eye’ shaped cells that only vaguely represent the overall elliptical shape of the 

cell. This problem is clearly illustrated in the images of fig.18.  

Fig.18 (a) shows a section of a Nissl stained image, while fig.18 (b) shows the 

same image after a threshold has been applied to it. In fig.14 (c), we highlight in red two 

of the cells we have described above that face this problem. As is apparent in fig.14 (d), 
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connected component labeling results in convoluted shapes and smaller patches that do 

not reflect the actual shape of the cell in any way. 

 

 

 

    

Fig. 18. (a) Image of a section of Nissl tissue (b) Thresholding applied (c) Eye-shaped cells highlighted in red (d) Same cell 

highlighted in the threshold image. 

 

 

For the reasons showcased above, template matching is employed to find those 

positions in the image where these cells lie. Template matching is the process of 

comparing the image with a pre-defined sample, or kernel that contains the object of 

interest. The kernel moves all across the image like a moving window, comparing image 

pixels with kernel pixels at each position. The comparison is done by finding the 

difference between each pair of image / kernel pixels, and calculating the total sum of 

these differences. Points that correspond to low sums have a high probability of the 

occurrence of the object of interest.  

Formally, a template ( , , )g x y z and image function ( , , )f x y z can be matched by 

running a distance metric ( , )d f g  over the image with the template running across it like 

a box filter [38]. In its continuous form, the degree of matching could be calculated as 

( , )d f g∫  

where the distance metric is defined by 

( , )d f g f g= −   
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In its discrete form, for an Image I of dimensions x y zs s s× ×  and a template of 

dimensions x y zt t t× × , the following formula sums up the ‘degree of matching’ M, at a 

particular point ( , , )x y z : 

( , , ) ( , , )x y z

z y x

M f x y z g x t y t z t
t t t

= − − − −∑∑∑   

 

 

 

 Fig. 19. (a) Kernel used for template matching (b) Original Image (c) Results of template matching.  

 

 

Running this across the entire image volume, we get a new image volume 'I  

where each point contains the ‘degree of matching’ with template T. Running the 

25 25 7× × template shown in fig. 19(a) of a sample neuron over the image volume, we 

get template matched results such as those seen in fig. 19(c).  

Once the resultant image volume I’ is calculated, these results are used to make 

critical decisions regarding the patch segmentation. The details of how these cues from 

the template matching algorithm are used to provide better segmentation results are 

provided in Chapter VI.  
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5.3  Watershed algorithm for segmenting images of type B 

5.3.1  Basic working principle 

The watershed algorithm is a technique that makes use of image gradient cues to 

segment the image. It uses gray scale image data as a measure of ‘elevation’ rather than 

color value, and thus we attain a topographic representation of the data, also known as the 

Digital Elevation Model (DEM), as can be seen in fig. 20.  

 

 

 

 
Fig. 20. Gray scale image and its Digital Elevation Model.  

 

 

 

Now instead of using the gray scale image, if we used the gradient of the image to 

represent the topography, it would result in a DEM having ‘walls’ of separation between 

objects of interest, resulting from the edges that correspond to high values in the gradient. 

 

 

 

  
Fig. 21. (a) Original image (b) Gradient Image (c) Topographical representation of the gradient image.  

 

 

 

This is depicted in fig. 21(b) and (c). These walls of separation are called 

watersheds and the regions they separate are called catchment basins. A minimum M of a 
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catchment basin is the region within the basin that is at its lowest elevation, where any 

drop of water that were to fall inside in the basin would eventually flow to.  

If now, the DEM is filled with water, with the water level slowly increasing per 

iteration, the catchment basins would steadily grow in size until they reach the 

watersheds which would be too high to scale. At the end of the iterations, we are left with 

a segmentation that corresponds to catchment basins and the watersheds that separate 

them from each other.   

5.3.2  Definitions 

Definition 1: A minimum M of height h is a connected region of pixels with the 

value h from where we cannot reach a pixel of lower height without first traversing a 

point at a higher altitude [27]. Thus M can be described as a region that is significantly 

darker (and hence at a lower elevation) that it’s neighboring pixels.  

 

 

 

  

Fig. 22. (a) Geodesic distance between two points in a sample region R (b) Geodesic Influence zones. 

 

 

 

Definition 2: The neighborhood N(p) of a pixel p at index position i(x,y,z) is 

defined by N(p) = { }( , , ) , , 1,0,1p x i y j z k i j k+ + + ∀ ∈ − . Since the algorithm is in 3-D, 

we have 26 neighbors for each point in the volume in the general case, with lesser 

number of neighbors along the edges and corners of the volume.  

Definition 3: Each catchment basin CB is associated with a minimum M and 

denoted by CB(M). It is defined as the set of all points in the image volume that are 
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topographically nearer to M than any other minimum in the volume [29]. Thus, a water 

droplet falling at any point in CB(M) will eventually flow into the minima at M. 

Definition 4: If the image volume I has value I(x,y,z) at index (x,y,z), then the 

range of gray scale values that I contains is given by 

min max0 ( , , ) 255h I x y z h≤ ≤ ≤ ≤ where hmin and hmax are the minimum and maximum 

values, respectively. The catchment basin at height h, CBh(M), is defined in [27] as 

CBh(M) = { }( ), ( )p CB M I p h∈ ≤  

and the threshold image Th(I) at height h is similarly defined as  

{ }( ) , ( )hT I p I I p h= ∈ ≤  

Definition 5: The geodesic distance between two points in a region R is the length 

of the shortest path between the two points such that every point on this path lies within R. 

Formally, if ps and pd represent the start and destination points, the geodesic distance 

gdR(ps,pd) is given by 

( , ) min( , , ,... ) , , ,...R s d s i j d s i j dgd p p p p p p p p p p R= ∈  

A sample region R and the geodesic path between two points within it can be seen 

in fig.22 (a). 

Definition 6: Vincent and Soille’s definitions of geodesic influence zones and 

SKIZ are widely used across watershed transform literature as the standard terms to 

theoretically describe this segmentation technique [27]. Here, we provide the formal 

definitions that they introduced and proceed to explain the immersion procedure.  

If Ri is a subset of region R, the geodesic distance between the point ps and region 

Ri is:  

gdR(ps,Ri)= min( ( , ))R s i i igd p p p R∀ ∈  

If region R consists of several connected components like Ci, the geodesic 

influence zone of Ci within R, izR(Ci) is defined as:  

{ }( ) , [1, ] /{ }, ( , ) ( , )R i R i R jiz C p R j k i gd p C gd p C= ∈ ∀ ∈ <  
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It is the locus of all points within R that are closer to Ci than any other component 

Cj . Fig. 19(b) shows three connected components, C0, C1 and C2 and highlights the 

geodesic influence zone of C1 in dark gray. The union of all the influence zones of C is 

defined by: 

( )
1;

( )R R i

i k

IZ C iz C
∈

= U  

Now, the boundary points between the influence zones of two or more regions do 

not belong to the influence zones of any component in C and these points are collectively 

called the Skeleton by Influence Zones or SKIZR(C), given by  

( ) / ( )
R R

SKIZ C A IZ C=  

5.3.3  Recursive relation 

Beucher and C. Lantuéjoul presented an algorithm that used immersion as an 

analogy to the watershed transformation [39]. This immersion technique has since been a 

popular approach, and is defined as a recursive relation which we shall describe shortly.   

 

 

 

 

Fig. 23. (a) Topography at Immersion level hmin (b) X at hmin (c) Topography at Immersion level hmin + 1 (d) X at hmin + 1 consists of 

two components, one that is growing from an earlier component, and the other as a new component.  

 

 

 

If Xh is the set of all points in the image volume at a height equal to or lower than 

h, then 1( )
h h

X T I+⊆ . If C is one of connected components of 1( )
h

T I+ , then C is either an 

extension of a component in Xh or is an altogether new component. This observation is 

depicted in fig. 23 at height levels hmin and hmin + 1. The gray value in fig. 23(d) 

represents the new pixels arising from raising the immersion level by 1. The recursion is 

formally described in [29] as follows:  
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[ )
min min

11 1 ( ) min max

( )

,
h

h h

h h T I

X T I

X MIN IZ h h h
++ +

=

= ∪ ∈
 

5.3.4 Implementation 

The implementation of the watershed algorithm takes advantage of many standard 

data structures like arrays and linked lists. The image volume is represented by a 3-D 

array of 8-bit integers, while storage of positions during the course of the algorithm is 

done using lists of indices. The terms ‘voxel’ and its representation ‘index’ are used 

interchangeably in this text. 

