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ABSTRACT

Prediction and Estimation of Random Fields.

(August 2012)

Priya Kohli, B.S, Delhi University, New Delhi;

M.S., Indian Agricultural Statistics Research Institute, New Delhi;

M.S., Northern Illinois University, DeKalb

Co-Chairs of Advisory Committee: Dr. Mohsen Pourahmadi
Dr. Willa W. Chen

For a stationary two dimensional random field, we utilize the classical Kolmogorov-Wiener

theory to develop prediction methodology which requires minimal assumptions on the de-

pendence structure of the random field. We also provide solutions for several non-standard

prediction problems which deals with the “modified past,” in which a finite number of ob-

servations are added to the past. These non-standard prediction problems are motivated

by the network site selection in the environmental and geostatistical applications. Unlike

the time series situation, the prediction results for random fields seem to be expressible

only in terms of the moving average parameters, and attempts to express them in terms of

the autoregressive parameters lead to a new and mysterious projection operator which cap-

tures the nature of edge-effects. We put forward an approach for estimating the predictor

coefficients by carrying out an extension of the exponential models. Through simulation

studies and real data example, we demonstrate the impressive performance of our predic-

tion method. To the best of our knowledge, the proposed method is the first to deliver

a unified framework for forecasting random fields both in the time and spectral domain

without making a subjective choice of the covariance structure.

Finally, we focus on the estimation of the hurst parameter for long range dependence
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stationary random fields, which draws its motivation from applications in the environmen-

tal and atmospheric processes. Current methods for estimation of the Hurst parameter

include parametric models like fractional autoregressive integrated moving average mod-

els, and semiparametric estimators which are either inefficient or inconsistent. We propose

a novel semiparametric estimator based on the fractional exponential spectrum. We de-

velop three data-driven methods which can automatically select the optimal model order

for the fractional exponential models. Extensive simulation studies and analysis of Mercer

and Hall’s wheat data are used to illustrate the performance of the proposed estimator and

model order selection criteria. The results show that our estimator outperforms existing

estimators, including the GPH (Geweke and Porter-Hudak) estimator. We show that the

proposed estimator is consistent, works for different definitions of long range dependent

random fields, is computationally simple and is not susceptible to model misspecification

nor poor efficiency.
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CHAPTER I

INTRODUCTION

A stochastic process is a collection of random variables that are indexed by some set

D ⊂ Rd containing spatial coordinates s = [s1, s2, · · · , sd]′. When the dimension d of

the index set is greater than one, the stochastic process is referred as the random field. A

two dimensional (2-D) random field, d = 2 is often referred as spatial process because it

contains information about the attribute of interest and its location. The location may be a

set of coordinates, such as the latitude and longitude associated with an observed pollutant

level, or it may be a small region such as a county associated with an observed disease rate.

Let X(s) be a random variable that can be measured at location s = (x, y) in the region

D ∈ R2, then the random field is denoted by {X(s) : s ∈ D ⊂ R2} or for short as {X(s)}.

When the 2-D random field is indexed over a regular grid of points, that is when D

is a finite (or countable) collection of spatial locations at which the random variable X

is measured then it is called a lattice process with lattice D. The spatial sites in a lattice

are typically identified using their longitude x and latitude y. These processes could be

regular or irregular lattice type depending on the pattern of the locations. For instance,

yield from an agricultural plot is usually observed on a regular lattice and the percentage of

population below poverty line in five midwest states of Illinois, Indiana, Michigan, Ohio,

and Wisconsin is observed on an irregular lattice.

We consider 2-D random fields which are observed on a regular lattice. These pro-

cesses have seen a rapid rise in popularity due to demand from a wide range of fields. We

The format and style follow that of Journal of the American Statistical Association.
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discuss two such areas of applications next.

1. Remote Sensing Studies

In remote sensing studies, satellites and aircraft can be used to obtain images from

which the spatial data is produced. In this case the data is in the form of pixels

(or voxels), which are small rectangularly shaped regions. Some examples include

inventory of natural resource, modeling weather patterns, monitoring the effects of

forest clearing and erosion among various other application areas.

2. Medical Imaging Studies

In this area the image is captured in a discrete, digitized format but the objects in an

image vary continuously (colors, lines, etc.). Applications include images generated

from magnetic resonance (MRI) imaging and positron emission tomography (PET).

The data from these two studies is measured on vastly different scales but the statistical

problems posed are similar as they rely on the fact that the neighboring locations are de-

pendent, see Cressie (1993, p.499). In this work, we propose a unified framework for the

prediction and estimation of 2-D random fields observed on a regular lattice. For ease of

notation, we will refer to the 2-D random fields observed on a regular lattice as random

fields which are denoted by {X(s)} from here on.

1.1 Dissertation Organization

In Chapter II, we present several results for prediction of random fields by extending the

classical Kolmogorov-Wiener prediction theory of stationary (1-D) processes. Using these

predictors, their prediction errors and variances, we also solve a number of non-standard

prediction problems which deals with different modifications of the past for prediction.

Most of the existing methods are based on the assumption that the dependence structure

of the random field is known upto a finite number of unknown parameters. In a practical
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situation, this means that for a given dataset one needs to specify a parametric model for

covariance, which can be selected from a menu of available models in standard software

packages. Our proposed method is first to deliver prediction theory for random fields based

on a fixed past without making a subjective choice of the covariance structures.

In Chapter III, we answer the obvious question: How does one start to apply the pre-

diction theory developed in Chapter II to a given dataset? The proposed methodology is

implemented by first fitting an extended version of Bloomfield’s (1973) exponential model

to the spectrum and then using the recursive formulas which expresses the predictor coef-

ficients in terms of the cepstral coefficients of the process. The extension of exponential

models to random fields has been studied in the engineering literature in the contexts of

texture and image analysis. However, the construction of predictors of stationary random

fields with exponential spectrum has been lagging behind. The prediction theory com-

bined with this exponential model based estimation thus, provides a unified framework for

forecasting random fields both in the time and spectral domain. A simulation study that

investigates the predictive performance of the proposed methodology is included. The pro-

posed framework is then applied to a dataset of yields from an agricultural experiment.

Both the simulation studies and application to real study show the satisfactory performance

of the proposed prediction and estimation method.

Chapter IV focusses on long range dependent random fields. A common scientific

objective for such processes is to estimate the parameter which controls the long range be-

havior of the process. We first review the existing methods of estimation and discuss their

major pros and cons. Then we propose a novel semi-parametric estimator called fractional

exponential (FEXP) estimator for the long range dependence parameter. There are many

different ways to define a long range dependent random field and we show that the pro-

posed estimator can be applied very easily to these different definitions. It turns out that

the statistical properties of the proposed estimator depends on the order of the exponential
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model. To alleviate this problem we generalize the existing model order selection tech-

niques to introduce data dependent automatic selection of the appropriate model. Through

extensive simulation experiments and an application to the wheat yield data, we conform

that the proposed estimator not only leads to more reasonable estimates for the long range

dependence parameter, but also avoids the inconsistencies resulting from other methods.

Finally, we conclude with the main findings of the work and some problems for further

research in Chapter V.
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CHAPTER II

PREDICTION OF STATIONARY RANDOM FIELDS

2.1 Introduction

One of the primary goals in geostatistics is prediction at unsampled locations based on the

measurements available at known locations. These predictions provide a guide to make

practical decisions, for instance spatial prediction can be done for variables like tempera-

ture, pressure, air pollution, home prices and disease concentration. Poor predictions will

lead not only to poor decisions and planning but can also waste time, money and resources.

Kriging, the most commonly used method for spatial interpolation, deals with the

prediction of X(.) over all D when X is only observed at a finite number of points

{s1, s2, · · · , sn} in D. Matheron (1971) introduced kriging based on the work of Krige

(1951). Kriging belongs to the family of linear least squares estimation methods, and

estimates values at unobserved location as a weighted average of the neighboring observed

values. The determination of unknown weights require specification of a parametric model

for the covariance structure with few parameters. In practice, the model for the covariance

is selected from a list of available models and then its parameters are estimated from the

observed data {X(s)}. This presupposition that the data can be modelled by a specific

covariance function is not universally accepted because a misspecified model can often

lead to highly biased predictions. In addition, assuming a fixed dependence structure might

produce too smooth image of the data at hand due to either underestimation of the extreme

values or the poor reproduction of the short scale variations.

For stationary time series (or 1-D processes) the prediction theory began with the

seminal work of Kolmogorov (1939, 1941) and Wiener (1949). Their prediction theory,

hereafter referred to as the KW theory, makes no parametric model assumption for the
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covariance structure and incorporates the dependence among the observations at different

time points by using the Wold decomposition of the process.

Given the success of the KW theory, we expected its extension to play a key role in

the prediction of 2-D stationary processes. The Wold decomposition is of basic importance

in the KW theory, however, for random fields we have to assign different meaning to the

“past” and “future” in different prediction problems. Hence, different definitions of “past”

will lead to different Wold type decompositions. We develop the prediction theory for

stationary random fields based on the Wold decomposition corresponding to quarter-plane

past. Being an extension of the KW theory, the proposed prediction theory does not assume

a specific model for the covariance structure, thus avoiding the pitfalls resulting from model

misspecification.

Further, we study the solutions of several prediction problems for random fields by

extending some nonstandard prediction problems for stationary time series based on the

modification of the past. Their solutions lead to informative and explicit expressions in-

volving the autoregressive (AR) and moving average (MA) parameters. These prediction

problems provide useful information for assessing the worth of observations in the spatial

setting and are closely related to the design issues or network site selection in the environ-

mental, geostatistical and engineering applications, see Zimmerman (2006).

The rest of this chapter is organized as follows: In Section 2.2 we briefly describe

the KW theory for prediction of time series along with a summary of the prediction results

corresponding to the modified pasts. We review some basic results on stationary random

fields, their Wold decompositions and Szegö’s formula in Section 2.3. The multi-step ahead

predictor based on the quarter plane past and its prediction error variance are also given.

In Section 2.4, using the Wold decomposition of stationary random fields, their multi-

step ahead prediction errors and variances, we provide solutions for various nonstandard

prediction problems, when a number of observations are either added to the quarter-plane
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past. Section 2.5 introduces the notion of worth of an observation in spatial prediction.

We also describe the role of nonstandard prediction problems in finding the worth of the

observations.

2.2 Prediction of Stationary Time Series

The prediction theory of a stationary time series {X(t), t ∈ Z}, where Z is the set of

integers, is concerned with computing the linear least-squares predictors of the future val-

ues based on the knowledge of the infinite past and the spectral density function of {X(t)}.

Kolmogorov (1939, 1941) and Wiener (1949) developed a comprehensive theory of predic-

tion for a stationary process using its spectral factorization and the Wold decomposition.

The Wold decomposition gives the fundamental unilateral representation of a stationary

(nondeterministic) process {X(t)} in terms of its innovations {ε(t)} as:

X(t) =
∞∑
k=0

bkε(t− k) + V (t),

where {bk} are the MA parameters with b0 = 1,
∑∞

k=1 |bk|2 <∞, bk = 0, k < 0 and {ε(t)}

is a white noise process with mean zero and variance σ2 called the innovation process of

{X(t)}. Here {V (t)} is a deterministic process orthogonal to {ε(t)}. For purely nonde-

terministic (PND) process the Wold decomposition has no deterministic component such

that

X(t) =
∞∑
k=0

bkε(t− k). (2.1)

It is well known that a necessary and sufficient condition for a process to be PND is given

by ∫ π

−π
logf(eiλ)dλ > −∞. (2.2)

This condition is also necessary and sufficient for the spectral factorization theorem to hold.

The factorization theorem provides an analytic function φ(z) of complex variable z = eiλ,
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such that the spectral density function of {X(t)} satisfies

f(λ) =
σ2

2π
|φ(z)|2 . (2.3)

This function φ(z) is called the spectral factor of f(λ) and

φ(z) =
∞∑
j=0

bjz
j,

with φ(0) = 1. If φ(z) 6= 0 in |z| < 1, then the inverse for φ(z) exists, see Pourahmadi

(2001, §5.5) and Hannan (1970, Chap. 3). The Taylor series expansion of the inverse

function, φ−1(z) = 1/φ(z) is

φ−1(z) =
∞∑
j=0

ajz
j, |z| < 1,

where {ak} are the AR(∞) parameters of {X(t)} which gives the unilateral representation

of X(t) in terms of its past as:

X(t) = −
∞∑
k=1

akX(t− k) + ε(t). (2.4)

In KW theory the predictions are expressed in terms of the MA and AR parameters as given

in the following result.

Lemma 1. Let {X(t)} be a nondeterministic stationary process with spectral density func-

tion f(λ) and spectral factor φ(z) with φ(z) 6= 0, |z| < 1. Then

a.) the h-step ahead linear least-squares predictor in terms of the unobservable innova-

tions is:

X̂(t+ h) =
∞∑
k=h

bkε(t+ h− k),

where {bk} are the MA parameters or Fourier coefficients of φ(z).
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b.) the corresponding prediction error is:

X(t+ h)− X̂(t+ h) =
h−1∑
k=0

bkε(t+ h− k),

c.) the h-step ahead prediction error variance is:

var
{
X(t+ h)− X̂(t+ h)

}
= σ2

h−1∑
k=0

|bk|2,

d.) the h-step ahead linear least-squares predictor in terms of the observed past is:

X̂(t+ h) = −
h−1∑
k=1

akX̂(t+ h− k)−
∞∑
k=h

akX(t+ h− k),

where {ak} are the AR parameters or the Fourier coefficients of φ−1(z). Here the

first term corresponds to the unobserved future value between X(t) and X(t + h)

whereas the second term consists of the infinite past of X(t).

Solutions of some nonstandard prediction problems for a stationary time series {X(t)}

corresponding to the following modified pasts:

I1 = {X(t); t ≤ −1, t = h, t 6= 0},

I2 = {X(t); t ≤ h, t 6= 0}, (2.5)

I3 = {X(t); t ≤ −1, t 6= −h, t 6= 0},

for any h > 0, are known to lead to the following informative and explicit expressions

for the prediction error variance involving the AR and MA parameters of the process,

see Nakazi (1984), Pourahmadi (1989), Miamee & Pourahmadi (1988), Cheng & Pourah-

madi (1997), Bondon (2002, 2005), Pourahmadi, Inoue & Kasahara (2006) and Kasahara,

Pourahmadi & Inoue (2009).
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Lemma 2. Let {X(t); t ∈ Z} be a nondeterministic stationary process with the innova-

tion process {ε(t); t ∈ Z}, innovation variance σ2, MA and AR parameters {bk} and {ak},

respectively. Then, the prediction error variance of X(0) based on

(a) the augmented past, I1 is

var
{
X(0)− X̂I1(0)

}
= σ2 1 + b21 + b22 + · · ·+ b2h−1

1 + b21 + b22 + · · ·+ b2h−1 + b2h
, (2.6)

(b) the augmented past, I2 is

var
{
X(0)− X̂I2(0)

}
= σ2 1

1 + a21 + a22 + · · ·+ a2h
, (2.7)

(c) the incomplete past, I3 is

var
{
X(0)− X̂I3(0)

}
= σ21 + a21 + a22 + · · ·+ a2h−1 + a2h

1 + a21 + a22 + · · ·+ a2h−1
. (2.8)

These explicit expressions involving
∑h

k=1 b
2
k and

∑h
k=1 a

2
k, which are reminiscent of

the h-step ahead prediction error variance σ2
∑h−1

k=0 b
2
k, reveal the roles of the AR and MA

parameters in assessing the effect of addition or deletion of observations from the past on

the prediction error variance. For example, from (2.6) it is evident that for a stationary

process with bh = 0 adding the variable X(h) to the past will not improve the prediction

of X(0). Similarly, from (2.8) one can see that deleting X(−h) from the past will not

deteriorate the prediction of X(0) as long as ah = 0.

The prediction error variance in (2.7) was obtained by Nakazi (1984) using spectral

domain techniques and deep duality results in harmonic analysis. However, his method

was too rigid to allow computing the predictor corresponding to the augmented past I2.

Nakazi’s approach was modified and a time-domain (regression) method was developed by

Pourahmadi (1989) to handle the other prediction problems in Lemma 2 without requiring

the unnatural minimality condition on the process and where the linear predictor of X(0)

based on I2 was found.
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2.3 Prediction of Stationary Random Fields

Given the success of the KW prediction theory for a stationary time series, it is expected

that the Wold decomposition and spectral factorization corresponding to a given past is the

key for solving the prediction problem for stationary random fields. In this section, we

review some of the basic results, and present some new results for the prediction of the 2-D

random fields.

Time series models are unilateral in structure following a natural notion of past and

future. Unlike the situation in time series, there is no unique definition of the past for a

stationary random field with discrete time-index in the plane (2-D) or higher dimensions.

Consequently, the prediction theory of stationary random fields {X(s1, s2); (s1, s2) ∈ Z2}

is very much dependent on the choice of a past like the half-plane, see Helson & Low-

denslager (1958) and the quarter-plane, Tjøstheim (1983), Kallianpur & Mandrekar (1983),

Soltani (1984) and Rosenblatt (1985), among others. The typical examples of the half-plane

and quarter-plane are:

S = {(i, j) : i ≤ −1, j ∈ Z} ∪ {(0, j) : j ≤ −1},

Q = {(i, j) : i ≤ 0, j ≤ 0}\{(0, 0)}, (2.9)

which correspond to the left half-plane and the third quadrant in Z2, respectively. We

develop a framework for computing the best linear predictors and the prediction error vari-

ances for stationary random fields when Q (the third quadrant) is used as the past. The focus

of the earlier work on prediction of random fields has been on one-step ahead prediction

and the extension of the Szegö-Kolmogorov-Wiener formula for the innovation variance.

