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ABSTRACT

Multibody Dynamics Using Conservation of Momentum with Application to

Compliant Offshore Floating Wind Turbines. (August 2012)

Lei Wang, B.S., Tianjin University;

M.S., Tianjin University

Chair of Advisory Committee: Dr. Bert Sweetman

Environmental, aesthetic and political pressures continue to push for siting off-

shore wind turbines beyond sight of land, where waters tend to be deeper, and use

of floating structures is likely to be considered. Savings could potentially be realized

by reducing hull size, which would allow more compliance with the wind thrust force

in the pitch direction. On the other hand, these structures with large-amplitude

motions will make dynamic analysis both more challenging and more critical. Pri-

or to the present work, there were no existing dynamic simulation tools specifically

intended for compliant wind turbine design.

Development and application of a new computational method underlying a new

time-domain simulation tool is presented in this dissertation. The compliant floating

wind turbine system is considered as a multibody system including tower, nacelle,

rotor and other moving parts. Euler’s equations of motion are first applied to the

compliant design to investigate the large-amplitude motions. Then, a new formula-

tion of multibody dynamics is developed through application of the conservation of

both linear momentum and angular momentum to the entire system directly. A base
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body is prescribed within the compliant wind turbine system, and the equations of

motion (EOMs) of the system are projected into the coordinate system associated

with this body. Only six basic EOMs of the system are required to capture 6 un-

known degrees of freedom (DOFs) of the base body when mechanical DOFs between

contiguous bodies are prescribed. The 6×6 mass matrix is actually composed of two

decoupled 3 × 3 mass matrices for translation and rotation, respectively. Each ele-

ment within the matrix includes the inertial effects of all bodies. This condensation

decreases the coupling between elements in the mass matrix, and so minimizes the

computational demand. The simulation results are verified by critical comparison

with those of the popular wind turbine dynamics software FAST.

The new formulation is generalized to form the momentum cloud method (M-

CM), which is particularly well suited to the serial mechanical N -body systems

connected by revolute joints with prescribed relative rotation. The MCM is then

expanded to multibody systems with more complicated joints and connection types.
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CHAPTER I

INTRODUCTION

This dissertation focuses on the development of a new multibody formulation method-

ology underlying a time-domain dynamic simulation tool of the compliant floating

wind turbine system. In Section A of this introduction chapter, the background

of the problem are introduced, including the development of floating wind turbine

concepts, presentation of complaint designs and motivation for research on the new

formulation. In Section B, relevant historical literatures about offshore wind turbines

and multibody dynamics are reviewed. Main contributions and organization of the

presented work are summarized in Section C and D, respectively.

A. Background

Offshore wind energy has enormous development potential. Compared to the onshore

counterparts, the offshore wind turbines have many advantages [1]: a higher velocity,

steadier wind field in the offshore area could enable more electricity generated per

square meter of swept rotor area; transportation and installation capacities of marine

shipping and handling equipment exceed the installation requirements for multi-

megawatt wind turbines; wind turbines can be larger because visual intrusion is

minimized and noise emissions can be ignored offshore; offshore turbines can be

located close to high-value urban load centers, simplifying transmission of power and

The journal model is IEEE Transactions on Automatic Control.
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increasing efficiency. Potential development of floating wind turbine systems has

become an area of intensive research field recent years.

Although various types of floaters have been presented to support wind turbine

payloads, the overall cost of the entire system is still a significant concern for the

utilization of floating wind turbine concepts. A cost analysis [1] shows that the

economics of deep-water wind turbines will be determined primarily by the additional

costs of the floating structure and power distribution system, because the costs of

topside facilities are similar to that of bottom-fixed turbine systems. Musial [2]

indicates that the wind turbine platform and mooring system should provide the

most potential for system cost reduction because the application is new and the

most significant cost saving design tradeoffs have not yet been explored.

The compliant floating wind turbine design presented in this dissertation ap-

plies a truncated spar cylinder as the floater. Although technical challenges posed

by this compliant structural design are significant, meaningful weight savings could

be realized, which can be demonstrated using simple dimensional analysis. Fig. 1

shows the predominant loads on a spar-type floating wind turbine. Considering the

static equilibrium of a tower subject to four constant forces representing each of

these loads combined with the use of simple dimensional analysis yields considerable

insight into the potential for weight savings. Other important forces such as waves

and the water-plane stiffness are neglected from this very basic thought experiment.

Considering just the four forces and arbitrarily defining pitch as the direction of the

rotational motion caused by wind forces, pitch motion will be in static equilibrium if

the couple created by the wind and mooring forces is equal to that of the buoyancy
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and gravity forces. The wind force and tower height are assumed to be approximately

constant, which implies some constant wind moment must be reacted by buoyancy

and gravity. A small increase in the design static pitch angle would allow either:

1) a decrease in the required buoyancy and ballast weight, or 2) a decrease in the

required restoring moment arm, which implies a decrease in the structural distance

between the center of gravity and center of buoyancy, or some combination of the

two. Either option 1) or 2) implies a lighter structure. Simple dimensional analysis

can also be used to investigate cost implications, if costs of installation, operation

and maintenance are not considered. Sclavounos [3] estimates that the cost of the

floater, ballast and mooring system increase linearly with the size of wind turbine.

Wind

Mooring

Buoyancy

Gravity

Fig. 1. Predominant forces on a floating wind turbine with the spar floater
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The compliant design allows large-amplitude rotation of the floater, which can

be described by Euler angles to accurately obtain the instantaneous position of the

floating system. Accurate calculation of the instantaneous position is necessary for

load estimation and design optimization. The external loads on the compliant float-

ing wind turbine caused by wind, waves and mooring lines all depend on the motion

of the floater and topside facilities. Accurate structural motions are also needed for

accurate calculation of internal loads, such as gyroscopic effects of the topside facil-

ities on the tower and blades bending moment on the hub, which are critical design

criteria for the wind turbine system. Additionally, precise prediction of the instan-

taneous position is important to the design optimization of the compliant floating

wind turbine: both the estimation of power output and the optimization of control

algorithms are very sensitive to large-amplitude motion of the structure.

Compliant floating wind turbines offer unique technical challenges especially

when subject to large-amplitude rotation. A new computational methodology has

been developed and implemented into a time-domain simulation tool that retains

the full nonlinearity of the equations of motion (EOMs). External loads from wind,

wave and mooring lines are all nonlinear and there is coupling between the structural

motion and external loads. Further, large-amplitude rotation described by Euler an-

gles introduces nonlinear inertial loads, which cannot be adequately addressed using

linear EOMs. Finally, the real-time control mechanisms used on floating wind tur-

bines, such as nacelle yaw control and blade pitch control, significantly influence

the structural dynamics of the entire system. Not all of these effects can be cap-

tured using only frequency-domain simulation. Time-domain simulation results are
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also necessary for statistical analysis, such as extreme environmental loads, extreme

internal loads and fatigue analysis. Although dynamic simulation of floating wind

turbines has been investigated by others using fully coupled time-domain simulators,

the EOMs associated with Euler angles have not been applied in previous studies.

The main development underlying the new time-domain simulation method is

the establishment of the EOMs of the compliant system. Formulation of these EOM-

s generally falls within the broad field of multibody dynamics. Multibody system

analysis is commonly used to simulate complex systems as a system of rigid bodies

connected by mechanical joints. Here, the compliant floating wind turbine system is

considered as a multibody system including several rigid components, such as tower,

nacelle and rotor, which are mechanically connected by the yaw bearing, hub, etc.

There are various classical analytical methods for the establishment of the EOMs

of multibody system: Newton-Euler (NE, 1750) method is based on the conser-

vation of momentum for each body, while Euler-Lagrange (EL, 1788) and Kane’s

methods (1985) formulate the EOMs from the perspective of energy of the system.

These methods are then combined with various numerical implementations to achieve

time-domain simulations of multibody systems. From the perspective of numerical

efficiency, the optimum formulation of multibody dynamics varies depending on the

specifics of the mechanical system and simulation objectives.

In this dissertation, the theorem of conservation of momentum is applied to

establish the EOMs of the compliant floating wind turbine with large-amplitude mo-

tion. Initially, Euler’s equations of motion resulting from the conservation of angular

momentum are applied to each body of a 2-body wind turbine model respectively
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to investigate large-amplitude motion of compliant design and its influence on gyro-

scopic moments. As the work progresses, new EOMs are established and gradually

refined to enable an increased number of bodies. These improvements result from

direct application of the conservation of both linear and angular moments to the

entire multibody system.

The new formulation is primarily motivated by the opportunity to develop a

more efficient time-domain simulation tool specially applicable to the floating wind

turbines with prescribed DOFs of relative motion between contiguous bodies. In

the new method, a base body is prescribed within the multibody system, and the

EOMs of the entire system are projected into the coordinate system relevant to this

body. Only six basic EOMs of the system are required to capture 6 unknown DOFs

of the base body when mechanical DOFs between contiguous bodies are prescribed.

The 6 × 6 mass matrix is actually composed of two decoupled 3 × 3 mass matrices

for translation and rotation, respectively. Each element within the matrix includes

the inertial effects of all bodies. This condensation decreases the coupling between

elements in the mass matrix, and so minimizes the computational demand. This new

formulation method is later expanded to multibody systems with more complicated

joints and connection types. More complicated joints require coupled solution of six

basic EOMs as well as control and constraint EOMs.

The method presented here is an effective alternative to the existing classical

methods in multibody dynamics. Any one of these methods may be optional for

a specific application, depending on analysis needs and body configuration. The

new formulation is particularly well-suited for cases in which the computational de-
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mands required to solve the basic EOMs are much larger than those of the control

and constraint EOMs. Cases for which the control EOMs represent pure mechan-

ical control and relative motions between contiguous bodies are known or easy to

obtain, such as that in robotics, are optional candidates for application of the new

method. Cases for which the control EOMs are complicated by introducing springs

and dampers, the new method may be less optional. Similarly, cases for which the

constraint EOMs would require solution of a large number of simultaneous equations

also may not be optional candidates. For example, representing a mooring line as a

series of rigid elements along the the line may require more computation efforts than

solution of the basic EOMs. An additional strength of the new method is its direct

applicability to large-amplitude rotation. However, the method is equally applicable

to small-amplitude rotation of the base body; the angular velocities of conventional

roll, pitch and yaw motions can be used in the calculation of the angular momen-

tum, instead of Euler angular velocities. Finally, the new method derives much of its

efficiency by avoiding the need to calculate internal loads. Much of that efficiency

is lost in cases for which internal loads are needed at many joints. Cases including

complicated connection types or highly interconnected topology, such as tree-type

systems combined with loops, may also not be ideal candidates for the new method

if internal loads is needed. Calculation of internal loads within any overdetermined

system cannot be accomplished using presented inverse dynamics, which preclude

application of the new formulation to these cases.
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B. Literature Review

1. Offshore Wind Turbines

The research and utilization of offshore wind power for generation of electricity has

seen a rapid growth worldwide in the past two decades. In 2003, Henderson [4]

reviewed the development of offshore wind energy in Europe, where many offshore

wind farms composed of bottom-fixed wind turbines in shallow water have been es-

tablished. Especially, a project called “Concerted Action on Offshore Wind Energy

in Europe” (CAOWEE) was presented to gather, evaluate, synthesize and distribute

knowledge on all aspects of offshore wind energy, including offshore technology, elec-

trical integration, economics, environmental impacts and political aspects. Mean-

while, European success has made offshore wind energy more attractive for the U-

nited States. In 2006, Musial [2] indicated that offshore wind generated electricity in

the United States has the potential to become a major contributor to the domestic

energy supply. Preliminary studies performed by the National Renewable Energy

Laboratory (NREL) estimate the offshore resource to be greater than 1000 GW for

the United States. Future projections show this potential could result in over 100

billion of revenue to the offshore industry over the next 30 years in the construction

and operation of offshore wind turbines and the infrastructure needed to support

them. In 2007, Manwell [5] reviewed the external design conditions applicable to

offshore wind energy systems in the United States from the perspective of statistics,

including wind and wave loads as well as extreme events, such as hurricane. Quite

recently, Brenton [6] investigated the potential for offshore wind energy in Europe
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and North America, including existing plans for the development of offshore wind

farms, current technical developments and promising new solutions offered by this

technology.

The application of floating wind turbines is an attractive concept in the nascent

offshore wind energy field. The deep-water wind resource worldwide has been shown

to be extremely abundant, with the U.S. potential ranked second only to China [7].

Compared to current wind farms composed mainly of bottom-fixed turbines, many

potential benefits motivate research on the technology of floating wind turbines, such

as steadier and stronger wind fields, flexibility in site location, less visual and noise

pollution, etc. Musial [7] indicated that the application of floating wind turbines

should be based on the combination of current experience in offshore oil and gas

industries and the expertise of shallow-water wind turbines. Although the technolo-

gy of oil and gas platforms are relatively mature, new technology is still needed to

make wind energy economically competitive over a broad range of deep water sites.

Preliminary investigation [1] in 2004 shows that the costs for deployment of deep-

water wind turbines could reach down to 0.051 $/kWh in the near future, pending

sufficient research and development into technology improvements, and volume pro-

duction. Floating wind turbine platforms may be the most economical means for

deploying wind turbines in the coastal waters beyond view from densely populated

urban load centers [7].

The balance between feasibility and cost has been investigated by many re-

searchers, covering various floater types. Butterfield [8] divided the physical elements

used to achieve first-order static stability of floating platforms into three general cat-
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egories: ballast, mooring lines and buoyancy. In practice, all floating concepts are

actually hybrid designs that gain static stability from all three aspects, although re-

lying on one primary source of stability. In general, spar type platforms have better

heave performance than semisubmersibles due to their deep draft reducing vertical

wave-exciting forces, but they have increased pitch and roll motions because the

water plane area contribution to stability is reduced. Tension-leg platforms (TLPs)

have very good heave and angular characteristics, but the complexity and cost of the

mooring and installation cannot be ignored. Sclavounos [3] reviewed research efforts

for floating wind turbines at MIT in recent years and highlighted two families of

floater concepts: TLP and spar buoy. Henderson [9] also investigated various typical

platform options (the TLP, spar and semisubmersible) as well as the feasibility of

multiple-turbine floaters, such as a space-frame vessel. Roddier [10] reviewed several

recent floating wind turbine projects, including the Statoil Hywind spar,the Blue

H semi/TLP hybrid prototype, the SWAY spar/TLP hybrid, and the Force Tech-

nology WindSea semisubmersible. He also proposed a semisubmersible type design,

WindFloat, which uses three columns to provide stability to support the turbine.

Hywind project [11] is of special note because it is the first floating wind turbine

worldwide. It has 2.3 MW wind turbine, and is located in 200 m water depth off

the south-west coast of Norway. One design goal in this first floating structure was

to minimize tower motion, which makes the technological leap from bottom-founded

towers to floating structures relatively smaller.

Two extremely significant aspects of the structural design of wind turbine sys-

tems are the calculation and combination of external loads, and the estimation of
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internal load effects. API [12] presented the rules and regulations for fixed offshore

platforms design. IEC [13, 14] released relevant standards for the design of offshore

wind turbines based on the estimation of load effects under various load cases, but

indicated that the design requirements specified in these standards are not necessar-

ily sufficient to ensure the engineering integrity of floating offshore wind turbines.

DNV regulations [15] apply partial safety factor method based on direct simulation

of combined load effects of simultaneous load processes for design of support struc-

tures and foundations for offshore wind turbines. Obviously, internal and external

loads are critical for these designs. Krogh [16] applied the simulation of wind turbine

loads for the purpose of comparing different design codes. Freudenreich [17] used

the previous IEC standard [13] to determine the extreme blade bending moments by

applying stochastic and statistical analysis. Henderson [18] calculated external loads

of floating wind turbines in the time domain and then transferred the results into

the frequency domain for use in fatigue analysis based on internal loads.

Accurate calculations of internal and external loads require a coupled dynamic

analysis model of the offshore wind turbine system. The study of Bush [19] shows

that accurate structural dynamics is required to produce accurate long-term tower

loads by comparing various foundation models. Henderson [20] indicates that the de-

termination of the design wave loads will involve selection of appropriate structural

dynamics models. Camp [21] also concludes that the integrated modelling of wind

and wave action is essential for accurate design load calculations as well as fatigue

and extreme loading analysis. Additionally, coupled dynamic analysis is required for

optimum design of offshore wind turbines: the Markovian power curves of wind tur-
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bines including consideration of relative wind speed was investigated by Anahua [22];

the effect of control mechanisms on mitigating tower dynamic loads was discussed

by Write [23].

Simulations in either the frequency or time domain are used to analyze the

coupled dynamic models of floating wind turbines. Frequency-domain simulation is

chosen by some researchers due to its simplicity and its consistency with conventional

dynamic analysis of oil and gas offshore platforms. Lee [24] analyzes the RAOs of

the responses of a spar buoy floater with tension legs and with taut mooring lines,

respectively. Wayman [25] evaluates dynamic performance of several floaters using

coupled structural, hydrodynamic and aerodynamic analysis models in the frequency

domain. Sclavounos [3] presented a fully coupled linear dynamic analysis of floating

wind turbines in the frequency domain that integrated the linear external loads and

structural EOMs. However, as Henderson [18] indicates, frequency domain models

could be used only for concept exploration of floating wind turbines, and not for

design and optimization, because they usually exclude many nonlinear effects. Thus,

many time-domain simulators have been developed for the design of floating wind

turbines. To mention a few examples, Withee [26] integrates commercially struc-

tural dynamic software ADAMS with various external loads calculation subroutines

to establish a fully coupled dynamic simulator and applies it to estimate the fea-

sibility of a tension leg spar buoy floater. Skaare [27] et al. develop a simulation

tool for dynamic response of conceptual designs of Hywind by integrating existing

computer programs, HAWC2 from Riso National Laboratory and SIMO/RIFLEX

from MARINTEK. Jonkman [28,29] from NREL combines FAST, AeroDyn [30] and
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WAMIT [31] to generate a coupled structural-aero-hydro dynamic simulator. Math-

a [32] applies the FAST simulator to evaluate the modeling, loads and dynamics of

the TLP concept.

2. Multibody Dynamics and Application

A multibody system is defined as an assembly of two or more rigid bodies imperfectly

joined together, and having the possibility of relative movement between them [33].

Dynamic simulation of multibody systems has broad applicability in engineering,

including application in robotics, industrial machinery, aerospace, and automobile

systems. Prior works have been done to simulate dynamic systems subject to large-

amplitude displacements. For example, Stoneking [34] presents the derivation of

the exact nonlinear dynamic EOMs for a multibody spacecraft connected by spheri-

cal gimbal joints. Kurfess [35] systematically models the dynamics of robots using

conventional methods of formulation of equations of motion. Featherstone [36] in-

vestigates the dynamics formulation of a floating-base rigid-body system, in which

the base body is free to move in the space.

Generally, multibody systems can be classified into open-chain or closed-chain

systems [33]. Open-chain systems are made up of bodies without closed branches,

while closed-chain systems include loops of rigid bodies. The simplest open-chain

system is a series of rigid bodies connected by joints and does not include any branch,

such as serial manipulator in robotics. The key components in multibody system are

the joints, which permit certain DOFs of relative motion between contiguous bodies

and constrain others. For example, a revolute joint only allows one relative rotation
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between bodies, while a prismatic joint only allows one relative translation.

Kinematics and dynamics are two main aspects in multibody system analy-

sis [33]. Kinematics problems investigate the position or motion of the multibody

system without need to consider dynamic factors, such as the mass matrix, inertial

tensor etc., while dynamics problems require the solution to the EOMs governed by

the balance of external and inertial loads. Dynamic analysis may further include

forward and inverse dynamic problems. The forward dynamic problem (dynamic

simulation) focuses on the resultant motion of the system subject to the applied

loads and given initial conditions, and implies the solution of a system of differ-

ential EOMs, which are repeatedly numerically integrated at sequential time steps

starting from the initial conditions. Efficient methods to formulate the EOMs of

the system are needed to decrease the burden of these numerical calculations. The

inverse dynamic problem calculates the internal loads applied at the joints between

rigid bodies, given the velocities and accelerations, as well as known external loads

resulting from the forward dynamics solution.

Many books summarize conventional analytical techniques for multibody dy-

namics and the generalized formulations of EOMs (e.g. [35, 37, 38]). The NE equa-

tions are usually established by separating the free-body diagrams of each rigid body

in the system. A key advantage of the NE method is that the effect of a newly

added body on the EOMs can be conveniently represented by a recursive formula-

tion procedure. A key disadvantage is that the internal forcing at each joint must be

considered to solve the EOMs of the system at every time step, which may not be ef-

ficient if only a few internal forces are needed. The EL method avoids the calculation
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of any internal forcing that does not perform work. However, the method requires

derivation of partial derivatives of energy function with respect to generalized DOF-

s, which can be laborious. Kane’s method combines the advantages of previous two

methods and enables the user to formulate the EOMs through application of virtual

power theory, which avoids the calculation of internal forcing and the differentiation

of energy function, but still requires laborious rederivation of the EOMs when a new

body with additional DOFs is added to the system.

Essentially all methods for obtaining the EOMs are equivalent, but the appli-

cation scope may differ, depending on specific applications [39]. Mason [40] applies

various NE algorithms to systematically solve dynamics of robots. Garrad [41–44]

uses EL method to investigate the dynamics of bottom-fixed wind turbine models

with different DOFs. Kane’s method is employed in the well-recognized wind turbine

dynamics aero-elastic simulator, the NREL FAST [45, 46]. Hansena [47] combines

the Kane’s method with modal shape function to reduce the DOFs of the EOMs.

C. Main Contributions

A new rigid-body dynamic methodology is developed to complement various classical

analytical methods for the establishment of the EOMs and is applied to compliant

floating wind turbine designs with truncated spar floaters, which are presented to

reduce the cost of the entire system. Euler angles are introduced to describe the

large-amplitude rotation of this compliant design. A time-domain simulation tool is

developed based on the new method to investigate the dynamics of such multibody

wind turbine system. As shown in Fig. 2, the new dynamic simulator is formed by
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interfacing the structural dynamics method with the calculation of various nonlinear

external loads, including aerodynamics, hydrodynamics and mooring dynamics. The

new method for derivation of the EOMs of the multibody system forms the compu-

tational core of the simulation tool.

Structure Dynamics

Aerodynmics Hydrodynamics

Mooring Dynamics

(EOMs)

Fig. 2. Fully coupled simulation of compliant floating wind turbines

The multibody dynamics problem is solved by applying the conservation of mo-

mentum to the compliant floating wind turbine system. The first development and

application is for a 2-body wind turbine model. Two sets of Euler’s equations of

motion resulting from the conservation of angular momentum are applied to each

body of the 2-body model composed of the tower and topside facilities. Two sets

of 3-1-3 sequenced Euler angles are chosen to dramatically simplify the equations.

Further, the two sets of equations are mathematically connected and solved using

constraint relations between two sets of Euler angles. These relations result from
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the connections between bodies, which decrease the DOFs of the system and enable

simulation of the 2-body wind turbine model using only one set of dynamic equations

in Euler space.

The conservation of both linear and angular momentum is then applied to the

entire multibody system to directly formulate the EOMs of the compliant floating

wind turbine. The rotation of the tower is described by 1-2-3 sequenced Euler angles,

which is consistent with conventional pitch-roll-yaw of floating structures in the case

of small-amplitude motion. Only six equations are needed to describe the global

motion of the floating wind turbine system, because the system is made of known

relative mechanical motions among contiguous bodies. The six equations consist of

three translational equations for the position of the center of mass (CM) of the sys-

tem and another three rotational equations for the large-amplitude rotation of the

tower. Arbitrary locations of the CM of each body, combined with relative motion

among bodies generally change the CM of a multibody system. Modern turbines are

generally configured with the CM of the nacelle downwind of the centerline of the

tower. Subsequently, the CM of the floating wind turbine is not constrained to any-

body within the system as the nacelle yaws relative to the tower, but depends on the

varying position of the CM of each body within the system. The theoretical develop-

ments presented here enable application of the method including this realistic aspect

of the configuration. A key point of the formulation of the rotational equations is

to calculate the angular momentum of each rigid body and sum them in a unified

translating-rotating coordinate system to obtain the total angular momentum of the

entire system, the derivative of which is equal to the sum of externally applied mo-
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ments. Meanwhile, formulating the EOMs about the CM of the system decouples the

inertial loads in the translational and rotational equations, which facilitates efficient

numerical integration of the EOMs.

A floating wind turbine system is typically subject to wind forcing, wave forcing

and mooring forcing, each of which is coupled with the dynamic response of the

structure. In the case of large-amplitude motion, this coupling is highly nonlinear

and should not be ignored. The introduction of Euler angles enables more accurate

calculation of the position of the floater. This position is combined with the relative

motions among bodies to obtain the accurate position of each body at each time step.

A system of transformation matrices that cascade between the various coordinate

systems are applied to compute this motion, which enables preservation of the full

nonlinear coupling between external excitation and large-amplitude motion of the

wind turbine system.

The new multibody dynamic formulation methodology has application beyond

derivation of the EOMs of floating wind turbines. The method is generalized for

application to any N -body system. The theoretical derivations for both forward and

inverse dynamics are systematized using standardized notations. The generalized

formulation procedure is named the momentum cloud method (MCM) and it can

be applied to establish the EOMs using standard vector and matrix calculations.

The resulting EOMs are not coupled between translation and rotation beyond the

first-order and so facilitate numerical integration. A key advantage over conventional

energy methods is that the MCM avoids tedious rederivation of the EOMs if new rigid

bodies are added to the system. In the MCM, the momentum associated with any
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newly added body is already included in the derivation and can be added directly

to the existing expressions of momentum for the overall system. The systematic

formulation of the MCM is based on a serial mechanical N -body system connected by

revolute joints with prescribed relative rotation, and is then expanded for application

to multibody systems with more complicated forms and more complicated joints, such

as open-chain systems with branches, closed-chain systems and cylindrical joints with

both unknown translation and rotation between contiguous bodies.

D. Organization of Dissertation

The organization of this dissertation is based on continuous improvement and re-

finement of conservation of momentum with application to compliant floating wind

turbine models.

In Chapter 2, a 2-body model composed of the tower and topsides consisting

of the nacelle and rotor is applied for the dynamics investigation of the compliant

floating wind turbine. Only rotational motion is to be investigated, so the CM of

the system can be prescribed to be fixed in the space. The conservation of angular

momentum is applied to two bodies respectively to establish the EOMs. The global

motions of the tower and topsides described by Euler angles are shown. The effects of

the gyroscopic moments are quantified in this work and found to introduce significant

internal loads.

In Chapter 3, both the translation and rotation of a 2-body model are considered.

The CM of the system is moving in the space but constrained to the tower axis. The

conservation of both linear and angular momentum is applied to the system directly
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to establish six translational and rotational EOMs. The resulting simulation tool is

then applied to a family of compliant floating wind turbines with different truncated

spar lengths to investigate the feasibility of compliant designs through statistical

analysis of the simulation results.

