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ABSTRACT 

 

Applications of Level Set and Fast Marching Methods in Reservoir Characterization. 

(August 2012) 

Jiang Xie, B.S., University of Science and Technology of China, Hefei, China; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee, Dr. Akhil Datta-Gupta 

                                                             Dr. Yalchin R. Efendiev 

 

Reservoir characterization is one of the most important problems in petroleum 

engineering. It involves forward reservoir modeling that predicts the fluid behavior in 

the reservoir and inverse problem that calibrates created reservoir models with given 

data. In this dissertation, we focus on two problems in the field of reservoir 

characterization: depth of investigation in heterogeneous reservoirs, and history 

matching and uncertainty quantification of channelized reservoirs.  

 

The concept of depth of investigation is fundamental to well test analysis.  Much of the 

current well test analysis relies on analytical solutions based on homogeneous or layered 

reservoirs. However, such analytic solutions are severely limited for heterogeneous and 

fractured reservoirs, particularly for unconventional reservoirs with multistage hydraulic 

fractures. We first generalize the concept to heterogeneous reservoirs and provide an 

efficient tool to calculate drainage volume using fast marching methods and estimate 

pressure depletion based on geometric pressure approximation. The applicability of 
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proposed method is illustrated using two applications in unconventional reservoirs 

including flow regime visualization and stimulated reservoir volume estimation.  

 

Due to high permeability contrast and non-Gaussianity of channelized permeability field, 

it is difficult to history match and quantify uncertainty of channelized reservoirs using 

traditional approaches. We treat facies boundaries as level set functions and solve the 

moving boundary problem (history matching) with the level set equation. In addition to 

level set methods, we also exploit the problem using pixel based approach. The 

reversible jump Markov Chain Monte Carlo approach is utilized to search the parameter 

space with flexible dimensions. Both proposed approaches are demonstrated with two 

and three dimensional examples.  
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NOMENCLATURE 

 

   = Zero order pressure amplitude in Fourier domain 

 ( ) = Surface area, ft
2 

   = EPA compaction factor, psi
-1

 

   = Fracture compaction factor, psi
-1

 

   = Matrix compaction factor, psi
-1

 

   = Total compressibility, psi
-1 

     = Observation data 

 ( ) = Reservoir simulation model 

  = Permeability, mD 

   = EPA permeability, mD 

   = Fracture permeability, mD 

   = Matrix permeability, mD 

  = Pressure, psi 

 ̃ = Pressure in Fourier domain 

 ̅ = Average pressure inside drainage volume, psi 

 ( ) = Probability distribution function 

   = Pressure drop, psi 

    = Pressure derivative, psi/day 

  = Darcy flux, bbl/day 
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   = Well rate, bbl/day 

 ( |  ) = Transitional probability 

  = Radius, ft 

  = Time, day 

 ( ) = Velocity function in level set equation 

   = Pore volume 

    = Fracture 1 half long axis 

    = Fracture 2 half long axis 

    = Fracture 3 half long axis 

    = Fracture 4 half long axis 

  = Space, ft 

 ( ) = Hydraulic diffusivity 

  = Viscosity, cp
-1

 

 ( ) = Posterior distribution function 

 (   ) = Probability to accept a proposal 

 ( ) = Diffusive time of flight 

 ( ) = Porosity, % 

  = Level set function 

   = Initial facies function 

   = Updated level set function 

  = Frequency in Fourier domain 
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1 CHAPTER I 

INTRODUCTION AND STUDY OBJECTIVES 

 

1.1 Introduction 

In this dissertation, we focus on two problems in petroleum reservoir characterization: 

depth of investigation and drainage volume calculation in unconventional wells, history 

matching and uncertainty quantification of channelized reservoirs. After that, we will 

discuss the well-known numerical techniques in mathematics – the level set and fast 

marching methods and explore the way to solve petroleum reservoir problems using the 

numerical techniques.   

1.1.1 Depth of Investigation 

Unconventional resources are playing an increasingly important role in energy supply 

worldwide, especially in the United States. To estimate reservoir properties and optimize 

hydraulic fracture design in unconventional reservoirs, well test analysis (pressure 

transient and rate transient analysis) is widely used (Gringarten 1984, 2010; Ehlig-

Economides 1992). The concept of radius of investigation (Lee 1982; Raghavan 1993) is 

fundamental to well test analysis and is routinely used to design well tests and to 

understand the reservoir volume investigated. The radius of investigation can also be 

useful in identifying new well locations (Kang et al. 2011) and planning, designing and 

____________ 
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optimizing hydraulic fractures in unconventional reservoirs (Sehbi et al. 2011). It has 

additional implications in estimating reserves and understanding stimulated reservoir 

volumes. There are many definitions of radius of investigation in the literature and 

Kuchuk (2009) summarized them recently. Although these definitions vary in detail, 

they all relate to the propagation of a pressure disturbance or impose thresholds on 

detectable pressure or rate changes. In this work we will focus on the definition proposed 

by Lee (1982). Lee defines the radius of investigation as the propagation distance of the 

‘peak’ pressure disturbance for an impulse source or sink.  For simplified flow 

geometries and homogeneous reservoir conditions, the radius of investigation can be 

calculated analytically. However, such analytic solutions are severely limited for 

heterogeneous and fractured reservoirs, particularly for unconventional reservoirs with 

multistage hydraulic fractures. Thus, the purpose of this work is to generalize the 

concept of radius of investigation to depth of investigation to account for reservoir 

heterogeneity and efficiently estimate drainage volume and pressure depletion behavior. 

1.1.2 History Matching of Channelized Reservoirs 

Subsurface is complex geological formation encompassing a wide range of physical and 

chemical heterogeneities. The goal of stochastic models is to characterize its different 

attributes such as permeability, porosity, fluid saturation etc. Flow in the subsurface is 

primarily controlled by the connectivity of the extreme permeability (high and low) 

which is generally associated with geological patterns that create preferential flow 

paths/barriers. 
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In many geologic environments, the distribution of subsurface properties is closely 

associated with the location and distribution of distinct geologic facies with sharp 

contrasts in properties across facies boundaries (Weber 1982). For example in a fluvial 

setting, high permeability channel sands are often embedded in a nearly impermeable 

background causing the dominant fluid movement to be restricted within these channels. 

Under such conditions, the orientation of the channels and channel geometry determine 

the flow behavior in the subsurface rather than the detailed variations in properties 

within the channels. Traditional geostatistical techniques for subsurface characterization 

have typically relied on variograms that are unable to reproduce the channel geometry 

and the facies architecture (Haldorsen and Damsleth 1990; Koltermann and Gorelick 

1996; Dubrule 1998). Discrete Boolean or object-based models can reproduce 

geologically realistic shapes and have been successfully used to model fluid flow and 

transport in many fluvial type environments (Egeland et al. 1993). The success of these 

object-based models, however, is heavily dependent on the parameters to specify the 

object size, shapes, proportion and orientation. Typically, these parameters are highly 

uncertain, particularly in the early stages of subsurface characterization (Dubrule 1998; 

Caumon et al. 2004). For example, in a channel type environment, the channel sands 

may be observed at only a few well locations. There are many plausible channel 

geometries that will satisfy the channel sand and well intersections. Thus, the stochastic 

models for channels will require specification of random variables that govern the 

channel principal direction, its horizontal and vertical sinuosity, channel width to 

thickness ratio etc. All these parameters have considerable uncertainty associated with 
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them and will profoundly impact fluid flow in the subsurface.  

 

A considerable amount of prior information is typically available for building the facies 

models for fluid flow simulation (Weber 1982). These include well logs and cores, 

seismic data and geologic conceptualization based on outcrops and analogues. Although 

the prior information play a vital role in reducing uncertainty and preserving geologic 

realism, it is imperative that the geologic models reproduce the dynamic response based 

on the flow and transport data. These include pressure measurements at the wells, tracer 

concentration histories and in the case of multiphase flow, the production of individual 

phases at the wells. The reproduction of dynamic data is a necessary step to have 

credibility in our geologic and flow modeling and confidence in any performance 

forecasting.  

 

The representation and history matching of channelized reservoirs are challenging 

because of the difficulties to reproduce the large-scale continuity of the channel structure 

and identify the channel geometry and its orientation. The traditional two-point 

geostatistical techniques for reservoir characterization are unable to reproduce the 

channel geometry and the facies architecture (Haldorsen and Damsleth 1990; 

Koltermann and Gorelick 1996; Dubrule 1998). As an alternative, object-based 

modeling (Deutsch and Wang 1996) and more recently, multi-point geostatistical 

methods (Caers and Zhang 2004; Strebelle and Journel 2001) have been used to 

represent the channel structure for dynamic data history matching. The object-based 
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modeling is dependent on the parameters to specify the object size, shape, and 

orientation. The method is usually limited to simple channel geometry and it can be 

difficult to condition the generated objects to dynamic production data and well 

observations. The multi-point geostatistical methods use training images to generate 

geologic realizations conditioned to the well observations. However, the success of the 

multi-point geostatistical methods depends on the appropriate selection of the training 

image.  

1.2 Level Set and Fast Marching Methods 

Level Set and Fast Marching Methods are two fundamental numerical techniques that 

can track the evolution of interfaces (Sethian and Vladimirsky 2000). They have been 

applied to many disciplines, such as computational geometry, medical imaging, 

optimization, computational fluid dynamics, and seismic analysis. These two techniques 

are different, but complementary to each other. 

 

Fast Marching Method is an extremely efficient method introduced by Sethian (1999) to 

solve Eikonal equation, Eq. (1.2), while Level Set Method (Osher and Sethian 1988; 

Osher and Fedkiw 2002) solves a more general equation called level set equation, Eq. 

(1.1). The following are two equations with their initial conditions. 

 

   (   )

  
  ( )    (   )    (1.1) 
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Initial condition:  (     )   ( ) 

 

  ( )|  ( )|    (1.2) 

 

Initial condition:  | ( )     

 

In level set equation,  (   ) denotes the level set function,  ( ) is velocity vector. The 

level set equation can be obtained by taking derivative of  (   ) with respect to time 

and adding definition  ( )      ⁄ . 

 

In Eikonal equation,  ( ) is the arrival time of the front propagation ( (     )   ) 

and  ( ) is velocity scalar and can be defined as 

 

 ( )   ( )     ( )    (   ) |  (   )|⁄ . 

 

Both techniques are designed to track the front propagation and the difference is that 

velocity function  ( ) in Eikonal equation is always non negative, which ensures the 

front always moves forward or backward. Thus, the fast marching problem can be 

converted to a stationary formulation and solved very efficiently because the front 

crosses each grid block only once. However, the velocity function  ( ) in level set 

equation can be positive and negative at different locations. So the front can move 

forward and backward at different locations. Therefore, Level Set Method solves a more 
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general equation, but significantly slower compared to Fast Marching Method. 

1.3 Applications in Reservoir Characterization 

In recent year, Level Set and Fast Marching Methods attract a lot attention when Fast 

Marching Method was successfully used in geophysics to estimate seismic velocity and 

travel time computation (Popovici and Sethian 1998; Sun and Fomel 1998; Karrenbach 

2000; Cameron et al. 2006). In the area of reservoir characterization, Karlsen et al. 

(2000) first presented a fast marching level set method for reservoir simulation based on 

fractional flow formulation of two-phase, incompressible, immiscible flow. Lie and 

Juanes (2005) presented a numerical simulation of first-contact miscible gas injection 

using a front-tracking method. They assumed that the injection gas and the residual oil 

mix in all proportions to form a single hydrocarbon phase. Prodanovic et al. (2010) 

investigated the flow between fracture and adjacent matrix using a level set method for 

drainage and imbibition. Their progressive quasi-static (PQS) algorithm based on the 

level set method finds detailed, pore-level fluid configurations satisfying the Young-

Laplace equation at a series of prescribed capillary pressures. The method automatically 

handles topological changes of the fluid volumes as capillary pressure varies.  

 

More specifically, one advantage of the level set method is that it is very easy to perform 

computations involving curves and surfaces, which is a good fit for reservoir modeling 

and history matching of channelized systems. Recently, level set approaches have been 

applied to reservoir modeling and history matching to preserve channel structure. 
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Mondal et al. (2010) focused on parameterizing channel structure with a few points on 

channel boundaries. By perturbing those points, they can update channel boundary and 

alter the channel structure. A reversible jump Markov Chain Monte Carlo approach with 

varying parameter dimension is applied to automatically update channel boundary by 

adding, removing or perturbing those points on the channel boundary. Nielsen et al. 

(2009) treated permeability field as a binary level set function and update the level set 

function with gradient based method. The gradient is given by using adjoint method in a 

reservoir simulator. Dorn and Villegas (2008) presented a level set technique for shape 

reconstruction in history matching for reservoirs with two or more lithofacies. They 

started using sequential Gaussian simulation for the initial guesses of the lithofacies, and 

then apply level set based shape reconstruction algorithm for history matching problem 

in reservoir characterization. Chang et al. (2010) used the level set function values at 

part of the grid nodes directly in Ensemble Kalman Filter updating. The level set 

function values at other nodes are obtained by numerical interpolation. By updating the 

level set function values, they are able to update channel reservoirs. Instead of updating 

the facies fields directly, Moreno et al. (2008) and Lorentzen et al. (2012) transformed 

the facies field into a signed distance function and updated the velocity field in level set 

equation by Ensemble Kalman Filter.  

1.4 Dissertation Outline 

The structure of this dissertation is as follows: 

In chapter II, we first generalize the concept of radius of investigation to depth of 
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investigation to account for reservoir heterogeneity. The proposed approach is based on 

an asymptotic solution of the diffusion equation in heterogeneous reservoirs. 

Considering zero order term of the frequency in the solution, we obtain the Eikonal 

equation that generalizes the depth of investigation for heterogeneous reservoirs and 

provides a convenient and efficient way to calculate drainage volume. From drainage 

volume calculations, we estimate a generalized pressure solution based on a geometric 

approximation of the drainage volume. A major advantage of our approach is that the 

Eikonal equation can be solved very efficiently using a class of front tracking methods 

called the Fast Marching Methods (FMM). Thus, transient pressure response can be 

obtained in multimillion cell geologic models in seconds without resorting to reservoir 

simulators. To illustrate the applicability of the proposed approach, two examples are 

presented: a) visualization of depth of investigation and identification of flow regimes 

for both homogeneous and heterogeneous reservoirs with multi-stage transverse 

fractures; b) stimulated reservoir volume estimation for improved history matching of 

shale gas reservoirs. The computation is orders of magnitude faster than conventional 

numerical simulation and provides a foundation for future work in reservoir 

characterization and field development optimization. 