Our focus, however, is on using the multi-step ahead predictors and their prediction error

variances in solving several nonstandard prediction problems.

Let H be the Hilbert space of zero-mean, square-integrable random variables defined

on a probability space. A sequence {X(s1, s2); (s1, s2) ∈ Z2} withX(s1, s2) ∈ H is called
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a stationary random field if for all integers s1, s2, t1 and t2, the covariance of X(s1, s2) and

X(t1, t2) depends only on the lags (s1 − t1, s2 − t2), namely,

cov (X(s1, s2), X(t1, t2)) = γ(s1 − t1, s2 − t2).

Since γ(., .) is a positive-definite function on the group of lattice points Z2, by Bochner’s

Theorem there exists a unique distribution function F (., .) on the torus (−π, π] × (−π, π]

such that

γ(s1, s2) =

∫ π

−π

∫ π

−π
e−i(s1λ1+s2λ2)dF (λ1, λ2); (s1, s2) ∈ Z2. (2.10)

In what follows we assume that F is absolutely continuous with respect to the Lebesgue

measure dλ1dλ2 with the Radon-Nikodyn derivative f(λ1, λ2) which is called the spectral

density function of the random field.

Let L2(f) denote the Hilbert space of all functions on the torus which are square inte-

grable with respect to the measure dλ1dλ2. From (2.10), it is evident that the map

X(s1, s2)→ e{−i(s1λ1+s2λ2)}, extends to an isomorphism from HX = the closed linear sub-

space ofH spanned by {X(s1, s2); (s1, s2) ∈ Z2}, ontoL2(f). For any subsetM of the lat-

tice points in the plane, define HM
X as the closed linear subspace spanned by X(s1, s2) with

(s1, s2) ∈ M , in the Hilbert space H . In the sequel, we use Hm∞
X , H∞nX and Hmn

X corre-

sponding to the indices from the sets {(s1, s2); s1 ≤ m, s2 ∈ Z}, {(s1, s2); s1 ∈ Z, s2 ≤ n}

and {(s1, s2); s1 ≤ m, s2 ≤ n}, respectively. For a given spectral density function f(λ1, λ2),

the subspaces Hm∞
f , H∞nf and Hmn

f in L2(f) are defined as the closed linear span of ex-

ponentials e(s1λ1+s2λ2) with indices from the indicated sets. Finally, PM
X stands for the

orthogonal projection operator from HX onto HM
X .

2.3.1 MA Representation with Half-Plane Past

The general theory of prediction of stationary random fields based on half-plane as the past

were developed in the seminal paper of Helson & Lowdenslager (1958). A half-plane S



13

in the sense of Helson and Lowdenslager is a subset of lattice points located at the origin

0 = (0, 0), which satisfy

1. S ∪ {0} is an additive semigroup,

2. S ∪ {0} ∪ (−S) = Z2,

3. S ∩ (−S) = ∅,

where the last property ensures that 0 /∈ S . The half-plane space S induces an order on Z2

which coincides with the lexicographic order, that is

(s1, s2) < (s′1, s
′
2) if (s1 − s′1, s2 − s′2) ∈ S.

Note that the half-plane S in (2.9) provides a specific example of such half-planes that we

work with in this section.

For any h = (h1, h2), Sh stands for its shifted version, that is,

Sh = {(i+ h1, j + h2); (i, j) ∈ S}.

A random field {X(s1, s2); (s1, s2) ∈ Z2} is said to be purely nondeterministic (PND) if⋂
h∈Z2

HSh
X = {0}.

It is known (Helson and Lowdenslager 1958, 1961) that a random field is PND, if and

only if its spectral distribution F (., .) is absolutely continuous with respect to the Lebesgue

measure dλ1dλ2 and its spectral density function f(λ1, λ2) satisfies the condition∫ π

−π

∫ π

−π
logf(λ1, λ2)dλ1dλ2 > −∞. (2.11)

In this case, there exists a one-sided (unilateral) MA(∞) representation for X(s, t):

X(s1, s2) = ε(s1, s2) +
∑∑
(k,`)∈S

bk,`ε(s1 − k, s2 − `),

HS
X = HS

ε , (2.12)
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where {ε(s1, s2)} is the innovation process of {X(s1, s2)} with mean zero and variance

σ2, {bk,`} denote the MA parameters with b0,0 = 1, bk,` = 0 when either k < 0 or ` < 0

and
∑∑
(k,`)∈S

b2k,` < ∞. Moreover, they also provided an extension of the Szegö’s formula

expressing the innovation variance σ2 = σ2(S) as:

σ2(S) = exp

{
1

(2π)2

∫ π

−π

∫ π

−π
logf(λ1, λ2)dλ1dλ2

}
. (2.13)

This formula for the innovation variance was used by Rosenblatt (1985) and Kallian-

pur, Miamee & Niemi (1990) to obtain similar formulas when infinite number of observa-

tions were added to or deleted from the half-plane S:

S+ = {(i, j) : i ≤ 0, (i, j) 6= (0, 0)}, S− = {(i, j) : i ≤ −1}.

In particular, for S+ it is known from Rosenblatt (1985, p. 225) and Kallianpur et al. (1990,

Thm II.7) that

σ2(S+) =

[
1

2π

∫ π

−π
exp

{
− 1

2π

∫ π

−π
logf(λ1, λ2)dλ1

}
dλ2

]−1
,

where evidently σ2(S+) ≤ σ2(S).

2.3.2 MA Representation with Quarter-Plane Past

In most of what follows we work with the quarter plane, denoted byQ from here on. With Q

as the past, Kallianpur & Mandrekar (1983) obtained a four-fold Wold decomposition in the

time-domain for a stationary random field. For the precise statement of the corresponding

MA representation and the necessary and sufficient spectral conditions for it, we recall

that a stationary random field {X(s1, s2)} is said to have a one-sided (unilateral) MA(∞)

representation on Q if there exists a white noise process {ε(s1, s2)} such that

X(s1, s2) = ε(s1, s2) +
∑∑
(k,`)∈Q

bk,`ε(s1 − k, s2 − `),

Hmn
X = Hmn

ε for all (m,n) ∈ Z2, (2.14)
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where the sequence {bk,`} consists of the MA parameters of the process, with b0,0 = 1,

bk,` = 0, when k < 0 or ` < 0 and
∑∑
(k,`)∈Q

b2k,` < ∞. In view of the equality of the two

subspaces involving the pasts of the two process, we call {ε(s1, s2)} the innovation process

of {X(s1, s2)} and the var {ε(s1, s2)} ≡ σ2 = σ2(Q) is referred to as the innovation

variance.

The following result by Soltani (1984) gives the spectral characterization of stationary

random fields having a one-sided MA(∞) representation on Q.

Lemma 3. A stationary random field {X(s1, s2)} with spectral density function f(λ1, λ2)

has a one-sided MA(∞) representation (2.14) on the quarter plane, if and only if

i.) logf ∈ L1, see (2.11),

ii.) the Fourier coefficients of logf vanish outside Q ∪ {−Q} ∪ {0},

iii.) H00
f = H0∞

f

⋂
H∞0
f ,

where HM
f is defined as before with M :

M = {(s1, s2); s1 ≤ 0, s2 ≤ 0}, for H00
f ,

= {(s1, s2); s1 ≤ 0, s2 ∈ Z}, for H0∞
f ,

= {(s1, s2); s1 ∈ Z, s2 ≤ 0}, for H∞0
f .

The spectral factorization of the spectral density function on Q in terms of an analytic

function φ(z1, z2) of complex variables z1 = eiλ1 and z2 = eiλ2 follows from Lemma 3(ii).

In fact, we have

f(λ1, λ2) =
σ2

2π
|φ(z1, z2)|2 ,

where φ(0, 0) = 1 and

φ(z1, z2) = exp

(
∞∑
k=0

∞∑
`=0

ck,`z
k
1z

`
2

)
, (2.15)
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where {ck,`} are the two-dimensional cepstral coefficients of f(λ1, λ2) defined as:

ck,` =
1

(2π)2

∫ π

−π

∫ π

−π
logf(λ1, λ2)e{−i(kλ1+`λ2)}dλ1dλ2.

It is known that the Szegö’s formula for σ2 = σ2(Q) is the same as in (2.13), see Miamee

(1986, Corollary, 4.3).

2.3.3 Multi-Step Ahead Prediction

Predicting future values other than X(0, 0) is important in the theory and applications of

stationary random fields, a problem which has not been studied systematically in the lit-

erature. In this section, we derive the multi-step ahead predictor and its prediction error

variance when Q is used as the past.

Theorem 1. Let {X(s1, s2)} be a PND stationary random field with the spectral density

function f(λ1, λ2) satisfying the conditions of Lemma 3. Then for any (h1, h2) ∈ Qc,

where Qc is the complement of Q, the (h1, h2)-step ahead linear least-squares predictor of

X(h1, h2) based on the past Q is given by

X̂(h1, h2) =
∞∑

k=h1

∞∑
`=h2

(k,`) 6=(h1,h2)

bk,`ε(h1 − k, h2 − `),

with the corresponding prediction error

X(h1, h2)− X̂(h1, h2) = bh1,h2ε(0, 0) +

h1−1∑
k=0

∞∑
`=h2

bk,`ε(h1 − k, h2 − `)

+
∞∑

k=h1

h2−1∑
`=0

bk,`ε(h1 − k, h2 − `) +

h1−1∑
k=0

h2−1∑
`=0

bk,`ε(h1 − k, h2 − `), (2.16)

and the prediction error variance

var
{
X(h1, h2)− X̂(h1, h2)

}
= σ2

(
b2h1,h2 +

h1−1∑
k=0

∞∑
`=h2

b2k,` +
∞∑

k=h1

h2−1∑
`=0

b2k,`

+

h1−1∑
k=0

h2−1∑
`=0

b2k,`

)
, (2.17)
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where σ2 = σ2(Q) is the innovation variance. The (h1, h2)-step ahead linear least-squares

predictor of {X(h1, h2)} in terms of the observed past is:

X̂(h1, h2) = −
( ∞∑

k=h1

∞∑
`=h2

(k,`)6=(h1,h2)

ak,`X(h1 − k, h2 − `) +

h1−1∑
k=0

∞∑
`=h2

ak,`X̂(h1 − k, h2 − `) +

∞∑
k=h1

h2−1∑
`=0

ak,`X̂(h1 − k, h2 − `) +

h1−1∑
k=0

h2−1∑
`=0

X̂(h1 − k, h2 − l)

+ah1,h2X̂(0, 0)

)
,(2.18)

where {ak,`} are the Fourier coefficients of φ−1. Here the first term corresponds to the

infinite quarter plane past of X(0, 0) and the remaining terms are the unobserved future

value between X(0, 0) and X(h1, h2). The proof of Theorem 1 is in Appendix A.

Remark 1. Depending on (h1, h2) some terms in (2.16) and (2.17) become zero for either

of hi < 0, i = 1, 2, but they always involve the infinite sums which makes them quite

different from their counterparts in 1-D process in the sense that the latter are always finite

sums, see Pourahmadi (2001, p.181).

Corollary 1. For a PND stationary random field {X(s1, s2)} with the spectral density

function f(λ1, λ2) satisfying the conditions of Theorem 3 we have,

(a). the covariance between prediction errors based on the knowledge of Q, for any two

different observations in Qc is

cov
{
X(h1, h2)− X̂(h1, h2), X(h

′

1, h
′

2)− X̂(h
′

1, h
′

2)
}

= σ2

(
bh1,h2bh′1,h

′
2

+

M1−1∑
k=0

∞∑
`=M2

bk,`bk+|h1−h′1|,`+|h2−h
′
2|

+
∞∑

k=M1

M2−1∑
`=0

bk,`bk+|h1−h′1|,`+|h2−h
′
2|

+

M1−1∑
k=0

M2−1∑
`=0

bk,`bk+|h1−h′1|,`+|h2−h′2|

)
, (2.19)

where M1 = min(h1, h
′
1) and M2 = min(h2, h

′
2).
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(b). The covariance between X(0, 0) and the prediction error of X(h1, h2) based on Q is

cov
{
X(h1, h2)− X̂(h1, h2), X(0, 0)

}
=


σ2bh1,h2 , if (h1, h2) ≥ (0, 0),

0, otherwise.
(2.20)

The results in Theorem 1 and Corollary 1 are the counterparts of those for multi-step

ahead prediction errors in time series, see Pourahmadi (1989). From Corollary 1(b) it is

clear that there is no correlation between X(0, 0) and the prediction errors for observations

with either h1 < 0 or h2 < 0.

The prediction error variance for the observations in the second and fourth quadrant

are quite different in the sense discussed next. The following result (proof in Appendix

A) establishes stationarity of the prediction error process along a fixed direction, a similar

result for the half-plane past is given in Kallianpur et al. (1990, Thm II.1).

Corollary 2. Let {X(s1, s2)} be a PND stationary random field with the spectral density

function f(λ1, λ2) satisfying the conditions of Lemma 3. Suppose Y (h1, h2) = X(h1, h2)−

X̂(h1, h2) denotes the prediction error of X(h1, h2) based on Q.

(a). For (h1, h2) in the second quadrant and for a fixed h2, the 1-D process

{Y (s, h2), s ≤ −1} is covariance stationary with the auto-covariance function

γh2(h) ≡ cov(Y (s1, h2), Y (s2, h2)) = σ2

∞∑
k=0

h2−1∑
`=0

bk,`bk+|h|,`, (2.21)

which depends only on the lag h = s1 − s2. For s1 = s2 = s the variance of the

prediction error is

var{Y (s, h2)} = σ2

∞∑
k=0

h2−1∑
`=0

b2k,`,

which is independent of s and monotone in h2. The spectral density function of

{Y (s, h2)} is of the form:

fh2(λ) =
σ2

2π

h2−1∑
`=0

∣∣φ`(eiλ)
∣∣2 , (2.22)
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where φ`(.) is given by

φ`(eiλ) =
∞∑
k=0

bk,` exp(ikλ).

(b). For (h1, h2) in the fourth quadrant and for fixed h1, the 1-D process

{Y (h1, t), t ≤ −1} is covariance stationary with the auto-covariance function

γh1(h) ≡ cov(Y (h1, t1), Y (h1, t2)) = σ2

h1−1∑
k=0

∞∑
`=0

bk,`bk,`+|h|, (2.23)

as a function of the lag h = t1 − t2. For t1 = t2 = t, the variance is

var {Y (h1, t)} = σ2

h1−1∑
k=0

∞∑
`=0

b2k,`,

which is independent of t and monotone in h1. The spectral density function of

{Y (h1, t)} is:

fh1(λ) =
σ2

2π

h1−1∑
k=0

∣∣φk(eiλ)
∣∣2 , (2.24)

where φk(.) is given by:

φk(eiλ) =
∞∑
`=0

bk,` exp(ikλ).

2.3.4 Recursive Formulas for the AR and MA Coefficients

We provide recursive formulas to relate the MA and AR parameters in terms of the cepstral

or Fourier coefficients of the logarithm of the spectral density function, see Pourahmadi

(1984).

Consider the Taylor expansions of the optimal factor φ and its inverse:

φ(z1, z2) =
∞∑
k=0

∞∑
`=0

bk,`z
k
1z

`
2,

φ−1(z1, z2) =
∞∑
k=0

∞∑
`=0

ak,`z
k
1z

`
2, (2.25)
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from which it follows that the MA and AR parameters of the random field are related to

each other via the recursions

b0,0 = a0,0 = 1,

bi,j =
i∑

k=0

j∑
`=0

(k,`)6=(i,j)

bk,`ai−k,j−`. (2.26)

2.4 Prediction with Modified Quarter Plane Past

In this section, we consider prediction of X(0, 0) when a finite number of observations are

added to the quarter plane Q and the past is modified to:

I = Q ∪K,

whereK represents a finite-dimensional space spanned by the additional observations. This

is the first natural step in generalizing the 1-D results in Lemma 1 to the 2-D processes. It

turns out that computing such predictors and prediction error variances are closely related

to finding multi-step ahead predictions using the MA(∞) representation of a PND random

field with Q as its past.

The orthogonal projection of X(0, 0) onto the linear subspace generated by the ran-

dom variables with indices from the modified past I = Q ∪ K provides the best linear

predictor of X(0, 0). However, due to non-orthogonality of Q and K computing this pre-

dictor is not easy even though it is known how to compute the projections of X(0, 0) onto

Q and K separately. A natural way to alleviate this problem is to re-express I as the or-

thogonal sum of Q and a finite-dimensional subspace orthogonal to it. To this end, define

A = sp{X(i, j)− X̂(i, j); (i, j) ∈ K}, (2.27)

where X̂(i, j) is the orthogonal projection ofX(i, j) ontoQ. The following results (outline

of proof is given in Appendix A) provide the appropriate ingredients needed to compute
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the predictors.

Lemma 4. Let {X(s1, s2)} be a PND stationary random field with MA parameters {bk,`}

and the modified past I = Q ∪K. Then,

(a). X(0, 0) is not in the modified set I , that is, X(0, 0) 6∈ I .

(b). Q and A are orthogonal subspaces spanning I such that

I = Q⊕ A,

where A is as in (2.27).

(c). The orthogonal projection of X(0, 0) onto I = Q⊕ A is given by

X̂I(0, 0) = P
X(0,0)
I = P

X(0,0)
Q + P

X(0,0)
A = X̂(0, 0) + P

X(0,0)
A ,

where PX(0,0)
Q and PX(0,0)

A are the orthogonal projections of X(0, 0) onto Q and A,

respectively, and P
X(0,0)
Q = X̂(0, 0) is obtained from Theorem 1 by substituting

(h1, h2) = (0, 0).