In Chapter 4, the method is extended to develop the EOMs of a 3-body model

composed of the tower, nacelle and rotor. Unlike Chapter 3, the CM of the system

is no longer constrained to the tower axis, but moves with any nacelle yaw. The

improvement to the formulation enables consideration of the effect of the uncon-

strained CM of the system in the derivation of both translational and rotational

EOMs. Simulation results are compared to that from Chapter 3 to quantify this

effect.

In Chapter 5, the conservation of momentum is applied to a serial N -body sys-

tem to generalize the derivation of the EOMs and form the momentum cloud method

(MCM). The expansion of the MCM for general N -body systems with more compli-

cated forms and connection joints is also investigated. An open-chain system with

branches is presented as a 6-body wind turbine model composed of tower, nacelle,

hub and three blades. This 6-body model is used to demonstrate the simulation of

global motion and computation of internal loads.

Finally, conclusions and recommendations for future work are presented in Chap-

ter 6.
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CHAPTER II

EULER DYNAMIC EQUATIONS FOR 2-BODY MODEL

A. Overview

The compliant design with truncated spar cylinder is proposed to support the floating

offshore wind turbine in deep water, where environmental forcing could subject the

rotor to meaningful angular displacements in both precession and nutation, offering

design challenges beyond conventional bottom-founded structures. The tower and

rotor-nacelle-assembly (RNA) are considered as two rotational bodies in the space,

for which two sets of 3-1-3 sequenced Euler angles are defined to describe the large-

amplitude rotations and investigate the gyroscopic moments generated by the RNA

on the tower. Two systems of Euler dynamic equations of motion are established

and solved through the relation of two sets of Euler angles. Transformations between

the various coordinate systems are derived to enable solution for motion of the tower

with gyroscopic, environmental and restoring effects applied as external moments.

An example is presented to simulate time-histories of a floating tower with RNA. The

results are also verified by FAST, the well-recognized dynamic simulation software

of wind turbines.

B. Introduction and Background

Environmental, aesthetic and political pressures continue to push for siting offshore

wind turbines beyond sight of land, where waters tend to be deeper, and use of

floating structures is likely to be considered. Design of a floating wind turbine
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support structure capable of maintaining a near-vertical tower requires buoyancy far

exceeding the weight of the equipment being supported. Savings could potentially

be realized by reducing hull size, which would allow more compliance with the wind

thrust force in the pitch direction.

Design of these increasingly compliant floating towers will make computation of

structural dynamics both more challenging and more important. A specific design

challenge associated with large-amplitude rotation is gyroscopic moments relevant

to inertial loading of topside facilities. Gyroscopic moments for conventional, stiff,

bottom-founded structures are primarily generated by mechanical precession of the

spin axis into the shifting winds, and so are limited by the maximum nacelle yaw

rate [9]. However, no such limit exists for gyroscopic moments of floating structures

because they result from both shifting winds and irregular motions of the tower.

H. Matsukuma et al. [48] analyzed the dynamic response of a 2 MW downwind

turbine mounted on a spar-type floating platform for pitch amplitudes up to around

10 degrees and concluded that the platform motions are considerably influenced by

gyro moments associated with rotor spin. Shim and Kim [49] also investigated rotor-

floater-tether coupled dynamic analysis of offshore floating wind turbines using an

integrated time-domain simulator and indicated that the dynamic coupling between

the rotating blades and the floater is significant and should be considered in the

design.

Reasonable quantification of gyroscopic effects of the compliant floating wind

turbine requires the establishment of the EOMs applicable to the large-amplitude

rotation. Conventional methods applicable to small-amplitude motion have been
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widely applied to dynamic analysis of offshore structures [50], including offshore wind

turbines [19]. A fully coupled version of the NREL FAST aero-elastic simulator [45]

is available to compute the dynamics of floating wind turbines. FAST is highly de-

veloped and well recognized, and includes the option of computing hydrodynamic

radiation-diffraction analysis package WAMIT [31]. Unfortunately, large-amplitude

motions exceed present capabilities of FAST: WAMIT relies on small-amplitude as-

sumptions. FAST solves the equations of motion using transformation matrices made

orthogonal by the Frobenius norm, which limits its applicability to platform rota-

tion of less than 20 deg [46]. Prior to this work, no purpose-specific time-domain

simulation tool existed for investigating the dynamics of compliant design.

Euler’s equations of motion, which are associated with Euler angles, are com-

monly used to analyze the large-amplitude rotation of rigid bodies. The EOMs are

actually derived from the conservation of angular momentum of one rigid body. Eu-

ler stated that “any two independent orthonormal coordinate frames can be related

by a sequence of rotations (not more than three) about coordinate axes, where no

two successive rotations may be about the same axis” [51]. The angles of these three

rotations are commonly defined as Euler angles, and the axes of rotation are desig-

nated as axes 1, 2, and 3 or x, y, and z. The order in which the axes of rotation

are taken is referred to as the Euler rotation sequence. There are a total of twelve

of these sequences [52]: 3-1-3 (z, x, z), 1-2-3 (x, y, z) and so on including all com-

binations with no two succeeding rotations about the same axis. Euler’s equations

of motion using various sequenced Euler angles have been applied by researchers to

investigate large-angle rotations. To mention a few, Guran [53] and Amer [54] used
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the 3-1-3 sequenced Euler angles to analyze the rotational motion of a gyrostat about

a fixed point. The 3-1-2 sequenced Euler angles are applied by Longuski [55] to in-

vestigate the attitude motion of a self-excited rigid body. The application of Euler

angles is usually limited by singularity, or “gimbal lock”. Any set of Euler angles

where the second rotation makes the first and third rotational axes align causes a

singularity [56]. In this case, the first and third rotations degenerate into a single

rotation and the angular derivatives, and the EOMs become infinite. This singularity

is commonly avoided by transferring the Euler angles to quaternion [57].

In this Chapter, Euler’s equations of motion are applied to investigate rotational

dynamics of compliant floating wind turbines because the gyroscopic effects highly

depend on the rotational inertia of the RNA. A 2-body wind turbine model including

the tower and RNA is used, each of which is considered as a rotational body in

space and described by a set of Euler’s equations of motion. The RNA represents

the combination of spinning and non-spinning parts within the topside facilities, in

which the latter is treated as a point-mass on the spin axis. The 3-1-3 sequenced

Euler angles are applied to describe the rotations of the tower and RNA, respectively.

This sequence is chosen because it enables separation of rotation of the rigid body

from rotation of the body-fixed coordinate system, which simplifies derivations of

the EOMs dramatically. A vertical tower position may introduce the singularity of

the 3-1-3 sequenced Euler angles, but the zero pitch angle of the compliant wind

turbine appears in a ratio between very small numbers in the procedure of numerical

integration such that the singularity problems are avoided [53]. The number of

degrees of freedom is further reduced by using the geometry of the physical connection



25

between two bodies. The new development enables simulation of the 2-body tower-

RNA system using only one set of dynamic equations in Euler space, which enhances

numerical efficiency. The effectiveness of the new theory is shown in an example by

solving the EOMs of the compliant floating wind turbine subject to both irregular

environmental forcing and gyro moments.

C. Theory

The 3-1-3 sequenced Euler angles are introduced in Section 1. In Section 2, the

constraint equations, i.e. the relation between two sets of Euler angles of the tower

and RNA, are derived to decrease the number of unknown rotational degrees of

freedom. The Euler dynamic equations of the tower are established in Section 3.

The external moments applied on the tower are calculated in the following sections:

the external moments generated by the rotation of RNA are derived using the Euler

dynamic equations of the RNA in Section 4; the effects of wind and wave forcing on

the tower rotation are investigated in Sections 5 and 6.
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1. Coordinate Systems and Euler Angles

η

θ

1θ
Y

z
Z

C
A

θ

ψ
B

x

2

θ2

θ
O

X

y

yp

1

B

2

θ2

p

θ

C

X

φ
α y

YO

x

p

Top View:

Fig. 3. Coordinate systems and two sets of Euler angles

In this methodology, the system is considered as two rigid bodies: the tower

is the complete structural assembly, including the buoyant hull, that supports the

RNA; the RNA is the complete assembly that can mechanically yaw relative to the

tower. Coordinate systems (X, Y, Z) and (x, y, z) both originate at the center of mass

of the moving tower (Fig. 3). The (X, Y, Z) system is non-rotating, while (x, y, z) is

a rotating coordinate system. The z-axis defines the center of the moving tower; the
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directions of x and y are not fixed to the tower. Angular differences between these

coordinate systems define a set of independent Euler angles, (θ1, θ2, η). The angle

θ1 lies between the vertical Z, and the tower centerline, z, with positive rotations

right-handed about the positive x-axis. Angle θ2 lies between Y and yp with positive

right-handed along positive Z-axis, and corresponds to the tower revolving around Z;

yp is the projection of y on the horizontal X-Y plane, and opposite to the projection

of z onto X-Y . The first two Euler angles, θ1 and θ2, fully define the location of

the (x, y, z) coordinate system. A third Euler angle, η, describes rotation about the

moving z-axis, with positive rotations being right-handed about positive z.

For large angular displacements in space, the order in which the angles of rota-

tion are applied is important; there are twelve possible Euler angles sequences. Here,

3-1-3 sequenced angles are used to describe the position of the rotating tower and

of the spinning RNA (e.g., [58]). For the tower, a 3-1-3 sequence indicates the Eu-

ler sequence is z-x-z, or in detail: 1) first, rotate the upright tower about the z-axis

(then coincident with Z) through an angle θ2 measured in the horizontal plane XOY ;

2) next, rotate the resultant tower about the resulting x-axis through an angle θ1

measured in the vertical plane ZOyp, and 3) finally, rotate the tower about the new

z-axis (not coincident with Z for non-zero θ1) through the third Euler angle, η. The

Euler equations of motion of the tower and RNA are established, respectively, and

solved in terms of θ2, θ1, and η. This sequence enables considerable simplification in

the derivation of Euler’s kinematic equations, which in turn results in dramatically

simpler equations of motion, and improved numerical efficiency.
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Additional axes and angles are necessary to describe the position of the RNA.

The translating coordinate system (Xn, Yn, Zn) and the rotating system (A,B,C)

are used to form a second set of Euler angles, which is associated with the rotating

machinery at the top of the tower. The origin of the disk-based (A,B,C) coordinate

system is fixed at the center of mass of the RNA, here assumed to be at the intersec-

tion of the spin axis (B) and the yaw axis (z). The A-axis is generally not exactly

parallel to z (Eqn. (2.5)). The angle α is the difference between the yp-axis and Bp,

the projection of the spin axis onto the horizontal: α = ϕ− θ2, with positive in the

same direction as ϕ. A nutation angle of θ = −π/2 indicates a horizontal B-axis.
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The (A,B,C) coordinate system of the RNA is also positioned using the 3-1-3

sequence Euler angles ϕ-θ-ψ, as shown in Fig. 4. The (Xn, Yn, Zn) coordinate system

has translation relative to the earth and shares the same origin with (A,B,C). The

angular transformation from (Xn, Yn, Zn) to (A,B,C) is the order of: 1) rotate the

disk coordinate system (A,B,C) about the zn-axis by an angle ϕ in the Xn-Yn plane;

2) next rotate about the resulting C-axis by an angle θ, and then finally 3) rotate

about the resulting B-axis by an angle ψ. In this 3-1-3 sequence, precession and

spin are applied along the same moving axis, since the initial B-axis coincides with

the zn-axis. The angular velocity components of precession, nutation and spin are

Euler angular velocities ϕ̇, θ̇ and ψ̇, each with positive as a right-hand rotation about

its rotation axis. Similar to the (x, y, z) system, the (A,B,C) system is not body-

fixed. (A1, B, C1) is an exact body-fixed coordinate system on the RNA and has

spinning motion relative to (A,B,C). This definition of the (A,B,C) coordinate

system greatly simplifies derivation of Euler kinematics equations of the RNA and

computation of gyroscopic moments.

2. Connecting the Two Sets of Euler Angles

Motion of the tower is described by Euler rotations θ2, θ1, and η, while RNA rotations

are described by ϕ, θ, and ψ. These two sets of angles describe bodies that are

physically connected in space, so the number of degrees of freedom can be reduced

by expressing the motion of the RNA in terms of θ1, θ2, and η using vector projection.

Fig. 5 shows both (A,B,C) and (x, y, z) coordinate systems, which are relocated to

the origin, O, for convenience.
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The nutation angular velocity and acceleration are obtained by projecting θ̇1, θ̇2 and

η̇ onto the C-axis and differentiating:

θ̇ = θ̇1 cos∠COx+ θ̇2 cos∠COZ + (η̇ + ωyaw) cos∠COz (2.1)

= θ̇1 cosα− (η̇ + ωyaw) sin θ1 sinα (2.2)

θ̈ = θ̈1 cosα− θ̇1α̇ sinα− (η̈ + ω̇yaw) sin θ1 sinα

−(η̇ + ωyaw)(θ̇1 cos θ1 sinα+ α̇ sin θ1 cosα) (2.3)

where ωyaw is yaw rate, angular motion of the RNA relative to the tower along

z-axis, and ω̇yaw is its time derivative. The nutation angle, θ, has been obtained
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geometrically in separate work by the authors [59], which is more accurate than

numerical integration of θ̇ in Eqn. (2.2), and decreases the required number of degrees

of freedom:

θ = −π
2
+ λ (2.4)

= −π
2
+ arctan(tan θ1 cos(ϕ− θ2)) (2.5)

where λ is the angle between the B- and Bp-axes.

The derivation of the precession angular velocity, ϕ̇, is based on the definition

of yaw rate:

ωyaw = ωz,RNA − ωz,tower (2.6)

where ωz,RNA is the absolute angular velocity of the RNA about the z-axis and can

be obtained by projection of Euler angular velocities ϕ̇, θ̇ and ψ̇ onto the z-axis;

ωz,tower is the absolute angular velocity of the tower about the z-axis and can be

obtained by the projection of Euler angular velocities θ̇1, θ̇2 and η̇ onto the z-axis:

ωz,tower = θ̇1 cos∠xOz + θ̇2 cos∠ZOz + η̇ (2.7)

ωz,RNA = ϕ̇ cos∠ZOz + θ̇ cos∠COz + ψ̇ cos∠BOz (2.8)

Considering Fig. 5, cos∠ZOz = cos θ1 and cos∠xOz = cos∠BOz = cos(π/2). The

vertical plane zOyp is perpendicular to the horizontal plane COyp, so cos∠COz can

be shown to be:

cos∠COz = cos∠zOyp cos∠COyp

= cos(
π

2
+ θ1) cos(

π

2
− α)
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= − sin θ1 sinα (2.9)

Substituting Eqns. (2.7) and (2.8) into Eqn. (2.6) yields the precession velocity:

ϕ̇ = (cos2θ1 + sin2θ1cos
2α) sec θ1(ωyaw + η̇) + (2.10)

θ̇2 + θ̇1 tan θ1 sinα cosα (2.11)

Eqn. (2.11) can alternatively be derived by differentiating Eqn. (2.5) and equat-

ing the resulting θ̇ with Eqn. (2.2). Setting ωyaw = 0 in Eqn. (2.11) shows that

precession velocity, ϕ̇, is a function of overall tower motions; further assuming rela-

tively small θ1, Eqn. (2.11) can be reduced to ϕ̇ ≈ θ̇2+ η̇ cos θ1, which helps to clarify

the relationship between θ2 and η. Differentiating Eqn. (2.11) yields the precession

acceleration:

ϕ̈ = (ωyaw + η̇)(Ḋ sec θ1 +D sec θ1 tan θ1θ̇1) +

(ω̇yaw + η̈)D sec θ1 + θ̈2 + θ̇1α̇ cos 2α tan θ1 +

1

2
(θ̈1 tan θ1 sin 2α + θ̇21sec

2θ1 sin 2α) (2.12)

in which D = cos2θ1 + sin2θ1cos
2α and Ḋ = −θ̇1sin2α sin 2θ1 − α̇sin2θ1 sin 2α

3. Equations of Motion of the Tower

Beginning at first principles, the sum of the moments resulting from externally ap-

plied forces about the center of mass of a body in a translating-rotating system,

(x, y, z), equals the change of the momentum within the coordinate system plus that
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associated with the movement of the coordinate system (e.g. [58]):

∑
M⃗ =

˙⃗
HO = (

˙⃗
HO)xyz + Ω⃗× H⃗O (2.13)

Vector Ω⃗ describes the angular velocity of (x, y, z) with respect to (X, Y, Z). The x-,

y- and z-axes are chosen as the principal axes of the body, so the products of inertia

in H⃗O disappear, and locating the coordinate system at the center of mass decouples

the rotational and translational degrees of freedom. Following e.g. Hibbeler [58],

Eqn. (2.13) expands to three scalar equations:

∑
Mx = Ixω̇x − IyωyΩz + IzωzΩy (2.14)∑
My = Iyω̇y − IzωzΩx + IxωxΩz (2.15)∑
Mz = Izω̇z − IxωxΩy + IyωyΩx (2.16)

where ω⃗ describes the rotation of the tower in space. The more conventional form of

Eqns (2.14)–(2.16) has ω⃗ = Ω⃗, such that the coordinate system is fixed to the body.

The difference between motion of the (x, y, z) coordinate system, Ω⃗, and that of the

body, ω⃗, is the Euler angle η: ω⃗ = Ω⃗+ η̇k⃗. The associated Euler kinematic equations

are:

ω⃗ = ωx⃗i+ ωy j⃗ + ωzk⃗ (2.17)

= θ̇1⃗i+ (θ̇2 sin θ1)⃗j + (θ̇2 cos θ1 + η̇)k⃗ (2.18)

Continuing to follow e.g. [58], component-wise expressions for ω⃗, ˙⃗ω and Ω⃗ are substi-

tuted into a component-wise expansion of Eqn. (2.13). Principal moments of inertia

of the tower, Ix, Iy and Iz, are taken about the x-, y- and z-axes. The tower is
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symmetrical such that Ix = Iy = I. The resulting Euler dynamic equations are:

∑
Mx = I(θ̈1 − θ̇22 sin θ1 cos θ1) + Iz θ̇2 sin θ1(θ̇2 cos θ1 + η̇) (2.19)∑
My = I(θ̈2 sin θ1 + 2θ̇1θ̇2 cos θ1)− Iz θ̇1(θ̇2 cos θ1 + η̇) (2.20)∑
Mz = Iz(η̈ + θ̈2 cos θ1 − θ̇1θ̇2 sin θ1) (2.21)

The moments on the left hand side of Eqns. (2.19)–(2.21) are externally applied

about the center of mass of the tower.

∑
Mx = MRNAx +MFTx +Mwavex −Mmooringx −Mhydrostatic (2.22)∑
My = MRNAy +MFTy +Mwavey −Mmooringy (2.23)∑
Mz = MRNAz +MFTz +Mwavez −Mmooringz (2.24)

where M⃗RNA represents the total moment applied by the RNA on the top of the

tower; M⃗FT is the total moment resulting from the RNA forces, those forces applied

to the top of the tower by the RNA: M⃗FT = r⃗× F⃗T . Vector r⃗ is from the mass center

of the tower to the RNA; the RNA forces, F⃗T = F⃗b −mRa⃗R, where mR is the mass

of the RNA, and a⃗R is the linear acceleration of the RNA caused by rotation of the

tower. This acceleration, a⃗R, is the derivative of the velocity at the top of the tower;

F⃗b is the thrust force on the blade area. M⃗wave is the hydrodynamic forcing. The

mooring restoring moment, M⃗mooring, can be calculated as a sum of cross-products,

with each mooring line represented by a cross-product between the radius vector

from the center of mass of the tower to the fairlead and the force vector. Hydrostatic

restoring moment, M⃗hydrostatic, is generally zero in the y- and z-directions.
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4. Moments Caused by Rotational Motion of the RNA

Rotational motions of the RNA are treated the same way as the rotational equations

of motion of the tower in Section 3: as a single rigid body using the 3-1-3 Euler se-

quence, with the body rotating separately from the rotating coordinate system. The

rotational motion of the RNA differs from that of the coordinate system (A,B,C)

only by the spinning rate along the B-axis:

ω⃗ = ωA⃗iABC + ωB j⃗ABC + ωC k⃗ABC (2.25)

= (ϕ̇ sin θ)⃗iABC + (ϕ̇ cos θ + ψ̇)⃗jABC + θ̇k⃗ABC (2.26)

where i⃗ABC , j⃗ABC and k⃗ABC are unit vectors along the A-, B- and C-axes.

Following a derivation similar to Section 3, the resulting Euler dynamic equa-

tions can be applied to compute the RNA moments applied by the tower on the

RNA:

MA = IA(ϕ̈ sin θ + 2θ̇ϕ̇ cos θ)− IB θ̇(ψ̇ + ϕ̇ cos θ) (2.27)

MB = IB(ϕ̈ cos θ − θ̇ϕ̇ sin θ)−MwindB (2.28)

MC = IC(θ̈ − ϕ̇2 sin θ cos θ) + IBϕ̇ sin θ(ψ̇ + ϕ̇ cos θ) (2.29)

The moments of inertia are those of a rigid body representing the RNA; the parts of

the RNA not rotating at ψ̇ are assumed to be a point-mass on the B-axis. Moments

IA and IC are about the A- and C-axes, and IB can realistically be taken as the

moment of inertia of the blades about B. Contributions to MA and MC due to
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asymmetrical external forcing are neglected, such as asymmetric wind loading. The

non-zero MwindB is the rotor torque used to generate electricity. The spin velocity is

assumed constant, ψ̈ = 0, in accordance with typical wind turbine operations.

Any terms in Eqns. (2.27)-(2.29) including spin, ψ̇, which disappear when the

rotor is parked, are the gyroscopic moments:

MgyroA = −IB θ̇ψ̇ (2.30)

MgyroB = 0 (2.31)

MgyroC = IBϕ̇ sin θψ̇ (2.32)

The gyro moments of bottom-fixed wind turbine can be estimated as those corre-

sponding to a static, upright tower. Considering only the gyroscopic moments and

substituting θ = −π
2
and θ̇ = 0 into Eqns. (2.27)-(2.29) yields precisely the results

given by e.g. Henderson [9] when θ1 motion is neglected. On large bottom-founded

turbines, gyroscopic moments are limited by active yaw control such that the pre-

cession angular velocity remains small. On compliant floating turbines, however,

significant gyroscopic moments can be developed about the A- and C-axes. The

A-axis lies nearly along the axis of the tower, with MgyroA moments resulting from

nutation of the RNA, as noted by Jonkman [46].

The RNA moments must be transformed from the (A,B,C) coordinate system

into the (x, y, z) system for application in the equations of motion of the tower:
MRNAx

MRNAy

MRNAz

 = T


−MC

−MA

−MB

 (2.33)
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The transformation matrix T is obtained by first rotating (x, y, z) back to the

(X, Y, Z) system and then rotating from (X,Y, Z) to the final (C,A,B) rotation-

al system (Fig. 5). The (X,Y, Z) and (x, y, z) systems translate together with the

tower, so translation does not influence the transformation matrix. The transforma-

tion matrix from the (C,A,B) to (x, y, z) results from the product of a sequence of

element rotation matrixes:

T = Tx1(−θ1)Tx3(−θ2)Tx3(ϕ)Tx1(θ) (2.34)

where Tx1(−θ1)Tx3(−θ2) indicates rotation from (x, y, z) back to initial (X, Y, Z), in

which both the ordering of rotation and the directions of the rotational angles must

be reversed. Element rotation matrices Tx1 and Tx3 are defined in Section 6.

5. Transformation of Moments Resulting from RNA Forces

The environmental and inertial forcing in Eqns. (2.22)-(2.24) can be computed con-

sidering both the wind and waves acting on the structure, and the relative motion

of the tower through the air and water. The linear velocity of the RNA through the

air is computed from the angular velocities:

v⃗θ1 =
˙⃗
θ1 × r⃗s = θ̇1l (2.35)

v⃗θ2 =
˙⃗
θ2 × r⃗s = θ̇2l sin θ1 (2.36)

where v⃗θ1 and v⃗θ2 are linear-velocity components at a location along the z-axis (here,

the RNA); angular velocity v⃗θ1 is along the negative direction of the y-axis and v⃗θ2

is along the positive direction of the x-axis. In Fig. 6, vector r⃗s is the radius from
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the center of mass of the system, Os, to that location, and l is the magnitude of r⃗s.

Direction vectors (iI , jI , kI) and (i, j, k) are along (X, Y, Z) and (x, y, z) respectively.

Linear acceleration of the RNA is needed to calculate the RNA forces, FT . This

acceleration, a⃗R, is computed by taking the derivative of the vector sum of v⃗θ1 and

v⃗θ2 and then transforming into the (x, y, z) coordinate system.

r

θ

θ j

k

θ

f n

2
1

Os

F

1

i

ze

i
I

j
I

k I

T

s

Fig. 6. Coordinate system for derivation of inertial and environmental forcing

An expression for the velocity of the wind relative to the RNA, Vrb, along the negative

B-axis, can be developed from Eqns. (2.35) and (2.36) and direction cosines, which
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can be derived geometrically or through use of transformation matrices:

V⃗rb = v⃗w + v⃗θ1(− cos∠BOy) + v⃗θ2 cos∠BOx (2.37)

Vrb = −vw + θ̇1l(cos θ1 sin θ cosα− cos θ sin θ1) + θ̇2l sin θ1 sin θ sinα (2.38)

where vw = |v⃗w| and is along the negative B-axis. The resulting relative velocity can

be used to compute the wind forces acting on the RNA in the (X, Y, Z) coordinate

system, after which they must be transformed into the (x, y, z) system for application

in the equations of motion. Moments resulting from RNA forces include both wind

and inertial loads.

M⃗FT = r⃗ × F⃗T = r⃗ × (F⃗b −mRa⃗R) = M⃗wind − r⃗ ×mRa⃗R (2.39)

where r⃗ originates at the center of mass of the tower. The wind moments result from

decomposing the thrust force, F⃗b, onto the (x, y, z) system, and calculating moments

as a cross product expressed as a cofactor expansion:

M⃗wind = r⃗ × F⃗b =


i⃗ j⃗ k⃗

0 0 l

−Fb cos∠BOx −Fb cos∠BOy −Fb cos∠BOz

 (2.40)

6. Transformations for Wave Forcing

Similar to the calculation of wind forcing, wave forces are computed in the (X,Y, Z)

coordinate system, decomposed into the (x, y, z) system, and used to compute the

moments. Waves are assumed to progress down the negative Y -axis. The wave

kinematic velocity relative to the moving tower is V⃗rt. Determination of V⃗rt requires
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expression of velocity vectors for both the tower and the wave kinematics normal to

the axis of the tower in the (X, Y, Z) coordinate system. In general, 3-D rotation

matrices of a regular right-handed (x1, x2, x3) coordinate system can be expressed

in a general form e.g. [52]. Here, the location of the centerline of the tower is fully

defined by (θ1, θ2), with the final rotation about the z-axis being irrelevant, so the

transformation matrix from (x, y, z) to (X, Y, Z) can be computed from the general

form as in [59].