Since the immersion procedure happens hmax - hmin times, with each iteration 

involving going through every pixel in the volume to see if its value is less than or equal 

to h, a more efficient way was introduced [27]. All the voxels are instead sorted in 

increasing order of their heights, and stored in a data structure from where they can be 

retrieved readily by querying the data structure with the height h. Once this is done, the 

‘flooding’ step is where the recursion defined in 4.3.3 is implemented. 

A.  Sorting the image volume 

Since we use 8-bit integers to store the values of the voxels, we know that the 

minimum and maximum values for a voxel are 0 and 255 respectively.  

 

 

 

Fig. 24. Sorting data structure. 
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Thus, we initialize an array VoxelsAtHeight[256]  that stores a pointer to an index 

at each array location. The index pointer at VoxelsAtHeight[h] points to the head of a 

linked list that contains all the indexes of voxels that have a height value h. This data 

structure is illustrated in fig.24. The pseudo-code for sorting by storage is available in 

algorithm 3 of the Appendix.  

B.  Immersion  

By immersion, we mean the increasing of the ‘water level’ h in the topography, 

thus ‘immersing’ the voxels that are below this level. Starting the process with hmin, the 

algorithm continues to iteratively increase the water level, while keeping track of 

catchment basins, geodesic influence zones, and watershed voxels along the way. The 

immersion stage is basically an implementation of the recursive relation described in 

sections 5.3.2 and 5.3.3. Access to all pixels at the h and h+1 levels are easy with the data 

structure defined in 5.3.4 A.  

Calculating geodesic influence zones is done using a distance matrix which 

updates distance information as and when the immersion takes place. A label matrix is 

also used to keep track of the various labels used. We maintain a running queue Q that is 

used to traverse all the pixels that are to be analyzed in the current iteration.  

The algorithm takes care of both cases of voxels of height h+1: 

 

 

 

 

Fig. 25. Watershed algorithm in progress (a) h = 0 (b) h = 80 (c) h = 130. 
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(a) Voxels that are extensions of catchment basins identified at height h  

(b) Voxels that form an altogether new minimum.  

In fig. 25, we see the watershed algorithm in progress, with the light green color 

representing the ‘water’ that is slowly filling up the image volume. A scaled down and 

slightly modified version of the ‘fast watershed’ algorithm described in [27] is presented 

in algorithm 4 and 5 of the Appendix.  

Below in fig. 26, we see the water filled image in 2-D at h = 135 

 

 

 

 

Fig. 26. 2D image of image 3 in the stack, at h = 130. 
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CHAPTER VI 

ANALYSIS AND REFINEMENT 

Post processing is an important stage in the filtering out of noise and segmenting 

the cells in the best way possible. As stated before, images of type A use the results from 

template matching to help further segment the results of connected component labeling, 

and the images of type B analyze the 3-D catchment basins that were formed to eliminate 

noise and split/combine cells.  

6.1 Post-processing in images of type A 

6.1.1  Hole-filling 

Many of the components that we end up with after the processing of type A 

Images have ‘holes’ in them. This is either due to the inherent nature of the staining of 

the cell as we discussed earlier in 5.2.2, or simply because a few of the pixels inside the 

cell fell short of the threshold value that was chosen to separate background and 

foreground pixels. For these reasons, an appropriate hole-filling algorithm is used, that is 

illustrated in fig. 27. For detailed pseudo-code, the reader is referred to algorithm 6 in the 

Appendix.  In its simplest form, the algorithm works as follows: 

i. Create a boolean matrix whose dimensions are based on the min and max 

values of the patch 

ii. Fill this matrix with data from the patch, as in fig. 27(a) 

iii. Complement this matrix (fig. 27(b))  

iv. Identify those patches that are touching the boundaries of the matrix.  

v. Delete this patches and their corresponding regions from the matrix (fig. 27(c))  

vi. Complement the new image (fig. 27(d))  

vii. Use this patch as a replacement for the original patch. (fig. 27(e))  

6.1.2  Scoring  

To decide if a component fits a certain amount of ‘similarity’ to a standard cell, 

few measures have been defined to help in scoring each component. The attributes we 

take into consideration during scoring are as follows: 
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Fig. 27. Illustration of hole-filling algorithm.  

 

A.  Size  

Though cross-sectional areas of a cell vary due to the shape in 3-D, it is fairly 

straight-forward identifying components that are too big, by comparing them to 

thresholds attained either by manual observation or a training data set. The ‘size’ of a 

component is defined by the number of pixels it contains. Since as defined in 6.2.1, each 

component is represented by a patch P consisting of a list of lines l, the number of pixels 

n is given by: 

( )
( )

( ) ( )
e s

l L P

n x l x l
∈

= −∑  

B.  Compactness  

Compactness is a region-based shape descriptor that is given as [40] 

Cp = / Aρ  

where ρ is the perimeter of the region.  

C.  Circularity 

The circularity measure is similar to the compactness measure, except that it is 

calculated by the following formula [41]:  

2

4 A
Cr

π

ρ

×
=  

where a value of 1 indicates a perfect circle, and deviation towards 0 implies an ellipse 

with progressively larger eccentricities. 
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D.  Height-to-width ratio 

The height-to-width ratio of a component represented by a patch P is given by the 

following: 

 

 

 

 

Fig. 28. (a) Image with visible chatter artifacts (b) Sample section of an image after image corrections (c) Noisy regions.  

 

 

 

max min

max min

( ( )) ( ( ))

( ( )) ( ( ))

y i P y i P
HTWR

x i P x i P

−
=

−
 

The HTWR measure is a good way to spot noise, which we shall discuss below.  

6.1.3 Segmentation refinement  

Now that the components have been ‘scored’ according to the metrics described 

above, we can proceed to derive inferences from them to help in the post-processing.  

A.  Noise elimination 

 There are two predominant types of noise found in Nissl images. Chatter noise, 

and Non-Chatter noise 

• Chatter: is the term used to express the physical phenomenon of the vibration of 

the sectioning knife that occurs during the slicing of the mouse brain by the 

KESM. Due to this chatter, there are often imaging artifacts that are left behind in 

the image, which generally  correspond to alternating lines of  low and high 

intensities(fig 28.a).  



 40 

Though a fair amount of image processing was done on the image set well before 

processing for an automated cell count, some artifacts are too prominent to ignore 

and often mistakenly get classified as foreground pixels. However, many of these 

components that arise out of mistaken segmentation of chatter artifacts can be 

successfully eliminated using the scores we mentioned earlier. Horizontal chatter 

that can be seen in fig 28.b is often eliminated after image processing, but some 

artifacts still remain (fig 28.c).  

 

 

 

 

Fig. 29. (a) Section with a group of close cells (b) Threshold results.  

 

 

 

The ‘height/width’ ratio helps identify components like these which are either too 

long compared to their height or too tall compared to their breadths. Since chatter 

usually occurs in the horizontal and vertical directions only, this measure is often 

very helpful and fairly accurate in determining noise components.  

Thus if either of the following conditions for patch P is satisfied,  

min

max

( )

( )

HTWR P HTWR

HTWR P HTWR

<

>  

P is classified as noise and taken off from the PatchList. 

• Non-chatter noise: Other noise that occurs in the image volume is eliminated 

fairly easily during the 3D Grouping process described in 6.1.4. Random noisy 

elements that occur in an image most often do not have a corresponding noisy 

element at the same location in the immediately preceding or succeeding images 
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and hence are not grouped together. Thus, the inherent nature of the algorithm 

itself eliminates noise by preventing its propagation in 3D.  

B.  Incorrectly grouped cells  

Though it occurs relatively infrequently when compared to images of type B, cells 

that are close to each other sometimes end up being grouped together as part of the same 

component due to the threshold level that was chosen for that image. At these points, 

some 3D cues are made use of as well as the results of the template matching algorithm 

to break the large component into its constituent cells. Fig. 29 illustrates this problem. 