(d). The orthogonal projection ofX(0, 0) onto the finite-dimensional subspaceA is given

by

P
X(0,0)
A =

∑∑
(i,j)∈K

βi,j

{
X(i, j)− X̂(i, j)

}
,

where the vector β = {βi,j; (i, j) ∈ K}, arranged using the lexicographic order of

Z2, is given by

β = C−1b, (2.28)

andC is the variance-covariance matrix of the prediction errors inAwith its elements given

by (2.19), and b = {bi,j; (i, j) ∈ K} is a vector of MA parameters with each bi,j given by

(2.20).
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Remark 2. The results in Lemma 4 are the counterparts of those for prediction problems

in 1-D in stationary processes with modified past, see Pourahmadi (1989) and Pourahmadi

et al. (2006). We now establish the prediction based on two different configurations of the

set K in Lemma 5 and Theorems 2 & 3, and provide the details of the proof in Appendix

A.

2.4.1 A Single Additional Observation

When the modified past has only the single additional observation X(h1, h2), that is,

I1 = Q ∪ {X(h1, h2)} = Q ∪K, (2.29)

with hi ≥ 0, i = 1, 2 and (h1, h2) 6= (0, 0), then computing the prediction error variance

for X̂I1(0, 0) involves projecting onto a one-dimensional subspace. This is an analogue of

the prediction of X(0) when the past is modified to I1 as in (2.5).

Theorem 2. Let {X(s1, s2)} be a PND stationary random field with the innovation vari-

ance σ2 and MA parameters {bk,`}. Then, the best linear predictor of X(0, 0) based on I1

is given by

X̂I1(0, 0) = X̂(0, 0) + βh1,h2

(
X(h1, h2)− X̂(h1, h2)

)
, (2.30)

where

βh1,h2 =
bh1,h2

b2h1,h2 +
∑h1−1

k=0

∑∞
`=h2

b2k,` +
∑∞

k=h1

∑h2−1
`=0 b2k,` +

∑h1−1
k=0

∑h2−1
`=0 b2k,`

.

The corresponding prediction error variance is

σ2(I1) = σ2

∑h1−1
k=0

∑∞
`=h2

b2k,` +
∑∞

k=h1

∑h2−1
`=0 b2k,` +

∑h1−1
k=0

∑h2−1
`=0 b2k,`

b2h1,h2 +
∑h1−1

k=0

∑∞
`=h2

b2k,` +
∑∞

k=h1

∑h2−1
`=0 b2k,` +

∑h1−1
k=0

∑h2−1
`=0 b2k,`

. (2.31)

Remark 3. Note that if for a stationary random field {X(s1, s2)} the MA parameter bh1,h2 =

0, then addingX(h1, h2) toQwill have no effect on the prediction error variance ofX(0, 0)

as in (2.6) for 1-D processes. However, the prediction error variance for 2-D processes in

(2.31) involves infinite number of terms.
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Remark 4. When the additional observation is in the second or fourth quadrant, the MA

parameter bh1,h2 = 0 since hi < 0 for i = 1 or 2. Therefore, augmenting the information

set with an observation from second or fourth quadrant will not effect the prediction error

variance of X(0, 0).

2.4.2 Several Additional Observations

Next we turn our attention to the prediction of X(0, 0) based on the knowledge of

I2 = Q ∪ {X(i, j); 0 ≤ i ≤ h1, 0 ≤ j ≤ h2, (i, j) 6= (0, 0)} = Q ∪K, (2.32)

where K is a finite set of n “future” observations in the first quadrant. This is the simplest

form of the problem of finding the best linear predictor of X(0, 0) and its prediction error

variance when a finite number of observations are added to Q. It is analogous to the inter-

polation problem in stationary 1-D processes to predict X(0) based on the knowledge of

I2 from (2.5), see Nakazi (1984) and Pourahmadi (1989). In the next lemma, the vector of

prediction errors with entries from the set A in (2.27) is written as a linear transformation

of the innovation process.

Lemma 5. Let {X(s1, s2)} be a PND stationary random field with innovations {ε(k, `)},

MA and AR parameters {bk,`} and {ak,`}, respectively. Then,

(a). the vector of prediction errors for the observations in K based on the knowledge of

Q can be expressed as:

XK − X̂K = bKε(0, 0) + T ′εK , (2.33)

where bK = {bk,`; (k, `) ∈ K} is a vector of MA parameters corresponding to ob-

servations in the set K, εK consists of all the innovations {ε(k, `)} involved in the

prediction error of X(h1, h2) based on Q. The terms in both bK and εK are arranged

lexicographically, and T is a rectangular matrix with n columns of MA parameters



24

for the observations in the set K. The MA parameters in each column are those

involved in the prediction error of the observation in K.

(b). The variance-covariance matrix of the vector of prediction errors XK − X̂K is

C = σ2 (T ′T + bKb
′
K) . (2.34)

(c). Let aK be a vector of AR parameters with indices arranged as in εK . Then,

b′K = T ′aK . (2.35)

Remark 5. For 1-D stationary processes the matrix T involved in the prediction errors for

observations in K, is a lower triangular, square and Toeplitz matrix of MA parameters, see

Pourahmadi (2001, p.271).

Theorem 3. Let {X(s1, s2)} be a PND stationary random field with the innovation vari-

ance σ2, the MA and AR parameters {bk,`} and {ak,`}, respectively. Then, the best linear

predictor of X(0, 0) based on I2 is

X̂I2(0, 0) = X̂(0, 0) + β′(XK − X̂K), (2.36)

where X̂(0, 0) is the orthogonal projection of X(0, 0) onto Q and

β = G−1bK
(
1 + b′KG

−1b′K
)−1

, (2.37)

where G = T ′T . The corresponding prediction error variance in terms of the MA parame-

ters is

σ2(I2) = σ2
(
1 + b′KG

−1bK
)−1

. (2.38)

The prediction error variance can also be expressed in terms of the AR parameters as:

σ2(I2) = σ2 (1 + a′KPaK)
−1
, (2.39)

where P = T (T ′T )−1T ′ is a projection matrix.
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Remark 6. Unlike the 1-D stationary process in (2.6), the prediction error variance in

(2.39) based on the augmented set I2 for random fields seems to be expressible only in

terms of the MA parameters, and an attempt to express it in terms of the AR parameters runs

into a mysterious projection operator P , which captures the nature of the “edge-effects”

encountered in the estimation of random fields. Therefore, the results from 1-D and 2-D

differ considerably because of the presence of the matrix P .

Corollary 3. If set I2 in (2.32) is modified to include all the observations in the band

between X(0, 0) and X(h1, h2):

I2 = {X(i, j); i ≤ h1, j ≤ h2, (i, j) 6= (0, 0), (h1, h2)} = Q ∪K, (2.40)

where bothQ andK are infinite subspaces. Then the results in Theorem 3 for the prediction

of X(0, 0) still hold true due to Corollary 1.

2.5 Worth of Observation

Suppose we are interested in quantifying the prediction worth of a generic information set

denoted by I, in terms of a meaningful measure of worth denoted by WI . Pourahmadi &

Soofi (2000) introduced a measure of worth for observations in a stationary process when

the purpose is prediction. We generalize this measure for the two-dimensional stationary

random fields to propose an index of worth which quantifies the predictive worth of the

observations in random fields.

To make this general set up more specific, imagine a situation in which two geologists

A and B are interested in estimating X(0, 0) based on the knowledge of quarter plane

past Q = {X(i, j); i ≤ 0, j ≤ 0 and(i, j) 6= (0, 0)}. Further, suppose that A has some

additional information in the form of future observations;

I = {X(i, j); (r1, r2) ≤ (i, j) ≤ (0, 0) and (i, j) 6= (0, 0)},
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for any (r1, r2) > (0, 0), then A is clearly at advantage as compared to B. In this case, A

is actually predicting X(0, 0) based on the modified (amended) past Q+ = Q ∪ I, while

B is still computing the one-step ahead predictor for X(0, 0). The worth of observations

in I gives a quantitative measure of how advantaged A is compared to B in presence of

additional information.

Let X̂Q+(0, 0) denote the predictor of X(0, 0) based on the modified pasts Q+ and let

the prediction error variance be var
(
X(0, 0)− X̂Q+(0, 0)

)
= σ2 (Q+). Then we define

the index of worth for set I as:

WI = 1− σ2 (Q+)

σ2
, for I ⊂ Qc.

The computation of this measure of worth requires σ2 (Q+), for modified sets Q+. The

results for the prediction error variance based on the modified pasts from Section 2.4 can

be used here. From Theorem 2, where the interest was to predict X(0, 0) based on the aug-

mented set I1 = Q ∪X(r1, r2), the set I consists of a single future observation X(r1, r2).

Then we can define the predictive worth of I = X(r1, r2) as:

WI = 1− σ2 (I1)

σ2

=
b2r1,r2

b2r1,r2 +
∑∞

k=r1

∑r2−1
l=0 b2k,l +

∑r1−1
k=0

∑∞
l=r2

b2k,l +
∑r1−1

k=0

∑r2−1
l=0 b2k,l

. (2.41)

Similarly, when a finite number of future observations are available then,

I = {X(i, j); (0, 0) ≤ (i, j) ≤ (r1, r2), (i, j) 6= (0, 0)}, (2.42)

as in Theorem 3 where a finite set K of future observations is augmented to Q such that

the information set is I2 = Q ∪ K. Then we can find the worth of set I = K using the

prediction error variance of the modified past I2 as:

WI = 1− σ2 (I2)

σ2

=
b′KG

−1bK
1 + b′KG

−1bK
. (2.43)
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Therefore, the change in prediction error variance due to addition of the observations

from Q provides a way to measure the worth of observations in prediction. This measure

of worth depends only on the MA parameters of the random field.
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CHAPTER III

ESTIMATION OF STATIONARY RANDOM FIELDS

3.1 Introduction

In time series analysis the autoregressive moving average (ARMA) models:

X(t) =

p∑
r=1

ϕrX(t− r) + ε(t) +

q∑
r=1

ψrε(t− r), (3.1)

are used both in the time-domain for the purpose of forecasting and in the spectral-domain

for parametric spectral density function estimation, see Brockwell & Davis (1991, Chap. 5,

§4.4, §10.6). An alternative parametric model for the spectral density based on Bloomfield’s

(1973) exponential model of order p, EXP(p)

f(λ) =
σ2

2π
exp

{
2

p∑
r=1

θr cos(rλ)

}
; λ ∈ (−π, π), (3.2)

has a number of desirable statistical properties:

1. the parameters θi’s have physical interpretation as the cepstral coefficients (Bogert,

Healy &Tukey 1963, Chap. 15), and the estimated spectral density is guaranteed to

be positive,

2. when estimating the parameters, the Hessian reduces to the identity matrix due to the

orthogonality properties of sine and cosine functions which makes the maximization

of the so-called Whittle Gaussian likelihood for the model relatively simple. More-

over, the parameter estimates are asymptotically uncorrelated in the sense that their

Fisher information matrix is diagonal.

However, a drawback is that the construction of predictors for model (3.2) requires the

optimal factorization of the spectral density function f(λ) or finding the parameters of the

moving average (MA) representation of the underlying process, see Section 2.2.
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It seems Solo (1986) was the first to propose an extension of Bloomfield’s (1973) EXP

model for the two-dimensional stationary random fields as:

f(λ1, λ2) ≈ exp

{
p∑

r=−p

q∑
s=−q

θrs cos(rλ1 + sλ2)

}
; (λ1, λ2) ∈ (−π, π)2. (3.3)

The computational and statistical simplicity of models (3.2) and (3.3) are expected to

be similar, so that the latter can enjoy the two properties listed earlier. However, to the best

of our knowledge, this model has not been used effectively in the prediction of random

fields observed on a lattice.

Based on the MA(∞) representation of the random field discussed in Section 2.3, we

show that an important role is played by expressing the predictor coefficients in terms of

the cepstrum of the random fields which amounts to extending the results in Pourahmadi

(1983, 1984). Since the bivariate EXP model satisfy property (1), it provides a natural way

to estimate the cepstral coefficients.

The outline of this chapter is as follows. In Section 3.2 we review the role of expo-

nential models for prediction of stationary 1-D processes. In Section 3.3 we introduce the

bivariate EXP model for the spectral density of a stationary spatial process and connect it

to the classical linear regression. Section 3.4 provides an estimation methodology for the

predictor coefficients by fitting exponential models. For a given data, we also put forward

an algorithm to demonstrate the implementation of the proposed method. The procedure is

illustrated using a simulation study and application to real data in Section 3.5.

3.2 Predictor Coefficients: Time Series

For a stationary time series {X(t), t ∈ Z}, where Z is the set of integers, the results

in Lemma 1 provide linear least-squares predictors and prediction error variances of the

future values based on the knowledge of infinite past and the spectral density of {X(t)}.

Pourahmadi (1984) depicted the important role played by the formulas expressing the AR
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and MA parameters in terms of the Fourier coefficients of logf(λ). These coefficients,

known as cepstral correlations/coefficients of f(λ) (Bogert et al. 1963), are given as:

ck =
1

2π

∫ π

−π
logf(λ) exp(−ikλ)dλ. (3.4)

The well-known, Szegö-Kolmogorov-Wiener formula for the innovation variance is related

to c0 as:

σ2 = exp

[
1

2π

∫ π

−π
log {f(λ)} dλ

]
.

The following recursive formulas for the MA and AR parameters in terms of the cepstral

coefficients {ck} were derived in Pourahmadi (1983, 1984).

Lemma 6. Suppose that {X(t)} is a purely nondeterministic, weakly stationary stochastic

process with spectral density f(λ), cepstral coefficients {ck}, and spectral factor φ(z).

Then, the Fourier coefficients of φ(z) and φ−1(z) are given in terms of {ck} as:

(a) bk = 1
k

∑k−1
j=0 (k − j) ck−jbj ,

(b) ak = −1
k

∑k−1
j=0 (k − j) ck−jaj ,

for k = 0, 1, 2, · · · with b0 = exp(c0/2) and a0 = exp(−c0/2).

Recursive formulas obtained later by Kaderli & Kayhan (2000) for the MA param-

eters using the cepstral coefficients of an ARMA process and by Hurvich (2002) for the

coefficients {bk} and {ak} of the fractional exponential models, can be viewed as special

cases of the Lemma 6. Bhansali (1974) used numerical factorization of the windowed esti-

mates of f(λ) to estimate the Kolmogorov-Wiener predictor coefficients when only a finite

segment of the past of {X(t)} is known. The performance of such estimators and their

asymptotic properties have been studied by Bhansali (1973a, 1974, 1977) through Monte

Carlo simulations.
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It is clear from Lemma 6 that if cepstral coefficients of the spectral density are known,

then the predictor coefficients can be computed easily. Bloomfield (1973) presented the

least squares and maximum likelihood estimation of the cepstral coefficients by fitting EXP

model.

3.3 Bivariate Exponential Models

The EXP model for the spectral density is motivated by observing that the log of the esti-

mated spectral density is generally a smooth function, and thus can be approximated by a

trigonometric polynomial (Bloomfield 1973). Consider a real-valued, zero mean, station-

ary random field {X(t1, t2), (t1, t2) ∈ Z2} with summable autocovariance function {γkl}.

Then its spectral density is,

f(λ1, λ2) =
∞∑

k=−∞

∞∑
l=−∞

γkl exp{i(kλ1 + lλ2)}.

If logf(λ1, λ2) is integrable then its Fourier series expansion is

logf(λ1, λ2) =
∞∑

r=−∞

∞∑
s=−∞

θrs exp{i(rλ1 + sλ2)}.

Truncating the above series at (p, q) we get,

logf(λ1, λ2) ≈
p∑

r=−p

q∑
s=−q

θrs exp{i(rλ1 + sλ2)}. (3.5)

Using the symmetry of γkl and hence θkl we can write (3.5) as

logf(λ1, λ2) ≈ θ00 + 2

p∑
r=1

θr0 cos(rλ1) + 2

q∑
s=1

θ0s cos(sλ2)

+2

p∑
r=1

q∑
s=1

θ(+)
rs cos(rλ1 + sλ2) + 2

p∑
r=1

q∑
s=1

θ(−)rs cos(rλ1 − sλ2), (3.6)

with R = 2pq+p+q+1 unknown parameters. Following Solo (1986), we express (3.6) as

a classical linear regression model after replacing f(λ1, λ2) by a suitable estimator. Con-

sequently, all computational and inferential methods available for linear regression models

can be used to fit EXP models to the spectral density.
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3.3.1 Regression Formulation for Data on a Lattice

Let {X(t1, t2)} be a stationary random field observed on a n1 × n2 regular lattice with

sufficiently smooth spectral density f(., .) which can be approximated by a bivariate EXP

model as:

logf(λ1j, λ2k) = θ00 + 2

p∑
r=1

θr0 cos(rλ1j) + 2

q∑
s=1

θ0s cos(sλ2k)

+2

p∑
r=1

q∑
s=1

θ(+)
rs cos(rλ1j + sλ2k) + 2

p∑
r=1

q∑
s=1

θ(−)rs cos(rλ1j − sλ2k), (3.7)

where Fourier frequencies λ1j = (2πj/n1) ; 0 ≤ j ≤ (n1 − 1) and λ2k = (2πk/n2) ; 0 ≤

k ≤ (n2−1). Here (j, k) ∈ A = {(j, k) : 1 ≤ j ≤ m1,−m2 ≤ k ≤ m2; j = 0, 1 ≤ k ≤ m2}

and mi = [(ni − 1)/2] for i = 1, 2, where [.] is the greatest integer function.