Tx3(θ2)Tx1(θ1) =


cos∠XOx cos∠XOy cos∠XOz

cos∠Y Ox cos∠Y Oy cos∠Y Oz

cos∠ZOx cos∠ZOy cos∠ZOz



TZ(θ2)Tx(θ1) =


cos θ2 − cos θ1 sin θ2 sin θ1 sin θ2

sin θ2 cos θ1 cos θ2 − cos θ2 sin θ1

0 sin θ1 cos θ1

 (2.41)

The instantaneous unit vector along the negative z-axis can be deduced directly from

Fig. 6:

e⃗z = − cos∠XOzi⃗I − cos∠Y Ozj⃗I − cos∠ZOzk⃗I (2.42)

The direction cosines appear as matrix elements in Equation 2.41. The unit vector

e⃗z can then be used to find the relative normal velocity:

V⃗rt = e⃗z × (V⃗r × e⃗z) (2.43)

where V⃗r is the relative velocity of the wave to the submerged tower: V⃗r = V⃗ − V⃗t,

in which V⃗ = (0, uY , uZ) is the wave kinematic velocity in the Y OZ plane.
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The transformation matrix, Eqn. (2.41), is again used to compute the structural

velocity, V⃗t. Linear velocities v⃗θ1 and v⃗θ2 , are found as in Eqns. (2.35) and (2.36),

with r⃗s originating at the center of mass of the system and now along the negative

direction of the z-axis of the submerged tower, such that linear velocity v⃗θ1 is along

the positive direction of the y-axis and v⃗θ2 is along the negative direction of the

x-axis. Decomposing into the (X,Y, Z) system:

V⃗t = v⃗θ1,XY Z + v⃗θ2,XY Z (2.44)

= (v⃗θ1 cos∠XOy − v⃗θ2 cos∠XOx)i⃗I

+(v⃗θ1 cos∠Y Oy − v⃗θ2 cos∠Y Ox)j⃗I

+(v⃗θ1 cos∠ZOy − v⃗θ2 cos∠ZOx)k⃗I (2.45)

It may also be useful to know the absolute kinematic wave-particle acceleration

in absence of tower motion,
˙⃗
Vn. Similar to Eqn. (2.43), the normal component of

wave acceleration,
˙⃗
Vn, can be expressed as:

˙⃗
Vn = e⃗z × (

˙⃗
V × e⃗z) (2.46)

where
˙⃗
V = (0, u̇Y , u̇Z) is the wave acceleration vector in the Y OZ plane.

Wave moments in the (x, y, z) coordinate system necessary for application in

the Euler equations of motion can be computed using the relative velocities and

accelerations resulting from Eqns. (2.43) and (2.46) at finite slices of the cylinder,

then transforming the resulting forces into the (x, y, z) system (Eqn. (2.41)) and
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numerically integrating over the submerged length of the tower:

f⃗n,xyz = [TZ(θ2)Tx(θ1)]
−1 f⃗n (2.47)

M⃗wave =

∫
r

(r⃗ × f⃗n,xyz)dr (2.48)

M⃗wave = Mwavex⃗i+Mwavey j⃗ +Mwavezk⃗ (2.49)

where Mwavex, Mwavey and Mwavez are three components of the moments of wave

forces in the (x, y, z) coordinate system. In practice, the integral in Eqn. (2.48) is

computed as a finite sum. Use of relative velocities in computation of wave forcing

introduces damping in the θ1- and θ2-directions.

D. Example

The motions and RNA loads of a floating wind turbine are simulated using this

implementation which applies the existing ODE45 solver in MATLAB. The example

is based on the OC3-Hywind model [60], with the hull modified to allow large-

amplitude motion. The RNA is the same as that of OC3 Hywind: the moments of

inertia of the RNA about the (A,B,C) coordinate system are IA = 2.35×107 kg·m2,

IB = 4.37×107 kg·m2, IC = 2.54×107 kg·m2; the rotor speed is 12.1 rpm.

Modifications to the standard Hywind model were made to enable large am-

plitude motion and to simplify the simulation. To increase rotational motions, the

submerged length of the spar hull is reduced from 120 m to 84.4 m. The tower

between the hull and RNA is treated as a rigid body and its moments of inertia are

combined with those of the hull: 3.57×109 kg·m2 and 9.28×107kg·m2 in the tilt (roll

or pitch) and yaw, respectively. The four taught-leg mooring lines are each assumed



43

to be a straight axial spring with stiffness EA = 3.84 ×108 N and length 409 m in

a 320 m water depth location.

The first example case presented is free-vibration in absence of environmental

loading; the second is forced-vibration with environmental loading computed using

irregular winds and waves. Irregular wind velocities are simulated by IECwind [61]

and Turbsim [62]. The mean wind velocity at hub height is 18.2 m/s. The thrust

force due to wind on the blade area is computed as a function of thrust coefficient,

CT , times relative velocity squared. Here, the value of CT depends solely on relative

wind velocity and is taken directly from Nielsen [63]. The thrust coefficient generally

decreases with increasing relative wind speed and is assumed to change instanta-

neously. The steady moment along the B-axis that generates electricity, MwindB, is

estimated by dividing the rated efficiency of turbine by ψ̇ (Eqn. (2.28)). Wave forces

are computed using the Morison equation and a first-order time-domain represen-

tation of irregular waves is simulated directly from a JONSWAP spectrum with a

significant wave height of 5.0 m and peak period of 11.2 s using a uniform phase

distribution.

The thrust force for wind perpendicular to the swept area of the blades is ap-

proximately (e.g., [63]):

Fb =
1

2
CTρaAbV

2
rb (2.50)

where ρa is the density of air; Ab is the swept area of the blades; CT is the thrust

coefficient. The force is in the direction of Vrb, the velocity of the wind relative to

the RNA along the negative B-axis.

Wave loads are estimated using the well-known Morison equation in the (X,Y, Z)
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system (e.g., [64]):

f⃗n = Cmρ
π

4
D2 ˙⃗
Vn − Caρ

π

4
D2 ˙⃗Vt +

1

2
ρCdDV⃗rt|V⃗rt| (2.51)

where ρ is the density of sea water; D is the diameter of the tower; Cm = 2.0 is

the inertia coefficient; Ca = 1.0 is the added mass coefficient, and Cd = 0.6 is the

drag coefficient. All velocities, accelerations and forces are normal to the central

axis of the tower: f⃗n is the wave force per unit length of the tower (Fig. 6). The

kinematic acceleration normal to the axis of the tower is
˙⃗
Vn. The second acceleration

term, which includes the tower acceleration
˙⃗
Vt, is technically a force resulting from a

hydrodynamic pressure, but this term effectively has been moved to the inertial side

of the equation as the basis for calculation of added mass. Added mass is included in

the calculation of the center of mass and moment of inertia of the body, and so should

not be included here. The result is that the relative velocity, V⃗rt, is applied in the

Morison drag term, but the absolute acceleration, V⃗n, is applied in the acceleration

term. Damping in the z-direction can be added directly to the R.H.S. of Eqn. (2.24).

1. Verification for Small Angles

This case directly compares results from the large-angle theory presented here with

the small-angle theory applied in FAST. The observed undamped free-vibration re-

sults from initial conditions of a θ1 offset of 0.1 rad and zero θ2. The resulting motion

corresponds to an inverted pendulum moving in a single nearly-vertical plane; the

plane is not exactly vertical because Hywind has the center of mass of the RNA s-

lightly offset from the tower centerline. Representation of precisely the same physical
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system in both models is enabled by replacing the default restoring moment calcu-

lations in FAST with a user subroutine that was custom-developed to yield identical

hydrostatic and mooring stiffness, and by turning off the translational motion cal-

culations in FAST. Fig. 7 shows resulting time-histories for θ1, θ2 and η. The 3-1-3

Euler sequence does not admit negative values of θ1, so the tower passing through

vertical is consistent with π rad jumps in θ2; similar results are found by e.g. [53].

Direct comparison of Euler-angle results is impossible because FAST computes roll,

pitch and yaw about an earth fixed coordinate system. Simulation results can be

directly compared by projecting angular velocities onto the earth-fixed coordinate

system, as shown in Fig. 8 and Fig. 9. Results show excellent agreement for this

small-angle case.
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2. Yaw of the RNA

This case is used to investigate the behavior of the dynamic system subject to ir-

regular winds, waves and a large wind shift. The wind time-history is generated by

superimposing a time-history of a sudden 45 degree shift from IECwind [61] at a time

100 seconds into an irregular operating condition from Turbsim [62]. A typical yaw

control algorithm is assumed, which includes a 10-second lag before yaw activation

and a 10-second acceleration or deceleration period. Fig. 10 shows precession of the

RNA. In case of gust, precession angle is dominated by yaw of the RNA, which is

active from 110 seconds to about 260 seconds, when the precession angle of the RNA

changes from 0 rad to about 0.8 rad. Fig. 11 shows the gyro moments in the A-

and C-directions. For a conventional bottom-fixed turbine, MgyroA = 0 because the

spin axis remains horizontal and MgyroC is dominated by the mechanical precession

velocity (Eqns. 2.27–2.29 with θ = -π/2). For this compliant floating structure, how-

ever, the precession velocity is dominated by tower motions rather than yaw of the

RNA relative to the tower. Tower-motion induced gyro moments can be substantial.

Continuous operation of the yaw control mechanism to offset tower motions could

minimize these moments, but such control would require a wholly new yaw control

strategy.



48

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

Time (s)

A
ng

le
 (

ra
d)

 

 

φ

Fig. 10. Precession angle of the RNA

0 100 200 300 400 500
−5

0

5
x 10

6

M
om

en
ts

 (
N

.m
)

 

 

M
gyroA

0 100 200 300 400 500
−5

0

5
x 10

6

Time (s)

 

 
M

gyroC

Fig. 11. Gyro moments acting on the RNA



49

E. Conclusions

In this Chapter, a new method has been developed to apply Euler dynamic equations

in a 3-1-3 sequence to the motion of a simple 2-body compliant floating wind turbine.

The tower and RNA are considered as two rotational bodies in the space, for which

two sets of Euler angles are defined and used to develop two systems of Euler dynamic

equations of motion. The number of degrees of freedom is reduced by using the

geometric constraints of the physical joint between the tower and RNA to express

one set of Euler angles as a function of the other. Full dynamic coupling is preserved

through the loads on the interface between the two bodies (the RNA loads), which

include gyroscopic moments. The new theory is implemented as part of a time-

domain numerical simulation methodology, which retains the full nonlinear coupling

between external forcing and large-angle rotations of the tower. Motions and external

forcing are transformed at each time step between the non-rotating (X,Y, Z) and

rotating (x, y, z) using matrices developed in terms of Euler angles for the rigid

body. One example demonstrates that the new methodology yields substantially

identical results to the well-known FAST software for a small-angle free-vibration

case. Another example shows that there are two major components of gyroscopic

loading on a compliant floating structure: one due to precession velocity of the spin

axis and another due to nutation velocity, both of which can be substantial. Overall,

the new theory is found to be effective for computation of the very complex dynamic

behavior of these structures.
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CHAPTER III

CONSERVATION OF MOMENTUM FOR 2-BODY MODEL

A. Overview

In this Chapter, a new formulation of the nonlinear equations of motion (EOMs)

is derived by directly applying the theorem of conservation of angular momentum

and linear momentum (Newton’s second law) to the entire compliant floating wind

turbine system. In the 2-body model composed of the tower and RNA, the large-

amplitude rotation of the tower is described by the 1-2-3 sequence Euler angles,

which are consistent with conventional pitch-roll-yaw motions of offshore structures.

Other than six degrees of freedom (DOFs) of the tower, two additional DOFs of the

RNA relative to the tower, nacelle yaw and rotor spin, are prescribed by mechan-

ical control and are also included in the EOMs of the entire system. Results from

the EOMs are transformed among different coordinate systems for use in the com-

putation of hydrodynamics, aerodynamics and restoring forces, which preserves the

nonlinearity between external excitation and structural dynamics. The new method

is verified by critical comparison of simulation results with those of the popular wind

turbine dynamics software FAST. A new time-domain simulator based on this new

formulation is then applied to a family of compliant designs with different lengths of

truncated spar cylinders to investigate dynamic performance and power efficiency.
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B. Introduction and Background

Chapter 2 offers a simple and convenient simulation tool to investigate the dynamics

of a compliant floating wind turbine rotating about a fixed point. The conservation

of angular momentum (Euler dynamics equations) are applied to the tower and RNA,

respectively. The model is useful to quantify a phenomena specific to wind turbines:

internal loads due to gyroscopic moments. However, the 3-1-3 sequenced Euler angles

may not be an intuitive measure of global motion. Instead, the 1-2-3 sequenced

Euler angles are introduced in this Chapter to describe the large-angle rotations of

the compliant design. Non-repeated axis sequences are more consistent with the

conventional pitch, roll and yaw motions of offshore structures. For example, Mulk

and Falzarano [65] introduced 3-2-1 sequenced Euler angles to analyze the nonlinear

ship rolling motion. In addition to the sequence change, the work presented in

this Chapter improves the formulation of the EOMs in Chapter 2 by adding the

translation of the tower. The conservation of both linear and angular momentum are

applied to the floating wind turbine system directly, which combines the advantages

of conventional momentum and energy methods for multibody formulations.

As mentioned in Chapter 1, multibody system analysis can be used to simulate

a complex system made up of rigid bodies connected by mechanical joints. The

compliant floating wind turbine system is considered as a multibody system includ-

ing tower, rotor, nacelle and other moving parts, which are mechanically connected

by the yaw bearing, hub, etc. Thus, formulation of the EOMs of the floating wind

turbine system falls within the field of multibody dynamics. Several conventional

analytical methods exist. Both motions and internal loads are obtained simultane-
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ously in NE method, which include global motion and all internal loads at joints

(active forces from mechanical control and constraint forces). Thus, the NE method

is a comprehensive way to solve multibody dynamics, but may be inefficient in the

case that only global motion is concerned. EL method solves the multibody dynam-

ics from the perspective of energy and precludes internal loads in the derivation.

However, the differentiation of scalar energy functions (the Lagrangian) is laborious,

especially for a large multibody system. Kane’s method [66] combines the advan-

tages of both the NE and EL methods. Internal loads are eliminated through the

application of the virtual power theory to the entire system in that the work done

by all these loads is offset. The differentiation required to compute velocities and

accelerations can be obtained through the use of algorithms based on vector prod-

ucts. Unfortunately, rederivation is needed for any body newly added to the system.

Additionally, each equation includes the coupling of all DOFs due to the calculation

of virtual power.

The method presented in this Chapter combines the advantages of energy meth-

ods (EL, Kane) and momentum methods (NE) by applying the conservation of mo-

mentum to the floating wind turbine system directly. The calculation of unknown

internal loads can be avoided in the solution for global motion. Translational and

rotational EOMs are decoupled in terms of inertial forcing, which increases the effi-

ciency of numerical integration and simplifies the rederivation for newly added bod-

ies. The new method makes direct use of the known interactions between mechanical

components in the wind turbine, which are directly controlled or explicitly defined,

to derive the rotational equations of motion of the entire wind turbine system. The
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conventional Euler dynamic equations are normally applied to only one rigid body;

here, the known relationships between the rigid body components enable the appli-

cation of the theorem of conservation of angular momentum to the entire system.

Transformation matrixes are used to transfer the angular momentum of each rigid

body to a unified coordinate system to obtain the total angular momentum of the

entire system, the derivative of which is equal to the sum of external moments ap-

plied to the system. The resulting rotational EOMs are combined with translational

equations governed by conservation of linear momentum (Newton’s second law) of

the entire multi-body system to develop a system of six equations. A key advan-

tage of the new methodology is that the EOMs use fewer equations than previous

conventional methods because only three rotational DOFs of the base body (tower)

described by Euler angles and three translational DOFs need to be solved. Known

relative DOFs along the rigid-body chain (nacelle yaw and blade spin) do not require

additional EOMs. Mechanical systems with known geometric relationships between

components are common, especially in rotating machinery. Thus, the methodology

here is developed for floating wind turbines, but is broadly applicable to other types

of interconnected dynamic mechanical systems.

The nonlinearities of various external forces and moments due to their coupling

with structural motions are included in this work. Aerodynamics and hydrodynamics

are calculated including the motion of body through the fluid, and the instantaneous

position of the structure is accurately computed to incorporate nonlinearities of both

the mooring and hydrostatics. In the numerical simulation, the motions and external

excitation (including both external forces and moments) are transformed between
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various coordinate systems at each time step using matrices developed in terms of

Euler angles for the rigid body. Thus, the full nonlinear coupling between external

excitation and large-amplitude motion of the tower is preserved.

C. Theory

The 1-2-3 sequenced Euler angles and relevant coordinate systems are introduced in

Section 1. Then, the translational and rotational EOMs of the entire floating wind

turbine system are derived in Section 2. The external loads on the system, i.e. the

restoring and environmental forcing, are calculated in Sections 3 and 4. Section 5

investigates the internal moments between the tower and RNA within the 2-body

model.

1. Coordinate Systems and Euler Angles

The methodology considers the system as two rigid bodies: the tower is the complete

structural assembly that supports the rotor-nacelle assembly (RNA), including the

buoyant hull; the RNA is the complete assembly that can mechanically yaw rela-

tive to the tower. The implementation of the new method requires use of several

coordinate systems to derive the EOMs for the complete system. The external ex-

citation applied in the dynamic equations is computed consecutively and projected

into the corresponding coordinate systems. Fig. 12 shows both the (X,Y, Z) and

the (XM , YM , ZM) systems, which are earth-fixed global coordinate systems with the

origins located at the center of mass (CM) of the entire system and at the still water

level, respectively, when the system is in equilibrium status with zero displacements.
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The (xt, yt, zt) and the (A,B,C) systems are body fixed and originate at the CM of

the tower and RNA, respectively. The CM of the RNA, GR, is assumed to be on the

centerline of the tower to guarantee that the CM of the system, Gs, is fixed on the

tower. The (xs, ys, zs) system is parallel to (xt, yt, zt) and originates at the instanta-

neous CM of the entire system, which is also assumed to be on the centerline of the

tower. Thus (xs, ys, zs) coincides with the (X, Y, Z) system for zero displacement.
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Fig. 12. Coordinate systems used in the 2-body model
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The (X, Y, Z) and (xs, ys, zs) coordinate systems are used for application of both

the Newton’s second Law and the theorem of moment of momentum on the entire

system. Two body-fixed Cartesian frames, (A,B,C) and (xt, yt, zt), are assumed to

be on the principal axes of inertia in order to simplify the calculation of angular

momentum of the two rigid bodies. The (A,B,C) system is assumed to be on the

principal axes of both the rotor and the nacelle. The (XM , YM , ZM) system is defined

to enable comparison of simulation results with those of FAST, in which the reference

point is usually prescribed to be on the still water level.

Fig. 13 shows the Euler angles used to describe large-amplitude rotational mo-

tion. For large angular displacements in space, the order in which the angles of ro-

tation are applied is important; there are 12 possible Euler angles sequences. Here,

1-2-3 sequenced Euler angles X4-X5-X6 are used to describe the position of the ro-

tating tower. The (x′, y′, z′) is a translating coordinate system with respect to the

(X, Y, Z) system, with the origin located at the CM of the tower. The (xt, yt, zt)

system can be transformed from the (x′, y′, z′) by: first rotating the upright tower

about the x′-axis by angle X4, and then rotating about the resulting second coor-

dinate axis through an angle X5, and finally, rotating the tower about the zt-axis

through the third Euler angle, X6.
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Fig. 13. 1-2-3 sequenced Euler angles in terms of X4, X5 and X6

2. Equations of Motion of the System

The well-known Euler equations of motion are conventionally derived using con-

servation of angular momentum applied to a single rigid body. Here, the theorem

of moment of momentum is directly applied to the complete wind turbine system,

which consists of two rigid bodies: the tower and the RNA. Six unknown DOFs of

tower (translation and rotation) and two known DOFs of RNA (nacelle yaw and

rotor spinning) are considered in the model. Using the presented method, only one

set of equations of motion are needed to compute the rotational dynamics of the



58

integrated multi-body system. The angular momentum of the entire system results

from the sum of angular momentum of each rigid body, which is computed within the

respective local coordinate system and then transformed into a unified system with

the origin located on the CM of the wind turbine system. Similar to the applica-

tion of Newton-Euler dynamics equations to one rigid body, the coupled motions are

computed using rotational EOMs combined with translational equations governed

by Newton’s Second Law of multi-body systems.

Beginning with conservation of angular momentum, the sum of the moments

resulting from externally applied forces about the CM of a system of particles in the

translating-rotating system, (xs, ys, zs), equals the change of amplitude of the mo-

mentum within the coordinate system plus the change of direction of the momentum

with respect to global coordinate system [58]:

∑
M⃗ =

˙
H⃗s

Gs
= (

˙
H⃗s

Gs
)
xsyszs

+ ω⃗t × H⃗s
Gs

(3.1)

The LHS,
∑
M⃗ , represents the moments from all of external forces:

∑
M⃗ = M⃗wind+

M⃗wave + M⃗restoring, where the restoring moment M⃗restoring includes the effect of both

hydrostatics and mooring lines; the environmental moments M⃗wind and M⃗wave result

from wind and wave forces. In the RHS, H⃗s
Gs

is the angular momentum of entire

system calculated about that CM of the multi-body system and decomposed into

the (xs, ys, zs) system. The vector ω⃗t describes the angular velocity of (xs, ys, zs)

with respect to the global coordinate system (X, Y, Z), which is the absolute angular

velocity of the tower because the (xs, ys, zs) system is parallel to the body-fixed

coordinate system (xt, yt, zt). In general, angular momentum of a system, H⃗s
Gs
, can
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be decomposed into any coordinate system with the origin located at the CM of the

entire multi-body system. Here, choosing the orientation of (xs, ys, zs) parallel to

(xt, yt, zt) simplifies the calculation of angular momentum and its derivative. The

angular momentum of the system, H⃗s
Gs
, is obtained by superimposing the momenta

of the RNA and the tower and then decomposing the sum onto the (xs, ys, zs) system:

H⃗s
Gs

= H⃗R
Gs

+ H⃗ t
Gs
, in which the angular momenta of two rigid bodies, H⃗R

Gs
and H⃗ t

Gs
,

are calculated about the CM of the system, Gs. These momenta can be further

related to the angular momenta about the respective CM of these two rigid bodies

by [58]:

H⃗ t
Gs

= ρ⃗Gt/Gs ×mtv⃗Gt + H⃗ t
Gt

(3.2)

H⃗R
Gs

= ρ⃗GR/Gs ×mRv⃗GR
+ H⃗R

GR
(3.3)

where radius vectors, ρ⃗GR/Gs and ρ⃗Gt/Gs , are from Gs to the CM of RNA and tower,

respectively, and projected onto the (xs, ys, zs) system; v⃗GR
and v⃗Gt represent the

corresponding linear velocities of the CM; mR and mt are the masses of these two

rigid bodies. Those terms including radius vectors correspond to the effect of distance

in the parallel axis theorem, and can be further represented by expanding v⃗GR
and

v⃗Gt in terms of the linear velocity of Gs, v⃗Gs :

ρ⃗Gt/Gs ×mtv⃗Gt = ρ⃗Gt/Gs ×mt(v⃗Gs + ω⃗t × ρ⃗Gt/Gs) (3.4)

ρ⃗GR/Gs ×mRv⃗GR
= ρ⃗GR/Gs ×mR(v⃗Gs + ω⃗t × ρ⃗GR/Gs) (3.5)
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Combining Eqns. (3.4) and (3.5):

ρ⃗Gt/Gs ×mtv⃗Gt + ρ⃗GR/Gs ×mRv⃗GR
= ρ⃗Gt/Gs × (mtω⃗t × ρ⃗Gt/Gs)

+ρ⃗GR/Gs × (mRω⃗t × ρ⃗GR/Gs) (3.6)

Those terms including the linear velocity of the CM of the system disappear

because mRρ⃗GR/Gs +mtρ⃗Gt/Gs = 0, which decouples the angular momentum of the

system and its derivative from the translational DOFs. This decoupling significantly

simplifies solution of Eqn. (3.1), which increases the efficiency of numerical solution

to the final coupled 6-DOFs equations of motion.

The angular momentum of the tower, H⃗ t
Gt

in Eqn. (3.2), is calculated in the

(xt, yt, zt) coordinate system, parallel to the (xs, ys, zs) system, and originated from

the CM of the tower. If the body-fixed coordinate system (xt, yt, zt) are composed of

principal axes of inertia, the angular momentum of the tower can be obtained by first

calculating the product of the inertia tensors and the angular velocities, and then

transforming into the (xs, ys, zs) system: H⃗ t
Gt

= Tt→s(Itω⃗t), where Tt→s is the trans-

formation matrix from (xt, yt, zt) to (xs, ys, zs) and equal to the elementary matrix

because these two coordinate systems are parallel; the inertia tensor of the tower, It,

is a diagonal matrix with diagonal elements equal to Ixt , Iyt and Izt , i.e. the moments

of inertia of the tower about its principal axes. The absolute angular velocity of the

tower, ω⃗t, is decomposed into the body-fixed coordinate system (xt, yt, zt) and can
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be represented in terms of 1-2-3 sequenced Euler angles by (e.g. [67]):

ω⃗t =


Ẋ4cosX5cosX6 + Ẋ5sinX6

−Ẋ4cosX5sinX6 + Ẋ5cosX6

Ẋ4sinX5 + Ẋ6

 (3.7)

The angular momentum of the RNA in Eqn. (3.3), H⃗R
GR

, is calculated by further

separating the RNA into the nacelle and the rotor (including all spinning parts within

the RNA). The (A,B,C) system is assumed to be the principal coordinate system

of inertia of the nacelle. The angular momentum of the nacelle is transformed from

its principal axes to the (xs, ys, zs) by: H⃗n
GR

= Tn→s(Inω⃗n), in which Tn→s is the

transformation matrix from (A,B,C) to (xs, ys, zs); In is the inertia tensor of the

nacelle calculated about the (A,B,C) system. The angular velocity of the nacelle

within the (A,B,C) system, ω⃗n, is obtained by first calculating it in the (xt, yt, zt)

system in terms of nacelle yaw rate and then transforming into the (A,B,C) system:

ω⃗n = Tt→nω⃗n,t = Tt→n(ω⃗t+ω⃗yaw), where the transformation matrix from (xt, yt, zt) to

(A,B,C), Tt→n, can be calculated by the inverse of Tn→s, which is just the transpose

since the transformation matrix is orthogonal; ω⃗n,t represents the absolute angular

velocity of the nacelle with respect to the (xt, yt, zt) system; the vector ω⃗yaw has

positive nacelle yaw rate component along zt-direction, i.e. ω⃗yaw=(0, 0, ωyaw).

