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ABSTRACT

Capacity Results for Wireless Cooperative Communications

with Relay Conferencing. (August 2012)

Chuan Huang, B.S., University of Electronic Science and Technology of China,

M.E., University of Electronic Science and Technology of China

Chair of Advisory Committee: Dr. Shuguang Cui

In this dissertation we consider cooperative communication systems with relay

conferencing, where the relays own the capabilities to talk to their counterparts via

either wired or wireless out-of-band links. In particular, we focus on the design of

conferencing protocols incorporating the half-duplex relaying operations, and study

the corresponding capacity upper and lower bounds for some typical channels and

networks models, including the diamond relay channels (one source-destination pairs

and two relays), large relay networks (one source-destination pairs and N relays), and

interference relay channels (two source-destination pairs and two relays).

First, for the diamond relay channels, we consider two different relaying schemes,

i.e., simultaneous relaying (for which the two relays transmit and receive in the same

time slot) and alternative relaying (for which the two relays exchange their trans-

mit and receive modes alternatively over time), for which we obtain the respective

achievable rates by using the decode-and-forward (DF), compress-and-forward (CF),

and amplify-and-forward (AF) relaying schemes with DF and AF adopted the con-

ferencing schemes. Moreover, we prove some capacity results under some special

conditions.

Second, we consider the large relay networks, and propose a “p-portion” confer-

encing scheme, where each relay can talk to the other “p-portion” of the relays. We
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obtain the DF and AF achievable rates by using the AF conferencing scheme. It is

proved that relay conferencing increases the throughput scaling order of the DF relay-

ing scheme from O(log(log(N))) for the case without conferencing to O(log(N)); for

the AF relaying scheme, it achieves the capacity upper bound under some conditions.

Finally, we consider the two-hop interference relay channels, and obtain the AF

achievable rates by adopting the AF conferencing scheme and two different decoding

schemes at the destination, i.e., single-user decoding and joint decoding. For the

derived joint source power allocation and relay combining problem, we develop some

efficient iterative algorithms to compute the AF achievable rate regions. Moreover, we

compare the achievable degree-of-freedom (DoF) performance of these two decoding

schemes, and show that single-user decoding with interference cancelation at the

relays is optimal.
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CHAPTER I

INTRODUCTION

A. Overview of Relay Networks

In most recent wireless access standards, such as Long Term Evolution-Advanced

(LTE-A) by the 3rd Generation Partnership Project (3GPP) and IEEE 802.16m for

WiMAX, relaying has been proposed as one of the main performance enhancement

technologies [1]. In these standards, relays are deployed to help the wireless access

systems increase the system capacity and enlarge the coverage.

From the information-theoretical viewpoint, the capacity bounds of the tradi-

tional three-node full-duplex relay channel have been well studied [2–5], and various

coding schemes, such as decode-and-forward (DF) and compress-and-forward (CF),

have been proposed. For the half-duplex relay channel, in [5] and the references

therein the authors have studied achievable rates and the power allocation problems.

For the case with two relay nodes and no direct link between the source and

the destination, termed as the diamond relay channel, various achievable rates were

derived in [6–13]. In particular, the authors in [6, 7] discussed the capacity upper

bound and achievable rates using the DF and amplify-and-forward (AF) schemes

under the full-duplex relaying mode. For the case with N relays, the authors in [8]

used the bursty AF scheme to achieve the channel capacity within 1.8 bits with

arbitrary channel gains and N values. In [9], the authors considered a different

problem, where the relay-destination links are orthogonal, and derived achievable

rates by assuming that each relay either cannot or can decode. Under the half-duplex

mode, the authors in [10] discussed achievable rates using two time-sharing schemes,

The journal model is IEEE Transactions on Automatic Control.
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i.e., the simultaneous relaying and alternative relaying schemes. In [11], the authors

further discussed the same problem and bounded the gap between the achievable

rates and the upper bound to at most some constant bits. By further exploring

partial collaboration between the two relays, the authors in [12, 13] developed some

DF schemes based on dirty paper coding (DPC) and block Markov encoding (BME),

where the DF scheme is shown to be optimal in some special cases [13].

For the large relay networks with N relay nodes, the asymptotic capacity bounds

were studied in [14–17]. Considering the joint source channel coding problem for a

special class of Gaussian relay networks [14], the capacity upper bound is asymptot-

ically achieved by the AF relaying scheme as the number of relays tends to infinity.

For general Gaussian relay networks, the authors in [15] obtained the achievable rate

scaling law for the multiple-input and multiple-output (MIMO) relay networks with

AF: For the coherent relaying case, with full forward-link channel state information

(CSI) at the relays, the AF achievable rate scales as O (log(N)); for the noncoherent

relaying case with zero forward-link CSI at the relays, it scales as O (log(1)). In [16],

the authors studied the scaling laws of the DF, CF, and linear relaying schemes, and

proved that the DF rate scales at most as O (log (log(N))) for the coherent relaying

scheme. The authors in [17] mainly focused on the noncoherent case, and proved that

the DF relaying scheme asymptotically achieves the capacity upper bound.

In practical communication systems, some nodes might have extra out-of-band

connections with the others, e.g., through Bluetooth, WiFi, optical fiber, etc., to

exchange certain information and improve the overall system performance. From the

information-theoretical viewpoint, such kinds of interactions can be modeled as nodes

conferencing [18–22]. Specifically, for multiple access channel (MAC) [18], encoder

conferencing was used to exchange part of the source messages, and it is proved

that one-round conferencing scheme is optimal, for which the two receivers exchange
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information only once. For the broadcast channel (BC) in [19], each decoder was

designed to first compress the received signal, and then transmit the corresponding

binning index number to its counterpart through the conferencing link. In [19, 20],

it was shown that the one-round scheme is optimal for the physically degraded BC

channel, while the two-round and three-round schemes can outperform the one-round

one for general channel cases. Moreover, in [21] and [22], by adopting transmitter and

receiver conferencing, achievable rates of the compound MAC channel were discussed,

for which both the two receivers are required to fully decode the two source messages,

and some capacity results for the degraded cases were provided.

In this dissertation, we introduce the idea of node conferencing into the coopera-

tive communication networks, i.e., the diamond relay channels with the simultaneous

and alternative relaying schemes, and single- or multi-user relay networks, by allow-

ing the relays to talk to each other via out-of-band conferencing links. Moreover, we

would like to address the following questions:

1. How to design efficient protocols to incorporate the relay conferencing among

the relays and to excute relaying operations from the relays to the destinations?

2. Whether and when relay conferencing can (strictly) help the transmissions (in

the sense of increasing the achievable rates) compared to the case without it?

3. How much gain can relay conferencing enable? Can we obtain more reward

than the cost that we pay for relay conferencing?

4. When can the proposed relaying and conferencing schemes achieve the capacity

upper bound?
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B. Overview of Contributions

The main contribution and the structure of this dissertation are summarized as fol-

lows.

1. We first consider the half-duplex diamond relay channel with the simultaneous

relaying scheme in Chapter 2, which consists of one source-destination pair and

two relay nodes connected with two-way rate-limited out-of-band conferencing

links. Three basic coding schemes are studied: For the DF scheme, we obtain an

achievable rate by letting the source send a common message and two private

messages; for the CF scheme, we exploit the conferencing links to help with

the compression of the received signals, or to exchange messages intended for

the second hop to introduce different levels of cooperations; for the AF scheme,

we study the optimal combining strategy between the received signals from the

source and the conferencing link. Moreover, we show that these schemes could

achieve the rate upper bound under certain conditions. Finally, we evaluate

various achievable rates for the Gaussian case with numerical results.

2. Next, the diamond relay channel with alternative relaying scheme is considered

in Chapter 3, which consists of one source-destination pair and two relay nodes

connected with rate-limited out-of-band conferencing links. In particular, we

focus on the half-duplex alternative relaying strategy, in which the two relays

operate alternatively over time. With different amounts of delay, two confer-

encing strategies are proposed, each of which can be implemented by either a

general two-side conferencing scheme (for which both of the two conferencing

links are used) or a special-case one-side conferencing scheme (for which only

one of the two conferencing links is used). Based on the most general two-side

conferencing scheme, we derive the achievable rates by using the DF and AF
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relaying schemes, and show that these rate maximization problems are convex.

By further exploiting the properties of the optimal solutions, the simpler one-

side conferencing is shown to be equally good as the two-side conferencing in

term of the achievable rates under arbitrary channel conditions. Based on this,

the DF rate in closed-form is obtained, and the principle to use which one of the

two conferencing links for one-side conferencing is also established. Moreover,

the DF scheme is shown to be upper-bound-achieving under certain conditions

with even one-side conferencing. For the AF relaying scheme, one-side confer-

encing is shown to be sub-optimal in general. Finally, numerical results are

provided to validate our analysis.

3. Then, we extend the idea of relay conferencing to a half-duplex large relay

network in Chapter 4, consisting of one source-destination pair and N relay

nodes, each of which is connected with a subset of the other relays via signal-

to-noise ratio (SNR)-limited out-of-band conferencing links. The asymptotic

achievable rates of two basic relaying schemes with the “p-portion” conferencing

strategy are studied: For the DF scheme, we prove that the DF rate scales as

O (log(N)); for the AF scheme, we prove that it asymptotically achieves the

capacity upper bound in some interesting scenarios as N goes to infinity.

4. Finally, in Chapter 5, we consider a two-hop interference network, which con-

sists of two source-destination pairs and two relay nodes connected with SNR

limited out-of-band conferencing links. Assuming that the AF relaying scheme

is adopted, this network is shown to be equivalent to a two-user IC. By de-

ploying two IC decoding schemes, i.e., single-user decoding and joint decoding,

respectively, we characterize the achievable rate regions with a two-stage iter-

ative optimization method: First, we fix the source power pair and maximize
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the sum rate over the relay combining vector; second, we fix the relay combin-

ing vector and optimize the source power pair. Specifically, we design a new

routine to compute the optimal relay combining vector, which is more efficient

than the existing scheme. Furthermore, it is revealed that the AF scheme with

relay conferencing achieves the full DoF, which outperforms the case without

relay conferencing. Finally, simulation results show that relay conferencing can

significantly improve the system performance under certain channel conditions.

C. Notations

Here, we briefly summarize the notations adopted in this dissertation in Table I.
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Table I.: Notations

log(·) base-2 logarithm

ln(·) natural logarithm

x scalar

x vector

X matrix

ℜ(x) real part of a complex number x

|x| the amplitude of a complex number x

max {x, y} the maximum between two real numbers x and y

min {x, y} the minimum between two real numbers x and y

C(x) = log (1 + x) the AWGN channel capacity

⟨x,y⟩ the inner product of two vectors x and y

|x| the norm of vector x

|A| the determinant of a matrix A

Rank(X) the rank of a matrix X

E(X) the expectation of a random variable X

Tr(X) the trace of a matrix X

X ≽ 0 X is a positive semidefinite matrix

Diag(x) a diagonal matrix with x as the diagonal elements

XN
w.p.1−−−→ a XN → a with probability 1, as N → +∞

AN ∼ BN limN→+∞ |AN −BN | = 0

yN ∼ O (log(xN)) limN→+∞
xN

yN
= c, where c is a positive constant
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CHAPTER II

SIMULTANEOUS RELAYING DIAMOND CHANNEL

In this chapter, we consider the half-duplex diamond relay channel, which consists

of one source-destination pair and two relay nodes. We assume that the relays can

conduct conferencing with each other via some orthogonal out-of-band links [23]. In

general, the conferencing links can be used to exchange compressed versions of the

received signals at the relays [19], part of the messages intended to the destination

between the two relays [18], or just to forward the received signal to the other relay

[10]. With these ideas, we develop relaying schemes based on the conventional DF,

CF, and AF schemes by exploiting the inter-relay conferencing, for both the cases

of discrete memoryless channel (DMC) and Gaussian channel. Moreover, in stead

of considering multi-round conferencing schemes [19, 20], we just concentrate on the

simple one-round conferencing scheme, which means that the relays simultaneously

process their received signal and conduct conferencing with the other in the same

time slot.

Three basic coding schemes are studied: For the DF scheme, we obtain an achiev-

able rate by letting the source send a common message and two private messages; for

the CF scheme, we exploit the conferencing links to help with the compression of the

received signals, or to exchange messages intended for the second hop to introduce

different levels of cooperations; for the AF scheme, we study the optimal combin-

ing strategy between the received signals from the source and the conferencing link.

Moreover, we show that these schemes could achieve the rate upper bound under cer-

tain conditions. Finally, we evaluate various achievable rates for the Gaussian case

with numerical results.

The remainder of the chapter is organized as follows. In Section A, we introduce
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all assumptions and channel models. In Section B, we derive a rate upper bound

and achievable rates for the DF, CF, and AF schemes. Moreover, we discuss some

upper-bound-achieving cases. Section C shows some simulation and numerical results.

Finally, this chapter is summarized in Section D.

A. Assumptions and System Model

In this chapter, we consider the diamond relay channel with out-of-band conferencing

links between the relays, as shown in Fig. 1, which contains one source node, one

destination node, and two relays. It is assumed that there is no direct link between the

source and the destination. Furthermore, these two conferencing links are orthogonal

to each other and outside the bandwidth used by the source-to-relay and relay-to-

destination links. In this chapter, we only consider the simultaneous relaying scheme

[10] with conferencing, leaving the alternative relaying scheme [10] for future works.

To be concise, in each relaying scheme we generically describe the coding scheme for

the i-th relay (i = 1, 2), where we use (3− i) to refer to the other relay index for the

convenience of description.

Source

Relay 1

Relay 2

Destination

X

1Y

2Y

1X

2X

Y

12C

21C

Fig. 1.: Diamond relay channel with conferencing links.

The time scheduling schemes of the source-relay, relay-destination, and confer-
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encing transmissions are shown in Fig. 2(a) and Fig. 2(b) for different relaying

schemes, respectively. The relay nodes work in a half-duplex mode: During the i-th

transmission block, the source transmits the i-th message and the two relays listen in

the first time slot; the relays simultaneously transmit the (i − 1)-th source message

and the destination listens in the second time slot. For the DF and CF relaying

schemes, denote the time fraction allocated to the first slot as λ, with λ ∈ (0, 1), and

that for the second slot as λ = 1 − λ; for the AF relaying scheme, let λ = 1
2
. After

receiving the source signal, each relay temporarily stores this information for one-

block, and forward this information to its counterpart via the conferencing link; then

after obtained the information from the other relay, each relay generates a message

and transmits it to the destination in the successive slot. Moreover, for both the DF

and CF relaying schemes, we adopt the CF scheme as the conferencing strategy; and

for the AF relaying scheme, we adopt the AF scheme for conferencing. Due to this

assumption, the conferencing scheduling schemes for DF, CF, and AF are different:

For the DF and CF relaying schemes, the block length of the conferencing link code-

words is equal to the sum of those for the source and relay transmission codewords, as

shown in Fig. 2(a); on the other hand, for the AF relaying scheme, the block lengths

of these three codewords should be the same, as shown in Fig. 2(b). Furthermore,

due to relay conferencing, there will be a one-block delay between the transmissions

at the source and the relays, as shown in Fig. 2(a) and Fig. 2(b). Assume that

during each block, the communication rate is R, and we need to transmit B blocks in

total. Thus, the average information rate is R B
B+1

→ R, as B goes to infinity. In this

chapter, we focus on the one-block transmission and the associated coding scheme

without specifying the delay in the sequel.

In this chapter, we consider both the DMC and Gaussian channel cases for the DF

relaying scheme, while considering only the Gaussian case for the AF relaying scheme.



11��1
��1
��1
��2
��2
��3
�3
��2
��3

One-block delay


Source


Conferencing


Relay


(a) For the DF and CF schemes.��1
�1
��1
�2


One-block delay


Source


Conferencing


Relay
 �2
��2
�3
 �3
��3
�4


(b) For the AF scheme.

Fig. 2.: Transmission scheduling scheme for the diamond relay channel with conferencing
links.

These channel models are described as follows. For the DMC case, the diamond relay

channel is defined as (X ,X1,X2,P ,Y1,Y2,Y), where X ,X1, and X2 are the finite chan-

nel inputs at the source, relay 1, and relay 2, respectively; Y1,Y2, and Y are the finite

channel outputs at relay 1, relay 2, and the destination, respectively; P denotes the

collection of the conditional probabilities p (y1, y2, y|x, x1, x2) = p (y1, y2|x) p (y|x1, x2)

on (y1, y2) ∈ Y1 × Y2 given x ∈ X and y ∈ Y given (x1, x2) ∈ X1 × X2, respectively.

The channel is memoryless in the sense that for n channel uses, we have

p (y1,y2|x) =
λn∏
i=1

p (y1i, y2i|xi) ,

p (y|x1,x2) =
λn∏
i=1

p (yi|x1i, x2i) ,

where the respective signal vectors are defined as follows: x = (x1, · · · , xλn), x1 =

(x11, · · · , x1,λn), x2 = (x21, · · · , x2,λn), y1 = (y11, · · · , y1,λn), y2 = (y21, · · · , y2,λn), and

y = (y1, · · · , yλn).



12

Denote the capacity of the conferencing link from relay 1 to relay 2 as C12, with

C21 defined similarly. The inputs of the two conferencing links are within two integer

sets W1 =
{
1, · · · , 2nC12

}
and W2 =

{
1, · · · , 2nC21

}
, respectively. We assume that for

the conferencing links, the receivers can perfectly decode the source messages without

incurring any errors if the transmission rate is under the conferencing link rate. Note

that the definition of the conferencing links is not the most general one [18], but

enough to describe our proposed coding schemes in the next section.

A nonnegative rate R is achievable for the diamond relay channel with confer-

encing links, if there exists a codebook {x(w)}, w ∈
[
1, · · · , 2nR

]
, for the source

node, a relaying mapping xi(vi) = ϕi(yi,y3−i,i(w3−i)) for the i-th relay, i = 1, 2,

where vi ∈
[
1, · · · , 2nRi

]
and y3−i,i(w3−i) with w3−i ∈ W3−i is of length n and gen-

erated based on y3−i, and a decoding function ŵ = W (y), ŵ ∈ [1, · · · , 2nR], for the

destination, such that the average error probability at the destination

P (n)
e =

1

2nR

2nR∑
w=1

Pr {ŵ ̸= w|w is sent} → 0,

as n goes to infinity, where w is assumed to be uniformly distributed over
[
1, · · · , 2nR

]
.

Note that the source code {x(w)} is with length λn and size 2nR, and the relay code

{xi(vi)} is with length λn and size 2nRi , i = 1, 2. The capacity of the considered

channel is defined as the maximum value over all achievable rates.

For the Gaussian channel case, we further define the following channel input-

output relationship. The received signal yi from the source at the i-th relay (i = 1, 2)

is given as

yi = hix+ ni, i = 1, 2, (2.1)

where x is the signal transmitted by the source with average power PS, hi is the
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complex channel gain of the i-th source-to-relay link, and ni’s are the independently

and identically distributed (i.i.d.) circularly symmetric complex Gaussian (CSCG)

noise with distribution CN (0, 1).

In the second hop, signal xi with average power PR, is transmitted from the i-th

relay to the destination; and the received signal y at the destination is given as

y =
2∑

i=1

gixi + n, (2.2)

where gi is the complex channel gain of the i-th relay-to-destination link, and n is the

CSCG noise with distribution CN (0, 1). For convenience, we define the link SNRs as

γi = |hi|2PS, γ̃i = |gi|2PR, i = 1, 2. (2.3)

B. Rate Upper Bound and Achievable Rates

In this section, we examine the rate upper bound and achievable rates of the consid-

ered channel with the following three relaying schemes: DF, CF, and AF. Moreover,

we prove some upper-bound-achieving results under special channel conditions.

1. Rate Upper Bound

In this subsection, we first study the rate upper bound for the considered channel.

Since the simultaneous relaying scheme described in Section A is adopted, we only

consider the BC cut-set and MAC cut-set. Note that this upper bound is only for the

simultaneous relaying protocol, not for the half-duplex diamond relay channel [10,13].

In this chapter, without introducing any confusions, we still call this bound as the

rate upper bound for simplicity.

Theorem B.1 The rate upper bound for the discrete memoryless diamond relay
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channel with conferencing links is given as

Cupper = max
I (X;Y1, Y2) I (X1, X2;Y )

I (X;Y1, Y2) + I (X1, X2;Y )
, (2.4)

over distribution p(x)p(y1, y2|x)p(x1, x2)p(y|x1, x2).

Proof: For any fixed distribution p(x)p(y1, y2|x)p(x1, x2) p(y|x1, x2), by the cut-set

bound, we have

Cupper = max
λ∈(0,1)

min
{
λI (X;Y1, Y2) , λI (X1, X2;Y )

}
,

which comes from the BC cut-set and MAC cut-set [10, 24]. We then optimize over

λ to obtain the rate upper bound, and it is easy to see that the minimum value is

achieved iff the two terms are equal, which means λ∗ = I(X1,X2;Y )
I(X;Y1,Y2)+I(X1,X2;Y )

. With this

optimal λ, we obtain the upper bound in (2.4). �

For the Gaussian case, we choose X and X1 = X2 to be independent CSCG with

distributions CN (0, PS) and CN (0, PR), respectively, and these input distributions

maximize both I (X;Y1, Y2) and I (X1, X2;Y ) simultaneously, which means that they

maximize Cupper; and the corresponding rate upper bound is given by the following

corollary.

Corollary B.1 For the Gaussian case, we have the following rate upper bound

Cupper =
log (1 + γ1 + γ2) log

(
1 + γ̃1 + γ̃2 + 2

√
γ̃1γ̃2

)
log (1 + γ1 + γ2) + log

(
1 + γ̃1 + γ̃2 + 2

√
γ̃1γ̃2

) . (2.5)

2. DF Achievable Rate

Main idea: For the DF scheme, the source transmits three messages: one common

message w0 to both of the relays, and one private message to each of the relays,

denoted as w1 and w2, respectively. In the i-th relay, it compresses the received signal
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from the source, and sends the corresponding binning index through the conferencing

link to the other relay, which helps with decoding the desired common message. In

the second hop, the channel is indeed a MAC with common information. In the next,

we first consider the DMC case and then the Gaussian case.

a. DF Rate for the DMC Case

We first focus on the first hop that is a BC channel with receiver one-round confer-

encing, for which the authors in [19] investigated the two cases: send one independent

message to each receiver and send one common message to both receivers. In this

subsection, we extend their results with a more general coding scheme, and have the

following lemma.

Lemma B.1 An achievable rate region of the general discrete memoryless BC with

common message and decoder conferencing is given as

RBC =
∪

p(u0)p(u1|u0)p(u2|u0)x(u0,u1,u2)p(y1,y2|x)p(ŷ1|y1)p(ŷ2|y2)

(R0, R1, R2) : R0, R1, R2 ≥ 0,

R0 +Ri ≤ λI
(
U0, Ui; Ŷ3−i, Yi

)
,

R0 +R1 +R2 ≤ λI
(
Ui; Ŷ3−i, Yi|U0

)
+ λI

(
U0, U3−i; Ŷi, Y3−i

)
− λI (U1;U2|U0) ,

2R0 +R1 +R2 ≤ λI
(
U0, U1; Ŷ2, Y1

)
+ λI

(
U0, U2; Ŷ1, Y2

)
− λI (U1;U2|U0) ,



. (2.6)

subject to the following constraints

Ci,3−i ≥ λI
(
Ŷi;Yi

)
− λI

(
Ŷi;Y3−i

)
, i = 1, 2, (2.7)

where R0, R1, and R2 are the rates of the common message, the private messages
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for the first relay and the second relay, respectively, and U0, U1, U2, Ŷ1, and Ŷ2 are

auxiliary random variables defined on arbitrary finite sets with the distribution given

in (2.6).

Proof: See Appendix 1. �

For the second hop, i.e., the MAC with common message, its achievable rate

region is well studied, which is presented in the following lemma.

Lemma B.2 An achievable rate region for the discrete memoryless MAC with com-

mon message is given as [25]

RMAC =
∪

p(u)p(x1|u)p(x2|u)p(y|x1,x2)

(R0, R1, R2) : R0, R1, R2 ≥ 0,

R1 ≤ λI (X1;Y |U,X2) ,

R2 ≤ λI (X2;Y |U,X1) ,

R1 +R2 ≤ λI (X1, X2;Y |U) ,

R0 +R1 +R2 ≤ λI (U,X1, X2;Y ) .


, (2.8)

where U is an auxiliary random variable defined on arbitrary finite set with the dis-

tribution given in (2.8).

From the Lemmas B.1 and B.2, we have the following theorem for an achievable

rate of the considered diamond relay channel.