A naive estimator for f(., .) is the periodogram of the random field. The periodogram

for {X(t1, t2)} is defined as:

I(λ1, λ2) =
1

(2π)2n1n2

∣∣∣∣∣
n1∑
t1=1

n2∑
t2=1

X(t1, t2) exp {−i(t1λ1 + t2λ2)}

∣∣∣∣∣
2

. (3.8)

Brillinger (1974) provided a generalization for the asymptotic properties of the Fourier

transforms of a spatial series. Under the assumption that all cumulants of the process

{X(t1, t2)} are bounded, he proved the asymptotic normality of the Fourier transform such

that

I(λ1, λ2)

f(λ1, λ2)
∼ χ2

2, as min(n1, n2)→∞, (3.9)

with

E

{
I(λ1j, λ2k)

f(λ1j, λ2k)

}
= γ and var

{
I(λ1j, λ2k)

f(λ1j, λ2k)

}
=
π2

6
, (3.10)

where γ = −0.57721 is the Euler’s constant. Replacing logf in (3.7) with I(., .) from (3.8)
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and using the property (3.10) we get,

logI(λ1j, λ2k) + γ = θ00 + 2

p∑
r=1

θr0 cos(rλ1j) + 2

q∑
s=1

θ0s cos(sλ2k)

+2

p∑
r=1

q∑
s=1

θ(+)
rs cos(rλ1j + sλ2k) + 2

p∑
r=1

q∑
s=1

θ(−)rs cos(rλ1j − sλ2k) + εjk. (3.11)

Representing (3.11) as a classical linear regression model of the form:

Y = Xβ + ε, (3.12)

where for (j, k) ∈ A the N × 1 vector, Y = {yjk} = {logI(λ1j, λ2k) + γ} with N =

2m1m2 + m1 + m2 + 1 columns and N × R design matrix, X = {x′jk} has N rows, R

columns with its (jk)-th row given as:

xjk = [1, 2 cos(rλ1j), 2 cos(sλ2k), cos(rλ1j + sλ2k), cos(rλ1j − sλ2k)]′, (3.13)

where r = (1, 2, · · · , p)′ and s = (1, 2, · · · , q)′. The R× 1 vector of parameters, β is

β = [θ00, θ10, · · · , θp0, θ01, · · · , θ0q, θ+11, · · · , θ+pq, θ−11, · · · , θ−pq]′, (3.14)

and ε = {εjk} is the N × 1 error vector. From regression model (3.12), {θrs} is estimated

using the least squares as, β̂ = (X
′
X)−1X

′
Y with variance-covariance matrix for the

estimates given as var(β̂) = σ2(X
′
X)−1.

An important issue closely related to the parameter estimation for spatial models is the

problem of edge effects caused by the data points on the boundary since the neighborhood is

not completely observed at these locations. In time series data there are only two boundary

points, corresponding to t = 0 and n, whereas in random fields the number of boundary

points increases with the dimension. An alternative to overcome the bias introduced in the

estimation due to edge effects is to use the periodogram based on the tapered data (Dalhaus

& Künsch 1987). A tapered periodogram for random field {X(t1, t2)} is defined as

IT (λ1, λ2) = |H|−1
∣∣∣∣∣
n1∑
t1=1

n2∑
t2=1

ht1,t2X(t1, t2) exp(−i(t1λ1 + t2λ2))

∣∣∣∣∣
2

, (3.15)
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where ht1,t2 , is a two-dimensional taper function and H =
∑n1

r=1

∑n2

s=1 h
2
t1,t2

. We note that

fitting an EXP model to estimate spectral density also removes edge effects to provide a

smooth estimate. This is illustrated in Section 3.5.

It turns out that the performance of the proposed estimators depend on the model

order of the EXP model fitted to f(., .). The choice of (p, q) is in accordance with the order

selection in an ARMA(p, q) model, see Brockwell & Davis (1991, p. 301). Different ways

to select optimal (p, q) are discussed in Section 4.4. Here, we use the generalized form

of the corrected Akaike’s information criteria (AICC) proposed by Hurvich & Tsai (1989)

for model selection in the context of regression and time series models. For regression

equation (3.12) with EXP model of order (p, q), the AICC is defined as:

AICC(p, q) = |A|log
(
RSSp,q
|A|

)
+

2R|A|
|A| −R− 1

, (3.16)

where RSSp,q is the residual sum of squares, R is the number of parameters and |A| is the

cardinality of set A. From all possible pairs (p, q) the pair which minimizes the AICC is

selected. For more details and other model order selection methods, see Section 4.4

3.4 Predictor Coefficients: Random Fields

In Theorem 1, the linear least squares predictor for observations in Qc and its prediction

error variance are expressed in terms of the AR and MA parameters, respectively. Hence

it is required to estimate these parameters to get hold of the predictions and prediction

error variance. In this section, we present an extended version of Lemma 6 for stationary

random fields which provides recursive relation between the AR and MA parameters with

the cepstral coefficients of the random field.

From (2.15) and (2.25) we have

∞∑
k=0

∞∑
`=0

bk,`z
k
1z

`
2 = exp

(
∞∑
k=0

∞∑
`=0

ck,`z
k
1z

`
2

)
, and (3.17)
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∞∑
k=0

∞∑
`=0

ak,`z
k
1z

`
2 = exp

(
−
∞∑
k=0

∞∑
`=0

ck,`z
k
1z

`
2

)
, (3.18)

which are used to get the following result.

Theorem 4. Suppose {X(t1, t2)} is a real-valued, stationary process on the quarter-plane

Q with spectral density function f(λ1, λ2), cepstral coefficients {ck,`}, and optimal spec-

tral factor φ(z1, z2) such that the conditions of Lemma 3 hold. Then, the MA and AR

parameters of {X(t1, t2)} are given in terms of its cepstral coefficients as:

(a). bk,0 = 1
k

∑k−1
j1=0(k − j1)ck−j1,0bj1,0,

(b). b0,` = 1
`

∑`−1
j2=0(`− j2)c0,`−j2b0,j2 ,

(c). bk,` = 1
k`

∑k−1
j1=0

∑`−1
j2=0

{
(k−j1)(`−j2)ck−j1,`−j2bj1,j2 +(`−j2)(j2+1)ck−j1,`−(j2+1)bj1,j2+1

}
,

(d). ak,0 = −1
k

∑k−1
j1=0(k − j1)ck−j1,0aj1,0,

(e). a0,` = −1
`

∑`−1
j2=0(`− j2)c0,`−j2a0,j2 ,

(f). ak,` = −1
k`

∑k−1
j1=0

∑`−1
j2=0

{
(k−j1)(`−j2)ck−j1,`−j2aj1,j2+(`−j2)(j2+1)ck−j1,`−(j2+1)aj1,j2+1

}
,

for k, ` = 1, 2, · · · , b0,0 = σ and a0,0 = 1/σ. The proof of Theorem 4 is derived in

Appendix B.

These recursive relations provide a way to estimate the MA and AR parameters using

least squares estimate for the cepstral coefficients as explained in the Section 3.3.1.

Remark 7. The MA and AR parameters of a causal and invertible (stationary) random field

decay at an exponential rate, see Yao & Brockwell (2006).

The steps involved in the computation of the estimates for the linear least predictors

and their prediction error variance are summarized in the following algorithm:
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Exponential Model Based Prediction Algorithm

For a given data observed on a n1 × n2 lattice,

1. Fit a bivariate exponential model, EXP(p, q) for the spectral density of the data,

where the model order (p, q) is selected using AICC given in (3.16).

2. Using the fitted EXP(p, q) model compute the least squares estimates for the cepstral

coefficients, {ĉk,`} as explained in Section 3.3.1.

3. An estimate for σ2 is computed from ĉ0,0 as:

σ̂2 = 4π2 exp(c0,0).

4. Using estimates {ĉk,`} from step 2 and the recursive relations from Theorem 4, esti-

mate MA and AR parameters. We compute {b̂k,`} and {âk,`} for k = 1, · · · , L1 and

` = 1, · · · , L2, where mostly large enough L1 and L2 are sufficient for the purpose

of computation since only first few coefficients are significant, see Remark 7.

5. Substitute {b̂k,`} and {âk,`} in Theorem 1 to obtain predictor and prediction error

variance for X(t1 + h1, t2 + h2). Note that the double infinite sums in the Theorem

1 are truncated at (L1, L2) for computation.

3.5 Simulations and Data Analysis

In this section, we illustrate the performance of the proposed methodology for estimation

of the predictor coefficients through simulation study and real data analysis.
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3.5.1 Simulation Study

Data is generated from a spatial ARMA model of the form:

X(t1, t2) +

p1∑
i=0

p2∑
j=0

(i,j) 6=(0,0)

ϕi,jX(t1 − i, t2 − j) =

q1∑
k=0

q2∑
l=0

ψk,lε(t1 − k, t2 − l), (3.19)

where ϕi,j and ψk,l are AR and MA coefficients, respectively and ε(t1, t2) is Gaussian white

noise process with mean 0 and variance σ2. The exponential model based algorithm is used

to obtain X̂(t1+h1, t2+h2) and its prediction error variance. We repeat steps (1)-(5) of the

algorithm for 200 replications and report the mean and variance of the prediction errors,

(X − X̂) obtained from these replications. The prediction error variance is also computed

for each replication.

Kizilkaya & Kayran (2005) proposed an estimation method for the AR and MA coef-

ficients of ARMA models using the cepstral coefficients . Substituting these estimates in

model (3.19) we compute forecast forX(t1+h1, t2+h2) denoted by X̃(t1+h1, t2+h2) and

its prediction error,
(
X − X̃

)
for 200 replications. We compare the mean and variance of

these prediction errors with those obtained from our algorithm. An important point to note

here is that the estimates provided by Kizilkaya & Kayran (2005) are based on the assump-

tion that the true ARMA model order is known, which results in nearly unbiased estimates

for the AR and MA coefficients. Hence, the values obtained from estimated ARMA model

are very close to those from the true model and the prediction errors are very small.

We consider three different ARMA models to compare the performance of EXP and

estimated ARMA models based predictions. We fixed σ2 = 1, (n1, n2) = (64, 64), L1 =

L2 = 100 and computed prediction errors for

(h1, h2) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3), (3, 1), (3, 2), (3, 3)}.
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Model 1: ARMA(1,1,1,1)

X(t1, t2)− 0.13X(t1, t2 − 1)− 0.05X(t1 − 1, t2)− 0.06X(t1, t2 − 1) =

Z(t1, t2) + 0.32Z(t1, t2 − 1) + 0.15Z(t1 − 1, t2) + 0.305Z(t1 − 1, t2 − 1).

Figure 1(a) shows the (true) spectral density of the above model, and Figure 1(b)-(d) ex-

hibits periodogram, fitted spectral density obtained using the EXP model and estimated

ARMA model, averaged over 200 realizations. Plot (b) shows that the periodogram is not

estimating density very well, whereas (c) and (d) are close to the true density. Note that the

estimate based on the EXP model is less constraint as it makes no assumption regarding

the ARMA model order and selects (p, q) using the data-driven approach (AICC here).

Model 2: ARMA(1,1,1,1)

X(t1, t2)− 0.48X(t1, t2 − 1)− 0.285X(t1 − 1, t2)− 0.18X(t1, t2 − 1) =

Z(t1, t2) + 0.42Z(t1, t2 − 1) + 0.25Z(t1 − 1, t2) + 0.136Z(t1 − 1, t2 − 1).

Figure 2(a) shows that the (true) spectral density of the above model has a significant peak

at (λ1, λ2) = (0, 0), (b) shows that the periodogram provides a poor estimate, and the fitted

spectral density using EXP and estimated ARMA model in (c) and (d) provide reasonable

estimates. The roots of this ARMA model are close to the unit circle and to circumvent this

Kizilkaya & Kayran (2005) proposed to use the MA residuals in place of the original data.

The MA residuals, {Z(t1, t2)} are obtained by applying the inverse filtering to the data by

using estimated AR coefficients as Z(t1, t2) = X(t1, t2)+
∑1

k=0

∑1
l=0

(k,l)6=(0,0)

âk,lX(t1−k, t2− l).
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Figure 1: Model 1: Plot for (a) True Spectral Density (b) Periodogram, (c) Exponential
Model, (d) Estimated ARMA.

Model 3: ARMA(2,2,2,2)

X(t1, t2) + 0.15X(t1, t2 − 1) + 0.06X(t1, t2 − 2) + 0.085X(t1 − 1, t2)− 0.1X(t1 − 1,

t2−1)+0.053X(t1−1, t2−2)−0.05X(t1−2, t2)+0.13X(t1−2, t1−1)+0.115X(t1−

2, t2−2) = Z(t1, t2)+0.20Z(t1, t2−1)+0.23Z(t1, t2−2)0.15Z(t1−1, t2)+0.18Z(t1−1,

t2−1)+0.16Z(t1−1, t2−2)+0.175Z(t1−2, t2)+0.24Z(t1−2, t1−1)+0.30Z(t1−2, t2−2).

The true spectral density, periodogram, fitted density using EXP and estimated ARMA

model given in Figure 3(a)-(d) show that the estimate obtained using EXP model is reason-
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Figure 2: Model 2: Plot for (a) True Spectral Density (b) Periodogram, (c) Exponential
Model, (d) Estimated ARMA.

able.

Kizilkaya & Kayran (2005) have also used these three ARMA models. For each case

the model order for EXP(p, q) is selected using AICC from all possible pairs in

{(1, 1) ≤ (p, q) ≤ (5, 5)}. The mean and variance of p and q from 200 replications reported

in Table 1 show that a small value of 2 and 3 is sufficient for both p and q for all models.
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Figure 3: Model 3: Plot for (a) True Spectral Density (b) Periodogram, (c) Exponential
Model, (d) Estimated ARMA.

Table 1: Mean and Variance of the (p, q) Values Selected Using AICC.

ARMA Model p(var) q(var)
1 2.01(0.03) 2.06(0.07)
2 2.73(0.25) 3.40(0.37)
3 3.18(0.19) 3.10(0.24)

The prediction results are given in Table 2 which includes the mean and variance

of the prediction errors obtained using EXP model and estimated ARMA model based
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predictions. Since the estimated ARMA model is similar to the true model, so its prediction

errors and variances are expected to be small as seen in Table 2. These results show that

the prediction errors and variances from the EXP model are comparable to those from the

ARMA models. For Model 2 the prediction errors obtained from EXP model were quite

poor as compared to ARMA model based errors (values not reported here) if {X(t1, t2)}

was used, however the prediction results obtained by using the MA residuals {Z(t1, t2)}

are reasonable as reported in Table 2. We also computed predictions using MA residuals

for other models 1 and 3 also, since the results were not too different as compared to those

from the original data, therefore, those values are not reported here. These results also

show that the (empirical) variance for the prediction errors increases with (h1, h2).

Table 2: Predictions and Prediction Error Variances Obtained Using EXP Algorithm and
Estimated ARMA Model.

Model 1 Model 2 Model 3

EXP(p,q) ARMA EXP(p,q) ARMA EXP(p,q) ARMA

h1 h2 (X − X̂) PEV (X − X̃) PEV (X − X̂) PEV (X − X̃) PEV (X − X̂) PEV (X − X̃) PEV
1 1 -0.03 1.28 -0.01 0.97 -0.36 1.52 -0.05 1.13 -0.002 1.46 -0.005 1.09
1 2 -0.06 1.48 -0.05 1.43 -0.13 1.79 -0.08 1.40 -0.03 1.63 -0.009 1.45
1 3 -0.09 1.67 -0.04 1.55 -0.19 1.82 -0.04 1.47 0.04 1.53 -0.02 1.36
2 1 -0.07 1.21 -0.05 1.35 -0.72 1.74 -0.12 1.22 -0.05 1.84 -0.04 1.18
2 2 -0.12 1.71 0.05 1.72 -0.32 1.83 -0.02 1.58 -0.09 1.68 -0.06 1.44
2 3 -0.15 1.98 -0.03 1.44 -0.51 2.09 -0.03 1.52 -0.11 1.97 -0.07 1.29
3 1 -0.10 1.86 -0.06 1.42 -0.19 1.80 -0.11 1.34 -0.06 1.78 -0.06 1.38
3 2 -0.16 1.97 -0.04 1.41 -0.62 2.04 -0.07 1.29 -0.13 2.07 -0.08 1.46
3 3 -0.18 2.34 -0.11 1.34 -0.92 2.42 -0.07 1.14 -0.17 2.19 0.14 1.17



43

3.5.2 Data Analysis

In this section we rely on the classical Mercer & Hall (1911, p.232) wheat yield data to

compare the performance of the EXP model based predictions with those obtained using

Kriging. A wheat yield experiment was conducted at Rothamsted Experimental Station

in Great Britain. The experiment, a uniformity trial, consisted of giving a 20 by 25 lat-

tice of plots the same treatment with approximately 1 acre area under each plot. Yield

of grains were measured in pounds. On the 20 by 25 layout each of the 20 rows runs in

the east-west direction and each of the 25 columns runs in the north-south direction. The

exact size of the plots from the original data set seems to be unknown, although some re-

searchers have used 3.30 meters east to west, and 2.51 meters north to south. This dataset

has been broadly studied by many authors Whittle (1954), Cressie (1993, p.248) and Young

& Young (1998). The dataset is available in the R library (spdep) using simple command

data(wheat). The data is shown in Figure 4(a) and its histogram in Figure 4(b) show

the familiar bell-shaped curve, indicating the nearly normal distribution for the 500 wheat

yield measurements. The mean (3.95), median (3.94) and mode (3.97) are nearly equal,

and the skewness (.036) and kurtosis (-.254) are close to zero, all providing evidence that

the distribution is close to normal. Cressie (1993, pp. 284-259) conducted exploratory data

analysis of this data in which he confirmed the presence of an irregular east-west trend in

the data. The trend effect is removed by applying median polishing, an exploratory data

analysis technique proposed by Tukey (1977), to the data. The residuals of the median pol-

ished data are presented in Figure 4(c) along with its histogram in (d). Using the empirical

variogram of these residuals Cressie (1993) showed that an exponential model is suitable

for modeling the covariance.