 

In chapter III, we present a method for history matching and uncertainty quantification 

for channelized reservoir models using Level Set Method (LSM) and Markov Chain 

Monte Carlo (MCMC) method. Our objective is to efficiently sample realizations of the 

channelized permeability fields conditioned to the production data and facies 
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observation at the wells. In our approach, the channel field boundary is first described by 

a level set function, e.g., a signed distance function or any other indicator function. By 

solving the level set equation (motion in a prescribed direction), we are able to gradually 

move the channel boundaries and evolve the channelized reservoir properties by 

perturbing the velocity field. Our approach allows representing facies via a 

parameterization of the velocity field that deforms the interface. Thus facies can be 

parameterized in the space of smooth velocity fields. The dimension reduction can be 

achieved for covariance-based velocity fields by re-parameterizing with SVD techniques. 

After parameterization, Markov Chain Monte Carlo method is utilized to perturb the 

coefficients of principal components of velocity field to update channel reservoir model 

matching production history. One advantage of this approach is that it is easy to 

condition the channel model to the facies observations at well locations by constraining 

the random velocity field to zero at well locations. To speed up the computation and 

improve the acceptance rate of the MCMC algorithm, we employ two stage methods 

where coarse-scale simulations are used to screen out the undesired proposals. The 

MCMC algorithms naturally provide multiple realizations of the permeability field 

conditioned to well and production data and thus, allow for uncertainty assessment in the 

forecasting. We demonstrate the effectiveness of the level set MCMC algorithm using 

both 2D and 3D examples involving water-flooding history matching. 

 

In chapter IV, we presented a different approach for history matching and uncertainty 

quantification for channelized reservoirs using Reversible Jump Markov Chain Monte 
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Carlo (RJMCMC) methods. Our objective is to efficiently sample realizations of 

channelized permeability fields conditioned to production data and permeability values 

at the wells. In our approach, the channelized permeability field is parameterized using 

the Discrete Cosine Transform (DCT). The parameters representing the channel structure 

are the coefficients in truncated frequency domain. The parameter space is searched 

using a RJMCMC, where the dimension of the parameter space is assumed to be 

unknown. For each step of the RJMCMC, the dimension of the uncertainty space can be 

increased or decreased according to a prescribed prior distribution. This flexibility in the 

parameter dimension allows an efficient search of the uncertainty space. To speed up the 

computation and improve the acceptance rate of the RJMCMC algorithm, we employ 

two-stage methods whereby coarse-scale simulations are used to screen out the 

undesired proposals. After simulations, multi-dimensional scaling and cluster analysis 

are used to select realizations from the accepted models to adequately represent the 

diversity of the models. We demonstrate the effectiveness of the RJMCMC algorithm 

using both 2D and 3D examples involving water-flooding history matching. The 2-D 

example shows that the RJMCMC algorithm appears to successfully match the data and 

identify the orientation of the channels in the reference model. The 3-D results show that 

the proposed algorithm may determine the large-scale features of the reference 

channelized permeability field based on the production data. 
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2 CHAPTER II 

DEPTH OF INVESTIGATION AND DEPLETION BEHAVIOR IN 

UNCONVENTIONAL RESERVOIRS USING FAST MARCHING 

METHODS
*
 

 

The concept of depth of investigation is fundamental to well test analysis.  Much of the 

current well test analysis relies on solutions based on homogeneous or layered 

reservoirs. Well test analysis in spatially heterogeneous reservoirs is complicated by the 

fact that Green’s function for heterogeneous reservoirs is difficult to obtain analytically 

(Deng and Horne 1993). In this chapter, we introduce a novel approach for computing 

the depth of investigation and pressure response in spatially heterogeneous and fractured 

reservoirs. 

 

In our approach, we first present an asymptotic solution of the diffusion equation in 

heterogeneous reservoirs. Considering terms of highest frequencies in the solution, we 

obtain two equations: the Eikonal equation that governs the propagation of a pressure 

‘front’ and the transport equation that describes the pressure amplitude as a function of 

space and time.  The Eikonal equation generalizes the depth of investigation for 

heterogeneous reservoirs and provides a convenient way to calculate drainage volume. 

From drainage volume calculations, we estimate a generalized pressure solution based 

                                                 
*
 Reproduced with permission from “Depth of Investigation and Depletion Behavior in Unconventional 

Reservoirs Using Fast Marching Methods” by Xie, J., Gupta, N., King, M. J. and Datta-Gupta, A. 2012. 

Paper SPE 154532 presented at SPE Europec/EAGE Annual Conference, Copenhagen, Denmark, 4-7 

June. Copyright 2012 by Society of Petroleum Engineers. 
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on a geometric approximation of the drainage volume. A major advantage of our 

approach is that the Eikonal equation can be solved very efficiently using a class of front 

tracking methods called the Fast Marching Methods (FMM). Thus, transient pressure 

response can be obtained in multimillion cell geologic models in seconds without 

resorting to reservoir simulators. 

 

We first visualize depth of investigation and pressure solution for a homogeneous 

reservoir with multi-stage transverse fractures and identify flow regimes from pressure 

diagnostic plot. And then, we apply the technique to a heterogeneous reservoir to predict 

depth of investigation and pressure behavior. The computation is orders of magnitude 

faster than conventional numerical simulation and provides a foundation for future work 

in reservoir characterization and field development optimization. 

2.1 Introduction 

Unconventional resources are playing an increasingly important role in energy supply 

worldwide, especially in the United States. To estimate reservoir properties and optimize 

hydraulic fracture design in unconventional reservoirs, well test analysis (pressure 

transient and rate transient analysis) is widely used. In the area of well test analysis 

(Gringarten 1984, 2010; Ehlig-Economides 1992), the concepts of radius of 

investigation (Lee 1982; Raghavan 1993) and depth of investigation (Datta-Gupta et al. 

2011) are fundamental to estimate reserves, understand drainage volume and identify 

infill drilling location (Kang et al. 2011). These concepts can also be used in 
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unconventional reservoirs to help planning horizontal well, optimizing multi-stage 

hydraulic fractures (Sehbi et al. 2011), and understanding stimulated reservoir volume 

(Yin et al. 2011). Kuchuk (2009) recently summarized several definitions of radius of 

investigation. Most of them rely on analytical solutions based on homogeneous or 

layered reservoirs. However, these analytical solutions have limited applicability and are 

difficult to generalize to arbitrary reservoir conditions and well locations. 

 

In addition to the depth of investigation, it is important to understand the pressure 

depletion behavior and flow regimes in unconventional reservoirs because of the 

widespread use of hydraulic fracture technology to increase production rates. In practice, 

by characterizing flow regimes for multistage hydraulic fracture systems, we can 

optimize the fracture stages. In tight gas reservoirs, Lee and Hopkins (1994) and 

Holditch (2006) showed flow regimes for a vertical well with hydraulic fracture. In shale 

gas reservoirs, Al-Kobaisi et al. (2006), Bello and Wattenbarger (2010), Clarkson et al. 

(2009) and Freeman et al. (2009) analyzed flow regimes for multi-stage transverse 

fractures. Al-Kobaisi et al. (2006) identified a pseudo-radial flow regime for a finite 

conductivity fracture system. Song et al. (2011) summarized flow regimes for multi-

stage hydraulic fractures. 

 

The objectives of this work are threefold: first, we propose a method to calculate the 

depth of investigation and drainage volume in unconventional reservoirs using fast 

marching methods; second, we propose geometric pressure solution based on drainage 
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volume calculation to predict pressure depletion behavior in unconventional reservoirs; 

finally, we apply the proposed approach to both homogeneous and heterogeneous 

reservoirs to visualize depth of investigation and identify flow regimes from pressure 

diagnostic plots. 

2.2 Methodology 

In this section, we first generalize the concept of depth of investigation to heterogeneous 

reservoirs and introduce the Eikonal equation to solve the diffusive time of flight by 

comparing to homogeneous reservoirs  

2.2.1 Generalization of Depth of Investigation 

Our concept of depth of investigation relies on the definition of radius of investigation 

given by Lee (1982). Lee defines the radius of investigation as the propagation distance 

of a ‘peak’ pressure disturbance for an impulse source or sink. For simplified flow 

geometries and homogeneous reservoir conditions, the radius of investigation can be 

calculated analytically. For example, we could write analytical solutions of radius of 

investigation for different flow patterns: 

 

 
  √    (2.1) 

 

where,   and   are propagation distance and time of the pressure front and alpha is 

hydraulic diffusivity defined as        ⁄ . Moreover,   denotes different constants 

for different flow patterns. For example, for linear flow, c = 2, for radial flow, c = 4 and 
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for spherical flow, c = 6. However, such analytic solutions are severely limited for 

heterogeneous and fractured reservoirs, particularly for unconventional reservoirs with 

multistage hydraulic fractures. 

 

To generalize the concept to heterogeneous reservoirs, we first introduce a variable 

called diffusive time of flight (TOF)  . Since pressure front propagation has the scale 

behavior of square root of time, we define the diffusive TOF as  

 

 
  √   (2.2) 

 

Combining Eq. (2.1) and Eq. (2.2), we have 

 

 
  √  ,      and      

  

  
 

 

√ 
 (2.3) 

 

Considering one dimensional problem with reservoir heterogeneity, hydraulic diffusivity 

now is a function of location. We can integrate Eq. (2.3) along the path to calculate 

diffusive time of flight: 

 

 ( )  ∫
 

√ ( )
  

 

 

 

For two or three dimensional problems with reservoir heterogeneity, Eq. (2.3) can be 

written as 
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 √ ( )|  ( )|    (2.4) 

 

This equation describes the propagation of the pressure front and is called Eikonal 

equation in mathematics. From a different point of view, we could also introduce the 

propagation equation for pressure front and concept of diffusive time of flight using 

asymptotic ray theory. 

2.2.2 Asymptotic Solution of Diffusivity Equation 

The asymptotic method has been widely used in various disciplines such as optical, 

medical and geophysical imaging (Virieux et al. 1994). Our approach draws upon an 

analogy between a propagating pressure ‘front’ and a propagating wave front, and many 

of the concepts such as rays and propagating fronts have their counterparts in petroleum 

engineering (Datta-Gupta and King, 2007). Specifically, a high frequency asymptotic 

solution of the diffusivity equation for an impulse source or sink is given by Vasco et al. 

(2000). Here, we revisit the asymptotic solution with an emphasis on the Eikonal 

equation, which governs the pressure ‘front’ propagation. 

 

Our goal here is to find a solution to the diffusive pressure equation that mimics the one 

found in the wave propagation phenomena. The transient pressure response in a 

heterogeneous permeable medium is governed by the well-known diffusivity equation, 

 

 
 ( )   

  (   )

  
   ( ( )  (   )) (2.5) 

In Eq. (2.5) ,  (   ) represents pressure;  ( ) denotes porosity;  ( )  denotes 
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permeability;   and    represent fluid viscosity and total compressibility, respectively. A 

Fourier transform of Eq. (2.5) results in the following equation in the frequency domain. 

 

 
 ( )   (   ) ̃(   )   ( )   ̃(   )    ( )    ̃(   ) (2.6) 

 

Asymptotic approach follows if we consider a solution in terms of inverse powers 

of  √   , 

 

 
 ̃(   )    √    ( ) ∑

  ( )

(√   ) 

 

   

 (2.7) 

 

where,  ( ) is the propagation time of the pressure ‘front’ (also called ‘diffusive time of 

flight’) and   ( ) is pressure amplitude at k-th order. 

 

A solution of the above form can be interpreted on physical grounds based on the scaling 

behavior of diffusive flow. Such asymptotic solutions have been applied to 

electromagnetic imaging, for example, to the ‘telegraph equation’ which can be 

considered an extension of the wave equation with an extra diffusive term (Kline and 

Kay 1965). Again, the high frequency solution is given by the initial terms of the 

asymptotic series and will correspond to the propagation of a ‘pressure front’. We, 

therefore, consider a solution of the form: 

 

  ̃(   )    ( ) 
 √    ( ) (2.8) 
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Inserting Eq. (2.8) into Eq. (2.6) and collecting terms of the highest order in √   , that 

is (√   )
 
 results in the following equation for the propagating front, 

 

 
√ ( )|  ( )|    (2.9) 

 

where  ( ) is the diffusivity and is given by 

 

 
 ( )  

 ( )

 ( )   
 (2.10) 

 

Eq. (2.9) simply tells us that the pressure ‘front’ propagates in the reservoir with a 

velocity given by the square root of diffusivity. Also, diffusive time of flight,  ( ) has 

unit of square root of time which is consistent with scaling behavior of pressure 

diffusion. The pressure ‘front’ propagation depends on reservoir and fluid properties and 

is independent of flow rate. Also, it has unit of square root of time which is consistent 

with the scaling behavior of pressure diffusion. In fact,  ( ) is related to physical time 

through a simple expression of the form  ( )    ( )   where the pre-factor depends 

on the specific flow geometry (Kim et al. 2009). For example, for linear flow, c = 2, for 

radial flow, c = 4 and for spherical flow, c = 6. 

2.2.3 Drainage Volume Calculation Using the Fast Marching Methods 

The pressure ‘front’ equation, Eq. (2.9) is a form of the Eikonal equation which can be 

solved very efficiently using a class of front tracking methods called the Fast Marching 
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Methods (Sethian 1999). We illustrate the method on rectangular orthogonal mesh, 

where finite difference approximation could be used to calculate the gradient. 

Considering Eq. (2.9), we start with discretizing the Eikonal equation on 2-D rectangular 

grids: 

 

 
   (   

        
     )

 
    (   

  
      

  
   )

 
   ⁄  (2.11) 

 

where, D is gradient approximated with 1
st
 order upwind finite difference scheme. In x 

direction,    
    (           )   ⁄ ,    

    (           )   ⁄ . The same holds in y 

direction,    
  

  (           )   ⁄ ,    
  

  (           )   ⁄ . The discretization 

results in a quadratic function of  ( ) which can be solved very efficiently. 

 

The calculation is illustrated as follows. Suppose the pressure front is coming from 

points C and D in Figure 2.1, the diffusive TOF at points C and D are known as    and 

  . And we want to calculate diffusive TOF at the center black point based on five point 

approximation. Eq. (2.11) can be rewritten as 

 

(
    

  
)

 

 (
    

  
)
 

 
 

 
 

 Hence, diffusive TOF could be expressed as a quadratic function and solved very 

efficiently: 
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Figure 2.1 Illustration of two dimensional order upwind finite difference calculation 

 

The key to the Fast Marching Methods lies in the observation that the upwind 

approximation possesses a specific causality relationship. By ‘causality’, we mean that 

the solution of Eq. (2.11) at each node depends only on the smaller adjacent values. 

Thus, we need to solve Eq. (2.11) concurrently in the order of increasing values of   

(Sethian and Vladimirsky 2000). 

 

To illustrate the FMM, let us look at Figure 2.2. We first label well location as 

‘accepted’ point (   = 0) shown in Figure 2.2a. Its adjacent nodes are labeled as 

‘neighbor’ points shown in Figure 2.2b and the rest nodes are called ‘far-away’ points. 