Theorem B.2 An achievable rate by using the DF scheme for the DMC diamond

relay channel with conferencing links is given as

RDF = max
λ,(R0,R1,R2)∈RBC

∩
RMAC

R0 +R1 +R2. (2.9)
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Corollary B.2 For the DMC case, there exist finite C12 and C21 satisfying C12 ≤ λ∗H (Y1|Y2)

C21 ≤ λ∗H (Y2|Y1)
(2.10)

with λ∗ defined in Theorem B.1, such that the rate upper bound given in (2.4) can be

achieved by the DF relaying scheme.

Proof: We consider the scheme that only one common message is transmitted at the

source, which will provide an upper bound on the conferencing link rates to achieve

the rate upper bound, since other smarter coding schemes might require smaller

conferencing link rates. By choosing U1 and U2 as constants (also by Theorem 3

in [19]), (2.6) can be rewritten as

R ≤ λ∗min
{
I
(
X;Y1, Ŷ2

)
, I
(
X;Y2, Ŷ1

)}
, (2.11)

subject to C12 ≥ λ∗I
(
Ŷ1;Y1

)
− λ∗I

(
Ŷ1;Y2

)
and C21 ≥ λ∗I

(
Ŷ2;Y2

)
− λ∗I

(
Ŷ2;Y1

)
.

By choosing Ŷ1 = Y1 and Ŷ2 = Y2, it is observed that (2.11) equals to the rate

upper bound given in (2.4), and the conferencing link rates should satisfy C12 ≥

λ∗H (Y1|Y2) and C21 ≥ λ∗H (Y2|Y1), which means that when C12 = λ∗H (Y1|Y2) and

C21 = λ∗H (Y2|Y1), the rate upper bound is achieved. As mentioned in the beginning

of this proof, these values are only upper bounds for C12 and C21, and thus, this

corollary is proved. �

The above conditions imply that Yi can be reliably transmitted to relay (3 − i)

via the conferencing links, or it can be reliably estimated by relay (3− i) (e.g., when

Y1 = Y2). Therefore, both relays have access to Y1 and Y2. In this case, the two

relays are effectively one node with two antennas, and the network behaves like a

three-node two-hop relay channel without direct link, whose rate is already known

and is achieved by the DF scheme [2].
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Remark B.1 It is worth noting that for any conferencing link rates larger than the

right-hand sides of (2.10), respectively, the rate upper bound given in (2.4) can also

be achieved. In Corollary B.2, it only provides an upper bound for Ci,3−i to achieve

the rate upper bound of the considered channel, which is the conditional entropy of

the received signal at the i-th relay given by another relay’s received signal. In the

proof, we point out that this result is only a sufficient condition, which is due to the

fact that the cut-set upper bound is relatively loose under general channel conditions

[26]. For some special cases, the DF scheme can achieve with rate upper bound

without conferencing. For example, when the BC channel part is deterministic, i.e.,

Y1 = f1(X) and Y2 = f2(X), where f1 and f2 are some deterministic functions, the

BC cut-set bound is achieved by sending one private message to each relay [27], and

this means that conferencing will not introduce any improvement.

Remark B.2 With Ci,3−i = 0, we claim that our proposed scheme is equivalent to

the conventional DF scheme without conferencing. The reason is given as follows:

For such a case, we choose Ŷ1 and Ŷ2 as constants, and RBC defined in (2.6) will

degrade to the rate region of a BC channel with one common message and two private

messages [28]. Moreover, for the Gaussian BC channel without relay conferencing,

we only need to transmit one common message to both relays and one private message

to the better relay [10]. Thus, our scheme is a generalization of the conventional DF

scheme, and our DF rate will be the same as or higher than that without conferencing.

b. DF Rate for the Gaussian Case

For the BC part, it contains one transmitter and two receivers, and there are two

received signals at each receivers (equivalent to that each receiver is equipped with

two antennas). As such, it is equivalent to a vector BC [28]. Furthermore, since
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one of the received signals at each relay is just a degraded version of that from the

other relay, and the noise term in Ŷi is correlated with that in Yi. Thus, the first

hop is indeed a vector BC with correlated noises, which is not physically degraded

in general. Therefore, it is possible to transmit a unique private message to each

relay. For the compression at the relays, we choose Ŷi = Yi + Ni,3−i, where Ni,3−i

is a CSCG random variable distributed as CN
(
0, σ2

i,3−i

)
. It is easy to check that

the Pareto boundary [44] of the rate region over (R0, R1, R2) is achieved when the

variances of the compression noises are minimized, which means that the equality in

(2.7) is achieved, i.e., the compression noise is set to have

σ2
i,3−i =

1 + γ1 + γ2

(γ3−i + 1)
(
2Ci,3−i/λ − 1

) . (2.12)

We now discuss the coding scheme for the Gaussian BC, which combines DPC

and superposition coding [45]. We choose the transmitting signal X = X0+X1+X2,

where X0, X1, and X2 denote the common message and the private messages intended

to relay 1 and relay 2, respectively, and they are independent zero mean CSCG

random variables with variances µPS, µ1PS, and µ2PS, respectively, where the positive

parameters µ, µ1, and µ2 are power allocation factors forX0, X1, andX2, respectively,

with µ+ µ1 + µ2 = 1.

At the relays, the common message is first decoded by both of them, and then

each relay decodes its intended private message. Private messages are encoded using

DPC [45]: If we first encode X2, we use X2 as a state information to help with

encoding X1; and in the decoding process, relay 1 can decode X1 without interference

from X2; on the other hand, we can exchange the encoding and decoding orders to

possibly obtain a better rate region. Therefore, an achievable rate region of the first
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hop is given as

RBC (R0, R1, R2) = Conv

( ∪
π,µ1,µ2

R (π, µ1, µ2)

)
, (2.13)

where Conv(·) is the convex hull operator, andR (π, µ1, µ2) is an achievable rate region

under a given power allocation scheme (µ1, µ2) and encoding order π ∈ {π12, π21} with

πi,3−i meaning that the i-th relay’s private message is encoded first. Specially, if X2

is encoded first, we have

R (π21, µ1, µ2) =

(R0, R1, R2) :

R0 ≤ mini=1,2 λ log

(
1 +

µγi(1+σ2
3−i,i)+µγ3−i

((µ1+µ2)γi+1)(1+σ2
3−i,i)+(µ1+µ2)γ3−i

)
R1 ≤ λ log

(
1 + µ1γ1 +

µ1γ2
1+σ2

21

)
R2 ≤ λ log

(
1 +

µ2γ2(1+σ2
12)+µ2γ1

(µ1γ2+1)(1+σ2
12)+µ2γ1

)


, (2.14)

and R (π12, µ1, µ2) can be computed similarly.

Next, we consider the MAC part. We choose X1 =
√
αPU +

√
αPV1 and

X2 =
√
βPU +

√
βPV2, where U , V1, and V2 are independent CSCG variables with

distribution CN (0, 1). Thus, an achievable rate region of the MAC channel with

common message is given as

RMAC (R0, R1, R2) =

R1 ≤ λ log (1 + αγ̃1)

R2 ≤ λ log (1 + βγ̃2)

R1 +R2 ≤ λ log (1 + αγ̃1 + βγ̃2)

R0 +R1 +R2 ≤ λ log
(
1 + γ̃1 + γ̃2 + 2

√
αβγ̃1γ̃2

)


. (2.15)

Therefore, as stated in Theorem B.2, an achievable rate by using the DF scheme
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is the maximum sum rate over the intersection of the regions given in (2.14) and

(2.15).

Remark B.3 From (2.12), we observe that when σ2
i,3−i goes to zero, Ci,3−i goes to

infinity. In other words, for the Gaussian case, only when C12 and C21 go to infinity,

the DF scheme can achieve the rate upper bound, which is different from the DMC

case. Intuitively, for Gaussian channels, the alphabet size of X is infinite, and each

relay cannot reliably decode its counterpart’s received signal with the limited help from

the other relay.

Remark B.4 When γi goes to infinity, the optimal λ goes to 0, and the rate upper

bound becomes the same as the MAC cut-set bound. In this case, the source only needs

to transmit a common message, and both relays can successfully decode it. Therefore,

for finite Ci,3−i and γ̃i, the DF scheme can asymptotically achieve the cut-set bound

as γi goes to infinity. On the other hand, when γi and Ci,3−i are fixed, and γ̃i goes to

infinity, the upper bound cannot be asymptotically achieved. This is due to the fact

that the BC cut-set bound cannot be achieved with finite-rate relay conferencing.

3. CF Achievable Rates

In this subsection, we discuss three different coding schemes based on the conventional

CF relaying scheme. The first two schemes exploit the conferencing links to partially

or completely exchange the binning index of the compressed receiver signals at the

relays, and we call them the partial cooperation CF scheme (PCF) and the full

cooperation CF scheme (FCF), respectively, which implies how much cooperation

is introduced in the MAC part; the third scheme uses the conferencing links to help

compression, called as the conferencing assited CF scheme (CCF) scheme.
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a. PCF Achievable Rate

Here each relay first compresses its received signal as Ŷi independently and obtains

the corresponding binning index. Then, each relay splits the binning index into two

sub-messages, and transmit one of them to the other relay by conferencing. In the

second hop, the active part of the system is nothing but a MAC channel with a

common message. Since we only introduce partially cooperative transmission in the

MAC channel, we call it as the partial cooperation CF scheme, i.e., PCF, as defined

earlier.

DMC Case: We have the following theorem for a PCF achievable rate.

Theorem B.3 An achievable rate by using the PCF scheme for the DMC case is

given as

RPCF ≤ maxλI
(
X; Ŷ1, Ŷ2

)
(2.16)

s.t. λI
(
Ŷ1;Y1|Ŷ2

)
≤ λI (X1;Y |U,X2) + C12 (2.17)

λI
(
Ŷ2;Y2|Ŷ1

)
≤ λI (X2;Y |U,X1) + C21 (2.18)

λI
(
Ŷ1, Ŷ2;Y1, Y2

)
≤ min{λI (X1, X2;Y |U)

+ C12 + C21, λI (X1, X2;Y )}, (2.19)

over the distribution p(x)p(y1, y2|x)p(ŷ1|y1)p(ŷ2|y2)p(u) p(x1|u)p(x2|u)p(y|x1, x2), and

U is an auxiliary random variable similarly defined as before.

The proof of this theorem is straightforward: The coding scheme in the first

hop is the same as that for the conventional CF scheme in [10]; the second hop with

conferencing links is a MAC channel with conferencing encoders and its rate region

is given in [18]. By a similar argument to that in [10], we can obtain the PCF rate

as shown in this theorem.
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Remark B.5 For the case Ci,3−i = 0, i = 1, 2, the PCF scheme is the same as

the conventional CF scheme without conferencing [10]; for the case Ci,3−i > 0, the

PCF scheme is not worse than the conventional CF scheme. Note that even when the

MAC region is strictly enlarged compared to the case without conferencing, we still

cannot claim that the PCF scheme is strictly better than the case without conferencing,

since the right-hand side of (2.19) may not be strictly improved, and when (2.19) is

dominant among these constraints, the PCF rate will be equal to the case without

conferencing.

Gaussian Case: We define the compression at the relays as Ŷi = Yi + N̂i, i =

1, 2, where N̂i is the compression noise with distribution CN (0, σ2
i ).

Corollary B.3 An achievable rate by using the PCF scheme for the Gaussian case

is given as

RPCF = max
λ,α,β,σ2

1 ,σ
2
2

λ log

(
1 +

γ1
1 + σ2

1

+
γ2

1 + σ2
2

)
(2.20)

s.t. λ log

(
1 +

1

σ2
1

(
1 +

γ1 (1 + σ2
2)

1 + σ2
2 + γ2

))
≤ λ log (1 + αγ̃1) + C12, (2.21)

λ log

(
1 +

1

σ2
2

(
1 +

γ2 (1 + σ2
1)

1 + σ2
1 + γ1

))
≤ λ log (1 + βγ̃2) + C21, (2.22)

λ log

(
1 +

1 + γ1
σ2
1

+
1 + γ2
σ2
2

+
1 + γ1 + γ2

σ2
1σ

2
2

)
≤ min

{
λ log (1 + αγ̃1 + βγ̃2) + C12 + C21,

λ log

(
1 + γ̃1 + γ̃2 + 2

√
αβγ̃1γ̃2

)}
. (2.23)

Remark B.6 For given γi, Ci,3−i, α, and β, when γ̃i → ∞, which means that the

optimal λ → 1, from (2.21), (2.22), and (2.23), we see that both σ2
1 and σ2

2 scale to 0,

and (2.20) asymptotically achieves the rate upper bound log (1 + γ1 + γ2). Therefore,

when γ̃i → ∞, the PCF scheme asymptotically achieve the rate upper bound.
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Remark B.7 We consider the case with fixed γi and γ̃i and infinite large Ci,3−i.

In order to achieve the rate upper bound λ∗ log (1 + γ1 + γ2), where λ∗ is given by

Theorem B.1, it is required for the destination to perfectly recover Ŷi = Yi. However,

for the Gaussian channel case, the alphabet sizes of Yi’s are infinity, and the MAC

part of the considered channel, i.e., the second hop, is with only finite capacity. Hence,

the MAC part cannot support the perfect reconstruction of Yi at the destination. Thus,

with finite channel gains, the PCF scheme cannot achieve the rate upper bound even

with infinite conferencing rates.

Remark B.8 For the case that Ci,3−i and γ̃i are fixed, and γi → ∞, only if the

following condition

C12 + C21 ≥ log
(
1 + γ̃1 + γ̃2 + 2

√
γ̃1γ̃2

)
, (2.24)

is satisfied, the rate upper bound can be approached. This is due to the following fact:

If we fix σ2
1 and σ2

2, and choose λ =
log

(
γ̃1+γ̃2+2

√
γ̃1γ̃2

)
log(1+γ1+γ2)

, it is easy to check that (2.20)

asymptotically achieves the upper bound, the constraints (2.21) and (2.22) become

redundant, and (2.23) asymptotically holds when γi → ∞ and (2.24) satisfied.

b. FCF Achievable Rate

With FCF, after obtaining the compression of the received signal Ŷi, each relay finds

the binning index (the number of bins is determined by the corresponding conferencing

link rate), and send this binning index to the other relay. Based on its own received

signal and the binning index from the other relay, each relay tries to decode the

compressed signal of the other relay. Then, partition the two compressions again into

some other bins and transmit the new binning indices to the destination. In this case,

each relay has a full knowledge of these two binning indices, and transmits a common
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message Xr through the MAC channel to the destination. Since we introduce full

cooperation over such a MAC channel, we call this scheme as the full cooperation CF

scheme, i.e., FCF, as defined earlier.

DMC Case: We have the following theorem for an FCF achievable rate.

Theorem B.4 An achievable rate by using the FCF scheme for the DMC case is

given as

RFCF ≤ maxλI
(
X; Ŷ1, Ŷ2

)
(2.25)

s.t. Ci,3−i ≥ λI
(
Ŷi;Yi

)
− λI

(
Ŷi;Y3−i

)
, i = 1, 2, (2.26)

λI
(
Ŷ1, Ŷ2;Y1, Y2

)
≤ λI (Xr;Y ) , (2.27)

over the distribution p(x)p(y1, y2|x)p(ŷ1|y1)p(ŷ2|y2)p(xr) p(y|xr). Here, we define

p(y|xr) = p(y|xr, xr) according to p(y|x1, x2) when x1 = x2 = xr.

Proof: See Appendix 2. �

Gaussian Case: We choose the distributions of X and Xr as CN (0, PS) and

CN (0, Pr), respectively. Furthermore, the compressions at the relays are according

to Ŷi = Yi + N̂i, i = 1, 2.

Corollary B.4 An achievable rate by using the FCF scheme for the Gaussian case

is given as

RFCF ≤ max
λ,σ2

1 ,σ
2
2

λ log

(
1 +

γ1
1 + σ2

1

+
γ2

1 + σ2
2

)
(2.28)

s.t. σ2
i ≥ 1 + γ1 + γ2

(γ3−i + 1)
(
2Ci,3−i/λ − 1

) , i = 1, 2, (2.29)

λ log

(
1 +

1 + γ1
σ2
1

+
1 + γ2
σ2
2

+
1 + γ1 + γ2

σ2
1σ

2
2

)
≤ λ log

(
1 + γ̃1 + γ̃2 + 2

√
γ̃1γ̃2

)
. (2.30)
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Remark B.9 It can be checked that when Ci,3−i = 0, RFCF = 0 for any channel

parameters. This suggests that the FCF scheme is worse than the conventional CF

scheme when Ci,3−i is relatively small. In this case, we should not use conferencing

to obtain full cooperation in the second hop, and the PCF scheme should be adopted

instead. Denote the optimal solution for the CF rate (by Theorem 5.8 in [10]) as(
σ2
1, σ

2
2, λ
)
, and it is easy to check that this solution also satisfies the constraint in

(2.30). Thus, the threshold Ci,3−i, below which the FCF scheme performs worse than

the CF scheme, is obtained when the equality in (2.29) is achieved, i.e.,

Ci,3−i = λ log

(
1 +

1 + γ1 + γ2
σi

2 (γ3−i + 1)

)
. (2.31)

Remark B.10 For any given finite γi and Ci,3−i, when γ̃i goes to infinity, the optimal

λ goes to 1. However, the compression noise power σ2
i cannot scale to 0 due to the

constraints in (2.29), which means that the asymptotic rate upper bound cannot be

achieved.

Remark B.11 For any given finite γ̃i and Ci,3−i, when γi → ∞ (assuming that γ1

and γ2 are on the same order), we choose λ =
log

(
γ̃1+γ̃2+2

√
γ̃1γ̃2

)
log(1+γ1+γ2)

→ 0, while σ2
i scales

on the order of 1
γi

according to (2.29). For (2.30), it is easy to check that the left-

hand side of the inequality is equal to the right-hand side asymptotically. Therefore,

we conclude that the FCF scheme asymptotically achieves the rate upper bound as

γi → ∞.

Remark B.12 For any given finite γi and γ̃i, by the same argument as in Remark

B.7, we conclude that as the conferencing link rates go to infinity, the FCF scheme

cannot achieve the rate upper bound even with infinite conferencing link rates.

Remark B.13 When the conferencing link rates go to infinity, we observe that the

PCF and FCF schemes achieve the same asymptotic performance. In particular,
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since the constraints (2.21), (2.22), and (2.29) become redundant as the conferencing

link rates go to infinity, problem (2.20)-(2.23) and problem (2.28)-(2.30) can both be

rewritten as

R ≤ max
λ,σ2

1 ,σ
2
2

λ log

(
1 +

γ1
1 + σ2

1

+
γ2

1 + σ2
2

)
s.t. λ log

(
1 +

1 + γ1
σ2
1

+
1 + γ2
σ2
2

+
1 + γ1 + γ2

σ2
1σ

2
2

)
≤ λ log

(
1 + γ̃1 + γ̃2 + 2

√
γ̃1γ̃2

)
,

which means that these two schemes achieve the same performance for the considered

case.

c. CCF Achievable Rate

In this scheme, each relay generates its own compression intended for the second hop

based on two signals: the received signal from the source, and the compressed signal

from the other relay through the conferencing link.

DMC Case: We have the following theorem regarding a CCF achievable rate.

Theorem B.5 As we use the conferencing links to help with compressing the received

signal at the relays, an achievable rate by using the CCF scheme for the DMC case

is given by

RCCF = maxλI
(
X; Ŷ1, Ŷ2

)
(2.32)

s.t. (2.7), λI
(
Ŷ1;Y1, Ŷ21|Ŷ2

)
≤ λI (X1;Y |X2)

λI
(
Ŷ2;Y2, Ŷ12|Ŷ1

)
≤ λI (X2;Y |X1)

λI
(
Ŷ1, Ŷ2;Y1, Y2, Ŷ12, Ŷ21

)
≤ λI (X1, X2;Y ) ,
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over the distribution

p(x)p(y1, y2|x)p (ŷ12|y1) p (ŷ21|y2) p (ŷ1|y1, ŷ21) p (ŷ2|y2, ŷ12) p(x1, x2)p(y|x1, x2).

Proof: See Appendix 3. �

Gaussian Case: We choose the distributions of transmit signals over the con-

ferencing links as Ŷ12 = Y1+N12 and Ŷ21 = Y2+N21, respectively, where N12 and N21

are independent zero mean CSCG random variable, with variances defined the same

as in (2.12). For the relay signals to the destination, we choose Ŷ1 = aY1 + bŶ21 + V1

and Ŷ2 = cY2+ dŶ12+V2, where a, b, c, and d are some parameters, V1 and V2 are in-

dependent zero mean CSCG random variables with variances σ2
1 and σ2

1, respectively.

Then, a CCF achievable rate for the Gaussian case is given as

RCCF = max
λ,a,b,c,d,σ2

1 ,σ
2
2

λ log

(
PŶ1Ŷ2

σ̂2
1σ̂

2
2 − |ad∗ + bc∗|2

)
(2.33)

s.t. λ log

(
PŶ1Ŷ2

σ2
1 (|dh1 + ch2|2P + σ̂2

2)

)
≤ λ log (1 + γ̃1)

λ log

(
PŶ1Ŷ2

σ2
2 (|ah1 + bh2|2P + σ̂2

1)

)
≤ λ log (1 + γ̃2)

λ log

(
PŶ1Ŷ2

σ2
1σ

2
2

)
≤ λ log (1 + γ̃1 + γ̃2) ,

where

PŶ1Ŷ2
= |ah1 + bh2|2PSσ̂

2
2 + |dh1 + ch2|2PSσ̂

2
1 + σ̂2

1σ̂
2
2 − |ad∗ + bc∗|2

− 2ℜ [(ah1 + bh2) (dh1 + ch2)
∗ (ad∗ + bc∗)PS] , (2.34)

with σ̂2
1 = |a|2 + |b|2 (1 + σ2

21) + σ2
1, and σ̂2

2 = |c|2 + |d|2 (1 + σ2
12) + σ2

2. It is easy to

check that the above objective function is not convex over a, b, c, and d jointly. Since

it is difficult to compute the maximum rate, we try to find a sub-optimal but much

simpler solution, i.e., letting a = d = h∗
1 and b = c = h∗

2, which will be used for the

simulations in Section C.
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Remark B.14 Since the conventional CF scheme is just a special case of our scheme,

by letting Ŷi,3−i be a constant, a CCF achievable rate for the DMC case is the same as

the case without conferencing [10]. Hence, with our setup, we conclude that the CCF

rate is the same as or higher than the conventional CF rate. However, since only

the sub-optimal solution for the combining problem at the relay is adopted, the CCF

scheme may not perform better than the conventional CF scheme for the Gaussian

case, and this will be shown in Section C.

Remark B.15 Considering another case when C12 and C21 go to infinity, by the

same argument as Remark B.7, we conclude that the CF scheme cannot achieve the

rate upper bound.

4. AF Achievable Rate

In this subsection, to make the AF relaying scheme meaningful, we further assume

that the conferencing links are Gaussian channels, which also use AF as the conferenc-

ing scheme. Without loss of generality, we assume that the input of the conferencing

link is xi,3−i = yi = hix + ni. Furthermore, we assume that the link gain of each

conferencing link equals to 1, and the conferencing link output in the i-th relay is

given as

y3−i,i = x3−i,i + n3−i,i, (2.35)

where n3−i,i is CSCG noise with distribution CN
(
0, σ2

3−i,i

)
. Based on the conferencing

link rate constraints, the variance of n3−i,i is given as σ2
3−i,i ≥ γ3−i+1

2C3−i,i/2−1
, where

the conferencing link rate is subject to a 1
2
pre-log penalty due to the conferencing

scheduling scheme introduced in Section A. Obviously, when the equality holds, the
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AF scheme performs the best. Thus, we let

σ2
3−i,i =

γ3−i + 1

2C3−i,i/2 − 1
. (2.36)

After the conferencing sessions, the relays combine the two received signals from

the source node and the other relay, which leads to

xi = aiiyi + a3−i,iy3−i,i, (2.37)

where aii and a3−i,i are some complex parameters, and satisfy the following power

constraints

E
(
x2
i

)
= |aii|2

(
|hi|2PS + 1

)
+ |a3−i,i|2

(
|h3−i|2PS + 1 + σ2

3−i,i

)
≤ PR. (2.38)

Therefore, the received signal at the destination is given as

y = g1x1 + g2x2 + n

= (a11h1g1 + a12h1g2 + a21h2g1 + a22h2g2)x

+ (a11g1 + a12g2)n1 + (a21g1 + a22g2)n2

+ a21g1n21 + a12g2n12 + n,

and an achievable rate by using the AF scheme is given as

RAF =
1

2
log (1 + γAF) , (2.39)

where γAF is the received SNR at the destination, given as

γAF =
|a11h1g1 + a12h1g2 + a21h2g1 + a22h2g2|2PS

|a11g1 + a12g2|2 + |a21g1 + a22g2|2 + |a21g1|2σ2
21 + |a12g2|2σ2

12 + 1
. (2.40)

We now rewrite (2.40) to a matrix form, and maximize it to obtain the maximum
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AF rate defined in (2.39). Thus, we have the following optimization problem

max
aHRa

aHQa+ 1
(2.41)

s.t. (2.38),

where a = [a11, a12, a21, a22]
T , b = [h∗

1g
∗
1, h

∗
1g

∗
2, h

∗
2g

∗
1, h

∗
2g

∗
2]

T , and the matrices R =

bbH ,

Q =



|g1|2 g∗1g2 0 0

g1g
∗
2 |g2|2 (1 + σ2

12) 0 0

0 0 |g1|2 (1 + σ2
21) g∗1g2

0 0 g1g
∗
2 |g2|2


. (2.42)

From (2.40), we know that R and Q are positive semidefinite. By a similar argument

as in [46], this problem can be shown equivalent to

max
A,t

t (2.43)

s.t. Tr (A (R− tQ)) ≥ t, (2.38),

Rank(A) = 1,A ≽ 0,

where A = aaH . Using semidefinite relaxation [46], we aim to solve the following

optimization problem:

max
A,t

t (2.44)

s.t. Tr (A (R− tQ)) ≥ t,

(2.38), A ≽ 0.