Here, the (A,B,C) axes are assumed to be on the principal axes of the rotor to

simplify the calculation of angular momentum. This angular momentum depends on

both the moments of inertia and the angular velocities of the rotor in the (A,B,C)

system. The exact moments of inertia of the rotor are preserved in the (A,B,C)

system and are not the function of time. Similar to the calculation of ω⃗n, the angular
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momentum of the rotor can be calculated by: H⃗r
GR

= Tn→sIrω⃗r,n = Tn→sIr(ω⃗n +

˙⃗
ψ), in which ω⃗r,n represents the absolute angular velocity of the rotor with respect

to the (A,B,C) system; Ir is the inertia tensor of the rotor calculated about the

(A,B,C) system; the spinning vector
˙⃗
ψ has a positive component about B-direction,

i.e.
˙⃗
ψ=(0, ψ̇, 0). Combining the angular momentums of nacelle and rotor, the angular

momentum of RNA is H⃗n
GR

+H⃗r
GR

= Tn→s(In+Ir)ω⃗n+Tn→sIr
˙⃗
ψ, in which the moments

of inertia of the nacelle and rotor can be combined into that of RNA within the

(A,B,C) system:

H⃗R
GR

= TR→s(IRω⃗n) + TR→sIR
˙⃗
ψ (3.8)

In Eqn. (3.8), the nacelle and the rotor are treated as a single unit, with yaw motion

along the C-axis and spinning motion along the B-axis. The change of Ir to IR

directly has no influence on the calculation because in the inertia tensor, only that

element associated with spinning matters in this term. Considering the (A,B,C)

system as the principal coordinate system of inertia of the RNA, the transformation

matrix from (A,B,C) to (xs, ys, zs), TR→s, is equal to Tn→s and can be represented

as [52]:

TR→s(β) =


cos β − sin β 0

sin β cos β 0

0 0 1

 (3.9)

where the relative degree of freedom, β, describes the rotation of (A,B,C) to (xs, ys, zs)

and depends on the yaw angle of the nacelle, which is continually adjusted by the

yaw control mechanism; IR is the inertia tensor of the RNA in the form of diagonal
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matrix with diagonal elements equal to IA, IB and IC . Combining Eqns. (3.2) and

(3.3), the angular momentum of the system in the (xs, ys, zs) system, H⃗s
Gs
, can be

arranged as: H⃗s
Gs

= Isω⃗t+H⃗
′, which is a generalized validation of Leimanis’s conclu-

sion [68]: the angular momentum of a two-rigid-body system can be separated into

one part due to transport of the whole system considered as a rigid body and another

part due to the relative motion between the bodies. The inertia tensor associated

with the transport of the system, Is, can be expressed as:

Is =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 (3.10)

in which

I11 = (IAcos
2β + IBsin

2β +mRρ
2
GR/Gs

) + (Ixt +mtρ
2
Gt/Gs

)

I12 = (IA − IB)cosβsinβ

I21 = (IA − IB)cosβsinβ

I22 = (IAsin
2β + IBcos

2β +mRρ
2
GR/Gs

) + (Iyt +mtρ
2
Gt/Gs

)

I33 = IC + Izt

I13 = I23 = I31 = I32 = 0

where ρGt/Gs and ρGR/Gs are the moduli of corresponding vectors in Eqns. (3.2)

and (3.3). The off-diagonal terms in the inertia tensor result from the included

angle between the B and ys-axes. The effect of the parallel axis theorem is obvious
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in the diagonal terms. The angular momentum of the RNA relative to the tower

can be expressed by collecting terms independent of the rotation of the tower, ω⃗t:

H⃗ ′ = (−IBψ̇sinβ, IBψ̇cosβ, ICωyaw). The angular momentum associated with the

spinning blades corresponds to projections onto both xs- and ys-directions, while the

angular momentum associated with the nacelle yaw is only along the zs-axis.

The absolute time derivative in Eqn. (3.1) includes changes in both the direction

and amplitude of the angular momentum vector. The latter can be expressed as:

(
˙

H⃗s
Gs
)
xsyszs

= İsω⃗t + Is ˙⃗ωt +
˙⃗
H ′ (3.11)

where the derivative of inertia tensor, İs, is computed by taking time derivative

element by element in the matrix according to the definition of matrix derivative.

Thus, only the time-dependent terms in the inertia tensor are considered, which

include the angle β since β̇ = ωyaw. This derivative of angular momentum is simpli-

fied considerably by the selection of the (xs, ys, zs) system parallel to the body-fixed

(xt, yt, zt), because all the time-dependent terms are explicitly defined by the yaw

control mechanism and the geometrical configuration.

Computation of transitional motions is relatively straightforward. The theorem

of the motion of the center of mass is applied to the entire wind turbine system to

solve the translational DOFs:

∑
F⃗ = msa⃗Gs (3.12)

where a⃗Gs is the linear acceleration of the CM of the system, a⃗Gs = (Ẍ1, Ẍ2, Ẍ3); ms

is the mass of the whole system; the force vector
∑
F⃗ represents the external forces of
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the entire system in the inertia coordinate system (X, Y, Z), including environmental

forces, restoring forces and gravity:
∑
F⃗ = F⃗wind + F⃗wave + F⃗restoring + G⃗. Each of

these components must be decomposed to the inertia coordinate system (X,Y, Z)

for application of Newton’s second Law. Restoring forces, F⃗restoring, include contri-

butions from buoyancy of the hull and tension of the mooring lines.

3. Restoring Forces

The restoring forces (including both the external forces and moments) resulting

from the contribution of hydrostatics and mooring lines are also computed for large-

amplitude motions. Restoring forces are calculated about the CM of the system, Gs,

which may experience large excursions from the original equilibrium position. The

large-amplitude motions preclude use of the conventional stiffness matrix method in

which restoring forces can be computed as a stiffness matrix times a displacement

vector with each column of the matrix corresponding to unit motion in one DOF and

zero displacements in other DOFs. This section addresses the nonlinear hydrostat-

ic and mooring forcing due to coupled large-amplitude translational and rotational

motions.

The LHS of the rotational equations of motion (Eqn. (3.1)) is the sum of the

external moments in the translating-rotating system (xs, ys, zs); the LHS of the trans-

lational equations (Eqn. (3.12)) is the external forces in the inertial system (X,Y, Z).

The transformation matrix between these two coordinate systems is a function of 1-

2-3 sequenced Euler angles X4-X5-X6 since the (xs, ys, zs) system is defined parallel

to the body-fixed coordinate system of the tower, (xt, yt, zt). The transformation
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matrix from (xs, ys, zs) to (X,Y, Z) can be expressed as:

Ts→I = Tx(X4)Ty(X5)Tz(X6) =


t11 t12 t13

t21 t22 t23

t31 t32 t33

 (3.13)

in which

t11 = cosX5cosX6

t12 = −cosX5sinX6

t13 = sinX5

t21 = cosX4sinX6 + cosX6sinX4sinX5

t22 = cosX4cosX6 − sinX4sinX5sinX6

t23 = −cosX5sinX4

t31 = sinX4sinX6 − cosX4cosX6sinX5

t32 = cosX6sinX4 + cosX4sinX5sinX6

t33 = cosX4cosX5

where Tx(X4), Ty(X5) and Tz(X6) are element transformation matrices [59]. The

complexity of Eqn. (3.13) results from prescribing the (xs, ys, zs) system parallel to

the (xt, yt, zt) system instead of the (X, Y, Z) system. This resulting complexity is

more than offset by avoiding the tedious calculation of the time derivative of this

transformation matrix.

The hydrostatic restoring forces are calculated directly from the buoyancy of the

cylindrical floater. The instantaneous buoyancy of a floating cylinder in the inertial
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coordinate system (X, Y, Z) is F⃗ I
B = (0, 0, ρgπr2h1) [67], where ρ is the density of

sea water; g is the gravitational acceleration; r is the radius of the cylinder; h1 is

instantaneous submerged length of the cylinder along the centerline. This variable

length is a function of heave motion and leaning angle of the cylinder:

h1 =
ρGM/O −X3

cosθ1
− ρGM/O + h0 (3.14)

where ρGM/O is the distance measured from still water level to the CM of the system

in its equilibrium position, i.e. the length from GM to O in Fig. 12; θ1 is the leaning

angle of the cylinder with respect to vertical, cosθ1 = cosX4cosX5; h0 is the initial

length of h1, i.e. the draft of cylinder in equilibrium position. For small rotations,

the restoring force in heave reduces to the conventional FB = ρgπr2(h0 −X3).

The center of buoyancy of a partially submerged cylinder piercing the water

surface at an angle is described by the radius vector in the (xs, ys, zs) system, i.e.

ρ⃗B/Gs = (xBs , y
B
s , z

B
s ), in which [67]:

xBs = − t31r
2

4t33h1

yBs = − t32r
2

4t33h1

zBs = h⃗G +
h1
2

+
r2(t231 + t232)

8t233h1
(3.15)

where vector h⃗G indicates the position of the bottom of the cylinder measured from

the (xs, ys, zs) system along the centerline. To obtain the hydrostatic restoring mo-

ment in the (xs, ys, zs) system, the buoyancy in the inertia coordinate system is

decomposed into the (xs, ys, zs) system and then combined with the vector radius

ρ⃗B/Gs , i.e. F⃗
s
B = TI→sF⃗

I
B and M⃗ s

B = ρ⃗B/Gs × F⃗ s
B, in which the transformation matrix
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from (X,Y, Z) to (xs, ys, zs), TI→s, is the inverse of Eqn. (3.13), which is just the

transpose since the transformation matrix is orthonormal. This hydrostatic calcu-

lation method is applicable to any composite body having a cylinder piercing the

water-plane. The center of buoyancy of fully submerged parts of a composite body

are not affected by pitch angle, and can be geometrically combined with a surface-

piercing cylinder.

A simplified mooring system is assumed to consist of four radial taut lines for

convenience. The change in tension in each line can easily be expressed as a function

or cable stretch. Each fairlead position is calculated by summing translations and

Euler angle rotations. The contribution of each mooring line is calculated consecu-

tively and then summed. The combined restoring force in the (X, Y, Z) system and

the combined restoring moment calculated about Gs in the (xs, ys, zs) system are

needed in the application of equations of motion of the system.

Compliance along each straight line is due to elasticity of the materials only.

The radius position of any one fairlead (point A) in the inertia coordinate system

(X, Y, Z) is ρ⃗A/O = ρ⃗Gs/O + Ts→I ρ⃗A/Gs , where the radius vector ρ⃗Gs/O is the position

of Gs measured from the (X,Y, Z) system, ρ⃗Gs/O = (X1, X2, X3) and ρ⃗A/Gs is the

radius position of point A in the (xs, ys, zs) system. The position of the fixed end

(point E) of this mooring line on the sea bottom, ρ⃗E/O, is constant in the (X,Y, Z)

system. Combining the radius position from point A to point E in the (X,Y, Z)

system is ρ⃗E/A = ρ⃗E/O − ρ⃗A/O. The tension along a neutrally buoyant taut line in
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the (X, Y, Z) system can be obtained by the nature of elasticity material [67]:

F⃗ I
line = [T0 +

ES

L
(ρE/A − L)]

ρ⃗E/A

ρE/A

(3.16)

where T0 is the pretension of one mooring line; E is Young’s Modulus; S is the cross

sectional area of the line; L is the initial length of the line; ρE/A is the norm of the

vector ρ⃗E/A, i.e. the instantaneous length of the line. The restoring force of the

mooring system, F⃗ I
mooring, is obtained by summing the force from each line.

The restoring moment from each line in the (xs, ys, zs) system is obtained by

decomposing the restoring force into the (xs, ys, zs) system first and then multiplied

by the radius vector of the fairlead, i.e. F⃗ s
line = TI→sF⃗

I
line and M⃗

s
line = ρ⃗A/Gs × F⃗ s

line.

The result from each line can be further summed to obtain the restoring moment

from mooring system, M⃗ s
mooring. Finally, the restoring forces can be expressed as:

F⃗restoring = F⃗ I
B + F⃗ I

mooring (3.17)

M⃗restoring = M⃗ s
B + M⃗ s

mooring (3.18)

4. Environmental Forcing

The wind force in the (X,Y, Z) system and wind moment calculated about Gs in the

(xs, ys, zs) system are needed in the application of equations of motion of the system.

For simplicity, an approximate wind thrust force is computed for the complete swept

area of the blades following the method of Nielsen [63]:

Fb =
1

2
CTρaAbV

2
rb (3.19)

where ρa is the density of air; Ab is the swept area of the blades; CT is the thrust



70

coefficient; Vrb is the amplitude of the velocity of the wind relative to the RNA along

the B-axis. The wind force is assumed to be applied on the center of the blade area

and along the B-axis, i.e., perpendicular to the blade area. The thrust coefficient,

CT , is assumed to depend solely on relative wind velocity and is taken directly from

Nielsen [63] and repeated in Fig. 14. This curve is a proxy for the influence of con-

ventional blade-pitch control on thrust. The curve was developed by assuming that

the control mechanism maximizes the power output for wind speeds below the rated

speed (17 m/s here) and retains constant power output after the rated speed. More

accurate wind forces could be computed by linking the codes of this method with an

existing rotor-aerodynamics module, e.g. AeroDyn [30].
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Fig. 14. Thrust force coefficient as function of relative wind velocity
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The amplitude of relative velocity, Vrb, is computed by projecting both the wind

velocity and structural velocity onto the B-axis. A unit vector u⃗IB indicates the di-

rection of the B-axis in the (X,Y, Z) system by u⃗IB = TR→I u⃗
R
B, where u⃗

R
B is the unit

vector along B-axis in the (A,B,C) system, i.e. u⃗RB = (0, 1, 0). The transforma-

tion matrix from (A,B,C) to (X, Y, Z), TR→I , is obtained by multiplication of the

transformation matrix in Eqns. (3.9) and (3.13): TR→I = Ts→ITR→s.

The structural velocity of the center of the blade area can be expressed as:

V⃗ I
GR

= V⃗Gs + Ts→I(ω⃗t × ρ⃗GR/Gs), where V⃗Gs is the linear velocity of Gs in the inertial

coordinate system (X,Y, Z): V⃗Gs = (Ẋ1, Ẋ2, Ẋ3) and the distance between GR and

the center of the hub is neglected. Projections of the wind velocity and structural

velocity along the B-axis are obtained by dot product: Vw = V⃗ I
wind · u⃗IB and Vb =

V⃗ I
GR

· u⃗IB, in which V⃗ I
wind is the wind velocity in the (X,Y, Z) system. The amplitude

of relative velocity in Eqn. (3.19) is obtained by Vrb = Vw−Vb. Finally the wind force

in the (X,Y, Z) system and the wind moment in the (xs, ys, zs) system are expressed

as:

F⃗wind = TR→IF⃗
R
wind (3.20)

M⃗wind = ρ⃗GR/Gs × F⃗R
wind (3.21)

where F⃗R
wind is the wind force in the (A,B,C) system: F⃗R

wind = (0,−Fb, 0). The

aerodynamic torque is modeled as a constant using rated power divided by rotor

speed, which is added to the wind moment.

Similar to the calculation of restoring forces, wave forces are computed in the

(X, Y, Z) coordinate system and then decomposed into the (xs, ys, zs) system to com-
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pute the moments. The generalized Morison equation is used to calculate the wave

forces per unit length normal to the axis of the leaning cylinder (e.g., [64]):

f⃗ I
n = Cmρ

π

4
D2 ˙⃗
Vn − Caρ

π

4
D2 ˙⃗Vt +

1

2
ρCdDV⃗rt|V⃗rt| (3.22)

where ρ is the density of sea water; D is the local diameter of the hull; Cm is the

inertia coefficient; Ca is the added mass coefficient, and Cd is the drag coefficient.

All velocities and accelerations are normal to the central axis of the tower:
˙⃗
Vn is the

normal component of wave acceleration;
˙⃗
Vt is the normal component of structural

acceleration; V⃗rt is the normal velocity of the water particle relative to the cylinder.

The term associated with Ca in Eqn. (3.22) is usually considered as the added mass.

Hydrodynamic damping is included considering the relative velocity in the drag force

calculation. Use of the Morison equation implicitly assumes the body has a negligible

effect on the incident waves, which is reasonable here because the hull structure is

relatively slender. Also, as is conventional for use of the Morison equations, dynamic

pressures along the axis of the cylinder are neglected.

A unit vector along the central axis of the tower is needed to define the normal

direction of kinematic vectors, i.e. e⃗I3 = Ts→I e⃗
t
3, where e⃗

t
3 is a unit vector along

centerline of the tower in the (xt, yt, zt) system, i.e. e⃗t3 = (0, 0, 1), and is transformed

to the (X,Y, Z) system. Thus, the normal component of water particle acceleration

can be expressed as:
˙⃗
Vn = e⃗I3 × (

˙⃗
V × e⃗I3), where

˙⃗
V is the wave acceleration vector in

the (X,Y, Z) system. The structural velocity and acceleration of the segment along

the tower can be obtained by the kinematics of rigid body:

V⃗t = V⃗Gs + Ts→I(ω⃗t × ρ⃗i/Gs) (3.23)
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˙⃗
Vt = a⃗Gs + Ts→I [ ˙⃗ωt × ρ⃗i/Gs + ω⃗t × (ω⃗t × ρ⃗i/Gs)] (3.24)

where V⃗Gs and a⃗Gs are the linear velocity and acceleration of the CM of the system,

Gs, in the inertial coordinate system (X,Y, Z); ρ⃗i/Gs is the vector radius from Gs to

the segment with unit length. The wave kinematic velocity relative to the moving

tower, V⃗rt, is expressed as: V⃗rt = e⃗I3×(V⃗r× e⃗I3), where V⃗r is the relative velocity of the

wave to the segment of the submerged tower: V⃗r = V⃗ − V⃗t, in which V⃗ is the wave

kinematic velocity in the (X, Y, Z) system. The wave force on the cylinder, F⃗wave, is

obtained by summing the force on each segment from Eqn. (3.22). The wave moment

in the (xs, ys, zs) coordinate system can be computed by transforming the resulting

forces from Eqn. (3.22) into the (xs, ys, zs) system and then numerically integrating

over the submerged length of the tower.

F⃗wave =

∫
r

f⃗ I
ndr (3.25)

M⃗wave =

∫
r

(ρ⃗i/Gs × f⃗ s
n)dr (3.26)

where f⃗ s
n = TI→sf⃗

I
n.

5. RNA Moments and Gyroscopic Moments

Computation of the RNA moments and gyroscopic moments is not necessary to

simulate the global motions of the tower. However, these internal moments between

RNA and tower, especially gyro moments, are a significant concern in design, and

can be calculated by application of the Euler dynamic equations about the rigid body
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RNA:

∑
M⃗R =

˙
H⃗R

GR
= (

˙
H⃗R

GR
)
ABC

+ ω⃗n × H⃗R
GR

(3.27)

where the angular momentum of the RNA is decomposed to the (A,B,C) system

with angular velocity ω⃗n = (ωn,A, ωn,B, ωn,C) and can be represented as H⃗R
GR

=

[IAωn,A, IB(ωn,B + ψ̇), ICωn,C ]. The reaction moments of
∑
M⃗R are defined as RNA

moments applied by RNA on the top of tower (MRNAA,MRNAB,MRNAC). The

gyro moments are that part of the RNAmoments resulting from the time derivative of

angular momentum associated with the spinning rate in Eqn. (3.27). If the (A,B,C)

system is used to decompose the angular momentum of the gyro, the absolute time

derivative is
˙⃗
H

gyro

GR
= (

˙⃗
H

gyro

GR
)
ABC

+ ω⃗n× H⃗gyro
GR

, where the angular momentum related

to spin can be expressed in the (A,B,C) system as H⃗gyro
GR

= (0, IBψ̇, 0). Thus, the

time change of the amplitude of this angular momentum within the (A,B,C) system,

(
˙⃗
H

gyro

GR
)
ABC

, is zero for constant spinning rate. Further, the gyro moments applied

by the RNA on the top of the tower are:

M gyro
GR

= −ω⃗n × H⃗gyro
GR

=


IBψ̇ωn,C

0

−IBψ̇ωn,A

 (3.28)

The gyro moments have non-zero components in the A- and C-directions, both

of which are perpendicular to the spin vector along the B-axis. The cross product

in the equations of motion results in the transfer of angular momenta between the

A- and C-directions. The angular velocity of the nacelle of a rigid bottom-fixed

wind turbine is always along the C-axis and equal to the yaw rate, ωyaw. In this
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case, the gyro moments can be reduced to (IBψ̇ωyaw, 0, 0), which is the conventional

expression for gyro moment in nutation [9]. The angular velocity of the nacelle for a

floating wind turbine also has a non-zero component in the A-direction, which results

in a component of gyro moments in the C-direction and proportional to the angular

velocity of the nacelle along the A-axis (Eqn. (3.28)).

D. Example

Two different support-structure designs are used to demonstrate the new method.

First, the OC3-Hywind model [60] is used to verify the new method presented here by

comparison with the popular wind turbine dynamics software FAST [46] for a small-

amplitude motion case. The OC3-Hywind is a conceptual design of the Hywind

system developed to support the NREL 5-MW wind turbine. This design is stiff

in pitch rotation and provides a realistic benchmark case against industry-standard

software. The mooring system of OC3-Hywind is simplified by using two linear

springs with stiffness equal to 5 × 104 N/m in the surge and sway directions such

that it could be modeled in both FAST and the new method for verification. The

truncated cylinder model is developed on the basis of OC3-Hywind by reducing the

cylinder length from the 120 m of OC3-Hywind to 84.4 m. Physical properties of the

tower and RNA are the same as those presented in example of Chapter 2.

1. Free Vibration Verified by FAST

Figs. 15–17 show the comparison of time histories from FAST and the method p-

resented here for a small-amplitude free vibration case including blade spin but no
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nacelle yaw. Here both hydrodynamics and aerodynamics have been turned off in

FAST. The only external forces acting on the body are from the mooring lines and

buoyancy, both of which are represented simply as a 6 × 6 restoring matrix in the

user-defined subroutine (UserPtfmLd) in FAST. Stiffness values are linearized to be

consistent with the method presented in section 3 and tuned to reproduce the correct

natural frequencies. The initial conditions of FAST are prescribed as roll equal to

0.1 rad, pitch equal to 0.1 rad and sway equal to 0.5 m with respect to a reference

point on still water level. The Euler rotations are roughly equivalent to roll, pitch

and yaw in FAST for small-amplitude rotation [69]. Rotational results in FAST are

defined about the inertial reference frame and superimposed. The small-amplitude

assumption leads to a nearly orthogonal transformation matrix, which is corrected

by Frobenius Norm to guarantee its orthogonality [46], while the new method does

not need any correction in terms of the superposition of rotational motion. It can be

seen in Figs. 15–17 that both the motions and moments from the new method match

the results of FAST very well. One inconsistency between the models is that FAST

considers relative motion within the RNA while the new method considers a unified

RNA with a single spin rate. In Fig. 15, the yaw motion results from excitation by

the gyro moments along the centerline of the tower. The translation shown in Fig. 16

is measured from the reference point on still water level, the origin of (XM , YM , ZM)

system. In Fig. 17, the RNA moments are compared to the internal moments in the

tower-top coordinate system located at the yaw bearing in FAST, which is similar

to the (A,B,C) coordinate system in absence of nacelle yaw, located at the center

of the RNA. Figs. 15–17 show good agreement for this small-amplitude case and
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agreement improves for decreasing amplitudes. The next two example cases are for

large-amplitude motion of the truncated spar model.
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2. Forced Vibration without Nacelle Yaw

Figs. 18–20 show results for the more compliant truncated spar model in a large-

amplitude forced-vibration case. Environmental loading is computed using irregular

winds and waves along the negative direction of the Y -axis. The mean wind velocity

at hub height is 18.2 m/s. Irregular wind velocities are simulated using TurbSim [62].

The wave environment is represented by a JONSWAP spectrum with a significant

wave height of 5.0 m and peak period of 10 sec. Wave forces are computed using the

Morison equation from a first-order time-domain representation of irregular waves

simulated directly from the wave spectrum using a uniform phase distribution. The

inertia coefficient Cm in Eqn. (3.22) is assumed to be 2.0; the added mass coefficient
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Ca is assumed to be 1.0; the drag coefficient Cd is assumed to be 0.6. Figs. 18–20

show the 6-DOFs motions of the tower and gyro moments without consideration

of nacelle yaw, i.e. without relative motion between the nacelle and the tower. In

Fig. 18, the translation of the tower is measured from the CM of the entire wind

turbine system, i.e. the origin of (X, Y, Z) system in Fig. 12. The nonzero mean of

X2 results from the surge motion in the wind direction. Fig. 19 shows 1-2-3 sequenced

Euler angles X4, X5 and X6, which describe the large-amplitude rotational motion of

the tower. The gyro moments shown in Fig. 20 are significant and cannot be ignored

in the design. Different from the bottom-fixed wind turbine, the gyro moment in the

A-direction still exists due to the self-rotation of tower about its centerline even in

absence of nacelle yaw. The gyro moment in the C-direction results from the angular

velocity of tilt motion, and has the same frequency as X4. Thus, the frequency of

gyro moment is relevant to the frequency of motion of the tower and further depends

on the frequency of environmental forcing.
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Fig. 20. Gyro moments without nacelle yaw

3. Forced Vibration with Nacelle Yaw

Figs. 21–23 show results for the same compliant spar model and the same wave con-

ditions as the previous case, but with a sudden wind-shift imposed to show the effect

of nacelle yaw. The wind direction is along the negative direction of the Y -axis

during the first 100 sec and then rotates by π/4 rad toward the negative direction

of the X-axis in the XOY plane to simulate the sudden shift. The yaw rate of

the nacelle is 0.3 deg/sec. The wind shift causes the yaw control mechanism of the

nacelle to activate at 100 sec and deactivate at around 250 sec. Fig. 21 shows the

translation of the tower measured from the CM of the entire system. The amplitude
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of X1-direction motion increases because the new wind direction results in a larger

wind force in the sway direction. Similarly, the Euler angle X5 increases as shown in

Fig. 22 after the wind direction changes. Comparison of Figs. 23 and 20 indicates the

nacelle yaw does not significantly change the amplitudes of the gyro moments. These

yaw-induced moments are relatively small because the yaw rate is much smaller than

the angular velocity of self rotation of the tower about its centerline.
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E. Application

In this Section, the time-domain simulation tool based on the new method is applied

to roughly estimate the feasibility of compliant floating wind turbines. Three compli-

ant designs are first developed based on the OC3-Hywind design, with drafts ranging

from 84 m to the 120 m of the original OC3-Hywind. The family of floating wind

turbine designs with different lengths of spar cylinders, the original OC3-Hywind

plus the three new design alternates, are then analyzed through dynamic simulation

to compare their dynamic performance and comparative energy harvesting efficiency.

1. A Family of Compliant Designs

As mentioned in Chapter 1, the first full-scale offshore floating wind turbine in the

world, Hywind, has been installed in 2009 [11], which integrated a 2.3-MW turbine

on a 65 m height tower. The base case of the investigation presented here is the

OC3-Hywind, which is itself a conceptual design introduced by Jonkman [60] as an

enlarged version of the installed 2.3-MW Hywind platform. The OC3-Hywind has a

tower height of 87.6-m, supported by a 108-m underwater spar cylinder plus a taper

and smaller cylinder for a total 120-m draft (Fig. 24). Much of the structural steel in

the design is in the 108 m spar cylinder, the primary purpose of which is to maintain

the tower in a near-vertical condition when subject to the very large horizontal wind

force at the hub height. Additional angular stability is provided through use of barite

ballast in the bottom of the 120-m deep structure.