Now we can iterate to calculate diffusive time of flight at each point. The detailed 

procedure is as follows: 

1. Start from ‘accepted’ point in black, 
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2. Calculate diffusive time of flight for all ‘neighbor’ points (A, B, C, D) using 

finite difference approximation, 

3. Pick the minimum one in current ‘neighbor’ points, 

a. Label it as ‘accepted’ (point A in Figure 2.2c), 

b. Add its neighbors that are in ‘far-away’ as ‘neighbor’ (points E, F, G in 

Figure 2.2d), 

4. Repeat step 2 and 3 until all the points in the domain are labeled as ‘accepted’.  

 

 

Figure 2.2 Illustration of fast marching methods 

 

We illustrate the drainage volume calculation using fast marching methods with a 

heterogeneous permeability field in Figure 2.3a. Given the reservoir and fluid properties 

and the well configuration, we can solve the Eikonal equation using FMM. The result of 

FMM, the diffusive time of flight, is converted into physical time map which gives the 
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depth of investigation shown in Figure 2.3b. Furthermore, by contouring a specific time 

and summing up the pore volume inside the contour, we can obtain drainage volume at 

different times which leads to Figure 2.3c. More importantly, it takes only seconds to 

obtain these results.  

 

Figure 2.3 Depth of investigation and drainage volume calculation for a 2-D example: a) 

permeability in logarithm scale, b) time in logarithm scale, and c) drainage volume plot 

 

Unconventional reservoirs, such as tight gas and shale gas reservoirs, involve complex 

interactions between pressure depletion, reservoir heterogeneity and well geometry. The 
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fast marching methods can be used as a fast tool to compute pressure ‘front’ propagation 

and visualize drainage volume in unconventional reservoirs. The drainage volume 

computed from the FMM can also be used to construct a geometric pressure solution for 

heterogeneous medium as discussed below. 

2.2.4 Geometric Pressure Solution Based on the Drainage Volume 

To introduce the geometric approximation to the pressure solution based upon the 

drainage volume, we must first express the diffusivity equation in a mixed form by 

introducing the Darcy flux, Q. Specifically, for radially symmetric flow we have: 
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Thus we could write, 

 

 
 ( )   

  

  
 

  

  
 (2.12) 

 

Here,  ( )      ,   √     , is the surface area for cylindrical radial flow, and 

similarly,  ( )      ,   √        , is the surface area for spherical radial flow, 

and  ( ) is a constant,   | |, for linear flow. The sign convention we are using has 

     for a producer, and Q is the inwardly directed flux. In addition, we could also 
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write pore volume as a function of the surface area and porosity: 

 

   ( )    ( )   

 

Expressed in terms of the pore volume, Eq. (2.12) becomes: 

 

 
  

  

  
 

  

   
 (2.13) 

 

The geometric approximation for the pressure solution is obtained from the following 

two approximations: 

 The Darcy flux is negligible beyond the drainage volume. In other words, the 

drainage volume acts as a moving no flow boundary. 

 

{
        ( )

        
 

 

 Within the drainage volume, the pressure is well approximated by a steady state 

solution. 

 ̅  
 

  ( )
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  ( )

 

 

Hence, we could simplify Eq. (9) as follows: 
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 (2.14) 

 

Here we are considering a constant rate drawdown calculation, with    being the well 

rate. The welltest derivative can then be obtained directly from this equation, and 

provides an immediate interpretation in terms of the drainage volume, as a function of 

time. 
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  ( ( ))
 (2.15) 

 

The pressure drop is obtained by integrating Eq. (2.14) starting from a time after which 

the drainage volume boundary passes over the location. A similar approach has been 

developed by Nordbotten et al. (2004), and the relationship to drained volume has been 

explored by Agarwal (2010). However, no previous author has extended these results to 

heterogeneous reservoirs, as in the current work. 

 

As a simple example, we can utilize the expression for the depth of investigation for 

infinite acting cylindrical radial flow,   √       ⁄ . We obtain the well-known 

expression for the well test derivative,            ⁄ , from Eq. (2.15), as an 

algebraic result. The approximation of the pressure drop as a natural logarithm is 

obtained by integrating Eq. (2.14). It is not necessary to develop the full exponential 
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integral solution as an intermediate step to obtain these results, as is usually done. In 

addition, there is no requirement for a radially symmetric solution, once we apply the 

drainage volume concept to heterogeneous systems, as is shown in Figure 2.4 and 

Figure 2.5. 

 

 

Figure 2.4 Estimated pressures based on geometric approximation solution at various 

times: a) 1 day, b) 5 days, c) 20 days and d) 100 days 
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Figure 2.5 Pressure diagnostic plot for 2-D example 

 

2.3 Flow Regime Identification and Visualization 

In this section, we present two examples of application to unconventional reservoirs to 

illustrate the power and utility of our proposed approach. In both cases, we first visualize 

the depth of investigation at various times using the FMM and then present pressure 

diagnostic plots and identify flow regimes from these plots.  

2.3.1 Multistage Hydraulic Fracture: Homogeneous Matrix Properties 

For this example, the matrix permeability is assumed to be constant. We have a 

horizontal well with six stages of hydraulic fractures. Reservoir matrix permeability is 

         mD  and effective fracture permeability is   mD . Thus, the hydraulic 
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fractures can be treated as finite conductivity fractures. Additional reservoir, fracture and 

fluid properties are shown in Table 2.1. 

 

Table 2.1 Reservoir fracture and fluid properties for the example cases 

Reservoir property 

Dimension             

Grid size                

Porosity 0.076 

Fracture property 

Conductivity         

Half length        

Fluid property 

Viscosity        

Total compressibility              
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Figure 2.6 Depth of investigation for the homogeneous matrix example: a) 0.25 day, b) 

2.5 days, c) 5 months and d) 30 years 

 

Figure 2.6 displays the evolution of the depth of investigation for this example. There 

are four distinct flow patterns: early linear flow, pseudo-radial/elliptic flow, transition 

flow and pseudo steady state flow. These flow regimes can be identified from the 

pressure diagnostic plots as we will see later. 
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Figure 2.7 Drainage volume plot for the homogeneous matrix example 

 

Figure 2.7 shows the drainage volumes as a function of time.  Based on the computed 

drainage volume, we estimate transient pressure behavior using the geometric pressure 

solution as discussed before. Figure 2.8 shows the pressure drop at the well location and 

the corresponding pressure derivatives. From the pressure derivative plot, we clearly see 

the four flow regimes which are highlighted in red. 

 Early linear flow (half slope): Flow in hydraulic fracture towards the well. 

 Pseudo-radial flow (zero slope): Pressure derivative is independent of time for a 

short period. This flow regime has also been identified by Al-Kobaisi et al. 

(2006) in the presence of multi-stage fractures. 

 Transition flow: Flow pattern from pseudo-radial flow gradually changes to 

elliptic flow and then reaches reservoir boundaries at longer times. 
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 Pseudo steady state flow (unit slope): After reaching reservoir boundaries, the 

pressure behavior changes to volumetric depletion which yields the unit slope. 

 

Figure 2.8 Pressure diagnostic plot for homogeneous case 

2.3.2 Multistage Hydraulic Fractures: Heterogeneous Matrix Properties 

In this example, we demonstrate the generality of the pressure solution by using 

heterogeneous matrix properties as shown in Figure 2.9. For this example, the reservoir 

matrix permeability is in the range of             mD. All other properties are the same 

as in Table 2.1. Following the same procedure as for the homogeneous matrix example, 

different flow pattern can be visualized and identified as shown in Figure 2.10. 

However, the pressure ‘front’ propagation is no longer smooth because of reservoir 

heterogeneity. 
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Figure 2.9 Matrix permeability field in log10 scale 

 



34 

 

 

 

Figure 2.10 Depth of investigation for the heterogeneous matrix example with finite 

conductivity fracture: a) 1 day, b) 10 days, c) 5 months and d) 30 years 
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Figure 2.11 Drainage volume plot for the heterogeneous matrix example 

 

Figure 2.11 shows the drainage volume computed as a function of time for the 

heterogeneous example. From the drainage volume calculations, again, we predict the 

transient pressure behavior and identify the flow regimes as shown in Figure 2.12. For 

the heterogeneous example, we see three distinct flow regimes: early linear flow, 

transition flow and pseudo steady state conditions. The pseudo-radial flow regime, 

however, is very short compared to the homogeneous matrix example before (Figure 

2.8). This can be because of the presence of reservoir heterogeneity that tends to distort 

the front propagation.  
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Figure 2.12 Pressure diagnostic plot for the heterogeneous matrix example with finite 

conductivity fractures 

 

So far, we have limited ourselves to finite conductivity hydraulic fractures.  Next, we 

change the fracture permeability a thousand-fold, to 1000 mD.  We can now treat the 

hydraulic fractures as almost infinite conductivity fractures. Following the same 

procedure as before, we generate the depth of investigation shown in Figure 2.13. The 

pressure diagnostic plot is shown in Figure 2.14. 
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Figure 2.13 Depth of investigation for the heterogeneous matrix example with infinite 

conductivity fractures: a) 1 day, b) 5 months and c) 30 years 
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Figure 2.14 Pressure diagnostic plot for heterogeneous matrix example with infinite 

conductivity fracture 

 

 

For this case with near infinite hydraulic fracture conductivity, we observe the following 

flow regimes: 

 Early linear flow (half slope): Flow in hydraulic fractures towards the well at a 

very early time. 

 Fracture storage (unit slope) accounting for the finite volume of the fractures. 

 Transition flow that describes the gradual transition to pseudo-steady state flow. 
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 Pseudo steady state flow (unite slope) after reaching reservoir boundaries, 

leading to volumetric depletion and unit slope. 

 

Thus, for both finite and infinite conductivity fractures as well as homogeneous and 

heterogeneous matrix properties, our proposed approach seem to yield drainage volume 

and pressure behavior consistent with flow patterns observed by other investigators 

(Freeman et al. 2009; Clarkson et al. 2009; Bello and Wattenbarger 2010 and Song et al. 

2011). However, the generality of our approach makes it applicable for a much wider 

class of problems including complex fracture geometries, interactions with hydraulic 

fractures and natural fractures and non-uniform fracture conductivities.  

2.4 Integration of Stimulated Reservoir Volume (SRV)
†
 

For our purposes, the drainage volume is defined as the reservoir volume enclosed by the 

pressure ‘front’ at any given time. A typical evolution of a well drainage volume with 

time in previously mentioned illustration example is shown in Figure 2.15.  

 

 

 

 

 

                                                 
†
 Reproduced with permission from “Improved Characterization and Performance Assessment of Shale 

Gas Wells by Integrating Stimulated Reservoir Volume and Production Data” by Yin, J., Xie, J., Datta-

Gupta, A. and Hill A. D. 2011. Paper SPE 148969 presented at SPE Eastern Regional Meeting, Columbus, 

Ohio, 17-19 August. Copyright 2011 by Society of Petroleum Engineers. 
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(a) well with hydraulic fractures (b) depth of investigation at 3 months 

  

(c) depth of investigation at 6 months (d) depth of investigation at 1 year 

 

Figure 2.15 Depth of investigation at various times for a horizontal well with multistage 

hydraulic fractures 
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Figure 2.16 Well drainage volume versus time 

 

We define the SRV as the volume when the drainage volume curve in Figure 2.16 

reaches an asymptote as shown. Given an estimate of SRV either from rate or pressure 

transient analysis or micro-seismic, we can compare the SRV with the computed well 

drainage volume to further screen the matrix and fracture parameters. 

 

The steps are as follows: 

 Given a set of fracture and matrix parameters, we first compute the long-time 

drainage volume using the method as outlined above. It must be emphasized that 

the computation of drainage volume is extremely fast and requires only a few 

seconds of computer time.  

 We compare the long-term drainage volume with the estimated SRV from an 
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independent source.  

 If the difference is substantial as determined by a threshold measure, then the 

given matrix fracture parameters are rejected and a new set of parameters are 

proposed. 

 If the difference is within the threshold limit, then the parameters are accepted 

and the next step of calculations begins. This next step involves integration of 

rate/pressure response via proxy check and flow simulation. 

 

The inclusion of SRV not only constrains the parameter space but also substantially 

reduces the number of flow simulations by pre-screening undesirable sets of fracture and 

matrix parameters in inverse modeling process. 

 

In this section we illustrate our approach using a 3D synthetic example designed after a 

real field case. Two different cases are considered. First, we history match the well BHP 

to infer fracture and matrix parameters in a shale gas reservoir with a horizontal well 

with multistage fractures. Next, we assume that an estimate of the SRV is available 

through an independent measurement, for example micro-seismic or rate/pressure 

transient analysis. We then incorporate the SRV during history matching along with the 

well BHP response. The results clearly show the benefits of incorporating SRV in 

reducing the uncertainties in estimates of fracture/matrix parameters via history 

matching. 
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2.4.1 A 3-D Synthetic Example 

The reference model for this case is a 3-D single-phase gas shale reservoir represented 

using single porosity compositional model designed after a Haynesville field case. The 

size of the grid is 264×64×5. The matrix permeability ranges from 80 to 150 nano-darcy. 

A horizontal well is completed in the center of the reservoir with 4 transverse elliptical 

fractures. The fracture heights fully penetrate the pay zone. Each fracture is considered 

surrounded by an enhanced permeability area (EPA) that represents natural fracture 

and/or hydraulic fracture induced permeability enhancements as shown in Figure 2.19. 

The parameters to be estimated via history matching and the associated uncertainties for 

this example are listed in Table 2.2. We assume that the fracture locations are known 

and are as shown in Figure 2.18. The horizontal well is first produced at a constant rate 

of 2 MMSCF/day, until bottom-hole pressure (BHP) drops to 1000 psi when the well 

control switches to BHP control. In this synthetic case, the first 295 days of BHP history 

will be integrated to predict BHP and gas production for the following 435 days. The 

objective function is defined as the sum of squared differences of BHP between 

simulation results and the reference (‘true’) case for first 295 days. 
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  Figure 2.17 Reservoir and grid Figure 2.18 Fracture 3D elliptical structure 

 

 

  

Figure 2.19 Stimulated reservoir volume defined by enhanced permeability area 
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Table 2.2 Parameter uncertainties for sensitivity and history matching 

Uncertainty Base Low High Reference 

Matrix permeability (kM) 80.0E-6 md 70.0E-6 md 150E-6 md 100E-6 md 

EPA permeability (kE) 0.15 md 0.05 md 0.25 md 0.12 md 

Fracture perm (kF) 3.50 md 1.00 md 5.00 md 2.50 md 

Matrix compaction factor (CM) 3.00E-4 /psi 2.00E-4 /psi 5.00E-4 /psi 4.00E-4 /psi 

EPA compaction factor (CE) 5.00E-4 /psi 4.00E-4 /psi 6.50E-4 /psi 5.50E-4 /psi 

Fracture compaction factor (CF) 3.00E-4 /psi 2.00E-4 /psi 4.50E-4 /psi 3.50E-4 /psi 

Fracture 1 half long axis (XF1) 200 ft 100 ft 300 ft 190 ft 

Fracture 2 half long axis (XF2) 300 ft 200 ft 450 ft 350 ft 

Fracture 3 half long axis (XF3) 300 ft 200 ft 450 ft 300 ft 

Fracture 4 half long axis (XF4) 200 ft 100 ft 300 ft 150 ft 

 

To evaluate the impact of various parameters on the well production performance, a 

sensitivity analysis was first performed on a set of preselected parameters including 

hydraulic fracture conductivity, fracture half length, rock compaction factors and matrix 

permeability. The initial distributions of the parameters are considered to be uniform. 