 Identifying the groups: Since standard Nissl cells are not boundless in their sizes, 

it is fairly straightforward to identify which of the components arising after labeling 

comprise of multiple cells.  

 

 

 

 

Fig. 30. A mistakenly grouped cell is split using information from the preceding image.  

 

 

 

If the size of the patch P is n and nmax is the size of the largest cross-section of a 

standard cell, then if n>nmax , patch P is classified as a component that might possibly 

contain more than one cell. The methods used to help separate them are described below.  

  Using patch list comparisons: One option for tackling this problem is by 

comparing the identified patch P with patches that it overlaps in the immediately 

preceding or succeeding image. In fig 30(a), we see that the upper cross-section consists 

of a component that is clearly a combination of two cells. We use this information for 

splitting P into separate cells, and thus perform the split by performing binary AND 

operations between the two images. 
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Template matching: The above patch list comparisons described often do not 

work very well because of various reasons, namely 

• Cells that are mistakenly grouped in the current image are likely to be mistakenly 

grouped in the preceding / succeeding image as well. This is because the distance 

between two cross-sections in the image stack is negligible. 

• A component that in reality represents a single cell, but is incorrectly broken into 

two due to bad thresholding might further influence more components to 

incorrectly split up. 

For these reasons, the results of the template matching algorithm are invoked to 

try and get better segmentation results and split the groups appropriately. In fig.31 (a) we 

see a standard section from a Nissl stained image, followed by its corresponding 

threshold image in (b).  

 

 

 

 

Fig. 31. (a) Original image (b) Thresholded image (c) 3D Template matching results (d) Local maxima of the matched results. 

 

 

 

The results from the 3D template matching algorithm are seen in fig. 31(c). Using 

a threshold that classifies based on the top 5% of the gray scale range of the matched 

image, we arrive at an image consisting of connected components that correspond to the 

peaks of the matching, in fig.31 (d). Connected component labeling is run over this image, 

and local peaks in the components are collected. These local peaks correspond to a high 

probability of occurrence of a cell, not just by local 2D pattern matching but by taking 

into account data from about 7 consecutive images at a time. Hence, a local peak very 
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strongly suggests the existence of a neuron / glial cell at this point. Local peaks for the 

template matched patches are shown as red dots in fig. 32(a), and blue dots in fig. 32(b).  

To split a large cell, we see if it contains more than one local peak within it. If it 

does, we use simple boolean operations like AND and MINUS with a solid circle of 

standard size and arrive at the results, as shown below in fig. 32(b).  

 

 

 

 

Fig. 32. (a) Local peaks (b) Splitting of a group of cells using boolean operations. 

 

 

Fig. 33. Neurons with weak features as seen in (a) are marked using standard sized patches in (b).  

 

 

 

C.  Incorrectly split cells  

Just as we have incorrectly grouped cells, we have neurons and glial cells that are 

incorrectly split into many pieces due to bad thresholding, as discussed in section 5.2.2. 
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This is where the process of patch replacement is introduced. Just like in the case of 

splitting grouped cells, we analyze the data we have obtained using template matching. If 

there is a local peak at a point where there are many small patches (most likely pieces of 

the same cell), all these pieces are replaced by a cell of standard size. Fig. 33 shows some 

neurons that corresponded to bad thresholded components being successfully marked by 

cells of standard size (blue outlines in fig. 33 (b))  

For a formal description of the process discussed in the last two sections, the 

reader is referred to algorithm 7 in the Appendix.  

6.1.4  Three dimensional grouping 

Now that all the low scoring patches in each image have been modified, replaced 

or refined by some means, we can begin to combine all these patches in 3D without 

having to worry about erroneous 2D patches propagating in 3D. A cell in 3-D usually 

spans 5-6 images, reaching its largest size at the central images and diminishing in size as 

we move further away due to its generally spherical shape (fig. 34).  

The bounding box of a patch P is the rectangle whose top-left corner and bottom-

right corner is defined by the co-ordinates of its minimum and maximum index positions, 

iminand imax respectively. Using the bounding box for patch comparisons, we can easily 

eliminate patches that do not overlap with each other. 

 

 

 

 

Fig. 34. Cell and its respective cross-sections.  
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Definition 1. A blob B is defined as a representation of a 3-D cell, consisting of a 

collection of patches attached to each other. Formally, it is a 4-tuple (L, imin, imax, S) 

where L is a list of patches, and S, imin, imax are defined as follows: 

( )
p L

S A p
∈

=∑  

( )

( )

( )

min

min min

min ( )

( , , ) min ( )

min

p L

p L
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x i p
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For a linked list L of patches, the following operations are defined: 

• pushBack(L, p) Inserts the pointer to the patch p at the end of the list L 

• isEmpty(L)  Returns true if list L is empty, false otherwise 

• begin(L)  Returns a pointer to the first patch in the list L 

• next(L, p)  Returns a pointer to the patch succeeding p in L 

A formal algorithm for the 3D Grouping process is available in Appendix, but in brief, 

it is as follows:  

i. Compare a pair of patches in the upper patch list and current patch list, by 

checking if their bounding boxes overlap. If they do not, compare next pair. 

ii. If the bounding boxes do overlap, check if they really overlap by using the 

line information of both patches 

iii. If this is true as well, add the current overlapping patch to the blob being 

pointed to by the upper patch 

This algorithm is very similar to the 2D case with lines and patches. Once 3D 

grouping is carried out using the algorithms described in algorithms 8, 9 and 10 of the 
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Appendix, we are left with a list BlobList which contains all the blobs present in the 

volume.  

6.2  Post-processing for images of type B 

The watershed algorithm has a known problem of over-segmentation in the case 

of large foreground objects. This is because every local minimum ends up with a 

catchment basin of its own that is separated from other minima by watershed lines. In the 

case of large objects, more than one minimum often occurs within the same object, thus 

resulting in multiple segments per object though there ideally should be just one.  

In the case of the Nissl data set however, over-segmentation is not much of a 

problem since the objects are extremely tiny (25-30 pixels in 2D). The minima and their 

catchment basins seem to represent the granular cells uniquely, i.e. one segment per cell. 

However, there are still noisy segments that need to be addressed. Just as in Section 6.1, 

we introduce certain metrics to score the segments to decide if the segments are on track. 

The scoring as described by Lin et. al is described as follows: 

6.2.1  Scoring  

A.  Size  

The total number of voxels that form the component is considered the ‘size’ or 

‘volume’ V. 

B.  Uniformity of intensity  

Since the granular cells exhibit uniformity of intensity when compared to the cells 

of type A which due to their ‘eye’ shape exhibit vast variations in intensity, this measure 

 

 

 

Fig. 35. Neighborhood connectivity for pixel that is (a) (a) 4-connected (b) 8-Connected (c) 26-Connected. 
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is a good metric for scoring type B cells. We use the standard deviation equation, 

U = 
1

2

0

1
( )

1

n

i avg

i

v v
n

−

=

−
−
∑  

where vavg is the average intensity of the cell, and U is the uniformity of intensity.  

C.  Shape 

Similar to the circularity measure defined for 2D in section 5.1.2, the shape 

measure is defined for a 3D object as: 

3

264

B
S

Vπ
=

×
 

where B is the number of boundary voxels in the image, and V is the volume defined in 

6.2.1.A. A boundary voxel is defined as any voxel that is not completely surrounded by 

other foreground voxels. Since we use a 26-connected grid for our algorithm, we use the 

same to decide if the voxel is a boundary one or not (fig 35.c).  

6.2.2 Merging 

Often times a single cell gets broken up into different segments due to the 

formation of multiple minima and the growth of their respective catchments basins within 

this cell. To identify and rectify this incorrect splitting, we use the scoring mechanisms 

described in section 5.2.1 as well as some new merging techniques described below.  

 

 

 

 
Fig. 36. (a) C1 and C2 before merging (b) After (c) C3 and C4 before merging (c) After.  

 

 

 

The basic principle behind the decision of whether or not to merge is to compare 

the score of the merged segment with that of the pre-merged segments and see if the 
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score is significantly higher. If it is, then the watersheds separating the segments are 

broken, and the segments are combined. If not, they are left as they are. In fig.36, we see 

an example of cell segments where merging helps (fig.(a),(b)) and where it fails to make 

things better(fig (c),(d)). 

