
TIMING AWARE PARTITIONING FOR MULTI-FPGA BASED LOGIC SIMULATION

USING TOP-DOWN SELECTIVE FLATTENING

A Thesis

by

SUBRAMANIAN POOTHAMKURISSI SWAMINATHAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2012

Major Subject: Computer Engineering

TIMING AWARE PARTITIONING FOR MULTI-FPGA BASED LOGIC SIMULATION

USING TOP-DOWN SELECTIVE FLATTENING

A Thesis

by

SUBRAMANIAN POOTHAMKURISSI SWAMINATHAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Sunil P. Khatri
Committee Members, Peng Li

Andrew (Anxiao) Jiang
Head of Department, Costas N. Georghiades

August 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Timing Aware Partitioning for Multi-FPGA Based Logic Simulation Using Top-down

Selective Flattening. (August 2012)

Subramanian Poothamkurissi Swaminathan, B.Tech., National Institute of Technology,

Trichy, India

Chair of Advisory Committee: Dr. Sunil P. Khatri

In order to accelerate logic simulation, it is highly beneficial to simulate the circuit

design on FPGA hardware. However, limited hardware resources on FPGAs prevent large

designs from being implemented on a single FPGA. Hence there is a need to partition the

design and simulate it on a multi-FPGA platform. In contrast to existing FPGA-based post-

synthesis partitioning approaches which first completely flatten the circuit and then possi-

bly perform bottom-up clustering, we perform a selective top-down flattening and thereby

avoid the potential netlist blowup. This also allows us to preserve the design hierarchy to

guide the partitioning and to make subsequent debugging easier. Our approach analyzes

the hierarchical design and selectively flattens instances using two metrics based on slack.

The resulting partially flattened netlist is converted to a hypergraph, partitioned using a

public domain partitioner (hMetis), and reconverted back to a plurality of FPGA netlists,

one for each FPGA of the FPGA-based accelerated logic simulation platform. We compare

our approach with a partitioning approach that operates on a completely flattened netlist.

Static timing analysis was performed for both approaches, and over 15 examples from the

OpenCores project, our approach yields a 52% logic simulation speedup and about 0.74×

runtime for the entire flow, compared to the completely flat approach. The entire tool chain

of our approach is automated in an end-to-end flow from hierarchy extraction, selective

flattening, partitioning, and netlist reconstruction. Compared to an existing method which

also performs slack-based partitioning of a hierarchical netlist, we obtain a 35% simulation

iv

speedup.

v

To my family and friends

v

ACKNOWLEDGMENTS

I would like to thank my adviser Dr. Sunil P. Khatri for his guidance, encouragement

and support during the course of my masters program. I would also like to thank my

research group members for their valuable suggestions in various aspects of my research.

I would like to thank my family for their moral support when I needed it. A final note

of thanks to Texas A&M University and Department of Electrical and Computer Engineer-

ing for giving me the opportunity to pursue my master’s degree.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II PREVIOUS WORK . 7

III OUR APPROACH . 11

III-A. Hierarchy Analysis . 11

III-B. Selective Flattening . 11

III-B.1. Selective Flattening Algorithm 13

III-B.1.a. Average Slack Based Flattening 13

III-B.1.b. Minimum Slack Based Flattening 15

III-B.1.c. Hybrid Algorithm 15

III-B.2. Z-Frontier . 17

III-C. Netlist Translation to hMetis Hypergraph 18

III-D. hMetis . 19

III-E. Hypergraph to Netlist Reconstruction 19

IV RESULTS . 21

V CONCLUSIONS . 31

REFERENCES . 32

VITA . 39

vii

LIST OF TABLES

TABLE Page

II.1 Literature Summary . 8

IV.1 hMetis Settings Used . 22

IV.2 Details of Benchmark Examples . 24

IV.3 Speedup and Runtime of hybrid Algorithm Compared with Fully Flat

Algorithm . 27

IV.4 Speedup and Runtime of MRFM Algorithm Compared with Fully Flat

Algorithm . 29

IV.5 Relative Speedup of hybrid, AS and MS Algorithms Compared with

Fully Flat Algorithm . 30

viii

LIST OF FIGURES

FIGURE Page

I.1 A Generic FPGA Architecture . 2

I.2 A 2-input LUT . 3

I.3 A Programmable Switch . 4

I.4 Existing State-of-the-art Post-Synthesis Partitioning Flow for Logic

Simulation on a Multi-FPGA Platform 5

III.1 Our Selective Hierarchy Flattening Based multi-FPGA Logic Simula-

tion Flow . 12

III.2 A Hierarchical Instance with Pin Slack Values Annotated 14

III.3 Hierarchy Tree with F/D Instances and Z0 and Z1 Frontier 18

IV.1 Simulation Speedup of AS for 5 Examples over Flat Algorithm 25

IV.2 Simulation Speedup of MS for 5 Examples over Flat Algorithm 26

1

CHAPTER I

INTRODUCTION

Logic verification takes up the majority of computation and engineering resources

in VLSI design. Logic simulation is used to determine the functional correctness of the

implemented circuit with respect to a high level specification. The functionality of the

circuit can be verified by logically simulating a series of test vectors, and testing that the

outputs are correct by comparing them with a golden output. Since logic verification takes

up a lot of time, it is crucial to accelerate this step. Logic simulation techniques can be

broadly classified as software based methods and hardware based methods.

Event-driven simulation, levelized code simulation and compiled code simulation are

examples of software based techniques. In the event-driven method, simulation events are

stored in a queue of temporally sorted pending events. New events are scheduled as ex-

isting events are processed. This is continued until no events are left in the event queue.

Levelized code simulators simulate gates strictly in level order from primary inputs to pri-

mary outputs. However, circuits that contain loops (sequential circuits) cannot be levelized.

In the compiled code method, the circuit description is compiled into a series of machine

language instructions and then simulated. In all these methods, n vectors can be simulated

in parallel, where n is the instruction width of the computer being used.

Hardware emulators are hardware assisted techniques wherein the behavior of the cir-

cuit is emulated in hardware. Software techniques serialize the simulation of gates in the

circuit which the hardware emulators avoid. Hence hardware emulators are several orders

of magnitude faster than software solutions. Reconfigurable hardware platforms like FP-

The journal model is IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems.

2

GAs (Field Programmable Gate Arrays) are used for hardware acceleration of logic simula-

tion. FPGAs provide the flexibility to perform quick prototyping and fast logic simulation

during engineering development, due to the parallelism that is inherent in the FPGA.