The parameter ranges and reference values are summarized in Table 2.2. Figure 2.20 

shows a tornado diagram of the objective function (logarithm of BHP misfit) with 

respect to various parameters generated by perturbing each parameter from the base 

model to the lower or upper bounds. From Figure 2.20, it can be seen that fracture 

permeability and EPA permeability and their compaction factors have major impacts on 

the BHP misfit, while matrix permeability and its compaction have relatively low 

impacts. This can be explained from the fact that for the time period of interest, the flow 
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mainly happens inside SRV (fracture and EPA). Based on the sensitivity analysis, the kM 

and CM are removed as history matching parameters. 

 

 

Figure 2.20 Sensitivity analysis of BHP objective 

2.4.2 Integration of BHP Only 

Initially, we perform a history matching of the well BHP only in order to estimate the 

fracture/matrix parameters as identified by the sensitivity analysis. The top eight 

parameters shown in Figure 2.20 are used for the history matching. As discussed above, 

the history matching was done by genetic algorithm with response surface proxy (Yin et 

al. 2010). The history matching was followed by predictions.  
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Figure 2.21 compares the well responses for the initial population of GA models before 

and after history matching. The reference model response is shown in blue and is treated 

as observed data. Before history matching, a large discrepancy is observed in the 

production history between the reference model and the initial models reflecting the 

large uncertainty in the fracture/matrix parameters. After model calibration, uncertainties 

in parameter distributions are greatly reduced.  

 

The effects of history matching BHP data in reducing the parameter uncertainties are 

shown using the box plots in Figure 2.22. Here, all the parameter ranges have been 

normalized to fall between zero and unity. The range of model parameters in the 

population is indicated by the blue box with the reference case indicated by the triangle. 

Clearly, after history matching it can be seen that the parameter ranges in the population 

are considerably tightened and some of them tend to converge to the reference value. 

However, because of the limited data and the inherent non-uniqueness, a large bias can 

be seen in the estimate of some of the parameters. 

 

In Figure 2.22 we have also shown the distribution of drainage volumes of the initial 

models and the final models after history matching. For comparison purposes, the 

drainage volume for the reference model is also shown in these figures.  The bias in the 

parameter estimation as observed before is also evident here. All the history matched 

models seem to systematically over-estimate the drainage volume compared to the 

reference model. Part of the reason for this overestimation is the drainage volume 
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distribution of the initial models. A large majority of the initial models (>80%) had 

drainage volumes more than the reference model. Another reason can be the use of 

response surface as a surrogate model which can introduce bias because of lack of 

coverage of the complete parameter space. In the next section, we will see that such bias 

and non-uniqueness in the parameter estimation can be considerably reduced by 

incorporating additional information during history matching viz. the SRV estimate.  
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Figure 2.21 History matching and predictions by GA with response surface proxy 
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Figure 2.22 Uncertainty analysis of models by GA with response surface proxy 
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In order to improve the fracture/matrix parameter estimation, next we incorporate SRV 

information during history matching. Though the SRV is a static measure controlled by 

fracture connectivity and associated EPA, it can be approximated at a time when 

drainage volume defined by radius of investigation reaches pseudo-steady state, that is, 
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volume occurs. The situation is illustrated in Figure 2.23 and Figure 2.24 which show 

the evolution of the drainage volume as depicted by the location of the pressure ‘front’ at 

various times (color represents pressure front arrival time in log10 scale). Clearly, at 

early times the drainage volume increases rapidly and eventually stabilizes to SRV when 

pseudo steady state is reached and also fracture interference is observed.  

 

Before history matching, we first examine the impact of various fracture/matrix 

parameters on the SRV. It can be seen that the drainage volume reaches plateau about 

100 days-1000 days (corresponds to Figure 2.23c – Figure 2.23e). Fracture 

permeability (kF) and EPA permeability (kE) have dominant impacts in the early 

drainage volume development, while fracture lengths tend to influence the final values 

of the drainage volume. Matrix permeability has a noticeable impact only after the whole 

SRV has been drained (1.0E3 days-1.0E4 days, corresponds to Figure 2.23e – Figure 

2.23f), which is typically way beyond the production schedule. 
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(a) 1.00 day 

 

(b) 10.00 days 

 

(c) 100.00 days 

 

(d) 295 days  

(end of history match) 

 

(e) 730 days  

(end of prediction) 

 

(f) 1.00E4 days  

(very long time) 

 

Figure 2.23 Development of drainage volume defined by radius of investigation (center 

layer), colored by pressure front arrival time 

1.00 days 10.00 days 100.00 days

295.00 days 730.00 days 10000.00 days
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(a) 1.00 day 

 

(b) 10.00 days 

 

(c) 100.00 days 

 

(d) 295 days  

(end of history match) 

 

(e) 730 days  

(end of prediction) 

 

(f) 1.00E4 days  

(very long time) 

 

Figure 2.24 3D drainage volume defined by radius of investigation, colored by pressure 

front arrival time 

 

Next we carry out the history matching using the SRV and the BHP data. During history 

matching, the SRV data is incorporated as a single value that corresponds to the long-

term drained volume of the well. The drainage volume is computed using the pressure 

‘front’ propagation as discussed before. The history matching proceeds as follows:  

 For each set of fracture/matrix parameters in the GA population, we first 

compute the drainage volume. Recall that the drainage volume computation 
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does not require flow simulation and can be done in seconds. The drainage 

volume is compared with the well SRV. If the difference is less than 10%, 

then the parameter set is accepted for flow simulation and BHP calculation; 

otherwise, the parameter set is rejected and a new set of parameters are 

generated by sampling the corresponding distribution. 

 Once a parameter set passes the prescreening step above, the parameter 

combination is used to carry out a flow simulation and compute the well BHP. 

An objective function is constructed based on the misfit between the observed 

and computed BHP as well as SRV. 

 The above steps are repeated for all the members of the GA population which 

is then resampled to create a new generation based on the selection 

probability. The usual GA steps of crossover and mutation then follow. 

 The process is repeated until the data misfit reaches a satisfactory level or we 

exceed a preset number of generations. 
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Figure 2.25 History matching and predictions by GA with SRV proxy 

 

 

History matching and prediction results are shown in Figure 2.25. The results show that 

matching the SRV with the drainage volume did not improve the quality of the BHP or 

gas rate match and there is still a large discrepancy between the models pre-screened 

using SRV and the reference model response. This is expected because the SRV, as used 

here, is a single integrated estimate and does not provide any spatial detail. However, in 

Figure 2.26 we can see the impact of SRV matching. As expected, the uncertainty in 

final drained volume is substantially reduced compared to the initial population. More 

importantly, the uncertainties in kE, kF, XF1-XF4 are also greatly reduced as seen in the 
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box plots in Figure 2.26. Finally, from Figure 2.25 after calibrating the models with 

BHP using GA, we can see that both BHP and gas rate matches are improved 

substantially. Also, the parameter ranges are also narrowed considerably as seen in 

Figure 2.26. In Figure 2.27 we have shown the drainage volume at 295 days for a 

selected set of history matched models. For comparison purposes, we have also shown 

the SRV for the reference model. Recall that we only matched the SRV with the 

drainage volume, not the specific shape of the SRV. However, the results in Figure 2.27 

show a reasonable correspondence with the shape of the reference SRV within the levels 

of non-uniqueness to be expected for the history matching process. 
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Figure 2.26 Uncertainty analysis of models by GA with SRV proxy 
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Reference SRV 
  

 

  

 

  

Figure 2.27 SRV of models integrated with both DV and BHP 

 

2.5 Summary 

In this chapter we presented a novel approach to compute and visualize depth of 

investigation in unconventional reservoirs using fast marching methods (FMM) under 

very general reservoir conditions and fracture geometry/properties. Based on the depth 

of investigation, a geometric pressure solution is proposed to estimate the transient 

pressure behavior in unconventional wells with multistage fractures. From the pressure 

295.00 days
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depletion behavior, well test diagnostic plot can be generated that helps us understand 

the reservoir drainage and identify flow regimes. 

 

We demonstrated the applicability of our approach with two examples derived based on 

real field cases – one assumes homogeneous matrix properties and the other uses 

heterogeneous matrix properties. The homogeneous matrix example validates or 

approach and flow regimes consistent with analytic solutions can be identified using our 

proposed approach. For the heterogeneous example, we predicted the transient pressure 

behavior from the drainage volume calculations. The speed and versatility of our 

proposed method makes it ideally suited for estimating and optimizing fracture design in 

unconventional reservoirs through inverse modeling. 

 

Another application of this technique is to rapidly estimate stimulated reservoir volume 

(SRV) using drainage volume calculation. The application is demonstrated using a 3-D 

synthetic example designed after a real field case. We are able to demonstrate the 

benefits of incorporating the SRV during the history matching process to improve 

history matching results. Specifically, our results show that the uncertainty in the 

fracture/matrix parameters are reduced significantly when SRV was incorporated in 

addition to Bottom-Hole Pressure (BHP) during history matching as compared to BHP 

matching only. 
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3 CHAPTER III 

UNCERTAINTY QUANTIFICATION IN HISTORY MATCHING OF 

CHANNELIZED RESERVOIRS USING MARKOV CHAIN LEVEL 

SET APPROACHES
‡
 

 

We present a method for history matching and uncertainty quantification for channelized 

reservoir models using Level Set Method and Markov Chain Monte Carlo (MCMC) 

method. Our objective is to efficiently sample realizations of the channelized 

permeability fields conditioned to the production data and facies observation at the wells. 

In our approach, the channel field boundary is first described by a level set function, e.g., 

a signed distance function or any other indicator function. By solving the level set 

equation (motion in a prescribed direction), we are able to gradually move the channel 

boundaries and evolve the channelized reservoir properties. Our approach allows 

representing facies via a parameterization of the velocity field that deforms the interface. 

Thus facies can be parameterized in the space of smooth velocity fields. The dimension 

reduction can be achieved for covariance-based velocity fields by re-parameterizing with 

SVD techniques. 

 

After parameterization, Markov Chain Monte Carlo method is utilized to perturb the 

coefficients of principal components of velocity field to update channel reservoir model 

                                                 
‡
 Reproduced with permission from “Uncertainty Quantification in History Matching of Channelized 

Reservoirs using Markov Chain Level Set Approaches” by Xie, J., Efendiev, Y. and Datta-Gupta, A. 2011. 

Paper SPE 141811 presented at SPE Reservoir Simulation Symposium, The Woodlands, Texas, 21-23 

February. Copyright 2011 by Society of Petroleum Engineers. 
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matching production history. One advantage of this approach is that it is easy to 

condition the channel model to the facies observations at well locations by constraining 

the random velocity field to zero at well locations. To speed up the computation and 

improve the acceptance rate of the MCMC algorithm, we employ two stage methods 

where coarse-scale simulations are used to screen out the undesired proposals. The 

MCMC algorithms naturally provide multiple realizations of the permeability field 

conditioned to well and production data and thus, allow for uncertainty assessment in the 

forecasting. We demonstrate the effectiveness of the level set MCMC algorithm using 

both 2D and 3D examples involving water-flooding history matching. 

3.1 Introduction 

In many geologic environments, the distribution of subsurface properties is primarily 

controlled by the location and distribution of distinct geologic facies with sharp contrasts 

in properties across facies boundaries (Weber 1982). For example in a fluvial setting, 

high permeability channel sands are often embedded in a nearly impermeable 

background causing the dominant fluid movement to be restricted within these channels. 

Under such conditions, the orientation of the channels and channel geometry play an 

important role in determining the flow behavior in the subsurface. Thus, in predicting the 

flow through highly heterogeneous porous formations, it is important to model facies 

boundaries accurately and to properly account for the uncertainties in these models. 

 

The representation and history matching of channelized reservoirs are challenging 



60 

 

because of the difficulties to reproduce the large-scale continuity of the channel structure 

and identify the channel geometry and its orientation. The traditional two-point 

geostatistical techniques for reservoir characterization are unable to reproduce the 

channel geometry and the facies architecture (Haldorsen and Damsleth 1990; 

Koltermann and Gorelick 1996; Dubrule 1998). As an alternative, object-based 

modeling (Deutsch and Wang, 1996) and more recently, multi-point geostatistical 

methods (Caers and Zhang 2004; Strebelle and Journel 2001) have been used to 

represent the channel structure for dynamic data history matching. The object-based 

modeling is dependent on the parameters to specify the object size, shape, and 

orientation. The method is usually limited to simple channel geometry and it can be 

difficult to condition the generated objects to dynamic production data and well 

observations. The multi-point geostatistical methods use training images to generate 

geologic realizations conditioned to the well observations. However, the success of the 

multi-point geostatistical methods depends on the appropriate selection of the training 

image. Pixel-based approach, such as discrete cosine transform, has been applied to re-

parameterize channelized reservoirs for history matching (Jafarpour and McLaughlin, 

2009; Xie et al., 2010). The advantage of pixel-based approach is that it is easy to 

preserve the channel structure.  

 

Level set method is a numerical technique to track object interfaces and shapes (Osher 

and Sethian 1988; Osher and Fedkiw 2002). One advantage of the level set method is 

that it is very easy to perform computations involving curves and surfaces, which is a 
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good fit for reservoir modeling and history matching of channelized systems. Recently, 

level set approaches have been applied to reservoir modeling and history matching to 

preserve channel structure. Mondal et al. (2010) focused on parameterizing channel 

structure with a few points on channel boundaries. By perturbing those points, they can 

update channel boundary and alter the channel structure. A reversible jump Markov 

Chain Monte Carlo approach with varying parameter dimension is applied to 

automatically update channel boundary by adding, removing or perturbing those points 

on the channel boundary. However, this approach is difficult to use in 3-D examples 

because it is hard to parameterize the channel structure with a few points on the channel 

boundary in 3-D cases. 