Remark B.16 This optimization problem can be efficiently solved by bisection search

over t; and for each t, the remaining problem is a convex feasibility problem, which
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can be efficiently solved using existing numerical tools, e.g., CVX [47]. However,

the final solution may not be rank-1 to satisfy the constraint in (2.43); so we use

the following randomization technique [46] to provide an approximate solution to the

original rank-1 problem in (2.43): Denote the solution of problem (2.44) as A∗, with

its eigenvalue decomposition A∗ = UDUH ; we choose a = UD1/2v, where v is a

vector of zero-mean unit-variance i.i.d. Gaussian random variables. We then scale a

to make the power constraints (2.38) satisfied [48].

Remark B.17 If a rank-1 optimal solution for (2.44) can be found, our AF rate will

be higher than the AF rate without conferencing, i.e., the case Ci,3−i = 0. This is

due to the facts that the conventional AF relaying optimization problem is a special

case of (2.41) with a12 = a21 = 0. However, sometimes we may not obtain the exact

optimal solution of rank-1 for (2.44), such that there is a gap to the optimal value

with the solution from the randomization method [48]. For these cases, our proposed

AF scheme may not be better than the case without conferencing. It will be shown in

Section C that for small conferencing link rates, our scheme performs worse than the

conventional AF scheme without conferencing; but the reverse is true for large Ci,3−i

cases.

Remark B.18 It is easy to check that when γi goes to infinity, the AF scheme can

achieve one-half of the rate upper bound, which is due to the half-duplex constraint.

On the other hand, if both γi and γ̃i are finite, the upper bound is not achievable even

with infinite conferencing link capacity.

C. Numerical Results

In this section, we present some numerical results to compare the performance among

the proposed coding schemes. We consider both the symmetric and asymmetric cases.
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1. Symmetric Case

For this case, we let |h1| = |h2|, |g1| = |g2|, and C12 = C21 = C. To further discuss

the effects of the relative nodes location to achievable rates, we set the locations of

the source node, the destination node, and the relays as s0 = (−1, 0), s3 = (0, 1), s1 =

(d,−
√
1− d2), and s2 = (d,+

√
1− d2), respectively, where d ∈ (−1, 1). Furthermore,

we assume that the link gains satisfy |hi| = 1
|s0−si| and |gi| = 1

|s3−si| , i = 1, 2. For the

phases of hi and gi, we assume that they are uniform random variables over [0, 2π].

Moreover, we choose PS = PR = 1.
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Fig. 3.: Achievable rates and cut-set upper bound for symmetric link gain case, with
C = 0.5.

In Fig. 3, we compare the performance of the proposed schemes under the

symmetric channel gain assumption for different relay locations. Here, we fix the

conferencing link rate C = 0.5 bit/s/Hz. We observe that when d goes to −1, i.e.,
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when the relays get close to the source node, the DF scheme asymptotically achieves

the rate upper bound, so do the FCF and PCF schemes. Moreover, all three CF

schemes outperform the AF scheme, but they are worse than the DF scheme. As d

goes to 1, i.e., when the relays get close to the destination, we observe that the PCF

scheme achieve the rate upper bound asymptotically, while the DF, AF, and FCF

schemes are strictly suboptimal. For the case when d is around 0, the DF scheme

performs the best among all the coding schemes, and the performances of the others

are almost the same.

In Fig. 4(a) and Fig. 4(b), with different channel gains, we compare the perfor-

mances of the coding schemes as the conferencing link rate increases. We consider two

typical setups: the BC channel gains are larger than those of the MAC channel for

Fig. 4(a), and the reverse case for Fig. Fig. 4(b). Overall, we observe that for each

relaying scheme, there is an asymptotic performance limitation as the conferencing

link rate increases.

Note that when C = 0, the proposed DF and PCF schemes are equivalent to the

conventional DF and CF schemes. From these two subfigures, we observe that con-

ferencing can strictly increase the DF and CF achievable rates using the proposed DF

and PCF schemes, respectively. However, for the AF, CCF, and FCF schemes, they

cannot guarantee to increase the AF and CF rates as we discussed before, respectively,

especially when C is small.

For both cases shown in Fig. 4(a) and Fig. 4(b), the DF scheme gets close to the

rate upper bound when C is large enough: For the good BC channel case, we need

C ≥ 2 bits/s/Hz, and for the good MAC channel case, we need C ≥ 4 bits/s/Hz. For

the PCF and FCF schemes, we observe that as C becomes large, they have the same

performance; when C is very close to 0, the PCF scheme always performs better; for

small C but not close to 0, the FCF scheme performs better in the good BC channel
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(a) Good BC vs. bad MAC, γi = 30 dB, γ̃i = 10 dB
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Fig. 4.: Achievable rates over different conferencing link rates, PS = PR = 1.
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case, and the reverse is true for the good MAC channel case. In the high conferencing

rate regime, the CCF scheme performs better than the other two CF schemes for the

good MAC channel case, and the reverse is true for the good BC channel case.

2. Asymmetric Case

In this subsection, we consider the cases that these links are with different qualities,

which can model the scenarios that the two relays are located with different distances

to the source node.
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Fig. 5.: Achievable rates and cut-set upper bound for asymmetric link gain case, with
|γ1|2 = |γ̃2|2 = 30 dB and |γ̃1|2 = |γ2|2 = 10 dB.

In Fig. 5, we plot achievable rates and the rate upper bound as functions of

the conferencing link rates C12 = C21 = C for the case that the source-relay and

relay-destination links are not symmetrical, i.e., we set |γ1|2 = |γ̃2|2 = 30 dB and

|γ̃1|2 = |γ2|2 = 10 dB. It is observed that the DF scheme can still achieve the rate
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upper bound as the conferencing link rates go to infinity asymptotically; for the PCF

and FCF relaying schemes, the relay conferencing introduces about 1.2 bit gain when

the conferencing link rates are large than 4 bits. for the AF relaying scheme, the

relay conferencing provides gains only when the conferencing link rates are relatively

large.

In Fig. 6(a) and Fig. 6(b), we plot achievable rates and the rate upper bound for

the case with symmetric source-relay and relay-destination channel gains, while the

conferencing link rates are different. Specifically, we set one conferencing link rate

always equal to zero, i.e., C12 = C and C21 = 0. We observe that the DF scheme

cannot approach the rate upper bound even when the conferencing link rate is large

for both the good BC (in Fig. 6(a)) and good MAC (in Fig. 6(b)) cases, which is due

to the fact that relay 1 cannot decode all source messages. For the AF rate, it only

changes slightly as the conferencing link rate increases; Moreover, for the good MAC

case in Fig. 6(b), the PCF scheme performs better than the FCF scheme in the high

conferencing link rate regime, which is different from the symmetric cases (shown in

Fig. 4(a) and 4(b))and the good BC case with asymmetric conferencing link rates

(shown in Fig. 6(a)).

D. Summary

Table II.: Upper-bound-achieving cases for the diamond relay channel with conferencing
links

DMC
Gaussian channel

γi → ∞ γ̃i → ∞

Schemes
DF with finite

DF, FCF PCF
conferencing link rates
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In this chapter, we discussed the rate upper bound and achievable rates of the

diamond relay channel with conferencing links. For the DF scheme, we derived an

achievable rate by sending a common message and two private messages. We de-

veloped three new coding schemes based on CF and used the conferencing links to

exchange certain compressed information between the relays, whose achievable rates

were computed for both the DMC and Gaussian cases. For the AF scheme, we dis-

cussed the optimal combining problem between the signals from the source and the

conferencing link at the relays, and use semidefinite relaxation and bisection search

to efficiently obtain a sub-optimal solution. All the upper-bound-achieving cases are

also summarized in Table II.

E. Appendix

1. Proof of Lemma B.1

Fix the distribution p(u0)p(u1|u0)p(u2|u0)p(y1, y2|x) p(ŷ1|y1)p(ŷ2|y2) and the function

x(u0, u1, u2).

Codebook Generation: In the source, generate 2nR0 i.i.d. sequences u0 (w0),

w0 ∈
[
1 : 2nR0

]
, according to the distribution

∏λn
j=1 p (u0,j). For each u0 (w0), generate

2nRi i.i.d. sub-codebooks Qi (w0, wi), wi ∈
[
1 : 2nRi

]
, where each sub-codebook con-

tains 2n(R̃i−Ri) i.i.d. sequences ui (w0, li), li ∈
[
(wi − 1) 2n(R̃i−Ri) + 1 : wi2

n(R̃i−Ri)
]
,

according to
∏λn

j=1 p (ui,j|u0,j (w0)). For each triple (w0, w1, w2), define the set

Q (w0, w1, w2) = {(u1 (w0, l1) , u2 (w0, l2)) ∈ Q1 (w0, w1)×Q2 (w0, w2) :

(u0 (w0) , u1 (w0, l1) , u2 (w0, l2)) ∈ An
ϵ′}.

Conferencing function generation: Generate 2nR
′
i i.i.d. sequences ŷi(ki),



39

ki ∈
[
1 : 2nR

′
i

]
, according to

∏λn
j=1 p (ŷi,j), where

pŶi
(ŷi,j) =

∑
X ,Y1,Y2

p (ŷi|yi) p (y1, y2|x) p(x)

and p(x) =
∑

U1,U2
p(u1, u2, x). Randomly and uniformly partition the index set[

1 : 2nR
′
i

]
into 2nCi,3−i binnings Si (si), si ∈

[
1 : 2nCi,3−i

]
.

Encoding and Decoding: In the source, for each triple (w0, w1, w2), pick

one sequence pair (u1 (w0, l1) ,u2 (w0, l2)) ∈ Q (w0, w1, w2), and generate a codeword

x (w0, w1, w2) according to
∏λn

i=1 p (xi|u1 (w0, l1) , u2 (w0, l2)); if no such pair exists,

declare an error. This operation can be done reliably if [28]

(
R̃1 −R1

)
+
(
R̃2 −R2

)
≥ λI (U1;U2|U0) . (2.45)

In the i-th relay, upon receiving yi, it tries to find a ŷi(ki) such that (yi, ŷi(ki)) ∈

An
ϵ , and this can be done reliably as n goes to infinity, if

R′
i ≥ λI

(
Ŷi;Yi

)
. (2.46)

Then, the i-th relay finds the corresponding binning index number si, where ki ∈

Si(si), and sends it to the other relay through the conferencing link.

After receiving the conferencing message from its counterpart, the i-th relay first

tries to find the unique k̂3−i such that
(
ŷ3−i(k̂3−i),yi

)
∈ An

ϵ with k̂3−i ∈ S3−i(s3−i).

This can be done reliably if

R′
3−i ≤ λI

(
Ŷ3−i;Yi

)
+ C3−i,i. (2.47)

From (2.46) and (2.47), we obtain

Ci,3−i ≥ λI
(
Ŷi;Yi

)
− λI

(
Ŷi;Y3−i

)
. (2.48)
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Then, the i-th relay finds a unique pair (ŵ0, ŵi) satisfying(
u0(ŵ0),ui(ŵ0, l̂i), ŷ3−i(k̂3−i),yi

)
∈ An

ϵ ,

and this can be done reliably if R̃i ≤ λI
(
Ui; Ŷ3−i, Yi|U0

)
R0 + R̃i ≤ λI

(
U0, Ui; Ŷ3−i, Yi

)
.

(2.49)

From (2.45), (2.48), and (2.49), we obtain the rate region of the general broadcast

channel with common message and conferencing as follows:

R′
BC =

∪
p(u0)p(u1|u0)p(u2|u0)p(x|u1,u2)p(y1,y2|x)p(ŷ1|y1)p(ŷ2|y2)

(R0, R1, R2) :

0 ≤ R0, 0 ≤ R1 ≤ R̃1, 0 ≤ R2 ≤ R̃2,

R̃1 ≤ λI
(
U1; Ŷ2, Y1|U0

)
,

R0 + R̃1 ≤ λI
(
U0, U1; Ŷ2, Y1

)
,

R̃2 ≤ λI
(
U2; Ŷ1, Y2|U0

)
,

R0 + R̃2 ≤ λI
(
U0, U2; Ŷ1, Y2

)
,(

R̃1 −R1

)
+
(
R̃2 −R2

)
≥ λI (U1;U2|U0) ,

subject to: (2.48).



. (2.50)

Thus, the rate region RBC is obtained from R′
BC using the Fourier-Motzkin elimination

[50] to eliminate R̃i, i = 1, 2.

2. Proof of Theorem B.4

Fix the distribution as given in the theorem.

Codebook generation: Generate 2nR i.i.d. sequences x(w), w ∈
[
1 : 2nR

]
, ac-
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cording to
∏n

i=1 p(xi). Generate 2nR̂i , i = 1, 2, i.i.d. sequences ŷi(wi), wi ∈
[
1 : 2nR̂i

]
,

according to the distribution p(ŷi) =
∫
p(x)p(yi|x)p(ŷi|yi)dxdyi. Randomly and uni-

formly partition the set
[
1 : 2nR̂i

]
into 2nRi binnings Si(si), si ∈

[
1 : 2nRi

]
. Randomly

and uniformly partition the set
[
1 : 2nRi

]
into 2nCi,3−i binnings Mi(mi). Generate

2n(R1+R2) i.i.d. sequences xr (s1, s2), according to p (xr).

Encoding and decoding: At the source, it transmits x(w). At the i-th relay,

i = 1, 2, it finds a ŷi(wi) such that (ŷi(wi),yi) ∈ An
ϵ , and this can be done reliably

if R̂i ≥ λI
(
Ŷi;Yi

)
. Then, at the i-th relay, it finds the conferencing binning index

mi, and sends it to the other relay through the conferencing link. Upon receiving

m3−i, the i-th relay decodes ŷ3−i(w3−i) such that
(
ŷ3−i(k̂3−i),yi

)
∈ An

ϵ with k̂3−i ∈

M3−i(m3−i). This can be done reliably if R′
3−i ≤ λI

(
Ŷ3−i;Yi

)
+ C3−i,i. Thus, we

satisfy the constraints in (2.26). Then, the i-th relay knows the binning index pair

(s1, s2), and transmits xr(s1, s2).

At the destination, it first decodes (s1, s2), and we obtain R1 +R2 ≤ λI (Xr;Y ).

Then, the destination decodes (ŷ1, ŷ2) and the original message w. By a similar

argument as in Section VC of [10], we obtain (2.27).

3. Proof of Theorem B.5

First fix the distribution as shown in the theorem.

Codebook Generation: Generate x(w) the same as those in Appendix 2. Gen-

erate 2nRi,3−i i.i.d. sequences ŷi,3−i(ki), according to
∏λn

j=1 p(ŷ
j
i,3−i) with p (ŷi,3−i) =∫

p (yi) p (ŷi,3−i|yi) dyi. Randomly and uniformly partition the set
[
1 : 2nRi,3−i

]
into

2nCi,3−i bins Si,3−i(si,3−i); generate 2nRi0 i.i.d. sequences ŷi(wi), according to the dis-

tribution
∏λn

j=1 p (ŷi,j) with p (ŷi) =
∫
p (ŷi|yi, ŷ3−i,i) p (yi, ŷ3−i,i) dyidŷ3−i,i. Randomly

and uniformly partition the set
[
1 : 2nRi0

]
into 2nRi bins S̃i(s̃i); and generate 2nRi

i.i.d. sequences xi(s̃i), according to pXi
(xi).
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Encoding and Decoding: At the source, it transmits x(w); in the i-th re-

lay, the conferencing scheme is the same as the DF scheme, which is omitted here;

and we obtain (2.7). Based on yi and ŷ3−i,i, the i-th relay find a ŷi (ki) such that

(ŷi (ki) , ŷ3−i,i (w3−i,i) ,yi) ∈ An
ϵ , and this can be done reliably ifRi0 ≥ I

(
Ŷi; Ŷ3−i,i, Yi

)
.

Then, the i-th relay obtains the binning index s̃i and sends xi(s̃i) to the destination.

In the destination, upon receiving y, it first decodes the pair (s̃1, s̃2), and the rate

region (R1, R2) is given by the MAC rate region as in [24,28]. Then, the destination

tries to decode (ŷ1, ŷ2). Following a similar argument as in [10,49], we have
R1 ≥ λI

(
Ŷ1;Y1, Ŷ21|Ŷ2

)
R2 ≥ λI

(
Ŷ2;Y2, Ŷ12|Ŷ1

)
R1 +R2 ≥ λI

(
Ŷ1, Ŷ2;Y1, Y2, Ŷ12, Ŷ21

) . (2.51)

Finally, by finding a unique ŵ such that (x(ŵ), ŷ1, ŷ2) ∈ An
ϵ , we obtain RCF =

λI
(
X; Ŷ1, Ŷ2

)
. With the Fourier-Motzkin elimination [50], and the facts that

I
(
Ŷ1, Ŷ2;Y1, Y2, Ŷ12, Ŷ21

)
≥ I

(
Ŷ1;Y1, Ŷ21|Ŷ2

)
+ I

(
Ŷ2;Y2, Ŷ12|Ŷ1

)
,

I (X1, X2;Y ) ≤ I (X1;Y |X2) + I (X2;Y |X1) ,

the theorem is proved.
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Fig. 6.: Achievable rates over different conferencing link rates with C21 = 0.
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CHAPTER III

ALTERNATIVE RELAYING DIAMOND CHANNEL

In the previous chapter, we considered the diamond relay channel with the simulta-

neous relaying scheme. In this chapter, we consider another type of relaying scheme,

i.e., alternative relaying, for which the two half-duplex relays are assumed to trans-

mit and receive in different time slot and exchange their working modes alternatively

over time. In practice, the alternative relaying strategy is more appealing than the

simultaneous relaying strategy, due to the fact that it can achieve full multiplexing

gain in the high SNR regime.

In this chapter, we consider the following two different conferencing strategies:

1. Conferencing strategy I: Relay conferencing for each source message is executed

within the subsequent time slot after the relay receives the source signal by

partially utilizing the conferencing links, and thus the decoding delay at the

destination for each source message will be at most two time slots. By letting

both or one of the two relays adopt the above conferencing strategy, we obtain

the following two schemes:

(a) Two-side conferencing: Use both of the two conferencing links, and both

of the two relays are required to conference with each other;

(b) One-side conferencing: Use one of the conferencing links, and one of the

relays sends message to the its counterpart, while the other one keeps

silent.

2. Conferencing strategy II: Relay conferencing for each source message is operated

in the subsequent two time slots by fully utilizing the conferencing links, and

thus the decoding delay for each source message at the destination will be more
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than two time slots. Similar to the previous case, we can also introduce both of

the two-side and one-side conferencing schemes with this conferencing strategy.

Intuitively, strategy II may lead to larger achievable rates compared to strategy I, since

it allows higher conferencing rates between the two relays. Moreover, it is worth noting

that one-side conferencing is just a special case of two-side conferencing, by letting one

of the relays keep silent, and thus two-side conferencing in general will outperform one-

side conferencing for both of the two conferencing strategies. Somewhat surprisingly,

it will be shown that under certain conditions one-side conferencing is enough to

achieve the same rate as the two-side conferencing, while it is much simpler to be

implemented.

The remainder of the chapter is organized as follows. Section A introduces all

assumptions and channel models. The rate upper bound and achievable rates obtained

by using the DF and AF relaying schemes are discussed for conferencing strategy I

in Section B, and the DF scheme under conferencing strategy II is investigated in

Section C. Section D presents the numerical results. Finally, the paper is summarized

in Section E.

A. System Model

We consider the Gaussian diamond relay channel, as shown in Fig. 7, which consists

of one source node, one destination node, and two relays. It is assumed that there are

no direct wireless links between either the source-destination pair or the two relays.

However, between the two relays, there are two wired conferencing links, which are

both rate-limited Gaussian. Due to the wired conferencing link assumptions, these

two conferencing links can be considered orthogonal to each other and also orthogonal

to the source-to-relay and relay-to-destination links.
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Source


Relay 1


Relay 2


Destination


Fig. 7.: The diamond relay channel with out-of-band conferencing links.

In this chapter, it is assumed that the transmissions of the source and relays are

slotted, and the half-duplex alternative relaying scheme is adopted, as shown in Fig.

8. Specifically, in the odd-numbered time slots, the source sends a message to relay 1,

and relay 2 forwards a signal to the destination; in the even-numbered time slots, the

roles of the two relays are exchanged. At the relays, the DF and AF relaying schemes

are adopted for the transmissions to the destination. For the DF relaying scheme, we

may allocate different time fractions to the odd and even time slots: Denote the time

fraction allocated to the odd time slots as λ1, and that to the even time slots as λ2,

with λ1+λ2 = 1, λ1 ≥ 0, and λ2 ≥ 0. Note that among odd time slots or among over

time slots, they are of equal length. For the AF relaying scheme, we set λ1 = λ2 =
1
2
.

The conferencing strategies shown in Fig. 9 are described as follows. For con-

ferencing strategy I, the source transmits independent messages {wk} slot by slot; in

the k-th time slot, when k is odd, relay 1 listens to the source, and relay 2 sends

two signals, one to the destination about the source messages wk−2 and wk−1, and

the other to relay 1 about message wk−1 via the wired conferencing links; when k is

even, the roles of these two relays are exchanged. For conferencing strategy II, in the

k-th time slot, when k is odd, relay 1 listens and relay 2 sends two signals, one to the

destination about messages wk−4 and wk−1 within the k-th time slot, and the other to
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Fig. 8.: Two transmitting-receiving states for the alternative relaying diamond channel
with conferencing links.

relay 1 about message wk−1 spreading over both of the k-th and the (k + 1)-th time

slots; when k is even, the roles of the two relays are exchanged. From Fig. 9, it is

easy to see that strategy II fully utilizes the conferencing links, i.e., there are no idle

time slots over the conferencing links, while strategy I only partially utilizes them. In

Fig. 9, these two conferencing strategies for the most general two-side conferencing

case are described. As stated in the introduction part, we are also interested in a

special case of the two-side conferencing scheme, i.e., one-side conferencing. Taking

conferencing strategy I as an example, we could just let relay 1 talk to relay 2 as in

the two-side conferencing case, while relay 2 keeps silent; or only let relay 2 talk to

relay 1 while relay 1 keeps silent. Similarly, the one-side conferencing scheme could

as be defined for strategy II.

Note that for strategy II, the only way to deploy the conferencing strategy for the

AF relaying scheme is to transmit the received signal at each relay to its counterpart

repeatedly over the two subsequent conferencing time slots, since we can only forward

the same received signal to the other relay via the conferencing links. As such, the

two conferencing strategies for the AF relaying scheme are almost the same, only with
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Fig. 9.: Relay conferencing strategies for the diamond relay channel with conferencing
links, with “S”, “R1”, “R2”, and “D” denoting the source, relay 1, relay 2, and

destination, respectively.
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different conferencing link SNRs (i.e., for conferencing strategy I, it suffers a 1
2
penalty,

with no penalty for strategy II.), and the results are quite similar (interestingly, we

find that for the DF relaying scheme, it is not). Thus, in this chapter, we only consider

the AF relaying scheme under conferencing strategy I, and omit the analysis for the

other strategy.

Due to relay conferencing, there may be extra decoding delay. To be concise,

we describe the coding schemes by using i and (3 − i), i = 1, 2, as the relay indices

in the sequel. Take the k-th source message (to the i-th relay) for example: With

conferencing strategy I, the destination needs to wait another λi-block
1 to obtain the

signal from the (3−i)-th relay, which means that the decoding delay at the destination

will be λi-block more compared with the case without relay conferencing2. However,

when transmitting N messages in total, with N going to infinity, the effect of decoding

delay to the average achievable rate can be neglected. Accordingly, in this chapter,

we only consider the achievable rates over two successive time slots, since all coding

schemes are operated periodically over time.