Programmable Logic

Programmable RoutingProgrammable IO

Fig. I.1. A Generic FPGA Architecture

FPGAs implement circuits through programmable logic, programmable interconnect

and programmable IO. Figure I.1 depicts a typical FPGA. Each programmable logic block

(Configurable Logic Block (CLB) in the case of Xilinx or Logic Array Block (LAB) in the

case of Altera) are made up of one or more logical cells (Binary Logic Elements/BLEs in

3

the case of Xilinx or Arithmetic and Logic Modules/ALMs in the case of Altera). Each

logic cell consists of a Look Up Table (LUT) and a flip flop. Each n− bit LUT can im-

plement any Boolean function of up to n inputs. An n− bit LUT is implemented using

2n×1 multiplexor, where the n select lines of the multiplexor are the n inputs of the LUT

and the 2n inputs of the multiplexor are connected to the constants obtained via recursive

Shannon expansion. Typically, a value of n between 4 and 6 is chosen. A 2-input LUT

implemented using a 4× 1 multiplexor, is shown in Figure I.2, where a and b are inputs

of the LUT and S0− S3 are constants stored in SRAM cell S. Programmable routing is

implemented using programmable transistor switches at each intersection of vertical and

horizontal wires. A transistor based programmable switch is shown in Figure I.3, which is

turned on based on the value stored in the SRAM cells that drives it’s gate. By selectively

turning on programmable switches, any two intersecting wires can be connected.

S1

S3

S2

b

S0

OUT = f(a,b)

~a

~a

a

a

~b

Fig. I.2. A 2-input LUT

FPGA based logic simulation for large circuits is hampered by the limited hardware

4

S

Fig. I.3. A Programmable Switch

resources on the FPGA. As a result, there is a move to perform logic simulation using

a multi-FPGA platform. To simulate a large design on such a multi-FPGA platform, the

design must be efficiently partitioned, with each partition residing on one of the FPGAs in

the platform. Figure I.4 shows the typical flow for logic simulation using a multi-FPGA

platform.

In our approach, we strictly preserve the hierarchy of the design by performing a

top-down selective hierarchy flattening. This guarantees that we do not incur the blowup

which is possible due to full netlist flattening. Also, tightly related logic in the unflattened

instances of the design is not partitioned, yielding good results, while not resulting in a

large graph for the partitioner to handle. Since we retain the original design hierarchy and

signal names, subsequent debugging and analysis becomes easier.

This thesis presents a selective hierarchy flattening algorithm that exploits the design

hierarchy. In addition, selective flattening can be guided by user-provided constraints (al-

5

Multi−FPGA simulation

LUT/CLB partitions

Synthesis

Partitioning
(possibly aware
of hierarchy)

 Verilog/VHDL design

LUT/CLB based design

Fig. I.4. Existing State-of-the-art Post-Synthesis Partitioning Flow for Logic Simulation on

a Multi-FPGA Platform

though in our experimental results, no user input is assumed). Our approach is targeted to

a commercial multi-FPGA logic simulator platform offering. This platform uses 2 (or 4 in

another variant) Altera Stratix III FPGAs on a single board. With such a choice of FPGA

platform, it was determined that a majority of today’s ASIC designs can be targeted. Our

primary goal is to prioritize the logic simulation speed while retaining design hierarchy.

The key contributions of this thesis are:

• We present a partitioning approach for multi-FPGA based logic simulation using

selective flattening to preserve design hierarchy. Our goal is to maximize the logic

simulation speed of the resulting partitioned design.

• Since we perform a top-down selective flattening, we never incur the potential netlist

blowup resulting from full flattening.

• Compared to designs partitioned using a flat algorithm, the resulting design simulates

6

1.52× faster using our approach. Compared to a competing approach [1], our logic

speedup is 35%.

• We provide a user selectable flattening threshold per design. Also, our approach can

allow for user to manually specify which instances to flatten or not to flatten.

• Our approach can be easily generalized to k-way partitioning (where there are k FP-

GAs in the hardware platform).

• Our approach is implemented using an end-to-end scripted tool flow to perform hier-

archy analysis, selective flattening, partitioning, and netlist reconstruction.

The remainder of this thesis is organized as follows. Chapter II discusses previous

work in partitioning for FPGA-based fast logic simulation. In Chapter III we describe our

approach for selective hierarchy flattening and partitioning. In Chapter IV, we apply our

tool flow on several design examples and present experimental results. Conclusions are

drawn in Chapter V.

7

CHAPTER II

PREVIOUS WORK

In the past, many partitioning approaches have been proposed for Multi-FPGA based

logic simulation. Table II.1 summarizes the previous work in this field, broken down by

approach, objective and decision cost.

Most of the proposed algorithms focus on total dollar cost minimization via higher

logic utilization [2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28]. A natural objective of many partitioning algorithms is to reduce

the cut-size [2, 3, 4, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. In contrast,

our work focuses on maximizing simulation speed of the final partitioned design when it is

embedded into a multi-FPGA simulation accelerator.

There exist a few performance-driven algorithms [5, 6, 7, 8, 9, 10, 1, 29, 30, 43, 44,

45, 46, 47] targeting delay minimization. High-level estimators [5, 6], Maximum matching

with node ordering [7], cone partitioning [8, 43, 47], clustering of CLBs [9, 10, 1, 45],

rectilinear partitioning with signal path delay estimation [44], replication [29, 46] and re-

timing [30] are some of the methods used for performance optimization in the literature.

Based on the approach used, partitioning algorithms can be broadly classified as iter-

ative improvement algorithms (also referred to as top down or refinement algorithms) [3,

4, 5, 6, 9, 10, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 11, 14, 15,

16, 18, 21, 25, 28] and clustering-based (also known as bottom-up or constructive) algo-

rithms [2, 7, 8, 9, 1, 30, 31, 32, 36, 37, 41, 42, 43, 45, 47, 48, 11, 12, 13, 16, 17, 19, 20,

21, 23, 24, 25, 26, 28]. Iterative algorithm improve an initial partition by moving elements

between partitions based on an objective function. Clustering-based algorithms collapse

elements together controlled by an appropriate objective function. Clustering algorithms

can be combined with iterative methods to improve partitioning and runtime.

8

Table II.1. Literature Summary
Paper Approach Objective Decision cost

Design Initial Top Down / Bottom-Up / Pre- Logic Delay Cut Slack / Size

Hierarchy Netlist Refinement / Clustering / Synthesis Utilization (Sim. Size Timing and

Guided not Flat Iterative Constructive Partitioning (Dollar Cost) Speed) Aware IO

Improvement

Our method
√ √ √ √ √ √

[2]
√ √ √ √

[3, 4]
√ √ √ √

[5, 6]
√ √ √ √ √ √ √ √

[7]
√ √ √ √ √

[8]
√ √ √ √

[9]
√ √ √ √ √ √

[10]
√ √ √ √ √

[1]
√ √ √ √ √ √ √

[29]
√ √ √ √

[30]
√ √ √ √ √ √

[31]
√ √ √

[32]
√ √ √ √ √

[33]
√ √ √

[34]
√ √ √

[35]
√ √ √

[36]
√ √ √

[37]
√ √ √ √

[38, 39, 40]
√ √ √

[41]
√ √ √ √ √

[42]
√ √ √ √

[43]
√ √ √ √

[44]
√ √ √

[45]
√ √ √ √

[46]
√ √ √

[47]
√ √ √ √ √

[48]
√ √ √

[11, 21]
√ √ √ √ √ √

[12, 13, 22, 17, 24, 26, 19]
√ √ √

[14, 15, 27, 18]
√ √ √

[16, 25, 28]
√ √ √ √

[20, 23]
√ √ √ √ √

9

Most of the above algorithms work on flat netlists, therefore incurring a blowup in the

netlist size, along with large runtimes due to initial flattening step. Just like our approach

(which avoids initial flattening), there exists some papers that perform partitioning while

considering the hierarchy of the circuit [5, 6, 1, 32, 11, 20, 21, 23]. Design hierarchy guided

clustering is used in [32], where the cut-size reduction is the main objective. A hierarchical

netlist is partitioned with the goal of optimizing logic utilization in [11, 20, 21, 23]. In

contrast, our work seeks to maximize simulation speedup. Pre-synthesis or behavioral

partitioning is performed in [5, 6], guided by estimates of size, I/O and performance, made

by high-level estimators. Since these estimations are to be performed for a large number

of partition options, quick yet accurate estimates need to be obtained, which can be hard.