We also use these residuals for prediction. To compute X(t1 + h1, t2 + h2), first

divide the data into two parts: observed and unobserved. The observed part consists of
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Figure 4: Wheat Yield Data: (a) Spatial Plot and (b) Histogram. Median Polish Residuals:
(c) Spatial Plot and (d) Histogram.

(20 − h1) × (25 − h2) out of 20 × 25 and the remaining rows and columns constitute

the unobserved part. Following steps (1)-(5) of the EXP based algorithm we compute

X̂(t + 1 + h1, t2 + h2), and the prediction error variance for different (h1, h2). For the

original data, Solo (1986) suggested (p, q) = (2, 10) as a suitable EXP model in order to

ensure the separability of the field. Using AICC we obtain (p, q) = (4, 1) for the original

data and (p, q) = (2, 1) for the residuals. The (p, q) values selected for (20−h1)×(25−h2)

residuals are reported in Table 3 for different (h1, h2) values.

To perform prediction using Kriging on the residuals we used exponential covariance

structure as suggested by Cressie (1993). In Table 3 we report the residual value at (20, 25)

and its estimates using EXP model and Kriging along with the corresponding prediction

error variances. These results show that for small (h1, h2), that is, when we are predict-
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ing not too far from the observed values, the EXP model based method outperforms the

Kriging. Whereas as (h1, h2) increase, that is prediction is for a far away location, both

the prediction error and its variance increase and Kriging has smaller bias and variance as

compared to the EXP model based predictions.

Table 3: Predictions and Prediction Error Variances for Wheat Yield Data Using EXP
Algorithm and Kriging. (p, q) is the model order for the EXP model selected using AICC.

EXP Kriging

h1 h2 X(20, 25) X̂(20, 25) PEV (p, q) X̃(20, 25) PEV
1 1 -0.386 -0.387 0.274 (1,1) -0.411 0.338
1 2 -0.386 -0.378 0.298 (1,1) -0.379 0.362
1 3 -0.386 -0.395 0.317 (1,1) -0.214 0.400
2 1 -0.386 -0.382 0.306 (1,1) -0.359 0.374
2 2 -0.386 -0.394 0.323 (2,1) -0.373 0.377
2 3 -0.386 -0.398 0.378 (2,1) -0.311 0.397
3 1 -0.386 -0.398 0.403 (1,1) -0.401 0.445
3 2 -0.386 -0.411 0.421 (1,1) -0.514 0.436
3 3 -0.386 -0.414 0.453 (1,1) -0.358 0.449
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CHAPTER IV

LONG RANGE DEPENDENT RANDOM FIELDS

4.1 Introduction

Long range dependent random fields are characterized by spectral density function which

is unbounded at certain frequencies including zero frequency. Alternatively, a random field

whose covariance function tends to zero like a power function and so slowly that their sums

diverge also exhibits long range dependence. These two notions of long range dependence

are closely related but not equivalent, and we will focus on the spectral domain approach

here. The motivation to study long range dependence in random fields comes from many

areas of applications like agricultural field trials in which there is empirical evidence of

slow decay of correlations between yield, see Whittle (1956, 1962), Pearce (1976) and

Martin (1986). This led to the study of power law correlation functions by Whittle (1962)

and Besag (1981). More applications include spatial variability of soil properties, air ozone

concentration of ocean temperature, see Anh, Lam, Leung & Tieng (2000), Akkaya &

Yucemen (2002) and Lim, Kim & Lee (2002).

Lavancier (2005) gave many possible definitions for long range dependent random

fields. A definition parallel to the long range dependent time series (1-D processes) char-

acterizes a stationary 2-D random field as isotropic long range dependent if its spectral

density admits the form:

f(λ) ∼ |λ|−2αL
(

1

|λ|

)
b

(
λ

|λ|

)
; 0 < α < 1, (4.1)

where λ = (λ1, λ2)
′, L(.) is a slowly varying function at infinity and b is continuous on

the unit sphere in R2. Here α controls the behavior of f(., .) near the zero frequency and is

termed as the long range dependence parameter. In this case, the behavior of the covariance
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function at infinity is known and is given as

γ(h) ∼ |h|−2α L (|h|) b
(
h

|h|

)
, 0 < α < 1, h→∞, (4.2)

where L and b are same as above. Many authors (see Section 4.2) considered models

which satisfy the isotropic long range dependence property (4.1) and their spectral density

is characterized by singularity at zero frequency as:

f(λ) =
∣∣1− e−iλ∣∣−2α f ∗(λ), 0 < α < 1, (4.3)

where f ∗(λ) is a even, positive, continuous function on the torus [−π, π]2, bounded above

and away from zero.

Two ways to construct long range dependent time series include filtering the white

noise process through unbounded filters and aggregation of autoregressive moving average

(ARMA) processes, see Brockwell & Davis (1991). Lavancier (2005) generalized these

methods for d-dimensional random fields with d > 1. He showed that the covariance func-

tion of the resulting processes have a rather closed form. We provide examples for long

range dependent random fields based on filtering and aggregation, for details see Lavancier

(2005, 2011).

Filtering

An extension of the stationary fractional autoregressive integrated moving average (FARIMA)

process for any k ∈ Z+ is defined as:

(
1−B1B

k
2

)α
X(s1, s2) = ε(s1, s2), 0 < α < 1/2,

where B1 and B2 are the backward shift operators in the horizontal and vertical direction,

respectively such that B1X(s1, s2) = X(s1− 1, s2) and B2X(s1, s2) = X(s1, s2− 1). The

spectral density of X(s1, s2) is

f(λ1, λ2) =
σ2

4π2

∣∣1− e−i(λ1+kλ2)
∣∣−2α , (4.4)
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which is unbounded all over the line λ1 + kλ2 = 0. The function fails to satisfy (4.1)

and exhibits non-isotropic long range dependence. The result given in Brockwell & Davis

(1991) for time series easily generalize to give the correlation function for X(s1, s2) as:
ρ(h, kh) =

∏
0<j≤h

j − 1 + α

j − α
;h = ±1,±2, · · ·

ρ(k, l) = 0, l 6= kh.

The correlation function ρ is non-summable when l = kh due to its proportionality to

h2α−1. As an example, consider the spectral density of the form

f(λ1, λ2) =
∣∣1− e−i(λ1+kλ2)

∣∣−2α f ∗(λ1, λ2), (4.5)

where the function f ∗(., .) is bounded above and away from zero.

Aggregation

Another definition based on the aggregation leads to a long range dependent random field

with spectral density unbounded when either λ1 = 0 or λ2 = 0 or both are zero. The

spectral density is the tensorial product of two 1-D spectral densities given as:

f(λ1, λ2) ∼ c |λ1|−2α1 |λ2|−2α2 ; when (λ1, λ2)→ (0, 0), (4.6)

where c is a positive constant and 0 < α1, α2 < 1/2. Notice that long range behavior

depends on the direction including parameter α1 for the “horizontal” direction and α2 for

the “vertical” direction. For instance, a spectral density of the form

f(λ1, λ2) =
∣∣1− e−iλ1

∣∣−2α1
∣∣1− e−iλ2

∣∣−2α2
f ∗(λ1, λ2), (4.7)

with f ∗(., .) as the short run behavior function which is bounded above and away from

zero. Some authors have considered (4.7) and modelled f ∗(., .) using fully parametric

models like AR or ARMA, as discussed in Section 4.2.

In long range dependent random fields, a common scientific goal is to estimate the

parameter which controls the behavior of the spectral density at unbounded frequencies,
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subjected to only a single long range dependence parameter, α in models like (4.3) and

(4.5) or two different long range dependence parameters, α1 and α2, one for each direction

as in model (4.7). Current methods can be categorized into two broad classes based on the

different ways of dealing with the short range dependence component f ∗(., .). The first is

parametric approach which assumes a finite dimensional parametric model for f ∗(., .) and

then employ either least squares or the Gaussian/Whittle maximum likelihood method to

estimate the long range dependence and the model parameters. Sometimes, the data under

study suggests a suitable parametric function which offers meaningful interpretation of the

study. Still, for many situations there may not be sufficient knowledge to warrant such

a parametric function and concerns of model misspecification naturally arise. To alleviate

those issues more flexible semi-parametric modelling and estimation of the spectral density

becomes essential. In semi-parametric approach f ∗(., .) is not required to obey any para-

metric model or the model can be misspecified. Wang (2009) and Guo, Lim & Meerschaert

(2009) used a semi-parametric approach to estimate α in model (4.3) by treating f ∗(., .)

as a constant and considering frequencies only in the neighborhood of zero. However, this

assumption of constant behavior at frequencies far from zero may not be satisfied for some

real data and might lead to inconsistent estimates.

Due to shortcomings of the existing estimators, we take a semi-parametric approach

and cast this problem in a broadband framework which includes all the nonzero frequen-

cies. Given a specific definition for long range dependence, we propose to use a bivariate

exponential model (Solo 1986) for f ∗(., .). The proposed semi-parametric estimator is ef-

ficient, robust to model misspecification and can be implemented for different definitions

of long range dependent random fields. It turns out that the statistical properties of the

proposed estimator depends on the model order of the exponential model used for f ∗(., .).

In this work, we discuss data-driven choice of the model order which minimizes the root

mean squared error (RMSE) of the estimator for the long range dependence parameter.
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We generalize two model order selection criteria proposed for 1-D processes: Mallow’s CL

(Hurvich 2001) and corrected Akaike’s information criteria (AICC) (Hurvich & Tsai 1989).

We also consider a subset selection approach based on Akaike’s information criteria (AIC)

(Akaike 1974) to select only a subset of significant variables in exponential model. These

techniques can be used to automatically select the appropriate model for f ∗(., .) without

any additional modelling assumptions. We demonstrate the performance of the proposed

semi-parametric estimator through simulation studies and an application to the real data.

4.2 Existing Estimators

4.2.1 Parametric Approach

Boissy, Bhattacharyya, Li & Richardson (2005) considered spatial autoregressive (AR)

model (Martin 1979) for f ∗(., .) in (4.7) such that the spectral density is

f(λ1, λ2) =
σ2

4π2

∣∣1− e−iλ1
∣∣−2α1

∣∣1− e−iλ2
∣∣−2α2

∣∣φ(e−iλ1 , e−iλ2 , ϕ1, ϕ2)
∣∣−2 , (4.8)

where −1/2 < α1, α2 < 1/2 and φ(z1, z2, ϕ1, ϕ2) = (1 − ϕ1z1)(1 − ϕ2z2) is the poly-

nomial in terms of the AR coefficients ϕi, i = 1, 2. The unknown parameter vector is

θ = (ϕ1, ϕ2, α1, α2)
′, |ϕ1| < 1, |ϕ2| < 1. For data observed on a square grid, they gener-

alized the Whittle estimation technique used by Fox and Taqqu (1986, 1987) and derived a

central limit theorem for the random fields.

For model (4.7), Beran, Ghosh & Dieter (2009) assumed that f ∗(., .) follows a station-

ary and invertible ARMA model such that the spectral density is given as:

f(λ1, λ2) =
σ2

4π2

∣∣1− e−iλ1
∣∣−2α1

∣∣1− e−iλ2
∣∣−2α2

∣∣∣∣ψ1(e−iλ1)
ϕ1(e−iλ1)

∣∣∣∣2 ∣∣∣∣ψ2(e−iλ2)
ϕ2(e−iλ2)

∣∣∣∣2 , (4.9)

where ϕi(.) and ψi(.) are the polynomials of AR and MA coefficients, respectively. This

function is the product of the spectral densities of two FARIMA models, such that

f(λ1, λ2) = σ2f1(λ1)f2(λ2).
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The process is stationary and invertible when 0 < α1, α2 < 1/2 and roots of the polyno-

mials ϕi and ψi are outside the unit circle. Using an AR(∞) representation of the two-

way FARIMA model, they considered least squares estimation of the parameter vector

θ = (α1, α2, ϕ
′
1, ϕ

′
2, ψ

′
1, ψ

′
2).

It is well known that the parametric methods provide efficient estimators only when

the model is correctly specified. However, for a given data it might be that the model (AR

or ARMA) assumed for f ∗(., .) is not correct or even if the model holds exactly, there is the

possibility that the model order is misspecified and as a result, the maximum likelihood or

Whittle estimate for the long range dependence parameter(s) will be asymptotically biased.

Since the primary interest is in the estimation of long range dependence parameter only,

therefore, it would be preferred to have a method of estimation even if we are not able

to specify a fully parametric model for the short range dependence component f ∗(., .).

For a rectangular n1 × n2 grid, the mean squared errors of the parametric estimators of

long range dependence parameters are of the order O ([n1n2]
−1) if the model is correctly

specified, but the estimator may be inconsistent if the model is misspecified. This motivates

semi-parametric approach in which f ∗(., .) is not required to obey any parametric model.

4.2.2 Semi-parametric Approach

Anh & Lunney (1995) considered model (4.3) to propose an extension of the Gaussian

semi-parametric (or local Whittle) estimator (GSE) of α proposed by Künsch (1987) in the

time series context and its statistical properties were analysed by Robinson (1995). This

estimator maximizes an approximate form of the Whittle likelihood only at frequencies in

the neighborhood of the zero. Frias, Alonso, Ruiz-Medina & Angulo (2008) extended the

averaged periodogram estimator of Robinson (1994) which models spectral density using

(4.3). The discrete averaging is carried out over the neighborhood of the zero frequency

only. They proved weak consistency of the proposed estimator under certain regularity
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assumptions on the spectral density of the process at low frequencies. Wang (2009) also

considered model (4.3) to extend the GPH estimator proposed by Geweke & Porter-Hudak

(1983). Assuming f ∗(., .) as a constant and regressing log of the periodogram on−2log|1−

e−iλ| only at frequencies in the neighborhood of zero, he proposed the semi-parametric

GPH estimator for α. He also obtained weak consistency of the proposed estimator under

some regularity assumptions. Since all of the above methods aim at constructing estimators

of α without any strict restrictions on f ∗(., .) away from zero frequency, they belong to the

class of narrowband or local estimators. The main advantage of these estimators is that they

are consistent under certain regularity conditions without the need to specify the parametric

model correctly for the spectral density. However, a major drawback of these estimators

is that irrespective of how smooth the true spectral density is, generally the mean squared

error is of the order O ([n1n2]
−m) for m ≤ 4/5. Therefore, if the actual spectral density

is smooth enough then a potentially misspecified parametric model can easily outperform

these estimators.

4.3 Proposed Semi-parametric Estimator

For time series (1-D processes), Moulines & Soulier (1999) and Hurvich & Brodsky (2001)

considered an estimator based on fitting of the potentially misspecified parametric models.

The proposed estimator assumes that f ∗(., .) is sufficiently smooth such that it can be ap-

proximated by Bloomfield’s (1973) exponential model with a finite number of parameters.

This estimator is known as fractional exponential (FEXP) estimator since the fitted models

are in the FEXP class, see Beran (1993, 1994). In contrast to the restricted narrowband

estimators, the FEXP estimator includes all the nonzero frequencies, therefore, it is called

broadband or global estimator by Hurvich & Brodsky (2001). We consider extension of

the FEXP estimator to estimate the long range dependence parameter(s) in random fields

(2-D processes).
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4.3.1 FEXP Estimator

Suppose that f ∗(λ1, λ2) is a sufficiently smooth function so that logf ∗ can be approximated

by truncated bivariate Fourier series as:

logf ∗(λ1, λ2) ≈
p∑

r=−p

q∑
s=−q

θrs exp{i(λ1r + λ2s)} = θ00 + 2

p∑
r=1

θr0 cos(rλ1)

+2

q∑
s=1

θ0s cos(sλ2) + 2

p∑
r=1

q∑
s=1

θ(+)
rs cos(rλ1 + sλ2) + 2

p∑
r=1

q∑
s=1

θ(−)rs cos(rλ1 − sλ2),(4.10)

for real-valued coefficients {θrs}. This model is called the bivariate exponential model of

order (p, q) and is denoted by EXP(p, q). The model order p and q are such that

1/p+ p/n1 → 0 and 1/q + q/n2 → 0.

Let {X(t1, t2), 1 ≤ t1 ≤ n1, 1 ≤ t2 ≤ n2} be a stationary random field with spectral den-

sity f(., .) and periodogram given as:

I(λ1, λ2) =
1

(2π)2n1n2

∣∣∣∣∣
n1∑
t1=1

n2∑
t2=1

X(t1, t2) exp{−i(t1λ1 + t2λ2)}

∣∣∣∣∣
2

, (4.11)

where λ1 and λ2 are the Fourier frequencies. Brillinger (1974) provided a generalization for

the asymptotic properties of the Fourier transforms of a spatial series. Under the assump-

tion that all cumulants of the process {X(t1, t2)} are bounded he proved the asymptotic

normality of the Fourier transform such that the periodogram satisfies:

I(λ1, λ2)

f(λ1, λ2)
∼ χ2

2, as min(n1, n2)→∞,

for Fourier frequencies λ1 = 2πj/n1 and λ2 = 2πk/n2 with (j, k) ∈ A, where set A is

A = {(j, k) : 1 ≤ j ≤ m1,−m2 ≤ m2; j = 1, 1 ≤ k ≤ m2}, (4.12)

with mi = [(ni − 1)/2] , i = 1, 2. We can write

logI(λ1, λ2) = logf(λ1, λ2)− γ + ε, (4.13)
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where γ = 0.57721 is the Euler’s constant and ε = log {I(λ1, λ2)/f(λ1, λ2)}+ γ, has zero

mean and variance= π2/6.