For the Gaussian channel case, the channel input-output relationships are given

as follows. The received signal yi at the i-th relay from the source, i = 1, 2, is given

as

yi =
√

PShixi + ni, i = 1, 2, (3.1)

where xi is the transmit signal from the source with unit average power, PS is the

source transmit power, hi is the complex channel coefficient of the link from the source

to the i-th relay, and ni is the i.i.d. CSCG noise with distribution CN (0, 1).

1Here, one “block” consists of two successive time slots.
2It is worth noting that even without relay conferencing, there is still an λi-block

decoding delay due to the relaying operation.
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It is worth noting that in general we could allocate different power levels to the

source messages at the odd and even time slots to maximize the overall system per-

formance, which makes the achievable rate maximization problem hard to be tracked.

In this chapter, we focus more on the relay operations, i.e., conferencing and relaying;

and thus we assume uniform power allocation at all the source messages for simplicity.

For the Gaussian conferencing links, denote the SNR of the link from relay 1 to

relay 2 as γ1,2, while γ2,1 is defined similarly. As such, the conferencing link rates

Ci,3−i = C (γi,3−i), i = 1, 2, are achievable when rate-achieving codes are applied.

Then, if the DF relaying scheme is adopted, relay i can send information to relay

3− i with the maximum rate Ci,3−i reliably; for the AF relaying scheme, we assume

that the AF scheme is also adopted as the conferencing scheme over the SNR-limited

(equivalent to the notion of rate-limited in the DF case) conferencing links, which

will be discussed with more details later in Section B.

After relay conferecing, each relay generates a signal ti with unit average power,

based upon the received signals from the source and the other relay. Then, the

received signal zi at the destination from the i-th relay is given as

zi =
√

PRgiti + ñi, i = 1, 2, (3.2)

where PR is the relay transmit power, gi is the complex channel coefficient of the link

from the i-th relay to the destination, and ñi is the i.i.d. CSCG noise with distribution

CN (0, 1). For notation convenience, we denote the link SNRs as

γi = |hi|2PS, γ̃i = |gi|2PR, i = 1, 2. (3.3)
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B. Conferencing Strategy I

In this section, we examine the rate upper bound along with the DF and AF achievable

rates for the considered channel with conferencing strategy I. Moreover, we prove some

upper-bound-achieving results under special channel conditions.

1. Rate Upper Bound

In this subsection, we derive the rate upper bound for the considered channel. Note

that the following rate upper bound is only applicable for the diamond relay channel

with the alternative relaying strategy, not for the diamond relay channel with other

strategies. To simplify notations, we call this bound as the rate upper bound in this

chapter.

Theorem B.1 Under conferencing strategy I, the rate upper bound for the alternative

relaying diamond channel with conferencing links is given as

Cupper = max
λ1+λ2=1

min {λ1C(γ1) + λ2C(γ2), λ2C(γ̃1) + λ1C(γ̃2),

λ1C21 + λ2 (C(γ2) + C(γ̃1) + C12) , λ1 (C(γ1) + C(γ̃2) + C21) + λ2C12} . (3.4)

Proof: This bound is derived by the cut-set bound [2] considering the alternative

relaying scheme with conferencing links as given in Section A. Similar analysis can

be found in [10] and thus skipped. �

2. DF Achievable Rate

In this subsection, we first derive the DF rate for the general two-side conferencing,

i.e., assuming that both of the two relays send information to each other via the

conferencing links. After obtaining the most general expression of the DF rate in

terms of a linear programming (LP) problem, we further exploit the properties of the
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optimal solution to simplify the coding scheme without sacrificing the DF rate, and

show that one-side conferencing can also achieve the same DF rate as the two-side

scheme. Then, we derive the DF rate in closed-form by solving the LP problem under

different channel conditions.

a. Rate Formulation

First, we describe the main idea of the DF relaying scheme as follows: During the

k-th time slot, the source transmits two messages wi
k and w3−i

k to the i-th relay

by using superposition coding, with wi
k targeted at the destination via the relay-to-

destination link and w3−i
k targeted at the (3 − i)-th relay via the conferencing link;

at the (3 − i)-th relay, it transmits the messages w3−i
k−1 and w3−i

k−2 to the destination

by using superposition coding, and wi
k−1 to the i-th relay, respectively; at the end

of the k-th time slot, the i-th relay decodes messages wi
k, w

3−i
k , and wi

k−1, and the

destination decodes w3−i
k−1 and w3−i

k−2. Here, since all links in this channel are scheduled

orthogonally over time or frequency, it is unnecessary to introduce any cooperation

between the two relays and we only need to send independent messages cross the two

time slots. Then, the DF rate is given in the following theorem.

Theorem B.2 Under conferencing strategy I, the DF achievable rate for the alter-

native relaying diamond channel with conferencing links is given as

P1 : RDF = max R11 +R12 +R21 +R22 (3.5)

s. t. R3−i,i ≤ λiC3−i,i, i = 1, 2,

Ri,i +Ri,3−i ≤ λiC(γi), i = 1, 2,

R3−i,3−i +Ri,3−i ≤ λiC(γ̃3−i), i = 1, 2,

λ1 + λ2 = 1, Ri,j ≥ 0, i, j = 1, 2,
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where the design variables are {R11, R12, R21, R22, λ1, λ2}, R11 and R12 are the rates

of messages w1
k and w2

k decoded by relay 1, respectively, when k is odd, and R21 and

R22 are defined similarly when k is odd.

Proof: See Appendix 1. �

Note that if we do not send w2
k at odd k and w1

k at even k, i.e., R12 = R21 = 0, it

is observed that the DF rate with conferencing given in (3.5) is the same as that for

the case without relay conferencing [10], which implies that our coding scheme is a

natural extension of that in [10]. Next, we show that one-side conferencing is enough

to achieve the same maximum DF rate.

Proposition B.1 There exists one optimal point for Problem (P1) such that at least

one of R∗
12 and R∗

21 is zero.

Proof: We prove this proposition by construction. Without loss of generality, assume

that R∗
12 ≥ R∗

21 > 0, and R∗
i,j, i, j ∈ {1, 2} is the optimal point of Problem (P1).

Then, construct a new point as R̂12 = R∗
12 − R∗

21, R̂21 = 0, and R̂i,i = R∗
i,i + R∗

21,

i = 1, 2. It is easy to check that R̂i,j’s also satisfy the constraints of Problem (P1)

and achieve the same optimal value as R∗
i,j’s, i, j ∈ {1, 2}. Thus, the proposition is

proved. �

In practical communication system design, one-side conferencing simplifies the

system requirements and thus is much easier to be implemented. In the next subsec-

tion, we will obtain the DF rate in closed-form, and show how to choose one of the

two conferencing link for one-side conferencing under different channel conditions.

b. Closed-Form Expressions for the DF Rate

With Proposition B.1, it is easy to check that the optimal value of Problem (P1) is

equal to the maximum between those of the following two problems, which are recast
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from Problem (P1) by letting R21 = 0 and R12 = 0, respectively.

P1.1 : max R11 +R12 +R22 (3.6)

s. t. R12 ≤ λ2C12, (3.7)

R11 +R12 ≤ λ1C(γ1), R11 ≤ λ2C(γ̃1), (3.8)

R22 +R12 ≤ λ1C(γ̃2), R22 ≤ λ2C(γ2), (3.9)

R11 ≥ 0, R12 ≥ 0, R22 ≥ 0, λ1 + λ2 = 1, λi ≥ 0, i = 1, 2, (3.10)

and

P1.2 : max R11 +R21 +R22 (3.11)

s. t. R21 ≤ λ1C21, (3.12)

R11 ≤ λ1C(γ1), R11 +R21 ≤ λ2C(γ̃1), (3.13)

R22 ≤ λ1C(γ̃2), R22 +R21 ≤ λ2C(γ2), (3.14)

R11 ≥ 0, R12 ≥ 0, R22 ≥ 0, λ1 + λ2 = 1, λi ≥ 0, i = 1, 2. (3.15)

Note that if Problems (P1) and (P1.1) achieve the same optimal value, the op-

timal point (R∗
11, R

∗
12, R

∗
22, λ

∗
1, λ

∗
2) of Problem (P1.1) is also feasible to Problem (P1)

with R∗
21 = 0, and such an optimal point is also the solution for Problem (P1). Sim-

ilar argument holds for the case that Problems (P1) and (P1.2) achieve the same

optimal value. Therefore, solving Problems (P1.1) and (P1.2) is equivalent to solving

Problem (P1). Before deriving the optimal solution for these two subproblems, we

first introduce the following lemma.

Lemma B.1 There exists one optimal solution of Problem (P1.1), which makes ei-

ther both of the two constraints in (3.8) or those in (3.9) satisfied with equality, i.e.,

λ∗
1C(γ1) − R∗

12 = λ∗
2C(γ̃1) or λ∗

1C(γ̃2) − R∗
12 = λ∗

2C(γ2). Similar result is true for
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Problem (P1.2).

Proof: We only prove the result for Problem (P1.1). If the optimal point of Problem

(P1.1) satisfies that R∗
12 < λ∗

2C12, we can prove this lemma by contradiction using

the same argument as that for Theorem 4.1 in [10]. Hence, we only need to consider

the case with R∗
12 = λ∗

2C12. The main idea is shown as follows: By changing λ∗
1 to

λ∗
1 + ϵ, where ϵ is a small real value, i.e., |ϵ| ≪ 1, it can be shown that all other cases

cannot be optimal, except for the case shown in this lemma. There are four possible

other cases.

1. λ∗
1C(γ1) − R∗

12 < λ∗
2C(γ̃1) and λ∗

1C(γ̃2) − R∗
12 < λ∗

2C(γ̃2): Choose ϵ > 0, it

is observed that the new solution satisfies R̃12 − R∗
12 = −ϵC12, R̃11 − R∗

11 =

ϵC12 + ϵC(γ1), and R̃22 −R∗
22 = ϵC12 + ϵC(γ̃2). It is easy to check that the sum

rate is improved, and thus this case cannot happen.

2. λ∗
1C(γ1) − R∗

12 < λ∗
2C(γ̃1) and λ∗

1C(γ̃2) − R∗
12 > λ∗

2C(γ̃2): Change λ∗
1 to λ∗

1 + ϵ,

and it follows that the new solution satisfies R̃12 − R∗
12 = −ϵC12, R̃11 − R∗

11 =

ϵC12+ ϵC(γ1), and R̃22−R∗
22 = −ϵC(γ2). If γ1 ≥ γ2, choose ϵ as a positive value;

otherwise, choose ϵ as a negative value. It is easy to check that the sum rate is

improved, and thus this case cannot happen.

3. λ∗
1C(γ1) − R∗

12 > λ∗
2C(γ̃1) and λ∗

1C(γ̃2) − R∗
12 < λ∗

2C(γ̃2): This case is similar to

case 2).

4. λ∗
1C(γ1) − R∗

12 > λ∗
2C(γ̃1) and λ∗

1C(γ̃2) − R∗
12 > λ∗

2C(γ̃2): This case is similar to

case 1).

In conclusion, the proposition is proved. �

Next, we show how to obtain the optimal point (R∗
11, R

∗
12, R

∗
22, λ

∗
1, λ

∗
2) of Problem

(P1.1), where the solution of Problem (P1.2) can be obtained similarly.
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(i) If λ∗
1C(γ1)− R∗

12 = λ∗
2C(γ̃1), it follows that λ∗

1 =
C(γ̃1)+R∗

12

C(γ̃1)+C(γ1) . Then, by (3.7) and

noticing that R∗
12 ≤ λ∗

1C(γ1) and R∗
12 ≤ λ∗

1C(γ̃2) (due to constraints (3.8) and

(3.9)), R∗
12 should satisfy the following conditions

R∗
12 ≤

C(γ1)C12

C(γ1)+C(γ̃1)+C12

R∗
12 ≤ C (γ1)

R∗
12 ≤

C(γ̃1)C(γ̃2)
C(γ̃1)+C(γ1)−C(γ̃2)

. (3.16)

Since the right-hand side of the second constraint is an upper bound of the

right-hand side of the first one, it follows that the second one is redundant.

Thus, we obtain

0 ≤ R∗
12 ≤ min

{
C(γ1)C12

C(γ1) + C(γ̃1) + C12

,
C(γ̃1)C(γ̃2)

C(γ̃1) + C(γ1)− C(γ̃2)

}
.
= k1, (3.17)

R∗
11 = λ∗

2C(γ̃1), and R∗
22 = min {λ∗

1C(γ̃2)−R∗
12, λ

∗
2C(γ2)}. Thus, the opti-

mal value of Problem (P1.1) is given as R1 = max(3.17) (R
∗
11 +R∗

22 +R∗
12) =

max(3.17) r1(R
∗
12), where

r1(R
∗
12)

=
1

C(γ1) + C(γ̃1)
min

 C(γ1)C(γ̃1) + C(γ1)C(γ2) + (C(γ1)− C(γ2))R∗
12

C(γ1)C(γ̃1) + C(γ̃1)C(γ̃2) + (C(γ̃2)− C(γ̃1))R∗
12

 .

(3.18)

(ii) If λ∗
1C(γ̃2) − R∗

12 = λ∗
2C(γ2), it follows that λ∗

1 =
C(γ2)+R∗

12

C(γ̃2)+C(γ2) , and it is easy to

check that

0 ≤ R∗
12 ≤ min

{
C(γ̃2)C12

C(γ2) + C(γ̃2) + C12

,
C(γ̃2)C(γ1)

C(γ2) + C(γ̃2)− C(γ1)
,
(C(γ̃2))2

C(γ2)

}
.
= k2.

(3.19)

Thus, the optimal value of Problem (P1.1) is given as R2 = max(3.17) r2(R
∗
12),
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where

r2(R
∗
12)

=
1

C(γ2) + C(γ̃2)
min

 C(γ2)C(γ̃2) + C(γ1)C(γ2) + (C(γ1)− C(γ2))R∗
12

C(γ2)C(γ̃2) + C(γ̃1)C(γ̃2) + (C(γ̃2)− C(γ̃1))R∗
12

 .

(3.20)

It is worth noting that the two terms in the min operation of (3.18) and (3.20)

are all linear functions of R∗
12, and thus the optimal value of Problem (P1.1) is given

by the max/min over two linear functions. Then, the optimal value of Problem (P1.1)

can be obtained in the following cases, which are also shown in Fig. 10.

1. γ1 > γ2 and γ̃2 > γ̃1: As provable and shown in Fig. 10(a), both of the

two functions in (3.18) or (3.20) are strictly increasing over R∗
12, and thus the

maximum values of (3.18) and (3.20) are achieved at R∗
12 = k1 or R∗

12 = k2,

respectively. Then, the optimal value of Problem (P1.1) is given as

max {r1(k1), r2(k2)} , (3.21)

which implies that relay conferencing can strictly increase the DF rate in this

case.

2. γ1 ≤ γ2 and γ̃2 ≤ γ̃1: As provable and shown in Fig. 10(b), both of the two

functions in (3.18) or (3.20) are non-increasing over R∗
12, and thus the maximum

values of (3.18) and (3.20) are achieved at R∗
12 = 0. Thus, the optimal value of

Problem (P1.1) is given as

max {r1(0), r2(0)} , (3.22)

which implies that using the conferencing link from relay 1 to relay 2 cannot
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improve the DF rate for this case.

3. γ1 > γ2 and γ̃2 ≤ γ̃1: For either (3.18) or (3.20), one function in the min

operation is increasing over R∗
12, while the other one is non-increasing. As such,

we need to further compare the constant terms in them, and there are two

subcases:

(a) C(γ1)C(γ2) < C(γ̃1)C(γ̃2): As provable and shown in Fig. 10(c), for both

(3.18) and (3.20), the two functions in the min operation may have one

intersection point for R∗
12 ≥ 0, which is given by k3

.
= C(γ1)C(γ2)−C(γ̃1)C(γ̃2)

C(γ̃1)−C(γ̃2)−C(γ1)+C(γ2) .

However, note that k3 may not be within the region defined by (3.17) and

(3.19). As such, for (3.18) and (3.20), their maximum values are achieved

at k01 = min (k1, k3) or k02 = min (k2, k3), respectively. Thus, the optimal

value of Problem (P1.1) is given as

max {r1(k01), r2(k02)} , (3.23)

which means that relay conferencing can strictly increase the DF rate in

this case.

(b) C(γ1)C(γ2) ≥ C(γ̃1)C(γ̃2): As provable and shown in Fig. 10(d), for both

(3.18) and (3.20), the two functions in the min operation have no intersec-

tion points in the region defined by (3.17) and (3.19), respectively. Thus,

the optimal value of Problem (P1.1) is given the same as (3.22), and it is

concluded that by using the conferencing link from relay 1 to relay 2, the

DF rate cannot be improved compared to the case without relay confer-

encing.

4. γ1 ≤ γ2 and γ̃2 > γ̃1: This case is similar to case 3), and the DF rate is given as
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(a) C(γ1)C(γ2) > C(γ̃1)C(γ̃2): The optimal value of Problem (P1.1) is given by

(3.23);

(b) C(γ1)C(γ2) ≤ C(γ̃1)C(γ̃2): The optimal value of Problem (P1.1) is given by

(3.22).

0
1 2

/k k

(a) Case 1)

0
1 2

/k k

(b) Case 2)

0
1 2

/k k

(c) Case 3)

0
1 2

/k k

(d) Case 4)

Fig. 10.: Four possible cases for the max/min solutions in (3.18) and (3.20), where k1 and
k2 are given in (3.17) and (3.19), respectively.

Similar to Problem (P1.1), the optimal solution of Problem (P1.2) is summarized

as follows.
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1. γ1 > γ2 and γ̃2 > γ̃1: The optimal value of Problem (P1.2) is given as

max {r̃1(0), r̃2(0)} , (3.24)

where r̃1(R
∗
21) and r̃2(R

∗
21) are defined as

r̃1(R
∗
21)

=
1

C(γ1) + C(γ̃1)
min

 C(γ1)C(γ̃1) + C(γ̃1)C(γ̃2) + (C(γ̃1)− C(γ̃2))R∗
21

C(γ1)C(γ̃1) + C(γ1)C(γ2) + (C(γ2)− C(γ1))R∗
21

 ,

(3.25)

with

0 ≤ R∗
21 ≤

min

{
C(γ̃1)C21

C(γ1) + C(γ̃1) + C21

,
C(γ̃2

1)

C(2γ̃1) + C(γ1)
,

C(γ̃1)C(γ2)
C(γ1) + C(γ̃1) + C(γ2)

}
.
= k̃1,

and

r̃2(R
∗
21)

=
1

C(γ2) + C(γ̃2)
min

 C(γ2)C(γ̃2) + C(γ̃1)C(γ̃2) + (C(γ̃1)− C(γ̃2))R∗
21

C(γ2)C(γ̃2) + C(γ1)C(γ2) + (C(γ2)− C(γ1))R∗
21

 ,

(3.26)

with

0 ≤ R∗
21 ≤ min

{
C(γ̃2)C12

C(γ2) + C(γ̃2) + C12

,
γ̃1γ̃2

γ̃2 + γ2 − γ̃1

}
.
= k̃2.

2. γ1 ≤ γ2 and γ̃2 ≤ γ̃1: The optimal value of Problem (P1.2) is given as

max
{
r̃1(k̃1), r̃2(k̃2)

}
. (3.27)
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3. γ1 > γ2 and γ̃2 ≤ γ̃1: There are two possible subcases:

(a) C(γ1)C(γ2) < C(γ̃1)C(γ̃2): The optimal value of Problem (P1.2) is given as

(3.24).

(b) C(γ1)C(γ2) ≥ C(γ̃1)C(γ̃2): The optimal value of Problem (P1.2) is given as

max
{
r̃1(k̃01), r̃2(k̃02)

}
, (3.28)

where k̃01 and k̃02 are defined as follows: k̃01 = min
(
k̃1, k̃3

)
and k̃02 =

min
(
k̃2, k̃3

)
, with k̃3

.
= C(γ1)C(γ2)−C(γ̃1)C(γ̃2)

C(γ̃1)−C(γ̃2)−C(γ1)+C(γ2) .

4. γ1 ≤ γ2 and γ̃2 > γ̃1: This is similar to case 3).

(a) C(γ1)C(γ2) > C(γ̃1)C(γ̃2): The optimal value of Problem (P1.2) is given by

(3.24);

(b) C(γ1)C(γ2) ≤ C(γ̃1)C(γ̃2): The optimal value of Problem (P1.2) is given by

(3.27).

From the above analysis, it is observed that under the same channel conditions,

at most one between R∗
12 in Problem (P1.1) and R∗

21 in Problem (P1.2) can be non-

zero. Thus, the optimal value of Problem (P1) is achieved by one of the Problems

(P1.1) and (P1.2) with non-zero R∗
i,3−i (if there is), since these constant terms in

(3.18) and (3.25) (same for (3.20) and (3.26)) are identical; for the case that both of

R∗
i,3−i’s are zero, Problems (P1.1) and (P1.2) render the same optimal value, which is

the same as that of Problem (P1). Therefore, we could obtain the DF rate in closed-

form under different channel conditions, which is summarized in Table III. Moreover,

it is worth noting that under arbitrary channel conditions, at most one between R∗
12

and R∗
21 is positive, which is coherent with the result in Proposition B.1 and indicates

which one of the conferencing links should be used; furthermore, for some cases, both
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Table III.: The DF rate under the conferencing strategy I and the corresponding
one-side conferencing scheme.

Channel conditions DF rate Conferencing scheme

γ1 > γ2 and γ̃2 > γ̃1 (3.21)

γ1 > γ2, γ̃2 ≤ γ̃1 and C(γ1)C(γ2) < C(γ̃1)C(γ̃2) (3.23) Relay 1 → Relay 21

γ1 ≤ γ2, γ̃2 > γ̃1 and C(γ1)C(γ2) > C(γ̃1)C(γ̃2) (3.23)

γ1 < γ2 and γ̃2 < γ̃1 (3.27)

γ1 > γ2, γ̃2 ≤ γ̃1 and C(γ1)C(γ2) > C(γ̃1)C(γ̃2) (3.28) Relay 2 → Relay 1

γ1 ≤ γ2, γ̃2 > γ̃1 and C(γ1)C(γ2) < C(γ̃1)C(γ̃2) (3.28)

γ1 = γ2 and γ̃2 = γ̃1 (3.22)

γ1 > γ2, γ̃2 ≤ γ̃1 and C(γ1)C(γ2) = C(γ̃1)C(γ̃2) (3.22) No relay conferencing

γ1 ≤ γ2, γ̃2 > γ̃1 and C(γ1)C(γ2) = C(γ̃1)C(γ̃2) (3.22)

1. This means that only the conferencing link from relay 1 to relay 2 is used,

and the other one is not.

R∗
12 and R∗

21 are zero, which means under these channel conditions, relay conferencing

is useless. In Table III, we also summarize which conferencing link should be used to

deploy one-side relay conferencing and when relay conferencing cannot improve the

DF rate.

Remark B.1 From the above analysis, we observe that for the symmetric channel

case, i.e., γ1 = γ2 and γ̃1 = γ̃2, relay conferencing cannot improve the DF rate

with the alternative relaying scheme, which is not true for the simultaneous relaying

scheme [23].
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c. Asymptotic Performance

From [10], we know that for the diamond relay channel without relay conferencing,

the DF scheme achieves the rate upper bound under arbitrary channel conditions. In

the following, we show an asymptotic upper-bound-achieving result for the considered

channel in this chapter.

Proposition B.2 With conferencing strategy I and arbitrary channel coefficients,

the DF relaying scheme achieves the rate upper bound given in (3.4) asymptotically

as the conferencing link rates go to infinity.

Proof: When Ci,3−i’s go to infinity, it is easy to see that the rate upper bound given

in (3.4) is asymptotically equal to

C∞
upper = max

λi

min {λ1C(γ1) + λ2C(γ2), λ2C(γ̃1) + λ1C(γ̃2)} . (3.29)

On the other hand, we set R12 = R21 = 0 in (3.5), and we observe that RDF ≥ C∞
upper.

Thus, the proposition is proved. �

Remark B.2 For finite and positive Ci,3−i’s, it can be shown that the third and the

fourth terms in (3.4) are generally larger than the DF rate define in (3.5), which

implies why the DF relaying scheme cannot achieve this rate upper bound under gen-

eral channel conditions. To see this point, we fix λi, i = 1, 2, and sum the fol-

lowing three constraints in (3.5) together: R12 ≤ λ2C12, R22 + R21 ≤ λ2C(γ2), and

R11 +R21 ≤ λ2C(γ̃1), which leads to

RDF ≤ R11 +R12 + 2R21 +R22 (3.30)

= λ2 (C(γ2) + C(γ̃1) + C12) (3.31)

≤ λ1C21 + λ2 (C(γ2) + C(γ̃1) + C12) , (3.32)
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where these two equalities in (3.30) and (3.32) are achieved only when R21 = C21 = 0.