The scoring metrics described above can be combined linearly, with a slightly 

higher priority given to the size of the segment. Overall score of a segment resulting out 

of the watershed algorithm is given by: 

( ) ( ) ( ) ( )Score C aV C bU C cS C= + +  

If cell segments C1 and C2 are candidates for the merging, and if C1,2 is the 

combined cell segment, merging happens when  

1,2 1,2

1 2

( ) ( )

( ) ( )

Score C Score C

Score C Score C
ϕ× ≥  

where ϕ  is a pre-defined threshold for merging decisions.  

6.2.3 Classification  

The watershed algorithm described in the last few sections is very helpful in 

identifying granule cells. However, interneurons and purkinje cells also get segmented 

using this algorithm. Classifying certain cells as granule cells and interneurons is done by 

analyzing the features that differentiate the two.  

As mentioned in 3.4.2, interneurons are found in regions where the cells are very 

sparsely populated, while granule cells occur in regions of very dense concentration. We 

can use this fact to differentiate between the two.  
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Fig. 37. (a) Watershed segmentation (b) Sparse / dense image (c) Final segmentation.  

 

A kernel of size 40 40×  is used to run through each image, and generate a 

boolean matrix that is called DenseOrSparse. If the number of pixels that cross a certain 

darkness value in this kernel window is more than a pre-defined threshold value, the 

algorithm outputs ‘dense’ to the boolean matrix, else it outputs ‘sparse’.  

When classifying the segments, the DenseOrSparse boolean matrix is referred to 

decide how to label them. Purkinje cells are not identified using this matrix, but granule 

cells and interneurons have been consistenly identified. The shades of red in fig. 37(c) 

correspond to granule cells, while the shades of cyan correspond to interneurons. 
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CHAPTER VII 

VISUALIZATION 

This chapter describes not only the algorithm that is used to convert the 

volumetric data set to a 3D polygonal model for viewing, but also the various features 

that the graphical user interface (GUI) provides the user. 

7.1  Marching cubes 

The Marching Cubes algorithm is used for converting the volumetric 

representation to a 3D Model [42].  This is briefly described in the following sections.  

7.1.1  Basic principle 

Rendering what is essentially a matrix of points where each point is either ‘in’ or 

‘out’ of the foreground object of interest is not as straightforward as rendering a ‘pixel’ or 

a ‘dot’ at each foreground point. This might work when the object is at a distance from 

the observer and the rendering of the dots covers all the ‘holes’ between each pair of dots, 

but if we zoom into a rendering of such a kind, the flaws in the rendering become obvious.  

 If we were to analyze this in 2-D for simplicity, and the ‘foreground object’ was 

represented by the dots in fig. 38(a), a straight-forward but unrealistic rendering would be 

attained by setting up ‘sprites’ at each position where a foreground pixel is seen, like fig. 

38(b). We could improve on this by instead analyzing each ‘square’ of 4 positions each in 

the matrix, and looking at which of the corners of the square are classified as foreground, 

and which as background. Since the number of possible combinations of foreground-

background pixels in each square is very limited, we can use this combination to look up 

a table of standard cases (fig. 38(c)), from where we can derive lines that cut across edges 

of the square.  

Using these standard cases, we can depict the foreground object as a more solid 

combination of line segments that form a continuous ‘boundary’ for the object, enclosing 

the entire foreground object inside this boundary (fig. 38(d)). The essence of this 

algorithm is that a complicated boundary for this object is built incrementally, one square  
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Fig. 38. (a) Initial 2D matrix (b) Representing each point by a sprite (c) Some standard 2D cases  

(d) Representing the set by line segments (d) Object on a finer grid. 

 

at a time, without having to worry about the overall object in its entirety at any point. The 

finer the grid, the smoother the boundary looks eventually, as in fig. 29 (e). To extend the 

case to 3D, we have the cases as enumerated in fig. 39, with the volume being traversed 

one cube at a time, rather than squares. The end product of this operation is a smooth 

boundary for the object, which is much less jagged than a sprite representation.  

 The modifications we made on the algorithm, as well as the images that were 

created are shown in the sections to follow. For a more formal description of the 

algorithm, the reader is referred to algorithm 11 in the Appendix. 

 

 

Fig. 39. Fifteen standard cases used in 3D marching cubes [42]. 
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Fig. 40. Representation of a stack of 10 type A images, where each cell has a random color. 

 

7.1.2  Modifications  

Since the volumetric dataset is anisotropic, i.e. distances along the z axis are much 

larger than distances along the x and the y axes, certain modifications were made to the 

resulting heights of the rendering. Apart from these, the implementation was a standard 

one as described in [42].  

7.1.3  Visualization results  

In fig. 40 and fig. 41, we see the results attained by using marching cubes on 

images of type A. Here, to help the user identify the distinction between cells, random 

colors were used. We see the rendering of images of type B in fig. 42, with a zoomed in 

view available in fig. 43.   



 53 

 

Fig. 41. Alternate orientation of dataset using in fig.40.  

 

 

 

Fig. 42. Visualization of image stack of 10 type B images.  
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Fig. 43. Zoomed-in view of data set used in fig.42. 

 

7.2  Graphical user interface  

The interface for this application was developed using the OpenGL User Interface 

Library (GLUI), which is an open source library in C++ that can be downloaded and used 

by programmers. It provides an easy to use, intuitive and flexible platform from where 

the user can examine the image set and analyze the resulting segmentation, both in 2D 

and in 3D. Here are some of the main features of the interface. 

7.2.1 Choosing segmentation type 

Though we can use certain image cues like average intensity to decide if a certain 

image is of type A or type B, we leave this task to the user to tell the application what 

images in general it is going to be analyzing. This prevents algorithms of one type from 

unsuccessfully trying to segment images from the other type.  

7.2.2 Type A  

i.  Choosing between 2D and 3D 

While visualizing in 3D can be helpful in looking at the overall topology of the 

cells, 2D is helpful in analyzing the boundaries segmented in each image in detail. 

The 2D and 3D representations are shown in fig. 44. 
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(a) 

 

(b) 

Fig. 44. Interface shown for type A images in (a) 2D and (b) 3D. 
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Fig. 45. Type A thresholded image at threshold value t = 140.  

 

ii. Traversing the image stack  

Spinner controls are used to shift through the images in the stack, one by one. 

This helps the user track the segmentation of certain cells as he moves through the 

stack. We see this spinner control in fig. 44 and fig.45 in the ‘current image’ panel.  

iii. Threshold control  

A slider is used to change the threshold value of the current image on the fly, in 

case the user feels that the automated threshold value chosen was too low or too 

high. Type A images with their threshold value at 140 and 133 are shown in fig. 

45 and fig. 46 respectively.  

iv. Display type panel  

To switch between the regular image (fig.44) and the thresholded image (fig 45), 

the ‘display type’ panel is equipped with a radio button to enable the user to make 

this choice. Option to view template matching results are also provided after 

processing takes place. 
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Fig. 46. Type A thresholded image at threshold value t = 133. 

 

v. Functions panel  

At what point the algorithm segments the images, converts to a 3D representation 

and so on are in the hands of the user. These buttons are present in the ‘functions’ 

panel in last few images. 

vi. Analysis panel  

This panel is ‘activated’ only after the process operation has taken place. The 

algorithm analyzes the stack using the type A algorithms, and the user is then free 

to analyze the results. The preliminary classification before 3D grouping is: 

compact, noisy, corrected (replaced), and prospective noise cells. We see the 

boundaries of these respective types outlined in fig. 47(a), where compact cells 

are outlined in green, noisy in red and yellow, corrected in dark blue and 

prospective noise in light blue.  

After 3D grouping, more useful information is now available. We are able to 

classify as neurons / glial, red blood /dying cells, noisy cells and unidentified cells, 
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as seen in fig. 47(b), where neurons are outlined in red, red blood cells in green, 

unidentified in yellow and noise in white. 

 

(a) 

 

(b) 

Fig. 47. Type A image shown with (a) preliminary classification: compact, noisy, corrected, prospective noise and (b)  final 

classification: neuron/glial, rbc/dying, unidentified and noise. 
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Fig. 48. Type A images in 3D after processing with a random color assigned to each cell. 