 

Nielsen et al. (2009) treated permeability field as a binary level set function and update 

the level set function with gradient based method. The gradient is given by using adjoint 

method in a reservoir simulator. Chang et al. (2010) used the level set function values at 

part of the grid nodes directly in Ensemble Kalman Filter updating. The level set 

function values at other nodes are obtained by numerical interpolation. By updating the 

level set function values, they are able to update channel reservoirs. Instead of updating 

the facies fields directly, Moreno et al. (2008) and Lorentzen et al. (2012) transformed 

the facies field into a signed distance function and updated the velocity field in level set 

equation by Ensemble Kalman Filter.  
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In our level set approach, the description of the facies boundaries will be based on 

parameterization of the velocity fields that deform the interfaces. We will mostly focus 

on smooth interfaces that will require smooth velocity fields in the level set methods. 

The space of smooth velocity fields can be parameterized with fewer parameters. Often 

some a priori knowledge about spatial range of facies boundaries is known. In these 

cases, we will introduce region-restricted parameterization for the velocity fields. The 

dimension reduction can be achieved for covariance-based velocity fields by re-

parameterizing with SVD techniques. After parameterization, Markov Chain Monte 

Carlo (MCMC) method is utilized to perturb the coefficients of principal components of 

velocity field to update channel reservoir model matching production history. One 

advantage of this approach is that it is easy to condition the channel models to the facies 

observations at well locations by constraining the random velocity field to zero at well 

locations. 

 

A significant part of the computational expense in any dynamic data integration method 

is the modeling of flow and transport through high resolution geologic models. To 

precondition these simulations, we will adopt multi-stage MCMC approaches to 

minimize the number of flow simulations during the MCMC sampling. In these 

approaches, simplified models, e.g., coarse-scale models, are run to screen the proposals 

before running a detailed fine-scale simulation (Ma et al., 2008). 

 

We demonstrate the effectiveness of our approach using both 2-D and 3-D examples. 
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The 2-D example shows that the level set Markov chain approach can successfully 

match the data and identify the connectivity of the channels in the reference model. The 

3-D result shows that the proposed approach can also be applied to channelized 

reservoirs with strong prior information. 

3.2 Methodology 

In this section, we first discuss the level set method and how we describe channel facies 

boundary using level set function. We also present the parameterization of velocity field 

and a two stage Markov Chain Monte Carlo method. In order to evolve channel facies 

boundary, a velocity field is used to perturb the level set function and a two stage 

Markov Chain Monte Carlo approach is applied to update the velocity field.  

3.2.1 Level Set Methods 

The level set method is a numerical technique to track interfaces and shapes of objects 

(Osher and Sethian 1988; Osher and Fedkiw 2002). The objects are usually described as 

a level set function and gradually evolved into other shapes using level set equation. In 

our methodology, we take the same idea:  

1) Representing channel facies as a level set function; 

2) Evolving channel boundaries into different shapes with level set equation.  

 

In general, our goal is to define a family of level set functions,   that represent the facies 

boundaries and a mechanism for perturbing the level set functions. One of the challenges 

is evolving level set functions within iterative sampling techniques. In our approaches, 
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the initial level set function is given and the perturbation is proposed via adding a 

convective term that comes from the discretization of tracer equation 

   

  
 v( )       (3.1) 

 

where v( ) is velocity field vector that is used to evolve facies boundaries and   is a 

pseudo time used for evolving the interface. This equation allows us to parameterize 

channel facies boundaries via velocity field parameterization. Mondal et al. (2010) 

applied this idea to simple channel geometries and represented facies parameterization 

via smooth velocity parameterization. In the velocity space, various reduced 

parameterization techniques can be easily applied. 

 

In our work, we first choose signed distance function as our indicator function motivated 

by Moreno et al. (2008) and Lorentzen et al. (2012). The signed distance function is 

defined as the minimum distance between any points in the space toward the facies 

boundary. One advantage of using signed distance function instead of using initial facies 

directly is that we could avoid discontinuous implicit surface. If the point is in the 

positive region, it is assigned as a positive distance. If it is in the negative region, it is 

assigned as a negative distance. Instead of calculating actual minimum distance between 

any points and the facies boundary, signed distance function can be achieved by 

evolving the re-initialization equation to steady state: 

 

   

  
 sign(  )(‖  ‖   )    (3.2) 
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sign( )  {
                         
   in channel facies

 

 

In the re-initialization equation, the input    denotes initial facies, in which channel is 

described as +1 and non-channel is described as -1. After reaching steady state, first term 

(time derivative) equals to zero. Thus, second term should also be zero, which leads to a 

very nice property of signed distance function. ‖  ‖   . The signed distance function 

  has the same zero contour as initial facies    , which means that signed distance 

function preserves facies boundaries of initial facies. Figure 3.1 shows an example of 

channel facies and corresponding signed distance function.  

 

  

Figure 3.1 2-D channelized facies versus signed distance function 

 

After representing channel facies as a level set function, we start evolving channel 

boundaries using the level set equation – motion in the normal direction: 
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 v( )‖  ‖    (3.3) 

 

where   denotes the signed distance function and v( ) (scalar field) is the velocity field 

in normal direction. With the property of signed distance function, ‖  ‖   , the level 

set equation can be rewritten as 

 

        

  
 v( )    (3.4) 

 

We can write the equation in this way, 

 

 
     v( )   (3.5) 

 

In this equation,   denotes the signed distance function,    is updated function, v( ) is 

velocity field in normal direction and    denotes the step size. This equation represents 

the update of the channel boundaries given velocity field and a step size. 

 

In this chapter, we assume permeability is associated with facies model and constant 

permeability inside each facies. One can also take variable permeability field within 

channels described by two-point correlation functions as it is done in Mondal et al. 

(2010). With updated function, we could easily generate updated facies model and then 

properties associated with facies as follows. Figure 3.2 shows an example of updated 

function and corresponding updated facies model. Comparing to Figure 3.1, we can 
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clearly identify the channel boundary movement. 

 

 
     (  )    (   (  )) (3.6) 

 

 (  )  {
     
     

 

 

  

Figure 3.2 The updated function versus corresponding updated facies model 

 

3.2.2 Velocity Parameterization 

Often some a priori knowledge about spatial range of facies boundaries is known. In 

these cases, we introduce region-restricted parameterization for the velocity fields with 

the focus only on the region of interest. A dimension reduction can be achieved for 

covariance-based velocity fields by re-parameterizing with weighted principal 

component analysis. 
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We start with generating a velocity library of Gaussian random fields using sequential 

Gaussian simulation in SGeMS (Remy et al., 2009). The generated Gaussian random 

fields are conditioned at well locations. We will discuss why we need to condition the 

velocity field at well locations later. The size of velocity library depends on the 

resolution, velocity variations (such as variogram parameters) and size of restricted 

region. The purpose is to cover all the possible channel movements in the region of 

interest. If prior knowledge about the channel facies is known, it could help us reduce 

the size of the velocity library. This is a pre-process before performing history matching. 

 

Weighted principal component analysis is applied to re-parameterize restricted regions 

of velocity field. The restricted regions could be the whole reservoir or a portion of 

reservoir based on prior knowledge and uncertainty one can allow. The covariance 

matrix   is computed as 

 

 
  (√  )(√  )

 
 (3.7) 

 

where, matrix   denotes the velocity library restricted to the region of interest. Thus, the 

size of the covariance matrix   is usually limited to thousands by thousands, which is 

possible to generate. Vector   denotes the weight for each grid blocks inside restricted 

regions. In this part, we choose reciprocal of absolute sighed distance function  | |⁄  as 

our weight function. More aggressively, one may choose exp( | |) as your weight 

function. This will put more weight at regions near channel boundaries.  
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         (3.8) 

 

After singular value decomposition, velocity field v( ) is constructed with a few largest 

eigenvalues of   and corresponding eigenvectors that are contained in  . The 

eigenvalues and eigenvectors are selected based on the cumulative energy cut-off. The 

representation of the velocity field is given by  

 

 
v( )  ∑  √     

 

   

 (3.9) 

 

where,    denotes coefficients for each eigenvectors. By perturbing these coefficients, 

we can generate velocity field and in term, update facies boundaries. Therefore, these 

coefficients are our parameters for history matching. A two stage Markov Chain Monte 

Carlo method is utilized to perturb these coefficients to match production history. 

3.2.3 Two Stage Markov Chain Monte Carlo (MCMC) Method 

We will start with a brief review of the MCMC method and the Metropolis-Hastings 

sampling algorithm. Our objective is to sample the permeability field   from a posterior 

distribution that is conditioned to the dynamic observation data      and the prior 

permeability       . From Bayes’ theorem, the posterior distribution can be expressed as 

 

 
 ( )   ( |    )   (    | ) ( ) (3.10) 
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where,  ( )  denotes prior probability distribution for permeability and  (    | ) 

denotes the likelihood function that links dynamic data and the prior model. The main 

idea is to construct a Markov chain whose stationary distribution will be given by  ( ). 

If we assume a Gaussian distribution for the prior model and the data errors, the 

posterior distribution can be written as 

 

 
 ( )   ( |    )     { 

 

 
[

(        )
 
  

  (        )

 ( ( )      )
   

  ( ( )      )
]} (3.11) 

 

where,  ( )  is the simulated reservoir response corresponding to the proposed 

permeability field  . Matrices    and    are the parameter covariance and the data 

covariance respectively. The Metropolis-Hastings MCMC algorithm (Hastings 1970; 

Metropolis et al. 1953) is usually applied to sample from the posterior distribution. In 

this algorithm, the probability to accept a proposal for transition to state    from    is 

 

 
 (    )     (  

 ( ) (  | )

 (  ) ( |  )
) (3.12) 

 

Thus, accept        with probability  (    ) , and         with probability 

   (    ).  

 

The goal of the two stage method is to improve the acceptance rate of the traditional 

MCMC methods without sacrificing the rigor in its sampling properties or convergence 

rates. This is accomplished by prescreening the proposals to weed out proposals that are 
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likely to be rejected. This prescreening utilizes an approximate likelihood computation 

using a proxy model for obtaining the flow response. In our case, the proxy is a coarse-

scale simulation of the flow response. The coarse-scale model is constructed via a single 

phase upscaling of the fine-scale model. The two stage MCMC sampling proceeds as 

follows (Ma et al., 2008; Mondal et al., 2010): 

 

Suppose the chain is at the     step having permeability   : 

1. Make a model proposal  ̃  conditioned to permeability observations. The 

proposed fine-scale permeability field is upscaled using a single phase flow-

based upscaling algorithm. A coarse-scale simulation is carried out to compute 

the likelihood and the corresponding posterior is given by   ( ̃) 

2. Accept the model proposal  ̃ with probability  

 

 
  (    ̃)     {  

  ( ̃) (  | ̃)

  (  ) ( ̃|  )
} (3.13) 

 

If we choose instrumental probability distribution  ( |  ) to be symmetric, we 

have acceptance rate: 

 
  (    ̃)     {  

  ( ̃)

  (  )
} (3.14) 

 

  {
 ̃                    (    ̃)

                       (    ̃)
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If the proposal is accepted, we compute the exact likelihood and the 

corresponding posterior  ( ) using fine scale simulation and go to step 3; If the 

proposal is rejected, we go back to step 1. 

3. Accept   as a sample with probability 

 

 
  (    )     {  

 ( )  (  )

 (  )  ( )
} (3.15) 

 

     {
                    (    )

                       (    )
 

 

The detailed argument is given in Ma et al. (2008). With two stage Markov Chain Monte 

Carlo method, we are able to sample the posterior distribution more efficiently. 

3.2.4 Conditioning Channelized Reservoir to Observation Data 

In this part, we explain how we condition our updated facies models to two types of 

observation data: facies types and sand shale ratio. Recall that our Gaussian random 

fields are conditioned to zero at well locations as mentioned before. Thus, it won’t 

change the sign of updated function vs. signed distance function at well locations. For 

example, if producer 1 is in channel facies. The signed distance function at producer 1 

will be a positive value and updated function at producer 1 remains positive because the 

velocity at this specific location is zero. Therefore, the updated facies will remain 

channel facies. The conditioning to facies types could be considered as a hard constraint. 

On the other hand, conditioning to sand shale ratio is a soft constraint. We treat the sand 
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shale ratio from core analysis as an observation data and insert into objective function 

with a fairly large weight. The calculated sand shale ratio from simulation will be close 

to observed one through Markov chain process. 

3.3 Workflow 

To summarize methodology section, the procedures for our approach are as follows. 

Stop criterion is either a predefined number of posterior samples or a maximum number 

of iterations. A flowchart of our approach is shown in Figure 3.3. 

1. Represent initial facies model using signed distance function; 

2. Generate a velocity library and perform weighted principal component analysis; 

3. Construct velocity field and updated facies with perturbation of coefficients; 

4. Generate Permeability field as fine scale model from updated facies; 

5. Upscale to get coarse scale model using single phase flow-based upscaling; 

6. Run coarse scale model and calculate objective function for coarse scale model. 

Check acceptance. If accepted, go to step 7; if rejected, go to step 3; 

7. Run fine scale model and calculate objective function for fine scale model. 

Check acceptance. If accepted, go to step 8; if rejected, go to step 3; 

8. Update the current facies model and objective function, and then go to step 3; 

9. Collect samples until stop criterion is met. 



74 

 

 

Figure 3.3 Workflow for our proposed approach 
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3.4 Applications 

In this section, we apply our approach to both 2-D and 3-D channelized reservoir 

examples. In 2-D example, our objective is to reproduce the channel structure and 

identify large scale continuities in the reservoir during dynamic data integration. In 3-D 

example, we assume the initial model is not too far from true model. The purpose is to 

match production history while making limited facies boundary movement. 

3.4.1 A 2-D Example 

We consider a 2-D synthetic example that involves water-flooding in a channelized 

system. The model contains 50x50 grid blocks. There are 4 producers and 3 injectors: 

producers started with oil production rate control at 500 bbl/day and later reached 

bottom hole pressure limit at 1000 psi; injectors are with bottom hole pressure control all 

the time. 

 

In order to get the contrast between channel and non-channel facies, permeability at 

channel facies is set to 300 md and permeability at non-channel facies is 1 mD. Figure 

3.4 shows the initial and true permeability field with locations of producer (black) and 

injector (blue). Both are generated from a training image using SNESIM (Remy et al., 

2009). Comparing two permeability fields, we can see that both channel orientation and 

channel connectivity are quite different. For example, channel in true model is oriented 

in north-west and south-east direction while channel in initial model is oriented in north 

and south direction. The differences in channel connectivity are circled out in white 
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color.  