In general, since Ci,3−i > 0, we conclude that the rate upper bound given in (3.4)

cannot be achieved by the DF scheme.

3. AF Achievable Rate

For the AF relaying scheme, each relay first linearly combines the received signals from

the source and the other relay, and then transmits the combination to the destination

under an individual relay power constraint.

We assume that the conferencing links are Gaussian. For simplicity, let the input

of the conferencing link at the (3 − i)-th relay be x3−i,i = y3−i and the link gain of

each conferencing link equal to 1. Thus, the conferencing link output at the i-th relay

is given as

y3−i,i = x3−i,i + n3−i,i, (3.33)

where n3−i,i is the i.i.d. CSCG noise at the i-th relay with a distribution CN
(
0, σ2

3−i,i

)
.

With the conferencing link rate constraint, σ2
3−i,i is given as

σ2
3−i,i =

γ3−i + 1

2C3−i,i/2 − 1
, i = 1, 2. (3.34)

After the relay conferencing, each relay combines the two received signals from

the source and the other relay as ti = aiiyi + a3−i,iy3−i,i, where aii and a3−i,i are

the complex combining parameters, satisfying the following average transmit power

constraint

E
(
|ti|2

)
= |aii|2 (γi + 1) + |a3−i,i|2

(
γ3−i + 1 + σ2

3−i,i

)
≤ 1, i = 1, 2. (3.35)

At the destination, we apply a sequential decoding process: Assume that at the

k-th time slot, the previous k − 1 source messages have already been successfully
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decoded; decode the k-th source message based on the received signals at the k-th

and the (k + 1)-th time slots, by treating the (k + 1)-th message at the (k + 1)-th

time slot as noise. As such, the AF rate for each source message is given as

Ri =
1

2
C

(
|aii|2γiγ̃i
1 + |aii|2γ̃i

+
|ai,3−i|2γiγ̃3−i

|ai,3−i|2γ̃3−i

(
1 + σ2

i,3−i

)
+ |a3−i,3−i|2γ̃3−i(γ3−i + 1) + 1

)
,

(3.36)

where R1 and R2 denote the rates for the source messages in odd and even time slots,

respectively. Thus, the AF rate is given as

RAF = max
(3.35)

R1 +R2. (3.37)

Then, we have the following result for the convexity of Problem (3.37).

Proposition B.3 The AF rate maximization problem in (3.37) is concave over the

combining parameters |ai,j|2, i, j ∈ {1, 2}.

Proof: See Appendix 2. �

Even though the AF rate maximization problem in (3.37) can be solved by nu-

merical algorithms, e.g., the interior point method [51], we know little about whether

two-side conferencing is necessary with general channel coefficients. To obtain some

insights for the proposed conferencing scheme, we further investigate the performance

of the AF scheme for the cases when the second-hop link SNR γ̃i goes to infinity and

zero, respectively.

a. High SNR Regime

For the case with γ̃i → ∞, (3.36) can be approximated as

Ri ≈
1

2
C

(
γi +

|ai,3−i|2γi
|ai,3−i|2

(
1 + σ2

i,3−i

)
+ |a3−i,3−i|2γ3−i

)
. (3.38)
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Remark B.3 In general, it is still difficult to derive the closed-form solution for

Problem (3.37) with (3.38). However, it is worth noting that the term γi in C(·) of

(3.38) equals the received SNR for the case without relay conferencing when γ̃i → ∞;

moreover, the second term in C(·) of (3.38) is the gain from relay conferencing. For

some special cases, i.e., where γ1 = γ2 and we choose Ci,3−i such that 1 + σ2
i,3−i = γi,

it can be checked that the maximum AF rate is achieved at |ai,j|2 = 1
2γ1

, i, j ∈ {1, 2}

(note that Ri is concave over |ai,j|2’s). Thus, for both R1 and R2, the conferencing

gains are non-zero, which implies that two-side conferencing is necessary.

b. Low SNR Regime

For the case with γ̃i → 0, (3.36) can be approximated as

Ri ≈
1

2

(
|aii|2γiγ̃i + |ai,3−i|2γiγ̃3−i

)
. (3.39)

Then, the AF rate maximization problem can be recast as

(P2) max
(3.35)

1

2

(
|a11|2γ1γ̃1 + |a12|2γ1γ̃2 + |a22|2γ2γ̃2 + |a2,1|2γ2γ̃1

)
, (3.40)

which is a LP problem. It can be shown that Problem (P2) can be decomposed into

two subproblems, and its optimal point can be constructed from those of the following

two problems.

(P2.1) max
1

2

(
|a11|2γ1γ̃1 + |a2,1|2γ2γ̃1

)
(3.41)

s. t. |a11|2 (γ1 + 1) + |a21|2
(
γ2 + 1 + σ2

21

)
≤ 1, (3.42)
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and

(P2.2) max
1

2

(
|a12|2γ1γ̃2 + |a22|2γ2γ̃2

)
(3.43)

s. t. |a22|2 (γ2 + 1) + |a12|2
(
γ1 + 1 + σ2

12

)
≤ 1. (3.44)

It is easy to check that one of the following two points is optimal for Problem

(P2.1): (|a11|2, |a21|2) =
(

1
γ1+1

, 0
)

and (|a11|2, |a21|2) =
(
0, 1

γ2+1+σ2
21

)
, and thus its

optimal value is γ̃1 ·max
{

γ1
γ1+1

, γ2
γ2+1+σ2

21

}
. Similarly, for Problem (P2.2), its optimal

value γ̃2 · max
{

γ2
γ2+1

, γ1
γ1+1+σ2

12

}
is achieved by either (|a22|2, |a12|2) =

(
1

γ2+1
, 0
)

or

(|a22|2, |a12|2) =
(
0, 1

γ1+1+σ2
12

)
. By considering different combinations of the possible

optimal points of Problems (P2.1) and (P2.2), we obtain the optimal solution |a∗i,j|2,

i, j ∈ {1, 2}, of Problem (P2) as follows.

1. For the case with γ1
γ1+1

≥ γ2
γ2+1+σ2

21
and γ2

γ2+1
≥ γ1

γ1+1+σ2
12
, we have |a∗11|2 = 1

γ1+1
,

|a∗22|2 = 1
γ2+1

, and |a∗12|2 = |a∗21|2 = 0; for this case, relay conferencing cannot

improve the AF rate.

2. For the case with γ1
γ1+1

< γ2
γ2+1+σ2

21
and γ2

γ2+1
< γ1

γ1+1+σ2
12
, we claim that it cannot

happen. To see this point, consider the case with C12 → ∞, i.e., σ2
12 → 0,

and we obtain that γ1
γ1+1

< γ2
γ2+1+σ2

21
< γ2

γ2+1
. Applying a similar argument for

the other inequality, it follows that γ2
γ2+1

< γ1
γ1+1

, which contradicts with the

previous inequality. As such, it is concluded that this case cannot happen.

3. For the case with γ1
γ1+1

< γ2
γ2+1+σ2

21
and γ2

γ2+1
≥ γ1

γ1+1+σ2
12
, we have |a∗11|2 = |a∗12|2 =

0, |a∗22|2 = 1
γ2+1

, and |a∗21|2 = 1
γ2+1+σ2

21
; for this case, the source does not need

to send information to relay 1, and both of the two relays forward the signals

received at relay 2 to the destination.

4. For the case with γ1
γ1+1

≥ γ2
γ2+1+σ2

21
and γ2

γ2+1
< γ1

γ1+1+σ2
12
, we have |a∗11|2 = 1

γ1+1
,



68

|a∗12|2 = 1
γ1+1+σ2

12
, and |a∗22|2 = |a∗21|2 = 0; this case leads to results opposite to

case 3).

Remark B.4 From the above analysis, we conclude that for the case with γ̃i → 0,

after obtaining the two signals from the source and its counterpart relay, each relay

should only forward the one with a higher SNR and discard the other one. Moreover,

cases 3 and 4 suggest that in the low SNR regime, increasing power gain is more

critical than increasing multiplex gain for the AF relaying scheme. This is opposite

to the result in the high SNR regime, where the alternative relaying scheme is optimal

in the sense of achieving the full multiplexing gain as stated in the introduction part.

C. Conferencing Strategy II

In this section, we consider conferencing strategy II, and derive the rate upper bound

and the DF achievable rate. We will show that the DF rate will be greatly improved

compared with that of strategy I. As we discussed before, we omit the analysis for the

AF relaying scheme, since its result is only different by some constant factors from

that of strategy I.

1. Rate Upper Bound

Note that for this case, the conferencing links can be fully utilized, and thus there will

be no penalty terms λi’s over the conferencing link rates Ci,3−i’s. As such, we obtain

the following result for the rate upper bound, which is similar to Theorem B.1.

Theorem C.1 Under conferencing strategy II, the rate upper bound for the alterna-
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tive relaying diamond channel with conferencing links is given as

Cupper = max
λ1+λ2=1

min {λ1C(γ1) + λ2C(γ2), λ2C(γ̃1) + λ1C(γ̃2),

λ2 (C(γ2) + C(γ̃1)) + C12 + C21, λ1 (C(γ1) + C(γ̃2)) + C12 + C21} . (3.45)

2. DF Achievable Rate

The DF coding scheme under conferencing strategy II is similar to that for scheme

I, and thus we only describe its differences from the previous scheme. For the k-th

source message (sending to the i-th relay), it contains two sub-messages wi
k and w3−i

k

via superposition coding. After relay i decodes them, it sends wi
k to the destination

in the (k + 1)-th time slot, and w3−i
k to the other relay in the (k + 1)-th and the

(k+2)-th time slots via the conferencing link. As such, the rate of message w3−i
k is no

longer subject to the conferencing link rates constraints, i.e., Ri,3−i ≤ Ci,3−i, i = 1, 2

is not required. In the (k + 3)-th time slot, relay 3− i sends w3−i
k to the destination

together with the message w3−i
k+3. Accordingly, we have the following result for the DF

rate.

Theorem C.2 Under conferencing strategy II, the DF achievable rate for the alter-

native relaying diamond channel with conferencing links is given as

P3 : max RDF = R11 +R12 +R21 +R22 (3.46)

s. t. R3−i,i ≤ C3−i,i, i = 1, 2, (3.47)

Ri,i +Ri,3−i ≤ λiC(γi), i = 1, 2, (3.48)

R3−i,3−i +Ri,3−i ≤ λiC(γ̃3−i), i = 1, 2, (3.49)

Ri,j ≥ 0, i, j ∈ {1, 2}, λ1 + λ2 = 1, i = 1, 2, (3.50)

where Rii and Ri,3−i, i = 1, 2, are defined the same as those in Problem (P1).
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Table IV.: Lower bound on C12 + C21 for the DF scheme to
achieve the rate upper bound under conferencing strategy II.

Channel conditions Minimum C12 + C21

γ1 > γ2, γ̃2 > γ̃1 min {C(γ1), C(γ̃2)}

γ1 ≤ γ2, γ̃2 ≤ γ̃1 min {C(γ2), C(γ̃1)}

γ1 > γ2, γ̃1 ≤ γ̃2, γ̃2 ≥ γ1 C(γ̃2)

γ1 ≤ γ2, γ̃1 > γ̃2, γ̃2 ≤ γ1 C (γ1)

γ1 > γ2, γ̃1 > γ̃2, γ1 > γ̃2
C(γ2)C(γ̃2)−C(γ1)C(γ̃1)

C(γ̃2)−C(γ̃1)−C(γ1)+C(γ2) − g(λ0)
1

γ1 ≤ γ2, γ̃1 < γ̃2, γ1 < γ̃2
C(γ2)C(γ̃2)−C(γ1)C(γ̃1)

C(γ̃2)−C(γ̃1)−C(γ1)+C(γ2) − g(λ0)

1. g(·) is defined in (3.59), and λ0 =

C(γ2)−C(γ̃1)
C(γ̃2)−C(γ̃1)−C(γ1)+C(γ2) .

Since Problem (P3) has a similar structure as Problem (P1), it can be shown that

one-side conferencing is also optimal for the DF scheme under conferencing strategy

II, and the optimal solution of Problem (P3) can be obtained by a similar routine as

that in Section B, which is omitted for simplicity. Here, we first have the following

proposition to show a rate result for the DF scheme.

Proposition C.1 Under conferencing strategy II, the DF relaying scheme achieves

the corresponding rate upper bound with finite conferencing link rates, i.e., with C12+

C21 larger than or equal to the values summarized in Table IV.

Proof: See Appendix 3. �

Remark C.1 Compared to the asymptotic upper-bound-achieving result for confer-

encing strategy I given in Proposition B.2, Proposition C.1 guarantees that confer-

encing strategy II is practically feasible, and only finite conferencing link rates are

necessary to achieve the rate upper bound.
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Proposition C.2 If the conferencing link rates are symmetric, i.e., C12 = C21, the

DF rate under conferencing strategy II is the same as the rate upper bound under

conferencing strategy I with arbitrary channel coefficients.

Proof: First, for the cases that the either one of the first two terms in the min

operation of (3.4) is the smallest among these four terms, it is easy to check that it

can be achieved by setting Ri,3−i = 0, i = 1, 2, in Problem (P3). On the other hand,

if the third term in (3.4) is the smallest one, it is achievable for the DF scheme due

to the following fact: As a similar argument of Remark B.2, it can be shown that

RDF ≤ R11 +R12 + 2R21 +R22 (3.51)

≤ C12 + λ2 (C(γ2) + C(γ̃1)) , (3.52)

where (3.52) equals the third term in (3.4), the equality in (3.51) is achieved only

when R21 = 0, and the equality in (3.52) is achieved only when the constraints (3.47)-

(3.49) achieves the equality for the case of i = 2. Thus, define R12 = C12, R21 = 0,

R11 = λ2C(γ̃1), and R22 = λ2C(γ2). Since we assume that the third term in (3.4) is the

smallest one, it is easy to check that this solution is also feasible for the constraints in

(3.48) and (3.49) for the case of i = 1. As such, the third term in (3.4) is achievable

for the DF scheme. For the fourth term in (3.4), it can be shown that it is achievable

by applying a similar argument as in the previous case. Therefore, this proposition

is proved. �

For the case that the conferencing link rates are not the same, i.e., C12 ̸= C21, the

DF rate under conferencing strategy II may be either larger or smaller than the rate

upper bound under conferencing strategy I, which will be shown in the next section

by numerical results.
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D. Numerical Results

In this section, we present some numerical results to compare the performances of the

proposed coding schemes. Here, we only consider the asymmetric channel case, i.e.,

γ1 = γ̃2 and γ2 = γ̃1, and also show the performance of the DF simultaneous relaying

scheme given in [23] as a comparison, which usually performs the best among various

coding schemes under the simultaneous relaying mode.
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Fig. 11.: Comparison of the rate upper bounds and various achievable rates under
different channel conditions, with C12 = C21 = 5 bits/s/Hz, γ1 = γ̃2 = 10 dB, and different

γ2 = γ̃1.

In Fig. 11, for the two relay conferencing strategies, we plot the rate upper

bounds and various achievable rates as functions of link gains. Here, we let C12 =

C21 = 5 bits/s/Hz, γ1 = γ̃2 = 10 dB, and γ2 = γ̃1 change over [−10, 30] dB. It

is observed that the two upper bounds coincide when the channel gain is relatively
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small, i.e., when below 15 dB. For the DF relaying scheme, it achieves the rate upper

bound when the channel gain is less than 10 dB under conferencing strategy II, while

only at the point of 10 dB under conferencing strategy I.
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Fig. 12.: Comparison of the rate upper bounds and various achievable rates over different
conferencing link rates, with C12 = C21, γ1 = γ̃2 = 10 dB, and γ2 = γ̃1 = 30 dB.

In Fig. 12, we plot the rate upper bounds and various achievable rates as func-

tions of the conferencing link rates for both of the two conferencing strategies. Here,

we assume C12 = C21, γ1 = γ̃2 = 10 dB, and γ2 = γ̃1 = 30 dB. It is observed that

relay conferencing can significantly increase these achievable rates for both of the

simultaneous and alternative relaying schemes. Moreover, although it is proved in

Proposition B.2 that under conferencing strategy I, the alternative DF scheme can

asymptotically achieve the rate upper bound as C12 goes to infinity, unfortunately it

approaches the upper bound very slowly: Even when C12 are 50 bits/s/Hz, the gap
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between them is still about 1 bits/s/Hz; while under conferencing strategy II, the DF

scheme achieves the corresponding upper bound with relative small conferencing link

rates, i.e., about 12 bits/s/Hz.

E. Summary

In this chapter, we considered the alternative relaying diamond relay channel with

conferencing links. We derived the DF and AF achievable rates for two conferencing

strategies, and showed that these rate maximization problem are convex. For the

DF relaying scheme, by further exploiting the properties of the optimal solution, one-

side conferencing was shown to be optimal for the DF scheme with both of the two

conferencing strategies. Then, we obtained the DF rate in closed-form, and explic-

itly showed the rules on which conferencing link should be used under given channel

conditions for one-side conferencing. Interestingly, the DF scheme was shown to be

upper-bound-achieving with the help of finite conferencing link rates under conferenc-

ing strategy II, whose lower bounds were also derived. For the AF relaying scheme,

we studied the optimal combining strategy, and showed that one-side conferencing is

not optimal in general. Furthermore, some asymptotic optimal combining strategies

were obtained in both the high and low SNR regimes.

F. Appendix

1. Achievability Proof of the DF Rate

Codebook Generation: First, note that we only need to generate in total two sets

of codebooks for the odd and even time slots, respectively; for simplicity, we use the

subscript s, s = 1, 2, to distinguish these two sets of codebooks, i.e., s = 1 for that

in odd time slots and s = 2 for that in even ones. The codebooks at the source are
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generated as follows: Generate 2nRs,s i.i.d. sequences us(q
1
s), where q1s ∈

[
1 : 2nRs,s

]
,

according to the distribution
∏λsn

j=1 p(us,j); for each us(q
1
s), generate 2nRs,3−s i.i.d.

sequences xs(q
1
s , q

2
s), where q2s ∈

[
1 : 2nRs,3−s

]
, with the distribution

∏λsn
j=1 p(xs,j|us,j).

For the conferencing links, generate 2nR3−s,s i.i.d. sequencesM3−s(v3−s), where v3−s ∈

[1 : R3−s,s]. For the relay-destination transmissions, generate 2n(R3−s,3−s+Rs,3−s) i.i.d.

sequences t3−s(s
1
s, s

2
s) by a similar superposition coding method as that of xs, where

s1s ∈ [1 : R3−s,3−s] and s2s ∈ [1 : Rs,3−s], according to the distribution
∏λsn

j=1 p(tj).

Encoding and decoding: At the beginning of the k-th time slot, k = 1, 2, · · · ,

where the source sends message to the i-th relay with i = 1 for odd k and i = 2

for even k, the source splits the message wk into two submessages w1
k and w2

k, and

transmits xi(w
1
k, w

2
k); the (3 − i)-th relay transmits Mi(w

3−i
k−1) to the i-th relay via

the conferencing link; the (3− i)-th relay transmits ti(w
3−i
k−1, w

i
k−2) to the destination.

At the end of the k-th time slot, the i-th relay obtains Mi(w
3−i
k−1) from the (3−i)-

th relay. Since we assume that the conferencing links are noiseless, the i-th relay can

successfully decode message w3−i
k−1 if

R3−i,i ≤ λiC3−i,i. (3.53)

Simultaneously, the i-th relay obtains yi from the source. Then, it decodes (w1
k, w

2
k),

and this can be done reliably if

Ri,i +Ri,3−i ≤ λiI (Xi;Yi) = λiC (γi) , (3.54)

where (3.54) is obtained by choosing Xi as a Gaussian random variable with a distri-

bution CN (0, PS). At the destination, it decodes (w3−i
k−1, w

i
k−2), and this can be done

reliably if

R3−i,3−i +Ri,3−i ≤ λiI (T3−i;Zi) = λiC (γ̃3−i) , (3.55)
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where (3.55) is obtained by choosing T3−i as a Gaussian random variable with a dis-

tribution CN (0, PR). Based on the above analysis, we can obtain the DF achievable

rate as shown in (3.5).

2. Proof of Proposition B.3

To prove this result, we only need to show that Ri defined in (3.36) is concave over

|ai,j|2’s [51], due to the convexity of the constraints in (3.35). Then, since the function

y = C(x) is concave and non-decreasing, we need to prove that the function within

the C(·) function in (3.36) is concave [51]. Moreover, noticing that |aii|2γiγ̃i
1+|aii|2γ̃i is concave

over |aii|2, we only need to show that the second fraction in C(·) is also concave. By

letting x = |ai,3−i|2 and y = |a3−i,3−i|2, and normalizing the coefficients of x in the

numerator and the denominator both to 1, it is equivalent to prove that z = x
x+ay+b

,

where a and b are some positive constants, is concave. Then, check the Hessian matrix

of function z as

H =
1

(x+ ay + b)3

 −2ay − 2b ax− a2y − ab

ax− a2y − ab 2a2x

 . (3.56)

Noticing that a > 0, b > 0, x ≥ 0, and y ≥ 0, it is easy to show that −2ay − 2b < 0

and |H| = 1
(x+ay+b)3

[−2a2x(2ay + 2b)− (ax− a2y − ab)2] < 0, which implies that

H is negative semidefinite and function z is concave. Therefore, the proposition is

proved.

3. Proof of Proposition C.1

Similar to the proof of Proposition C.2, it is easy to check that the first and the second

terms in (3.45) can be achieved by the DF rate given in Problem (P3). However, for

the third and the fourth terms in (3.45), by a similar argument as Remark B.2, it can
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be shown that these two terms cannot be achieved by the DF relaying scheme. As

such, the DF relaying scheme achieves the rate upper bound only for the case that

the last two terms are redundant, i.e., for the optimal λ∗
i achieving the maximum

value of the following optimization problem,

C̃upper = max
λ1+λ2=1

min {λ1C(γ1) + λ2C(γ2), λ2C(γ̃1) + λ1C(γ̃2)} , (3.57)

we always have λ∗
2 (C(γ2) + C(γ̃1))+C12+C21 ≥ C̃upper and λ∗

1 (C(γ1) + C(γ̃2))+C12+

C21 ≥ C̃upper. Therefore, the rate upper bound is achieved by the DF scheme only

when the following relationship is satisfied

C12 + C21 ≥ C̃upper −min {λ∗
2 (C(γ2) + C(γ̃1)) , λ∗

1 (C(γ1) + C(γ̃2))} . (3.58)

Denote

g(λ∗
1) = min {λ∗

2 (C(γ2) + C(γ̃1)) , λ∗
1 (C(γ1) + C(γ̃2))} , (3.59)

and it follows that g(0) = g(1) = 0. Then, in order to compute the lower bound on

C12 + C21 to achieve the rate upper bound, we only need to compute C̃upper and the

corresponding λ∗
i . For Problem (3.57), it follows that

1. γ1 > γ2, γ̃2 > γ̃1: It is obtained that λ∗
1 = 1, and thus, C̃upper = min {C(γ1), C(γ̃2)};

2. γ1 ≤ γ2, γ̃2 ≤ γ̃1: It is obtained that λ∗
1 = 0, and thus C̃upper = min {C(γ2), C(γ̃1)};

3. γ1 > γ2, γ̃1 ≤ γ̃2, γ̃2 ≥ γ1: It is obtained that λ∗
1 = 1, and thus C̃upper = C(γ̃2);

4. γ1 ≤ γ2, γ̃1 > γ̃2, γ̃2 ≤ γ1: It is obtained that λ∗
1 = 1, and thus C̃upper = C (γ1);

5. γ1 > γ2, γ̃1 > γ̃2, γ1 > γ̃2: It is obtained that λ∗
1 = λ0, and thus C̃upper =

C(γ2)C(γ̃2)−C(γ1)C(γ̃1)
C(γ̃2)−C(γ̃1)−C(γ1)+C(γ2) ;
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6. γ1 ≤ γ2, γ̃1 < γ̃2, γ1 < γ̃2: It is obtained that λ∗
1 = λ0, and thus C̃upper =

C(γ2)C(γ̃2)−C(γ1)C(γ̃1)
C(γ̃2)−C(γ̃1)−C(γ1)+C(γ2) ;

where λ0 =
C(γ2)−C(γ̃1)

C(γ̃2)−C(γ̃1)−C(γ1)+C(γ2) . Thus, the lower bound on C12 + C21 to achieve the

rate upper bound is given in Table IV.
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CHAPTER IV

SINGLE-USER LARGE RELAY NETWORKS

In Chapters 2 and 3, we investigated the achievable rates for the four-node diamond

relay channel with rate-limited out-of-band conferencing links between the two relays,

and it was shown that the DF scheme could achieve the cut-set bound even with

finite conferencing link rates in some special channel conditions. In this chapter,

we extend these results to the large Gaussian relay networks with SNR-limited AF

conferencing links among the relays, and focus on the asymptotic achievable rates of

the DF and AF relaying schemes. It is shown that the relay conferencing can improve

these achievable rates, and some asymptotic capacity results can be established under

certain conditions.