However, with post-synthesis partitioning (our approach), size and delay can be easily and

accurately estimated, since technology mapped netlists are used.

Based on our extensive literature survey, the only effort that operates on a post-synthesis

hierarchical netlist while targeting performance optimization is [1]. In [1], an integrated

synthesis and partitioning method is described. The hierarchy considered in [1] consists

of a single level of module instances, the processes contained in the instances and the

functions contained in these processes (which form the leaves). First, an HDL-netlist is

synthesized in a fine-grained manner, forming CLB-based clusters according to the struc-

ture of the design. Then a hierarchical set covering algorithm with functional replication

is used to perform partitioning. The cost function used in the set covering algorithm is a

combination of slack, size/IO and connectivity metrics. The time complexity of this ap-

proach is O(n2 ∗m), where n is the number of functional nodes and m is the number of

FPGAs used. In contrast, our method has an O(n) complexity since it uses hMetis [49]

which is a partitioner based on multi-level FM [34]. Partitioning is performed at the granu-

larity of bit-level decomposed functions or modules, in contrast to our approach where the

granularity uses any combination of LUTs or module instances. Also, the netlist hierar-

10

chy is only one level deep, in contrast to our work where it is arbitrary. In [1], replication

results in an increase in the number of CLBs in the partitioned design, unlike our work.

We strictly preserve the design hierarchy, yielding a significantly improved debuggability

of the design unlike [1] wherein replication and functional decomposition may modify the

hierarchy. Additionally, [1] reports results on 6 relatively small designs, while we test our

algorithm on 15 designs from the OpenCores [50] project. Finally, our results show that

our technique achieves a 35% speedup over [1].

By keeping related critical logic in unflattened instances, our approach can provide an

overall speedup of the logic simulation, while yielding a good result quality. We achieve

a 26% faster runtime for the total tool flow including flattening, partitioning, and netlist

reconstruction compared to a reference approach which is based on a complete flattening

of the netlist.

11

CHAPTER III

OUR APPROACH

This chapter describes our selective hierarchy flattening method as well as the entire

logic simulation flow targeted to multi-FPGA platforms. Our approach performs selective

flattening of the hierarchical netlist before partitioning and contains the following steps:

hierarchy analysis, selective flattening, netlist translation to hMetis hypergraph format,

running hMetis, and hypergraph to netlist reconstruction. The overall toolflow is shown

in Figure III.1 and each step is explained in detail in the following sections.

In the rest of this thesis, the term cells refers to base cells in the Altera FPGA netlist

(such as Lcells, DFFs etc).

III-A. Hierarchy Analysis

The base design provided to our algorithm is a hierarchical netlist in the Verilog Quartus

Mapping (.vqm) format of Altera. The .vqm netlist is recursively parsed in Perl from the

top module down, to infer the hierarchy tree structure. The output of hierarchy analysis is

an ASCII file (.hier) containing the instance hierarchy of the design.

III-B. Selective Flattening

In the .hier file generated by the previous step, each instance has an attribute which can be

either ’F’ (flatten), ’D’ (don’t flatten) or ’X’ (to be decided). Initially, before the selective

flattening algorithm has been invoked, all instances are marked ’X’, unless the user modifies

this file and marks specific instances as ’D’ (in which case the algorithm will not flatten the

specific instance) or ’F’ (in which case the algorithm will flatten the specific instance). At

this point, we invoke the selective flattening algorithm on the .hier file and hierarchical .vqm

12

Hierarchy analysis

.vqm

.hier

Selective flattening

.vqm

Translate to hypergraph

hMetis

Netlist reconstruction

.hgr .dat

files

. . .
k1.vqmprocess step

.part.k

2.vqm

Legend

.vqm

Fig. III.1. Our Selective Hierarchy Flattening Based multi-FPGA Logic Simulation Flow

13

files to determine which instances to flatten. The output of the selective flattening step is a

.vqm file, in which nodes are selectively flattened as determined by the selective flattening

algorithm. The selective flattening algorithm produces a modified .hier file, in which each

’X’ instance is assigned an ’F’ or ’D’ label, based on whether selective flattening should be

performed.

III-B.1. Selective Flattening Algorithm

Our selective flattening algorithm is guided by a combination of two metrics. The first

metric is based on average slack (AS) of the instance and the second metric is based on

minimum slack (MS) of the instance. Each of these metrics helps to determine whether a

particular instance should be flattened or not. In all the metrics described below, top level

nets such as reset, clock or supply pins are not included in the slack computation.

III-B.1.a. Average Slack Based Flattening

The AS metric for an instance X is defined as the average slack at each pin inside X . The AS

value of X is calculated as the ratio of sum of slack values of all pins in X , to the number

of pins in X . For example, in Figure III.2, the AS of instance R is 4.125 ((5+4+4+5+

5+4+3+3)/8). For an instance X under consideration for flattening, if it’s AS value is

greater than a threshold τ1, then instance X is flattened.

The motivation behind the effectiveness of the AS heuristic metric is as follows. If an

instance X has a high value of AS, then it indicates that most cells and instances in X are

not on critical paths. Similarly, a low value of AS indicates that a large number of cells and

instances in X are on critical paths. Hence the AS metric is a measure of how timing-critical

the cells and instances of X are.

To prevent the partitioner (hMetis in our case) from cutting critical nets, instances

with low AS should not be flattened. Keeping these logic elements as a single node during

14

5 4

5

4

3

3 3

M

T

R1

S

Hierarchical instance

6
2

4

55

3

S2
3

4

3

S1
R

4

3

2

3

3

4
4

2

Leaf cell

AS = 3.5
AS = 4.125

AS = 3.4

MS = 3
MS = 3

MS = 2

Fig. III.2. A Hierarchical Instance with Pin Slack Values Annotated

partitioning prevents hMetis from potentially performing bad cuts on critical paths, while

reducing the size of the hypergraph. On the other hand, to improve node balancing and to

reduce cut-size, non-critical nets can be safely exposed to hMetis by flattening instances

with a high AS. A cut made inside an instance with a high AS will not significantly worsen

the post-partition simulation speed of the design, since hMetis will typically cut nets with

high slack.