In this Section, three smaller conceptual designs are developed from the OC3-

Hywind by decreasing the ballast weight and truncating the length of the spar cylin-
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der. Reducing the ballast directly reduces the amount of buoyancy required to sup-

port the structure, and reducing the cylinder length directly reduces the required

structural steel. The diameter of the cylinder remains constant for all four design-

s. The diameter of the upper small cylinder is 6.5 m; the diameter of lower large

cylinder is 9.4 m. They are connected by a tapered structural cone, the height of

which is 8 m. The main criterion for design is hydrostatic equilibrium: the available

buoyancy provided by the spar cylinder must equal the weight of complete structure

plus the vertical component of the top tension of the mooring lines. Buoyant vol-

ume and center of buoyancy calculations included the large cylinder, small cylinder

and taper. Calculation of the physical weight includes the weights of hull, ballast,

tower and RNA. For all designs, the diameter and the weight per length of the spar

cylinder were held constant, and were based on the original OC3-Hywind design.

Various combinations of length and ballast were investigated using a trial-and-error

methodology to find three design alternatives that spanned a wide range of cylinder

lengths. The four conceptual designs selected for further analysis are outlined in

Fig. 24 and Table I.
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Fig. 24. Truncated cylinder designs

Table I. Properties of alternate designs and original OC3-Hywind
Truncated Hywind

Cylinder Length (m) 72 77 85 108

Platform Draft (m) 84 89 97 120
Hull Weight (tonnes) 816 860 940 unknown
Ballast (tonnes) 4,208 4,503 5,038 unknown
Platform Weight (tonnes) 5,024 5,363 5,978 7,466
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2. Dynamic Behavior and Power Efficiency

The dynamic behavior of the truncated spar is analyzed and shown to be meaningful-

ly influenced by the blade-pitch control strategy. The present time-domain simulator

does not include any advanced control simulation capability. In the dynamic studies

presented here, the possible control algorithms are bounded by two extremes. Opti-

mal energy harvesting should result from ideal blade-pitch adjustments in which the

blade pitch is adjusted instantaneously to the apparent wind velocity relative to the

moving tower. Here, that strategy is implemented by applying Eqn. (3.19) with the

thrust coefficient, CT , updated at every time step based on the computed apparent

wind and Fig. 14. These very rapid blade-pitch adjustments may not be realistically

practical in the field. At the other extreme from instantaneous adjustment is to set

the coefficient of thrust based on Fig. 14 using the mean wind speed and leave it at

that fixed value throughout the simulation.

The four designs outlined in Table I and Fig. 24 are analyzed to assess their

global behavior and relative efficiency. Fig. 25 shows both the mean and standard

deviation of the platform pitch for each of the four competing designs with the stan-

dard deviation magnified by a factor of 10. The figure was generated by combining

results of 10 realizations of a 180-minute irregular sea state and irregular wind time

histories, using the same wind and wave time histories for each of the bounding

blade-pitch control strategies: fixed vs variable CT . The four sets of combined wind-

wave conditions used here are taken directly from Nielsen [63]: mean wind velocities

of 8 m/s, 17 m/s, 20 m/s, 25 m/s with corresponding wave conditions of significant

wave heights 3 m, 5 m, 9 m, 14 m and peak periods 10 s, 12 s, 13 s, 15 s, respectively.
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The wind and wave process are assumed to be stationary for the full 180-minutes.

The reference height for the four specific wind speeds is 87.6 m (hub height).
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Fig. 25. Platform pitch for various cylinder lengths and blade-pitch control strategies

(blue lines indicates variable CT )

Considering the results shown on Fig. 25, mean platform pitch angle shows the

expected increase with decreasing cylinder length. The general behavior of these

compliant systems is to have a large, relatively steady mean offset and dynamic

variation about that mean. The standard deviation shown is the square root of the

variance of the process, and therefore indicates the magnitude of the dynamic mo-

tions about the mean. It also appears that increasing tower pitch corresponds to
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greater difference between the fixed- and variable CT cases. This effect probably

results from computing the inflow velocity in the variable CT cases as the component

of velocity perpendicular to the blade area, so for large angles, the average CT in

the variable CT cases corresponds to a lower average inflow velocity than that of the

fixed CT cases. Greater differences between the two control strategies can also be

seen at the 17 m/sec rated wind speed than at other speeds, presumably because

the slope of CT curve in Fig. 14 is steepest near the rated wind speed. The general

trend for the fixed CT cases is to have smaller standard deviation than variable CT

cases due to the greater aerodynamic damping, as also noted in [63].
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For each of the time-history realizations of rated wind case, the power output is

calculated as P = 1
2
CpρaAbV

3
rb, where Ab is the swept area of the blades; Cp is a power

coefficient(Cp = 0.7CT ), which guarantees that output power of OC3-Hywind model

is 5-MW. The results of the power calculation are presented as Fig. 26, which shows

the ratio of the hull structural weight to the output of power. Results presented

here explicitly consider platform motions in the power calculation. Designs with

greater platform pitch angles generate slightly less power because the inflow velocity

perpendicular to the blades is slightly reduced (or, equivalently, the projected area of

the blades perpendicular to the wind is slightly reduced). Here the power is computed

as 4.16 MW, 4.53 MW, 4.76 MW, 5.0 MW. The slight decrease in energy harvesting

efficiency is counter-balanced by decreased structural weight. The most effective

design is that with the lowest weight per kW. The figure also shows a substantial

difference between the harvesting efficiency of the fixed versus variable CT cases.

This result emphasizes the importance of optimal control system design. The energy

harvesting effectiveness of a wind turbine with a realistic blade-pitch control system

is expected to be between these two extremes.

F. Conclusions

In this Chapter, a new method has been developed to directly apply conservation of

linear momentum (Newton’s second Law) and angular momentum to an entire float-

ing wind turbine system including RNA and tower, resulting in a new formulation

to simulate translation and large-amplitude rotation of the system. Motions of an

8-DOF system are represented as six EOMs of the tower. The 1-2-3 sequence Euler
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angles are introduced to describe the rotation of the tower and the transformation

matrixes between various coordinate systems. The restoring forcing and environmen-

tal forcing are calculated by considering nonlinear coupling among translational and

rotational DOFs. Further, motions and external forcing are transformed at each time

step between different coordinate systems such that the fully nonlinear coupling be-

tween external forcing and large-amplitude motion of the system is preserved. The

new method is verified by comparison with the well-known software FAST for a

small-amplitude case, for which the nonlinear coupling effects are small. Simulation

results in terms of 6-DOFs motions of tower and gyro moments for the floating wind

turbine with large-amplitude motions are also shown. A major strength of this new

method is that it can be readily expanded to a large number of rigid bodies as long as

the relative motion between contiguous bodies is explicitly defined. The decoupling

of translational and rotational accelerations also dramatically increases the efficiency

of numerical integration.

The time-domain simulator based on the new formulation is also applied to in-

vestigate the feasibility of compliant designs. Four alternate spar-based floating wind

turbine designs have been analyzed and compared in terms of rigid-body dynamics

and energy harvesting efficiency. The first of these designs is the OC3-Hywind, and

the remaining three are developed by shortening the spar hull and reducing the bal-

last of the OC3-Hywind design. It is found that blade-pitch control has significant

influence on the dynamic performance of compliant designs. It is also found that

there is a significant opportunity for improved efficiency through active blade-pitch

control using the real-time inflow velocities including tower motions, as compared
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with a passive control strategy in which the blade pitch is set using only the mean

wind speed.
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CHAPTER IV

CONSERVATION OF MOMENTUM FOR 3-BODY MODEL

A. Overview

The methodology in this Chapter is applied to the system including three rigid bod-

ies: the tower, the nacelle and the rotor, which is one more body than in Chapter 3.

The large-amplitude rotation of the tower is described by 1-2-3 sequence Euler angles

as 3 rotational degrees of freedom (DOFs); translation of the system is described by

Newton’s second Law and transferred to 3 translational DOFs of the tower. Addi-

tionally, two prescribed DOFs governed by mechanical control, nacelle yaw and rotor

spin, are combined with the 6 DOFs of the tower to formulate the 8-DOF equations

of motion (EOMs) of the system. Unlike the 2-body model in Chapter 3, the center

of mass (CM) of the wind turbine system is generally time-varying and not con-

strained to any rigid body due to arbitrarily located CM of each body and relative

mechanical motions among the bodies, i.e. the prescribed mechanical DOFs here. In

this Chapter, these two effects are considered in both the solution to 3 translational

DOFs and the calculation of angular momentum of each body for 3 rotational DOFs.

The theorem of conservation of momentum is applied to the entire multibody system

directly to solve 6 unknown DOFs. Motions computed using the six nonlinear EOMs

are transformed to each body in a global coordinate system at every time-step for use

in the computation of hydrodynamics, aerodynamics and restoring forcing, preserv-

ing the nonlinearity between external excitation and structural dynamics. The new

method is demonstrated by simulation of the motion of highly compliant floating
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wind turbine, the results of which are verified by critical comparison with those of

the popular wind turbine dynamics software FAST. The effect of the unconstrained

CM of the system is demonstrated by comparing to the resulting motions with those

based on 2-body model in Chapter 3.

B. Introduction and Background

Chapter 3 formulates the EOMs of the compliant floating wind turbine by a 2-

body model including the tower and RNA. Two relative DOFs, nacelle yaw and

rotor spin, are considered in the calculation of the angular momentum of the entire

system by assuming that the nacelle is a mass point attached to the spin axis of

the rotor. The simple 2-body configuration is applied to conveniently demonstrate

the derivation of new method. In this Chapter, a more realistic 3-body model is

introduced to generalize the effect of relative motion between bodies on the total

angular momentum. Three rigid bodies in the system are the tower, nacelle and

rotor. The tower is the complete support structure of topsides facility, including the

buoyant hull; the nacelle is the no-spinning part of the topsides; the rotor is the

spinning part of the topsides, including the hub and blades. The rotor spins relative

to the nacelle, and the combined nacelle and rotor mechanically yaws relative to the

tower.

There is another important extension to that work: the 2-body model in Chap-

ter 3 was configured with the CM of the nacelle centered above the axis of the tower,

such that the CM of the system remained at a fixed point on the tower axis, regardless

of nacelle yaw. However, having the CM of each body being arbitrarily located and
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allowing relative motion among bodies generally change the CM of a multibody sys-

tem. Modern turbines are generally configured with the CM of the nacelle downwind

of the centerline of the tower. Subsequently, the CM of the floating wind turbine

system changes as the nacelle yaws relative to the tower, and is not constrained to

any body in the system. The unknown unconstrained CM must first be obtained

at each time step in a numerical simulation because the conservation of both the

angular and linear momentum are applied about this point. Meanwhile, the motion

of each body in space is generally of interest. Here, the wind and wave forcing on the

floating wind turbine are exerted on the topsides and floater, respectively. Accurate

computation of these forces requires consideration of the spatial relation between the

CM of each rigid body and that of the system.

The CM of the system depends on that of each body; a common coordinate

system should first be chosen for measurement of the position of each CM, from

which the relative position can be determined. A convenient solution is to choose

the inertial coordinate system to formulate the CM of each body. The conservation

of linear momentum (Newton’s second Law) can be applied to the entire system

in the form of F = Σmiai based on the expression of kinematics of each body

along the kinematic chain using six unknown DOFs of the tower (base body) and

two known mechanical DOFs, nacelle yaw rate and rotor spin rate. However, this

method introduces the combination of the translational and rotational DOFs in the

formulation, which indicates the differential EOMs with complicated coupling.

The relative position between the CM of the system and that of each body

is shown to be independent of the translation of the tower, and only associated
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with relative rotation between bodies. Therefore, the body-fixed coordinate system

attached to the base body (tower) is chosen to calculate all radius vectors at each

time step. The derivatives of these radius vectors are also derived analytically. The

efficient formulation enables the determination of the unknown position of the CM

of the system and the spatial motion of other bodies at each point in time, but

maintains the decoupling between the translational and rotational inertial forcing,

which facilitates numerical integration of the EOMs.

C. Theory

The coordinate systems associated with the 3-body model are introduced in Section

1. The translational and rotational EOMs of the entire floating wind turbine system

are then derived in Section 2, where the effect of the unconstrained CM of the

system is considered. The calculations of the angular momentum of the system

in the rotational EOMs and its derivative are addressed separately to generalize

and standardize the derivation. The external loads on the system, i.e. restoring

and environmental forcing, are calculated in Sections 3, in which the effects of the

unknown CM of the system are hightlighted.

1. Coordinate Systems

The implementation of the new method first requires the selection of a set of coor-

dinates to unequivocally define the motion of the multibody system and derive the

EOMs; coordinate selection is based on first selecting proper coordinate systems.

There are two global earth-fixed coordinate systems, plus three body-fixed coordi-
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nate systems attached to each of the three bodies, plus one system-fixed coordinate

system.

Fig. 27 shows both the (X,Y, Z) and the (XM , YM , ZM) systems, which are

earth-fixed global coordinate systems with the origin located at the CM of the undis-

placed tower and the still water level respectively. The (xt, yt, zt), (xn, yn, zn) and

(xr, yr, zr) coordinate systems are body fixed and originate at the instantaneous CM

of the tower, nacelle and rotor, consecutively. There is also a coordinate system for

the entire system, (xs, ys, zs). This system-fixed (xs, ys, zs) is parallel to (xt, yt, zt)

and originates at the time-varying CM of the entire system, instantaneous change of

which depends on arbitrarily located CM of each body and relative motion among

bodies.

The (X,Y, Z) system is used for application of Newton’s second Law. The

(XM , YM , ZM) system is not used in the calculations and is defined only to enable

comparison of simulation results with those of FAST, in which the reference point is

usually prescribed to be on the still water level. The body-fixed coordinate systems,

(xt, yt, zt), (xn, yn, zn) and (xr, yr, zr) , are assumed to be on the principal axes of

inertia in order to simplify the calculation of angular momentum of the three rigid

bodies. The system-fixed (xs, ys, zs) system is used for application of the theorem of

conservation of angular momentum to the entire system. Additionally, the external

excitation applied in the dynamic equations is computed consecutively and projected

into the corresponding coordinate systems.
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Fig. 27. Coordinate systems used in the 3-body model

The coordinates (X1, X2, X3) measured from the (X, Y, Z) system are used to

define the absolute motion of the CM of the system, Gs. These coordinates are

further transferred to the translations of the CM of the tower, Gt, which are notated

by the coordinates (X1t, X2t, X3t) and defined as 3 translational DOFs of the tower.

Similar to Chapter 3, the 1-2-3 sequence of Euler angles are selected; the coordinates

(X4, X5, X6) denote these angles, which are 3 rotational DOFs of the tower and

describe the position of the rotating tower. Additionally, the prescribed mechanical

DOFs are denoted by two relative coordinates: the vector ω⃗yaw describes the rotation
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of the nacelle to the tower in the (xt, yt, zt) system; the vector
˙⃗
ψ describes the rotation

of the rotor to the nacelle (xn, yn, zb) system.

2. Equations of Motion of the System

Applying the conservation of momentum to the system can avoid the calculation of

internal forcing between contiguous rigid bodies. The conservation of angular mo-

mentum is directly applied to the entire wind turbine system to derive the rotational

EOMs; and the conservation of linear momentum (Newton’s second Law) is applied

to establish the translational EOMs. The resulting 6 EOMs of the multibody sys-

tem include terms representing each of the three rigid bodies: the tower, the nacelle

and the rotor. Six unknown DOFs of the tower (translation and rotation) and two

prescribed mechanical DOFs (nacelle yaw and rotor spinning) are considered in the

model. Thus, the EOMs of the entire system are used to solve the unknown general

motion of the tower in the space. Tower motions and prescribed yaw and spin can

then be used to obtain the motions of the nacelle and rotor.

a. Rotational Equations of Motion

Beginning with conservation of angular momentum, the sum of the moments re-

sulting from externally applied forces about the CM of a system of particles in the

translating-rotating system, (xs, ys, zs), equals the change of amplitude of the mo-

mentum within the coordinate system plus the change of direction of the momentum

with respect to global coordinate system (e.g. [58]). The rotational EOMs can be

shown as:
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∑
M⃗ =

˙(
H⃗s

Gs

)
xsyszs

+ ω⃗s × H⃗s
Gs

(4.1)

where H⃗s
Gs

is the angular momentum of the system. The form is similar to that

used in the derivation of the conventional Euler dynamic equations applied to on-

ly one rigid body. A significant difference here is that the conservation of angular

momentum is applied to the entire system. The single vector representing the to-

tal angular momentum in Eqn. (4.1) is the sum of the angular momentum of each

body. The summation of angular momentum of each body needs a unified coordi-

nate system. Here, calculation of angular momentum and its derivative is greatly

simplified because the translating-rotating system, (xs, ys, zs), has been prescribed

to be parallel to the body-fixed coordinate system (xt, yt, zt). The vector ω⃗s de-

scribes the angular velocity of (xs, ys, zs) with respect to the global coordinate system

(X, Y, Z). The LHS of Eqn. (4.1),
∑
M⃗ , represents the moments from all external

forces:
∑
M⃗ = M⃗wind+M⃗wave+M⃗restoring, where the restoring moment M⃗restoring in-

cludes the effect of both hydrostatics and mooring lines; the environmental moments

M⃗wind and M⃗wave result from wind and wave forces.

Calculation of Angular Momentum The angular momentum of the entire

system results from summing the angular momentum of each rigid body. The ap-

plication of conservation of angular momentum by Eqn. (4.1) needs the angular

momentum of the complete system about the CM of the system, Gs, which can be

obtained by summing up the angular momentum of each rigid body about Gs. Sum-

ming the momenta requires they be calculated about the same reference point and
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projected into the same coordinate system. Here the angular momentum of each

body is computed in the coordinate system including its principal axes of inertia,

then transformed into the unified (xs, ys, zs) system and finally transferred to the

origin of the (xs, ys, zs) system. Combining the first two steps, the total angular

momentum of the system can be expressed by:

H⃗s
Gs

= H⃗s + H⃗ETR (4.2)

in which the vector H⃗s is the total angular momentum of three bodies projected

into the (xs, ys, zs) system but calculated about respective CM of each body, i.e.

H⃗s = H⃗s
Gt

+ H⃗s
Gn

+ H⃗s
Gr
; the term H⃗ETR represents the effect of transferring the

reference point from the CM of each body to Gs. The angular momenta of three

rigid bodies taken about respective CM can be expressed as:

H⃗s
Gt

= Tt→s(Itω⃗t)

H⃗s
Gn

= Tn→s(Inω⃗n)

H⃗s
Gr

= Tr→s(Irω⃗r) (4.3)

where It, In and Ir are the inertia tensors of three rigid bodies, with diagonal elements

equal to the moments of inertia about respective principal axes. The transformation

matrix from the body-fixed coordinate system of the tower to the unified system,

Tt→s, is an identity matrix because the (xt, yt, zt) system is parallel to the (xs, ys, zs)

system. The other two transformation matrixes about the nacelle and rotor can be
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shown to be (e.g. [52]):

Tn→s(β) =


cos β − sin β 0

sin β cos β 0

0 0 1



Tr→s(α) = Tn→sTr→n = Tn→s


cosα 0 sinα

0 1 0

sinα 0 cosα

 (4.4)

Here the angle α describes the relative spin of the rotor to the nacelle and is positive

along the yr-axis; the angle β describes the relative yaw of the nacelle to the tower

and is positive along the zt-axis. The absolute angular velocities in Eqn. (4.3) are

component-wise projections in the body-fixed coordinate systems of each of three

bodies [70]:

ω⃗t =


Ẋ4 cosX5 cosX6 + Ẋ5 sinX6

−Ẋ4 cosX5 sinX6 + Ẋ5 cosX6

Ẋ4 sinX5 + Ẋ6


ω⃗n = Tt→n(ω⃗t + ω⃗yaw)

ω⃗r = Tn→r(ω⃗n +
˙⃗
ψ) (4.5)

where the vector ω⃗yaw has positive nacelle yaw component along zt-direction; the

spinning vector
˙⃗
ψ is positive along yr-direction. The angular momentum of the

system without consideration of the transfer of reference point can be obtained by



103

substituting Eqns. (4.4)-(4.5) into Eqn. (4.3):

H⃗s = (Tt→sIt + Tn→sInTt→n + Tr→sIrTt→r)ω⃗t

+(Tn→sInTt→n + Tr→sIrTt→r)ω⃗yaw

+Tr→sIrTn→r
˙⃗
ψ (4.6)

where the first bracket associated with ω⃗t represents the angular momentum of the

entire system in absence of the relative motion between contiguous components;

the terms including the nacelle yaw rate ω⃗yaw and the spinning velocity
˙⃗
ψ indicate

the contribution of relative motion to the total angular momentum. Each of the

three angular velocities is first transferred to the local coordinate systems of its

rigid body to calculate the angular momentum and then transferred to the unified

coordinate system (xs, ys, zs), so it can be included in sum. The decreasing number

of transformations for ω⃗t, ω⃗yaw, and
˙⃗
ψ is because of the cascading nature of the

transformation matrix.

Eqn. (4.6) has not included the effect of transferring the reference point, i.e. the

term H⃗ETR in Eqn. (4.2). A simple way to transfer the reference point in the calcu-

lation of angular momentum of a rigid body is to combine the angular momentum

about the CM of the rigid body to the effect of change of the reference point. For

example, the angular momentum of the tower calculated about Gs can be shown

as [58]:

t
H⃗s

Gs
= H⃗s

Gt
+ ρ⃗Gt/Gs ×mtv⃗Gt/Gs (4.7)

The cross product term in Eqn. (4.7) is one component in H⃗ETR relative to the
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tower, which depends on the radius vector originated from Gs to Gt, ρ⃗Gt/Gs , and

the relative velocity of Gt to Gs, v⃗Gt/Gs . The angular momenta of the nacelle and

the rotor about Gs can be expressed similar to Eqn. (4.7) and result in H⃗ETR =

ρ⃗Gt/Gs ×mtv⃗Gt/Gs + ρ⃗Gn/Gs ×mnv⃗Gn/Gs + ρ⃗Gr/Gs ×mrv⃗Gr/Gs . Thus, the radius vectors

ρ⃗Gt/Gs , ρ⃗Gn/Gs and ρ⃗Gr/Gs need to be determined to include the effect of transfer of

reference points.

Computing the CM of the wind turbine system requires the spatial position

of the CM of each rigid body expressed in a common coordinate system. Careful

selection of this common system can significantly simplify the EOMs. Here the body-

fixed coordinate system of the base body, the (xt, yt, zt) system, is chosen to measure

the relative positions of the CM of each body to that of the system because it enables

expressions of the locations of the tower, nacelle and rotor relative to the CM of the

system as three single radius vectors and depends on only the prescribed rotational

DOFs between bodies.

Firstly, the radius vectors originated from the CM of the tower (Gt) to the CM of

other rigid bodies (Gn and Gr) are decomposed in the translating-rotating (xt, yt, zt)

system based on the initial configuration of the bodies and a transformation matrices

representing the relative rotation between the bodies. Then the CM of the system

is calculated in this coordinate system to decouple the translational and rotational

EOMs:

ρ⃗Gn/Gt = ρ⃗Jn/Gt + Tn→tρ⃗Gn/Jn

ρ⃗Gr/Gt = ρ⃗Gn/Gt + Tn→tρ⃗Gr/Gn
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ρ⃗Gt/Gs = −ρ⃗Gs/Gt = −
mnρ⃗Gn/Gt +mrρ⃗Gr/Gt

mt +mn +mr

(4.8)

where mt,mn and mr are the masses of the tower, the nacelle and the rotor, respec-

tively. The relative positions between the centers of mass are connected by means

of the positions of the joints measured from the proper body-fixed coordinate sys-

tems in order to avoid the influence of spatial rotation. Here the mechanical joint

Jn is located between the tower and nacelle; the radius vectors ρ⃗Jn/Gt and ρ⃗Gn/Jn

are projected into the (xt, yt, zt) and (xn, yn, zn) systems, respectively. Both of them

result from the initial geometrical configuration within the multibody system and

remain as constants, as shown in Fig. 27. The radius vector ρ⃗Gr/Gn can be obtained

following the pattern of ρ⃗Gn/Gt , i.e. ρ⃗Gr/Gn = ρ⃗Jr/Gn + Tr→nρ⃗Gr/Jr . The CM of the

nacelle and the rotor w.r.t that of the system can be obtained by means of ρ⃗Gt/Gs ,

e.g. ρ⃗Gn/Gs = ρ⃗Gn/Gt + ρ⃗Gt/Gs . Obviously, that part of the angular momentum asso-

ciated with the effect of the transfer of the reference point does not depend on the

translation of the system, which facilitates the numerical integration dramatically.

Calculation of Derivative of Angular Momentum The absolute derivative

of the angular momentum of the system includes the local derivative in the unified

coordinate system (xs, ys, zs) (the change of magnitude of the momentum) and the

rotational effect (the change of direction of the momentum) in Eqn. (4.1). In theory,

the angular momentum of any system can be decomposed into any arbitrary coor-

dinate system. Here, the (xs, ys, zs) coordinate system in the presented method is

prescribed to be parallel to the body-fixed coordinate system of the tower, (xt, yt, zt),

to realize two important benefits. First, it eliminates complication of computing the
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derivative of the angular momentum, and more importantly, it decouples the veloci-

ty terms in the inertia forcing of Eqn. (4.1). The absolute derivative of the angular

momentum of the system in Eqn. (4.1) can be expanded to:

dH⃗s
Gs

dt
=

˙(
H⃗s

Gs

)
xsyszs

+ ω⃗s × H⃗s
Gs

(4.9)

in which

H⃗s
Gs

= H⃗s + ρ⃗Gt/Gs ×mtv⃗Gt/Gs + ρ⃗Gn/Gs ×mnv⃗Gn/Gs + ρ⃗Gr/Gs ×mrv⃗Gr/Gs (4.10)

where the notation ˙( )xsyszs
represents the local derivative within the (xs, ys, zs)

system, i.e. the time change of the magnitude of each component in the vector.