The rest of this chapter is organized as follows. In Section A, we introduce the

assumptions and channel models. In Section B, we discuss the DF and AF achievable

rates. In Section C, we present some simulation and numerical results. Finally, the

paper is concluded in Section D.

A. Assumptions and System Model

In this chapter, we consider a large relay network with out-of-band conferencing links

among the relays, as shown in Fig. 13, which consists of one source-destination

pair and N relays. We assume that there is no direct link between the source and

destination.

The time scheduling of the transmissions at the source, relays, and conferencing

links is shown in Fig. 14. The relay nodes work in a half-duplex mode: The source

transmits and the relays listen in the first time slot; the relays simultaneously transmit

and the destination listens in the second time slot. For simplicity, we allocate equal
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Relays


Source
 Destination


Fig. 13.: The large relay networks with conferencing links.

time durations to the two hops [15, 17]. Note that the conferencing links use out-

of-band connections, which are orthogonal to other conferencing links, the source-

to-relay links, and the relay-to-destination links. Based on these assumptions, the

source-to-relay and the conferencing transmissions are scheduled during the same

time slot.��1
�1
��1
�2


One-block delay


Source


Conferencing


Relay
 �2
��2
�3
 �3
��3
�4


Fig. 14.: Transmission scheduling scheme for the large relay networks with conferencing
links.

Due to the relay conferencing, each relay needs to wait the conferencing signals

from the other relays before forwarding information to the destination. Thus, there is

a one-block delay between the transmissions at the source and the relays, as shown in

Fig. 14, which requires the relays to buffer one block of source signals for each relaying

operation. Assume that during each data block, the communication rate is R, and we

need to transmit B blocks in total. Thus, the average information rate is R B
B+1

→ R,

as B goes to infinity, such that the effect of the one-block delay is negligible. In this
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chapter, we focus on the one-block transmission to study the associated relaying and

conferencing schemes without specifying the delay in the proof of the achievability.

We assume that each relay can conference with a subset of other relays via orthog-

onal wired links. In this chapter, we adopt a deterministic “p-portion conferencing”

scheme: each relay can conference with other M relays, and

lim
N→+∞

M + 1

N
= p. (4.1)

Without loss of generality, we assume that the i-th relay forwards its received signal to

the relays with indices i+ k, i = 1, 2, · · · , N, and k = 1, · · · ,M , via the conferencing

links. With a little abuse of notation, we use i + k to denote the (i + k)N -th relay,

where (·)N means the modula over N (and also i−k is defined similarly). Particularly,

when N = M + 1, we call the scheme as “complete conferencing”. Note that there

exist many other conferencing schemes, i.e., random conferencing with any other M

relays; for simplicity, the p-portion deterministic conferencing scheme is adopted here

to provide a tractable achievable rate. In practical systems, it is costly to deploy MN

conference links, which is exactly the reason why we propose a p-portion conferencing

protocol to limit the percentage of conferencing connections. We will study the impact

of p on the tradeoff between the system performance and the system installation cost.

We further define the following channel input-output relationship. In the first

hop, the received signal yi at the i-th relay, i = 1, 2, · · · , N , is given as

yi =
√

Pshix+ ni, (4.2)

where x is the signal transmitted by the source, Ps is the transmit power at the source

node, hi is the complex channel gain of the i-th source-to-relay link, which is assumed

known to the source, and ni’s are the i.i.d. CSCG noise with distribution CN (0, N0).

Note that there are no particular assumptions on the distributions of hi’s, which are
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just assumed to be independent, of zero-mean, and with uniformly and positively

bounded second-order and fourth-order statistics, i.e., 0 < b1 ≤ E (|hi|2) ≤ b2 < +∞

and 0 < c1 ≤ E (|hi|4) ≤ c2 < +∞ for arbitrary i.

Regardless of whether the relays work with the DF or AF relaying scheme, for

the conferencing links, we assume that only AF is used as the conferencing scheme to

forward the received signal of the i-th relay to the (i + k)-th relay, and the received

signal at the (i+ k)-th relay via the conferencing link is given as

yi,i+k =

√
Pc

PsE (|hi|2) +N0

fi,i+kyi + ni,i+k, (4.3)

where fi,i+k is the complex link gain, ni,i+k is the CSCG noise with distribution

CN (0, N0), and Pc is the transmit power at the conferencing links. Here, the constant

coefficient
√

Pc

PsE(|hi|2)+N0
is used to satisfy the average transmit power constraint

of the conferencing link. Due to the out-of-band and possible wired conferencing

link assumptions, we assume that fi,i+k is a fixed positive constant and uniformly

and positively bounded (similarly defined as that for E (|hi|2)). Since the inputs of

conferencing links may not be Gaussian, we adopt the transmit SNR Pc

N0
as the quality

metric of the conferencing links for convenience, instead of the rate constraints as

in [23].

In the second hop, xi with unit average power is transmitted from the i-th relay

to the destination, and the received signal y at the destination is given as

y =
N∑
i=1

√
Prgixi + n, (4.4)

where gi is the complex channel gain of the i-th relay-to-destination link, Pr is the

transmit power at each relay, and n is the CSCG noise with distribution CN (0, N0).

We also assume that gi’s are independent, of zero mean, and with uniformly and



83

positively bounded E (|gi|2) and E (|gi|4).

In this chapter, we assume that for the i-th relay, it knows hi, hj, fj,i, and gi,

where j ∈ Ai ⊂ {1, · · · , N} and Ai is the set of the indices corresponding to the

relays connected to the i-th relay via the conferencing links. In practice, to obtain

hj’s, one solution is to let the source send out one symbol pilot, and each relay then

forward this pilot to the other relays via the conferencing links. After receiving such

forwarded pilot signals, each relay can estimate hj’s, since the conferencing link gains

fj,i’s are assumed to be constant and known. To obtain gi, we assume that the relay-

to-destination links are reciprocal such that only one pilot signal from the destination

is needed.

B. Capacity Upper Bound and Achievable Rates

In this section, we examine the capacity upper bound and the achievable rates of the

considered networks with the DF and AF relaying schemes, respectively. Moreover,

we prove some capacity-achieving results under special conditions.

1. Preliminary Results and Capacity Upper Bound

In this subsection, we first present some preliminary results and the capacity upper

bound.

Lemma B.1 Let {Xi ≥ 0, i = 1, · · · , N} be independent random variables, whose

means and variances are uniformly and positively bounded, respectively. Then, we
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have

log

(
1 +

N∑
i=1

Xi

)
− log

(
1 +

N∑
i=1

E (Xi)

)
w.p.1−−−→ 0, (4.5)

log

(
N∑
i=1

Xi

)
− log

(
N∑
i=1

E (Xi)

)
w.p.1−−−→ 0. (4.6)

Proof: By the Corollary 2.3 in [52], we have (4.5); and we could obtain (4.6) similarly.

�

Using this lemma and the classic BC cut-set bound [2], we obtain the following

capacity upper bound.

Theorem B.1 (BC cut-set bound) The capacity upper bound for the two-hop large

Gaussian relay network is given as

Cupper ≤
1

2
log

(
1 +

Ps

N0

N∑
i=1

|hi|2
)

(4.7)

w.p.1−−−→ 1

2
log

(
1 +

Ps

N0

N∑
i=1

E
(
|hi|2

))
(4.8)

∼ O (log(N)) (4.9)

Proof: (4.7) is by the result in [15], and (4.8) is by (4.5). Let µ = 1
N

∑N
i=1 E (|hi|2),

which is positively bounded, and we obtain (4.9). �

2. The DF Achievable Rate

In [16], the authors showed that the DF rate scales on the order of O (log(log(N)))

without conferencing among the relays, where the source chooses an optimal a subset

of relays to decode the source message and let the rest keep silent in the second

hop transmission. In this subsection, we adopt a different scheme to require all the

relays to decode the source message and transmit in the second hop. Obviously,
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compared to the previous scheme [16], our scheme is not optimal in term of relay

subset selection, while it is enough to show the improvement of the achievable rate

scaling behavior introduced by relay conferencing. Note that both the schemes in [16]

and our proposed DF scheme require full channel CSI at the source node. Our main

result for the DF relaying scheme is given as the following theorem.

Theorem B.2 Using the p-portion conferencing strategy, the DF rate scales on the

order of O (log(N)).

Proof: Based on the principle of maximum ratio combining (MRC), the received SNR

at the relay is the sum of the SNRs in (4.2) and (4.3). Thus, for the first hop, the

maximum rate supported at the i-th relay is given as

Ri =
1

2
log

(
1 +

|hi|2Ps

N0

+
Ps

N0

M∑
k=1

Pc

PsE(|hi−k|2)+N0
|fi−k,i|2|hi−k|2

Pc

PsE(|hi−k|2)+N0
|fi−k,i|2 + 1

)
(4.10)

w.p.1−−−→ 1

2
log

(
1 +

Ps

N0

(
E
(
|hi|2

)
+

M∑
k=1

Pc|fi−k,i|2E (|hi−k|2)
Pc|fi−k,i|2 + PsE (|hi−k|2) +N0

))
(4.11)

=
1

2
log

(
1 + (M + 1)

Ps

N0

µDF

)
, (4.12)

where (4.11) is by the Lemma B.1, and

µDF =
1

M + 1

[
E
(
|hi|2

)
+

M∑
k=1

Pc|fi−k,i|2E (|hi−k|2)
Pc|fi−k,i|2 + PsE (|hi−k|2) +N0

]
,

which is positively bounded. Thus, we have Ri ∼ O (log(N)).

In the second hop, we assume that all relays transmit simultaneously, and the

transmit signal at the i-th relay is xi =
√

1
E(|gi|2)g

∗
i x. Thus, the received signal at the

destination is given as

y =
N∑
i=1

√
Pr

E (|gi|2)
|gi|2︸ ︷︷ ︸

Q0

x+ n, (4.13)
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and the maximum rate supported in the second hop is given as

RMAC =
1

2
log

(
1 +

Q2
0

N0

)
(4.14)

∼ log

(
Q0√
N0

)
(4.15)

w.p.1−−−→ log

(
E (Q0)√

N0

)
(4.16)

=
1

2
log

(
Pr

N0

N2µ2

)
, (4.17)

where (4.15) is valid as N → ∞, (4.16) is by (4.6), E (Q0) =
√
Pr

∑N
i=1

E(|gi|2)√
E(|gi|2)

=
√
Pr

∑N
i=1

√
E (|gi|2), and µ = 1

N

∑N
i=1

√
E (|gi|2).

Therefore, the DF achievable rate is given as

RDF = min
{
min

i
{Ri}, RMAC

}
. (4.18)

Since Ri and RMAC scale as O (log (N)) and O (log (N2)), respectively, RDF scales

with the order of O (log (N)). �

Remark B.1 For the complete conferencing scheme, i.e., M = N−1, the DF scheme

is not capacity-achieving, since the SNR penalty term
Pc|fi−k,i|2

Pc|fi−k,i|2+PsE(|hi−k|2)+N0
is uni-

formly and positively bounded and strictly less than 1. For the case 0 < p < 1,

obviously, the DF scheme is also not capacity-achieving, and suffers another (1− p)-

portion power gain loss.

3. AF Achievable Rate

In this subsection, we discuss the AF relaying scheme. Since we assume no global CSIs

at the relays, the network-wide optimal combining at the relays as proposed in [23]

cannot be deployed. Thus, with only local CSIs, MRC across conferencing signals is

another good choice, which maximizes the received SNR at the relays. Unfortunately,
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MRC makes the rate expression too complicated to obtain any clean results. Instead,

here we combine the received signals yi and yi−k,i’s at the i-th relay as

ti = h∗
i yi +

M∑
k=1

√
PsE (|hi−k|2) +N0

Pc

1

fi−k,i

h∗
i−kyi−k,i. (4.19)

Then, the transmit signal at the i-th relay is given as

xi = ai
√
Prg

∗
i ti (4.20)

= ai
√
Prg

∗
i

(
M∑
k=0

√
Ps|hi−k|2x+

M∑
k=0

h∗
i−kni−k

+
M∑
k=1

√
PsE (|hi−k|2) +N0

Pc

h∗
i−kni−k,i

fi−k,i

 , (4.21)

where ai is the power control factor to satisfy E(xi) ≤ Pr, and it is chosen as

a2i = E−1
(
|gi|2

)PsE

(
M∑
k=0

|hi−k|2
)2

+
M∑
k=0

E
(
|hi−k|2

)(
1 +

PsE (|hi−k|2) +N0

Pc|fi−k,i|2

)]−1

. (4.22)

Remark B.2 This combining scheme is not valid for the case without relay confer-

encing, i.e., the conferencing link SNR Pc

N0
= 0. Moreover, if |fi,i+k| or Pc

N0
is close

to zero, it will boost the conferencing link noise ni,i+k, which may make the perfor-

mance even worse than the case without conferencing. However, our analysis will

show that for uniformly and positively bounded |fi,i+k|’s and arbitrary Pc

N0
, the AF

scheme performs well as N → ∞.
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Based on (4.4) and (4.21), the received signal at the destination is given as

y =
N∑
i=1

gixi + n (4.23)

=
√
PrPs

N∑
i=1

ai|gi|2
(

M∑
k=0

|hi−k|2
)

︸ ︷︷ ︸
Q1

x+
√

Pr

N∑
i=1

(
M∑
k=0

ai+k|gi+k|2
)
h∗
ini

+
√
Pr

N∑
i=1

M∑
k=1

√
PsE (|hi−k|2) +N0

Pc

1

fi−k,i

ai|gi|2h∗
i−kni−k,i + n. (4.24)

Then, the AF achievable rate is given as

RAF =
1

2
log

(
1 +

PsPrQ
2
1

(PrQ2 + PrQ3 + 1)N0

)
, (4.25)

where

Q2 =
N∑
i=1

(
M∑
k=0

ai+k|gi+k|2
)2

|hi|2, (4.26)

Q3 =
N∑
i=1

M∑
k=1

|ai|2
PsE (|hi−k|2) +N0

Pc|fi−k,i|2
|gi|4|hi−k|2. (4.27)

Now we have

log

(
1 +

PsPrQ
2
1

(PrQ2 + PrQ3 + 1)N0

)
(4.28)

∼ log

(
PsPrQ

2
1

(PrQ2 + PrQ3 + 1)N0

)
(4.29)

= 2 log

(√
PsPr

N0

Q1

)
− log (PrQ2 + PrQ3 + 1) (4.30)

w.p.1−−−→ 2 log

(√
PsPr

N0

E (Q1)

)
− log (PrE (Q2) + PrE (Q3) + 1) , (4.31)

∼ log

(
1 +

PsPrE2 (Q1)

(PrE (Q2) + PrE (Q3) + 1)N0

)
, (4.32)

where (4.31) is by the Lemma B.1. Notice that (4.29) and (4.32) are valid since we

only add or ignore a constant term, which can be neglected in the case of N → +∞.
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As N → +∞, we have

E (Q1) =
N∑
i=1

aiE
(
|gi|2

)( M∑
k=0

E
(
|hi−k|2

))
= N(M + 1)µ1, (4.33)

E (Q2) =
N∑
i=1

E

( M∑
k=0

ai+k|gi+k|2
)2
E

(
|hi|2

)
= N(M + 1)2µ2, (4.34)

E (Q3) =
N∑
i=1

M∑
k=1

|ai|2
PsE (|hi−k|2) +N0

Pc|fi−k,i|2
E
(
|gi|4

)
E
(
|hi−k|2

)
= NMµ3, (4.35)

where

µ1 =
1

N

N∑
i=1

aiE
(
|gi|2

)( 1

M + 1

M∑
k=0

E
(
|hi−k|2

))
, (4.36)

µ2 =
1

N

N∑
i=1

E

( 1

M + 1

M∑
k=0

ai+k|gi+k|2
)2
E

(
|hi|2

)
, (4.37)

µ3 =
1

N

N∑
i=1

1

M

M∑
k=1

|ai|2
PsE (|hi−k|2) +N0

Pc|fi−k,i|2
E
(
|gi|4

)
E
(
|hi−k|2

)
. (4.38)

Since we assume that E (|hi|2), E (|gi|2), and E (|gi|4) are uniformly and positively

bounded, |ai|, µ1, µ2, and µ3 are also bounded and positive. For the p-portion con-

ferencing scheme, since E (Q3) scales on a smaller order than E (Q2) as N goes to

infinity, we obtain the AF rate as

RAF
w.p.1−−−→ 1

2
log

(
1 +N

µ2
1

µ2

Ps

N0

)
. (4.39)

Remark B.3 The term Q3 is the contribution of the conferencing link noises. Since

E(Q3)
E(Q2)

→ 0, we conclude that for the p-portion conferencing scheme, the conferencing

link noises are asymptotically negligible as N → +∞. This suggests that for large

relay networks with AF, we do not need high quality conferencing links, i.e., even with

small Pc

N0
, and the performance of the AF scheme is reasonably good for large N .



90

It is difficult to verify whether the AF scheme is capacity-achieving or not for

the case with 0 < p < 1 and generally distributed hi’s and gi’s. In the following, we

prove two special capacity-achieving cases, which may be applied to many widely-used

scenarios.

Theorem B.3 If hi’s and gi’s are i.i.d., respectively, the AF scheme asymptotically

achieves the capacity upper bound (4.8) as N goes to infinity for arbitrary 0 < p < 1

and Pc

N0
> 0.

Proof: Since hi’s and gi’s are i.i.d., E (|hi|2), E (|gi|2), and E (|gi|4) are identical over

different i’s, respectively. Let us examine the term
µ2
1

µ2
, and we have

µ2
1

µ2

=
1

N

N∑
i=1

E
(
|hi|2

) ∑N
j=1 E (|hj|2)

(∑M
k=0 ai+kE (|gi+k|2)

)(∑M
t=0 aj+tE (|gj+t|2)

)
∑N

j=1 E (|hj|2)E
((∑M

s=0 aj+s|gj+s|2
)2)

(4.40)

=
E (|hi|2)

N

N∑
i=1

NE2 (|gi|2)
[(∑M

k=0 ai+k

)(∑M
t=0 at

)]
E2 (|gi|2)

∑N
j=1

∑
s1 ̸=s2

aj+s1aj+s2 + E (|gi|4)M
∑N

j=1 a
2
j︸ ︷︷ ︸

Ci

. (4.41)

From (4.22), we have a2i ≈ 1
E(|hi|2)E(|gi|2)PsM2 for large M , and we have

Ci ≈
E2 (|gi|2)N(M + 1)2

E2 (|gi|2)NM(M + 1) + E (|gi|4)MN
→ 1. (4.42)

Hence, we have
µ2
1

µ2
→ E (|hi|2). Therefore, the theorem is proved. �

Theorem B.4 For independent but not necessarily identically distributed hi’s or gi’s,

the full conferencing scheme, i.e., N = M + 1, asymptotically achieves the capacity

upper bound as N goes to infinity for arbitrary Pc

N0
> 0.
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Proof: For the complete conferencing scheme, we obtain

Q1 =

(
N∑
i=1

ai|gi|2
)

N∑
k=1

|hk|2, (4.43)

Q2 =

(
N∑
i=1

ai|gi|2
)2 N∑

k=1

|hk|2. (4.44)

By a similar argument as in the previous theorem, we can show PrQ3+1
PrQ2

w.p.1−−−→ 0 as N

goes to infinity such that we obtain

RAF =
1

2
log

1 +
Ps

∑N
k=1 |hk|2(

1 + PrQ3+1
PrQ2

)
N0

 (4.45)

w.p.1−−−→ 1

2
log

(
1 +

Ps

N0

N∑
k=1

|hk|2
)
. (4.46)

Therefore, the capacity upper bound is asymptotically achieved. �

C. Numerical Results

In this section, we present some simulation and numerical results to compare the

performance among the proposed coding schemes. For simplicity, we assume that

hi’s and gi’s are i.i.d. complex Gaussian random variable of CN (0, 1), |fi,i+k| = 1,

Ps = 1, Pr = 1, and N0 = 1. The rates in all the simulations, are averaged over 1000

fading realizations.

In Fig. 15, we show the capacity upper bound and the achievable rates for

different p values, as the number of relays increases. For the AF relaying scheme, the

gap between the upper bound and the achievable rate is very small for p = 0.2 and

large N values. For the DF relaying scheme, when N is large, we observe that the

DF rate and the capacity upper bound have the same scaling behavior.

In Fig. 16, we plot the achievable rates as functions of p. For the AF relaying
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Fig. 15.: Achievable rates vs. the number of relays, Ps = 1, Pr = 1, Pc = 1, and |fi,k| = 1.

scheme, the p value does not need to be large to achieve most of the gains, i.e., around

p = 0.3; on the other hand, conferencing may not strictly improve the AF rate: When

p is close to zero, the achievable rate is lower than the case without relay conferencing,

which is due to the sub-optimality of the combining scheme at the relays. For the

DF relaying scheme, relay conferencing always helps, and there is a significant rate

improvement as p increases.

In Fig. 17, we plot the achievable rates as functions of the conferencing link

SNR. It is observed that with medium-quality conferencing links (the SNRs of the

conferencing links are around 5 dB), we achieve most of the gains introduced by relay

conferencing for both the AF and DF relaying schemes.
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Fig. 16.: Achievable rates vs. the conferencing ratio, Ps = 1, Pr = 1, Pc = 1, |fi,k| = 1,
and N = 100.



94

-15
 -10
 -5
 0
 5
 10
 15
 20

0


0.5


1


1.5


2


2.5


3


3.5


Pc/N0 (dB)


R
at

e 
(b

its
/s

/H
z)



Upper bound


AF scheme


DF scheme


Fig. 17.: Achievable rates vs. the conferencing link SNR, Ps = 1, Pr = 1, |fi,k| = 1,
N = 100, and p = 0.1.

D. Summary

In this chapter, we investigated the achievable rate scaling laws of the DF and AF

relaying schemes in a large Gaussian relay networks with conferencing links. We

showed that for the DF relaying scheme, the rate scales as O (log(N)), compared to

O (log(log(N))) for the case without conferencing; for the AF relaying scheme, we

proved that if the channel fading coefficients hi’s and gi’s are i.i.d., respectively, or

N = M+1, it asymptotically achieves the capacity upper bound as N goes to infinity.
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CHAPTER V

TWO-USER INTERFERENCE RELAY NETWORKS

In this chapter, we focus on the multi-user wireless systems. In the literature, the

one-hop IC has been extensively studied, where various upper bounds and achievable

rates have been established [29–31]. Specifically, the best known achievable rate

result was obtained by Han and Kobayashi [29], where each source splits its message

into two parts and each destination decodes its own desired message and part of

the interference. In general, the capacity of IC remains unknown, and the capacity

results are established only for some special cases, e.g., the strong [30] and weak [31]

interference cases.

An important extension of the one-hop IC is the so-called two-hop interference

networks [32–36], where two sources send messages to their intended destinations via

two separate relays. Essentially, such a network is a cascade of two ICs, which may

arise in many practical scenarios, such as two neighboring base-stations communi-

cating with two mobile users via two relays in an LTE-A cellular system. For such

a two-hop interference network, the authors in [32–34] derived the achievable rates

by using the DF and AF relaying schemes under the weak or strong interference as-

sumptions, while no general capacity results were established. In [35], the authors

investigated this network by using a deterministic model and bounded the gap be-

tween the achievable rate and the upper bound within a constant number of bits

under arbitrary channel conditions. More recently, the authors in [36] proved that

under the full-duplex relaying mode, i.e., the relay can transmit and receive at the

same time and frequency, the maximum degree-of-freedom (DoF) of 2 can be achieved

by a specifically designed DF scheme, while only 3
2
DoF can be achieved by the AF

scheme with constant channel coefficients.
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Among these relaying schemes, the AF scheme is more attractive for practical

implementation in cellular or other systems. When both the source and relays are

equipped with multiple antennas, the optimal AF relaying matrix design problem

was considered in [37–39] for point-to-point communication under different design

principles: maximum achievable rate, minimum mean square error (MMSE), and

optimal quality-of-service (QoS), respectively. In [40–43], the authors considered the

optimal design for the multipoint-to-multipoint networks assisted with AF relays,

where both the non-robust and robust design methods were considered in [43]. Note

that all these aforementioned works are based on the single-user decoding scheme,

which treats other users’ signals as noise and may lead to certain suboptimality under

general channel setups. In addition, the above works did not explore any information

exchanges among the relays.