Threshold τ1 is calculated for each level in the design hierarchy tree according to

Equation 3.1. The threshold is modified dynamically since the AS values vary as we de-

scend into the hierarchy and make flattening decisions.

τ1 = p1 ∗ (max{AS}+min{AS})/2 (3.1)

15

The set {AS} consists of AS values of all candidate instances at the same level as the in-

stance X in the hierarchy tree. From Figure III.2, the τ1 value used as threshold for instance

R is p1∗(4.125+3.4)/2. A user-defined threshold multiplier p1 is used in conjunction with

the AS metric.

III-B.1.b. Minimum Slack Based Flattening

The MS metric of an instance X is defined as the minimum slack of all the inputs and

outputs of the instance X . For example, in Figure III.2, the MS of instance R is 3. An

instance X under consideration is flattened if it’s MS value is greater than a threshold τ2.

Instances with a high (low) value of MS indicate that the instance X is less timing-

critical (more timing-critical). Instances with a low value of MS should not be flattened,

otherwise hMetis might cut critical nets. On the other hand, instances with a high value of

MS can be safely flattened, thereby exposing non-critical nets to hMetis.

Similar to τ1, the threshold τ2 is calculated dynamically for each level using Equa-

tion 3.2.

τ2 = p2 ∗ (max{MS}+min{MS})/2 (3.2)

The set {MS} consists of MS values of all instances at the same level as instance X in the

hierarchy tree. From Figure III.2, the τ2 value used as threshold for instance R is p2 ∗ (3+

2)/2. Similar to the AS, a user-defined threshold multiplier p2 is used in conjunction with

the MS metric.

III-B.1.c. Hybrid Algorithm

The hybrid metric is a combination of the AS and MS metrics. An instance X under con-

sideration is flattened, if it’s AS is greater than a threshold τ1. If not, X is flattened if it’s

MS is greater than a threshold τ2.

16

In the hybrid approach we use both the average value metric (AS) and the minimum

value metric (MS) of an instance in deciding whether to flatten an instance X or not. User-

defined threshold multipliers p1 and p2 are used in conjunction with the hybrid metric.

The rationale behind using our hybrid method is as follows. In practice, we may have

a set of instances {C1}, with a large AS and possibly a small MS value. Such instances

typically have a broad slack histogram, and are good candidates for selective flattening.

Similarly there may be a set of instances {C2}, with a small AS but a large MS value.

Such instances typically have a narrow slack histogram, and are also good candidates for

flattening. By itself, the AS metric targets instances in {C1}, while the MS metric targets

instances in {C2}. No single method can target instances in both {C1} and {C2}, hence the

hybrid method is chosen.

Starting from the top module, our selective flattening algorithm recursively calculates

the AS and MS metrics of all instances. If our algorithm determines that an instance should

be flattened, then that instance is marked as ’F’. Otherwise, the instance is marked ’D’

and all its children are marked ’D’ as well. If the user had modified the initial .hier file

described in Section III-A by marking specific instances as ’D’, then all its children are

also marked ’D’.

Algorithm 1 describes the procedure.

Algorithm 1 Pseudocode of Selective Flattening Algorithm

1: selective f lattening(x)
2: if (AS(x)> τ1) and (x 6= D) then
3: x← F

4: else if (MS(x)> τ2) and (x 6= D) then
5: x← F

6: else

7: x← D

8: children(x)← D

9: end if

10: selective f lattening(children(x))

17

III-B.2. Z-Frontier

The above algorithm yields a hierarchy where all instances are marked ’D’ or ’F’. Further-

more, any sub-tree rooted at an instance marked ’D’ will have all of its (recursive) children

instances marked ’D’ as well. This allows us to define a Z-Frontier, where all the instances

on or below this frontier are marked ’D’, and all instances above this frontier are marked

’F’. The selective flattening algorithm produces an initial Z-Frontier which we call Z0. Fig-

ure III.3 shows an example hierarchy with instances marked as ’F’ or ’D’, as well as the

corresponding Z0 frontier (solid line). In addition to the Z0 frontier, we allow our algo-

rithm to explore additional frontiers Zi by expanding the Z0 frontier by i levels towards the

leaves of the hierarchy. Figure III.3 shows the Z1 frontier as well (dotted line).

In addition to the AS, MS and hybrid metrics, we also explored other metrics such as

instance weight imbalance, internal connectivity of an instance etc. For dynamic thresh-

old calculation, the median value of the slack metrics of the set of candidate instances

was also considered in place of the average of maximum and minimum values. We also

perturbed the Z0 frontier based on the cut nets information obtained, after analyzing the

post-partitioned circuit. However, these methods resulted in selectively flattened hierarchy

with worse simulation speed than the proposed method (described earlier in this section),

and as such are not further discussed in this thesis.

After the Z0 frontier is computed by the selective flattening algorithm, we take the

original .vqm netlist, and flatten all instances that are marked ’F’ in the .hier file (produced

by the selective flattening algorithm) to obtain the Z0 frontier. The result is a modified,

selectively flattened .vqm file which is utilized for partitioning. In case we are considering

the Zi frontier, we appropriately flatten i more levels of instances (towards the leaves) from

the Z0 frontier to generate the .vqm file for the Zi frontier.

18

F F F

F F FD D

D D

D

D D D D

DDD

D D

D

DD

F

D

top module

Z1 frontierZ1

frontierZ0

Fig. III.3. Hierarchy Tree with F/D Instances and Z0 and Z1 Frontier

III-C. Netlist Translation to hMetis Hypergraph

The output of the selective flattening step is a modified .vqm of the original design contain-

ing the selectively flattened netlist. From this modified .vqm, our method creates two files,

an hMetis hypergraph file (.hgr), and a connectivity lookup file (.dat). The .dat file is used

during the netlist reconstruction step after partitioning. In the hypergraph file, each node

is either a cell or an instance on the Z0 frontier. Each hyperedge corresponds to a net that

connects cells and/or instances. The hypergraph is constructed using the following node

and edge weight definitions:

• Node weight : A cell (Lcell or DFF) has a weight of 1. An instance X on the Z fron-

tier has a weight equal to the sum of cells in instance X and its children recursively

to the leaves.

19

• Edge weight : Each edge is assigned a slack based weight slack edge wti calculated

according to Equation 3.3.

slack edge wti = ⌈max slack ckt− edge slacki+1⌉. (3.3)

max slack ckt is the maximum slack of the circuit. edge slacki is the slack of the

edgei. In the reference flat algorithm, a unit edge weight is assumed. For any hyper-

edge, it’s edge slacki is defined as the minimum slack among all the edges that make

up that hyperedge.

III-D. hMetis

The .hgr hypergraph is then partitioned using hMetis [49], a software package used for

partitioning large hypergraphs, particularly those encountered in VLSI design. In k-way

hypergraph partitioning, the nodes are assigned to k different partitions, such that the num-

ber of edges between partitions are minimized. The partitioning algorithm used in hMetis

consists of a series of successive coarsening phases to reduce the size of the netlist, fol-

lowed by an initial partitioning phase using the Fiduccia-Mattheyses (FM) algorithm [34].