 

 

a) Reference channelized permeability field 

 

b) Initial channelized permeability field 

Figure 3.4 Permeability and well locations in 2-D example: a) reference channelized 

permeability and b) initial channelized permeability 
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5,000 velocity fields are generated with conditioning to facies types at well locations, 

and then weighted PCA is applied to velocity fields at the whole reservoir. After singular 

value decomposition, largest 18 eigenvalues and eigenvectors are selected with 95% 

cumulative energy cut-off. We try to match the oil production rate, water-cut, producer 

BHP and injection rate using a two stage Markov Chain Monte Carlo method. In order to 

ensure the convergence, multiple Markov chains with 3,000 simulations each are carried 

out from same initial model. To speed up the MCMC algorithm, simulation grid is 

upscaled from 50x50 to a 10x10 coarse-scale model using single phase flow-based 

upscaling as a first stage filter to screen out the undesired proposals. The results for data 

misfit as a function of the number of sample are plotted in Figure 3.5. 

 

 

Figure 3.5 Data misfit versus number of samples (Markov chain in 2-D example) 
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After convergence, models are sampled from all the accepted models. Four updated 

models are plotted on the left compared to initial and true model shown in Figure 3.6. In 

updated models, we are able to restore the channel connectivity from true model. 

However channel orientation is not recovered perfectly because velocity angle specified 

when generating velocity library is not wide enough to cover the orientation in true 

model. In this case, sand shale ratio in initial model is fairly close to the ratio in true 

model. Sand shale ratio constraint is loosened in order to get a good history match for 

dynamic production data. This is the reason that sand shale ratios in updated models are 

not very good. But they are still fairly close to the ratio in true model. 

 

Figure 3.6 Updated permeability fields versus true and initial permeability field in 2-D 

example 
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Dynamic data history matching results are very good compared to production data of 

true model as shown in Figure 3.7 (Red dot is observation data; green line is initial and 

blue is updated match). Next, we look at an example – injection rate of injector 2, which 

is the blue dot in top right. In true model, injector 2 is isolated from other producers. 

However, it is connected to producer 2 and gives pressure support in initial model. This 

is the reason that injection rate in initial model is much more than rate in the true model 

shown in Figure 3.7d. During history matching, the channel between those two (injector 

2 and producer 2) are disconnected, leading to a much improved result. Also these 

history matching results clearly demonstrate that the two stage MCMC method could be 

used to efficiently sample the posterior distribution during channelized reservoir history 

matching.  

3.4.2 A 3-D Example 

The 3-D example is a two phase flow water-flooding case with 50x50x6 grid size. The 

channelized reservoir model is generated using FLUVSIM, a program for object-based 

stochastic modeling of fluvial system (Deutsch and Tran, 2002). The reference and 

initial model are shown in Figure 3.8. Permeability at channel facies is set to 300 md 

and permeability at non-channel facies is 1 mD. There are 3 producers and 3 injectors: 

producers with oil production rate control and injectors with bottom hole pressure 

control. 
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- Reference  – Initial – Update 

 
a) Oil production rate 

 
b) Water-cut 

 
c) Producer bottom-hole pressure 

 
d) Injection rate 

 

Figure 3.7 History matching results in 2-D example (reference in red dot, initial in green 

and updated in blue color): a) oil production rate, b) water-cut, c) producer bottom hole 

pressure and d) injection rate 
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a) True permeability field 

 

b) Initial permeability field 

 

Figure 3.8 Permeability and well locations of 3-D example 

 

Ten thousand velocity fields are generated with conditioning to facies types at well 

locations. Weighted PCA is then applied to velocity field inside a restricted region. The 

region is defined by a signed distance function cut-off | |  1.8. After singular value 

decomposition, largest 35 eigenvalues and eigenvectors are selected with 90% 
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cumulative energy cut-off. We try to match the oil production rate, water-cut, producer 

BHP and injection rate using a two stage Markov Chain Monte Carlo method. In order to 

ensure the convergence, multiple Markov chains with 1,000 simulations each are carried 

out from same initial model. To speed up the MCMC algorithm, simulation grid is 

upscaled from 50x50x6 to a 10x10x6 coarse-scale model using single phase flow-based 

upscaling as a first stage filter to screen out the undesired proposals. The results for data 

misfit as a function of the number of sample are plotted in Figure 3.9. 

 

 

 

Figure 3.9 Data misfit versus samples (Markov chain in 3-D example) 
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Figure 3.10 Updated permeability fields versus true and initial permeability field in 3-D 

example (3-D view) 
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Figure 3.11 Updated permeability field versus true and initial permeability field in 3-D 

example (layer view) 
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- Reference  – Initial – Update 

 
a) Oil production rate 

 
b) Water-cut 

 
c) Producer bottom-hole pressure 

 
d) Injection rate 

 

Figure 3.12 History matching results in 3-D example (reference in red dot, initial in 

green and updated in blue color): a) oil production rate, b) water-cut, c) producer bottom 

hole pressure and d) injection rate 



86 

 

Four collected samples are compared to the reference model and the initial model in 

Figure 3.10 and Figure 3.11. Figure 3.10 is the comparison in 3-D view and Figure 

3.11 is the comparison in layer view. From two figures, we observe that the difference 

between the initial and the true permeability field is not very big: similar channel 

orientation and similar channel connectivity. However, dynamic data between the initial 

and the true model are quite different shown in Figure 3.12 (Red dot is observation data; 

green is initial data; and blue is updated data). The purpose of this example is to 

demonstrate that we are able to match the dynamic data history with limited channel 

boundaries movement inside a restricted region. After history matching, Figure 3.12 

shows updated production information compared to results from initial and true model. 

In this case, sand shale ratios in updated models are also improved substantially 

compared to the ratio in the initial and the true model. These results indicate that the 

application of the two stage MCMC method can be extended to a 3D channelized 

example. 

 

To summarize this section, our proposed approach is successful in both 2-D and 3-D 

examples. In 2-D example, it helps identifying the channel connectivity while matching 

dynamic production history. In 3-D example, with a good prior model, it matches 

production data with limited channel boundary movements. 
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3.5 Summary 

In this chapter, we presented a level set Markov chain approach for history matching and 

uncertainty quantification for channelized reservoirs using a two stage Markov Chain 

Monte Carlo method. This approach is based on level set representation of channel 

boundaries. Specifically, signed distance function is used to represent channelized 

features in the reservoir and channel structure is then updated by perturbing the signed 

distance function with a velocity field constrained at well locations. The velocity field 

can be generated with eigenvalue decomposition of large number of training velocities.  

The parameters representing the channel structure are the coefficients of velocity 

eigenvectors. A two stage sampling method is utilized to improve efficiency of Markov 

Chain Monte Carlo method and sample the posterior distribution rigorously. 

 

We demonstrate the effectiveness of our approach using both 2-D and 3-D examples. 

The 2-D example shows that the level set Markov chain approach can successfully 

match the data and identify the connectivity of the channels in the reference model. The 

3-D result shows that the proposed approach can also be applied to channelized 

reservoirs with prior information. The MCMC algorithms naturally provide multiple 

realizations of the permeability field conditioned to well and production data and thus, 

allow for uncertainty quantification in the forecasting.  
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4 CHAPTER IV 

HISTORY MATCHING CHANNELIZED RESERVOIRS USING 

REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO 

METHODS
§
 

 

In this chapter, we present a different approach for history matching and uncertainty 

quantification for channelized reservoirs using Reversible Jump Markov Chain Monte 

Carlo (RJMCMC) methods. Our objective is to efficiently sample realizations of 

channelized permeability fields conditioned to production data and permeability values 

at the wells. 

 

In our approach, the channelized permeability field is parameterized using the Discrete 

Cosine Transform (DCT). The parameters representing the channel structure are the 

coefficients in truncated frequency domain. The parameter space is searched using a 

RJMCMC, where the dimension of the parameter space is assumed to be unknown. For 

each step of the RJMCMC, the dimension of the uncertainty space can be increased or 

decreased according to a prescribed prior distribution. This flexibility in the parameter 

dimension allows an efficient search of the uncertainty space. To speed up the 

computation and improve the acceptance rate of the RJMCMC algorithm, we employ 

two-stage methods whereby coarse-scale simulations are used to screen out the 

                                                 
§
 Reproduced with permission from “History Matching Channelized Reservoirs Using Reversible Jump 

Markov Chain Monte Carlo Methods” by Xie, J., Mondal A., Efendiev Y. et al. 2010. Paper SPE 129685 

presented at SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 24-28 April. Copyright by 2010 

Society of Petroleum Engineers. 
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undesired proposals. After simulations, multi-dimensional scaling and cluster analysis 

are used to select realizations from the accepted models to adequately represent the 

diversity of the models. 

 

We demonstrate the effectiveness of the RJMCMC algorithm using both 2D and 3D 

examples involving water-flooding history matching. The 2-D example shows that the 

RJMCMC algorithm appears to successfully match the data and identify the orientation 

of the channels in the reference model. The 3-D results show that the proposed algorithm 

may determine the large-scale features of the reference channelized permeability field 

based on the production data. The MCMC algorithms naturally provide multiple 

realizations of the permeability field conditioned to well and production data 

and thus, allow for uncertainty quantification in the forecasting. 

4.1 Introduction 

Subsurface is complex geological formation encompassing a wide range of physical and 

chemical heterogeneities. The goal of stochastic models is to characterize its different 

attributes such as permeability, porosity, fluid saturation etc. Flow in the subsurface is 

primarily controlled by the connectivity of the extreme permeability (high and low) 

which is generally associated with geological patterns that create preferential flow 

paths/barriers. 

 

In many geologic environments, the distribution of subsurface properties is closely 
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associated with the location and distribution of distinct geologic facies with sharp 

contrasts in properties across facies boundaries (Weber 1982). For example in a fluvial 

setting, high permeability channel sands are often embedded in a nearly impermeable 

background causing the dominant fluid movement to be restricted within these channels. 

Under such conditions, the orientation of the channels and channel geometry determine 

the flow behavior in the subsurface rather than the detailed variations in properties 

within the channels. Traditional geostatistical techniques for subsurface characterization 

have typically relied on variograms that are unable to reproduce the channel geometry 

and the facies architecture (Haldorsen and Damsleth 1990; Koltermann and Gorelick 

1996; Dubrule 1998). Discrete Boolean or object-based models can reproduce 

geologically realistic shapes and have been successfully used to model fluid flow and 

transport in many fluvial type environments (Egeland et al. 1993). The success of these 

object-based models, however, is heavily dependent on the parameters to specify the 

object size, shapes, proportion and orientation. Typically, these parameters are highly 

uncertain, particularly in the early stages of subsurface characterization (Dubrule 1998; 

Caumon et al. 2004). For example, in a channel type environment, the channel sands 

may be observed at only a few well locations. There are many plausible channel 

geometries that will satisfy the channel sand and well intersections. Thus, the stochastic 

models for channels will require specification of random variables that govern the 

channel principal direction, its horizontal and vertical sinuosity, channel width to 

thickness ratio etc. All these parameters have considerable uncertainty associated with 

them and will profoundly impact fluid flow in the subsurface.  
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A considerable amount of prior information is typically available for building the facies 

models for fluid flow simulation (Weber 1982). These include well logs and cores, 

seismic data and geologic conceptualization based on outcrops and analogues. Although 

the prior information play a vital role in reducing uncertainty and preserving geologic 

realism, it is imperative that the geologic models reproduce the dynamic response based 

on the flow and transport data. These include pressure measurements at the wells, tracer 

concentration histories and in the case of multiphase flow, the production of individual 

phases at the wells. The reproduction of dynamic data is a necessary step to have 

credibility in our geologic and flow modeling and confidence in any performance 

forecasting.  

 

The representation and history matching of channelized reservoirs are challenging 

because of the difficulties to reproduce the large-scale continuity of the channel structure 

and identify the channel geometry and its orientation. The traditional two-point 

geostatistical techniques for reservoir characterization are unable to reproduce the 

channel geometry and the facies architecture (Haldorsen and Damsleth 1990; 

Koltermann and Gorelick 1996; Dubrule 1998). As an alternative, object-based 

modeling (Deutsch and Wang 1996) and more recently, multi-point geostatistical 

methods (Caers and Zhang 2004; Strebelle and Journel 2001) have been used to 

represent the channel structure for dynamic data history matching. The object-based 

modeling is dependent on the parameters to specify the object size, shape, and 

orientation. The method is usually limited to simple channel geometry and it can be 
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difficult to condition the generated objects to dynamic production data and well 

observations. The multi-point geostatistical methods use training images to generate 

geologic realizations conditioned to the well observations. However, the success of the 

multi-point geostatistical methods depends on the appropriate selection of the training 

image.  

 

Conventional history matching methods very often fail to preserve the large-scale 

channel continuity during dynamic data integration. To circumvent the problem, in this 

chapter we reparameterize the permeability distribution with a few global parameters. 

Specifically, we adopt the idea of discrete cosine transform (DCT) parameterization and 

consider truncated DCT frequency domain as the parameter space for representing 

channelized reservoirs (Jafarpour and McLaughlin 2009). We then use Reversible Jump 

Markov Chain Monte Carlo methods to explore the parameter space to condition the 

channelized reservoir models to dynamic production data and well permeability 

observations. Use of RJMCMC allows us to dynamically select the important DCT 

coefficients to represent the channel structure as the chain proceeds. In conventional 

MCMC methods, the dimension of parameter space is kept fixed. The number of 

parameters needs to be selected a priori, often resulting in a higher dimensional 

parameter space, longer computational time and slower convergence.  

 

The Reversible Jump Markov Chain Monte Carlo (RJMCMC) method was originally 

proposed in statistics (Green 1995). The method has been applied to history matching 
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channelized reservoirs by explicitly sampling and moving the channel boundaries 

(Mondal et al. 2010). In RJMCMC methods, the dimension of parameter space is 

flexible, which allows an efficient sampling of the uncertainty space with fewer DCT 

coefficients. The dimension transition is performed by a birth or a death step at each of 

iteration of the RJMCMC method. In the birth step, we add one DCT coefficient and 

thus increase the dimension by one whereas in the death step, we delete one DCT 

coefficient from current DCT subset and reduce the dimension by one. We also have a 

jump step that allows us to make a random walk as in conventional MCMC methods. 

Thus, in RJMCMC method, we are able to dynamically identify the important DCT 

coefficients by adding or dropping the coefficients. 

 

To speed up the RJMCMC algorithm, we employ a two-stage method to improve model 

proposals (Ma et al. 2008). In two-stage methods, a coarse-scale simulation is first used 

as a filter to screen out the undesired proposals during MCMC simulation. The coarse-

scale model is obtained via upscaling the fine-scale permeability model using single 

phase flow-based upscaling. It has been shown that the two-stage MCMC methods can 

improve the acceptance rate of Markov chain (Ma et al. 2008). We also propose a 

conditioning step to honor the well permeability observations after each model proposal 

during MCMC.  

4.2 Approach 

In this section, we first discuss the channelized reservoir parameterization using the 
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discrete cosine transform (DCT). We then introduce the two-stage RJMCMC methods to 

sample the truncated DCT domain for conditioning channel models to well and 

production data. The RJMCMC approach will result in multiple realizations of the 

geologic model. We summarize this section with an outline of the workflow of our 

approach. 