In this chapter, we consider a two-hop interference network, which contains two

sources, two destinations, and two relays with out-of-band conferencing links. We

assume that each source wants to transmit a message to its desired destination. As

shown in this chapter, such a system with AF relaying and relay conferencing is equiv-

alent to a two-user IC. Instead of characterizing the rate region via the complicated

general Han-Kobayashi scheme [29], we turn to two more practical decoding schemes:

1. Single-user decoding scheme: Each destination tries to decode its own message

and treat the other source’s message as noise;

2. Joint decoding scheme: Each destination decodes both of the source messages.

Compared with the previous works [40–42], in this chapter, we further consider the

conferencing between the two relays, and concentrate on how to characterize the rate

region by optimizing over the source powers and the relay combining vector.

The rest of the chapter is organized as follows. Section A introduces the assump-
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tions and channel models. In Sections B and C, we study the rate regions for both

the single-user decoding and joint decoding schemes, respectively. In Section D, we

compare the performances of the two schemes in the high SNR regime. Section E

presents some numerical results. Finally, the paper is summarized in Section F.

A. System Model

In this chapter, we consider a two-hop interference network, as shown in Fig. 18, which

contains two sources, two destinations, and two relays with out-of-band SNR-limited

conferencing links. We assume that there are no direct links between any source-

destination pairs. Denote the received SNR of the conferencing link from relay 1 to

relay 2 as γ12, with γ21 defined similarly. Furthermore, these two conferencing links

are assumed to be orthogonal to each other and outside the frequency band used by

the source-to-relay and relay-to-destination links, or even use wired connections.

Source 2 Relay 2 Destination 2

11h

22h

12h

21h

11g

22g

21g

12g

21 

12 

Source 1 Relay 1 Destination 1

Fig. 18.: Two-hop interference networks with out-of-band SNR-limited conferencing links.

It is assumed that the relay nodes work in a half-duplex mode: The sources

simultaneously transmit and the two relays listen in the first time slot; the relays si-

multaneously transmit and the destinations listen in the second time slot. Moreover,

relay conferencing is scheduled at the same time slot as the source-to-relay transmis-

sions. It is assumed that the AF scheme is adopted as the relaying and conferencing
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schemes, such that the lengthes of the above transmission blocks are the same. With

the above assumptions, the time scheduling of the transmissions at the sources, re-

lays, and conferencing links is described as follows, also shown in Fig. 19. The i-th

source, i = 1, 2, sends independent messages wi(1) in the first time slot, and wi(t),

t = 2, 3, · · · , in the (2t− 2)-th time slot sequentially; during the (2t− 2)-th time slot,

t ≥ 2, the i-th relay forwards the received signal about the wi(t−1)-th message to its

counterpart relay via the conferencing link; after receiving the signals from the source

and the other relay, each relay sends the combined signals about the w1(t)-th and the

w2(t)-th source messages, t = 1, 2, · · · , to the destination in the (2t+1)-th time slot.

Due to relay conferencing, there is a one-block delay between the transmissions at the

sources and the relays, which enables the relays to buffer one block of the source sig-

nal for each relaying operation. Assume that during each block, the communication

rate is R, and we need to transmit B blocks in total. Thus, the average information

rate is R B
B+1

→ R as B goes to infinity, such that the effect of the one-block delay is

negligible. As such, here we only focus on one-block transmission and the associated

relay operations without specifying the delay in the analysis.

One-block delay

Sources

1&2

Conferencing

Relays 1&2

Time Slot # 1 2 4 63 5 7

1
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1
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w
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Fig. 19.: Transmission scheduling scheme for the two-hop interference network with
conferencing links.

The channel input-output relationships of the discussed network are given as

follows. To be concise, when we describe the signal relationship at the i-th relay
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(i = 1, 2), we use (3− i) to index the other relay. The received signal at the i-th relay

is given as

yi = h1ix1 + h2ix2 + ni, (5.1)

where xj, j = 1, 2, is the circularly symmetric complex Gaussian (CSCG) signal from

the j-th source with power pj, hji is the complex channel gain from the j-th source to

the i-th relay, ni is the independent and identically distributed (i.i.d.) CSCG noise

with zero mean and unit variance, i.e., ni ∼ CN (0, 1). For the sources, we consider

two different power constraints on the channel inputs: With the individual source

power constraints, we define the source power region as

P = {(p1, p2) : 0 ≤ p1 ≤ PS1, 0 ≤ p2 ≤ PS2} ,

where PS1 and PS2 are the maximum power budgets at source 1 and source 2, respec-

tively; with the sum power constraint, we have

P = {(p1, p2) : p1 + p2 ≤ PS, p1 ≥ 0, p2 ≥ 0} ,

where PS is the maximum sum power budget over both sources.

For the conferencing links, the received signal at the (3− i)-th relay, i = 1, 2, is

given as

ri,3−i = fi,3−i · (h1ix1 + h2ix2 + ni) + ni,3−i, (5.2)

where fi,3−i =
√
γi,3−ie

jθi,3−iE
− 1

2
i is a coefficient regulating the input power to make

the conferencing link received SNR not bigger than γi,3−i, Ei is a constant to be

defined later, θi,3−i is the phase of the link channel coefficient, and ni,3−i is the i.i.d.

CSCG noise with distribution CN (0, 1). Without loss of generality, we assume wired

connections for the conferencing links, such that θi,3−i is fixed. In fact, our following
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analysis is also valid for the time-varying conferencing link case as long as θi,3−i can

be learned at the i-th relay. For the parameter Ei, the best choice is to set it equal

to the power of the received signal yi, i.e., Ei = |h1i|2p1 + |h2i|2p2 + 1. However, this

will make the source power allocation problem intractable, since fi,3−i is a function of

the source power values. To simplify the analysis, we adopt a normalizing method to

make the worst-case scenario still satisfy the conferencing link SNR constraints: For

the case with individual source power constraints, we let Ei = |h1i|2PS1+|h2i|2PS2+1;

for the case with a sum source power constraint, we let Ei = (|h1i|2 + |h2i|2)PS + 1.

After receiving the signals from the sources and the other relay, each relay first

linearly combines the two received signals as

ti = ci,iyi + c3−i,ir3−i,i, (5.3)

where the combining parameter ci,i and c3−i,i satisfy the following power constraints

at the relays: With the individual relay power constraints under power budgets PR1

and PR2 respectively at the two relays, we have |t1|2 ≤ PR1 and |t2|2 ≤ PR2, i.e.,

C =
{
c : cHWR1c ≤ PR1, and cHWR2c ≤ PR2

}
, (5.4)

where c = [c11, c21, c12, c22]
T and WRi = p1wRi1w

H
Ri1+p2wRi2w

H
Ri2+WRin, i = 1, 2. In

particular, wRi1, wRi2, and WRin are contributed by source 1, source 2, and the noises

at the relays, respectively, i.e., wR11 = [h11, h12f21, 0, 0]
H , wR12 = [h21, h22f21, 0, 0]

H ,

WR1n = Diag[1, |f21|2 + 1, 0, 0], wR21 = [0, 0, h11f12, h12]
H , wR22 = [0, 0, h21f12, h22]

H ,

and WR2n = Diag[0, 0, |f12|2 + 1, 1]; with the sum relay power constraint under the

total power budget PR over the two relays, we have |t1|2 + |t2|2 ≤ PR, i.e.,

C =
{
c : cHWRc ≤ PR

}
, (5.5)

where WR = WR1 +WR2.
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At the i-th destination, the received signal is given as

zi = g1it1 + g2it2 + wi, (5.6)

where gji, j = 1, 2, is the complex channel gain from the j-th relay to the i-th

destination, wi is the i.i.d. CSCG noise with distribution CN (0, 1). By (5.1), (5.2),

(5.3), and (5.6), the overall input-output relationship of this network is given as

zi = wH
1,icx1 +wH

2,icx2 + (g1,ic11 + g2,ifi,3−ic12)n1

+ (g1,ifi,3−ic21 + g2,ic22)n2 + g1,ic21n21 + g2,ic12n12 + wi, i = 1, 2, (5.7)

where with

w1,i = [h11g1,i, h12g1,if21, h11g2,if12, h12g2,i]
H ,

w2,i = [h21g1,i, h22g1,if21, h21g2,if12, h22g2,i]
H .

The power of the noise terms in (5.7) is cHWinc+ 1, where Win is given as

Win =



|g1i|2 0 g∗1ig2if12 0

0 |g1i|2(f 2
21 + 1) 0 g∗1ig2if21

g1ig
∗
2if12 0 |g2i|2(f 2

12 + 1) 0

0 g1ig
∗
2if21 0 |g2i|2


. (5.8)

From (5.7), we know that the AF two-hop interference networks with relay con-

ferencing is equivalent to an IC, but with possibly correlated noises.

Next, we define the rate region C(P , C) of the considered two-hop interference

network, subject to the source and relay power constraints, respectively, as

C(P, C) ,
∪

(p1,p2)∈P, c∈C

{(R1, R2)} , (5.9)

where (R1, R2) is the rate pair achieved with a certain coding and power allocation
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scheme.

In this chapter, we mainly focus on two special decoding schemes: single-user

decoding, where each destination only decodes its desired message; and joint decod-

ing, where each destination decodes both of the source messages. In the following

two sections, we will discuss how to characterize the AF achievable rate regions for

the single-user and joint decoding schemes, respectively. Note that due to the fun-

damental non-convexity of the joint source power and relay combining optimization

problem, it is not guaranteed that all the Pareto boundary points [54] of the rate

regions can be found. However, the proposed algorithms are still efficient and mean-

ingful to provide some reasonable good achievable rate regions by fully exploring the

hidden convexity of the decomposed subproblems.

B. Single-User Decoding

In this section, we assume that each destination tries to decode its own desired mes-

sage, and treats the signal intended to the other destination as noise. With these

assumptions, the achievable rate region is given as

C(P, C) ,
∪

(p1,p2)∈P, c∈C

(R1, R2)

∣∣∣∣∣∣∣
R1 ≤ 1

2
log
(
1 + p1cHW11c

p2cHW12c+cHW1nc+1

)
R2 ≤ 1

2
log
(
1 + p2cHW22c

p1cHW21c+cHW2nc+1

)
 ,

(5.10)

where Wij = wijw
H
ij , i, j ∈ {1, 2}.

Typically, the rate region can be characterized by the weighted-sum maximiza-

tion method [54]. However, in our case, the weighted sum will involve coupled non-

convex functions, which is hard to solve. Instead, here we apply the rate profile

method adopted in [54], and define the rate-profile vector as β = [β, 1 − β]T , where

0 ≤ β ≤ 1. Such a method could decouple the nonconvex weighted-sum objective
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function and transfer the nonconvex elements into individual constraints. Specifically,

to characterize the whole rate region, we compute a sum rate maximization problem

for all possible rate-profile vectors, i.e.,

max
Rsum,p1,p2,c

Rsum (5.11)

s. t.
1

2
log

(
1 +

p1c
HW11c

p2cHW12c+ cHW1nc+ 1

)
≥ βRsum,

1

2
log

(
1 +

p2c
HW22c

p1cHW21c+ cHW2nc+ 1

)
≥ (1− β)Rsum,

(p1, p2) ∈ P , c ∈ C.

Although this problem is still not convex, we observe that if we fix either (p1, p2)

or c, the remaining problem is efficiently solvable. Hence, we turn to a two-stage

iterative method, and approximately solve Problem (5.11) via iterations between the

following two sub-problems:

1. Fix (p1, p2), maximize Rsum over c ∈ C;

2. Fix c, maximize Rsum over (p1, p2) ∈ P.

Remark B.1 Note that the above algorithm cannot guarantee to obtain all the bound-

ary points of the rate region defined in (5.10), since it is difficult to find the global

optimal solution of the non-convex Problem (5.11). However, it provides us an ef-

ficient way to obtain an meaningful achievable rate region. In addition, we here fix

the optimization order to first optimize over c for a given (p1, p2). Generally, we can

start the optimization problem in an arbitrary order between these two sub-problems.

The reason why we take such an order is that vector c is of a higher dimension than

the source power pair (p1, p2), such that it is relatively hard to find a feasible solution

for c to initiate the algorithm.
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1. Optimization over c at the Relays

In this subsection, we consider the relay optimization problem with a fixed source

power pair. Then, Problem (5.11) can be rewritten as

max
Rsum,c

Rsum (5.12)

s. t. cHF1c ≥ 1, cHF2c ≥ 1, c ∈ C,

where F1 =
1
λ1
p1W11−p2W12−W1n, F2 =

1
λ2
p2W22−p1W21−W2n, λ1 = 22βRsum−1,

and λ2 = 22(1−β)Rsum − 1. Furthermore, Problem (5.12) is equivalent to the following

problem

max
Rsum,C

Rsum (5.13)

s. t. Tr (F1C) ≥ 1, Tr (F2C) ≥ 1, C ∈ C0,

Rank(C) = 1, C ≽ 0,

where C = ccH , and in particular, for the sum relay power constraint case, we have

C0 = {C : Tr (WRC) ≤ PR} ; (5.14)

for the individual relay power constraint case, we have

C0 = {C : Tr (WR1C) ≤ PR1, Tr (WR2C) ≤ PR2} . (5.15)

In general, due to the rank-1 constraint, Problem (5.13) is not convex. Next, we

will show that this rate maximization problem can be exactly solved by a sequence

of power minimization problems (as defined next) without considering the rank-1

constraint, which is the so-called semidefinite relaxation (SDR) approach [53].

1. Sum Relay Power Constraint : We consider the following semidefinite program
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(SDP) power minimization problem for a given set of Rsum and β,

min
C

pR = Tr (WRC) (5.16)

s. t. Tr (F1C) ≥ 1, Tr (F2C) ≥ 1,

C ≽ 0.

2. Individual Relay Power Constraint : Similarly to the previous case, we consider

the following SDP power minimization problem.

min
C

pR1 = Tr (WR1C) (5.17)

s. t. Tr (F1C) ≥ 1, Tr (F2C) ≥ 1, Tr (WR2C) ≤ PR2, (5.18)

C ≽ 0. (5.19)

First, we claim that if the rank-1 optimal solution of Problem (5.16) or (5.17)-

(5.19) can be found, which will be probed later, the sum rate maximization problem

in (5.12) can be efficiently solved via the following bi-section search algorithm up to

an accuracy requirement ϵ:

Algorithm 1:

• Initialize rlow = 0 and rup = rmax;

• Repeat

1. Set 1
2
(rlow + rup) → r;

2. Solve Problem (5.16) with the given Rsum = r and obtain the optimal

point p∗R; similarly, solve Problem (5.17)-(5.19) with the given Rsum = r

and obtain the optimal point p∗R1.

3. Update r with the bi-section search: For the sum relay power constraint
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case, if p∗R ≤ PR, set rlow = r; otherwise, set rup = r. For the individual

relay power constraint case, if p∗R1 ≤ PR1, set rlow = r; otherwise, set

rup = r.

• Until rup − rlow < ϵ.

Here, the upper limit rmax of the searching range can be determined by the cut-set

upper bound shown in Section VI.

For the sum relay power constraint case, as shown in [54], if the rank of the

optimal solution of Problem (5.16) is larger than 1, an equivalently optimal rank-1

solution can be efficiently constructed via finding a matrix decomposition as in [55]

and solving a linear programming problem as in Appendix E of [54].

For the individual relay power constraint case, we have the following theorem to

guarantee that the rank-1 solution of the power minimization Problem (5.17)-(5.19)

can be efficiently constructed. 1 As shown in Remark G.1, the proposed algorithm

for the construction of rank-1 solution is much more efficient than that given in [56].

Theorem B.1 Assuming that an optimal solution C∗ with rank r > 1 is found

for Problem (5.17)-(5.19), a rank-1 solution C∗∗ can be constructed based on C∗

efficiently.

Proof: See Appendix 1. �

In conclusion, for both the sum and individual relay power constraint cases,

Problem (5.13) can be efficiently solved.

1Note that the existence conditions of rank-1 solutions for general quadratic SDP
relaxation problems are nicely summarized in [56]. Our result here can be considered
as a special case, with a differently tailored rank-1 construction routine.
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2. Optimizing (p1, p2) at the Sources

In this subsection, we fix c and optimize over p1 and p2. Problem (5.11) is rewritten

as

max
Rsum,p1,p2

Rsum (5.20)

s. t. p1c
HW11c− p2λ1c

HW12c ≥ λ1

(
cHW1nc+ 1

)
, (5.21)

p2c
HW22c− p1λ2c

HW21c ≥ λ2

(
cHW2nc+ 1

)
, (5.22)

(p1, p2) ∈ P. (5.23)

where λ1 and λ2 are defined the same as before. It is easy to check that this problem

is not convex, due to the non-convex constraints (5.21) and (5.22). However, by fixing

Rsum as a constant, consider the following feasibility problem:

find{p1,p2} 0 (5.24)

s. t. p1c
HW11c− p2λ1c

HW12c ≥ λ1

(
cHW1nc+ 1

)
, (5.25)

p2c
HW22c− p1λ2c

HW21c ≥ λ2

(
cHW2nc+ 1

)
, (5.26)

(p1, p2) ∈ P . (5.27)

Thus, Problem (5.20)-(5.23) can be efficiently solved via a bisection search method

over Rsum, since for a given Rsum at each searching step, Problem (5.24)-(5.27) is

convex over (p1, p2).

For Problem (5.24)-(5.27), we have the following result to efficiently check its

feasibility. First, consider the two hyperplanes defined as follows: p1c
HW11c− p2λ1c

HW12c = λ1

(
cHW1nc+ 1

)
−p1λ2c

HW21c+ p2c
HW22c = λ2

(
cHW2nc+ 1

) , p1, p2 ∈ R. (5.28)

For each of the hyperplanes, the set of (p1, p2) actually forms a straight line. It is
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observed that there may be one intersection point (p̃1, p̃2) of these two hyperplanes,

where p̃i is given as

p̃1 =

∣∣∣∣∣∣∣
λ1

(
cHW1nc+ 1

)
−λ1c

HW12c

λ2

(
cHW2nc+ 1

)
cHW22c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
cHW11c −λ1c

HW12c

−λ2c
HW21c cHW22c

∣∣∣∣∣∣∣
, p̃2 =

∣∣∣∣∣∣∣
cHW11c λ1

(
cHW1nc+ 1

)
−λ2c

HW21c λ2

(
cHW2nc+ 1

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cHW11c −λ1c
HW12c

−λ2c
HW21c cHW22c

∣∣∣∣∣∣∣
.

(5.29)

Then, we have the following result for the feasibility of Problem (5.24)-(5.27).

Proposition B.1 Problem (5.24)-(5.27) is feasible if and only if (p̃1, p̃2) defined in

(5.29) exists and satisfies the source power constraint in (5.27).

Proof: The “if” part is obvious, and thus its proof is omitted. For the “only if”

part, since cHWi,jc ≥ 0, i, j = 1, 2, it is easy to check that only when (p̃1, p̃2) exists

and p̃i ≥ 0, i = 1, 2, Problem (5.24)-(5.27) may be feasible, as shown in Fig. 20.

Then, we only need to prove that if Problem (5.24)-(5.27) is feasible, (p̃1, p̃2) always

satisfies the relay power constraint (5.27). To see this point, it is noticed that the

slopes of these two lines defined in (5.28) are both non-negative (also due to the fact

that cHWi,jc ≥ 0, and see Fig. 20), such that any feasible point (p̂1, p̂2) defined by

constraint (5.25)-(5.26) must satisfy p̃i ≤ p̂i, i = 1, 2. With the individual source

power constraint, if (p̂1, p̂2) is feasible, it is easy to check that (p̃1, p̃2) is also feasible;

with the sum source power constraint, if (p̂1, p̂2) is feasible, we conclude that (p̃1, p̃2)

is also feasible since p̃1 + p̃2 ≤ p̂1 + p̂2 ≤ PS. In other words, if Problem (5.24)-(5.27)

is feasible, (p̃1, p̃2) is always a feasible point of Problem (5.24)-(5.27). Therefore, this

proposition is proved. �

Based on this proposition, the feasibility of Problem (5.24)-(5.27) can be checked
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Fig. 20.: One example of the feasible set of Problem (5.24)-(5.27) with sum source power
constraint.

as follows. First, compute (p̃1, p̃2). We then check whether (p̃1, p̃2) satisfies constraint

(5.27) or not: If it is, Problem (5.24)-(5.27) is feasible; if not, Problem (5.24)-(5.27)

is not. As such, we obtain the following algorithm to solve Problem (5.20)-(5.23).

Algorithm 2:

• Initialize rlow = 0 and rup = rmax;

• Repeat

1. Set 1
2
(rlow + rup) → r;

2. Set Rsum = r, and obtain (p̃1, p̃2) by using (5.29);

3. Update r with the bi-section search: If (p̃1, p̃2) satisfies constraint (5.27),

set rlow = r; otherwise, set rup = r.

• Until rup − rlow < ϵ.

Here, rmax can also be chosen as the cut-set bound given in Section VI.
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3. Iterative Algorithm

Based on the above analysis, we summarize the iterative algorithm for Problem (5.11)

for a particular rate profile vector β as:

Algorithm 3:

• Set the initial values of (p1, p2);

• Repeat

1. Solve Problem (5.13) by using Algorithm 1, and obtain a rank-1 solution

c∗i by using Appendix 1;

2. Set c = c∗i , and solve Problem (5.20)-(5.23) by using Algorithm 2. Denote

(p∗1i, p
∗
2i) as the optimal point obtained in this stage, and set this pair as

the initial value for the next round of iteration;

• Until an accuracy requirement is met.

The initial values of (p1, p2) are chosen based on the following observations: For

the sum source power constraint case, it is a necessary condition for the optimal

(p∗1, p
∗
2) that the equality of the sum source power constraint is achieved; otherwise,

we can scale the pair simultaneously with a factor PS

p1+p2
, and then the new pair will

give a rate pair larger than the previous one. As such, we choose the initial values

as p1 = αPS and p2 = (1 − α)PS, where α ∈ [0, 1]. For the individual source power

constraint case, it is necessary at the optimal point that at least one of source powers

should be equal to its maximum value; otherwise, with a similar argument of scaling,

a higher rate can be achieved. Thus, we choose p1 = PS1 and p2 = αPS2, or p1 = αPS1

and p2 = PS2.

With the above two-stage iteration scheme for the source power allocation and
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relay combining problem as defined in (5.11), we have the following proposition ad-

dressing the convergence issue.

Proposition B.2 The optimal value given by using Algorithm 3 is convergent for

arbitrary initial values and channel realizations under both individual and sum power

constraints at the sources and relays.

Proof: Denote the sum rate in the i-th iteration of Algorithm 3 after the first and the

second stages as R
(1i)
sum and R

(2i)
sum, respectively. Since the optimal values of each stage

satisfy R
(11)
sum ≤ R

(12)
sum ≤ R

(21)
sum ≤ R

(22)
sum ≤ · · · , where R(ij)

sum is an upper-bounded sequence

(e.g., bounded by the cut-set upper bound given in Section E), this proposition is

proved. �

It is worth noting that although the optimal value of Problem (5.11) obtained by

using Algorithm 3 is convergent, its associated optimal point may not converge. This

is due to the fact that during each iteration, the optimal points of Problem (5.16)

and Problem (5.17)-(5.19) may not be unique. Moreover, even when the optimal

point obtained by using Algorithm 3 converges, it may not be globally optimal, due

to the non-convexity of the overall problem in (5.11). As such, Algorithm 3 may not

obtain all the boundary points of the AF rate region defined in (5.10); however, it still

provides a meaningful inner bound for the capacity region of the considered two-hop

interference network.

Remark B.2 By setting c12 = c21 = 0, Problem (5.11) degrades to the traditional

two-hop AF interference networks without conferencing [34], where the proposed algo-

rithms are still valid and also provide a relatively simple way to compute a suboptimal

solution. As far as we know, there are no efficient algorithms to compute the global

optimal solution for such a problem, except for the exhaustive search method. Thus,

we may conclude that our AF scheme with the help of relay conferencing is more
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general than the traditional AF scheme, and the newly derived rate region is equal to

or larger than that of the traditional case, if the same two-stage iteration algorithm

is used. This is also true for the joint decoding scheme discussed in the next section.

C. Two-User Joint Decoding

With the joint decoding scheme, each destination tries to decode both of the source

messages independently. Thus, the overall channel given in (5.7) is indeed the com-

pound MAC [21,22]. Accordingly, for each receiver, the rate pair is within the capacity

region of a MAC, and the rate region for the two-hop interference network is given

as the intersection of capacity regions of the two MACs, which is given as
R1 ≤ 1

2
log
(
1 + p1cHWi1c

cHWinc+1

)
R2 ≤ 1

2
log
(
1 + p2cHWi2c

cHWinc+1

)
R1 +R2 ≤ 1

2
log
(
1 + p1cHWi1c+p2cHWi2c

cHWinc+1

) , i = 1, 2, (5.30)

where Wij’s and Win’s are defined the same as in the previous section. Similarly,

using the rate profile method, we have the following sum rate maximization problem

to characterize the rate region:

max
Rsum,c,p1,p2

Rsum (5.31)

s. t. p1c
HWi1c ≥ λ1

(
cHWinc+ 1

)
,

p2c
HWi2c ≥ λ2

(
cHWinc+ 1

)
,

p1c
HWi1c+ p2c

HWi2c ≥ λ0

(
cHWinc+ 1

)
,

(p1, p2) ∈ P , c ∈ C, i = 1, 2,

where λ0 = 22Rsum − 1, λ1 and λ2 are defined the same as in the previous section.