This is followed by a series of uncoarsening (refinement) phases which each expose a finer

hypergraph on the boundary of the partition. In each refinement step, the partition is iter-

atively refined around the boundary in order to improve partition quality. For hMetis, the

package accepts the .hgr file and outputs a .part.k file which stores the results of the k-way

partitioning.

III-E. Hypergraph to Netlist Reconstruction

After invoking hMetis, we obtain a k-way partition file (.part.k) which lists every hyper-

graph node and which partition (0 to k−1) that the node is assigned to. To reconstruct the

20

k partitioned .vqm netlists, we use the selectively flattened (.vqm) design, the connectivity

lookup (.dat) file, and the hMetis (.part.k) file to generate k .vqm files, each of which is

programmed on to one of the k FPGAs. We create new primary IOs in each .vqm for any

nets cut, when the hyperedge is not fully contained in a single partition. We use k = 2 for

our experiments.

21

CHAPTER IV

RESULTS

We implement our partitioned FPGA-based logic simulation approach as an end-to-

end tool flow which is completely automated using scripts. The hierarchy parser, selective

flattening, hypergraph construction, slack annotation and netlist reconstruction were imple-

mented in Perl [51]. Synthesis and timing analysis were performed using Altera Quartus II

10.1 EDA tools in Tcl [52]. All scripts were implemented and run on a Windows machine

with a 2 GHz Core2 Duo processor with 2GB RAM.

We use hMetis 1.5.3 for partitioning process. As mentioned in Chapter III, we use

a hypergraph representation of the selectively flattened netlist, with weights on the nodes

and edges. The hMetis algorithm uses a random initial placement, and as a result, gives

different results each time it is run. As a result, we make three calls to hMetis, and the best

result among these is selected (both for our algorithm and the reference algorithm which we

use for comparison (this algorithm partitions the completely flattened netlist)). We invoke

hMetis with the options shown in Table IV.1.

Both our algorithm and the completely flattened reference were targeted to a logic

simulation board which hosts 2 Altera Stratix III (EP3SL340F1517) [53] FPGAs. These

FPGA parts contain 135200 ALMs, 13520 LABs, 112 LVDS IOs. The speed of the LVDS

IOs is 1.25 GHz. To calculate the interconnect delay T for every signal that traverses the 2

FPGAs, we use the formula in Equation 4.1.

T = ⌈#edges cut/#avail IOpins⌉∗0.8+(max wire delay∗distance)∗2 (4.1)

The first term of Equation 4.1 is explained as follows. We assume that 50% of the 112

high speed LVDS IO pins are available for connecting the two Stratix FPGAs. As a result,

22

Table IV.1. hMetis Settings Used

Option Value Description

Nparts 2 Number of desired partitions

UBfactor 1 Allowed imbalance between partitions (1%)

Nruns 10 Number of different bisections

Ctype 1 Vertex grouping scheme in coarsening phase

Rtype 1 Refinement policy in uncoarsening phase (FM)

Vcycle 1 Type of V-cycle refinement on bisection step

Reconst 0 Removes cut hyperedges in recursive bisection

#avail IOpins = 56. The rest of the pins are used for control signals in the multi-FPGA

logic simulation platform. Hence the number of available IO pins is fixed before partition-

ing. If the number of hyperedges cut exceeds the number of available IO pins, we time-

division multiplex the signals. Hence the ⌈#edges cut/#avail IOpins⌉ term represents the

required depth of the time division multiplexing. Since the LVDS IO pins operate at 1.25

GHz (0.8 ns clock period), the first term of Equation 4.1 is ⌈#edges cut/#avail IOpins⌉ ∗

0.8.

In addition to the inter-FPGA communication delay, we also incur delay in driving the

cut signals from their driving LUTs to the periphery of the FPGA. This delay is reflected

in the second term of Equation 4.1. To determine max wire delay, which is the maximum

delay for a signal to traverse the FPGA, we assume a square-shaped FPGA, which implies

each side will have
√

13520 rows of LABs. Given an average LAB-to-LAB delay of ap-

proximately 125ps [53], max wire delay will be 14.53ns. We also assume that the distance

a signal travels from a LAB to reach an IO pin is 1/4 of the chip dimension, hence distance

is 1/4. The delay is doubled since the signal is driven from one FPGA and received by the

23

second FPGA.

We validated our approach using multiple benchmark examples from the OpenCores [50]

project. Table IV.2 lists the examples used in our experiments, along with a brief description

and some statistics of each benchmark. To verify the correctness of the partitioned designs,

our benchmark examples were processed through our entire tool flow. For the partitioned

and unpartitioned versions of the design, we verified that both gave identical responses to

a testbench for that design. In order to do this, we had to create a top-level module which

instantiated the 2 partitions generated by the output of the netlist reconstruction step.

In practice, if the design being simulated can fit entirely in one FPGA of our platform,

partitioning is not invoked. Since the focus of this thesis is the partitioning algorithm,

we validate our approach by partitioning various designs, and estimating the speed of the

partitioned design, when it is embedded into the target FPGA platform. In all examples

tested, both partitioned designs fit in the target FPGA used in the platform.

Our approach was compared with a reference algorithm which partitioned the com-

pletely flattened netlist. In the reference algorithm, the netlist is completely flattened up-

front and unit edge weights are used for all hyperedges, but otherwise follows the same

steps as our approach. To compare the logic simulation speedup, both designs were sub-

jected to static timing analysis using the Quartus II TimeQuest Timing Analyzer. For both

approaches, dummy cells with the delay of Equation 4.1 were introduced on each of the cut

nets, to model the delay of inter-FPGA communication. For each example, we compute the

speedup of our approach by computing the ratio of the final clock period (reported by the

timing analyzer) of reference algorithm to that of our selective flattening based partitioning

algorithm, after both designs are ported to the 2-FPGA simulation platform. All runtimes

reported include the time incurred by the entire flow of Figure III.1.

We calculate the geometric mean of the speedup for both the AS and MS based selec-

tive flattening algorithms over 5 examples and present this speedup against the values of p1

24

Table IV.2. Details of Benchmark Examples

No Name Hierarchy Modules File Size LUTs

depth

1 openMPS430 4 18 1.4Mb 2215

2 ac97 top 3 46 1.4Mb 3398

3 can top 3 42 1.6Mb 3114

4 mips core 4 74 2.4Mb 4311

5 oc8051 top 4 24 2.6Mb 5837

6 m1 core 2 6 2.7Mb 5042

7 openfire cpu 3 10 2.7Mb 5630

8 aes cipher top 3 43 2.8Mb 3676

9 pci bridge32 5 139 3.3Mb 6397

10 usbDevice 5 65 5.1Mb 10799

11 spiMaster 4 17 5.9Mb 13606

12 eth top 4 67 6.8Mb 16255

13 vga enh top 4 16 9.2Mb 24384

14 wb conmax top 5 266 11.9Mb 18251

15 xge mac 4 28 12.4Mb 31738

25

and p2 (the threshold multipliers) respectively. We use the geometric mean (GM) instead

of the arithmetic mean, since individual speedup ratios for the different designs were dis-

tributed over a relatively wide range. Figure IV.1 (IV.2) reports the geometric mean of the

speedup (y axis) for the AS (MS) algorithms respectively against the p1 (p2) value used (x

axis). From Figures IV.1 and IV.2, we note that the speedup is poor for both low and high

values of p1 as wells as p2. Good speedup values are obtained for p1 values close to 0.9.