For long range dependent random field, we can write (4.13) as

logI(λ1, λ2) = logL(α1, α2) + logf ∗(λ1, λ2)− γ + ε, (4.14)

where L(α1, α2) is a function of the long range dependence parameters of the spectral

density. Using the EXP(p, q) model in (4.10) to replace f ∗(., .) in (4.14), we have

logI(λ1, λ2) + γ ≈ logL(α1, α2) + θ00 + 2

p∑
r=1

θr0 cos(rλ1) + 2

q∑
s=1

θ0s cos(sλ2) +

2

p∑
r=1

q∑
s=1

θ(+)
rs cos(rλ1 + sλ2) + 2

p∑
r=1

q∑
s=1

θ(−)rs cos(rλ1 − sλ2) + ε.(4.15)

Representing (4.15) as a classical linear regression model:

Y = X1β1 +X2β2 + ε, (4.16)

where for (j, k) ∈ A, the N × 1 vector Y = {yjk} = {logI(λ1j, λ2k) + γ} with N =

2m1m2 + m1 + m2 + 1, N × v matrix X1 = {x1(j, k)} consists of the terms associated

with the long range dependence component L(α1, α2) and β1 is vector of these v long

range dependence parameters. The N × R matrix X2 = {x2(j, k)} corresponds to the

short range dependence component which is approximated by an EXP(p, q) model with

R = 2pq + p+ q + 1 parameters. The (jk)-th row of X2 is given as:

x2(j, k) = [1, 2 cos(rλ1j), 2 cos(sλ2k) cos(rλ1j + sλ2k), cos(rλ1j − sλ2k)], (4.17)

where r = (1, 2, · · · , p)′ and s = (1, 2, · · · , q)′. The R× 1 vector β2 is

β′2 = [θ00, θ10, · · · , θp0, θ01, · · · , θ0q, θ+11, · · · , θ+pq, θ−11, · · · , θ−pq], (4.18)

and ε = {εjk} is N × 1 error vector. Note that X2 and β2 will remain same across different

long range dependence models whereasX1 and β1 will vary. From regression model (4.16),
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the least squares estimate of parameters in β1 give the semi-parametric FEXP estimator(s).

As a byproduct we also get estimates for {θrs}, the Fourier coefficients of logf which

provides an estimator for the spectral density of the process as well. The standard errors

for these (R+ v) parameters in (4.16) are given by the square root of the diagonal element

of the variance-covariance matrix, that is

cov

 β̂1

β̂2

 = σ2

 X ′1X1 X ′1X2

X ′2X1 X ′2X2


−1

.

We show some simplifications and details for the three spectral density models discussed

in Section 4.2.

For model (4.3), the long range dependence component is given as

L(α) =
∣∣∣1− e−i(λ1,λ2)′∣∣∣−2α =

∣∣1− e−iλ1∣∣−2α +
∣∣1− e−iλ2∣∣−2α

=

{
4 sin2

(
λ1
2

)
+ 4 sin2

(
λ2
2

)}−α
, (4.19)

with only one unknown α. The (jk)-th row of N × 1 matrix X1 is

x1(j, k) = log
{

4 sin2

(
λ1j
2

)
+ 4 sin2

(
λ2k
2

)}
,

and β1 = α.

For spectral density in (4.5),

L(α) =
∣∣1− e−i(λ1+kλ2)∣∣−2α =

{
4 sin2

(
λ1 + kλ2

2

)}−α
,

with only one unknown α. The (jk)-th row of N × 1 matrix X1 is

x1(j, k) = log
{

16 sin2

(
λ1j
2

)
sin2

(
λ2k
2

)}
,

and β1 = α.

The situation is slightly different for model (4.7) in which the long range dependence

component is

L(α1, α2) =
∣∣1− e−iλ1

∣∣−2α1
∣∣1− e−iλ2

∣∣−2α2
=

{
4 sin2

(
λ1
2

)}−α1
{

4 sin2

(
λ2
2

)}−α2

,
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with β1 = [α1 α2]
′ and X1 is a N × 2 matrix with (jk)-th row given as

x1(j, k) =

[
log
{

4 sin2

(
λ1j
2

)}
log
{

4 sin2

(
λ2k
2

)}]
.

The FEXP estimator can thus be applied directly to different definitions of the long

range dependent random fields. An important issue closely related to the model order

selection in ARMA type models or variable selection in regression setup is the choice

of order (p, q) for the exponential model. We present some selection criteria in the next

section.

4.4 FEXP Model Order Selection

4.4.1 Model Selection

We set the notations first. For the regression model (4.16) with EXP model of order (p, q),

let β′ = [β1 β2], X = [X1 X2], Ŷ = {yj,k} = Xβ̂ be the least squares estimate of

Y , RSSp,q =
∑∑
(j,k)∈A

(yjk − ŷjk)
2 be the corresponding residual sum of squares and H =

X(X ′X)−1X ′ be the hat matrix. The setAwith all nonzero Fourier frequencies is truncated

to include frequencies in the neighborhood of zero as:

A∗ = {(j, k) : 1 ≤ m∗1,−m∗2 ≤ k ≤ m∗2},

where m∗ ∈ Z+ such that 1/m∗ + m∗/n → 0 as n → ∞. We generalize Mallow’s CL

criterion proposed by Hurvich (2001) in the long range dependent time series context, and

Corrected Akaike’s Information Criteria introduced by Hurvich & Tsai (1989) for model

selection in regression and time series models.

Mallow’s CL Criterion is modified to:

CL(p, q) = RSS∗p,q +
2π2

6

|A∗|∑
j=1

hj,j, (4.20)

where |A∗| is cardinality of setA∗,RSS∗p,q =
∑∑
(j,k)∈A∗

(yjk−ŷjk)2 and hj,j is the j-th diagonal

element of the hat matrix H . For A = A∗, that is, when all nonzero Fourier frequencies are
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included, we get global CL denoted by C∗L. The optimal (p, q) minimizes CL, that is,

(p, q) = argmin
(p,q)

CL(p, q).

Corrected Akaike’s Information Criteria (AICC) is defined as

AICC(p, q) = |A∗|log
(
RSS∗p,q
|A∗|

)
+

2R|A∗|
|A∗| −R− 1

, (4.21)

where R = 2pq + p+ q + 1 and all other terms are as defined above. Again optimal (p, q)

is such that

(p, q) = argmin
(p,q)

AICC(p, q).

4.4.2 Subset Selection

For the regression model (4.16), the variable selection technique choose only a subset of the

relevant variables from all R parameters in the EXP(p, q) model. This removes irrelevant

variables from the exponential model, thus reducing the number of unknown parameters in

the model. Several different optimality criteria can be used for the variable selection, we

use Akaike’s information criterion (AIC). For more details on subset selection in regression

see Miller (2002).

4.5 Simulations

In this section we compare the performance of our FEXP estimator with Wang’s (2009)

GPH estimator through Monte Carlo simulations. Lee & Berman (1997) proposed a method

to approximate 2-D random fields with known spectral density function. We use their

approach to simulate data on a n1 × n2 regular lattice when its spectral density is of the

form (4.3). This method of simulation is a 2-D generalization of the algorithm proposed by

Davies & Harte (1987) for stationary Gaussian processes (1-D) with known autocovariance.

The details of the algorithm along with the modifications and a proof to show that the



58

method is exact is given in Appendix C. The criterion used for comparison is the root

mean squared error (RMSE) of these estimators. For f ∗(., .) in model (4.3) different AR(1)

models are used. The long range dependence parameter α is set equal to 0.3, 0.6 and 0.9.

All three α values resulted in mostly similar conclusions, therefore, we report results for

α = 0.6 only. Two different grid sizes (n1, n2) = {(50, 50), (50, 100)} are used and for

each case 1000 realizations of the process are generated. For the GPH estimator, we use

mi = n
4/5
i , i = 1, 2 as suggested by Wang (2009) .

To see the performance of different model order selection criteria discussed in Sec-

tion 4.3 we compare the average and variance of the (p, q) values selected using different

criteria from 1000 realizations. The RMSE of the FEXP estimator corresponding to se-

lected (p, q) values is also given. The global and local Mallow’s CL are denoted by C∗L and

CL, respectively. For CL and AICC, (m1,m2) = (na1, n
a
2) with a = {1/2, 2/3, 3/4, 4/5}

are used. For all four criteria: C∗L, CL, AICC and subset selection, all possible pairs in

{(1, 1) ≤ (p, q) ≤ (5, 5)} are used.

Consider a stationary, invertible and separable AR(1) model with spectral density

given as

f ∗(λ1, λ2) =
σ2

(2π)2
∣∣(1− φ1,0e

−iλ1)(1− φ0,1e
−iλ2)

∣∣−2 , (4.22)

where |φ1,0| < 1 and |φ0,1| < 1. We use (φ1,0, φ0,1) = {(0.6, 0.4), (0.6,−0.4), (−0.6,−0.4)}.

Figure 5(a)-(c) represents the log of spectral densities for these three processes when

α = 0.6, all these plots show that there is a significant peak at (0, 0), small peaks at higher

frequencies in (a), peaks along λ1 = 0 in (b), peaks along λ1 = −π and λ1 = π in (c).
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Figure 5: Spectral Density for α = 0.6 and AR(1) Model with (φ1,0, φ0,1) (a) (0.6, 0.4), (b)
(0.6,−0.4) and (c) (−0.6,−0.4).

The RMSE of FEXP estimator for all possible pairs of (p, q) is given in Table 4.

The value of RMSE decreases for each (n1, n2) as p increases and q decreases. For

(φ1,0, φ0,1) = (0.6, 0.4), (0.6,−0.4) and (−0.6,−0.4), the smallest RMSE value is ob-

tained when (p, q) = (4, 2), (3, 2) and (2, 1), respectively for both grid sizes. The FEXP

estimator is consistent since its RMSE (and the variance) decreases as the sample size in-

creases for all models.
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Table 4: RMSE of FEXP Estimator for Separable AR(1) Models.

(0.6, 0.4) (0.6,−0.4) (−0.6,−0.4)
q ↓ p→

(n1, n2) = (50, 50)

.572 .374 .333 .328 .326 .531 .327 .286 .280 .278 .397 .176 246 .240 .246

.608 .344 .287 .286 .290 .552 .269 .242 .258 .267 .385 .258 .243 .269 .274

.639 .382 .336 .357 .383 .623 .372 .333 .357 .385 .443 .284 .314 .349 .376

.652 .405 .377 .427 .488 .636 .394 .370 .422 .483 .452 .319 .357 .425 .476

.657 .419 .402 .481 .582 .643 .412 .401 .483 .587 .457 .329 .383 .486 .579

(n1, n2) = (50, 100)

.534 .349 .310 .304 .302 .503 .304 .263 .256 .254 .375 .149 .223 .216 .223

.553 .279 .209 .198 .199 .503 .202 .156 .164 .172 .343 .206 .154 .177 .176

.578 .297 .227 .233 .245 .569 .291 .225 .232 .245 .398 .220 .201 .225 .239

.590 .314 .251 .275 .303 .581 .306 .247 .273 .302 .407 .252 .229 .276 .301

.600 .326 .266 .300 .341 .588 .321 .265 .300 .343 .412 .262 .246 .302 .338

The RMSE of the GPH estimator and lowest RMSE of the FEXP estimator is given in

Table 5. These values show that for all three models, FEXP estimator has smaller RMSE

than the GPH estimator.

Table 5: RMSE of FEXP and GPH Estimators.

(n1, n2) = (50, 50) (n1, n2) = (50, 100)

(φ1,0, φ0,1) (p, q) FEXP GPH (p, q) FEXP GPH

(0.6,0.4) (4,2) 0.286 1.055 (4,2) 0.198 1.015
(0.6,-0.4) (3,2) 0.242 0.316 (3,2) 0.156 0.416
(-0.6,-0.4) (2,2) 0.176 0.797 (2,2) 0.149 0.718
(.24,.24) (4,4) 0.605 1.670 (5,5) 0.414 1.396
(.24,-.24) (1,2) 0.164 0.121 (1,2) 0.110 0.039
(-.24,-.24) (2,1) 0.212 0.919 (1,2) 0.154 0.762



61

We use the subset selection in which only the variables selected using AIC are kept

in vector β2 of the regression model (4.16). The results reported in Table 6 suggest that

only 5 variables (including α) out of R + v = 73 variables are selected, clearly there is a

significant reduction in the number of parameters of the EXP(p, q) model. The RMSE of

FEXP estimator is comparable to those from three selection criteria used above.

Table 6: RMSE of FEXP Estimator for Separable AR(1) Models Using Subset Selection.
ns(var) denotes the average (and variance) of the number of variables selected in 1000
replications.

(0.6,0.4) (0.6,-0.4) (-0.6,-0.4)

(n1, n2) ns(var) RMSE ns(var) RMSE ns(var) RMSE

(50,50) 4.67(0.79) 0.357 4.65(0.95) 0.344 4.48(0.72) 0.307
(50,100) 5.31(0.30) 0.123 5.25(0.430) 0.137 5.09(0.21) 0.099

The results for global and local CL, AICC are reported in Table 7 in which the average

and variance of the (p, q) from 1000 realizations are given. For all three AR(1) models,

the average and variance of p and q selected using the global and local CL are close to

each other whereas those selected using AICC are always smaller. The RMSE is lowest for

global CL in all cases. For both local CL and AICC, the RMSE decreases as a increases

with lowest value achieved for a = 4/5. Therefore, the bandwidth mi = n
4/5
i gives min-

imum RMSE, this is in correspondence with the choice of optimum bandwidth given by

Hurvich, Deo & Brodsky (1998) for long range dependent time series.
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Table 7: RMSE of FEXP Estimator for Separable AR(1) Models Using Global and Local
CL and AICC.

(n1, n2) = (50, 50) (n1, n2) = (50, 100)

Criterion a p(var) q(var) RMSE(α̂) p(var) q(var) RMSE(α̂)

(0.6,0.4)

CL∗ - 2.81(0.66) 1.82(0.64) 0.326 3.15(0.58) 2.18(0.53) 0.230
CL 1/2 2.86(1.32) 2.21(1.73) 0.390 3.44(1.28) 2.42(1.59) 0.282

2/3 2.86(1.01) 1.98(1.17) 0.345 3.26(1.02) 2.18(1.21) 0.267
3/4 2.87(0.88) 1.95(0.95) 0.334 3.10(0.81) 2.26(0.90) 0.249
4/5 2.86(0.78) 1.76(0.70) 0.329 3.13(0.67) 2.25(0.74) 0.237

AICC 1/2 1.25(0.19) 1.01(0.01) 0.525 1.67(0.23) 1.01(0.01) 0.419
2/3 1.83(0.35) 1.10(0.09) 0.421 2.12(0.26) 1.07(0.06) 0.350
3/4 2.34(0.38) 1.28(0.24) 0.349 2.43(0.36) 1.45(0.33) 0.296
4/5 2.62(0.63) 1.51(0.44) 0.335 2.79(0.50) 1.84(0.42) 0.259

(0.6,-0.4)

CL∗ - 2.75(.61) 1.73(0.50) 0.289 3.13(.57) 2.06(0.33) 0.192
CL 1/2 2.86(1.35) 2.22(1.61) 0.373 3.29(1.33) 2.28(1.57) 0.265

2/3 2.84(1.05) 2.02(1.13) 0.326 3.22(0.99) 2.07(1.09) 0.243
3/4 2.77(0.74) 1.86(0.81) 0.305 3.07(0.80) 2.08(0.75) 0.220
4/5 2.78(0.76) 1.71(0.56) 0.295 3.13(0.66) 2.10(0.58) 0.203

AICC 1/2 1.26(0.19) 1.01(0.01) 0.480 1.67(0.22) 1.02(0.02) 0.377
2/3 1.80(0.31) 1.13(0.13) 0.382 2.09(0.24) 1.07(0.07) 0.306
3/4 2.31(0.37) 1.29(0.27) 0.303 2.39(0.35) 1.45(0.28) 0.247
4/5 2.56(0.59) 1.49(0.37) 0.291 2.77(0.48) 1.76(0.27) 0.210

(-0.6,-0.4)

CL∗ - 2.87(.67) 1.56(0.45) 0.270 3.14(.53) 1.92(0.42) 0.195
CL 1/2 2.95(1.32) 2.09(1.63) 0.332 3.35(1.34) 2.30(1.68) 0.253

2/3 2.87(1.01) 1.83(1.01) 0.281 3.26(0.92) 2.00(1.14) 0.221
3/4 2.89(0.88) 1.70(0.73) 0.271 3.13(0.78) 1.96(0.75) 0.208
4/5 2.86(0.78) 1.59(0.54) 0.268 3.16(0.66) 1.93(0.56) 0.198

AICC 1/2 1.35(0.23) 1.01(0.01) 0.332 1.64(0.25) 1.00(0.005) 0.257
2/3 1.92(0.26) 1.09(0.09) 0.247 2.27(0.34) 1.10(0.09) 0.207
3/4 2.35(0.39) 1.23(0.20) 0.245 2.55(0.38) 1.34(0.25) 0.214
4/5 2.62(0.58) 1.39(0.32) 0.259 2.84(0.51) 1.61(0.35) 0.207
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Next we consider a noncausal, nonseparable AR(1) model with spectral density given

as

f ∗(λ1, λ2) =
σ2

(2π)2
|1− 2φ1,0 cos(λ1)− 2φ0,1 cos(λ2)|−2; |φ1,0|+ |φ0,1| < 1/2, (4.23)

to simulate data using (φ1,0, φ0,1) = {(0.24, 0.24), (0.24,−0.24), (−0.24,−0.24)}. Figure

6(a)-(c) presents log of the spectral densities for these three models when α = 0.6. In (a)

there is a high peak at (0, 0) and small ones at high frequencies, whereas in (b) there are

high peaks at (0, π) and (0,−π) and only a small peak at (0, 0) and in (c) there is a small

peak at (0, 0), and high peaks at four edges (−π,−π), (π, π), (π,−π) and (−π, π).