 

vii. 3D panel  

The options of showing the image textures / marching cubes representation is 

available to the user in the 3D panel, as seen in fig. 48. We see the classification 

in 3D in fig. 49, where green represents neurons, red represent red blood cells and 

blue represents unidentified cells.  

7.2.3 Type B 

Most of the features are similar to type A, and so we only highlight those interface 

features here that are unique to type B segmentation.  

i.  Display panel 

We are able to view not only the watershed growing through the image volume, 

but also see unique labels with random coloration, classified cells with a set color 

scheme, and various other representations in 3D. We see some of these features in 

fig. 50 and fig. 51. 
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Fig. 49. Type A images in 3D after classification. 

 

 

Fig. 50. Type B image in 2D during the running of the watershed algorithm. 
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(a) 

 

(b) 

Fig. 51. Type B cells classified uniquely using (a) random coloration (b) coloration based on cell type: granule cells or interneurons. 
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Fig. 52. The ‘representation’ view of the labeling by the watershed algorithm.  

 

We also see in fig. 52 the ‘representation’ option in 3D, which is basically a 

unique coloration applied to each cell and superimposed on the originally image 

textures.  

ii. Functions  

The user is given the control to ‘start watershed’ algorithm and to ‘convert to 3D’ 

for purposes of 3D viewing.  
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CHAPTER VIII 

RESULTS 

The procedures described in this thesis lead to segmentation results that are very 

comparable with those arrived at by human cognition. The segmentation results of the 

independent experts are first described, and then a comparison and explanation of the 

results achieved by the techniques discussed in this thesis is provided. 

8.1 Details of experiment 

Since the best way of comparing the results from automated segmentation is by 

comparing them with those arrived at by human cognition, experts in the field of 

neuroscience were asked to mark the cell bodies they found in the image sets that were 

provided. They were given 3 each of type A and type B images. The type A images were 

of size 256 256× px, while those of the latter were 128 128× px.  

The experts proceeded to mark with different colors, the various cell bodies they 

were able to identify in the individual sections. In type A, neurons and glial cells were 

marked by a red dot, red blood cells and cells that were dying were marked by yellow 

dots and endothelial cells by blue dots. In type B, granule cells were marked by red dots, 

purkinje cells by green dots, Interneurons by yellow dots and endothelial cells by blue 

dots. 

In fig. 53, we see the type A images that were supplied in their raw form before 

segmentation, as well as the results after the expert identified the cells in each image. 

Similarly we see the raw and labeled type B images in fig. 54. Each image was labeled by 

what they look like to the observer in that one image alone. For instance, a solid dark 

region is labeled as a ‘red blood cell’ even though it might actually be a neuron on further 

investigation of the preceding and succeeding image. For this reason, certain labeling 

corrections were made to the set, which we describe in the section 8.2. 

Cells of type B that are closely packed are labeled granule cells, while those that 

occur sparsely in the section are labeled Interneurons, as discussed previously in section 

6.2.3.   
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Fig. 53. (a), (b), (c) Type A images provided for segmentation by independent experts  

(d), (e), (f) Marked images where the cell types are labeled by the colors red, blue and yellow. 

 

 

Fig. 54. (a), (b), (c) Type B images provided for segmentation  

(d), (e), (f) Marked images where the cell types are labeled by the colors red, blue, green and yellow. 
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Fig. 55. (a), (b), (c) Original labeling (d), (e), (f) After 3D labeling corrections.  

 

8.2 Labeling corrections 

For comparison between our results and those of the expert, a 3D consolidation 

process has to take place, because the automated process is the result of a 3D 

combination and not merely 2D segmentation. Thus, the results of the experts are 

combined in 3D using certain rules that were agreed upon, as described below. 

In type A, any cell that is classified as a ‘neuron’ in even one of the images must 

be labeled as a neuron in all the remaining images as well. This is because the key 

characteristics of the neuron (central dark nucleus and elliptical outer body) might be 

seen only in a few images that contain it. Thus, only a yellow dot (non-neuron) can be 

corrected to a red dot (neuron), and not vice versa. No corrections are made to 

endothelial cells. We see these corrections in fig. 55. Only a handful of cells change their 

label during this correction process.  

 No corrections were made to type B cells as all cells had the same label across the 

different images.  
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Fig. 56. (a), (d), (g) Cells identified by expert (b), (e), (h) All cell bodies identified by algorithm 

(c), (f), (i) Neurons/Glial cells identified by algorithm. 

 

8.3 Type A results  

 In fig. 56, we see the results attained by human cognition compared with those of 

the algorithm. The color scheme for the expert’s results is the same as in fig. 53 while the 

color scheme for automated results is as follows: Red outlines indicate neurons and glial 
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cells, white outlines indicated tiny noisy elements, and green is used for red blood cells / 

dying cells.  

 

 

 
TABLE 1 

Comparison of manual and automated results for segmentation of cell bodies  

Img 
Manual  

num(cbm) 

Automated  

num(cba) 

1-1 Correspondence 

num(cbcorr) 

Percentage identified 

( )

( )
100

corr

m

num cb

num cb
×  

Percentage extra / 

missed by expert 

( ) ( )

( )
100

corra

a

num cb num cb

num cb

−
×

 

1 57 62 55 96.5 % 11.3 % 

2 66 65 60 90.9 % 8.3 % 

3 63 59 57 90.5 % 3.4 % 

3D 72 68 62 86.1 % 8.8 % 

 

 

 

TABLE 2 

Comparison of manual and automated results for segmentation of neurons  

Img 
Manual 

num(nm) 

Automated 

num(na) 

1-1 Correspondence 

num(ncorr) 

Percentage identified 

corr

m

( )

( )
100

num n

num n
×  

Percentage extra / 

missed by expert 

( ) ( )

( )
100

corra

a

num n num n

num n

−
×

 

1 30 40 25 83.3 % 37.5 % 

2 32 45 27 84.4 % 40 % 

3 31 40 26 83.9% 35 % 

3D 33 45 28 84.8% 37.7 % 

 

 

 

Since the focus is on identifying neurons, we have a separate column of images in 

fig. 56 showing only the outlines of neurons that were identified by our algorithm.  

We tabulate these results in Table 1 and Table 2. We find that the ability of our 

algorithm to find general cell bodies in the image set is very strong. Examining the 

numbers in the ‘1-1 Correspondence’ column, we see that a high percentage (86 %) of 

those cell bodies identified by the expert have also been successfully identified by our 

automated process. This result is encouraging, considering that many cell bodies, 
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especially neurons, tend to get split up into multiple pieces due to their non-uniform 

staining during the thresholding process. This shows that the patch replacement using 

template matching has been overall a successful approach to this problem of non-uniform 

staining of cells. In the case of further classifying these cell bodies into neurons and non-

neurons, the results are promising as well. The percentage of neurons found by the expert 

that the algorithm was also able to identify is reasonably high as well (85%).  

 

 

 

 

Fig. 57. (a) Original image (b) Segmentation: first pass (c) Corrections by expert during second pass. 

 

 

 

However, there are many neurons that are ‘extra’ in the automated segmentation. 

Now, these extra neurons could be either of the two following cases: 

• Cells that were incorrectly marked as neurons by our algorithm. 

• Cells that were actually neurons but were missed by the human observer when 

segmenting the first time. 

To find out which of these categories the extra neurons fell into, the automated 

results were shown to the expert for a second look, to confirm whether each cell was 

indeed incorrectly marked, or a real neuron. The results of the expert did not change 

much from that of the first time, though there were a few cells that the observer conceded 

to have missed during the first time. In fig. 57 we see one such sample, where the 3 white 

dots in fig. 57 (c) correspond to cells that the algorithm helped the observer find. In this 

sample, we find that out of the 18 extra cells, 3 were conceded to be actually neurons, 
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while the rest of the 15 were thought to be red blood cells that were incorrectly marked as 

neurons.  

This excess of cells classified as neurons can be explained due to the following: 

• The automated experiments were conducted using an image stack of 20 images 

with the kernel comprising of 7 cross-sections, out of which the subset 

corresponding to the images handed to the expert were extracted from this stack 

and compared. It is thus possible that the algorithm saw neurons in other sections 

(beyond those given to the expert) that then propagated its labeling into this 

smaller subset.  