From Figure IV.2, we note that good speedup values are obtained for p2 values near 1.1.

When the threshold multiplier values are too low, the hierarchy of the design is almost flat.

On the other hand, when the threshold multiplier values are high, not enough hierarchy is

exposed to the hMetis. In both these cases, sub-optimal partitioning results are obtained.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.6 0.7 0.8 0.9 1 1.1 1.2

S
p

e
e

d
u

p

Threshold Multiplier

Fig. IV.1. Simulation Speedup of AS for 5 Examples over Flat Algorithm

26

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.6 0.7 0.8 0.9 1 1.1 1.2

S
p

e
e

d
u

p

Threshold Multiplier

Fig. IV.2. Simulation Speedup of MS for 5 Examples over Flat Algorithm

For the hybrid algorithm, we choose p1 and p2 values that independently yield good

performance for the AS and MS algorithms. The chosen values of p1 is thus 0.9 and the

value of p2 is 1.1, based on the results of the 5 examples. We run the hybrid algorithm for

15 examples and report the speedup and runtime for each example. We also computed the

speedup for Z1 and Z2 frontiers by perturbing the Z0 frontier as described in Section III-

B.2.

Table IV.3 provides a detailed reporting of the relative simulation speedup and runtime

of each of the 15 examples, for the hybrid approach (compared to the reference algorithm).

In this table, the relative simulation speedup and the relative runtime are reported for Z0,

27

Table IV.3. Speedup and Runtime of hybrid Algorithm Compared with Fully Flat Algorithm
Example Reference Reference Relative Relative Relative Relative Relative Relative

No Sim. Speed Runtime in Speedup Runtime Speedup Runtime Speedup Runtime

in ns seconds Z0 Z0 Z1 Z1 Z2 Z2

1 62.84 27 1.03 1.59 0.85 1.67 1.00 1.82

2 26.28 54 0.88 1.45 0.88 1.45 0.88 1.45

3 29.96 48 1.00 1.10 1.00 1.47 1.00 1.47

4 37.09 105 1.11 0.59 2.13 0.70 2.13 1.05

5 38.71 78 0.89 0.93 0.89 1.02 1.67 1.08

6 34.84 41 1.05 1.67 1.00 2.19 1.00 2.19

7 37.59 48 0.65 1.59 0.71 1.63 0.76 1.90

8 58.13 58 1.56 1.55 1.52 1.47 1.52 1.47

9 50.55 314 1.79 0.26 1.54 0.38 1.45 0.96

10 28.53 300 0.94 0.29 0.96 0.30 0.93 0.40

11 27.29 218 1.22 0.57 0.79 0.61 0.79 0.93

12 70.80 443 5.56 0.62 2.86 0.67 1.92 1.15

13 39.45 684 4.76 0.28 1.15 1.07 1.15 1.19

14 33.74 1574 7.14 0.29 1.01 0.31 1.00 0.55

15 24.70 675 1.47 0.96 1.47 0.83 1.47 0.86

GM 37.99 150 1.52 0.74 1.15 0.89 1.00 1.13

Z1 and Z2 frontiers. Column 1 presents the example number. Column 2 reports the clock

period on the 2-FPGA platform and Column 3 reports the runtime of the completely flat-

tened (reference) algorithm respectively. Columns 4, 6 and 8 report the relative simulation

speedup and Columns 5, 7 and 9 report the relative algorithmic (for the hybrid algorithm)

runtime for Z0, Z1 and Z2 frontiers respectively.

The runtime is calculated as the sum of hierarchy analysis, selective flattening, parti-

tioning and netlist reconstruction runtimes. Selective flattening includes the slack calcula-

tion and flattening algorithm. Partitioning includes .hgr generation and hMetis runtimes.

For the completely flat reference approach, slack calculation runtime is not included.

We note that our hybrid algorithm gives a healthy simulation speedup for most ex-

amples, with an average speedup of 1.52× for Z0 frontier. A few small examples exhibit

a slowdown, attributed to the fact that in some instances, our algorithm does not expose

enough of the hierarchy to hMetis, resulting in a sub-optimal partition. We also observe

that average runtime for our hybrid Z0 algorithm is 0.74× compared to completely flat

algorithm.

28

We also note that among the three frontiers explored, Z0 yields best simulation speedup

and runtime. Z1 and Z2 exhibit worse simulation speedup compared to Z0 with more run-

time. Z1 achieves an average speedup of 1.15×, with 0.89× runtime compared to the ref-

erence approach. Since the Z2 frontier is yet further flattened, average simulation speedup

achieved is 1, with 1.13× relative runtime compared to the completely flat approach. As a

result, we recommend the hybrid method with Z0 as the frontier of choice for the selective

flattening algorithm.

If we perform no flattening (except the top level module) with unit edge weights, we

mimic the MRFM (module synthesis followed by recursive Fiduccia-Mattheyses) method,

which was the reference method used in [1]. Table IV.4 reports the relative speedup MRFM

method compared to our completely flat reference algorithm. We note that the average

simulation speedup obtained by MRFM (over 15 examples) is 0.90 compared to our com-

pletely flat reference algorithm. Hence, compared to MRFM, our approach gives a speedup

of 1.52/0.90 = 1.69× over the 15 examples, whereas [1] reports a speedup of 1.25× over 6

examples. Hence our method achieves a 35% simulation speedup over [1].

Table IV.5 demonstrates the simulation speedup improvement of the hybrid algorithm

compared to the stand-alone AS and MS algorithms, for the Z0 frontier. The p1 and p2

used for this table are 0.9 and 1.1 respectively. As shown by Table IV.5, the hybrid algo-

rithm on average achieves a 1.52/1.39 = 1.09× improvement over the AS algorithm, and a

1.52/1.19 = 1.28× improvement over the MS algorithm. The reason for this, as indicated

in Section III-B.1.c, is that the AS algorithm does not flatten instances of type {C2} (with

a small AS and large MS values). Similarly the MS algorithm does not flatten instances of

type {C1} (with a large AS and a small MS values). However, the hybrid algorithm can

flatten instances of both types.