Figure 6: Spectral Density for α = 0.6 and AR(1) Model with (a) (0.24, 0.24), (b)
(0.24,−0.24) and (c) (−0.24,−0.24).

The RMSE of the FEXP estimator in Table 8 shows no clear (increasing/decreasing) as

p and q change from 1 to 5. For (φ1,0, φ0,1) = (0.24, 0.24), (0.24,−0.24) and (−0.24,−0.24),
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the minimum RMSE value is obtained when (p, q) = (4, 4), (1, 2) and (2, 1), respectively

for (n1, n2) = (50, 50) and (p, q) = (5, 5), (1, 2) and (1, 2), respectively for (n1, n2) =

(50, 100). The FEXP estimator is consistent since the RMSE decreases as the sample size

increases for all models.

Table 8: RMSE of FEXP Estimator for Nonseparable AR(1) Models.

(0.24, 0.24) (0.24,−0.24) (−0.24,−0.24)
q ↓ p→

(n1, n2) = (50, 50)

1.316 1.201 1.189 1.190 1.193 .469 .572 .633 .655 .663 .240 .212 .238 .240 .244
1.196 0.917 0.840 0.834 0.842 .164 .286 .393 .447 .472 .218 .235 .247 .270 .277
1.181 0.835 0.681 0.644 0.649 .245 .255 .326 .377 .416 .246 .249 .310 .344 .374
1.182 0.832 0.649 0.605 0.618 .234 .259 .357 .436 .507 .250 .277 .361 .429 .496
1.184 0.839 0.653 0.607 0.638 .242 .267 .374 .473 .578 .254 .282 .384 .475 .583

(n1, n2) = (50, 100)

1.252 1.177 1.180 1.189 1.195 .455 .574 .640 .665 .675 .200 .192 .212 .218 .221
1.083 0.833 0.769 0.770 0.781 .110 .239 .330 .373 .393 .154 .166 .172 .188 .190
1.053 0.719 0.569 0.533 0.534 .190 .176 .232 .273 .299 .176 .163 .208 .235 .250
1.050 0.697 0.506 0.446 0.441 .173 .171 .240 .292 .325 .176 .183 .232 .281 .310
1.049 0.695 0.489 0.419 0.414 .179 .174 .247 .311 .354 .178 .184 .248 .311 .354

Table 5 also gives RMSE of the GPH and FEXP estimator. These values show that for

(φ1,0, φ0,1) = (0.24, 0.24) and (−0.24, 0.24), the FEXP estimator has smaller RMSE than

the GPH estimator for all cases whereas when (φ1,0, φ0,1) = (0.24,−0.24) the RMSE of

GPH estimator is smaller.

Using subset selection around 8 to 10 variables (including α) are significant as re-

ported in Table 9, thus leading to reduction in the number of parameters from R = 72 to

10. The RMSE of FEXP is smaller than those from three selection criteria for model with

(φ1,0, φ0,1) = (0.24, 0.24).
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Table 9: RMSE of FEXP Estimator for Nonseparable AR(1) Models Using Subset Selec-
tion. ns(var) denotes the average (and variance) of the number of variables selected in 1000
replications.

(0.24, 0.24) (0.24,−0.24) (−0.24,−0.24)

(n1, n2) ns(var) RMSE ns(var) RMSE ns(var) RMSE

(50,50) 7.32(3.09) 0.573 7.54(1.29) 0.628 7.49(0.98) 0.551
(50,100) 8.89(3.08) 0.552 10.48(1.83) 0.430 9.59(2.20) 0.425

The results for global and local CL and AICC are reported in Table 10 in which the

average and variance of the (p, q) from 1000 realizations are given. For all three non-

separable AR(1) models, the average and variance of p and q selected using AICC is smaller

than the values obtained using global and local CL criteria. However, the values selected

using global and local CL are close. The RMSE of FEXP is lowest for global CL when

(φ1,0, φ0,1) = (0.24, 0.24), whereas for (φ1,0, φ0,1) = (0.24,−0.24) both local CL and

AICC outperformed the global CL and the RMSE is lowest for local CL and AICC when

(n1, n2) = (50, 50) and (50, 100), respectively. For the third model with (φ1,0, φ0,1) =

(−0.24,−0.24), AICC outperforms the other two criteria for all cases. The RMSE using

local CL mostly decreases as a increases with lowest value achieved for a = 4/5, whereas

for AICC the smallest RMSE is not achieved at a = 4/5 always.
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Table 10: RMSE of FEXP Estimator for Nonseparable AR(1) Models Using Global and
Local CL and AICC.

(n1, n2) = (50, 50) (n1, n2) = (50, 100)

Criterion a p(var) q(var) RMSE(α̂) p(var) q(var) RMSE(α̂)

(0.24,0.24)

CL∗ - 3.61(1.51) 3.67(1.46) 0.689 3.52(1.45) 4.46(0.59) 0.505
CL 1/2 3.16(1.48) 3.11(1.48) 0.757 4.05(1.22) 3.64(1.27) 0.538

2/3 3.20(1.63) 3.25(1.53) 0.770 3.84(1.33) 4.09(0.95) 0.512
3/4 3.42(1.54) 3.43(1.51) 0.724 3.66(1.45) 4.36(0.74) 0.517
4/5 3.52(1.72) 3.57(1.68) 0.728 3.63(1.41) 4.44(0.65) 0.507

AICC 1/2 1.29(0.21) 1.28(0.20) 1.214 1.45(0.42) 1.59(0.26) 1.077
2/3 1.84(0.88) 1.84(0.90) 1.081 2.31(1.63) 2.31(1.31) 0.928
3/4 2.63(1.53) 2.69(1.51) 0.889 2.60(1.64) 3.63(1.31) 0.721
4/5 3.20(1.87) 3.19(1.88) 0.794 3.09(1.63) 4.12(0.95) 0.603

(0.24,-0.24)

CL∗ - 2.62(0.58) 2.66(0.67) 0.370 2.93(0.52) 3.17(0.68) 0.270
CL 1/2 2.46(1.34) 2.87(1.52) 0.402 2.59(1.53) 3.11(1.44) 0.278

2/3 2.36(0.99) 2.60(1.26) 0.390 2.40(1.04) 3.14(1.08) 0.255
3/4 2.43(0.67) 2.51(0.85) 0.375 2.63(0.67) 2.99(0.92) 0.263
4/5 2.49(0.58) 2.50(0.74) 0.367 2.90(0.64) 2.94(0.84) 0.284

AICC 1/2 1.20(0.09) 1.23(0.18) 0.427 1.09(0.08) 1.53(0.25) 0.334
2/3 1.45(0.28) 1.53(0.33) 0.414 1.33(0.23) 2.03(0.16) 0.213
3/4 1.96(0.33) 1.88(0.43) 0.398 2.06(0.18) 2.16(0.26) 0.266
4/5 2.29(0.37) 2.23(0.50) 0.369 2.55(0.42) 2.47(0.45) 0.287

(-0.24,-0.24)

CL∗ - 2.56(0.52) 2.58(0.54) 0.279 2.89(0.50) 3.01(0.55) 0.207
CL 1/2 3.11(1.22) 3.16(1.12) 0.357 3.46(1.22) 3.42(1.21) 0.256

2/3 2.80(0.90) 2.81(0.91) 0.311 2.99(1.04) 3.23(0.92) 0.223
3/4 2.59(0.70) 2.62(0.71) 0.276 2.74(0.75) 2.98(0.75) 0.198
4/5 2.52(0.60) 2.52(0.59) 0.258 2.86(0.65) 2.80(0.70) 0.199

AICC 1/2 1.50(0.26) 1.52(0.26) 0.224 1.66(0.24) 1.60(0.25) 0.172
2/3 1.83(0.22) 1.84(0.23) 0.234 1.90(0.32) 1.92(0.34) 0.173
3/4 2.06(0.27) 2.05(0.25) 0.242 2.13(0.17) 2.22(0.26) 0.169
4/5 2.26(0.34) 2.31(0.38) 0.250 2.47(0.37) 2.41(0.36) 0.176
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4.6 Mercer and Hall Wheat Data

We base our analysis on the Mercer & Hall’s (1911) wheat yield data. Their main objec-

tive was to find the optimal size and number of field plots needed to reduce the error of

estimating yield to an acceptable level. This data is also used in Section 3.5.2 to predict

the values at different field locations. Whittle (1954) computed correlations between the

wheat yield up to lag 3, and found that the correlations are stronger along the north-south as

compared to the east-west direction. He speculated that there are some ’waves of fertility’

of the kind often remarked in a ploughed field. From 2-D spectral analysis, McBratney &

Webster (1981) plotted the correlogram and an estimate of the spectrum obtained by using

the Bartlett window of 10 lags. They found an obvious peak in the east-west direction with

a three plot long period and also reported evidence of an earlier ridge and furrows pattern of

plowing on the field under study. Ripley (1981) found a similar pattern in the periodogram

plot and attributed this to the variation in the soil fertility caused by layers in the outcrop-

ping rocks. Cressie (1993) considered the median polishing of this data before modelling

the dependence. He showed that the estimated additive effect of the median polished row,

column and overall effects have a striking variability in the east-west direction.

We present the plot of log periodogram in Figure 7(a) which shows a peak at the

origin and along the line λ1 = 0 for different values of λ2, thus showing evidence for long

range dependence. There are also prominent parallel ridges in the north-south direction.

The periodogram plot obtained from the row and column series (in log-log coordinates)

is shown in Figure (b) and (c), respectively. These plots show the presence of long range

dependence along both directions.

We fit the FEXP models (4.3), (4.5) and (4.7) to this data. For f ∗(., .) in these models

we use (p, q) selected using AICC, Mallow’s CL and subset selection from all possible

values in {(0, 0) ≤ (p, q) ≤ (7, 7)}. Since AICC and CL selected same model order so we
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Figure 7: Log Periodogram of the (a) Wheat Data, (b) Row Series and (c) Column Series.

report results for CL only. The results for the FEXP estimators from different models and

their 95% confidence intervals are provided in Table 11.

For model (4.3), CL selected (p, q) = (4, 1) and for subset selection only α is included

in the model. The results in Table 11 show that the estimates are above 0.5, thus it provides

strong evidence for long range dependence. Note that the confidence interval based on CL

are much wider (nearly four times) than the subset selection. The log of fitted spectral

densities for (p, q) = (4, 1) is shown in Figure 8(b) along with the log periodogram in (a).

The fitted density represents the data fairly well.

For model (4.5), CL selected (p, q) = (1, 1) and for subset selection only α1 and α2 are

included in the model. The results in Table 11 provide evidence for long range dependence

in both directions with stronger effect in the east-west direction. The confidence intervals
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obtained using CL are wider than those from the subset selection. The log of fitted spectral

densities for (p, q) = (1, 1) in Figure 8(c) which represents the log periodogram in (a)

much better than the fitted model in (b).

For model (4.7) with k = 0, CL selected (p, q) = (1, 1) and for subset selection

only α is included in the model. The results in Table 11 show evidence for long range

dependence. The confidence intervals obtained using CL are wider than those from the

subset selection. The log of fitted spectral densities for (p, q) = (1, 1) in Figure 8(d) is not

a good representation of the data.

These results provide evidence that the long range dependence parameters differ with

stronger dependence in the east-west direction. Model (4.5) provides the most appropriate

fit for the wheat data, and explains the presence of long range dependence and periodicity

quite well. Our results also support the claim of McBratney & Webster (1981).

Table 11: FEXP Estimators for Wheat Yield Data.

Model (4.3) Model (4.5) Model (4.7)

Criteria α̂ 95% CI α̂1 95% CI α̂2 95% CI α̂ 95% CI

Local CL 0.796 (0.02,1.57) 0.260 (0.14,0.38) 0.137 (0.02,0.26) 0.255 (0.14,0.37)
Subset Selection 0.814 (0.61,1.02) 0.315 (0.24,0.39) 0.167 (0.09,0.25) 0.309 (0.23,0.39)
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Figure 8: (a) Log Periodogram of Wheat Yield, and Log of Fitted Spectral Density for (b)
Model (4.3), (c) Model (4.5) and (d) Model (4.7).
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CHAPTER V

CONCLUSION

Random fields have applications in a large diversity of disciplines, such as geography,

geology, biology, environmental sciences, and agriculture. Motivated by these applications

random fields have been the subject of research. In this dissertation, we have developed

methods for prediction and estimation of two dimensional random fields which are defined

on a regular lattice.

Kriging, the most commonly used method for spatial prediction, requires specification

of a parametric model for the dependence structure. In Chapter II, we develop prediction

methodology which requires minimal assumptions on the dependence structure of the pro-

cess. Using the unilateral moving average representation of a stationary random field, we

solve the multi-step ahead prediction problem when the quarter-plane (third quadrant) is

chosen and fixed as the past. The multi-step ahead prediction errors and their variances

play a central role in solving a number of non-standard prediction problems, which deals

with augmentation of the quarter-plane past with either a single or a group of observations.

These non-standard prediction problems are closely related to the design problem and mo-

tivated by the network site selection in the environmental and geostatistical applications.

We obtain informative and explicit prediction error variance formulas in terms of either the

autoregressive or moving average parameters of the random fields which links the worth

of an additional observation to its spatial location via the size of these parameters. The

prediction error variances for random fields seem to be expressible only in terms of the

moving average parameters, and attempts to express them in terms of the autoregressive

parameters lead to a new and mysterious projection operator which captures the nature of

the edge-effects encountered in the estimation of the spectral density function of stationary
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random fields. This is in sharp contrast with the solution of prediction problems in the time

series setup. The role of projection operator in prediction of random fields remains an open

problem for future research. Another interesting problem for further research is to extend

the prediction theory when a half-plane is used as the past. This extension would examine

the role of past in predicting values at unsampled locations and also in finding the worth of

observations for prediction.

In Chapter III, we show that an extension of the exponential models to the stationary

random fields play a crucial role in the implementation of the prediction methodology de-

veloped in Chapter II. The predictor coefficients for stationary random fields are expressed

in terms of the cepstrum coefficients. The developments in Chapters II and III provide

a unified framework for forecasting stationary random fields both in the time and spectral

domain. Through various simulation studies which account for different random field mod-

els, we demonstrate that the proposed methodology delivers impressive prediction results

with reasonable prediction error variances. A problem for further research is to generalize

this prediction framework to include the long range dependent or fractional exponential

processes. This involves using the definitions of fractional exponential models given in

Chapter IV to incorporate the long range dependence in the model.

Additionally, in Chapter IV, we develop a new broadband semiparametric estimator

for the long range dependence parameter of random fields, which is based on the fractional

exponential spectrum. The proposed estimator is consistent, easily adaptable to different

long range dependence definitions, is computationally simple, and avoids the pitfalls of

model misspecification. We also propose three different criteria to automatically select

the appropriate model order for the fractional exponential models. Several Monte Carlo

simulations show that our estimator works better than the other estimators, including GPH

estimator. Through analysis of the Mercer and Hall’s wheat data we illustrate the use of

the proposed estimator for various different long range dependent spectral density models.
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In many applications, like total column ozone amounts, the observed process have spatial

as well as temporal component. Future work involves developing fractional exponential

estimators for spatio-temporal processes with long range dependence.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER II

Proof of Theorem 1

Using the MA(∞) representation of {X(s1, s2)} in (2.14), orthogonality of the innovations

and suitably partitioning the infinite sums in terms of the indices belonging to Q and its

complement Qc, we obtain

X(h1, h2) = bh1,h2ε(0, 0) +
∞∑

k=h1

∞∑
`=h2

(k,`)6=(h1,h2)

bk,`ε(h1 − k, h2 − `) +

h1−1∑
k=0

∞∑
`=h2

bk,`ε(h1 − k, h2 − `)

+
∞∑

k=h1

h2−1∑
`=0

bk,`ε(h1 − k, h2 − `) +

h1−1∑
k=0

h2−1∑
`=0

bk,`ε(h1 − k, h2 − `).

Using linearity of the orthogonal projection and the second equality in (2.14), we find that

the (h1, h2)-step ahead predictor is

X̂(h1, h2) =
∞∑

k=h1

∞∑
`=h2

(k,`) 6=(h1,h2)

bk,`ε(h1 − k, h2 − `).

The corresponding prediction error is

X(h1, h2)− X̂(h1, h2) = bh1,h2ε(0, 0) +

h1−1∑
k=0

∞∑
`=h2

bk,`ε(h1 − k, h2 − `)

+
∞∑

k=h1

h2−1∑
`=0

bk,`ε(h1 − k, h2 − `) +

h1−1∑
k=0

h2−1∑
`=0

bk,`ε(t1 + h1 − k, t2 + h2 − `),



83

with variance

var
{
X(h1, h2)− X̂(h1, h2)

}
= b2h1,h2var {ε(0, 0)}+

h1−1∑
k=0

∞∑
`=h2

b2k,`var{ε(h1 − k, h2 − `)}

+
∞∑

k=h1

h2−1∑
`=0

b2k,`var{ε(h1 − k, h2 − `)}+

h1−1∑
k=0

h2−1∑
`=0

b2k,`var{ε(h1 − k, h2 − `)}

= σ2

(
b2h1,h2 +

h1−1∑
k=0

∞∑
`=h2

b2k,` +
∞∑

k=h1

h2−1∑
`=0

b2k,` +

h1−1∑
k=0

h2−1∑
`=0

b2k,`

)
.