The angular velocity of the (xs, ys, zs) system, ω⃗s, is equal to rotational velocity

of the tower shown in Eqn. (4.5). The local derivative of the vector H⃗s can be

obtained by directly taking derivative of Eqn. (4.6), which includes the derivative of

the transformation matrixes and the angular velocities. The derivative of three cross

product terms needs further investigation. Here a symmetric matrix (ρ̄) is introduced

to simplify the calculation of derivative. Take the term associated with the tower for

example:

v⃗Gt/Gs =
dρ⃗Gt/Gs

dt
= ˙(

ρ⃗Gt/Gs

)
xsyszs

+ ω⃗s × ρ⃗Gt/Gs

˙(
ρ⃗Gt/Gs ×mtv⃗Gt/Gs

)
xsyszs

= ρ⃗Gt/Gs ×mt
¨(

ρ⃗Gt/Gs

)
xsyszs

+ ˙[
ρ⃗Gt/Gs ×mt(ω⃗s × ρ⃗Gt/Gs)

]
xsyszs

= ρ⃗Gt/Gs ×mt
¨(

ρ⃗Gt/Gs

)
xsyszs

+mt
˙(ρ̄ω⃗s)xsyszs

= mtρ⃗Gt/Gs × ¨(
ρ⃗Gt/Gs

)
xsyszs

+mt
˙(ρ̄)xsyszs

ω⃗s
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+mtρ̄ ˙(ω⃗s)xsyszs
(4.11)

where the relative velocity v⃗Gt/Gs is calculated by the absolute derivative of the radius

vector ρ⃗Gt/Gs . The symmetric matrix ρ̄ is introduced to simplify the calculation of

the derivative [34]:

ρ̄ =


ρ22 + ρ23 −ρ1ρ2 −ρ1ρ3

−ρ1ρ2 ρ21 + ρ23 −ρ2ρ3

−ρ1ρ3 −ρ2ρ3 ρ21 + ρ22

 (4.12)

in which ρ⃗Gt/Gs = [ρ1, ρ2, ρ3]. The derivative of the radius vector ρ⃗Gt/Gs can be ob-

tained from Eqn. (4.8), which depends on the derivatives of various transformation

matrixes. If the amplitude of the radius vector ρ⃗Gt/Gs is assumed to be constant,

i.e. that the CM of the system is at a fixed point on a body, the velocity and accel-

eration terms resulting from this vector, ¨(
ρ⃗Gt/Gs

)
xsyszs

and ˙(ρ̄)xsyszs
, will disappear

from Eqn. (4.11), which allows this methodology to degenerate to the specific case

presented in Chapter 3. The derivatives related to the vectors ρ⃗Gn/Gs and ρ⃗Gr/Gs

in Eqn. (4.10) are calculated similarly. The introduction of symmetric matrix (ρ̄)

facilitates the combination of similar terms from each rigid body and the separation

of rotational DOFs (ω⃗s) from cross product terms, which guarantees the numerical

integration of the rotational EOMs can be achieved by efficient matrix form.

b. Translational Equations of Motion

Similar to the rotational EOMs, the conservation of linear momentum is applied to

the entire wind turbine system directly to avoid the calculation of internal forces
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between rigid bodies:

∑
F⃗ = msa⃗Gs (4.13)

where a⃗Gs is the linear acceleration of the CM of the system, a⃗Gs = [Ẍ1, Ẍ2, Ẍ3];

ms is the mass of the whole system, i.e. ms = mt + mn + mr; the force vec-

tor
∑
F⃗ represents the external forces of the entire system in the inertia coordi-

nate system (X, Y, Z), including environmental forces, restoring forces and gravity:∑
F⃗ = F⃗wind + F⃗wave + F⃗restoring + G⃗. Each of these components must be decom-

posed to the inertia coordinate system (X,Y, Z) for application of Newton’s second

Law. Restoring forcing, F⃗restoring, include contributions from buoyancy of the hull

and tension of the mooring lines. The solution to this set of 3 translational EOMs is

the motion of the CM of the system measured from the (X,Y, Z) system. This CM

is a mathematical convenience, the position of which may be constantly changing

relative to both the (X, Y, Z) system and any of the three bodies making up the

wind turbine model. The spatial position of the CM of the tower relative to Gs can

be expressed as:

ρ⃗IGt/O = ρ⃗IGs/O + Ts→I ρ⃗Gt/Gs (4.14)

where the radius vectors ρ⃗IGs/O
and ρ⃗Gt/Gs result from the integration result of

Eqn. (4.13) as well as Eqn. (4.8), respectively; the transformation matrix from

(xs, ys, zs) to (X,Y, Z) can be calculated by Eqn. (3.13) in Chapter 3. The trans-

lational DOFs of the tower are determined as the motion of Gt measured from the

(X, Y, Z) system, i.e. ρ⃗IGt/O
= [X1t, X2t, X3t], which is specified as the initial con-
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dition of translation and transferred to that of Gs by Eqn. (4.14) for numerical

integration of the translational EOMs. Similarly, the motion of Gs from Eqn. (4.13)

is transferred to that of Gt for the calculation of external forcing at each time step.

3. External Forcing

The external forcing (including both the external forces and moments) is composed

of restoring forcing from hydrostatics and mooring lines and the environmental forc-

ing due to wind and waves. The LHS of the rotational EOMs (Eqn. (4.1)) is the

sum of the external moments in the translating-rotating system (xs, ys, zs); the LHS

of the translational EOMs (Eqn. (4.13)) is the external forces in the inertial system

(X, Y, Z). The calculation of nonlinear external forcing is similar to the method pre-

sented in Chapter 3. Here, the effects of 3-body configuration and the unconstrained

Gs are highlighted.

a. Restoring Forcing

The large-amplitude motion of the wind turbine system results in nonlinear restor-

ing forcing, which cannot be calculated by the conventional linear stiffness matrix

method. Here the hydrostatic restoring forcing are calculated directly from the in-

stantaneous buoyancy and the buoyancy center of the floater, which are nonlinear

for large-amplitude motions. The floater ( Fig. 27) includes two cylinders: a small

surface-piercing cylinder and a larger subsurface cylinder, which are connected by

a tapered structural cone. The lower cylinder and taper are fully submerged and

therefore have constant buoyancy and fixed buoyancy center. The surface-piercing
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cylinder has buoyancy and the buoyancy center that change with position of the

cylinder. The constantly changing buoyancy and the buoyancy center of the entire

floater can be obtained by combining those of previous two parts.

The instantaneous buoyancy of the surface-piercing cylinder in the inertial co-

ordinate system (X, Y, Z) is F⃗ I
B = (0, 0, ρgπr2h1) [67], where ρ is the density of sea

water; g is the gravitational acceleration; r is the radius of the cylinder; h1 is instan-

taneous submerged length of the cylinder along the centerline. This variable length

can be shown as the function of heave motion and leaning angle of the cylinder:

h1 =
ρGM/Gt −X3t

cosθ1
− ρGM/Gt + h0 (4.15)

where ρGM/Gt is the distance measured from still water level to the CM of the tower

in its equilibrium position; θ1 is the leaning angle of the cylinder with respect to

vertical, cosθ1 = cosX4cosX5; h0 is the initial length of h1, i.e. the draft of the

cylinder in equilibrium position.

The variable center of buoyancy of this partially submerged cylinder piercing the

water surface at an angle is described by the radius vector in the (xt, yt, zt) system,

i.e. ρ⃗B/Gt = (xBt , y
B
t , z

B
t ), and can be calculated by Eqn. (3.15) in Chapter 3. The

hydrostatic restoring moment from the cylinder can be expressed as M⃗ s
B = ρ⃗B/Gs ×

(TI→sF⃗
I
B), in which the radius vector ρ⃗B/Gs can be calculated by ρ⃗B/Gs = ρ⃗B/Gt +

ρ⃗Gt/Gs . This moment is decomposed into the translating-rotating system (xs, ys, zs)

to be consistent with the inertia forcing in the RHS of Eqn. (4.1). The restoring

forcing from the fully submerged part of the floater (taper and lower larger cylinder)

is combined to previous contribution from surface-piercing cylinder to estimate total
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hydrostatic force.

The calculation of mooring forcing from four radial taut lines is similar to Chap-

ter 3 by determining the position of the fairlead of each line with respect to the CM

of the tower. The radius position of any one fairlead (point A) in the inertia coor-

dinate system (X,Y, Z) is ρ⃗A/O = ρ⃗Gt/O + Tt→I ρ⃗A/Gt , where the radius vector ρ⃗Gt/O

results from Eqn. (4.14); ρ⃗A/Gt is the radius position of point A in the (xt, yt, zt)

system. The tension along a neutrally buoyant taut line in the (X, Y, Z) system can

be obtained by Eqn. (3.16) in Chapter 3. The restoring force of the mooring system

is obtained by summing the force from each line. Similarly, the restoring moment

from each line in the (xs, ys, zs) system is summed to obtain the contribution from

the entire mooring system.

b. Environmental Forcing

The wind force in the (X,Y, Z) system and wind moment calculated about Gs in the

(xs, ys, zs) system are needed in the application of equations of motion of the system.

The wind thrust force is assumed to be applied on the center of the blade area (Gr

in Fig. 27) and along the B-axis, i.e., perpendicular to the swept blade area. The

amplitude of wind force (Fb) depends on relative wind velocity and can be calculated

by Eqn. (3.19) in Chapter 3.

The amplitude of relative velocity, Vrb, is computed by projecting both the wind

velocity and structural velocity onto the B-axis through dot product, i.e. Vrb =

V⃗ I
wind · u⃗IB − V⃗ I

Gr
· u⃗IB, in which V⃗ I

wind is the wind velocity measured from the (X,Y, Z)

system. The structural velocity of the center of the blade area can be expressed as:
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V⃗ I
Gr

= [Ẋ1 Ẋ2 Ẋ3]
T + Ts→I v⃗Gr/Gs , where the relative velocity v⃗Gr/Gs can be obtained

by similar form to Eqn. (4.11). The unit vector u⃗IB indicates the direction of the

B-axis in the (X, Y, Z) system by u⃗IB = Tr→I u⃗
r
B, where u⃗

r
B is the unit vector along

B-axis in the (xr, yr, zr) system, i.e. u⃗rB = (0, 1, 0). The transformation matrix from

(xr, yr, zr) to (X, Y, Z), Tr→I , is obtained by multiplication of the transformation

matrix: Tr→I = Ts→ITr→s.

Finally the wind force in the (X,Y, Z) system and the wind moment in the

(xs, ys, zs) system are expressed as:

F⃗wind = Tr→IF⃗
r
wind (4.16)

M⃗wind = ρ⃗Gr/Gs × F⃗ r
wind (4.17)

where F⃗ r
wind is the wind force in the (xr, yr, zr) system: F⃗ r

wind = (0,−Fb, 0). The

aerodynamic torque is modeled as a constant using rated power divided by rotor

speed, which is added to the wind moment.

Similar to Chapter 3, the generalized Morison equation (Eqn. (3.22)) is used

to calculate the wave forces per unit length normal to the axis of the leaning cylin-

der. The structural velocity and acceleration of the segment along the tower can be

obtained by the kinematics of rigid body:

V⃗t = V⃗Gt + Ts→I(ω⃗t × ρ⃗i/Gt) (4.18)

˙⃗
Vt = a⃗Gt + Ts→I [ ˙⃗ωt × ρ⃗i/Gt + ω⃗t × (ω⃗t × ρ⃗i/Gt)] (4.19)

where V⃗Gt and a⃗Gt are the linear velocity and acceleration of the CM of the tower,

Gt, in the inertial coordinate system (X, Y, Z); ρ⃗i/Gt is the vector radius from Gt to
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the segment with unit length.

The wave force on the cylinder is obtained by summing the force on each segment

from Eqn. (3.22). The wave moment in the (xs, ys, zs) coordinate system can be

computed by transforming the resulting forces from Eqn. (3.22) into the (xs, ys, zs)

system and then numerically integrating over the submerged length of the tower. In

the calculation of wave moment from each segment, the arm can be expressed by

ρ⃗i/Gs = ρ⃗i/Gt + ρ⃗Gt/Gs .

D. Example

A compliant floating wind turbine design is obtained by truncating the spar cylinder

of OC3-Hywind model [60] from from 120 m to 84.4 m, saving about 2500 tonnes,

or about or about 30% in total weight. This reduction also reduces the available

hydrostatic restoring moment and allows larger pitch angle. OC3-Hywind is the

numerical model based on Statoil’s original Hywind system, but was modified to

support the NREL 5-MW wind turbine. The topsides (nacelle and rotor) of the

truncated model are the same as that in OC3-Hywind: the moment of inertia of

nacelle about yaw axis is 2.61×106 kg·m2; the moment of inertia of rotor about

spin axis is 3.54×107 kg·m2. The displaced volume of water is reduced from the

original 8.03×103 m3 to 5.56×103 m3. The moments of inertia of the tower (in-

cluding hull) w.r.t. the (xt, yt, zt) system originated from Gt are 5.85×109 kg·m2

and 1.12×108 kg·m2 in the tilt (roll and/or pitch) and yaw, respectively. The four

taught-leg mooring lines are each assumed to be a straight axial spring with stiffness

of 6.81×105 N/m and length of 564-m in a 320-m water depth location. The origin of
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the global coordinate system (X,Y, Z) is the initial position of the CM of the tower,

i.e. 58.67 m below still water level.

The truncated design is first used to verify the new method by comparison with

the popular wind turbine dynamics software FAST [46] for a small-amplitude motion

case. The same model is then applied to large-amplitude motion. Results for a 2-

body system in Chapter 3 and 3-body system are critically compared to quantify the

influence of including small changes to the position of the CM of the system (Gs)

caused by nacelle yaw. Finally, the new method is applied to simulate the general

motion of the compliant design subject to nacelle yaw associated with a rapid wind

shift.

1. Free Vibration Verified by FAST

Figs. 28–29 show time histories computed using FAST and those computed us-

ing conservation of momentum method for a small-amplitude free vibration case.

The rotational DOFs of the tower are transferred to the inertial coordinate sys-

tem used in FAST to enable direct comparison between (X4, X5, X6) and pitch, roll

and yaw, which is valid for small-amplitude rotation [69]. The translational D-

OFs, (X1t, X2t, X3t), are transferred to the waterplane to enable direct comparison

with the sway, surge and heave computed in FAST, which are measured from the

(XM , YM , ZM) system in Fig. 27. Constant nacelle yaw (1.2 deg/sec) and rotor spin

(12.1 rpm) are prescribed during the simulation. Here both hydrodynamics and

aerodynamics have been disabled in FAST. The only external forces acting on the

body are from the mooring lines and buoyancy, both of which are represented in
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the user-defined subroutine (UserPtfmLd) in FAST as a 6× 6 restoring matrix, with

values to be consistent with the method presented in Section 3 but linearized near

the average tilt angle and tuned to reproduce the correct natural frequencies. The

initial conditions of six DOFs of tower motion are zero. The CM of the nacelle is not

directly above the axis of the tower, so nacelle yaw motion changes the position of

the CM of the system relative to the tower, which causes the tower motion. Figs. 28–

29 show that the global motions of FAST and the momentum method are virtually

indistinguishable. The spin axis is initially parallel to the surge direction. The in-

fluence of the moving Gs is clearly observable in the coupled motion of translational

and rotational moving DOFs. For example, both pitch and surge are minimized (zero

crossing) when the nacelle yaw angle is 90 deg (at 75 sec), while roll and sway are

maximized. The observed yaw motion results from gyro moments associated with

rotor spin coupled with roll and pitch.
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Fig. 28. Rotation compared to FAST (3-body)
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Fig. 29. Translation compared to FAST (3-body)

2. Effect of a Variable Center of Mass on Free Vibration

Figs. 30–31 show the comparison of global motion between the 2-body in Chapter 3

and 3-body systems using the same truncated model. As in the prior example, this

is a free-vibration case in which the only externally applied forces are the restoring

forces from the mooring lines and hydrostatics. The large-amplitude initial conditions

are prescribed to be X4 = X5 = 0.4 rad. Constant nacelle yaw (0.3 deg/sec) and

rotor spin (12.1 rpm) are also prescribed. Figs. 30–31 show the significant influence of
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the unconstrained Gs on the global motion (only X6 and X3t shown). In the 2-body

system, the CM of the system (Gs) is constrained to the tower axis and independent

of nacelle yaw, because the 2-body representation requires that the radius vector

from Gs to the CM of each body (e.g. ρ⃗Gt/Gs) remains constant. However, the more

accurate modeling of the 3-body system enables correct calculation of changes to the

CM of Gs associated with nacelle yaw. The effect is that the 3-body model includes

changes to both the angular momentum and external moments in rotational EOMs

(Eqn. (4.1)) associated with the change of reference point Gs at each time step,

which results in significant differences in computed rotation about the tower axis

(Figs. 30,X6). These refinements results cannot be captured by the 2-body model.

Accurate simulation of the unconstrained Gs has a similar effect on vertical

motion. The motion of Gs from the 2-body model is transferred to that of Gt through

rigid body motion. The moving Gs in the 3-body model, captured by Eqn. (4.14)

and coupled with the roll and pitch motions of the tower, introduces the change of

the vertical motion of Gt (X3t). In a separate simulation, the overhang length of the

rotor in the 3-body system was adjusted to make the CM of the topsides exactly

on the top of the tower, such that the 3-body system effectively degenerated to the

2-body system. In this case, the general motion of the 3-body system matched the

2-body system perfectly (plot of results not shown).
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3. Forced Vibration with Nacelle Yaw

Figs. 32–34 show global motion for the same compliant spar model subject to re-

alistic environmental forcing. The mean wind velocity at hub height is 18.2 m/s.

Irregular wind velocities are simulated using TurbSim [62]. The wave environment

is represented by a JONSWAP spectrum with a significant wave height of 5.0 m

and peak period of 10 sec. The wind is along the negative direction of the Y -axis

during the first 100 sec and then suddenly shifts by π/4 rad towards the negative

direction of the X-axis in the XOY plane. The wind shift causes the nacelle yaw

control to activate at 100 sec, yaw the nacelle at a constant 0.3 deg/sec, and then

deactivate at around 250 sec. Wave forces are computed using the Morison equation

from a first-order time-domain representation of irregular waves simulated directly

from the wave spectrum using a uniform phase distribution. The inertia coefficient

Cm in Eqn. (3.22) is assumed to be 2.0; the added mass coefficient Ca is assumed

to be 1.0; the drag coefficient Cd is assumed to be 0.6. Fig. 32 shows simulation

results of 1-2-3 sequenced Euler angles, in which wind forces are computed using the

variable thrust coefficient based on Fig. 14. Fig. 33 shows the associated motion of

Gt measured from the global coordinate system (X, Y, Z). The nonzero means of X4

and X3t indicate that the tower is always leaning away from the wind. The change

in the mean of X5 from zero to nonzero is due to the wind shift. Fig. 34 shows

the results of a simulation in which wind forces are computed using a fixed thrust

coefficient of CT = 0.15 in Eqn. (3.19). Both the sway of Gs (X1) and roll of the

tower (X5) clearly show the transition of mean between 100 sec and 250 sec. The

positive damping introduced by fixed thrust coefficient decreases both the maxima



120

and the envelope of the motion considerably, as was previously noted by Nielsen [63].
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E. Conclusions

A new formulation of multibody dynamics has been developed to directly apply

the conservation of angular momentum to a 3-body compliant floating wind turbine

system including tower, nacelle and rotor. An important extension beyond Chapter

3 is that the unconstrained CM of the system due to the relative motion among

rigid bodies is considered in the derivation. The coupling between translational and

rotational inertial forcing is eliminated by choosing the body-fixed coordinate system

of the base body (tower) to derive unknown relative radius vectors between the CM of

the system and that of each body. The resulting position and velocity of each body

is applied in the calculation of restoring forcing and environmental forcing, which

preserves the fully nonlinear coupling between external forcing and large-amplitude

motion of the system. The new method is verified by comparison with the well-known

software FAST for small-amplitude motion. Comparison of motions between 2-body

system in Chapter 3 and 3-body system here is shown to quantify the influence of

the unconstrained CM of the system. The new method is also used to simulate the

general motion of the compliant design subject to nacelle yaw. A major strength of

this new method is that it can be readily expanded and applied to the wind turbine

system including more rigid bodies.
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CHAPTER V

CONSERVATION OF MOMENTUM FOR N-BODY MODEL

A. Overview

In this Chapter, the method in Chapter 4 is generalized for application to any N -

body system. First, the coordinates used in the derivation are standardized: the

absolute translation and rotation of a prescribed base body within the system are

chosen to be the reference point coordinates, which is equivalent to the unknown

degrees of freedom (DOFs) of the multibody system; the relative rotations between

contiguous bodies along the kinematic chain within the system are chosen to be

relative coordinates, which are mechanically controlled and equivalent to prescribed

known DOFs of the system. The theoretical derivations for both forward and in-

verse dynamics are then systematized using standardized notations. The generalized

formulation procedure is named the momentum cloud method (MCM) and it can

be applied to establish the EOMs using standard vector and matrix calculations.

The resulting EOMs are not coupled between translation and rotation beyond the

first-order and so facilitate numerical integration. A key advantage over conventional

energy methods is that the MCM avoids tedious rederivation of the EOMs if new

rigid bodies are added to the system. The standardization of the new method starts

from a simple 2-body model, and is then generalized to the serial N -body system

connected by revolute joints with prescribed relative rotation, and finally expanded

to more complicated forms and joints. A simulation example is presented for a 6-

body floating wind turbine system to demonstrate the results of forward and inverse
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dynamics, which are verified by critical comparison with those of the popular wind

turbine dynamics software FAST.

B. Introduction and Background

In Chapter 3 and 4, the multibody dynamics of compliant floating wind turbines are

investigated by directly applying conservation of momentum to the entire systems.

The presented method in this Chapter is an expansion of prior work for application

to a generalized rigid multibody system connected by revolute or prismatic joints

with prescribed relative motions between contiguous bodies. The main focus is sys-

tematic formulation of six basic EOMs associated with the two decoupled 3×3 mass

matrices by the momentum cloud method (MCM). In addition to these basic EOMs,

a generalized N -body system may also include the EOMs of the unknown DOFs of

mechanically controlled joints (control equations) and EOMs describing kinematic

relation between selected coordinates (constraint equations). In this case, expansion

of the six basic EOMs requires consideration of the effects of both the control and

constraint equations through use of numerous system coordinates, including six ref-

erence point coordinates of the base body and unknown relative coordinates among

contiguous bodies.

The generalization of multibody formulation methods first requires standard

notations, based on which systematic theoretical derivation and numerical imple-

mentation are then achieved. To mention a few examples, Lucassen [71] analyzes

optimal body-fixed coordinate systems in the NE method using standardized param-

eters and derivaiton. Stoneking [34] presents the systematic derivation of the exact
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nonlinear dynamic EOMs for a multibody spacecraft system based on the improved

NE method. Garrad [72] investigates the symbolic computing of the EL method and

applies it to the research on wind turbine dynamics. In his work, the mathematical

formulation of the EOMs is described first in a form suitable for manual derivation

and then generalized as a step by step process suitable for automation.

Regardless of the physical theories, the general form of the EOMs is based on

the representation of a mass matrix for use in computing the inertial forcing, which

is then set equal to the external forcing. The EOMs in this general form are con-

venient to be written in the first-order decoupled form ẋ = f(x, t) for numerical

integration [73]. Featherstone [36] investigates the formulation and solution of the

EOMs in this general form from the perspective of coding. Orden [74] analyzes the

computational methods and applications of multibody dynamics. Some programs

based on analytical methods have also been documented in literatures [75]. The

efficiency of numerical integration depends on the degree to which the elements in

mass matrix are coupled, or say the number of nonzero off-diagonal elements. In

this sense, the formulation of current methods introduces a common computational

inefficiency: a large number of coupled differential EOMs must be solved simulta-

neously. To decouple the EOMs including different DOFs as much as possible, a

base body is prescribed within the multibody system, and the EOMs of the entire

system are projected into the coordinate system relevant to this body. Only six ba-

sic EOMs of the system are required to capture 6 unknown DOFs of the base body

when mechanical DOFs between contiguous bodies are prescribed. The 6 × 6 mass

matrix is actually composed of two decoupled 3×3 mass matrices for translation and
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rotation, respectively. Each element within the matrix includes the inertial effects of

all bodies. This condensation decreases the coupling between elements in the mass

matrix, and so minimizes the computational demand. This new formulation method

is later expanded to multibody systems with more complicated joints and connection

types.

Derivation of the MCM first requires selection of a set of proper coordinates.

In the sections that follow, these coordinates are developed and applied to a simple

2-body model for which the basic EOMs are formulated. The method is then gener-

alized to a serial N -body system, such as a serial manipulator in robotics, and finally

generalized to more complicated forms with branches or loops. The formulation can

also be used on the inverse dynamic problem to calculate the internal forcing. An

example is presented in which the dynamics of a 6-body floating wind turbine system

are simulated. The tower, nacelle, hub and the three blades are each represented as

rigid bodies. Results of the forward and inverse dynamics are critically compared

with the well-recognized NREL FAST aero-elastic simulator [45].

C. Theory

The coordinate systems and relevant coordinates associated with the N-body model

are standardized in Section 1. The basic EOMs for a simple 2-body model are

formulated in Section 2. The method is then generalized to a serial N -body system

to form the MCM in Section 3 and expanded for systems with more complicated

forms and connection joints in Section 4. Finally, inverse dynamics is investigated in

Section 5.
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1. Coordinate Systems and Dependent Coordinates

A set of proper coordinates is needed to unequivocally define the kinematics of a

multibody system [33]. Here, the corresponding coordinate systems are first illus-

trated by a simple 2-body model. Then the coordinates measured from such coordi-

nate systems are demonstrated and generalized for an N -body system. Finally, the

reasons and advantages for such choice of coordinates are investigated.

In the MCM, the reference point coordinates are used to describe the motion

of base body; the relative coordinates are used to define the relative motions be-

tween contiguous bodies. Several proper coordinate systems are needed to define

those coordinates. Fig. 35 shows the detailed definitions of various coordinate sys-

tems through a simple 2-body model. B1 and B2 are two rigid bodies connected

by revolute joint J with known relative rotation. B1 is specified as the base body.

The angular rotation of B2 relative to B1 is always expressed relative to its initial

position B0
2 . For example, the base body (B1) is a moving tower, on the top of which

is mounted a clock face and rotating hour hand. If the hour hand is initially at 12:00

(B0
2), then all future positions of B2 are measured relative to 12:00, regardless of mo-

tion of the tower. The coordinate systems (x1, y1, z1) (C1 system) and (x2, y2, z2) (C2

system) are body fixed and originate at the CM of bodies, G1 and G2, respectively.

The C0
2 system originates at the CM of B0

2 (G0
2) and indicates the initial position of

the C2 system. The system-fixed coordinate system (xs, ys, zs) (Cs system) is located

at the CM of the system (Gs), and is prescribed to be parallel to the C1 system. The

inertial coordinate system (X,Y, Z) (CI system) has its origin defined by the initial

position of the CM of the base body, such that the radius vector originated from O
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to G1 is the location of G1 relative to its initial position.
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Fig. 35. Two bodies connected by a joint

The dependent coordinates for an N -body system can be defined using similar

coordinate systems as that in 2-body model. The reference point coordinates describe

the translation and rotation of the base body measured from the inertial coordinate

systems. The coordinates (X1, X2, X3) measured from the CI system are used to

define the absolute motion of the CM of the Cs system, Gs. These coordinates are

further transferred to the translations at the CM of the C1 system, G1, which are

notated by the coordinates (X1b, X2b, X3b) and defined as 3 translational DOFs of

the base body. The large-amplitude rotation of the base body w.r.t. the CI system

is described by introducing the 1-2-3 sequenced Euler angles X4-X5-X6, which are
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3 rotational DOFs of the base body. Thus, the reference point coordinates of the

N -body system are represented by (X1b, X2b, X3b) and (X4, X5, X6). The relative

coordinates of the N -body system can be measured by the rotation of Ci relative to

the C0
i system and denoted by the angular velocity vector ω⃗

C0
i

Bi
, which is the rotation

of C2 relative to the C0
2 system in the 2-body model. Here the relative coordinates

include only one prescribed relative angular velocity to simplify the formulation of the

EOMs. More unknown relative coordinates can be applied, such as unknown relative

rotation angles and orientations of the rotational axes, and can be interconnected

through the control and constraint equations.