29

Table IV.4. Speedup and Runtime of MRFM Algorithm Compared with Fully Flat Algo-

rithm

Example Reference Relative

No Sim. Speed Speedup of MRFM

in ns used in [1]

1 62.84 1.03

2 26.28 0.93

3 29.96 0.84

4 37.09 1.57

5 38.71 0.89

6 34.84 0.74

7 37.59 0.91

8 58.13 0.69

9 50.55 1.54

10 28.53 0.94

11 27.29 1.22

12 70.80 1.21

13 39.45 1.26

14 33.74 0.15

15 24.70 1.00

GM 37.99 0.90

30

Table IV.5. Relative Speedup of hybrid, AS and MS Algorithms Compared with Fully Flat

Algorithm

Example Relative Speedup

No for Z0 frontier

hybrid AS MS

1 1.03 1.03 1.03

2 0.88 0.88 0.91

3 1.00 1.00 1.00

4 1.11 1.11 1.11

5 0.89 0.89 0.89

6 1.05 1.06 0.74

7 0.65 0.66 0.80

8 1.56 1.52 0.96

9 1.79 1.79 1.32

10 0.94 0.94 0.94

11 1.22 1.22 1.22

12 5.56 5.56 5.56

13 4.76 1.27 4.76

14 7.14 7.14 0.61

15 1.47 1.47 1.00

GM 1.52 1.39 1.19

31

CHAPTER V

CONCLUSIONS

In this thesis we have presented a partitioning method for a multi-FPGA based logic

simulator platform. This approach employs a top-down selective flattening of the design

hierarchy, thus avoiding the potential blowup in netlist size. Also, our approach preserves

design hierarchy, thereby resulting in better debuggability. A hierarchical netlist is selec-

tively flattened using a hybrid metric based on the average slack and the minimum slack of

any instance in the hierarchy. Experimental results on a set of examples of various sizes

from the OpenCores benchmark suite demonstrate that our approach obtains an average

speedup of 1.52×, with an average runtime of 0.74× compared to a full flattening based

partitioning approach.

32

REFERENCES

[1] W.-J. Fang and A.-H. Wu, “Performance-driven multi-FPGA partitioning using func-

tional clustering and replication,” in Proc. 35th Design Automation Conference, June

1998, pp. 283 –286.

[2] Y.-C. Lin, S.-F. Tseng, Y.-S. Hung, and T.-M. Hsieh, “Cost minimization of parti-

tioning circuits with complex resource constraints in FPGAs,” in IEEE Asia-Pacific

Conference on Circuits and Systems, 2000, pp. 556 –559.

[3] R. Kuznar, F. Brglez, and B. Zajc, “Multi-way netlist partitioning into heterogeneous

FPGAs and minimization of total device cost and interconnect,” in 31st Conference

on Design Automation, June 1994, pp. 238 – 243.

[4] D. Bhatia and V. Narasimhan, “Simple yet effective replication for FPGA partition-

ing,” in Proc. 7th IEEE International ASIC Conference and Exhibit, Sep. 1994, pp.

152 –155.

[5] F. Vahid, T. D. Le, and Y.-C. Hsu, “A comparison of functional and structural parti-

tioning,” in Proc. 9th International Symposium on System Synthesis, Nov. 1996, pp.

121 –126.

[6] V. Srinivasan, S. Govindarajan, and R. Vemuri, “Fine-grained and coarse-grained be-

havioral partitioning with effective utilization of memory and design space explo-

ration for multi-FPGA architectures,” IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, vol. 9, no. 1, pp. 140 –158, Feb. 2001.

[7] Y.-S. Hung, C.-H. Lee, S.-F. Tseng, and T.-M. Hsieh, “Minimum cost complex re-

source FPGA partition with performance refining,” in 45th Midwest Symposium on

Circuits and Systems, vol. 2, Aug.. 2002, pp. II–107 – II–110 vol.2.

33

[8] D. Pashley, D. Brasen, and G. Saucier, “New partitioning technology permits FPGA

prototypes,” in IEE Colloquium on Fast Prototyping of IC Designs, June 1994, pp.

2/1 –2/6.

[9] C. Kim, H. Shin, and Y. Yu, “Performance-driven circuit partitioning for prototyp-

ing by using multiple FPGA chips,” in Proc. Design Automation Conference, IFIP

International Conference on Hardware Description Languages; IFIP International

Conference on Very Large Scale Integration, Asian and South Pacific, Aug.-1 Sep.

1995, pp. 113 –118.

[10] C. Kim and H. Shin, “A performance-driven logic emulation system: FPGA network

design and performance-driven partitioning,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 15, no. 5, pp. 560 –568, May 1996.

[11] D. Behrens, K. Harbich, and E. Barke, “Hierarchical partitioning,” in Digest of Tech-

nical Papers., IEEE/ACM International Conference on Computer-Aided Design, Nov.

1996, pp. 470 –477.

[12] W. McDermith, “A bottom-up approach to FPGA partitioning,” in Proc. IEEE Custom

Integrated Circuits Conference, May 1992, pp. 5.4.1 –5.4.4.

[13] N.-C. Chou, L.-T. Liu, C.-K. Cheng, W.-J. Dai, and R. Lindelof, “Circuit partitioning

for huge logic emulation systems,” in 31st Conference on Design Automation, June

1994, pp. 244 – 249.

[14] R. Kuznar, F. Brglez, and K. Krzysztof, “Cost minimization of partitions into multiple

devices,” in 30th Conference on Design Automation, June 1993, pp. 315 – 320.

[15] N.-S. Woo and J. Kim, “An efficient method of partitioning circuits for multiple-

FPGA implementation.” in 30th Conference on Design Automation, June 1993, pp.

34

202 – 207.

[16] Z. Marrakchi, H. Mrabet, and H. Mehrez, “Evaluation of hierarchical FPGA parti-

tioning methodologies based on architecture Rent parameter,” in Research in Micro-

electronics and Electronics 2006, Ph. D., 0-0 2006, pp. 85 –88.

[17] D. Brasen, J. Hiol, and G. Saucier, “Finding best cones from random clusters for

FPGA package partitioning,” in Proc. Design Automation Conference, IFIP Interna-

tional Conference on Hardware Description Languages; IFIP International Confer-

ence on Very Large Scale Integration, Asian and South Pacific, Aug.-1 Sep. 1995, pp.

799 –804.

[18] Z. Rongzheng, T. Jiarong, and T. Pushan, “Fpart: a multi-way FPGA partitioning pro-

cedure based on the improved fm algorithm,” in Proc. Design Automation Conference

Asia and South Pacific, Feb. 1998, pp. 513 –518.

[19] G.-M. Wu, J.-M. Lin, and Y.-W. Chang, “Generic ILP-based approaches for time-

multiplexed FPGA partitioning,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 20, no. 10, pp. 1266 –1274, Oct. 2001.

[20] W.-J. Fang and A.-H. Wu, “A hierarchical functional structuring and partitioning ap-

proach for multiple-FPGA implementations,” in Digest of Technical Papers., 1996

IEEE/ACM International Conference on Computer-Aided Design, Nov. 1996, pp. 638

–643.

[21] H. Krupnova, A. Abbara, and G. Saucier, “A hierarchy-driven FPGA partitioning

method,” in Proc. 34th Design Automation Conference, June 1997, pp. 522 –525.

[22] S. Hauck and G. Borriello, “Logic partition orderings for multi-FPGA systems,” in

Proc. 3rd International ACM Symposium on Field-Programmable Gate Arrays, 1995,

35

pp. 32 – 38.