4.2.1 Parameterization Using the Discrete Cosine Transform 

The use of the discrete cosine transform (DCT) for parameterization of reservoir 

permeability distribution was recently introduced (Jafarpour and McLaughlin 2008, 

2009). The advantage of applying discrete cosine transform to channelized reservoirs is 

that the geological property image can be transformed and truncated to a few DCT 

coefficients while preserving the large-scale continuity of the property. By suitably 

identifying the lower frequency DCT coefficients subset, we are able to maintain the 

channel orientation and the channel structure. The discrete cosine transform is 

particularly well-suited for channelized reservoir systems with limited prior information 

because it does not require prior covariance information unlike the Karhunen-Loeve 

transform (Jafarpour and McLaughlin 2009).  

 

The 1-D DCT of a function  ( ) has the following form (Jain 1989):  

 

 
 ( )   ( ) ∑  ( ) cos [

 (    ) 

  
]

   

   

          (4.1) 
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where,  ( ) are given by 

 
 ( )  √

 

 
  (   )  √

 

 
 (4.2) 

 

The inverse DCT is: 

 
 ( )  ∑  ( ) ( ) cos [

 (    ) 

  
]

   

   

          (4.3) 

 

For parameterizing the permeability field, we can write the DCT in the matrix-vector 

form as follows 

 
      (4.4) 

 

where,   is the reservoir permeability vector,   is the vector of DCT coefficients and   

is a matrix containing the DCT basis. In our implementation, we use    ( ) instead of  . 

Note that    is an orthogonal matrix, so the inverse DCT is described as 

 

 
       (4.5) 

 

The DCT is a computationally efficient parameterization technique because the higher 

dimensional transform can be performed by applying the 1-D transform in each direction 

(Jafarpour and McLaughlin 2009). 

 

When compressing an image, the low frequency DCT coefficients preserve the large-
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scale continuity of the image while the higher frequency coefficients give the detailed 

image information (Jafarpour and McLaughlin 2009). This is illustrated in Figure 4.1 

where we have truncated the higher frequency DCT coefficients and use a few low 

frequency coefficients to reconstruct the large-scale continuity of the permeability field. 

Figure 4.1a shows the permeability field and Figure 4.1b shows the corresponding 

DCT coefficients reduced from the original 50x50 to a truncated 6x6 domain and further 

reduced to just 20 coefficients. With less than 1% of the DCT coefficients, we can 

preserve the large-scale continuity although the detailed information is smeared away. 

From the example, we can see that the permeability field can be parameterized with a 

few DCT coefficients inside the truncated DCT domain. The RJMCMC method 

described below allows us to sample the parameter space using Markov Chain Monte 

Carlo methods and at the same time dynamically select the important DCT coefficients 

from the truncated subset.  

4.2.2 Two Stage Markov Chain Monte Carlo Method 

As mentioned before, for conditioning the permeability field to production data, we will 

use a two-stage RJMCMC method. In this section, we will briefly introduce the 

RJMCMC while pointing out some of its advantages. We will start with a brief review of 

the MCMC method and the Metropolis-Hastings sampling algorithm. Then we introduce 

the RJMCMC methods and the two-stage MCMC methods coupled with reversible 

jump. 
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a) log-permeability 

 

b) log|DCT| 

 

Figure 4.1 Permeability and DCT coefficients corresponding to the low frequency 

coefficient truncation: a) log-perm with 2500, 36, 20 coefficients and b) log|DCT| with 

2500, 36, 20 coefficients 

 

Our objective is to sample the permeability field   from a posterior distribution that is 

conditioned to the dynamic observation data      and the prior permeability       . 

From Bayes’ theorem, the posterior distribution can be expressed as 
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where,  ( )  denotes prior probability distribution for permeability and  (    | ) 

denotes the likelihood function that links dynamic data and the prior model. The main 

idea is to construct a Markov chain whose stationary distribution will be given by  ( ). 

If we assume a Gaussian distribution for the prior model and the data errors, the 

posterior distribution can be written as 

 

 
 ( )   ( |    )  exp { 

 

 
[

(        )
 
  

  (        )

 ( ( )      )
   

  ( ( )      )
]} (4.7) 

 

where,  ( )  is the simulated reservoir response corresponding to the proposed 

permeability field  .    and    are the parameter covariance and the data covariance 

respectively. The Metropolis-Hastings MCMC algorithm (Metropolis et al. 1953; 

Hastings 1970) is usually applied to sample from the posterior distribution. In this 

algorithm, the probability to accept a proposal for transition to state    from    is 

 

 
 (    )  min (  

 ( ) (  | )

 (  ) ( |  )
) (4.8) 

 

Thus, accept        with probability (    ), and         with probability  

 (    ).  

4.2.2.1 Reversible Jump Markov Chain Monte Carlo  

The Reversible Jump Markov Chain Monte Carlo method is an extension of the Markov 

Chain Monte Carlo method. It allows sampling of the posterior distribution using a 
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parameter space with varying dimensions (Green 1995). Before we explain the 

reversible jump MCMC, let us first take a look at a constructive representation in terms 

of random numbers. 

 

Suppose initially that we have a simpler state space,     . As usual with the 

Metropolis–Hastings algorithm, we can satisfy the detailed balance condition by 

applying a protocol that proposes a new state for the chain and then accepts this 

proposed state with an appropriately derived probability. This probability is obtained by 

considering a transition and its reverse simultaneously. Let the density of the invariant 

distribution   also be denoted by  . At the current state  , we generate, say,   random 

numbers   from a known joint density  . The proposed new state of the chain    is then 

constructed by some suitable deterministic function   such that (     )     (   ) . 

Here,    are the  -dimensional random numbers, generated from a known joint density 

   that would be required for the reverse move from    to  , using the inverse function    

of  . If the move from   to    is accepted with probability (    )and likewise, the 

reverse move is accepted with probability  (    ), the detailed balance requirement can 

be written as 

 

 
∫  ( ) ( ) (    )    
(    )    

 ∫  (  )  (  ) (    )      

(    )    

 

(4.9) 
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If the transformation   from (   ) to (     ) and its inverse    are differentiable, then 

we can apply the standard change-of-variable formula to the right hand side of Eq. (4.9). 

We then see that the (     )-dimensional integral equality holds if 

 

 ( ) ( ) (    )   (  )  (  ) (    ) |
 (     )

 (   )
| 

 

where the last factor is the Jacobian of the transformation from (   ) to (     ). Thus, a 

valid choice for   is 

 

 (    )     {  
 (  )  (  )

 ( ) ( )
|
 (     )

 (   )
|}, 

 

involving only ordinary joint densities (Green 1995). 

 

Here we are giving a brief discussion to the reversible jump MCMC. The detailed 

explanation can be found in Green’s publication. Suppose we need to make a reversible 

jump between models   and  , this can be accomplished by an invertible function     that 

transforms the parameters: 

   ( 
( )  ( ))  ( ( )  ( )) 

and retains the dimensions 

 

 ( ( ))   ( ( ))   ( ( ))   ( ( )) 
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where,  ( )  and  ( )  denote parameters of model   and ,  ( )  and  ( )  are parameters 

needed to make a reversible jump. The inverse transform    
   gives the move to the 

other direction.  () represents the dimension of parameter space. 

 

If    ( 
( )  ( ))  is the probability density for the proposed move and  (   )  is the 

probability for the move     , the acceptance probability can be written as 

 

 

   ( 
( )  ( ))= 

   

{
 

 

  
  ( 

( ))

  ( 
( ))⏟    

posterior ratio

 
 (   )

 (   )
 

   ( 
( )  ( ))

   ( 
( )  ( ))⏟              

proposal ratio

 |
 ( ( )  ( ))

 ( ( )  ( ))
|

⏟        
 acobian }

 

 

 
(4.10) 

 

In our approach, the permeability field   is represented by   DCT coefficients,   and 

their locations  . The unknown number of DCT coefficients   is a model parameter in 

the range      , hence we have an unknown dimension problem. The posterior 

distribution can be written as 

 

  ( )   ( |    )   (    | ) ( )
  (    | ) ( |     ) ( |   ) ( | ) ( ) 

(4.11) 

 

where,  (    | )  denotes the likelihood distribution. Note that  ( |     )    as 

permeability field   is determined by   number of DCT coefficients   and their 

locations  . Also,  ( |   ) is the prior probability distribution of   number of DCT 

coefficient value given its location  . This probability could be calculated from the DCT 
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coefficients of an ensemble of prior models. In our examples, only one initial model is 

used and thus,  ( |   )   .  ( | )  is the probability to select   DCT locations 

from total   locations given by  ( | )      
  (   )   ⁄ . We are now left with 

 ( ) which is uniform distribution given by  ( )        ⁄ . Thus, the posterior 

distribution is: 

 

 
 ( )   ( |    )   (    | ) ( ) (4.12) 

 

When we make a new model proposal using Reversible Jump Markov Chain Monte 

Carlo method, there are three options: 

1. Birth step: adding one DCT coefficient 

2. Death step: dropping one DCT coefficient 

3. Jump step: keeping the same dimension and making a perturbation of DCT 

coefficients. 

 

We assume that the three options have the probability as follows: 

  
      

      
    

 
 

 
            

  
        

    
 

 
   

    
 

 

 
                    

  
    

 

 
   

        
    

 
 

 
                    

 

where, the dimension of the DCT coefficients is in the range      . The density 
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probability     ratio is calculated as follows:       (   ) and      1 for a birth 

step, so the density probability ratio       ⁄     ;       and       (    

 ) for a death step, so the ratio is       ⁄    (     ). 

 

Now suppose we are at state    with  ( ( )  ( )) with   coefficients and want to make a 

proposal to state   with  ( ( )  ( )) by a birth, death or jump step: 

 

1. Birth Step: one DCT coefficient is added. The proposed DCT coefficient set 

is given by  ( )   ( )   ( ) with dimension    . 

The posterior ratio is: 

 

  ( 
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        The proposal ratio is: 

 

 (   )
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   ( 
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        The Jacobian is: 
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        Thus, the acceptance probability is given by 

 

 
  (   )  min {  

 (    | 
( ))

 (    | 
( ))

 
  

   

  
   } (4.13) 

 

2. Death Step: one DCT coefficient is dropped from current set. The proposed 

DCT coefficient set is given by  ( )   ( )   ( ) with dimension    . 

The posterior ratio is: 
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        Jacobian is: 
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        Thus, the acceptance probability is given by 
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  (   )  min {  

 (    | 
( ))

 (    | 
( ))

 
  

   

  
   } (4.14) 

 

3. Jump Step: The DCT coefficients are perturbed without changing any 

dimension. It’s a conventional Markov Chain Monte Carlo with standard 

Metropolis-Hastings step. The acceptance probability is given by 

 

 
  (   )  min {  

 ( ( ))

 ( ( ))
}  min {  

 (    | 
( ))

 (    | 
( ))

} (4.15) 

 

The steps of the RJMCMC algorithm are as follows: 

From model state     at     step with parameters( ( )  ( )): 

1. We choose instrumental probability distribution  ( |  ) to be symmetric and 

choose a new model  ̃ by make a birth, death or jump move. 

2. Accept the proposal as 

     {
 ̃ with probability   

  with probability     
 

4.2.2.2 Two-stage Reversible Jump Markov Chain Monte Carlo Algorithm  

The goal of the two-stage method is to improve the acceptance rate of the traditional 

MCMC methods without sacrificing the rigor in its sampling properties or convergence 

rates. This is accomplished by prescreening the proposals to weed out proposals that are 

likely to be rejected. This prescreening utilizes an approximate likelihood computation 

using a proxy model for obtaining the flow response. In our case, the proxy is a coarse-
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scale simulation of the flow response. The coarse-scale model is constructed via a single 

phase upscaling of the fine-scale model. The two-stage MCMC sampling proceeds as 

follows (Ma et al. 2008; Mondal et al. 2010): 

 

Suppose the chain is at the     step having permeability    with parameters 

( ( )  ( )): 

1. Make a model proposal  ̃  conditioned to permeability observations. The 

proposed fine-scale permeability field is upscaled using a single phase flow-

based upscaling algorithm. A coarse-scale simulation is carried out to compute 

the likelihood and the corresponding posterior is given by   ( ̃). 

2. Accept the model proposal  ̃  with probability 

  (    ̃)     {    ( ̃)   (  )⁄ } as shown in Eq. (18), (22) and (23). We 

choose the instrumental probability distribution  ( |  ) to be symmetric. 

 

  {
 ̃ with probability   (    ̃)

  with probability     (    ̃)
 

 

If the proposal is accepted, we compute the exact likelihood and the 

corresponding posterior  ( ) using fine scale simulation and go to step 3; If the 

proposal is rejected, we go back to step 1. 

 

3. Accept   as a sample with probability 
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  (    )  min {  

 ( )  (  )

 (  )  ( )
} (4.16) 

 

     {
 with probability   (    )

  with probability     (    )
 

 

The detailed argument is given in (Ma et al. 2008). With two-stage Markov Chain Monte 

Carlo method, we are able to sample the posterior distribution efficiently. 

4.2.3 Conditioning Model to Permeability Observations 

When perturbing the DCT coefficients using the RJMCMC, the proposed permeability 

field is not automatically conditioned to the permeability at well locations. We need to 

ensure that the proposed model honors the permeability observations at well locations.  

 

Given the permeability observations       at well locations and the truncated DCT 

coefficient locations, we can construct a reduced DCT basis   from the DCT basis    

so that 

 
         (4.17) 

 

Using this equation, we are able to solve the truncated DCT coefficients directly and the 

generated permeability is conditioned to permeability observations. However, these DCT 

coefficients often result in permeability fields that lack geologic continuity due to the 

higher frequency coefficients used. To avoid the problem, we minimize the following 

equation to condition the model to permeability observations instead of solving the 
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matrix problem directly.  

 

 ̃  argmin(        )
 (        ) 

 

We expand and reorganize the equation: 

 

 
 ̃  argmin ( 

 

 
           

   ) (4.18) 

 

This is a quadratic minimization problem. The following constraints are added to 

preserve the large scale continuity of the proposed model and avoid none physical 

updates: 

         

           

         

 

The minimization problem starts with the proposed DCT coefficients,   . The inequality 

constraint limits the permeability to the max permeability,     . The other constraint 

sets the upper boundary,     and lower boundary,      of the DCT coefficients. 

 

An example of conditioning the permeability at well locations is shown in Figure 4.2. 

We can see that the updated permeability field preserves the features of the proposal 

permeability. Table 4.1 and Table 4.2 show that in the original proposal, the 
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permeabilities at well locations are far from the observed permeability. The updated 

permeabilities at well locations are very close to the permeability observations after 

conditioning. 