 

 

 

 

Fig. 58. (a), (e), (i) Original images (b), (f), (j) Cells identified by expert 

(c), (g), (k) Segmentation results depicting cell classification (d), (h), (l) Segmentation results depicting individual cell areas. 

 

 

 

• Low value of threshold might have been chosen during the template matching 

phase, resulting in many more local maxima forming and influencing cells to be 

classified as neurons / glial cells.  
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• Due to the high priority given to neurons in the 3D classification, this error is 

propagated across images and we get many more cells identified as neurons than 

those identified by a human observer. 

8.4 Type B results  

 In fig. 58, we see the results attained for type B. The first column shows original 

images, the second the results of the human observer, the third shows the automated 

results highlighting the classification, i.e. granule cells(shades of maroon) and 

interneurons (shades of green and blue), while the final column randomly colors each cell 

to aid in the process of counting.  

Purkinje cells and endothelial cells, which occur at the boundary of the densely 

populated granule cells and on blood vessels respectively, are not segmented by the 

automated algorithm and are consequently ignored in the counting process. The results 

are tabulated in Table 3 and Table 4.   

 

 

 
TABLE 3 

Comparison of manual and automated results for segmentation of granular cells  

Img 
Manual  

num(grm) 

Automated  

num(gra) 

1-1 Correspondence 

num(grcorr) 

Percentage 

identified 

corr

m

( )

( )
100

num gr

num gr
×  

Percentage extra / 

missed by expert 

( ) ( )

( )
100

corra

a

num gr num gr

num gr

−
×

 

1 98 109 86 87.7 % 21.1 % 

2 83 101 75 90.3 % 25.7 % 

3 73 85 62 84.9 % 27.05 % 

3D 112 134 103 91.9 % 23.1 % 

 

 

 

Similar to type A, we have a very high percentage of cells segmented by the 

human observer that have also been spotted by the automated process, but many extra as 

well. The watershed algorithm works well and can be seen by the numbers of 1-1 
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correspondence in granule cells. Interneurons are spotted by the dense/sparse matrix 

discussed earlier.  

 

 

 
TABLE 4 

Comparison of manual and automated results for segmentation of interneurons  

Img 
Manual  

num(inm) 

Automated  

num(ina) 

1-1 Correspondence 

num(incorr) 

Percentage 

identified 

corr

m

( )

( )
100

num in

num in
×  

Percentage extra / 

missed by expert 

( ) ( )

( )
100

corra

a

num in num in

num in

−
×

 

1 9 15 9 100 % 40 % 

2 11 31 11 100 % 64.5 % 

3 10 17 10 100 % 41.1 % 

3D 13 33 13 100% 60.6 %  

 

 

 

The problem of extra cells occurs again, which can either be incorrectly marked 

cells or cells that the observer failed to see. However, ending up with extra segments is a 

known drawback of the watershed algorithm, and so the results were not re-verified for 

confirmation. These extra segments can be eliminated by some changes in the post-

processing method and some tweaking of the threshold data used to classify noise.  
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CHAPTER IX 

CONCLUSION AND FUTURE WORK 

9.1 Conclusion  

A software application was described that could serve as an alternative to the 

manual approach by neuroscientists to segment, count and visualize various types of cells 

present in the Nissl stained images obtained from the KESM. While most of the noise 

was eliminated from the images and most of the cell bodies were successfully identified, 

the classification process still had some false positives when identifying neurons and 

granule cells. The watershed algorithm is one of the only ways to approach the problem 

of granule cells due to their size and density, and this was successfully implemented to 

separate out these cells.  

There is still room for better classification results, and we discuss this in the 

‘future work’ section.  

9.2 Future work  

9.2.1  Automatic identification of type A and type B 

While using an average intensity threshold was indeed considered to decide if the 

image being analyzed was of type A or type B, this was not implemented since it was 

likely to be prone to error. More complex analysis to decide on the type is needed for this 

classification.  

9.2.2 Using faster techniques for matching 

The 3D template matching that is currently implemented uses a 3D kernel that 

steps through the volume one at a time. This is computationally very costly, and can be 

improved by using faster techniques like Fast Fourier Transforms (FFT).  

9.2.3 Smoothing on marching cubes visualization  

The smoothing operation could serve to make the 3D polygonal representation 

using marching cubes more appealing visually.  

9.2.4 More accurate classification techniques  
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The problem of false positives could be further alleviated using better post-

processing techniques for this classification.  

9.2.5 Better comparison method for validation  

As described in section 8.3, there were certain issues with the set analyzed by the 

experts and those analyzed by the automated algorithms. A more consistent comparison 

method could be used in future.  



 74 

REFERENCES 

[1]  Lars K. Nielsen, Gordon K. Smythl, and Paul F. Greenfield, “Hemacytometer Cell 

Count Distributions: Implications of Non-Poisson Behavior,” Biotechnol. Prog., 

vol.7, pp. 560-563, 1991.  

[2]  David R Caprette, “Counting cells using a Microscope Counting Chamber,” 

http://www.ruf.rice.edu/~bioslabs/methods/microscopy/cellcounting.html, Mar  

2007. 

[3]  E. Pauli, M. Hildebrandt, J. Romstöck, H. Stefan, and I. Blümcke, “Deficient 

memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule 

cell loss,” Neurology, vol. 67, pp. 1383 – 1389, Oct 2006. 

[4]  Barry L. Jacobs, Henriette van Praag, Fred H. Gage, “Depression and the birth and 

death of brain cells,” http://www.biopsychiatry.com/newbraincell/, July 2000. 

[5]  Francisco López-Muñoz, Jesús Boya and Cecilio Alamo, “Neuron theory, the 

cornerstone of neuroscience on the centenary of the Nobel Prize award to Santiago 

Ramón y Cajal,” Brain Research Bulletin, vol. 70, no.s 4-6, pp. 391-405, 16 

October 2006. 

[6]  Harald Fodstad, “The Neuron Theory,” Proceedings of the 13th Meeting of the 

World Society for Stereotactic and Functional Neurosurgery, vol.77, pp. 20-24, 

September 2001. 

 

[7]  Harvey Lodish, Arnold Berk, Lawrence S. Zipursky, Paul Matsudaira, David 

Baltimore and James Darnell,  

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mcb.section.6108 Molecular Cell 

Biology, 2000. 

[8]  Alain Beaudet and Alain Rambourg, “Tri-dimensional Structure of Nissl Bodies: A 

Stereoscopic Study in Ventral Horn Cells of Rat Spinal Cord,” The Anatomical 

Record, vol.207, pp. 539-546. 

[9]  “Staining,” http://cancerweb.ncl.ac.uk/cgi-bin/omd?staining, May 2007. 

[10]  Strausfeld, N. J., I. Vilinsky, and L. C. Hansen , “Golgi Impregnations, 

Introduction,” http://web.neurobio.arizona.edu/Flybrain/html/atlas/golgi/index.html, 

Apr 2007. 

[11]  Daniel S. Barth, “Neuroscience Methods, Background,” 

http://psych.colorado.edu/~dbarth/PDFs/4052/4052%20Manual%20Chapters/Histol

ogy%20I.pdf. 

[12]  Bruce H. McCormick, “Development of the Brain Tissue Scanner,” Brain Networks 

Lab Technical Report, March 2002. 



 75 

[13]  Ying-Lun Fok, Joseph C. K. Chan, and Roland T. Chin, “Automated Analysis of 

Nerve-Cell Images Using Active Contour Models,” IEEE Transactions on Medical 

Imaging, vol. 15, June 1996. 

 

[14]  Elmoataz, A.; Revenu, M.; Porquet, C, “Segmentation and Classification of various 

types of cells in Cytological Images,” International Conference on Image 

Processing and its Applications, 1992, pp.385-388, April 1992. 

[15]  Mussio, P.; Pietrogrande, M.; Bottoni, P.; Dell'Oca, M.; Arosio, E.; Sartirana, E.; 

Finanzon, M.R.; Dioguardi, N., “Automatic cell count in digital images of liver 

tissue sections,” Proceedings of the Fourth Annual IEEE Symposium, Computer-

Based Medical Systems, 1991, pp.153-160, May 1991. 