[23] W.-J. Fang and A.-H. Wu, “Multi-way FPGA partitioning by fully exploiting design

hierarchy,” in Proc. 34th Design Automation Conference, June 1997, pp. 518 –521.

[24] D.-H. Huang and A. Kahng, “Multi-way system partitioning into a single type or

multiple types of FPGAs,” in Proc. 3rd International ACM Symposium on Field-

Programmable Gate Arrays, 1995, pp. 140 – 145.

[25] J. Hidalgo, R. Baraglia, R. Perego, J. Lanchares, and F. Tirado, “A parallel compact

genetic algorithm for multi-FPGA partitioning,” in Proc. 9th Euromicro Workshop on

Parallel and Distributed Processing, 2001, pp. 113 –120.

[26] G. Saucier, D. Brasen, and J. Hiol, “Partitioning with cone structures,” in Digest of

Technical Papers., IEEE/ACM International Conference on Computer-Aided Design,

Nov. 1993, pp. 236 –239.

[27] P. Chan, M. Schlag, and J. Zien, “Spectral-based multiway FPGA partitioning,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15,

no. 5, pp. 554 –560, May 1996.

[28] Y.-C. Wei and C.-K. Cheng, “Towards efficient hierarchical designs by ratio cut parti-

tioning,” inDigest of Technical Papers., IEEE International Conference on Computer-

Aided Design, Nov. 1989, pp. 298 –301.

[29] “Performance-driven partitioning using a replication graph approach,” in 32nd Con-

ference on Design Automation, 1995, pp. 206 –210.

[30] R. Burra and D. Bhatia, “Timing driven multi-FPGA board partitioning,” in Proc.

11th International Conference on VLSI Design, Jan. 1998, pp. 234 –237.

36

[31] A. Singla and T. Conte, “Bipartitioning for hybrid FPGA-software simulation,” in

Proc. 9th International Conference on VLSI Design, Jan. 1996, pp. 211 –214.

[32] Y. Cheon and M. Wong, “Design hierarchy-guided multilevel circuit partitioning,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 22, no. 4, pp. 420 – 427, Apr. 2003.

[33] L. Hagen and A. Kahng, “Fast spectral methods for ratio cut partitioning and clus-

tering,” in Digest of Technical Papers., 1991 IEEE International Conference on

Computer-Aided Design, Nov. 1991, pp. 10 –13.

[34] C. Fiduccia and R. Mattheyses, “A linear-time heuristic for improving network parti-

tions,” in 19th Conference on Design Automation, June 1982, pp. 175 –181.

[35] L. Hwang and A. El Gamal, “Min-cut replication in partitioned networks,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14,

no. 1, pp. 96 –106, Jan. 1995.

[36] D. T. Prashant Sawkar, “Multi-way partitioning for minimum delay for look-up table

based FPGAs,” in 32nd Conference on Design Automation, 1995, pp. 201 –205.

[37] S. Harikumer and S. Kumar, “Multiobjective search based algorithms for circuit par-

titioning problem for acceleration of logic simulation,” in Proc. 10th International

Conference on VLSI Design, Jan. 1997, pp. 239 –242.

[38] V. Sankarasubramanian and D. Bhatia, “Multiway partitioner for high performance

FPGA based board architectures,” in Proc. IEEE International Conference on Com-

puter Design: VLSI in Computers and Processors, Oct. 1996, pp. 579 –585.

[39] J. Hwang and A. El Gamal, “Optimal replication for min-cut partitioning,” in

Proc. IEEE/ACM international conference on Computer-aided design, ser. ICCAD

37

’92. Los Alamitos, CA, USA: IEEE Computer Society Press, 1992, pp. 432–435.

[Online]. Available: http://dl.acm.org/citation.cfm?id=304032.304148

[40] L.-T. Liu, M.-T. Kuo, C.-K. Cheng, and T. Hu, “A replication cut for two-way par-

titioning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 14, no. 5, pp. 623 –630, May 1995.

[41] K. Roy and C. Sechen, “A timing driven n-way chip and multi-chip partitioner,” in Di-

gest of Technical Papers., IEEE/ACM International Conference on Computer-Aided

Design, Nov. 1993, pp. 240 –247.

[42] S. Dutt and W. Deng, “VLSI circuit partitioning by cluster-removal using iterative

improvement techniques,” in Digest of Technical Papers., IEEE/ACM International

Conference on Computer-Aided Design, Nov. 1996, pp. 194 –200.

[43] D. Brasen and G. Saucier, “FPGA partitioning for critical paths,” in Proc. European

Event in ASIC Design, European Design and Test Conference, The European Con-

ference on Design Automation, European Test Conference, Feb.-3 Mar. 1994, pp. 99

–103.

[44] K. Roy-Neogi and C. Sechen, “Multiple FPGA partitioning with performance opti-

mization,” in Proc. 3rd International ACM Symposium on Field-Programmable Gate

Arrays, 1995, pp. 146 – 152.

[45] R. Murgai, R. Brayton, and A. Sangiovanni-Vincentelli, “On clustering for mini-

mum delay/area,” in Digest of Technical Papers., IEEE International Conference on

Computer-Aided Design, Nov. 1991, pp. 6 –9.

[46] L.-T. Liu, M. Shih, N.-C. Chou, C.-K. Cheng, and W. Ku, “Performance-driven par-

titioning using retiming and replication,” in Digest of Technical Papers., IEEE/ACM

38

International Conference on Computer-Aided Design, Nov. 1993, pp. 296 –299.

[47] D. Brasen and G. Saucier, “Using cone structures for circuit partitioning into FPGA

packages,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 17, no. 7, pp. 592 –600, July 1998.

[48] Y. Choi, Y. S. Jeong, and C. Rim, “A topology-based multi-way circuit partition for

ASIC prototyping,” in IEEE 39th Midwest symposium on Circuits and Systems, vol. 1,

Aug. 1996, pp. 357 –360 vol.1.

[49] G. Karypis and V. Kumar, A Software package for Partitioning Unstructured Graphs,

Partitioning Meshes and Computing Fill-Reducing Orderings of Sparse Matrices,

http://www-users.cs.umn.edu/∼karypis/metis, Sep. 1998.

[50] “The OpenCores project,” http://www.opencores.org.

[51] “The Perl programming language,” http://www.perl.org.

[52] “The Tcl developer site,” http://www.tcl.tk.

[53] Stratix III Device Handbook, http://www.altera.com/literature/hb/stx3/

stratix3 handbook.pdf, Mar. 2011.

39

VITA

Subramanian Poothamkurissi Swaminathan received his B. Tech degree in electrical

engineering from the National Institute of Technology (NIT) Trichy, India in 2010. His

undergraduate research focused on control strategies for power conversion in wind turbine

systems. He joined Texas A&M University in August 2010 to pursue his master’s degree

in computer engineering. He worked as a Design Engineer Intern at Intersil for 6 months

in 2011. His current research interests include FPGA partitioning and algorithms.

Subramanian Poothamkurissi Swaminathan may be reached at:

102 WERC,

Texas A&M University,

College Station, TX-77843

e-mail: subramanianps@neo.tamu.edu