The reference point coordinates includes two unconventional features. First,

they are used to describe the motion of an arbitrarily selected based body: the

absolute translation at its CM and the absolute rotation as described by Euler angles.

Second, only three rotational reference point coordinates (Euler angles) ultimately

appear in the basic EOMs. Relative coordinates define the motion of each successive

body (Bi) relative to its neighbor (Bi−1) along the kinematic chain by the DOFs

allowed by the connecting joint. A cascading procedure is then applied to determine

the absolute position of each body other than the base body.

Generally, the dependency of all coordinates are represented by the combination

of six basic EOMs, control and constraint equations. In the derivation here, all rela-

tive coordinates at different joints are mechanically controlled, which is equivalent to

the explicit solution to the control EOMs. The constraint equations are minimized

in the derivation by prescribing certain relative coordinates equal to zero and sim-

plifying the associated transformation matrices. However, the MCM can be easily
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expanded to the multibody system needing all three kinds of EOMs. In general case,

the number of the basic and control EOMs is equal to the unknown DOFs of the

system; the number of the constraint equations is equal to the difference between the

number of dependent coordinates and that of the DOFs of the system. The control

equations can be of any complexity, e.g. from the response of a spring to a highly

complex numerical control system. The solution to the control equations at a single

point of time actually imposes a constraint at that time. In this sense, the control

and constraint equations receive comparable treatment in the MCM: the solutions

to them are represented in six basic EOMs in the form of various transforms.

An ideal selection of the coordinates both simplifies formulation of the EOMs

and increases the efficiency of the numerical integration. Any coordinate introduced

to a multibody dynamics problem becomes an unknown, which require an additional

equation to solve. The combination of reference point and relative coordinates guar-

antees that some dependent coordinates can be eliminated from the basic EOMs

with only trivial computational demand. The basic coupled differential EOMs of the

system are by far the most computationally demanding to solve, so minimizing the

number of coordinates in these equations is of primary importance. Here, a very

large number of coordinates is applied to facilitate the establishment of the EOMs,

but the formulation enables elimination of all but six reference point coordinates

from the basic EOMs.
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2. Equations of Motion for 2-Body System

The methodology is developed for a simple 2-body model connected by one revolute

joint with one prescribed relative angular velocity (Fig. 35). Future sections will

further generalize the derivation to more complex system.

a. Rotational Equations of Motion

Beginning with conservation of angular momentum, the sum of the moments re-

sulting from externally applied forces about the CM of a system of particles in the

translating-rotating system, (xs, ys, zs), equals the change of amplitude of the mo-

mentum within the coordinate system plus the change of direction of the momentum

with respect to global coordinate system (e.g. [58]). The rotational EOMs can be

shown by Chapter 4 as:

B1
M⃗Cs

Gs
+

B2
M⃗Cs

Gs
=

˙(
s
H⃗Cs

Gs

)
Cs

+ ω⃗Cs ×
s
H⃗Cs

Gs
(5.1)

where the notation ˙( )Cs
is the local derivative within the Cs system, i.e. the rate

of change of the total quantity with respect to time. For the 2-body system shown in

Fig. 35,
s
H⃗Cs

Gs
is the sum of the angular momenta of B1 and B2 w.r.t. the CM of the

system, Gs, which is totally different from the angular momentum of one rigid body

in the conventional Euler dynamic equations. The vector ω⃗Cs describes the angular

velocity of the Cs system w.r.t. the inertial coordinate system CI . The moment

vectors
B1
M⃗Cs

Gs
and

B2
M⃗Cs

Gs
represent the external moments applied to B1 and B2,

which are calculated about Gs and decomposed onto the Cs system.

Application of the theorem of conservation of angular momentum to a system
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requires that the momentum be calculated about the CM of the system. Here, the

momentum of each body is computed about Gs, and projected onto a coordinates

system parallel to the C1 system. Computation of the absolute derivative of the

angular momentum of each rigid body is simplified by decomposing its absolute

angular velocity onto a body-fixed coordinate system (Ci) , then projecting the re-

sulting momentum back into the system-fixed coordinate system (Cs) in accordance

with conventional Euler dynamics equations (e.g. [58]). Using this method, the an-

gular momentum of each body is computed in its body-fixed coordinate system and

transferred to the Cs system without introducing any new coordinates.

In a 2-body system, the angular momentum of each of the two rigid bodies is

first calculated in the body-fixed coordinate system C1 or C2 about G1 or G2, then

transformed to the unified Cs system and finally transferred to the unified reference

point, Gs. The angular momentum of the 2-body system with respect to Gs and

projected to the Cs system is:

s
H⃗Cs

Gs
=

B1
H⃗Cs

Gs
+

B2
H⃗Cs

Gs
(5.2)

where
B1
H⃗Cs

Gs
and

B2
H⃗Cs

Gs
are the angular momenta of B1 and B2 w.r.t. Gs and

projected to the Cs system, respectively, and can be shown to be:

B1
H⃗Cs

Gs
= TC1→Cs

B1
H⃗C1

G1
+ ρ⃗Cs

G1/Gs
×m1v⃗

Cs

G1/Gs

= TC1→Cs

(
IB1ω⃗

C1
B1

)
+ ρ⃗Cs

G1/Gs
×m1v⃗

Cs

G1/Gs

B2
H⃗Cs

Gs
= TC2→Cs

B2
H⃗C2

G2
+ ρ⃗Cs

G2/Gs
×m2v⃗

Cs

G2/Gs

= TC2→Cs

(
IB2ω⃗

C2
B2

)
+ ρ⃗Cs

G2/Gs
×m2v⃗

Cs

G2/Gs
(5.3)
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in which the angular momentum of each body is first calculated in the C1 or C2

system about G1 or G2 (
B1
H⃗C1

G1
or

B2
H⃗C2

G2
), and then transformed into the unified Cs

system by transformation matrixes TC1→Cs or TC2→Cs . Finally, addition of the radius

cross-product terms transfers the local momentum to the unified reference point Gs.

IB1 and IB2 are the tensors of moment of inertia w.r.t. the C1 and C2 systems. ω⃗C1
B1

and ω⃗C2
B2

are the absolute angular velocities of B1 and B2 and decomposed to the C1

and C2 systems, respectively, which can be shown to be:

ω⃗C1
B1

=


Ẋ4 cosX5 cosX6 + Ẋ5 sinX6

−Ẋ4 cosX5 sinX6 + Ẋ5 cosX6

Ẋ4 sinX5 + Ẋ6


ω⃗C2
B2

= TC1→C2ω⃗
C1
B1

+ TC0
2→C2

ω⃗
C0

2
B2

(5.4)

where the expressions of ω⃗C1
B1

are Euler kinematic equations [69] associated with the

rotational reference point coordinates (X4, X5, X6) and are equal to ω⃗Cs in Eqn. (5.1)

because the Cs system is parallel to the C1 system; ω⃗C2
B2

is obtained along the kine-

matic chain by combining the effects of ω⃗C1
B1

and ω⃗
C0

2
B2

and transforming the results

into the common C2 system. The prescribed angular velocity of B2 relative to B1,

ω⃗
C0

2
B2
, is measured relative to the C0

2 system, which is fixed to B1 and parallel to

the initial position of B2. The C0
2 system is introduced as a convenient reference

for relative rotation between B2 and B1. The transformation matrix TC1→C2 can be

obtained as TC1→C2 = TC0
2→C2

TC1→C0
2
, in which TC1→C0

2
is the direction cosine matrix

between two body-fixed coordinate systems. TC1→C0
2
is time-independent and can

be obtained from initial positions; TC0
2→C2

is time-dependent and can be calculated
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from known mechanical rotations at the joint.

The cross product terms in Eqn. (5.3) transfer the reference point of angular

momentum from the CM of the body to the CM of the system (e.g. [58]). The CM

of the system, Gs, is time-varying and not constrained to any rigid body, as dictated

by arbitrary relative motion between rigid bodies. The CM of each body (G1 and

G2) and of the system (Gs) are expressed through defining all relative motions due to

joint rotations in the body-fixed C1 system, which makes the radius vectors (ρ⃗Cs

G1/Gs

and ρ⃗Cs

G2/Gs
) independent of the absolute motion of Gs. This independence makes the

inertial forcing in three basic rotational EOMs independent of (X1, X2, X3), which

dramatically simplifies the formulation and solution of the EOMs.
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Fig. 36. Calculation of radius vectors

The relative positions of G1 and G2 to Gs are obtained by vectorial combina-
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tion; the CM of the system, Gs, is computed as a weighted average; and motions

between bodies are computed directly from transformation matrix representing joint

rotations.

ρ⃗Cs

G1/Gs
= ρ⃗C1

G1/Gs
= ρ⃗C1

G1/G1
− ρ⃗C1

Gs/G1

ρ⃗Cs

G2/Gs
= ρ⃗C1

G2/Gs
= ρ⃗C1

G2/G1
− ρ⃗C1

Gs/G1

ρ⃗C1

Gs/G1
=

m1ρ⃗
C1

G1/G1
+m2ρ⃗

C1

G2/G1

m1 +m2

ρ⃗C1

G2/G1
= ρ⃗C1

J/G1
+ TC2→C1 ρ⃗

C2

G2/J
(5.5)

in which vector ρ⃗C1

G1/G1
has zero magnitude, but is included here for completeness

because it aids in the generalization to an N -body system. Radius vectors ρ⃗C1

J/G1
and

ρ⃗C2

G2/J
indicate the fixed locations of the joint on two rigid bodies. The final radius

vectors in the Cs system, ρ⃗Cs

G1/Gs
and ρ⃗Cs

G2/Gs
, are equal to the correspondents in the

C1 system.

The relative linear velocities in Eqn. (5.3), v⃗Cs

G1/Gs
and v⃗Cs

G2/Gs
, are computed as

the absolute derivatives of the radius vectors of ρ⃗Cs

G1/Gs
and ρ⃗Cs

G2/Gs
, respectively:

v⃗Cs

G1/Gs
=

dρ⃗Cs

G1/Gs

dt
=

˙(
ρ⃗Cs

G1/Gs

)
Cs

+ ω⃗Cs × ρ⃗Cs

G1/Gs

v⃗Cs

G2/Gs
=

dρ⃗Cs

G2/Gs

dt
=

˙(
ρ⃗Cs

G2/Gs

)
Cs

+ ω⃗Cs × ρ⃗Cs

G2/Gs
(5.6)

the form of which is similar to Eqn. (5.1) because ρ⃗Cs

G1/Gs
and ρ⃗Cs

G2/Gs
are decomposed

into the rotating Cs system. It is significant that the translation of the system,

(X1, X2, X3), do not appear in Eqns. (5.5) and (5.6), such that motions due to

rotations are calculated independent from translation of the system, which greatly



136

facilitates the numerical integration.

b. Translational Equations of Motion

Similar to the rotational EOMs, the conservation of linear momentum is applied to

the 2-body system directly to avoid the calculation of internal forces between rigid

bodies:

F⃗CI
B1

+ F⃗CI
B2

= (m1 +m2)⃗a
CI
Gs

(5.7)

where a⃗CI
Gs

is the linear acceleration of the CM of the system, a⃗CI
Gs

= [Ẍ1, Ẍ2, Ẍ3];

m1 and m2 are the masses of two bodies; the force vectors F⃗CI
B1

and F⃗CI
B2

represent

the external forces applied to B1 and B2 in the inertial coordinate system (X,Y, Z).

The solution to this translational EOMs is the motion of the CM of the system (Gs)

measured from the (X,Y, Z) system. Gs is not constrained to any body. Howev-

er, Eqn. (5.7) is solved directly for motion of Gs because it enables decoupling of

translations from rotations.

The absolute position of each body is needed to compute the external forcing,

and can be found by combining translations from the direct integration result of

Eqn. (5.7) with rotations from integration result of Eqn. (5.1):

ρ⃗CI

G1/O
= ρ⃗CI

Gs/O
+ TCs→CI

ρ⃗Cs

G1/Gs

ρ⃗CI

G2/O
= ρ⃗CI

Gs/O
+ TCs→CI

ρ⃗Cs

G2/Gs
(5.8)

where the radius vector ρ⃗CI

Gs/O
is the position of the CM of the system: ρ⃗CI

Gs/O
=

[X1, X2, X3]; ρ⃗
Cs

G1/Gs
and ρ⃗Cs

G2/Gs
result from Eqn. (5.5). The resulting ρ⃗CI

G1/O
has ad-



137

ditional significance in that it describes the position of the base body represented

by 3 translational reference point coordinates: ρ⃗CI

G1/O
= [X1b, X2b, X3b]. The trans-

formation matrix from (xs, ys, zs) to (X,Y, Z), TCs→CI
, needed in Eqn. (5.8) can be

calculated by Eqn. (3.13) in Chapter 3.

Application of this method in a numerical time-domain simulation tool requires

the initial displacement of Gs. This initial condition is computed from the prescribed

initial displacements of the base body and initial joint displacements by solving the

first line in Eqn. (5.8) for ρ⃗CI

Gs/O
. Eqn. (5.8) is applied in future time steps to transform

the motion of Gs resulting from integration of Eqn. (5.7) to G1 and G2 for the

calculation of external forcing. Thus, Eqn. (5.8) can be used as both preprocessing

and postprocessing procedures in the new method.

3. Generalization to a Serial N -Body System

This section generalizes the 2-body derivation to a serial N -body system. Six basic

EOMs are formulated for a series of N bodies connected by revolute joints with

prescribed relative angular velocities. Eqns. (5.1) and (5.7) are the basic EOMs

resulting from the conservation of linear and angular momenta. Application of the

same derivation to a serial N -body system results in vector equations representing

three translational and three rotational EOMs, respectively:

N∑
i=1

F⃗CI
Bi

=

(
N∑
i=1

mi

)
a⃗CI
Gs

N∑
i=1

Bi
M⃗Cs

Gs
=

˙(
s
H⃗Cs

Gs

)
Cs

+ ω⃗Cs ×
s
H⃗Cs

Gs
(5.9)
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The forces
N∑
i=1

F⃗CI
Bi

are externally applied and projected into the inertial CI system;

N∑
i=1

mi is the mass of the entire system; a⃗CI
Gs

is the acceleration of the CM of the

system (Gs). In the rotational EOMs, the external moments on each body,
Bi
M⃗Cs

Gs
,

are calculated about Gs and projected into the system-fixed Cs coordinate system;

s
H⃗Cs

Gs
is the total angular momentum of the N -body system, which is also calculated

about Gs and projected into the Cs system; the absolute angular velocity of the Cs

system, ω⃗Cs , can be obtained using Eqn. (5.4). Similar to Eqn. (5.8), the absolute

position of each rigid body is specified as radius vector to the origin of inertial

coordinate system (X, Y, Z):

ρ⃗CI

Gi/O
= ρ⃗CI

Gs/O
+ TCs→CI

ρ⃗Cs

Gi/Gs
(i > 1) (5.10)

in which the vector ρ⃗CI

Gs/O
is the absolute motion of Gs in the CI system and results

from the integration of the translational EOMs; radius vector ρ⃗Cs

Gi/Gs
is from Gs to

the CM of each rigid body, Gi, and is measured in the Cs system.

The logic underlying the N -body derivation is only slightly more complicated

than that of the 2-body case. Conservation of angular momentum for an N -body

system first requires development of general expressions of total angular momentum

of the system and its local derivative. Then systematic application, including final

formulation of the EOMs and numerical implementation, is presented.
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a. Calculation of Angular Momentum

The total angular momentum can be summed over the N -body system:

s
H⃗Cs

Gs
=

N∑
i=1

Bi
H⃗Cs

Gs
(5.11)

of which Eqn. (5.2) is a special case, and for which the angular momentum of the i-th

body about Gs and projected into the Cs system (
Bi
H⃗Cs

Gs
) results from generalization

of Eqn. (5.3):

Bi
H⃗Cs

Gs
= TCi→Cs

Bi
H⃗Ci

Gi
+ ρ⃗Cs

Gi/Gs
×miv⃗

Cs

Gi/Gs
(5.12)

Each term in Eqn. (5.12) is calculated individually, and then substituted back to

Eqn. (5.11) to obtain the total angular momentum.

First,
Bi
H⃗Ci

Gi
is the angular momentum of Bi calculated about the CM of the

body, Gi, and decomposed onto Ci, the body-fixed coordinate system of Bi. This

angular momentum of a rigid body is:

Bi
H⃗Ci

Gi
= IBi

ω⃗Ci
Bi

(5.13)

in which IBi
is the tensor of moment of inertia of Bi. The absolute angular velocity

of bodies numbered sequentially outward from the base body can be computed as

the second expression of Eqn. (5.4) in a cascading format:

ω⃗Ci
Bi

= TCi−1→Ci
ω⃗
Ci−1

Bi−1
+ TC0

i →Ci
ω⃗
C0

i
Bi

(i > 2)

TCi−1→Ci
= TC0

i →Ci
TCi−1→C0

i
(5.14)

in which the C0
i system describes the initial position of Bi relative to Bi−1; TCi−1→C0

i



140

is time invariant and results from the initial direction cosine matrix between Bi−1

and B0
i ; TC0

i →Ci
represents mechanical rotation.

Back to Eqn. (5.12), the transformation matrix for any body motion relative to

the base body can be expressed by the consecutive multiples of the transformation

matrices between contiguous bodies along the kinematic chain:

TCi→Cs = TCi→C1 =
i∏

j=2

TCj→Cj−1
=

i∏
j=2

TC0
j→Cj−1

TCj→C0
j

(i > 2) (5.15)

The cross product term in Eqn. (5.12) is related to the unconstrained CM of the

system, Gs. Relative radius vector (ρ⃗Cs

Gi/Gs
) and its derivative (v⃗Cs

Gi/Gs
) are derived

using the same methodology as Eqns. (5.5) and (5.6):

ρ⃗
Ci−1

Gi/Gi−1
= ρ⃗

Ci−1

Ji−1/Gi−1
+ TCi→Ci−1

ρ⃗Ci

Gi/Ji−1
(i > 2)

ρ⃗C1

Gi/G1
= ρ⃗C1

Gi−1/G1
+ TCi−1→C1 ρ⃗

Ci−1

Gi/Gi−1
(i > 3)

ρ⃗C1

Gs/G1
=

N∑
i=1

miρ⃗
C1

Gi/G1

N∑
i=1

mi

ρ⃗Cs

Gi/Gs
= ρ⃗C1

Gi/Gs
= ρ⃗C1

Gi/G1
− ρ⃗C1

Gs/G1
(i > 1)

v⃗Cs

Gi/Gs
=

dρ⃗Cs

Gi/Gs

dt
=

˙(
ρ⃗Cs

Gi/Gs

)
Cs

+ ω⃗Cs × ρ⃗Cs

Gi/Gs
(i > 1) (5.16)

This methodology offers the same computational advantage for an N -body sys-

tem as for a 2-body system: decoupling the rotational reference point coordinates,

(X4, X5, X6), from the absolute motion of Gs, (X1, X2, X3).

Eqns. (5.11)-(5.16) can be condensed into a single expression for the total angular
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momentum of the N -body system about the reference point Gs:

s
H⃗Cs

Gs
=

N∑
i=1

(
TCi→Cs

Bi
H⃗Ci

Gi
+ ρ⃗Cs

Gi/Gs
×miv⃗

Cs

Gi/Gs

)
= P1ω⃗

C1
B1

+Q1 + P2ω⃗
C1
B1

+Q2 (5.17)

in which the terms P1ω⃗
C1
B1

and Q1 represent the total angular momentum of each

body calculated about its own CM (Gi) but projected into the unified Cs system, i.e.
N∑
i=1

TCi→Cs

Bi
H⃗Ci

Gi
; the terms P2ω⃗

C1
B1

and Q2 represent the effect of transferring from the

CM of each body (Gi) to the unified reference point(Gs), i.e.
N∑
i=1

ρ⃗Cs

Gi/Gs
×miv⃗

Cs

Gi/Gs
.

Each of the four coefficients represents a sum over the entire system:

P1 =
N∑
i=1

TCi→CsIBi
TC1→Ci

Q1 =
N∑
i=2

[(
N∑
j=i

TCj→CsIBj
TC0

i →Cj

)
ω⃗
C0

i
Bi

]

P2 =
N∑
i=1

miρ̄Gi/Gs

Q2 =
N∑
i=1

miρ⃗
Cs

Gi/Gs
×

˙(
ρ⃗Cs

Gi/Gs

)
Cs

(5.18)

where the calculation of P2ω⃗
C1
B1

is simplified through use of a matrix identity ρ⃗Cs

Gi/Gs
×

(ω⃗C1
B1

× ρ⃗Cs

Gi/Gs
) = ρ̄Gi/Gsω⃗

C1
B1

[34]. ρ̄Gi/Gs is introduced as a computational conve-

nience and calculated by Eqn. (4.12) in Chapter 4. The three elements of any radius

vector ρ⃗Cs

Gi/Gs
are represented by [ρ1, ρ2, ρ3]. This matrix identity enables extraction

of the angular velocity (ω⃗C1
B1
) from the double cross product term, which facilitates

the establishment of first-order decoupled EOMs and greatly simplifies derivative
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calculations.

b. Calculation of Local Derivative of Angular Momentum

The rotational EOMs in Eqn. (5.9) require the local derivative of the total angular

momentum within the Cs system, which is calculated from Eqn. (5.17):

˙(
s
H⃗Cs

Gs

)
Cs

= ˙(P1 + P2)Cs
ω⃗C1
B1

+ (P1 + P2)
˙(ω⃗C1
B1

)
Cs

+ ˙(Q1 +Q2)Cs
(5.19)

in which ˙(P1 + P2)Cs
= ˙(P1)Cs

+ ˙(P2)Cs
, ˙(Q1 +Q2)Cs

= ˙(Q1)Cs
+ ˙(Q2)Cs

. Eqn. (5.19)

includes the local derivatives of four coefficients in Eqn. (5.18) and the angular ve-

locity of the base body in Eqn. (5.4), which are calculated consecutively.

First, taking the derivative of Eqn. (5.18):

˙(P1)Cs
=

N∑
i=1

ṪCi→CsIBi
TC1→Ci

+ TCi→CsIBi
ṪC1→Ci

˙(Q1)Cs
=

N∑
i=2

{[ N∑
j=i

(
ṪCj→CsIBj

TC0
i →Cj

+ TCj→CsIBj
ṪC0

i →Cj

)]
ω⃗
C0

i
Bi

+

(
N∑
j=i

TCj→CsIBj
TC0

i →Cj

)
˙⃗ω
C0

i

Bi

}
˙(P2)Cs

=
N∑
i=1

mi ˙̄ρGi/Gs

˙(Q2)Cs
=

N∑
i=1

miρ⃗
Cs

Gi/Gs
×

¨(
ρ⃗Cs

Gi/Gs

)
Cs

(5.20)

in which the derivatives of transformation matrices can be obtained by a cascading

method. For example, the matrix derivative ṪC1→Ci
can be expressed as:

ṪC1→Ci
= ṪCi−1→Ci

TC1→Ci−1
+ TCi−1→Ci

ṪC1→Ci−1
(i > 2) (5.21)
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in which the derivative of transformation matrix TCi−1→Ci
can be obtained by ṪCi−1→Ci

=

ṪC0
i →Ci

TCi−1→C0
i
by considering that ṪCi−1→C0

i
= 0, since the direction cosine matrix

TCi−1→C0
i
is time independent. The matrix derivative ṪC1→C2 is the starting point of

the previous cascading method.

The matrix derivative ˙̄ρGi/Gs
in Eqn. (5.20) can be obtained by:

˙̄ρGi/Gs
=


2 (ρ2ρ̇2 + ρ3ρ̇3) −ρ̇1ρ2 − ρ1ρ̇2 −ρ̇1ρ3 − ρ1ρ̇3

−ρ̇1ρ2 − ρ1ρ̇2 2 (ρ1ρ̇1 + ρ3ρ̇3) −ρ̇2ρ3 − ρ2ρ̇3

−ρ̇1ρ3 − ρ1ρ̇3 −ρ̇2ρ3 − ρ2ρ̇3 2 (ρ1ρ̇1 + ρ2ρ̇2)

 (5.22)

where the local derivative
˙(

ρ⃗Cs

Gi/Gs

)
Cs

is defined as
˙(

ρ⃗Cs

Gi/Gs

)
Cs

= [ρ̇1, ρ̇2, ρ̇3] and can

be obtained by taking the derivative of Eqn. (5.16):

˙(
ρ⃗
Ci−1

Gi/Gi−1

)
Ci−1

= ṪCi→Ci−1
ρ⃗Ci

Gi/Ji−1
(i > 2)

˙(
ρ⃗C1

Gi/G1

)
C1

=
˙(

ρ⃗C1

Gi−1/G1

)
C1

+ ṪCi−1→C1 ρ⃗
Ci−1

Gi/Gi−1
+ TCi−1→C1

˙(
ρ⃗
Ci−1

Gi/Gi−1

)
Ci−1

(i > 3)

˙(
ρ⃗C1

Gs/G1

)
C1

=

N∑
i=1

mi

˙(
ρ⃗C1

Gi/G1

)
C1

N∑
i=1

mi

˙(
ρ⃗Cs

Gi/Gs

)
Cs

=
˙(

ρ⃗C1

Gi/G1

)
C1

−
˙(

ρ⃗C1

Gs/G1

)
C1

(i > 1) (5.23)

in which ρ⃗Ci

Gi/Ji−1
in the first expression is time-independent, which simplifies the

calculation of derivative. Similarly, the second order derivative in Eqn. (5.20), i.e.

¨(
ρ⃗Cs

Gi/Gs

)
Cs

, can be obtained by taking the derivative of Eqn. (5.23).

Back to Eqn. (5.19), the local derivative of the angular velocity of the base body
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can be found by taking derivative of the first expression in Eqn. (5.4):

˙(ω⃗C1
B1

)
Cs

= Tω


Ẍ4

Ẍ5

Ẍ6

+RE (5.24)

where the angular acceleration vector is expressed in terms of the general matrix form

by extracting the vector [Ẍ4 Ẍ5 Ẍ6], which enables the explicit expression of these

three rotational reference point coordinates for numerical simulation. The vector RE

and the matrix Tω can be expressed by:

RE =


−Ẋ4Ẋ5 sinX5 cosX6 − Ẋ4Ẋ6 cosX5 sinX6 + Ẋ5Ẋ6 cosX6

Ẋ4Ẋ5 sinX5 sinX6 − Ẋ4Ẋ6 cosX5 cosX6 − Ẋ5Ẋ6 sinX6

Ẋ4Ẋ5 cosX5



Tω =


cosX5 cosX6 sinX6 0

− cosX5 sinX6 cosX6 0

− sinX5 0 1

 (5.25)

c. Application

The derivation results for total angular momentum and its derivative can be directly

applied to formulate the EOMs of N -body systems. Numerical implementation of

the new method is also presented.