[16]  D. Comaniciu and P. Meer, “Robust Analysis of Feature Spaces: Color Image    

Segmentation,” IEEE Conf. on Comp. Vis. and Pattern Recognition, pp. 750-755, 

1997. 

[17]  Constantinos G. Loukas, George D. Wilson, Borivoj Vojnovic, Alf Linney, “An 

Image Analysis-based Approach for Automated Counting of Cancer Cell Nuclei in 

Tissue Sections,” Cytometry, vol. 55A, pp.30-42, September 2003. 

[18]  Amini, A.A.; Weymouth, T.E.; Jain, R.C, “Using Dynamic Programming for 

Solving Variational Problems in Vision,” IEEE Transactions on Pattern Analysis 

and Machine Intelligence, vol.12, pp.855-867, Sep 1990. 

[19]  Stephen J. Lockett, Damir Sudar, Curtis T. Thompson, Dan Pinkel, Joe W. Gray, 

“Efficient, Interactive, and Three-dimensional Segmentation of Cell Nuclei in 

Thick Tissue Sections,”  Cytometry, vol.31, no. 4, pp.275-286, Dec 1998. 

[20]  Yan Kang, Klaus Engelke and Willi A. Kalender, “Interactive 3D Editing Tools for 

Image Segmentation,” Medical Image Analysis, vol.8, pp. 35-46, Mar 2004. 

[21]  Bill Green, “Histogram, Thresholding and Image Centroid Tutorial,” 

http://www.pages.drexel.edu/~weg22/hist_thresh_cent.html, Apr 2002. 

[22]  Anil K. Jain, Robert P.W. Duin, and Jianchang Mao, “Statistical Pattern 

Recognition: A Review,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol.22, January 2000. 

[23]  Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, Second 

Edition, Academic Press, February 2003.  

[24]  Gang Lin, Umesh Adiga, Kathy Olson, John Guzowski, Carol Barnes and Badrinath 

Roysam, “A Hybrid 3D Watershed Algorithm Incorporating Gradient Cues and 

Object Models for Automatic Segmentation of Nuclei in Confocal Image Stacks,” 

Cytometry , vol. 56A, pp. 23-36, 2003. 



 76 

[25]  Perlovsky, L.I., “Conundrum of combinatorial complexity,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 20, pp. 666-670, June 1998.  

[26]  Zheng Lin, Jesse Jin, Hugues Talbot, “Unseeded region growing for 3D image 

segmentation,” Selected Papers from Pan-Sydney Workshop on Visual Information 

Processing, 2002. 

[27]  Vincent L. and Soille P., “Watersheds in digital spaces: an efficient algorithm based 

on immersion simulations,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence vol.13, pp. 583 – 598, June 1991. 

[28]  S. Beucher, “The watershed transformation applied to image segmentation,” 

Conference on Signal and Image Processing in Microscopy and Microanalysis, pp. 

299 - 314, September 1991. 

[29]  J. B. T. M. Roerdink and A. Meijster, “The Watershed Transform: Definitions, 

Algorithms and Parallelization Techniques,” Mathematical Morphology, pp.187-

228, 1999. 

[30]  Paul R.Hill, C Nishan Canagarajah, David R Bull, “Image Segmentation Using a 

Texture Gradient Based Watershed Transform,” IEEE Transactions of Image 

Processing , vol. 12, December 2003. 

[31]  Gang Li, Tianming Liu, Jingxin Nie, Lei Guo, Wong, S.T.C., “Segmentation of 

Touching cells using gradient flow tracking,” 4th IEEE International Symposium on  

Biomedical Imaging: From Nano to Macro, vol. 12, pp.77-80, April 2007. 

[32]  Robert Fisher, Simon Perkins, Ashley Walker and Erik Wolfart, 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm, “Contrast Stretching,” July 

2007. 

[33]  Bob Fisher, Simon Perkins, Ashley Walker and Erik Wolfart,   

http://www.cee.hw.ac.uk/hipr/html/median.html, “Median Filtering,” July 2007. 

[34]  “Edges: Gradient edge detection,” 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edge

s/gradient.htm, July 2007. 

[35]  Donald G. Bailey, “An Efficient Euclidean Distance Transform,” Combinatorial 

Image Analysis, vol. 3322, pp. 394-408, 2004. 

[36]  R. Klette, “Algorithms for Picture Analysis,” Lecture 08, available at 

www.citr.auckland.ac.nz/~rklette/Books/MK2004/Algorithms.htm, February 2005. 

[37]  Robert Fisher, Simon Perkins, Ashley Walker and Erik Wolfart, “Connected 

components labeling,” http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm, July 

2007. 



 77 

[38]  Rudolf K. Bock, “Template Matching,” 

http://rkb.home.cern.ch/rkb/AN16pp/node283.html#SECTION00028300000000000

00000, April 1998. 

[39]  S. Beucher and C.Lantuéjoul, “Use of Watershed in Contour Detection,” Proc. Int. 

Workshop Image Processing, Real-Time Edge and Motion Detection/Estimation, pp. 

12-21, September 1979. 

[40]  Lee, S.C.   Yimmg Wang   Lee, E.T., “Compactness measure of digital shapes,” 

Region 5 Conference: Annual Technical and Leadership Workshop, pp. 103-105, 

April 2004. 

[41]  D.P. Huijsmans, “Microscopy, Modeling Visualization Mathematical Morphology,”   

http://www.liacs.nl/~fverbeek/courses/ia2007/IA2007-lecture10.pdf, April 2007. 

[42]  William E. Lorensen, Harvey E. Clin, “Marching Cubes: A High Resolution 3D 

Surface Construction Algorithm,” Proceedings of the 14th Annual Conference on 

Computer Graphics and Interactive Techniques, pp. 163 – 169, 1987. 

 



 78 

APPENDIX 

Pseudo-code for various algorithms referenced in the thesis are provided here 

1. Scan  

Initialization: 

/* upperList and currentList hold Lines, while patchList holds Patches */ 

upperList NULL

currentList NULL

patchList NULL

←

←

←

  

Scanning: 

For 0y ← to sy 

 
upperList currentList

currentList NULL

←

←
 

For 0x ← to sx  

 if ( , )I x y Fg∈   

  Initialize l  

  ( )sx l x←  

while ( , )I x y Fg∈ and xx s≤  

 1x x← +  

( )

( )

ex l x

y l y

←

←
 

  pushBack (currentList, l) 

  

if  0y >  and isEmpty(currentList) = false and isEmpty(upperList) = false 

 augmentResults (upperList, currentList) 

 

2. Augment results( upperList, currentList ) 

For each line ul in upperList and cl in currentList{ 

 if ( ) ( )s ex ul x cl>  

  Advance cl to the next line in currentList 

else if ( ) ( )e sx ul x cl<  
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 Advance ul to the next line in upperList 

 else 

  /* Case 1 -  cl overlaps with multiple lines from upperList */ 

  while (isOverlap(cl,ul) = true and isOverlap(cl, next(ul)) = true) 

 Combine ( ) with ( ( ))ptrPatch ul ptrPatch next ul    

   Advance  to the next line in ul upperList  

   

/* Case 2 – cl overlaps with a single line from upperList */   

if ( )ptrPatch ul NULL=  

   initialize new Patch P  

( ( ), )

( ( ), )

pushBack L P ul

pushBack L P cl
   

   
( ) ( )

( ) ( )

ptrPatch ul ptr P

ptrPatch cl ptr P

←

←
 

   fill all attributes of P based on values of ul and cl 

   ( , )pushBack patchList P    

else    

  Initialize patch ( )P ptrPatch ul←   

( ( ), )pushBack L P cl    

   ( )ptrPatch cl P←  

Adjust the attributes of P based on the newly added cl 

Advance cl to the next line in currentList 

3. Sort by storage 

for 0i ← to sz 

  for 0j ← to sy 

   for 0k ← to sx 

    Initialize index ind(x,y,z) to (k,j,i)  

    if VoxelsAtHeight[I(k,j,i)]=NULL 

     VoxelsAtHeight[I(k,j,i)] ← ind 

    else 
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Insert ind at the end of the List pointed to by 