 

 

(a) (b) (c) 

Figure 4.2 Conditioning the proposed model to the permeability observations at wells: a) 

the initial permeability field, b) the proposed permeability field using perturbation and c) 

the updated permeability field after conditioning 
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Table 4.1 Permeability differences (perturbation – observation) at well locations  

in a nine-spot pattern 

-18.6501 -87.5461 150.5276 

11.4676 -73.2840 82.7810 

-727.3377 -396.1496 299.5839 

 

 

Table 4.2 Permeability differences (updated – observation) at well locations  

in a nine-spot pattern 

1.0e-12* 

-0.1137 -0.0853 -0.2274 

-0.6253 -0.2274 0.2274 

0 -0.4263 -0.4547 

 

 

4.2.4 Model Selection Using Multi-Dimensional Scaling & Cluster Analysis 

Uncertainty analysis and model selection are conducted using the multi-dimensional 

scaling (MDS) and cluster analysis to visualize and select channelized reservoir models. 

The MDS is proposed to parameterize the spatial uncertainty of geostatistical 

realizations (Scheidt and Caers 2009). In the chapter, they used the distance function of 

dynamic responses to account for uncertainty in multiple geostatistical realizations and 
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then distinct members using kernel principal component analysis (KPCA) or kernel 

clustering methods. The idea has been applied to visualize the spread of ensemble 

members in Ensemble Kalman Filter (Watanabe et al. 2009).  

 

We adopt the same approach here except that the dissimilarities are based on the 

evolution of the reservoir swept volume change with time computed using various 

threshold of streamline time-of-flight. The streamline trajectories and swept volume are 

generated using the fluid-flux information from a finite-difference simulator. No 

additional reservoir simulation is needed. The swept volume changes as a function of 

time-of-flight is considered as the dissimilarity measure as shown below 

 

 
    ( )     (    )     (    ) (4.19) 

 

The dissimilarity measure between the swept volume changes of two individual 

realizations   and   is defined as 

 

 
    ∑[     ( )       ( )]

 
 

   

 (4.20) 

 

The distance matrix can be written as      
 

 
   

 . After centering the distance matrix 

and conducting a principal component analysis, we apply k-mean cluster analysis based 

on the first two or three principal components and select the model near the center of 
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each cluster to reduce the model replicates.  

4.3 Workflow 

An outline of the procedure for our approach is given in Figure 4.3. The stop criterion is 

that either a predefined number of posterior samples or a maximum number of iterations. 

The major steps of our approach are as follows: 

1. Parameterize the permeability field by taking its discrete cosine transform, 

define the truncated DCT domain and select a set of DCT coefficients as the 

subspace;  

2. Run forward simulation for the initial model and calculate the dynamic response 

misfit; 

3. Perturb the DCT coefficients to generate a new channelized model using 

RJMCMC. We have three options here: 

 Birth: randomly add a DCT coefficient to the DCT subspace; 

 Death: randomly drop a DCT coefficient from the DCT subspace; 

 Jump: Perturb the value of DCT coefficients; 

4. Condition the proposed model to the permeability at well locations; 

5. Upscale the proposed model and perform first stage coarse-scale simulation; 

6. Check the acceptance of the proposed model using the Metropolis-Hastings 

algorithm. If the proposed model is accepted, go to step 7, else go to step 3 and 

make a new proposal; 
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Figure 4.3 Flow chart of our approach for channelized reservoir history matching 
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7. Run fine-scale simulation and calculate dynamic response misfit; 

8. Check the acceptance using updated acceptance probability. If the proposed 

model is accepted, update current model, else go to step 3; 

9. Collect samples when the stop criterion is met. 

4.4 Applications 

In this section, we apply our approach to both 2-D and 3-D synthetic channelized 

reservoir examples. Our objective is to reproduce the channel structure and identify the 

large scale continuity in the reservoir with dynamic data integration. 

4.4.1 A 2-D Synthetic Example 

We consider a 2-D synthetic example that involves water-flooding in a nine-spot pattern 

as shown in Figure 4.4. The 2-D channelized reservoir model is generated from a 

training image using multi-point geostatistics (Remy et al. 2009). For comparison 

purposes, the reference permeability field is selected to be the original channel model 

with reduced DCT coefficients. The initial permeability field is generated by 

conditioning the permeability at well locations as discussed earlier. From Figure 4.5, we 

can see that the channel connectivity and orientation of the initial model is completely 

different from the reference model.    
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Figure 4.4 A 2-D 50x50 channelized reservoir example with a nine-spot pattern 

 

 

Figure 4.5 Reference and initial permeability field in 2-D example 

 

The two-stage RJMCMC is carried out to condition the channel model to dynamic 

production data. In this example, we are history matching the oil production rate, water-

1 Jul 2000 K=1

ECLIPSE_FINE.GRID 07 Feb 2009

PROD1

PROD2

PROD3

PROD4

PROD5

PROD6

PROD7

PROD8

INJ1

X

Y

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800 900 1000
PERMX

Reference

 

 

10 20 30 40 50

10

20

30

40

50

-2

0

2

4

6

8

Initial

 

 

10 20 30 40 50

10

20

30

40

50

-2

0

2

4

6

8



116 

 

cut and bottom-hole pressure at producers. We start with 15 DCT coefficients out of the 

6x6 subspace. The RJMCMC allows us to search the parameter space flexibly between 

15 and 35 DCT coefficients in the 6x6 subspace. To speed up the RJMCMC algorithm, 

the simulation grid is upscaled from 50x50 to a 10x10 coarse-scale model using single 

phase flow-based upscaling as a first stage filter to screen out the undesired proposals. 

The residual sum of square (RMS) reduction of two-stage RJMCMC is plotted in Figure 

4.6. After the Markov chain is converged, multi-dimensional scaling and cluster analysis 

are used to select samples from all the accepted models (Scheidt and Caers 2009). 

Figure 4.7 shows the model separations compared to the true model using the first two 

and three principal components. The multi-dimensional scaling was a dissimilarity 

measure to select a subset of models from an ensemble. For our approach, the 

dissimilarity measure is given by changes in swept volume as illustrated in Figure 4.8. 

The multi-dimensional scaling and cluster analysis are briefly discussed before. Figure 

4.9 shows the result of cluster analysis and selected samples. 
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Figure 4.6 Reductions in RMS per simulation run for two stage RJMCMC in 2-D 

example 
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a) 2-D b) 3-D 

Figure 4.7 Collected samples from two stage RJMCMC compared to reference and 

initial model using multi-dimensional scaling in 2-D example: a) 2-D visualization and 

b) 3-D visualization 

 

 

Figure 4.8 The swept volume from injector to producer 1 at TOF = 2000 
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Figure 4.9 Ten samples selected from all collected samples using multi-dimensional 

scaling and cluster analysis in 2-D example 

 

The reference model and the initial model are shown in Figure 4.10a and two selected 

samples with sample mean are shown in Figure 4.10b. Figure 4.10 indicates that we 

successfully reconstruct the channel structure and identify the channel orientation based 

on the dynamic production history and permeability observations. The dynamic data 

history matching results are shown in Figure 4.11, Figure 4.12 and Figure 4.13 (Red 

dot is observation data; green is initial data; and blue is updated data). These results 

clearly demonstrate that the two-stage RJMCMC can be used to sample the posterior 

distribution during channelized reservoir history matching. 
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a) Reference and initial model 

 

b) Two collected samples and sample mean 

 

Figure 4.10 Collected samples from two stage RJMCMC and sample mean compared to 

reference and initial model 
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- Reference  – Initial – Update 

 

 

Figure 4.11 Oil production rate history matching in 2-D example 
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 Reference  – Initial – Update 

 

 

Figure 4.12 Water-cut history matching in 2-D example 
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- Reference  – Initial – Update 

 

 

Figure 4.13 Well bottom hole pressure (BHP) history matching in 2-D example 
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program for object-based stochastic modeling of fluvial system (Deutsch and Tran 

2002). The reference and initial model are shown in Figure 4.15. The initial reservoir 

model is conditioned to the permeability observations at well locations. 
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Figure 4.14 A 3-D 50x50x6 channelized reservoir example 
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a) Reference field b) Initial field 

 

Figure 4.15 Layer view of reference and initial permeability field in 3-D example: a) 

reference permeability field and b) initial permeability field 
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using single phase flow-based upscaling. The residual sum of square reduction of the 

two-stage RJMCMC is plotted in Figure 4.16. After simulations, multi-dimensional 

scaling and cluster analysis are used to select samples from all the collected models. 

Figure 4.17 shows the model separations compared to the true model using the first two 

and three principal components. Figure 4.18 shows the result of cluster analysis and the 

selected models. 

 

 

 

Figure 4.16 Reductions in RMS per simulation run for two stage RJMCMC in 3-D 

example 
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a) 2-D b) 3-D 

Figure 4.17 Collected samples from two stage RJMCMC compared to reference and 

initial model using multi-dimensional scaling in 3-D example: a) 2-D visualization and 

b) 3-D visualization 

 

Figure 4.18 Ten samples selected from all collected samples using multi-dimensional 

scaling and cluster analysis in 3-D example 
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Four collected samples are compared to the reference model and the initial model in 

Figure 4.19. From the figure, we can see that the channel structure and orientation are 

identified given the dynamic production data and permeability observations. The 

dynamic data history matching results are shown in Figure 4.20 (Red dot is observation 

data; green is initial data; and blue is updated data). These results show that the 

application of two-stage RJMCMC can be extended to a 3D example. 

 

 

 

(a) (b) (c) 

 

Figure 4.19 Four selected models compared with reference and initial model in 3-D 

example: a) reference model, c) initial model and c) 4 selected sample models 
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- Reference  – Initial – Update 

 
a) Oil production rate 

 
b) Water-cut 

 
c) Producer bottom-hole pressure 

 
d) Injection rate 

Figure 4.20 Dynamic production data history matching in 3-D example: a) oil production 

rate history matching, b) water cut history matching, c) producer bottom hole pressure 

history matching and d) injection rate history matching 
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4.5 Summary 

In this chapter, we presented a novel method for history matching and uncertainty 

quantification for channelized reservoirs using Reversible Jump Markov Chain Monte 

Carlo (RJMCMC) methods.  

 

In order to preserve large-scale continuity, the channelized permeability field is 

parameterized using the discrete cosine transform (DCT). The parameters representing 

the channel structure are the coefficients in the truncated frequency domain. The 

parameter space is searched using the RJMCMC method, whereby the dimension of the 

parameter space is flexible. For each step of the RJMCMC, the dimension of the 

uncertainty space can be increased or decreased according to a prescribed prior 

distribution. This flexibility in the parameter dimension allows an efficient search of the 

uncertainty space. Two-stage MCMC method was used to screen out the undesired 

proposals. After simulations, multi-dimensional scaling and cluster analysis were used to 

select realizations from the accepted models. 

 

We demonstrate the effectiveness of the RJMCMC algorithm using both 2D and 3D 

examples involving water-flooding history matching. The 2-D example shows that the 

RJMCMC algorithm can successfully match the data and identify the orientation of the 

channels in the reference model. The 3-D result shows that the proposed algorithm can 

determine the large-scale features of the reference channelized permeability field based 

on the production data. The MCMC algorithms naturally provide multiple realizations of 
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the permeability field conditioned to well and production data and thus, allow for 

uncertainty quantification in the forecasting. 
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5 CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this work, we presented two applications of Level Set Methods (LSM) and Fast 

Marching Methods (FMM) in the field of reservoir characterization: drainage volume 

and pressure depletion calculation in unconventional wells, and history matching and 

uncertainty quantification of channelized reservoirs. 

 

First, Fast Marching Methods are successfully used to compute and visualize depth of 

investigation in unconventional reservoirs under very general reservoir conditions and 

fracture geometry/properties. The FMM essentially solve the Eikonal equation which 

describes the propagation of a pressure front. It provides an efficient way to calculate 

drainage volume, which leads to estimation of pressure depletion behavior based on a 

pressure geometric approximation of the drainage volume. The applicability of the 

proposed approach is demonstrated with two examples derived based on real field cases 

– one assumes homogeneous matrix properties and the other uses heterogeneous matrix 

properties. In both examples, we identify and visualize the drainage volume and 

transient pressure behavior. The speed and versatility of our proposed method makes it 

ideally suited for estimating matrix/fracture properties and optimizing fracture design in 

unconventional reservoirs through inverse modeling. We can also estimate Stimulated 

Reservoir Volume (SRV) based on drainage volume calculation. The application is 

demonstrated using a 3-D synthetic example designed after a real field case. We are able 
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to demonstrate the benefits of incorporating the SRV during the history matching 

process to improve history matching results. Specifically, our results show that the 

uncertainty in the fracture/matrix parameters are reduced significantly when SRV was 

incorporated in addition to Bottom-Hole Pressure (BHP) during history matching as 

compared to BHP matching only.   

 

Second, we propose a level set Markov chain approach for history matching and 

uncertainty quantification for channelized reservoirs using a two stage Markov Chain 

Monte Carlo method. This approach is based on level set representation of channel 

boundaries. Specifically, signed distance function is used to represent channelized 

features in the reservoir and channel structure is then updated by perturbing the signed 

distance function with a velocity field constrained at well locations. The velocity field 

can be generated with eigenvalue decomposition of large number of training velocities. 

The parameters representing the channel structure are the coefficients of eigenvectors 

which from the velocity basis. A two stage sampling method is utilized to improve 

efficiency of Markov Chain Monte Carlo method and sample the posterior distribution 

rigorously. We demonstrate the effectiveness of our approach using both 2-D and 3-D 

examples. Two examples show that the level set Markov chain approach can 

successfully match the production data and identify the connectivity of the channels in 

the reference model. The MCMC algorithms naturally provide multiple realizations of 

the permeability field conditioned to well and production data and thus, allow for 

uncertainty quantification in the forecasting. 
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In addition, we also exploit a different approach for history matching channelized 

reservoirs using Reversible Jump Markov Chain Monte Carlo (RJMCMC). In order to 

preserve large-scale continuity, the channelized permeability field is parameterized using 

the discrete cosine transform (DCT). The parameters representing the channel structure 

are the coefficients in the truncated frequency domain. The parameter space is searched 

using the RJMCMC method, whereby the dimension of the parameter space is flexible. 

For each step of the RJMCMC, the dimension of the uncertainty space can be increased 

or decreased according to a prescribed prior distribution. This flexibility in the parameter 

dimension allows an efficient search of the uncertainty space. Two-stage MCMC 

method was used to screen out the undesired proposals. After simulations, multi-

dimensional scaling and cluster analysis were used to select realizations from the 

accepted models. The effectiveness of the RJMCMC algorithm is demonstrated using 

two examples involving water-flooding history matching. Both examples show that the 

proposed algorithm can update the large-scale features of the reference channelized 

permeability field conditioned to dynamic production information. 
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