Eqn. (5.17) can be applied to express the total angular momentum of theN -body

system required by the rotational EOMs in Eqn. (5.9). The first two terms, P1ω⃗
C1
B1

and

Q1, represent the angular momentum of the entire system projected into the unified
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Cs system but calculated about the CM of individual bodies. P1ω⃗
C1
B1

represents the

instantaneous angular momentum of the N -body system rotating with the base body.

The coefficient P1 can be generalized by first transferring the angular velocity of the

base body (ω⃗C1
B1
) to each rigid body through the transformation matrix (TC1→Ci

),

then multiplying the result with the corresponding inertia tensor (IBi
) and finally

transforming the angular momentum back to the unified coordinate system (Cs) and

summing up. The term Q1 represents the contribution of relative rotation among

the bodies (ω⃗
C0

i
Bi
) to the total angular momentum. The angular velocity at each joint

(ω⃗
C0

i
Bi
) is transferred to all of the bodies affected by this joint along the kinematic

chain, then multiplied by the corresponding inertia tensor and finally transformed

back to the unified Cs system.

The effect of transferring the reference points is represented in P2ω⃗
C1
B1

and Q2,

in which radius vector ρ⃗Cs

Gi/Gs
and matrix ρ̄Gi/Gs represent the effect of the uncon-

strained CM of the system and need to be formulated. First, the kinematic chain

is decomposed into individual links similar to Fig. 36 to apply Eqn. (5.16). Each of

links is made of two contiguous bodies (Bi−1 and Bi) connected by a mechanical joint

(Ji−1). The radius vector from Gi−1 to Gi, ρ⃗
Ci−1

Gi/Gi−1
, is projected into the Ci−1 system

and calculated for each link. The fixed radius vectors between each body and con-

necting joint, ρ⃗
Ci−1

Ji−1/Gi−1
and ρ⃗Ci

Gi/Ji−1
, are time-independent if expressed in body-fixed

coordinate systems Ci−1 and Ci. Second, the cascading expressions in the first two

lines of Eqn. (5.16) are applied repeatedly to calculate the radius vector, ρ⃗C1

Gi/G1
, from

the CM of the base body to that of each body along the chain. Third, the CM of the

system (Gs) within the C1 system is calculated as a weighted average. Finally, the
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radius vectors needed in the coefficients P2 and Q2, ρ⃗
Cs

Gi/Gs
and v⃗Cs

Gi/Gs
, are obtained

by vector combination and absolute derivative calculation, respectively. The local

derivative of the relative radius vector
˙(

ρ⃗Cs

Gi/Gs

)
Cs

needed in the velocity expression

of Eqn. (5.16) can be obtained by calculating the derivative of each element within

ρ⃗Cs

Gi/Gs
. Eqn. (4.12) in Chapter 4 is used to update ρ̄Gi/Gs based on ρ⃗Cs

Gi/Gs
.

Generally, the local derivative of the total angular momentum in Eqn. (5.19) can

be formulated through Eqns. (5.20) and (5.24). The angular acceleration of the base

body is decoupled from the translational acceleration, which facilitates the explicit

expression of [Ẍ4, Ẍ5, Ẍ6] without consideration of [Ẍ1, Ẍ2, Ẍ3].

Finally, Eqn. (5.9) can be rearranged as an explicit expression of unknown ac-

celerations:

N∑
i=1

mi


Ẍ1

Ẍ2

Ẍ3

 =
N∑
i=1

F⃗CI
Bi

(P1 + P2)Tω


Ẍ4

Ẍ5

Ẍ6

 =
N∑
i=1

Bi
M⃗Cs

Gs
− ˙(P1 + P2)Cs

ω⃗C1
B1

− ˙(Q1 +Q2)Cs

−(P1 + P2)RE − ω⃗Cs ×
s
H⃗Cs

Gs
(5.26)

Eqn. (5.26) includes six basic EOMs of the N -body system and represents the

balance between the inertial forcing and external forcing. The LHS is the inertial

forcing, which depends on translational and rotational accelerations; those terms

other than external moments (
N∑
i=1

Bi
M⃗Cs

Gs
) in the RHS of basic rotational EOMs
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are also the inertial forcing, but these terms are independent of unknown reference

point coordinates, including the velocity-dependent inertia terms [33], the vectors

˙(P1 + P2)Cs
ω⃗C1
B1
, (P1+P2)RE and ω⃗Cs×

s
H⃗Cs

Gs
, and the acceleration term ˙(Q1 +Q2)Cs

that depends on known relative coordinates. Thus, the influence of prescribed rel-

ative coordinates between contiguous bodies has been included in the basic EOMs.

The factor
N∑
i=1

mi is the total mass of the N -body system. It can be simply ex-

panded to an equivalent diagonal mass matrix relevant to absolute motion of Gs,

(X1, X2, X3); (P1 + P2)Tω is the mass matrix associated with the rotational refer-

ence point coordinates of the base body, (X4, X5, X6). These two matrices combine

the total effect of the elements of the mass and inertia tensor of each body within

the multibody system and are equivalent to collapsing the larger mass matrices of

conventional methods. More importantly, rotational and translational mass matrices

are decoupled, a significant advantage over other analytical methods.

The first-order decoupled EOMs for numerical integration can be easily obtained

from Eqn. (5.26). All of the matrices and vectors in Eqn. (5.26) are to be updated

at each time step. The decoupling between the previous two mass matrices enables

the separate integrations of the three translational and three rotational basic EOMs.

The kinematics of the translational and rotational reference point coordinates (in-

cluding velocity and acceleration) are thoroughly decoupled in the inertial forcing:

the translational inertial forcing depends on only translational reference point co-

ordinates; the rotational inertial forcing depends on only rotational reference point

coordinates. This formulation advantage facilitates the numerical integration. The

coordinates (X1, X2, X3) are connected with the translational reference point coordi-
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nates of the base body, (X1b, X2b, X3b), and the positions of the CM of other bodies

through pre- and postprocessing procedures in Eqn. (5.10). These procedures are

used to prescribe initial conditions about G1 at the beginning of the first time step

and compute external forcing applied to each body in the future time steps.

4. Expansion for General N -Body System

The derivation for the serial N -body systems is applicable to more general N -body

systems with only minor expansion. These more complicated systems may include

open-chains with branches and closed-chain loops of rigid bodies. The final basic

EOMs (Eqn. (5.26)) remain unchanged, but some intermediate equations requires

additional explanations. The increased complexity of the joints requires addition-

al relative coordinates between contiguous bodies, which may introduce additional

control and constraint equations. Application to more complicated systems is first

discussed, followed by applications including more complicated joints.

The previous derivation was for a serial kinematic chain which enabled sequential

numbering, starting from the base body and progressing through all rigid bodies.

However, a simple kinematic chain does not exist for an open-chain system with

branches (a tree system) or for the combination of a tree system and a closed-chain

system. The expansion of the new method only requires that each body be connected

by some kinematic chain to the base body, and that each body be uniquely numbered.

As in the serial case, radius vectors between the CM of each body and its contiguous

joints and transformation matrices between contiguous bodies must be determined,

after which the position and orientation of any body relative to the base body can
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be obtained by choosing a kinematic chain connecting them. Two equations need to

be reexamined for application to non-serial N -body systems: Eqn. (5.16) and (5.18).

The first and second expressions in Eqn. (5.16) can be applied to any kinematic

chain in a non-serial N -body system as long as the bodies and joints are uniquely

numbered from 1 to N . The calculation of the relative position of Gs in the C1

system (ρ⃗C1

Gs/G1
) in the third expression already considers the relative positions of all

bodies within the N -body system, and can be used directly, as can the fourth and

fifth expressions of ρ⃗Cs

Gi/Gs
and v⃗Cs

Gi/Gs
. The only change required to Eqn. (5.18) is to

modify the internal summation in Q1 to exclude bodies not affected by the relative

angular velocity ω⃗
C0

i
Bi
, i.e. to exclude bodies on other branches.

Just as the method can be applied to systems of any complexity, it can also

be applied to joints of any complexity. Any joint can be represented by relative

coordinates between contiguous bodies. As long as the relative motion described

by these additional relative coordinates are prescribed, no additional EOMs need to

be solved beyond six basic EOMs. For example, a cylindrical joint allowing both

translation and rotation requires one additional relative coordinate to describe the

prescribed translation of the joint hinge relative to its initial position. This motion

is added to the constant vector ρ⃗Ci

Gi/Ji−1
in Eqn. (5.16).

Generally, if the relative coordinates at joints are unknown, the control and con-

straint equations governing these coordinates are fully coupled with six basic EOMs.

The sum ˙(Q1 +Q2)Cs
in Eqn. (5.20) introduces accelerations of unknown relative

coordinates into the basic EOMs. The control and constraint equations may also

depend on accelerations of six reference point coordinates, in which case, the accel-
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erations of relative coordinates in these equations can be expressed as a function of

the accelerations of the reference point coordinates and substituted into ˙(Q1 +Q2)Cs

in the basic EOMs to compute (Ẍ4, Ẍ5, Ẍ6). The translational accelerations of the

base body, (Ẍ1, Ẍ2, Ẍ3), still result from the first equation in Eqn. (5.26). Finally,

explicit expressions of all the accelerations of the chosen coordinates are applied prior

to the numerical integration.

5. Inverse Dynamics of N -body System

The computational efficiency of the overall method is enhanced by avoiding the need

to calculate internal forces and moments between bodies. However, it is commonly

necessary to quantify this internal forcing. Inverse dynamics is conventionally used to

calculate internal forces and moments between arbitrarily selected contiguous bodies

using the kinematics resulting from a forward dynamic simulation.

The first step is to divide the N -body system into two subsystems based on the

position of unknown internal forcing. These two subsystems are connected by either

one or two common joints. The latter indicates a loop composed of rigid bodies

that needs to be broken into two separate subsystems. Known time histories of both

inertial and external forcing on each body are used for the calculation of the internal

forcing by applying the conservation of momentum to one (for one-joint case) or two

(for two-joint case) subsystems. The new method is first derived for the one-joint

case and then simply expanded to the two-joint case.

Two subsystems (s1 and s2) in the original system (s) are connected by one

common joint J . The conservation of linear momentum (Newton’s second Law)
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can be applied to either of these two subsystems to determine forces between them.

Subsystem s1 includes N1 bodies. Newton’s second Law applied to subsystem s1 is:

s
N1∑
i=1

F⃗CI
Bi

+ F⃗CI
J =

(
N1∑
i=1

mi

)
a⃗CI
Gs1

(5.27)

The unknown force on the joint J is internal for the original s system and external for

the subsystem s1. This force is denoted as F⃗CI
J and equal to the difference between

the external forces applied to each body in the s1 system and s
N1∑
i=1

F⃗CI
Bi
, the external

forces on all N1 bodies in the original s system. The vector s
N1∑
i=1

F⃗CI
Bi

is known from

the first expression of Eqn. (5.9) in the forward dynamic simulation. The vector

a⃗CI
Gs1

in the RHS is the acceleration of Gs1 (the CM of the subsystem s1) and can

be expressed by a⃗CI
Gs1

= ¨⃗ρ
CI

Gs1/O
. Similar to the third expression in Eqn. (5.16),

the radius vector ρ⃗CI

Gs1/O
can be shown to be: ρ⃗CI

Gs1/O
=

N1∑
i=1

miρ⃗
CI
Gi/O

N1∑
i=1

mi

, in which the

radius vectors ρ⃗CI

Gi/O
are known and result from Eqn. (5.10) in the forward dynamic

simulation. To summarize, the unknown internal forces (F⃗CI
J ) can be obtained by:

first saving the time histories of s
N1∑
i=1

F⃗CI
Bi

and ρ⃗CI

Gi/O
in forward dynamics; then using

ρ⃗CI

Gi/O
to calculate the time history of ρ⃗CI

Gs1/O
; numerically calculating the second

order derivative of ρ⃗CI

Gs1/O
to obtain the acceleration of Gs1 and further the RHS(

N1∑
i=1

mi

)
a⃗CI
Gs1

; finally subtracting the time history of s
N1∑
i=1

F⃗CI
Bi

from that of the RHS

to obtain F⃗CI
J .

Moments between subsystems connected by a single joint are found by a similar

procedure. The conservation of angular momentum (Newton’s second Law) can be



152

applied to the subsystem s1 to determine internal moments in the original s system:

s
N1∑
i=1

Bi
M⃗Cs

Gs1
+ M⃗Cs

FJ
+ M⃗Cs

J =
˙(

s1
H⃗Cs

Gs1

)
Cs

+ ω⃗Cs ×
s1
H⃗Cs

Gs1
(5.28)

where the LHS includes both the force moments (moments resulting from a force)

and couple moments (moments resulting from pairs of equal and opposite applied

forces). The force moments are calculated about Gs1 , while the couple moments are

free vectors and independent of the reference point. The paired forces do not appear

in the balance of forces in Eqn. (5.27), but their effects do appear in the balance of

moments in Eqn. (5.28). Here, s
N1∑
i=1

Bi
M⃗Cs

Gs1
represents the external force and couple

moments on all N1 bodies in the original s system and is computed from the forward

dynamic simulation. M⃗Cs
FJ

is the force moments applied on the joint J and can be

shown as ρ⃗Cs

J/Gs1
× (TCI→CsF⃗

CI
J ), in which the internal force F⃗CI

J is calculated by

Eqn. (5.27); the radius vector ρ⃗Cs

J/Gs1
can be obtained by: ρ⃗Cs

J/Gs1
= TCN1

→Cs ρ⃗
CN1

J/GN1
+

ρ⃗Cs

GN1
/Gs1

. The couple moments on the joint J (M⃗Cs
J ) are the desired internal moments

(e.g. [35]). In the RHS, the vector
s1
H⃗Cs

Gs1
is the total angular momentum of N1 bodies

about the CM of the subsystem s1 (Gs1):
s1
H⃗Cs

Gs1
=

s1
H⃗Cs

Gs
− ρ⃗Cs

Gs/Gs1
× ms1 v⃗

Cs

Gs/Gs1
.

Here, the vector
s1
H⃗Cs

Gs
is the total angular momentum of N1 bodies about Gs; the

vector ρ⃗Cs

Gs/Gs1
can be calculated as ρ⃗Cs

Gs/Gs1
= ρ⃗Cs

Gs/G1
− ρ⃗Cs

Gs1/G1
. Thus, the inertial

forcing in the RHS of Eqn. (5.28) is computed from results for all N1 bodies in the

forward dynamic simulation. The unknown internal moments (M⃗Cs
J ) are obtained

by subtracting s
N1∑
i=1

Bi
M⃗Cs

Gs1
and M⃗Cs

FJ
from the time history of the inertial forcing, i.e.

the RHS of Eqn. (5.28).

A two-joint case is solved in a similar manner using Eqns. (5.27) and (5.28). Ap-
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plication of Eqn. (5.27) to each of the two subsystems results in two sets of equations

with two unknown internal forces, which can be solved simultaneously. After obtain-

ing the two internal forces, Eqn. (5.28) can be applied to each of the two subsystems

and solved simultaneously for the internal moments at the two joints.

Configurations may exist for which the number of the desired unknown inter-

nal forces or moments is greater than 2, and so not all unknowns can be obtained

simultaneously for these cases. Multiple application of the presented method can be

implemented through dividing the original s system into one-joint or two joint cases.

Calculation of internal forcing for overdetermined systems is not covered here.

D. Example

The new multibody formulation (MCM) is applied to a 6-body compliant floating

wind turbine design. The physical properties of the model are the same as that in

Chapter 4. The 6-body model includes the tower (body 1), nacelle (body 2), hub

(body 3) and three blades (bodies 4-6). The tower is considered as the base body.
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Fig. 37. Coordinate systems used in the 6-body model

Fig. 37 shows the coordinate systems used for the MCM; only the body-fixed

coordinate system on one of the three blades is shown. The (XM , YM , ZM) system is

defined to enable comparison of simulation results with those of FAST, in which the

reference point is usually prescribed to be on the still water level. The six unknown

reference point coordinates are three translational DOFs of the CM of the tower and

three rotational DOFs of the base body. The known relative coordinates are the

yaw rate of the nacelle relative to the tower, the spin rate of the hub relative to the
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nacelle and the three blade-pitch rates relative to hub.

The 6-body model is first decomposed to three serial kinematic chains to apply

the MCM. Each chain starts from the base body (tower) and ends at one of the three

blades. Along each chain, the angular velocity of each body and the transformation

matrix between contiguous bodies are obtained by Eqn. (5.14). The common part of

all chains (including bodies 1, 2 and 3) needs derivation only once. The transforma-

tion matrix along each chain is obtained by Eqn. (5.15). Then the position of each

joint relative to the CM of the contiguous body is prescribed to determine the kine-

matics of each body relative to the CM of the system using Eqn. (5.16). The angular

momentum of the system and its local derivative can be written directly through

Eqns. (5.17) and (5.19). The resultant rotational EOMs are further connected with

the translational EOMs by Eqns. (5.10).

The MCM is verified through comparison of results from the multibody wind tur-

bine model with those from the popular wind turbine dynamics software FAST [46].

FAST uses Kane’s method to formulate the EOMs of the wind turbine system. Under

the free vibration case, both the global motion from forward dynamics and internal

forcing from inverse dynamics are compared to simulation results from FAST.

1. Global Motion from Forward Dynamics

Figs. 38–39 show time histories of global motion computed using FAST and those

computed using the MCM for a small-amplitude free vibration case. The rotational

DOFs of the tower are transferred to the inertial coordinate system used in FAST

to enable direct comparison between (X4, X5, X6) and pitch, roll and yaw, which
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is valid for small-amplitude rotation [69]. The translational DOFs, (X1b, X2b, X3b),

are transferred to the waterplane to enable direct comparison with the sway, surge

and heave computed in FAST, which are measured from the (XM , YM , ZM) system in

Fig. 37. Constant nacelle yaw (1.2 deg/sec), hub spin (12.1 rpm) and blade-pitch rate

(1.2 deg/sec) are prescribed during the simulation. Here, both hydrodynamics and

aerodynamics have been disabled in FAST. The only external forces acting on the

base body are from the mooring lines and buoyancy, both of which are represented

in the user-defined subroutine (UserPtfmLd) in FAST as a 6 × 6 restoring matrix,

with values consistent with the method presented in Chapter 3 but linearized near

the average tilt angle and tuned to reproduce the correct natural frequencies. The

initial conditions in all six DOFs of the tower are zero. The CM of the nacelle is not

directly above the axis of the tower, so nacelle yaw motion changes the position of the

CM of the system relative to the tower, which causes the tower motion. Figs. 38–39

show that the global motions of FAST and the MCM are virtually indistinguishable.

The spin axis is initially parallel to the surge direction. The influence of the moving

Gs is clearly observable in the coupled motion of translational and rotational moving

DOFs. For example, both pitch and surge are minimized (zero crossing) when the

nacelle yaw angle is 90 deg (at 75 sec), while roll and sway are maximized. The

observed yaw motion results from gyro moments associated with rotor spin coupled

with roll and pitch.
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Fig. 38. Rotation compared to FAST (6-body)
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Fig. 39. Translation compared to FAST (6-body)
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2. Internal Forcing from Inverse Dynamics

Figs. 40–43 show the corresponding internal forcing resulting from inverse dynamics.

The internal forces and moments applied by the nacelle on the tower are decomposed

into the body-fixed (x1, y1, z1) system and shown by Figs. 40 and 41, in which the

nearly constant internal force along the tower axis due to the topsides weight is not

shown. The results from the tower-top coordinate system in FAST are transferred

to the (x1, y1, z1) system to compare with the MCM and show perfect agreement.

The natural frequency of tower pitch shown in Fig. 38 dominates the time histories

of internal forces, which further affect the internal moments. Meanwhile, the effect

of nacelle yaw is represented in both internal forces and moments. The internal

forces and moments applied by the hub on the blade are decomposed into the body-

fixed (x4, y4, z4) system and shown by Figs. 42 and 43. The results from the blade

coordinate system in FAST are transferred to the (x4, y4, z4) system to compare

with the MCM. The numerical differentiation is applied in the MCM to calculate

the acceleration of the CM of the blade, which causes results slightly different from

those of FAST. In this free vibration case, the internal edgewise and flapwise forces at

the blade root dominate the blade bending moments, while the external wind forces

applied on the blades dominate the bending moments in a practical forced vibration

case.
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Fig. 40. Internal forces applied by the nacelle on the tower
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E. Conclusions

A new multibody dynamics formulation method (MCM) is presented to obtain the

explicit first-order decoupled EOMs for numerical integration. The underlying con-

cept is to directly apply the conservation of momentum to the entire rigid multibody

system. Various advantages of current multibody dynamics formulations are com-

bined in the MCM: the calculation of internal forcing can be avoided and the red-

erivation due to a newly added body in the system is simplified. The 1-2-3 sequenced

Euler angles are applied to describe the large-amplitude rotations of the floating base

body, which preserves the fully nonlinearly in the EOMs. More importantly, the M-

CM represents the conservation of momentum of entire system using only six basic

EOMs, in which the translational and rotational inertial forcing are decoupled. The

6 × 6 mass matrix in the basic EOMs is actually composed of two 3 × 3 decoupled

mass matrices, which increases the efficiency of numerical integration dramatical-

ly. The selection of coordinates makes it simple to expand the MCM to multibody

systems with more complicated forms and connection joints. The unknown relative

motion at joints can be solved by combining six basic EOMs with the constraint and

control equations. Inverse dynamics can also be applied to conveniently find internal

forcing between any two contiguous bodies using the results of forward dynamics.

The MCM is verified by the well-recognized multibody dynamics software through a

6-body compliant wind turbine model.
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CHAPTER VI

SUMMARY

A. Conclusions

In this dissertation, a new multibody dynamics formulation method underlying the

time-domain simulation of compliant floating wind turbine designs is presented to

obtain the explicit first-order decoupled EOMs for numerical integration. The EOMs

of multibody systems are established by applying the theorem of conservation of

momentum. Development of the new methodology is based on improvement of wind

turbine models and refinement of theoretical derivation.

In Chapter 2, Euler dynamic equations based on the conservation of angular

momentum are applied to each body of a simple 2-body wind turbine model, re-

spectively. The selection of two sets of 3-1-3 sequenced Euler angles simplifies Euler

kinematic equations. The application of geometrical constraints decreases the DOFs

of the system. All of these advantages facilitate the establishment of the first-order

decoupled EOMs.

As the work progresses, new EOMs are established and gradually refined to

enable an increased number of bodies. Significant improvements of the formulation

method result from direct application of the conservation of both linear and angular

momenta to the entire multibody system. In Chapter 3, previous 2-body model

is applied to highlight the uniqueness of the new formulation methodology using a

simple derivation. A set of 1-2-3 sequenced Euler angles are selected to describe the

rotation of the tower because they are more consistent with conventional pitch-roll-
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yaw of floating structures. Decoupling between translational and rotational EOMs

is simplified by prescribing the CM of the wind turbine system to be constrained to

the tower axis and writing the EOMs about that point.

In Chapter 4, the new method is improved by introducing a 3-body model

with an unconstrained CM of the system. The coupling between translational and

rotational inertial forcing is eliminated by: writing the translational EOMs about the

CM of the system, though this point is not longer constrained to a body; a separate

coordinate system fixed to the base body (tower) is applied to derive unknown relative

radius vectors between the CM of the system and that of each body in the rotational

EOMs. This decoupling enables generation of two decoupled mass matrices, one

translational and one rotational, which greatly facilitates the numerical integration.

The introduction of the 3-body model with the unconstrained CM of the system

leads to the generalization of theoretical derivation to the N -body system presented

in Chapter 5.

In Chapter 5, the new methodology is generalized using a serial N -body system

to form the momentum cloud method (MCM). The selection of coordinate systems

and corresponding coordinates is standardized. The theoretical derivations for both

forward and inverse dynamics are systematized using standardized notations, which

enables application of the MCM to formulate the first-order decoupled EOMs using

standard vector and matrix calculation methods. A key advantage over conventional

energy methods is that the MCM avoids tedious rederivation of the EOMs if new

rigid bodies are added to the system. A six-body wind turbine model is used to

verify the MCM. The new method has clear application beyond derivation of the
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EOMs of floating wind turbines. It is expanded for application to other multibody

systems with more complicated forms and more complicated joints through use of

additional constraint and control equations.

The new method is demonstrated by simulation of the motion and internal

forcing of highly compliant floating wind turbines, the results of which are verified

by critical comparison with those of the popular wind turbine dynamics software

FAST. The time-domain simulation tool based on the new method is also applied

to roughly investigate the feasibility of compliant designs. Specific two-component

gyroscopic moments of compliant designs are shown (Fig. 11). Large pitch angles

reduce the effective blade swept area perpendicular to the wind, but this effect has

been shown to have only a modest effect on energy capture (Fig. 26). It is also shown,

counter-intuitionally, that in some cases reduced stiffness actually lowers dynamic

loading. For sinusoidal motion, the amplitude of the inertial loads is the product of

the moment of inertia, the amplitude of the motion, and the square of the circular

frequency. Decreasing the stiffness reduces the pitch and roll natural frequencies

(Fig. 19), which decreases inertial loading. However, such a change may require

special consideration in the design of the rotor speed and blade-pitch controllers.

B. Future Work

This dissertation summarizes the work regarding a new multibody dynamic for-

mulation using conservation of momentum and its application to the time-domain

dynamic simulation of compliant floating wind turbines. There are several possible

developments for future work:
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1) When the control equations governing the relative motions at joints need to be

solved simultaneously with six basic EOMs, various real-time control mechanisms,

such as nacelle-yaw, blade-pitch and rotor-spin control, are critical for better design

of compliant floating wind turbines, and so merit further investigation.

2) Calculation of external loads should be improved. The simulation tool could be

connected to AeroDyn [30] to calculate wind loads. The radiation-diffraction may be

considered in the calculation of wave loads. The restoring loads could be obtained

using catenary mooring lines.

3) General multibody systems may include the joints of any complexity. Current

constraint equations are actually minimized by prescribing the rotation axis of the

joint, which simplifies the transformations between contiguous bodies. More general

joints with 6-DOFs can be introduced by using existing parametrization system, such

as the Denavit-Hartenberg parameters.

4) The MCM can be expanded to multibody systems with complicated forms, such

as open-chains with branches or closed-chains. However, the serial kinematic chains

need to be first prescribed before application. Future work on topology of multibody

systems could be combined with the current derivation to formulate the automatic

generalization of model-based EOMs.

5) Structural flexibility of individual bodies is not presently considered using the

MCM, which is currently applicable to rigid multibody systems. The flexible body

could be considered as an assembly of a series of rigid bodies connected by joints

represented by springs and dampers. The modal superposition method could be

investigated as a possible means to obtain the relative position of an assembly of rigid
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bodies, which could then be combined with the newly presented MCM to simulate a

flexible body as an assembly of rigid bodies. Structural stiffness and damping of the

connecting joints could be treated as the dynamic factors in the constraint equations.
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