VoxelsAtHeight[I(k,j,i)] 

 

4.  Is marked (voxel v(x,y,z))  

  if Labels[z][y][x]>0 or Labels[z][y][x]=WSHED 

  return true 

 return false 

5. Fast watersheds 

Sort all the voxels in the Image Volume I using the sortByStorage( ) algorithm 

for minh h←  to hmax 

 for each voxel v in the list VoxelsAtHeight[h]   

  set Labels(v) ←MASK 

  if  ' ( ) such that ( ')v N v isMarked v true∃ ∈ =  

   set Distance(v) ←1 

   pushBack( Q, ind ) 

  

 set curDist ←1 

 pushBack(dummyVoxel) 

 while(true) 

  Initialize v ←  begin( Q ) 

  if v = dummyVoxel 

   if isEmpty(Q) = true 

    Break 

   else 

    pushBack( dummyVoxel ) 

    curDist ←curDist + 1 

    ind ←  begin(Q) 

 

  For every voxel 'v  in ( )N v  
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   if Distance( 'v )<curDist and isMarked( 'v ) 

    if 'v  is named  

     if Labels(v) = MASK or WSHED 

      Labels(v)  = Labels( 'v )   

     else if Labels(v)  ≠  Labels( 'v ) 

      Labels(v) = WSHED 

    else if Labels(v)  = MASK   

     Labels(v)  = WSHED 

   else if Labels( 'v )=MASK and Distance( 'v )=0 

    set Distance( 'v ) to curDist + 1 

    pushBack(Q, 'v ) 

 

 //New minima 

 for every voxel v in VoxelsAtHeight[h] 

  set Distance(v) ←0 

  if Labels(v)=MASK 

   Assign new label  l at voxel v 

   pushBack(v) 

   while isEmpty(Q) = false 

    Initialize 'v ←begin(Q) 

    for every neighbouring voxel ''v  in N( 'v ) 

     if Labels( ''v )=MASK 

      pushBack( ''v ) 

      set Labels( ''v ) ← l 

 

6. Hole fill(patch P) 

Initialize a Boolean matrix Img of dimensions rows cols× , where  

( )

( )

max min

max min

( ( )) ( ( )) 1

( ( )) ( ( )) 1

cols x i P x i P

rows y i P y i P

= − +

= − +
 



 82 

[ ]

min min

Initialize every index in Img to 

for each ( )

for each ( ), ( )

Img[ ( ) ( ( ))][ ( ) ( ( ))]

s e

false

l L P

x x l x l

set y l y i P x l x i P true

∈

∈

− − =

 

//Complement the Img matrix  

for each ( , ) where 0 ,0

Img[ ][ ] Img[ ][ ]

x y x cols y rows

y x y x

≤ < ≤ <

=
  

 

//Run Connected-Component labeling on the resulting Img, clearing the pixels of all 

//patches that do not touch any boundary 

newPatchList (Img[][])returnPatchList←  

[ ]

min min max max

min min max max

min min

for each

( ( ) ) ( ( )) ( ( ) ) ( ( ))

( ( ) ) ( ( )) ( ( ) ) ( ( ))

for each ( )

for each ( ), ( )

Img[ ( ) ( ( ))][ ( ) ( ( ))]

s e

nP newPatchList

if x i nP x i P and x i nP x i P

and y i nP y i P and y i nP y i P

l L nP

x x l x l

set y l y i P x l x i P fa

∈

≠ ≠

≠ ≠

∈

∈

+ + = lse

 

//Complement Image Img again  

for each ( , ) where 0 ,0

Img[ ][ ] Img[ ][ ]

x y x cols y rows

y x y x

≤ < ≤ <

=
 

//Resulting patch P is one without any holes (fig. 22 e) 

7.  Patch refinement ( PatchList ) 

/* This algorithm inputs a list of Patches in the current image and corrects by means of 

modification or replacement, all Patches that do not satisfy certain score requirements */ 

for each patch P PatchList∈  

( )

min max min

min min

 

min max

( ) or ( ) or ( )

Classify as noise. Remove  from 

( ) or ( )

Analyze Convolved Image and get local maxima near 

( , , ) ( ), ( ) such that 

c

if HWR P HWR HWR P HWR n P n

P P PatchList

if Cp P Cp Cr P Cr

I P

if x y z i P i P

< > <

< <

∃ ∈ ( , , )

Modify or Replace patch  so its attributes are within acceptable limits

c
I x y z Threshold

P

≥
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8.  Bounding-box overlap (patch P1, patch P2) 

if ys(imin(P1)) > ye(imax(P2)) or ys(imin(P2)) > ye(imax(P1)) 

 Return false 

else if xs(imin(P1)) > xe(imax(P2)) or xs(imin(P2)) > xe(imax(P1)) 

 Return false 

else 

 Return true 

9.  Patch overlap (patch P1, patch P2) 

Initialize Boolean matrix M of size  

( ) ( )max 1 min 1 max 1 min 1( ( )) ( ( )) 1 ( ( )) ( ( )) 1x i P x i P y i P y i P− + × − +  

for each line 1( )l L P∈  

 for ( ) ( )s ei x l to x l←  

  set [ ][ ]M y i true←  

for each line 2( )l L P∈  

 for ( ) ( )s ei x l to x l←  

  if [ ][ ]M y i true=  

   Return true 

Return false 

10.  Group in 3D (list[] Patches) 

for 0←i  to sz - 1  

 Initialize patch ])[( iPatchesbegincurPatch ←  

 Initialize patch ])1[( +← iPatchesbeginupPatch  

  

 while y(imin(upPatch)) < y(imax(curPatch)) and upPatch<>end(Patches[i+1]) 

  if isBoundingBoxOverlap( curPatch, upPatch ) = false 

   Advance upPatch to next patch in Patches[i+1] 

  else 

   if isPatchOverlap(curPatch, upPatch) = false 

    Advance upPatch to next patch in Patches[i+1] 

   else  

    /* Patch is overlapping. Add to the Blob list */ 

    if ptrBlob(curPatch)<>NULL 

     ptrBlob(upPatch) ( )ptrBlob curPatch←  
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     pushBack (L(ptrBlob(upPatch)), upPatch) 

     Adjust attributes of ptrBlob(upPatch) with new data 

    else 

     Create a new Blob B  

     pushBack (L(B), curPatch) 

     pushBack (L(B), upPatch) 

     ptrBlob(curPatch) B←  

     ptrBlob(upPatch) B←  

     Fill attributes of B 

     Add B to BlobList 

    Advance upPatch to next patch in Patches[i+1] 

   

 Advance upPatch to next patch in Patches[i+1] 

 

11. Marching cubes() 

for each image Ik in the data set, where (0, )
z

k s∈  

Read image Ik and next image Ik+1 

for each position ( , , )x y z  in Ik 

 Read in the values of the four neighboring voxels of (x, y, z) in Ik: 

  

3

2

1

0

( 1, 1, )

( , 1, )

( 1, , )

( , , )

v x y z

v x y z

v x y z

v x y z

= + +

= +

= +

=

 

 Read the values of the corresponding voxels in Ik+1: 

7

6

5

4

( 1, 1, 1)

( , 1, 1)

( 1, , 1)

( , , 1)

v x y z

v x y z

v x y z

v x y z

= + + +

= + +

= + +

= +

 

Calculate the table index TI as described using the values of the corner 

voxels of the cube as values for 7 6 5 4 3 2 1 0( , , , , , , , )i i i i i i i i  

Use the calculated TI to extract information about edge intersections and 

corresponding triangles from the table 

Calculate the normal for the triangles so that lighting calculations are 

accurate 



 85 

VITA 

Aswin Cletus D’Souza received his Bachelor of Engineering (B.E.) in Computer 

Science & Engineering from Manipal Institute of Technology in 2004. He entered the 

Master of Science (MS) program in the department of Computer Science at Texas A&M 

University in August 2005 and will be receiving his degree in December 2007. He is 

planning to start his professional career in the industry upon graduation. He can be 

contacted either at aswindsouza@yahoo.com or his current residence: 6014 Winsome 

Lane, #209, Houston, TX 77057. 

 

 