Since Problem (5.31) is non-convex, we adopt the same two-stage iterative method as
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Algorithm 3. Specifically, we first fix (p1, p2) and optimize over c; but unfortunately,

this problem is not convex. Equivalently, we rewrite this problem as

max
Rsum,C

Rsum (5.32)

s. t. Tr ((p1Wi1 − λ1Win)C) ≥ λ1,

Tr ((p2Wi2 − λ2Win)C) ≥ λ2,

Tr ((p1Wi1 + p2Wi2 − λ0Win)C) ≥ λ0,

Rank (C) = 1, C ≽ 0, C ∈ C0, i = 1, 2,

where C0 is defined the same as the previous section. By using the SDR approach [53],

we solve the following problem to obtain an approximate solution by ignoring the

rank-1 constraint:

max
Rsum,C

Rsum (5.33)

s. t. Tr ((p1Wi1 − λ1Win)C) ≥ λ1,

Tr ((p2Wi2 − λ2Win)C) ≥ λ2,

Tr ((p1Wi1 + p2Wi2 − λ0Win)C) ≥ λ0,

C ≽ 0, C ∈ C0, i = 1, 2.

This problem can be efficiently solved via the bi-section search over Rsum (similar

to Algorithm 2), since for each given Rsum, the resulting feasibility problem is a convex

SDP problem. Generally, the optimal pointC∗ of Problem (5.33) is not of rank-1, and

the rank-1 reconstruction method in Section III cannot be applied here. Instead, we

turn to the following approximate randomization method [57]: Calculate the eigen-

decomposition for C∗ as C∗ = UDUH , and choose cl = clUD1/2vl, where the

elements of vl are independent complex random variables with zero-mean and unit-
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variance and cl is a constant to make cl satisfy the equality of the power constraints

in Problem (5.32). In the simulations, we generate a set of cl, l = 1, · · · , L, and

choose the one which maximizes Rsum as the optimal point c∗ for Problem (5.31).

Then, we fix c = c∗ and optimize over (p1, p2). Note that for the individual

source power constraint case, each source should transmit with its maximum power.

With the sum source power constraint, the source power allocation problem is then

given as

max
Rsum,p1,p2

Rsum (5.34)

s. t. p1c
HWi1c ≥ λ1

(
cHWinc+ 1

)
,

p2c
HWi2c ≥ λ2

(
cHWinc+ 1

)
,

p1c
HWi1c+ p2c

HWi2c ≥ λ0

(
cHWinc+ 1

)
,

(p1, p2) ∈ P , i = 1, 2.

This problem is a convex problem over (Rsum, p1, p2), which can be efficiently solved

by some optimization tools, e.g., CVX [47].

As the above two steps iterate, since we cannot exactly solve Problem (5.32),

the approximate solution of Problem (5.32) may not strictly improve the sum rate

compared to the previous iteration. Hence, when we iteratively compute Problem

(5.33) and Problem (5.34), the sum rate sequence may not be convergent. To minimize

this deficiency, we take the following two measures: First, we choose a relatively large

L for the randomization method used in rank-1 construction for Problem (5.33);

second, we terminate the iteration mannually, when the iteration cannot improve the

sum rate anymore. Accordingly, we summarize the algorithm as follows.

Algorithm 4:

• Set the initial values of (p1, p2);
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• Repeat

1. Solve Problem (5.33) via the bi-section search method over Rsum, and use

the randomization method to construct a rank-1 solution c∗i ;

2. Set c = c∗i , and solve Problem (5.34). Denote R∗
sum and (p∗1i, p

∗
2i) as the

optimal sum rate and source power pair obtained in this stage, respectively.

Set (p∗1i, p
∗
2i) as the initial value for the next round of iteration;

• Until the maximum iteration number is reached, or R∗
sum is less than or equal

to that in the previous iteration.

The initial values of (p1, p2) can be set the same as those in the previous section

for the sum source power constraint case. Note that Algorithm 4 is used only for the

sum source power constraint case; for the individual source power constraint case, we

only need to set p1 = PS1 and p2 = PS2, and directly solve Problem (5.33).

D. Asymptotic Behaviors of the Two Decoding Schemes

In the above two sections, we presented two different decoding schemes. In this

section, we study the performance of these schemes in both the high and low SNR

regimes.

1. High SNR Regime

In this subsection, we assume that both the source and relay powers go to infinity.

Proposition D.1 When the source and relay powers scale with the same order, i.e.,

a1PS ≤ PR ≤ a2PS, where a1 and a2 are positive constants, the two-hop interference

network with relay conferencing achieves DoF of one by using the single-user decoding
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scheme if

w11,w22 /∈ O (w12,w21) , (5.35)

where O (w12,w21) is the subspace spanned by w12 and w21; it achieves DoF of 1
2
by

the joint decoding scheme with arbitrary channel realizations.

Proof: See Appendix 2. �

Note that condition (5.35) is usually satisfied in practice. For example, if these

channel coefficients are i.i.d., by the theory of random matrix, we know that condition

(5.35) is satisfied almost surely. Moreover, from the proof, we know that in the

high SNR regime, the relay combining vector can be chosen to be orthogonal to the

“interference space”, which is indeed the interference cancelation scheme [40].

Remark D.1 Considering the cut-set bound [36] and the half-duplex relaying con-

straint, the maximum DoF value of the two-hop interference networks is one. Thus,

Proposition D.1 indeed proves that in the high SNR regime, single-user decoding with

interference cancelation at the relay is asymptotically optimal for the AF relaying

scheme in the sense of achieving the maximum DoF. As shown in [36], for the case

without relay conferencing, only 3
4
DoF is achieved (under the half-duplex constraint)

with the AF scheme and constant channel coefficients. In conclusion, it is shown that

relay conferencing closes the gap between the DoF achieved by the AF relaying scheme

and the DoF upper bound in high SNR regime.

2. Low SNR Case

In this subsection, we consider the case that the source and relay powers both go to

zero.

Proposition D.2 The achievable rate regions obtained by using the single-user and
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joint decoding schemes are asymptotically the same when the source and relay trans-

mission powers both go to zero.

Proof: First, we have log (1 + x) → x
ln 2

and 1 + x → 1, as x → 0. Using these

results, it is easy to observe that both the rate regions given by (5.10) and (5.30) are

asymptotically equal to  R1 ≤ 1
2 ln 2

p1c
HW11c

R2 ≤ 1
2 ln 2

p2c
HW22c

. (5.36)

Thus, this proposition is proved. �

E. Simulation Results

In this section, we present some simulation results to validate our analysis about

the achievable rate regions for both the two decoding schemes. For convenience, we

assume that for the conferencing links, θi,3−i = 0, i = 1, 2; for other links, hii and

gii, i = 1, 2, are i.i.d. CSCG with distribution CN (0, 1), and hi,3−i and gi,3−i are also

i.i.d. CSCG with distributions CN (0, a) and CN (0, b), respectively, where a and b

are parameters reflecting the power of the cross-link interference at each hop.

In the simulations, we only consider two typical scenarios: 1) The first hop is a

weak IC, and the second hop is a strong interference channel, i.e., a < 1 and b > 1,

respectively; and 2) both of the two hops are weak ICs, i.e., a, b < 1. Specifically, the

two scenarios are set up as:

1. Scenario I: a = 0.1; b = 10;

2. Scenario II: a = 0.1; b = 0.1.

Moreover, we only present the results for the sum source/relay power constraints,

and the cases with individual power constraints are omitted for conciseness. All the



118

simulations are based on the average over 1000 channel realizations and computed

with the core optimization tool CVX [47].

First, we study the effect of initial values of the source power pair (p1, p2), where

we pick a particular boundary point that gives the maximum Rmin, where Rmin =

min(R1, R2) and it is computed by setting the rate profile vector β = [0.5, 0.5].

As shown in Fig. 21(a) and Fig. 21(b), we plot Rmin over different initial power

allocation factors α = p1
PS

for both scenarios I and II with different SNR values. For

the conferencing links, we set γ12 = γ21 = γc = 0 dB, and the maximum number of

iterations for both algorithms as 5. It is observed that for the high SNR case, Rmin

is not sensitive to the initial values, except for the case when α is close to 0; for the

low SNR case, the initial value of α plays a relatively important role compared to the

high SNR case, and the peak Rmin is usually achieved for α ∈ [0.4, 0.6]. Moreover, it

is also observed that for both high and low SNR cases, single-user decoding performs

better than joint decoding in Scenario II, and vice versa for Scenario I. However, this

may not be true for the case with general SNR values.

Next, we compare the AF achievable rate region with the capacity upper bound.

The upper bound used in this chapter is derived by the MAC and BC cut-set bounds

[28] and is given by

Cupper(R1, R2) = CMAC(R1, R2)
∩

CBC(R1, R2), (5.37)

where CMAC(R1, R2) is the MAC channel rate region [28] with a sum source power

constraint, and CBC(R1, R2) is the BC channel rate region, which can be characterized

by the MAC-BC duality [28, 58]. The cut-set bound corresponds to the case where

the conferencing link SNR goes to infinity, for which these two relays can be regarded

as two co-located antennas.

In Fig. 22 and Fig. 23, we plot the AF achievable rates without time sharing
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or convex hulling and the capacity upper bound under different channel conditions.

It is observed that the AF relaying scheme performs better in the high SNR regime

than in the low SNR regime. For Scenario I with conferencing link SNR γ0 = 0 dB,

the joint decoding scheme is always better than the single-user decoding scheme, and

the performance difference is more significant in the high SNR regime; for Scenario

II, single-user decoding scheme performs always better.

Finally, we examine the effect of the conferencing link quality on the minimum

rate. In Fig. 24(a) and Fig. 24(b), we plot Rmin over different conferencing link SNRs

for both of the two scenarios with different source and relay power levels. Moreover,

we show the results for the case without relay conferencing by using exhaustive search,

which provides a benchmark to illustrate the improvement induced by relay confer-

encing. It is observed that for the high source/relay power case, relay conferencing

brings a relatively large gain for single-user decoding at scenario I compared with

those with other setups; for the low source/relay power case, relay conferencing sig-

nificantly improves the rates for both the two decoding schemes at scenario I, while it

introduces a little rate gain for scenario II. Furthermore, most of the gain introduced

by relay conferencing can be achieved when γc ≈ 20 dB.

F. Summary

In this chapter, we investigated the source power allocation and relay combining

strategies for the two-hop AF interference network with conferencing relays. By using

the rate profile method, we developed a two-stage iterative algorithm to efficiently

characterize the achievable rate region for both the single-user decoding and joint

decoding schemes. In particular, we proposed a more efficient routine to compute the

optimal solution for the relay combining problem under the individual relay power
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constraint. Moreover, we showed that relay conferencing can improve the DoF in

the high SNR regime compared to the case without conferencing. In particular,

the single-user decoding scheme is asymptotically optimal to achieve the DoF upper

bound with simple linear beamforming schemes, while the joint decoding scheme is

strictly suboptimal in term of DoF.

G. Appendix

1. Proof of Theorem B.1 and the Computation Complexity Analysis

First, we cite the following lemma, which is proved in [59].

Lemma G.1 Given that Tr(AC∗) ≥ 0 and Tr(BC∗) ≥ 0, there exists a decomposi-

tion for C∗ such that

C∗ =
r∑

j=1

xjx
H
j , (5.38)

and xH
j Axj ≥ 0, xH

j Bxj ≥ 0, j = 1, · · · , r.

We consider the third constraint in (5.18), and denote p0 = Tr(WR2C
∗). Since

WR2 is positive semidefinite, we have p0 ≥ 0. First, let us consider the case p0 > 0.

By Lemma G.1, letA = F1− 1
p0
WR2 andB = F2− 1

p0
WR2, we obtain that there exists

C∗ =
∑r

j=1 xjx
H
j with xH

j

(
F1 − 1

p0
WR2

)
xj ≥ 0, xH

j

(
F2 − 1

p0
WR2

)
xj ≥ 0, j =

1, · · · , r. Define yi,j = xH
j WRixj, and zi,j = xH

j Fixj, i = 1, 2, and j = 1, · · · , r.

Thus, it is easy to check that Problem (5.17)-(5.19) has the same minimum objective
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value as the following linear programming (LP) problem

min
t1,··· ,tr

r∑
j=1

y1,jtj (5.39)

s. t.
r∑

j=1

z1,jtj ≥ 1,
r∑

j=1

z2,jtj ≥ 1,
r∑

j=1

y2,j
p0

tj = 1,

tj ≥ 0, j = 1, · · · , r,

which is based on the facts that for each feasible set of tj ≥ 0,
∑r

j=1 tjxjx
H
j corre-

sponds to a feasible solution for Problem (5.17)-(5.19), such that when tj = 1, ∀j, the

same minimum value can be achieved in both the above LP problem and the Problem

(5.17)-(5.19). By Lemma G.1, we obtain zi,j ≥ 1
p0
y2,j for any i and j. Thus, for any

tj’s, we have
∑r

j=1 z1,jtj ≥ 1
p0

∑r
j=1 y2,jtj = 1 and

∑r
j=1 z2,jtj ≥ 1

p0

∑r
j=1 y2,jtj = 1.

As such, Problem (5.39) is further equivalent to the following problem

min
t1,··· ,tr

r∑
j=1

y1,jtj (5.40)

s. t.
r∑

j=1

y2,j
p0

tj = 1, tj ≥ 0, j = 1, · · · , r.

Therefore, by the property of basic feasible solution for LP, we can prove that there

is at least one optimal solution of Problem (5.40) with only one tj0 > 0 and all other

tj’s equal to zero. Then, the optimal rank-1 solution is given as C∗∗ = tj0xj0x
H
j0
.

For the case p0 = 0, without loss of generality, we assume Tr ((F1 − F2)C
∗) ≥ 0

(otherwise, we could reverse the following definitions), and let A = F1 − q2F2, where

q2 = Tr (F2C
∗). Then, by Lemma G.1, we obtain that there exists C∗ =

∑r
j=1 xjx

H
j ,

and xH
j (F1 − F2)xj ≥ 0, j = 1, · · · , r. Define yi,j and zi,j the same as the previous

case, and consider the following problem, which also has the same minimum optimal
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value as problem (5.17)-(5.19).

min
t1,··· ,tr

r∑
j=1

y1,jtj (5.41)

s. t.
r∑

j=1

z1,jtj ≥ 1,
r∑

j=1

z2,j
q2

tj = 1,
r∑

j=1

y2,jtj = 0,

tj ≥ 0, j = 1, · · · , r.

By the same argument as the previous case, we obtain
∑r

j=1 z1,jtj ≥
∑r

j=1
z2,j
q2

tj =

1 for any tj, which means that
∑r

j=1 z1,jtj ≥ 1 is redundant. Moreover, since WR2

is positive semidefinite, we have y2,j = xH
j WR2xj ≥ 0; on the other hand, we have

0 = Tr(WR2C
∗) =

∑r
j=1 y2,j. Based on these two observations, we conclude y2,j = 0

for any j. Thus, for any tj,
∑r

j=1 y2,jtj = 0 is always true, which means that this

constraint is also redundant. Accordingly, Problem (5.41) is equivalent to

min
t1,··· ,tr

r∑
j=1

y1,jtj (5.42)

s. t.
r∑

j=1

z2,j
q2

tj ≥ 1, tj ≥ 0, j = 1, · · · , r.

By the same argument as the p0 > 0 case, we know that the rank-1 solution

can be efficiently constructed, which is given as C∗∗ = tj0xj0x
H
j0
with j0 indexing the

single positive tj. In conclusion, the theorem is proved.

Remark G.1 It is worth noting that to solve the linear programming problem in

(5.42), we only need to find the minimum value among y1,jtj, j = 1, · · · , r, where

tj =
q2
z2,j

, i.e., solve

min
j

{
y1,j

q2
z2,j

}
. (5.43)

Thus, for the proposed algorithm for the construction of the rank-1 solution, the
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computation burden is mainly on how to find the matrix decomposition in Lemma

G.1. By [59, 60], this matrix decomposition can be obtained by using only one eigen-

decomposition routine for matrix C∗, whose computation complexity is on the order

of O(N3) [61], with N the dimension of C∗, and some linear operations with the com-

plexity on the order of O(N2). Since the proposed algorithm for the construction of the

rank-1 solution is a one-shot scheme, i.e., iterations are not needed, its computation

complexity is on the order of O(N3). On the other hand, for Algorithm 1 in [56], it is

observed that for each iteration, we need to compute two eigen-decomposition routines

for two matrices with dimensions of N and r, respectively, and all other linear oper-

ations are with the complexity on the order of O(N2). Moreover, it is easy to check

that this algorithm requires only one iteration for the best case (i.e., r = 2), while

N − 1 iterations for the worst case (i.e., r = N). Thus, its worst-case complexity is

on the order of O(N4). Based on the above analysis, we conclude that the proposed

algorithm for the construction of the rank-1 solution is more efficient than that in [56]

especially when r is large.

2. Proof of Theorem D.1

For the single-user decoding method, from (5.10), we observe that W12 and W12 are

both of rank-1. By condition (5.35), there always exists a c01 such that cH01W12c01 =

|wH
12c01|2 = 0, cH01W21c01 = |wH

21c01|2 = 0, and wH
11c01 ̸= 0. Similarly, there exists a

c02 such that cH02W12c02 = |wH
12c02|2 = 0, cH02W21c02 = |wH

21c02|2 = 0, and wH
22c02 ̸=

0. Thus, we let c0 = d (c01 + c02), where d is a constant making the relay power

constraint satisfied. Here, we assume ⟨c01, c02⟩ ≥ 0, which can be satisfied by changing

the direction of one of them without violating the previous conditions. Provided with
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this c0 and the rate pair given by (5.10), we have

Ri =
1

2
log

(
1 + pi

cH0 Wiic0
cH0 Winc0 + 1

)
, i = 1, 2. (5.44)

Furthermore, we have

cH0 Wiic0
cH0 Winc0 + 1

≥ cH0 Wiic0
σ|c0|2 + 1

(5.45)

≥ d|cH0iwii|2

σ|c0|2 + 1
, (5.46)

where σ is the largest eigenvalue of Win. Since Win is a positive semidefinite and

non-zero matrix, we know σ > 0; and (5.46) is due to the assumption ⟨c01, c02⟩ ≥ 0.

Moreover, when a1PS ≤ PR ≤ a2PS, by (5.4), we know d > 0 when PS → ∞.

Therefore, we conclude limPS→∞
Ri

log(PS)
= 1

2
, and the result for the single-user decoding

case is proved.

For the joint decoding method, according to (5.30) and by as similar argument

as the above analysis, it is easy to see R1 +R2 → 1
2
log(d0PS), as PS goes to infinity,

where d0 is a positive constant. Thus, the theorem is proved.
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CHAPTER VI

CONCLUSIONS

A. Summary of Dissertation Contributions

This dissertation investigated the information-theoretical bounds for the coopera-

tive communication systems with relay conferencing. By designing the protocols

jointly with the relaying and conferencing schemes, various achievable rates were

obtained, and some capacity results were derived under certain special channel condi-

tions. Moreover, we specified when relay conferencing can outperform the case with-

out conferencing under different channel and network models with different channel

conditions by either analysis or simulations. Specifically, we summarize the main

contributions of this dissertation as follows.

1. We started with the simultaneous relaying diamond channel in Chapter 2, where

the two relays were assumed to transmit and receive in the same time slot. We

obtained the rate upper bound via the cut-set bounds and various achievable

rates by modifying the conventional DF, CF, and AF relaying schemes. In

particular, we obtained the following results.

(a) For the DF relaying scheme, we let the source transmit one common mes-

sage to both relays and one private message to each relay. We proved that

for the DMC case, the DF scheme achieves the rate upper bound with fi-

nite conferencing link rates; for the Gaussian channel case, the rate upper

bound is asymptotically achieved when the source-to-relay link SNR go to

infinity.

(b) For the CF relaying scheme, we developed three schemes: one using con-

ferencing links to help the compression, and the other two using them
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to partially or fully exchange the binning indices of the compressed re-

ceiver signals. We proved that for the Gaussian case, when the SNRs of

the source-relay links or the relay-destination links go to infinity, the rate

upper bound is asymptotically achievable.

(c) For the AF relaying scheme, we investigated the optimal combining prob-

lem between the received signals from the source (via the source-relay link)

and the other relay (via the conferencing link). Generally, the resulting

problem is not a convex problem, while semidefinite relaxation is applied

to transform it to a quasi-convex problem.

2. We then considered the alternative relaying diamond channel in Chapter 3,

where the two relays transmit and receive in different time slots and exchange

their modes alternatively. Two different conferencing strategies were proposed

by utilizing the conferencing links in different amount of time, which lead to

different decoding delays at the destination. For both of the two conferencing

strategies with the general two-side conferencing scheme, we derived the DF

and AF achievable rates. For the DF relaying scheme, we formulated the rate

maximization problem as a LP problem; for the AF relaying scheme, it was

shown that the optimal linear combining problem is convex. By exploiting

the properties of the optimal solutions for the above two problems, we further

obtained the following results:

(a) For the DF relaying scheme, it was proved that the one-side conferencing

scheme is optimal to achieve the maximum DF rates achieved by the two-

side conferencing scheme for both of the two conferencing strategies. Based

on this property, we derived the DF rates in closed-form under different

channel coefficients, and further determined: (i) when relay conferencing
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is unnecessary; (ii) when relay conferencing is necessary, and which one

of the conferencing links should be used. Moreover, we proved that the

DF scheme achieves the rate upper bound under conferencing strategy I

asymptotically as the conferencing link rates go to infinity, while only finite

conferencing rates are required under strategy II.

(b) For the AF relaying scheme, it was shown that: (i) When the second-

hop relay-to-destination link SNRs become asymptotically large, two-side

conferencing is necessary; (ii) when these link SNRs go to zero, one-side

conferencing is asymptotically optimal, and each relay only needs to for-

ward the signal with a higher SNR to the destination.

3. In Chapter 4, we applied relay conferencing to the large relay networks, which

consists of one source-destination pair and N relays. In particular, the con-

ferencing links were assumed to be SNR-limited and with the AF conferencing

scheme. We obtained the DF and AF achievable rates, and further examined the

asymptotic behaviors of these schemes as N goes to infinity. It was shown that

the relay conferencing can improve the scaling order of the DF relaying scheme,

and some asymptotic capacity results are established under certain conditions

with the AF relaying scheme.

4. Finally, we considered the two-hop interference relay channels, which consist

of two source-destination pair and two relays. Here, we only focused on two

different decoding schemes at the destination: single-user decoding and joint

decoding.

(a) We derived the AF achievable rate for the two decoding schemes under

both the sum and individual source/relay power constraints. To effectively
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quantify the rate region and solve the optimal source power allocation and

relay combining problems, we adopted a two-stage iterative optimization

method: First, we fixed the source power pair and maximized the sum

rate over the relay combining vector under relay power constraints; second,

we fixed the relay combining vector at the optimal point of the previous

stage, and maximized the sum rate over the source power levels. Then, the

iteration continued. We designed a new algorithm to compute the optimal

solution for the relay combining problem under the individual relay power

constraint, which is more efficient than the existing scheme especially for

the worst-case scenario.

(b) We compared the single-user and joint decoding schemes under both the

high and low SNR assumptions, and obtained the following results: As the

SNR goes to infinity, the single-user decoding scheme is asymptotically

optimal in the sense of achieving the maximum DoF of 1, while without

relay conferencing, only 3/4 DoF can be achieved by the AF scheme; as

the SNR goes to zero, both the decoding schemes achieve the same rate

region asymptotically.

B. Future Work

We propose the following possible extensions to the work presented in this disserta-

tion.

1. In Chapter 2 and 3, we separately considered two relay scheduling schemes,

i.e., simultaneous and alternative relaying, for the same diamond relay channel.

Thus, to obtain an unified strategy jointly considering these two relay scheduling

schemes with relay conferencing will be more interesting and challenging.
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2. In Chapter 4, we adopted the “p-portion” conferencing scheme, whose complex-

ity is high for the large N case. One possible way to avoid this implementation

issue is to choose a constant number of conferencing links for each relay to con-

ference. However, how to choose which subset of the relays for each one and

how to design the proper conferencing and relaying protocols still need to be

carefully investigated.
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