For quarter plane past, Tjøstheim (1983) pointed out that a wide range of homogeneous

lattice processes can be approximated in terms of unilateral AR models as:

X(s1, s2) = −
∑
k

∑
`

(k,`)∈Q

ak,`X(s1 − k, s2 − `) + ε(s1, s2), (A.1)

where {ak,`} are the AR parameters of X with a0,0 = 1, ak,` = 0, when either k <

0 or l < 0, and the double infinite sum converges in the mean-square sense. The AR

parameters are same as the coefficients in Taylor expansion of inverse of φ(z1, z2) in (2.15).

Partitioning the sums in (A.1) into two parts corresponding to the indices belonging to Q

and its complement Qc we obtain (2.18).

Q.E.D

Proof of Corollary 2

(a). Figure 9 depicts the 1-D process Y (s, h2) = {· · · , Y (−3, h2), Y (−2, h2), Y (−1, h2)}

of prediction errors in the second quadrant, along the rows h2 = 1, 2, 3, · · · . From (2.16),

the prediction error of X(h1, h2) with h1 < 0 and h2 > 0 is:

Y (h1, h2) = X(h1, h2)− X̂(h1, h2) =
∞∑
k=0

h2−1∑
`=0

bk,`ε(h1 − k, h2 − `).

Using (2.19) for si < 0, i = 1, 2 the covariance between Y (s1, h2) and Y (s2, h2) is as in

(2.21). Substituting s1 = s2 = s in (2.21), the variance is trivial. By definition, for a
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

Q 

. . .

. . .

. . .

( 1,1)Y ( 2,1)Y ( 3,1)Y 

{ ( ,1)}Y s

{ ( ,2)}Y s

{ ( ,3)}Y s

( 1,2)Y ( 2,2)Y ( 3,2)Y 

( 1,3)Y ( 2,3)Y ( 3,3)Y 

{ (1, )}Y t { (2, )}Y t { (3, )}Y t

(1, 1)Y 

(1, 2)Y 

(1, 3)Y 

(2, 1)Y 

(2, 2)Y 

(2, 3)Y 

(3, 1)Y 

(3, 2)Y 

(3, 3)Y 

Figure 9: Prediction Errors in Quadrants II and IV.

stationary 1-D process {Y (s, h2)} with auto-covariance function γ(.), the spectral density

function is

f(λ) =
1

2π

∞∑
h=−∞

γ(h) exp(−ihλ), (A.2)

substituting γh2(h) from (2.21) into (A.2) we get,

fh2(λ) =
σ2

2π

∞∑
h=−∞

(
∞∑
k=0

h2−1∑
`=0

bk,`bk+|h|,`

)
exp(−ihλ).

Let t = k + h, such that, h = t− k and 0 < t <∞, then

fh2(λ) =
σ2

2π

∞∑
t=0

∞∑
k=0

(
h2−1∑
`=0

bk,`bt,`

)
exp(−i(t− k)λ)

=
σ2

2π

∞∑
t=0

∞∑
k=0

(bk,0bt,0 + bk,1bt,1 + · · ·+ bk,h2−1bt,h2−1) exp(−i(t− k)λ)

=
σ2

2π

{∣∣∣∣∣
∞∑
k=0

bk,0 exp(ikλ)

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑
k=0

bk,1 exp(ikλ)

∣∣∣∣∣
2

+ · · ·+

∣∣∣∣∣
∞∑
k=0

bk,h2−1 exp(ikλ)

∣∣∣∣∣
2}

=
σ2

2π

h2−1∑
`=0

∣∣∣∣∣
∞∑
k=0

bk,` exp(ikλ)

∣∣∣∣∣
2

,

which is (2.22). Proof of (b) is similar, and hence omitted.



85

Outline of the proof of Lemma 4

(a) holds since {X(s1, s2)} is PND. For (b),

Q⊕ A ⊆ I,

it suffices to note that any X ∈ I can be written as

X = Y +
∑∑
(k,`)∈K

dk,`X(k, `),

for some Y ∈ Q and scalars {dk,`}. Adding and subtracting
∑∑
(k,`)∈K

dk,`X̂(k, `) gives

X = Y +
∑∑
(k,`)∈K

dk,`X̂(k, `) +
∑∑
(k,`)∈K

dk,`

(
X(k, `)− X̂(k, `)

)
∈ Q⊕K.

Proof of Theorem 2

Since A is one-dimensional, from Lemma 4(d) we have,

P
X(0,0)
A = βh1,h2

(
X(h1, h2)− X̂(h1, h2)

)
,

where βh1,h2 is obtained from Corollary 1(a)-(b) as:

βh1,h2 =
{

var
(
X(h1, h2)− X̂(h1, h2)

)}−1
cov

(
X(0, 0), X(h1, h2)− X̂(h1, h2)

)
=

{
σ2

(
b2h1,h2 +

h2−1∑
k=0

∞∑
`=h2

b2k,` +
∞∑

k=h1

h2−1∑
`=0

b2k,` +

h1−1∑
k=0

h2−1∑
`=0

b2k,`

)}−1 (
σ2bh1,h2

)
.

(A.3)

The prediction error of X̂I1(0, 0) is

X(0, 0)− X̂I1(0, 0) = X(0, 0)− X̂(0, 0)− βh1,h2
(
X(h1, h2)− X̂(h1, h2)

)
,

= ε(0, 0)− βh1,h2
(
X(h1, h2)− X̂(h1, h2)

)
.
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Computing the variance of the above prediction error gives

σ2(I1) = var
(
X(0, 0)− X̂I1(0, 0)

)
= var

{
ε(0, 0)− βh1,h2

(
X(h1, h2)− X̂(h1, h2)

)}
= σ2

{
1− βh1,h2cov

(
X(0, 0), X(h1, h2)− X̂(h1, h2)

)}
. (A.4)

Substituting βh1,h2 from (A.3) into (A.4) and using Corollary 1(b), it follows that

σ2(I1) = σ2

(
1−

b2h1,h2

b2h1,h2 +
∑h1−1

k=0

∑∞
`=h2

b2k,` +
∑∞

k=h1

∑h2−1
`=0 b2k,` +

∑h1−1
k=0

∑h2−1
`=0 b2k,`

)
.

Q.E.D

Proof of Lemma 5

Representing the three double sums in the prediction error of X(h1, h2) given in (2.16) in

a matrix form, we can write

X(h1, h2)− X̂(h1, h2) = bh1,h2ε(0, 0) + [T ′n−1, T
′
n−2, T

′
n−3, · · · , T ′0]εK ,

where Ti−1 is a vector of MA parameters for the i-th observation in setK with i = 1, · · · , n.

For instance, if i = n then the additional observation is X(h1, h2) and

T ′n−1 = {b0,0, b1,0, b2,0, · · · , b0,1, b0,2, · · ·}

...

T ′0 = {bh1−1,h2−1, bh1,h2−1, bh1+1,h2−1, · · · , bh1−1,h2 , bh1−1,h2+1, · · ·}.

Likewise, writing the prediction error for each observation in the set K we get

XK − X̂K =



X(h1, h2)− X̂(h1, h2)

X(h1 − 1, h2)− X̂(h1 − 1, h2)

X(h1 − 2, h2)− X̂(h1 − 2, h2)
.
.

X(1, 1)− X̂(1, 1)

X(1, 0)− X̂(1, 0)

X(0, 1)− X̂(0, 1)


=



bh1,h2
T ′n−1 T ′n−2 · · · T ′0

bh1−1,h2
T ′n−2 T ′n−3 · · · 0′

bh1−2,h2
T ′n−3 T ′n−4 · · · 0′

. . . · · · .

. . . · · · .
b1,1 T ′0 0′ · · · 0′

b1,0 b′10 0′ · · · 0′

b0,1 0′ b′01 · · · 0′


(
ε(0, 0)
εK

)
,
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which is

XK − X̂K =

(
bK T ′

) ε(0, 0)

εK

 = bKε(0, 0) + T ′εK .

Part (b) follows from (a) and orthogonality of the innovations as:

C = cov
(
XK − X̂K

)
= cov {bKε(0, 0) + T ′εK}

= σ2bKb
′
K + T ′(σ2I)T

= σ2(bKb
′
K + T ′T ).

Part (c) is immediate from the recursive relation (2.26) between MA and AR parameters.

Proof of Theorem 3

From Lemma 4(c)-(d), the best linear predictor of X(0, 0) based on I2 is:

X̂I2(0, 0) = X̂(0, 0) +
∑∑
(i,j)∈K

βi,j

{
X(i, j)− X̂(i, j)

}
= X̂(0, 0) + β′(XK − X̂K),

where

β =
{

var
(
XK − X̂K

)}−1
cov

(
XK − X̂K , X(0, 0)− X̂(0, 0)

)
=
{
σ2(T ′T + bKb

′
K)
}−1

(σ2bK)

= (T ′T + bKb
′
K)−1bK . (A.5)

The inverse of (T ′T +bKb
′
K) is found formally by using a matrix inversion identity Pourah-

madi (2001, p. 155) for a rank-1 perturbation of a nonsingular matrix G:

(G+ UV ′)−1 = G−1 − (1 + V ′G−1U)−1(G−1U)(V ′G−1), (A.6)
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where U and V are column vectors. Using G = T ′T and U = V = bK in (A.6) and

substituting the inverse into (A.5), we get

β =
{
G−1 − (1 + b′KG

−1bK)−1(G−1bK)(b′KG
−1)
}
bK

= G−1bK − (1 + b′KG
−1bK)−1(G−1bK)(b′KG

−1bK)

= G−1bK
{

1− (1 + b′KG
−1bK)−1(b′KG

−1bK)
}

= G−1bK
(
1 + b′KG

−1b′
)−1

.

The prediction error for X̂I2(0, 0) is obtained by using Lemma 5(a) for XK − X̂K as:

X(0, 0)− X̂I2(0, 0) = X(0, 0)− X̂(0, 0)− β′
(
XK − X̂K

)
= ε(0, 0)− β′ (bKε(0, 0) + T ′εK) .

= ε(0, 0)(1− β′bK)− (Tβ)′εK .

Using the orthogonality of innovations, the prediction error variance is

σ2(I2) = var
{
X(0, 0)− X̂I2(0, 0)

}
= var {ε(0, 0)(1− β′bK)− (Tβ)′εK}

= σ2 {(1− β′bK)(1− β′bK)′ + β′(T ′T )β} . (A.7)

Working on simplification of the terms

1− β′bK = 1− b′KC−1bK

= 1− b′K
{
G−1 − (1 + b′KG

−1bK)−1(G−1bK)(b′KG
−1)
}
bK

= 1−
{

(b′KG
−1bK)(1 + b′KG

−1bK)−1
}

=
(
1 + b′KG

−1bK
)−1

, (A.8)
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and

β′(T ′T )β = β′Gβ

=
{(

1 + b′KG
−1b′K

)−1
b′KG

−1
}
G
{
G−1bK

(
1 + b′KG

−1b′K
)−1}

=
(
1 + b′KG

−1b′K
)−2

b′KG
−1bK . (A.9)

Substituting (A.8) and (A.9) into (A.7) we get

σ2(I2) = σ2
{(

1 + b′KG
−1b′K

)−2
+
(
1 + b′KG

−1b′K
)−2

(b′KG
−1bK)

}
= σ2

(
1 + b′KG

−1b′K
)−2 (

1 + b′KG
−1b′K

)
= σ2

(
1 + b′KG

−1b′K
)−1

Using (2.35) and P = T (T ′T )−1T ′, we get

σ2(I2) = σ2
{

1 + (T ′aK)′G−1(T ′aK)
}−1

= σ2
{

1 + a′KT (T ′T )−1T ′aK
}−1

= σ2 (1 + a′KPaK)
−1
.

Q.E.D
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER III

Proof of Theorem 4

Differentiating both sides of (3.17) with respect to z1 we get;
∞∑
k=0

∞∑
`=0

(k + 1)bk+1,`z
k
1z

`
2 =

(
∞∑
k=0

∞∑
`=0

bk,`z
k
1z

`
2

)
∞∑
k=0

∞∑
`=0

(k + 1)ck+1,`z
k
1z

`
2, (B.10)

or equivalently,
∞∑
k=0

∞∑
`=0

(k + 1)bk+1,`z
k
1z

`
2 =

∞∑
k=0

∞∑
`=0

{
k∑

j1=0

∑̀
j2=0

(k + 1− j1)ck+1−j1,`−j2bj1,j2

}
zk1z

`
2.(B.11)

Similarly, differentiating both sides of (3.18) with respect to z2 we get;
∞∑
k=0

∞∑
`=0

(`+ 1)bk,`+1z
k
1z

`
2 =

∞∑
k=0

∞∑
`=0

{
k∑

j1=0

∑̀
j2=0

(`+ 1− j2)ck−j1,`+1−j2bj1,j2

}
zk1z

`
2.(B.12)

Equating the coefficients of like powers of z1 and z2 on both sides of (B.11) and (B.12)

leads to expressions Theorem 4(a) and (b) for {bk,`}, respectively.

Now differentiating both sides of (B.10) with respect to z2 we get;
∞∑
k=0

∞∑
`=0

(k + 1)(`+ 1)bk+1,`+1z
k
1z

`
2 =

{
∞∑
k=0

∞∑
`=0

bk,`z
k
1z

`
2

∞∑
k=0

∞∑
`=0

(k + 1)(`+ 1)ck+1,`+1z
k
1z

`
2

}

+

{
∞∑
k=0

∞∑
`=0

(`+ 1)bk,`+1z
k
1z

`
2

∞∑
k=0

∞∑
`=0

(k + 1)ck+1,`z
k
1z

`
2

}
,

or equivalently,
∞∑
k=0

∞∑
`=0

(k + 1)(`+ 1)bk+1,`+1z
k
1z

`
2 =

∞∑
k=0

∞∑
`=0

{ k∑
j1=0

∑̀
j2=0

(k + 1− j1)(`+ 1− j2)ck+1−j1,`+1−j2bj1,j2 +

(k + 1− j1)(j2 + 1)ck+1−j1,`−j2bj1,j2+1

}
zk1z

`
2.

Derivation of (d)-(f) for {ak,`} is similar, and hence omitted.

Q.E.D
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER IV

Lee and Berman’s (1997) Algorithm

To simulate data from a Gaussian random field for given spectral density f(λ1, λ2). Sup-

pose the required process is {X(t1, t2)}, t1 = 1, · · · , n2, t2 = 1, · · · , n2 on a regular lattice.

Then, the algorithm proceeds as follows:

1 Compute g(λ1, λ2) =
√
f(λ1, λ2).

2 Let ε(t1, t2) be a white noise process with zero mean and unit variance. Compute the

discrete Fourier transform of Z as:

ε̃(λ1j, λ2k) =
1

√
n1n2

n1−1∑
s1=0

n2−1∑
s2=0

ε(t1, t2) exp{−i(s1λ1j + s2λ2k)}.

Let u and v be the real and imaginary parts respectively of ε̃(λ1j, λ2k).

3 Calculate the inverse Fourier transform of h = (gu + igv). The real part of this in-

verse Fourier transform gives a realization of the Gaussian random field with spectral

density f(λ1, λ2) such that,

X(t1, t2) =
2π

n1n2

n1−1∑
j=0

n2−1∑
k=0

√
f(λ1j, λ2k)

[
n1−1∑
s1=0

n2−1∑
s2=0

ε(s1, s2) exp{−i(s1λ1j) + s2(λ2k)}

]
exp{i(jλ1t1 + kλ2t2)}.

The above algorithm is used to simulate data from a Gaussian random field first on a N1 ×

N2 rectangular lattice whereNi > ni, i = 1, 2 andNi is not a multiple of ni. Then we select

the required process X(t1, t2) as a subset of the simulated process. A slight modification

to avoid the zero frequencies at which the spectral density function takes very high values



92

is as follows:

X(t1, t2) =
2π

N1N2

N1−1∑
j=0

N2−1∑
k=0

√
f(λ1j̃, λ2k̃)

[
n1−1∑
s1=0

n2−1∑
s2=0

ε(s1, s2) exp{−i(s1λ1j) + s2(λ2k)}

]
exp{i(jλ1t̃1 + kλ2t̃2)},

where j̃ = j+1/2, k̃ = k+1/2 so that λ1j̃ = 2π(j+1/2)/N1 and λ2k̃ = 2π(k+1/2)/N2.

Proof: Above algorithm produces process with given spectral density function

For s stationary random field {X(t1, t2), t1 = 1, · · · , n1, t2 = 1, · · · , n2}with spectral den-

sity f(., .):

X(t1, t2) =
2π

n1n2

n1−1∑
j1=0

n2−1∑
j2=0

√
f(λj1, λj2)

[
n1−1∑
s1=0

n2−1∑
s2=0

ε(s1, s2) exp {−i (λj1s1 + λj2s2)}

]
exp {i (λt1j1 + λt2j2)} .

Using the definition of the autocovariance and simplifying we get:

E [X(t1, t2)X(t1 + h1, t2 + h2)] =

(
2π

n1n2

)2

n1−1∑
j1=0

n2−1∑
j2=0

n1−1∑
k1=0

n2−1∑
k2=0

√
f(λj1 , λj2)f(λk1 , λk2)

[
n1−1∑
s1=0

n2−1∑
s2=0

exp {−i (λj1+k1s1 + λj2+k2s2)}

]
× exp {i (λt1j1 + λt2j2)} exp {i (λt1+h1k1 + λt2+h2k2)}

=

(
2π

n1n2

)2

n1n2

n1−1∑
j1=0

n2−1∑
j2=0

f(λj1 , λj2) exp {−i (λh1j1 + λh2j2)}

=
4π2

n1n2

n1−1∑
j1=0

n2−1∑
j2=0

f(λj1 , λj2) exp {−i (λj1h1 + λj2h2)} .
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